

Temperature Total Maximum Daily Loads Replacement Project **John Day River Basin**

Jan. 28, 2026

Rule Advisory Committee meeting #1

Virtual meeting

Agenda

Time	Topic
1:00 p.m.	Welcome, introductions, meeting agenda
1:10 p.m.	Rule Advisory Committee Charter review
1:20 p.m.	Draft Total Maximum Daily Load
1:50 p.m.	Draft Water Quality Management Plan
2:20 p.m.	Draft Administrative Rule Language
2:30 p.m.	Draft Fiscal and Economic Impact Statement
2:50 p.m.	Wrap up, next steps
3:00 p.m.	Adjourn

Zoom logistics and meeting ground rules

Raise hand to be recognized for questions or comments

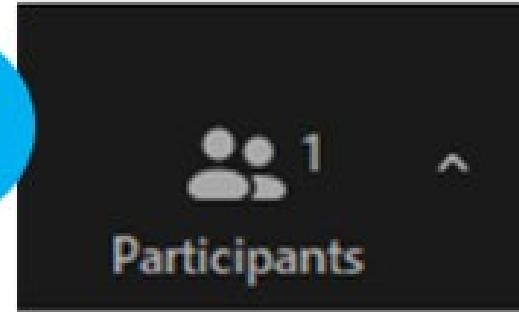
Use chat to:

