

FINAL

Oregon Department of Environmental Quality

Offsite Investigation Report

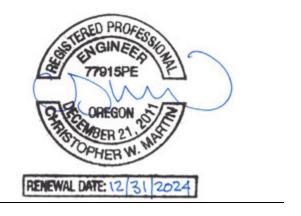
Former JH Baxter & Co. Facility Eugene, Oregon ECSI No. 55

September 30, 2024

Prepared by:

650 NE Holladay Street, Suite 900, Portland, OR 97232

FINAL


Offsite Investigation Report

Former JH Baxter & Co. Facility Eugene, Oregon ECSI No. 55

Prepared for Oregon Department of Environmental Quality

Prepared by:

Christopher Martin, PE Project Manager and Site Engineer GSI Water Solutions, Inc.

Contents

SECTION	N 1: Introduction	1
1.1	Purpose	1
1.2	Limitations	1
SECTION	N 2: Background	2
2.1	Baxter Facility History	2
2.2	DEQ Offsite Involvement	4
2.3	EPA Offsite Involvement	4
2.4	PCDD/F Action Levels	4
SECTION	N 3: Offsite Investigations and Results	5
3.1	June 2022 Offsite Investigation	5
3.1	1 ISM Sampling (0- to 6-inch bgs intervals)	5
3.1	2 Composite Sampling (6- to 12-inch bgs intervals)	6
3.1	3 Analytical Results	6
3.2	April 2023 Supplemental Offsite Investigation	7
3.2	.1 Push Probe Soil Collection	8
3.2	.2 Composite Sampling	8
3.2	.3 Analytical Results	8
3.2	.4 Arborist Consultation	10
SECTION	N 4: Data Screening	11
4.1	TCDD TEQ Calculation	11
4.2	Screening Levels	11
4.3	RA Depths	11
4.4	Quality Assurance/Quality Control	12
SECTION	N 5: Recommendations	14
5.1	Soil Removal Depth	14
5.2	Import Soil	14
5.3	Vegetation Removal	14
5.4	Vegetation Protection	15
5.5	City ROW RAs	
SECTION	N 6: References	16

Tables

Table 1 Previous Offsite Investigation Sample Locations

Table 2 Total TCDD TEQ June 2022

Table 3 Total TCDD TEQ April 2023

Figures

Figure 1 Site Vicinity Map

Figure 2 Soil Removal Depths

Appendices

Appendix A Data Tables

Appendix B Laboratory Reports and Data Validation

Appendix C June 2022 Discrete and Increment Sample Locations

Appendix D April 2023 Discrete and Increment Sample Locations

Appendix E Arborist Reports

Abbreviations and Acronyms

AP Alva Park (decision unit)

Baxter JH Baxter & Co.

BB&A BB&A Associates

bgs below ground surface

City City of Eugene, Oregon

CUL cleanup level

DEQ Oregon Department of Environmental Quality

DU decision unit

EMPC estimated maximum possible concentration

EPA U.S. Environmental Protection Agency

Frontier Frontier Analytical Laboratory
GSI GSI Water Solutions, Inc.

ISM incremental sampling methodology

ITRC Interstate Technology and Regulatory Council

LRAPA Lane Regional Air Protection Agency

MRL method reporting limit
OHA Oregon Health Authority
Pace Pace Analytical National

PCDD/F polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran

PCP pentachlorophenol pg/g picograms per gram

QA/QC quality assurance/quality control
QAPP Quality Assurance Project Plan

RA removal action

RBSL Risk-Based Screening Level

ROD Record of Decision

ROW right-of-way

SO step out (decision unit)

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin

TEF toxicity equivalency factor
TEQ toxicity equivalence quotient
WHO World Health Organization

SECTION 1: Introduction

This report describes offsite investigation activities and analytical results that were collected in preparation of residential soil removal activities north of the former JH Baxter & Co. (Baxter) facility in Eugene, Oregon (Figure 1). The properties identified by these offsite investigations consist of the first offsite soil removal action (RA) to be completed by the Oregon Department of Environmental Quality (DEQ).

This report also contains an assessment of the data results, as well as recommendations to DEQ for the RA activities associated with elevated polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) concentration in soil at residential properties north of the Baxter facility. The recommendations provided in this report include the extent and depth of soil removal proposed for each decision unit (DU).

1.1 Purpose

In accordance with the Offsite Investigation Work Plan (GSI, 2022) and Offsite Investigation Work Plan Addendum #1 (GSI, 2023), the purpose of the offsite investigations was to delineate the PCDD/F concentrations in surface and shallow soil at residential properties immediately north of the Baxter facility. These locations had a high potential for air deposition based on modeling performed by the Lane Regional Air Protection Agency (LRAPA) in support of the Cleaner Air Oregon air emissions evaluations at the Baxter facility. Data from the 2022 and 2023 soil sampling investigations, a prior surface soil sampling investigation completed by Baxter in 2020 and 2021, and the U.S. Environmental Protection Agency's (EPA's) Removal Program investigations in 2022 and 2023 were used to support evaluations of human health risk to residents and for planning future RAs.

1.2 Limitations

The offsite investigations and this summary report have been prepared for DEQ. Work for this project was performed in accordance with generally accepted professional practices relating to the nature of work completed at the same or similar localities. It is intended for the exclusive use of DEQ and for specific application to the site. No other warranty, express or implied, is made.

SECTION 2: Background

This section provides a summary of the Baxter facility's history and previous offsite investigation activities conducted near the Baxter facility. For a more detailed description of the Baxter facility and previous facility activities, refer to DEQ's Record of Decision (ROD) issued for the Baxter facility (DEQ, 2019).

2.1 Baxter Facility History

The JH Baxter & Co. facility is a former wood treating facility located at 85 Baxter Street in Eugene, Oregon (Figure 1). The Baxter facility produced treated wood products using a variety of additives, including pentachlorophenol (PCP), which results in the generation of PCDD/Fs as part of the PCP manufacturing process. Further, unauthorized evaporation of PCP was performed in the retorts, which resulted in airborne releases of PCP (and in turn PCDD/Fs) that are suspected of depositing in the neighborhood to the north of the facility, immediately across Roosevelt Boulevard (DEQ, 2022b).

Offsite Soil Investigation. In 2020 and 2021, Baxter, to meet the conditions of the ROD, began investigating the potential impacts of facility operations on the surrounding area to confirm releases to offsite areas in the direction of prevailing wind patterns. Sampling activities included investigating adjacent drainage ditches to the north and south of the facility and close-in residential properties, as well as collecting background samples to understand area-wide depositional patterns (DEQ, 2019). Contaminants of interest included chemicals related to wood treatment (metals [arsenic, chromium, copper, and zinc], polycyclic aromatic hydrocarbons, PCP, and PCDD/Fs).

Baxter collected offsite surface soil samples from the locations listed in Table 1 in 2020 (GSI, 2020) and 2021 (GSI, 2021). This report does not present data collected from these previous investigations, except where detected surface soil concentrations indicated a risk that was investigated further in subsequent offsite investigations.

Table 1. Previous Offsite Investigation Sample Locations

Sample Type	Sample Name	Location
2020 Offsite Investigation	on .	
Offsite Surface Soil	DU-1	Lark City Park northeast of site.
	DU-2	Public right-or-way along West 1st Avenue, south of site.
	DU-3	Within ditch along south side of Site from outfall entry into ditch to west property line fence.
	DU-4	Public right-of-way along Roosevelt Boulevard, north of site
	DU-5	Residential area right-of-way north of site (archived).
	DU-6	Within ditch along northwest side of Site at discharge of outfall.
Background Surface Soil	BKGD-1/DU-7	Uplands southeast of site.
	BKGD-2/DU-8	Within ditch along south side of site from east property line fence to immediately prior to Outfall 1 water entering ditch (archived).

Sample Type	Sample Name	Location
2021 Offsite Investigatio	n	
Offsite Surface Soil	DU-02	South shoulder of Roosevelt Boulevard in unpaved areas immediately beyond the facility fence line with northwesterly wind direction potential air deposition.
	DU-03	South shoulder of Roosevelt Boulevard in unpaved areas immediately beyond the facility fence line with northwesterly wind direction potential air deposition.
	DU-04	Undeveloped north bank soil of Roosevelt channel above the assumed high water elevation with northwesterly win direction potential air deposition. Location also evaluates potential concentration gradients away from DU-02.
	DU-05	Undeveloped north bank soil of Roosevelt channel above the assumed high water elevation with northly wind direction potential air deposition. Location also evaluate potential concentration gradients away from DU-02 and DU-03.
	DU-06	Undeveloped north bank soil of Roosevelt channel above the assumed high water elevation with northeasterly win direction potential air deposition. Location also evaluate potential concentration gradients away from DU-03.
	DU-07	Unimproved and unutilized lot in residential area. Location evaluates northwesterly wind direction potential air deposition. Location also evaluates potential concentration gradients away from DU-04.
	DU-08	Residential lot north of site. Location also evaluates potential concentration gradients away from DU-05.
	DU-10	Residential lot north of site. Location also evaluates potential concentration gradients away from DU-05.
	DU-11	Residential lot north of site. Location also evaluates potential concentration gradients away from DU-05.
	DU-12	Residential lot north of site. Location also evaluates potential concentration gradients away from DU-05 and DU-06.
	DU-15	Residential lot north of site. Location also evaluates potential concentration gradients away from DU-11
	DU-16	Residential lot north of site. Location also evaluates potential concentration gradients away from DU-11 and DU-12.
Background Surface Soil	BKGD-04	Peterson City Park north of site
	BKGD-05	Residential Property northwest of the site
	BKGD-06	Trainsong City Park northeast of the site
	BKGD-07	North slope Roosevelt Ditch north of the site
	BKGD-08	Emerald Park northeast of the site
	BKGD-09	Hawkins Heights City Park south of the site

BKGD = background

DU = decision unit

Elevated PCDD/F contamination was identified in soil samples collected from drainage ditches and residential yards immediately north of the Baxter facility. PCDD/F concentrations were highest in the 2021 samples in drainage ditches and yards within areas where air deposition modeling completed by the LRAPA predicted predominant summer wind direction and deposition from the Baxter facility (GSI, 2020).

Drainage ditches and a few residential yards exceeded DEQ's Risk-Based Screening Levels (RBSLs) for direct contact with soil in residential settings for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity equivalence quotient (TEQ), which is 4.7 picograms per gram (pg/g). Arsenic was also detected in residential yards above RBSLs; however, these concentrations were below regional background concentrations (DEQ, 2013).

Following these investigations, Baxter was directed to perform residential soil removal and replacement in accordance with the ROD.

2.2 DEQ Offsite Involvement

In January 2022, Baxter notified DEQ they would not be able to implement cleanup at the residential yards in a timely manner and suspended wood treatment activities at its facility. DEQ subsequently declared the Baxter facility an Orphan Site to enable utilization of the Industrial Orphan Site Account (DEQ, 2022a) to complete the RAs at the offsite residential properties. Two supplemental investigations, which are detailed in this report, were completed by GSI Water Solutions, Inc. (GSI), under contract to DEQ.

2.3 EPA Offsite Involvement

In May 2022, EPA's Removal Program began assisting DEQ with the Baxter offsite property investigation. EPA's work expanded on the surface soil sampling previously conducted by Baxter and focused on delineating the extent of contamination in the neighborhood north of the former Baxter facility. Analytical data provided by EPA has added to the extent of RAs to be conducted. To date, EPA has collected soil samples from 52 properties.

2.4 PCDD/F Action Levels

The Oregon Health Authority (OHA) identified a 40 pg/g TCDD TEQ value to warrant expedited cleanup of residential properties near the Baxter facility (OHA, 2023). The value was based on the consideration of increased non-cancer human health risks related to children under 6 years of age regularly exposed to residential soil. DEQ subsequently adopted the 40 pg/g value as an early action cleanup level (CUL) for initial Baxter offsite RA activities.

After a property was identified as requiring early action soil removal, the total depth of soil removal was determined by the maximum vertical depth where PCDD/F concentrations exceeded DEQ's RBSLs for direct contact by residential receptors of 4.7 pg/g (DEQ, 2023).

SECTION 3: Offsite Investigations and Results

The offsite investigations described in this report focused on properties initially identified in Baxter's and EPA's offsite investigations. GSI completed two rounds of investigation activities with DEQ. The first investigation was completed in June 2022 and included five residential properties north of the Baxter facility. The second investigation was completed in April 2023 and included seven residential properties. Each residential property was investigated as a single DU, with two sub-DUs for vertical delineation sampling. A DU defines an exposure area upon which risk decisions to potential receptors (i.e., humans and/or ecological receptors) are based. Analytical results from the two offsite investigations are summarized below; complete data results tables from the investigations are included in Appendix A. Analytical laboratory reports and data validation reports are included in Appendix B.

3.1 June 2022 Offsite Investigation

On June 20 and 21, 2022, GSI completed an offsite investigation at five residential properties near the Baxter facility. Soil samples were collected from the ground surface to depths up to 12 inches below ground surface (bgs) to identify the extent of PCDD/F in surface soil. The DUs and associated property addresses included:

- DU-09 (Baxter Street)
- DU-10 (Baxter Street)
- DU-11 (Baxter Street)
- DU-14 (Baxter Street)
- DU-15 (Baxter Street)

At DU-09, DU-14, and the backyard of DU-11, previous sampling had not been conducted and soil was assessed for PCDD/F concentrations in the 0- to 6-inch bgs depth zone using an incremental sampling methodology (ISM) approach (ITRC, 2020; DEQ, 2020). At DU-10, DU-15, and the front yard of DU-11, ISM sampling from 0 to 6 inches was previously completed during the 2021 investigation by Baxter. All five DUs had not previously been characterized within the 6- to 12-inch depth interval and sampling was performed in this depth zone during this investigation using a multi-point composite sampling approach. The individual sample locations collected per DU during the June 2022 investigation are presented on the figures included in Appendix C.

3.1.1 ISM Sampling (0- to 6-inch bgs intervals)

Surface soil from DU-09, DU-14, and the backyard of DU-11 were characterized using ISM, which is a structured composite sampling and processing protocol that reduces data variability, increases sample representativeness, and reduces the chance of missing potential elevated concentrations of PCDD/Fs in a volume of soil targeted for sampling. The composite sample from each DU consisted of 50 soil increments collected in accordance with DEQ's *Decision Unit Characterization* Internal Management Directive (DEQ, 2020) and Interstate Technology and Regulatory Council's (ITRC's) ISM Update (ITRC, 2020).

Each DU was divided into a grid pattern consisting of 50 approximately equal-sized grid cells. An increment was collected from within each of the grid cells using a systematic random grid pattern.

Soil for the incremental surface samples were collected using a small wood auger bit attached to an electric drill. The auger attachment was decontaminated between sampling each DU. At each increment location, surface vegetation, debris, and/or larger gravels and cobbles were removed prior to sample collection. In

addition to surface vegetation and gravel, significant root mass was removed from the soil surface and discarded; however, degraded or fine organic materials were left for sample collection. The sampling device was then advanced to a depth of 6 inches from the cleared soil surface. Soil was extruded from the sampling device and placed into a decontaminated stainless steel bowl for homogenization and observation of soil conditions. After homogenization, an increment of approximately equal volume was removed from the bowl. Soil sample volumes were then placed in a single laboratory-supplied certified-clean glass sample container (approximately 4 liters). This process was repeated for all 50 increments.

Field replicate samples (i.e., duplicate and triplicate samples) were collected from the backyard of DU-11 in accordance with DEQ's *Decision Unit Characterization* Internal Management Directive (DEQ, 2020) to assess data variability. To collect duplicate and triplicate samples, the field team collected a total of three increment samples from each grid square, rather than one. This was performed by collecting the initial 50-increment sample (no duplicate or triplicate increments) from all grids and compositing into a common sample jar. Then the field team returned to each grid to collect soil for the duplicate sample (increments for the duplicate were obtained approximately a foot north of the original increments). Following collection of the duplicate sample, the triplicate sample was collected approximately one foot west of the original increments.

ISM samples were submitted under chain of custody to Apex Analytical Laboratory of Tigard, Oregon, for processing and analysis. Processing included grinding and homogenizing the entire soil volume in accordance with ITRC's ISM standards (ITRC, 2020). The processed soil was then submitted under chain of custody to Frontier Analytical Laboratory (Frontier) of El Dorado Hill, California, for chemical analysis.

3.1.2 Composite Sampling (6- to 12-inch bgs intervals)

Each of the original five DUs were subdivided into two sub-DUs (i.e., front yard, backyard) for composite sampling at the deeper intervals. Each composite sample comprised five discrete soil increments (similar to ISM sampling) collected from 6 to 12 inches bgs. For each sub-DU, the total surface soil area was divided into five areas of approximately equal size. Composite sample increments were collected from near the center of each area.

The composite soil samples within each DU were collected using the same tooling and sampling procedures as described for ISM sampling. Surface vegetation, debris, and the top 6 inches of soil were completely removed using a decontaminated stainless steel hand trowel. Loose debris and soil from the top 6 inches of soil were fully removed to prevent sluffing and cross-contamination of the lower 6-inch sample increment. The 6- to 12-inch sample depth interval was then collected and placed in a large stainless-steel bowl for field homogenization. An aliquot of the soil sample was then placed in a laboratory-supplied 1-liter glass sample container. All aliquots from each composite increment were of equal volume and were placed in a single sample container, with total volume sufficient to fill the 1-liter sample container.

Composite samples were submitted under chain of custody to Pace Analytical National (Pace) of Mt. Juliet, Tennessee, for ISM processing (pulverizing and homogenizing sample material) and chemical analysis under Price Agreement #8903 with the State of Oregon.

3.1.3 Analytical Results

Soil samples were submitted to Frontier and Pace and analyzed for PCDD/F by EPA Method 1613B. Total TCDD TEQ was calculated using World Health Organization's (WHO's) 2005 summation rules (see Section 4.1). CUL decision concentrations have been determined to be 40 pg/g, as discussed in Section 2.4. A summary of TCDD TEQ values and CUL exceedances is provided in Table 2. Complete analytical results are presented in Table A-1 in Appendix A.

Table 2. Total TCDD TEQ June 2022

Decision Unit	Sample Interval (inches bgs)	TCDD TEQ (pg/g)
DU-09	0-6	30.9
DU-09A	6-12	18.0
DU-09B	6-12	62.3
DU-10 ¹	0-6	62.2
DU-10A	6-12	27.6
DU-10B	6-12	30.9
DU-11 (front yard only) ¹	0-6	116
DU-11 (backyard only)	0-6	60.4
DU-11A	6-12	35.1
DU-11B	6-12	32.9
DU-14	0-6	14.9
DU-14A	6-12	11.0
DU-14B	6-12	10.3
DU-15 ¹	0-6	67.7
DU-15A	6-12	26.2
DU-15B	6-12	19.8

Notes

Yellow highlighted cells indicate TCDD TEQ concentration above 40 pg/g.

bgs = below ground surface DU = decision unit pg/g = picograms per gram

TCDD = 2,3,7,8-tetrachlorodibenzo-p-dioxin TEQ = toxicity equivalence quotient

The results of the June 2022 investigation indicated that additional soil data was required to fully delineate the vertical extent of PCDD/F contamination to the RBSL threshold. Additional data needs prompted a supplemental investigation to be performed in April 2023. Results from DU-14 indicate no early RA was required and further investigation was not performed in this DU.

3.2 April 2023 Supplemental Offsite Investigation

DU-09, DU-10, DU-11, and DU-15 were carried forward to the supplemental offsite investigation based on the soil results summarized above. Additionally, DUs step out (SO) -06 Baxter Street), SO-07 Baxter Street), and Alva Park (AP) -01 Alva Park Drive) were also identified as having surface soil TCDD TEQ concentration above 40 pg/g through the 2022 EPA sampling program. EPA sampling design was to collect soil samples to 6 inches bgs only in order to maximize the number of properties initially screened. Based on the results of EPA's initial efforts, these three DUs were added to the DEQ 2023 supplemental investigation. The individual sample locations collected per DU during the April 2023 investigation are presented on the figures included in Appendix D.

The purpose of the supplemental offsite investigation was to determine the vertical extent and magnitude of PCDD/F concentrations in shallow soil in properties north of the Baxter facility to support future removal depth requirements during the RA.

¹ Sample collected in September 2021 during Baxter-funded investigation.

Separately, the supplemental investigation included characterization of trees and shrubs within DUs where RA is anticipated to determine the potential impacts RA may have on viability. To support this assessment, consultation with a certified arborist was conducted to identify vegetation that may be at risk during RA and develop procedures and mitigation measures for critical root structure protection within affected properties.

3.2.1 Push Probe Soil Collection

GSI subcontracted with BB&A Associates (BB&A) of Eugene, Oregon, to complete shallow push probe activities. BB&A is an Oregon-licensed driller in accordance with Oregon Water Resources Department regulations (Oregon Administrative Rule 690-240). BB&A mobilized a direct push drill rig and electric jackhammer with probe attachment to complete 10 direct push cores (five cores for each of the two sub-DUs) on each property for composite sample collection. A GSI representative was present to observe and document the direct push activities and subsurface conditions.

Each property was divided into two sub-DUs (i.e., front yard, backyard) matching the June 2022 sampling approach for composite sampling. Composite samples consisted of five individual aliquots. The total surface area of each sub-DU was divided into five sample areas of approximately equal size, where one sample aliquot was obtained from each of the five areas. The sample location of each aliquot was generally located near its center. All cores were drilled to 3 feet bgs.

3.2.2 Composite Sampling

The objective of composite sampling was to determine the concentrations of PCDD/F at various depth intervals within each sub-DU. Each composite sample consisted of combining aliquots of soil from five individual sample locations representing the sub-DU within depth zones. Composite sample depth intervals included soil from 0.5 to 1 foot bgs from EPA-identified DUs only (SO-06, SO-07, and AP-01), and from 1 to 1.5 feet, 1.5 to 2 feet, 2 to 2.5 feet, and 2.5 to 3 feet bgs in all DUs identified for the 2023 supplemental offsite investigation. Aliquots for each 6-inch depth composite were collected by removing soil from direct push cores obtained by the drilling subcontractor within the identified discrete intervals. The aliquots were then placed in a labeled, laboratory-supplied sample containers specific to each depth interval. All aliquots from each composite increment were of equal volume and were placed in a single sample container, with total volume sufficient to fill the 1-liter sample container.

Composite samples were submitted under chain of custody to Pace for ISM processing and chemical analysis under Price Agreement #8903 with the State of Oregon. Upon receipt at the laboratory, Pace performed ISM laboratory homogenization methodology prior to analysis.

3.2.3 Analytical Results

Soil samples were submitted to Pace for PCDD/F analysis by EPA Method 1613B. Total TCDD TEQ was calculated using WHO's 2005 summation rules (Van den Berg et al., 2006). A summary of TCDD TEQ data from the April 2023 investigation is provided in Table 3. Because each of the DUs investigated in the April 2023 offsite investigation have qualified for early action, the table below indicates exceedance of DEQs Risk-Based Concentrations for direct contact (4.7 pg/g) that is used to determine the depth of soil removal. Complete analytical results are presented on Table A-1 in Appendix A.

Table 3. Total TCDD TEQ April 2023

Decision Unit	Sample Interval (inches bgs)	TCDD TEQ (pg/g)
DU-09A	12-18	11.4
	18-24	1.60
DU-09B	12-18	15.4
	18-24	3.89
DU-10A	12-18	4.81
	18-24	1.85
DU-10B	12-18	1.94
	18-24	2.00
DU-11A	12-18	4.76
	18-24	6.49
	24-30	2.94
	30-36	1.03
DU-11B	12-18	1.24
	18-24	0.707
DU-15A	12-18	1.99
	18-24	1.52
DU-15B	12-18	1.95
	18-24	0.729
S0-06 ¹	0-6	124
S0-06A	6-12	1.19
	12-18	0.533
S0-06B	6-12	3.48
	12-18	0.678
	18-24	0.423
S0-07 ¹	0-6	18.6
S0-07A	6-12	5.01
	12-18	1.39
S0-07B	6-12	4.69
	12-18	1.40
AP-01 ¹	0-6	27.6
AP-01A	6-12	0.905
	12-18	0.599
AP-01B	6-12	3.78
	12-18	0.803

Notes

Yellow highlighted cells indicate TCDD TEQ concentration above 4.7 pg/g.

 $AP = Alva \ Park \qquad bgs = below \ ground \ surface \qquad DU = decision \ unit \qquad pg/g = picograms \ per \ gram$

SO = step out TCDD = 2,3,7,8-tetrachlorodibenzo-p-dioxin TEQ = toxicity equivalence quotient

¹ Sample collected by EPA in November 2022.

3.2.4 Arborist Consultation

Established trees and their associated critical root structures are expected to be encountered on all or nearly all properties where RA is anticipated. This includes root structures from trees located on neighboring properties and from trees within the City of Eugene (City) right-of-way (ROW). The City has a municipal code designed to protect existing ROW trees and critical root structures during development activities. Depending on how RA activities are classified by the City and whether trees within the ROW are affected, the level of protection and planning may differ. GSI subcontracted with an International Society of Arboriculture-certified arborist, Spade Tree Preservation, of Brownsville, Oregon, to identify trees that may require protective measures and best management practices to minimize impacts to established vegetation that will remain during the RA.

Spade Tree Preservation prepared outlined procedures the earthwork contractor should take during RA to protect existing trees while removing as much soil as possible from removal areas. The arborist also outlined backfill requirements and completed an International Society of Arboriculture Basic Tree Risk Assessment Form for each potentially affected tree within a DU.

SECTION 4: Data Screening

All PCDD/F results from the 2022 and 2023 investigations completed by GSI, historical offsite investigation results, and initial EPA data collected from current offsite investigation DUs are included in Table A-1 in Appendix A. An evaluation of the results was performed by GSI with input from DEQ, as described below.

4.1 TCDD TEQ Calculation

TCDD TEQ values are used as screening criteria to evaluate risk from PCDD/F exposure. The WHO has provided standardized guidance on how to calculate a TCDD TEQ value. DEQ has determined that the WHO's 2005 TCDD TEQ criteria (Van den Berg et al., 2006) is the most appropriate summation approach to be used for TEQ calculations.

Individual PCDD/F congener data were reported by the analytical laboratory for 17 congeners. The TCDD TEQ was calculated using the WHO's summation rules. The TCDD TEQ calculation assigns toxicity equivalency factor (TEF) to each individual PCDD/F congener. The detected values of the individual congeners are multiplied by their TEF and summed together to calculate the TCDD TEQ. The TEF values for individual congeners are shown in Table A-1 in Appendix A.

Individual congeners that were reported as non-detect by the laboratory are represented in the TCDD TEQ calculation by using half of the estimated detection limit, which is presented in the laboratory report. Concentrations above the laboratory detection limit but below the laboratory method reporting limit (MRL), are estimate (i.e., J-flagged). In some instances, matrix interference resulted in concentrations being estimated and biased high (i.e., J+-flagged). Where these qualifiers exist for individual congeners, the qualifier is also applied to the total TCDD TEQ value.

4.2 Screening Levels

DEQ used a CUL of 40 pg/g TCDD TEQ, as derived by OHA. The 40 pg/g value was used to evaluate all shallow soil results and determine if RA would be prioritized for the property. After a DU was selected for RA, the complete set of data from the DU was used to determine the total depth of removal. DEQ's RBSL for TCDD TEQ of 4.7 pg/g was used to determine the total depth of the RA removal. The maximum total depth of soil removal considered was 3 feet bgs, as that is seen as the zone of potential exposure for residential receptors (DEQ, 2017a).

4.3 RA Depths

Seven DUs have been identified for inclusion in the initial RA with soil concentrations at or above 40 pg/g TCDD TEQ within at least one depth interval analyzed in samples from 2020 to 2022. These seven properties were then included in the supplemental offsite investigation in April 2023 to determine total depth of soil removal. The soil removal depths for each DU, presented on Figure 2, are as follows:

- 6-inch soil removal will occur at SO-06 (Baxter Street) in both the front and backyard, SO-07 (Baxter Street) in the backyard, and AP-01 (Baxter Street) in both the front and backyard.
- 12-inch soil removal will occur at DU-10 (Baxter Street) in the backyard, DU-11 (Baxter Street) in the backyard, DU-15 (Baxter Street) in both the front and backyard, and SO-07 (Baxter Street) in the front yard.
- 18-inch soil removal will occur at DU-09 (Baxter Street) in both the front and backyard, and DU-10 (Baxter Street) in the front yard.

24-inch soil removal will occur at DU-11 (Baxter Street) in the front yard.

4.4 Quality Assurance/Quality Control

Soil samples were collected and analyzed in accordance with DEQ's Quality Assurance Project Plan (QAPP) for EPA Preliminary Assessment/Site Inspection investigations (DEQ, 2017b). The QAPP presents quality objectives and procedures for sampling and analysis of sites that involve DEQ funding.

Data Quality Objectives. The data quality and quality assurance objectives for the offsite investigations were used to develop and implement procedures for obtaining and evaluating data of a specified quality, which could then be used to determine the magnitude and extent of contamination and evaluate risks posed to human health. To collect such information, analytical data required an appropriate degree of accuracy and reproducibility, samples collected needed to be representative of actual field conditions, and samples needed to be collected and analyzed using unbroken chain-of-custody procedures.

Field Quality Assurance/Quality Control (QA/QC). Disposable or decontaminated sampling equipment were used to the extent practicable to minimize or eliminate cross-contamination. Samples were labeled with sample-specific identifying information and chain of custody was maintained at all times.

For precision, the QAPP requires field duplicate samples be collected at a frequency of at least 1 for every 20 samples analyzed. The duplicates are then compared to the primary sample to determine the precision of the analytical results. For concentrations or measurements that are five times greater than the MRL, the control limit for field duplicate samples is set as relative percent difference of +/- 50 percent for organic solid compounds. For concentrations or measurements less than five times greater than the MRL, the control limits are set at a difference no greater than twice the absolute value of the difference. QA/QC samples are shown on Table A-2 in Appendix A.

To determine representativeness of sample results, the QAPP requires equipment blank samples (also referred to as rinsate blanks) to be collected at a frequency of at least 1 for every 20 samples analyzed. The blank sample results are compared to samples collected from the same sampling event to determine whether insufficient decontamination procedures may have resulted in cross-contamination of samples. Analytes in the equipment blank should be below the MRL or any detections should be less than 10 percent of the lowest concentration identified in any sample.

During the June 2022 offsite investigation, duplicate and triplicate samples were collected from DU-11 at the 0- to 6-inch depth interval. These duplicate samples were processed and analyzed by the same procedures as the primary sample. The results of the duplicate and triplicate samples were within the QAPP parameters for field duplicates and therefore representative according to the QAPP (Table A-2 in Appendix A). In June 2022, an equipment blank was obtained using laboratory supplied deionized water passing over decontaminated auger equipment and collected for analysis of PCDD/Fs. Low-level detections of certain PCDD/F congeners were reported in the equipment blank sample. These results are below 10 percent of the lowest detection in any sample from the same event. As such, the samples are representative.

In April 2023, a duplicate sample was collected and analyzed from DU-10A at the 12- to 18-inch depth interval and from DU-06A at the 18- to 24-inch depth interval. These duplicate samples were processed and analyzed by the same procedures as the primary sample. The results of the duplicate samples were within the QAPP parameters for field duplicates and therefore representative according to the QAPP (Table A-2 in Appendix A). Two equipment blanks were obtained using laboratory supplied deionized water passing over decontaminated push probe equipment and collected for analysis of PCDD/Fs. Low-level detections of certain PCDD/F congeners were reported in the equipment blank samples. These results are below

10 percent of the lowest detection in any sample from the same event. As such, the samples are representative.

Laboratory QA/QC. The laboratory also performed QC analyses (e.g., matrix spikes and method blanks) per the requirements of the analytical method. Detection limits were consistent with industry standards and, when practicable, below or comparable to promulgated regulatory standards, unless raised due to high analyte concentrations in the sample or matrix effects.

Data Validation. GSI conducted Stage 2A/B Data Validation on laboratory reports to confirm data usability. The results of the data validation are included in Appendix B for each of the laboratory reports. The laboratory provided an estimated maximum possible concentrations (EMPCs) for congeners where the ion abundance ratio was out of specifications and where polychlorinated diphenyl ether was present, These EMPCs were flagged by GSI's data validation review as estimated values that are biased high (J+). J+-flagged concentrations were used in the TCDD TEQ calculation, with the resultant TCDD TEQ calculation also flagged as J+.

SECTION 5: Recommendations

The findings from the offsite investigations determined where RA is required, determined the depth of soil removal on each DU included for RA, and identified protective measures for trees and/or shrubs during the RA. Additional RA recommendations are also discussed below.

5.1 Soil Removal Depth

The recommended soil removal depths, shown in Figure 2, were determined from the analytical results from data collected over multiple investigations. In general, deeper soil removal is required from properties closer to the Baxter facility. The deepest soil removal will occur at DU-11 in the front yard and southern portion of the backyard where 24 inches of soil will be removed and replaced with clean soil.

DU-09 and DU-10 are also the along the southern-most offsite properties and closest to the Baxter facility. At these locations, 18 inches of soil will be removed and replaced. From the analytical results, only 12 inches of soil will be removed from the backyard of DU-10.

The northern portion of DU-11 backyard, DU-15, and the southern portion of SO-07 will also require 12 inches of soil removal. These DUs are adjacent to each other along the east side of Baxter Street.

The northern portion of SO-07 (backyard) will require 6 inches of soil removal. DUs SO-06 and AP-01 will also require 6 inches of soil removal. These are the northernmost DUs identified for RA and furthest from the Baxter facility.

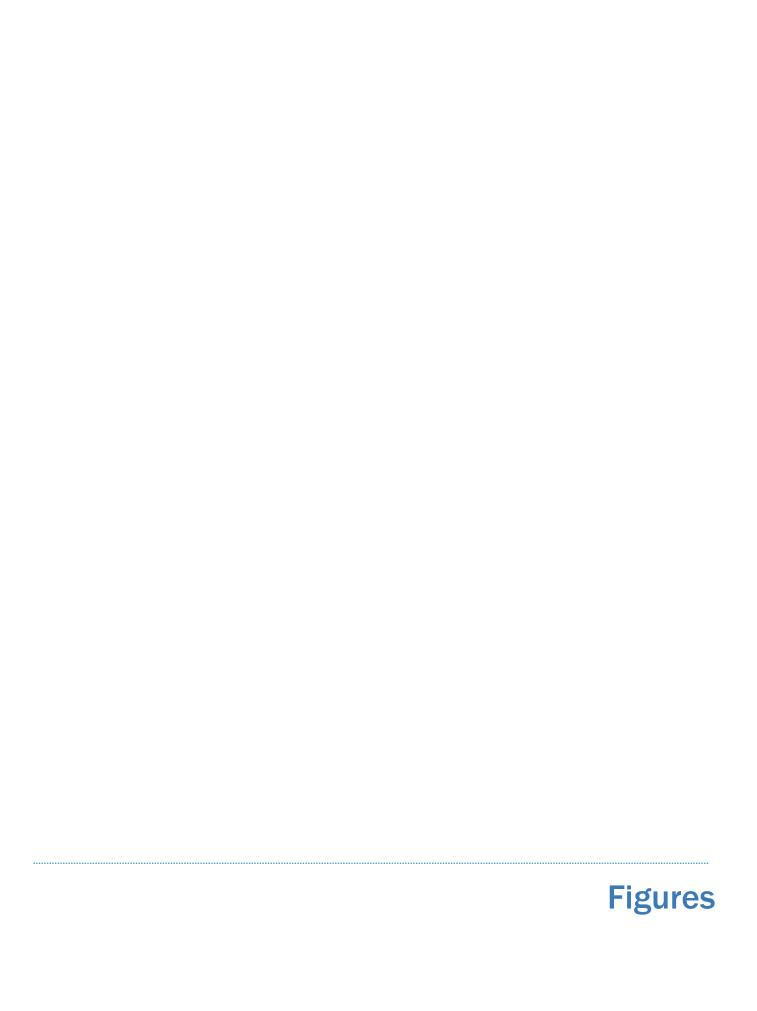
5.2 Import Soil

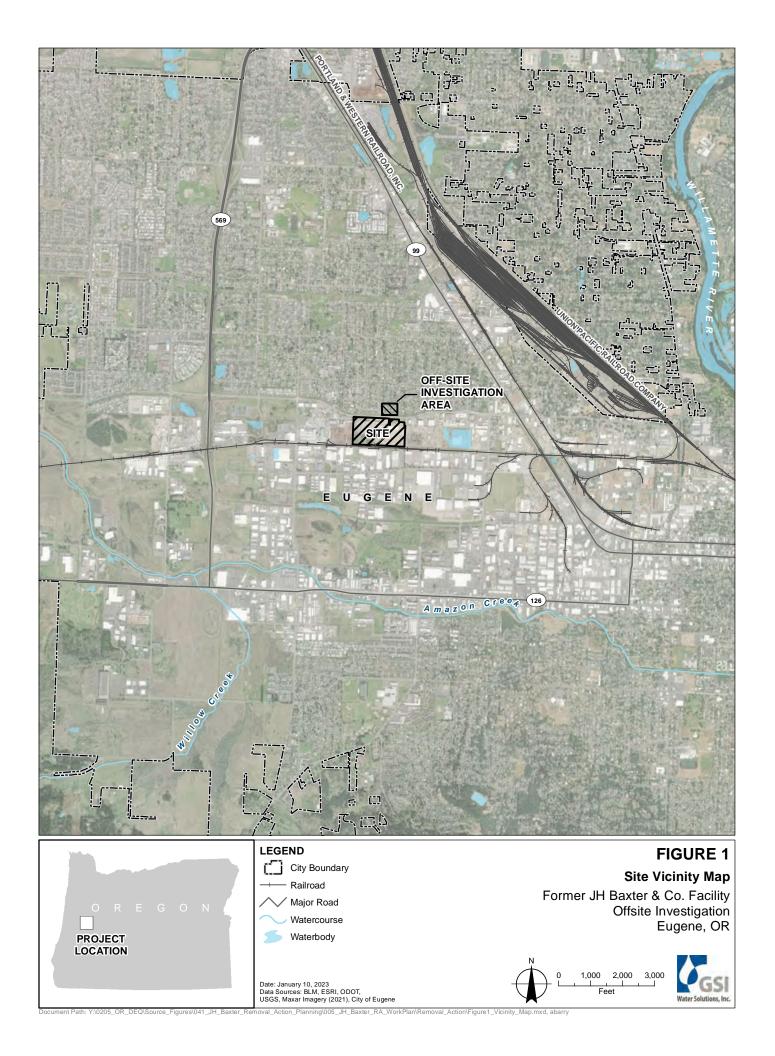
Clean topsoil will be imported to replace the top 6 to 12 inches of soil removed for the RA. For deeper soils, another clean fill soil source will be identified and imported. Commercially available topsoil and clean fill sources were tested for PCDD/F prior to implementing the RA. The results of the source soil sampling will be included in the Offsite Removal Action Construction Completion Report.

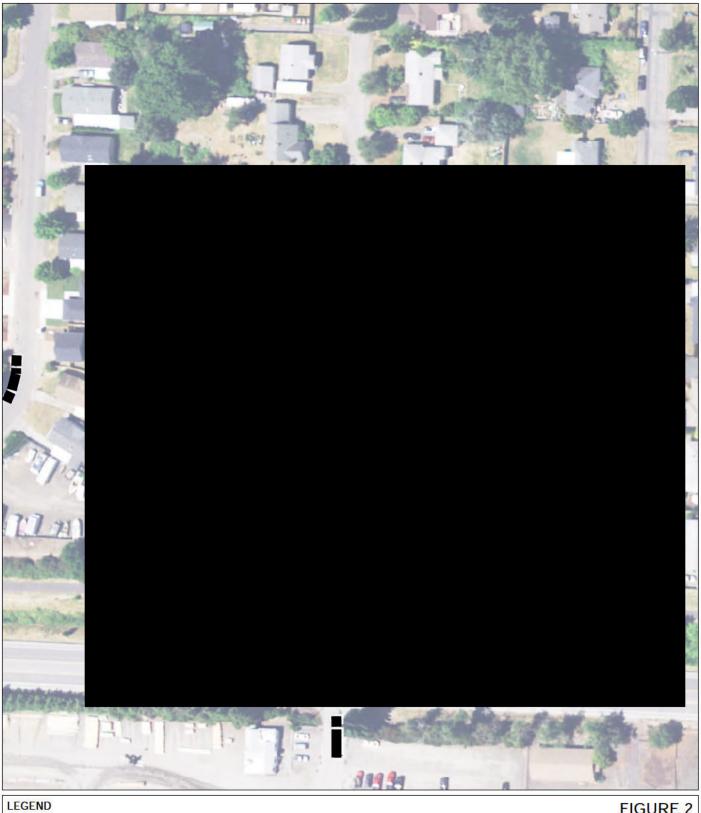
5.3 Vegetation Removal

The Arborist Reports (Appendix E) outlines which trees were recommended for removal from properties and whether tree removal should occur before or during RA due to a high risk of tree death or instability resulting from soil excavation. Of 44 trees assessed in the report, 16 trees were recommended for removal. These include smaller trees with deformities or poor placement, as well as larger varieties, including Coast redwood (Sequoia sempervirens), Eastern black walnut (Juglans nigras), and Douglas fir (Pseudotsuga menziensii). Shrubs were also evaluated in the Arborist Reports in Appendix E. The arborist declined to recommend action on three trees three were identified to be within the City ROW. These three trees will be protected during the RA.

5.4 Vegetation Protection


Spade Tree Preservation determined the procedures necessary to keep trees and shrubs where possible, as outlined in the Arborist Reports (Appendix E). Sixteen of 44 trees assessed and several shrubs were deemed appropriate for transplantation. This would involve removing the plant by digging out the entire root ball, shaking out excess root ball soil, potting the specimen after removal, and either replanting following the RA, or keeping the plant potted until the optimal planting season (fall or winter). For the 9 trees recommended to be kept in the ground during the RA and 3 trees within the City ROW, root structures should be protected from heavy equipment by excavating using an air knife or via hand removal within the critical root zone of the tree. The root systems shall be kept moist, and soil under trees shall not be removed greater than 12 inches for structural safety purposes.


5.5 City ROW RAs


Each DU where RA is proposed is adjacent to an unpaved portion of City ROW. The ROW was not included in the offsite investigation and consultation with the City will be required to determine the necessary actions that are amenable by the City. Options include, but are not limited to, removing soil between the DUs and the paved roadway to at least 6 inches and replacing this area with imported gravel or topsoil.


SECTION 6: References

- DEQ. 2013. Development of Oregon Background Metals Concentrations in Soil. Technical Report. March 2013.
- DEQ. 2017a. Risk-Based Decision Making for the Remediation of Contaminated Sites. Revised October 2, 2017.
- DEQ. 2017b. *Quality Assurance Project Plan EPA PA/SI Investigations*. Oregon Department of Environmental Quality, Operations Division, Environmental Cleanup Program. December 2017.
- DEQ. 2019. Record of Decision for J.H. Baxter & Co. Facility, Eugene, OR, ECSI #55. Oregon Department of Environmental Quality, Western Region Office. October 2019.
- DEQ. 2020. Decision Unit Characterization Internal Management Directive. Oregon Department of Environmental Quality, Land Quality Division, Cleanup Program. September 14, 2020.
- DEQ. 2022a. Request for Orphan Site Designation JH Baxter & Co Eugene. Oregon Department of Environmental Quality, Western Region Office. February 2022.
- DEQ. 2022b. Amended Notice of Civil Penalty Assessment and Order for J.H. Baxter & Co. Facility, Eugene, OR, ECSI #55. Oregon Department of Environmental Quality, Western Region Office. May 4, 2022.
- DEQ. 2023. Excel® Spreadsheet for Risk-Based Concentrations for Individual Chemicals. Amended June 2023.
- GSI. 2020. Sampling and Analysis Plan. Prepared for JH Baxter & Co. Wood Treating Facility, Eugene, Oregon. February 2020.
- GSI. 2021. Sampling and Analysis Plan. Prepared for JH Baxter & Co. Wood Treating Facility, Eugene, Oregon. August 2021.
- GSI. 2022. Offsite Investigation Work Plan. Former JH Baxter & Co. Prepared for DEQ. June 6, 2022.
- GSI. 2023. Offsite Investigation Work Plan Addendum #1, Former JH Baxter & Co. January 17, 2023.
- ITRC. 2020. Technical and Regulatory Guidance. Incremental Sampling Methodology Update. Interstate Technology and Regulatory Council. October 2020.
- OHA. 2023. Health Consultation Initial and Public Comment Release. JH Baxter Neighborhood Investigation, Eugene, Oregon. February 2023.
- Van den Berg, M., L.S. Birnbaum, M. Denison, et al. 2006. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. *Toxicological Sciences* 93(2):223–241. Available at https://doi.org/10.1093/toxsci/kfl055.

-APPENDIX A----Data Tables

Table A-1. Soil Chemical Data - Dioxins/Furans Offsite Investigation Report Former JH Baxter & Co. Facility Eugene, Oregon

