

# Stack Parameter Verification

---

Eagle Foundry Company

*Prepared for:*

**Eagle Foundry Company**

Eagle Creek, Oregon

January 9, 2026

Project No. M8006.63.001

*Prepared by:*

Maul Foster & Alongi, Inc.

3140 NE Broadway, Portland, OR 97232

© 2026 Maul Foster & Alongi, Inc.



MAUL  
FOSTER  
ALONGI

# Contents

---

|                                                              |          |
|--------------------------------------------------------------|----------|
| Abbreviations.....                                           | vi       |
| <b>1</b> Introduction.....                                   | <b>1</b> |
| 1.1 Project Purpose.....                                     | 1        |
| 1.2 Project Contacts.....                                    | 1        |
| 1.3 Testing Personnel .....                                  | 1        |
| <b>2</b> Facility Description .....                          | <b>2</b> |
| 2.1 Facility Location .....                                  | 2        |
| 2.2 Process Description.....                                 | 2        |
| 2.3 Emission Points .....                                    | 2        |
| 2.4 Emission Point Stack Dimensions and Traverse Points..... | 3        |
| <b>3</b> Exhaust Parameter Test Results .....                | <b>4</b> |
| 3.1 Exhaust Parameter Test Results .....                     | 4        |
| 3.2 Operation Conditions.....                                | 4        |
| <b>4</b> Airflow Test Methods and Procedures .....           | <b>4</b> |
| 4.1 Testing Methods and Procedures.....                      | 4        |
| 4.2 Testing Equipment.....                                   | 5        |
| 4.2.1 Standard and S-Type Pitot Tubes .....                  | 5        |
| 4.2.2 ADM Shortridge Micromanometer.....                     | 5        |
| 4.2.3 Fluke Temperature Meter and K-Type Thermocouple.....   | 5        |
| 4.2.4 Dwyer 471 Digital Thermo-Anemometer.....               | 5        |
| References .....                                             | 6        |

## Limitations

## Figure

1 TEU Locations

## Appendices

### Appendix A

    Source Parameter Data

### Appendix B

Calibrations and Certifications

# Abbreviations

---

|       |                                            |
|-------|--------------------------------------------|
| CFR   | Code of Federal Regulations                |
| EPA   | U.S. Environmental Protection Agency       |
| MFA   | Maul Foster & Alongi, Inc.                 |
| ODEQ  | Oregon Department of Environmental Quality |
| ft    | feet                                       |
| m     | meter                                      |
| fps   | feet per second                            |
| fpm   | feet per meter                             |
| dscfm | dry standard cubic feet per minute         |
| dscmm | dry standard cubic meter per meter         |
| °F    | degrees Fahrenheit                         |
| °C    | degrees Celsius                            |

# 1 Introduction

---

## 1.1 Project Purpose

Eagle Foundry Company (Eagle Foundry) owns and operates a facility specializing in iron and steel alloy components casting located at 23123 SE Eagle Creek Road, Eagle Creek, Oregon (the facility). The facility currently operates under Standard Air Contaminant Discharge Permit (ACDP) No. 03-2631-ST-01 issued by the Oregon Department of Environmental Quality (DEQ) on June 11, 2020.

Eagle Foundry retained MFA to confirm stack parameters for exhaust points at the facility, including stack diameters, velocities, flowrates, and temperatures. The following sections describe the exhaust parameter measurement methods and the resulting measured values.

## 1.2 Project Contacts

**Facility:** Eagle Foundry Company

**Address:** 21123 SE Eagle Creek Road.  
Eagle creek, OR 97022

**Contact:** Greg Lasslett

**Phone:** 503-637-3048 ext 213

**Email:** [gregl@eaglefoundaryco.com](mailto:gregl@eaglefoundaryco.com)

**Consultant:** Maul Foster & Alongi

**Address:** 6 Centerpointe Dr, Suite 360.  
Lake Oswego, OR 97035

**Contact:** Paul John

**Phone:** 503-705-6930

**Email:** [pjohn@maulfoster.com](mailto:pjohn@maulfoster.com)

## 1.3 Testing Personnel

The MFA on-site team was led by Paul John, Senior Environmental Scientist, and assisted by Payton Sample, Staff Air quality Specialist. Paul John and Payton Sample conducted velocity, flowrate, and temperature measurements while confirming emission point diameters.

Greg Lasslett, Project Manager, was the primary contact for Eagle Foundry. Greg Lasslett managed staff who confirmed emission point release heights, and duct diameters. Eagle Foundry staff prepared sample point locations according to guidance from Paul John to ensure proper placement for EPA Reference Methods 1 and 2 flow measurements. The sample locations were positioned appropriately based on the specified criteria.

## 2 Facility Description

---

### 2.1 Facility Location

The facility is located in Eagle Creek, Oregon, east of the Clackamas River. The area immediately surrounding the facility is characterized primarily by flat terrain, with rolling hills to the northeast. The facility is located within a mixture of residential, commercial, industrial, and forest land-use zones.

### 2.2 Process Description

Purchased scrap metal is melted in an electric induction furnace where an electrical current generates a charge that melts the metal. Molds are produced at the Big Palmer and Small Palmer molding stations, which use a no bake molding system consisting of ceramic beads to create hollow internal sections. Molds are formed around wood patterns, which replicate the exterior of the desired castings.

Additional alloys are added to the molten metal to meet product specifications. Molten metal is transferred and poured into molds using overhead cranes. A riser in the mold provides an additional reservoir of feed metal to release the cavity air and counteract the shrinkage that occurs as the casting begins to cool. A small amount of hot top is added to the riser to act as a molten metal insulation while the casting solidifies. The castings are then transferred to the Cooling Bunker. Emissions from foundry operations are controlled by two baghouses EP2\_3 and EP2\_4.

When the metal has cooled sufficiently for the casting to hold its shape, it is separated from the mold by a mechanical process referred to as shakeout, by the sand reclamation system. Eagle Foundry recycles a large proportion of mold materials for re-use. Sand handling processes include pneumatic transport, storage, and screening recycled foundry sand.

After cooling, metal risers are removed either by break-off or by air arc and collected for re-melting. The casting is then sent to finishing processes as appropriate. A range of finishing processes may be performed, including mesh blasting; heat treatment, welding, and grinding.

### 2.3 Emission Points

Emission points for the following sources were confirmed as part of this testing program conducted by MFA staff:

- Reclamation baghouse (EP2\_2) - controls emissions from the mold reclamation process;
- Screening baghouse (EP1\_3) - controls emissions from mold material screening and storage;
- Small Palmer baghouse (EP1\_1) - controls emissions from the Small Palmer mold forming machine, the Small Palmer Bead Silo, and torch cutting;
- Finishing baghouse (EP3\_1) - controls emissions from grinding and rotoblasting;
- Welding stack (WELD1) (Front) - releases emissions from welding stations;

- Welding stack (WELD2) (Backside SW) - releases emissions from welding stations;
- Welding stack (WELD3) (Backside NW) - releases emissions from welding stations;
- Mesh blasting stack (MESH) - releases emissions through a circular duct on the mesh blasting machine, however, due to the absence of a stack, EPA Methods 1 and 2 could not be used.
- Pattern making emission points (PTRN) – emissions are assumed to be released to atmosphere through a wall vent powered by a fan; however, due to the absence of stacks, EPA Methods 1 and 2 could not be used.

Figure 1 shows the locations of all TEUs.

## 2.4 Emission Point Stack Dimensions and Traverse Points

Prior to testing for exhaust velocities and temperatures, MFA confirmed stack diameters, identified appropriate sample locations, and determined the appropriate number and placement of velocity pressure test points per 40 CFR 60 Appendix A, EPA Method 1. On all round stacks, two test ports were drilled into the stack at 90 degrees from one another. On the Small Palmer baghouse stack, which is rectangular, four equally spaced ports were drilled on one side of the stack. Testing was performed on the following sources using EPA Method 2:

- Reclaim baghouse (EP2\_2): The stack is 36 inches in diameter. Testing ports were located 3 duct diameters downstream from the baghouse exit and 2 duct diameters upstream of the exhaust release point. Sixteen (16) traverse points were required.
- Screening station baghouse (EP1\_3): The stack is 14 inches in diameter. Testing ports were located 13.4 duct diameters downstream from the baghouse exit and 2 duct diameters upstream of the exhaust release point. Eight (8) traverse points were required.
- Small Palmer Baghouse (EP1\_1): The stack is a rectangular duct, 34 in x 34 in. Per EPA Method 1, the equivalent duct diameter was determined to be 34 inches in diameter. Testing ports were located 2.1 duct diameters downstream from the baghouse exhaust and 1.1 duct diameters upstream from the exhaust release point. Sixteen (16) traverse points were required.
- Finishing Baghouse (EP3\_1): The stack is 38 inches in diameter. Testing ports were located 2.75 duct diameters downstream from the baghouse exit and 2 duct diameters upstream from the exhaust release point. Sixteen (16) traverse points were required.
- Welding Stack-Front side of Finishing building (WELD1): The stack is 8 inches in diameter. Testing ports were located 29 diameters downstream from the nearest duct bend and 2 diameters upstream from the exhaust release point. Eight (8) traverse points were required.
- Welding Stack-Backside of Finishing building SW (WELD2): The stack is 8 inches in diameter. Testing ports were located 28 diameters downstream from the nearest duct bend and 2 diameters upstream from the exhaust release point. Eight (8) traverse points were required.
- Welding Stack-Backside of Finishing building NW (WELD3): The stack is 8 inches in diameter. Testing ports were located 27.9 diameters downstream from the nearest duct bend and 2 diameters upstream from the exhaust release point. Eight (8) traverse points were required.