Ask questions

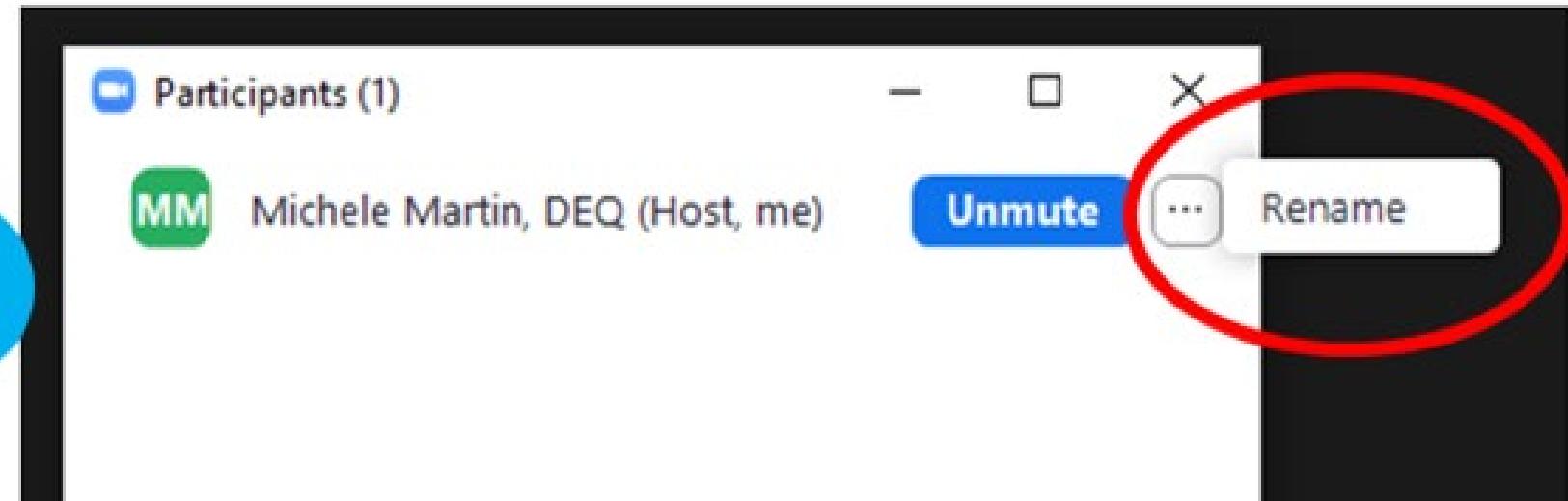
Provide informational resources

Second good ideas/issues

Mute when not speaking

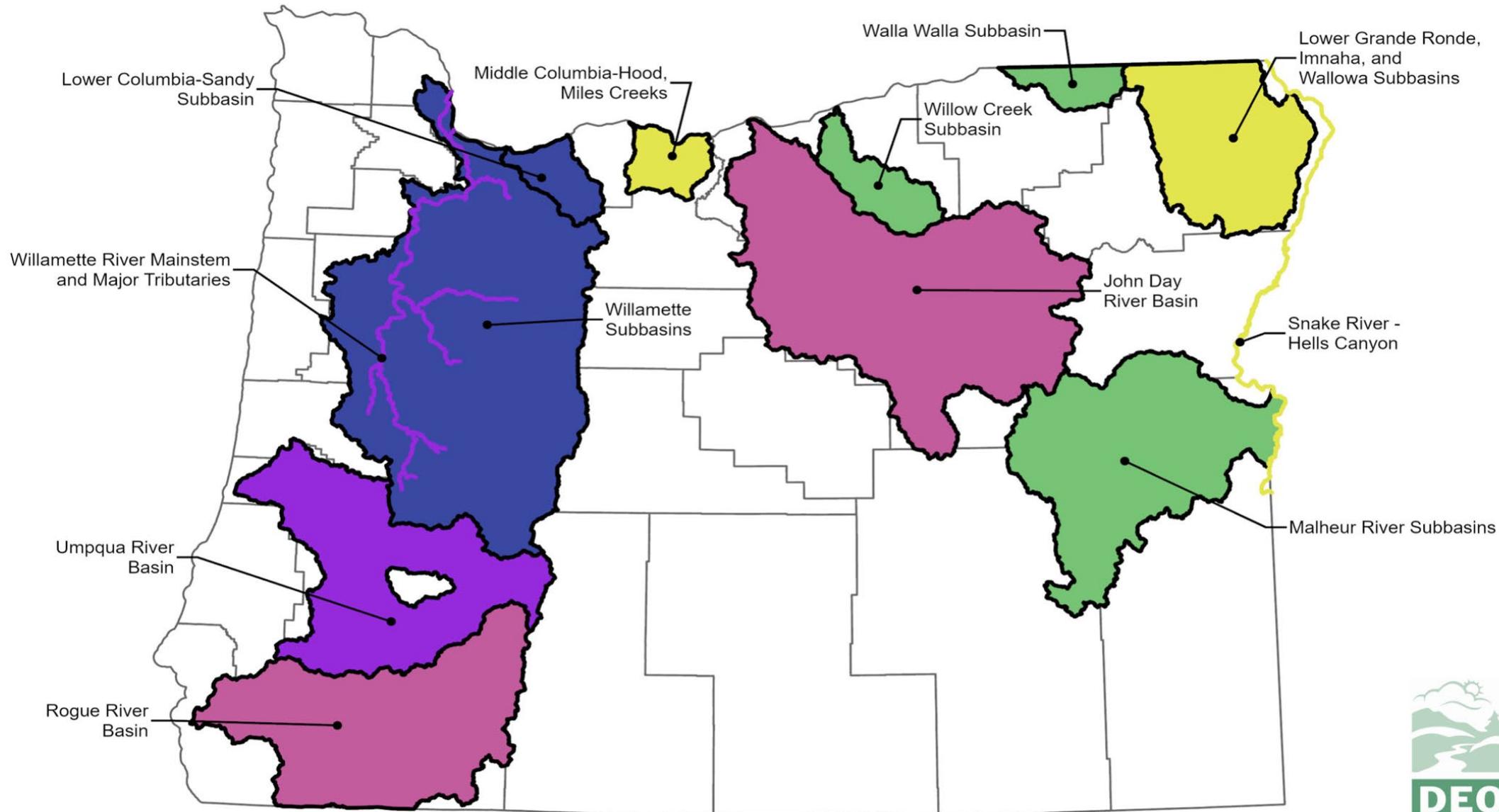

If using phone: press *9 to raise hand, *6 to mute/unmute

Rulemaking Advisory Committee


- ORS 183.333 – to obtain advisory input on fiscal/economic impacts of the proposed rule
- Charter: posted online
- No expectation of group decisions or consensus
- RAC members:
 - Provide input and perspectives
 - Prepare for and attend meeting
 - Consult regularly with constituencies to inform them and gather input
- DEQ: Facilitate, provide info, record input
- Public: Observe only; DEQ may allow brief comments if time allows
- Stay on topic, share research/documentation, be respectful

RAC member roll call

1


2

Legal drivers behind temperature TMDL replacements

- **2012: NWEA vs. USEPA, NMFS, USFWS**
 - Challenged EPA's approval of Oregon's water quality standards (including the Natural Conditions Criteria) and the Services' "no jeopardy" BiOp
 - Court found "EPA was unable to articulate a rationale [sic] basis for its approval of the NCC"
 - **Outcome:** EPA later disapproved the Natural Conditions Criteria
- **2019: NWEA vs. USEPA**
 - Claimed EPA unlawfully approved temperature TMDLs based on the disapproved Natural Conditions Criteria
 - **Outcome:** Court ordered DEQ and EPA to replace 15 temperature TMDLs using the remaining temperature criteria (excluding the Natural Conditions Criteria)
- [DEQ temperature TMDL replacement project page](#)

Project geographic scope

Key dates for EPA action

Sep. 15, 2024	June 28, 2025	Oct. 18, 2027	Dec. 4, 2028	Nov. 29, 2029
<ul style="list-style-type: none">✓ Willamette Subbasins✓ Lower Columbia-Sandy Subbasin	<ul style="list-style-type: none">✓ Willamette River Mainstem and Major Tributaries✓ Umpqua River Basin	<ul style="list-style-type: none">• Rogue River Basin• John Day River Basin	<ul style="list-style-type: none">• Snake River - Hell's Canyon• Lower Grande Ronde, Imnaha, and Wallowa Subbasins• Middle Columbia-Hood, Miles Creeks	<ul style="list-style-type: none">• Walla Walla Subbasin• Willow Creek Subbasin• Malheur River Subbasins

John Day temperature TMDL project schedule

**Rule advisory
committee meeting 1**

Jan. 28, 2026

**Informational
webinar**

Jan. 15, 2026

**Rule advisory
committee meeting 2**

May 20, 2026

**Public notice
and hearing**

Aug. – Oct. 2026
(45 days)

