

August 27, 2025

Ray Caparas

Territory Manager, Power Generation
Cummins Sales and Services
Mobile (425)977-5327
Raymond.Caparas@cummins.com

**Re: Cummins Model C3500D6E generators provided for the Lark project for Intel
Table of Expected Pollution Reduction - Johnson Matthey CRT(+) Diesel Particulate Filter**

Dear Ray:

The purpose of this letter is to provide documentation of the expected emission control from the Johnson Matthey Model CRT(+) Diesel Particulate Filters which were supplied to Cummins and installed on Cummins C3500D6E diesel generators for the Intel - Lark Project in Hillsboro, Oregon.

NOTE 1: PM control from the Johnson Matthey CRT(+) Diesel Particulate Filter is an absolute type of value, even across various engine loads (Attached to this letter is an EPA White Paper written by the US EPA Staff which compared the Johnson Matthey CRT(+) technology to the leading brand of Active Diesel Particulate Filter. The report provides a very detail account of PM performance for what they call Passive DPF in the paper. This report mimics what Johnson Matthey has tested and also what other independent 3rd Party Testing Labs have reported on PM reduction from our CRT(+)).

NOTE 2: When it comes to CO, this is easily converted to CO₂ by our CRT(+) and reduction efficiencies are pretty consistent over the normal operating conditions of this Cummins diesel engine.

NOTE 3: When it comes to HC reduction and the fact that some hydrocarbons are not as easily oxidized as others . . . the reported reduction values in the accompanying Table 1, is what could be considered optimum engine exhaust gas process conditions, that might not be true at lower engine loads (e.g. under 25% engine load).

Thank you, and if there are any questions, please let me know.

Sincerely.

Robert Bono
Regional Manager – Western USA

Additional documentation is provided below as Table 1

Pollutant	Expected Destruction Efficiency
Filterable PM	95
VOC	85
CO	95
Benzene	63
Butadiene	60
Formaldehyde	63
Naphthalene	54
PAHs (excluding Naphthalene)	63
Benzo[a]pyrene	63
Acetaldehyde	58
Acrolein	69
Ethyl benzene	66
Hexane	46
Toluene	80
Xylene	76
Acenaphthene	63
Acenaphthylene	63
Anthracene	63
Benz[a]anthracene	63
Benzo[b]fluoranthene	63
Benzo[e]pyrene	63
Benzo[g,h,i]perylene	63
Benzo[k]fluoranthene	63
Chrysene	63
Dibenz[a,h]anthracene	63
Fluoranthene	63
Fluorene	63
Indeno[1,2,3-cd]pyrene	63
2-Methyl naphthalene	63
Perylene	63
Phenanthrene	63
Pyrene	63