Additionally, velocity and temperature measurements were taken at the following sources using a hot-wire anemometer:

- Meshblast: This equipment has no stack on the outlet duct. Air velocity measurements were taken with a hot wire anemometer. See Appendix H for data collected.
- Pattern Room Fan: This wall fan provides ventilation in the pattern room and has no ducting on the outlet. Air velocity measurements were taken with a hot wire anemometer. See Appendix I for data collected.

## 3 Exhaust Parameter Test Results

---

### 3.1 Exhaust Parameter Test Results

Test results, detailed measurements of stack dimensions, test port locations, velocity pressure readings, temperatures, and barometric pressure are presented in Appendix A.

### 3.2 Operation Conditions

Eagle Foundry personnel confirmed that production on the day of testing was at normal levels. For the purposes of this testing, the air handling systems were operating at normal rates. None of the stacks tested have fans with variable rates.

## 4 Airflow Test Methods and Procedures

---

### 4.1 Testing Methods and Procedures

MFA personnel performed the following EPA methods as described in Title 40 CFP Part 60 Appendix A.

**EPA Reference Method 1, “Sample and Velocity Traverses for Stationary Source.”** The objective of this Method is to determine a suitable location for testing and to determine the velocity and/or sample points for the exhaust stack or duct. Sampling locations and velocity point measurement locations are in Appendices A through G.

**EPA Reference Method 2, “Determination of Stack Gas Velocity and Volumetric Flow Rate (Type-S Pitot Tube).”** The objective of Method 2 is to determine volumetric flow. The average velocity, temperature, static pressure, and source area are used to calculate volumetric flow for the source.

**Moisture Content of air streams:** All sources tested use ambient air for makeup. None of the sources tested were combustion sources, where the moisture content of the exhaust could be significantly altered from ambient conditions. Ambient moisture data was obtained from the closest National Weather Service station, Eagle Creek, OR (EGK03).

**Dry Molecular Weight:** Per EPA Method 2, Sec 8.6, for processes emitting essentially air, oxygen and carbon dioxide analyses need not be conducted. In calculating flowrates, MFA used a dry molecular weight of 29.0 per EPA Method 2.

**Barometric Pressure:** Per EPA Method 2, Sec 6.5, the barometric pressure reading may be obtained from a nearby National Weather Service station and adjusted for elevation at a rate of  $-0.10$  in Hg per 100 feet of elevation increase. The National Weather Service Station at Portland International Airport (elevation 20 feet) was used. The elevation difference between the station and the facility, rounded to the nearest 100-foot increment, was 300 feet.

## 4.2 Testing Equipment

### 4.2.1 Standard and S-Type Pitot Tubes

Two types of pitot tubes were used for measuring velocity pressures. A standard pitot tube was used for small stacks (diameters less than 12 inches), and an S-type pitot tube was used for all stacks larger in diameter. Calibration data can be found in Appendix J.

### 4.2.2 ADM Shortridge Micromanometer

An ADM Shortridge micromanometer was used during testing. This multifunctional instrument is designed to measure air velocity, differential pressure, and static pressure in ductwork when paired with either an S-type or standard pitot tube. The unit uses a pressure transducer to convert pressure into digital reading displayed on the unit screen. Calibration data can be found in Appendix J.

### 4.2.3 Fluke Temperature Meter and K-Type Thermocouple

Handheld digital thermometer used in conjunction with K-Type thermocouple probe to precise temperature readings. This unit was used to measure stack temperatures. Calibration data can be found in Appendix J.

### 4.2.4 Dwyer 471 Digital Thermo-Anemometer

The instrument uses a heated sensor to measure air velocity in clean, dry airstreams. This unit was used to measure air velocity of the Mesh Blast and Pattern Room fans due to the lack of ducting on those units.

# References

---

U.S. Environmental Protection Agency. (2023). Title 40 Part 60 Appendix A Method 1: Sample and Velocity Traverses for Stationary Sources.

U.S. Environmental Protection Agency. (2017). Title 40 Part 60 Appendix A Method 2: Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube).

# Limitations

---

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

# Figure

---

**Figure 1**  
**TEU Locations**  
Eagle Foundry Co.  
23123 SE Eagle Creek Rd  
Eagle Creek, OR



## Appendix A

---

### Source Parameter Data

EPA Method 1

Stack Parameters and Traverse Points

Client: Eagle Foundry Company  
 Location: Eagle Creek, OR  
 Source: Finishing Bag House  
 Facility: Eagle Foundry

Date: Oct 8, 2025  
 Time: 3:20 PM

Type of Testing: V (P for Particulate; V for Velocity / Nonparticulate)  
 Type of Duct: C (C for circular; R for rectangular)

Sampling location height (approx):  
 Stack height:

25.17 feet  
 31.5 feet

Circular ID (Rectangular Depth)

Port depth and/or wall thickness:

Stack width (Rectangular only)

38 inches  
 0.1 inches

Equivalent Diameter

If rectangular=  $2 \times \text{Depth} \times \text{Width} =$   
 $\text{Depth} + \text{Width}$

38 inches (If circular=duct ID)  
 -- inches (If circular=duct ID)

Stack/duct area=

7.876 sq ft

1134.115 sq inches

Sample Port Location:

Downstream flow disturbance from  
 process

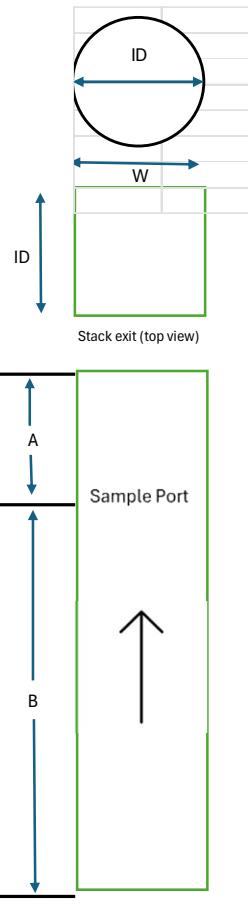
A

Upstream flow disturbance  
 toward exit

B

Number of Inches:  
 Number of Diameters:

104.5  
 2.75


76  
 2

Minimum Number of Traverse Point:

16

| Ports | Points | % of diameter | Distance from inside wall (in) |
|-------|--------|---------------|--------------------------------|
| A,B   | 1      | 3.2%          | 1.216                          |
|       | 2      | 10.5%         | 3.99                           |
|       | 3      | 19.4%         | 7.372                          |
|       | 4      | 32.3%         | 12.274                         |
|       | 5      | 67.7%         | 25.726                         |
|       | 6      | 80.6%         | 30.628                         |
|       | 7      | 89.5%         | 34.01                          |
|       | 8      | 96.8%         | 36.784                         |

Reference Diagram



Drawing not to scale and not an accurate representation of stack

## Calculation Sheet

**Client:** Eagle Foundry Company  
**Location:** Eagle Creek, OR  
**Source:** Finishing Bag House  
**Facility:** Eagle Foundry

### Stack Dimensional Data:

|             |             |
|-------------|-------------|
| Circ dia:   | 38 in       |
| Rectangular |             |
| Width:      | in          |
| Length:     | in          |
| Stack area: | 7.876 sq ft |

### Equipment:

|                    |      |
|--------------------|------|
| Pitot ID:          |      |
| Pitot Cp:          | 0.84 |
| Digital Manometer: |      |
| Temperature Meter: |      |