**EQC rule
proposal**

May 2027

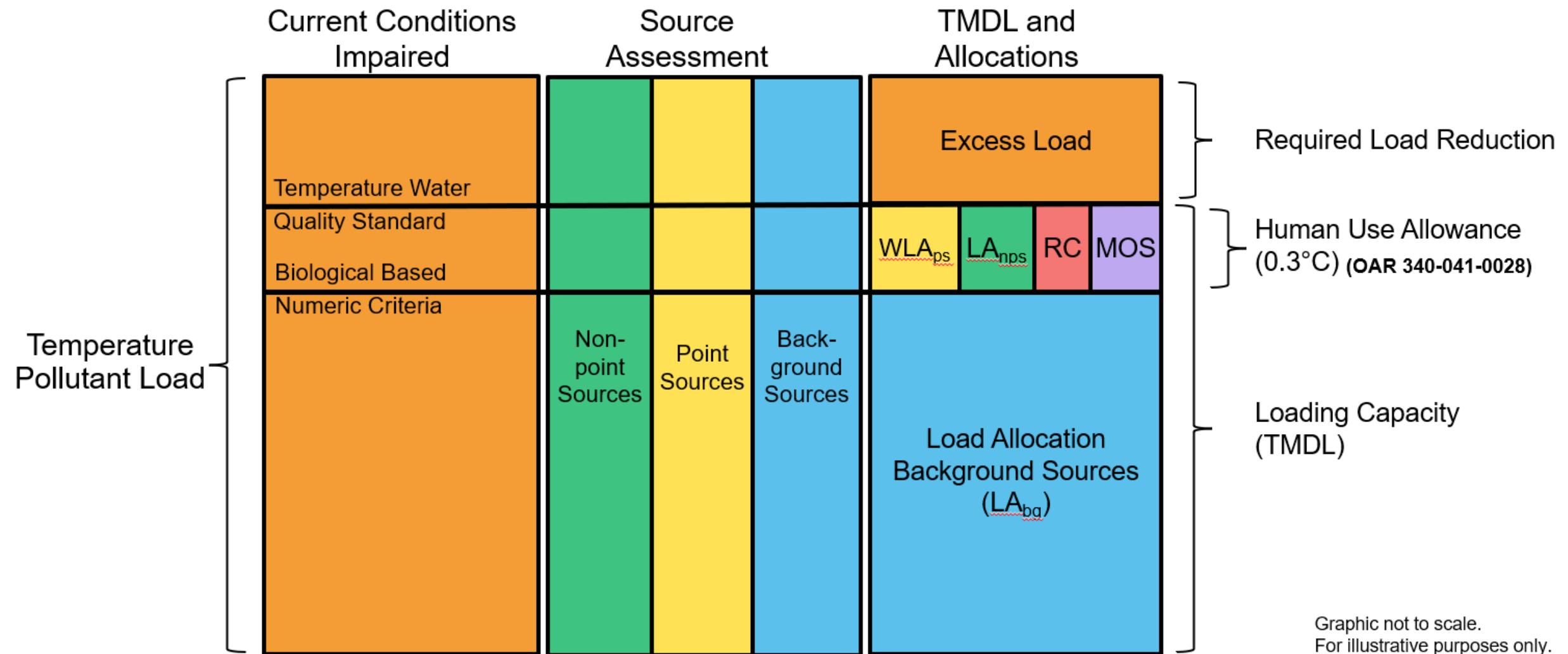
EPA action

Oct. 18, 2027

John Day River Basin Temperature TMDL elements

John Day River at Clyde Holliday Park

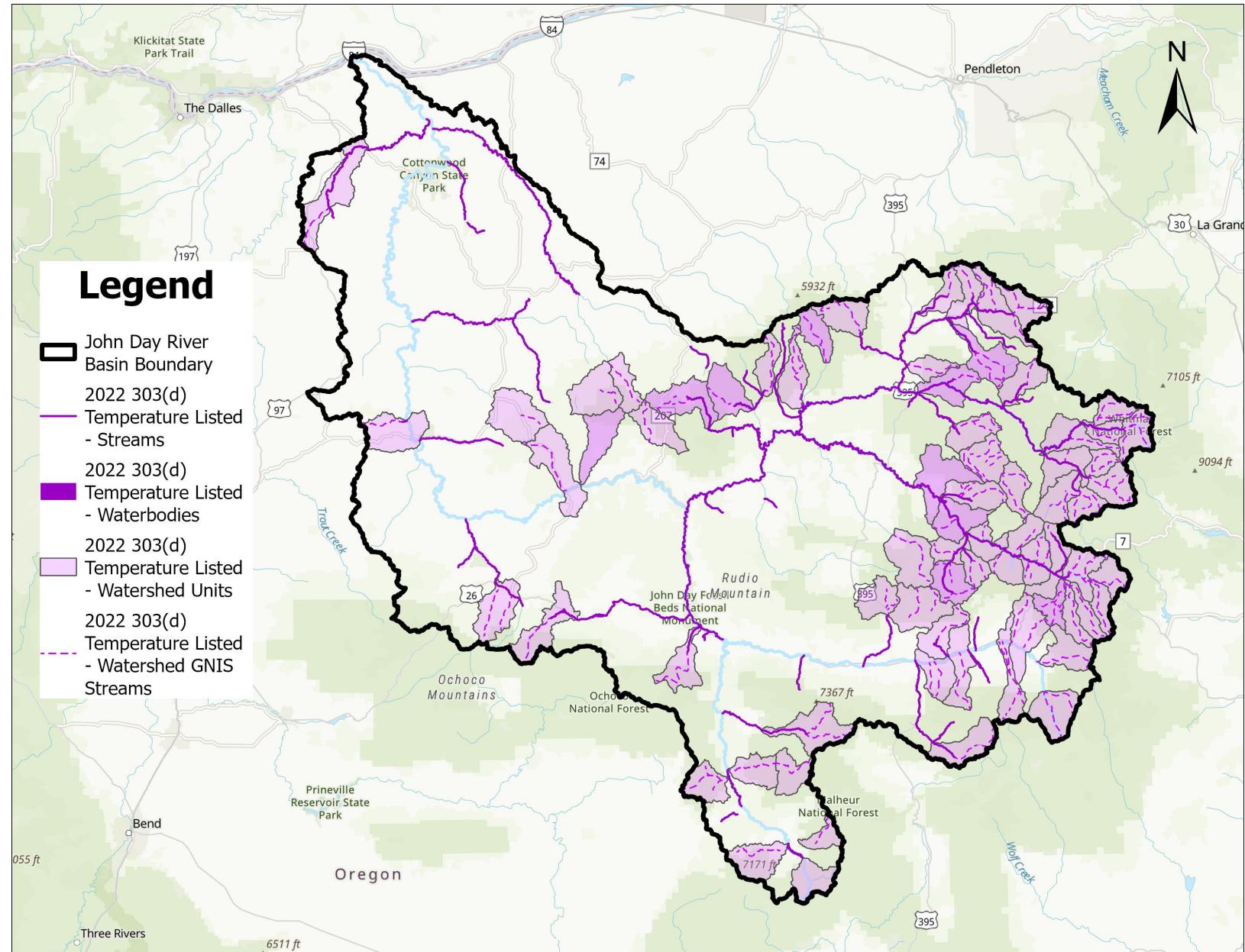
Total Maximum Daily Loads



A TMDL, or clean water plan, is a science-based approach to cleaning up polluted water so that it meets state water quality standards.

A TMDL is also a numeric value that represents the maximum amount of a pollutant a surface water body can receive and still meet the standards.

$$\text{TMDL} = \text{WLA}_{\text{ps}} + \text{LA}_{\text{nps}} + \text{LA}_{\text{bg}} + \text{MOS} + \text{RC}$$


TMDLs include the following elements:

- Waterbody Name and Location
- Pollutant
- Water quality standard and beneficial uses
- Loading Capacity
- Excess Load / Load Reduction
- Sources or Source categories
- Allocations
 - Wasteload Allocations (WLA)
 - Load Allocations (LA)
 - Surrogate Measures
 - Reserve Capacity (RC)
 - Margin of Safety (MOS)
- Seasonal Variation
- Water Quality Management Plan

References: [OAR 340-042-0040\(4\)](#) and [40 CFR 130.2 and 40 CFR 130.7](#)

John Day River Basin Temperature TMDL project area

2022 Integrated Report

TMDL elements: the basics

Name and location:

TMDL section 2, pgs. 1-11

Pollutant identification:

TMDL section 3, pg. 11

Water Quality standards and beneficial uses:

TMDL section 4, pgs. 11-21

Seasonal variation:

TMDL section 5, pg. 22-23

TMDL elements: point sources or source categories

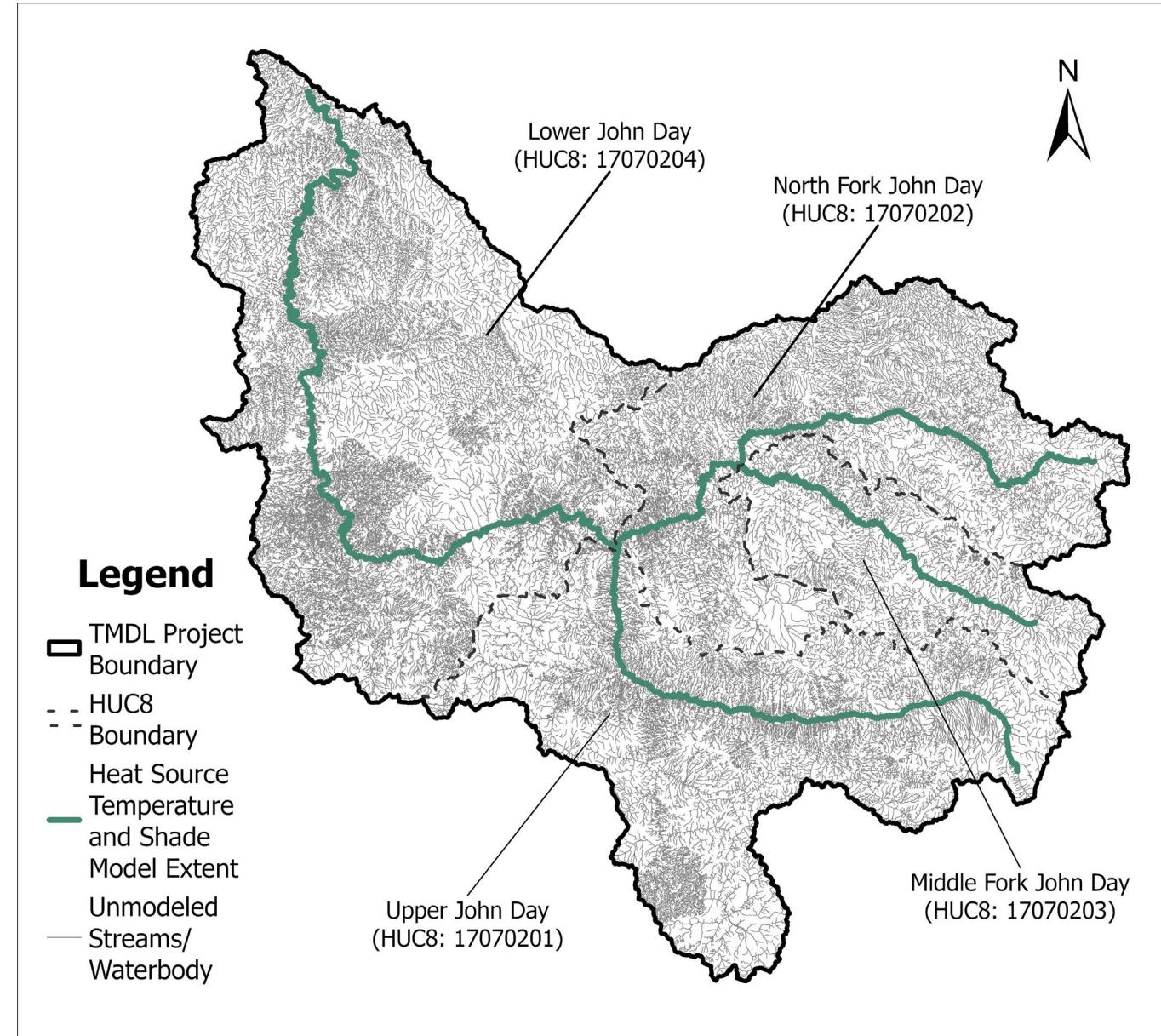
Point sources

TMDL section 7, pgs. 26-27

- NPDES permits (3)
- WPCF permit (1)

Note: the number in parentheses (#) denotes the count of facilities under each permit category that are provided a numeric wasteload allocation

TMDL elements: nonpoint sources or source categories

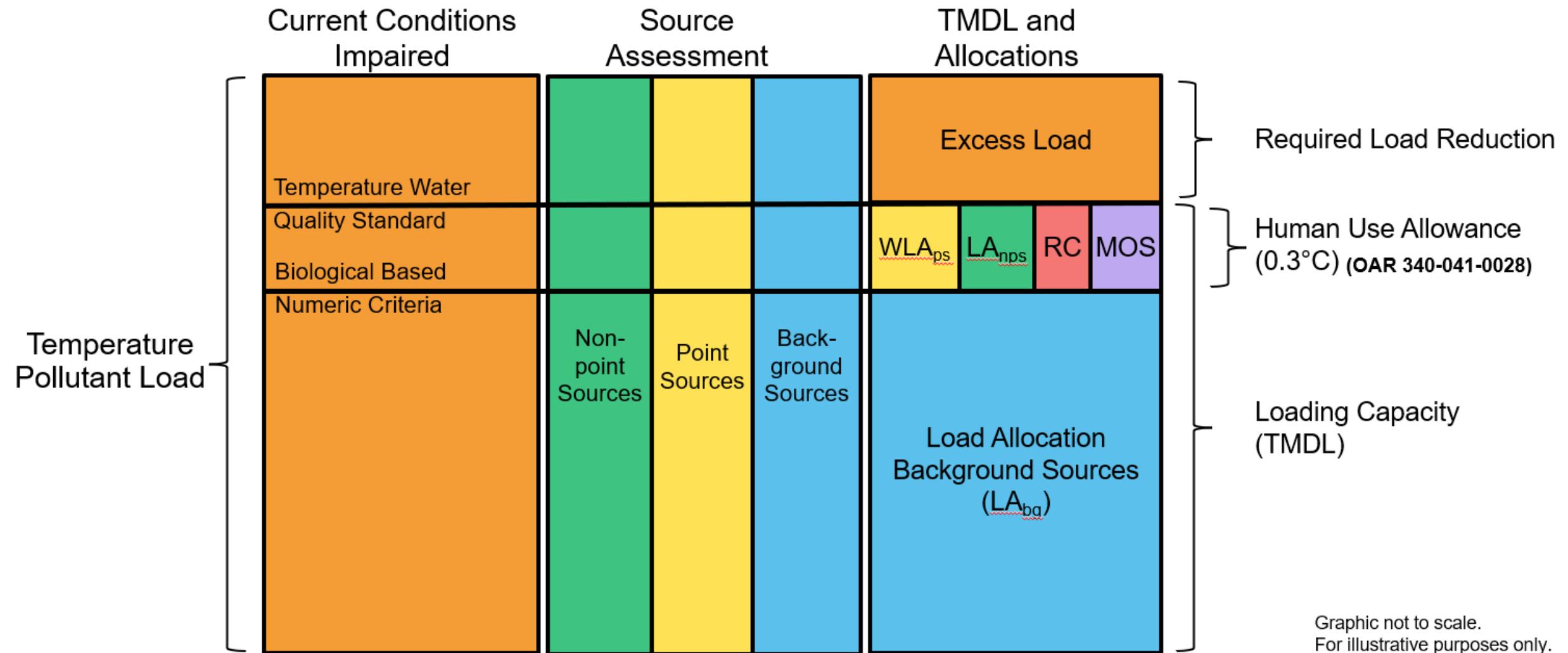

Nonpoint sources

TMDL section 7, pgs. 27-28

- Background sources
- Solar radiation from the disturbance or removal of near-stream vegetation
- Channel modification and widening
- Activities that modify flow rate or volume

Model scenarios

- Calibration
- 2023 vegetation
- Restored vegetation
- Restored flow
- Consumptive use
- Channel morphology
- Tributary temperatures
- No point source
- Background
- TMDL wasteload allocations
- HUA attainment



Model scenario comparisons

Maximum modeled change in stream temperature (°C) at the point of maximum impact (POMI) for the John Day River, Middle Fork John Day River, and North Fork John Day River for different model scenario comparisons.