Eugene, Oregon																							
				-							1	1		Compound pg/g		1				The state of the s		1	
					φ	ab	ტ					4	4	ğ	Ä		JQ:	Q	F.				
Sample Decision	Laboratory Sample	QC Sample	Sample Date	Sample Depth	7,7	,7,3 F	و <u>ن</u> بر	8, G	8, 4	8, 0	8,7	8, 0	8, 17	Pe	9	8, 7	Pe(тсрр	CCD	۵	L.	GSI Total Dioxin	GSI Total Dioxin
Unit	Designation	Туре	Sample Date	(feet)	4, G	9,49	7, 9	꽃 음	₹ 8	9, G	, 6 , 9	건 원	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	र्षे	φ	9; B	₽,	ά	-8·	8	8	TEQ (U=0)	TEQ (U=1/2)
					1,2,3,4,6,7, HpCDD	1,2,3,4,6,7, HpCDF	1,2,3,4,7,8, HpCDF	,2,3,4,7,8 HxCDD	1,2,3,4,7,8 HxCDF	1,2,3,6,7,8 HxCDD	1,2,3,6,7,8 HxCDF	1,2,3,7,8,9- HxCDD	1,2,3,7,8,9 HXCDF	3,7	3,7	2,3,4,6,7,8- HxCDF	4,7	2,3,7,	3,7	ō	•	2020	2020
					ਜੋ	ਜੋ	ਜੋ	Ŧ	1	4	4	4	₹	2	2,	8	2,3,	2,	2,				
				TCDD TEQ Factor	0.01	0.01	0.01	0.1	0.1	0.1	0.1	0.1	0.1	1	0.03	0.1	0.3	1	0.1	0.0003	0.0003	_	
		handan Hankh Aus	harita Fariba Astia	_									0.1		·					1			-
		regon Health Aut				_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	40	40
DU OO	Oregon L	DEQ RBC for Direct	t Contact by Res	dential Receptors	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	4.7	4.7
DU-09	ISM-009_0622	Primary	6/20/2022	0.0-0.5	644	222	10.8	8.97	11.2	25.2	8.02	16.9	1.89 J	5.21	1,09 J	9.00	2,44 J	6.23	0.529	4930	907	30.9 J	30.9 J
DU-09A	COMP-09A_0622	Primary	6/20/2022	0.5-1.0	230 J	68.0 J	4.30 J	3.40 J	5.40 J	9.10 J	3.60 J+	6.00 J	1.40 J	1.80 J	0.650 J	3.00 J	1.30 J	9.10 J-	0.370 J	2400 J	250 J	18.4 J	18.4 J
DU-09A	DU-09A-1.0-1.5_0423	Primary	4/5/2023	1.0-1.5	210	160 J+	4.50 J	2.20 J	4.30 J	6.50	1.20 J+	3.70 J	0.920 J	0.940 J	0.630 U	2.30 J	0.840 J+	4.80	0.430 U	3900	420	13.1 J+	13.2 J+
DU-09A	DU-09A-1.5-2.0_0423	Primary	4/5/2023	1.5-2.0	46.0	28.0 J+	0.810 J	0.640 J	0.870 J	1.30 J	1.20 J+	1.000 J	0.260 U	0.240 U	0.350 U	0.450 J	0.240 U	0.510 U	0.340 U	680	68.0	1.52 J+	1.96 J+
DU-09B	COMP-09B_0622	Primary	6/20/2022	0.5-1.0	1200	540	27.0	22.0	16.0	55.0	42.0 J+	44.0	3.40 J	15.0	1.80 J	19.0	3.60 J	8.50	0.730 J	11000	2300	66.5 J+	66.5 J+
DU-09B	DU-09B-1.0-1.5_0423	Primary	4/5/2023	1.0-1.5	320	240 J+	8.50	5.60	7.90	15.0	1.80 J+	8.80	1.40 J+	2.70 J	0.820 J	4.90 J	1.50 J	3.70	0.460 U	2700	470	18.1 J+	18.1 J+
DU-09B	DU-09B-1.5-2.0_0423	Primary	4/5/2023	1.5-2.0	75.0	44.0 J+	1.20 J	1.50 J	1.20 J+	3.10 J	0.390 J+	2.10 J+	0.540 J	0.640 J+	0.280 U	0.740 J+	0.240 U	2.00	0.310 U	720	83.0	5.04 J+	5.10 J+
DU-10																							
DU-10 *	ISM-DU-10-0921 *	Primary	9/22/2021	0.0-0.5	1110	313	20.1	14.0	25.3	41.0	9.87	24.0	4.93	7.43	2.70 J	12.2	6.39	22.0	1.35	9100 J+	1100	62.3 J+	62.3 J+
DU-10A	COMP-10A_0622	Primary	6/21/2022	0.5-1.0	360 J	71.0 J	4.20 J	4.10 J	3.10 J	13.0 J	5.00 J+	8.40 J	1.10 J	2.50 J	0.600 J	2.90 J	1.20 J	16.0 J-	0.510 J	3100 J	240 J	28.0 J	28.0 J
DU-10A	DU-10A-1.0-1.5_0423	Primary	4/5/2023	1.0-1.5	71.0	26.0 J+	1.40 J	0.900 J	1.20 J	2.50 J	0.230 J	1.70 J	0.250 U	0.430 J	0.130 U	0.560 J+	0.0820 U	2.70	0.120 U	740	79.0	5.07 J+	5.10 J+
DU-10A	DU-110A-1.0-1.5_0423	Duplicate	4/5/2023	1.0-1.5	91.0 J	28.0 J	1.90 J	0.650 J+	1.20 J	2.30 J	2.20 J+	1.60 J	0.390 J+	0.270 J+	0.460 UJ	0.400 J+	0.400 J	1.20 J+	0.390 UJ	1100 J	120 J	4.04 J+	4.07 J+
DU-10A DU-10B	DU-10A-1.5-2.0_0423 COMP-10B_0622	Primary Primary	4/5/2023 6/21/2022	1.5-2.0 0.5-1.0	29.0 480 J	9.70 J+ 200 J	0.330 U 9.50 J	0.480 J+ 4.20 J	0.310 J+ 7.60 J	1.000 J 29.0 J	0.350 J 9.80 J+	0.620 J 10.00 J	0.130 U 2.10 J	0.170 J+ 2.30 J	0.0810 U 0.800 J	0.300 J 6.70 J	0.0560 U 1.70 J	1.10 14.0 J-	0.200 U 0.430 J	340 3300 J	23.0 570 J	2.07 J+ 31.9 J	2.10 J+ 31.9 J
DU-10B	DU-10B-1.0-1.5_0423	Primary	4/5/2023	1.0-1.5	55.0	32.0 J+	0.980 J	0.780 J	0.920 J	1.80 J	0.300 J+	1.40 J	0.390 J+	0.250 J+	0.200 U	0.750 J	0.250 J+	0.560 J+	0.430 J	580	71.0	2.59 J+	2.61 J+
DU-10B	DU-10B-1.5-2.0 0423	Primary	4/5/2023	1.5-2.0	34.0	19.0 J+	0.520 J+	0.630 J+	0.420 J	1.40 J	0.310 J+	1.10 J	0.350 J+	0.260 J+	0.170 U	0.380 J+	0.110 U	0.990 J	0.170 U	340	40.0	2.36 J+	2.39 J+
DU-11	50 105 1.0 2.0_0420	mary	., 5, 2023	2.0 2.0	JV		0.0203.	5.550 5.	5203		5.5253.		5.550 3.	0.2000	3.2700	5.550 5.	3.210 0	0.000	3.2700	340	.5.5		
DU-11 *	ISM-DU-11-0921 *	Primary	9/23/2021	0.0-0.5	947	132	8.11	10.3	8.10	29.6	4.28 J	16.2	1.87 J+	4.87 J	2.01 J	5.80	2.58 J	89.6	1.94	7740 J+	356	117 J+	117 J+
DU-11	ISM-011_0622	Primary	6/21/2022	0.0-0.5	1380	295	21.2	11.6	71.4	53.0	17.4	24.1	11.7	4.97	3.98	23.0	18.6	8.08	1.33	10600	548	60.4	60.4
DU-11	ISM-111_0622	Duplicate	6/21/2022	0.0-0.5	1430	283	20.4	11.4	71.1	53.9	17.3	23.3	11.8	5.24	3.79	21.9	18.3	7.35	1.35	11000	512	60.2	60.2
DU-11	ISM-211_0622	Triplicate	6/21/2022	0.0-0.5	1110	244	16.7	9.37	57.4	43.1	14.1	18.5	9.46	4.00	3.12	18.6	14.2	5.85	1.06	8590	458	47.8	47.8
DU-11A	COMP-11A_0622	Primary	6/21/2022	0.5-1.0	370 J	55.0 J	3.00 J	4.30 J	3.40 J	14.0 J	5.90 J+	8.00 J	1.10 J	2.00 J	0.540 J	2.50 J	1.20 J	24.0 J-	0.440 J	3500 J	150 J	35.7 J	35.7 J
DU-11A	DU-11A-1.0-1.5_0423	Primary	4/5/2023	1.0-1.5	37.0	5.70	0.490 U	0.340 J+	0.560 J+	1.20 J	0.830 J+	0.850 J	0.280 J+	0.220 U	0.310 U	0.310 U	0.230 U	3.70	0.280 U	450	20.0	4.67 J+	4.86 J+
DU-11A	DU-11A-1.5-2.0_0423	Primary	4/5/2023	1.5-2.0	79.0	24.0	2.40 J	0.860 J	5.70	2.60 J	2.60 J+	1.40 J	1.20 J	0.480 J	0.520 U	1.50 J+	1.60 J	2.90	0.590 U	830	59.0	6.77 J+	6.80 J+
DU-11A DU-11A	DU-11A-2.0-2.5_0423 DU-11A-2.5-3.0_0423	Primary Primary	4/4/2023 4/4/2023	2.0-2.5 2.5-3.0	43.0 20.0	6.70 2.70 J+	0.290 U 0.510 U	0.590 J 0.390 U	0.910 J 0.370 J+	1.50 J 0.620 J+	0.380 J 0.280 U	0.950 J 0.500 J	0.210 J+ 0.310 U	0.380 U 0.570 U	0.210 U 0.310 U	0.390 J 0.310 U	0.230 U 0.320 U	1.60 0.560 U	0.240 U 0.250 U	390 170	21.0 8.30 J	2.71 J+ 0.429 J+	2.95 J+ 1.13 J+
DU-11A	COMP-11B_0622	Primary	6/21/2022	0.5-1.0	590	140	11.0	8.20	24.0	25.0	7.00	14.0	5.00 J	3.90 J	1.80 J+	10.00	6.80	8.40	1.10	5300	330	32.9 J+	32.9 J+
DU-11B	DU-11B-1.0-1.5_0423	Primary	4/5/2023	1.0-1.5	27.0	7.40	0.590 U	0.380 U	1.50 J	0.700 J+	0.790 J	0.450 J+	0.280 U	0.260 U	0.440 U	0.340 J+	0.420 J	0.310 U	0.470 U	300	16.0	0.943 J+	1.29 J+
DU-11B	DU-11B-1.5-2.0_0423	Primary	4/5/2023	1.5-2.0	15.0	2.80 J	0.380 U	0.400 U	0.460 J	0.440 J	0.370 J+	0.390 J	0.260 U	0.190 U	0.250 U	0.190 U	0.170 U	0.180 J+	0.210 U	160	7.40 J	0.574 J+	0.753 J+
DU-14																							
DU-14	ISM-014_0622	Primary	6/20/2022	0.0-0.5	460	78.2	3.62	4.86	2.48	14.8	2.06 J	8.51	0.901 J	2.34 J	0.745 J	2.98	1.22 J	1.70	0.616	4200	295	14.9 J	14.9 J
DU-14A	COMP-14A_0622	Primary	6/20/2022	0.5-1.0	300	59.0	3.30 J	3.90 J	1.60 J	11.0	1.60 J	7.10	0.780 J	1.80 J	0.630 J	2.40 J	0.950 J	1.30	0.470 J+	3300	270	11.0 J+	11.0 J+
DU-14B	COMP-14B_0622	Primary	6/20/2022	0.5-1.0	240	55.0	4.10 J	4.10 J	2.10 J	10.00	2.90 J	6.90	0.750 J	2.10 J	0.540 J+	2.60 J	0.890 J+	1.40	0.430 J+	2500	230	10.6 J+	10.6 J+
DU-15 *	ISM-DU-15-1021 *	Primary	10/4/2021	0.0-0.5	1260	267	23.8	13.0	75.6	47.9	18.4	21.8	14.0	6.82	5.28	23.7	18.1	14.9	2.38	10200 J+	392	67.9 J+	67.9 J+
DU-15 *	ISM-DU-115-1021 *	Duplicate	10/4/2021	0.0-0.5	1650	422	39.7	17.2	146	72.8	34.5	30.8	26.5	9.11	8.45	41.3	34.3	13.9	2.94	13400 J+	476	96.3 J+	96.3 J+
DU-15 *	ISM-DU-215-1021 *	Triplicate	10/4/2021	0.0-0.5	1110	277	27.3	12.0	96.3	46.4	22.4	19.7	16.4	5.77	5.64	26.2	21.6	13.7	2.05	9170 J+	350	67.4 J+	67.4 J+
DU-15A	COMP-15A_0622	Primary	6/21/2022	0.5-1.0	350	57.0	3.90 J	5.00	3.60 J+	16.0	4.60	9.40	1.30 J	2,50 J	0.660 J+	3.40 J	1.60 J	14.0	0.660 J	3300	190	26.6 J+	26.6 J+
DU-15A	DU-15A-1.0-1.5_0423	Primary	4/5/2023	1.0-1.5	35.0	9.20 J+	0.470 U	0.630 J	0.400 J	1.60 J	0.500 J+	1.000 J	0.190 J	0.220 J+	0.150 U	0.300 J	0.1000 U	0.920 J	0.140 U	400	20.0	2.17 J+	2.20 J+
DU-15A	DU-15A-1.5-2.0_0423	Primary	4/5/2023	1.5-2.0	25.0	6.60 J+	0.340 J+	0.540 J	0.340 J	0.830 J+	0.470 J+	0.710 J+	0.170 U	0.140 J	0.180 U	0.230 U	0.130 U	0.830 J	0.200 U	290	13.0	1.67 J+	1.72 J+
DU-15B	COMP-15B_0622	Primary	6/21/2022	0.5-1.0	330	63.0	4.40 J	4.80 J	5.70	15.0	2.80 J	8.80	1.60 J	2.20 J+	1.20 J	3.80 J	2.20 J	9.60	1.10	3200	230	21.9 J+	21.9 J+
DU-15B	DU-15B-1.0-1.5_0423	Primary	4/5/2023	1.0-1.5	23.0	4.30 J	0.290 U	0.520 J	0.140 J+	0.830 J	0.530 J	0.540 J+	0.260 U	0.160 U	0.230 U	0.270 J	0.120 U	1.20	0.280 U	300	18.0	1.85 J+	1.98 J+
DU-15B	DU-15B-1.5-2.0_0423	Primary	4/5/2023	1.5-2.0	13.0	2.00 J	0.320 U	0.210 U	0.190 U	0.390 J	0.360 J+	0.200 J	0.150 U	0.150 U	0.170 U	0.170 U	0.110 U	0.310 J	0.200 U	160	8.60 J	0.606 J+	0.747 J+
S0-06		T				4242.07								2 44 111	4								4044
S0-06 ** S0-06A	JHB-15-WY-00-06-01 ** DU-06A-0.5-1.0_0423	Primary	5/25/2022	0.0-0.5 0.5-1.0	4980 JK	1340 JK	96.4 JK	27.7 JK 0.540 J	63.8 JK	120 JK	26.3 JK 0.280 U	58.3 JK	22.7 JK	9.44 JK	4.98 JK 0.200 U	32.7 JK	7.67 JK	1.36 JK 0.450 U	0.523 JK 0.260 U	30000 JK	7270 JK 23.0	124 J	124 J
S0-06A S0-06A	DU-06A-0.5-1.0_0423 DU-06A-1.0-1.5_0423	Primary	4/5/2023 4/5/2023	1.0-1.5	32.0 11.0	12.0 J+ 5.80 J+	0.500 J+ 0.210 U	0.540 J	0.300 J+ 0.170 U	1.000 J+ 0.500 J	0.280 U	0.800 J 0.250 J+	0.260 J+ 0.160 U	0.260 J 0.130 U	0.120 U	0.320 J 0.180 U	0.120 U 0.0850 U	0.450 U	0.260 U	340 130	11.0	1.14 J+ 0.351 J+	1.41 J+ 0.605 J+
S0-06B	DU-06B-0.5-1.0_0423	Primary	4/5/2023	0.5-1.0	95.0	27.0 J+	0.820 J	1.40 J	0.800 J	2.90 J	0.110 U	2.20 J	0.300 J+	0.880 J	0.310 J	0.730 J	0.280 J+	0.500 J	0.160 U	860	49.0	3.81 J+	3.82 J+
S0-06B	DU-06B-1.0-1.5_0423	Primary	4/5/2023	1.0-1.5	18.0	5.10 J+	0.210 U	0.410 J+	0.140 J+	0.600 J	0.230 J+	0.490 J+	0.170 J+	0.310 U	0.140 U	0.180 J	0.0930 U	0.260 U	0.110 U	160	10.00	0.504 J+	0.812 J+
S0-06B	DU-06B-1.5-2.0_0423	Primary	4/5/2023	1.5-2.0	6.60	1.20 J	0.400 U	0.220 J	0.110 J+	0.190 J+	0.110 U	0.150 J+	0.180 J	0.230 U	0.150 U	0.0910 U	0.160 U	0.210 U	0.140 U	73.0	4.50 J	0.186 J+	0.452 J+
S0-06B	DU-106B-1.5-2.0_0423	Duplicate	4/5/2023	1.5-2.0	7.00	1.000 J	0.210 U	0.190 J+	0.130 U	0.180 J+	0.110 U	0.190 J+	0.0880 U	0.280 U	0.170 U	0.1000 U	0.170 U	0.280 U	0.160 U	62.0	4.00 J	0.156 J+	0.494 J+
SO-07																							
S0-07 **	JHB-12-WY-00-06-01 **	Primary	5/24/2022	0.0-0.5	626 JK	104 JK	4.72 JK	5.71 JK	6.43 JK	19.9 JK	3.54 JQK	9.91 JK	0.438 UBJK	3.13 JK	1.66 JQK	5.04 JK	3.86 JK	_	2.15 JK	5160 JK	392 JK	18.6 J	18.6 J
S0-07A **	JHB-12-FY-00-03-02 **	Primary	5/24/2022	0.0-0.25	520 JK	82.0 JK	4.30 JQK	7.00 JK	5.10 JQK	31.0 JK	4.20 JQK	13.0 JK	0.440 UJK	4.10 JQK	3.20 JQK	2.90 JQK	3.50 JQK	4.40 JK	6.10 JK	5200 JK	210 JK	24.3 J	24.3 J
S0-07A **	JHB-12-FY-00-03-01 **	Primary	5/24/2022	0.0-0.25	1700 JK	240 JK	13.0 JK	24.0 JK	13.0 JK	88.0 JK	11.0 JK	43.0 JK	0.560 UJK	12.0 JK	3.10 JQK	7.90 JK	3.20 JQK	3.40 JK	1.60 JK	12000 JK	540 JK	58.6 J	58.6 J
S0-07A **	JHB-12-FY-00-03-03 **	Primary	5/24/2022	0.0-0.25	3100 JK	400 JK	22.0 JK	31.0 JK	21.0 JK	140 JK	15.0 JK	63.0 JK	1.000 UJK	15.0 JK	7.20 JK	11.0 JK	7.90 JK	4.60 JK	6.10 JK	22000 JK	900 JK	93.0 J	93.0 J
SO-07A SO-07A	SU-07A-0.5-1.0_0423 SU-07A-1.0-1.5_0423	Primary Primary	4/5/2023 4/5/2023	0.5-1.0 1.0-1.5	190 37.0	35.0 6.30	2.00 J 0.600 J	2.10 J+ 0.430 J+	2.90 J 0.450 J	5.20 J+ 1.10 J	2.90 J+ 0.630 J	3.60 J 0.580 J	0.750 J+ 0.340 J	1.20 J+ 0.210 U	0.760 J 0.280 U	2.20 J 0.360 J+	1.50 J 0.280 J	0.990 J+ 0.300 J+	0.940 J 0.280 U	1900 390	110 23.0	7.59 J+ 1.34 J+	7.59 J+
S0-07A **	JHB-12-BY-00-03-01 **	Primary	5/24/2022	0.0-0.25	700 JK	180 JK	11.0 JK	8.40 JK	20.0 JK	37.0 JK	11.0 JK	17.0 JK	0.560 UJK	4.40 JQK	4.10 JQK	11.0 JK	7.60 JK	1.70 JK	3.10 JK	7200 JK	440 JK	30.5 J	1.46 J+ 30.5 J
S0-07B **	JHB-12-BY-00-03-02 **	Primary	5/24/2022	0.0-0.25	710 JK	140 JK	7.40 JK	8.20 JK	8.80 JK	35.0 JK	5.60 JQK	17.0 JK	0.390 UJK	4.40 JQK	1.90 JQK	4.70 JQK	2.80 JQK	1.70 JK	1.60 JK	7600 JK	390 JK	26.1 J	26.1 J
S0-07B	SU-07B-0.5-1.0-0423	Primary	4/5/2023	0.5-1.0	140	28.0	1.60 J	1.60 J+	1.80 J	4.60 J	3.00 J+	3.30 J	0.650 J+	0.800 J	0.570 U	1.80 J	0.810 J	0.480 U	0.590 U	1400	84.0	4.86 J+	5.14 J+
S0-07B	SU-07B-1.0-1.5-0423	Primary	4/5/2023	1.0-1.5	39.0	7.40	0.780 U	0.490 J+	0.290 J+	1.20 J	0.650 J+	0.850 J	0.430 U	0.270 U	0.380 U	0.280 U	0.260 J	0.460 U	0.510 U	380	25.0	1.01 J+	1.45 J+
AP-01		<u> </u>																					
AP-01 **	JHB-24-WY-00-06-01 **	Primary	5/24/2022	0.0-0.5	233 JK	31.4 JK	0.190 UBJK	2.44 JQK	1.47 JQK	7.45 JK	1.22 JQK	4.66 JK	0.217 UBJK	1.50 JQK	0.487 JQK	0.123 UBJK	0.970 JQK	20.7 JK	0.493 JQK	2090 JK	104 JK	27.6 J	27.6 J
AP-01A **	JHB-24-FY-00-03-01 **	Primary	5/24/2022	0.0-0.25	390 JK	74.0 JK	0.910 UJK	0.300 UJK	0.240 UJK	19.0 JK	0.240 UJK	11.0 JK	0.220 UJK	3.00 JQK	0.210 UJK	2.50 JQK	1.000 JQK	6.70 JK	0.170 UJK	4000 JK	210 JK	19.2 J	19.2 J
AP-01A **	JHB-24-FY-00-03-02 **	Primary	5/24/2022	0.0-0.25	300 JK	57.0 JK	0.520 UJK	0.200 UJK	0.220 UJK	16.0 JK	0.210 UJK	8.40 JK	0.230 UJK	2.10 JQK	0.180 UJK	2.00 JQK	1.20 JQK	53.0 JK	1.60 JK	3000 JK	140 JK	62.8 J	62.8 J
AP-01A	DU-01A-0.5-1.0_0423	Primary Primary	4/5/2023	0.5-1.0	21.0	6.60 J+	0.240 U	0.490 J+	0.150 J+	0.780 J	0.530 J	0.770 J+	0.0960 U	0.260 J	0.140 U 0.160 U	0.200 J	0.0750 U	0.270 U	0.140 U	220	11.0	0.897 J+	1.06 J+
AP-01A AP-01B **	DU-01A-1.0-1.5_0423 JHB-24-BY-00-03-01 **	Primary Primary	4/5/2023 5/24/2022	1.0-1.5 0.0-0.25	8.30 440 JK	2.60 J+ 87.0 JK	0.270 U 1.30 UJK	0.190 J+ 0.310 UJK	0.130 U 0.410 UJK	0.380 J 27.0 JK	0.130 U 0.420 UJK	0.270 J 14.0 JK	0.230 J+ 0.420 UJK	0.180 U 4.50 JQK	0.160 U 0.390 UJK	0.140 U 5.80 JQK	0.140 U 4.90 JQK	0.490 U 19.0 JK	0.260 U 5.40 JK	83.0 4500 JK	3.80 J 190 JK	0.242 J+ 36.9 J	0.635 J+ 37.0 J
AP-01B **	JHB-24-BY-00-03-02 **	Primary	5/24/2022	0.0-0.25	330 JK	58.0 JK	1.20 UJK	0.140 UJK	0.410 UJK	17.0 JK	0.420 UJK	9.00 JK	0.200 UJK	2.40 JQK	0.210 UJK	1.60 JQK	0.760 JQK	1.50 JK	0.150 UJK	3500 JK	170 JK	11.9 J	11.9 J
AP-01B	DU-01B-0.5-1.0_0423	Primary	4/5/2023	0.5-1.0	50.0	17.0 J+	0.600 J+	0.830 J+	0.910 J	2.30 J	0.800 J+	1.40 J+	0.430 J+	0.560 J	0.480 U	0.930 J	0.650 J	1.80	0.710 U	480	21.0	4.14 J+	4.18 J+
AP-01B	DU-01B-1.0-1.5_0423	Primary	4/5/2023	1.0-1.5	12.0	6.10 J+	0.250 U	0.230 J	0.170 U	0.440 J	0.170 U	0.200 J+	0.180 U	0.0800 U	0.280 U	0.150 U	0.200 U	0.430 J	0.240 U	160	11.0	0.749 J+	0.870 J+
Notes																							

Bold concentrations indicate detected value.

Yellow shading indicates concentration above OHA early action screening level of 40 pg/g.

Pink shading indicates concentration above DEQ risk-based screening level of 4.7 pg/g.

DEQ = Oregon Department of Environmental Quality

DU = decision unit

* = Sample collected in 2021 during Baxter-funded offsite investigation.

** = Sample collected in 2022 during EPA-funded offsite investigation

J = Concentration is estimated

J+ = EMPC results either had the presence of diphenyl ethers or the isotope ratio was out of specification.

OHA = Oregon Health Authority

pg/g = picograms per gram

QC = quality control
TCDD TEQ = 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity equivalence quotient

U = concentration under the laboratory method detection limit EMPC = Estimated maximum possible concentration

K = EMPC results either had the presence of diphenyl ethers or the isotope ratio was out of specification (EPA Sample and QC).

Q = One or more quality control criteria failed (EPA Sample and QC)

Table A-2. Field Collected QA/QC Samples Offsite Investigation Report Former JH Baxter & Co. Facility Eugene, Oregon

Eugene, Oregon													Compounds									
Laboratory Sample Designation	QC Sample Type		Sample Depth	1,2,3,4,6,7,8- HpCDD	1,2,3,4,6,7,8- HpCDF	1,2,3,4,7,8,9- HpCDF	1,2,3,4,7,8- HxCDD	1,2,3,4,7,8- HXCDF	1,2,3,6,7,8- HxCDD	1,2,3,6,7,8- HXCDF	1,2,3,7,8,9- HxCDD	1,2,3,7,8,9- HXCDF	1,2,3,7,8-PeCDD	1,2,3,7,8-PeCDF	2,3,4,6,7,8- HXCDF	2,3,4,7,8-PeCDF	2,3,7,8-TCDD	2,3,7,8-TCDF	OCDD	OCDF	GSI Total Dioxin TEQ (U=0) 2020	GSI Total Dioxin TEQ (U=1/2) 2020
			TCDD TEQ Factor	0.01	0.01	0.01	0.1	0.1	0.1	0.1	0.1	0.1	1	0.03	0.1	0.3	1	0.1	0.0003	0.0003	_	
June 2022 Field Duplicate Sar	mnlee									Concentrat	tions in pg/g											
DU-11	Прісо																					
ISM-011_0622	Primary	6/21/2022	0-0 ft	1,380	295	21.2	11.6	71.4	53	17.4	24.1	11.7	4.97	3.98	23	18.6	8.08	1.33	10,600	548	60.4	60.4
ISM-111_0622	Duplicate	6/21/2022	0-0 ft	1,430	283	20.4	11.4	71.1	53.9	17.3	23.3	11.8	5.24	3.79	21.9	18.3	7.35	1.35	11,000	512	60.2	60.2
ISM-211_0622	Triplicate	6/21/2022	0-0 ft	1,110	244	16.7	9.37	57.4	43.1	14.1	18.5	9.46	4	3.12	18.6	14.2	5.85	1.06	8,590	458	47.8	47.8
			MRL (primary)	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	0.495	0.495	4.95	4.95		
		Greater	than 5 times MRL?	yes	yes	yes	no	yes	yes	yes	yes	no	no	no	yes	yes	yes	no	yes	yes	_	_
			RPD Duplicate	3.6%	4.2%	3.8%	-	0.4%	1.7%	0.6%	3.4%	_	_	_	4.9%	1.6%	9.5%	_	3.7%	6.8%	0.3%	0.3%
			erage Concentration				11.50					11.75	5.11	3.89				1.34				
Duplicate Sample			ge Less than MRL?				no					no	no	no				no				
			Absolute Difference				0.2					0.1	0.27	0.19				0.02				
	l l	s Absolute Difference					yes					yes	yes	yes				yes				
			RPD Triplicate	21.7%	18.9%	23.7%	-	21.7%	20.6%	21.0%	26.3%	-	_	_	21.2%	26.8%	32.0%	-	20.9%	17.9%	23.3%	23.3%
			erage Concentration				10.49					10.58	4.49	3.55				1.20				
Triplicate Sample			ige Less than MRL?				no 2.23					no	no	no				no 0.27				-
		s Absolute Difference	Absolute Difference									2.24	0.97	0.86								
April 2023 Field Duplicate San		s Absolute Difference	e less triali 2x WRL?				yes					yes	yes	yes				yes				
DU-10	пріоо																					
DU-10A-1.0-1.5_0423	Primary	4/5/2023	1-1.5 ft	71	26	1.4	0.90	1.2	2.5	0.23	1.7	0.25	0.43	0.13	0.56	0.082	2.7	0.12	740	79	5.07	5.1
DU-110A-1.0-1.5_0423	Duplicate	4/5/2023	1-1.5 ft	91	28	1.9	0.65	1.2	2.3	2.2	1.6	0.39	0.27	0.46	0.40	0.40	1.2	0.39	1100	120	4.04	4.1
	·		MRL (primary)	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	0.98	0.98	9.8	9.8		
		Greater	than 5 times MRL?	yes	yes	no	no	no	no	no	no	no	no	no	no	no	no	no	yes	yes	_	_
			RPD Duplicate	24.7%	7.4%	_	_	_	_	_	_	_	_	_	_	_	_	_	39.1%	41.2%	22.6%	22.5%
			erage Concentration			1.65	0.78	1.20	2.40	1.22	1.65	0.32	0.35	0.30	0.48	0.24	1.95	0.26				
			ige Less than MRL?			yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes				
			Absolute Difference			0.5	0.25	0	0.2	1.97	0.1	0.14	0.16	0.33	0.16	0.318	1.5	0.27				
S0-06	l l	s Absolute Difference	e less than 2x MRL?			yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes				
DU-06B-1.5-2.0_0423	Primary	4/5/2023	1.5-2 ft	6.6	1.2	0.4	0.22	0.11	0.19	0.11	0.15	0.18	0.23	0.15	0.091	0.16	0.21	0.14	73	4.5	0.19	0.45
DU-106B-1.5-2.0_0423	Duplicate	4/5/2023	1.5-2 ft	7.0	1.0	0.21	0.19	0.13	0.18	0.11	0.19	0.088	0.28	0.17	0.091	0.17	0.21	0.14	62	4.0	0.16	0.49
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MRL (primary)	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	0.98	0.98	9.8	9.8		
		Greater	than 5 times MRL?	no	no	no	no	no	no	no	no	no	no	no	no	no	no	no	yes	no	_	_
			RPD Duplicate	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	16.3%	_	17.5%	8.9%
		Ave	erage Concentration	6.80	1.10	0.31	0.21	0.12	0.19	0.11	0.17	0.13	0.26	0.16	0.10	0.17	0.25	0.15				
		Is Avera	ge Less than MRL?	no	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes				
			Absolute Difference	0.4	0.2	0.19	0.03	0.02	0.01	0	0.04	0.092	0.05	0.02	0.009	0.01	0.07	0.02				
	I	s Absolute Difference	less than 2x MRL?	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes				
June 2022 and April 2023 Equ	uipment Rinsate Bl	ank Samples																				
									Conce	ntrations in pg/	L (parts per qua	drillion)										
Equipment Blanks									1		1	1	1	1		1			1			1
EB-01_0622	Blank	6/21/2022 ny detection in samp	- los from this avent?	1.70	2.00	2.70	2.00	0.900	1.30	0.760	1.10	1.00	0.710	0.400	0.520	0.280	0.550	0.310	21.0	3.00	0.206	1.21
EB-01-0423	Blank	4/5/2023	ies nom uns event?	yes 5.90	yes 2.50	yes 4.20	yes 1.40	yes 1.60	yes 1.60	yes 1.60	yes 1.50	yes 2.00	yes 1.60	yes 1.60	yes 1.30	yes 1.20	yes 2.50	yes 1.60	yes 30.0	yes 6.60	yes 0.0680	yes 2.99
		4/5/2023 nv detection in samp	les from this event?	ves	ves	ves	ves	yes	ves ves	ves ves	ves	ves	ves	ves	ves	ves ves	ves	ves	yes	ves	ves	ves
EB-02-0423	Blank	4/5/2023	-	15.0	79.0	2.60	3.30	1.30	1.40	1.60	1.50	2.10	1.60	1.40	1.60	0.79	1.30	0.94	160	72.0	1.48	3.53
		ny detection in samp	les from this event?	yes	yes	ves	yes	yes	yes	ves	ves	ves	ves	ves	yes	yes	yes	yes	yes	yes	yes	yes
				,	,00	,	,,,,,,	,,,,,,	,	,	,,,,,,	,,,,,	, ,,,,,	, ,,,,,	,	,	, , , , ,	, ,,,,,	,	,	,	, , , , ,

Notes

Bold concentrations are detected or estimated values between the laboratory method detection limit and method reporting limit.

Non-bolded values were not detected above the laboratory method detection limit.

yes

Green shaded "yes" cell indicates value passes QAPP criteria.

The QAPP identifies RPD of less than 50% for solid organics.

— = not applicable
DU = decision unit

pg/g = picograms per gram (parts per trillion)

gg/L = picograms per liter (parts per quadrillion)
QC = quality control
TCDD TEQ = 2,3,7,8- tetrachlorodibenzodioxin toxicity equivalence quotient

-APPENDIX B----Laboratory Reports and Data Validation

July 15, 2022

Mr. Philip Nerenberg Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223

Dear Mr. Nerenberg,

The following results are associated with Frontier Analytical Laboratory project **14487**. This corresponds to your project number **A2F0755**. Five soil samples were received on 6/28/2022. These samples were extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. The Toxic Equivalency (TEQ) for these samples has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs). A turnaround time of fifteen business days was requested for this project.

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our sample tracking log and the analytical results. The Sample Receipt section contains your chain of custodies, our sample login form and a sample photo. The attached results and electronic data deliverable (EDD) are specifically for the samples referenced in this report only. These results meet all National Environmental Laboratory Accreditation Program (NELAP) requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP certificate number is **4041** and our State of California ELAP certificate number is **2934**. This report and the EDD have been emailed to you. A hardcopy of this report will not be sent to you unless specifically requested.

If you have any questions regarding project **14487**, please contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Thomas C. Crabtree

hones C. Cralitree

Director

FTR Project No.: 14487 Page 000001 of 000013

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: <u>14487</u>

	Received on:	06/28/2022		Project Due:	07/21/2022	Storage:	<u>R-4</u>	
FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
14487-001-SA	0	A2F0755	ISM-009_0622	EPA 1613 D/F	Soil	06/20/2022	12:45 pm	06/20/2023
14487-002-SA	0	A2F0755	ISM-014_0622	EPA 1613 D/F	Soil	06/20/2022	04:00 pm	06/20/2023
14487-003-SA	0	A2F0755	ISM-011_0622	EPA 1613 D/F	Soil	06/21/2022	04:00 pm	06/21/2023
14487-004-SA	0	A2F0755	ISM-111_0622	EPA 1613 D/F	Soil	06/21/2022	04:15 pm	06/21/2023
14487-005-SA	0	A2F0755	ISM-211_0622	EPA 1613 D/F	Soil	06/21/2022	04:30 pm	06/21/2023

FTR Project No.: 14487 Page 000002 of 000013

FAL ID: 14487-001-MB Client ID: Method Blank Matrix: Soil Batch No: X6137

Date Extracted: 07-12-2022 Date Received: NA Amount: 10.0 g ICal: PCDDFAL3-4-29-22 GC Column: DB5MS Units: pg/g Acquired: 07-13-2022 2005 WHO TEQ: 0.0 Basis: Dry Weight

Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND ND ND ND ND ND	0.123 0.165 0.181 0.196 0.175 0.275 0.342		- - - - -	0.0286 0.0515 0.0555 0.0558 0.0528 0.0712 0.195	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND ND	0.123 0.165 0.196 0.275	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ND ND ND ND ND ND ND ND	0.0684 0.136 0.143 0.130 0.140 0.120 0.163 0.117 0.137		- - - - - - - - -	0.0231 0.0324 0.0322 0.0339 0.0340 0.0353 0.0451 0.0350 0.0421 0.0820	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.0684 0.143 0.163 0.137	
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-0CDF	110 123 110	25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157			B A C C D P DNQ A E A M ND A NP N P P S S X M	sotopic Labeled Starignal to noise ratio is unalyte is present in chemical Interference resence of Dipheny analyte concentration analyte concentration analyte concentration analyte concentration analyte concentration analyte Not Detected tot Provided re-filtered through a sample acceptance of atrix interferences tesult taken from dilu	s > 10:1 Method Blace I Ethers I is below on seconda I is below on seconda I is below on the seconda of the second	calibration ra calibration ra ary column calibration ra in on Limit Levi 0.7um GF/F met	nge nge nge
37Cl-2,3,7,8-TCDD	108	35.0 - 197						•	

FTR Project No.: 14487 Page 000003 of 000013

FAL ID: 14487-001-OPR Client ID: OPR Matrix: Soil Batch No: X6137 Date Extracted: 07-12-2022 Date Received: NA Amount: 10.00 g ICal: PCDDFAL3-4-29-22 GC Column: DB5MS Units: ng/ml Acquired: 07-13-2022 2005 WHO TEQ: NA

Compound	Conc	QC Limits	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	10.2 48.4 51.1 52.6 50.9 53.9 109	6.70 - 15.8 35.0 - 71.0 35.0 - 82.0 38.0 - 67.0 32.0 - 81.0 35.0 - 70.0 78.0 - 144	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	9.83 51.6 52.0 53.0 52.4 53.6 53.7 53.4 109	7.50 - 15.8 40.0 - 67.0 34.0 - 80.0 36.0 - 67.0 42.0 - 65.0 35.0 - 78.0 39.0 - 65.0 41.0 - 61.0 39.0 - 69.0 63.0 - 170	
Internal Standards	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	97.1 102 103 98.0 89.6 68.0	20.0 - 175 21.0 - 227 21.0 - 193 25.0 - 163 26.0 - 166 13.0 - 198	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	97.5 103 99.8 112 106 115 111 98.4 100 81.7	22.0 - 152 21.0 - 192 13.0 - 328 19.0 - 202 21.0 - 159 22.0 - 176 17.0 - 205 21.0 - 158 20.0 - 186 13.0 - 198	
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	104	31.0 - 191	

Α	Isotopic Labeled Standard outside QC range but
А	signal to noise ratio is >10:1

- B Analyte is present in Method Blank
- C Chemical Interference
- D Presence of Diphenyl Ethers

DNQ Analyte concentration is below calibration range

- E Analyte concentration is above calibration range
- F Analyte confirmation on secondary column
- J Analyte concentration is below calibration range
- M Maximum possible concentration
- ND Analyte Not Detected at Detection Limit Level
- NP Not Provided
- P Pre-filtered through a Whatman 0.7um GF/F filter
- S Sample acceptance criteria not met
- X Matrix interferences
- * Result taken from dilution or reinjection

Reviewed By:____

Date: 7/19/2022

FAL ID: 14487-001-SA Client ID: ISM-009_0622 Matrix: Soil Batch No: X6137 Date Extracted: 07-12-2022 Date Received: 06-28-2022 Amount: 10.1 g % Solids: 96.86 ICal: PCDDFAL3-4-29-22 GC Column: DB5MS Units: pg/g Acquired: 07-14-2022 2005 WHO TEQ: 30.9 Basis: Dry Weight

Compound	Con	o DI	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
Compound	COIT	C DL	Quai	VVHO TOX	IVIDE	Compound	COLIC	DL	Quai
2,3,7,8-TCDD	6.2			6.23	0.0286				
1,2,3,7,8-PeCDD	5.2			5.21	0.0515				
1,2,3,4,7,8-HxCDD	8.9			0.897	0.0555	T / TODD	00.4		
1,2,3,6,7,8-HxCDD	25.: 16.:			2.52 1.69	0.0558 0.0528	Total TCDD Total PeCDD	20.4 28.8	-	
1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	64	-		6.44	0.0526	Total HxCDD	∠o.o 161	-	
0CDD	493			1.48	0.0712	Total HpCDD	1150	_	
						. 010			
2,3,7,8-TCDF	0.52			0.0529	0.0231 0.0324				
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.09 2.44		J J	0.0327 0.732	0.0324				
1,2,3,4,7,8-HxCDF	11.3		J	1.12	0.0322				
1,2,3,6,7,8-HxCDF	8.0			0.802	0.0333				
2,3,4,6,7,8-HxCDF	9.0			0.900	0.0353				
1,2,3,7,8,9-HxCDF	1.8	9 -	J	0.189	0.0451	Total TCDF	11.4	-	
1,2,3,4,6,7,8-HpCDF	22:	2 -		2.22	0.0350	Total PeCDF	28.8	-	
1,2,3,4,7,8,9-HpCDF	10.8			0.108	0.0421	Total HxCDF	192	-	
OCDF	90	7 -		0.272	0.0820	Total HpCDF	718	-	
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD	104	25.0 - 164				sotopic Labeled Star		e QC range	e but
13C-1,2,3,7,8-PeCDD	104	25.0 - 181			s	signal to noise ratio is			
13C-1,2,3,4,7,8-HxCDD	111	32.0 - 141			B A	Analyte is present in I	Method Blan	k	
13C-1,2,3,6,7,8-HxCDD	107	28.0 - 130			CC	Chemical Interference	•		
13C-1,2,3,4,6,7,8-HpCDD	105	23.0 - 140			D F	Presence of Diphenyl	Ethers		
13C-OCDD	103	17.0 - 157			DNQ A	Analyte concentration	is below ca	libration ra	inge
13C-2,3,7,8-TCDF	108	24.0 - 169			I E A	Analyte concentration	is above ca	libration ra	ange
13C-1,2,3,7,8-PeCDF	103	24.0 - 185			F A	Analyte confirmation	on secondar	v column	١ ١
13C-2,3,4,7,8-PeCDF	103	21.0 - 178				Analyte concentration		•	
13C-1,2,3,4,7,8-HxCDF	124	26.0 - 152				•		IIDIAUOIIIA	ilige
13C-1,2,3,6,7,8-HxCDF	116 131	26.0 - 123 28.0 - 136				Maximum possible co			
13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	114	29.0 - 136 29.0 - 147			ND A	Analyte Not Detected	at Detection	n Limit Lev	el
13C-1,2,3,4,6,7,8-HpCDF	112	28.0 - 147			NP N	Not Provided			
13C-1,2,3,4,7,8,9-HpCDF	115	26.0 - 138			l P F	Pre-filtered through a	Whatman 0	.7um GF/F	filter
13C-OCDF	105	17.0 - 157				Sample acceptance of			
						Matrix interferences		O.	
Cleanup Surrogate							ition or raini	action	
Cicariup Surrogate					_ · F	Result taken from dilu	ition or reinje	ection	
37CI-2,3,7,8-TCDD	105	35.0 - 197							

FTR Project No.: 14487 Page 000005 of 000013

2005 WHO Tox

1.70 2.34 0.486

1.48

0.851

4.60

1.26

0.0616

0.0224 0.366 0.248

0.206 0.298

0.0901

0.782

0.0362

0.0885

DL Qual

FAL ID: 14487-002-SA Client ID: ISM-014_0622 Matrix: Soil Batch No: X6137

Date Extracted: 07-12-2022 Date Received: 06-28-2022 Amount: 10.1 g % Solids: 97.09

ICal: PCDDFAL3-4-29-22 GC Column: DB5MS Units: pg/g

MDL

0.0286 0.0515

0.0555

0.0558

0.0528

0.0712

0.195

0.0231 0.0324 0.0322

0.0339

0.0340 0.0353

0.0451

0.0350

0.0421

0.0820

Compound

Total TCDD

Total PeCDD

Total HxCDD

Total HpCDD

Total TCDF

Total PeCDF Total HxCDF

Total HpCDF

Acquired: 07-14-2022 2005 WHO TEQ: 14.9 Basis: Dry Weight

Conc

27.8

137

1050

14.3

17.4

72.8

264

Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	1.70 2.34 4.86 14.8 8.51 460 4200	- - - - -	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	0.616 0.745 1.22 2.48 2.06 2.98 0.901 78.2 3.62 295	- - - - - - -	J J
Internal Standards	% Rec	QC Limits	Qual
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	108 101 105 100 101 108	25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	103 99.4 96.3 115 108 123 108 109 110	24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	
Cleanup Surrogate			
37Cl-2,3,7,8-TCDD	107	35.0 - 197	

Α	Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1
В	Analyte is present in Method Blank
С	Chemical Interference
D	Presence of Diphenyl Ethers
NQ	Analyte concentration is below calibration range
Е	Analyte concentration is above calibration range
F	Analyte confirmation on secondary column
J	Analyte concentration is below calibration range
М	Maximum possible concentration
ND	Analyte Not Detected at Detection Limit Level
NP	Not Provided
Р	Pre-filtered through a Whatman 0.7um GF/F filter
S	Sample acceptance criteria not met
Х	Matrix interferences

Result taken from dilution or reinjection

Analyst: Date: 7/19/2022

Reviewed By: Date: 7/19/2022

Page 000006 of 000013 FTR Project No.: 14487

FAL ID: 14487-003-SA Client ID: ISM-011_0622 Matrix: Soil Batch No: X6137

Date Extracted: 07-12-2022 Date Received: 06-28-2022 Amount: 10.1 g % Solids: 95.89 ICal: PCDDFAL3-4-29-22 GC Column: DB5MS Units: pg/g Acquired: 07-14-2022 2005 WHO TEQ: 60.4 Basis: Dry Weight

0	•	51	0 1	2005	MD			Б.	0 1
Compound	Conc) DL	Qual	WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD	8.08	-		8.08	0.0286	3			
1,2,3,7,8-PeCDD	4.97	-		4.97	0.0515	5			
1,2,3,4,7,8-HxCDD	11.6			1.16	0.0555				
1,2,3,6,7,8-HxCDD	53.0			5.30	0.0558		32.9	-	
1,2,3,7,8,9-HxCDD	24.1			2.41	0.0528		40.9	-	
1,2,3,4,6,7,8-HpCDD	1380			13.8	0.0712		295	-	
OCDD	10600) -		3.18	0.195	Total HpCDD	2520	-	
2,3,7,8-TCDF	1.33		F	0.133	0.0231				
1,2,3,7,8-PeCDF	3.98			0.119	0.0324				
2,3,4,7,8-PeCDF	18.6			5.58	0.0322				
1,2,3,4,7,8-HxCDF	71.4			7.14	0.0339				
1,2,3,6,7,8-HxCDF	17.4			1.74	0.0340				
2,3,4,6,7,8-HxCDF	23.0			2.30	0.0353		24.0		D.M
1,2,3,7,8,9-HxCDF	11.7 295			1.17 2.95	0.0451 0.0350		31.8 130	-	D,M
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	295			0.212	0.0350		554	-	D,M
0CDF	548			0.164	0.0421		915	_	D,IVI
ООЫ	340	-		0.104	0.0020	rotal ripobl	313		
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD	110	25.0 - 164				Isotopic Labeled Star		de QC rang	e but
13C-1,2,3,7,8-PeCDD	107	25.0 - 181				signal to noise ratio is			
13C-1,2,3,4,7,8-HxCDD	103	32.0 - 141			В	Analyte is present in	Method Bla	nk	
13C-1,2,3,6,7,8-HxCDD	102	28.0 - 130			С	Chemical Interference	е		
13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	109 123	23.0 - 140 17.0 - 157			D	Presence of Dipheny	I Ethers		
130-0000	123	17.0 - 157			DNQ	Analyte concentration	n is below c	alibration ra	inge
13C-2,3,7,8-TCDF	108	24.0 - 169			E	Analyte concentration	n is above c	alibration ra	ange
13C-1,2,3,7,8-PeCDF	105	24.0 - 185			l F	Analyte confirmation	on seconda	ary column	·
13C-2,3,4,7,8-PeCDF	105	21.0 - 178				Analyte concentration		•	
13C-1,2,3,4,7,8-HxCDF	116	26.0 - 152				•			inge
13C-1,2,3,6,7,8-HxCDF	109	26.0 - 123			M	Maximum possible co	oncentratior	ו	
13C-2,3,4,6,7,8-HxCDF	123	28.0 - 136			ND	Analyte Not Detected	at Detection	n Limit Lev	el
13C-1,2,3,7,8,9-HxCDF	112	29.0 - 147			NP	Not Provided			
13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	110 113	28.0 - 143 26.0 - 138					\ \ \ //a = t = a = a = a	0.7	ا ــــــــــــــــــــــــــــــــــــ
13C-OCDF	110	17.0 - 157				Pre-filtered through a			· IIILEI
100 0001	110	17.0 107				Sample acceptance	criteria not r	net	
01						Matrix interferences			
Cleanup Surrogate					*	Result taken from dile	ution or rein	jection	
37Cl-2,3,7,8-TCDD	115	35.0 - 197							

5172 Hillsdale Circle * El Dorado Hills, CA 95762 * Tel (916) 934-0900 * Fax (916) 934-0999 * www.frontieranalytical.com

FTR Project No.: 14487 Page 000007 of 000013

FAL ID: 14487-004-SA Client ID: ISM-111_0622 Matrix: Soil Batch No: X6137

Date Extracted: 07-12-2022 Date Received: 06-28-2022 Amount: 10.0 g % Solids: 95.66 ICal: PCDDFAL3-4-29-22 GC Column: DB5MS Units: pg/g Acquired: 07-14-2022 2005 WHO TEQ: 60.2 Basis: Dry Weight

Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	7.3 5.2 11.	4 -		7.35 5.24 1.14	0.0286 0.0515 0.0555				
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	53. 23.			5.39 2.33	0.0558 0.0528		33.4 40.4	-	
1,2,3,4,6,7,8-HpCDD	143	0 -		14.3	0.0712	Total HxCDD	295	-	
OCDD	1100	0 -		3.30	0.195	Total HpCDD	2610	-	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	1.3 3.7 18.	9 -	F	0.135 0.114 5.49	0.0231 0.0324 0.0322				
1,2,3,4,7,8-HxCDF	71.			7.11	0.0322				
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	17. 21.			1.73 2.19	0.0340 0.0353				
1,2,3,7,8,9-HxCDF	11.			1.18	0.0353		37.9	-	D,M
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	28 20.	-		2.83 0.204	0.0350 0.0421		133 547	-	D,M D,M
0CDF	51			0.154	0.0421		862	-	D,IVI
Internal Standards	% Rec	QC Limits	Qual						
13C-2,3,7,8-TCDD	113	25.0 - 164				Isotopic Labeled Star signal to noise ratio is		de QC range	e but
13C-1,2,3,7,8-PeCDD						. 3			
	106 108	25.0 - 181 32.0 - 141			В	Analyte is present in	Method Bla	ank	
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	108 102	32.0 - 141 28.0 - 130				Analyte is present in Chemical Interference		ank	
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD	108 102 110	32.0 - 141 28.0 - 130 23.0 - 140			С		е	ank	
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	108 102 110 125	32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157			C D	Chemical Interference Presence of Dipheny Analyte concentration	e Ethers is below c	calibration ra	٠ ١
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	108 102 110 125	32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169			C C D DNQ A	Chemical Interference Presence of Dipheny Analyte concentration Analyte concentration	e l Ethers n is below on n is above o	calibration ra	٠ ١
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	108 102 110 125	32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157			C D DNQ	Chemical Interference Presence of Dipheny Analyte concentration Analyte concentration Analyte confirmation	e I Ethers I is below on I is above on I seconda	calibration ra calibration ra ary column	ange
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	108 102 110 125 105 105 103 116	32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152			C C D DNQ A F A	Chemical Interference Presence of Dipheny Analyte concentration Analyte concentration Analyte confirmation Analyte concentration	e I Ethers I is below on is above on secondaries below on is below on its below	calibration ra calibration ra ary column calibration ra	ange
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	108 102 110 125 105 105 103 116 110	32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123			C C D DNQ A F A M	Chemical Interference Presence of Dipheny Analyte concentration Analyte concentration Analyte confirmation Analyte concentration Analyte concentration Maximum possible con	e I Ethers I is below on is above on secondar I is below on secondar I is below on concentration	calibration racalibration raca	ange
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF	108 102 110 125 105 105 103 116 110 121	32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136			C C D DNQ A F A M	Chemical Interference Presence of Dipheny Analyte concentration Analyte concentration Analyte confirmation Analyte concentration	e I Ethers I is below on is above on secondar I is below on secondar I is below on concentration	calibration racalibration raca	ange
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8-HxCDF	108 102 110 125 105 105 103 116 110	32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123			C C C D I DNQ A F A A A A A A A A A A A A A A A A A	Chemical Interference Presence of Dipheny Analyte concentration Analyte concentration Analyte confirmation Analyte concentration Analyte concentration Maximum possible con	e I Ethers I is below on is above on secondar I is below on secondar I is below on concentration	calibration racalibration raca	ange
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	108 102 110 125 105 105 103 116 110 121 109 112 113	32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138			C O D DNQ A F A A A A A A A A A A A A A A A A A	Chemical Interference Presence of Dipheny Analyte concentration Analyte concentration Analyte confirmation Analyte concentration Maximum possible of Analyte Not Detected	e I Ethers I is below of a secondary is below of a secondary is below of a concentration at Detection	calibration racalibration racalibration racary column calibration racalibration racary	ange inge
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	108 102 110 125 105 105 103 116 110 121 109	32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143			C D DNQ DNQ DNQ DNQ DNQ DNQ DNQ DNQ DNQ D	Chemical Interference Presence of Dipheny Analyte concentratior Analyte concentratior Analyte confirmation Analyte concentration Maximum possible of Analyte Not Detected Not Provided	Ethers I Ethers I is below on is above on secondaris below on contration at Detection.	calibration racalibration racalibration racary column calibration racan con Limit Lev	ange inge
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HxCDF	108 102 110 125 105 105 103 116 110 121 109 112 113	32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138			C D DNQ DNQ DNQ DNQ DNQ DNQ DNQ DNQ DNQ D	Chemical Interference Presence of Dipheny Analyte concentratior Analyte concentration Analyte confirmation Analyte concentration Maximum possible of Analyte Not Detected Not Provided Pre-filtered through a	Ethers I Ethers I is below on is above on secondaris below on contration at Detection.	calibration racalibration racalibration racary column calibration racan con Limit Lev	ange inge
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	108 102 110 125 105 105 103 116 110 121 109 112 113	32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138			C D DNQ A F A A A A A A A A A A A A A A A A A	Chemical Interference Presence of Dipheny Analyte concentration Analyte concentration Analyte concentration Analyte concentration Maximum possible of Analyte Not Detected Not Provided Pre-filtered through a Sample acceptance of	e Ethers n is below on is above on secondary is below on its below on the concentration at Detection. Whatman criteria not recommended.	calibration racalibration racalibration racary column calibration racan con Limit Lev 0.7um GF/F	ange inge

FTR Project No.: 14487 Page 000008 of 000013

EPA Method 1613 PCDD/F

FAL ID: 14487-005-SA Client ID: ISM-211_0622 Matrix: Soil Batch No: X6137

Date Extracted: 07-12-2022 Date Received: 06-28-2022 Amount: 10.2 g % Solids: 96.32

ICal: PCDDFAL3-4-29-22 GC Column: DB5MS Units: pg/g

Acquired: 07-14-2022 2005 WHO TEQ: 47.8 Basis: Dry Weight

2.3.7.8-TCDD 5.85 - 5.85 0.0286 1.2.3.7.8-PeCDD 4.00 - 4.00 0.0515 1.2.3.4.7.8-HxCDD 9.37 - 0.937 0.0555 1.2.3.6.7.8-HxCDD 43.1 - 4.31 0.0558 Total TCDD 26.6 - 1.2.3.7.8.9-HxCDD 18.5 - 1.85 0.0528 Total PcCDD 34.0 - 0.0515 1.2.3.4.6.7.8-HxCDD 1110 - 11.1 0.0712 Total HxCDD 242 - 0.000 8590 - 2.58 0.995 Total HyCDD 2050 - 0.000 8590 - 2.58 0.995 Total HyCDD 2050 - 0.000 8590 - 2.58 0.995 Total HyCDD 2050 - 0.000 8590 - 2.58 0.995 Total HyCDD 2050 - 0.000 8590 - 2.58 0.995 Total HyCDD 2050 - 0.000 8590 - 2.58 0.995 Total HyCDD 2050 - 0.000 8590 - 2.58 0.995 Total HyCDD 2050 - 0.000 8590 - 2.58 0.995 Total HyCDD 2050 - 0.000 8590 - 2.00	Compound	Conc	: DL	Qual	2005 WHO Tox	MDL	. Compound	Conc	DL	Qual
1,2,3,7,8-PeCDF 14,2 - 4,26 0.0324 2,3,4,7,8-PeCDF 14,2 - 5,74 0.0339 1,2,3,6,7,8-HxCDF 14,1 - 1,41 0.0340 2,3,4,6,7,8-HxCDF 18,6 - 1,86 0.0353 1,2,3,7,8,9-HxCDF 9,46 - 0,946 0.0451 Total TCDF 22.9 - 1,2,3,4,6,7,8-HyCDF 244 - 2,44 0.0350 Total PeCDF 107 - 0,167 0.0421 Total HxCDF 459 - 0,167 0.0421 Total HxCDF 459 - 0,167 0.0421 Total HxCDF 459 - 0,167 0.0421 Total HxCDF 750 - 0,167 0.0421 Total HxCDF 459 - 0,137 0.0820 Total PyCDF 750 - 0,137 0.0820 Total PyC	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	5.85 4.00 9.37 43.1 18.5	5 -) - 7 - 1 - 5 -	Quai	5.85 4.00 0.937 4.31 1.85 11.1	0.0286 0.0515 0.0555 0.0558 0.0528 0.0712	Total TCDD Total PeCDD Total HxCDD	26.6 34.0 242	- - - -	Quai
13C-2,3,7,8-TCDD	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	3.12 14.2 57.4 14.1 18.6 9.46 244 16.7	2 - 2 - 4 - 5 - 5 - 7 -	F	0.0936 4.26 5.74 1.41 1.86 0.946 2.44 0.167	0.0324 0.0322 0.0339 0.0340 0.0353 0.0451 0.0350 0.0421	Total TCDF Total PeCDF Total HxCDF	107 459		
13C-1,2,3,7,8-PeCDD	Internal Standards	% Rec	QC Limits	Qual						
37CI-2,3,7,8-TCDD 115 35.0 - 197	13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF	111 116 110 118 127 114 111 109 129 119 134 122 121 125 117	25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157			B C D DNQ E F J M ND NP P S X	signal to noise ratio i Analyte is present in Chemical Interference Presence of Dipheny Analyte concentration Analyte confirmation Analyte confirmation Analyte concentration Maximum possible of Analyte Not Detected Not Provided Pre-filtered through a Sample acceptance of Matrix interferences	s >10:1 Method Bla te If Ethers In is below c In is above c If is above	nk alibration ra alibration ra ray column alibration ra n on Limit Lev 0.7um GF/f	ange ange ange vel

Analyst Date: 7/19/2022

Reviewed By: Date: 7/19/2022

FTR Project No.: 14487 Page 000009 of 000013

SUBCONTRACT ORDER

Apex Laboratories A2F0755

Accepta

SENDING LABORATORY:

Apex Laboratories 6700 S.W. Sandburg Street

Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 336-0745

Project Manager: Philip Nerenberg **RECEIVING LABORATORY:**

Frontier Analytical 5172 Hillsdale Circle El Dorado Hills, CA 95762 Phone: (916) 934-0900

Fax:

Sample Name: ISM-009_0622			After Processing Sampled: 06/20/22 12:45	(A2F0755-02)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (B)4 oz Glass Jar	07/19/22 17:00	06/20/23 12:45		
			After Processing	
Sample Name: ISM-014_0622			Sampled: 06/20/22 16:00	(A2F0755-04)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (B)4 oz Glass Jar	07/19/22 17:00	06/20/23 16:00		
Sample Name: ISM-011 0622			After Processing Sampled: 06/21/22 16:00	(4250755.06)
Analysis	Due	Expires	Comments	(A2F0755-06)
1613B Dioxins and Furans (SUB) Containers Supplied: (B)4 oz Glass Jar	07/19/22 17:00	06/21/23 16:00		
			After Processing	
Sample Name: ISM-111_0622			Sampled: 06/21/22 16:15	(A2F0755-08)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (B)4 oz Glass Jar	07/19/22 17:00	06/21/23 16:15		

Standard TAT

Soil marrix

EQUISICA Envirodata EDD (if possible)

EU

SUBCONTRACT ORDER

Apex Laboratories A2F0755

			After Processing	
Sample Name: ISM-211_0622			Sampled: 06/21/22 16:30	(A2F0755-10)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB)	07/19/22 17:00	06/21/23 16:30		
Containers Supplied:				
(B)4 oz Glass Jar				

Standard TAT

Date

6 28 27 Date

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 14487

Client:	Apex Laboratories
Client Project ID:	A2F0755
Date Received:	06/28/2022
Time Received:	11:25 am
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	5
Duplicates:	0
Storage Location:	R-4

Method of Delivery:	UPS
Tracking Number:	1ZX4720R0194506473
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	0
Cooling Method	Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test aqueous sample for residual Chlorine	No
Sodium Thiosulfate Added	No
Adequate Sample Volume	Yes
Appropriate Sample Container	No
pH Range of Aqueous Sample	N/A

Anomalies or additional comments:

Please note that the samples were received in clear glass jars. NELAP requires samples be received in amber glass bottles or jars. Although this anomaly will not affect your results, we are required by NELAP to make a note of it. We will proceed with analysis unless directed otherwise by you.

