-APPENDIX A-Source Material Sampling Analytical Laboratory Report and Data Validation

Pace Analytical ANALYTICAL REPORT

September 01, 2023

Oregon Dept. of Env. Quality - ODEQ

Sample Delivery Group:

L1643943

Samples Received:

08/09/2023

Project Number:

2060.005

Description:

OREGONDEQ-JH Baxter Offsite Investigation

Report To:

Don Hanson

165 E. 7th Avenue

Suite 100

Eugene, OR 97401

Entire Report Reviewed By: Hally Torrence

Haley Torrence Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
GI: Glossary of Terms	5
Al: Accreditations & Locations	6
Sc: Sample Chain of Custody	7

SAMPLE SUMMARY

LFP_SM-O1_L1643943-01_Solid Batch bit				Collected by	Collected date/time	Received da	nte/time
Subcontracted Analyses	LFP_SM-01 L1643943-01 Solid			,			
Collected by Collected by Collected date/hime Collected Analyses Collected Analyses	Method	Batch	Dilution	•	•	Analyst	Location
Method	Subcontracted Analyses	WG2111560	1	09/01/23 00:00	09/01/23 00:00	-	Minneapolis, MN 55414
Method				Collected by	Collected date/time	Received da	ate/time
Meditable Medi	LFP_SM-02 L1643943-02 Solid			Genevieve S.	08/01/23 11:15	08/09/23 09	9:00
REX_SM-01 L1643943-03 Solid Satch Dilution Preparation date/time Received date/time Received date/time date/ti	Method	Batch	Dilution	•	•	Analyst	Location
Method	Subcontracted Analyses	WG2111560	1	09/01/23 00:00	09/01/23 00:00	-	Minneapolis, MN 55414
Subcontracted Analyses W62111560 1 09/01/23 00:00 09/01/23 00:00 09/01/23 00:00 - Minneapolis, M 55414 M62111560 1 09/01/23 00:00 09/01/23 00:00 - Minneapolis, M 55414 M62111560 1 09/01/23 00:00 09/01/23 12:05 08/09/23 09:00 - Minneapolis, M 64e/time Genevieve S. 08/01/23 12:05 08/09/23 09:00 - Minneapolis, M 64e/time Genevieve S. 08/01/23 00:00 09/01/23 00:00 - Minneapolis, M 655414 M62111560 - Minneapolis, M 655414 M62111560 - Minneapolis, M 64e/time Genevieve S. 08/01/23 13:05 08/09/23 09:00 - Minneapolis, M 655414 M62111560 - Minneapolis, M 655414 M62111560 - Minneapolis, M 656414 M62111560 - Minneapolis, M 6664 - Minneapolis, M 666	REX_SM-01 L1643943-03 Solid						
REX_SM-02 L1643943-04 Solid Collected by Genevieve S. O8/01/23 00:00 Solid Collected date/time Received date/time Genevieve S. O8/01/23 12:05 O8/09/23 09:00 O9/01/23 00:00 O9/01/23 00:00 O9/01/23 00:00 O9/01/23 00:00 O9/01/23 00:00 O9/01/23 00:00 O8/09/23 09:00 O9/09/23 09:00	Method	Batch	Dilution	•	*	Analyst	Location
Method	Subcontracted Analyses	WG2111560	1	09/01/23 00:00	09/01/23 00:00	-	Minneapolis, MN 55414
Subcontracted Analyses	REX_SM-02 L1643943-04 Solid						
Collected by Collected date/time Received date/time Received date/time DSG_SM-02 L1643943-05 Solid Dilution Preparation date/time date/time date/time	Method	Batch	Dilution	•	•	Analyst	Location
DSG_SM-02 L1643943-05 Solid Genevieve S. 08/01/23 13:05 08/09/23 09:00 Method Batch Dilution date/time Preparation date/time Analysis Analyst Location date/time Subcontracted Analyses WG2111560 1 09/01/23 00:00 09/01/23 00:00 - Minneapolis, M 55414 DSG_SM-03 L1643943-06 Solid Collected by Genevieve S. Collected date/time 08/09/23 13:10 08/09/23 09:00 Method Batch Dilution Preparation Analysis Analyst Location	Subcontracted Analyses	WG2111560	1	09/01/23 00:00	09/01/23 00:00	-	Minneapolis, MN 55414
Subcontracted Analyses WG2111560 1 09/01/23 00:00 09/01/23 00:00 - Minneapolis, M 55414 Collected by Genevieve S. Genevieve S. 08/01/23 13:10 08/09/23 09:00 Method Batch Dilution Preparation Analysis Analyst Location	DSG_SM-02 L1643943-05 Solid						
Collected by Collected date/time Received date/time Collected by Collected date/time Collected dat	Method	Batch	Dilution	•	•	Analyst	Location
DSG_SM-03 L1643943-06 Solid Genevieve S. 08/01/23 13:10 08/09/23 09:00 Method Batch Dilution Preparation Analysis Analyst Location	Subcontracted Analyses	WG2111560	1	09/01/23 00:00	09/01/23 00:00	-	Minneapolis, MN 55414
	DSG_SM-03 L1643943-06 Solid						
	Method	Batch	Dilution	•	•	Analyst	Location

Subcontracted Analyses

WG2111560

09/01/23 00:00

09/01/23 00:00

Minneapolis, MN 55414

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

PAGE:

4 of 28

Haley Torrence Project Manager

Project Narrative

L1643943 -01, -02, -03, -04, -05, -06 contains subout data that is included after the chain of custody.

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

Description

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Qualifier

SDG	Sample Delivery Group.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alaska 17-026 Newdan TN000032021-1 Arizona AZ0612 New Jersey-NELAP 375 Arkansas 88-0469 New Jersey-NELAP 10002 Colorado TN0003 New York 170000 Colorado TN0003 New York 1742 Connecticut PH-0197 North Carolina ¹ 1875 Georgia NELAP North Carolina ¹ 1840 Georgia NELAP North Carolina ¹ 41 Georgia NELOP North Carolina ¹ 41 Georgia NELOP North Carolina ¹ 140 Georgia NELAP North Carolina ¹ 41 Idenda TN0003 140 140 Idina TN0003 140 140 Idinina 170 140 140 140 Karsas 180 140 140 140 140 140 140 140 140 140 140 140 140 140 140	Alabama	40660	Nebraska	NE-OS-15-05
Arkansas 88-0469 New Jersey-NELAP TN0003 California 293 New Mexico¹ TN00003 Connecticut PH-0197 North Carolina³ Enw375 Florida E87487 North Carolina³ MC DW21704 Georgia NELAP North Carolina³ 41 Georgia NELAP North Carolina³ 41 Idaho TN00003 North Dakota R-140 Idhan TN00003 Onlo-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN00002 Kentucky¹ Ky9010 South Carolina 4004002 Kentucky¹ Ky9016 South Carolina 4004002 Kentucky¹ Ky9016 South Carolina 4004002 Kentucky¹ Ky9016 South Carolina 4004002 Louisiana Al30792 Tennessee¹⁴ 2006 Maine TN0003 Texas Labotic Maine Th0003 Yernent <td>Alaska</td> <td>17-026</td> <td>Nevada</td> <td>TN000032021-1</td>	Alaska	17-026	Nevada	TN000032021-1
California 2932 New Mexico ¹ TN00003 Colorado 7100003 New York 1742 Connecticut PH-0197 North Carolina¹ Env375 Florida E87487 North Carolina¹ M21704 Georgia NELAP North Carolina¹ M2104 Georgia¹ 923 North Dakota R-140 Idho 100003 North Dakota R-140 Illinois 20008 Oklahoma 9915 Indiana C-TN-01 Oregon TN20002 Iowa 34 Pennsylvania 68-02979 Kentucky¹ K79001 South Carolina¹ 40000356 Kentucky² K79001 South Carolina 40000356 Kentucky² K79001 South Carolina 40000356 Kentucky² K79001 South Carolina 40000356 Louisiana HA018 Texas LABERS Maine TN0003 Texas LABERS Maryland 324 Utah TN00	Arizona	AZ0612	New Hampshire	2975
Colorado TN00003 New York 11742 Connecticut PH-0197 EN7375 Florida E87487 North Carolina 1 Dw21704 Georgia NELAP North Carolina 3 41 Georgia 1 923 North Dakota R-140 Idaho TN00003 Ohio-VAP CL0069 Illinois 20008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kentucky 2 16 South Carolina 40000356 Kentucky 3 Ky90010 South Dakota n/a Kentucky 4 16 South Dakota n/a Louisiana LA018 Texas 1704704245-20-18 Maine TN00003 Texas 140002 Massachusetts M-TN003 Texas LAB0152 Miscissispi TN0003 West Virginia 23 Mississispi TN00003 West Virginia 23	Arkansas	88-0469	New Jersey-NELAP	TN002
Connecticut PH-0197 North Carollina Envi375 Florida E87487 North Carollina 1 DW21704 Georgia North Carollina 3 41 Georgia 1 923 North Dakota R-140 Idaho TN00003 Ohio-VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana CTH-01 Oregon TN20002 Kansas E-10277 Rhode Island LA000356 Kentucky 16 KY90010 South Carollina 8404002 Kentucky 2 16 South Dakota n/a Louisiana LA30792 Tenessee 14 2006 Louisiana LA018 Texas 5 LAB0152 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M7-099-395 Washington C847 Michigan 958 Washington C847 Mississippi TN00003 West Virginia 333 <	California	2932	New Mexico ¹	TN00003
Florida E87487 North Carolina 1 DW21704 Georgia NELAP North Carolina 3 41 Georgia 1 923 North Dakota R-140 Idaho TN0003 Ohio-VAP CL0069 Ilinisis 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN20002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Robde Island LA000356 Kentucky 16 K'y9010 South Carolina 8400402 Kentucky 2 16 South Dakota n/a Louisiana IA018 Texas 104704245-20-18 Louisiana IA018 Texas LAB0152 Maine TN0003 Texas LAB0152 Malne TN0003 Texas LAB0152 Massachusetts M-TN003 Vermont Y2006 Mississipi North Carolina Vermont CR47 Mississipi North Carolina Vermont 23	Colorado	TN00003	New York	11742
Georgia NELAP North Carolina 3 41 Georgia 1 923 North Dakota R-140 Idaho TN0003 Dhio-VAP CL0069 Ilosis 200008 Dhio-VAP CL0069 Indiana C-TN-01 Oregon TN20002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Robe Island LA000356 Kentucky 1 6 Ky9010 South Carolina M2002 Kentucky 2 16 South Carolina M002 Louisiana A30792 Tennessee 14 2006 Louisiana LA018 Texas 104704245-20-18 Maire TN0003 Texas LAB0152 Massachusetts M1703 Yermot VT2006 Michigan 9958 Virginia 10033 Minesota 10799-395 Washington 284 Mississippi TN0003 West Virginia 233 Mississippi TX006 Wisconsin 998093910	Connecticut	PH-0197	North Carolina	Env375
Georgia 1 923 North Dakota R-140 Idaho TN0003 Ohio–VAP CL0069 Illinois 200008 Oklahoma 9915 Indiana CTN-01 Oregon TN20002 Iowa A64 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky 16 KY9010 South Carolina 84004002 Kentucky 2 16 South Dakota n/a Louisiana A130792 Tennessee 14 2006 Louisiana LA018 Texas 1140704245-20-18 Maine Texas 5 LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 10033 Minesota Q7-99-395 West Virginia 234 Missouri West Virginia 23 Missouri West Virginia 24 Montana CERTO086	Florida	E87487	North Carolina ¹	DW21704
Idaho TN0003 Ohio-VAP CL0069 Illinois 20008 Oklahoma 9915 Indiana C-TN-O1 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹6 KY90010 South Carolina 84004002 Kentucky² 16 South Dakota n/a Louisiana LA018 Tenessee¹⁴ 2006 Louisiana LA018 Texas T0470445-20-18 Maine TN00003 Texas ° LAB0152 Maryland 324 Utah T000032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 10033 Minesota 047-999-395 Washington C847 Missouri 340 West Virginia 23 Missouri 340 Wisconsin 998039310 Montana CERTO86 Wyoming A2LA	Georgia	NELAP	North Carolina ³	41
Illinois 200008 Oklahoma 9915 Indiana C-TN-01 Oregon TN200002 Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹6 KY9010 South Carolina 8400402 Kentucky² 16 South Dakota n/a Louisiana LA018 Tennessee¹⁴ 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN000032021-11 Massachusetts M-TN003 Vermont Y72006 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA - ISO 17025 1461.01 AlHA-LAP,LLC EMLAP 100789	Georgia ¹	923	North Dakota	R-140
Indiana C-TN-01 Oregon TN200002 lowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky¹ ¹ 6 KY90010 South Carolina 84004002 Kentucky² 16 South Dakota n/a Louisiana LA018 Tennessee ¹ ⁴ 2006 Louisiana TN0003 Texas ⁵ LAB0152 Maine TN0003 Texas ⁵ LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Yermont Y72006 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 ° 1461.01 A1HA-LAP,LLC EMLAP 100789	Idaho	TN00003	Ohio-VAP	CL0069
Iowa 364 Pennsylvania 68-02979 Kansas E-10277 Rhode Island LA000356 Kentucky ¹⁶ KY9010 South Carolina 84004002 Kentucky ² 16 South Dakota n/a Louisiana Al30792 Tennessee ^{1,4} 2006 Louisiana LA018 Texas 1104704245-20-18 Maine TN0003 Texas ⁵ LAB0152 Maryland 324 Utah TN00003201-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN0003 West Virginia 23 Missouri 340 Wisconsin 99809310 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP, LLC EMLAP 100789	Illinois	200008	Oklahoma	9915
Kansas E-10277 Rhode Island LA000356 Kentucky¹6 KY90010 South Carolina 84004002 Kentucky² 16 South Dakota n/a Louisiana A30792 Tennessee¹⁴ 2006 Maine TN0003 Texas 1104704245-20-18 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington 284 Mississippi TN0003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AlHA-LAP, LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Indiana	C-TN-01	Oregon	TN200002
Kentucky ¹ 6 KY90010 South Carolina 84004002 Kentucky ² 16 South Dakota n/a Louisiana Al30792 Tennessee ¹⁴ 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN0003 Texas ⁵ LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 10033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 A1HA-LAP, LLC EMLAP 100789 A2LA – ISO 17025 ⁵ 1461.01 100789	lowa	364	Pennsylvania	68-02979
Kentucky² 16 South Dakota n/a Louisiana Al30792 Tennessee¹⁴ 2006 Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas ⁵ LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 10033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 ° 1461.02 DOD 1461.01	Kansas	E-10277	Rhode Island	LAO00356
Louisiana Al30792 Tennessee 14 2006 Louisiana LA018 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Kentucky ^{1 6}	KY90010	South Carolina	84004002
Louisiana LA018 Texas T104704245-20-18 Maine TN00003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississispipi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP, LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Kentucky ²	16		n/a
Maine TN0003 Texas 5 LAB0152 Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP, LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Louisiana	Al30792	Tennessee 1 4	2006
Maryland 324 Utah TN00032021-11 Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Louisiana	LA018	Texas	T104704245-20-18
Massachusetts M-TN003 Vermont VT2006 Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Maine	TN00003	Texas ⁵	LAB0152
Michigan 9958 Virginia 110033 Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Maryland	324	Utah	TN000032021-11
Minnesota 047-999-395 Washington C847 Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Massachusetts	M-TN003	Vermont	VT2006
Mississippi TN00003 West Virginia 233 Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Michigan	9958	Virginia	110033
Missouri 340 Wisconsin 998093910 Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Minnesota	047-999-395	Washington	C847
Montana CERT0086 Wyoming A2LA A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Mississippi	TN00003	West Virginia	233
A2LA – ISO 17025 1461.01 AIHA-LAP,LLC EMLAP 100789 A2LA – ISO 17025 5 1461.02 DOD 1461.01	Missouri	340	Wisconsin	998093910
A2LA – ISO 17025 ⁵ 1461.02 DOD 1461.01	Montana	CERT0086	Wyoming	A2LA
	A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
Canada 1461.01 USDA P330-15-00234	A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
	Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Agency, Authorized Purchaser or Agent: OSI Water Solutions for ODEQ Sand Lab Report To: Don Hamson, RO. Address 165 E. 7th Averue: Suize 100 Eugene. DR 9/7401 Tel # 541-887-7349 Email don hunson@dea slate or us. pate@gsive.com,						Contract Laboratory Name: File & Analysis Italiana Lab Batch 8: Weolds: ODE G/Business Office 700 NE Multionish torses Sule 600 Postand: OR \$7232 Email: DEGEXP@deg state or us					Proximity (# TAT C 48 Pvs) Prox work on serve project Cost (for anticipants breightes) Diner labs doculation or unable to perform requirements periods			Turn Around Tim 10 days (std) 5 days 72 murs 48 hours 24 hours Other	
cmanin@geleis com: inflargren@geleis com. GIS@geleis com. Project Name: OREGON DEG-JH BAXTER OFFSITE INVESTIGATIO Project #: JH Baxter Offsite Investigation	N (TO #2060.005)				1	a	F	San	ple Preserv	rative				Jo	55
samples Name Genevieve Schutzins					2				13		11				
					1			Reg	uested Ana	lyses					
Sample title	Collection Date	Collection Time	Matrix	Number of Containers	Dicorylar a by 10138									Uldfa	943
LFP_SM-01	8/1/23	1110	50	1	1	5								-01	
LFP_SM-02	150	1115	1		1		1					-		-02	
REX-SM-01		1200			V									-03	
REX_SM-02		12.05			1		150							-04	
DSG_SM-02		1305			1									-05	
DSG_8M-03	*	1310	4	4	1		-	-					- 4	-06	1
		- 10													
Consider the Martin (505.432 6979, covaring guess, complex for basel Consider Chris Martin (505.432 6979, covaring guess, complex José Balle (5	30-2(6-4188, pain@gison.com		orade DEQ E	COD with firm list-re	got	1									
Marguines By Opnerieue Schuteris		SI			-	Receive	d silv.							gency/Agent	
Somerie GO	Time & Date 8/9	3/23	693	0 93	0	Signatur	10						Ti	irre & Date:	
Relinquisted By:	AgencylAgent					Receive	d By	>					A	gencylAgent	
	Time & Date					Signatur	· Joy	mee	in	8	19/2	3 0	900	irre & Date.	

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Client Services Pace Analytical National 12065 Lebanon Rd Mt. Juliet TN 37122

> REPORT OF LABORATORY **ANALYSIS FOR** PCDD/PCDF

Report Information:

Pace Project #: 10665016

Sample Receipt Date: 08/11/2023

Client Project #: L1643943 WG2111560

Client Sub PO #: L1643943

State Cert #: N/A

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Kongmeng Vang, your Pace Project Manager.

This report has been reviewed by:

September 01, 2023

Kongmeng Vang, Project Manager

(612) 607-6382

(612) 607-6444 (fax)

kongmeng.vang@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

September 1, 2023

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on six samples submitted by a representative of Pace Analytical National. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using USEPA Method 1613B. The estimated detection limits (EDLs) were based on signal-to-noise measurements. Estimated maximum possible concentration (EMPC) values were treated as positives in the toxic equivalence calculations.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 42-97%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These levels were below the calibration range of the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background.