### Source Information:

|                                       |                           |                     |       |
|---------------------------------------|---------------------------|---------------------|-------|
| (1) Barometric Pressure( $P_{bar}$ ): | 29.65 in H <sub>2</sub> O | (4) Site Elevation: | 351.9 |
| Static Pressure( $P_g$ ):             | 0.04 in H <sub>2</sub> O  | $T_{std}$ :         | 528   |
| (2) Dry Molecular weight:             | 29.0                      | $P_{std}$ :         | 29.92 |
| (3) Assumed moisture:                 | 0.95%                     |                     |       |
| Sample Time:                          |                           |                     |       |

| Port                            | Traverse Point | Point | Velocity( $\Delta P$ ) | Stack Temp                      | Check for Cyclonic Flow |
|---------------------------------|----------------|-------|------------------------|---------------------------------|-------------------------|
|                                 |                |       | ( $"H_2O$ )            | ( $^{\circ}F$ )                 |                         |
| A                               | 1              |       | 0.35                   | 65.1                            | 20                      |
|                                 | 2              |       | 0.4                    | 65.1                            | 0                       |
|                                 | 3              |       | 0.41                   | 65.1                            | 0                       |
|                                 | 4              |       | 0.32                   | 65                              | 20                      |
|                                 | 5              |       | 0.35                   | 65.2                            | 0                       |
|                                 | 6              |       | 0.49                   | 67.7                            | 0                       |
|                                 | 7              |       | 0.34                   | 69.9                            | 0                       |
|                                 | 8              |       | 0.3                    | 71.1                            | 0                       |
| B                               | 1              |       | 0.29                   | 69.6                            | 0                       |
|                                 | 2              |       | 0.36                   | 69.1                            | 0                       |
|                                 | 3              |       | 0.34                   | 68.1                            | 0                       |
|                                 | 4              |       | 0.31                   | 67.8                            | 0                       |
|                                 | 5              |       | 0.3                    | 68.1                            | 0                       |
|                                 | 6              |       | 0.33                   | 68                              | 10                      |
|                                 | 7              |       | 0.31                   | 69.3                            | 0                       |
|                                 | 8              |       | 0.25                   | 70.9                            | 0                       |
| Average:                        |                |       | 0.340625               | 67.81875                        | 3                       |
| Average Velocity( $\Delta P$ ): |                |       | 0.340625               | Flow is found to be: Non-cyclon |                         |
| Average Stack Temp ( $T_s$ ):   |                |       | 67.81875               |                                 |                         |

Absolute Stack Pressure, ( $P_s$ ): 29.65 in H<sub>2</sub>O  
 Avg Absolute Stack Temp( $T_{s(abavg)}$ ): 527.82 °R

Average stack gas velocity ( $V_s$ ): 32.8 ft/s  
 Average stack gas volumetric flow rate ( $Q_{sd}$ ): 914,216.89 dscf/hr  
 15,236.95 dscf/min

### REFERENCE

(1) Barometric Pressure: US Weather Service Station Portland International Airport elev: 20 ft  
 Bar P=29.95, Adjusted for elevation, -.100 in Hg/100 ft increase in elevation  
 Per EPA Method 2.  
 (2) Dry Molecular weight: Per EPA Method 2, Sec 8.6 For processes emitting essentially air, analysis need not be conducted; use dry molecular weight of 29.0.  
 (3) Assumed Moisture: Used data from US Weather Service Station, Eagle Creek, OR (EGK03).  
 (4) Site Elevation: Elevation derived from the US Geological Survey National Dataset downloaded and processed using AERMET.

EPA Method 1

Stack Parameters and Traverse Points

Client: Eagle Foundry Company  
 Location: Eagle Creek, OR  
 Source: Reclaim Baghouse  
 Facility: Eagle Foundry

Date: Oct 8,2025  
 Time: 12:40 PM

Type of Testing: V  
 (P for Particulate; V for Velocity /Nonparticulate)  
 Type of Duct: C  
 (C for circular; R for rectangular)

Sampling location height {approx}:  
 Stack height:

16.25 feet  
 22.25 feet

Circular ID (Rectangular Depth)

Port depth and/or wall thickness:

Stack width (Rectangular only)

36 inches  
 0.1 inches

36 inches (If circular=duct ID)

Equivalent Diameter

If rectangular=  $2 * \text{Depth} * \text{Width} =$   
 $\text{Depth} + \text{Width}$

inches (If circular=duct ID)

Stack/duct area=

7.069 sq ft

1017.876 sq inches

Sample Port Location:

Downstream flow disturbance from  
 process

A

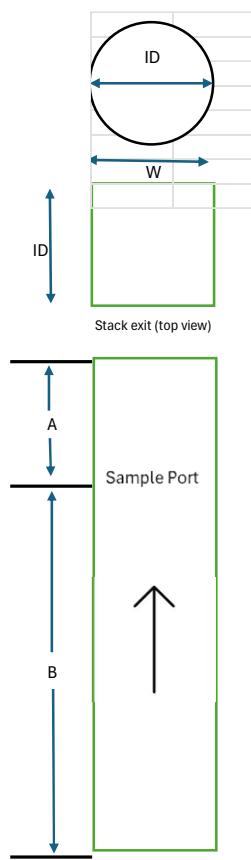
108

3

Upstream flow disturbance  
 toward exit

B

72


2

Minimum Number of Traverse Point:

16

|   | Points | % of diameter | Distance from inside wall (in) |
|---|--------|---------------|--------------------------------|
| A | 1      | 3.2%          | 1.152                          |
|   | 2      | 10.5%         | 3.78                           |
|   | 3      | 19.4%         | 6.984                          |
|   | 4      | 32.3%         | 11.628                         |
|   | 5      | 67.7%         | 24.372                         |
|   | 6      | 80.6%         | 29.016                         |
|   | 7      | 89.5%         | 32.22                          |
|   | 8      | 96.8%         | 34.848                         |

Reference Diagram



Drawing not to scale and not an accurate representation of stack

## Calculation Sheet

**Client:** Eagle Foundry Company  
**Location:** Eagle Creek, OR  
**Source:** Reclaim Bag House  
**Facility:** Eagle Foundry

### Stack Dimensional Data:

|             |             |
|-------------|-------------|
| Circ dia:   | 36 in       |
| Rectangular |             |
| Width:      | in          |
| Length:     | in          |
| Stack area: | 7.069 sq ft |

### Equipment:

|                    |       |
|--------------------|-------|
| Pitot ID:          | 8-Apr |
| Pitot Cp:          | 0.84  |
| Digital Manometer: |       |
| Temperature Meter: |       |

### Source Information:

|                                       |                           |                     |       |
|---------------------------------------|---------------------------|---------------------|-------|
| (1) Barometric Pressure( $P_{bar}$ ): | 29.65 in H <sub>2</sub> O | (4) Site Elevation: | 351.9 |
| Static Pressure( $P_g$ ):             | 0.17 in H <sub>2</sub> O  | $T_{std}$ :         | 528   |
| (2) Dry Molecular weight:             | 29.0                      | $P_{std}$ :         | 29.92 |
| (3) Assumed moisture:                 | 0.95%                     |                     |       |

| Port     | Traverse Point<br>Point | Velocity( $\Delta P$ )<br>(in H <sub>2</sub> O) | Stack Temp<br>(°F) | Check for Cyclonic Flow |      |
|----------|-------------------------|-------------------------------------------------|--------------------|-------------------------|------|
|          |                         |                                                 |                    | Null Angle              | Non- |
| A        | 1                       | 0.09                                            | 75.2               | 0                       |      |
|          | 2                       | 0.09                                            | 73.9               | 0                       |      |
|          | 3                       | 0.08                                            | 72                 | 0                       |      |
|          | 4                       | 0.09                                            | 72                 | 0                       |      |
|          | 5                       | 0.13                                            | 74                 | 0                       |      |
|          | 6                       | 0.12                                            | 80.4               | 0                       |      |
|          | 7                       | 0.23                                            | 83.3               | 0                       |      |
|          | 8                       | 0.18                                            | 83.6               | 0                       |      |
| B        | 1                       | 0.1                                             | 83.7               | 0                       |      |
|          | 2                       | 0.18                                            | 80.5               | 0                       |      |
|          | 3                       | 0.14                                            | 78.7               | 0                       |      |
|          | 4                       | 0.13                                            | 78.2               | 0                       |      |
|          | 5                       | 0.13                                            | 79                 | 0                       |      |
|          | 6                       | 0.12                                            | 82.2               | 0                       |      |
|          | 7                       | 0.11                                            | 84.2               | 0                       |      |
|          | 8                       | 0.13                                            | 84.9               | 0                       |      |
| Average: |                         | 0.128125                                        | 79.1125            | 0                       |      |

Average Velocity( $\Delta P$ ): 0.128125  
 Average Stack Temp ( $T_s$ ): 79.1125  
 Non-  
 Flow is found to be: cyclonic

Absolute Stack Pressure, ( $P_s$ ): 29.66 in H<sub>2</sub>O  
 Avg Absolute Stack Temp( $T_{s(abavg)}$ ): 539.11 °R

Average stack gas velocity ( $V_s$ ): 20.35 ft/s  
 Average stack gas volumetric flow rate ( $Q_{sd}$ ): 498,010.41 dscf/hr  
 8,300.17 dscf/min

### REFERENCE

(1) Barometric Pressure: US Weather Service Station Portland International Airport elev: 20 ft  
 Bar P=29.95, Adjusted for elevation, -.100 in Hg/100 ft increase in elevation  
 Per EPA Method 2

(2) Dry Molecular weight: Per EPA Method 2, Sec 8.6 For processes emitting essentially air, analysis need not be conducted; use dry molecular weight of 29.0

(3) Assumed Moisture: Used data from US Weather Service Station, Eagle Creek, OR (EGK03)

(4) Site Elevation: Elevation derived from the US Geological Survey National Dataset downloaded and processed using AERMET.