FTR Project No.: 14487 Page 000013 of 000013

Stage 2A/B Data Validation Checks JH Baxter Delivery Group A2F0755/14487

Comments:

• U-qualified samples assigned by the laboratory are not included in this report unless the U qualification is for some other reason other than a simple non-detect.

SUMMARY OF QUALITY CONTROL CHECKS

Quality Control Check	Check ed By	Comment		
Completeness	MBF	The data set is 100 percent complete, no results rejected.		
Holding times	MBF	Holding times were within the method specific recommended holding times.		
Preservation	MBF	Preservation was acceptable.		
COC Documentation	MBF	COC was not provided in the lab report, but laboratory sample login form and did not note any discrepancies other than clear glass jar sample containers not meeting NELAP requirements. No results qualified.		
Analytical methods	MBF	EPA 1613		
		Requested analytical methods were performed.		
Initial and continuing calibrations	MBF	Not independently verified during Stage 2A/B validation.		
Method blanks, trip blank, and field blanks	MBF	Method blanks were performed per batch and there were no detections and associated QC were within established control limits.		
Surrogate/labeled compounds	MBF	Labeled compounds were analyzed and within control limits.		
LCS/LCSD	MBF	An OPR was analyzed per batch. Recoveries were within established control limits.		
MS/MSD	MBF	F MS/MSD were not performed and are not required per t method.		
Field duplicates	MBF	A field duplicate and triplicate were collected and analyzed:		
		• Primary: ISM-011_0622		
		 Duplicate: ISM-111_0622 		
		Triplicate: ISM-211_0622		
		RSDs were within the 50% Limit for solid organic results.		
Lab duplicates	MBF	Lab sample duplicates were not performed or required per the method.		
Dilution	MBF	Samples did not require further dilution for analysis.		
Qualitative Identification for HRGC/HRMS analyses only	MBF	The following results were EMPCs with the presence of diphenyl ethers:		
		• ISM-011_0622		
		o Total TCDF		
		o Total HxCDF		
		• ISM-111_0622		
		o Total TCDF		

Quality Control Check	Check ed By	Comment
		o Total HxCDF
		o Total PeCDF
		Results were qualified J+.
		The following results were confirmed on the secondary column:
		• 2,3,7,8-TCDF
		o ISM-011_0622
		o ISM-111_0622
		o ISM-211_0622
		Results not qualified due to confirmation.

Overall Assessment

Qualifier codes added to results; table and notes below.

Notes

TABLE 1. SUMMARY OF QUALIFIED DATA

Sample ID	Analyte	Result (pg/g)	Qualifier Assigned	Reason for Qualification
	1,2,3,7,8,9-HxCDF,	1.89,		
ISM-009 0622	1,2,3,7,8-PeCDF,	1.09,	J	Below reporting limit
	2,3,4,7,8-PeCDF	2.44	1526	
ISM-011_0622	Total TCDF, Total HxCDF	31.8, 554	J+	EMPC, Presence of Diphenyl Ethers
ISM-014_0622	1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 1,2,3,7,8-PeCDD, 1,2,3,7,8-PeCDF, 2,3,4,7,8-PeCDF	2.06, 0.901, 2.34, 0.745, 1.22	J	Below reporting limit
ISM-111_0622	Total TCDF, Total HxCDF, Total PeCDF	37.9, 547, 133	J+	EMPC, Presence of Diphenyl Ethers

Pace Analytical® ANALYTICAL REPORT

July 29, 2022

Oregon Dept. of Env. Quality - ODEQ

Sample Delivery Group: L1508970

Samples Received: 06/26/2022

Project Number: 72-18-32

Description: JH Baxter Removal Action Planning

Report To: Don Hanson

165 E. 7th Avenue

Suite 100

Eugene, OR 97401

Entire Report Reviewed By: Buan Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
GI: Glossary of Terms	6
Al: Accreditations & Locations	7
Sc: Sample Chain of Custody	8

SAMPLE SUMMARY

COMP-09A_0622 L1508970-01 Solid			Collected by GS/ME	Collected date/time 06/20/22 13:00	Received da 06/26/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG1891233	1	07/29/22 00:00	07/29/22 00:00	\$ = /6	Minneapolis, MN 55414
COMP-09B_0622 L1508970-02 Solid			Collected by GS/ME	Collected date/time 06/20/22 13:15	Received da 06/26/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG1891233	1	07/29/22 00:00	07/29/22 00:00	65.6	Minneapolis, MN 55414
COMP-10A_0622 L1508970-03 Solid			Collected by GS/ME	Collected date/time 06/21/22 10:15	Received da 06/26/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG1891233	1	07/29/22 00:00	07/29/22 00:00	820	Minneapolis, MN 55414
COMP-10B_0622 L1508970-04 Solid			Collected by GS/ME	Collected date/time 06/21/22 10:30	Received da 06/26/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG1891233	1	07/29/22 00:00	07/29/22 00:00	22%	Minneapolis, MN 55414
COMP-11A_0622 L1508970-05 Solid			Collected by GS/ME	Collected date/time 06/21/22 11:00	Received da 06/26/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG1891233	1	07/29/22 00:00	07/29/22 00:00	9671	Minneapolis, MN 55414
COMP-11B_0622 L1508970-06 Solid			Collected by GS/ME	Collected date/time 06/21/22 11:15	Received da 06/26/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG1891233	1	07/29/22 00:00	07/29/22 00:00	0.518	Minneapolis, MN 55414
COMP-14A_0622 L1508970-07 Solid			Collected by GS/ME	Collected date/time 06/20/22 16:30	Received da 06/26/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG1891233	1	07/29/22 00:00	07/29/22 00:00	120	Minneapolis, MN 55414
COMP-14B_0622 L1508970-08 Solid			Collected by GS/ME	Collected date/time 06/20/22 16:45	Received da 06/26/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG1891233	1	07/29/22 00:00	07/29/22 00:00	1,290	Minneapolis, MN 55414

ACCOUNT: Oregon Dept. of Env. Quality - ODEQ PROJECT: 72-18-32

SDG: L1508970

DATE/TIME: 07/29/22 17:39

3 of 46

PAGE:

GI

Sc

SAMPLE SUMMARY

Subcontracted Analyses	WG1886865	1	07/12/22 00:00	07/12/22 00:00	823	Minneapolis, MN 55414
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
EB-01_0622 L1508970-11 GW			Collected by GS/ME	Collected date/time 06/21/22 16:45	Received d 06/26/22 0	
Subcontracted Analyses	WG1891233	1	07/29/22 00:00	07/29/22 00:00	65.8	Minneapolis, MN 55414
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
COMP-15B_0622 L1508970-10 Solid			Collected by GS/ME	Collected date/time 06/21/22 09:00	Received d 06/26/22 0	
Subcontracted Analyses	WG1891233	1	07/29/22 00:00	07/29/22 00:00	9#31	Minneapolis, MN 55414
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
COMP-15A_0622 L1508970-09 Solid			Collected by GS/ME	Collected date/time 06/21/22 08:45	Received d 06/26/22 0	2000

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford Project Manager

Buar Ford

Project Narrative

L1508970 -01, -02, -03, -04, -05, -06, -07, -08, -09, -10, -11 contains subout data that is included after the chain of custody.

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

SDG	Sample Delivery Group.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico 1	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina 3	41
Georgia ¹	923	North Dakota	R-140
ldaho	TN00003	Ohio-VAP	CL0069
Ilinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 14	2006
ouisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁶	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁶	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

State of Oregon Chain of Custody (Pace) Agency, Authorized Purchaser or Agent: Contract Laboratory Name: Lab Selection Criteria: Turn Around Time: GSI/Haley & Aldrich for ODEQ Pace Analytical National Proximity (if TAT < 48 hrs) 10 days (std.) Prior work on same project Send Lab Report To: Don Hanson, RG Lab Batch #: 5 days Address 165 E. 7th Avenue, Suite 100 Invoice: ODEQ/Business Office Cost (for anticipated analyses) 72 hours Eugene, OR 97401 811 SW 6th Ave Other labs disqualified or unable 48 hours Tel. #: 541-687-7349 Portland, OR 97204 to perform requested services 24 hours E-mail: don.hanson@deq.state.or.us, jbale@gsiws.com, Tel. #. (800) 452-4011 Emergency work Other cmartin@gsiws.com, mfargher@gsiws.com, GIS@gsiws.com Project Name: OREGON DEQ-JH BAXTER REMOVAL ACTION PLANNING (72-18-32) Sample Preservative 41508970 Project #: JH Baxter Removal Action Planning Solids Sampler Name: G Schutzius, M Elias Requested Analyses Collection Number of Dioxin by 161 Sample ID# Collection Date Matrix Comments Time Containers Comp-09A_0622 6/20/2022 13:00 SO 0 X Comp-09B 0622 02 6/20/2022 13:15 SO 1 Comp-10A_0622 03 6/21/2022 10:15 SO Comp-10B 0622 6/21/2022 10:30 SO 1 X 04 Comp-11A 0622 6/21/2022 11:00 SO 1 x 05 Comp-11B_0622 6/21/2022 11:15 SO 1 × - 06 Comp-14A_0622 16:30 6/20/2022 SO 1 × Comp-14B 0622 6/20/2022 16:45 SO 1 × Comp-15A_0622 6/21/2022 8:45 SO 1 - 64 Comp-15B_0622 6/21/2022 9:00 SO EB-01_0622 6/21/2022 W -11 × NOTES: Conduct Incremental Sampling Methodology processing prior to analysis. Contact Josh Bale (530-276-4188, jbale@gsiws.com) or Chris Martin (503-432-5979, cmartin@gsiws.com) with questions. Include DEQ EDD with final lab report. benevieve schytais Relinquished By: Agency/Agent: Agency/Agent Time & Date: 6/24/22 930 Time & Date: 6-2,5-22 Relinquished By Wood Agency/Agent: Received By Agency/Agent Signature Time & Date: Signature: Time & Date 'E AGREEMENT INCLUDING CONTRACT TERMS AND CONDITIONS AND SPECIAL CONTRACT TERMS AND CONDITIONS (T'S &C'S) CONTAINED IN THE PRICE AGREEMENT ARE FLICTING T'S AND C'S, EXPRESS OR IMPLIED.

THIS PURCHAS HEREBY INCOF

Sample Receipt Checklist COC Seal Present/Intact: Y

COC Signed/Accurate: Bottles arrive intact: N Correct bottles used: N Sufficient volume sent: RAD Screen < 0.5 mR/hr:

If Applicable VOA Zero Headspace: Pres.Correct/Check:

TY# 5671 5376 6779 PMA 6 0.9+.0=0.9

Temperature	PmA6 0940059	REM7 5.4+00-54		
Tracking	567 5376 67P	5671 5376 6790		

Pace Analytical Services, LLC. 1700 Elm Street Minneapolis, MN 55414

Phone: 612.607.1700 Fax: 612.607.6444

Report Prepared for:

Client Services
Pace Analytical National
12065 Lebanon Road
Mount Juliet TN 37122

REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10614837

Sample Receipt Date: 06/29/2022

Client Project #: L1508970 WG1886865

Client Sub PO #: L1508970 State Cert #: MN300001

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Kongmeng Vang, your Pace Project Manager.

This report has been reviewed by:

July 12, 2022

Kongmeng Vang, Project Manager

(612) 607-6382

(612) 607-6333 (fax)

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

July 7, 2022

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analysis performed on one sample submitted by a representative of Pace Analytical National. The sample was analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using USEPA Method 1613B. The estimated detection limits (EDLs) were based on signal-to-noise measurements. Estimated maximum possible concentration (EMPC) values were treated as positives in the toxic equivalence calculations.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extract ranged from 63-121%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These levels were below the calibration range for the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results table and may be, at least partially, attributed to the background.

Laboratory spike samples were also prepared using clean reference matrix that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 74-106% with relative percent differences of 1.2-17.3%. The recovery value obtained for 1,2,3,4,6,7,8-HpCDF in LCS-99760 was below the target range, flagged "R" on the results table, and may indicate a low bias for this congener in these determinations. Matrix spikes were not prepared with the extraction batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Tel: 612-607-1700 Fax: 612-607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
		Mississippi	MN00064
		Missouri	10100
A2LA	2926.01	Montana	CERT0092
Alabama	40770	Nebraska	NE-OS-18-06
Alaska-DW	MN00064	Nevada	MN00064
Alaska-UST	17-009	New Hampshire	2081
Arizona	AZ0014	New Jersey	MN002
Arkansas - WW	88-0680	New York	11647
Arkansas-DW	MN00064	North Carolina-	27700
California	2929	North Carolina-	530
Colorado	MN00064	North Dakota	R-036
Connecticut	PH-0256	Ohio-DW	41244
Florida	E87605	Ohio-VAP (170	CL101
Georgia	959	Ohio-VAP (180	CL110
Hawaii	MN00064	Oklahoma	9507
Idaho	MN00064	Oregon- rimary	MN300001
Illinois	200011	Oregon-Second	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
lowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky-DW	90062	Tennessee	TN02818
Kentucky-WW	90062	Texas	T104704192
Louisiana-DEQ	AI-84596	Utah	MN00064
Louisiana-DW	MN00064	Vermont	VT-027053137
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Michigan	9909	West Virginia-D	382
Minnesota	027-053-137	West Virginia-D	9952C
Minnesota-Ag	via MN 027-053	Wisconsin	999407970
Minnesota-Petr	1240	Wyoming-UST	via A2LA 2926.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix A

Sample Management

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section .	A I Client Inform			Section B								Secti																	Г					
				Required Pr										forma												Page: 1 Of 1								
Company		 		Report To:	Pace	e Anal	lytical Subo	out Team			_	Atten			n Har	nson										_								
Address:		ebanon Rd.		Copy To:							\dashv	_		Name:												1000	"Save 1 4 7 96 Pile."	JOHNS MANAGEMENT SERVICES	K fuirmoultum	and the company	- Carlos - C		4.7000 - 2-747 (Su-act 12 tuzt	
-	, TN 37122			Purchase Or								Addre		4															HIP. INF	Regula	tory Agend	cy		
Egnail: Phone:	(615) 77	eam@pacelabs.com 3-9756 Fax: (615)	750 5050	Project Nam			L1508970 Baxter Rem		- Diameir			Pace		ect Ma	nagar		1/									254		nien, danse	-Natherlands	erando de municipal	nier sone er men mauere	SANSOTTONIAN TOLE	JAPAN KINGS GARANGAN SAN	
	ed Due Date:	26-Jul	/ 56-5659	Project #:	-	JHE		72-18-32		g				ile #:	380		Kong	jmen:	g Van	g						5000		2000年6月	A P. Globali	State	/ Location OR			
	Ja Dao Dato.	20-341		rojoot ii.				12-10-32				, doc			300	776			25	yaka	811305	Pen	lieste	d An	alveie	j Eiltői	nad (V	(/N) .			UK ZWERE AND JE	VS-eastainin		
=C_D					to left)	C=COMP)		COLLI	ECTED					P	resei	nyativ	VAC			3			ucste	- Alle	alysis	ra inte		948	165000001-1-0					
DFR			MATRIX Drinking Wa Water Waste Wate	wT er ww	(see valid codes to left)	NAB C=C					LECTION								2.00 March 2010		1613									- F			***************************************	
	1	MPLE ID Character per box.	Product Soil/Solid Oil Wipe	P SL OL WP		(G=GRAB	STA	ART	EN	ND.	AT COL	ERS								s lest	rans by									orine (Y/I				
ITEM #		(A-Z, 0-9 / , -) e lds must be unique	Air Other Tissue	AR OT TS	MATRIX CODE	SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	H2SO4 HNO3	단	NaOH	Na2S2O3	Methanol	Other	Analyses	Dioxins and furans by									Residual Chlorine (Y/N)				
1	EB-01_0622				WT		DATE	THVIC	21-Jun	16:45	,,	1	7		╁		_	2	1	>	,					\top			H	1	needs pro	mium EDD	M	
2																							1										~~	
3																																		
4					丄	L'													╝	L														
- 5					$oldsymbol{\perp}$	<u> </u>					<u> </u>								_	ı	ا							 •		_	i			
6				** 121	ـــــــــــــــــــــــــــــــــــــ	\downarrow									1				_		الر) ‡	; :	1	0	6.	[4	18	3	7				
7					╀	+						H	_	_			_	-		ı								ı						
8.					+	+					_	\vdash	-	+		\vdash					 .06	 148	' 37											
9					+	+		<u> </u>					\dashv	+	+	H		\dashv	\dashv	Γ			1	1		_	\top	1	1 1					
10					+	+							\dashv	+	+	\vdash				ŀ	\dashv	+	1	-	H	+	+	╁	H		:			
11 12					T	\dagger						H	\dashv	+	+					ŀ	\dashv				H	+	+	+	\Box		<u> </u>			
. Sign of contraction was		ADDITIONAL COMMENTS			RELI	NGUIS	SHED BY I A	L AFFILIATIO	N .	DATI	.		TIME				ACC	EPTEI	D BY I	AFF	ILIAT	ION:		1	E	ATE		TIME	E		SAMPLE	CONDITIONS	3	
				James	C Hud	kaba	<			28-Jun		14:12	2		W	Uel	92		f f	A (Œ				Colo	29/2	72	8:5	50	3.6,3 <u>.</u>	Y	Y	Ý	
		h: WG1886865		2.792					<u> </u>					\perp													\perp		_					
Pace A	nalytical SD	Gs: L1508970	E despite publication (in	e#12										\perp													+				<u> </u>			
of 13	n: Minneapo	olis, MN 55414				—		SAMPLE	R NAME /	AND SIGN	UTAI	RE:					120		AV6239					i je je je						<u> </u>		<u> </u>		
13									NT Name	Part Control of the	No. 2						MARRIES								922				TEEX	i C	ned on	Custody Sealed Cooler (Y/N)	seles	
								SIG	NATURE	of SAMPI	LER:									T	D	ATE S	Signe	d:						TEMP in C	Recei ce (Y/N)	Custo Sealer Coole (Y/N)	Samp ntact (Y/N)	

DC#_Title: ENV-FRM-MIN4-0150 v05_Sample Condition Upon Receipt (SCUR)

Effective Date: 04/12/2022

Sample Condition Upon Receipt Client Name: Pale Analy tic	al		Project	: #:		MO#:	106148	337
Courier: Fed Ex UPS [TUSPS		— □Client				Due Da	te: 07/21/22
	Commerc	ial				PM: KV		
			See Excep			CLIENT: E	SC_114	
Tracking Number: 588275407700, 58927	15407	71/	☐ENV-FF 0142	KM-MIN4-				
	□No		Conic Ini	tact? 📈		No Biolos	ical Tissue Frozen?	Type Due Drive
		_		•	-s	luo BiOiO §) ·
Packing Material: Bubble Wrap Bubble Ba		□None	, □o₁				Temp Blank?	√ Yes No
Thermometer: T1(0461) T2(1336) T3(0459) 74(0254) T7 (0042) 01339252/1710 122639816 14	☐ T5(0489) 0792808	☐ T6(0235	•}	Type of lce:	✓Wet	□Blue	□None □Dry	□Melted
Did Samples Originate in West Virginia? ☐Yes ☐No Were All	Container	Temps Ta	ken? □Yes	□No ØN/A				
Temp should be above freezing to 6°C Cooler Temp F	Read w/t	emn his	ınk:			°С	Average Correcte Temp (no temp b only):	
remp should be above needing to be a cooler remp i	icaa ii, i	cinp bic					Omy,	
Correction Factor: The Cooler Temp Correc	ted w/te	emp bla	nk:			°C	_	: -
USDA Regulated Soil: (N/A, water sample/Other: Did samples originate in a quarantine zone within the Unite MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)? If Yes to either question, fill out a	Yes Regulate	□No		ID, LA.	Did samp Hawaii ar	les originate fror d Puerto Rico)?	☐Yes	6/79/77 ernationally, including □No s.
Location (check one): 🗆 Duluth 🔎 Minneap		/irginia					COMMENTS:	
Chain of Custody Present and Filled Out?	Yes	□ No		1.				
Chain of Custody Relinquished? Sampler Name and/or Signature on COC?	Yes Yes	□No □No	□n/A	2. 3.				
Samples Arrived within Hold Time?	Yes	□No	1	4.	If Fecal		r, <24 hrs, 🔲>24 hrs	
Short Hold Time Analysis (<72 hr)?	Yes	_DMo		□т			l Coliform/E coli ☐BOI ☐Orthophos ☐Othe	D/cBOD Hex Chrome
Rush Turn Around Time Requested?	Yes_	No		6.	·····			
Sufficient Volume?	Yes	No		7.				
Correct Containers Used?	Yes	□No □No		8.				
-Pace Containers Used? Containers Intact?	Yes	No		9.				
Field Filtered Volume Received for Dissolved Tests?	□Yes	□No	.∠N/A	10. Is s	ediment	visible in the di	solved container?]Yes □No
Is sufficient information available to reconcile the samples to the COC? Matrix: ☐Water ☐Soil ☐Oil ☐Other-	∠Yes	∏No		11. If no,	write ID/	Date/Time on Co	ntainer Below:	See Exception ENV-FRM-MIN4-0142
All containers needing acid/base preservation have	∐Yes	□No	ØN/A	12. Samp	le#			
been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide)	∐Yes	□No	⊠N/A		☐ NaOH	∏ HNО₃	∏H₂SO₄	Zinc Acetate
Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 (water) and Dioxin/PFAS	Yes	□No	□N/A	Positive of Chlorine	=	≒	Paper Lot#	See Exception ENV-FRM-MIN4-0142
				Res. Chlo	rine	0-6 Roll	0-6 Strip	0-14 Strip
Headspace in Methyl Mercury Container?	Yes	□No	⊠N/A			<u> </u>		
Extra labels present on soil VOA or WIDRO containers?	Yes		ZN/A ZN/A	13.		* * **** * * * * * * * * * * * * * * * *	**************************************	See Exception
Headspace in VOA Vials (greater than 6mm)?	Yes	∐No	N/A	13.				ENV-FRM-MIN4-014
Trip Blank Present?	☐Yes	□No	N/A	14.				
Trip Blank Custody Seals Present?	☐Yes	□No	N/A	Pac	e Trip Bla	nk Lot # (if pure	hased):	
CLIENT NOTIFICATION/RESOLUTION Person Contacted: Comments/Resolution:				Date/	Time:	Fie	ld Data Required?	Yes No
Project Manager Review:					Date:			
Note: Whenever there is a discrepancy affecting North Carolina comp	liance sam	oles, a cop	y of this for	m will be sen			Certification Office (i.e.,	, out of hold, incorrect
preservative, out of temp, incorrect containers).						Labeled by:		

Reporting Flags

- A = Reporting Limit based on signal to noise (EDL)
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Isotope ratio out of specification
- J = Estimated value
- L = Suppressive interference, analyte may be biased low
- Nn = Value obtained from additional analysis
- P = PCDEInterference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = SeeDiscussion

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix B

Sample Analysis Summary

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Fax: 612-607-6444

1700 Elm Street - Suite 200 Minneapolis, MN 55414 Tel: 612-607-1700

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID Lab Sample ID Filename Injected By

<u> Pace Analytical</u>

Total Amount Extracted % Moisture Dry Weight Extracted

ICAL ID CCal Filename(s) Method Blank ID

EB-01_0622 10614837001 U220705B_04 MS4

969 mL NA NA U220611 U220705A 17 BLANK-99759 Matrix Water Dilution NA Collected

Received Extracted 06/30/2023 11:30 07/06/2022 02:18 Analyzed

06/21/2022 16:45 06/29/2022 08:50

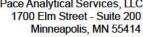
Native Isomers	Conc pg/L	EMPC pg/L	EDL pg/L	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND	_	0.31 0.31	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	90 83 97
2,3,7,8-TCDD Total TCDD	ND ND	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.55 0.55	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	99 104 121
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.40 0.28 0.28	1,2,3,4,7,0-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	98 114 109 117
1,2,3,7,8-PeCDD Total PeCDD	ND ND	_	0.71 0.71	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	109 93 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8-HxCDF	ND ND ND		0.90 0.76 0.52 1.0 0.52	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 4.00 2.00 2.00	85 63 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.0 ND ND ND 2.0		1.7 J 1.3 1.1 1.1 J	2,3,7,8-TCDD-37Cl4	0.20	NA 81
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		2.0 2.7 2.0	Total 2,3,7,8-TCDD Equivalence: 0.23 pg/L (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND	1.9	1.7 N 1.7			
OCDF OCDD	ND 21	62 - 3316 60 - 3316	3.0 3.3 BJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

ND = Not Detected NA = Not Applicable


NC = Not Calculated

REPORT OF LABORATORY ANALYSIS

J = Estimated value

B = Less than 10x higher than method blank level

I = Isotope ratio out of specification

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Blank Analysis Results

Lab Sample Name Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s)

DFBLKMC BLANK-99759 U220705A_08 1010 mL U220611 U220705A_01

Matrix Water Dilution NA

Extracted 06/30/2023 11:30 Analyzed 07/05/2022 16:04

Injected By MS4

Native Isomers	Conc pg/L	EMPC pg/L	EDL pg/L	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.72 0.72	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	59 54 68
2,3,7,8-TCDD Total TCDD	ND ND		0.53 0.53	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	70 72 89
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.50 0.36 0.36	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	71 78 79 76
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.73 0.73	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	78 65 52
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.71 0.80 0.69	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00 2.00	50 43 NA
1,2,3,7,8,9-HxCDF Total HxCDF	1.7 1.7	400 100 100	0.96 J 0.69 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		1.2 1.2 1.1 1.1	2,3,7,8-TCDD-37Cl4	0.20	79
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		3.6 5.9 3.6	Total 2,3,7,8-TCDD Equivalence: 0.20 pg/L (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND	2.4	1.5 J 1.5			
OCDF OCDD	3.3 29		2.5 J 2.2 J			

Conc = Concentration (Totals include 2, 3, 7, 8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

J = Estimated value

I = Isotope ratio out of specification

REPORTOFLABORATORYANALYSIS

Fax: 612-607-6444

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCS-99760 Filename U220705A 02 **Total Amount Extracted** 965 mL ICAL ID U220611

CCal Filename U220705A 01

Method Blank ID BLANK-99759

Water Matrix Dilution NA

Extracted 06/30/2023 11:30 Analyzed 07/05/2022 11:22

Injected By MS4

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HyCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 100 100	9.7 10 44 45 41 43 43 46 46 45 46 39 40 39 37 88 79	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 69.0 70.0 170.0	97 102 87 90 83 86 87 93 93 90 93 79 80 R 79 74 88 79
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	10 100 100 100 100 100 100 100 100 100	7.5 60 55 70 69 71 85 68 72 73 70 69 58 51 52 92	3.1 22.0 20.0 21.0 13.0 21.0 21.0 22.0 17.0 21.0 25.0 21.0 26.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	75 60 55 70 69 71 85 68 72 73 70 69 58 51 52 46

Cs = Concentration Spiked (ng/mL)

REPORT OF LABORATORY ANALYSIS

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{*=}See Discussion

Water

NA

Fax: 612-607-6444

Method 1613B Laboratory Control Spike Results

Matrix

Dilution

Lab Sample ID LCSD-99761
Filename U220705A_03
Total Amount Extracted 1020 mL

 ICAL ID
 U220611
 Extracted
 06/30/2023 11:30

 CCal Filename
 U220705A_01
 Analyzed
 07/05/2022 12:08

Method Blank ID BLANK-99759 Injected By MS4

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 50 50 50 50	10 11 45 46 42 46 47 49 49 47 48 41 42 44 39 96 94	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 69.0 70.0 170.0	101 106 91 92 84 92 94 98 98 95 95 95 81 85 88 78 96
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 0CDD-13C	10 100 100 100 100 100 100 100 100 100	15 120 110 140 140 150 170 130 160 150 150 130 110 110	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	148 121 110 140 141 148 174 127 156 157 146 146 127 111

Cs = Concentration Spiked (ng/mL)

REPORT OF LABORATORY ANALYSIS

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{*=}SeeDiscussion

Method 1613B

Spike Recovery Relative Percent Difference (RPD) Results

Client Pace Analytical National

 Spike 1 ID
 LCS-99760
 Spike 2 ID
 LCSD-99761

 Spike 1 Filename
 U220705A_02
 Spike 2 Filename
 U220705A_03

Compound	Spike 1 %REC	Spike 2 %REC	%RPD	
2,3,7,8-TCDF	97	101	4.0	
2,3,7,8-TCDD	102	106	3.8	
1,2,3,7,8-PeCDF	87	91	4.5	
2,3,4,7,8-PeCDF	90	92	2.2	
1,2,3,7,8-PeCDD	83	84	1.2	
1,2,3,4,7,8-HxCDF	86	92	6.7	
1,2,3,6,7,8-HxCDF	87	94	7.7	
2,3,4,6,7,8-HxCDF	93	98	5.2	
1,2,3,7,8,9-HxCDF	93	98	5.2	
1,2,3,4,7,8-HxCDD	90	98 95	5.4	
1,2,3,6,7,8-HxCDD	93	95	2.1	
1,2,3,7,8,9-HxCDD	79	81	2.5	
1,2,3,4,6,7,8-HpCDF	80	85	6.1	
1,2,3,4,7,8,9-HpCDF	79	88	10.8	
1,2,3,4,6,7,8-HpCDD	74	78	5.3	
OCDF	88	96	8.7	
OCDD	79	94	17.3	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

REPORTOFLABORATORYANALYSIS

Pace Analytical Services, LLC. 1700 Elm Street Minneapolis, MN 55414

Phone: 612.607.1700 Fax: 612.607.6444

Report Prepared for:

Client Services
Pace Analytical National
12065 Lebanon Road
Mount Juliet TN 37122

REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10616029

Sample Receipt Date: 07/08/2022

Client Project #: L1508970 WG1891233

Client Sub PO #: L1508970 State Cert #: MN300001

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Kongmeng Vang, your Pace Project Manager.

This report has been reviewed by:

July 29, 2022

Kongmeng Vang, Project Manager

(612) 607-6382

(612) 607-6333 (fax)

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

July 28, 2022

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on ten samples submitted by a representative of Pace Analytical National. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using USEPA Method 1613B. The estimated detection limits (EDLs) were based on signal-to-noise measurements. Estimated maximum possible concentration (EMPC) values were treated as positives in the toxic equivalence calculations.

Second column confirmation analyses of 2,3,7,8-TCDF values obtained from the primary (DB5-MS) column are performed only when specifically requested for a project and only when the values are above the concentration of the lowest calibration standard. Typical resolution for this isomer using the DB5-MS column ranges from 25-30%.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 10-98%. Except for eight low values, which were flagged "R" on the results tables, the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Concentrations below the calibration range were flagged "J" and should be regarded as estimates. Concentrations above the calibration range were flagged "E" and should also be regarded as estimates.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show Blank-100015 to contain trace levels of selected congeners. These levels were below the calibration range for the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background.

A laboratory spike sample was also prepared with each sample batch using clean reference matrix that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 92-120%. These results were within the target ranges for the method. Matrix spikes were prepared with the sample batches using sample materials from separate projects; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Tel: 612-607-1700 Fax: 612-607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
		Mississippi	MN00064
		Missouri	10100
A2LA	2926.01	Montana	CERT0092
Alabama	40770	Nebraska	NE-OS-18-06
Alaska-DW	MN00064	Nevada	MN00064
Alaska-UST	17-009	New Hampshire	2081
Arizona	AZ0014	New Jersey	MN002
Arkansas - WW	88-0680	New York	11647
Arkansas-DW	MN00064	North Carolina-	27700
California	2929	North Carolina-	530
Colorado	MN00064	North Dakota	R-036
Connecticut	PH-0256	Ohio-DW	41244
Florida	E87605	Ohio-VAP (170	CL101
Georgia	959	Ohio-VAP (180	CL110
Hawaii	MN00064	Oklahoma	9507
Idaho	MN00064	Oregon- rimary	MN300001
Illinois	200011	Oregon-Second	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
Iowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky-DW	90062	Tennessee	TN02818
Kentucky-WW	90062	Texas	T104704192
Louisiana-DEQ	AI-84596	Utah	MN00064
Louisiana-DW	MN00064	Vermont	VT-027053137
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Michigan	9909	West Virginia-D	382
Minnesota	027-053-137	West Virginia-D	9952C
Minnesota-Ag	via MN 027-053	Wisconsin	999407970
Minnesota-Petr	1240	Wyoming-UST	via A2LA 2926.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix A

Sample Management

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Reportion	A d Client Information:	Section B Required Pro	niect	nform	ation:			Secti			ation;													Page		1	Of	1	7		
(Sompar		Report To:	_		tical Subou	ut Team				Atten			on Ha		1		—									rage	, .			1	_
Address		Сору То:								Com	pany	Name	e: Or	egon	Dept	of En	ıv. Qı	uality													
域 Julie	at, TN 37122									Addr															,	Re	gulat	ory Agen	э у]
∰ail:	MTJLSuboutTeam@pacelabs.com	Purchase Or			1508970					Pace]
fagone:	(615) 773-9756 Fax (615) 758-5859	Project Name): 	JH Ba	exter Remo		n Plannin	ig .		+			anage		Kon	gmer	ig Va	ng								5		Location			1
Reques	ted Due Date: 1-Jul	Project #			7	72-18-32				Pace	Proti	ile #:	38	076			-								(4.1)		Porti	and, OR			4
1613FC_DFR # W3LI	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique	WT WW P SL OL WP AR OT TS	MATRIX CODE (see valid codes to left)	SAMPLETYPE (G=GRAB C=COMP)	STAF		E	ND	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved		Prese	± 33	03	wie hanol		Analyses Test Y/N	Dioxins and Furans 1613	Requ	ested 1	Allalys	is Filtere	ed (1			Residual Chlorine (Y/N)				
1	COMP-09A 0622	4 1 to 1	SL		DATE	TIME	DATE 20-Jun	13:00	S	#	<u> </u>			13	Z	<u>.</u>	Ō	┪	x x					+		-	Υ.	needs pro	oilum EDD	and year	1001
2	COMP-09B_0622		SL				20-Jun	13:15		1	1								x]		mium EDD		002
3	COMP-10A_0622		SL				21-Jun	10:15		1	1			\perp					x									needs pro	mium EDD		00
4	COMP-10B_0622		SL				21-Jun	10:30		1	1				_				x					1				needs pro	mium EDD		004
5	COMP-11A_0622		SL				21-Jun	11:00	igspace	1	1			1			\Box		x	_	1	_		1		1]]	needs pro	mium EDD		005
6	COMP-11B_0622		SL				21-Jun	11:15	_	1	1	1	_		ļ	Ш			x					_				needs pro	mium EDD		_lc0@
7	COMP-14A_0622		SL				20-Jun	16:30	_	1	1			-	ļ				x	\perp			-	4		-		needs pro	omium EDD	·	_00
8	COMP-14B_0622		SL	\sqcup			20-Jun	16:45	\perp	1	1	_	_	_	-				x	\perp				1				needs pro	mium EDD	-	008
9	COMP-15A_0622		ļ.,				21-Jun	8:45		1	1	_		\perp	\perp		<u> </u>	ı	, I	1				\perp				needs pro	mium EDD		000
10	COMP-15B_0622	- 1	· 	; 4			21-Jun	9:00		1	1			1	_			•	, ,						11			needs pro	omium EDD		401(
11			ļ									4	\perp	_	-				_	4	Ш	<u>.</u>		\bot	11						
12										Ш	j																Ш				1
	ADDITIONAL COMMENTS		RELI	NQUISI	HED BY / AF	FFILIATIO	N	DAT	E		пме		1/		.		D BY	/ AF	FILIAT	ON			DATE		TIME	1		SAMPLE	CONDITION	1	4
		Angela	Ford		7	//_		7-Jul_		11:1:	3	-	p/	/(W.C	=						67.	(812)	-	1:54	12.	. 1	7	14	4	-
Pace A	nalytical Batch: WG1891233							-		-		\downarrow										\perp		+		+			 		4
U	Analytical SDGs: L1508970									-		-														╁					-
Cocati	on: Minneapolis, MN 55414				r										-											+					-
	NO#:10616029				ŀ			AND SIG			_															-	in C	uo pe		S	
24	MOH · TAOTOAFA				}			of SAMP							-				D	ATE S	igned:					-	TEMP ii	Received (lce (Y/N)	Custody Sealed Cooler	Sample stact Y/N)	
	0616029																										·	<u>- × ·</u>	1-00-	<u>, -, = </u>	1

DC#_Title: ENV-FRM-MIN4-0150 v05_Sample Condition Upon Receipt

(SCUR)

Effective Date: 04/12/2022

Sample Condition Upon Receipt Client Name:			Project	WO#:1061602	29
□Pace □SpeeDee	USPS Commerc	cial	Client See Excep		07/29/22
Tracking Number: 5872 7542 62	96		0142		
Custody Seal on Cooler/Box Present? Yes Packing Material: Bubble Wrap Bubble Ba Thomas at 17 (0461) 12 (1336) 13 (0459) 14 (0254)	•	☐ None ☐ 16(0235)		er: Zin lauk Temp Blank?	Yes No
Thermometer:	40792808			Ice: Wet Blue None Dry	MeIted
Did Samples Originate in West Virginia? ☐ Yes ☑ No Were A	ll Container	Temps Tal	ken? □Yes	□no [Ín/a	
Temp should be above freezing to 6°C Cooler Temp	-	·		Average Corrected Temp (no temp blar only):°C	See Exceptions K ENV-FRM-MIN4-0142
Correction Factor: Tyne Cooler Temp Corre	cted w/te	emp bla	nk:	<u>2.5</u> °c	
USDA Regulated Soil: (N/A, water sample/Other: Soid samples originate in a quarantine zone within the Unite MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)? If Yes to either question, fill out	Yes	□No		Date/Initials of Person Examining Contents: <u>EN 67</u> , LA. Did samples originate from a foreign source (interinated Hawaii and Puerto Rico)? <u>Tyes</u> -FRM-MIN4-0154 and include with SCUR/COC paperwork.	nationally, including
Location (check one): Duluth Minnear	oolis 🎵 🗸	Virginia		COMMENTS:	
Chain of Custody Present and Filled Out?	✓Yes	□No		1.	
Chain of Custody Relinquished?	✓Yes	No	<u> </u>	2.	
Sampler Name and/or Signature on COC? Samples Arrived within Hold Time?	✓Yes ✓Yes	No No	N/A	 If Fecal:	
Short hold Time Analysis (<72 hr)?	Yes	☑No		5. Fecal Coliform HPC Total Coliform/E coli BOD/o	BOD Hex Chrome
Rush Turn Around Time Requested?	✓Yes	□No		6.	
Sufficient Volume?	ZYes			7.	
Correct Containers Used?	Yes	□ Nø		8.	
-Pace Containers Used? Containers Intact?	Yes Yes	No No		9	
Field Filtered Volume Received for Dissolved Tests?	Yes	□No	⊠N/A	10. Is sediment visible in the dissolved container?	es No
Is sufficient information available to reconcile the samples to the COC? Matrix: \(\) Water \(\) Soil \(\) Other- \(\) \(\)	□Yes	□No		11. If no, write ID/ Date/Time on Container Below:	See Exception ENV-FRM-MIN4-0142
All containers needing acid/base preservation have been checked?	∐Yes	□No	⊠N/A	12. Sample #	
All containers needing preservation are found to be in compliance with EPA recommendation? (HNO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide)	∐Yes	□No	⊠N/A	☐ NaOH ☐ HNO ₃ ☐ H ₂ SO ₄ [Zinc Acetate
Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 (water) and Dioxin/PFAS	□Yes	□No	□N/A	Positive for Res. Yes Chlorine? No pH Paper Lot#	
				Res. Chlorine 0-6 Roll 0-6 Strip	0-14 Strip
Headspace in Methyl Mercury Container?	Yes	□No	□N/A		
Extra labels present on soil VOA or WIDRO containers?	□Yes	□No		13.	See Exception
Headspace in VOA Vials (greater than 6mm)?	Yes	□No	□N/A	13.	ENV-FRM-MIN4-01
Trip Blank Present?	Yes	□No	N/A	14.	
Trip Blank Custody Seals Present?	Yes	□No	ØN/A	Pace Trip Blank Lot # (if purchased):	
CLIENT NOTIFICATION/RESOLUTION Person Contacted: Comments/Resolution:				Field Data Required?	Yes No
D				Deter	
Project Manager Review: Note: Whenever there is a discrepancy affecting North Carolina comp	olia n ce same	les a com	of this for	Date: will be sent to the North Carolina DEHNR Certification Office (i.e.,, o	 ut of hold, incorrect
preservative, out of temp, incorrect containers).	unec samp	cs, a cop	, 5, 6,13 (0)	Labeled by:	

Document Name: Regulated Soil Checklist

Document No.: ENV-FRM-MIN4-0154 Rev.01

Document Revised: 27Apr2020

Page 1 of 2

Pace Analytical Services - **Minneapolis**

USDA REGULATED SOIL CHECKLIST						
To Be Completed by SR Staff:						
wo: 06,629	Date: Initials:	FN				
Sample Origin (circle one):	DOMESTIC QUARANTINED	FOREIGN				
(Note: soil samples from Hawaii, Guam, Puerto Rico and the US Virgin Islands are considered to be of a Foreign Source)						
If Domestic, circle State of Origin:	AL AR CA FL GA LA MS NC NM NY OK ⟨Ōj	SC TN IX VA				
(Includes: IFA, SOD, Golden Nematode, Karnal Bunt and Witchweed) List County:						
(USDA Permit/Compliance Agreement authorizes movement of samples from these domestic regulated zones)						
If Quarantined, circle State of Origin:	FL ID TX CA List County:					
(Includes Fruit Fly, Giant African Snail and Pale Cyst Nematode)						
(Movement is not authorized for Pale Cyst Nematode [ID or Giant African Snail [FL], remaining quarantines require additional paperwork)						
If Foreign, list Country of Origin:						
(Movement from some Canadian Providences is not allowed. Refer to CS-232 Regulated Soil Flow Chart)						
REQUIREMENT	ACTION	COMPLETED				
PPQ-530 Paperwork must be included for	Scan PPQ-530 to the corresponding Project folder on the x drive.					
any samples from counties with a Fruit Fly		YES NO (N/)A				
Quarantine in TX. Refer to MN-S063	If PPQ-530 is not present, contact the Waste Coordinator and do					
through MN-S065	not continue processing samples.					
Samples from ID may not be moved from	If samples originated in a quarantined zone, contact the Waste	YES NO (N/A				
the quarantined region. Refer to MN-S055	Coordinator and do not continue processing samples.					
Samples from Giant African Snail	If samples originated in a quarantined zone, contact the Waste	YES NO /N/A/				
Quarantine in FL may not be moved from the quarantined region. Refer to MN-S068	Coordinator and do not continue processing samples.					
the quarantineu region. Refer to 1414-3008						
REQUIREMENT	ACTION	COMPLETED				
"Special Handling" stickers are to be placed	Did "special handling" stickers get placed on all sample	YES NO				
on all samples. Samples must be segregated and stored in	containers?					
designated bins, shelves and coolers.	Were samples placed in a designated cooler, containers and shelves?	YES NÔ				
	Were there any signs of breakage or leakage (check for broken	YES NO "				
	glass and/or loose soil in the cooler)?					
	If NO, ice and melt water can be disposed of by normal process (down	n the drain).				
Samples must be double contained to	If YES, were ice and melt water separated from the cooler and	YES NO (N/A)				
prevent accidental release.	disposed of properly?					
	Any broken glass and/or loose soil are to be bagged and placed in a USDA Regulated satellite					
	container or active drum (see Waste Coordinator).					
	Ice and melt water should be baked at a temperature range of 121-154°F for 2 hours and then					
Equipment and supplies that have come	cooled before going down the drain. Was the cooler(s) and/or countertop(s) decontaminated using					
into contact samples must be	either a fresh 10% bleach solution or 70% ethanol? (Gloves and	VEC NO				
decontaminated.	other lab supplies will be bagged and placed in the USDA	YES (NO)				
	Regulated satellite container or active drum).					
Comments:						
COMMUNICATION.						