Laboratory and matrix spike samples were also prepared using clean reference matrix or sample matrix that had been fortified with native standard materials. The recoveries of the spiked native compounds ranged from 94-127% with relative percent differences ranging from 0.0-7.9%. These results were within the target ranges for the method.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
		Missouri	10100
A2LA	2926.01	Montana	CERT0092
Alabama	40770	Nebraska	NE-OS-18-06
Alaska-DW	MN00064	Nevada	MN00064
Alaska-UST	17-009	New Hampshire	2081
Arizona	AZ0014	New Jersey	MN002
Arkansas - WW	88-0680	New York	11647
Arkansas-DW	MN00064	North Carolina-	27700
California	2929	North Carolina-	530
Colorado	MN00064	North Dakota	R-036
Connecticut	PH-0256	Ohio-DW	41244
Florida	E87605	Ohio-VAP (170	CL101
Georgia	959	Ohio-VAP (180	CL110
Hawaii	MN00064	Oklahoma	9507
Idaho	MN00064	Oregon-Primary	MN300001
Illinois	200011	Oregon-Second	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
lowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky-DW	90062	Tennessee	TN02818
Kentucky-WW	90062	Texas	T104704192
Louisiana-DEQ	AI-84596	Utah	MN00064
Louisiana-DW	MN00064	Vermont	VT-027053137
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Michigan	9909	West Virginia-D	382
Minnesota	027-053-137	West Virginia-D	9952C
Minnesota-Ag	via MN 027-053	Wisconsin	999407970
Minnesota-Petr	1240	Wyoming-UST	via A2LA 2926.
Mississippi	MN00064		

REPORTOFLABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix A

Sample Management

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Page: Of Invoice Info Attention: Don Hanson Pace Analytical Face Arrangement Florida Assessment Florida Assessm Regulatory Agency Pace Quote: £1643943 (615) 773-9756 Fee: (615) 758-5859 Kongmeng Vang - State / Location 2060,005 Lane County, Oregon -N/A 3BFC_L2_dfr (a-cina c-covir) COLLECTED Analysin Tost (see Aslid SAMPLE ID START # OF GONTAINING MATRIX GODII (I One Character per box. (A-Z, 0-97, -) Me28203 ITEM # NO3 001 11:10 LFP_SM-01 01-Aug 007 2 01-Aug 11:15 LFP_SM-02 003 3 EX SMC 400 CH-ALIE 12:05 4 EX SM-02 005 5 to Ace DSG SM-02 006 5 Ot-Aug SG SM-03 WO#:10665016 7 8 9 10 11 12 NOTELETIA VE CE DATE MUSS 940 2,2 mes C Hubiaba 15-Aug Pace Analytical Batch; WG2111560 SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER-DATE Signed: SIGNATURE of SAMPLER:

DC# Title: ENV-FRM-MIN4-0150 v13_Sample Condition Upon Receipt (SCUR)

Effective Date: 4/14/2023 WO#: 10665016 Client Name: Project #: Sample Condition Pace Analytical **Upon Receipt** Due Date: 08/31/23 PM: KY CLIENT: ESC_TN X FedEx UPS USPS Client Courier: Pace SpeeDee Commercial See Exceptions Tracking Number 6643 4297 4721 ENV-FRM-MIN4-0142 Custody Seal on Cooler/Box Present? X Yes No Seals Intact? X Yes No Biological Tissue Frozen? Yes Packing Material: Bubble Wrap Bubble Bags Temp Blank? X Yes None Other Type of Ice: Wet Blue Dry None Thermometer: T1 (0461) T2 (0436) T3 (0459) T4 (0402) T5 (0178) T6 (0235) T7 (0042) T8 (0775) T9(0727) 01339252/1710 Melted Did Samples Originate in West Virginia? Yes X No Were All Container Temps Taken? Yes No N/A Average Corrected Temp Temp should be above freezing to 6 °C Cooler temp Read w/Temp Blank: -3 (no temp blank only): See Exceptions ENV-FRM-MIN4-0142 Correction Factor: -0 \ Cooler Temp Corrected w/temp blank: 22 1 Container USDA Regulated Soil: (N/A, water sample/other: Date/Initials of Person Examining Contents: 15 Did samples originate in a quarantine zone within the United States: AL, AR, AZ CA, FL, Did samples originate from a foreign source (internationally, Yes X No including Hawaii and Puerto Rico)? GA, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN, TX, or VA (check maps)? Yes No. If Yes to either question, fill out a Regulated Soil Checklist (ENV-FRM-MIN4-0154) and Include with SCUR/COC paperwork. COMMENTS Location (Check one): Duluth-Minneapolis Virginia Chain of Custody Present and Filled Out? No Yes Chain of Custody Relinquished? No Yes Sampler Name and/or Signature on COC? Yes No N/A 4. If fecal: <8 hrs >8 hr, <24 No. Samples Arrived within Hold Time? Yes No Fecal Coliform HPC Total Coliform/E.coli
BOD/cBOD Hex Chrom Turbidity Nitrate Short Hold Time Analysis (<72 hr)? ON No Nitrite Orthophos Other Rush Turn Around Time Requested? No Yes 6. Sufficient Sample Volume? Yes No No N/A Correct Containers Used? Yes B. -Pace Containers Used? Ves No Yes Containers Intact? No Field Filtered Volume Received for Dissolved Tests? Yes No N/A 10. Is sediment visible in the dissolved container? Is sufficient information available to reconcile the samples to the X Yes No 11. If no, write ID/Date/Time of container below: COC7 See Exceptions Matrix: Water Soil Oil Other ENV-FRM-MIN4-0142 All containers needing acid/base preservation have been XI N/A-12. Sample # All containers needing preservation are found to be in NaOH HNO3 compliance with EPA recommendation? H2SO4 Zinc Acetate (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 Yes No N/A Positive for Residual Yes See Exceptions Chlorine? No ENV-FRM-MIN4-0142 (water) and Dioxins/PFAS (*If adding preservative to a container, it must be added to pH Paper Lot # 0-6 Strip Residual Chlorine 0-5 Roll 0-14 Strip associated field and equipment blanks-verify with PM first.) Headspace in Methyl Mercury Container? X N/A 13. Yes No N/A N/A Extra labels present on soil VOA or WIDRO containers? 14. Yes No See Exceptions Headspace in VOA Vials (greater than 6mm)? No ENV-FRM-MIN4-0142 Yes N/A N/A 3 Trip Blanks Present? Yes No 15. Trip Blank Custody Seals Present? Yes. No Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Field Data Required? Yes No Date/Time: Person Contacted: Comments/Resolution: Date: 8/11/23 Project Manager Review: NOTE: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEMNII Certification Office (i.e., out of hold, incorrect preservative, out

temp, incorrect containers). Labeled By:

DC#_Title: ENV-FRM-MIN4-0154 v02_USDA Regulated Soil Checklist

Effective Date: 08/19/2022

USDA Regulated Soil Checklist

o be Completed by Sample Receiving: WO: 10665016	Date: 8/11/12-3	nitials: #S		
Sample Origin (check one): /S-DOM NOTE: Soll samples from Hawall, Guam, Puert	ESTIC QUARANTINED GORD	EIGN		
Includes: IFA, 50D, Golden Nematod	in: AL AR AZ CA FL GA LA MS NC le, Karnal Bunt, and Witchweed Impliance Agreement authorizes movement of samples fro	List County: [me Canx	
If QUARANTINED, circle state of Includes: Fruit Fly and Pale Cyst Nen	forigin: CA ID NY TX	List County:		
If FOREIGN, list country of origin (Movement from some C	n: Canadian Provinces is not allowed. Refer to ENV-FRM	л-MIN4-0137 Re	egulated Soil Fi	ow Chart)
REQUIREMENT	ACTION		COMPLETED	
PQ-530 Paperwork must be included for any amples from counties with a Fruit Fly	Scan PPQ-530 to the corresponding Project folder on the X:drive.	YES	NO	(FD)
uarantine in CA, NY, and TX. eference ENV-SOP-MIN4-0095.	If PPQ-530 is not present, contact the laboratory's designated USDA permit holder. Do NOT continue processing samples.	res	NO	(N/A)
amples from ID may not be moved from the uarantined region: eference ENV-SOP-MIN4-0095.	If samples originated in a quarantined zone, contact the laboratory's designated USDA permit holder. Do NOT continue processing samples.	YES	NO	MA
REQUIREMENT	ACTION		COMPLETED	
pecial Handling" stickers are to be placed on I samples.	Did "special handling" stickers get placed on all sample containers?	YES	NO	(N/A)
amples must be segregated and stored in esignated bins, shelves, and coolers.	Were samples placed in a designated cooler, containers, and shelves?	YES	NO	avia
	Were there any signs of breakage or leakage (check for broken glass and/or loose soil in the cooler)?	YES	NO	NIA
imples must be double contained to prevent	NOTE: If NO, ice and melt water can be disposed of by narmal process (ex: down the drain).			
ccidental release.	if YES, were ice and melt water separated from the cooler and disposed of properly?	YES	NO	(N/A)
	Any broken glass and/or loose soil are to be bagged and active drum (see Waste Coordinator). Ice and melt water should be baked at a temperature rabefore going down the drain.		A STATE OF THE STA	
quipment and supplies that have come into ontact samples must be decontaminated.	Was the cooler(s) and/or countertop(s) decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum).	YES		NO

Qualtrax ID: 52751

DC#_Title: ENV-FRM-MIN4-0154 v02_USDA Regulated Soil Checklist

Effective Date: 08/19/2022

If subcontract, list lab(s):				
REQUIREMENT	ACTION		COMPLETED	
Permission to ship untreated soil must be on file prior to shipping to any subcontract lab, including IR Pace Labs.	Go to: S:\CLIENTSVR\10_Client Services Department Documents\Regulated Soils Permits\Permission to Ship If permission to ship letter is not there, contact the laboratory's designated USDA permit holder.	YES	NO	(VA)
Shipment must include a valid copy of the	Is a copy of all needed paperwork included with the COC?			
eceiving lab's permit as well as permission to hip letter.	Do NOT ship samples until all necessary paperwork is compiled.	YES	NO	N/A
COMMENTS:				

Pace Analytical

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

www.pacelabs.com

Reporting Flags

A = Reporting Limit based on signal to noise (EDL)

B = Less than 10x higher than method blank level

C = Result obtained from confirmation analysis

D = Result obtained from analysis of diluted sample

E = Exceeds calibration range

H2 = Extracted outside of holding time

Isotope ratio out of specification

Estimated value

Suppressive interference, analyte may be biased low

Nn = Value obtained from additional analysis

P = PCDE Interference

R = Recovery outside target range

S = Peak saturated

U = Analyte not detected

V = Result verified by confirmation analysis

X = %D Exceeds limits

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix B

Sample Analysis Summary

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID LFP_SM-01
Lab Sample ID 10665016001
Filename L230828A_12
Injected By SMT
Total Amount Extracted 10.6 g
% Moisture 9.0

Dry Weight Extracted 9.69 g
ICAL ID L230816
CCal Filename(s) L230828A_07
Method Blank ID BLANK-107917

Matrix SOLID
Dilution NA
Collected 08/01/2023 11:10

Received 08/11/2023 09:40 Extracted 08/18/2023 15:05 Analyzed 08/28/2023 13:24

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.13 0.13	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	59 52 66
2,3,7,8-TCDD Total TCDD	ND 0.18		0.091 0.091 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	68 72 56
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.53		0.082 0.055 0.055 J	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	58 61 55 61
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.072 0.072	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	62 51 49
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		0.30 0.29 0.25 0.35	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	58 42 NA
Total HxCDF	ND		0.35	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND 0.47	0.31 	0.28 JJ 0.25 0.26 0.25 BJ	2,3,7,8-TCDD-37Cl4	0.20	49
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND	1.0	0.19 IJ 0.30 0.19	Total 2,3,7,8-TCDD Equivalence: 0.080 ng/Kg (Lower-bound - Using 2005	WHO Facto	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	2.8	2.8	0.33 J 0.33 J			
OCDF OCDD	31	2.9	0.64 J 1.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

ND = Not Detected NA = Not Applicable


NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Isotope ratio out of specification

Minneapolis, MN 55414 Tel: 612-607-1700

Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - Pace Analytical National

LFP_SM-02 Client's Sample ID Lab Sample ID 10665016002 Filename L230828A_13 Injected By SMT **Total Amount Extracted** 10.5 g Matrix **SOLID** % Moisture Dilution NA 19.0 Dry Weight Extracted Collected 08/01/2023 11:15 8.48 g ICAL ID L230816 Received 08/11/2023 09:40 CCal Filename(s) L230828A 07 Extracted 08/18/2023 15:05 Method Blank ID BLANK-107917 Analyzed 08/28/2023 14:08

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.8	0.22	0.11 JJ 0.11	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	63 55 72
2,3,7,8-TCDD Total TCDD	1.4	0.14	0.13 N 0.13	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	71 77 67
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.0 8.6	0.34	0.090 J 0.063 J 0.063	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	62 64 60 60
1,2,3,7,8-PeCDD Total PeCDD	0.71 2.9		0.095 J 0.095 J	1,2,3,4,7,8-1 XCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	65 56 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	2.5 2.1 3.0 0.97	 	0.34 J 0.35 J 0.31 J 0.41 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	63 52 NA
Total HxCDF	37		0.31	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.9 7.0 3.5 47		0.20 J 0.17 0.18 J 0.17	2,3,7,8-TCDD-37Cl4	0.20	49
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	63 3.8 67		0.41 0.66 J 0.41	Total 2,3,7,8-TCDD Equivalence: 7.0 ng/Kg (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	220 450		0.56 0.56			
OCDF OCDD	220 2600		1.1 1.1			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable NC = Not Calculated

ND = Not Detected

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

EDL = Estimated Detection Limit

<u> Pace Analytical</u>

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID
Lab Sample ID
10665016003
Filename
L230828A_14
Injected By
SMT
Total Amount Extracted
Moisture
Dry Weight Extracted
9.40 g

ICAL ID L230816 CCal Filename(s) L230828A_07 Method Blank ID BLANK-107917 Matrix SOLID Dilution NA

Collected 08/01/2023 12:00 Received 08/11/2023 09:40 Extracted 08/18/2023 15:05 Analyzed 08/28/2023 14:51

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.10 0.10	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	64 57 75
2,3,7,8-TCDD Total TCDD	ND ND		0.100 0.100	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	76 83 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.11 0.077 0.077	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	63 67 66 65
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.100 0.100	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 63 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.094 0.098 0.099	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	66 55
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.14 0.094	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND	0.18 	0.16 U 0.13 0.14 0.13	2,3,7,8-TCDD-37Cl4	0.20	53
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.17 0.24 0.17	Total 2,3,7,8-TCDD Equivalence: 0.024 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.51	0.44	0.27 J 0.27 J			
OCDF OCDD	ND 2.5		0.43 0.44 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

EDL = Estimated Detection Limit

J = Estimated value

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Matrix

SOLID

08/01/2023 12:05

NA

Client's Sample ID REX_SM-02
Lab Sample ID 10665016004
Filename L230828A_15
Injected By SMT
Total Amount Extracted 10.5 g
% Moisture 7.0

% Moisture 7.0 Dilution

Dry Weight Extracted 9.75 g Collected
ICAL ID L230816 Received

 ICAL ID
 L230816
 Received
 08/11/2023 09:40

 CCal Filename(s)
 L230828A_07
 Extracted
 08/18/2023 15:05

 Method Blank ID
 BLANK-107917
 Analyzed
 08/28/2023 15:35

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.16		0.079 0.079 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	70 62 82
2,3,7,8-TCDD Total TCDD	ND ND		0.11 0.11	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	80 89 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.065 0.046 0.046	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 73 74 70 71
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.063 0.063	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	73 70 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND 0.17		0.090 0.088 0.086 0.11 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	74 60 NA
Total HxCDF	0.17		0.086 BJ	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND	0.16 	0.13 U 0.12 0.12 0.12	2,3,7,8-TCDD-37Cl4	0.20	59
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 1.3	0.35 	0.24 J 0.37 0.24 J	Total 2,3,7,8-TCDD Equivalence: 0.078 ng/Kg (Lower-bound - Using 2005	WHO Factor	·s)
1,2,3,4,6,7,8-HpCDD Total HpCDD	3.2 12		0.21 J 0.21			
OCDF OCDD	2.2 30		0.43 J 0.48			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Isotope ratio out of specification

SOLID

NA

ND = Not Detected

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - Pace Analytical National

DSG_SM-02 Client's Sample ID Lab Sample ID 10665016005 Filename L230828A_16 Injected By SMT **Total Amount Extracted** 10.2 g Matrix % Moisture Dilution 24.6 Dry Weight Extracted Collected 7.71 g ICAL ID L230816

 Dry Weight Extracted
 7.71 g
 Collected
 08/01/2023 13:05

 ICAL ID
 L230816
 Received
 08/11/2023 09:40

 CCal Filename(s)
 L230828A_07
 Extracted
 08/18/2023 15:05

 Method Blank ID
 BLANK-107917
 Analyzed
 08/28/2023 16:18

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.0		0.17 0.17 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	82 75 93
2,3,7,8-TCDD Total TCDD	2.0	0.24	0.12 IJ 0.12	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	91 97 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.37 1.0 8.4		0.075 J 0.055 J 0.055	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	74 73 71 72
1,2,3,7,8-PeCDD Total PeCDD	0.44 4.8		0.079 J 0.079 J	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	75 67 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.1 1.2 2.4		0.14 J 0.15 J 0.14 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	72 63
1,2,3,7,8,9-HxCDF Total HxCDF	0.89 21		0.18 J 0.14	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.2 7.4 2.6 58		0.099 J 0.087 0.090 J 0.087	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	21 1.7 22		0.28 0.41 J 0.28	Total 2,3,7,8-TCDD Equivalence: 6.4 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	260 600		0.26 0.26			
OCDF OCDD	52 2900		0.56 0.66			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

Client - Pace Analytical National

DSG_SM-03 Client's Sample ID Lab Sample ID 10665016006 Filename L230828A_17 Injected By SMT **Total Amount Extracted** 10.8 g Matrix **SOLID** % Moisture Dilution 13.6 NA Dry Weight Extracted Collected 08/01/2023 13:10 9.30 g ICAL ID L230816 Received 08/11/2023 09:40 CCal Filename(s) L230828A 07 Extracted 08/18/2023 15:05 Method Blank ID BLANK-107917 Analyzed 08/28/2023 17:02

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.11 0.11	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	62 56 72
2,3,7,8-TCDD Total TCDD	ND ND		0.14 0.14	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	71 81 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.55		0.091 0.068 0.068 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	62 63 62 63
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.080 0.080	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	62 59 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.29 0.28 0.26	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	64 48
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.96		0.38 0.26 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.34 ND 2.2		0.39 0.34 J 0.36 0.34 J	2,3,7,8-TCDD-37Cl4	0.20	53
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.7 ND 6.2		0.36 J 0.50 0.36	Total 2,3,7,8-TCDD Equivalence: 0.12 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	5.4 10		0.43 0.43			
OCDF OCDD	5.1 57		0.68 J 0.88			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

Method 1613B Blank Analysis Results

Lab Sample Name Lab Sample ID Filename **Total Amount Extracted**

ICAL ID

CCal Filename(s)

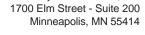
DFBLKIV BLANK-107917 L230828A_10 10.6 g L230816 L230828A_07

Matrix Solid Dilution NA

Extracted 08/18/2023 15:05 Analyzed 08/28/2023 11:57 Injected By **SMT**

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.089 0.089	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	73 64 84
2,3,7,8-TCDD Total TCDD	ND ND		0.14 0.14	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	80 86 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.094 0.072 0.072	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	78 79 74 76
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.11 0.11	1,2,3,4,7,6-11XCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 77 80 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.063 0.068 0.073	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	78 63
1,2,3,7,8,9-HxCDF Total HxCDF	0.10	0.100	0.095 IJ 0.063 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND 0.15	0.15 	0.11 J 0.098 0.11 0.098 J	2,3,7,8-TCDD-37Cl4	0.20	61
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.14 0.14 0.14	Total 2,3,7,8-TCDD Equivalence: 0.026 ng/Kg (Lower-bound - Using 2005	WHO Facto	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.23 0.23			
OCDF OCDD	ND 	1.1	0.43 0.39 JJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).


EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

 $Results \, reported \, on \, a \, total \, weight \, basis \, and \, are \, valid \, to \, no \, more \, than \, 2 \, significant \, figures.$

J = Estimated value

I = Isotope ratio out of specification

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCS-107918 Filename L230828A 20 **Total Amount Extracted** 10.2 g ICAL ID L230816

<u> Pace Analytical</u>

CCal Filename L230828A_07

Method Blank ID BLANK-107917

Solid Matrix Dilution NA

Extracted 08/18/2023 15:05 08/28/2023 19:12 Analyzed

Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 100 100	9.8 11 47 48 47 48 50 51 50 53 48 51 50 47 110	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0	98 106 94 97 95 96 100 102 100 106 96 103 100 101 95 107 112
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 0CDD-13C	10 100 100 100 100 100 100 100 100 100	5.0 61 56 75 72 82 67 61 62 59 60 67 62 57 65 100	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	50 61 56 75 72 82 67 61 62 59 60 67 62 57 65 50

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

*=SeeDiscussion

Method 1613B Spiked Sample Report

Client - Pace Analytical National

Client's Sample ID LFP_SM-01-MS
Lab Sample ID 10665016001-MS
Filename L230828A_18
Total Amount Extracted 10.2 g

ICAL ID L230816 CCal Filename(s) L230828A_07

Method Blank ID L230828A_07

BLANK-107917

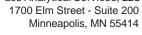
Matrix SOLID Dilution NA

Extracted 08/18/2023 15:05 Analyzed 08/28/2023 17:45

Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.21	103	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	60 53 71
2,3,7,8-TCDD Total TCDD	0.20	0.23	114	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	70 76 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.00 1.00	1.00 1.01	100 101	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	61 63 61
1,2,3,7,8-PeCDD Total PeCDD	1.00	0.98	98	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	62 64 61 58
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.01 1.07 1.07	101 107 107	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	65 53
1,2,3,7,8,9-HxCDF Total HxCDF	1.00	1.03	103	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 1.00 1.00	1.16 1.06 1.10	116 106 110	2,3,7,8-TCDD-37Cl4	0.20	50
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.00 1.00	1.09 1.05	109 105			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00	1.04	104			
OCDF OCDD	2.00 2.00	2.36 2.62	118 116			

Qs = Quantity Spiked


Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Method 1613B Spiked Sample Report

Client - Pace Analytical National

Client's Sample ID Lab Sample ID Filename **Total Amount Extracted ICAL ID**

<u> Pace Analytical</u>

LFP_SM-01-MSD 10665016001-MSD L230828A_19 10.5 g L230816 CCal Filename(s) L230828A_07 Method Blank ID BLANK-107917

Matrix **SOLID** Dilution NA

Extracted 08/18/2023 15:05 Analyzed 08/28/2023 18:29

Injected By **SMT**

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.21	104	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	55 50 65
2,3,7,8-TCDD Total TCDD	0.20	0.24	118	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	65 70 64
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.00 1.00	1.01 1.00	101 100	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	56 59 56 54
1,2,3,7,8-PeCDD Total PeCDD	1.00	0.98	98	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	59 55 50
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.00 1.00 1.00 1.00	1.01 1.07 1.05 1.03	101 107 105 103	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	58 45 NA
Total HxCDF 1,2,3,4,7,8-HxCDD	1.00	1.14	114	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 48
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 1.00	1.06 1.09	106 109			
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.00 1.00	1.08 1.10	108 110			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00	1.03	103			
OCDF OCDD	2.00 2.00	2.43 2.84	121 127			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Method 1613 Spike Sample Results

Client - Pace Analytical National

Lab Sample ID MS ID MSD ID

Client Sample ID LFP_SM-01 10665016001 10665016001-MS 10665016001-MSD

Sample Filename L230828A_12 L230828A_18 MS Filename MSD Filename L230828A_19

	Quantity	Unspiked Sam	ple Contribution	Quantity	Measured		Subtracted		
	Spiked	to MS	to MSD	MS	MSD		MS	MSD	
Analyte	(ng)	(ng)	(ng)	(ng)	(ng)	RPD	(%)	(%)	
2,3,7,8-TCDF	0.20	ND	ND	0.21	0.21	1.0	103	104	
2,3,7,8-TCDD	0.20	ND	ND	0.23	0.24	3.5	114	118	
1,2,3,7,8-PeCDF	1.00	ND	ND	1.00	1.01	0.2	100	101	
2,3,4,7,8-PeCDF	1.00	ND	ND	1.01	1.00	0.7	101	100	
1,2,3,7,8-PeCDD	1.00	ND	ND	0.98	0.98	0.1	98	98	
1,2,3,4,7,8-HxCDF	1.00	ND	ND	1.01	1.01	0.2	101	101	
1,2,3,6,7,8-HxCDF	1.00	ND	ND	1.07	1.07	0.7	107	107	
2,3,4,6,7,8-HxCDF	1.00	ND	ND	1.07	1.05	2.2	107	105	
1,2,3,7,8,9-HxCDF	1.00	ND	ND	1.03	1.03	0.0	103	103	
1,2,3,4,7,8-HxCDD	1.00	0.00327	0.00336	1.16	1.14	2.0	116	114	
1,2,3,6,7,8-HxCDD	1.00	ND	ND	1.06	1.06	0.1	106	106	
1,2,3,7,8,9-HxCDD	1.00	ND	ND	1.10	1.09	0.3	110	109	
1,2,3,4,6,7,8-HpCDF	1.00	0.0101	0.0104	1.09	1.08	0.6	109	108	
1,2,3,4,7,8,9-HpCDF	1.00	ND	ND	1.05	1.10	4.3	105	110	
1,2,3,4,6,7,8-HpCDD	1.00	0.0284	0.0291	1.04	1.03	1.1	104	103	
OCDF	2.00	0.0308	0.0317	2.36	2.43	2.6	118	121	
OCDD	2.00	0.293	0.300	2.62	2.84	7.9	116	127	

Quantity Spiked - the amount of analyte spiked into the spiked samples
Unspiked Sample Contribution - calculated based on the amount found in the sample and the extracted amounts of the spiked and unspiked samples
Quantity Measured - the total amount of analyte measured in the spiked samples
RPD - the Relative Percent Difference of the spiked sample Quantity Measured values
Subtracted Recovery - calculated after subtracting the unspiked sample contribution

Pace Analytical Services, LLC 1700 Elm Street, Suite 200

Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Pace Analytical® ANALYTICAL REPORT

Oregon Dept. of Env. Quality - ODEQ

Sample Delivery Group: L1511257

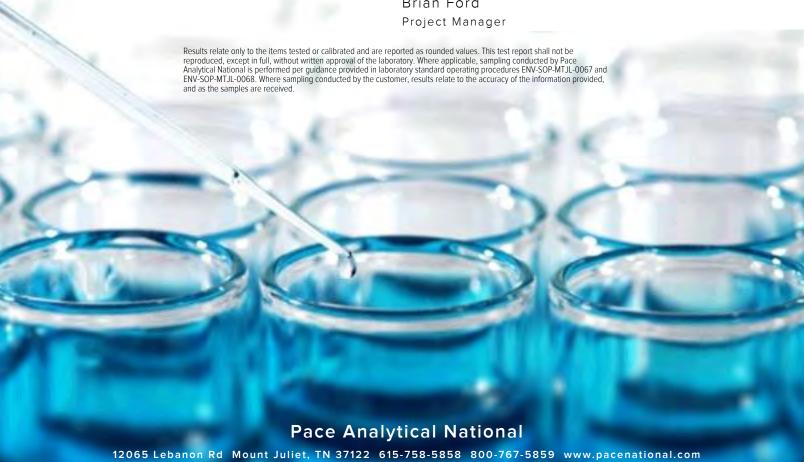
Samples Received: 07/02/2022

Project Number: 72-18-32

Description: JH Baxter Removal Investigation

Report To: Don Hanson

165 E. 7th Avenue


Suite 100

Eugene, OR 97401

Entire Report Reviewed By:

Buar Ford

Brian Ford

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
TS-001-0622 L1511257-01	5
Qc: Quality Control Summary	9
Total Solids by Method 2540 G-2011	9
Mercury by Method 7471B	10
Metals (ICPMS) by Method 6020B	11
Volatile Organic Compounds (GC) by Method NWTPHGX	13
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	14
Chlorinated Acid Herbicides (GC) by Method 8151A	15
Pesticides (GC) by Method 8081B	17
Polychlorinated Biphenyls (GC) by Method 8082 A	19
Semi Volatile Organic Compounds (GC/MS) by Method 8270E	20
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	26
GI: Glossary of Terms	28
Al: Accreditations & Locations	29
Sc: Sample Chain of Custody	30

SAMPLE SUMMARY

Dilution

1

1

200

5

25

1

1

1

1

1

Batch

WG1891765

WG1892628

WG1892754

WG1892754

WG1891733

WG1893660

WG1894221

WG1893664

WG1893664

WG1893676

WG1893667

TS-001-0622 1511257-0	71 Salid

Volatile Organic Compounds (GC) by Method NWTPHGX

Chlorinated Acid Herbicides (GC) by Method 8151A

Polychlorinated Biphenyls (GC) by Method 8082 A

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

Total Solids by Method 2540 G-2011

Metals (ICPMS) by Method 6020B

Metals (ICPMS) by Method 6020B

Pesticides (GC) by Method 8081B

Mercury by Method 7471B

Method

Collected by GS/CM

Preparation

07/08/22 09:45

07/17/22 11:57

07/19/22 16:06

07/19/22 16:06

07/07/22 13:17

07/12/22 18:29

07/13/22 10:13

07/12/22 16:40

07/12/22 16:40

07/13/22 06:28

07/13/22 09:42

date/time

06/30/22 16:15

Analysis

date/time

07/08/22 10:14

07/18/22 11:34

07/19/22 22:59

07/19/22 22:48

07/09/22 19:26

07/13/22 03:06

07/14/22 21:34

07/13/22 00:52

07/13/22 00:52

07/13/22 17:39

07/13/22 22:36

Collected date/time Received date/time

Analyst

KDW

MRW

LD

LD

DWR

JAS

HMH

НМН

HMH

DSH

AMG

07/02/22 09:00

Location

Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford Project Manager

Project Narrative

Buar Ford

GX: air drying step of ISM preparation procedure could cause low bias in the results.

SAMPLE RESULTS - 01

Collected date/time: 06/30/22 16:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.3		1	07/08/2022 10:14	WG1891765

Mercury by Method 7471B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Mercury	0.0577		0.0199	0.0443	1	07/18/2022 11:34	WG1892628

Cn

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Aluminum	17800		306	2220	200	07/19/2022 22:59	WG1892754
Antimony	0.373	<u>J</u>	0.184	3.32	5	07/19/2022 22:48	WG1892754
Arsenic	11.3		0.111	1.11	5	07/19/2022 22:48	WG1892754
Barium	227		6.74	111	200	07/19/2022 22:59	WG1892754
Beryllium	0.820	<u>J</u>	0.153	2.77	5	07/19/2022 22:48	WG1892754
Cadmium	0.142	<u>J</u>	0.0947	1.11	5	07/19/2022 22:48	WG1892754
Calcium	3420		83.7	554	5	07/19/2022 22:48	WG1892754
Chromium	17.7		0.328	5.54	5	07/19/2022 22:48	WG1892754
Cobalt	18.2		0.0512	1.11	5	07/19/2022 22:48	WG1892754
Copper	36.6		0.146	5.54	5	07/19/2022 22:48	WG1892754
Iron	41900		397	2220	200	07/19/2022 22:59	WG1892754
Lead	8.08		0.110	2.22	5	07/19/2022 22:48	WG1892754
Magnesium	3990		50.9	554	5	07/19/2022 22:48	WG1892754
Manganese	1170		11.9	111	200	07/19/2022 22:59	WG1892754
Nickel	8.86		0.218	2.77	5	07/19/2022 22:48	WG1892754
Potassium	1200		75.3	554	5	07/19/2022 22:48	WG1892754
Selenium	0.530	<u>J</u>	0.199	2.77	5	07/19/2022 22:48	WG1892754
Silver	U		0.0958	0.554	5	07/19/2022 22:48	WG1892754
Sodium	138	<u>J</u>	84.8	554	5	07/19/2022 22:48	WG1892754
Thallium	0.144	<u>J</u>	0.0720	2.22	5	07/19/2022 22:48	WG1892754
Vanadium	89.4		0.207	2.77	5	07/19/2022 22:48	WG1892754
Zinc	65.4		0.820	27.7	5	07/19/2022 22:48	WG1892754

⁵Sr

[']Gl

[°]Qc

Sc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Gasoline Range Organics-NWTPH	1.29	<u>J</u>	1.03	3.04	25	07/09/2022 19:26	WG1891733
(S) a,a,a-Trifluorotoluene(FID)	98.8			77.0-120		07/09/2022 19:26	WG1891733

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	3.58	<u>J</u>	1.47	4.43	1	07/13/2022 03:06	WG1893660
Residual Range Organics (RRO)	5.07	<u>J</u>	3.69	11.1	1	07/13/2022 03:06	WG1893660
(S) o-Terphenyl	37.7			18.0-148		07/13/2022 03:06	WG1893660

Chlorinated Acid Herbicides (GC) by Method 8151A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
2,4-D	U		0.00778	0.0776	1	07/14/2022 21:34	WG1894221
Dalapon	U		0.0125	0.0776	1	07/14/2022 21:34	WG1894221
2,4-DB	U		0.0329	0.0776	1	07/14/2022 21:34	WG1894221
Dicamba	U		0.0174	0.0776	1	07/14/2022 21:34	WG1894221

SAMPLE RESULTS - 01

Collected date/time: 06/30/22 16:15

Chlorinated Acid Herbicides (GC) by Method 8151A

	D = = - 14 / -1 = -1	01:6:	MDL (-l)	DDI (-1)	Dilenter	AIrI-	Datab
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Dichloroprop	U		0.0271	0.0776	1	07/14/2022 21:34	WG1894221
Dinoseb	U		0.00772	0.0776	1	07/14/2022 21:34	WG1894221
MCPA	U		0.491	7.20	1	07/14/2022 21:34	WG1894221
MCPP	U		0.407	7.20	1	07/14/2022 21:34	WG1894221
2,4,5-T	U		0.00944	0.0776	1	07/14/2022 21:34	WG1894221
2,4,5-TP (Silvex)	U		0.0119	0.0776	1	07/14/2022 21:34	WG1894221
(S) 2,4-Dichlorophenyl Acetic Acid	61.7			22.0-132		07/14/2022 21:34	WG1894221

¹Cp

Pesticides (GC) by Method 8081B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Aldrin	U		0.00417	0.0222	1	07/13/2022 00:52	WG1893664
Alpha BHC	U		0.00408	0.0222	1	07/13/2022 00:52	WG1893664
Beta BHC	U		0.00420	0.0222	1	07/13/2022 00:52	WG1893664
Delta BHC	U		0.00383	0.0222	1	07/13/2022 00:52	WG1893664
Gamma BHC	U		0.00381	0.0222	1	07/13/2022 00:52	WG1893664
Chlordane	U		0.114	0.332	1	07/13/2022 00:52	WG1893664
4,4-DDD	U		0.00410	0.0222	1	07/13/2022 00:52	WG1893664
4,4-DDE	U		0.00406	0.0222	1	07/13/2022 00:52	WG1893664
4,4-DDT	U		0.00695	0.0222	1	07/13/2022 00:52	WG1893664
Dieldrin	U		0.00381	0.0222	1	07/13/2022 00:52	WG1893664
Endosulfan I	U		0.00402	0.0222	1	07/13/2022 00:52	WG1893664
Endosulfan II	U		0.00371	0.0222	1	07/13/2022 00:52	WG1893664
Endosulfan sulfate	U		0.00403	0.0222	1	07/13/2022 00:52	WG1893664
Endrin	U	<u>J4</u>	0.00388	0.0222	1	07/13/2022 00:52	WG1893664
Endrin aldehyde	U		0.00376	0.0222	1	07/13/2022 00:52	WG1893664
Endrin ketone	U		0.00788	0.0222	1	07/13/2022 00:52	WG1893664
Heptachlor	U		0.00474	0.0222	1	07/13/2022 00:52	WG1893664
Heptachlor epoxide	U		0.00376	0.0222	1	07/13/2022 00:52	WG1893664
Hexachlorobenzene	U		0.00383	0.0222	1	07/13/2022 00:52	WG1893664
Methoxychlor	U		0.00536	0.0222	1	07/13/2022 00:52	WG1893664
Toxaphene	U		0.137	0.443	1	07/13/2022 00:52	WG1893664
(S) Decachlorobiphenyl	29.4			10.0-135		07/13/2022 00:52	WG1893664
(S) Tetrachloro-m-xylene	27.0			10.0-139		07/13/2022 00:52	WG1893664

⁶Qc

Polychlorinated Biphenyls (GC) by Method 8082 A

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
PCB 1268	U		0.00818	0.0188	1	07/13/2022 00:52	WG1893664
PCB 1016	U		0.0131	0.0377	1	07/13/2022 00:52	WG1893664
PCB 1221	U		0.0131	0.0377	1	07/13/2022 00:52	WG1893664
PCB 1232	U		0.0131	0.0377	1	07/13/2022 00:52	WG1893664
PCB 1242	U		0.0131	0.0377	1	07/13/2022 00:52	WG1893664
PCB 1248	U		0.00818	0.0188	1	07/13/2022 00:52	WG1893664
PCB 1254	U		0.00818	0.0188	1	07/13/2022 00:52	WG1893664
PCB 1260	U		0.00818	0.0188	1	07/13/2022 00:52	WG1893664
PCB 1262	U		0.00818	0.0188	1	07/13/2022 00:52	WG1893664
(S) Decachlorobiphenyl	25.4			10.0-135		07/13/2022 00:52	WG1893664
(S) Tetrachloro-m-xylene	24.4			10.0-139		07/13/2022 00:52	WG1893664