EPA Method 1

Stack Parameters and Traverse Points

Client: Eagle Foundry Company  
 Location: Eagle Creek, OR  
 Source: Small Palmer Baghouse  
 Facility: Eagle Foundry

Date: Oct 8,2025  
 Time: 2:50 PM

Type of Testing: V (P for Particulate; V for Velocity /Nonparticulate)  
 Type of Duct: R (C for circular; R for rectangular)

Sampling location height (approx):

Stack height:

13.88 feet  
 16.88 feet

Circular ID (Rectangular Depth)

Port depth and/or wall thickness:

Stack width (Rectangular only)

34 inches  
 0.1 inches  
 34  
 34 inches (If circular=duct ID)

Equivalent Diameter

If rectangular=  $2 \times \text{Depth} \times \text{Width} =$   
 $\text{Depth} + \text{Width}$

34 inches (If circular=duct ID)

Stack/duct area=

8.028 sq ft

1156.000 sq inches

Sample Port Location:

Downstream flow disturbance from process

A

72

Upstream flow disturbance toward exit

B

36

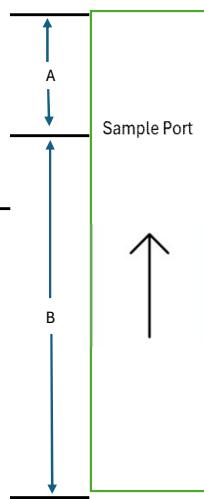
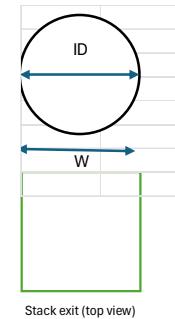
Number of Inches:  
 Number of Diameters:

2.117647059

1.058824

Minimum Number of Traverse Point:

16



| Ports   | Points | % of width | Distance from inside wall (in) |
|---------|--------|------------|--------------------------------|
| A,B,C,D | 1      | 12.5%      | 4.25                           |
|         | 2      | 37.5%      | 12.75                          |
|         | 3      | 62.5%      | 21.25                          |
|         | 4      | 87.75%     | 29.835                         |

Port

|   | 4.25 | 12.75 | 21.25 | 27.5 |
|---|------|-------|-------|------|
| A | *    | *     | *     | *    |
| B | *    | *     | *     | *    |
| C | *    | *     | *     | *    |
| D | *    | *     | *     | *    |

Rectangular stack cross section divided into 16 equal areas, with traverse point at centroid of each area

Reference Diagram



Drawing not to scale and not an accurate representation of stack

## Calculation Sheet

**Client:** Eagle Foundry Company  
**Location:** Eagle Creek, OR  
**Source:** Small Palmer Bag House  
**Facility:** Eagle Foundry

### Stack Dimensional Data:

|             | Circ dia:   | in          |  | Equipment:         |
|-------------|-------------|-------------|--|--------------------|
| Rectangular |             |             |  | Pitot ID: 8-Apr    |
|             | Width:      | 34 in       |  | Pitot Cp: 0.84     |
|             | Length:     | 34 in       |  | Digital Manometer: |
|             | Stack area: | 8.028 sq ft |  | Temperature Meter: |

### Source Information:

|                                       |                           |                     |       |
|---------------------------------------|---------------------------|---------------------|-------|
| (1) Barometric Pressure( $P_{bar}$ ): | 29.65 in H <sub>2</sub> O | (4) Site Elevation: | 351.9 |
| Static Pressure( $P_g$ ):             | 0.11 in H <sub>2</sub> O  | $T_{std}$ :         | 528   |
| (2) Dry Molecular weight:             | 29.0                      | $P_{std}$ :         | 29.92 |
| (3) Assumed moisture:                 | 0.95%                     |                     |       |

|                                 | Traverse Point | Velocity( $\Delta P$ ) | Stack Temp                    | Check for Cyclonic Flow |
|---------------------------------|----------------|------------------------|-------------------------------|-------------------------|
| Port                            | Point          | (in H <sub>2</sub> O)  | (°F)                          | Null Angle              |
| A                               | 1              | 0.27                   | 72                            | 0                       |
|                                 | 2              | 0.64                   | 71.2                          | 5                       |
|                                 | 3              | 0.6                    | 71.2                          | 0                       |
|                                 | 4              | 0.69                   | 71.3                          | 0                       |
| B                               | 1              | 0.06                   | 71.4                          | 0                       |
|                                 | 2              | 0.18                   | 71.1                          | 0                       |
|                                 | 3              | 0.17                   | 70.5                          | 0                       |
|                                 | 4              | 0.43                   | 70.4                          | 0                       |
| C                               | 1              | 0.06                   | 70.3                          | 0                       |
|                                 | 2              | 0.04                   | 70                            | 0                       |
|                                 | 3              | 0.09                   | 69.9                          | 5                       |
|                                 | 4              | 0.4                    | 69.7                          | 5                       |
| D                               | 1              | 0.06                   | 69.6                          | 0                       |
|                                 | 2              | 0.11                   | 69.5                          | 0                       |
|                                 | 3              | 0.22                   | 69.3                          | 0                       |
|                                 | 4              | 0.16                   | 69.7                          | 10                      |
| Average:                        |                | 0.26125                | 70.44375                      | 1.5625                  |
| Average Velocity( $\Delta P$ ): |                | 0.26125                | Non-cyclonic                  |                         |
| Average Stack Temp ( $T_s$ ):   |                | 70.44375               | Flow is found to be: cyclonic |                         |

Absolute Stack Pressure, ( $P_s$ ): 29.66 in H<sub>2</sub>O  
 Avg Absolute Stack Temp( $T_{s(abavg)}$ ): 530.44 °R

Average stack gas velocity ( $V_s$ ): 28.83 ft/s  
 Average stack gas volumetric flow rate ( $Q_{sd}$ ): 814,142.30 dscf/hr  
 13,569.04 dscf/min

### REFERENCE

(1) Barometric Pressure: US Weather Service Station Portland International Airport elev: 20 ft  
 Bar P=29.95, Adjusted for elevation, -.100 in Hg/100 ft increase in elevation  
 Per EPA Method 2

(2) Dry Molecular weight: Per EPA Method 2, Sec 8.6 For processes emitting essentially air, analysis need not be conducted; use dry molecular weight of 29.0

(3) Assumed Moisture: Used data from US Weather Service Station, Eagle Creek, OR (EGK03)

(4) Site Elevation: Elevation derived from the US Geological Survey National Dataset downloaded and processed using AERMET

EPA Method 1

Stack Parameters and Traverse Points

Client: Eagle Foundry Company  
 Location: Eagle Creek, OR  
 Source: Screening Bag House  
 Facility: Eagle Foundry

Date: Oct 8,2025  
 Time: 11:50pm

Type of Testing: V (P for Particulate; V for Velocity /Nonparticulate)  
 Type of Duct: C (C for circular; R for rectangular)

Number of ports available: 2  
 Number of ports to be used: 1  
 Port diameter: 1 inch  
 Sampling location height {approx}: 21.33 feet  
 Stack height: 23.67 feet

Circular ID (Rectangular Depth)

Port depth and/or wall thickness: 0.1 inches

Stack width (Rectangular only)

14 inches (If circular=duct ID)

Equivalent Diameter

If rectangular=  $2 \times \text{Depth} \times \text{Width} =$  inches (If circular=duct ID)  
 $\text{Depth} + \text{Width}$

Stack/duct area= 1.069 sq ft

153.938 sq inches

Sample Port Location:

Downstream flow disturbance  
from process

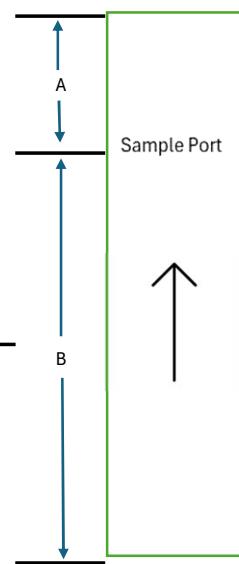
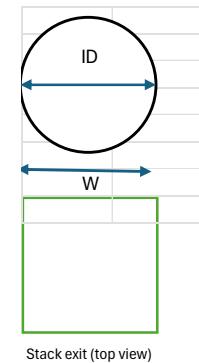
A

188

13.42857

Upstream flow disturbance  
toward exit

B



28

2

Minimum Number of Traverse Point: 8

|   | Points | % of diameter | Distance from inside wall (in) |
|---|--------|---------------|--------------------------------|
| A | 1      | 6.2%          | 0.868                          |
|   | 2      | 25.0%         | 3.5                            |
|   | 3      | 75.0%         | 10.5                           |
|   | 4      | 93.3%         | 13.062                         |

Reference Diagram



Drawing not to scale  
and not an accurate  
representation of  
stack

## Calculation Sheet

**Client:** Eagle Foundry Company  
**Location:** Eagle Creek, OR  
**Source:** Screening Bag House  
**Facility:** Eagle Foundry