Document Name: Regulated Soil Checklist

Document No.: ENV-FRM-MIN4-0154 Rev.01

Document Revised: 27Apr2020

Page 2 of 2

Pace Analytical Services - **Minneapolis**

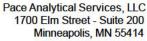
To Be Completed by PM and/or PC:

Sample Analysis to be conducted (circle all th	MN	Subcontract Lab			
	Name of Subcontract Lab (s):				
			_		
REQUIREMENT	ACT	ION	CC	MPLET	ED
Permission to ship untreated soil must be on file prior to shipping to any subcontract lab, including IR Pace Labs.	Go to: J:\SHARE\PRJ_MGR\10_Cli Documents\Regulated Soils Perm not there, contact the Waste Coo	its – if permission to ship letter is	YES	NO	N/A
Shipment must include a valid copy of the receiving lab's permit as well as permission to ship letter.	Is a copy of all needed paperwork ship samples until all necessary pa		YES	NO	N/A
Comments:					
			· · · · · · · · · · · · · · · · · · ·		
Project Manager Signature:		Date:			

Reporting Flags

- A = Reporting Limit based on signal to noise (EDL)
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Isotope ratio out of specification
- J = Estimated value
- L = Suppressive interference, analyte may be biased low
- Nn = Value obtained from additional analysis
- P = PCDEInterference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = SeeDiscussion

Pace Analytical Services, LLC


1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix B

Sample Analysis Summary

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Tel: 612-607-1700

Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - Pace Analytical National

COMP-09A 0622 Client's Sample ID Lab Sample ID 10616029001 Filename L220719B_08 Injected By MS4

Pace Analytical

Total Amount Extracted 10.2 g Solid Matrix % Moisture 4.3 Dilution NA Dry Weight Extracted 9.80 g Collected

06/20/2022 13:00 ICAL ID L220718 Received 07/08/2022 08:50 CCal Filename(s) L220719A 14 Extracted 07/14/2022 13:00 07/20/2022 09:35 Method Blank ID **BLANK-99979** Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.37 6.7	_	0.095 J 0.095	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 10 R 79
2,3,7,8-TCDD Total TCDD	9.1 68		0.33 0.33	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	82 89 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.65 1.3 20		0.085 J 0.10 J 0.085	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HXCDF-13C 2,3,4,6,7,8-HXCDF-13C 1,2,3,7,8,9-HXCDF-13C 1,2,3,4,7,8-HXCDD-13C	2.00 2.00 2.00 2.00 2.00	78 72 72 71
1,2,3,7,8-PeCDD Total PeCDD	1.8 15		0.095 J 0.095	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	74 62 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	5.4 3.0	3.6	0.096 0.13 PJ 0.13 J 0.16 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	77 58 NA
1,2,3,7,8,9-HxCDF Total HxCDF	1.4 82		0.096	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.4 9.1 6.0 79		0.22 J 0.19 0.16 0.16	2,3,7,8-TCDD-37Cl4	0.20	11 R
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	68 4.3 220		0.15 0.24 J 0.15	Total 2,3,7,8-TCDD Equivalence: 18 ng/Kg (Lower-bound - Using 2005	WHO Factor	s)
1,2,3,4,6,7,8-HpCDD Total HpCDD	230 480		0.056 0.056			
OCDF OCDD	250 2400	10 1 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	0.52 0.28			


Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

P = PCDE Interference

Method 1613B Sample Analysis Results

Client - Pace Analytical National

COMP-09B 0622 Client's Sample ID Lab Sample ID 10616029002 Filename L220719B_09 Injected By MS4 **Total Amount Extracted** 10.2 g

Solid Matrix % Moisture 5.3 Dilution NA Dry Weight Extracted 9.68 g Collected 06/20/2022 13:15

ICAL ID L220718 Received 07/08/2022 08:50 CCal Filename(s) L220719A 14 Extracted 07/14/2022 13:00 Method Blank ID **BLANK-99979** Analyzed 07/20/2022 10:34

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.73 21	_	0.14 J 0.14	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	82 33 88
2,3,7,8-TCDD Total TCDD	8.5 73		0.13 0.13	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	88 98 98
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.8 3.6 83		0.11 J 0.44 J 0.11	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	90 80 83 80
1,2,3,7,8-PeCDD Total PeCDD	15 70		0.089 0.089	1,2,3,4,7,0-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	81 67 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	16 19 3.4 420	42	0.30 0.24 P 0.24 0.25 J 0.24	1,2,3,4,7,6,9-HpCDD-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 4.00 2.00 2.00 2.00	85 65 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	22 55 44 390		0.46 0.27 0.36 0.27	2,3,7,8-TCDD-37Cl4	0.20	36
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	540 27 1700		0.44 0.48 0.44	Total 2,3,7,8-TCDD Equivalence: 67 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	1200 2100		0.027 0.027			
OCDF OCDD	2300 11000		0.18 0.29 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

P = PCDE Interference

E = Exceeds calibration range

Tel: 612-607-1700

Method 1613B Sample Analysis Results

Client - Pace Analytical National

COMP-10A 0622 Client's Sample ID Lab Sample ID 10616029003 Filename L220719B_10 Injected By MS4 **Total Amount Extracted** 10.7 g

% Moisture 4.9 Dry Weight Extracted 10.2 g ICAL ID L220718 CCal Filename(s) L220719A 14 Method Blank ID **BLANK-99979**

Solid Matrix Dilution NA Collected 06/21/2022 10:15 Received 07/08/2022 08:50 Extracted 07/14/2022 13:00 07/20/2022 11:33 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.51 9.1		0.35 J 0.35	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 15 R 76
2,3,7,8-TCDD Total TCDD	16 61		0.22 0.22	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	75 82 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.60 1.2 22		0.070 J 0.065 J 0.065	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	70 64 67 64
1,2,3,7,8-PeCDD Total PeCDD	2.5 22		0.15 J 0.15	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	65 58 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	3.1 2.9 1.1	5.0	0.061 J 0.095 P 0.12 J 0.065 J	1,2,3,4,7,5,9-HPCDD-13C 1,2,3,4,6,7,8-HPCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	71 57 NA
Total HxCDF	75		0.061	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.1 13 8.4 130		0.17 J 0.14 0.27 0.14	2,3,7,8-TCDD-37Cl4	0.20	16 R
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	71 4.2 220		0.14 0.12 J 0.12	Total 2,3,7,8-TCDD Equivalence: 28 ng/Kg (Lower-bound - Using 2005	WHO Factors	s)
1,2,3,4,6,7,8-HpCDD Total HpCDD	360 770		0.043 0.043			
OCDF OCDD	240 3100		0.21 0.15			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

EDL = Estimated Detection Limit

P = PCDE Interference

Solid

06/21/2022 10:30

NA

ND = Not Detected

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - Pace Analytical National

COMP-10B 0622 Client's Sample ID Lab Sample ID 10616029004 Filename L220719B_11 Injected By MS4 **Total Amount Extracted** 10.4 g

Matrix % Moisture 5.0 Dilution Dry Weight Extracted 9.90 g Collected ICAL ID L220718 Received

07/08/2022 08:50 CCal Filename(s) L220719A 14 Extracted 07/14/2022 13:00 Method Blank ID **BLANK-99979** Analyzed 07/20/2022 12:31

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.43 11		0.23 J 0.23	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	77 17 R 86
2,3,7,8-TCDD Total TCDD	14 70		0.21 0.21	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	87 93 86
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.80 1.7 39		0.057 J 0.090 J 0.057	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	81 72 77 73
1,2,3,7,8-PeCDD Total PeCDD	2.3 21		0.049 J 0.049	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	75 65 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	7.6 6.7 2.1	9.8	0.15 0.11 P 0.11 0.11 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00 2.00	79 63 NA
Total HxCDF	200		0.11	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.2 29 10 170		0.24 J 0.26 0.18 0.18	2,3,7,8-TCDD-37Cl4	0.20	18 R
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	200 9.5 660		0.27 0.55 0.27	Total 2,3,7,8-TCDD Equivalence: 32 ng/Kg (Lower-bound - Using 2005	WHO Factors	s)
1,2,3,4,6,7,8-HpCDD Total HpCDD	480 900		0.097 0.097			
OCDF OCDD	570 3300	-	0.28 0.24			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

P = PCDE Interference

Method 1613B Sample Analysis Results

Client - Pace Analytical National

COMP-11A 0622 Client's Sample ID Lab Sample ID 10616029005 Filename L220719B_12 Injected By MS4

Total Amount Extracted 10.0 g Solid Matrix % Moisture 5.0 Dilution NA Dry Weight Extracted 9.55 g Collected

06/21/2022 11:00 ICAL ID L220718 Received 07/08/2022 08:50 CCal Filename(s) L220719A 14 Extracted 07/14/2022 13:00 07/20/2022 13:30 Method Blank ID **BLANK-99979** Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.44 8.1		0.35 J 0.35	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	68 20 R 78
2,3,7,8-TCDD Total TCDD	24 52	-	0.20 0.20	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	78 84 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.54 1.2 18		0.063 J 0.071 J 0.063	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 67 72 67
1,2,3,7,8-PeCDD Total PeCDD	2.0 21		0.11 J 0.11	1,2,3,4,7,8-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	69 60 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.5	5.9	0.12 J 0.14 P 0.15 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	75 59
1,2,3,7,8,9-HxCDF Total HxCDF	1.1 65		0.12 J 0.12	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.3 14 8.0 120		0.41 J 0.19 0.21 0.19	2,3,7,8-TCDD-37Cl4	0.20	23 R
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	55 3.0 170		0.15 0.090 J 0.090	Total 2,3,7,8-TCDD Equivalence: 35 ng/Kg (Lower-bound - Using 2005	WHO Factor	s)
1,2,3,4,6,7,8-HpCDD Total HpCDD	370 850	100 T 100 T 100 T	0.043 0.043			
OCDF OCDD	150 3500	<u> </u>	0.18 0.13			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

P = PCDE Interference

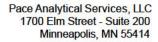
Method 1613B Sample Analysis Results

Client - Pace Analytical National

COMP-11B 0622 Client's Sample ID Lab Sample ID 10616029006 Filename U220721A_14 Injected By SMT **Total Amount Extracted** 10.3 g

Solid Matrix % Moisture Dilution NA 4.9 Dry Weight Extracted 9.79 g Collected 06/21/2022 11:15

ICAL ID U220611 Received 07/08/2022 08:50 CCal Filename(s) U220720A 20 Extracted 07/15/2022 14:30 Method Blank ID BLANK-100015 Analyzed 07/21/2022 13:12


Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.1 15		0.43 0.43	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	63 59 74
2,3,7,8-TCDD Total TCDD	8.4 28		0.37 0.37	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	72 76 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	6.8 77	1.8	0.19 J 0.25 0.19	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	57 66 67 69
1,2,3,7,8-PeCDD Total PeCDD	3.9 36		0.25 J 0.25	1,2,3,4,7,8-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	67 56 49
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	24 7.0 10 5.0		0.30 0.25 0.92 0.37 J	1,2,3,4,7,6,9-HPCDF-13C 1,2,3,4,6,7,8-HPCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	61 45 NA
Total HxCDF	270		0.25	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	8.2 25 14 160		0.89 1.2 0.49 0.49	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	140 11 440		2.0 0.72 0.72	Total 2,3,7,8-TCDD Equivalence: 33 ng/Kg (Lower-bound - Using 2005	WHO Facto	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	590 1100		0.41 0.41			
OCDF OCDD	330 5300		0.73 0.23			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID COMP-14A_0622
Lab Sample ID 10616029007
Filename U220721A_15
Injected By SMT
Total Amount Extracted 11.9 g

Pace Analytical

Total Amount Extracted11.9 gMatrixSolid% Moisture4.9DilutionNADry Weight Extracted11.3 gCollected06/20

 Dry Weight Extracted
 11.3 g
 Collected Received
 06/20/2022 16:30

 ICAL ID
 U220611
 Received
 07/08/2022 08:50

 CCal Filename(s)
 U220720A_20
 Extracted
 07/15/2022 14:30

 Method Blank ID
 BLANK-100015
 Analyzed
 07/21/2022 14:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	7.3	0.47	0.25 J 0.25	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	63 61 84
2,3,7,8-TCDD Total TCDD	1.3 14		0.23 0.23	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	89 92 87
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.63 0.95 20	=	0.13 J 0.10 J 0.10	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	65 74 75 79
1,2,3,7,8-PeCDD Total PeCDD	1.8 27		0.093 J 0.093	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	79 77 69 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.6 1.6 2.4		0.25 J 0.16 J 0.20 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	80 52
1,2,3,7,8,9-HxCDF Total HxCDF	0.78 62		0.11 BJ 0.11	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.9 11 7.1 110	=	0.74 J 0.61 0.37 0.37	2,3,7,8-TCDD-37Cl4	0.20	73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	59 3.3 210		0.34 0.28 J 0.28	Total 2,3,7,8-TCDD Equivalence: 11 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	300 680		0.12 0.12			
OCDF OCDD	270 3300		0.41 0.31			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Isotope ratio out of specification

Minneapolis, MN 55414 Tel: 612-607-1700

Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - Pace Analytical National

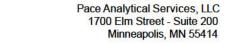
COMP-14B 0622 Client's Sample ID Lab Sample ID 10616029008 Filename U220721A_11 Injected By SMT **Total Amount Extracted**

Pace Analytical

Solid 12.1 g Matrix % Moisture Dilution NA 4.4 Dry Weight Extracted 11.5 g Collected 06/20/2022 16:45

ICAL ID U220611 Received 07/08/2022 08:50 CCal Filename(s) U220720A 20 Extracted 07/15/2022 14:30 Method Blank ID BLANK-100015 Analyzed 07/21/2022 10:51

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	9.7	0.43	0.30 N 0.30	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	61 59 84
2,3,7,8-TCDD Total TCDD	1.4 20		0.13 0.13	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	89 94 86
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	17	0.54 0.89 	0.049 IJ 0.085 IJ 0.049	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	70 74 81 79
1,2,3,7,8-PeCDD Total PeCDD	2.1 28		0.067 J 0.067	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 70 68
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.1 2.9 2.6		0.14 J 0.13 J 0.11 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	81 60
1,2,3,7,8,9-HxCDF Total HxCDF	0.75 61		0.15 BJ 0.11	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.1 10 6.9 89	=	0.33 J 0.21 0.24 0.21	2,3,7,8-TCDD-37Cl4	0.20	73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	55 4.1 190		0.95 0.32 J 0.32	Total 2,3,7,8-TCDD Equivalence: 11 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	240 500		0.17 0.17			
OCDF OCDD	230 2500	<u> </u>	0.086 0.043			


Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID COMP-15A_0622
Lab Sample ID 10616029009
Filename U220721A_12
Injected By SMT
Total Amount Extracted 11.7 g

Pace Analytical

Total Amount Extracted11.7 gMatrixSolid% Moisture4.5DilutionNADry Weight Extracted11.2 gCollected06/21

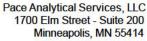
 Dry Weight Extracted
 11.2 g
 Collected
 06/21/2022 08:45

 ICAL ID
 U220611
 Received
 07/08/2022 08:50

 CCal Filename(s)
 U220720A_20
 Extracted
 07/15/2022 14:30

 Method Blank ID
 BLANK-100015
 Analyzed
 07/21/2022 11:38

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.66 6.4		0.48 J 0.48	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	62 60 79
2,3,7,8-TCDD Total TCDD	14 37		0.45 0.45	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	83 87 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.6 29	0.66	0.037 J 0.12 J 0.037	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	60 67 72 73
1,2,3,7,8-PeCDD Total PeCDD	2.5 35		0.060 J 0.060	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	65 62 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	4.6 3.4 1.3	3.6	0.15 JJ 0.11 0.26 J 0.25 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	72 54 NA
Total HxCDF	81		0.11	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.0 16 9.4 140		0.38 0.33 0.34 0.33	2,3,7,8-TCDD-37Cl4	0.20	73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	57 3.9 180		0.27 0.23 J 0.23	Total 2,3,7,8-TCDD Equivalence: 27 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	350 900		0.12 0.12			
OCDF OCDD	190 3300		0.053 0.094			


Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Solid

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Matrix

COMP-15B 0622 Client's Sample ID Lab Sample ID 10616029010 Filename U220721A_13 Injected By SMT **Total Amount Extracted** 10.3 g

% Moisture Dilution NA 4.7 Dry Weight Extracted 9.79 g Collected 06/21/2022 09:00 07/08/2022 08:50 ICAL ID U220611 Received CCal Filename(s) U220720A 20 Extracted

07/15/2022 14:30 Method Blank ID BLANK-100015 Analyzed 07/21/2022 12:25

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.1 21		0.25 0.25	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 63 75
2,3,7,8-TCDD Total TCDD	9.6 29		0.66 0.66	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	77 79 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.2 2.2 40		0.26 J 0.26 J 0.26	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	69 66 64 77
1,2,3,7,8-PeCDD Total PeCDD	28	2.2	0.14 N 0.14	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 48 41
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	5.7 2.8 3.8		0.17 0.26 J 0.28 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	57 27
1,2,3,7,8,9-HxCDF Total HxCDF	1.6 66		0.26 J 0.17	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.8 15 8.8 130		0.63 J 0.65 0.27 0.27	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	63 4.4 67		0.46 0.52 J 0.46	Total 2,3,7,8-TCDD Equivalence: 22 ng/Kg (Lower-bound - Using 2005	WHO Facto	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	330 730		0.14 0.14			
OCDF OCDD	230 3200		0.66 0.62			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Method 1613B Blank Analysis Results

Lab Sample Name Lab Sample ID Filename **Total Amount Extracted**

Pace Analytical

ICAL ID CCal Filename(s) **DFBLKPG BLANK-99979** U220719A_03 10.3 g U220611 U220718A_27

Matrix Solid Dilution NA

Extracted 07/14/2022 13:00 Analyzed 07/19/2022 11:25

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.23 0.23	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	69 58 77
2,3,7,8-TCDD Total TCDD	ND ND		0.34 0.34	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	81 104 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.24 0.18 0.18	1,2,3,4,7,0-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	68 63 68 82
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.27 0.27	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	78 74 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		0.92 0.99 0.94 1.2	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	103 60 NA
Total HxCDF	ND		0.92	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		1.0 0.90 1.00 0.90	2,3,7,8-TCDD-37Cl4	0.20	65
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.82 1.3 0.82	Total 2,3,7,8-TCDD Equivalence: 0.00 ng/Kg (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.49 0.49			
OCDF OCDD	ND ND		2.4 2.6			

Conc = Concentration (Totals include 2, 3, 7, 8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

Fax: 612-607-6444

Method 1613B Blank Analysis Results

Lab Sample Name Lab Sample ID Filename

<u> Pace Analytical</u>

Total Amount Extracted ICAL ID

CCal Filename(s)

DFBLKPX BLANK-100015 F220719B_06 10.7 g F220529

F220719B_01

Matrix Solid Dilution NA

Extracted 07/15/2022 14:30 Analyzed 07/19/2022 18:08

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.048 0.048	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	65 57 67
2,3,7,8-TCDD Total TCDD	ND ND		0.11 0.11	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	68 66 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.063 0.041 0.041	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 73 69 65
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.051 0.051	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	74 59 53
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND 0.12 0.12		0.050 0.053 0.045 0.061 J 0.045 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 4.00 2.00 2.00	55 46 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.16 ND ND 0.16		0.083 J 0.079 0.075 0.075 J	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.049 0.079 0.049	Total 2,3,7,8-TCDD Equivalence: 0.030 ng/Kg (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.18 0.18		0.085 J 0.085 J			
OCDF OCDD	ND 0.64	100 V 100 V	0.17 0.19 J			

Conc = Concentration (Totals include 2, 3, 7, 8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures. J = Estimated value

Fax: 612-607-6444

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCS-99980 Filename U220719A 01 **Total Amount Extracted** 10.5 g ICAL ID U220611

CCal Filename Method Blank ID

U220718A 27 BLANK-99979

Solid Matrix Dilution NA

07/14/2022 13:00 Extracted Analyzed 07/19/2022 09:52

Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 50 50 50 50	10 10 53 50 46 53 56 57 56 53 49 49 49 51 47 93 120	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 69.0 70.0 170.0	102 104 106 101 92 106 112 115 113 106 107 99 98 102 93 93
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 0CDD-13C	10 100 100 100 100 100 100 100 100 100	5.3 68 50 78 80 100 73 69 63 68 82 78 78 73 100 120	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	53 68 50 78 80 105 73 69 63 68 82 78 78 73 103 58

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{*=}See Discussion

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCS-100016 Filename F220719B 02 **Total Amount Extracted** 10.8 g ICAL ID F220529

CCal Filename F220719B 01

Method Blank ID BLANK-100015

Solid Matrix Dilution NA

Extracted 07/15/2022 14:30 Analyzed 07/19/2022 15:06

Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDD 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 50 50 50 50	11 11 50 49 50 51 52 52 51 54 52 50 54 56 51 120	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 69.0 70.0 170.0	110 114 100 98 101 101 103 104 102 109 104 99 108 112 102 118 120
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 0CDD-13C	10 100 100 100 100 100 100 100 100 100	12 110 97 110 100 100 130 110 120 110 120 94 82 87 150	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	119 108 97 106 102 102 128 114 115 109 114 123 94 82 87 75

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{*=}See Discussion

Stage 2A/B Data Validation Checks JH Baxter Delivery Group L1508970/10616029

Comments:

U-qualified samples assigned by the laboratory are not included in this report unless the U
qualification is for some other reason other than a simple non-detect.

SUMMARY OF QUALITY CONTROL CHECKS

Quality Control Check	Check ed By	Comment			
Completeness	MBF	The data set is 100 percent complete, no results rejected.			
Holding times	MBF	Holding times were within the method specific recommended holding times.			
Preservation	MBF	Preservation was acceptable.			
COC Documentation	MBF	COC was provided in the lab report.			
Analytical methods	MBF	EPA 1613B			
		Requested analytical methods were performed.			
Initial and continuing calibrations	MBF	Not independently verified during Stage 2A/B validation.			
Method blanks, trip blank, and field blanks	MBF	Method blanks were performed per batch and there were no detections and associated QC were within established control limits except for:			
		• Blank-1000015			
		o 1,2,3,7,8,9-HxCDF 0.12 J			
		o Total HxCDF 0.12 J			
		o 1,2,3,4,7,8-HxCDD 0.16 J			
		o Total HxCDD 0.16 J			
		o 1,2,3,4,6,7,8-HpCDD 0.18 J,			
		o Total HpCDD 0.18 J			
		o OCDD 0.64 J			
		Associated sample results were greater than 3X method blank contamination. Results not qualified.			
		Equipment Blank (EB-01_0622)			
		o 1,2,3,4,7,8-HxCDD 1.7 J			
		o Total HxCDD 1.1 J			
		o 1,2,3,4,6,7,8-HpCDD 1.9 J+			
		o OCDD 21 J			
		Raw results not reviewed during 2A/B. Equipment blank results (pg/L) and sample results (ng/kg) not directly comparable. Results not qualified.			
Surrogate/labeled compounds	MBF	Labeled compounds were analyzed and within control limits except for:			
		• 2,3,7,8-TCDD-13C			
		o COMP-11A_0622 10%			
		o COMP-10B_0622 15%			
		o COMP-10A_0622 17%			

Check ed By	Comment
Ca By	COMP-09A_0622 20% Associated 2,3,7,8-TCDD analytes qualified J 2,3,7,8-TCDD-37C14 (Cleanup Recovery STD) COMP-09A_0622 11% COMP-10A_0622 16% COMP-10B_0622 18% COMP-11A_0622 23% Unless additional qualifications were necessary, all associated sample analytes qualified J due to low CRS recovery.
MBF	An LCS was analyzed per batch. Recoveries were within established control limits.
MBF	MS/MSD were not performed and are not required per the method.
MBF	Field duplicates were not collected or analyzed.
MBF	Lab sample duplicates were not performed or required per the method.
MBF	Samples did not require further dilution for analysis.
MBF	The following results were EMPCs with the presence of diphenyl ethers: • 1,2,3,6,7,8-HxCDF • COMP-09A_0622 • COMP-10A_0622 • COMP-10B_0622 • COMP-11A_0622 Results were qualified J+. The following results were EMPCs with an isotope ratio out of specification: • COMP-11B_0622 • 1,2,3,7,8-PeCDF • COMP-14A_0622 • 2,3,7,8-TCDF • COMP-14B_0622 • 1,2,3,7,8-PeCDF • 2,3,4,7,8-PeCDF • COMP-15A_0622 • 1,2,3,7,8-PeCDF • COMP-15A_0622 • 1,2,3,7,8-PeCDF • COMP-15B_0622 • 1,2,3,7,8-PeCDF
	MBF MBF MBF

Quality Control Check	Check ed By	Comment
Overall Assessment	300	Qualifier codes added to results; table and notes below.

Notes

TABLE 1. SUMMARY OF QUALIFIED DATA

Sample ID	Analyte	Result (ng/kg)	Qualifier Assigned	Reason for Qualification
COMP-09A_0622	1,2,3,6,7,8-HxCDF	3.6	J+	EMPC, Presence of PCDEs, CRS < LCL, Below reporting limit
COMP-09A_0622	1,2,3,4,7,8,9-HpCDF, 1,2,3,4,7,8-HxCDD, 1,2,3,7,8,9-HxCDF, 1,2,3,7,8-PeCDD, 1,2,3,7,8-PeCDF, 2,3,4,6,7,8-HxCDF, 2,3,4,7,8-PeCDF, 2,3,7,8-TCDF	4.3, 3.4, 1.4, 1.8, 0.65, 3.0, 1.3, 0.37	J	CRS < LCL, Below reporting limit
COMP-09A_0622	2,3,7,8-Tcdd	9.1	J-	SUR < LCL, CRS < LCL
COMP-09A_0622	1,2,3,4,6,7,8-HpCDD, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, OCDD, OCDF, Total TCDF, Total HpCDD, Total HpCDF, Total HxCDD, Total HxCDD, Total PeCDD, Total PeCDD, Total PeCDD, Total PeCDF, Total TCDD	230, 68, 5.4, 9.1, 6.0, 2400, 250, 6.7, 480, 220, 79, 82, 15, 20, 68	J	CRS < LCL
COMP-09B_0622	1,2,3,6,7,8-HxCDF	42	J+	EMPC, Presence of PCDEs
COMP-09B_0622	1,2,3,7,8,9-HxCDF, 1,2,3,7,8-PeCDF, 2,3,4,7,8-PeCDF, 2,3,7,8-TCDF	3.4, 1.8, 3.6, 0.73	J	Below reporting limit
COMP-10A_0622	1,2,3,6,7,8-HxCDF	5.0	J+	EMPC, Presence of PBDEs, CRS < LCL

COMP-10A_0622	1,2,3,4,7,8,9-HpCDF, 1,2,3,4,7,8-HxCDD, 1,2,3,4,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 1,2,3,7,8-PeCDD, 1,2,3,7,8-PeCDF, 2,3,4,6,7,8-HxCDF, 2,3,4,7,8-PeCDF, 2,3,4,7,8-PeCDF,	4.2, 4.1, 3.1, 1.1, 2.5, 0.60, 2.9, 1.2, 0.51	J	CRS < LCL, Below reporting limit
COMP-10A_0622	2,3,7,8-TCDD	16	J-	Labeled Standard < LCL, CRS < LCL
COMP-10A_0622	1,2,3,4,6,7,8-HpCDD, 1,2,3,4,6,7,8-HpCDF, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, OCDD, OCDF, Total TCDF, Total HpCDD, Total HpCDF, Total HxCDD, Total HxCDD, Total PeCDD, Total PeCDD, Total PeCDD,	360, 71, 13, 8.4, 3100, 240, 9.1, 770, 220, 130, 75, 22, 22,	J	CRS < LCL
COMP-10B_0622	1,2,3,6,7,8-HxCDF	9.8	J+	EMPC, Presence of PCDEs, CRS < LCL
COMP-10B_0622	1,2,3,4,7,8-HxCDD, 1,2,3,7,8,9-HxCDF, 1,2,3,7,8-PeCDD, 1,2,3,7,8-PeCDF, 2,3,4,7,8-PeCDF, 2,3,7,8-TCDF	4.2, 2.1, 2.3, 0.80, 1.7, 0.43	J	CRS < LCL, Below reporting limit
COMP-10B_0622	2,3,7,8-TCDD	14	J-	SUR < LCL, CRS < LCL
COMP-10B_0622	1,2,3,4,6,7,8-HpCDD, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8,9-HpCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 2,3,4,6,7,8-HxCDF, OCDD, OCDF, Total TCDF, Total HpCDD, Total HpCDD, Total HxCDD, Total HxCDD, Total HxCDD, Total PeCDD,	480, 200, 9.5, 7.6, 29, 10, 6.7, 3300, 570, 11, 900, 660, 170, 200, 21,	J	CRS < LCL

	Total PeCDF, Total TCDD	39, 70		
COMP-11A_0622	1,2,3,6,7,8-HxCDF	5.9	J+	EMPC, Presence of PCDEs, CRS < LCL
COMP-11A_0622	1,2,3,4,7,8,9-HpCDF, 1,2,3,4,7,8-HxCDD, 1,2,3,4,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 1,2,3,7,8-PeCDD, 1,2,3,7,8-PeCDF, 2,3,4,6,7,8-HxCDF, 2,3,4,7,8-PeCDF, 2,3,4,7,8-TCDF	3.0, 4.3, 3.4, 1.1, 2.0, 0.54, 2.5, 1.2, 0.44	J	CRS < LCL, Below reporting limit
COMP-11A_0622	2,3,7,8-TCDD	24	J-	SUR < LCL, CRS < LCL
COMP-11A_0622	1,2,3,4,6,7,8-HpCDD, 1,2,3,4,6,7,8-HpCDF, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, OCDD, OCDF, Total TCDF, Total HpCDD, Total HpCDF, Total HxCDD, Total HxCDD, Total HxCDF, Total PeCDD, Total PeCDD, Total PeCDF, Total PeCDF,	370, 55, 14, 8.0, 3500, 150, 8.1, 850, 170, 120, 65, 21, 18, 52	J	CRS < LCL
COMP-11B_0622	1,2,3,7,8-PeCDF	1.8	J+	EMPC, Isotope ratio out of spec, Below reporting limit
COMP-11B_0622	1,2,3,7,8,9-HxCDF, 1,2,3,7,8-PeCDD	5.0, 3.9	J	Below reporting limit
COMP-14A_0622	2,3,7,8-TCDF	0.47	J+	EMPC, Isotope ratio out of spec, Below reporting limit
COMP-14A_0622	1,2,3,4,7,8,9-HpCDF, 1,2,3,4,7,8-HxCDD, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 1,2,3,7,8-PeCDD, 1,2,3,7,8-PeCDF, 2,3,4,6,7,8-HxCDF, 2,3,4,7,8-PeCDF	3.3, 3.9, 1.6, 1.6, 0.78, 1.8, 0.63, 2.4, 0.95	J	Below reporting limit

COMP-14B_0622	1,2,3,7,8-PeCDF, 2,3,4,7,8-PeCDF, 2,3,7,8-TCDF	0.54, 0.89, 0.43	J+	EMPC, Isotope ratio out of spec, Below reporting limit
COMP-14B_0622	1,2,3,4,7,8,9-HpCDF, 1,2,3,4,7,8-HxCDD, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 1,2,3,7,8-PeCDD, 2,3,4,6,7,8-HxCDF	4.1, 4.1, 2.1, 2.9, 0.75, 2.1, 2.6	J	Below reporting limit
COMP-15A_0622	1,2,3,4,7,8-HxCDF, 1,2,3,7,8-PeCDF	3.6, 0.66	J+	EMPC, Isotope ratio out of spec, Below reporting limit
COMP-15A_0622	1,2,3,4,7,8,9-HpCDF, 1,2,3,7,8,9-HxCDF, 1,2,3,7,8-PeCDD, 2,3,4,6,7,8-HxCDF, 2,3,4,7,8-PeCDF, 2,3,7,8-TCDF	3.9, 1.3, 2.5, 3.4, 1.6, 0.66	J	Below reporting limit
COMP-15B_0622	1,2,3,7,8-PeCDD	2.2	J+	EMPC, Isotope ratio out of spec, Below reporting limit
COMP-15B_0622	1,2,3,4,7,8,9-HpCDF, 1,2,3,4,7,8-HxCDD, 1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 1,2,3,7,8-PeCDF, 2,3,4,6,7,8-HxCDF, 2,3,4,7,8-PeCDF	4.4, 4.8, 2.8, 1.6, 1.2, 3.8, 2.2	J	Below reporting limit

Pace Analytical® ANALYTICAL REPORT

May 08, 2023

Oregon Dept. of Env. Quality - ODEQ

Sample Delivery Group:

L1603081

Samples Received:

04/07/2023

Project Number:

02060.005.004

Description:

Oregon DEQ-JH Baxter Offsite Investigation (TO

#2060.005)

Report To:

Don Hanson

165 E. 7th Avenue

Suite 100

Eugene, OR 97401

Entire Report Reviewed By:

Buar Ford

Brian Ford Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
GI: Glossary of Terms	8
Al: Accreditations & Locations	9
Sc: Sample Chain of Custody	10

			Collected by	Collected date/time	Received da	te/time
DU-06B-0.5-1.0_0423 L1603081-04 Solid			GSI	04/05/23 14:30	04/07/23 09	20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	9=11	Minneapolis, MN 55414
DU-06B-1.0-1.5_0423 L1603081-05 Solid			Collected by GSI	Collected date/time 04/05/23 14:35	Received day 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	656	Minneapolis, MN 55414
DU-01A-0.5-1.0_0423 L1603081-10 Solid			Collected by GSI	Collected date/time 04/05/23 15:30	Received date 04/07/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	N <u>2</u> 13	Minneapolis, MN 55414
DU-01A-1.0-1.5_0423 L1603081-11 Solid			Collected by GSI	Collected date/time 04/05/23 15:35	Received date 04/07/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	124	Minneapolis, MN 55414
DU-01B-0.5-1.0_0423 L1603081-15 Solid			Collected by GSI	Collected date/time 04/05/23 15:55	Received day 04/07/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	969	Minneapolis, MN 55414
DU-110A-1.0-1.5_0423 L1603081-16 Solid			Collected by GSI	Collected date/time 04/05/23 09:50	Received day 04/07/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	658	Minneapolis, MN 55414
DU-10B-1.0-1.5_0423 L1603081-17 Solid			Collected by GSI	Collected date/time 04/05/23 10:20	Received dat 04/07/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	X20	Minneapolis, MN 55414
DU-10B-1.5-2.0_0423 L1603081-18 Solid			Collected by GSI	Collected date/time 04/05/23 09:50	Received date 04/07/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	NEW	Minneapolis, MN 55414

ACCOUNT: Oregon Dept. of Env. Quality - ODEQ

PROJECT: 02060.005.004

SDG: L1603081

DATE/TIME: 05/08/23 13:46

3 of 74

PAGE:

GI

Sc

			Collected by	Collected date/time	Received da	te/time
DU-09A-1.0-1.5_0423 L1603081-21 Solid			GSI	04/05/23 11:30	04/07/23 09	:20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	8=71	Minneapolis, MN 55414
DU-09A-1.5-2.0_0423 L1603081-22 Solid			Collected by GSI	Collected date/time 04/05/23 11:35	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	65-5	Minneapolis, MN 55414
DU-09B-1.0-1.5_0423 L1603081-25 Solid			Collected by GSI	Collected date/time 04/05/23 12:15	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	121	Minneapolis, MN 55414
DU-09B-1.5-2.0_0423 L1603081-26 Solid			Collected by GSI	Collected date/time 04/05/23 12:20	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	121	Minneapolis, MN 55414
DU-06A-0.5-1.0_0423 L1603081-29 Solid			Collected by GSI	Collected date/time 04/05/23 13:00	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	(8)	Minneapolis, MN 55414
DU-06A-1.0-1.5_0423 L1603081-30 Solid			Collected by GSI	Collected date/time 04/05/23 13:05	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	658	Minneapolis, MN 55414
DU-15A-1.0-1.5_0423 L1603081-31 Solid			Collected by GSI	Collected date/time 04/05/23 10:00	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	823	Minneapolis, MN 55414
DU-15A-1.5-2.0_0423 L1603081-32 Solid			Collected by GSI	Collected date/time 04/05/23 10:05	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	151	Minneapolis, MN 55414

ACCOUNT: Oregon Dept. of Env. Quality - ODEQ

PROJECT: 02060.005.004

SDG: L1603081

DATE/TIME: 05/08/23 13:46

GI

Sc

Dilution	Collected by GSI Preparation date/time	Collected date/time 04/05/23 11:00 Analysis	Received da 04/07/23 09 Analyst	
2000			Analyst	Location
Name of the last	duto/time	date/time		Location
26 1	05/08/23 00:00	05/08/23 00:00	GE/11	Minneapolis, MN 55414
	Collected by GSI	Collected date/time 04/05/23 11:05	Received da 04/07/23 09	
Dilution	Preparation date/time	Analysis date/time	Analyst	Location
26 1	05/08/23 00:00	05/08/23 00:00	05.6	Minneapolis, MN 55414
	Collected by GSI	Collected date/time 04/05/23 11:35	Received da 04/07/23 09	
Dilution	Preparation date/time	Analysis date/time	Analyst	Location
26 1	05/08/23 00:00	05/08/23 00:00	8 <u>27</u> 8	Minneapolis, MN 55414
	Collected by GSI	Collected date/time 04/05/23 11:40	Received da 04/07/23 09	
Dilution	Preparation date/time	Analysis date/time	Analyst	Location
26 1	05/08/23 00:00	05/08/23 00:00	12%	Minneapolis, MN 55414
	Collected by GSI	Collected date/time 04/05/23 12:00	Received da 04/07/23 09	
Dilution	Preparation date/time	Analysis date/time	Analyst	Location
26 1	05/08/23 00:00	05/08/23 00:00	(- 1)	Minneapolis, MN 55414
	Collected by GSI	Collected date/time 04/05/23 12:05	Received da 04/07/23 09	
Dilution	Preparation date/time	Analysis date/time	Analyst	Location
26 1	05/08/23 00:00	05/08/23 00:00	05.6	Minneapolis, MN 55414
	Collected by GSI	Collected date/time 04/05/23 14:05	Received da 04/07/23 09	
Dilution	Preparation date/time	Analysis date/time	Analyst	Location
26 1	05/08/23 00:00	05/08/23 00:00	828	Minneapolis, MN 55414
	Collected by GSI	Collected date/time 04/05/23 14:10	Received da 04/07/23 09	
Dilustes	Preparation	Analysis	Analyst	Location
Dilution	date/time	date/time	riidiyot	
	Dilution Dilution	Dilution Preparation date/time	Dilution	Dilution Preparation Analysis Analyst date/time date/t

			Collected by	Collected date/time	Docoived da	to/timo
DU-11B-1.0-1.5_0423 L1603081-53 Solid			GSI	04/05/23 14:30	04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	(- 1	Minneapolis, MN 55414
			Collected by	Collected date/time	Received da	te/time
DU-11B-1.5-2.0_0423 L1603081-54 Solid			GSI	04/05/23 14:35	04/07/23 09	:20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	05.6	Minneapolis, MN 55414
DU-10A-1.0-1.5_0423 L1603081-57 Solid			Collected by	Collected date/time 04/05/23 09:30	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	127	Minneapolis, MN 55414
DU-10A-1.5-2.0_0423 L1603081-58 Solid			Collected by GSI	Collected date/time 04/05/23 09:35	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	3.2%	Minneapolis, MN 55414
DU-01B-1.0-1.5_0423 L1603081-61 Solid			Collected by GSI	Collected date/time 04/05/23 16:00	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2039826	1	05/08/23 00:00	05/08/23 00:00	850	Minneapolis, MN 55414
EB-01-0423 L1603081-65 GW			Collected by GSI	Collected date/time 04/05/23 15:00	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

Oregon Dept. of Env. Quality - ODEQ

Subcontracted Analyses

WG2038179

05/03/23 00:00

05/03/23 00:00

Minneapolis, MN 55414

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford Project Manager

Project Narrative

Buar Ford

L1603081 -04, -05, -10, -11, -15, -16, -17, -18, -21, -22, -25, -26, -29, -30, -31, -32, -35, -36, -39, -40, -44, -45, -49, -50, -53, -54, -57, -58, -61, -65 contains subout data that is included after the chain of custody.

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

SDG	Sample Delivery Group.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico 1	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
ldaho	TN00003	Ohio-VAP	CL0069
Ilinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
ouisiana	Al30792	Tennessee 1 4	2006
ouisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁶	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁶	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

EPA-Crypto

TN00003

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Agency, Authorized Purchaser or Agent:			Sta	te of Oregon Ch		Laboratory Nan	ne.		Lab Selection	Criteria:		Turn Around Time:
GSI for ODEQ					Pace A	nalytical Nationa			Proximity (if Ta	AT < 48 hrs)		10 days (std.)
Send Lab Report To: Don Hanson, RG Address: 165 E. 7th Avenue, Suite 100 Tel. #: 541-687-7349 E-mail: don.hanson@deq.state.or.us, jbale@gsiws.com.		0153			Invoice:	ODE 811 Port	EQ/Business Offi SW 6 th Ave tland, OR 97204 #: (800) 452-		Other labs dis	cipated analyses) equalified or unable requested services		5 days 72 hours 48 hours 24 hours Other
cmartin@gsiws.com, mfargher@gsiws.com, GIS@gsiws Project Name: OREGON DEQ-JH BAXTER OFFSITE INVESTIG	COM SATION (TO #2060.005)			_			San	nple Preservative				-
Project #: JH Baxter Offsite Investigation Sampler Name G5(Solids: NA							
Sample ID#	Collection Date	Collection Time	Matrix	Number of Containers	ISM Prep;Dioxin/furan s by 16138		Rec	uested Analyses		Archive	L160	mments 308\
DU-06A-1.5-2.0-0423	4 5 28	1310	38	1						X	-0	1
DU-OUA-2.0-2.5-0423	4/5/23	1315	38	1						X	- 0	2
DU-064-2.5-3.0-0423	4 5 23	1320	33	1						X	-(03
DU-068-0.5-1.0-0423	4 5 23	1430	SE	1	X						- 5	UH .
DU-06B-1.0-1.5-0423	1/5/23	1435	SE	1	X						-	03
DU-04B-1.5-2.0-0423	4 5 23	1440	32	1		-				X	-	-06
DU-06B-2.0-2.5_0423	4/6/23	1445	SE	1						X	_	C
04-068-2.5-3.0-0423	4/5/20	1450	52	1						X		3
DU-1063-1.5-2.0-0423	4 5 23	1455	SE	1						X		-60
DU-01A-0.5-1.0-0423	+15/23	1530	32	1	X							-10
DU-01A-1.0-1.5-0423	4/5/23	1535	32	-	X							-11
DU-01A-1.5-2.0_0423	4/5/23	1540	82	(X		12
DU-019-2.0-25-0423	4/5/23	1545	SE	1						X		-13
DU-01A-2.5-3.0_0423	4/5/23	1550	52	1						X		14
DU-01B-0.5-1.0-0423	4 5 23	1555	82	1	X						-	5
NOTES: Conduct Incremental Sampling Methodology processing prior to Contact Chris Martin (503-432-5979, cmartin@gsiws.com) or Josh B		with questions. Inclu	de DEQ EDD	with final lab report.					4			
Relinquished By G. Schutabs	Agency/Agent: (7	51				Received By:					Agency/Agent:	
Signature S	Time & Date: 4	6/23	121	5		Signature:					Time & Date:	
Relinquished By:	Agency/Agent					Received By:	4				Agency/Agent:	
Signature.	Time & Date:					Signature:	rancie	1	_ (0	9)	Time & Date: 4	7/23 920

HEREBY IN

Sample Receipt Checklist

COC Seal Present/Intact: Y N If Applicable
COC Signed/Accurate: Y N VOA Zero Headspace: Y N
Bottles arrive intact: Y N Pres.Correct/Check: Y N
Correct bottles used: Y N
Sufficient volume sent: Y N
RAD Screen <0.5 mR/hr: Y N

Agency, Authorized Purchaser or Agent:			St	ate of Oregon C									
GSI for ODEQ						Laboratory Name: Analytical National		Criteria: AT < 48 hrs)	Turn Around Tid 10 days (std.)				
Send Lab Report To: Don Hanson, RG Address: 165 E. 7th Avenue, Suite 100					Lab Bato	ch #:	D		Prior work on	5 days			
Eugene, OR 97401 Tel. #: 541-687-7349					invoice:	811 SW	Business Offic / 6 th Ave	е		ipated analyses) qualified or unable	72 hours		
E-mail: don.hanson@deg.state.or.us, jbale@gsiws.com,							(800) 452-4	011	to perform re Emergency wo	equested service:	3	24 hours	
cmartin@gsiws.com, mfargher@gsiws.com, GIS@gsiws.com Project Name: OREGON DEQ-JH BAXTER OFFSITE INVESTIGATION	N (TO #2060 005)					1547	Married Inches		Emergency wo	лк		Other	
	1 (10 #2000.000)						Sam	ple Preservative					
Project # JH Baxter Offsite Investigation													
Sampler Name: (35)					Ž is								
(28)					Solids								
			-				Requ	ested Analyses					
					ISM o:Dioxin/furan by 1613B					6			
Sample ID#	Collection Date	Collection	Matrix	Number of Containers	SM loxin/					3	Cor	mments	
		· · · · · ·		Containers	Prep.Di					Avelaic	100 - 1		
DU110A-1.0-1.5-0423	11-1-1	A	0-	1						-		18081	
DU 100 -1.0-1.5_0423	4/5/23	950	SE		X	-	1				-16		
DU-10B-1.0-1.5-0423	4/5/23	1020	SE		X						-17		
DU-10B-1.5-2.0-0423	4/5/23	1025	SE	(¥						-18		
DU-10B-2.0-2.5-0423	4/5/23	1030	38	1						X	-1C		
DU-108-2.5-3.0-0423	4/5/23	1035	55	1						K	-1.0	120	
DU -09A -1.0-1.5_0423	4/5/23	1130	SE	1	X						-ZY	-	
DU-09A-1.5-2.0_0423	4/5/23	1135	88		×						-12		
DU-09A-2.0-2.5-0423	4/5/23	1140	58	- 1		1				×	-23		
DU-09A-2.5-3.0-0423	4/5/23	1145	38	1						X	-24		
DU-09B-1.0,1.5-0423	4/5/23	1215	88		X					^			
DU-09B-1.5-2.0_0923	45/23	1220	88	i	×						-25		
DU-098-2.0-2.5-0423	4 5 23	1225	82	-	λ.					-	-26		
DU-09B-2.5-3.0_0423	4 5/23	1230	38	-		-				X	-27		
DM-04-0.5-1.0-0423	4 5 23	1300	35	-	X					×	-28		
DU-06A-10-15-0423	A 5 23	1305	-								-29		
IOTES Conduct Incremental Sampling Methodology processing prior to analysis			88	-	×						-30		
Contact Chris Martin (503-432-5979, cmartin@gsiws.com) or Josh Bale (530-2	276-4186, jbale@gsiws.com) w	ith questions. Includ	e DEQ EDD	with final lab report.									
•													
telinquished By G.S. Chutain	Agency/Agent: G	5)				Received By:					Agency/Agent:		
(V ·	Time & Date:	4/23	1215	,		Signature:					Time & Date:		
elinquished by:	Agency/Agent:					Received By: *					Agency/Agent		
ignature:	Time & Date:					Signature: 10	MACio	1	- (Q)		Time & Date 11 /	7/23 90	
						F 11 /1/			13/1				

THIS PURCHASE IS SUBMITTED PURSUANT TO STATE OF OREGON SOLICITATION #102-1098-07 AND PRICE AGREEMENT # 6903. THE PRICE AGREEMENT INCLUDING CONTRACT TERMS AND CONDITIONS AND SPECIAL CONTRACT TERMS AND CONDITIONS (T'S &C'S) CONTAINED IN THE PRICE AGREEMENT ARE HEREBY INCORPORATED BY REFERENCE AND SHALL APPLY TO THIS PURCHASE AND SHALL TAKE PRECEDENCE OVER ALL OTHER CONFLICTING T'S AND C'S, EXPRESS OR IMPLIED.

			St	ate of Oregon C	hain of Cu	ustody (Pac	e)							
Agency, Authorized Purchaser or Agent: GSI for ODEQ					Contrac	Contract Laboratory Name: Lab Selection Criteria:							Turn Around Time:	
Send Lab Report To: Don Hanson, RG					Lab Bate		ational				TAT < 48 hrs) on same project		10 days (std.) 5 days	
Address: 165 E. 7th Avenue, Suite 100 Eugene, OR 97401		Invoice:			siness Offic	е	Cost (for an	ticipated analyses)		72 hours				
Tel. # 541-687-7349				811 SW 6 Portland,			Other labs disqualified or unable 48 hours to perform requested services 24 hours							
E-mail: don.hanson@deq.state.or.us, jbale@gsiws.com, cmartin@gsiws.com, mfargher@gsiws.com, GIS@gsiws.com	1							(800) 452-4	011	Emergency		3	24 hours Other	
Project Name: OREGON DEQ-JH BAXTER OFFSITE INVESTIGATI	ON (TO #2060.005)			-				Samp	ole Preservative				1111	
					-									
Project #: JH Baxter Offsite Investigation					4			1						
Sampler Name: 68					S NA									
, 0/0					Solids	1 3		1						
1	1	-				-		Requ	ested Analyses					
				A."	luan B							11 -		
Sample ID#	Collection Date	Collection	Matrix	Number of	SM Dxin//			1/4			13			
		Time	9	Containers	S O A			1			3		mments	
					ISM Prep;Dioxin/fura s by 1613B						ARUKOK	L160	3081	
101-154-1.0-15-0423	4/4/23	10:00	SE	1	X							-31		
DU-154-1.0-15-0423 DU-154-1.5-20-0423	4/4/23	10:05	38	1	X									
DU-15A-20-25-0423	4/4/23	10:10	58	1						7 -	×	-32		
DU-154-25-3-0-0423	4/4/23	10115		1							×			
04-1513-1.0-15-0423	4/4/23	11:00	58	1	X							-34		
DU-1513-1.5-20-0423	4/4/23	11:05	_	,	X							-35		
DU-1513-2.0-2.5-0423	4/4/23	11:10	Se	1							×	-36		
NU-1513-25-3.0-0423	4/4/23	11:15	58	1						-		-37		
SU-07A-0.5-1.0-0423	414123	11:35	SE	1	×					+ +	_	-38		
SU-07A-1.0-1.5-0423	4/4/23	11:40	58	1	X	-				-		-39		
54-07A-1.5-2.0-0423	4/4/23	11:45	SE	1	-		-			+ +		-40		
54-074-2.0-25-0423	4/4/23	11:50	SE	1							×	-42		
SU-07A-25-3,0-0423	4/4/23	11155	SE	1							X	-43		
SU-07B-05-10-0423	4/4/23	1200	58	1	X	1				+ +	-	-44		
54-0713-1.0-15-0423	4/4/23	1205	SE	1	X	b-						-45		
NOTES: Conduct Incremental Sampling Methodology processing prior to analy Contact Chris Martin (503-432-5979, cmartin@gsiws.com) or Josh Bale (53	reis				-		-					72		
(53	w 210-100, Juane@gsws.com) v	with questions, includ	e DEQ EDD	with final lab report.										
elinquished By G. Schutzius	Agency/Agent: 68					Received B	ty:					Agency/Agent		
ignature: O	Time & Date: 4/6		5			Signature:						Time & Date:		
elinquished By:	Agency/Agent:					Received B	y:					Agency/Agent:		
ignature:	Time & Date:					Signature:	Kan	ACAI	1	_ (a)	Time & Date: 11	7/23 00	
							F 11/1/	40 L F LO	VI		W1 1	THE W LIGHT.	1100 1 100	

THIS PURCHASE IS SUBMITTED PURSUANT TO STATE OF OREGON SOLICITATION #102-1098-07 AND PRICE AGREEMENT # 8903. THE PRICE AGREEMENT INCLUDING CONTRACT TERMS AND CONDITIONS AND SPECIAL CONTRACT TERMS AND CONDITIONS (T'S &C'S) CONTAINED IN THE PRICE AGREEMENT ARE HEREBY INCORPORATED BY REFERENCE AND SHALL APPLY TO THIS PURCHASE AND SHALL TAKE PRECEDENCE OVER ALL OTHER CONFLICTING T'S AND C'S, EXPRESS OR IMPLIED.

Agency, Authorized Purchaser or Agent:		-	St	ate of Oregon C							_					
GSI for ODEQ						Contract Laboratory Name: Pace Analytical National Lab Batch #: Lab Selection Criteria: Proximity (if TAT < 48 hrs) Prior work on same project							Turn Around Tim			
Send Lab Report To: Don Hanson, RG Address 165 E. 7th Avenue, Suite 100	Don Hanson, RG 165 E. 7th Avenue, Suite 100							usiness Offi			Prior work or	same project	ct 5 days			
Eugene, OR 97401	Eugene, OR 97401								ice			cipated analyses) squalified or unab		72 hours		
Tel. # 541-687-7349 E-mail: don.hanson@deq.state.or.us, jbale@gsiws.com,				-				OR 97204				requested service		48 hours 24 hours		
cmartin@gsiws.com, mfargher@gsiws.com, GIS@gsiws.com	1				100		Tel. #:	(800) 452-	4011		Emergency v			Other		
Project Name: OREGON DEQ-JH BAXTER OFFSITE INVESTIGATION	ON (TO #2060.005)					-	-	San	nple Prese	rvative				100 ments (230 81)		
						1	10									
Project #: JH Baxter Offsite Investigation					₹					20						
Sampler Name: GS1	•				l s											
931					Solids	1							3			
			1	-		-		Reg	uested An	alyses	-					
					Fura 8					12		1 7				
Sample ID#	Collection Date	Collection	Matrix	Number of	SM 0xin/f							12	E .			
	10,000,000,000	Time		Containers	DO O							- 5	Co	mments		
8			-	- 1	ISM Prep:Dioxin/furan s by 1613B	1111					,	1	L16	03081		
501-0713-1.5-20-0423	4/4/23	1210	58	1	*						7	X MUNICE	-46	0001		
SU-07B-1.5-20-0423 SU-07B-20-25-0423	4/4/23	1215	SE	1	1							~	- 47			
54-0715-25-3,0-0423	4/9/23	1220	SE	1						-			-48			
DU-114-60-65-0423	4/4/23	1405	54	1	X							-	-49			
DU-114-1.5-20-0423	4/4/23	1410	æ	1	X								-50			
DU-114-20-25-0423	4/4/23	1415	58	1	-		1					×	-51			
DU-114-25-30-0423	4/4/23	1420	SE	1		1	1					×	-52			
04-1113-1.0-45-0423	4/4/23	1430	SE	1	+								-53			
DU-1113-15-20-0423	4/4/23	1435	SE	1	1		100			F			-54	-		
DU-11B-20-25-0423	4/4/23	1440	58.	1								X	-55			
DU-118-25-30-0423	4/4/23	1445	SE	1								7	-56			
DU-104-1.0-1.5_0423	4/5/23	930	SE	1	X		1		-		TE I		-57			
DU-10A-1,5-2.0-0423	415/23	935	SE	1	X		11.5					-	-58			
DU-104-2.0-2.5-0423	4/5/23	940	SE	. 1	33		-					X	-59			
DU-10A-2.5-3.0_0423	4/5/23	945	SE	1			1			-		Û	- 60			
IOTES: Conduct Incremental Sampling Methodology processing prior to analy Contact Chris Martin (503-432-5979, cmartin@gsivs.com) or Josh Bale (53)	reie I			24 (1)		-							- 00			
Contact Child Matter (303-432-3919, Children@gsws.com) or Jose Bale (33)	0-2/6-4188, jbale@gsiws.com) v	with questions, Inclu	de DEQ EDD	with final lab report.												
													-			
^ ^ \	T															
Relinquished By G. Schuttans	Agency/Agent: QS	1				Received	Ву:						Agency/Agent			
Signature:	Time & Date: 4	23 12	-15			Signature	c						Time & Date:			
elinquished By:	Agency/Agent					Received	Ву:						Agency/Agent:			
Signature:	Time & Date:					Signature	Ka	Mi	1		_ (9)	Time & Date: 11 /	1/23 9		
- J	La Control of the Con					1	riv	VALAV.	U T		- 1	V ()	TIME & Date:	1/20 4		

THIS PURCHASE IS SUBMITTED PURSUANT TO STATE OF OREGON SOLICITATION #102-1098-07 AND PRICE AGREEMENT # 8903. THE PRICE AGREEMENT INCLUDING CONTRACT TERMS AND CONDITIONS AND SPECIAL CONTRACT TERMS AND CONDITIONS (T'S &C'S) CONTAINED IN THE PRICE AGREEMENT ARE HEREBY INCORPORATED BY REFERENCE AND SHALL APPLY TO THIS PURCHASE AND SHALL TAKE PRECEDENCE OVER ALL OTHER CONFLICTING T'S AND C'S, EXPRESS OR IMPLIED.

Agency, Authorized Purchaser or Agent:			St	ate of Oregon C										
GSI for ODEQ			10			Laboratory Inalytical Na				L	ab Selection Cri Proximity (if TAT <	teria:		Turn Around Time:
Send Lab Report To: Don Hanson, RG Address: 165 E. 7th Avenue, Suite 100				-	Lab Batc		STATE OF THE PARTY			F	rior work on sam	e project		10 days (std.) 5 days
Eugene, OR 97401					Invoice:		ODEQ/Busi 811 SW 6th				ost (for anticipate other labs disqual			72 hours
Tel. #: 541-687-7349 E-mail: don hanson@deg state or us_ihale@gsiws.com							Portland, O	R 97204			to perform requ			48 hours 24 hours
E-mail: don.hanson@deq.state.or.us, jbale@gsiws.com, cmartin@gsiws.com, mfargher@gsiws.com, GIS@gsiws.co Project Name: OREGON DEQ-JH BAXTER OFFSITE INVESTIGAT	m						Tel.#: (8	800) 452-40	111	E	mergency work			Other
Project Name: OREGON DEQ-JH BAXTER OFFSITE INVESTIGAT	TION (TO #2060.005)							Samp	le Preservati	ve				
Project #: JH Baxter Offsite Investigation					_ ≤									
Sampler Name: (25)					Solids: NA								8	
C/31					Soli									
					-			Reque	ested Analyse	es				
					ISM Prep.Dioxin/furan s by 1613B	25						4		
Sample ID#	Collection Date	Collection	Matrix	Number of Containers	SM loxin 161	3 K				- 1		3	Co	mments
		,,,,,,		Containers	D.G.gs	Diarin/						Archive	No. of the last of	
NI 018 10 15 0405	11-6-			,	1 4	2.						4	L160	308)
DU-01 B-1.0-1.5_0423	4/5/23	1600	58		X								-6	
DU-018-1.5-2.0-0423	4/5/23	1605	38	1								X	-62	
DU-018-2.0-2.5_0423	4/5/23	1610	82	1							- Hora			
DM-01B-2.5-3.0_0423	4/5/23	1615	82	1		Territor						X	-63	
EB-01-0423	4/5/23	1500	SW	ra		X						1	-65	
EB-02-0423	4/5/23	1505	SW	12		Min						X		
	1,1,1,0	1,000	-	KF		-Alle				-			- 66	
				V.			-			-				
							-							
	1					(8)								
	1				1. 5									
Tr.								-						
								-						
							-	-	-					
						100		-						
NOTES: Conduct Incremental Sampling Methodology processing prior to ana	lucie												1	
Contact Chris Martin (503-432-5979, cmartin@gsiws.com) or Josh Bale (5	i30-276-4188, jbale@gsiws.com) w	ith questions. Includ	e DEQ EDD	with final lab report.									100	
relinquished By: & Schutzins	Agency/Agent: G	51				Received B	y:						Agency/Agent	
ignature:		123	1215			Signature:								- 6
delinguished By:	Agency/Agent:	103	1217	,									Time & Date:	
	6-					Received By					_ ~		Agency/Agent:	
ignature:	Time & Date:					Signature:	Kaw	Cil	1		-(9)		Time & Date: 4	7/23 98

THIS PURCHASE IS SUBMITTED PURSUANT TO STATE OF OREGON SOLICITATION #102-1098-07 AND PRICE AGREEMENT # 8903. THE PRICE AGREEMENT INCLUDING CONTRACT TERMS AND CONDITIONS AND SPECIAL CONTRACT TERMS AND CONDITIONS (T'S &C'S) CONTAINED IN THE PRICE AGREEMENT ARE HEREBY INCORPORATED BY REFERENCE AND SHALL APPLY TO THIS PURCHASE AND SHALL TAKE PRECEDENCE OVER ALL OTHER CONFLICTING T'S AND C'S, EXPRESS OR IMPLIED.