SAMPLE RESULTS - 01

Collected date/time: 06/30/22 16:15

L1511257

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

Analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch
Acenaphthene	U		0.00597	0.0369	1	07/13/2022 17:39	WG1893676
Acenaphthylene	U		0.00520	0.0369	1	07/13/2022 17:39	WG1893676
Anthracene	U		0.00657	0.0369	1	07/13/2022 17:39	WG1893676
Benzo(a)anthracene	U		0.00650	0.0369	1	07/13/2022 17:39	WG1893676
Benzo(b)fluoranthene	U		0.00688	0.0369	1	07/13/2022 17:39	WG1893676
enzo(k)fluoranthene	U		0.00656	0.0369	1	07/13/2022 17:39	WG1893676
Benzo(g,h,i)perylene	U		0.00675	0.0369	1	07/13/2022 17:39	WG1893676
Benzo(a)pyrene	U		0.00686	0.0369	1	07/13/2022 17:39	WG1893676
lis(2-chlorethoxy)methane	U		0.0111	0.369	1	07/13/2022 17:39	WG1893676
Bis(2-chloroethyl)ether	U		0.0122	0.369	1	07/13/2022 17:39	WG1893676
,2-Oxybis(1-Chloropropane)	U		0.0160	0.369	1	07/13/2022 17:39	WG1893676
-Bromophenyl-phenylether	U		0.0130	0.369	1	07/13/2022 17:39	WG1893676
-Chloronaphthalene	U		0.00648	0.0369	1	07/13/2022 17:39	WG1893676
-Chlorophenyl-phenylether	U		0.0129	0.369	1	07/13/2022 17:39	WG1893676
hrysene	U		0.00734	0.0369	1	07/13/2022 17:39	WG1893676
ibenz(a,h)anthracene	U		0.00734	0.0369	1	07/13/2022 17:39	WG1893676
,3-Dichlorobenzidine	U		0.0102	0.0369	1	07/13/2022 17:39	WG1893676
,3-Dictrioroberizidine ,4-Dinitrotoluene	U		0.0136	0.369	1	07/13/2022 17:39	WG1893676 WG1893676
	U		0.0106	0.369	1	07/13/2022 17:39	
,6-Dinitrotoluene luoranthene	U		0.0121	0.369	1	07/13/2022 17:39	WG1893676
	U		0.00666	0.0369	1	07/13/2022 17:39	WG1893676
luorene	U				1		WG1893676
lexachlorobenzene			0.0131	0.369		07/13/2022 17:39	WG1893676
exachloro-1,3-butadiene	U		0.0124	0.369	1	07/13/2022 17:39	WG1893676
exachlorocyclopentadiene	U		0.0194	0.369	1	07/13/2022 17:39	WG1893676
exachloroethane	U		0.0145	0.369	1	07/13/2022 17:39	WG1893676
ndeno(1,2,3-cd)pyrene	U		0.0104	0.0369	1	07/13/2022 17:39	WG1893676
sophorone	U		0.0113	0.369	1	07/13/2022 17:39	WG1893676
aphthalene	U		0.00926	0.0369	1	07/13/2022 17:39	WG1893676
litrobenzene	U		0.0129	0.369	1	07/13/2022 17:39	WG1893676
-Nitrosodimethylamine	U		0.0547	0.369	1	07/13/2022 17:39	WG1893676
-Nitrosodiphenylamine	U		0.0279	0.369	1	07/13/2022 17:39	WG1893676
-Nitrosodi-n-propylamine	U		0.0123	0.369	1	07/13/2022 17:39	WG1893676
henanthrene	U		0.00732	0.0369	1	07/13/2022 17:39	WG1893676
yridine	U		0.0244	0.369	1	07/13/2022 17:39	WG1893676
enzylbutyl phthalate	U		0.0115	0.369	1	07/13/2022 17:39	WG1893676
is(2-ethylhexyl)phthalate	U		0.0468	0.369	1	07/13/2022 17:39	WG1893676
i-n-butyl phthalate	U		0.0126	0.369	1	07/13/2022 17:39	WG1893676
iethyl phthalate	U		0.0122	0.369	1	07/13/2022 17:39	WG1893676
imethyl phthalate	U		0.0782	0.369	1	07/13/2022 17:39	WG1893676
i-n-octyl phthalate	U		0.0249	0.369	1	07/13/2022 17:39	WG1893676
yrene	U		0.00718	0.0369	1	07/13/2022 17:39	WG1893676
2,4-Trichlorobenzene	U		0.0115	0.369	1	07/13/2022 17:39	WG1893676
-Chloro-3-methylphenol	U		0.0120	0.369	1	07/13/2022 17:39	WG1893676
-Chlorophenol	U		0.0122	0.369	1	07/13/2022 17:39	WG1893676
,4-Dichlorophenol	U		0.0107	0.369	1	07/13/2022 17:39	WG1893676
4-Dimethylphenol	U		0.00964	0.369	1	07/13/2022 17:39	WG1893676
.6-Dinitro-2-methylphenol	U		0.0837	0.369	1	07/13/2022 17:39	WG1893676
4-Dinitrophenol	U		0.0863	0.369	1	07/13/2022 17:39	WG1893676
-Methylphenol	U		0.0111	0.369	1	07/13/2022 17:39	WG1893676
&4-Methyl Phenol	U		0.0115	0.369	1	07/13/2022 17:39	WG1893676
-Nitrophenol	U		0.0132	0.369	1	07/13/2022 17:39	WG1893676
-Nitrophenol	U		0.0115	0.369	1	07/13/2022 17:39	WG1893676
entachlorophenol	U		0.00993	0.369	1	07/13/2022 17:39	WG1893676
henol	U		0.0148	0.369	1	07/13/2022 17:39	WG1893676
,4,6-Trichlorophenol	U		0.0119	0.369	1	07/13/2022 17:39	WG1893676
,4,5-Trichlorophenol	U		0.0125	0.369	1	07/13/2022 17:39	WG1893676

TS-001-0622

SAMPLE RESULTS - 01

Collected date/time: 06/30/22 16:15

L1511257

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
(S) 2-Fluorophenol	43.5			12.0-120		07/13/2022 17:39	WG1893676
(S) Phenol-d5	41.5			10.0-120		07/13/2022 17:39	WG1893676
(S) Nitrobenzene-d5	48.2			10.0-122		07/13/2022 17:39	WG1893676
(S) 2-Fluorobiphenyl	49.7			15.0-120		07/13/2022 17:39	WG1893676
(S) 2,4,6-Tribromophenol	63.0			10.0-127		07/13/2022 17:39	WG1893676
(S) p-Terphenyl-d14	58.2			10.0-120		07/13/2022 17:39	WG1893676

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
mg/kg		mg/kg	mg/kg		date / time	
U		0.00255	0.00665	1	07/13/2022 22:36	WG1893667
U		0.00232	0.00665	1	07/13/2022 22:36	WG1893667
U		0.00239	0.00665	1	07/13/2022 22:36	WG1893667
U		0.00192	0.00665	1	07/13/2022 22:36	WG1893667
U		0.00198	0.00665	1	07/13/2022 22:36	WG1893667
U		0.00170	0.00665	1	07/13/2022 22:36	WG1893667
U		0.00196	0.00665	1	07/13/2022 22:36	WG1893667
U		0.00238	0.00665	1	07/13/2022 22:36	WG1893667
U		0.00257	0.00665	1	07/13/2022 22:36	WG1893667
U		0.00191	0.00665	1	07/13/2022 22:36	WG1893667
U		0.00252	0.00665	1	07/13/2022 22:36	WG1893667
U		0.00227	0.00665	1	07/13/2022 22:36	WG1893667
U		0.00201	0.00665	1	07/13/2022 22:36	WG1893667
U		0.00452	0.0222	1	07/13/2022 22:36	WG1893667
U		0.00256	0.00665	1	07/13/2022 22:36	WG1893667
U		0.00222	0.00665	1	07/13/2022 22:36	WG1893667
U		0.00497	0.0222	1	07/13/2022 22:36	WG1893667
U		0.00473	0.0222	1	07/13/2022 22:36	WG1893667
U		0.00516	0.0222	1	07/13/2022 22:36	WG1893667
64.5			14.0-149		07/13/2022 22:36	WG1893667
72.4			34.0-125		07/13/2022 22:36	WG1893667
86.5			23.0-120		07/13/2022 22:36	WG1893667
	mg/kg U U U U U U U U U U U U U U U U U U	mg/kg U U U U U U U U U U U U U U U U U U	mg/kg mg/kg U 0.00255 U 0.00232 U 0.00239 U 0.00192 U 0.00198 U 0.00170 U 0.00196 U 0.00257 U 0.00257 U 0.00257 U 0.00257 U 0.00252 U 0.00252 U 0.00256 U 0.00256 U 0.00256 U 0.00256 U 0.00256 U 0.00256 U 0.00473 U 0.00473 U 0.00516	mg/kg mg/kg mg/kg U 0.00255 0.00665 U 0.00232 0.00665 U 0.00239 0.00665 U 0.00192 0.00665 U 0.00198 0.00665 U 0.00170 0.00665 U 0.00196 0.00665 U 0.00238 0.00665 U 0.00257 0.00665 U 0.00257 0.00665 U 0.00252 0.00665 U 0.00227 0.00665 U 0.00222 0.00665 U 0.00256 0.00665 U 0.00452 0.0222 U 0.00497 0.0222 U 0.004973 0.0222 U	mg/kg mg/kg mg/kg U 0.00255 0.00665 1 U 0.00232 0.00665 1 U 0.00239 0.00665 1 U 0.00192 0.00665 1 U 0.00198 0.00665 1 U 0.00170 0.00665 1 U 0.00196 0.00665 1 U 0.00238 0.00665 1 U 0.00257 0.00665 1 U 0.00191 0.00665 1 U 0.00252 0.00665 1 U 0.00252 0.00665 1 U 0.00227 0.00665 1 U 0.00227 0.00665 1 U 0.00452 0.0222 1 U 0.00256 0.00665 1 U 0.00497 0.0222 1 U 0.00473 0.0222 1 U	mg/kg mg/kg mg/kg date / time U 0.00255 0.00665 1 07/13/2022 22:36 U 0.00232 0.00665 1 07/13/2022 22:36 U 0.00239 0.00665 1 07/13/2022 22:36 U 0.00192 0.00665 1 07/13/2022 22:36 U 0.00198 0.00665 1 07/13/2022 22:36 U 0.00170 0.00665 1 07/13/2022 22:36 U 0.00196 0.00665 1 07/13/2022 22:36 U 0.00238 0.00665 1 07/13/2022 22:36 U 0.00257 0.00665 1 07/13/2022 22:36 U 0.00256 0.00665 1

PAGE:

8 of 30

QUALITY CONTROL SUMMARY

Total Solids by Method 2540 G-2011

L1511257-01

N /	1~+6	od	\Box	പ	/ /N	
IV	ιеп	()()		41 I F	C II	\vee IDI

(MB) R3812745-1 0	7/08/22 10:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1511247-15 Original Sample (OS) • Duplicate (DUP)

(OS) L1511247-15 07/08/22 10:14 • (DUP) R3812745-3 07/08/22 10:14

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	82.1	81.6	1	0.511		10

Laboratory Control Sample (LCS)

(LCS) R3812745-2 07/08/22 10:14

(100) 10012740-2 0770072	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Quali
Analyte	%	%	%	%	
Total Solids	50.0	49.9	99.8	85.0-115	

QUALITY CONTROL SUMMARY

L1511257-01

Mercury by Method 7471B

Method Blank (MB)

³Ss

Laboratory Control Sample (LCS)

(LCS) R3816092-2	07/18/22 11:12
------------------	----------------

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Mercury	0.500	0 541	108	80 0-120	

[†]Cn

⁶Qc

GI

L1511304-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1511304-01 07/18/22 11:15 • (MS) R3816092-3 07/18/22 11:17 • (MSD) R3816092-4 07/18/22 11:20

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Mercury	0.500	П	0.524	0.476	105	95.2	1	75.0-125			9 59	20

QUALITY CONTROL SUMMARY

L1511257-01

Method Blank (MB)

Metals (ICPMS) by Method 6020B

	\ /				ľ
(MB) R3816905-1	07/19/22 21:45				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Aluminum	U		6.90	50.0	
Antimony	U		0.166	3.00	3
Arsenic	U		0.100	1.00	
Barium	U		0.152	2.50	4
Beryllium	U		0.138	2.50	4
Cadmium	U		0.0855	1.00	<u>L</u>
Calcium	U		75.5	500	5
Chromium	U		0.297	5.00	
Cobalt	U		0.0463	1.00	6
Copper	U		0.133	5.00	
Iron	U		8.95	50.0	
Lead	U		0.0990	2.00	7
Magnesium	U		45.9	500	
Manganese	U		0.269	2.50	8
Nickel	0.366	<u>J</u>	0.197	2.50	
Potassium	U		68.0	500	
Selenium	U		0.180	2.50	9
Silver	U		0.0865	0.500	
Sodium	U		76.5	500	
Thallium	U		0.0650	2.00	
Vanadium	U		0.187	2.50	
Zinc	U		0.740	25.0	

Laboratory Control Sample (LCS)

(LCS) R3816905-2 07/	/19/22 21:48				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Aluminum	1000	931	93.1	80.0-120	
Antimony	100	101	101	80.0-120	
Arsenic	100	88.2	88.2	80.0-120	
Barium	100	92.8	92.8	80.0-120	
Beryllium	100	88.5	88.5	80.0-120	
Cadmium	100	93.1	93.1	80.0-120	
Calcium	1000	894	89.4	80.0-120	
Chromium	100	88.8	88.8	80.0-120	
Cobalt	100	91.7	91.7	80.0-120	
Copper	100	83.5	83.5	80.0-120	
Iron	1000	919	91.9	80.0-120	

Thallium

Vanadium

Zinc

Zinc

QUALITY CONTROL SUMMARY

Metals (ICPMS) by Method 6020B

Laboratory Control Sample (LCS)

100

100

100

103

83.3

187

187

101

_ 1

0.263

20

(LCS) R3816905-2 07	7/19/22 21:48				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
A a location			0/	0/	

	-1			
Analyte	mg/kg	mg/kg	%	%
Lead	100	92.0	92.0	80.0-120
Magnesium	1000	918	91.8	80.0-120
Manganese	100	86.0	86.0	80.0-120
Nickel	100	91.8	91.8	80.0-120
Potassium	1000	939	93.9	80.0-120
Selenium	100	96.8	96.8	80.0-120
Silver	20.0	18.7	93.7	80.0-120
Sodium	1000	1020	102	80.0-120

Sc

L1512809-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

86.0

89.6

89.3

80.0-120

80.0-120

80.0-120

86.0

89.6

89.3

(OS) L1512809-01 07/19/2	2 21:51 • (MS) R	3816905-5 07	/19/22 22:01 • (MSD) R381690	5-6 07/19/22	22:04						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Aluminum	1030	3950	5410	5720	142	172	5	75.0-125	<u>J5</u>	<u>J5</u>	5.60	20
Antimony	103	0.555	93.9	101	90.6	97.7	5	75.0-125			7.42	20
Arsenic	103	1.38	93.0	97.4	89.0	93.3	5	75.0-125			4.63	20
Barium	103	113	250	222	133	105	5	75.0-125	<u>J5</u>		12.0	20
Beryllium	103	0.292	98.1	99.2	95.0	96.1	5	75.0-125			1.19	20
Cadmium	103	0.207	101	104	97.6	101	5	75.0-125			3.59	20
Calcium	1030	6380	7570	7730	115	131	5	75.0-125		$\underline{\vee}$	2.07	20
Chromium	103	9.32	105	107	93.2	95.2	5	75.0-125			1.94	20
Cobalt	103	11.2	107	112	93.0	97.5	5	75.0-125			4.31	20
Copper	103	21.6	118	121	93.6	96.3	5	75.0-125			2.34	20
Iron	1030	24500	27500	28400	283	373	5	75.0-125	V	$\underline{\vee}$	3.34	20
Lead	103	38.3	156	140	115	98.3	5	75.0-125			11.4	20
Magnesium	1030	4400	5800	5750	136	131	5	75.0-125	V	$\underline{\vee}$	0.931	20
Manganese	103	435	569	562	131	123	5	75.0-125	V		1.37	20
Nickel	103	10.2	106	110	92.8	97.3	5	75.0-125			4.23	20
Potassium	1030	389	1400	1450	98.3	103	5	75.0-125			3.56	20
Selenium	103	0.326	101	111	98.1	107	5	75.0-125			8.95	20
Silver	20.6	U	20.5	21.5	99.6	104	5	75.0-125			4.76	20
Sodium	1030	796	1920	1980	109	115	5	75.0-125			3.13	20
Thallium	103	0.0835	99.1	99.9	96.2	97.0	5	75.0-125			0.784	20
Vanadium	103	25.7	119	134	90.8	105	5	75.0-125			11.6	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Oregon Dept. of Env. Quality - ODEQ	72-18-32	L1511257	07/20/22 12:21	12 of 30

75.0-125

100

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

L1511257-01

Method Blank (MB)

(MB) R3814470-2 07/09/	22 18:10			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPHG C6 - C12	U		0.848	2.50
(S) a,a,a-Trifluorotoluene(FID)	98.3			77.0-120

3

Laboratory Control Sample (LCS)

(LCS) R3814470-1 07/09/	22 16:48							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
TPHG C6 - C12	5.50	5.78	105	71.0-124				
(S) a,a,a-Trifluorotoluene(FID)			113	77.0-120				

QUALITY CONTROL SUMMARY

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

Method Blank (MB)

(MB) R3814053-1 07/13/22	02:40			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Diesel Range Organics (DRO)	U		1.33	4.00
Residual Range Organics (RRO)	U		3.33	10.0
(S) o-Terphenyl	64.7			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3814053-2 07/13/2	22 02:53				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Diesel Range Organics (DRO)	50.0	41.2	82.4	50.0-150	
(S) o-Terphenyl			55.1	18.0-148	

L1511276-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1511276-02 (07/13/22 04·12 •	(MS) R3814053-3	07/13/22 04.25	(MSD) R3814053-4	07/13/22 04:38

(03) [1311270-02 07/13/22	2 04.12 (1013) 1	301-033-3 077	113/22 04.23	(MDD) 130140	33-4 07/13/22	04.50						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Diesel Range Organics (DRO)	49.4	2.27	41.4	34.9	79.2	66.3	1	50.0-150			17.0	20
(S) n-Ternhenvl					45 9	431		18 0-148				

QUALITY CONTROL SUMMARY

Chlorinated Acid Herbicides (GC) by Method 8151A

1511257-01

Method Blank (MB)

(MB) R3815521-1 07/14/22 1	19:36			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
2,4-D	U		0.00702	0.0700
Dalapon	U		0.0113	0.0700
2,4-DB	U		0.0297	0.0700
Dicamba	U		0.0157	0.0700
Dichloroprop	U		0.0245	0.0700
Dinoseb	U		0.00697	0.0700
MCPA	U		0.443	6.50
MCPP	U		0.367	6.50
2,4,5-T	U		0.00852	0.0700
2,4,5-TP (Silvex)	U		0.0107	0.0700
(S) 2,4-Dichlorophenyl Acetic Acid	61.7			22.0-132

Laboratory Control Sample (LCS)

(LCS) R3815521-2 07/14/	22 19:51				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
2,4-D	0.167	0.136	81.4	40.0-120	
Dalapon	0.167	0.117	70.1	15.0-120	
2,4-DB	0.167	0.119	71.3	25.0-143	
Dicamba	0.167	0.133	79.6	43.0-120	
Dichloroprop	0.167	0.144	86.2	32.0-129	
Dinoseb	0.167	0.124	74.3	10.0-120	
MCPA	16.7	12.9	77.2	31.0-121	
MCPP	16.7	10.2	61.1	28.0-133	
2,4,5-T	0.167	0.114	68.3	41.0-120	
2,4,5-TP (Silvex)	0.167	0.120	71.9	42.0-120	
(S) 2,4-Dichlorophenyl Aced Acid	tic		65.3	22.0-132	

L1511677-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) LISTI6/7-01 07/14/22	(22:19 • (IVIS) R	3815521-3 07/1	4/22 22:34 • (IV	(ISD) R3815521	-4 0//14/22 22	2:48						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
2,4-D	0.189	U	0.0838	0.0574	44.4	30.7	1	10.0-160		<u>J3</u>	37.5	24
Dalapon	0.189	U	0.0207	0.0139	11.0	7.42	1	10.0-121		<u>J3 J6</u>	39.7	27
2.4-DB	0.189	U	0.112	0.106	59.2	57.0	1	10.0-160			5.04	22

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Oregon Dept. of Env. Quality - ODEQ
 72-18-32
 L1511257
 07/20/22 12:21
 15 of 30

QUALITY CONTROL SUMMARY

Chlorinated Acid Herbicides (GC) by Method 8151A

L1511257-01

L1511677-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1511677-01 07/14/22 22:19 • (MS) R3815521-3 07/14/22 22:34 • (MSD) R3815521-4 07/14/22 22:48

,	, ,		•									
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Dicamba	0.189	U	0.0665	0.0460	35.2	24.7	1	10.0-154		<u>J3</u>	36.4	21
Dichloroprop	0.189	U	0.119	0.0946	63.0	50.7	1	10.0-158		<u>J3</u>	22.9	20
Dinoseb	0.189	U	0.129	0.126	68.5	67.5	1	10.0-120			2.69	40
MCPA	18.9	U	10.4	8.53	55.2	45.7	1	10.0-160			19.9	40
MCPP	18.9	U	9.40	7.88	49.8	42.2	1	10.0-160			17.6	40
2,4,5-T	0.189	U	0.0913	0.0666	48.3	35.7	1	10.0-157		<u>J3</u>	31.2	20
2,4,5-TP (Silvex)	0.189	U	0.0914	0.0851	48.4	45.6	1	10.0-156			7.14	20
(S) 2,4-Dichlorophenyl Acetic Acid					53.2	47.9		22.0-132				