Question/Topic addressed	John Day River (°C)	Middle Fork John Day River (°C)	North Fork John Day River (°C)
Effect of anthropogenic sources	13.50	8.59	6.11
Effect of fully restored vegetation	8.40	6.62	7.68
Effect of existing infrastructure	2.09	1.23	0.29
Effect of permitted water withdrawals	6.26	2.97	2.34
Effect of morphological changes (channel widening)	6.83	4.08	2.81

$$\text{TMDL} = \text{WLA}_{\text{ps}} + \text{LA}_{\text{nps}} + \text{LA}_{\text{bg}} + \text{MOS} + \text{RC}$$

TMDL elements: loading capacity (LC)

TMDL section 8, pgs. 29-38

- Maximum amount of a pollutant the waterbody can receive and still meet standards.
- Provision in TMDL allows LC recalculation based on river flow and/or if the numeric standard is updated and approved by EPA.

Table 8-1: Thermal loading capacity (LC) for select AUs by applicable fish use period at 7Q10 flow in the Upper John Day Subbasin (17070201).

AU Name	AU ID	Annual 7Q10 (cfs)	Year-Round Criterion + HUA (°C)	Spawning Criterion + HUA (°C)	7Q10 LC Year-Round (kcal/day)	7Q10 LC Spawning (kcal/day)
Battle Creek	OR_SR_1707020111_05_101556	0	18.3	NA	0.00E+00	NA
Bear Creek	OR_SR_1707020106_05_101534	0.595	16.3	NA	2.37E+07	NA
HUC12 Name: Upper Beech Creek	OR_WS_170702010801_05_102055	0	18.3	NA	0.00E+00	NA
HUC12 Name: Upper Beech Creek	OR_WS_170702010801_05_102055	0	18.3	NA	0.00E+00	NA
Beech Creek	OR_SR_1707020108_05_101540	1.31	18.3	NA	5.87E+07	NA
HUC12 Name: Upper Canyon Creek	OR_WS_170702010701_05_102051	1.14	12.3	NA	3.43E+07	NA

TMDL elements: excess load / load reduction

TMDL section 8, pgs. 39-49

- Excess load is the amount of thermal load reduction required to meet the loading capacity and achieve temperature standards
- Can use excess temperature to calculate percent load reduction

Table 8-8: Excess temperature and percent load reduction for AUs with available temperature data in the Upper John Day Subbasin (17070201).

AU Name	AU ID	Maximum 7DADM River Temperature (°C)	Applicable Criterion + HUA (°C)	Excess Temperature (°C)	Percent Load Reduction
South Fork John Day River	OR_SR_1707020101_05_101516	16.61	18.3	0	0
Pine Creek	OR_SR_1707020102_05_101521	23.83	18.3	5.53	23.21
Murderers Creek	OR_SR_1707020103_05_101525	21.05	18.3	2.75	13.06
South Fork John Day River	OR_SR_1707020104_05_101527	24.8	18.3	6.5	26.21
Canyon Creek	OR_SR_1707020107_05_101537	20.6	12.3	8.3	40.29
Canyon Creek	OR_SR_1707020107_05_101538	24.16	12.3	11.86	49.09
East Fork Canyon Creek	OR_SR_1707020107_05_101539	21.27	12.3	8.97	42.17
Beech Creek	OR_SR_1707020108_05_101540	22.9	18.3	4.6	20.09
East Fork Beech Creek	OR_SR_1707020108_05_101541	24.14	18.3	5.84	24.19
John Day River	OR_SR_1707020109_05_101547	24.57	18.3	6.27	25.52
Fields Creek	OR_SR_1707020110_05_101550	18.93	18.3	0.63	3.33
John Day River	OR_SR_1707020110_05_101552	28.24	18.3	9.94	35.20
John Day River	OR_SR_1707020111_05_102568	27.76	18.3	9.46	34.08

TMDL elements: human use allowance (HUA)

TMDL section 9.1.1 pgs. 50-53

Table 9-1: HUA assignments for source or source categories on assessment units in the Upper John Day Subbasin (17070201).

AU Name	AU ID	NPDES point sources (°C)	Dam and reservoir operations (°C)	Anthropogenic warming from tributaries (°C)	Solar loading from existing transportation corridors, existing utility infrastructure (°C)	Consumptive use water management and water withdrawals (°C)	Solar loading from nonpoint sectors (°C)	Reserve capacity (°C)	Total HUA (°C)
John Day River	OR_SR_1707020110_05_101552 OR_SR_1707020109_05_101547 OR_SR_1707020106_05_101533	0.10	0.00	0.05	0.025	0.10	0.00	0.025	0.30
All other AUs	Applicable AUs are listed in TSD Appendix [TBD]	0.00	0.00	0.05	0.050	0.15	0.00	0.050	0.30

TMDL elements: wasteload allocations (WLA) (1/3)

TMDL section 9.1.2, pgs. 54-55

- Can be incorporated into NPDES permit as a static numeric limit; or as a dynamic flow-based limit (pg. 54)
- Permit writers are authorized to update 7Q10 or maximum effluent discharge
- WLA are converted to permit limits based on specific conditions upon permit renewal

TMDL elements: wasteload allocations (WLA) (2/3)

TMDL section 9.1.2, pgs. 54-55

$$WLA = \Delta T \cdot (Q_E + Q_R) \cdot C_F$$

Equation 9-1a

where,

WLA = Wasteload allocation (kilocalories/day), expressed as a rolling seven-day average.

ΔT = The assigned portion of the HUA from Table 9-5. It is the maximum temperature increase ($^{\circ}\text{C}$) above the applicable river temperature criterion using 100% of river flow not to be exceeded by each individual source from all outfalls combined.

Q_E = The daily mean effluent flow (cfs).

When effluent flow is in million gallons per day (MGD) convert to cfs:

$$\frac{1,000,000 \text{ gallons}}{1 \text{ day}} \cdot \frac{0.13368 \text{ ft}^3}{1 \text{ gallon}} \cdot \frac{1 \text{ day}}{86,400 \text{ sec}} = 1.5472 \text{ ft}^3/\text{sec}$$

Q_R = The daily mean river flow rate, upstream (cfs).

When river flow is $\leq 7Q10$, $Q_R = 7Q10$. When river flow $> 7Q10$, Q_R is equal to the daily mean river flow, upstream.