### Stack Dimensional Data:

|             |             |
|-------------|-------------|
| Circ dia:   | 14 in       |
| Rectangular |             |
| Width:      | in          |
| Length:     | in          |
| Stack area: | 1.069 sq ft |

### Equipment:

|                    |          |
|--------------------|----------|
| Pitot ID:          | 173 TP-2 |
| Pitot Cp:          | 0.84     |
| Digital Manometer: |          |
| Temperature Meter: |          |

### Source Information:

|                                       |                           |                     |       |
|---------------------------------------|---------------------------|---------------------|-------|
| (1) Barometric Pressure( $P_{bar}$ ): | 29.65 in H <sub>2</sub> O | (4) Site Elevation: | 351.9 |
| Static Pressure( $P_g$ ):             | 0.06 in H <sub>2</sub> O  | $T_{std}$ :         | 528   |
| (2) Dry Molecular weight:             | 29.0                      | $P_{std}$ :         | 29.92 |
| (3) Assumed moisture:                 | 0.95%                     |                     |       |

| Traverse Point |       | Velocity( $\Delta P$ ) | Stack Temp | Check for Cyclonic Flow |
|----------------|-------|------------------------|------------|-------------------------|
| Port           | Point | (in H <sub>2</sub> O)  | (°F)       | Null Angle              |
| A              | 1     | 0.14                   | 70.6       | 0                       |
|                | 2     | 0.22                   | 72.5       | 0                       |
|                | 3     | 0.22                   | 74         | 0                       |
|                | 4     | 0.18                   | 74.3       | 0                       |
| B              | 1     | 0.2                    | 73         | 0                       |
|                | 2     | 0.22                   | 73.1       | 0                       |
|                | 3     | 0.24                   | 73.9       | 0                       |
|                | 4     | 0.22                   | 73.2       | 0                       |
|                |       | 0.205                  | 73.075     | 0                       |

Average Velocity( $\Delta P$ ): 0.205  
 Average Stack Temp ( $T_s$ ): 73.075  
 Non-cyclonic flow is found to be: cyclonic

Absolute Stack Pressure, ( $P_s$ ): 29.65 in H<sub>2</sub>O  
 Avg Absolute Stack Temp( $T_{s(abavg)}$ ): 533.08 °R

Average stack gas velocity ( $V_s$ ): 25.60 ft/s  
 Average stack gas volumetric flow rate ( $Q_{sd}$ ): 95,793.45 dscf/hr  
 1,596.56 dscf/min

### REFERENCE

<sup>(1)</sup> Barometric Pressure: US Weather Service Station Portland International Airport elev: 20 ft  
 Bar P=29.95, Adjusted for elevation, -.100 in Hg/100 ft increase in elevation  
 Per EPA Method 2

<sup>(2)</sup> Dry Molecular weight: Per EPA Method 2, Sec 8.6 For processes emitting essentially air, analysis need not be conducted; use dry molecular weight of 29.0

<sup>(3)</sup> Assumed Moisture: Used data from US Weather Service Station, Eagle Creek, OR (EGK03)

<sup>(4)</sup> Site Elevation: Elevation derived from the US Geological Survey National Dataset downloaded and processed using AERMET

**EPA Method 1**

**Stack Parameters and Traverse Points**

Client: Eagle Foundry Company Date: Oct 8, 2025  
 Location: Eagle Creek, OR Time: 1:40 PM  
 Source: Welding Stack-WELD1

Facility: Eagle Foundry

Type of Testing: V (P for Particulate; V for Velocity /Nonparticulate)  
 Type of Duct: C (C for circular; R for rectangular)

Number of ports available:

2

Number of ports to be used:

2

Port diameter:

1 inch

Sampling location height (approx):

33.67 feet

Stack height:

35.00 feet

Circular ID (Rectangular Depth)

8 inches

Port depth and/or wall thickness:

0.1 inches

Stack width (Rectangular only)

8 inches (If circular=duct ID)

Equivalent Diameter

If rectangular=  $2 \times \text{Depth} \times \text{Width} =$  inches (If circular=duct ID)  
 $\text{Depth} + \text{Width}$

Stack/duct area=

0.349 sq ft

50.265 sq inches

Sample Port Location:

Downstream flow disturbance from process

A

Upstream flow disturbance toward exit

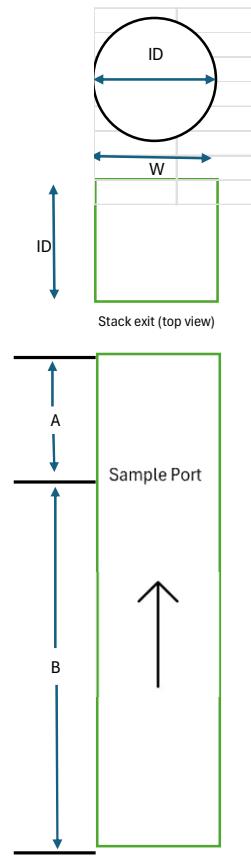
B

Number of Inches:  
 Number of Diameters:

232

29

16


2

Minimum Number of Traverse Point:

8

| Ports | Points | % of diameter | Distance from inside wall (in) |
|-------|--------|---------------|--------------------------------|
| A,B   | 1      | 6.2%          | 0.496                          |
|       | 2      | 25.0%         | 2                              |
|       | 3      | 75.0%         | 6                              |
|       | 4      | 93.3%         | 7.464                          |

**Reference Diagram**



Drawing not to scale  
 and not an accurate  
 representation of  
 stack

## Calculation Sheet

**Client:** Eagle Foundry Company  
**Location:** Eagle Creek, OR  
**Source:** Welding Stack-WELD1  
**Facility:** Eagle Foundry

| Stack Dimensional Data: |                |
|-------------------------|----------------|
|                         | Circ dia: 8 in |
| Rectangular             | Width: in      |
|                         | Length: in     |
| Stack area:             | 0.349 sq ft    |

**Equipment:**  
Pitot ID: 173 TP-2  
Pitot Cp: 1  
Digital Manometer:  
Temperature Meter:

## Source Information:

|                                              |       |                     |                     |       |       |
|----------------------------------------------|-------|---------------------|---------------------|-------|-------|
| (1) Barometric Pressure( $P_{\text{bar}}$ ): | 29.65 | in H <sub>2</sub> O | (4) Site Elevation: | 351.9 | feet  |
| Static Pressure( $P_g$ ):                    | 0.06  | in H <sub>2</sub> O | $T_{\text{std}}$ :  | 528   | °R    |
| (2) Dry Molecular weight:                    | 29.0  |                     | $P_{\text{std}}$ :  | 29.92 | in Hg |
| (3) Assumed moisture:                        | 0.95% |                     |                     |       |       |

| Traverse Point                  |       | Velocity( $\Delta P$ )         | Stack Temp      |
|---------------------------------|-------|--------------------------------|-----------------|
| Port                            | Point | ( $^{\circ}$ H <sub>2</sub> O) | ( $^{\circ}$ F) |
| A                               | 1     | 0.3                            | 70.3            |
|                                 | 2     | 0.37                           | 70.3            |
|                                 | 3     | 0.42                           | 70.3            |
|                                 | 4     | 0.33                           | 70.3            |
| B                               | 1     | 0.33                           | 70.3            |
|                                 | 2     | 0.41                           | 70.3            |
|                                 | 3     | 0.36                           | 70.3            |
|                                 | 4     | 0.22                           | 70.3            |
|                                 |       | 0.3425                         | 70.3            |
| Average Velocity( $\Delta P$ ): |       | 0.3425                         | 0.99            |
| Average Stack Temp ( $T_s$ ):   |       | 70.3                           |                 |

Absolute Stack Pressure, ( $P_s$ ): 29.65 in H<sub>2</sub>O  
Avg Absolute Stack Temp ( $T_{s(abavg)}$ ): 530.30 °R

## REFERENCE

<sup>(1)</sup> Barometric Pressure: US Weather Service Station Portland International Airport elev: 20 ft  
Bar P=29.95, Adjusted for elevation, -.100 in Hg/100 ft increase in elevation  
Per EPA Method 2

<sup>(2)</sup>Dry Molecular weight: Per EPA Method 2, Sec 8.6 For processes emitting essentially air, analysis need not be conducted; use dry molecular weight of 29.0

<sup>(3)</sup> Assumed Moisture: Used data from US Weather Service Station, Eagle Creek, OR (EGK03)

<sup>(4)</sup>Site Elevation: Elevation derived from the US Geological Survey National Dataset downloaded and processed using AERMET

EPA Method 1

Stack Parameters and Traverse Points

Client: Eagle Foundry Company      Date: Oct 8, 2025  
 Location: Eagle Creek, OR      Time: 2:10 PM  
 Source: Welding- WELD2  
 Facility: Eagle Foundry

Type of Testing: V (P for Particulate; V for Velocity /Nonparticulate)

Type of Duct: C (C for circular; R for rectangular)

Source: Welding Stack-Back Left

Number of ports available:

2

Number of ports to be used:

2

Port diameter:

1 inch

Sampling location height (approx):

33.67 feet

Stack height(approx):

35 feet

Circular ID (Rectangular Depth)

8 inches

Port depth and/or wall thickness:

0.1 inches

Stack width (Rectangular only)

8 inches (If circular=duct ID)

Equivalent Diameter

If rectangular=  $2 * \text{Depth} * \text{Width} = \text{Depth} + \text{Width}$  inches (If circular=duct ID)

Stack/duct area=

0.349 sq ft

50.265 sq inches

Sample Port Location:

Downstream flow disturbance from process

A

224

Upstream flow disturbance toward exit

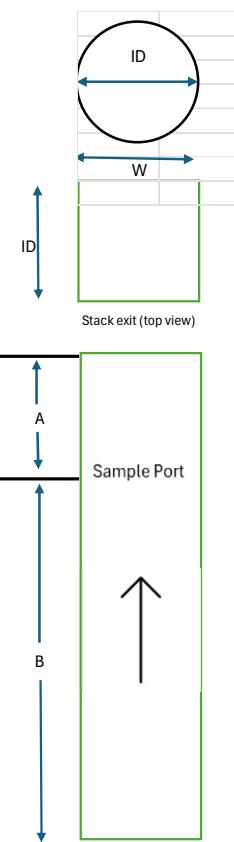
B

16

2

Number of Inches:

28


Number of Diameters:

8

Minimum Number of Traverse Point:

| Ports | Points | % of diameter | Distance from inside wall (in) |
|-------|--------|---------------|--------------------------------|
| A,B   | 1      | 6.2%          | 0.496                          |
|       | 2      | 25.0%         | 2                              |
|       | 3      | 75.0%         | 6                              |
|       | 4      | 93.3%         | 7.464                          |

Reference Diagram



Drawing not to scale and not an accurate representation of stack

## Calculation Sheet

**Client:** Eagle Foundry Company  
**Location:** Eagle Creek, OR  
**Source:** Welding Stack-WELD2  
**Facility:** Eagle Foundry

### Stack Dimensional Data:

|             |             |
|-------------|-------------|
| Circ dia:   | 8 in        |
| Rectangular |             |
| Width:      | in          |
| Length:     | in          |
| Stack area: | 0.349 sq ft |

### Equipment:

Pitot ID: 173 TP-2  
 Pitot Cp: 0.99  
 Digital Manometer:  
 Temperature Meter:

### Source Information:

|                                       |       |                     |                     |       |       |
|---------------------------------------|-------|---------------------|---------------------|-------|-------|
| (1) Barometric Pressure( $P_{bar}$ ): | 29.65 | in H <sub>2</sub> O | (4) Site Elevation: | 351.9 | feet  |
| Static Pressure( $P_g$ ):             | 0.06  | in H <sub>2</sub> O | $T_{std}$ :         | 528   | °R    |
| (2) Dry Molecular weight:             | 29.0  |                     | $P_{std}$ :         | 29.92 | in Hg |
| (3) Assumed moisture:                 | 0.95% |                     |                     |       |       |

| Traverse Point                  |       | Velocity( $\Delta P$ ) | Stack Temp |
|---------------------------------|-------|------------------------|------------|
| Port                            | Point | (in H <sub>2</sub> O)  | (°F)       |
| A                               | 1     | 0.64                   | 70.3       |
|                                 | 2     | 1.06                   | 70.3       |
|                                 | 3     | 1.03                   | 70.3       |
|                                 | 4     | 0.83                   | 70.3       |
| B                               | 1     | 0.93                   | 70.3       |
|                                 | 2     | 1.05                   | 70.3       |
|                                 | 3     | 0.89                   | 70.3       |
|                                 | 4     | 0.52                   | 70.3       |
|                                 |       | 0.86875                | 70.3       |
| Average Velocity( $\Delta P$ ): |       | 0.86875                |            |
| Average Stack Temp ( $T_s$ ):   |       |                        | 70.3       |
|                                 |       |                        |            |

No test for cyclonic flow due to small duct dia, required to use standard pitot tube

Absolute Stack Pressure, ( $P_s$ ): 29.65 in H<sub>2</sub>O  
 Avg Absolute Stack Temp( $T_{s(abavg)}$ ): 530.30 °R

Average stack gas velocity ( $V_s$ ): 61.95 ft/s  
 Average stack gas volumetric flow rate ( $Q_{sd}$ ): 76,088.57 dscf/hr  
 1,268.14 dscf/min

### REFERENCE

(1) Barometric Pressure: US Weather Service Station Portland International Airport elev: 20 ft  
 Bar P=29.95, Adjusted for elevation, -.100 in Hg/100 ft increase in elevation  
 Per EPA Method 2

(2) Dry Molecular weight: Per EPA Method 2, Sec 8.6 For processes emitting essentially air, analysis need not be conducted; use dry molecular weight of 29.0

(3) Assumed Moisture: Used data from US Weather Service Station, Eagle Creek, OR (EGK03)

(4) Site Elevation: Elevation derived from the US Geological Survey National Dataset downloaded and processed using AERMET

EPA Method 1

Stack Parameters and Traverse Points

Client: Eagle Foundry Company  
 Location: Eagle Creek, OR  
 Source: Welding Stack-WELD3  
 Facility: Eagle Foundry

Date: Oct 8, 2025  
 Time: 2:20 PM

Type of Testing: V (P for Particulate; V for Velocity /Nonparticulate)  
 Type of Duct: C (C for circular; R for rectangular)

Number of ports available:

2

2

Number of ports to be used:

1 inch

Port diameter:

30.17 feet

Sampling location height (approx):

31.5 feet

Stack height:

Circular ID (Rectangular Depth)

8 inches

Port depth and/or wall thickness:

0.1 inches

Stack width (Rectangular only)

8 inches (If circular=duct ID)

Equivalent Diameter

If rectangular=  $2 * \text{Depth} * \text{Width} / (\text{Depth} + \text{Width})$  inches (If circular=duct ID)

Stack/duct area=

0.349 sq ft

50.265 sq inches

Sample Port Location:

Downstream flow disturbance from process

A

223

Upstream flow disturbance toward exit

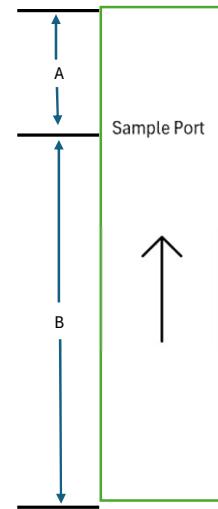
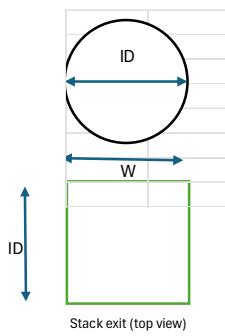
B

16

2

Number of Inches:

27.875



Number of Diameters:

8

Minimum Number of Traverse Point:

| Ports | Points | % of diameter | Distance from inside wall (in) |
|-------|--------|---------------|--------------------------------|
| A,B   | 1      | 6.2%          | 0.496                          |
|       | 2      | 25.0%         | 2                              |
|       | 3      | 75.0%         | 6                              |
|       | 4      | 93.3%         | 7.464                          |

Reference Diagram



Drawing not to scale and not an accurate representation of stack

## Calculation Sheet

**Client:** Eagle Foundry Company  
**Location:** Eagle Creek, OR  
**Source:** Welding Stack-WELD3  
**Facility:** Eagle Foundry

### Stack Dimensional Data:

|             |             |
|-------------|-------------|
| Circ dia:   | 8 in        |
| Rectangular |             |
| Width:      | in          |
| Length:     | in          |
| Stack area: | 0.349 sq ft |

### Equipment:

|                    |          |
|--------------------|----------|
| Pitot ID:          | 173 TP-2 |
| Pitot Cp:          | 0.99     |
| Digital Manometer: |          |
| Temperature Meter: |          |

### Source Information:

|                                       |                           |                     |             |
|---------------------------------------|---------------------------|---------------------|-------------|
| (1) Barometric Pressure( $P_{bar}$ ): | 29.65 in H <sub>2</sub> O | (4) Site Elevation: | 351.9 feet  |
| Static Pressure( $P_g$ ):             | 0.06 in H <sub>2</sub> O  | $T_{std}$ :         | 528 °R      |
| (2) Dry Molecular weight:             | 29.0                      | $P_{std}$ :         | 29.92 in Hg |
| (3) Assumed moisture:                 | 0.95%                     |                     |             |

| Traverse Point                  |       | Velocity( $\Delta P$ ) | Stack Temp                                                                           |
|---------------------------------|-------|------------------------|--------------------------------------------------------------------------------------|
| Port                            | Point | (in H <sub>2</sub> O)  | (°F)                                                                                 |
| A                               | 1     | 0.38                   | 70.3                                                                                 |
|                                 | 2     | 0.42                   | 70.3                                                                                 |
|                                 | 3     | 0.42                   | 70.3                                                                                 |
|                                 | 4     | 0.45                   | 70.3                                                                                 |
| B                               | 1     | 0.36                   | 70.3                                                                                 |
|                                 | 2     | 0.38                   | 70.3                                                                                 |
|                                 | 3     | 0.45                   | 70.3                                                                                 |
|                                 | 4     | 0.44                   | 70.3                                                                                 |
|                                 |       | 0.4125                 | 70.3                                                                                 |
| Average Velocity( $\Delta P$ ): |       | 0.4125                 | No test for cyclonic flow due to small duct dia, required to use standard pitot tube |
| Average Stack Temp ( $T_s$ ):   |       | 70.3                   |                                                                                      |