QUALITY CONTROL SUMMARY

L1511257-01

Method Blank (MB)

Pesticides (GC) by Method 8081B

(MB) R3814071-1 07/12/22	2 22:48				1
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	-
Aldrin	U		0.00376	0.0200	╚
Alpha BHC	U		0.00368	0.0200	3
Beta BHC	U		0.00379	0.0200	Ľ
Delta BHC	U		0.00346	0.0200	4
Gamma BHC	U		0.00344	0.0200	4(
Chlordane	U		0.103	0.300	
4,4-DDD	U		0.00370	0.0200	5
4,4-DDE	U		0.00366	0.0200	Ľ
4,4-DDT	U		0.00627	0.0200	6
Dieldrin	U		0.00344	0.0200	
Endosulfan I	U		0.00363	0.0200	
Endosulfan II	U		0.00335	0.0200	7
Endosulfan sulfate	U		0.00364	0.0200	Ľ
Endrin	U		0.00350	0.0200	8
Endrin aldehyde	U		0.00339	0.0200	1
Endrin ketone	U		0.00711	0.0200	_
Heptachlor	U		0.00428	0.0200	9
Heptachlor epoxide	U		0.00339	0.0200	Ľ
Hexachlorobenzene	U		0.00346	0.0200	
Methoxychlor	U		0.00484	0.0200	
Toxaphene	U		0.124	0.400	
(S) Decachlorobiphenyl	69.8			10.0-135	
(S) Tetrachloro-m-xylene	64.7			10.0-139	

Laboratory Control Sample (LCS)

(LCS) R3814071-2 07/12/2	LCS) R3814071-2 07/12/22 22:57									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
Aldrin	0.0666	0.0449	67.4	34.0-136						
Alpha BHC	0.0666	0.0425	63.8	34.0-139						
Beta BHC	0.0666	0.0475	71.3	34.0-133						
Delta BHC	0.0666	0.0441	66.2	34.0-135						
Gamma BHC	0.0666	0.0473	71.0	34.0-136						
4,4-DDD	0.0666	0.0478	71.8	33.0-141	<u>P</u>					
4,4-DDE	0.0666	0.0443	66.5	34.0-134						
4,4-DDT	0.0666	0.0479	71.9	30.0-143	<u>P</u>					
Dieldrin	0.0666	0.0419	62.9	35.0-137						
Endosulfan I	0.0666	0.0451	67.7	34.0-134						

QUALITY CONTROL SUMMARY

L1511257-01

Pesticides (GC) by Method 8081B

Laboratory Control Sample (LCS)

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Endosulfan II	0.0666	0.0420	63.1	35.0-132	<u>P</u>
Endosulfan sulfate	0.0666	0.0437	65.6	35.0-132	<u>P</u>
Endrin	0.0666	0.0155	23.3	34.0-137	<u>J4</u>
Endrin aldehyde	0.0666	0.0327	49.1	23.0-121	<u>P</u>
Endrin ketone	0.0666	0.0693	104	35.0-144	<u>P</u>
Heptachlor	0.0666	0.0500	75.1	36.0-141	<u>P</u>
Heptachlor epoxide	0.0666	0.0480	72.1	36.0-134	
Hexachlorobenzene	0.0666	0.0443	66.5	33.0-129	
Methoxychlor	0.0666	0.0486	73.0	28.0-150	<u>P</u>
(S) Decachlorobiphenyl			81.5	10.0-135	
(S) Tetrachloro-m-xylene			74.3	10.0-139	

7

L1511124-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1511124-16 07/12/22 23:55 • (MS) R3814071-3 07/13/22 00:04 • (MSD) R3814071-4 07/13/22 00:14

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Aldrin	0.0666	U	0.0327	0.00892	49.1	13.4	1	20.0-135		<u>J3 J6</u>	114	37
Alpha BHC	0.0666	U	0.0319	0.00882	47.9	13.2	1	27.0-140		<u>J3 J6</u>	113	35
Beta BHC	0.0666	U	0.0345	0.0104	51.8	15.6	1	23.0-141		<u>J3 J6</u>	107	37
Delta BHC	0.0666	U	0.0316	0.00906	47.4	13.6	1	21.0-138		<u>J3 J6</u>	111	35
Gamma BHC	0.0666	U	0.0343	0.00969	51.5	14.5	1	27.0-137		<u>J3 J6</u>	112	36
4,4-DDD	0.0666	U	0.0361	0.0111	54.2	16.7	1	15.0-152		<u>J3</u>	106	39
4,4-DDE	0.0666	U	0.0353	0.00982	53.0	14.7	1	10.0-152		<u>J3</u>	113	40
4,4-DDT	0.0666	U	0.0407	0.0125	61.1	18.8	1	10.0-151	<u>P</u>	<u>J3</u>	106	40
Dieldrin	0.0666	U	0.0350	0.00997	52.6	15.0	1	17.0-145		<u>J3 J6</u>	111	37
Endosulfan I	0.0666	U	0.0328	0.00941	49.2	14.1	1	20.0-137		<u>J3 J6</u>	111	36
Endosulfan II	0.0666	U	0.0325	0.00999	48.8	15.0	1	15.0-141	<u>P</u>	<u>J3</u>	106	37
Endosulfan sulfate	0.0666	U	0.0289	0.00891	43.4	13.4	1	15.0-143	<u>P</u>	<u>J3 J6</u>	106	38
Endrin	0.0666	U	0.0349	0.0117	52.4	17.6	1	19.0-143		<u>J3 J6</u>	99.6	37
Endrin aldehyde	0.0666	U	0.0312	0.00906	46.8	13.6	1	10.0-139	<u>P</u>	<u>J3</u>	110	40
Endrin ketone	0.0666	U	0.0343	0.0114	51.5	17.1	1	17.0-149		<u>J3</u>	100	38
Heptachlor	0.0666	U	0.0376	0.0108	56.5	16.2	1	22.0-138		<u>J3 J6</u>	111	37
Heptachlor epoxide	0.0666	U	0.0342	0.00946	51.4	14.2	1	22.0-138		<u>J3 J6</u>	113	36
Hexachlorobenzene	0.0666	U	0.0352	0.0106	52.9	15.9	1	25.0-126		<u>J3 J6</u>	107	35
Methoxychlor	0.0666	U	0.0386	0.0132	58.0	19.8	1	10.0-159	<u>P</u>	<u>J3</u>	98.1	40
(S) Decachlorobiphenyl					53.6	31.2		10.0-135				
(S) Tetrachloro-m-xylene					49.4	22.1		10.0-139				

QUALITY CONTROL SUMMARY

Polychlorinated Biphenyls (GC) by Method 8082 A

L1511257-01

Method Blank (MB)

(MB) R3814071-1 07/12/22	2 22:48			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
PCB 1016	U		0.0118	0.0340
PCB 1221	U		0.0118	0.0340
PCB 1232	U		0.0118	0.0340
PCB 1242	U		0.0118	0.0340
PCB 1248	U		0.00738	0.0170
PCB 1254	U		0.00738	0.0170
PCB 1260	U		0.00738	0.0170
PCB 1262	U		0.00738	0.0170
PCB 1268	U		0.00738	0.0170
(S) Decachlorobiphenyl	64.0			10.0-135
(S) Tetrachloro-m-xylene	59.8			10.0-139

Laboratory Control Sample (LCS)

(LCS) R3814071-5 07/12/2	22 23:07					ı
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		1
PCB 1016	0.167	0.0708	42.4	36.0-141		L
PCB 1260	0.167	0.0621	37.2	37.0-145		
(S) Decachlorobiphenyl			35.3	10.0-135		
(S) Tetrachloro-m-xvlene			33.2	10.0-139		

L1511124-16 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1511124-16 07/12/22	2 23:55 • (MS) R	3814071-6 07/1	3/22 00:24 •	(MSD) R381407	1-7 07/13/22	00:33						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
PCB 1016	0.167	U	0.0409	0.0547	24.5	32.8	1	10.0-160			28.9	37
PCB 1260	0.167	U	0.0343	0.0460	20.5	27.5	1	10.0-160			29.1	38
(S) Decachlorobiphenyl					24.5	29.0		10.0-135				
(S) Tetrachloro-m-xylene					24.8	27.9		10.0-139				

PAGE:

19 of 30

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

L1511257-01

Method Blank (MB)

(MB) R3814728-2 07/13/2	2 16:15				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Acenaphthene	U		0.00539	0.0333	
Acenaphthylene	U		0.00469	0.0333	
Anthracene	U		0.00593	0.0333	
Benzo(a)anthracene	U		0.00587	0.0333	
Benzo(b)fluoranthene	U		0.00621	0.0333	
Benzo(k)fluoranthene	U		0.00592	0.0333	
Benzo(g,h,i)perylene	U		0.00609	0.0333	
Benzo(a)pyrene	U		0.00619	0.0333	
Bis(2-chlorethoxy)methane	U		0.0100	0.333	
Bis(2-chloroethyl)ether	U		0.0110	0.333	
2,2-oxybis(1-chloropropane)	U		0.0144	0.333	
4-Bromophenyl-phenylether	U		0.0117	0.333	
2-Chloronaphthalene	U		0.00585	0.0333	
I-Chlorophenyl-phenylether	U		0.0116	0.333	
Chrysene	U		0.00662	0.0333	
Dibenz(a,h)anthracene	U		0.00923	0.0333	
,3-Dichlorobenzidine	U		0.0123	0.333	
2,4-Dinitrotoluene	U		0.00955	0.333	
2,6-Dinitrotoluene	U		0.0109	0.333	
luoranthene	U		0.00601	0.0333	
·luorene	U		0.00542	0.0333	
Hexachlorobenzene	U		0.0118	0.333	
lexachloro-1,3-butadiene	U		0.0112	0.333	
lexachlorocyclopentadiene	U		0.0175	0.333	
Hexachloroethane	U		0.0131	0.333	
ndeno(1,2,3-cd)pyrene	U		0.00941	0.0333	
sophorone	U		0.0102	0.333	
laphthalene	U		0.00836	0.0333	
litrobenzene	U		0.0116	0.333	
-Nitrosodimethylamine	U		0.0494	0.333	
-Nitrosodiphenylamine	U		0.0252	0.333	
-Nitrosodi-n-propylamine	U		0.0111	0.333	
Phenanthrene	U		0.00661	0.0333	
yridine	U		0.0220	0.333	
enzylbutyl phthalate	U		0.0104	0.333	
lis(2-ethylhexyl)phthalate	U		0.0422	0.333	
Di-n-butyl phthalate	U		0.0114	0.333	
Diethyl phthalate	U		0.0110	0.333	
Dimethyl phthalate	U		0.0706	0.333	
Di-n-octyl phthalate	U		0.0225	0.333	

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

L1511257-01

Method Blank (MB)

(MB) R3814728-2 07/13/2	22 16:15				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Pyrene	U		0.00648	0.0333	
1,2,4-Trichlorobenzene	U		0.0104	0.333	
4-Chloro-3-methylphenol	U		0.0108	0.333	
2-Chlorophenol	U		0.0110	0.333	
2,4-Dichlorophenol	U		0.00970	0.333	
2,4-Dimethylphenol	U		0.00870	0.333	
4,6-Dinitro-2-methylphenol	U		0.0755	0.333	
2,4-Dinitrophenol	U		0.0779	0.333	
2-Methylphenol	U		0.0100	0.333	
3&4-Methyl Phenol	U		0.0104	0.333	
2-Nitrophenol	U		0.0119	0.333	
4-Nitrophenol	U		0.0104	0.333	
Pentachlorophenol	U		0.00896	0.333	
Phenol	U		0.0134	0.333	
2,4,6-Trichlorophenol	U		0.0107	0.333	
2,4,5-Trichlorophenol	U		0.0113	0.333	
(S) 2-Fluorophenol	59.5			12.0-120	
(S) Phenol-d5	57.4			10.0-120	
(S) Nitrobenzene-d5	61.0			10.0-122	
(S) 2-Fluorobiphenyl	64.6			15.0-120	
(S) 2,4,6-Tribromophenol	75.5			10.0-127	
(S) p-Terphenyl-d14	73.0			10.0-120	

Laboratory Control Sample (LCS)

(LCS) R3814728-1 07/13/2	CS) R3814728-1 07/13/22 15:54									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
Acenaphthene	0.666	0.414	62.2	38.0-120						
Acenaphthylene	0.666	0.444	66.7	40.0-120						
Anthracene	0.666	0.422	63.4	42.0-120						
Benzo(a)anthracene	0.666	0.483	72.5	44.0-120						
Benzo(b)fluoranthene	0.666	0.468	70.3	43.0-120						
Benzo(k)fluoranthene	0.666	0.456	68.5	44.0-120						
Benzo(g,h,i)perylene	0.666	0.472	70.9	43.0-120						
Benzo(a)pyrene	0.666	0.526	79.0	45.0-120						
Bis(2-chlorethoxy)methane	0.666	0.405	60.8	20.0-120						
Bis(2-chloroethyl)ether	0.666	0.363	54.5	16.0-120						
2,2-Oxybis(1-Chloropropane)	0.666	0.316	47.4	23.0-120						

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

L1511257-01

Laboratory Control Sample (LCS)

(LCS) R3814728-1 07/13/22	2 15:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
4-Bromophenyl-phenylether	0.666	0.477	71.6	40.0-120	
2-Chloronaphthalene	0.666	0.394	59.2	35.0-120	
4-Chlorophenyl-phenylether	0.666	0.494	74.2	40.0-120	
Chrysene	0.666	0.468	70.3	43.0-120	
Dibenz(a,h)anthracene	0.666	0.456	68.5	44.0-120	
3,3-Dichlorobenzidine	1.33	0.921	69.2	28.0-120	
2,4-Dinitrotoluene	0.666	0.533	80.0	45.0-120	
2,6-Dinitrotoluene	0.666	0.481	72.2	42.0-120	
Fluoranthene	0.666	0.473	71.0	44.0-120	
Fluorene	0.666	0.460	69.1	41.0-120	
Hexachlorobenzene	0.666	0.463	69.5	39.0-120	
Hexachloro-1,3-butadiene	0.666	0.500	75.1	15.0-120	
Hexachlorocyclopentadiene	0.666	0.258	38.7	15.0-120	
Hexachloroethane	0.666	0.363	54.5	17.0-120	
Indeno(1,2,3-cd)pyrene	0.666	0.512	76.9	45.0-120	
Isophorone	0.666	0.414	62.2	23.0-120	
Naphthalene	0.666	0.388	58.3	18.0-120	
Nitrobenzene	0.666	0.426	64.0	17.0-120	
n-Nitrosodimethylamine	0.666	0.329	49.4	10.0-125	
n-Nitrosodiphenylamine	0.666	0.418	62.8	40.0-120	
n-Nitrosodi-n-propylamine	0.666	0.373	56.0	26.0-120	
Phenanthrene	0.666	0.414	62.2	42.0-120	
Pyridine	0.666	0.150	22.5	10.0-120	
Benzylbutyl phthalate	0.666	0.477	71.6	40.0-120	
Bis(2-ethylhexyl)phthalate	0.666	0.466	70.0	41.0-120	
Di-n-butyl phthalate	0.666	0.452	67.9	43.0-120	
Diethyl phthalate	0.666	0.506	76.0	43.0-120	
Dimethyl phthalate	0.666	0.461	69.2	43.0-120	
Di-n-octyl phthalate	0.666	0.501	75.2	40.0-120	
Pyrene	0.666	0.462	69.4	41.0-120	
1,2,4-Trichlorobenzene	0.666	0.442	66.4	17.0-120	
4-Chloro-3-methylphenol	0.666	0.480	72.1	28.0-120	
2-Chlorophenol	0.666	0.375	56.3	28.0-120	
2,4-Dichlorophenol	0.666	0.464	69.7	25.0-120	
2,4-Dimethylphenol	0.666	0.465	69.8	15.0-120	
4,6-Dinitro-2-methylphenol	0.666	0.405	60.8	16.0-120	
2,4-Dinitrophenol	0.666	0.295	44.3	10.0-120	
2-Methylphenol	0.666	0.392	58.9	35.0-120	
3&4-Methyl Phenol	0.666	0.450	67.6	42.0-120	
2-Nitrophenol	0.666	0.436	65.5	20.0-120	
2 Millophonol	3.000	5.150	00.0	20.0-120	

PAGE:

22 of 30

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

L1511257-01

Laboratory Control Sample (LCS)

(LCS	R3814728-1	07/13/22	15:54

2 13.54				
Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
mg/kg	mg/kg	%	%	
0.666	0.402	60.4	27.0-120	
0.666	0.434	65.2	29.0-120	
0.666	0.378	56.8	28.0-120	
0.666	0.484	72.7	37.0-120	
0.666	0.475	71.3	38.0-120	
		58.1	12.0-120	
		58.6	10.0-120	
		62.8	10.0-122	
		64.6	15.0-120	
		<i>7</i> 5. <i>5</i>	10.0-127	
		71.5	10.0-120	
	Spike Amount mg/kg 0.666 0.666 0.666 0.666	Spike Amount mg/kg LCS Result mg/kg 0.666 0.402 0.666 0.434 0.666 0.378 0.666 0.484	Spike Amount mg/kg LCS Result mg/kg LCS Rec. % 0.666 0.402 60.4 0.666 0.434 65.2 0.666 0.378 56.8 0.666 0.484 72.7 0.666 0.475 71.3 58.1 58.6 62.8 64.6 75.5	Spike Amount mg/kg LCS Result mg/kg LCS Rec. White Management was a market with market mg/kg Rec. Limits white Management was a mg/kg 0.666 0.402 60.4 27.0-120 0.666 0.434 65.2 29.0-120 0.666 0.378 56.8 28.0-120 0.666 0.484 72.7 37.0-120 0.666 0.475 71.3 38.0-120 58.1 12.0-120 58.6 10.0-120 62.8 10.0-122 62.8 10.0-122 64.6 15.0-120 75.5 10.0-127

(OS) L1510763-01 07/13/22 16:36 • (MS) R3814728-3 07/13/22 16:57 • (MSD) R3814728-4 07/13/22 17:18

· /	` '		,	,								
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acenaphthene	0.735	U	0.404	0.406	55.0	54.0	1	18.0-120			0.283	32
Acenaphthylene	0.735	U	0.446	0.440	60.6	58.5	1	25.0-120			1.29	32
Anthracene	0.735	U	0.416	0.436	56.5	58.1	1	22.0-120			4.84	29
Benzo(a)anthracene	0.735	U	0.522	0.516	71.0	68.6	1	25.0-120			1.32	29
Benzo(b)fluoranthene	0.735	U	0.518	0.505	70.4	67.2	1	19.0-122			2.46	31
Benzo(k)fluoranthene	0.735	U	0.498	0.482	67.8	64.2	1	23.0-120			3.27	30
Benzo(g,h,i)perylene	0.735	U	0.518	0.504	70.4	67.1	1	10.0-120			2.69	33
Benzo(a)pyrene	0.735	U	0.568	0.554	77.3	73.8	1	24.0-120			2.45	30
Bis(2-chlorethoxy)methane	0.735	U	0.406	0.379	55.1	50.5	1	10.0-120			6.72	34
Bis(2-chloroethyl)ether	0.735	U	0.361	0.314	49.1	41.8	1	10.0-120			13.9	40
2,2-Oxybis(1-Chloropropane)	0.735	U	0.314	0.290	42.7	38.6	1	10.0-120			7.97	40
4-Bromophenyl-phenylether	0.735	U	0.487	0.496	66.2	66.0	1	27.0-120			1.86	30
2-Chloronaphthalene	0.735	U	0.387	0.383	52.6	50.9	1	20.0-120			1.19	32
4-Chlorophenyl-phenylether	0.735	U	0.501	0.506	68.1	67.4	1	24.0-120			1.14	29
Chrysene	0.735	U	0.497	0.493	67.6	65.5	1	21.0-120			0.926	29
Dibenz(a,h)anthracene	0.735	U	0.496	0.494	67.4	65.7	1	10.0-120			0.463	32
3,3-Dichlorobenzidine	1.47	U	1.04	1.04	70.9	69.1	1	10.0-120			0.221	34
2,4-Dinitrotoluene	0.735	U	0.533	0.537	72.4	71.5	1	30.0-120			0.857	31
2,6-Dinitrotoluene	0.735	U	0.467	0.485	63.6	64.5	1	25.0-120			3.61	31
Fluoranthene	0.735	U	0.482	0.485	65.6	64.5	1	18.0-126			0.474	32
Fluorene	0.735	U	0.466	0.463	63.4	61.6	1	25.0-120			0.740	30
Hexachlorobenzene	0.735	U	0.491	0.486	66.8	64.6	1	27.0-120			1.17	28