C_F = Conversion factor using flow in cfs: 2,446,665

$$\left(\frac{1 \text{ m}}{3.2808 \text{ ft}} \right)^3 \cdot \frac{1000 \text{ kg}}{1 \text{ m}^3} \cdot \frac{86400 \text{ sec}}{1 \text{ day}} \cdot \frac{1 \text{ kcal}}{1 \text{ kg} \cdot 1^{\circ}\text{C}} = 2,446,665$$

TMDL elements: wasteload allocations (WLA) (3/3)

TMDL section 9.1.2, pgs. 54-55

Table 9-5: Thermal wasteload allocations (WLA) for point sources. Listed WLAs were calculated based on the 7Q10 flow. Listed 7Q10s calculated based on a seasonal period corresponding to WLA period.

NPDES Permittee WQ File Number: EPA Number	Assigned HUA ΔT (°C)	WLA period start	WLA period end	7Q10 River flow (cfs)	Effluent discharge (cfs)	7Q10 WLA (kilocalories/ day)
City Of Dayville 23560 : OR0041505	0.1	1-May	31-Oct	4.2	0.074	1.05E+06
John Day WWTP 43569 : OR0027227	0.1	1-May	31-Oct	12.0	0.928	3.16E+06
Long Creek STP 51180 : OR0034070	0.1	1-May	31-Oct	0.9	0.155	2.58E+05
Mt Vernon STP 59065 : OR0030694	0.1	1-May	31-Oct	12.0	0.155	2.97E+06

TMDL elements: load allocations (LA) for background and nonpoint sources

TMDL section 9.1.3, pgs. 55-79

$$LA = \Delta T \cdot (Q_R) \cdot C_F$$

where,

$LA =$ Load allocation to background sources (kilocalories/day), expressed as a rolling seven-day average.

$\Delta T =$ For background sources: the applicable temperature criteria, not including the HUA. When there are two year-round applicable temperature criteria that apply to the same AU, the more stringent criteria shall be used.

For nonpoint sources: the portion of the HUA assigned to each nonpoint source category representing the maximum cumulative temperature increase ($^{\circ}\text{C}$) from all source activity in the nonpoint source category.

$Q_R =$ The daily average river flow rate (cfs). For a lake, a dilution factor of 1 may be used for Q_R unless determined using another method.

$C_F =$ Conversion factor using flow in cfs: 2,446,665

$$\left(\frac{1 \text{ m}}{3.2808 \text{ ft}} \right)^3 \cdot \frac{1 \text{ m}^3}{35.31 \text{ ft}^3} \cdot \frac{1000 \text{ kg}}{1 \text{ m}^3} \cdot \frac{86400 \text{ sec}}{1 \text{ day}} \cdot \frac{1 \text{ kcal}}{1 \text{ kg} \cdot 1^{\circ}\text{C}} = 2,446,665$$

TMDL elements: background load allocations (LA_{BG})

TMDL section 9.1.3, pgs. 55-66

Table 9-6: Thermal load allocations (LA) for background sources in the Upper John Day Basin (17070201).

AU Name and AU ID	Annual 7Q10 (cfs)	Year-Round Criterion (°C)	Spawning Criterion (°C)	7Q10 LA Year-Round (kilocalories/day)	7Q10 LA Spawning (kilocalories/day)
Battle Creek OR_SR_1707020111_05_101556	0.00	18	NA	0	NA
Bear Creek OR_SR_1707020106_05_101534	0.60	16	NA	2.33E+07	NA
HUC12 Name: Upper Beech Creek OR_WS_170702010801_05_102055	0.00	18	NA	0	NA
HUC12 Name: Upper Beech Creek OR_WS_170702010801_05_102055	0.00	18	NA	0	NA
Beech Creek OR_SR_1707020108_05_101540	1.31	18	NA	5.77E+07	NA
HUC12 Name: Upper Canyon Creek OR_WS_170702010701_05_102051	1.14	12	NA	3.35E+07	NA
Canyon Meadows Lake OR_LK_1707020107_05_100025	0.68	12	12	1.99E+07	1.99E+07
East Fork Canyon Creek OR_SR_1707020107_05_101539	2.06	12	NA	6.05E+07	NA

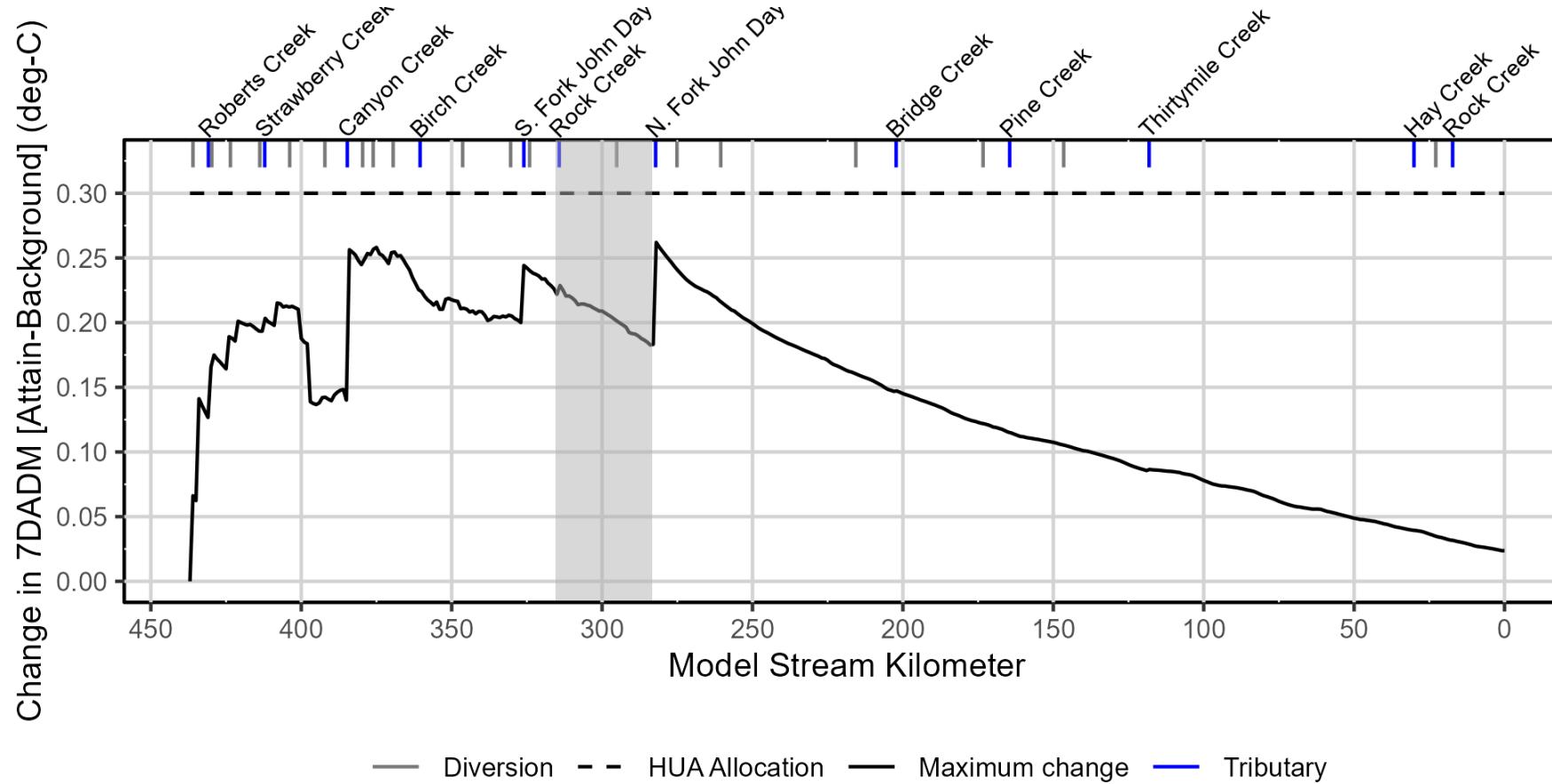
TMDL elements: anthropogenic nonpoint source load allocations (LA_{NPS})