Absolute Stack Pressure, ( $P_s$ ): 29.65 in H<sub>2</sub>O  
 Avg Absolute Stack Temp( $T_{s(abavg)}$ ): 530.30 °R

Average stack gas velocity ( $V_s$ ): 42.69 ft/s  
 Average stack gas volumetric flow rate ( $Q_{sd}$ ): 52,430.50 dscf/hr  
 873.84 dscf/min

### REFERENCE

<sup>(1)</sup> Barometric Pressure: US Weather Service Station Portland International Airport elev: 20 ft  
 Bar P=29.95, Adjusted for elevation, -.100 in Hg/100 ft increase in elevation  
 Per EPA Method 2

<sup>(2)</sup> Dry Molecular weight: Per EPA Method 2, Sec 8.6 For processes emitting essentially air, analysis need not be conducted; use dry molecular weight of 29.0

<sup>(3)</sup> Assumed Moisture: Used data from US Weather Service Station, Eagle Creek, OR (EGK03)

<sup>(4)</sup> Site Elevation: Elevation derived from the US Geological Survey National Dataset downloaded and processed using AERMET

## Calculation Sheet

**Client:** Eagle Foundry Company      **Date:** Oct 8,2025  
**Location:** Eagle Creek, OR      **Time:** 3:50 PM  
**Source:** Mesh Bast  
**Facility:** Eagle Foundry

### Stack Dimensional Data:

|                   |             |
|-------------------|-------------|
| Circ dia:         | 20 in       |
| Rectangular       |             |
| Width:            | in          |
| Length:           | in          |
| Stack area:       | 2.182 sq ft |
| Discharge Height: | 15.630 ft   |

### Equipment:

Pitot ID:  
 Pitot Cp:  
 Digital Manometer:  
 Temperature Meter:  
 Hot Wire Anemometer

### Source Information:

|                                       |                           |                     |             |
|---------------------------------------|---------------------------|---------------------|-------------|
| (1) Barometric Pressure( $P_{bar}$ ): | 29.65 in H <sub>2</sub> O | (4) Site Elevation: | 351.9 feet  |
| Static Pressure( $P_g$ ):             | 0.06 in H <sub>2</sub> O  | $T_{std}$ :         | 528 °R      |
| (2) Dry Molecular weight:             | 29.0                      | $P_{std}$ :         | 29.92 in Hg |
| (3) Assumed moisture:                 | 0.95%                     |                     |             |

Open duct for exit, not way to sample Method 1 or 2. Took exit velocity reading with Dwyer Hot Wire anemometer.

| Traverse Point |           | Velocity    | Stack Temp |
|----------------|-----------|-------------|------------|
| Port           | Point     | Ft/min      | (°F)       |
|                | 1         | 3,800       | 65         |
|                | 2         | 3,480       | 65         |
|                | 3         | 1,340       | 65         |
|                | Velocity: | 2873.33 fpm |            |
|                |           | 47.89 ft/s  |            |

### REFERENCE

(1) Barometric Pressure: US Weather Service Station Portland International Airport elev: 20 ft  
 Bar P=29.95, Adjusted for elevation, -.100 in Hg/100 ft increase in elevation  
 Per EPA Method 2

(2) Dry Molecular weight: Per EPA Method 2, Sec 8.6 For processes emitting essentially air,  
 analysis need not be conducted; use dry molecular weight of 29.0

(3) Assumed Moisture: Used data from US Weather Service Station, Eagle Creek, OR (EGK03)

(4) Site Elevation: Elevation derived from the US Geological Survey National Dataset downloaded  
 and processed using AERMET

## Calculation Sheet

**Client:** Eagle Foundry Company  
**Location:** Eagle Creek, OR  
**Source:** Pattern Room Fan  
**Facility:** Eagle Foundry

**Date:** Oct 8, 2025  
**Time:** 4:00 PM

### Stack Dimensional Data:

|              | Circ dia: | in    |
|--------------|-----------|-------|
| Rectangular  |           |       |
| Width:       | 18        | in    |
| Length:      | 18        | in    |
| Stack area:  | 2.250     | sq ft |
| Exit Height: | 9         | ft    |

### Equipment:

|                     |  |
|---------------------|--|
| Pitot ID:           |  |
| Pitot Cp:           |  |
| Digital Manometer:  |  |
| Temperature Meter:  |  |
| Hot Wire Anemometer |  |

### Source Information:

|                                        |                           |                     |             |
|----------------------------------------|---------------------------|---------------------|-------------|
| (1) Barometric Pressure ( $P_{bar}$ ): | 29.65 in H <sub>2</sub> O | (4) Site Elevation: | 351.9 feet  |
| Static Pressure ( $P_g$ ):             | 0.06 in H <sub>2</sub> O  | $T_{std}$ :         | 528 °R      |
| (2) Dry Molecular weight:              | 29.0                      | $P_{std}$ :         | 29.92 in Hg |
| (3) Assumed moisture:                  | 0.95%                     |                     |             |

Wall mounted fan, no inlet or outlet ducting, Took exit velocity reading with Dwyer Hot Wire anemometer.

| Traverse Point |           | Velocity  | Stack Temp |
|----------------|-----------|-----------|------------|
| Port           | Point     | Ft/min    | (°F)       |
|                | 1         | 1,810     | 65         |
|                | 2         | 1,250     | 65         |
|                | Velocity: | 1,530 fpm |            |
|                |           | 25.5 ft/s |            |

### REFERENCE

<sup>(1)</sup> Barometric Pressure: US Weather Service Station Portland International Airport elev: 20 ft  
 Bar P=29.95, Adjusted for elevation, -.100 in Hg/100 ft increase in elevation  
 Per EPA Method 2

<sup>(2)</sup> Dry Molecular weight: Per EPA Method 2, Sec 8.6 For processes emitting essentially air,  
 analysis need not be conducted; use dry molecular weight of 29.0

<sup>(3)</sup> Assumed Moisture: Used data from US Weather Service Station, Eagle Creek, OR (EGK03)

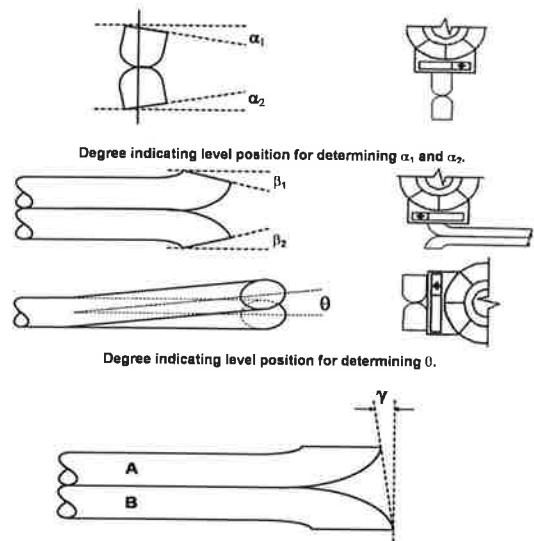
<sup>(4)</sup> Site Elevation: Elevation derived from the US Geological Survey National Dataset downloaded  
 and processed using AERMET

## Appendix B

---

### Calibrations and Certifications



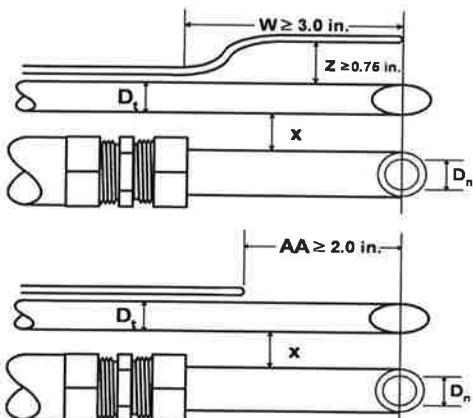

## Pitot Tube Calibration Data Sheet

|                                     |                             |                                  |             |                          |              |
|-------------------------------------|-----------------------------|----------------------------------|-------------|--------------------------|--------------|
| Calibration Date:                   | January 1, 2017             | Performed by:                    | John Sommer | Expiration Date:         | July 1, 2017 |
|                                     |                             | ID No.:                          | 4-8         | No obstructions:         | Yes          |
| Calibrated Pitot Tube:              | S-type                      | Probe/Pitot ID No.:              | 4-8-TP-4    | No damage:               | Yes          |
| Probe Description:                  | TRAVERSE - Flow & Temp (TP) | Effective Length (ft):           | 4           | Level and Perpendicular: | Yes          |
| Thermocouple calibration performed? | Yes                         | Thermocouple passed calibration? |             |                          | Yes          |