¹Cp

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

L1510763-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1510763-01 07/13/22 16:36 • (MS) R3814728-3 07/13/22 16:57 • (MSD) R3814728-4 07/13/22 17:18													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	L
Hexachloro-1,3-butadiene	0.735	U	0.522	0.475	71.0	63.3	1	10.0-120			9.41	38	
Hexachlorocyclopentadiene	0.735	U	0.246	0.226	33.5	30.0	1	10.0-120			8.74	40	
Hexachloroethane	0.735	U	0.356	0.320	48.4	42.5	1	10.0-120			10.8	40	
Indeno(1,2,3-cd)pyrene	0.735	U	0.562	0.543	76.5	72.3	1	10.0-120			3.52	32	
Isophorone	0.735	U	0.404	0.388	55.0	51.7	1	13.0-120			4.05	34	L
Naphthalene	0.735	U	0.395	0.361	53.7	48.0	1	10.0-120			9.09	35	
Nitrobenzene	0.735	U	0.422	0.378	57.3	50.3	1	10.0-120			10.9	36	
n-Nitrosodimethylamine	0.735	U	0.329	0.315	44.7	41.9	1	10.0-127			4.27	40	
n-Nitrosodiphenylamine	0.735	U	0.423	0.442	57.5	58.8	1	17.0-120			4.50	29	
n-Nitrosodi-n-propylamine	0.735	U	0.356	0.341	48.4	45.4	1	10.0-120			4.27	37	
Phenanthrene	0.735	U	0.422	0.428	57.3	57.0	1	17.0-120			1.62	31	_ [
Pyridine	0.735	U	0.174	0.181	23.7	24.1	1	10.0-120			3.87	40	
Benzylbutyl phthalate	0.735	U	0.498	0.501	67.8	66.6	1	23.0-120			0.459	30	_ ;
Bis(2-ethylhexyl)phthalate	0.735	U	0.504	0.491	68.5	65.4	1	17.0-126			2.53	30	
Di-n-butyl phthalate	0.735	U	0.461	0.469	62.6	62.3	1	30.0-120			1.73	29	
Diethyl phthalate	0.735	U	0.489	0.507	66.5	67.5	1	26.0-120			3.68	28	
Dimethyl phthalate	0.735	U	0.461	0.474	62.6	63.1	1	25.0-120			2.94	29	_
Di-n-octyl phthalate	0.735	U	0.551	0.536	74.9	71.3	1	21.0-123			2.74	29	
Pyrene	0.735	U	0.477	0.481	64.8	64.0	1	16.0-121			0.957	32	
1,2,4-Trichlorobenzene	0.735	U	0.455	0.412	61.8	54.9	1	12.0-120			9.78	37	
4-Chloro-3-methylphenol	0.735	U	0.483	0.483	65.7	64.3	1	15.0-120			0.000	30	
2-Chlorophenol	0.735	U	0.369	0.346	50.2	46.0	1	15.0-120			6.41	37	
2,4-Dichlorophenol	0.735	U	0.475	0.467	64.6	62.2	1	20.0-120			1.70	31	
2,4-Dimethylphenol	0.735	U	0.475	0.466	64.6	62.0	1	10.0-120			1.95	33	
4,6-Dinitro-2-methylphenol	0.735	U	0.565	0.581	76.8	77.3	1	10.0-120			2.80	39	
2,4-Dinitrophenol	0.735	U	0.601	0.632	81.8	84.1	1	10.0-121			5.01	40	
2-Methylphenol	0.735	U	0.369	0.364	50.2	48.5	1	11.0-120			1.25	40	
3&4-Methyl Phenol	0.735	U	0.433	0.432	58.9	57.5	1	12.0-123			0.265	38	
2-Nitrophenol	0.735	U	0.451	0.423	61.4	56.2	1	12.0-120			6.55	39	
4-Nitrophenol	0.735	U	0.404	0.434	55.0	57.8	1	10.0-137			7.10	32	
Pentachlorophenol	0.735	U	0.487	0.499	66.2	66.5	1	10.0-160			2.56	31	
Phenol	0.735	U	0.398	0.372	54.0	49.5	1	12.0-120			6.55	38	
2,4,6-Trichlorophenol	0.735	U	0.480	0.495	65.3	65.9	1	19.0-120			3.06	32	
2,4,5-Trichlorophenol	0.735	U	0.482	0.509	65.6	67.7	1	20.0-120			5.32	30	
(S) 2-Fluorophenol					56.4	50.9		12.0-120					
(S) Phenol-d5					54.8	49.4		10.0-120					
(S) Nitrobenzene-d5					62.3	52.7		10.0-122					
(S) 2-Fluorobiphenyl					61.7	60.1		15.0-120					
(S) 2,4,6-Tribromophenol					76.8	78.7		10.0-127					

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E

L1510763-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1510763-01 07/13/22 16:36 • (MS) R3814728-3 07/13/22 16:57 • (MSD) R3814728-4 07/13/22 17:18

(00) 21010700 01 01/10/22 10:00 (mo) 10011720 0 01/10/22 10:01 (mo) 10011720 1 01/10/22 11:10												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
(S) p-Terphenyl-d14					70.4	69.8		10.0-120				

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1511257-01

Method Blank (MB)

(MB) R3814694-2 07/13	3/22 18:56				- '
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	
Anthracene	U		0.00230	0.00600	L
Acenaphthene	U		0.00209	0.00600	3
Acenaphthylene	U		0.00216	0.00600	L
Benzo(a)anthracene	U		0.00173	0.00600	4
Benzo(a)pyrene	U		0.00179	0.00600	4
Benzo(b)fluoranthene	U		0.00153	0.00600	L
Benzo(g,h,i)perylene	U		0.00177	0.00600	5
Benzo(k)fluoranthene	U		0.00215	0.00600	ıL
Chrysene	U		0.00232	0.00600	6
Dibenz(a,h)anthracene	U		0.00172	0.00600	
Fluoranthene	U		0.00227	0.00600	
Fluorene	U		0.00205	0.00600	7
Indeno(1,2,3-cd)pyrene	U		0.00181	0.00600	L
Naphthalene	U		0.00408	0.0200	8
Phenanthrene	U		0.00231	0.00600	
Pyrene	U		0.00200	0.00600	
1-Methylnaphthalene	U		0.00449	0.0200	9
2-Methylnaphthalene	U		0.00427	0.0200	L
2-Chloronaphthalene	U		0.00466	0.0200	
(S) Nitrobenzene-d5	63.5			14.0-149	
(S) 2-Fluorobiphenyl	74.8			34.0-125	
(S) p-Terphenyl-d14	96.6			23.0-120	

Laboratory Control Sample (LCS)

(LCS) R3814694-1 07/13/22 18:36										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
Anthracene	0.0800	0.0625	78.1	50.0-126						
Acenaphthene	0.0800	0.0660	82.5	50.0-120						
Acenaphthylene	0.0800	0.0675	84.4	50.0-120						
Benzo(a)anthracene	0.0800	0.0610	76.3	45.0-120						
Benzo(a)pyrene	0.0800	0.0576	72.0	42.0-120						
Benzo(b)fluoranthene	0.0800	0.0639	79.9	42.0-121						
Benzo(g,h,i)perylene	0.0800	0.0631	78.9	45.0-125						
Benzo(k)fluoranthene	0.0800	0.0652	81.5	49.0-125						
Chrysene	0.0800	0.0643	80.4	49.0-122						
Dibenz(a,h)anthracene	0.0800	0.0649	81.1	47.0-125						
Fluoranthene	0.0800	0.0656	82.0	49.0-129						

QUALITY CONTROL SUMMARY

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

L1511257-01

Laboratory Control Sample (LCS)

11 CS	R3814694-1	07/13/22	18.36

(200) 100110011 07710	722 10.00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Fluorene	0.080.0	0.0673	84.1	49.0-120	
Indeno(1,2,3-cd)pyrene	0.0800	0.0617	77.1	46.0-125	
Naphthalene	0.0800	0.0622	77.8	50.0-120	
Phenanthrene	0.0800	0.0622	77.8	47.0-120	
Pyrene	0.0800	0.0648	81.0	43.0-123	
1-Methylnaphthalene	0.0800	0.0657	82.1	51.0-121	
2-Methylnaphthalene	0.0800	0.0645	80.6	50.0-120	
2-Chloronaphthalene	0.0800	0.0649	81.1	50.0-120	
(S) Nitrobenzene-d5			86.1	14.0-149	
(S) 2-Fluorobiphenyl			91.2	34.0-125	
(S) p-Terphenyl-d14			113	23.0-120	

⁷Gl

L1511218-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1511218-04 07/13/22 21:16 • (MS) R3814694-3 07/13/22 21:36 • (MSD) R3814694-4 07/13/22 21:56

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	[
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Anthracene	0.0866	U	0.0529	0.0570	61.1	64.2	1	10.0-145			7.42	30	
Acenaphthene	0.0866	U	0.0549	0.0646	63.5	72.7	1	14.0-127			16.1	27	
Acenaphthylene	0.0866	U	0.0530	0.0615	61.3	69.3	1	21.0-124			14.8	25	
Benzo(a)anthracene	0.0866	U	0.0488	0.0503	56.4	56.6	1	10.0-139			2.97	30	
Benzo(a)pyrene	0.0866	U	0.0485	0.0502	56.0	56.5	1	10.0-141			3.44	31	
Benzo(b)fluoranthene	0.0866	U	0.0466	0.0469	53.8	52.8	1	10.0-140			0.727	36	
Benzo(g,h,i)perylene	0.0866	U	0.0527	0.0543	60.9	61.1	1	10.0-140			2.97	33	
Benzo(k)fluoranthene	0.0866	U	0.0515	0.0548	59.6	61.7	1	10.0-137			6.18	31	
Chrysene	0.0866	U	0.0578	0.0630	66.8	70.9	1	10.0-145			8.63	30	
Dibenz(a,h)anthracene	0.0866	U	0.0515	0.0559	59.6	62.9	1	10.0-132			8.02	31	
Fluoranthene	0.0866	U	0.0503	0.0540	58.1	60.8	1	10.0-153			7.17	33	
Fluorene	0.0866	U	0.0543	0.0616	62.7	69.4	1	11.0-130			12.7	29	
Indeno(1,2,3-cd)pyrene	0.0866	U	0.0441	0.0444	50.9	50.0	1	10.0-137			0.768	32	
Naphthalene	0.0866	U	0.0543	0.0705	62.7	79.3	1	10.0-135			26.0	27	
Phenanthrene	0.0866	U	0.0510	0.0578	58.9	65.1	1	10.0-144			12.5	31	
Pyrene	0.0866	U	0.0526	0.0571	60.7	64.3	1	10.0-148			8.26	35	
1-Methylnaphthalene	0.0866	U	0.0571	0.0687	66.0	77.3	1	10.0-142			18.4	28	
2-Methylnaphthalene	0.0866	U	0.0554	0.0705	64.0	79.3	1	10.0-137			23.9	28	
2-Chloronaphthalene	0.0866	U	0.0571	0.0648	66.0	73.0	1	29.0-120			12.6	24	
(S) Nitrobenzene-d5					66.3	78.0		14.0-149					
(S) 2-Fluorobiphenyl					68.0	76.0		34.0-125					
(S) p-Terphenyl-d14					84.7	88.2		23.0-120					

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 Oregon Dept. of Env. Quality - ODEQ
 72-18-32
 L1511257
 07/20/22 12:21
 27 of 30

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qua	lifier	С	Description

J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
Р	RPD between the primary and confirmatory analysis exceeded 40%.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: L1511257 07/20/22 12:21 Oregon Dept. of Env. Quality - ODEQ 72-18-32 28 of 30

ACCREDITATIONS & LOCATIONS

Dags Applytical National	1206E Lohanan Dd Maunt	Luliat TNL 27122
Pace Analytical National	12065 Lebanon Rd Mount .	Juliet. TN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 14	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

State of Oregon Chain of Custody (Pace) Agency, Authorized Purchaser or Agent: Contract Laboratory Name: Lab Selection Criteria: Turn Around Time: GSI/Haley & Aldrich for ODEQ Proximity (if TAT < 48 hrs) 10 days (std.) Pace Analytical National Send Lab Report To: Don Hanson Lab Batch #: Prior work on same project 5 days Address 165 E. 7th Avenue. Suite 100 ODEO/Business Office Invoice: Cost (for anticipated analyses) 72 hours Eugene, OR 97401 Other labs disqualified or unable 811 SW 6th Ave 48 hours Tel. #: 541-687-7349 Portland, OR 97204 to perform requested services 24 hours E-mail: don.hanson@deq.state.or.us, jbale@gsiws.com, Tel. #: (800) 452-4011 Emergency work Other cmartin@gsiws.com, mfargher@gsiws.com, GIS@gsiws.com Project Name: OREGON DEQ-JH Baxter (72-18-32) Sample Preservative 1124 Project #: JH Baxter Removal Investigation Sampler Names: G Schutzius, C Martin Requested Analyses PAHs by EPA ethod 8270E-SII des by 8 Collection Number of Sample ID# Collection Date Matrix Time Containers ISM TS-001-0622 6/30/2022 16:15 SO TAL metals listed in Notes below. × X Y X X X Sample Receipt Checklist
Intact: Y N If Applicable COC Seal Present/Intact: COC Signed/Accurate: VOA Zero Headspace: Y Pres.Correct/Check: Y Bottles arrive intact: Correct bottles used: Sufficient volume sent: RAD Screen <0.5 mR/hr: NOTES: Contact Josh Bale (530-276-4188, jbale@gsiws.com) or Chris Martin (503-432-5979, cmartin@gsiws.com) with questions. Include DEQ EDD with final lab report. TAL metals include aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc. Relinquished By: Received By: Agency/Agent: Time & Date: Signature: 1200 Signature: Relinquished By: Received By: Agency/Agent: Agency/Agent: Time & Date: Signature: Signature: Time & Date:

Pace Analytical® ANALYTICAL REPORT

Oregon Dept. of Env. Quality - ODEQ

L1512340 Sample Delivery Group:

Samples Received: 07/02/2022

Project Number: 72-18-32

Description: JH Baxter Removal Investigation

Report To: Don Hanson

165 E. 7th Avenue


Suite 100

Eugene, OR 97401

Entire Report Reviewed By:

Buar Ford

Brian Ford

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
GI: Glossary of Terms	5
Al: Accreditations & Locations	6
Sc: Sample Chain of Custody	7

SAMPLE SUMMARY

TS-001-0622 L1512340-01 Solid			GS/CM	06/30/22 16:15	07/02/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG1891393	1	07/26/22 00:00	07/26/22 00:00	-	Minneapolis, MN 55414

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

PAGE:

4 of 20

Brian Ford Project Manager

Project Narrative

Buar Ford

L1512340 -01 contains subout data that is included after the chain of custody.

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

Description

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Qualifier

SDG	Sample Delivery Group.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

		Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
ldaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^{*} \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.}$

State of Oregon Chain of Custody (Pace)

						Pace Analytical National Proximity (if TAT < 48 hrs) (10 days (std.))]			
Send Lab Report To: Don Hanson Address 165 E. 7th Avenue, Suite 100 Eugene, OR 97401 Tel # 541-687-7349 E-mail: don hanson@deq state or us, jbale@gsiws.com, cmartin@gsiws.com, mfargher@gsiws.com, GIS@gsiws.com					Lab Ba	Lab Batch #: Invoice: ODEO/Business Office 811 SW 6 th Ave Portland, OR 97204 Tel # (800) 452-4011					Prior work on same project Cost (for anticipated analyses) Other labs disqualified or unable to perform requested services Emergency work				5 days 72 hours 48 hours 24 hours Other		
Project Name: OREGON DEQ-JH Baxter (72-18-32)		Tringer.		TARRA IN				Sa	imple Pr	eservat	ive						
Project # JH Baxter Removal investigation Sampler Names: G Schutzius, C Martin			J1	24	Solids: NA												
Sample ID#	Collection Date	Collection Time	Matrix	Number of Containers	ISM Processing prior to Analyses	Diaxinflurans by 16138	TPH as Casoline by NWTPH-Gx	NO NO	TAL Metals by EPA an Method 60208/	48	SVDCs by EPA Method 8270	PAHS By EPA Method 8270E-SIM	Pesticides by EPA 8081	Herbicides by EPA 8151	4	5117.57 Comments	7.26
TS-001-0622	6/30/2022	16:15	so	1	x	×	x	×	×	х-	×	X.	X	x	TAL metals list	ed in Notes below.	-/
		1847															
		May 15	N. S.			MA		M.									100%
MARKET STATE OF THE STATE OF TH		10.00	1000						175.16								20
									130	1							1
					100		1100		100		-		-		Market St.		
	7000	1 300 1 3 3 5			1000				100	1000			-				
					100										国 (1)		
			1994	700	do F	100		I.S.		100			100				1000
				18 19 19						13).							
						Bot Got Sut RAI	ttles crect fficie D Sore	bott) ent vo	rent/T courative int les us slome 1.5 mR	ntact: et act: ed: sent:	111	Alvert	OA Ze	If Ap	slicable adapaze: t/Check:		
NOTES: Contact Josh Bale (530-276-4188, ibale@gsivs.com) or Chris M.									A 7			10			K-1		
TAL metals include aluminum, antimony, arsenic, barium, beryllium, cadmi vanadium, and zinc	um, calcum, civomum, co	was, copper, iron	, lead, mag	nesum, mangar	ese, me	cury, ne	ukei, pot	assium,	seleniun	n, saver,	sodium	i, thallium					
Relinquished By: Chris Martin	Agency/Agent(5)	1				Receiv	ved By:	(A)	Him	31	2	2			Agency/Agent		
Signature:	Time & Date: 7	122 Y	000			Signat	ure:						7.5		Time & Date:	7-2/22 900	
Relinquished By:	Agency/Agent:					Receiv	ved By:							g. 44	Agency/Agent:		
Signature:	Time & Date					Signat	ure:		11						Time & Date:		

THIS PURCHASE IS SUBMITTED PURSUANT TO STATE OF OREGON SOLICITATION #102-1098-07 AND PRICE AGREEMENT # 6503. THE PRICE AGREEMENT INCLUDING CONTRACT TERMS AND CONDITIONS AND SPECIAL CONTRACT TERMS AND CONDITIONS (IT'S &C'S) CONTAINED IN THE PRICE AGREEMENT ARE HEREBY INCORPORATED BY REFERENCE AND SHALL APPLY TO THIS PURCHASE AND SHALL TAKE PRECEDENCE OVER ALL OTHER CONFLICTING IT'S AND C'S, EXPRESS OR IMPLIED.

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Client Services Pace Analytical National 12065 Lebanon Road Mount Juliet TN 37122

> REPORT OF LABORATORY **ANALYSIS FOR** PCDD/PCDF

Report Information:

Pace Project #: 10616033

Sample Receipt Date: 07/08/2022

Client Project #: L1512340 WG1891393

Client Sub PO #: L1512340 **State Cert #: MN300001**

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Kongmeng Vang, your Pace Project Manager.