TMDL section 9.1.3, pgs. 67-79

Table 9-10: Thermal load allocations (LA) in kilocalories per day assigned to anthropogenic nonpoint sources in the Upper John Day Subbasin (17070201).

AU Name and ID	Annual 7Q10 (cfs)	NPDES point sources	Dam and reservoir operations	Anthropogenic warming from tributaries	Solar loading from existing transportation corridors, existing utility infrastructure	Consumptive use water management and water withdrawals	Solar loading from nonpoint sectors
Battle Creek OR_SR_1707020111_05_101556	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Bear Creek OR_SR_1707020106_05_101534	0.60	1.46E+05	0.00E+00	7.28E+04	3.64E+04	1.46E+05	0.00E+00
HUC12 Name: Upper Beech Creek OR_WS_170702010801_05_102055	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HUC12 Name: Upper Beech Creek OR_WS_170702010801_05_102055	0.00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Beech Creek OR_SR_1707020108_05_101540	1.31	3.21E+05	0.00E+00	1.60E+05	8.01E+04	3.21E+05	0.00E+00
HUC12 Name: Upper Canyon Creek OR_WS_170702010701_05_102051	1.14	2.79E+05	0.00E+00	1.39E+05	6.97E+04	2.79E+05	0.00E+00
Canyon Meadows Lake OR_LK_1707020107_05_100025	0.68	1.66E+05	0.00E+00	8.28E+04	4.14E+04	1.66E+05	0.00E+00
East Fork Canyon Creek OR_SR_1707020107_05_101539	2.06	5.04E+05	0.00E+00	2.52E+05	1.26E+05	5.04E+05	0.00E+00

TMDL elements: reserve capacity (RC)


TMDL section 9.1.5, pgs. 81

- Explicit RC allocations are set aside for allocation to new/increased thermal loads or previously unidentified source(s)
- Table 9-1 to Table 9-4

Table 9-1: HUA assignments for source or source categories on assessment units in the Upper John Day Subbasin (17070201).

AU Name	AU ID	NPDES point sources (°C)	Dam and reservoir operations (°C)	Anthropogenic warming from tributaries (°C)	Solar loading from existing transportation corridors, existing utility infrastructure (°C)	Consumptive use water management and water withdrawals (°C)	Solar loading from nonpoint sectors (°C)	Reserve capacity (°C)	Total HUA (°C)
John Day River	OR_SR_1707020110_05_101552 OR_SR_1707020109_05_101547 OR_SR_1707020106_05_101533	0.10	0.00	0.05	0.025	0.10	0.00	0.025	0.30
All other AUs	Applicable AUs are listed in TSD Appendix [TBD]	0.00	0.00	0.05	0.050	0.15	0.00	0.050	0.30

Model scenario comparison: HUA attainment vs background

Allocation summary

Table 9-14: Allocation summary for a portion of the John Day River (AU ID: OR_SR_1707020114_05_102609) based on an annual 7Q10 of 23.4 cfs and a year-round criterion of 18°C. The allocation period is May 1 through October 31.

Source or Source Category	Assigned HUA (°C)	7Q10 Allocation Year Round (kilocalories/day)
Background	0.00	1.03E+09
NPDES point sources	0.00	0.00E+00
Nonpoint source dam and reservoir operations	0.00	0.00E+00
Anthropogenic warming from tributaries	0.05	2.86E+06
Solar loading from nonpoint sectors	0.00	0.00E+00
Solar loading from existing transportation corridors, existing utility infrastructure	0.05	2.86E+06
	0.15	8.59E+06
Consumptive use water management and water withdrawals		
Reserve capacity	0.05	2.86E+06
-	Total Allocated Load:	1.05E+09
-	Loading Capacity:	1.05E+09

Questions?

John Day River

Water Quality Management Plan

The Water Quality Management Plan is a required element of a TMDL and describes strategies to achieve allocations identified in the TMDL to attain water quality standards.

John Day River

Water Quality Management Plan Components

WQMP section 5 Implementation Responsibilities and Schedule, pg. 11

- Name Responsible Persons, including Designated Management Agencies
- Management strategies that the entity is encouraged to consider to achieve load allocations and reduce pollutant loading
- Timeline for strategy implementation and a schedule for completing measurable milestones
- Performance monitoring and a plan for periodic review and revision of implementation plans

Reference: Oregon Administrative Rule [340-042-0040\(4\)\(I\)](#)

Proposed Responsible Persons and Designated Management Agencies

WQMP Section 5.1 Identification of Implementation Responsibility, page 14 and Appendix A

Responsible person/DMA Type	Count
Cities (John Day, Prairie City)	2
Counties (Grant, Gilliam, Jefferson, Sherman, Wasco, Wheeler)	6
State Agencies (ODA, ODF, ODFW, OPRD, ODOT, DSL)	6
Federal Agencies (USFS, BLM, NPS - Fossil Beds)	3

Rationale for being named as Responsible Person/Designated Management Agency in WQMP

- DEQ developed initial list from a DMA mapping exercise
 - Includes any entity that has ownership or jurisdiction within the John Day project area
 - List is primarily existing DMAs from 2010 TMDL
- DEQ is still evaluating which responsible persons, including DMAs need to develop an implementation plan
 - Small or no ownership/ jurisdiction in riparian area
 - Another implementation pathway
 - Limited opportunity (e.g., railroads)
 - Under-resourced municipalities

Question on Rationale for Responsible Person/ Designated Management Agencies being required to submit an implementation plan in WQMP

Question:

What additional evaluation criteria should be considered?