	Temperature	5.2+0-3.2	NSAG 5.1+0=5.1	NSAG 1.5+0=1.5	NSAG 2.5+0=2.5	NSA6 4.3+0+6.4.3	NSA6 1.8+0=1.8	N5A6 1.0+0=1.6	NSAG 4.6+0=4.6
								0	
		1663	1674	529	1696	1733	1133	1100	三
bd	S		hebb	3291 HBbb	वनत्रम १६९६	hebb	HEPP	hebb	dolah
Tracking	Numbers	GSST 9924	6351	6357	6357	6367	6357	6357	6357

Pace Analytical Services, LLC. 1700 Elm Street Minneapolis, MN 55414

Phone: 612.607.1700 Fax: 612.607.6444

Report Prepared for:

Client Services
Pace Analytical National
12065 Lebanon Rd
Mt. Juliet TN 37122

REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10648781

Sample Receipt Date: 04/11/2023

Client Project #: L1603081 WG2038179

Client Sub PO #: L1603081

State Cert #: N/A

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Kongmeng Vang, your Pace Project Manager.

This report has been reviewed by:

May 02, 2023

Kongmeng Vang, Project Manager

(612) 607-6382 (612) 607-6444 (fax)

kongmeng.vang@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

May 1, 2023

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analysis performed on one sample submitted by a representative of Pace Analytical National. The sample was analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using USEPA Method 1613B. The estimated detection limits (EDLs) were based on signal-to-noise measurements. Estimated maximum possible concentration (EMPC) values were treated as positives in the toxic equivalence calculations.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extract ranged from 46-85%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These levels were below the calibration range for the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results table and may be, at least partially, attributed to the background.

A laboratory spike sample was also prepared using clean reference matrix that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 73-94%. These results were within the target ranges for the method. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
		Missouri	10100
A2LA	2926.01	Montana	CERT0092
Alabama	40770	Nebraska	NE-OS-18-06
Alaska-DW	MN00064	Nevada	MN00064
Alaska-UST	17-009	New Hampshire	2081
Arizona	AZ0014	New Jersey	MN002
Arkansas - WW	88-0680	New York	11647
Arkansas-DW	MN00064	North Carolina-	27700
California	2929	North Carolina-	530
Colorado	MN00064	North Dakota	R-036
Connecticut	PH-0256	Ohio-DW	41244
Florida	E87605	Ohio-VAP (170	CL101
Georgia	959	Ohio-VAP (180	CL110
Hawaii	MN00064	Oklahoma	9507
Idaho	MN00064	Oregon-Primary	MN300001
Illinois	200011	Oregon-Second	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
lowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky-DW	90062	Tennessee	TN02818
Kentucky-WW	90062	Texas	T104704192
Louisiana-DEQ	AI-84596	Utah	MN00064
Louisiana-DW	MN00064	Vermont	VT-027053137
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Michigan	9909	West Virginia-D	382
Minnesota	027-053-137	West Virginia-D	9952C
Minnesota-Ag	via MN 027-053	Wisconsin	999407970
Minnesota-Petr	1240	Wyoming-UST	via A2LA 2926.
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10648781

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix A

Sample Management

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Reporsion A

CHAIN-OF-CUSTODY / Analytical Request I

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields mu

WO#:10648781

Section B Section C Sequired Client Information: Required Project Information: Invoice Information: Company: Pace Analytical Report To: Pace Analytical Subout Team Attention: Don Hanson Address: 12065 Lebanon Rd. Copy To: Company Name: t. Juliet, TN 37122 Address: Regulatory Agency MTJLSuboutTeam@pacelabs.com Purchase Order #: L1603081 Pace Quote: Phone: (615) 773-9756 Fax (615) 758-5859 Project Name: Oregon DEQ-JH Baxter Offsite Investigati Pace Project Manager. Kongmeng Vang State / Location Requested Due Date: 28-Apr Project #: 02060.005.004 Pace Profile #: 38076 OR Requested Analysis Filtered (Y/N) 3BFC (see valid codes to left) C=COMP) COLLECTED MATRIX Preservatives CODE SAMPLE TEMP AT COLLECTION Drinking Water DW Water (G=GRAB Waste Water ww P SL OL WP AR OT TS Residual Chlorine (Y/N) Product **Analyses Test** SAMPLE ID Soil/Solid START END CONTAINERS One Character per box. Wipe Air MATRIX CODE SAMPLE TYPE (A-Z, 0-9/, -) Other ITEM# Sample ids must be unique HN03 ᅙ DATE TIME DATE TIME EB-01-0423 WT 05-Apr 15:00 promium EDD 2 3 8 9 10 11 12 ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE ACCEPTED BY / AFFILIATION DATE SAMPLE CONDITIONS James C Huckaba 7-Apr 17:28 Pace Analytical Batch: WG2038179 Pace Analytical SDGs: L1603081 Lecation: Minneapolis, MN 55414 age 5 SAMPLER NAME AND SIGNATURE TEMP in C PRINT Name of SAMPLER: 으 SIGNATURE of SAMPLER: DATE Signed:

DC#_Title: ENV-FRM-MIN4-0150 v11_Sample Condition Upon Receipt (SCUR)

Effective	Date: 11	/16/2022)

Sample Condition Client Name:		Project #	# :	104 40040704
Unon Receipt		····		WO#:10648781
ACE - Mational	_] =	
Courier: FedEx UPS USPS Client Pace SpeeDee Commercial			(PM: KV Due Date: 05/02/23 CLIENT: ESC_TN
Tracking Number: <u>(337224279 LD</u>		Exceptions 1-MIN4-014		
Custody Seal on Cooler/Box Present? Yes No S	Seals Intact	? Yes	□No	Biological Tissue Frozen? Yes No N/A
Packing Material: Bubble Wrap Bubble Bags	Non		Othe	
Thermometer: ☐ T1 (0461) ☐ T2 (1336) ☐ T3 (04 ☐ T6 (0235) ☐ T7 (0042) ☐ T8 (07		(0254) [(0727) [
Did Samples Originate in West Virginia? Yes No			Were All Co	ontainer Temps Taken? Yes No
Temp should be above freezing to 6 °C Cooler temp Read w/	Temp Blank	۰ <u>۱.۷</u>	_°C	Average Corrected Temp
Correction Factor: TRUE Cooler Temp Corrected w/	temp blank	α <u>]. ζ</u>	<u>•</u> °C	(no temp blank only): °C See Exceptions ENV-FRM-MIN4-0142 1 Container
USDA Regulated Soil: (N/A water sample/other:		_)		Date/Initials of Person Examining Contents: TO
Did samples originate in a quarantine zone within the United Sta	tes: AL, AR	, AZ CA, FL.		Did samples originate from a foreign source (internationally,
GA, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN, TX, or VA (check maj	os)?	Yes 🗌 N		including Hawaii and Puerto Rico)? Yes No
Location (Check one): Duluth Minnea		Virginia		0154) and include with SCUR/COC paperwork. COMMENTS
Chain of Custody Present and Filled Out?	Yes	No		1.
Chain of Custody Relinquished?	Yes	No		2.
Sampler Name and/or Signature on COC?	Yes	No.	N/A	
Samples Arrived within Hold Time?	Yes Yes	No		4. If fecal: <8 hrs >8 hr, <24 No
Short Hold Time Analysis (<72 hr)?	Yes	No		5. Fecal Coliform HPC Total Coliform/E.coli BOD/cBOD Hex Chrom Turbidity Nitrate Nitrite Orthophos Other
Rush Turn Around Time Requested?	Yes	No		6.
Sufficient Sample Volume?	Yes	No		7.
Correct Containers Used?	Yes	No	N/A	8.
-Pace Containers Used?	Yes	No		
Containers Intact?	Yes	No	Ta 1	9.
Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the samples to the	Yes	No No	N/A	10. Is sediment visible in the dissolved container? Yes No
COC? Matrix: Soil Oil Other	Yes	∐ No		11. If no, write ID/Date/Time of container below: See Exceptions
All containers needing acid/base preservation have been	Yes	No	N/A	ENV-FRM-MIN4-0142
checked?			איישב	12. Sample #
All containers needing preservation are found to be in compliance with EPA recommendation?	Yes	☐ No	∑ N/A	☐ NaOH ☐ HNO3 ☐ H2SO4 ☐ Zinc Acetate
(HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide)				Zine / tecture
Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015	Yes	По	A N/A	Positive for Residual Yes See Exceptions
(water) and Dioxins/PFAS			41	Positive for Residual Yes See Exceptions Chlorine? No ENV-FRM-MIN4-0142
(*If adding preservative to a container, it must be added to				pH Paper Lot #
associated field and equipment blanksverify with PM first.)				Residual Chlorine 0-6 Roll 0-6 Strip 0-14 Strip
Headspace in Methyl Mercury Container?	Yes	No	N/A	13.
Extra labels present on soil VOA or WIDRO containers?	Yes	No	X N/A	
Headspace in VOA Vials (greater than 6mm)?	Yes	No	A/N 🕰	ENV-FRM-MIN4-0142
3 Trip Blanks Present? Trip Blank Custody Seals Present?	Yes Yes	No No	N/A N/A	
			TA INA	Pace Trip Blank Lot # (if purchased):
CLIENT NOTIFICATION/RESOLUTION Person Contacted:			-	Field Data Required? Yes No
Comments/Resolution:		<u>:</u>	· L	Date/Time:
Project Manager Review:				Data
				Date:
NOTE: Whenever there is a discrepancy affecting North Carolina compliance samples, a temp, incorrect containers).	copy of this fo	orm Will be sent		Carolina DEHNR Certification Office (i.e., out of hold, incorrect preservative, out of abeled By:

Qualtrax ID: 52742

Report No.....10648781_1613BFC_L2_dfr

Pace® Analytical Services, LLC

Page 6 of 11

Pace Analytical®

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

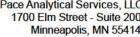
Reporting Flags

- A = Reporting Limit based on signal to noise (EDL)
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- H2 = Extracted outside of holding time
- I = Isotope ratio out of specification
- J = Estimated value
- L = Suppressive interference, analyte may be biased low
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical Services, LLC


1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix B

Sample Analysis Summary

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Tel: 612-607-1700

Fax: 612-607-6444

<u> Pace Analytical</u>

Method 1613B Sample Analysis Results

Client - Pace Analytical National

EB-01-0423 Client's Sample ID Lab Sample ID 10648781001 Filename F230429A_10 Injected By **JRH Total Amount Extracted** 1010 mL

Matrix Water % Moisture NA Dilution NA Dry Weight Extracted NA Collected

04/05/2023 15:00 F230426 ICAL ID Received 04/11/2023 09:20 CCal Filename(s) F230429A 02 Extracted 04/12/2023 14:00 Method Blank ID BLANK-105253 Analyzed 04/29/2023 17:53

Native Isomers	Conc pg/L	EMPC pg/L	EDL pg/L	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.6 1.6	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	68 63 69
2,3,7,8-TCDD Total TCDD	ND ND		2.5 2.5	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	72 73 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		1.6 1.2 1.2	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HXCDF-13C 2,3,4,6,7,8-HXCDF-13C 1,2,3,7,8,9-HXCDF-13C 1,2,3,4,7,8-HXCDD-13C	2.00 2.00 2.00 2.00 2.00	85 77 68 65
1,2,3,7,8-PeCDD Total PeCDD	ND ND		1.6 1.6	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	80 60 54
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		1.6 1.6 1.3	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	58 46
1,2,3,7,8,9-HxCDF Total HxCDF	ND 3.3		2.0 1.3 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND	1.6 	1.4 JJ 1.6 1.5 1.4	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		2.5 4.2 2.5	Total 2,3,7,8-TCDD Equivalence: 0.23 pg/L (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	5.9 5.9		3.9 J 3.9 J			
OCDF OCDD	ND 30		6.6 9.8 J			

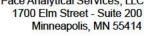
Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

J = Estimated value

B = Less than 10x higher than method blank level


I = Isotope ratio out of specification

REPORTOFLABORATORYANALYSIS

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

Method 1613B Blank Analysis Results

Lab Sample Name Lab Sample ID Filename **Total Amount Extracted**

ICAL ID

CCal Filename(s)

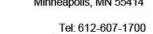
DFBLKIA BLANK-105253 L230420A_07 1010 mL L230302 L230420A_01

Matrix Water Dilution NA

Extracted 04/12/2023 14:00 Analyzed 04/20/2023 11:20

Injected By SMT

Native Isomers	Conc pg/L	EMPC pg/L	EDL pg/L	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.59 0.59	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	59 55 71
2,3,7,8-TCDD Total TCDD	ND ND		0.84 0.84	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	73 79 64
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.2 1.2	1.2	0.54 J 0.44 J 0.44 J	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	59 61 56 55
1,2,3,7,8-PeCDD Total PeCDD	1.5 1.5		0.67 J 0.67 J	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	59 53 52
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	1.2 1.00 0.82 1.9		0.58 J 0.51 J 0.56 J 0.76 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	60 44 NA
Total HxCDF	4.9		0.51 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.8 0.82 1.1 4.8		0.76 J 0.52 J 0.61 J 0.52 J	2,3,7,8-TCDD-37Cl4	0.20	64
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.4 ND 1.4		0.99 J 1.5 0.99 J	Total 2,3,7,8-TCDD Equivalence: 2.9 pg/L (Lower-bound - Using 2005	WHO Facto	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		1.2 1.2			
OCDF OCDD	ND ND		3.2 2.3			


Conc = Concentration (Totals include 2, 3, 7, 8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

J = Estimated value

I = Isotope ratio out of specification

Fax: 612-607-6444

Method 1613B Laboratory Control Spike Results

 Lab Sample ID
 LCS-105254

 Filename
 L230420A_03

 Total Amount Extracted
 1030 mL

 ICAL ID
 L230302

CCal Filename L230420A_01
Method Blank ID BLANK-10525

L230302 L230420A_01 BLANK-105253 Matrix Water Dilution NA

Extracted 04/12/2023 14:00 Analyzed 04/20/2023 08:22

Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 0CDF 0CDD	10 10 50 50 50 50 50 50 50 50 50 100 100	8.9 8.9 43 43 43 44 45 47 43 46 41 43 37 77 89	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0	89 89 86 85 77 85 86 89 90 94 85 92 83 85 73 77 89
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,7,8,9-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 0CDD-13C	10 100 100 100 100 100 100 100 100 100	6.6 64 60 74 77 83 66 64 64 59 59 64 55 53 65 90	3.1 22.0 20.0 21.0 13.0 21.0 21.0 22.0 17.0 21.0 25.0 21.0 26.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	66 64 60 74 77 83 66 64 64 59 59 59 64 55 53 65 45

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{*=}SeeDiscussion

Pace Analytical Services, LLC. 1700 Elm Street Minneapolis, MN 55414

Phone: 612.607.1700 Fax: 612.607.6444

Report Prepared for:

Client Services Pace Analytical National 12065 Lebanon Rd Mt. Juliet TN 37122

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10649075

Sample Receipt Date: 04/12/2023

Client Project #: L1603081 WG2039826

Client Sub PO #: L1603081

State Cert #: N/A

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Kongmeng Vang, your Pace Project Manager.

This report has been reviewed by:

May 08, 2023

Kongmeng Vang, Project Manager

(612) 607-6382 (612) 607-6444 (fax)

kongmeng.vang@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

May 8, 2023

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on twenty-nine samples submitted by a representative of Pace Analytical National. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using USEPA Method 1613B. The estimated detection limits (EDLs) were based on signal-to-noise measurements. Estimated maximum possible concentration (EMPC) values were treated as positives in the toxic equivalence calculations.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 33-109%. Except for one low value, which was flagged "R" on the results table, the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Concentrations below the calibration range were flagged "J" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show the blanks to contain trace levels of selected congeners. These levels were below the calibration range for the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results table and may be, at least partially, attributed to the background.

Laboratory and matrix spike samples were also prepared using clean reference matrix or sample matrix that had been fortified with native standard materials. The recoveries of the spiked native compounds ranged from 91-144% with relative percent differences (RPDs) ranging from 0.3-7.3%. These results were within the target ranges for the method. Matrix spikes were prepared with the sample batch associated with Blank-105366 using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
		Missouri	10100
A2LA	2926.01	Montana	CERT0092
Alabama	40770	Nebraska	NE-OS-18-06
Alaska-DW	MN00064	Nevada	MN00064
Alaska-UST	17-009	New Hampshire	2081
Arizona	AZ0014	New Jersey	MN002
Arkansas - WW	88-0680	New York	11647
Arkansas-DW	MN00064	North Carolina-	27700
California	2929	North Carolina-	530
Colorado	MN00064	North Dakota	R-036
Connecticut	PH-0256	Ohio-DW	41244
Florida	E87605	Ohio-VAP (170	CL101
Georgia	959	Ohio-VAP (180	CL110
Hawaii	MN00064	Oklahoma	9507
Idaho	MN00064	Oregon-Primary	MN300001
Illinois	200011	Oregon-Second	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
lowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky-DW	90062	Tennessee	TN02818
Kentucky-WW	90062	Texas	T104704192
Louisiana-DEQ	AI-84596	Utah	MN00064
Louisiana-DW	MN00064	Vermont	VT-027053137
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Michigan	9909	West Virginia-D	382
Minnesota	027-053-137	West Virginia-D	9952C
Minnesota-Ag	via MN 027-053	Wisconsin	999407970
Minnesota-Petr	1240	Wyoming-UST	via A2LA 2926.
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix A

Sample Management

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CHAIN-OF-CUSTODY / Analytical Reque: The Chain-of-Custody is a LEGAL DOCUMENT, All relevant field

WO#:10649075

	ed Client Information:	Section B Required I		Infor	mation:		The Ch	nain-of-C	usto	Sec	s a LE			ocu	ME	VT.	All n	elev	ant fi		064	907								_
Compa	. Tooc relayious	Report To:	Pac	e Anal	lytical Subo	ut Team				Atte	ntion:	Do	on Ha	nson						_										3_
Address	s: 12065 Lebanon Rd.	Copy To:								Com	pany N																			
tt. Juli	et, TN 37122 MTJLSuboutTeam@pacelabs.com									Add	ess:															Rec	ulator	y Agend	cv	
		Purchase (_	L1603081					Pace	Quote																	3	,	
hone:	(615) 773-9756 Fax (615) 758-5859 ted Due Date: 3-May	Project Nar	ne:	Ore	gon DEQ-J			restigati		_	Projec	_	nage		Kon	gmer	ng Va	ing								St	ate / L	ocation		
eques	ted Due Date: 3-May	Project #:				02060.0	05.004			Pace	Profile	#.	380	076													OF	R		
			-	-																Request	ted Ana	alysis	Filtered	d (Y/N)				-		
	MATR	X CODE	codes to left)	COMP)		COLL	ECTED		NC			Р	rese	rvati	ves			X.												
	SAMPLE ID One Character per box.	WT Water WW	(see valid	(G=GRA	STA	ART I	E	ND T	SAMPLE TEMP AT COLLECTION	ERS								s Test	rans 1613								rine (Y/N)			
ITEM #	(A-Z, 0-9 1, -) Sample lds must be unique Tissue	AR OT TS	MATRIX CODE	SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP	# OF CONTAINERS	Unpreserved H2SO4	HNO3	HC	NaOH	Na2S2O3	Methanol	Other	Analyses	Dioxins and Furans 1613								Residual Chlorine (Y/N)			
1	DU-06B-0.5-1.0_0423		SL				05-Apr	14:30		1	1				1				x							П	orc	omium E	ממ	100
2	DU-06B-1.0-1.5_0423		SL				05-Apr	14:35		1	1								x									omium E		W2
3	DU-01A-0.5-1.0_0423		SL				05-Apr	15:30		1	1								x									omium E		013
4	DU-01A-1.0-1.5_0423		SL			-	05-Apr	15:35		1	1								x									mium E		(N)4
5	DU-01B-0.5-1.0_0423		SL				05-Apr	15:55		1	1								x								pro	mium E	DD	(N)5
6	DU-110A-1.0-1.5_0423		SL				05-Apr	9:50		1	1								x								pro	mium E	DD	006
7	DU-10B-1.0-1.5_0423		SL				05-Apr	10:20		1	1								x							П	pro	mium E		007
8	DU-10B-1.5-2.0_0423		SL				05-Apr	9:50		1	1								x							П		mium E		W8
9	DU-09A-1.0-1.5_0423		SL				05-Apr	11:30		1	1								x							П		mium E		009
10	DU-09A-1.5-2.0_0423		SL				05-Apr	11:35		*	1								x							П		mium E		010
11	DU-09B-1.0-1.5_0423		SL				05-Apr	12:15		1	1								x						1	П		mium E		110
12	DU-09B-1.5-2.0_0423		SL				05-Apr	12:20		1	1								x									mium E		012
	ADDITIONAL COMMENTS		RELI	NQUIS	HED BY / A	FFILIATIO	N	DATE		1	IME		1		ACCE	PTE	BY	AFF	ILIATIO	N		DA	TE	TIN	ME	1			ONDITIO	
		James	C Huci	kaba	-	_		11-Apr		13:41		1	1	U	1	_			1	are		100	1/23	1 300		4.7		V	Y	M
ace A	nalytical Batch: WG2039826											10	/	V	4				*	سر د		11.1	, -,	0 -	, ,	14		1	1	Ч
ace A	Analytical SDGs: L1603081																													
ocati	on: Minneapolis, MN 55414																													
						SAMPLE	R NAME	AND SIGN	ATUR	RE																				
						PRI	INT Name	of SAMPL	ER:																	Pinc			ody et	sold

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Reposection								The Ch	ain-of-Cu	stoc	y is	a LE	GA	_ DC	CUI	ΜĒΝ	IT. A	All re	elev	ant f	ields	must	be c	omp	leted	accı	urately	<i>'</i> .					
Section	Δ		Section B								Section																_						
Require	d Client Information:		Required Pr	oiect	Inforr	mation:						e Inf	rma	lion:													Ι.	_					
Compan			Report To:			ytical Subo	ut Toom			_	ttent			n Har		_			_			_			٦.			Page	<u>:</u>	2	Of		3
Address			Сору То:	1 400	, 7 m (a)	ytical Odbo	at ream			_		any N		ппаг	ISON										┨								
📆 Julie	t, TN 37122		'''		-						ddre			-											╁			- Boo					
ail:	MTJLSuboutTeam@pacelabs.com		Purchase Or	der#:		L1603081		-		-		Quote	:												+			Reg	uiate	ory Agen	су		_
Phone:	(615) 773-9756 Fax: (615	5) 758-5859	Project Nam	e:			H Baxter	Offsite Inve	estigati	T.	ace	Proje	t Ma	nager	:	Kono	meng	g Var	na						+				ato I	Location			
	ed Due Date: 3-May		Project #:				02060.0			F	ace	Profile	#:	380			,	3	-5						\top					OR			$\overline{}$
6																					Regu	uested	Anal	vsis F	ilterec	I (Y/N)	$\neg \tau$		<u> </u>			
I3BFC L2	-			codes to left)	C=COMP)					Т									×.				T				<u> </u>	П					
	<u> </u>	MATRIX Drinking W	CODE ater DW	les t	ΰ		COLL	ECTED		<u>ج</u> ا	-	-1	72	eser	vativ	<u>es</u>		_	╧╡	-		\dashv	Щ.	_	_			$\downarrow \downarrow$					
]	Water	WΥ	8	C				- 1	TEMP AT COLLECTION										_					1								
offr T		Waste Wat Product	er WW P	valid	(G=GRAB				l	ן בַּ		- 1							ا پ	613									<u> </u>				
1	SAMPLE ID	Soil/Solid Oil	SL OL	(sec	(6=	STA	.RT	E	ND	5	co.								Test	S.									ے				
l	One Character per box.	Wipe	WP	1	1 1			1		۷.	Ĕ		1			l			ŝ	n a								1	Ē				
#	(A-Z, 0-9 / , -)	Air Other	AR OT	MATRIX CODE	SAMPLE TYPE					필	# OF CONTAINERS	veo							Analyses	Dioxins and Furans 1613									Residual Chlorine (Y/N)				
	Sample Ids must be unique	Tissue	TS	ĕ	<u> </u>					ш	S .	ser 7			_	8	5	- [व	s ar								11.	na				ı
ITEM	1			ĬΨ	AM					SAMPLE	6	Unpreserved	HNO3	모	NaOH	Na2S203	Methanol	Other	٦١	iž	-			-					pise				
<u> </u>	· · · · · · · · · · · · · · · · · · ·			12	8	DATE	TIME	DATE	TIME	S	#	בַּן כ	Ī	Ĭ	ž	ž	ž	ŏ		إق		-			_	\sqcup	_		œ				
1	DU-06A-0.5-1.0_0423	4		SL				05-Apr	13:00		1							\Box		x	\perp			\perp					F	promium E	EDD	013	5
2	DU-06A-1.0-1.5_0423			SL				05-Apr	13:05	1	1	\perp	_							x	\perp								Ē	promium E	EDD	010	1
3	DU-15A-1.0-1.5_0423	·-		SL				05-Apr	10:00	1	1									×									ŗ	promium E	EDD	01	5
4	DU-15A-1.5-2.0_0423			SL				05-Apr	10:05	1	1		L							x									ţ	promium E	EDD	010	Ţ
5	DU-15B-1.0-1.5_0423			SL				05-Apr	11:00	1	1	\perp								x									F	promium E	EDD	VI	7
6	DU-15B-1.5-2.0_0423			SL				05-Apr	11:05	1	1	\perp								x									f	promium E	EDD	015	8
7	SU-07A-0.5-1.0_0423			SL				05-Apr	11:35		1									x									F	promium E	EDD	01	9
88	SU-07A-1.0-1.5_0423			SL	Щ			05-Apr	11:40	1	1									x									E	promium E	EDD	02	Ó
9	SU-07B-0.5-1.0-0423		7.1	SL	Ш			05-Apr	12:00	1	1									×									F	promium E	EDD	02	$\sqrt{}$
10	SU-07B-1.0-1.5-0423			SL				05-Apr	12:05	1	1	\perp								×									Ē	promium E	EDD	02	7
11	DU-11A-1.0-1.5_0423			SL				05-Apr	14:05	1	1	\perp	\perp	_			\perp	\Box		x									Ē	promium E	EDD	07	3
12	DU-11A-1.5-2.0_0423			SL				05-Apr	14:10	1	1									×								Ш	F	promium E	EDD	UZ	<u>y</u>
	ADDITIONAL COMMENTS	HED BY / A	FFILIATIO	ж	DATE		TI	ME			,	CCE	PTED	BY	AFF	ILIATI	ON			DAT			IME		•	SAMPLE (CONDITI	ONS					
		·	James (C Huck	kaba				11-Apr	1	3:41		1	Ζ	<u>/</u> \	_($\overline{\wedge}$			- 1	90	<u> </u>	1	VIZ	/u	3:	SU						
Pace A	nalytical Batch: WG2039826							-					1																\bot				
Race A	nalytical SDGs: L1603081									\perp													\perp						\perp				
Pocation	on: Minneapolis, MN 55414																																
으							SAMPLE	ER NAME A	ND SIGNA	TUR	E																	1	T				
48			PR	INT Name	of SAMPLE	R:																		P in C		ived on	ody d	seles					

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Reposection								The Ch	ain-of-C	usto	dy is	sal	.EG	AL D	OCI	UME	NT.	ΑII	rele	van	t fiel	ds m	ust b	е со	mple	eted	accı	urate	iy.				
Section	Δ		Section B								Saat	ion C																_					
	d Client Information:		Required P	roject	Infor	mation:							, nform	ation															D		_	٠.	
Compan			Report To:			ytical Subc	ut Team			-	_	ntion:		on H												1		L	Page	<u>e:</u>	3	Of	3
Address	, , , , , , , , , , , , , , , , , , , ,		Copy To:	1 400	7 (110)	ytical Sabo	dt ream		-		_		Nam		anson	<u> </u>										ł							
t. Juliet	i, TN 37122		.,								Addr	<u> </u>														⊢					ton. Agen		
mail:	MTJLSuboutTeam@pacelabs.com		Purchase Or	rder #:		L1603081						e Quo	te:									_				⊢	-		Re	eguia	tory Agend	:у	
Rhone:	(615) 773-9756 Fax: (615) 7	758-5859	Project Nam	ie:		gon DEQ-J	H Baxter	Offsite Inv	estigati				ect M	anage	er:	Ko	ngme	ena V	ana	-						\vdash				State	/ Location		
Request	ed Due Date: 3-May		Project #:				02060.00				_		file #:		3076		<u> </u>	<u> </u>	3							1			 `	otote	OR		
6																			Т		R	Reque	sted A	Analys	sis Fil	terec	(Y/N)		т		-	
3BFC L2 dfr				Ê	Ľ															Т		ГΤ	i	T	1		<u> </u>	T	\top	1			
Ë				의 일	N		COLL	ECTED						ores:	05/0	tivo			ĮΧ														
Ľ		MATRIX Drinking Wa	CODE iter DW	codes to left)	C=COMP)		COLL	I		NO.	╽	Т	一,'	163	eiva	T	,	1	۲	╀	╁╾	\vdash	+		+	₩	 		+	₩			
$^{\circ}$		Water Waste Wate	wT er ww	8	6					∃CT									1	_ص										1.7	i		
₽		Product	P	vali	8					7	l								٦	161				- [ĮŽ.	i		ļ
1	SAMPLE ID	Soil/Solio Oil	SL OL	(see valid	(G=GRAB	STA	ART	E	ND	O L	\$				- 1	-			٤	Sc										9	i		
	One Character per box.	Wipe Air	WP AR							SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	_				- 1			Analyses Test	Dioxins and Furans 1613										Residual Chlorine (Y/N)	i		
#	(A-Z, 0-9 / , -)	Other	OT	MATRIX CODE	SAMPLE TYPE					힏	ξ	Unpreserved			1	_	1_		Š	밀										ည်	i		
≥	Sample lds must be unique	Tissue	TS	×	ᇤ					기E	8	ese	4 ,	_	Ι,	. 8	l ou		la la	s a										lua	i		
ITEM #				Ψ¥	W.	DATE	TIME	2475	T11.45	N.	심	ğ	H2S04	E P	E S	Na2S203	Methanol	Other	<	×					ŀ					esic	i		
				+-	+~	DAIL	TIME	DATE	TIME	3	#	┵	Ι :	<u> </u>	<u> </u>	: Z	≥	10	╀╌	╀≏	-		-	-	+	-	\vdash	+	-	۳.	<u> </u>		
1	DU-11B-1.0-1.5_0423			SL				05-Apr	14:30		1	1		İ					1	x					1			Ì		1	promium E	-00	175
				1									_		+	1	1	1	1		<u> </u>		\top	+	+	\vdash		-	+	1 '	promuti z		
2	DU-11B-1.5-2.0_0423			SL	<u> </u>			05-Apr	14:35		1	1	\perp			Ь.				X											promium E	DD	026
3	DU 104 1 0 1 5 0422										.] /			027
-	DU-10A-1.0-1.5_0423			SL	+			05-Apr	9:30		1	1		-	+	+-	+-	-	-	×_	├	\vdash	_	+			\vdash		+	┨ !	promium E	:DD	007
4	DU-10A-1.5-2.0_0423			SL				05-Apr	9:35		,	1					İ		1	x					Ì						promium E	-DD	018
				1	\vdash				1			-	\dashv		+		+	┢	1	Ë		F	+	+	+-	\vdash	H	_	+-	1 1	promium E	.00	
5	DU-01B-1.0-1.5_0423			SL				05-Apr	16:00		1	1							ı	х						ì				'	promium E	<u>:</u> DD	029
											ll								1	Г										1 !			
6				+	┼	<u>. </u>					\vdash	\dashv			+	┿-	1	_	┨	<u> </u>	_	\vdash	-	4	-	<u> </u>	\sqcup	_	—	<u></u>	<u> </u>		
7																	1		ı			-									ĺ		
	~			\top	1						\vdash	_	\pm		+	+	+	+	1	\vdash	 -	\vdash	+	+	+		\vdash	-	+	1 !			
8									1		1								ı	ı				İ						'	ĺ		
١.												П			\top				1											1 !			
9				+	╂—					_	$\vdash \vdash$		_		_		<u> </u>	_	1	<u> </u>	₩.		<u> </u>	\bot		Ш] !	L		
10												ı							ı	ı						1 1					İ		
					†				 		\vdash	$\neg +$	+	\dashv	+	-	+	╆	┨	\vdash				+	+	-			+	┨ !	 		
11									1.							-		-		ı											İ		
1	j													\top				П	1		1									1 '			
12	<u> </u>			Щ.	1				<u> </u>	Щ.	$ldsymbol{\sqcup}$		_	1	Ц.	_1_		<u> </u>	<u> </u>	上	1									Ш	<u> </u>		
1	ADDITIONAL COMMENTS		5	RELI	NQUIS	HED BY / A	FFILIATIO	N	DATE	•	1	TIME	- 1			ACC	EPTE	ED B	Y / AF	FFILL	TION	١.			DAT	E	т	IME			SAMPLE C	ONDITIC	NS
						_			1					11	<i>,</i>	7					114			W	12/	/2.2	0	50	+	_		$\overline{}$	$\overline{}$
\vdash	· · · · · · · · · · · · · · · · · · ·		James	C Hucl	kaba				11-Apr		13:4	1	4	\mathcal{M}	L	$oldsymbol{oldsymbol{oldsymbol{oldsymbol{eta}}}$	1			r	<u>((^</u>			V	14	4	1.	70	\bot			<u> </u>	
Pace A	nalytical Batch: WG2039826														ĺ		_			•				1			<u> </u>		1	,	i '	1	
			 						1 -		\vdash													+			 		+			\vdash	+
Pace A	nalytical SDGs: L1603081																																
Location	on: Minneapolis, MN 55414																																
of 7							SAMPIS	P NAME	AND SIGN	ΔΤΙ	DE.											-							+		\vdash	 	
of 48																					,	·-							」 ,	ပ	uo	1	
σ							l PR	N f Name	of SAMPI	ER:																				P in (ody er	plos

Courier: FedEx UPS USPS Client Client Client Client Client Client Client Courier: FedEx UPS USPS Client Commercial Commercial Commercial Commercial Commercial Commercial Client Commercial Client Commercial Client			Project (PM: CLI	O#: 10649075 KV Due Date: 05/03/23 ENT: ESC_TN
Tracking Number: 77(8172)8400	ENV		xception: MIN4-014		
Custody Seal on Cooler/Box Present? Yes No Se	als I	ntact?	T1 Yes	No	Biological Tissue Frozen? Yes No NA
Packing Material: Bubble Wrap Bubble Bags		None	_	Othe	r Temp Blank? ✓ Yes ☐ No
Thermometer: T1 (0461) T2 (1336) T3 (0459 T6 (0235) T7 (0042) T8 (0779	9) [T4 (0254)	T5 (0178)) Type of Ice; Wet Blue Dry None
Did Samples Originate in West Virginia? Yes No				Were All Co	entainer Temps Taken? Yes No N/A
Temp should be above freezing to 6 °C Cooler temp Read w/Te	mp	Blank:	4,1,	1.3°C	Average Corrected Temp
Correction Factor: 400 0 . Cooler Temp Corrected w/te	mp	blank:	4.2,1	4 °c	(no temp blank only): °C See Exceptions ENV-FRM-MIN4-0142 1 Container
USDA Regulated Soil: (N/A, water sample/other:)		Date/Initials of Person Examining Contents: 4/12/23)
Did samples originate in a quarantine zone within the United State	ne- /	I AD	-' ^7 CA EL		Did samples originate from a foreign source (internationally,
GA, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN, TX, or VA (check maps	1?	ZY	es A	to	including Hawaii and Puerto Rico)? Yes No
If Yes to either question fill out a Regulated	Soil	Chack	lice (ENIV-	EDNA-NAINIA-C	0154) and include with SCUR/COC paperwork.
Location (Check one): Duluth Minneap			Virginia		COMMENTS
Chain of Custody Present and Filled Out?	1	Yes	No		1.
Chain of Custody Relinquished?	1	Yes	No		2.
Sampler Name and/or Signature on COC?		Yes	No	N/A	3.
Samples Arrived within Hold Time?	1	Yes	No		4. If fecal: <8 hrs >8 hr, <24 No
Short Hold Time Analysis (<72 hr)?		Yes	No		5. Fecal Coliform HPC Total Coliform/E.coli BOD/cBOD Hex Chrom Turbidity Nitrate Nitrite Orthophos Other
Rush Turn Around Time Requested?		Yes	No		6.
Sufficient Sample Volume?	1	Yes	No		7.
The state of the s			140		<i>(</i> -
Correct Containers Used?		Yes	No	N/A	8.
			Louise	□ N/A	(a) 54.
Correct Containers Used? -Pace Containers Used? Containers Intact?	/	Yes Yes Yes	No No		(a) 54.
Correct Containers Used? -Pace Containers Used? Containers Intact? Field Filtered Volume Received for Dissolved Tests?	///	Yes Yes Yes Yes	No No No No	Linux	9. 10. Is sediment visible in the dissolved container? Yes No
Correct Containers Used? -Pace Containers Used? Containers Intact? Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the samples to the COC?		Yes Yes Yes	No No		9. 10. Is sediment visible in the dissolved container? Yes No 11. If no, write ID/Date/Time of container below: See Exceptions
Correct Containers Used? -Pace Containers Used? Containers Intact? Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the samples to the COC? Matrix: Water Soil Oil Other		Yes Yes Yes Yes Yes	No No No No	₩ N/A	9. 10. Is sediment visible in the dissolved container? Yes No 11. If no, write ID/Date/Time of container below: See Exceptions ENV-FRM-MIN4-0142
Correct Containers Used? -Pace Containers Used? Containers Intact? Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the samples to the COC?		Yes Yes Yes Yes	No No No No		9. 10. Is sediment visible in the dissolved container? Yes No 11. If no, write ID/Date/Time of container below: See Exceptions
Correct Containers Used? -Pace Containers Used? Containers Intact? Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the samples to the COC? Matrix: Water Soil Oil Other All containers needing acid/base preservation have been checked?		Yes Yes Yes Yes Yes	No No No No	₩ N/A	9. 10. Is sediment visible in the dissolved container? 11. If no, write ID/Date/Time of container below: See Exceptions ENV-FRM-MIN4-0142
Correct Containers Used? -Pace Containers Used? Containers Intact? Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the samples to the COC? Matrix: Water Soil Oil Other All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in		Yes Yes Yes Yes Yes	No No No No	₩ N/A	9. 10. Is sediment visible in the dissolved container? Yes No 11. If no, write ID/Date/Time of container below: See Exceptions ENV-FRM-MIN4-0142 12. Sample #
Correct Containers Used? -Pace Containers Used? Containers Intact? Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the samples to the COC? Matrix: Water Soil Oil Other All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in		Yes Yes Yes Yes Yes	No No No No	₩ N/A	9. 10. Is sediment visible in the dissolved container? 11. If no, write ID/Date/Time of container below: See Exceptions ENV-FRM-MIN4-0142
Correct Containers Used? -Pace Containers Used? Containers Intact? Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the samples to the COC? Matrix: Water Soil Oil Other All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide)		Yes Yes Yes Yes Yes Yes	No No No No	₩ N/A	9. 10. Is sediment visible in the dissolved container? Yes No 11. If no, write ID/Date/Time of container below: See Exceptions ENV-FRM-MIN4-0142 12. Sample # NaOH HNO3 H2SO4 Zinc Acetate
Correct Containers Used? -Pace Containers Used? Containers Intact? Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the samples to the COC? Matrix: Water Soil Oil Other All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015		Yes Yes Yes Yes Yes	No No No No	₩ N/A	9. 10. Is sediment visible in the dissolved container? Yes No 11. If no, write ID/Date/Time of container below: See Exceptions ENV-FRM-MIN4-0142 12. Sample # NaOH HNO3 H2SO4 Zinc Acetate Positive for Residual Yes See Exceptions
Correct Containers Used? -Pace Containers Used? Containers Intact? Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the samples to the COC? Matrix: Water Soil Oil Other All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 (water) and Dioxins/PFAS		Yes Yes Yes Yes Yes Yes	No No No No	₩ N/A	9. 10. Is sediment visible in the dissolved container? Yes No. 11. If no, write ID/Date/Time of container below: See Exceptions ENV-FRM-MIN4-0142 12. Sample # NaOH HNO3 H2SO4 Zinc Acetate Positive for Residual Yes See Exceptions Chlorine? No ENV-FRM-MIN4-0142
Correct Containers Used? -Pace Containers Used? Containers Intact? Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the samples to the COC? Matrix: Water Soil Oil Other All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015		Yes Yes Yes Yes Yes Yes	No No No No	₩ N/A	9. 10. Is sediment visible in the dissolved container? Yes No 11. If no, write ID/Date/Time of container below: See Exceptions ENV-FRM-MIN4-0142 12. Sample # NaOH HNO3 H2SO4 Zinc Acetate Positive for Residual Yes See Exceptions
Correct Containers Used? -Pace Containers Used? Containers Intact? Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the samples to the COC? Matrix: Water Soil Oil Other All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 (water) and Dioxins/PFAS (*If adding preservative to a container, it must be added to		Yes Yes Yes Yes Yes Yes	No No No No	₩ N/A	9. 10. Is sediment visible in the dissolved container? Yes No 11. If no, write ID/Date/Time of container below: See Exceptions ENV-FRM-MIN4-0142 12. Sample # NaOH HNO3 H2SO4 Zinc Acetate Positive for Residual Yes See Exceptions Chlorine? No ENV-FRM-MIN4-0142 pH Paper Lot #
Correct Containers Used? -Pace Containers Used? Containers Intact? Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the samples to the COC? Matrix: Water Soil Oil Other All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 (water) and Dioxins/PFAS (*If adding preservative to a container, it must be added to associated field and equipment blanks—verify with PM first.) Headspace in Methyl Mercury Container?		Yes Yes Yes Yes Yes Yes Yes Yes	No No No	N/A N/A N/A	9. 10. Is sediment visible in the dissolved container? Yes No. 11. If no, write ID/Date/Time of container below: See Exceptions ENV-FRM-MIN4-0142 12. Sample # NaOH HNO3 H2SO4 Zinc Acetate Positive for Residual Yes See Exceptions ENV-FRM-MIN4-0142 ph Paper Lot # Residual Chlorine 0-6 Roll 0-6 Strip 0-14 Strip
Correct Containers Used? -Pace Containers Used? Containers Intact? Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the samples to the COC? Matrix: Water Soil Oil Other All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 (water) and Dioxins/PFAS (*If adding preservative to a container, it must be added to associated field and equipment blanks—verify with PM first.) Headspace in Methyl Mercury Container? Extra labels present on soil VOA or WIDRO containers? Headspace in VOA Vials (greater than 6mm)?		Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No No No No No No No No No N	N/A N/A N/A N/A	9. 10. Is sediment visible in the dissolved container? Yes No 11. If no, write ID/Date/Time of container below: See Exceptions ENV-FRM-MIN4-0142 12. Sample # NaOH HNO3 H2SO4 Zinc Acetate Positive for Residual Yes See Exceptions ENV-FRM-MIN4-0142 pH Paper Lot # Residual Chlorine 0-6 Roll 0-6 Strip 0-14 Strip 13. 14. See Exceptions ENV-FRM-MIN4-0142
Correct Containers Used? -Pace Containers Used? Containers Intact? Field Filtered Volume Received for Dissolved Tests? Is sufficient information available to reconcile the samples to the COC? Matrix: Water Soil Oil Other All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation? (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide) Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 (water) and Dioxins/PFAS (*If adding preservative to a container, it must be added to associated field and equipment blanks—verify with PM first.) Headspace in Methyl Mercury Container? Extra labels present on soil VOA or WIDRO containers?		Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	No No No No No No No No No No	N/A N/A N/A	9. 10. Is sediment visible in the dissolved container? Yes No 11. If no, write ID/Date/Time of container below: See Exceptions ENV-FRM-MIN4-0142 12. Sample # NaOH HNO3 H2SO4 Zinc Acetate Positive for Residual Yes See Exceptions Chlorine? No ENV-FRM-MIN4-0142 pH Paper Lot # Residual Chlorine 0-6 Roll 0-6 Strip 0-14 Strip 13. 14. See Exceptions

Project Manager Review: Date: NOTE: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e., out of hold, incorrect preservative, option temp, incorrect containers). Labeled By:

DC#_Title: ENV-FRM-MIN4-0154 v02	USDA Re	gulated Soil	Checklist
----------------------------------	---------	--------------	-----------

Effective Date: 08/19/2022

USDA Regulated Soil Checklist

To be Completed by Sample Receiving:				
wo: 10649075	Date: $\frac{5/4}{2023}$	Initials: EM	102	
Sample Origin (check one): DOMI NOTE: Soil samples from Hawaii, Guam, Puerto	ESTIC \square QUARANTINED \square FO or Rico, and the US Virgin Islands are Foreign originated.	REIGN		
If DOMESTIC , circle state of origi Includes: IFA, SOD, Golden Nematodo	n: AL AR AZ CA FL GA LA MS NC e, Karnal Bunt, and Witchweed	NM NY O		N TX VA
(USDA Permit/Cor	mpliance Agreement authorizes movement of samples fr	om these domestic	regulated zones)	
If QUARANTINED, circle state of	origin: CA ID NY TX			
Includes: Fruit Fly and Pale Cyst Nem		List County: _		
(Movement is not author	orized for Pale Cyst Nematode (ID)—remaining qu	arantines require	additional pape	erwork)
If FOREIGN , list country of origin (Movement from some C	: anadian Provinces is not allowed. Refer to ENV-FF	RM-MIN4-0137 <i>Re</i>	egulated Soil Flo	ow Chart)
REQUIREMENT	ACTION		COMPLETED	
PPQ-530 Paperwork must be included for any	Scan PPQ-530 to the corresponding Project			
samples from counties with a Fruit Fly	folder on the X:drive.			
Quarantine in CA, NY, and TX.	If PPQ-530 is not present, contact the	YES	NO	(N/A)
Reference ENV-SOP-MIN4-0095.	laboratory's designated USDA permit holder.			
Reference Livy-SOF-Williv4-0055.	Do NOT continue processing samples.			
Samples from ID may not be moved from the	If samples originated in a quarantined zone,			
quarantined region.	contact the laboratory's designated USDA	YES	NO	N/A)
Reference ENV-SOP-MIN4-0095.	permit holder. Do NOT continue processing samples.			
REQUIREMENT	ACTION		COMPLETED	
"Special Handling" stickers are to be placed on all samples.	Did "special handling" stickers get placed on all sample containers?	YES	NO	(N)A
Samples must be segregated and stored in	Were samples placed in a designated cooler,	YES	NO	N(7A)
designated bins, shelves, and coolers.	containers, and shelves?	123		
	Were there any signs of breakage or leakage			
	(check for broken glass and/or loose soil in the cooler)?	VEC	NO	M24
	·	YES	NO	N ⊘ A
	NOTE: If NO, ice and melt water can be disposed of by normal process (ex: down the drain).			
Samples must be double contained to prevent	If YES, were ice and melt water separated from			_
accidental release.	the cooler and disposed of properly?	YES	NO	NZA
	Any broken glass and/or loose soil are to be bagged an active drum (see Waste Coordinator).	nd placed in a USDA	Regulated satell	ite container or
	Ice and melt water should be baked at a temperature before going down the drain.	range of 121-154°F	for 2 hours and t	nen cooled
	Was the cooler(s) and/or countertop(s)			
	decontaminated using either a fresh 10%			>
Equipment and supplies that have come into contact samples must be decontaminated.	bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in	YES		
contact samples must be decontaminated.	the USDA Regulated satellite container or active drum).			<i>y</i>
COMMENTS:				

Qualtrax ID: 52751 Page 1 of 2

DC#_Title: ENV-FRM-MIN4-0154 v02_USDA Regulated Soil Checklist

Effective Date: 08/19/2022

Sample analysis will be conducted (circle If subcontract, list lab(s):	all that apply): MN Subcontract Lab			
REQUIREMENT	ACTION		COMPLETED	// A. J. A. A. A. A. A. A. A. A. A. A. A. A. A.
Permission to ship untreated soil must be on ille prior to shipping to any subcontract lab, ncluding IR Pace Labs.	Go to: S:\CLIENTSVR\10_Client Services Department Documents\Regulated Soils Permits\Permission to Ship If permission to ship letter is not there, contact the laboratory's designated USDA permit holder.	YES	NO	N/A
Shipment must include a valid copy of the eceiving lab's permit as well as permission to ship letter.	Is a copy of all needed paperwork included with the COC? Do NOT ship samples until all necessary paperwork is compiled.	YES	NO	N/A
COMMENTS:				

Date:

Qualtrax ID: 52751 Page 2 of 2

PM Signature:

Pace Analytical®

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

rax: 612.607.6444 www.pacelabs.com

Reporting Flags

A = Reporting Limit based on signal to noise (EDL)

B = Less than 10x higher than method blank level

C = Result obtained from confirmation analysis

D = Result obtained from analysis of diluted sample

E = Exceeds calibration range

H2 = Extracted outside of holding time

I = Isotope ratio out of specification

J = Estimated value

L = Suppressive interference, analyte may be biased low

Nn = Value obtained from additional analysis

P = PCDE Interference

R = Recovery outside target range

S = Peak saturated

U = Analyte not detected

V = Result verified by confirmation analysis

X = %D Exceeds limits

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix B

Sample Analysis Summary

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Total Amount Extracted 10.4 g Matrix Solid % Moisture 3.9 Dilution NA

Dry Weight Extracted 10.0 g Collected 04/05/2023 14:30 ICAL ID U230503 Received 04/12/2023 08:50 CCal Filename(s) U230503B 17 Extracted 04/19/2023 14:30 Method Blank ID 05/03/2023 22:54 BLANK-105366 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 2.0		0.16 0.16	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 68 82
2,3,7,8-TCDD Total TCDD	0.50 5.6	100 T 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.47 J 0.47	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	80 89 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.31	0.28	0.13 J 0.088 J 0.088 J	1,2,3,4,7,8-11XCDT-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	70 69 69 70
1,2,3,7,8-PeCDD Total PeCDD	0.88 8.2		0.16 J 0.16	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 77 70 68
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	0.80 ND 0.73	0.30	0.13 J 0.11 0.13 J 0.14 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	79 60 NA
Total HxCDF	15		0.11	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.4 2.9 2.2 39	=	0.29 J 0.16 J 0.25 J 0.16	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.82 35	27 —	0.19 P 0.16 J 0.16	Total 2,3,7,8-TCDD Equivalence: 3.8 ng/Kg (Lower-bound - Using 2005	WHO Facto	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	95 250	100.000	0.27 0.27			
OCDF OCDD	49 860	107 J 107 M	0.39 0.32			


Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

P = PCDE Interference

I = Isotope ratio out of specification

Solid

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Matrix

Client's Sample ID DU-06B-1.0-1.5 0423 Lab Sample ID 10649075002 Filename U230503C_03

Pace Analytical

Injected By SMT **Total Amount Extracted** 10.4 g

% Moisture 4.0 Dilution NA Dry Weight Extracted 9.95 g Collected 04/05/2023 14:35 ICAL ID U230503 Received 04/12/2023 08:50 CCal Filename(s) U230503B 17 Extracted 04/19/2023 14:30 05/03/2023 23:41 Method Blank ID BLANK-105366 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.14		0.11 0.11 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 55 79
2,3,7,8-TCDD Total TCDD	ND ND	-	0.26 0.26	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	80 90 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.14 0.093 0.093	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	71 70 69 68
1,2,3,7,8-PeCDD Total PeCDD	ND 1.2		0.31 0.31 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	78 71 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.18	0.14 0.23	0.098 JJ 0.12 JJ 0.063 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	81 63
1,2,3,7,8,9-HxCDF Total HxCDF	1.5	0.17	0.070 IJ 0.063 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.60 6.6	0.41 0.49	0.20 N 0.15 J 0.11 N 0.11	2,3,7,8-TCDD-37Cl4	0.20	57
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 6.3	5.1 	0.18 P 0.21 0.18	Total 2,3,7,8-TCDD Equivalence: 0.50 ng/Kg (Lower-bound - Using 2005 \	NHO Factors	s)
1,2,3,4,6,7,8-HpCDD Total HpCDD	18 47		0.30 0.30			
OCDF OCDD	10 160		0.43 0.45			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Isotope ratio out of specification