This report has been reviewed by:

July 26, 2022

Kongmeng Vang, Project Manager

(612) 607-6382

(612) 607-6333 (fax)

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

July 26, 2022

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analysis performed on one sample submitted by a representative of Pace Analytical National. The sample was analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using USEPA Method 1613B. The estimated detection limits (EDLs) were based on signal-to-noise measurements. Estimated maximum possible concentration (EMPC) values were treated as positives in the toxic equivalence calculations.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extract ranged from 44-88%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These levels were below the calibration range for the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results table and may be, at least partially, attributed to the background.

A laboratory spike sample was also prepared using clean reference matrix that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 98-120%. These results were within the target ranges for the method. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Tel: 612-607-1700 Fax: 612-607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
		Mississippi	MN00064
		Missouri	10100
A2LA	2926.01	Montana	CERT0092
Alabama	40770	Nebraska	NE-OS-18-06
Alaska-DW	MN00064	Nevada	MN00064
Alaska-UST	17-009	New Hampshire	2081
Arizona	AZ0014	New Jersey	MN002
Arkansas - WW	88-0680	New York	11647
Arkansas-DW	MN00064	North Carolina-	27700
California	2929	North Carolina-	530
Colorado	MN00064	North Dakota	R-036
Connecticut	PH-0256	Ohio-DW	41244
Florida	E87605	Ohio-VAP (170	CL101
Georgia	959	Ohio-VAP (180	CL110
Hawaii	MN00064	Oklahoma	9507
Idaho	MN00064	Oregon- rimary	MN300001
Illinois	200011	Oregon-Second	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
lowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky-DW	90062	Tennessee	TN02818
Kentucky-WW	90062	Texas	T104704192
Louisiana-DEQ	AI-84596	Utah	MN00064
Louisiana-DW	MN00064	Vermont	VT-027053137
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Michigan	9909	West Virginia-D	382
Minnesota	027-053-137	West Virginia-D	9952C
Minnesota-Ag	via MN 027-053	Wisconsin	999407970
Minnesota-Petr	1240	Wyoming-UST	via A2LA 2926.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10616033

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix A

Sample Management

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Required	A I Client Information:	Section B Required Pr	roject	Inform	nation:					Pection Invoice		ormati	on:												Γ	Page	· :	1	Of	1
mpany	Pace Analytical	Report To:	Pac	e Anal	ytical Subo	out Team			- 1	Attent	tion:	Don	Han	son																
ddress	12065 Lehanon Rd	Copy To.								Comp	any N	lame:	Oreg	gon D	ept o	of Env	v. Qu	ality												
Juliet	TN 37122 MTJLSuboutTeam@pacelabs.com (615) 773-9756 Fax (615) 758-5859 ed Due Date: 19-Jul									Addre																Re	gulato	ry Agend	y	
mail.	MTJLSuboutTeam@pacelabs.com	Purchase O	rder#		L1512340					Pace	Quote	2.																		
none:	(615) 773-9756 Fax (615) 758-5859	Project Nam	e:	JH B	laxter Rem	noval Inve	estigation		_1	Pace	Projec	ct Man	ager		Kong	meng	Van	g								5	State /	Location	3	
equeste	ed Due Date: 19-Jul	Project #				72-18-32	2			Pace	Profile	e #	3807	76													Portla	and, OR		
																				Reque	ested /	Analys	sis Filte	ered (Y/N)		3			
21300	MATRIX	CODE	codes to left)	C=COMP)		COLL	ECTED		-			Pre	eser	vativ	es		14/2	N												
7	Drinking Water Waste V Product SAMPLE ID	Water DW WT Vater WW P	valid	(G=GRAB C=C					COLLECTION									1813	2								(Y/N)			
	OF	OL.	(see	9	STA	ART E		END 5		RS								s Test	5				1 1				ine			
ITEM #	One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique One Ids	MP AR DT TS	MATRIX CODE	SAMPLE TYPE	0.75	TH. 1			WPLE TEMP AT COLLECTION	DF CONTAINERS	on Discourage	HNO3	12	NaOH	Na2S2O3	Methanol	Other	Analyses lest	DAMES SING L								desidual Chlorine (Y/N)			
	0.45t 50t 0.15 5.		SL	100	DATE	TIME	30-Jun	16.15	1		3 3	T	τ.	Z	Z	Σ		x	+	1	+	+	T	-	+	-		DEQ COC	1	100
2	10-00						00 00.										1	٦	T				Ħ	1	Ħ			JEQ 000		
3									T							U	7		1				П	T	TI					
4																														
5																														
6																	4	L	1	L	n	1:	11	ne	51	60	3	3		
7			1								1	+			-	1	4	-	-											
8			-						-		+	+			4	4	4	-	-	Ш	Ш									_
9			-						+	Н	+	+	H	H	-	4	4	+	-	10	616	233								-
10			1						+		+	+			-	+	+	+	+	+	H	+	H	+	+	+	1			
11			+						1	H	+	+		Н	+	+	+	+	+	+	H	+	+	+	+	+	1			
12	ADDITIONAL COMMENTS		REL	INQUIS	HED BY I	AFFILIATIO	ON	DAT	TE .	T	TIME	1			ACCE	PTED	BY	AFFIL	LIATIO	N .	-	1	DATE		TIME		Н	SAMPLE (CONDITION	IS
		Angela	Ford	1	1	_		7-Jul		13:33	3	1	W	14	16							G 7	166/7	2	1:70	. 2	3	y	4	7
ace Ar	nalytical Batch: WG1891393											/												1						
U	nalytical SDGs: L1512340							-				+				_						+		+		+	-			
ocatio	n: Minneapolis, MN 55414																													1
П						SAMPL	ER NAME	AND SIG	NATU	IRE																	_	c .		
2 1						PR	INT Name	of SAMP	LER:																	1	TEMP in C	Received on Ice (Y/N)	ody id	ples
•						SIG	GNATURE	of SAMP	LER:										DA	TE Si	gned:	-				7	LEW	Reco ce (Y/N)	Custody Sealed Cooler	Samples

DC#_Title: ENV-FRM-MIN4-0150 v05_Sample Condition Upon Receipt

(SCUR)

Effective Date: 04/12/2022

Sample Condition Upon Receipt A			Projec		JO#:10616033	
Courier:	USPS Commerc	cial	Client See Excep	F	M: KV Due Date: 07/29/22 LIENT: ESC_TN	
Tracking Number: 5882 7542 6	296		0142			
Custody Seal on Cooler/Box Present?	T5(0489)	□None □ 16(0235		ther: Zilla de Type of Iwe	No Biological Tissue Frozen?	
Did Samples Originate in West Virginia? ☐Yes ☑No Were A	II Container	Temps Tal	ken? □Yes	□No □N/A		
Temp should be above freezing to 6°C Cooler Temp Correction Factor: Tyne Cooler Temp Corre	Read w/t	emp bla	nk:	2.9	Average Corrected See Excep Temp (no temp blank only):OC	14-0142
<u> </u>				- /		
	od States:)	A EL CA		of Person Examining Contents: <u>EN 67/64 (21</u> ples originate from a foreign source (internationally, includir	nø
Did samples originate in a quarantine zone within the Unit MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?		AL, AR, CA			iples originate from a foreign source (internationally, including and Puerto Rico)? Yes No	'5
					and include with SCUR/COC paperwork.	
Location (check one): Duluth Minnea		/irginia			COMMENT5:	
Chain of Custody Present and Filled Out?	Yes	∏No		1.		
Chain of Custody Relinquished?	Yes	No		2.		
Sampler Name and/or Signature on COC?	✓Yes	□No	□N/A	3.		
Samples Arrived within Hold Time?	✓Yes	□No			al:	
Short Hol: Time Analysis (<72 hr)?	Yes	ΖNο		Turbidity	orm	ie
Rush Turn ound Time Requested?	Yes	ZNo		6.		
Sufficient Volume?	ZYes	□No		7.		
Correct Containers Used?	∑Yes	□Nø ·		8.		
-Pace Containers Used?	Yes Yes	ZNo □No		9.		
Containers Intact? Field Filtered Volume Received for Dissolved Tests?	□Yes	□No	ZN/A		t visible in the dissolved container? Yes No	
Is sufficient information available to reconcile the	res	INO	∠JN/A		/ Date/Time on Container Below: See Exception	
samples to the COC? Matrix:WaterSoilOilOther. 「んじ人	□Yes	□No			ENV-FRM-MIN4-	-0142
All containers needing acid/base preservation have	□Yes	□No	☑N/A	12. Sample #		
been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide)	∐Yes	□No	⊠N/A	☐ NaO	$H \qquad \qquad \prod HNO_3 \qquad \qquad \prod H_2SO_4 \qquad \qquad \prod Zinc Acetate$	
Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 (water) and Dioxin/PFAS	□Yes	□No	□N/A	Positive for Res. Chlorine?	Yes See Exception ENV-FRM-MIN4-01 No pH Paper Lot#	
Sile, 5522 (Water, and Siem,)				Res. Chlorine	0-6 Roll 0-6 Strip 0-14 Strip	
Headspace in Methyl Mercury Container?	Yes	□No	ØN/A			
Extra labels present on soil VOA or WIDRO containers?	Yes	□No	□N/A	13.	See Except	tion [
Headspace in VOA Vials (greater than 6mm)?	Yes	□No		± J.	ENV-FRM-M	
Trip Blank Present?	Yes	□No	DN/A	14.		
Trip Blank Custody Seals Present?	□Yes	□No	N/A	Pace Trip I	lank Lot # (if purchased):	
CLIENT NOTIFICATION/RESOLUTION Person Contacted:				Date/Time:	Field Data Required? Yes No	
Comments/Resolution:				- Date/ Hille.		
The solution of the solution o						
Project Manager Review:	(1)			Da		
Note: Whenever there is a discrepancy affecting North Carolina com	pliance samp	les, a cop	y of this for			
preservative, out of temp, incorrect containers).					Labeled by:	

Document Name: **Regulated Soil Checklist**

Document No.: ENV-FRM-MIN4-0154 Rev.01 Document Revised: 27Apr2020

Page 1 of 2

Pace Analytical Services -Minneapolis

	USDA REGULATED SOIL CHECKLIST				
To Be Completed by SR Staff:					
wo: 10616033	Date: <u>၂/೪/</u> ル Initial	ls:			
Sample Origin (circle one):	Date: 718/12 Initial OMESTIC NISIN	FOREIGN			
(Note: soil somples from Hawa	ii, Guam, Puerto Rico and the US Virgin Islands are considered to be o	f a Foreign Source)			
If Domestic, circle State of Origin:	AL AR CA FL GA LA MS NC NM NY OK				
		OR SC IN IX VA			
(Includes: IFA, SOD, Golden Nematode, Karna	·	My Unionely			
(USDA Permit/Compliance	Agreement authorizes movement of samples from these domestic reg	gulated zones)			
If Quarantined, circle State of Origin:	FL ID TX CA List County:				
(Inc	cludes Fruit Fly, Giant African Snail and Pale Cyst Nematode)				
(Movement is not authorized for Pale Cys	t Nematode [ID or Giant African Snail [FL], remaining quarantines re	equire additional paperwork)			
If Foreign, list Country of Origin:					
(Movement from some C	anadian Providences is not allowed. Refer to CS-232 Regulated Soil	l Flow Chart)			
, ,	,	,			
REQUIREMENT	ACTION	COMPLETED			
PPQ-530 Paperwork must be included for	Scan PPQ-530 to the corresponding Project folder on the x drive.	CONFELIED			
any samples from counties with a Fruit Fly	search a south the corresponding Project folder of the X drive.	YES NO (N/A			
Quarantine in TX. Refer to MN-S063	If PPQ-530 is not present, contact the Waste Coordinator and do	125 110 (1/2			
through MN-S065	not continue processing samples.				
Samples from ID may not be moved from	If samples originated in a quarantined zone, contact the Waste	YES NO N/A			
the quarantined region. Refer to MN-S055	Coordinator and do not continue processing samples.				
Samples from Giant African Snail	If samples originated in a quarantined zone, contact the Waste	VEC NO STA			
Quarantine in FL may not be moved from	Coordinator and do not continue processing samples.	YES NO NYA			
the quarantined region. Refer to MN-S068					
REQUIREMENT	ACTION	COMPLETED			
"Special Handling" stickers are to be placed	Did "special handling" stickers get placed on all sample	YES (NO			
on all samples.	containers?				
Samples must be segregated and stored in	Were samples placed in a designated cooler, containers and	YES NO			
designated bins, shelves and coolers.	shelves?				
	Were there any signs of breakage or leakage (check for broken	YES MO			
	glass and/or loose soil in the cooler)?				
	If NO, ice and melt water can be disposed of by normal process (do	wn the drain).			
Complete must be double contained to	If YES , were ice and melt water separated from the cooler and	YES NO N/A			
Samples must be double contained to prevent accidental release.	disposed of properly?				
province desired to be desired.	Any broken glass and/or loose soil are to be bagged and placed in	 a LISDA Regulated satellite			
	container or active drum (see Waste Coordinator).	a obba negaratea satemie			
	Ice and melt water should be baked at a temperature range of 12	1-15/°E for 2 hours and then			
	cooled before going down the drain.	1 154 101 2 10415 4114 (1161)			
Equipment and supplies that have come	Was the cooler(s) and/or countertop(s) decontaminated using				
into contact samples must be	either a fresh 10% bleach solution or 70% ethanol? (Gloves and	YES (NO.)			
decontaminated.	other lab supplies will be bagged and placed in the USDA				
	Regulated satellite container or active drum).				
Comments:					

Document Name: Regulated Soil Checklist

Document No.: ENV-FRM-MIN4-0154 Rev.01

Document Revised: 27Apr2020 Page 2 of 2

Pace Analytical Services - **Minneapolis**

To Be Completed by PM and/or PC:

Sample Analysis to be conducted (circle all that apply): Name of Subcontract Lab (s):		MN	Subcontra	act Lab
REQUIREMENT	ACTIO	ON	сом	PLETED
Permission to ship untreated soil must be on file prior to shipping to any subcontract lab, including IR Pace Labs.	Go to: J:\SHARE\PRJ_MGR\10_Cliet Documents\Regulated Soils Permit: not there, contact the Waste Coord	s – if permission to ship letter is	YES I	NO N/A
Shipment must include a valid copy of the receiving lab's permit as well as permission to ship letter.	Is a copy of all needed paperwork in ship samples until all necessary pap		YES N	NO N/A
Comments:				
				,
Project Manager Signature:	in w	Date: 7/8/	722	

Reporting Flags

- A = Reporting Limit based on signal to noise (EDL)
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Isotope ratio out of specification
- J = Estimated value
- L = Suppressive interference, analyte may be biased low
- Nn = Value obtained from additional analysis
- P = PCDEInterference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %DExceeds limits
- Y = Calculated using average of daily RFs
- * = SeeDiscussion

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix B

Sample Analysis Summary

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID TS-001-0622
Lab Sample ID 10616033001
Filename L220721A_07
Injected By MS4
Total Amount Extracted 10.4 g

Total Amount Extracted10.4 gMatrixSolid% Moisture8.9DilutionNADry Weight Extracted9.46 gCollected06/30

 Dry Weight Extracted
 9.46 g
 Collected
 06/30/2022 16:15

 ICAL ID
 L220718
 Received
 07/08/2022 08:50

 CCal Filename(s)
 L220721A_03
 Extracted
 07/15/2022 14:30

 Method Blank ID
 BLANK-100015
 Analyzed
 07/21/2022 11:50

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.34		0.11 0.11 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	68 64 80
2,3,7,8-TCDD Total TCDD	ND 0.48		0.087 0.087 J	1,2,3,7,0-FeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	83 88 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.26	 	0.15 0.10 0.10 J	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	79 73 74 72
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.12 0.12	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	75 75 59 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.20 0.20 0.14	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	65 44
1,2,3,7,8,9-HxCDF Total HxCDF	0.30 0.30		0.18 BJ 0.14 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.26 0.20 0.25 0.20	2,3,7,8-TCDD-37Cl4	0.20	81
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 0.40	0.21	0.13 J 0.12 0.12 J	Total 2,3,7,8-TCDD Equivalence: 0.042 ng/Kg (Lower-bound - Using 2005 \	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.86 0.86		0.11 BJ 0.11 BJ			
OCDF OCDD	0.57	4.6	0.40 J 0.56 IJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Isotope ratio out of specification

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Blank Analysis Results

Lab Sample Name Lab Sample ID Filename **Total Amount Extracted**

ICAL ID

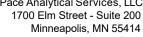
CCal Filename(s)

DFBLKPX BLANK-100015 F220719B_06 10.7 g

F220529 F220719B_01 Matrix Solid Dilution NA

Extracted 07/15/2022 14:30 Analyzed 07/19/2022 18:08

Injected By **SMT**


Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.048 0.048	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	65 57 67
2,3,7,8-TCDD Total TCDD	ND ND		0.11 0.11	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	68 66 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.063 0.041 0.041	1,2,3,4,7,8-11XCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 73 69 65
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.051 0.051	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	59 53
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND 0.12 0.12	 	0.050 0.053 0.045 0.061 J 0.045 J	1,2,3,4,6,7,8-HpCDD-13C 1,2,3,4-6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 4.00 2.00 2.00	55 46 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.16 ND ND 0.16		0.083 J 0.079 0.075 0.075 J	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.049 0.079 0.049	Total 2,3,7,8-TCDD Equivalence: 0.030 ng/Kg (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.18 0.18		0.085 J 0.085 J			
OCDF OCDD	ND 0.64		0.17 0.19 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures. J = Estimated value

Tel: 612-607-1700 Fax: 612-607-6444

Lab Sample ID LCS-100016 Filename F220719B 02 **Total Amount Extracted** 10.8 g ICAL ID F220529

<u> Pace Analytical</u>

CCal Filename F220719B 01 Method Blank ID BLANK-100015

Solid Matrix Dilution NA Extracted

07/15/2022 14:30 Analyzed 07/19/2022 15:06

Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 100 100	11 11 50 49 50 51 52 51 54 52 50 54 56 51 120 120	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 69.0 70.0 170.0	110 114 100 98 101 101 103 104 102 109 104 99 108 112 102 118 120
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	10 100 100 100 100 100 100 100 100 100	12 110 97 110 100 100 130 110 120 110 120 94 82 87 150	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	119 108 97 106 102 102 128 114 115 109 114 123 94 82 87 75

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{* =} See Discussion

Data Validation Report

JH Baxter: Source Material Sampling

December 13, 2024

Prepared by: Mitchell Fargher

GSI Water Solutions, Inc.

650 NE Holladay Street, Suite 900, Portland, OR 97232

Introduction

The data in this abbreviated validation and usability report (U.S. Environmental Protection Agency [EPA] Stage 2A) were reviewed using the guidance presented in the following:

- Project Quality Assurance Project Plan (where required)
- Method Specific Control Limits
- Laboratory Standard Operation Procedures and Control Limits
- EPA's National Functional Guidelines for Organic Superfund Methods Data Review, EPA 540-R-20-005, November 2020
- EPA's National Functional Guidelines for Inorganic Superfund Methods Data Review, EPA 542-R-20-006, November 2020
- EPA's National Functional Guidelines for High Resolution Superfund Methods Data Review, EPA 542-R-20-007, November 2020

Data that are not qualified meet the data quality objectives specified in the referenced documents and can be used for decision-making purposes. Data qualified as estimated (J/UJ) may be used for decision-making purposes but should be used in conjunction with the reason codes assigned to the qualifier for further context. Data that are rejected (R) should not be used for any decision-making purposes due to significant deviations in quality control requirements.