Management strategies

DEQ expects each entity required to develop a TMDL implementation plan to include applicable priority management strategies from Table 2 and potentially other practices and actions appropriate for activities and landscape conditions specific to the entities' pollutant sources or source sectors. (pg. 14)

Priority sources to manage

WQMP table 2, page 7

- Insufficient height and density of riparian vegetation
- Water withdrawals
- Channel morphology and modification

Riparian vegetation

WQMP table 2, page 7

- Increase site effective shade:
 - Streamside tree planting (conifer and hardwood)
 - Streamside vegetation planting (shrub or herbaceous cover)
 - Vegetation management (tree retention, invasive plant management)
 - Streamside fencing or other livestock exclusion methods

John Day River at Trout Farm Campground

Water withdrawals and flow alteration

WQMP table 2, page 7

- Streamflow protection measures
 - Irrigation conservation and management
 - Repair or replace leaking pipes
 - Providing incentives for water conservation
 - Pursue instream water rights transfers and leases, where possible

John Day River

Channel modification

WQMP table 2, page 7

- Channel Modification
 - Enhance channel, wetlands, and floodplain interactions
 - Reduce width-to-depth channel ratios, bank stabilization, large wood placement
 - Streamside fencing or other livestock exclusion methods
 - Protect and enhance cold water refuges
 - Removal or modification of in-channel pond structures to reduce temperature increases downstream

Beaver Creek, large wood placement

Climate Change and natural disturbances

- DEQ acknowledges that climate change is a contributing factor to stream temperatures and implementing a wide range of management strategies can help build resilience. **WQMP section 2.1.5, pg. 6**
- DEQ also acknowledges that other factors such as local geology, geography, soils, legacy impacts, wildfire, and floods may hinder or delay achieving water quality standards. **WQMP section 5.2.2 pg. 23**
- Localized improvements may occur within a few years, but full attainment across the basin requires sustained implementation across the basin. **WQMP section 4.2 pg.11**

Question on management strategies

Question:

Are there additional specific strategies that should be added to the WQMP in table 2: List of priority management strategies?

WQMP pg. 7

- Increase site effective shade
- Streamflow protection measures
- Channel modification improvements

Prioritizing areas for restoration and protection

WQMP section 5.2.2, pages 21-24

- Shade gap - percent difference between current effective shade and site potential effective shade (restored condition) – required for larger DMAs
- Compare current riparian vegetation characteristics to a restored riparian condition
- Streamside evaluation – required for all DMAs
 - this will be scaled based on the size and impact of the DMA. DEQ will work with these entities to determine the appropriate approach to performing the streamside evaluation.

Designated Management Agency required monitoring

WQMP section 6.1, pg.31

- DEQ monitors and assesses stream temperatures overtime to determine status of water quality and landscape conditions
- Some DMAs named in Section 5 will be required to undertake monitoring actions in areas within their jurisdiction or ownership to help determine the status of instream water quality and landscape conditions associated with water quality
- Existing monitoring activities may be sufficient to achieve goals of this monitoring requirement
- DEQ is currently proposing to have ODF, ODA, BLM, and USFS to undertake monitoring as they have jurisdiction over 95% of the Basin.

Designated Management Agency monitoring and reporting

WQMP section 6.1, pg.31

Feedback request – In addition to the existing monitoring that is occurring, what additional monitoring do you recommend?

Schedule for implementation plan submittal

WQMP section 5.2.6, page 25

Plans proposed to be due 18 months after EPA-approval of the John Day Basin Temperature TMDL and must include

- Management strategies that the entity will use to achieve load allocations and reduce pollutant loading
- Timeline for strategy implementation and a schedule for completing measurable milestones
- Performance monitoring and a plan for periodic review and revision of implementation plans; annual and Year Five reporting
- Any other analyses or information specified in the WQMP
- Note if a DMA has an approved implementation plan, their updated plan will be due during the next scheduled Year Five review.

Reference: [OAR 340-042-0080\(4\)\(a\)](#)

Water Quality Management Plan- questions

Middle Fork John Day

Draft rule language

Division 42 TOTAL MAXIMUM DAILY LOADS (TMDLS)

340-042-0090

Total Maximum Daily Loads and Water Quality Management Plans

The following TMDLs are adopted by EQC by reference in this rule on the dates indicated. The TMDL documents and supporting information for TMDLs adopted as rule or issued by order are available on DEQ's website.

- (6) John Day Basin (170702) that includes four subbasins: the Lower John Day Subbasin (17070204), the Middle Fork John Day Subbasin (17070203), the North Fork John Day Subbasin (17070202), and the Upper John Day Subbasin (17070201).**
 - a) TMDL: temperature, MM DD, YYYY**
 - b) WQMP: temperature, MM DD, YYYY**

Fiscal, economic, and racial equity impacts

Administrative Procedures Act

- [ORS 183.333](#): DEQ must solicit input from a rule advisory committee on:
 - Whether the rule has fiscal impact, and the extent of that impact
 - Whether the rule will have a significant adverse impact on small businesses
- [ORS 183.335\(2\)\(b\)\(F\)](#): how adoption of the rule will affect racial equity
- [ORS 182.545](#): consider the effects of the action on environmental justice

Fiscal impact analysis questions for feedback

1. Will the draft rule have a significant adverse impact on small businesses?
2. If a significant impact is identified, how could DEQ reduce the fiscal impact on small business?
3. Will the proposed rule impact racial equity?
4. What are additional considerations for environmental justice for this draft rule?
5. What types of entities will be impacted by the proposed rule?
6. How and to what extent will the proposed rule have a positive, negative, or no impact on these entities?

Next steps

- Email RAC feedback from meeting #1 → Feb. 5, 2026
JohnDay.TemperatureTMDL@deq.Oregon.gov
- RAC meeting #2 → May 20, 2026, 9 a.m. to 11 a.m.
- Public notice (45 days) → Aug. – Oct. 2026
- EQC consideration → May 2027
- EPA action → October 18, 2027

Online resources

[Temperature TMDL Replacement project page](#)

[John Day TMDL Replacement project page](#)

[John Day TMDL Replacement project rulemaking page](#)

John Day temperature TMDL contacts

TMDL Development

- Steve Mrazik, Manager steve.mrazik@deq.oregon.gov
- Ryan Michie, Analyst ryan.michie@deq.oregon.gov
- Victoria Avalos, Analyst, Victoria.avalos@deq.oregon.gov

WQMP Development

- Sara Slater, Manager Sara.SLATER@deq.oregon.gov
- Trea Nance, Basin Coordinator Trea.Nance@deq.oregon.gov

Sign up to receive GovDelivery notifications about the rulemakings [online](#)

Title VI and alternate formats

DEQ does not discriminate on the basis of race, color, national origin, disability, age, sex, religion, sexual orientation, gender identity, or marital status in the administration of its programs and activities.

Visit DEQ's [Civil Rights and Environmental Justice page.](#)