EDL = Estimated Detection Limit

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID DU-01A-0.5-1.0 0423 Lab Sample ID 10649075003 Filename U230503C_04 Injected By SMT

Total Amount Extracted Solid 10.7 g Matrix % Moisture Dilution NA 4.0 Dry Weight Extracted 10.2 g Collected

04/05/2023 15:30 ICAL ID U230503 Received 04/12/2023 08:50 CCal Filename(s) U230503B 17 Extracted 04/19/2023 14:30 05/04/2023 00:28 Method Blank ID BLANK-105366 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.00		0.14 0.14	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	71 66 81
2,3,7,8-TCDD Total TCDD	ND 1.5		0.27 0.27 B	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	82 91 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 2.3		0.14 0.075 0.075 J	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 73 66 73
1,2,3,7,8-PeCDD Total PeCDD	0.26 2.2		0.14 J 0.14 J	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	73 82 75 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	0.53 0.20 ND	0.15 	0.13 JJ 0.16 J 0.15 J 0.096	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	86 65 NA
Total HxCDF	4.2	-	0.096 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.78 4.6	0.49 0.77	0.20 J 0.19 J 0.18 J 0.18 J	2,3,7,8-TCDD-37Cl4	0.20	64
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 7.1	6.6	0.19 P 0.24 0.19	Total 2,3,7,8-TCDD Equivalence: 0.90 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	21 50		0.29 0.29			
OCDF OCDD	11 220		0.37 0.83			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID DU-01A-1.0-1.5_0423 Lab Sample ID 10649075004

Filename U230503C_05 Injected By SMT

Total Amount Extracted 10.4 g Matrix Solid % Moisture 4.5 Dilution NA

Dry Weight Extracted 9.89 g Collected 04/05/2023 15:35 ICAL ID U230503 Received 04/12/2023 08:50 CCal Filename(s) U230503B 17 Extracted 04/19/2023 14:30 05/04/2023 01:14 Method Blank ID BLANK-105366 Analyzed

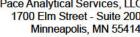
Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND	_	0.26 0.26	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	78 65 88
2,3,7,8-TCDD Total TCDD	ND ND		0.49 0.49	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	89 99 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.45	=	0.16 0.14 0.14 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 72 74 72
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.18 0.18	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	81 74 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.13 0.13 0.14	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	85 63
1,2,3,7,8,9-HxCDF Total HxCDF	0.95	0.23	0.14 JJ 0.13 BJ	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.38 0.27 3.0	0.19 	0.16 J 0.16 J 0.15 J 0.15 J	2,3,7,8-TCDD-37Cl4	0.20	68
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 2.8	2.6	0.23 PJ 0.27 0.23 J	Total 2,3,7,8-TCDD Equivalence: 0.24 ng/Kg (Lower-bound - Using 2005	WHO Factor	s)
1,2,3,4,6,7,8-HpCDD Total HpCDD	8.3 18		0.46 0.46			
OCDF OCDD	3.8 83		0.34 J 0.32			

ND = Not Detected

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated


Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID DU-01B-0.5-1.0 0423 Lab Sample ID 10649075005 Filename U230503C_06 Injected By SMT

Total Amount Extracted Solid 10.7 g Matrix % Moisture Dilution NA 3.4

Dry Weight Extracted 10.4 g Collected 04/05/2023 15:55 ICAL ID U230503 Received 04/12/2023 08:50 CCal Filename(s) U230503B 17 Extracted 04/19/2023 14:30 Method Blank ID 05/04/2023 02:01 BLANK-105366 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.94		0.71 0.71 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 68 84
2,3,7,8-TCDD Total TCDD	1.8 2.9		0.46 0.46	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	88 96 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.65 6.0		0.48 0.50 J 0.48	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	74 70 67 73
1,2,3,7,8-PeCDD Total PeCDD	0.56 4.5		0.20 J 0.20 J	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	78 73 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.91 0.93	0.80	0.092 J 0.17 PJ 0.12 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	83 62
1,2,3,7,8,9-HxCDF Total HxCDF	13	0.43	0.14 N 0.092	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.3	0.83 1.4	0.41 JJ 0.36 J 0.37 JJ 0.36	2,3,7,8-TCDD-37Cl4	0.20	73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	 15	17 0.60 ——	0.21 P 0.27 J 0.21	Total 2,3,7,8-TCDD Equivalence: 4.1 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	50 110		0.35 0.35			
OCDF OCDD	21 480	107_133145	0.46 0.34			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value P = PCDE Interference

I = Isotope ratio out of specification

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 Tel: 612-607-1700

Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID DU-110A-1.0-1.5_0423

Lab Sample ID 10649075006 Filename F230503A_08

Pace Analytical

Injected By SM
Total Amount Extracted 10.7 g Matrix Solid
% Moisture 4.1 Dilution NA

Dry Weight Extracted 10.3 g Collected 04/05/2023 09:50 ICAL ID F230426 Received 04/12/2023 08:50 CCal Filename(s) F230502B 18 Extracted 04/19/2023 14:30 Method Blank ID BLANK-105366 Analyzed 05/03/2023 10:12

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.6	_	0.39 0.39	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	59 33 71
2,3,7,8-TCDD Total TCDD	ND	1.2	0.60 I 0.60	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	77 79 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.40 2.1		0.46 0.23 J 0.23 J	1,2,3,4,7,8-HXCDF-13C 2,3,4,6,7,8-HXCDF-13C 1,2,3,7,8,9-HXCDF-13C 1,2,3,4,7,8-HXCDD-13C	2.00 2.00 2.00 2.00 2.00	76 72 62 67
1,2,3,7,8-PeCDD Total PeCDD	2.9	0.27	0.085 J 0.085 J	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	77 66 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.2	2.2 0.40	0.26 J 0.27 PJ 0.21 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	75 62
1,2,3,7,8,9-HxCDF Total HxCDF	18	0.39	0.36 JJ 0.21	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.3 1.6 24	0.65 	0.15 J 0.13 J 0.18 J 0.13	2,3,7,8-TCDD-37Cl4	0.20	33 R
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	28 1.9 93		0.74 0.52 J 0.52	Total 2,3,7,8-TCDD Equivalence: 4.1 ng/Kg (Lower-bound - Using 2005	WHO Factor	s)
1,2,3,4,6,7,8-HpCDD Total HpCDD	91 250		0.32 0.32			
OCDF OCDD	120 1100	12.13.14	0.46 0.56			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

P = PCDE Interference

I = Isotope ratio out of specification

Pace Analytical[™]

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Total Amount Extracted 10.3 g Matrix Solid % Moisture 3.8 Dilution NA Dry Weight Extracted 9.90 g Collected 04/05

 Dry Weight Extracted
 9.90 g
 Collected
 04/05/2023 10:20

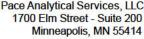
 ICAL ID
 U230503
 Received
 04/12/2023 08:50

 CCal Filename(s)
 U230503B_17
 Extracted
 04/19/2023 14:30

 Method Blank ID
 BLANK-105366
 Analyzed
 05/04/2023 02:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.51		0.33 0.33 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 62 84
2,3,7,8-TCDD Total TCDD	1.8	0.56	0.35 JJ 0.35 B	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	84 93 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 2.0	0.25	0.20 0.15 J 0.15 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	69 71 68 68
1,2,3,7,8-PeCDD Total PeCDD	1.6	0.25	0.15 J 0.15 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	77 71 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.92 0.75	0.30	0.12 J 0.12 PJ 0.11 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	83 65
1,2,3,7,8,9-HxCDF Total HxCDF	0.39 14		0.12 BJ 0.11	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.78 1.8 1.4 18		0.37 J 0.43 J 0.27 J 0.27	2,3,7,8-TCDD-37Cl4	0.20	64
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.98 37	32	0.31 P 0.50 J 0.31	Total 2,3,7,8-TCDD Equivalence: 2.6 ng/Kg (Lower-bound - Using 2005	WHO Factors	s)
1,2,3,4,6,7,8-HpCDD Total HpCDD	55 120	40 T 1 S 1 S 1	0.086 0.086			
OCDF OCDD	71 580		0.22 0.24			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable


EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Isotope ratio out of specification

Fax: 612-607-6444

Pace Analytical Services, LLC <u> Pace Analytical</u> Tel: 612-607-1700

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID DU-10B-1.5-2.0 0423 Lab Sample ID 10649075008 Filename U230503C_08 Injected By SMT

Total Amount Extracted Solid 10.4 g Matrix % Moisture 3.9 Dilution NA

Dry Weight Extracted 9.99 g Collected 04/05/2023 09:50 U230503 ICAL ID Received 04/12/2023 08:50 CCal Filename(s) U230503B 17 Extracted 04/19/2023 14:30 05/04/2023 03:35 Method Blank ID BLANK-105366 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.17 0.17	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 45 84
2,3,7,8-TCDD Total TCDD	0.99 0.99		0.44 J 0.44 BJ	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	88 97
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.17 0.11 0.11	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 73 72 67 70
1,2,3,7,8-PeCDD Total PeCDD	0.65	0.26	0.15 J 0.15 J	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	80 72 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.42	0.31 0.38	0.23 J 0.21 N 0.22 N	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	86 62
1,2,3,7,8,9-HxCDF Total HxCDF	7.3	0.35	0.13 JJ 0.13	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.4 1.1 10	0.63	0.25 J 0.26 J 0.24 J 0.24	2,3,7,8-TCDD-37Cl4	0.20	43
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	18	19 0.52 	0.19 P 0.26 N 0.19	Total 2,3,7,8-TCDD Equivalence: 2.4 ng/Kg (Lower-bound - Using 2005	WHO Facto	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	34 68		0.12 0.12			
OCDF OCDD	40 340		0.60 0.20			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Isotope ratio out of specification

Solid

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID DU-09A-1.0-1.5_0423
Lab Sample ID 10649075009
Filename U230503C_09

Injected By SMT
Total Amount Extracted 10.4 g Matrix
% Moisture 3.8 Dilution

NA Dry Weight Extracted 9.96 g Collected 04/05/2023 11:30 ICAL ID U230503 Received 04/12/2023 08:50 CCal Filename(s) U230503B 17 Extracted 04/19/2023 14:30 Method Blank ID BLANK-105366 Analyzed 05/04/2023 04:21

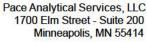
Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.3		0.43 0.43	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	71 67 81
2,3,7,8-TCDD Total TCDD	4.8 4.8		0.75 0.75	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	83 93 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 9.1	0.84	0.63 0.30 IJ 0.30	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	70 68 68 69
1,2,3,7,8-PeCDD Total PeCDD	0.94 7.5	-	0.24 J 0.24	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 70 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	4.3 2.3	1.2	0.41 J 0.55 PJ 0.39 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	79 60
1,2,3,7,8,9-HxCDF Total HxCDF	0.92 59		0.44 BJ 0.39	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.2 6.5 3.7 49		0.82 J 0.54 0.46 J 0.46	2,3,7,8-TCDD-37Cl4	0.20	70
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	4.5 200	160 	0.51 P 0.67 J 0.51	Total 2,3,7,8-TCDD Equivalence: 13 ng/Kg (Lower-bound - Using 2005 WHO Factors)		
1,2,3,4,6,7,8-HpCDD Total HpCDD	210 420		0.14 0.14			
OCDF OCDD	420 3900		0.66 0.98			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated


Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

Client - Pace Analytical National

<u> Pace Analytical</u>

Total Amount Extracted 10.2 g Matrix Solid Modern NA Dilution NA DILUTION NA D

Dry Weight Extracted 9.78 g Collected 04/05/2023 11:35 ICAL ID U230503 Received 04/12/2023 08:50 CCal Filename(s) U230503B 17 Extracted 04/19/2023 14:30 Method Blank ID 05/04/2023 05:08 BLANK-105366 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.40		0.34 0.34 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	77 61 90
2,3,7,8-TCDD Total TCDD	ND 1.2		0.51 0.51 B	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	92 101 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 2.3		0.35 0.24 0.24 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 74 72 73
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.24 0.24	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	82 79 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.87 0.45	1.2	0.30 J 0.33 PJ 0.23 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	92 73
1,2,3,7,8,9-HxCDF Total HxCDF	ND 12		0.26 0.23	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.64 1.3 1.0 12		0.28 J 0.29 J 0.28 J 0.28	2,3,7,8-TCDD-37Cl4	0.20	60
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.81 33	28 	0.29 P 0.35 J 0.29	Total 2,3,7,8-TCDD Equivalence: 1.5 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	46 92		0.43 0.43			
OCDF OCDD	68 680		1.1 0.98			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID Lab Sample ID Filename

<u> Pace Analytical</u>

Injected By Total Amount Extracted % Moisture

Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID DU-09B-1.0-1.5_0423 10649075011 U230503C_11 SMT 10.2 g

3.8 9.84 g U230503 U230503B_17 BLANK-105366 Matrix Solid Dilution NA

Collected 04/05/2023 12:15 Received 04/12/2023 08:50 Extracted 04/19/2023 14:30 Analyzed 05/04/2023 05:54

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 3.4		0.46 0.46	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 55 76
2,3,7,8-TCDD Total TCDD	3.7 19		0.74 0.74	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	77 86 65
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.82 1.5 22		0.39 J 0.14 J 0.14	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	66 63 63 64
1,2,3,7,8-PeCDD Total PeCDD	2.7 18		0.30 J 0.30	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	68 67 67
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	7.9 4.9	1.8	0.24 0.38 PJ 0.29 J 0.36 JJ	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	75 61 NA
Total HxCDF	120		0.24	1,2,3,7,8,9-HxCDD-13C	2.00	NA EE
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.6 15 8.8 110		0.56 0.51 0.50 0.50	2,3,7,8-TCDD-37Cl4	0.20	55
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	8.5 280	240 	0.39 P 0.62 0.39	Total 2,3,7,8-TCDD Equivalence: 18 ng/Kg (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	320 640		0.34 0.34			
OCDF OCDD	470 2700	607_100000	0.28 0.28			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

ND = Not Detected NA = Not Applicable


NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID DU-09B-1.5-2.0 0423 Lab Sample ID 10649075012 U230503C_12 Filename Injected By SMT

Total Amount Extracted 10.2 g Solid Matrix % Moisture 3.7 Dilution NA Dry Weight Extracted 9.87 g Collected

04/05/2023 12:20 ICAL ID U230503 Received 04/12/2023 08:50 CCal Filename(s) U230503B 17 Extracted 04/19/2023 14:30 Method Blank ID BLANK-105366 Analyzed 05/04/2023 06:41

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.71		0.31 0.31 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	77 52 88
2,3,7,8-TCDD Total TCDD	2.0 5.9		0.62 0.62	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	91 101 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.37		0.28 0.24 0.24 J	1,2,3,4,7,8-HXCDF-13C 2,3,4,6,7,8-HXCDF-13C 1,2,3,7,8,9-HXCDF-13C 1,2,3,4,7,8-HXCDD-13C	2.00 2.00 2.00 2.00 2.00	74 72 72 72 73
1,2,3,7,8-PeCDD Total PeCDD	3.5	0.64	0.18 J 0.18 J	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	83 78 79
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF		1.2 0.39 0.74	0.46 JJ 0.32 JJ 0.36 JJ	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	90 72
1,2,3,7,8,9-HxCDF Total HxCDF	0.54		0.31 BJ 0.31	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.5 3.1 —— 25	2.1	0.26 J 0.26 J 0.20 J 0.20	2,3,7,8-TCDD-37Cl4	0.20	46
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.2 47	44 	0.20 P 0.30 J 0.20	Total 2,3,7,8-TCDD Equivalence: 5.0 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	75 160		0.15 0.15			
OCDF OCDD	83 720	601_000000	0.24 0.43			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.


J = Estimated value

B = Less than 10x higher than method blank level

P = PCDE Interference

I = Isotope ratio out of specification

EDL = Estimated Detection Limit

Method 1613B Sample Analysis Results

Client - Pace Analytical National

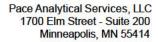
<u> Pace Analytical</u>

Total Amount Extracted 10.4 g Matrix Solid Moisture 4.0 Dilution NA

Dry Weight Extracted 9.96 g Collected 04/05/2023 13:00 ICAL ID U230503 Received 04/12/2023 08:50 CCal Filename(s) U230503B 17 Extracted 04/19/2023 14:30 Method Blank ID 05/04/2023 07:28 BLANK-105366 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.26 0.26	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	77 53 91
2,3,7,8-TCDD Total TCDD	ND 2.4		0.45 0.45	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	91 101 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.20 0.12 0.12	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 76 74 71 76
1,2,3,7,8-PeCDD Total PeCDD	0.26 2.7		0.14 J 0.14 J	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	82 80 78
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND 0.32	0.30	0.29 JJ 0.28 0.31 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	91 68
1,2,3,7,8,9-HxCDF Total HxCDF	3.2	0.26	0.18 J 0.18 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.54 0.80 11	1.00	0.20 J 0.15 JJ 0.31 J 0.15	2,3,7,8-TCDD-37Cl4	0.20	53
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	14	12 0.50 	0.14 P 0.19 N 0.14	Total 2,3,7,8-TCDD Equivalence: 1.1 ng/Kg (Lower-bound - Using 2005	WHO Facto	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	32 75		0.17 0.17			
OCDF OCDD	23 340		0.18 0.25			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).


ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID Lab Sample ID Filename Injected By

<u> Pace Analytical</u>

Injected By
Total Amount Extracted
% Moisture
Dry Weight Extracted

ICÁL ID CCal Filename(s) Method Blank ID DU-06A-1.0-1.5_0423 10649075014 U230503C_14 SMT 10.6 g

4.2 10.1 g U230503 U230503B_17 BLANK-105366 Matrix Solid
Dilution NA
Collected 04/05/

 Collected
 04/05/2023
 13:05

 Received
 04/12/2023
 08:50

 Extracted
 04/19/2023
 14:30

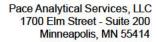
 Analyzed
 05/04/2023
 08:15

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.27		0.15 0.15 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 54 89
2,3,7,8-TCDD Total TCDD	ND ND		0.28 0.28	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	88 100 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.12 0.085 0.085	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 74 73 73 72
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.13 0.13	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	82 77 76
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND 0.33 ND ND		0.17 0.16 J 0.18 0.16	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	89 67 NA
Total HxCDF	1.9		0.16 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.33 0.50 3.5	0.25	0.12 J 0.11 J 0.10 N 0.10 J	2,3,7,8-TCDD-37Cl4	0.20	53
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 7.3	5.8	0.15 P 0.21 0.15	Total 2,3,7,8-TCDD Equivalence: 0.35 ng/Kg (Lower-bound - Using 2005	WHO Facto	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	11 24		0.21 0.21			
OCDF OCDD	11 130		0.47 0.10			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable NC = Not Calculated


Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Isotope ratio out of specification

EDL = Estimated Detection Limit

Pace Analytical Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID Lab Sample ID Filename

Injected By Total Amount Extracted % Moisture

Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID DU-15A-1.0-1.5_0423 10649075015 U230505A_12 AH5 10.2 g

4.0 9.79 g U230503 U230505A_02 BLANK-105368 Matrix Solid Dilution NA

Collected 04/05/2023 10:00 Received 04/12/2023 08:50 Extracted 04/19/2023 14:30 Analyzed 05/05/2023 17:03

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.2		0.14 0.14	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 76 82
2,3,7,8-TCDD Total TCDD	0.92 2.0		0.31 J 0.31	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	85 89 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 1.6		0.15 0.10 0.10 J	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 83 76 82
1,2,3,7,8-PeCDD Total PeCDD	2.1	0.22	0.14 J 0.14 J	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	82 75 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.40	0.50	0.15 J 0.14 PJ 0.12 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	83 74
1,2,3,7,8,9-HxCDF Total HxCDF	0.19 7.1		0.11 J 0.11	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.63 1.6 1.0 9.5		0.28 J 0.34 J 0.37 J 0.28	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 13	9.2	0.55 P 0.47 0.47	Total 2,3,7,8-TCDD Equivalence: 2.2 ng/Kg (Lower-bound - Using 2005	WHO Facto	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	35 94		0.21 0.21			
OCDF OCDD	20 400		0.43 0.63			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable NC = Not Calculated

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

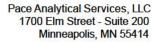
Client - Pace Analytical National

Client's Sample ID DU-15A-1.5-2.0 0423 Lab Sample ID 10649075016 U230503C_15 Filename Injected By SMT

Total Amount Extracted 10.7 g Solid Matrix % Moisture Dilution NA 4.2 Dry Weight Extracted 10.2 g Collected

04/05/2023 10:05 ICAL ID U230503 Received 04/12/2023 08:50 CCal Filename(s) U230503B 17 Extracted 04/19/2023 14:30 Method Blank ID 05/04/2023 09:01 BLANK-105368 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.21		0.20 0.20 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 70 86
2,3,7,8-TCDD Total TCDD	0.83 0.83		0.25 J 0.25 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	85 95 84
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.18 0.13 0.13	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	84 78 70 81
1,2,3,7,8-PeCDD Total PeCDD	0.14 1.5		0.10 J 0.10 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	88 82 79
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.34 ND	0.47	0.21 J 0.22 PJ 0.23	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	94 68
1,2,3,7,8,9-HxCDF Total HxCDF	ND 4.3		0.17 0.17 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.54 8.5	0.83 0.71	0.25 J 0.24 JJ 0.20 JJ 0.20	2,3,7,8-TCDD-37Cl4	0.20	70
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	8.1	6.6 0.34 	0.26 P 0.20 N 0.20	Total 2,3,7,8-TCDD Equivalence: 1.7 ng/Kg (Lower-bound - Using 2005	WHO Facto	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	25 60		0.13 0.13			
OCDF OCDD	13 290		0.24 0.42			


Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

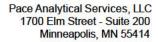
Client - Pace Analytical National

<u> Pace Analytical</u>

Total Amount Extracted 10.3 g Matrix Solid % Moisture 4.1 Dilution NA

Dry Weight Extracted 9.90 g Collected 04/05/2023 11:00 ICAL ID F230426 Received 04/12/2023 08:50 CCal Filename(s) F230503A 12 Extracted 04/19/2023 14:30 BLANK-105368 Method Blank ID Analyzed 05/03/2023 17:34

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.6	_	0.28 0.28	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	60 53 67
2,3,7,8-TCDD Total TCDD	1.2 2.6		0.36 0.36	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	77 78 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.23 0.12 0.12	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	78 74 60 65
1,2,3,7,8-PeCDD Total PeCDD	ND 0.60		0.16 0.16 J	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	81 70 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.53 0.27	0.14	0.13 J 0.15 J 0.15 J	1,2,3,4,6,7,8-HpCDD-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	73 62
1,2,3,7,8,9-HxCDF Total HxCDF	ND 3.0	-	0.26 0.13 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.52 0.83 8.1	0.54	0.26 J 0.21 J 0.19 J 0.19	2,3,7,8-TCDD-37Cl4	0.20	55
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	4.3 ND 12		0.21 J 0.29 0.21	Total 2,3,7,8-TCDD Equivalence: 1.9 ng/Kg (Lower-bound - Using 2005	WHO Factor	s)
1,2,3,4,6,7,8-HpCDD Total HpCDD	23 60	100 TO 10	0.14 0.14			
OCDF OCDD	18 300		0.49 0.32			


Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

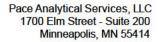
Client - Pace Analytical National

Pace Analytical

Total Amount Extracted 10.4 g Matrix Solid Moisture 4.4 Dilution NA

Dry Weight Extracted 9.93 g Collected 04/05/2023 11:05 ICAL ID F230426 Received 04/12/2023 08:50 CCal Filename(s) F230503A 12 Extracted 04/19/2023 14:30 05/03/2023 18:17 Method Blank ID BLANK-105368 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.20 0.20	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	63 57 63
2,3,7,8-TCDD Total TCDD	0.31 0.31		0.24 J 0.24 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	67 67 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.30		0.17 0.11 0.11 J	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 82 79 64 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.15 0.15	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	85 68 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND	0.36	0.19 0.18 PJ 0.17 0.15	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	73 57 NA
1,2,3,7,8,9-HxCDF Total HxCDF	1.0		0.15 0.15 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.39 0.20 3.9		0.21 0.19 J 0.17 J 0.17 J	2,3,7,8-TCDD-37Cl4	0.20	60
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2.0 ND 6.1		0.24 J 0.32 0.24	Total 2,3,7,8-TCDD Equivalence: 0.61 ng/Kg (Lower-bound - Using 2005	WHO Facto	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	13 32		0.31 0.31			
OCDF OCDD	8.6 160		0.30 J 0.66			


Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID Lab Sample ID Filename

Pace Analytical

Injected By Total Amount Extracted % Moisture

Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID SU-07A-0.5-1.0_0423 10649075019 F230503B_08

10.3 g 3.7 9.96 g F230426 F230503A_12 BLANK-105368

SMT

Matrix Solid
Dilution NA
Collected 04/05

 Collected
 04/05/2023
 11:35

 Received
 04/12/2023
 08:50

 Extracted
 04/19/2023
 14:30

 Analyzed
 05/03/2023
 19:01

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.94 19	_	0.33 J 0.33	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 62 70
2,3,7,8-TCDD Total TCDD	12	0.99	0.22 J 0.22	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	73 74 66
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.76 1.5 17		0.45 J 0.31 J 0.31	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 75 67 66
1,2,3,7,8-PeCDD Total PeCDD	13	1.2	0.36 U 0.36	1,2,3,4,7,0-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	86 64 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.9	2.9 0.75	0.30 J 0.28 PJ 0.24 J 0.23 JJ	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	73 69
1,2,3,7,8,9-HxCDF Total HxCDF	41		0.23	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.6 53	2.1 5.2 	0.36 J 0.38 I 0.35 J 0.35	2,3,7,8-TCDD-37Cl4	0.20	66
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	35 2.0 120		0.47 1.1 J 0.47	Total 2,3,7,8-TCDD Equivalence: 7.7 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	190 470		0.29 0.29			
OCDF OCDD	110 1900		0.39 0.42			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration
EDL = Estimated Detection Limit

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Isotope ratio out of specification

1700 Elm Street - Suite 200 Minneapolis, MN 55414 Tel: 612-607-1700

Fax: 612-607-6444

Method 1613B Sample Analysis Results

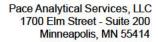
Client - Pace Analytical National

Client's Sample ID SU-07A-1.0-1.5 0423 Lab Sample ID 10649075020 Filename F230503B_09

Pace Analytical

Injected By SMT **Total Amount Extracted** 10.2 g Solid Matrix % Moisture Dilution NA 4.1

04/05/2023 11:40 Dry Weight Extracted 9.83 g Collected ICAL ID F230426 Received 04/12/2023 08:50 CCal Filename(s) F230503A 12 Extracted 04/19/2023 14:30 BLANK-105368 05/03/2023 19:44 Method Blank ID Analyzed


Native Isomers	Conc ng/Kg	eMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 2.1		0.28 0.28	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 67 88
2,3,7,8-TCDD Total TCDD	1.3	0.30	0.27 J 0.27	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	88 94 84
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.28 0.91		0.28 0.18 J 0.18 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	88 86 72 75
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.21 0.21	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	92 75 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.45 0.63	0.36	0.15 J 0.14 J 0.13 JJ	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	78 57
1,2,3,7,8,9-HxCDF Total HxCDF	0.34 7.2		0.18 J 0.13	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.1 0.58 9.8	0.43	0.27 J 0.31 J 0.20 J 0.20	2,3,7,8-TCDD-37Cl4	0.20	65
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	6.3 0.60 21		0.23 0.48 J 0.23	Total 2,3,7,8-TCDD Equivalence: 1.3 ng/Kg (Lower-bound - Using 2005	WHO Factor	s)
1,2,3,4,6,7,8-HpCDD Total HpCDD	37 84		0.22 0.22			
OCDF OCDD	23 390		0.42 0.42			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID SU-07B-0.5-1.0-0423
Lab Sample ID 10649075021
Filename F230503B_10
Injected By SMT

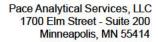
<u> Pace Analytical</u>

Total Amount Extracted 10.3 g Matrix Solid
% Moisture 3.8 Dilution NA
Dry Weight Extracted 9.94 g

Dry Weight Extracted 9.94 g Collected 04/05/2023 12:00 ICAL ID F230426 Received 04/12/2023 08:50 CCal Filename(s) F230503A 12 Extracted 04/19/2023 14:30 Method Blank ID 05/03/2023 20:27 BLANK-105368 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 6.5		0.59 0.59	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 68 83
2,3,7,8-TCDD Total TCDD	ND 4.4		0.48 0.48	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	81 78 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.81 8.4		0.57 0.26 J 0.26	1,2,3,4,7,8-11XCDT-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	80 72 69 71
1,2,3,7,8-PeCDD Total PeCDD	0.80 9.2		0.22 J 0.22	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	83 69 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.8 1.8	3.0	0.099 J 0.13 PJ 0.079 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	75 60
1,2,3,7,8,9-HxCDF Total HxCDF	31	0.65	0.22 JJ 0.079	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	4.6 3.3 45	1.6	0.43 J 0.49 J 0.45 J 0.43	2,3,7,8-TCDD-37Cl4	0.20	67
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	28 1.6 88		0.44 0.67 J 0.44	Total 2,3,7,8-TCDD Equivalence: 4.9 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	140 330		0.26 0.26			
OCDF OCDD	84 1400		0.51 0.48			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).


ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID SU-07B-1.0-1.5-0423
Lab Sample ID 10649075022
Filename F230503B_11
Injected By SMT

<u> Pace Analytical</u>

Total Amount Extracted 10.6 g Matrix Solid % Moisture 4.2 Dilution NA

Dry Weight Extracted 10.1 g Collected 04/05/2023 12:05 ICAL ID F230426 Received 04/12/2023 08:50 CCal Filename(s) F230503A 12 Extracted 04/19/2023 14:30 Method Blank ID BLANK-105368 Analyzed 05/03/2023 21:11

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.81	_	0.51 0.51 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	60 50 64
2,3,7,8-TCDD Total TCDD	ND 0.77	100 T 100 T	0.46 0.46 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	71 69 93
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.26 1.2		0.38 0.24 J 0.24 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	103 89 58 82
1,2,3,7,8-PeCDD Total PeCDD	ND ND	-	0.27 0.27	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	109 88 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 ND	0.29 0.65 	0.25 JJ 0.24 JJ 0.28	1,2,3,4,6,7,8-HpCDD-13C 0CDD-13C	2.00 4.00	88 65
1,2,3,7,8,9-HxCDF Total HxCDF	ND 3.0		0.43 0.24 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.2 0.85 10	0.49 	0.44 J 0.42 J 0.28 J 0.28	2,3,7,8-TCDD-37Cl4	0.20	48
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	7.4 ND 23		0.43 0.78 0.43	Total 2,3,7,8-TCDD Equivalence: 1.0 ng/Kg (Lower-bound - Using 2005 \	NHO Factor	s)
1,2,3,4,6,7,8-HpCDD Total HpCDD	39 82	000 1 00 000 000 00 000	0.18 0.18			
OCDF OCDD	25 380	100 - 100 E	0.85 0.56			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

1700 Elm Street - Suite 200 Minneapolis, MN 55414 Tel: 612-607-1700

Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID DU-11A-1.0-1.5 0423 Lab Sample ID 10649075023

Filename F230503B_12

<u> Pace Analytical</u>

Injected By SMT **Total Amount Extracted** Solid 10.6 g Matrix % Moisture 4.5 Dilution NA

10.1 g Dry Weight Extracted Collected 04/05/2023 14:05 ICAL ID F230426 Received 04/12/2023 08:50 CCal Filename(s) F230503A 12 Extracted 04/19/2023 14:30 Method Blank ID BLANK-105368 05/03/2023 21:54 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.28 0.28	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	65 60 78
2,3,7,8-TCDD Total TCDD	3.7 3.7	-	0.39 0.39	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	81 83 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.71		0.31 0.23 0.23 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	79 79 79 72 73
1,2,3,7,8-PeCDD Total PeCDD	ND 0.73	-	0.22 0.22 J	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	85 73 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	 ND	0.56 0.83	0.26 JJ 0.23 PJ 0.31	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	80 60
1,2,3,7,8,9-HxCDF Total HxCDF	6.3	0.28	0.24 JJ 0.23	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.2 0.85 10	0.34	0.29 J 0.27 J 0.24 J 0.24	2,3,7,8-TCDD-37Cl4	0.20	63
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	5.7 ND 18		0.53 0.49 0.49	Total 2,3,7,8-TCDD Equivalence: 4.7 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	37 87		0.42 0.42			
OCDF OCDD	20 450		0.52 0.46			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID DU-11A-1.5-2.0 0423 Lab Sample ID 10649075024 Filename F230503B_13 Injected By SMT

<u> Pace Analytical</u>

Total Amount Extracted Solid 10.5 g Matrix % Moisture 4.2 Dilution NA

Dry Weight Extracted 10.0 g Collected 04/05/2023 14:10 ICAL ID F230426 Received 04/12/2023 08:50 CCal Filename(s) F230503A 12 Extracted 04/19/2023 14:30 Method Blank ID BLANK-105368 05/03/2023 22:38 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.59 0.59	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	55 52 52
2,3,7,8-TCDD Total TCDD	2.9 4.1		0.46 0.46	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	54 56 67
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 1.6 6.2		0.52 0.26 J 0.26	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 66 59
1,2,3,7,8-PeCDD Total PeCDD	0.48 2.4		0.26 J 0.26 J	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	59 75 66 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	5.7	2.6 1.5	0.64 0.66 PJ 0.25 JJ	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	71 55
1,2,3,7,8,9-HxCDF Total HxCDF	1.2 51		0.62 J 0.25	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.86 2.6 1.4 15	=	0.59 J 0.54 J 0.41 J 0.41	2,3,7,8-TCDD-37Cl4	0.20	52
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	24 2.4 84		0.40 0.59 J 0.40	Total 2,3,7,8-TCDD Equivalence: 6.7 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	79 170	-	0.31 0.31			
OCDF OCDD	59 830		0.59 0.77			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Isotope ratio out of specification

1700 Elm Street - Suite 200 Minneapolis, MN 55414 Tel: 612-607-1700

Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID DU-11B-1.0-1.5 0423 Lab Sample ID 10649075025 Filename F230503B_14 Injected By SMT

<u> Pace Analytical</u>

Total Amount Extracted 10.4 g Solid Matrix % Moisture 4.4 Dilution NA

04/05/2023 14:30 Dry Weight Extracted 9.91 g Collected ICAL ID F230426 Received 04/12/2023 08:50 CCal Filename(s) F230503A 12 Extracted 04/19/2023 14:30 Method Blank ID BLANK-105368 Analyzed 05/03/2023 23:21

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.47 0.47	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	62 61 65
2,3,7,8-TCDD Total TCDD	ND 0.38		0.31 0.31 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	68 71 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.42 1.7	_	0.44 0.24 J 0.24 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	72 71 66 64
1,2,3,7,8-PeCDD Total PeCDD	ND ND	-	0.26 0.26	1,2,3,4,7,8-11XCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	78 66 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.5 0.79	0.34	0.35 J 0.36 J 0.29 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	72 57
1,2,3,7,8,9-HxCDF Total HxCDF	ND 13		0.28 0.28	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 3.4	0.70 0.45	0.38 0.35 JJ 0.29 JJ	2,3,7,8-TCDD-37Cl4	0.20	60
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	7.4 ND 23		0.52 0.59 0.52	Total 2,3,7,8-TCDD Equivalence: 0.94 ng/Kg (Lower-bound - Using 2005	WHO Factor	s)
1,2,3,4,6,7,8-HpCDD Total HpCDD	27 63		0.32 0.32			
OCDF OCDD	16 300		0.66 0.59			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Tel: 612-607-1700

Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID DU-11B-1.5-2.0 0423 Lab Sample ID 10649075026 Filename F230503B_15

Injected By SMT **Total Amount Extracted** 10.4 g

<u> Pace Analytical</u>

Solid Matrix % Moisture 4.7 Dilution NA Dry Weight Extracted 9.95 g Collected 04/05/2023 14:35 F230426 Received

ICAL ID 04/12/2023 08:50 CCal Filename(s) F230503A 12 Extracted 04/19/2023 14:30 Method Blank ID 05/04/2023 00:05 BLANK-105368 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.21 0.21	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	71 70 74
2,3,7,8-TCDD Total TCDD	ND	0.18	0.15 J 0.15	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	75 81 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.51		0.25 0.17 0.17 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 76 70 72
1,2,3,7,8-PeCDD Total PeCDD	ND ND	-	0.19 0.19	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	82 69 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.46 ND	0.37	0.19 J 0.21 PJ 0.19	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	74 54
1,2,3,7,8,9-HxCDF Total HxCDF	ND 3.9		0.26 0.19 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.44 0.39 2.2	=	0.40 0.41 J 0.34 J 0.34 J	2,3,7,8-TCDD-37Cl4	0.20	66
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2.8 ND 2.8		0.26 J 0.38 0.26 J	Total 2,3,7,8-TCDD Equivalence: 0.58 ng/Kg (Lower-bound - Using 2005	WHO Factor	s)
1,2,3,4,6,7,8-HpCDD Total HpCDD	15 34		0.37 0.37			
OCDF OCDD	7.4 160		0.41 J 0.26			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

P = PCDE Interference

I = Isotope ratio out of specification

Minneapolis, MN 55414 Tel: 612-607-1700

Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - Pace Analytical National

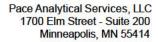
Client's Sample ID DU-10A-1.0-1.5 0423 Lab Sample ID 10649075027 Filename U230505A_13 Injected By AH5

<u> Pace Analytical</u>

Total Amount Extracted Solid 10.5 g Matrix % Moisture 3.8 Dilution NA

Dry Weight Extracted Collected 04/05/2023 09:30 10.1 g ICAL ID U230503 Received 04/12/2023 08:50 CCal Filename(s) U230505A 02 Extracted 04/19/2023 14:30 Method Blank ID BLANK-105368 Analyzed 05/05/2023 17:50

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.46		0.12 0.12 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 72 83
2,3,7,8-TCDD Total TCDD	2.7 4.5		0.36 0.36	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	85 94 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 2.3		0.13 0.082 0.082 J	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	74 69 70 74
1,2,3,7,8-PeCDD Total PeCDD	0.43 4.0		0.12 J 0.12 J	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	75 73 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.2 0.23	0.56	0.21 J 0.19 J 0.22 JJ	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	90 73
1,2,3,7,8,9-HxCDF Total HxCDF	ND 18		0.25 0.19	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.90 2.5 1.7 27	=	0.28 J 0.40 J 0.36 J 0.28	2,3,7,8-TCDD-37Cl4	0.20	70
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.4 48	26 	0.31 P 0.42 J 0.31	Total 2,3,7,8-TCDD Equivalence: 5.0 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	71 170	-	0.45 0.45			
OCDF OCDD	79 740		0.35 0.41			


Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

P = PCDE Interference

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID Lab Sample ID Filename

DU-10A-1.5-2.0 0423 10649075028 U230505A_14 Injected By AH5 **Total Amount Extracted** 10.3 g

<u> Pace Analytical</u>

% Moisture Dry Weight Extracted ICAL ID CCal Filename(s)

Method Blank ID

3.9 9.92 g U230503 U230505A 02 BLANK-105368

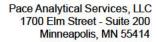
Solid Matrix Dilution NA

Collected 04/05/2023 09:35 Received 04/12/2023 08:50 Extracted 04/19/2023 14:30 Analyzed 05/05/2023 18:36

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 0.35	_	0.20 0.20 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	77 78 88
2,3,7,8-TCDD Total TCDD	1.1 1.9	201 1 2 3 2 4 201 1 3 3 4	0.25 0.25	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	90 99 87
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.081 0.056 0.056	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	86 84 77 84
1,2,3,7,8-PeCDD Total PeCDD	0.62	0.17	0.060 J 0.060 J	1,2,3,4,7,8-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	93 85 83
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.35 0.30 ND	0.31	0.13 JJ 0.17 J 0.11 J 0.13	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	100 77 NA
1,2,3,7,8,9-HxCDF Total HxCDF	6.1		0.13	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 0.62 8.9	0.48	0.23 J 0.17 J 0.20 J 0.17	2,3,7,8-TCDD-37Cl4	0.20	73
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 13	9.7	0.24 P 0.33 0.24	Total 2,3,7,8-TCDD Equivalence: 2.0 ng/Kg (Lower-bound - Using 2005	WHO Facto	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	29 65	17. 19.00 17. 19.00	0.25 0.25			
OCDF OCDD	23 340	907 (1959) 100 (1959)	0.36 0.42			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable NC = Not Calculated


Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Isotope ratio out of specification

EDL = Estimated Detection Limit

Pace Analytical[™]

Method 1613B Sample Analysis Results

Client - Pace Analytical National

Total Amount Extracted 10.6 g Matrix Solid % Moisture 3.8 Dilution NA Dry Weight Extracted 10.2 g Collected 04/05

 Dry Weight Extracted
 10.2 g
 Collected
 04/05/2023 16:00

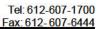
 ICAL ID
 U230503
 Received
 04/12/2023 08:50

 CCal Filename(s)
 U230505A_02
 Extracted
 04/19/2023 14:30

 Method Blank ID
 BLANK-105368
 Analyzed
 05/05/2023 19:23

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.24 0.24	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	76 76 88
2,3,7,8-TCDD Total TCDD	0.43 0.43		0.26 J 0.26 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	90 102 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.90		0.28 0.20 0.20 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	83 81 75 83
1,2,3,7,8-PeCDD Total PeCDD	ND 1.4		0.080 0.080 J	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	88 82 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.17 0.17 0.15	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	98 74
1,2,3,7,8,9-HxCDF Total HxCDF	ND 1.7	-	0.18 0.15 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.23 0.44 5.0	0.20	0.13 J 0.12 J 0.11 N 0.11	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 5.4	6.1	0.29 P 0.25 0.25	Total 2,3,7,8-TCDD Equivalence: 0.75 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	12 29		0.19 0.19			
OCDF OCDD	11 160	12.13.14	0.41 0.57			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).


ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

P = PCDE Interference

I = Isotope ratio out of specification

Method 1613B Blank Analysis Results

Lab Sample Name Lab Sample ID Filename **Total Amount Extracted**

Pace Analytical

ICAL ID

CCal Filename(s)

DFBLKJJ BLANK-105366 L230422A_07 10.4 g L230302

L230421A_19

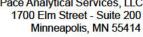
Matrix Solid Dilution NA

Extracted 04/19/2023 14:30 Analyzed 04/22/2023 04:52

Injected By **JRH**

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.11 0.11	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 49 89
2,3,7,8-TCDD Total TCDD	ND 0.23		0.22 0.22 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	89 93 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.065 0.048 0.048	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	79 80 68 70
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.098 0.098	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	78 66 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND 0.15		0.066 0.057 0.058 0.11 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	71 51 NA
Total HxCDF	0.15		0.057 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.11 0.10 0.093 0.093	2,3,7,8-TCDD-37Cl4	0.20	48
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.095 0.14 0.095	Total 2,3,7,8-TCDD Equivalence: 0.015 ng/Kg (Lower-bound - Using 2005	WHO Facto	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND 0.25		0.14 0.14 J			
OCDF OCDD	ND 	0.46	0.27 0.40 JJ			_

Conc = Concentration (Totals include 2, 3, 7, 8-substituted isomers).


EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Method 1613B Blank Analysis Results

Lab Sample Name Lab Sample ID Filename **Total Amount Extracted**

Pace Analytical

ICAL ID

CCal Filename(s)

DFBLKJK BLANK-105368 F230501A_09 20.4 g F230426

F230501A_01

Matrix Solid Dilution NA

Extracted 04/19/2023 14:30 05/01/2023 13:56 Analyzed Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.077 0.077	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 65 70
2,3,7,8-TCDD Total TCDD	ND ND		0.10 0.10	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	71 78 92
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	_	0.080 0.053 0.053	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	93 85 76 77
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.048 0.048	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	97 74 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.088 0.11 0.10	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	79 66
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.14 0.088	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.10 0.10 0.090 0.090	2,3,7,8-TCDD-37Cl4	0.20	57
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.15 0.19 0.15	Total 2,3,7,8-TCDD Equivalence: 0.0090 ng/Kg (Lower-bound - Using 2005	WHO Factors	s)
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.68 1.4		0.18 J 0.18 J			
OCDF OCDD	6.9	0.32	0.25 JJ 0.31			

Conc = Concentration (Totals include 2, 3, 7, 8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Solid

NA

Fax: 612-607-6444

Method 1613B Laboratory Control Spike Results

Matrix

Dilution

 Lab Sample ID
 LCS-105367

 Filename
 L230422A_02

 Total Amount Extracted
 10.2 g

 ICAL ID
 L230302

 ICAL ID
 L230302
 Extracted
 04/19/2023 14:30

 CCal Filename
 L230421A_19
 Analyzed
 04/22/2023 01:09

Method Blank ID BLANK-105366 Injected By JRH

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 0CDF 0CDD	10 10 50 50 50 50 50 50 50 50 50 50 50	10 10 51 51 46 52 54 53 53 55 51 54 49 50 46 110 120	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0	103 104 101 102 93 104 107 105 107 110 102 108 99 100 91 107
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C 0CDD-13C	10 100 100 100 100 100 100 100 100 100	4.0 63 39 82 82 93 73 68 68 59 62 70 63 59 68 96	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	40 63 39 82 82 93 73 68 68 59 62 70 63 59 68 48

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{*=}SeeDiscussion

Method 1613B Laboratory Control Spike Results

 Lab Sample ID
 LCS-105369

 Filename
 F230501A_10

 Total Amount Extracted
 20.5 g

 ICAL ID
 F230426

CCal Filename F230501A_01
Method Blank ID BLANK-105368

Matrix Solid Dilution NA

Extracted 04/19/2023 14:30 Analyzed 05/01/2023 14:40

Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 0CDF 0CDD	10 10 50 50 50 50 50 50 50 50 50 50 50 50 50	11 11 49 52 48 56 53 56 56 56 53 52 54 54 50 110 130	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 69.0 70.0 170.0	107 112 98 105 97 112 105 113 112 113 105 103 109 108 101 112 127
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDD-13C 1,2,3,7,8-PCDD-13C 1,2,3,7,8-PeCDF-13C 1,2,3,4,7,8-PeCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	10 100 100 100 100 100 100 100 100 100	5.7 61 57 66 68 72 81 87 63 61 73 91 72 65 76 120	3.1 22.0 20.0 21.0 13.0 21.0 21.0 22.0 17.0 21.0 25.0 21.0 26.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	57 61 57 66 68 72 81 87 63 61 73 91 72 65 76 60

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{*=}SeeDiscussion

Method 1613B Spiked Sample Report

Client - Pace Analytical National

Client's Sample ID

Lab Sample ID Filename

Total Amount Extracted ICAL ID

<u> Pace Analytical</u>

CCal Filename(s) Method Blank ID

DU-15A-1.0-1.5_0423-MS

10649075015-MS

F230504A_07 10.4 g F230426

F230504A_01 BLANK-105368

Solid Matrix Dilution NA

Extracted 04/19/2023 14:30 Analyzed 05/04/2023 05:09

Injected By SMT

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.21	104	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	64 62 60
2,3,7,8-TCDD Total TCDD	0.20	0.24	115	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	65 68 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.00 1.00	1.05 1.04	105 104	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	79 79 79 74 71
1,2,3,7,8-PeCDD Total PeCDD	1.00	0.96	96	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00	85 69 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.08 1.10 1.05	107 110 105	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	75 48
1,2,3,7,8,9-HxCDF Total HxCDF	1.00	1.01	101	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 1.00 1.00	1.10 1.02 1.04	109 100 103	2,3,7,8-TCDD-37Cl4	0.20	61
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.00 1.00	1.15 0.97	115 97			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00	1.31	96			
OCDF OCDD	2.00 2.00	2.32 6.62	106 132			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Method 1613B Spiked Sample Report

Client - Pace Analytical National

Client's Sample ID Lab Sample ID Filename

Total Amount Extracted

ICAL ID CCal Filename(s) Method Blank ID DU-15A-1.0-1.5_0423-MSD

10649075015-MSD F230504A_08

10.5 g F230426 F230504A_01 BLANK-105368 Matrix Solid Dilution NA

Extracted 04/19/2023 14:30 Analyzed 05/04/2023 05:52 Injected By SMT

Wethod Diarik ID	DL	-1111-105500		injected by OMI		
Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.21	107	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	63 62 61
2,3,7,8-TCDD Total TCDD	0.20	0.23	111	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	64 65 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.00 1.00	0.98 1.03	98 103	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	70 70 67 66
1,2,3,7,8-PeCDD Total PeCDD	1.00	0.97	97	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	76 66 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.03 1.07 1.05	103 107 105	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	70 49
1,2,3,7,8,9-HxCDF Total HxCDF	1.00	1.04	103	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 1.00 1.00	1.05 1.02 1.10	105 101 109	2,3,7,8-TCDD-37Cl4	0.20	60
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.00 1.00	1.12 1.02	112 102			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00	1.32	97			
OCDF OCDD	2.00 2.00	2.34 6.93	107 144			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

Method 1613 Spike Sample Results

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700

Pace Analytical Services, LLC

Fax: 612.607.6444

Client - Pace Analytical National

Client Sample ID Lab Sample ID MS ID MSD ID

DU-15A-1.0-1.5_0423 10649075015 10649075015-MS 10649075015-MSD

Sample Filename U230505A_12 F230504A 07 MS Filename MSD Filename F230504A_08

	Quantity	Unspiked Sam	ple Contribution	Quantity Measured			Subtracte	d Recovery
	Spiked	to MS	to MSD	MS	MSD		MS	MSD
Analyte	(ng)	(ng)	(ng)	(ng)	(ng)	RPD	(%)	(%)
2,3,7,8-TCDF	0.20	ND	ND	0.21	0.21	3.4	104	107
2,3,7,8-TCDD	0.20	0.00914	0.00926	0.24	0.23	3.6	115	111
1,2,3,7,8-PeCDF	1.00	ND	ND	1.05	0.98	7.3	105	98
2,3,4,7,8-PeCDF	1.00	ND	ND	1.04	1.03	1.8	104	103
1,2,3,7,8-PeCDD	1.00	0.00276	0.00280	0.96	0.97	0.4	96	97
1,2,3,4,7,8-HxCDF	1.00	0.00404	0.00410	1.08	1.03	4.5	107	103
1,2,3,6,7,8-HxCDF	1.00	0.00496	0.00502	1.10	1.07	3.4	110	107
2,3,4,6,7,8-HxCDF	1.00	0.00304	0.00308	1.05	1.05	0.3	105	105
1,2,3,7,8,9-HxCDF	1.00	0.00185	0.00188	1.01	1.04	2.5	101	103
1,2,3,4,7,8-HxCDD	1.00	0.00631	0.00639	1.10	1.05	4.5	109	105
1,2,3,6,7,8-HxCDD	1.00	0.0163	0.0165	1.02	1.02	0.5	100	101
1,2,3,7,8,9-HxCDD	1.00	0.0101	0.0102	1.04	1.10	6.2	103	109
1,2,3,4,6,7,8-HpCDF	1.00	0.0921	0.0934	1.15	1.12	2.4	115	112
1,2,3,4,7,8,9-HpCDF	1.00	ND	ND	0.97	1.02	4.3	97	102
1,2,3,4,6,7,8-HpCDD	1.00	0.352	0.356	1.31	1.32	0.6	96	97
OCDF	2.00	0.201	0.204	2.32	2.34	0.7	106	107
OCDD	2.00	3.99	4.04	6.62	6.93	4.5	132	144

Stage 2A/B Data Validation Checks JH Baxter Delivery Group L1603081/10649075

Comments:

U-qualified samples assigned by the laboratory are not included in this report unless the U
qualification is for some other reason other than a simple non-detect.

SUMMARY OF QUALITY CONTROL CHECKS

Quality Control Check	Check ed By	Comment			
Completeness	MBF	The data set is 100 percent complete, no results rejected.			
Holding times	MBF	Holding times were within the method specific recommended holding times.			
Preservation	MBF	Preservation was acceptable.			
COC Documentation	MBF	COC was provided in the lab report.			
Analytical methods	MBF	EPA 1613B			
		Requested analytical methods were performed.			
Initial and continuing calibrations	MBF	Not independently verified during Stage 2A/B validation.			
Method blanks, trip blank, and field blanks	MBF	Method blanks were performed per batch and there were no detections and associated QC were within established control limits except for:			
		• Blank-105366			
		o Total TCDD 0.23 J			
		o 1,2,3,7,8,9-HxCDF 0.15 J			
		■ DU-10B-1.0-1.5_0423 0.39 J+			
		o Total HxCDF 0.15 J			
		o Total HpCDD 0.25 J			
		o OCDD 0.46 J+			
		• Blank-105368			
		o 1,2,3,4,6,7,8-HpCDD 0.68 J			
		o Total HpCDD 1.4 J			
		o OCDF 0.32 J+			
		o OCDD 6.9			
		Associated sample results were greater than 3X method blank contamination. Only 1 result qualified J+.			
		Equipment Blank (EB-01_0423)			
		o Total HxCDF 3.3 J			
		o 1,2,3,4,7,8-HxCDD 1.6 J+			
		o 1,2,3,4,6,7,8-HpCDD 5.9 J			
		o Total HpCDD 5.9 J			
		o OCDD 30 J			
		Raw results not reviewed during 2A/B. Equipment blank results (pg/L) and sample results (ng/kg) not directly comparable. Results not qualified.			