Sample Delivery Group (SDG) Summary

SDG	Event	Analytical Laboratory	Sample Receipt Date	Lab Report Date
L1643943	Source Material Sampling	Pace Analytical	08/09/2023	09/01/2023
L1511257	Source Material Sampling	Pace Analytical	07/02/2022	07/20/2022
L1512340	Source Material Sampling	Pace Analytical	07/02/2022	07/29/2022

Analytical Methods and Technical Holding Times

Analytical Method	Sample Matrix	Technical Holding Time (4°C)
EPA 1613B	Solid	1 Year
EPA 6020B	Solid	6 Months
EPA 7471B	Solid	28 Days
EPA 8081B	Solid	14 Days Extraction 40 Days Analysis
EPA 8082A	Solid	14 Days
EPA 8151A	Solid	14 Days Extraction 40 Days Analysis
EPA 8270E	Solid	14 Days Extraction 40 Days Analysis
EPA 8270E-SIM	Solid	14 Days Extraction 40 Days Analysis
NWTPH-Dx	Solid	14 Days
NWPTH-Gx	Solid	14 Days
SM 2540 G	Solid	7 Days

Sample Delivery Group L1643943

SDG L1643943 was composed of a single Pace Analytical report. The section below contains qualifications related to the entirety of the package.

Sample Identification

The following six field samples were included in this SDG:

Field Sample ID	Lab Sample ID	Sample Date	Matrix	Sample Type
LFP_SM-01	L1643943-01	08/01/23 11:10	Solid	Primary
LFP_SM-02	L1643943-02	08/01/23 11:15	Solid	Primary
REX_SM-01	L1643943-03	08/01/23 12:00	Solid	Primary
REX_SM-02	L1643943-04	08/01/23 12:05	Solid	Primary
DSG_SM-02	L1643943-05	08/01/23 13:05	Solid	Primary
DSG_SM-03	L1643943-06	08/01/23 13:10	Solid	Primary

Sample Management

Sample Receipt

All sample receipt documentation was complete and correct. Samples were shipped to the laboratory by the client. Custody seals were not used. The laboratory stated samples were received intact, and the bottle labels agreed with the COC. No other anomalies were noted.

Holding Time/Preservation

The samples were analyzed within the technical holding times and were properly preserved.

Laboratory Quality Assurance/Quality Control (QA/QC)

Initial and Continuing Calibration Verification (ICV/CCV)

Not independently verified during abbreviated Stage 2A validation with access to only the Level 2 lab report. The lab did not flag any sample results having an associated ICV/CCV outside of specified control limits.

Method Blanks

Method blanks were performed per lab batch and no analytes were detected or did not affect qualification of samples except for:

Batch	Method	Analyte	Result
35991	EPA 1613B	1,2,3,7,8,9-HxCDF	0.1 J+
35991	EPA 1613B	Total HxCDF	0.1 J
35991	EPA 1613B	1,2,3,4,7,8-HxCDD	0.15 J+
35991	EPA 1613B	Total HxCDD	0.15 J
35991	EPA 1613B	OCDD	1.1 J+

See Overall Assessment for qualified results.

Reporting Limits

Reporting limits were not verified against project-specific requirements.

Sample Dilutions

Reported sample dilutions were reviewed and detected analytes were reported from a sample analysis with the lowest dilution.

Surrogate Spikes/Labeled Standards

Surrogates or labeled standards were added to field and QC samples as required per the method where applicable. Sample surrogate percent recoveries were within QC acceptance limits, or a greater ratio of surrogates were within QC acceptance limits (example: 2 out of 3 surrogates).

Matrix Spike (MS)/Matrix Spike Duplicates (MSD)

The MS and MSD analyses performed on SDG samples met all QC acceptance criteria for percent recovery and relative percent difference (RPD) where required per the method.

Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD)

An LCS was analyzed for each batch and all recoveries were within QC acceptance criteria where required per the method.

Laboratory Duplicates

Laboratory duplicate analyses were analyzed where required and all recoveries were within QC acceptance criteria where required per the method.

Target Compound Identification

All target compound identifications were within validation criteria for relative retention times, characteristic ions, and relative ion abundances where applicable except for:

Field Sample ID	Method	Analyte	Result	Qualifier
LFP_SM-01	EPA 1613B	1,2,3,4,7,8-HxCDD	0.31	J+
LFP_SM-01	EPA 1613B	1,2,3,4,6,7,8-HpCDF	1	J+
LFP_SM-01	EPA 1613B	1,2,3,4,6,7,8-HpCDD	2.8	J+
LFP_SM-01	EPA 1613B	OCDF	2.9	J+
LFP_SM-02	EPA 1613B	2,3,7,8-TCDF	0.22	J+
LFP_SM-02	EPA 1613B	2,3,7,8-TCDD	0.14	J+
LFP_SM-02	EPA 1613B	1,2,3,7,8-PeCDF	0.34	J+
REX_SM-01	EPA 1613B	1,2,3,4,7,8-HxCDD	0.18	J+
REX_SM-01	EPA 1613B	1,2,3,4,6,7,8-HpCDD	0.44	J+
REX_SM-02	EPA 1613B	1,2,3,4,7,8-HxCDD	0.16	J+
REX_SM-02	EPA 1613B	1,2,3,4,6,7,8-HpCDF	0.35	J+
DSG_SM-02	EPA 1613B	2,3,7,8-TCDD	0.24	J+

Tentatively Identified Compounds (TIC)

No results were reported as TICs as a part of this SDG.

Field QA/QC

Field Duplicates

No field duplicate was collected and analyzed as part of this SDG.

Equipment Blanks

No equipment blanks were collected and analyzed as part of this SDG.

Trip Blanks

No trip blanks were collected and analyzed as part of this SDG.

SDG Overall Assessment

The data found in this report complied with the data quality objectives as specified. The data, as qualified, are acceptable to use for decision-making purposes. No results were rejected. Data qualifiers are summarized in the following table (results qualified as U due to being non-detect were not included in the table below):

Field Sample ID	Analyte	Result	Qualifier	Validation Code
LFP_SM-01	1,2,3,4,7,8-HxCDD	0.31	J+	EMC
LFP_SM-01	1,2,3,4,6,7,8-HpCDF	1	J+	EMC
LFP_SM-01	1,2,3,4,6,7,8-HpCDD	2.8	J+	EMC
LFP_SM-01	OCDF	2.9	J+	EMC
LFP_SM-01	Total TCDD	0.18	J	BRL
LFP_SM-01	Total PeCDF	0.53	J	BRL
LFP_SM-01	Total HxCDD	0.47	U	MBK
LFP_SM-01	Total HpCDD	2.8	J	BRL
LFP_SM-02	2,3,7,8-TCDF	0.22	J+	EMC
LFP_SM-02	2,3,7,8-TCDD	0.14	J+	EMC
LFP_SM-02	1,2,3,7,8-PeCDF	0.34	J+	EMC
LFP_SM-02	2,3,4,7,8-PeCDF	1.0	J	BRL
LFP_SM-02	1,2,3,7,8-PeCDD	0.71	J	BRL
LFP_SM-02	1,2,3,4,7,8-HxCDF	2.5	J	BRL
LFP_SM-02	1,2,3,6,7,8-HxCDF	2.1	J	BRL
LFP_SM-02	2,3,4,6,7,8-HxCDF	3.0	J	BRL
LFP_SM-02	1,2,3,7,8,9-HxCDF	0.97	U	MBK
LFP_SM-02	1,2,3,4,7,8-HxCDD	1.9	U	MBK
LFP_SM-02	1,2,3,7,8,9-HxCDD	3.5	J	BRL
LFP_SM-02	1,2,3,4,7,8,9-HpCDF	3.8	J	BRL
LFP_SM-02	Total PeCDD	2.9	J	BRL
REX_SM-01	1,2,3,4,7,8-HxCDD	0.18	J+	EMC
REX_SM-01	1,2,3,4,6,7,8-HpCDD	0.44	J+	EMC
REX_SM-01	OCDD	2.5	U	MBK
REX_SM-01	Total HpCDD	0.51	J	BRL
REX_SM-02	1,2,3,7,8,9-HxCDF	0.17	U	MBK
REX_SM-02	1,2,3,4,7,8-HxCDD	0.16	J+	EMC
REX_SM-02	1,2,3,4,6,7,8-HpCDF	0.35	J+	EMC
REX_SM-02	1,2,3,4,6,7,8-HpCDD	3.2	J	BRL

REX_SM-02	OCDF	2.2	J	BRL
REX_SM-02	Total TCDF	0.16	J	BRL
REX_SM-02	Total HxCDF	0.17	U	MBK
REX_SM-02	Total HpCDF	1.3	J	BRL
DSG_SM-02	2,3,7,8-TCDD	0.24	J+	EMC
DSG_SM-02	1,2,3,7,8-PeCDF	0.37	J	BRL
DSG_SM-02	2,3,4,7,8-PeCDF	1.0	J	BRL
DSG_SM-02	1,2,3,7,8-PeCDD	0.44	J	BRL
DSG_SM-02	1,2,3,4,7,8-HxCDF	1.1	J	BRL
DSG_SM-02	1,2,3,6,7,8-HxCDF	1.2	J	BRL
DSG_SM-02	2,3,4,6,7,8-HxCDF	2.4	J	BRL
DSG_SM-02	1,2,3,7,8,9-HxCDF	0.89	U	MBK
DSG_SM-02	1,2,3,4,7,8-HxCDD	1.2	U	MBK
DSG_SM-02	1,2,3,7,8,9-HxCDD	2.6	J	BRL
DSG_SM-02	1,2,3,4,7,8,9-HpCDF	1.7	J	BRL
DSG_SM-02	Total TCDF	1.0	J	BRL
DSG_SM-02	Total PeCDD	4.8	J	BRL
DSG_SM-03	1,2,3,6,7,8-HxCDD	0.34	J	BRL
DSG_SM-03	1,2,3,4,6,7,8-HpCDF	1.7	J	BRL
DSG_SM-03	OCDF	5.1	J	BRL
DSG_SM-03	Total PeCDF	0.55	J	BRL
DSG_SM-03	Total HxCDF	0.96	U	MBK
DSG_SM-03	Total HxCDD	2.2	U	MBK

Sample Delivery Group L1511257

SDG L1511257 was composed of a single Pace Analytical report. The section below contains qualifications related to the entirety of the package.

Sample Identification

The following one field sample was included in this SDG:

Field Sample ID	Lab Sample ID	Sample Date	Matrix	Sample Type
TS-001-0622	L1511257-01	06/30/2022	Solid	Primary

Sample Management

Sample Receipt

All sample receipt documentation was complete and correct. Samples were shipped to the laboratory by the client. Custody seals were not used. The laboratory stated samples were received intact, and the bottle labels agreed with the COC. No other anomalies were noted.

Holding Time/Preservation

The samples were analyzed within the technical holding times and were properly preserved.

Laboratory Quality Assurance/Quality Control (QA/QC)

Initial and Continuing Calibration Verification (ICV/CCV)

Not independently verified during abbreviated Stage 2A validation with access to only the Level 2 lab report. The lab did not flag any sample results having an associated ICV/CCV outside of specified control limits.

Method Blanks

Method blanks were performed per lab batch and no analytes were detected or did not affect qualification of samples.

Reporting Limits

Reporting limits were not verified against project-specific requirements.

Sample Dilutions

Reported sample dilutions were reviewed and detected analytes were reported from a sample analysis with the lowest dilution.

Surrogate Spikes/Labeled Standards

Surrogates or labeled standards were added to field and QC samples as required per the method where applicable. Sample surrogate percent recoveries were within QC acceptance limits, or a greater ratio of surrogates were within QC acceptance limits (example: 2 out of 3 surrogates).

Matrix Spike (MS)/Matrix Spike Duplicates (MSD)

The MS and MSD analyses performed on SDG samples met all QC acceptance criteria for percent recovery and relative percent difference (RPD) where required per the method.

Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD)

An LCS was analyzed for each batch and all recoveries were within QC acceptance criteria where required per the method except for:

Field Sample ID	Method	Analyte	Reason	Qualifier
TS-001-0622	EPA 8081B	Endrin	LCS < LCL	UJ

Laboratory Duplicates

Laboratory duplicate analyses were analyzed where required and all recoveries were within QC acceptance criteria where required per the method.

Target Compound Identification

All target compound identifications were within validation criteria for relative retention times, characteristic ions, and relative ion abundances where applicable.

Tentatively Identified Compounds (TIC)

No results were reported as TICs as a part of this SDG.

Field QA/QC

Field Duplicates

No field duplicate was collected and analyzed as part of this SDG.

Equipment Blanks

No equipment blanks were collected and analyzed as part of this SDG.

Trip Blanks

No trip blanks were collected and analyzed as part of this SDG.

SDG Overall Assessment

The data found in this report complied with the data quality objectives as specified. The data, as qualified, are acceptable to use for decision-making purposes. No results were rejected. Data qualifiers are summarized in the following table (results qualified as U due to being non-detect were not included in the table below):

Field Sample ID	Analyte	Result	Qualifier	Validation Code
TS-001-0622	Antimony	0.373	J	BRL
TS-001-0622	Beryllium	0.82	J	BRL
TS-001-0622	Cadmium	0.142	J	BRL
TS-001-0622	Selenium	0.53	J	BRL
TS-001-0622	Sodium	138	J	BRL
TS-001-0622	Thallium	0.144	J	BRL
TS-001-0622	Endrin	0.00388	UJ	LCS
TS-001-0622	Diesel Range Organics	3.58	J	BRL
TS-001-0622	Residual Range Organics	5.07	J	BRL
TS-001-0622	Gasoline Range Organics	1.29	J	BRL

Sample Delivery Group L1512340

SDG L1512340 was composed of a single Pace Analytical report. The section below contains qualifications related to the entirety of the package.

Sample Identification

The following one field sample was included in this SDG:

Field Sample ID	Lab Sample ID	Sample Date	Matrix	Sample Type
TS-001-0622	L1511257-01	06/30/2022	Solid	Primary

Sample Management

Sample Receipt

All sample receipt documentation was complete and correct. Samples were shipped to the laboratory by the client. Custody seals were not used. The laboratory stated samples were received intact, and the bottle labels agreed with the COC. No other anomalies were noted.

Holding Time/Preservation

The samples were analyzed within the technical holding times and were properly preserved.

Laboratory Quality Assurance/Quality Control (QA/QC)

Initial and Continuing Calibration Verification (ICV/CCV)

Not independently verified during abbreviated Stage 2A validation with access to only the Level 2 lab report. The lab did not flag any sample results having an associated ICV/CCV outside of specified control limits.

Method Blanks

Method blanks were performed per lab batch and no analytes were detected or did not affect qualification of samples except for:

Blank ID (Batch not listed)	Method	Analyte	Result
BLANK-100015	EPA 1613B	1,2,3,4,6,7,8-HpCDD	0.18 J
BLANK-100015	EPA 1613B	1,2,3,7,8,9-HxCDF	0.12 J
BLANK-100015	EPA 1613B	OCDD	0.64 J
BLANK-100015	EPA 1613B	Total HpCDD	0.18 J
BLANK-100015	EPA 1613B	Total HxCDF	0.12 J

See Overall Assessment for qualified results.

Reporting Limits

Reporting limits were not verified against project-specific requirements.

Sample Dilutions

Reported sample dilutions were reviewed and detected analytes were reported from a sample analysis with the lowest dilution.

Surrogate Spikes/Labeled Standards

Surrogates or labeled standards were added to field and QC samples as required per the method where applicable. Sample surrogate percent recoveries were within QC acceptance limits, or a greater ratio of surrogates were within QC acceptance limits (example: 2 out of 3 surrogates).

Matrix Spike (MS)/Matrix Spike Duplicates (MSD)

The MS and MSD analyses performed on SDG samples met all QC acceptance criteria for percent recovery and relative percent difference (RPD) where required per the method.

Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD)

An LCS was analyzed for each batch and all recoveries were within QC acceptance criteria where required per the method.

Laboratory Duplicates

Laboratory duplicate analyses were analyzed where required and all recoveries were within QC acceptance criteria where required per the method.

Target Compound Identification

All target compound identifications were within validation criteria for relative retention times, characteristic ions, and relative ion abundances where applicable except for:

Field Sample ID	Method	Analyte	Result	Qualifier
TS-001-0622	EPA 1613B	1,2,3,4,6,7,8-HpCDF	0.21	J+

Tentatively Identified Compounds (TIC)

No results were reported as TICs as a part of this SDG.

Field QA/QC

Field Duplicates

No field duplicate was collected and analyzed as part of this SDG.

Equipment Blanks

No equipment blanks were collected and analyzed as part of this SDG.

Trip Blanks

No trip blanks were collected and analyzed as part of this SDG.

SDG Overall Assessment

The data found in this report complied with the data quality objectives as specified. The data, as qualified, are acceptable to use for decision-making purposes. No results were rejected. Data qualifiers are summarized in the following table (results qualified as U due to being non-detect were not included in the table below):

Field Sample ID	Analyte	Result	Qualifier	Validation Code
TS-001-0622	1,2,3,4,6,7,8-HpCDD	0.86	U	MBK
TS-001-0622	1,2,3,4,6,7,8-HpCDF	0.21	J+	EMC
TS-001-0622	1,2,3,7,8,9-HxCDF	0.3	U	MBK
TS-001-0622	OCDD	4.6	U	MBK
TS-001-0622	OCDF	0.57	J	BRL
TS-001-0622	Total HpCDD	0.86	U	MBK
TS-001-0622	Total HpCDF	0.4	J	BRL
TS-001-0622	Total HxCDF	0.3	U	MBK
TS-001-0622	Total PeCDF	0.26	J	BRL
TS-001-0622	Total TCDD	0.48	J	BRL
TS-001-0622	Total TCDF	0.34	J	BRL

Overall Assessment

The data found in this report complied with the data quality objectives as specified. The data, as qualified, are acceptable to use for decision-making purposes. In total, 317 results were reviewed from three SDGs. The overall completeness for this event was 100 percent, as no results were rejected.

Definitions of Qualifiers

The following table lists each potential validation qualifier and its associated definition.

Qualifier	Definition
U	The analyte was not detected and is reported as less than the LOD or as defined by the client. The LOD has been adjusted for any dilution or concentration of the sample.
J	The reported result is an estimated value.
J+	The reported result is an estimated value, but the result may be biased high.
J-	The reported result is an estimated value, but the result may be biased low.
UJ	The analyte was not detected and is reported as less than the LOD or as defined by the client. However, the associated numerical value is approximate.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
NJ	The analyte has been "tentatively identified" or "presumptively" as present, and the associated numerical value is the estimated concentration in the sample.
R	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.

Definitions of Validation Codes

The following table lists possible validation codes and their associated definitions.

Code	Definition
BRL	Below reporting limit
HTE	Holding time exceeded
INT	Interference
FDP	Field duplicate RPD outside of control limits
LCS	Laboratory control sample/Laboratory control sample duplicate outside of quality control limits
LDP	Laboratory duplicate sample analysis outside of quality control limits
MSD	Matrix spike/Matrix spike duplicate outside of quality control limits
PRF	Professional judgment
SUR	Surrogate/labeled standard outside of quality control limits
MBK	Method blank contamination
TIC	Tentatively identified compound
CCV	Continuing calibration verification analysis outside of quality control limits
FBK	Field blank contamination (Rinse Blank, Trip Blank, etc)
SPV	Sample preservation outside of quality control limits

Blank Contamination Actions

The following table lists the standard guidelines (with high-resolution noted in parentheses) for applying qualifiers due to blank contamination.

Blank Result	Sample Result	Action
	< RL	Report at RL & qualify U
< DI	> RL, < 5X (2X) Blank Result	Report at sample result & qualify U
< RL	> RL, < 10X (5X) Blank Result	Report at sample result & qualify J+
	> RL, > 10X (5X) Blank Result	No qualification
	< RL	Report at RL & qualify U
> RL	> RL, < 5X (2X) Blank Result	Report at sample result & qualify U
/ KL	> RL, < 10X (5X) Blank Result	Report at sample result & qualify J+
	> RL, > 10X (5X) Blank Result	No qualification