Protractor or Digital Angle Finder ID: 740  
 Measuring Tape ID: PDX-25-1  
 Caliper ID: 706

Calibration performed using the procedures of EPA Method 2, Section 10.1

### Alignment and Tubing Dimensions




|                                                   |        |
|---------------------------------------------------|--------|
| $\alpha_1$ ( $-10^\circ < \alpha_1 < +10^\circ$ ) | 1.6    |
| $\alpha_2$ ( $-10^\circ < \alpha_2 < +10^\circ$ ) | 0.8    |
| $\beta_1$ ( $-5^\circ < \beta_1 < +5^\circ$ )     | 3.3    |
| $\beta_2$ ( $-5^\circ < \beta_2 < +5^\circ$ )     | 1.1    |
| $\gamma$                                          | 0.7    |
| $\theta$                                          | 1.3    |
| A                                                 | 0.8810 |
| $z = A \tan \gamma (\pm 0.125")$                  | 0.0108 |
| $w = A \tan \theta (\pm 0.03125")$                | 0.0200 |
| $D_t$ (0.1875" $< D_t < 0.375"$ )                 | 0.3749 |
| $P_A$ (1.05D <sub>t</sub> $< P_A < 1.5D_t$ )      | 0.4405 |
| $P_B$ (1.05D <sub>t</sub> $< P_B < 1.5D_t$ )      | 0.4405 |
| $ P_A - P_B  \leq 0.0625$                         | 0.0000 |

Pass  
 Pass  
 Pass  
 Pass  
 Pass  
 Pass

Degree indicating level position for determining  $\gamma$  then calculating Z.

### Assembly Inter-Component Spacing Requirements



|                                   |       |
|-----------------------------------|-------|
| W ( $\geq 3.0$ in.)               |       |
| -or- AA ( $\geq 2.0$ in.)         |       |
| X                                 |       |
| D <sub>t</sub>                    |       |
| X / D <sub>t</sub> ( $\geq 1.5$ ) |       |
| Y ( $\geq 3.0$ in.)               |       |
| Z ( $\geq 0.75$ in.)              | 2.250 |

Fail Offset TC only  
 Fail Setback TC only

Offset TC only

Performed By: John Sommer

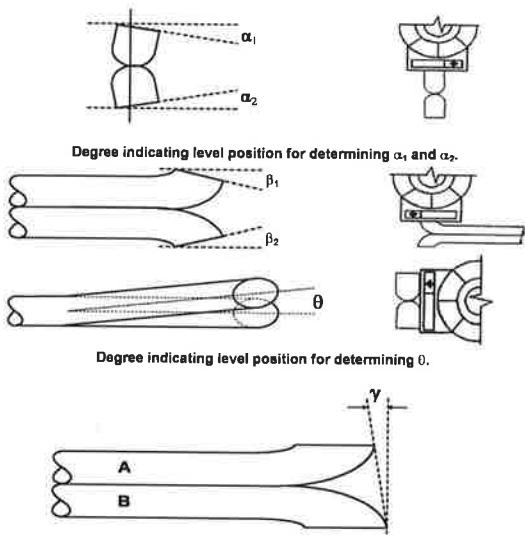
Approved By: Isabelle Brewer

Signature: Date: 10/20/2015  
 Signature: Date: 10/20/2015

Created: 3/16/15 by IE Last revised: 5/11/18 by AV

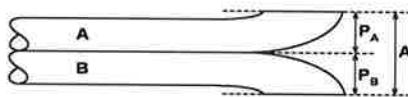
Calibration Sheet Revision: 2




## Pitot Tube Calibration Data Sheet

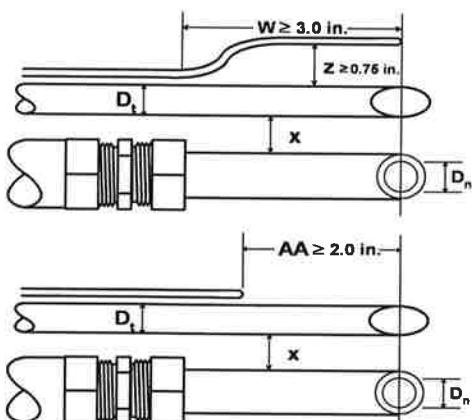
|                                     |                             |                                  |               |                  |                |
|-------------------------------------|-----------------------------|----------------------------------|---------------|------------------|----------------|
| Calibration Date:                   | October 20, 2025            | Performed by:                    | John Sommer   | Expiration Date: | April 20, 2026 |
| Calibrated Pitot Tube:              | S-type                      | ID No.:                          | 174-TP-2      | No obstructions: | Yes            |
| Probe Description:                  | TRAVERSE - Flow & Temp (TP) | Probe/Pitot ID No.:              | 174-TP-2-TP-2 | No damage:       | Yes            |
| Effective Length (ft):              | 2                           | Level and Perpendicular:         | Yes           |                  |                |
| Thermocouple calibration performed? | Yes                         | Thermocouple passed calibration? | Yes           |                  |                |

Protractor or Digital Angle Finder ID: 740  
 Measuring Tape ID: PDX-25-1  
 Caliper ID: 706


Calibration performed using the procedures of EPA Method 2, Section 10.1

### Alignment and Tubing Dimensions

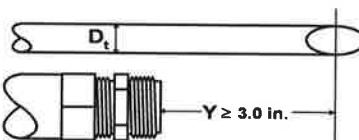



|                                                   |        |
|---------------------------------------------------|--------|
| $\alpha_1$ ( $-10^\circ < \alpha_1 < +10^\circ$ ) | 0.8    |
| $\alpha_2$ ( $-10^\circ < \alpha_2 < +10^\circ$ ) | 0.2    |
| $\beta_1$ ( $-5^\circ < \beta_1 < +5^\circ$ )     | 2.0    |
| $\beta_2$ ( $-5^\circ < \beta_2 < +5^\circ$ )     | 1.1    |
| $\gamma$                                          | 0.9    |
| $\theta$                                          | 0.8    |
| A                                                 | 0.9035 |
| $z = A \tan \gamma$ ( $\pm 0.125''$ )             | 0.0142 |
| $w = A \tan \theta$ ( $\pm 0.03125''$ )           | 0.0126 |
| $D_t$ ( $0.1875'' < D_t < 0.375''$ )              | 0.3749 |
| $P_A$ ( $1.05D_t < P_A < 1.5D_t$ )                | 0.4518 |
| $P_B$ ( $1.05D_t < P_B < 1.5D_t$ )                | 0.4518 |
| $ P_A - P_B  \leq 0.0625$                         | 0.0000 |

Pass  
 Pass  
 Pass  
 Pass  
 Pass  
 Pass  
 Pass



Degree indicating level position for determining  $\gamma$  then calculating  $Z$ .


### Assembly Inter-Component Spacing Requirements



|                                   |       |
|-----------------------------------|-------|
| W ( $\geq 3.0''$ )                |       |
| -or- AA ( $\geq 2.0''$ )          | 2.250 |
| X                                 |       |
| D <sub>n</sub>                    |       |
| X / D <sub>n</sub> ( $\geq 1.5$ ) |       |
| Y ( $\geq 3.0''$ )                |       |
| Z ( $\geq 0.75''$ )               |       |

Offset TC only  
 Setback TC only

Offset TC only



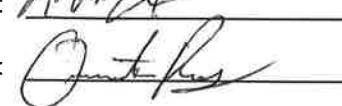
Performed By: John Sommer  
 Approved By: Isabelle Braver

Signature: John Sommer Date: 10/20/2025  
 Signature: Isabelle Braver Date: 10/20/2025



## PRESSURE GAUGE CALIBRATION DATA FORM

Date..... 10/23/2025  
Calibrator..... JS  
Ambient Temperature, °F..... 68  
Test Gauge ID Number..... SR #2  
Reference Gauge Serial Number..... 537


| Reference Level | Ref. Gauge Pressure, H <sub>2</sub> O | in | Test Gauge Pressure, in H <sub>2</sub> O | Difference, H <sub>2</sub> O | in | Relative Difference, % | Pass/Fail |
|-----------------|---------------------------------------|----|------------------------------------------|------------------------------|----|------------------------|-----------|
| Low             | 0.69                                  |    | 0.6864                                   | 0.0036                       |    | 1                      | PASS      |
| Medium          | 3.1                                   |    | 3.061                                    | 0.039                        |    | 1                      | PASS      |
| High            | 7.1                                   |    | 7.137                                    | 0.037                        |    | 1                      | PASS      |

Pressure difference must be ≤ 5% at each level

Performed By: John Sommer

Signature:  Date: 10/23/2025

Approved By: Quinton Reilly

Signature:  Date: 10/23/25