Quality Control Check	Check ed By	Comment
Surrogate/labeled compounds	MBF	Labeled compounds were analyzed and within control limits except for:
		• 2,3,7,8-TCDD-37C14 (Cleanup Recovery STD)
		o DU-110A-1.0-1.5_0423 33%
		Unless additional qualifications were necessary, all associated sample analytes qualified J due to low CRS recovery.
LCS/LCSD	MBF	An LCS was analyzed per batch. Recoveries were within established control limits.
MS/MSD	MBF	MS/MSD on non-SDG samples were performed. Results were within control limits. Non-SDG sample results not used for SDG sample qualification.
Field duplicates	MBF	Field duplicates were collected and analyzed:
		• Primary: DU-10A-1.0-1.5_0423
		 Duplicate: DU-110A-1.0-1.5_0423
		Results were within 50% solid organic RPD limit except for:
		Total HpCDF
		o 64% RPD
		Total TCDD
		 Absolute difference of 3.9 > 2X RL (1.96)
		Results qualified J/UJ.
Lab duplicates	MBF	Lab sample duplicates were not performed or required per the method.
Dilution	MBF	Samples did not require further dilution for analysis.
Qualitative Identification for HRGC/HRMS analyses only	MBF	Due to the number of EMPC results (106), see Table 1 for sample result qualification breakdown.
		EMPC results either had the presence of diphenyl ethers or the isotope ratio was out of specification. EMPC results qualified J+.
Overall Assessment		Qualifier codes added to results; table and notes below.

Notes

TABLE 1. SUMMARY OF QUALIFIED DATA

Sample ID	Analyte	Result (ng/kg)	Qualifier Assigned	Reason for Qualification
	1,2,3,6,7,8-HxCDD	0.78		
	1,2,3,6,7,8-HxCDF	0.53		Below reporting limit
	1,2,3,7,8-PeCDD	0.26	J	
DI 014 07 10 0422	2,3,4,6,7,8-HxCDF	0.2		
DU-01A-0.5-1.0_0423	Total HxCDD	4.6		
	Total HxCDF	4.2		
	Total PeCDD	2.2		
	Total PeCDF	2.3		

DU-01A-0.5-1.0_0423	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,7,8,9-HxCDD	0.49 0.15 0.77	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-01A-0.5-1.0_0423	1,2,3,4,6,7,8-HpCDF	6.6	J+	EMPC, Presence of PCDEs
DU-01A-1.0-1.5_0423	1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD OCDF Total HpCDF Total HxCDD Total HxCDF Total PeCDF	0.38 0.27 3.8 2.8 3 0.95 0.45	J	Below reporting limit
DU-01A-1.0-1.5_0423	1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDF	0.19 0.23	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-01A-1.0-1.5_0423	1,2,3,4,6,7,8-HpCDF	2.6	J+	EMPC, Presence of PCDEs, Below reporting limit
DU-01B-0.5-1.0_0423	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF Total TCDF Total PeCDD	0.91 2.3 0.56 0.93 0.65 0.94 4.5	J	Below reporting limit
DU-01B-0.5-1.0_0423	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF	0.6 0.83 1.4 0.43	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-01B-0.5-1.0_0423	1,2,3,4,6,7,8-HpCDF	17	J+	EMPC, Presence of PCDEs
DU-01B-0.5-1.0_0423	1,2,3,6,7,8-HxCDF	0.80	J+	EMPC, Presence of PCDEs, Below reporting limit
DU-01B-1.0-1.5_0423	2,3,7,8-Tcdd 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD Total HxCDF Total PeCDD Total PeCDF Total TCDD	0.43 0.23 0.44 1.7 1.4 0.9	J	Below reporting limit

DU-01B-1.0-1.5_0423	1,2,3,7,8,9-HxCDD	0.11	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-01B-1.0-1.5_0423	1,2,3,4,6,7,8-HpCDF	6.1	J+	EMPC, Presence of PCDEs
DU-06A-0.5-1.0_0423	1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF Total HxCDF Total PeCDD	0.54 0.8 0.26 0.32 3.2 2.7	J	Below reporting limit
DU-06A-0.5-1.0_0423	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDF	0.5 0.3 1 0.26	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-06A-0.5-1.0_0423	1,2,3,4,6,7,8-HpCDF	12	J+	EMPC, Presence of PCDEs
DU-06A-1.0-1.5_0423	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF Total TCDF Total HxCDD Total HxCDF	0.33 0.5 0.33 0.27 3.5	J	Below reporting limit
DU-06A-1.0-1.5_0423	1,2,3,7,8,9-HxCDD	0.25	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-06A-1.0-1.5_0423	1,2,3,4,6,7,8-HpCDF	5.8	J+	EMPC, Presence of PCDEs
DU-06B-0.5-1.0_0423	2,3,7,8-Tcdd 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF Total PeCDF	0.5 0.82 1.4 0.8 2.9 2.2 0.88 0.31 0.73 3.4	J	Below reporting limit
DU-06B-0.5-1.0_0423	1,2,3,7,8,9-HxCDF 2,3,4,7,8-PeCDF	0.30, 0.28	J+	EMPC, Isotope ratio out of spec, Below reporting limit

DU-06B-0.5-1.0_0423	1,2,3,4,6,7,8-HpCDF	27	J+	EMPC, Presence of PCDEs
DU-06B-1.0-1.5_0423	1,2,3,6,7,8-HxCDD 2,3,4,6,7,8-HxCDF Total TCDF Total HxCDF Total PeCDD	0.6 0.18 0.14 1.5 1.2	J	Below reporting limit
DU-06B-1.0-1.5_0423	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF	0.41 0.14 0.23 0.49 0.17	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-06B-1.0-1.5_0423	1,2,3,4,6,7,8-HpCDF	5.1	J+	EMPC, Presence of PCDEs
DU-09A-1.0-1.5_0423	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF	4.5 2.2 4.3 3.7 0.92 0.94 2.3	J	Below reporting limit
DU-09A-1.0-1.5_0423	2,3,4,7,8-PeCDF	0.84	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-09A-1.0-1.5_0423	1,2,3,4,6,7,8-HpCDF	160	J+	EMPC, Presence of PCDEs
DU-09A-1.0-1.5_0423	1,2,3,6,7,8-HxCDF	1.2	J+	EMPC, Presence of PCDEs, Below reporting limit
DU-09A-1.5-2.0_0423	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 2,3,4,6,7,8-HxCDF Total TCDF Total PeCDF	0.81 0.64 0.87 1.3 1 0.45 0.4 2.3	J	Below reporting limit
DU-09A-1.5-2.0_0423	1,2,3,4,6,7,8-HpCDF	28	J+	EMPC, Presence of PCDEs
DU-09A-1.5-2.0_0423	1,2,3,6,7,8-HxCDF	1.2	J+	EMPC, Presence of PCDEs, Below reporting limit

DU-09B-1.0-1.5_0423	1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF	2.7 0.82 4.9 1.5	J	Below reporting limit
DU-09B-1.0-1.5_0423	1,2,3,7,8,9-HxCDF	1.4	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-09B-1.0-1.5_0423	1,2,3,4,6,7,8-HpCDF	240	J+	EMPC, Presence of PCDEs
DU-09B-1.0-1.5_0423	1,2,3,6,7,8-HxCDF	1.8	J+	EMPC, Presence of PCDEs, Below reporting limit
DU-09B-1.5-2.0_0423	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDF Total TCDF Total PeCDD Total PeCDF	1.2 1.5 3.1 0.54 0.71 3.5 0.37	J	Below reporting limit
DU-09B-1.5-2.0_0423	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF	1.2 0.39 2.1 0.64 0.74	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-09B-1.5-2.0_0423	1,2,3,4,6,7,8-HpCDF	44	J+	EMPC, Presence of PCDEs
DU-10A-1.0-1.5_0423	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8-PeCDD Total TCDF Total PeCDD	1.4 0.9 1.2 2.5 0.23 1.7 0.43 0.46 4 2.3	J	Below reporting limit
DU-10A-1.0-1.5_0423	2,3,4,6,7,8-HxCDF	0.56	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-10A-1.0-1.5_0423	1,2,3,4,6,7,8-HpCDF	26	J+	EMPC, Presence of PCDEs
DU-10A-1.0-1.5_0423	Total HpCDF Total TCDD	48 4.5	J	FD RPD 64% > 50% Limit, FD Absolute difference > 2X RL

DU-10A-1.5-2.0_0423	1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 2,3,4,6,7,8-HxCDF Total TCDF Total PeCDD	1 0.35 0.62 0.3 0.35 0.62	J	Below reporting limit
DU-10A-1.5-2.0_0423	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,7,8-PeCDD	0.48 0.31 0.17	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-10A-1.5-2.0_0423	1,2,3,4,6,7,8-HpCDF	9.7	J+	EMPC, Presence of PCDEs
DU-10B-1.0-1.5_0423	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 2,3,4,6,7,8-HxCDF Total TCDF Total PeCDD Total PeCDF	0.98 0.78 0.92 1.8 1.4 0.75 0.51 1.6 2	J	Below reporting limit
DU-10B-1.0-1.5_0423	2,3,7,8-Tcdd 1,2,3,7,8-PeCDD 2,3,4,7,8-PeCDF	0.56 0.25 0.25	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-10B-1.0-1.5_0423	1,2,3,4,6,7,8-HpCDF	32	J+	EMPC, Presence of PCDEs
DU-10B-1.0-1.5_0423	1,2,3,6,7,8-HxCDF	0.30	J+	EMPC, Presence of PCDEs, Below reporting limit
DU-10B-1.0-1.5_0423	1,2,3,7,8,9-HxCDF	0.39	J+	Result > 2X Method Blank, Result < 3X Method Blank
DU-10B-1.5-2.0_0423	2,3,7,8-Tcdd 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total PeCDD Total TCDD	0.99 0.42 1.4 1.1 0.65 0.99	Ј	Below reporting limit
DU-10B-1.5-2.0_0423	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF	0.52 0.63 0.31 0.35 0.26 0.38	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-10B-1.5-2.0_0423	1,2,3,4,6,7,8-HpCDF	19	J+	EMPC, Presence of PCDEs

DU-110A-1.0-1.5_0423	1,2,3,6,7,8-HxCDF	2.2	J+	EMPC, Presence of PCDEs, CRS < LCL, Below reporting limit
DU-110A-1.0-1.5_0423	2,3,7,8-Tcdd	1.2	J+	EMPC, Isotope ratio out of spec, CRS < LCL
DU-110A-1.0-1.5_0423	1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF	0.65 0.39 0.27 0.4	J+	EMPC, Isotope ratio out of spec, CRS < LCL, Below reporting limit
DU-110A-1.0-1.5_0423	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,7,8-PeCDF 2,3,7,8-TCDF OCDD OCDF Total TCDF Total HpCDD Total HxCDD	91 28 0.46 0.39 1100 120 1.6 250 24	1 1 1 1 1 1 1 1 1	CRS < LCL
DU-110A-1.0-1.5_0423	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 2,3,4,7,8-PeCDF Total PeCDD Total PeCDF	1.9 1.2 2.3 1.6 0.4 2.9 2.1	J	CRS < LCL, Below reporting limit
DU-110A-1.0-1.5_0423	Total HpCDF Total TCDD	93 0.6	J, UJ	FD RPD 64% > 50% Limit, FD Absolute difference > 2X RL, CRS < LCL (both analytes)
DU-11A-1.0-1.5_0423	1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total PeCDD Total PeCDF	1.2 0.85 0.73 0.71	J	Below reporting limit
DU-11A-1.0-1.5_0423	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,7,8,9-HxCDF	0.34 0.56 0.28	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-11A-1.0-1.5_0423	1,2,3,6,7,8-HxCDF	0.83	J+	EMPC, Presence of PCDEs, Below reporting limit
DU-11A-1.5-2.0_0423	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD 2,3,4,7,8-PeCDF Total PeCDD	2.4 0.86 2.6 1.4 1.2 0.48 1.6 2.4	J	Below reporting limit

DU-11A-1.5-2.0_0423	2,3,4,6,7,8-HxCDF	1.5	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-11A-1.5-2.0_0423	1,2,3,6,7,8-HxCDF	2.6	J+	EMPC, Presence of PCDEs, Below reporting limit
DU-11B-1.0-1.5_0423	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,7,8-PeCDF Total HxCDD Total PeCDF Total TCDD	1.5 0.79 0.42 3.4 1.7 0.38	J	Below reporting limit
DU-11B-1.0-1.5_0423	1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 2,3,4,6,7,8-HxCDF	0.7 0.45 0.34	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-11B-1.5-2.0_0423	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD OCDF Total HpCDF Total HxCDD Total HxCDF Total PeCDF	2.8 0.46 0.44 0.39 7.4 2.8 2.2 3.9 0.51	J	Below reporting limit
DU-11B-1.5-2.0_0423	2,3,7,8-Tcdd	0.18	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-11B-1.5-2.0_0423	1,2,3,6,7,8-HxCDF	0.37	J+	EMPC, Presence of PCDEs, Below reporting limit
DU-15A-1.0-1.5_0423	2,3,7,8-Tcdd 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF Total PeCDD Total PeCDF	0.92 0.63 0.4 1.6 1 0.19 0.3 2.1 1.6	J	Below reporting limit
DU-15A-1.0-1.5_0423	1,2,3,7,8-PeCDD	0.22	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-15A-1.0-1.5_0423	1,2,3,4,6,7,8-HpCDF	9.2	J+	EMPC, Presence of PCDEs
DU-15A-1.0-1.5_0423	1,2,3,6,7,8-HxCDF	0.50	J+	EMPC, Presence of PCDEs, Below reporting limit

DU-15A-1.5-2.0_0423	2,3,7,8-Tcdd 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,7,8-PeCDD Total TCDF Total HxCDF Total PeCDD Total TCDD	0.83 0.54 0.34 0.14 0.21 4.3 1.5 0.83	J	Below reporting limit
DU-15A-1.5-2.0_0423	1,2,3,4,7,8,9-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	0.34 0.83 0.71	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-15A-1.5-2.0_0423	1,2,3,4,6,7,8-HpCDF	6.6	J+	EMPC, Presence of PCDEs
DU-15A-1.5-2.0_0423	1,2,3,6,7,8-HxCDF	0.47	J+	EMPC, Presence of PCDEs, Below reporting limit
DU-15B-1.0-1.5_0423	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF Total HxCDF Total PeCDD	4.3 0.52 0.83 0.53 0.27 3 0.6	J	Below reporting limit
DU-15B-1.0-1.5_0423	1,2,3,4,7,8-HxCDF 1,2,3,7,8,9-HxCDD	0.14 0.54	J+	EMPC, Isotope ratio out of spec, Below reporting limit
DU-15B-1.5-2.0_0423	2,3,7,8-Tcdd 1,2,3,4,6,7,8-HpCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD OCDF Total HxCDD Total HxCDF Total PeCDF Total TCDD	0.31 2 0.39 0.2 8.6 3.9 1 0.3 0.31	J	Below reporting limit
DU-15B-1.5-2.0_0423	1,2,3,6,7,8-HxCDF	0.36	J+	EMPC, Presence of PCDEs, Below reporting limit
SU-07A-0.5-1.0_0423	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8-PeCDF 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDF	2 2.9 3.6 0.76 2.2 1.5 0.94	J	Below reporting limit
SU-07A-0.5-1.0_0423	1,2,3,6,7,8-HxCDD	5.2	J+	EMPC, Isotope ratio out of spec

SU-07A-0.5-1.0_0423	2,3,7,8-Tcdd 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8-PeCDD	0.99 2.1 0.75 1.2	J+	EMPC, Isotope ratio out of spec, Below reporting limit
SU-07A-0.5-1.0_0423	1,2,3,6,7,8-HxCDF	2.9	J+	EMPC, Presence of PCDEs, Below reporting limit
SU-07A-1.0-1.5_0423	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 2,3,4,7,8-PeCDF Total PeCDF	0.6 0.45 1.1 0.63 0.58 0.34 0.28 0.91	J	Below reporting limit
SU-07A-1.0-1.5_0423	2,3,7,8-Tcdd 1,2,3,4,7,8-HxCDD 2,3,4,6,7,8-HxCDF	0.3 0.43 0.36	J+	EMPC, Isotope ratio out of spec, Below reporting limit
SU-07B-0.5-1.0-0423	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF	1.6 1.8 4.6 3.3 0.8 1.8	J	Below reporting limit
SU-07B-0.5-1.0-0423	1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDF	1.6, 0.65	J+	EMPC, Isotope ratio out of spec, Below reporting limit
SU-07B-0.5-1.0-0423	1,2,3,6,7,8-HxCDF	3.0	J+	EMPC, Presence of PCDEs, Below reporting limit
SU-07B-1.0-1.5-0423	1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 2,3,4,7,8-PeCDF Total TCDF Total HxCDF Total PeCDF Total TCDD	1.2 0.85 0.26 0.81 3 1.2 0.77	J	Below reporting limit
SU-07B-1.0-1.5-0423	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	0.49 0.29 0.65	J+	EMPC, Isotope ratio out of spec, Below reporting limit

Pace Analytical® ANALYTICAL REPORT

June 06, 2023

Oregon Dept. of Env. Quality - ODEQ

Sample Delivery Group: L1605173

Samples Received: 04/07/2023

Project Number: 02060.005.004

Oregon DEQ-JH Baxter Offsite Investigation (TO Description:

#2060.005)

Report To: Don Hanson

165 E. 7th Avenue

Suite 100

Eugene, OR 97401

Entire Report Reviewed By:

Buar Ford

Brian Ford Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	8
GI: Glossary of Terms	9
Al: Accreditations & Locations	10
Sc: Sample Chain of Custody	11

			Collected by	Collected date/time	Received da	te/time
DU-06A-1.5-2.0_0423 L1605173-01 Solid			GSI	04/05/23 13:10	04/07/23 09	:20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	850	Minneapolis, MN 55414
DU-06A-2.0-2.5_0423 L1605173-02 Solid			Collected by GSI	Collected date/time 04/05/23 13:15	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	65-5	Minneapolis, MN 55414
DU-06A-2.5-3.0_0423 L1605173-03 Solid			Collected by GSI	Collected date/time 04/05/23 13:20	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	323	Minneapolis, MN 55414
DU-06B-1.5-2.0_0423 L1605173-04 Solid			Collected by GSI	Collected date/time 04/05/23 14:40	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	128	Minneapolis, MN 55414
DU-06B-2.0-2.5_0423 L1605173-05 Solid			Collected by GSI	Collected date/time 04/05/23 14:45	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	(6)	Minneapolis, MN 55414
DU-06B-2.5-3.0_0423 L1605173-06 Solid			Collected by GSI	Collected date/time 04/05/23 14:50	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	65.6	Minneapolis, MN 55414
DU-106B-1.5-2.0_0423 L1605173-07 Solid			Collected by GSI	Collected date/time 04/05/23 14:55	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	121	Minneapolis, MN 55414
DU-01A-1.5-2.0_0423 L1605173-08 Solid			Collected by GSI	Collected date/time 04/05/23 15:40	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	92%	Minneapolis, MN 55414

ACCOUNT: Oregon Dept. of Env. Quality - ODEQ

PROJECT: 02060.005.004

SDG: L1605173

DATE/TIME: 06/06/23 13:32

3 of 42

PAGE:

GI

Sc

			Collected by	Collected date/time	Received da	te/time
DU-01A-2.0-2.5_0423 L1605173-09 Solid			GSI	04/05/23 15:45	04/07/23 09	:20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	8=1	Minneapolis, MN 55414
DU-01A-2.5-3.0_0423 L1605173-10 Solid			Collected by GSI	Collected date/time 04/05/23 15:50	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	656	Minneapolis, MN 55414
DU-10B-2.0-2.5_0423 L1605173-11 Solid			Collected by GSI	Collected date/time 04/05/23 10:30	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	121	Minneapolis, MN 55414
DU-10B-2.5-3.0_0423 L1605173-12 Solid			Collected by GSI	Collected date/time 04/05/23 10:35	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	127	Minneapolis, MN 55414
DU-09A-2.0-2.5_0423 L1605173-13 Solid			Collected by GSI	Collected date/time 04/05/23 11:40	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	(6)	Minneapolis, MN 55414
DU-09A-2.5-3.0_0423 L1605173-14 Solid			Collected by GSI	Collected date/time 04/05/23 11:45	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	654	Minneapolis, MN 55414
DU-09B-2.0-2.5_0423 L1605173-15 Solid			Collected by GSI	Collected date/time 04/05/23 12:25	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	121	Minneapolis, MN 55414
DU-09B-2.5-3.0_0423 L1605173-16 Solid			Collected by GSI	Collected date/time 04/05/23 12:30	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	127	Minneapolis, MN 55414

ACCOUNT: Oregon Dept. of Env. Quality - ODEQ

PROJECT: 02060.005.004

SDG: L1605173

DATE/TIME: 06/06/23 13:32

PAGE: 4 of 42 GI

Sc

DU-15A-2.0-2.5_0423 L1605173-17 Solid Method			GSI	04/04/22 10-10	Material processing and the control	
Method				04/04/23 10:10	04/07/23 09:	20
	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	9 = 21	Minneapolis, MN 55414
DU-15A-2.5-3.0_0423 L1605173-18 Solid			Collected by GSI	Collected date/time 04/04/23 10:15	Received dat 04/07/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	67.6	Minneapolis, MN 55414
DU-15B-2.0-2.5_0423 L1605173-19 Solid			Collected by GSI	Collected date/time 04/04/23 11:10	Received dat 04/07/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	N <u>2</u> 53	Minneapolis, MN 55414
DU-15B-2.5-3.0_0423 L1605173-20 Solid			Collected by GSI	Collected date/time 04/04/23 11:15	Received dat 04/07/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	328	Minneapolis, MN 55414
SU-07A-1.5-2.0_0423 L1605173-21 Solid			Collected by GSI	Collected date/time 04/04/23 11:45	Received dat 04/07/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	989	Minneapolis, MN 55414
SU-07A-2.0-2.5_0423 L1605173-22 Solid			Collected by GSI	Collected date/time 04/04/23 11:50	Received dat 04/07/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	458	Minneapolis, MN 55414
SU-07A-2.5-3.0_0423 L1605173-23 Solid			Collected by GSI	Collected date/time 04/04/23 11:55	Received dat 04/07/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	3/20	Minneapolis, MN 55414
SU-07B-1.5-2.0-0423 L1605173-24 Solid			Collected by GSI	Collected date/time 04/04/23 12:10	Received dat 04/07/23 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	328	Minneapolis, MN 55414

ACCOUNT: Oregon Dept. of Env. Quality - ODEQ

PROJECT: 02060.005.004

SDG: L1605173

DATE/TIME: 06/06/23 13:32

5 of 42

PAGE:

			Collected by	Collected date/time	Received da	to/timo
SU-07B-2.0-2.5-0423 L1605173-25 Solid			GSI	04/04/23 12:15	04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	8-1	Minneapolis, MN 55414
SU-07B-2.5-3.0-0423 L1605173-26 Solid			Collected by GSI	Collected date/time 04/04/23 12:20	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	656	Minneapolis, MN 55414
DU-11A-2.0-2.5_0423 L1605173-27 Solid			Collected by GSI	Collected date/time 04/04/23 14:15	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	823	Minneapolis, MN 55414
DU-11A-2.5-3.0_0423 L1605173-28 Solid			Collected by GSI	Collected date/time 04/04/23 14:20	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	223	Minneapolis, MN 55414
DU-11B-2.0-2.5_0423 L1605173-29 Solid			Collected by GSI	Collected date/time 04/04/23 14:40	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	860	Minneapolis, MN 55414
DU-11B-2.5-3.0_0423 L1605173-30 Solid			Collected by GSI	Collected date/time 04/04/23 14:45	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	658	Minneapolis, MN 55414
DU-10A-2.0-2.5_0423 L1605173-31 Solid			Collected by GSI	Collected date/time 04/05/23 09:40	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	828	Minneapolis, MN 55414
DU-10A-2.5-3.0_0423 L1605173-32 Solid			Collected by GSI	Collected date/time 04/05/23 09:45	Received da 04/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	128	Minneapolis, MN 55414

ACCOUNT: Oregon Dept. of Env. Quality - ODEQ

PROJECT: 02060.005.004

SDG: L1605173

DATE/TIME: 06/06/23 13:32

6 of 42

PAGE:

GI

Sc

DU-01B-1.5-2.0_0423 L1605173-33 Solid			Collected by GSI	Collected date/time 04/05/23 16:05	Received d 04/07/23 0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	9811	Minneapolis, MN 55414
DU-01B-2.0-2.5_0423 L1605173-34 Solid			Collected by	Collected date/time 04/05/23 16:10	Received d 04/07/23 0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	656	Minneapolis, MN 55414
DU-01B-2.5-3.0_0423 L1605173-35 Solid			Collected by GSI	Collected date/time 04/05/23 16:15	Received d 04/07/23 0	TO SHARE THE SHA
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	1/2/3	Minneapolis, MN 55414
EB-02-0423 L1605173-36 GW			Collected by GSI	Collected date/time 04/05/23 15:05	Received d 04/07/23 0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Subcontracted Analyses	WG2043854	1	06/05/23 00:00	06/05/23 00:00	223	Minneapolis, MN 55414

Oregon Dept. of Env. Quality - ODEQ

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford Project Manager

Project Narrative

Buar Ford

L1605173 - 01, -02, -03, -04, -05, -06, -07, -08, -09, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36 contains subout data that is included after the chain of custody.

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

SDG	Sample Delivery Group.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico 1	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina 3	41
Georgia ¹	923	North Dakota	R-140
ldaho	TN00003	Ohio-VAP	CL0069
Ilinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 14	2006
ouisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁶	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA - ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁶	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

State of Oregon Chain of Custody (Pace) Agency, Authorized Purchaser or Agent: Contract Laboratory Name: Lab Selection Criteria: **Turn Around Time:** Proximity (if TAT < 48 hrs) 10 days (std.) GSI for ODEQ Pace Analytical National Prior work on same project 5 days Don Hanson, RG Lab Batch #: Send Lab Report To: D153 72 hours ODEQ/Business Office 165 E. 7th Avenue, Suite 100 Invoice: Cost (for anticipated analyses) Address Other labs disqualified or unable 48 hours Eugene, OR 97401 811 SW 6 Ave to perform requested services 24 hours Portland, OR 97204 Tel # 541-687-7349 Tel. #: (800) 452-4011 Other Emergency work don hanson@deg state or us, jbale@gsiws.com, cmartin@gsws.com, mfargher@gsws.com, GIS@gsws.com
Project Name: OREGON DEQ-JH BAXTER OFFSITE INVESTIGATION (TO #2060.005) Sample Preservative Project #: JH Baxter Offsite Investigation Sampler Name: (25) Requested Analyses oxin/fura Collection Number of ISM Matrix Sample ID# **Collection Date** Containers Time s by 1310 DU-OUA-1.5-2.0-0423 4 5 23 38 - 01 1315 DU-0UA-2.0-2.5_0423 4/5/23 88 02 63 4/5/23 DU-064-2.5-3.0-0423 38 1320 4 9 23 1430 DU-0108-0.5-1.0-0423 52 DU-068-1.0-15-0423 1/5/23 1435 52 4/5/23 32 04 DU-04B-1.5-2.0-0423 1440 4/8/23 1445 DU-06 B-2.0-2.5_0423 55. 65 04-068-25-3.0-0423 1450 4/5/23 06 4/5/23 1455 DU-1063-1.5-2.0-0423 DU-01A-0,5-1.0_0423 +15/23 1530 39 DU-DIA -1.0-1.5- 0423 4/5/23 1535 35 DU-01A-15-2.0_0423 08 1540 4/5/23 82 DU-01A-20-25-0423 09 4/5/23 1545 SE DU-01A-2.5-3.0-0423 10 52 1550 DU-01B-0.5-1.0-0423 1555 X 82 Conduct incremental Sampling Methodology processing prior to analysis.

Contact Chris Marin (503-432-5976, cmartin@galvis.com) or Josh Bale (530-276-4186, jbale@galvis.com) with questions. Include DEQ EOD with final lab report G. Schutales (75) Received By: Agency/Agent: Relinquished By Agency/Agent: 416/23 Time & Date: 1215 Time & Date Signature: Signature: Received By: Relinquished By Agency/Agent Agency/Agent Signature MOMEAS Time & Date: Time & Date: Signature.

THIS PURC

Sample Receipt Checklist
CCC Seal Present/Intact: Y N If Applicable
CCC Signed/Accurate: Y N VOA Zero Headspace: Y N
Bottles arrive intact: Y N Pres.Correct/Check: Y N
Correct bottles used: Y N

Sufficient volume sent: Y RAD Screen <0.5 mR/hr: ZY PRICE AGREEMENT INCLUDING CONTRACT TERMS AND CONDITIONS AND SPECIAL CONTRACT TERMS AND CONDITIONS (T'S &C'S) CONTAINED IN THE PRICE AGREEMENT ARE CONFLICTING T'S AND C'S, EXPRESS OR IMPLIED.

MIS AND CONDITIONS (T'S &C'S) CONTAINED IN THE PRICE AGREEMENT A

State of Oregon Chain of Custody (Pace) Agency, Authorized Purchaser or Agent: Contract Laboratory Name: Lab Selection Criteria: GSI for ODEQ Turn Around Time: Pace Analytical National Proximity (if TAT < 48 hrs) 10 days (std) Send Lab Report To: Don Hanson, RG Lab Batch #: Prior work on same project 5 days Address: 165 E. 7th Avenue, Suite 100 ODEQ/Business Office Invoice: Cost (for anticipated analyses) 72 hours Eugene, OR 97401 811 SW 6th Ave Other labs disqualified or unable 48 hours Tel.# 541-687-7349 Portland, OR 97204 to perform requested services 24 hours E-mail: don hanson@deq.state.or.us, jbale@gsiws.com Tel # (800) 452-4011 Emergency work Other cmartin@gsiws.com, mfargher@gsiws.com, GIS@gsiws.com Project Name OREGON DEQ-JH BAXTER OFFSITE INVESTIGATION (TO #2060.005) Sample Preservative Project #: JH Baxter Offsite Investigation Sampler Name: GSI Requested Analyses Collection Sample ID# Number of Collection Date Matrix Time Containers DU110A-1.0-1.5-0423 4/5/23 950 59 DU-10B-1.0-1.5-0423 4/5/23 SE 1020 X DU-10B-1.5-2.0-0423 4/5/23 1025 55 DU-10B-2.0-2.5-0423 4/5/23 6030 85 X DU-108-2.5-3.0-0423 4/5/23 1035 55 DU -09A-1.0-1.5-0923 45/23 1130 88 X DU-09A-1.5-2.0 0423 4/5/23 1135 89 × DU-01A-2.0-25-0423 4/5/23 1140 58 × DU-09A-2.5-3.0-0423 1145 1/5/23 38 DU-09B-1.0-1.5-0423 4/5/23 1215 38 DU-09B-1.5-2.0_0923 4/5/23 88 12.20 X DU-098-2.0-2.5-0423 4 5 23 1225 88 X DU-09B-2.5-3.0_ 0423 4 5/23 38 1230 X DM-064-0.5-1.0_ 0423 1300 35 X DU-06A-10-15-0423 A 5 23 1305 82 × ology processing prior to analysis. Contact Chris Martin (503-432-5979, cmartin@gsiws.com) or Josh Bale (530-278-4186, jbale@gsiws.com) with questions. Include DEQ EDD with final lab report. Relinquished By: G.Schutzu Agency/Agent Received By Agency/Agent 4/4/23 Signature: Time & Date: 1215 Signature: Time & Date Relinquisher Agency/Agent. Received By: * Agency/Agent Signature: Time & Date:

THIS PURCHASE IS SUBMITTED PURSUANT TO STATE OF OREGON SOLICITATION #102-1694-97 AND PRICE AGREEMENT # 8903. THE PRICE AGREEMENT INCLUDING CONTRACT TERMS AND CONDITIONS AND SPECIAL CONTRACT TERMS AND CONDITIONS (T'S &C'S) CONTAINED IN THE PRICE AGREEMENT ARE THE PRICE AGREEMENT ARE THE PRICE AGREEMENT ARE THE PRICE AGREEMENT ARE THE PRICE AGREEMENT ARE THE PRICE AGREEMENT ARE THE PRICE AGREEMENT ARE THE PRICE AGREEMENT ARE THE PRICE AGREEMENT ARE THE PRICE AGREEMENT ARE THE PRICE AGREEMENT ARE THE PRICE AGREEMENT ARE THE PRICE AGREEMENT ARE THE PRICE AGREEMENT ARE THE PRICE AGREEMENT ARE THE PRICE AGREEMENT ARE THE PRICE AGREEMENT AND CONTRACT TERMS A

State of Oregon Chain of Custody (Pace) Agency, Authorized Purchaser or Agent: Contract Laboratory Name: Lab Selection Criteria: GSI for ODEQ Turn Around Time: Pace Analytical National Send Lab Report To: Proximity (if TAT < 48 hrs) Don Hanson, RG 10 days (std.) Lab Batch #: Prior work on same project Address: 165 E. 7th Avenue, Suite 100 5 days ODEQ/Business Office Cost (for anticipated analyses) Eugene, OR 97401 72 hours 811 SW 6^m Ave Other labs disqualified or unable Tel# 541-687-7349 48 hours Portland, OR 97204 E-mail: don hanson@deq state or us, jbale@gsiws.com, to perform requested services 24 hours cmartin@gsws.com, mlargher@gsws.com, GIS@gsiws.com
Project Name: OREGON DEQ-JH BAXTER OFFSITE INVESTIGATION (TO #2060.005) Tel. #: (800) 452-4011 Emergency work Other Sample Preservative Project #: JH Baxter Offsite Investigation ž Sampler Name: 68 Requested Analyses MUNDA Sample ID# Time Collection Number of Collection Date 161 Matrix Containers ep.Did DU-15A-1.0-15-0423 10:00 58 Du-15A-15-20-10423 10:05 59 DU-15A-20-25-0423 158 10:10 × DU-154-25-3-0-0423 10:15 58 18 -158-1.0-15-0423 11:00 5€ DU-15B-1.5-20-0423 11:09 5€ 11:10 70 SU-01A-0.5-1.0-0423 4/4/23 11:35 -07A-1.01.5-0423 11:40 -40 22 55 -07B-05-10-0423 4/4/23 1200 -44 1205 Conduct Incremental Sampling Methodology processing prior to analysis.

Contact Chris Martin (503-432-5979, cmartin@gelws.com) or Josh Bale (530-276-4188, jbale@gelws.com) with questions. Include DEQ EDD with final lab report. G. Schutzing Agency/Agent Received By Agency/Agent Time & Date: 1215 Signature: Time & Date Relinquished By Agency/Agent Received By. Agency/Agent Signature Time & Date: Time & Date:

THIS PURCHASE IS SUBMITTED PURSUANT TO STATE OF OREGON SOLICITATION #102-1998-07 AND PRICE AGREEMENT # 8903. THE PRICE AGREEMENT INCLUDING CONTRACT TERMS AND CONDITIONS AND SPECIAL CONTRACT TERMS AND CONDITIONS (T'S &C'S) CONTAINED IN THE PRICE AGREEMENT ARE HEREBY INCORPORATED BY REFERENCE AND SHALL APPLY TO THIS PURCHASE AND SHALL TAKE PRECEDENCE OVER ALL OTHER CONFLICTING T'S AND C'S, EXPRESS OR IMPLIED.

Agency, Authorized Purchaser or Agent:			St	ate of Oregon C							1				
GSI for ODEQ						Analytical						ection Crite			Turn Around Time:
Send Lab Report To: Don Hanson, RG Address: 4 165 E. 7th Avenue, Suite 100				THE REAL PROPERTY.	Lab Bat	tch #:					Prior wo	y (if TAT < 4 rk on same	project		10 days (std) 5 days
Eugene, OR 97401					Invoice	-		usiness Office	ce		Cost (for	anticipated	analyses)		72 hours
Tel.# 541-687-7349 E-mail: don.hanson@deg.state.or.us.ibale@gsays.com						-	811 SW 6 Portland,	OR 97204				bs disqualification reques			48 hours
cmartin@gsiws.com. mfargher@gsiws.com. GIS@gsiws.com	1				17		Tel #:	(800) 452-4	4011		Emerger		ALCO SELVICE	23	24 hours Other
Project Name: OREGON DEQ-JH BAXTER OFFSITE INVESTIGATI	ON (TO #2060.005)						-	Sam	ple Preser	vative	-	Marie Land	-	Total Constitution	
					1	Tan .				T	1				
Project #: JH Baxter Offsite Investigation					1					100					
Sampler Name: GS1					ds. NA				10				-		
C/31					Solic	1 2	1 1		1	-					
	1	1	-				-	Req	uested Ana	alyses					
			-	. 3	furan					1		-		111	2/173
Sample ID#	Collection Date	Collection	Matrix	Number of	ISM Dioxin/fun		1 - 7	1		100			12	2/0	05/15
		Time	1	Containers	Prep;Dic							100	3	Co	mments
ELL 0.70 10 0 1007	11117	11.1	-	1	_							1	星	66	03081
SU-0713-1.5-20-0423 SU-0713-20-25-0423	4/4/23	120	SE	1	黄						10		Y MERRY	-412	24
54-045-20-25-0425	4/4/23	1215	SE	1									~	-115	25
54-0715-25-3.0-0423	4/9/23	1220	96	1									0	40	
DU-11A-60-65-0423	4/4/23	1405	64.	i	X								-	-40	25
DU-14-1.5-20-0423	4/4/23	1410	04	1	X		1		-					17	
04-14-20-25-0423	4/4/93	1415	58	1	1								×	-50	
174-114-25-30-0425	4/4/23	1420	SE	1			-						-	-51	27
04-1113-1.0-45-0423	4/4/23	1430	SE	1	1	-							×	-52	28
M-1113-15-20-0423	4/4/23	1435	SE	1	+	-					-			-53	- 3
DU-1175-2.0-25-0423	4/4/23	100		/	1		1				-		,	-54	
DU-118-25-3.0-0423	11/1/23	1440	SE	/		-							X	-55	79
	9/9/17	1445	SE	1									X	-56	30
DU-104-10-15-0423	4/5/23	930	38		X									-57	
DU-10A-1,5-2.0-0423	4/5/23	935	SE	1	X							-	7	-64	
DU-10A-2.0-2.5-0423	4/5/23	940	SE	1		2.0							X	-50	31
DY-10A-2.5-3.0_0423	4/5/23	945	SE	1						-			Ŷ	-60-	-
NOTES: Conduct Incremental Sampling Methodology processing prior to analy Contact Chris Martin (503-432-5979, cmartin@gskvs.com) or Josh Bale (53	0.276.4188 (holo@netus com)												X	1-00	32
	- E. S. 1 1 SS. [contaggama.com] w	nor questions, inclu	BE DEG EDD	with final lab report.											
Relinquished By: A Schubius	I 00	1		-											
a Sorations	Agency/Agent GS	1				Received	Ву							Agency/Agent:	
Signature:	Time & Date: 4	23 12	.15			Signature	K							Time & Date:	
Relinquished By.	Agency/Agent:					Received	Ву				150			Agency/Agent:	
Signature.	Time & Date:			3 7 7 7	7 48	Signature	Ka	MCia	1	_		(0)			1/23 98
							rw	*AAA	1			(4)		Time & Date: 4	1/29 48

THIS PURCHASE IS SUBMITTED PURSUANT TO STATE OF OREGON SOLICITATION #102-1098-07 AND PRICE AGREEMENT # 5003. THE PRICE AGREEMENT INCLUDING CONTRACT TERMS AND CONDITIONS AND SPECIAL CONTRACT TERMS AND CONDITIONS (T'S &C'S) CONTAINED IN THE PRICE AGREEMENT ARE HEREBY INCORPORATED BY REFERENCE AND SHALL APPLY TO THIS PURCHASE AND SHALL TAKE PRECEDENCE OVER ALL OTHER CONFLICTING T'S AND C'S, EXPRESS OR IMPLIED.

State of Oregon Chain of Custody (Pace) Agency, Authorized Purchaser or Agent: Contract Laboratory Name: Lab Selection Criteria: GSI for ODEQ Turn Around Time: Pace Analytical National Proximity (if TAT < 48 hrs) 10 days (std.) Send Lab Report To: Don Hanson RG Lab Batch #; Prior work on same project 5 days Address: 165 E. 7th Avenue, Suite 100 Invoice: ODEO/Business Office Cost (for anticipated analyses) 72 hours Eugene OR 97401 811 SW 6th Ave Other labs disqualified or unable 48 hours Tel.# 541.687.7349 Portland, OR 97204 to perform requested services E-mail. don hanson@deq state or us, jbale@gsiws.com, 24 hours Tel. #: (800) 452-4011 Emergency work Other cmartin@gsiws.com, mfargher@gsiws.com, GIS@gsiws.com Project Name: OREGON DEQ-JH BAXTER OFFSITE INVESTIGATION (TO #2060.005) Sample Preservative Project #: JH Baxter Offsite Investigation Sampler Name: (35) Requested Analyses Archive L1605173 Comments Collection Number of Sample ID# Collection Date Matrix Time Containers DU-018-1.0-1.5_0423 4/5/23 58 1400 DU-018-1,5-2.0-0423 4/5/22 88 1605 DU-018-2.0-2.5-0423 4/5/23 1410 82 DU-018-25-3.0-0423 1615 82 EB-01-0423 1500 SW X EB-02-0423 SW 505 NOTES: Conduct Incremental Sampling Methodology processing prior to analysis. Contact Chris Martin (503 432-5979, cmartin@gsiws.com) or Josh Bale (530-276-4186, |bale@gsiws.com) with questions. Include DEQ EDD with final lab report. Relinquished By Agency/Agent: Received By: Agency/Agent Time & Date: 1215 Signature: Time & Date: Relinquished By: Agency/Agent Received By Agency/Agent Signature: Time & Date: Signature: Time & Date;

THIS PURCHASE IS SUBMITTED PURSUANT TO STATE OF OREGON SOLICITATION #102-1098-07 AND PRICE AGREEMENT # 8903. THE PRICE AGREEMENT INCLUDING CONTRACT TERMS AND CONDITIONS AND SPECIAL CONTRACT TERMS AND CONDITIONS (I'S &C'S) CONTAINED IN THE PRICE AGREEMENT ARE HEREBY INCORPORATED BY REFERENCE AND SHALL APPLY TO THIS PURCHASE AND SHALL TAKE PRECEDENCE OVER ALL OTHER CONFLICTING T'S AND C'S, EXPRESS OR IMPLIED.

Temperature	3.2+0-3.2	NSA6 5.1+0=5.1	NSA6 1.5+0=1.5	2.5+0=2.5	N.3+0:4:3	NSA6 1.8+0=1.8	NSA6 LG+O=1.6	NSAG 4.0+0=4.6
	1063	1014	529	2960	1732	1133	1100	三
(A)		ol hepp	ववत्रम 10	वनत्रम १८९६	I hebb	I Hebb	gazy 1	gazu
<u>Tracking</u> Numbers	GSST 9924	6357	6357	6357	G357	(35J	6357	6357

L1603081 OREGONDEQ re-log

R5

Please re-log all samples which are currently on HOLD to a new SDG for MISPREP "promium EDD. after misprep sample need SUB1613" as R5 due 04/21.

L1603081-66 will be matrix 1 DIOXIN rather than misprep.

Time spent: oh Time estimate: oh

Members

Brian Ford

Comments

Andy Vann

Relogged to L1603505

14 April 2023 09:39

Pace Analytical Services, LLC. 1700 Elm Street Minneapolis, MN 55414

Phone: 612.607.1700 Fax: 612.607.6444

Report Prepared for:

Client Services Pace Analytical National 12065 Lebanon Rd Mt. Juliet TN 37122

> REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

Report Information:

Pace Project #: 10650019

Sample Receipt Date: 04/19/2023

Client Project #: L1605173 WG2043854

Client Sub PO #: L1605173

State Cert #: N/A

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Kongmeng Vang, your Pace Project Manager.

This report has been reviewed by:

June 06, 2023

Kongmeng Vang, Project Manager

(612) 607-6382

(612) 607-6444 (fax)

kongmeng.vang@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

June 1, 2023

Pace Analytical Services, LLC.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on five of thirty-six samples submitted by a representative of Pace Analytical National. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using USEPA Method 1613B. The estimated detection limits (EDLs) were based on signal-to-noise measurements. Estimated maximum possible concentration (EMPC) values were treated as positives in the toxic equivalence calculations. Per request, the analyses of the remaining samples were canceled.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 50-104%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show two of the three blanks to contain trace levels of selected congeners. These levels were below the calibration range for the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background.

Laboratory spike samples were also prepared using clean reference matrix that had been fortified with native standard materials. The recoveries of the spiked native compounds ranged from 80-117% with relative percent differences (RPDs) ranging from 0.0-6.0%. These results were within the target ranges for the method. Matrix spikes were prepared with the solid sample extraction batches using canceled sample materials or sample materials from separate projects; results from these analyses will be provided upon request. Matrix spikes were not prepared with the water sample extraction batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
		Missouri	10100
A2LA	2926.01	Montana	CERT0092
Alabama	40770	Nebraska	NE-OS-18-06
Alaska-DW	MN00064	Nevada	MN00064
Alaska-UST	17-009	New Hampshire	2081
Arizona	AZ0014	New Jersey	MN002
Arkansas - WW	88-0680	New York	11647
Arkansas-DW	MN00064	North Carolina-	27700
California	2929	North Carolina-	530
Colorado	MN00064	North Dakota	R-036
Connecticut	PH-0256	Ohio-DW	41244
Florida	E87605	Ohio-VAP (170	CL101
Georgia	959	Ohio-VAP (180	CL110
Hawaii	MN00064	Oklahoma	9507
Idaho	MN00064	Oregon-Primary	MN300001
Illinois	200011	Oregon-Second	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
Iowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky-DW	90062	Tennessee	TN02818
Kentucky-WW	90062	Texas	T104704192
Louisiana-DEQ	AI-84596	Utah	MN00064
Louisiana-DW	MN00064	Vermont	VT-027053137
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Michigan	9909	West Virginia-D	382
Minnesota	027-053-137	West Virginia-D	9952C
Minnesota-Ag	via MN 027-053	Wisconsin	999407970
Minnesota-Petr	1240	Wyoming-UST	via A2LA 2926.
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix A

Sample Management

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CHAIN-OF-CUSTODY / Analytic The Chain-of-Custody is a LEGAL DOCUMENT.

WO#:10650019

Required	Client Information:	Required F	roject	Infor	mation:				Section C 10650019											Of 3															
ompany.	Pace Analytical	Report To:			lytical Subo	out Team				Atter	_		Don H	_	n			-																	
Address	12065 Lebanon Rd.	Copy To:							Т	Com	pan	y Nan																							
Mt. Juliet,	TN 37122									Addr	ress															Regulatory Agency									
Dhail: N	#TJLSuboutTeam@pacelabs.com	Purchase C	rder#		L1605173					Pace	e Qu	ote:														Regulatory Agency									
Phone:	(615) 773-9756 Fax (615) 758-5859	Project Nar	ne:	Ore	gon DEQ-	JH Baxter	Offsite Inv	estigati		Pace	e Pro	oject \	ianage	er.	Ko	ngmer	na Va	ina								State / Location									
equested	Due Date: 28-Apr	Project #:				02060.0				Pace	e Pro	ofile #	38	3076		-	-	-								_		OR			_				
9																				Requ	uested	Analys	sis Filte	ered (Y/N)						_				
1613BFC	MATRIL Dinkuy	Water DW	codes to left)	C=COMP)		COLL	ECTED		rion				Pres	erva	tives	s		N/N									1								
C L2 dfr	SAMPLE ID Soliks	d SL OL	(see valid	(G#GRAB	STA	ART	E	ND	AT COLLEG	RS								Test	Furans 1613								ine (Y/N)								
ITEM#	One Character per box. When (A-Z, 0-9 / , -) Sample Ids must be unique Tassue	WP AR OT TS	MATRIX CODE	SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	H2SO4	HNO3	NaOH	Na2S203	Methanol	Other	Analyses Test	Dioxins and Fu								Residual Chlorine								
1 0	DU-06A-1.5-2.0_0423		SL				05-Apr	13:10			1			1			Ĭ		x		Ħ						1	oramic	m EDD	0	21				
2	DU-06A-2.0-2.5_0423		SL				05-Apr	13:15			1			1	1				v		Ħ		\Box	1			1			_	wi				
	DU-06A-2.5-3.0_0423		SL				05-Apr	13:20		,	4		1	T	T		П		x	1	Ħ	1		1	П		1		m EDD m EDD		W3				
4	DU-06B-1.5-2.0_0423		SL				05-Apr	14:40		,	1								x										m EDD		W.				
5	DU-06B-2.0-2.5_0423		SL				05-Apr	14:45		1	1								x										m EDD		La				
6	DU-06B-2.5-3.0_0423		SL				05-Apr	14:50		,	1								x										m EDD	(NE				
7	DU-106B-1.5-2.0_0423		SL				05-Apr	14:55		1	1								x									promiu	m EDD		2				
8	DU-01A-1.5-2.0_0423		SL				05-Apr	15:40		1	1								x									promiu	m EDD		no ?				
9 1	DU-01A-2.0-2.5_0423		SL				05-Apr	15:45		1	1								x									promiu	m EDD		وبا				
10	DU-01A-2.5-3.0_0423		SL				05-Apr	15:50		1	1								x									promiu	m EDD	C	4,0				
11 0	0U-10B-2.0-2.5_0423		SL				05-Apr	10.30		1	1								x									promiu	m EDD	0	1)				
12	OU-10B-2 5-3.0_0423		SL				05-Apr	10:35		1	1								х									promiu	m EDD	0	22				
	ADDITIONAL COMMENTS	- 10	RELI	INQUIS	SHED BY / A	FFILIATIO	ON	DATE	E	1	TIME		Ġ.		ACC	EPTE	D BY	AFF	ILIATI	ON	= = 1		DATE		TIME			SAMPL	E CONDITI	IONS					
		James	C Hud	kaba				18-Apr		10:56	6		~	V	6	ai	V					4	1191	3	8:5		20	4	4	'	4				
	alytical Batch: WG2043854								_	-	_	+										-					5.4		8						
	alytical SDGs: L1605173									-		-					-	_				+		+		3	3-7			-					
	: Minneapolis, MN 55414					SAMPL	ER NAME	AND SIGN	NATL	IRE		_1										_		1		+			+	+					
Page						1000000		A SALES CON	2022.0	19.00																+	a C	ved on	dy		en				
50	PRINT Name of SAMPLER: SIGNATURE of SAMPLER: DATI											ATE S	igned:					1	TEMP	Received	Custody Sealed	(Y/N)	Mact VIV												

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

R e ection	Δ	Section B					,,,,,	um 01 00		ection									in in one			ompio	.000	000101	C.y.	_				
Require	d Client Information:	Required P	roject	Inform	nation:							orma	tion:												P	age:		2	Of	3
Sompan	y: Pace Analytical	Report To:			ytical Subc	ut Team			_	ttent			n Har	nson									1			age .	_	_	O.	
Address	12065 Lebanon Rd.	Copy To:							C	comp	any N	Vame:	9										1							
Mt. Julie	t, TN 37122 MTJLSuboutTeam@pacelabs.com (615) 773-9756 Fax (615) 758-5859								A	ddre	SS:	2.0														Regul	latory	Agency		
email:	MTJLSuboutTeam@pacelabs.com	Purchase 0		-	L1605173						Quote																			
chone:	(615) 773-9756 Fax (615) 758-5859	Project Nam	ne:	Oreg	gon DEQ-J			estigati	_	_	_	ct Ma	_		Kon	gmen	g Van	g								Stat		cation		
Request	ed Due Date: 28-Apr	Project #:				02060.0	05.004		P	ace	Profile	e#:	380	76			-	_						******		_	OR	B		
			Ta						-	-			_				+	-	-	Requeste	d Ana	lysis Fi	Itered	(Y/N)		-				
1613BFC	MATRIX	CODE	codes to left)	C=COMP)		COLL	ECTED		NO			Р	rese	rvati	ives		1	2												
-C -C efr	SAMPLE ID Dinking V Water Waste W Product SollSollo Oil	WI	(see valid cod	(G#GRAB C	STA	ART	E	ND	TCOLLECTION	\$2								lest	ans 1613							Chlorine (Y/N)	To VI total			
ITEM#	One Character per box. Wipe (A-Z, 0-9 / , -) Oner Sample Ids must be unique Tissue	WP AR OT TS	MATRIX CODE	SAMPLE TYPE	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLECTION	# OF CONTAINERS	Unpreserved	HNO3	HCI	NaOH	Na2S2O3	Methanol		Analyses	Dioxins and Furans 1613							Residual Chlori	Nuoraum serra			
1	DU-09A-2.0-2.5_0423		SL				05-Apr	11:40	1	1								,	x								pro	mium EDI	, (713
2	DU-09A-2.5-3.0_0423		SL				05-Apr	11:45	1	,									x								pro	mium EDI	0	114
3	DU-09B-2.0-2.5_0423		SL				05-Apr	12:25	1	1									x								pro	mium EDI	, (LUC
4	DU-09B-2.5-3.0_0423		SL				05-Apr	12:30	1	1		1							x								pro	mium EDI	0 1	026
5	DU-15A-2.0-2.5_0423		SL				04-Apr	10:10	1	1									x								pro	mium EDI	_	017
6	DU-15A-2.5-3.0_0423		SL				04-Apr	10:15	1	1									x								pro	mium EDI	, (018
7	DU-158-2.0-2.5_0423		SL				04-Apr	11:10	,	1									x								pro	mium EDI	0	019
8	DU-15B-2.5-3.0_0423		SL				04-Apr	11:15	1	1									x								pro	mium EDI	0 (20
9	SU-07A-1,5-2.0_0423		SL				04-Apr	11:45	1	1									x								pro	mium ED0	5 (150
10	SU-07A-2.0-2.5_0423		SL		1		04-Apr	11:50	1	1									x								pro	mium EDI	5 C	NZ
11	SU-07A-2.5-3.0_0423		SL				04-Apr	11:55	1	1									x								pro	mium EDI		23
12	SU-07B-1.5-2.0-0423		SL				04-Apr	12:10	1	1									x								pro	mium EDI	D	ny
	ADDITIONAL COMMENTS		RELI	INQUIS	SHED BY / A	FFILIATION	ON	DATE		Т	IME				ACC	EPTE	BY/	AFF	ILIATION	1		DAT		TIM			SA	MPLE CON	IDITIONS	
		James	C Huc	kaba	<	= 7		18-Apr	1	10:56		-	1	/		Per	w	/			-	4/14	13	8:5	8	28	1	1	4	4
Pace A	nalytical Batch: WG2043854	-							-			1	-				_	_								3.4				
	analytical SDGs: L1605173	+					-		1			-														D. I	-	-		
	on: Minneapolis, MN 55414					SAMPI	ED NAME	AND SIGN	ATUP	F											_						+			
Page						2000		of SAMPL	201.000																	D E	no pay			se
e တ ဝ						SI	GNATURE	of SAMPL	ER:		-							1	DAT	TE Signe	d:					TEMP	Received	(Y/N) Custor	Sealed Cooler (Y/N)	Samples Intact (Y/N)

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Rection Pection	A d Client Information:	Section B Required P		lufa						Sect															I					
Compar		Report To:	•		ytical Sub	T			_	Atten		_	ation													Pag	ge:	3	Of	3
Address	12065 Lebanon Rd.	Copy To:	Pau	e Allai	yucai Subi	out ream			-	_	_	Nam	Don H	ansor	1		_													
	t. TN 37122	G00) 10:							-	Addr	-		e.											_						
Enail:	MTJLSuboutTeam@pacelabs.com	Purchase O	rdor#		L1605173				-	Pace																F	Regula	tory Age	ncy	
Gnone:	(615) 773-9756 Fax (615) 758-5859	Project Nam					011-1-1-1								-	_								_						
	ted Due Date: 28-Apr	Project #	116.	Ureç	on DEQ.		Offsite Inv	estigati	\rightarrow	_			lanag		Ко	ngme	ing V	ang									State	/ Locatio	n	
19	20-Api	I Toject #	_			02060.0	05.004			Pace	Pro	file#	- 3	3076		_	_	_				_						OR		
	MATRIX Driving Water Water Product	Water DW WT	valid codes to left)	(G=GRAB C=COMP)		COLL	ECTED		COLLECTION				Pres	erva	tives	S		t Y/N	613	Rec	questec	Ana	lysis Filt	ered	(1/N)		(N)			
	SAMPLE ID SollSol	d SL OL	(800	ě	STA	ART	E	ND I	ĕ	60							l li	Test	82								3			
dfr # W∃LI	One Character per box. Wise (A-Z, 0-9 /, -) Sample lds must be unique Tasue	WP AR OT TS	MATRIX CODE		DATE	TIME	DATE	TIME	SAMPLE TEMP AT	# OF CONTAINERS	Unpreserved	H2SO4	HN03	NaOH	Na2S2O3	Methanol	Other	Analyses	Dioxins and Furans 1613								Residual Chlorine (Y/N)			
1	SU-07B-2.0-2.5-0423		SL				04-Apr	12:15		,	1								x									promium	EDD	as
2	SU-07B-2.5-3.0-0423		SL				04-Apr	12:20		1	1								x									promium		026
3	DU-11A-2.0-2.5_0423		SL				04-Apr	14:15		1	1								x									promium		027
4	DU-11A-2.5-3.0_0423		SL				04-Apr	14:20		1	1								x									promium		ors
5	DU-11B-2.0-2 5_0423		SL				04-Apr	14:40		1	1								х									promium		029
6	DU-11B-2.5-3,0_0423		SL				04-Apr	14:45		1	1		1						х									promium		000
7	DU-10A-2.0-2.5_0423		SL				05-Apr	9.40		1	1								x									promium	EDD	031
8	DU-10A-2.5-3.0_0423		SL				05-Apr	9:45		1	1								х									promium	EDD	032
9	DU-01B-1.5-2.0_0423		SL				05-Apr	16:05		1	1								х									promium	EDD	as
10	DU-01B-2.0-2.5_0423		SL				05-Apr	16:10		1	1								х									promium	EDD	034
11	DU-01B-2.5-3.0_0423		SL				05-Apr	16:15		1	1								x									promium	EDD	025
12	EB-02-0423	-	W				05-Ar			1	1								X									11	- 5	036
	ADDITIONAL COMMENTS		RELI	INQUIS	HED BY / A	FFILIATIO	IN	DATE		1	TIME							/ AF	FILIAT	TON			DATE	-	TIME			SAMPLE	CONDITION	NS
		James	C Hud	kaba	_	-1		18-Apr	-	10:56	5	+	1	1	1	M	_					1	8/19/	38	3:50		-8	4	4	T
20	nalytical Batch: WG2043854								-		_	+										1				_	-4	,	1	1
	nalytical SDGs: L1605173								-	-		-					_					-		1		3	.1			1
Locati	on: Minneapolis, MN 55414					SAMPI	R NAME	AND SIGNA	ATZIS	2F		-1														+			-	+
Pac							********	of SAMPLE	-	-														-	-		in C	uo pa	>	s e
Page 7						SIG	SNATURE	of SAMPLE	R:							-				DATES	Signed				-	-	TEMP	Received c Ice (Y/N)	Custody Sealed Cooler	Samples Intact (Y/N)
of 25																		- 9										- 20	200	7 07 5 0

DC#_Title: ENV-FRM-MIN4-0150 v11_Sample Condition Upon Receipt (SCUR)

Effective Date: 11/16/2022 Client Name: Project #: Sample Condition WO#:10650019 **Upon Receipt** Due Date: 05/10/23 FedEx UPS USPS Client FedEx UPS Commercial Pace SpeeDee Commercial Courier: CLIENT: ESC_TN See Exceptions Tracking Number: 6337 2 ENV-FRM-MIN4-0142 Custody Seal on Cooler/Box Present? Yes No Seals Intact? Yes No Biological Tissue Frozen? Yes No N/A Packing Material: | Bubble Wrap | Bubble Bags Temp Blank? Yes No None Other Thermometer: T1 (0461) T2 (1336) T3 (0459) T4 (0254) T5 (0178) Type of Ice: Wet Blue Dry None T6 (0235) T7 (0042) T8 (0775) T9(0727) 01339252/1710 No Did Samples Originate in West Virginia? Yes Were All Container Temps Taken? Yes No N/A Cooler temp Read w/Temp Blank: 37,33,30 Temp should be above freezing to 6 °C Average Corrected Temp (no temp blank only): Correction Factor: Cooler Temp Corrected w/temp blank: 2.9, 3.4, °C3, 7 See Exceptions ENV-FRM-MIN4-0142 1 Container USDA Regulated Soil: (N/A, water sample/other: Date/Initials of Person Examining Contents: U/19/23 Did samples originate in a quarantine zone within the United States: AL, AR, AZ CA, FK, Did samples originate from a foreign source (internationally, GA, ID, LA, MS, NC, NM, NY, OK, OR, SC, TN, TX, or VA (check maps)? Yes No including Hawaii and Puerto Rico)? If Yes to either question, fill out a Regulated Soil Checklist (ENV-FRM-MIN4-0154) and include with SCUR/COC paperwork. Location (Check one): Duluth Minneapolis Virginia COMMENTS Chain of Custody Present and Filled Out? Yes No Chain of Custody Relinquished? Yes No 2. Sampler Name and/or Signature on COC? Yes No N/A 13. Samples Arrived within Hold Time? Yes No 4. If fecal: <8 hrs >8 hr, <24 Short Hold Time Analysis (<72 hr)? No Fecal Coliform | HPC | Total Coliform/E.coli BOD/cBOD | Hex Chrom | Turbidity | Nitrate Nitrite Orthophos Other Rush Turn Around Time Requested? No Yes Sufficient Sample Volume? Yes No Correct Containers Used? Yes No N/A 8. -Pace Containers Used? Yes No Containers Intact? Yes No Field Filtered Volume Received for Dissolved Tests? Yes No N/A 10. Is sediment visible in the dissolved container? Yes Is sufficient information available to reconcile the samples to the Yes No 11. If no, write ID/Date/Time of container below: See Exceptions Matrix: Water Soil Oil Other ENV-FRM-MIN4-0142 All containers needing acid/base preservation have been Yes N/A 12. Sample # checked? All containers needing preservation are found to be in No N/A NaOH HNO3 compliance with EPA recommendation? H2SO4 Zinc Acetate (HNO3, H2SO4, <2pH, NaOH >9 Sulfide, NaOH>10 Cyanide) Yes No N/A Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, DRO/8015 Positive for Residual Yes See Exceptions (water) and Dioxins/PFAS Chlorine? No ENV-FRM-MIN4-0142 (*If adding preservative to a container, it must be added to pH Paper Lot # associated field and equipment blanks-verify with PM first.) Residual Chlorine 0-6 Roll 0-6 Strip O-14 Strip Headspace in Methyl Mercury Container? Yes No N/A 13. Extra labels present on soil VOA or WIDRO containers? Yes No N/A 14. See Exceptions Headspace in VOA Vials (greater than 6mm)? Yes No N/A ENV-FRM-MIN4-0142 3 Trip Blanks Present? No N/A Yes 15. Trip Blank Custody Seals Present? No N/A Yes Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Field Data Required? Yes Person Contacted: Date/Time:

Comments/Resolution:

Project Manager Review: Date:

NOTE: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. peut official incorrect preservative, out

Labeled By:

Page 8 of 25

DC#_Title: ENV-FRM-MIN4-0154 v02_USDA Regulated Soil Checklist

Effective Date: 08/19/2022

USDA Regulated Soil Checklist

Samples from Lorunties with a Fruit Fly Quarantine for A, Ny, and TX. Reference ENV-SOP-MIN4-0095. Samples from Hard. Reference ENV-SOP-MIN4-0095. Samples from Lorunders and Samples from Lorunders of Samples from Lorunders	To be Completed by Sample Receiving:				
Sample Origin (check one): DOMESTIC QUARANTINED POREIGN NOTE: Soil samples from Hawaii, Guidin, Puerto Rico, and the US Virgin Islands are Foreign originated. If DOMESTIC, circle state of origin: A A A Z C A F L GA LA MS NC NM NY OK (USDA Permit/Compliance Agreement authorizes movement of samples from these domestic regulated zones) If QUARANTINED, circle state of origin: C A D NY TX List Country: LATE Country: LATE Country: LATE Country: LATE Country: LATE Country: LATE Country: LATE Country: LATE Country: Country or origin: (Movement is not authorized for Pale Cyst Nematode (ID)—remaining quarantines require additional paperw if FOREIGN, list country or origin: (Movement from some Canadian Provinces is not allowed. Refer to ENV-FRM-MIN4-0137 Regulated Soil Flow REQUIREMENT ACTION COMPLETED PPQ-530 Paperwork must be included for any samples from counties with a Fruit Fly Quarantine in CA, NY, and TX. Reference ENV-SOP-MIN4-0095. Samples from ID may not be moved from the quarantined region. Reference ENV-SOP-MIN4-0095. If samples originated USDA permit holder. Do NOT continue processing samples. REQUIREMENT Contact the Samples originated USDA permit holder. Do NOT continue processing samples. REQUIREMENT ACTION COMPLETED REQUIREMENT ACTION COMPLETED NO Continue processing samples. REQUIREMENT ACTION COMPLETED NO NOT continue processing samples. REQUIREMENT ACTION COMPLETED NO NOT continue processing samples. NO samples must be segregated and stored in designated USDA permit holder. Do NOT continue processing samples. NO samples must be segregated and stored in designated USDA permit holder. Do NOT continue processing samples. NO Samples must be segregated and stored in designated USDA permit holder. Do NOT continue processing samples. NO Samples must be double contained to prevent accidental release. Were samples placed in a designated cooler, VES NO Samples must be double contained to prevent accidental release. NO Secretary of the Action Secretary of the Action Secretary of the Action Secre	wo: 10650019	Date: 4/20/ 13	Initials: $\underline{\qquad}$	1CZ	
Includes: IFA, SOD, Golden Nematode, Kormal Bunt, and Witchweed (USDA Permit/Compliance Agreement authorizes movement of samples from these domestic regulated zones) If QUARANTINED, circle state of origin: (Movement is not authorized for Pale Cyst Nematode (Movement is not authorized for Pale Cyst Nematode) (Movement is not authorized for Pale Cyst Nematode) (Movement from some Canadian Provinces is not allowed. Refer to ENV-FRM-MIN4-0137 Regulated Soil Flow REQUIREMENT REQUIREMENT ACTION COMPLETED Scan PPQ-530 To not present, contact the laboratory's designated USDA permit holder. Do NOT continue processing samples. If samples from ID may not be moved from the quarantined region. Reference ENV-SOP-MIN4-0095. Reference ENV-SOP-MIN4-			REIGN		
If QUARANTINED, circle state of origin: CA ID NY TX Includes: Fruit Fly and Pale Cyst Nematode (Movement is not authorized for Pale Cyst Nematode (ID)—remaining quarantines require additional paperw If FOREIGN, list country of origin: (Movement from some Canadian Provinces is not allowed. Refer to ENV-FRM-MIN4-0137 Regulated Soil Flow REQUIREMENT PPQ-530 Paperwork must be included for any samples from counties with a Fruit Fly Quarantine in CA, NY, and TX. Reference ENV-SOP-MIN4-0095. Samples from ID may not be moved from the quarantined region. Reference ENV-SOP-MIN4-0095. Samples from ID may not be moved from the quarantined region. Reference ENV-SOP-MIN4-0095. Reference ENV-SOP-MIN4-0095. **RefullREMENT** "Special Handling" stickers are to be placed on all samples. Samples must be segregated and stored in designated bins, shelves, and coolers. Were samples placed in a designated cooler, ocntainers, and shelves? Were there any signs of breakage or leakage (check for broken glass and/or loose soil in the cooler)? NOTE: If NO, see and melt water can be disposed of property? Any broken glass and/or loose soil are to be bagged and placed in a USDA Regulated satellite container or active drum. Was the cooler and disposed of property? Any broken glass and/or loose soil are to be bagged and placed in a USDA Regulated satellite container or active drum. Was the cooler(s) and/or countercrop(s) decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum).	Includes: IFA, SOD, Golden Nematod	e, Karnal Bunt, and Witchweed	List County:	Lane (ounty
REQUIREMENT PPQ-530 Paperwork must be included for any samples from counties with a Fruit Fly Quarantine in CA, NY, and TX. Reference ENV-SOP-MIN4-0095. Samples from ID may not be moved from the quarantined region. Reference ENV-SOP-MIN4-0095. Samples from ID may not be moved from the quarantined region. Reference ENV-SOP-MIN4-0095. REQUIREMENT Special Handling stickers are to be placed on all samples. Samples must be segregated and stored in designated bins, shelves, and coolers. Were samples placed in a designated cooler, containers? Were there any signs of breakage or leakage (check for broken glass and/or loose soil in the cooler)? NOTE: If NO, ice and melt water can be disposed of by normal process (ex. down the drain). If yes, were lice and melt water separated from the cooler and disposed of properly? Any broken glass and/or loose soil are to be bagged and placed in a USDA Regulated satellite container and supplies that have come into contact samples must be decontaminated. Equipment and supplies that have come into contact samples must be decontaminated. Was the cooler(s) and/or container or active drum).	If QUARANTINED, circle state of Includes: Fruit Fly and Pale Cyst Nem	origin: CA ID NY TX aatode	List County:		
PPQ-530 Paperwork must be included for any samples from counties with a Fruit Fly Quarantine in CA, NY, and TX. Reference ENV-SOP-MIN4-0095. Samples from ID may not be moved from the quarantined region. Reference ENV-SOP-MIN4-0095. Samples from ID may not be moved from the quarantined region. Reference ENV-SOP-MIN4-0095. If samples originated in a quarantined zone, contact the laboratory's designated USDA permit holder. Do NOT continue processing samples. If samples originated in a quarantined zone, contact the laboratory's designated USDA permit holder. Do NOT continue processing samples. REQUIREMENT Special Handling' stickers are to be placed on all samples. ACTION COMPLETED Did "special handling' stickers get placed on all sample containers? Were samples placed in a designated cooler, containers? Were samples placed in a designated cooler, containers, and shelves? Were there any signs of breakage or leakage (check for broken glass and/or loose soil in the cooler)? NOTE: If NO, ice and melt water can be disposed of by normal process (ex: down the drain). If YES, were ice and melt water separated from the cooler and disposed of properly? Any broken glass and/or loose soil are to be bagged and placed in a USDA Regulated satellite active drum (see Waste Coordinator). Ice and melt water should be baked at a temperature range of 121-154°F for 2 hours and then before going down the drain. Was the cooler(s) and/or countertop(s) decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum).	· · · · · · · · · · · · · · · · · · ·		RM-MIN4-0137 <i>I</i>	Regulated Soil Fl	ow Chart)
folder on the X:drive. If PPQ-530 is not present, contact the laboratory's designated USDA permit holder. Do NOT continue processing samples. If samples from ID may not be moved from the quarantined region. Reference ENV-SOP-MIN4-0095. Samples from ID may not be moved from the quarantined region. Reference ENV-SOP-MIN4-0095. REQUIREMENT "Special Handling" stickers are to be placed on all samples. Samples must be segregated and stored in designated bins, shelves, and coolers. Samples must be double contained to prevent accidental release. Samples must be double contained to prevent accidental release. Figure of the X:drive. If PPQ-530 is not present, contact the laboratory's designated USDA permit holder. Do NOT continue processing samples. If samples on a quarantined zone, contact the laboratory's designated USDA permit holder. Do NOT continue processing samples. REQUIREMENT ACTION COMPLETED Did "special handling" stickers get placed on all sample containers? Were samples placed in a designated cooler, containers, and shelves? Were there any signs of breakage or leakage (check for broken glass and/or loose soil in the cooler)? NOTE: If NO, ice and melt water can be disposed of by normal process (ex: down the drain). If YES, were ice and melt water separated from the cooler and disposed of property? Any broken glass and/or loose soil are to be bagged and placed in a USDA Regulated satellite active drum (see Waste Coordinator). Ice and melt water should be baked at a temperature range of 121-154"F for 2 hours and then before going down the drain. Was the cooler(s) and/or countertop(s) decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum).	REQUIREMENT	ACTION		COMPLETED	
Samples from ID may not be moved from the quarantined region. Reference ENV-SOP-MIN4-0095. Reference ENV-SOP-MIN4-0095. REQUIREMENT Special Handling" stickers are to be placed on all samples. REQUIREMENT Samples must be segregated and stored in designated bins, shelves, and coolers. Were samples placed in a designated cooler, containers, and shelves? Were samples placed in a designated cooler, containers, and shelves? Were there any signs of breakage or leakage (check for broken glass and/or loose soil in the cooler)? NOTE: If NO, ice and melt water separated from the cooler and disposed of properly? Any broken glass and/or loose soil are to be bagged and placed in a USDA Regulated satellite active drum (see Waste Coordinator). Lee and melt water should be baked at a temperature range of 121-154°F for 2 hours and then before going down the drain. Was the cooler(s) and/or countertop(s) decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum).	samples from counties with a Fruit Fly	folder on the X:drive. If PPQ-530 is not present, contact the	YES	NO	NA
contact the laboratory's designated USDA permit holder. Do NOT continue processing samples. REQUIREMENT Special Handling" stickers are to be placed on all samples. Did "special handling" stickers get placed on all sample containers? Were sample splaced in a designated cooler, containers, and shelves? Were there any signs of breakage or leakage (check for broken glass and/or loose soil in the cooler)? NOTE: If NO, ice and melt water can be disposed of by normal process (ex: down the drain). If YES, were ice and melt water separated from the cooler and disposed of properly? Any broken glass and/or loose soil are to be bagged and placed in a USDA Regulated satellite active drum (see Waste Coordinator). Ice and melt water should be baked at a temperature range of 121-154"F for 2 hours and then before going down the drain. Was the cooler(s) and/or countertop(s) decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum).	· · · · · · · · · · · · · · · · · · ·	Do NOT continue processing samples.			
REQUIREMENT "Special Handling" stickers are to be placed on all samples. Samples must be segregated and stored in designated bins, shelves, and coolers. Were samples placed in a designated cooler, containers, and shelves? Were there any signs of breakage or leakage (check for broken glass and/or loose soil in the cooler)? NOTE: If NO, ice and melt water can be disposed of by normal process (ex: down the drain). If YES, were ice and melt water separated from the cooler and disposed of properly? Any broken glass and/or loose soil are to be bagged and placed in a USDA Regulated satellite active drum (see Waste Coordinator). Ice and melt water should be baked at a temperature range of 121-154°F for 2 hours and then before going down the drain. Was the cooler(s) and/or countertop(s) decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum).	quarantined region.	contact the laboratory's designated USDA permit holder. Do NOT continue processing	YES	NO	MA
"Special Handling" stickers are to be placed on all samples. Samples must be segregated and stored in designated bins, shelves, and coolers. Were samples placed in a designated cooler, containers, and shelves? Were there any signs of breakage or leakage (check for broken glass and/or loose soil in the cooler)? NOTE: If NO, ice and melt water can be disposed of by normal process (ex. down the drain). If YES, were ice and melt water separated from the cooler and disposed of properly? Any broken glass and/or loose soil are to be bagged and placed in a USDA Regulated satellite active drum (see Waste Coordinator). Ice and melt water should be baked at a temperature range of 121-154"F for 2 hours and then before going down the drain. Was the cooler(s) and/or countertop(s) decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum).	DECLUDENTAL			COMPLETED	
Samples must be segregated and stored in designated bins, shelves, and coolers. Samples must be double contained to prevent accidental release. Samples must be double contained to prevent accidental release. Samples must be double contained to prevent accidental release. Samples must be double contained to prevent accidental release. Samples must be double contained to prevent accidental release. Samples must be double contained to prevent accidental release. Samples must be double contained to prevent accidental release. Samples placed in a designated cooler, containers, and shelves? Were there any signs of breakage or leakage (check for broken glass and/or loose soil in the cooler.)? NO NOTE: If NO, ice and melt water can be disposed of by normal pracess (ex: down the drain). If YES, were ice and melt water separated from the cooler and disposed of properly? Any broken glass and/or loose soil are to be bagged and placed in a USDA Regulated satellite active drum (see Waste Coordinator). Ice and melt water should be baked at a temperature range of 121-154°F for 2 hours and then before going down the drain. Was the cooler(s) and/or countertop(s) decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum).				COMPLETED	T
Containers, and shelves? Were there any signs of breakage or leakage (check for broken glass and/or loose soil in the cooler)? NOTE: If NO, ice and melt water can be disposed of by normal process (ex: down the drain). If YES, were ice and melt water separated from the cooler and disposed of properly? Any broken glass and/or loose soil are to be bagged and placed in a USDA Regulated satellite active drum (see Waste Coordinator). Ice and melt water should be baked at a temperature range of 121-154°F for 2 hours and then before going down the drain. Was the cooler(s) and/or countertop(s) decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum).	all samples.	sample containers?	YES	NO	M/A
(check for broken glass and/or loose soil in the cooler)? NOTE: If NO, ice and melt water can be disposed of by normal process (ex: down the drain). If YES, were ice and melt water separated from the cooler and disposed of properly? Any broken glass and/or loose soil are to be bagged and placed in a USDA Regulated satellite active drum (see Waste Coordinator). Ice and melt water should be baked at a temperature range of 121-154°F for 2 hours and then before going down the drain. Was the cooler(s) and/or countertop(s) decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum).		containers, and shelves?	YES	NO	(N/A)
Samples must be double contained to prevent accidental release. by normal process (ex: down the drain).		(check for broken glass and/or loose soil in the cooler)?	YES	NO	MTA
the cooler and disposed of properly? Any broken glass and/or loose soil are to be bagged and placed in a USDA Regulated satellite active drum (see Waste Coordinator). Ice and melt water should be baked at a temperature range of 121-154°F for 2 hours and then before going down the drain. Was the cooler(s) and/or countertop(s) decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum).		by normal process (ex: down the drain).			
active drum (see Waste Coordinator). Ice and melt water should be baked at a temperature range of 121-154°F for 2 hours and then before going down the drain. Was the cooler(s) and/or countertop(s) decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum).	accidental release.	the cooler and disposed of properly?			M/73
before going down the drain. Was the cooler(s) and/or countertop(s) decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum).		1	na piacea in a USL	A Regulated Satel	ite container o
decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum). decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or active drum).		1	range of 121-154°	F for 2 hours and t	hen cooled
COMMENTS:		decontaminated using either a fresh 10% bleach solution or 70% ethanol? (Gloves and other lab supplies will be bagged and placed in the USDA Regulated satellite container or	YES		(NO)
	COMMENTS:				

Qualtrax ID: 52751 Page 1 of 2

DC#_Title: ENV-FRM-MIN4-0154 v02_USDA Regulated Soil Checklist

Effective Date: 08/19/2022

ACTION		COMPLETED	
Go to: S:\CLIENTSVR\10_Client Services Department Documents\Regulated Soils Permits\Permission to Ship If permission to ship letter is not there, contact the laboratory's designated USDA permit holder.	YES	NO	N/A)
Is a copy of all needed paperwork included with the COC? Do NOT ship samples until all necessary paperwork is compiled.	YES	NO	(N/A)
	Go to: S:\CLIENTSVR\10_Client Services Department Documents\Regulated Soils Permits\Permission to Ship If permission to ship letter is not there, contact the laboratory's designated USDA permit holder. Is a copy of all needed paperwork included with the COC? Do NOT ship samples until all necessary	Go to: S:\CLIENTSVR\10_Client Services Department Documents\Regulated Soils Permits\Permission to Ship If permission to ship letter is not there, contact the laboratory's designated USDA permit holder. Is a copy of all needed paperwork included with the COC? YES Do NOT ship samples until all necessary	Go to: S:\CLIENTSVR\10_Client Services Department Documents\Regulated Soils Permits\Permission to Ship If permission to ship letter is not there, contact the laboratory's designated USDA permit holder. Is a copy of all needed paperwork included with the COC? YES NO Do NOT ship samples until all necessary

Qualtrax ID: 52751 Page 2 of 2

Pace Analytical®

1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

www.pacelabs.com

Reporting Flags

A = Reporting Limit based on signal to noise (EDL

B = Less than 10x higher than method blank level

C = Result obtained from confirmation analysis

D = Result obtained from analysis of diluted sample

E = Exceeds calibration range

H2 = Extracted outside of holding time

I = Isotope ratio out of specification

J = Estimated value

L = Suppressive interference, analyte may be biased low

Nn = Value obtained from additional analysis

P = PCDE Interference

R = Recovery outside target range

S = Peak saturated

U = Analyte not detected

V = Result verified by confirmation analysis

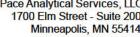
X = %D Exceeds limits

Y = Calculated using average of daily RFs

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Pace Analytical Services, LLC


1700 Elm Street, Suite 200 Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

Appendix B

Sample Analysis Summary

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Method 1613B Sample Analysis Results

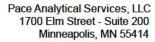
Client - Pace Analytical National

Client's Sample ID DU-06B-1.5-2.0 0423 Lab Sample ID 10650019004 Filename Y230519A_04 Injected By AH5

Total Amount Extracted Solid 10.6 g Matrix % Moisture Dilution NA 4.2 10.2 g Dry Weight Extracted Collected

04/05/2023 14:40 Y211220 ICAL ID Received 04/19/2023 08:50 CCal Filename(s) Y230519A 02 Extracted 04/21/2023 14:15 BLANK-105427 Method Blank ID Analyzed 05/19/2023 15:53

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND	_	0.14 0.14	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	57 50 67
2,3,7,8-TCDD Total TCDD	ND 0.23	402 TO 604	0.21 0.21 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	65 70 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	\equiv	0.15 0.16 0.15	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	66 65 63 68
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.23 0.23	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 59 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND	0.11	0.094 JJ 0.11 0.091	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	59 57
1,2,3,7,8,9-HxCDF Total HxCDF	0.18 0.18		0.099 J 0.091 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.22 1.9	0.19 0.15	0.14 J 0.12 J 0.12 J 0.12 J	2,3,7,8-TCDD-37Cl4	0.20	55
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.2 ND 1.2		0.35 J 0.40 0.35 J	Total 2,3,7,8-TCDD Equivalence: 0.19 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	6.6 17	962 1 (\$114) 962 - 1414	0.090 0.090			
OCDF OCDD	4.5 73	62.1804 63.000	0.12 J 0.14			


Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

REPORT OF LABORATORY ANALYSIS

I = Isotope ratio out of specification

Pace Analytical Method 1613B Sample Analysis Results

Client - Pace Analytical National

Client's Sample ID Lab Sample ID Filename Injected By

CCal Filename(s)

Method Blank ID

ICAL ID

DU-106B-1.5-2.0_0423 10650019007 Y230519A_05 AH5

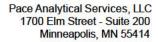
Total Amount Extracted % Moisture
Dry Weight Extracted

10.4 g 4.0 10.00 g Y211220 Y230519A_02 BLANK-105427 Matrix Solid Dilution NA

Collected 04/05/2023 14:55
Received 04/19/2023 08:50
Extracted 04/21/2023 14:15
Analyzed 05/19/2023 16:32

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND	_	0.16 0.16	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	61 53 74
2,3,7,8-TCDD Total TCDD	ND 0.42		0.28 0.28 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	76 80 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.17 0.17 0.17	1,2,3,4,7,0-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 73 67 72
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.28 0.28	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	78 66 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND	<u> </u>	0.13 0.11 0.10 0.088	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00 2.00 2.00	63 64 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.33	0.19 0.18 0.19	0.088 J 0.14 J 0.13 J 0.12 J 0.12 J	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	0.20	NA 57
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 ND 2.9		0.17 J 0.21 0.17 J	Total 2,3,7,8-TCDD Equivalence: 0.16 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	7.0 15		0.21 0.21			
OCDF OCDD	4.0 62	407 - 163445 403 - 163445	0.25 J 0.13			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable NC = Not Calculated


EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

REPORTOFLABORATORYANALYSIS

I = Isotope ratio out of specification

Method 1613B Sample Analysis Results

Client - Pace Analytical National

<u> Pace Analytical</u>

Total Amount Extracted 10.5 g Matrix Solid % Moisture 3.9 Dilution NA

Dry Weight Extracted 10.1 g Collected 04/04/2023 14:15 ICAL ID Y211220 Received 04/19/2023 08:50 CCal Filename(s) Y230519A 02 Extracted 04/24/2023 14:30 Method Blank ID BLANK-105447 Analyzed 05/19/2023 17:11

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.24 0.24	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	60 55 70
2,3,7,8-TCDD Total TCDD	1.6 1.9		0.33 0.33	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	70 74 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 1.4	=	0.21 0.23 0.21 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	71 67 70 66
1,2,3,7,8-PeCDD Total PeCDD	ND 0.57	<u> </u>	0.38 0.38 J	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	71 62 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.91 0.38 0.39		0.21 J 0.20 J 0.20 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	57 60
1,2,3,7,8,9-HxCDF Total HxCDF	9.0	0.21	0.17 N 0.17	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.59 1.5 0.95 12		0.27 BJ 0.24 J 0.25 J 0.24	2,3,7,8-TCDD-37Cl4	0.20	53
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	6.7 ND 20		0.28 0.29 0.28	Total 2,3,7,8-TCDD Equivalence: 2.7 ng/Kg (Lower-bound - Using 2005	WHO Factor	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	43 92	-	0.054 0.054			
OCDF OCDD	21 390		0.18 0.23			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

I = Isotope ratio out of specification

REPORT OF LABORATORY ANALYSIS

Method 1613B Sample Analysis Results

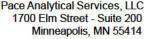
Client - Pace Analytical National

Client's Sample ID DU-11A-2.5-3.0 0423 Lab Sample ID 10650019028 Filename Y230519A_07 Injected By AH5

Total Amount Extracted Solid 10.6 g Matrix % Moisture Dilution NA 4.0

10.2 g Dry Weight Extracted Collected 04/04/2023 14:20 Y211220 ICAL ID Received 04/19/2023 08:50 CCal Filename(s) Y230519A 02 Extracted 04/24/2023 14:30 BLANK-105447 05/19/2023 17:50 Method Blank ID Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.25 0.25	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	76 67 84
2,3,7,8-TCDD Total TCDD	ND ND		0.56 0.56	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	87 86 92
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.31 0.32 0.31	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	92 95 90 78 88
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.57 0.57	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	99 83 80
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND	0.37	0.26 JJ 0.28 0.31	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	75 73
1,2,3,7,8,9-HxCDF Total HxCDF	ND 1.3		0.31 0.26 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.50 2.4	0.62	0.39 0.35 JJ 0.40 J 0.35 J	2,3,7,8-TCDD-37Cl4	0.20	66
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 5.6	2.7	0.43 J 0.51 0.43	Total 2,3,7,8-TCDD Equivalence: 0.43 ng/Kg (Lower-bound - Using 2005	WHO Facto	rs)
1,2,3,4,6,7,8-HpCDD Total HpCDD	20 43		0.49 0.49			
OCDF OCDD	8.3 170		0.49 J 0.59			


Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

J = Estimated value

I = Isotope ratio out of specification

Pace Analytical Services, LLC <u> Pace Analytical</u> Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - Pace Analytical National

EB-02-0423 Client's Sample ID Lab Sample ID 10650019037 Filename U230522B_12 Injected By SMT **Total Amount Extracted** 979 mL % Moisture NA

Dry Weight Extracted NA ICAL ID U230517 CCal Filename(s) U230522A 18

BLANK-105422

Method Blank ID

Matrix Water Dilution NA Collected

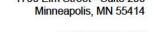
04/05/2023 15:05 04/19/2023 08:50

Received Extracted 04/21/2023 11:00 05/23/2023 07:17 Analyzed

Native Isomers	Conc pg/L	EMPC pg/L	EDL pg/L	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.94 0.94	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	88 77 104
2,3,7,8-TCDD Total TCDD	ND ND		1.3 1.3	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	99 100 93
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		1.4 0.79 0.79	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HXCDF-13C 2,3,4,6,7,8-HXCDF-13C 1,2,3,7,8,9-HXCDF-13C 1,2,3,4,7,8-HXCDD-13C	2.00 2.00 2.00 2.00 2.00	85 87 86 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		1.6 1.6	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	81 64 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND ND ND ND ND ND ND ND ND ND N		1.3 1.6 1.6 2.1	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	71 55 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.3 ND 3.3	1.4	1.3 J 1.4 J 1.4 J 1.5 1.4 J	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	79 ND 140		2.4 2.6 2.4	Total 2,3,7,8-TCDD Equivalence: 1.5 pg/L (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	15 27		1.3 J 1.3 J			
OCDF OCDD	72 160		4.9 J 6.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration


EDL = Estimated Detection Limit

ND = Not Detected NA = Not Applicable

NC = Not Calculated

J = Estimated value

I = Isotope ratio out of specification

Method 1613B Blank Analysis Results

Lab Sample Name Lab Sample ID Filename Total Amount Extracted

Total Amount Extracted ICAL ID CCal Filename(s)

DFBLKKC BLANK-105422 L230425A_12 1000 mL L230302 L230425A_01

Matrix Water
Dilution NA

Extracted 04/21/2023 11:00 Analyzed 04/25/2023 16:41

Injected By SMT

Native Isomers	Conc pg/L	EMPC pg/L	EDL pg/L	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.3 1.3	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 64 73
2,3,7,8-TCDD Total TCDD	ND ND		1.7 1.7	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	75 75 75 77
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.91 0.63 0.63	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HXCDF-13C 2,3,4,6,7,8-HXCDF-13C 1,2,3,7,8,9-HXCDF-13C 1,2,3,4,7,8-HXCDD-13C	2.00 2.00 2.00 2.00 2.00	76 76 76 65 65
1,2,3,7,8-PeCDD Total PeCDD	ND ND	_	1.2 1.2	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	75 58 53
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND	1.5	0.96 0.91 0.67 1.2 JJ 0.67	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 4.00 2.00 2.00 2.00	64 46 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	==	2.0 1.7 1.6 1.6	2,3,7,8-TCDD-37Cl4	0.20	70
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	2.7 3.1 2.7	Total 2,3,7,8-TCDD Equivalence: 0.16 pg/L (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		3.4 3.4			
OCDF OCDD	ND 7.1		5.1 5.9 J			

Conc=Concentration (Totals include 2, 3, 7, 8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

J = Estimated value

I = Isotope ratio out of specification

REPORT OF LABORATORY ANALYSIS

Method 1613B Blank Analysis Results

Lab Sample Name Lab Sample ID Filename **Total Amount Extracted**

<u> Pace Analytical</u>

ICAL ID

CCal Filename(s)

DFBLKKM BLANK-105447 L230428B_08 20.5 g L230302

L230428B_01

Matrix Solid Dilution NA

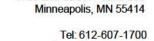
Extracted 04/24/2023 14:30 04/28/2023 21:08 Analyzed

Injected By **JRH**

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.069 0.069	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	69 57 87
2,3,7,8-TCDD Total TCDD	ND ND		0.084 0.084	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	88 89 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.043 0.036 0.036	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 71 66 61
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.062 0.062	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	71 58 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND		0.046 0.047 0.040 0.068 0.040	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 4.00 2.00 2.00 2.00	63 54 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.11 ND ND 0.11		0.080 J 0.073 0.081 0.073 J	2,3,7,8-TCDD-37Cl4	0.20	55
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.091 0.19 0.091	Total 2,3,7,8-TCDD Equivalence: 0.011 ng/Kg (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.090 0.090			
OCDF OCDD	ND 	0.39	0.21 0.23 JJ			

Conc = Concentration (Totals include 2, 3, 7, 8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration


EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Isotope ratio out of specification

REPORT OF LABORATORY ANALYSIS

Fax: 612-607-6444

Method 1613B Blank Analysis Results

Lab Sample Name Lab Sample ID Filename Total Amount Extracted

I otal Amount Extracted ICAL ID

CCal Filename(s)

DFBLKKE BLANK-105427 L230502B_03 10.3 g L230501

L230502A_24

Matrix Dilution Extracted Solid NA

Extracted 04/21/2023 14:15 Analyzed 05/03/2023 01:31

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.16 0.16	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	60 56 64
2,3,7,8-TCDD Total TCDD	ND ND		0.27 0.27	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	70 71 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.090 0.079 0.079	1,2,3,4,7,0-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	74 74 73 61 70
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.14 0.14	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	82 65 59
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND	<u> </u>	0.13 0.12 0.11 0.18	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	65 49 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.11 0.11 0.13 0.11 0.11	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 60
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.16 0.29 0.16	Total 2,3,7,8-TCDD Equivalence: 0.00 ng/Kg (Lower-bound - Using 2005	WHO Facto	ors)
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.21 0.21			
OCDF OCDD	ND ND		0.54 0.62			

Conc=Concentration (Totals include 2, 3, 7, 8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

Fax: 612-607-6444

Method 1613B Laboratory Control Spike Results

 Lab Sample ID
 LCS-105423

 Filename
 L230425A_09

 Total Amount Extracted
 1010 mL

 ICAL ID
 L230302

CCal Filename L230425A_01
Method Blank ID BLANK-105422

Matrix Water Dilution NA

Extracted 04/21/2023 11:00 Analyzed 04/25/2023 14:27

Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 0CDF 0CDD	10 10 50 50 50 50 50 50 50 50 100 100	9.4 9.6 47 48 43 48 49 50 49 52 48 52 46 47 42 99 100	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 82.0 67.0 81.0 69.0 70.0 170.0 144.0	94 96 93 96 86 98 100 98 104 97 103 92 95 84 99
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	10 100 100 100 100 100 100 100 100 100	7.0 75 66 75 76 81 82 80 70 69 74 60 56 65 93	3.1 22.0 20.0 21.0 13.0 21.0 21.0 22.0 17.0 21.0 25.0 21.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	70 75 66 75 75 76 81 82 80 70 69 74 60 56 65 46

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)


Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{*=}SeeDiscussion

Fax: 612-607-6444

Method 1613B Laboratory Control Spike Results

 Lab Sample ID
 LCS-105448

 Filename
 L230428B_02

 Total Amount Extracted
 20.4 g

 ICAL ID
 L230302

CCal Filename L230428B_01
Method Blank ID BLANK-105447

Matrix Solid Dilution NA

Extracted 04/24/2023 14:30 Analyzed 04/28/2023 16:42

Injected By JRH

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 50 50 50 50	10.0 11 48 48 47 50 52 50 49 54 51 51 49 46 110	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 69.0 70.0 170.0	100 108 96 97 93 100 104 100 98 107 102 101 101 99 92 107 114
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	10 100 100 100 100 100 100 100 100 100	5.6 67 56 81 82 81 70 72 69 61 60 73 57 53 60 99	3.1 22.0 20.0 21.0 13.0 21.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	56 67 56 81 82 81 70 72 69 61 60 73 57 53 60 49

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{*=}SeeDiscussion

Solid

04/21/2023 14:15

NA

Fax: 612-607-6444

Method 1613B Laboratory Control Spike Results

Matrix

Dilution

Lab Sample ID LCS-105428 Filename L230502B_01 **Total Amount Extracted** 10.4 g

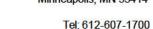
ICAL ID L230501 Extracted CCal Filename L230502A 24 Analyzed

05/03/2023 00:02 Method Blank ID BLANK-105427 Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 50 50 50 50	11 11 50 52 49 50 53 54 53 56 54 49 55 51 120 120	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 69.0 70.0 170.0	109 110 100 104 98 101 106 107 106 113 109 98 109 109 109 101 116 117
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	10 100 100 100 100 100 100 100 100 100	5.4 56 52 67 74 75 71 76 72 61 70 78 60 53 58	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	54 56 52 67 74 75 71 76 72 61 70 78 60 53 58 43

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)


Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{*=}See Discussion

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCSD-105424 Filename L230425A 10 **Total Amount Extracted** 987 mL ICAL ID L230302

<u> Pace Analytical</u>

CCal Filename

L230425A 01 Method Blank ID BLANK-105422

Water Matrix Dilution NA

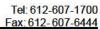
Extracted 04/21/2023 11:00 Analyzed 04/25/2023 15:12

Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDD 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 50 50 50 50	9.4 9.6 46 43 48 49 48 49 51 46 48 45 46 40 95 100	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0	94 96 92 92 86 96 97 96 99 102 92 97 90 92 80 95 103
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	10 100 100 100 100 100 100 100 100 100	7.8 87 77 89 90 89 93 94 92 80 80 89 65 77	3.1 22.0 20.0 21.0 13.0 21.0 21.0 22.0 17.0 21.0 25.0 21.0 26.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	78 87 77 89 90 89 93 94 92 80 80 89 69 65 77 56

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)


Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{*=}See Discussion

Method 1613B

Spike Recovery Relative Percent Difference (RPD) Results

Client Pace Analytical National

 Spike 1 ID
 LCS-105423
 Spike 2 ID
 LCSD-105424

 Spike 1 Filename
 L230425A_09
 Spike 2 Filename
 L230425A_10

Compound	Spike 1 %REC	Spike 2 %REC	%RPD	
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD	94 96 93 96 86 96 98 100 98	94 96 92 92 92 86 96 97 96 99	0.0 0.0 1.1 4.3 0.0 0.0 1.0 4.1 1.0	
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	97 103 92 95 84 99 105	92 97 90 92 80 95 103	5.3 6.0 2.2 3.2 4.9 4.1 1.9	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Stage 2A/B Data Validation Checks JH Baxter Delivery Group L1605173/10650019

Comments:

• U-qualified samples assigned by the laboratory are not included in this report unless the U qualification is for some other reason other than a simple non-detect.

SUMMARY OF QUALITY CONTROL CHECKS

Quality Control Check	Check ed By	Comment
Completeness	MBF	The data set is 100 percent complete, no results rejected.
Holding times	MBF	Holding times were within the method specific recommended holding times.
Preservation	MBF	Preservation was acceptable.
COC Documentation	MBF	COC was provided in the lab report.
Analytical methods	MBF	EPA 1613B
		Requested analytical methods were performed.
Initial and continuing calibrations	MBF	Not independently verified during Stage 2A/B validation.
Method blanks, trip blank, and field blanks	MBF	Method blanks were performed per batch and there were no detections and associated QC were within established control limits except for:
		• Blank-105422
		o 1,2,3,7,8,9-HxCDF 1.5 J+
		o OCDD 7.1 J
		• Blank-105477
		o 1,2,3,4,7,8-HxCDD 0.11 J
		o Total HxCDD 0.073 J
		OCDD 0.39 J+
		Associated sample results were greater than 5X method blank contamination.
		• Equipment Blank (EB-02_0423)
		o Total HxCDF 18 J
		o 1,2,3,4,7,8-HxCDD 1.4 J
		o 1,2,3,6,7,8-HxCDD 1.4 J+
		o Total HxCDD 3.3 J
		o 1,2,3,4,6,7,8-HpCDF 79
		o Total HpCDF 140
		o 1,2,3,4,6,7,8-HpCDD 15 J
		o Total HpCDD 27 J
		o OCDF 72 J
		o OCDD 160
		Raw results not reviewed during 2A/B. Equipment blank results (pg/L) and sample results (ng/kg) not directly comparable. Results not qualified.

Quality Control Check	Check ed By	Comment		
Surrogate/labeled compounds	MBF	Labeled compounds were analyzed and within control limits.		
LCS/LCSD	MBF	An LCS was analyzed per batch. Recoveries were within established control limits.		
MS/MSD	MBF	MS/MSD on non-SDG samples were performed an stated in the narrative to be within control limits. Result not included in lab report.		
Field duplicates	MBF	Field duplicates were collected and analyzed:		
		• Primary: DU-06B-1.5-2.0_0423		
		• Duplicate: DU-106B-1.5-2.0_0423		
		Results were within 50% solid organic RPD limit except.		
Lab duplicates	MBF	Lab sample duplicates were not performed or required per the method.		
Dilution	MBF	Samples did not require further dilution for analysis.		
Qualitative Identification for HRGC/HRMS	MBF	The following results were EMPCS:		
analyses only		• DU-06B-1.5-2.0_0423		
		o 1,2,3,4,7,8-HxCDF		
		o 1,2,3,6,7,8-HxCDD		
		o 1,2,3,7,8,9-HxCDD		
		• DU-106B-1.5-2.0_0423		
		o 1,2,3,4,7,8-HxCDD		
		o 1,2,3,6,7,8-HxCDD		
		o 1,2,3,7,8,9-HxCDD		
		• DU-11A-2.0-2.5_0423		
		o 1,2,3,7,8,9-HxCDF		
		• DU-11A-2.5-3.0_0423		
		o 1,2,3,4,6,7,8-HpCDF		
		o 1,2,3,4,7,8-HxCDF		
		o 1,2,3,6,7,8-HxCDD		
		• EB-02-0423		
		o 1,2,3,6,7,8-HxCDD		
		EMPC results had isotope ratios that were out of specification. EMPC results qualified J+.		

Overall Assessment

Qualifier codes added to results; table and notes below.

Notes

TABLE 1. SUMMARY OF OUALIFIED DATA

Sample ID	ARY OF QUALIFIED DAT Analyte	Result (ng/kg)	Qualifier	Descen for Qualification
Sample 1D	97/	3 7 70	Assigned	Reason for Qualification
	1,2,3,4,6,7,8-HpCDF	1.2		
	1,2,3,4,7,8-HxCDD	0.22		
	1,2,3,7,8,9-HxCDF	0.18		
DU-06B-1.5-2.0_0423	OCDF	4.5	J	Below reporting limit
DO-00B-1.5-2.0_0423	Total HpCDF	1.2	,	
	Total HxCDD	1.9		
	Total HxCDF	0.18		
	Total TCDD	0.23		
	1,2,3,4,7,8-HxCDF	0.11		EMPC,
DU-06B-1.5-2.0 0423	1,2,3,6,7,8-HxCDD	0.19	J+	Isotope ratio out of spec,
DC 00D 1.5 2.0_0425	1,2,3,7,8,9-HxCDD	0.15		Below reporting limit
	1,2,5,7,0,7 11xcDD	0.13		
	1,2,3,4,6,7,8-HpCDF	1		
	OCDF	4		
	Total HpCDF	2.9		
DU-106B-1.5-2.0_0423	Total HxCDD	1.2	J	Below reporting limit
		0.33		
	Total HxCDF			
	Total TCDD	0.42		EMOC
	1,2,3,4,7,8-HxCDD	0.19		EMPC,
DU-106B-1.5-2.0_0423	1,2,3,6,7,8-HxCDD	0.18	J+	Isotope ratio out of spec,
=	1,2,3,7,8,9-HxCDD	0.19		Below reporting limit
	1,2,3,4,7,8-HxCDD	0.59		
	1,2,3,4,7,8-HxCDF	0.91		
	1,2,3,6,7,8-HxCDD	1.5		
DU-11A-2.0-2.5_0423	1,2,3,6,7,8-HxCDF	0.38	J	Below reporting limit
	1,2,3,7,8,9-HxCDD	0.95		
	2,3,4,6,7,8-HxCDF	0.39		
	Total PeCDD	0.57		
	Total PeCDF	1.4		TI OC
				EMPC,
DU-11A-2.0-2.5_0423	1,2,3,7,8,9-HxCDF	0.21	J+	Isotope ratio out of spec,
;; 				Below reporting limit
	1 2 2 7 9 0 H ₂ CDD	0.5		
	1,2,3,7,8,9-HxCDD			
DU-11A-2.5-3.0_0423	OCDF	8.3	J	Below reporting limit
	Total HxCDD	2.4		
	Total HxCDF	1.3		
	1,2,3,4,6,7,8-HpCDF	2.7		EMPC,
DU-11A-2.5-3.0_0423	1,2,3,4,7,8-HxCDF	0.37	J+	Isotope ratio out of spec,
DO-11A-2.5-3.0_0423	1,2,3,6,7,8-HxCDD	0.62	31	Below reporting limit
	1,2,3,0,7,8-11xCDD	0.02		
	1,2,3,4,6,7,8-HpCDD	15 pg/l		
	1,2,3,4,7,8-HxCDD	3.3 pg/l		
ED 02 0422	OCDF	72 pg/l	7	Delaw reporting limit
EB-02-0423	Total HpCDD	27 pg/l	J	Below reporting limit
	Total HxCDD	3.3 pg/l		
	Total HxCDF	18 pg/l		
				EMPC,
ED 00 0400				Isotope ratio out of spec,
EB-02-0423	1,2,3,6,7,8-HxCDD	1.4 pg/l	J+	Below reporting limit
				emonatura Province O

-APPENDIX C----June 2022 Discrete and Increment Sample Locations

2022 DU-09

Soil Sample Increment Locations

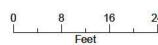
Former JH Baxter & Co. Facility Offsite Investigation Report Eugene, OR

LEGEND

O ISM

Composite A

Composite B


Surface Soil Area (2,248 SF)

Decision Unit

NOTE

ISM and Composite points locations are estimates.
Point locations were collected using GPS equipment at the time of sampling; however, some data point locations have been adjusted due to GPS accuracy or variations between the GPS coordinate system and the base map imagery.

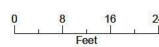
2022 DU-10 Soil Sample Increment Locations

Former JH Baxter & Co. Facility
Offsite Investigation Report
Eugene, OR

LEGEND

Composite A

Composite B


Surface Soil Area (3,376 SF)

Decision Unit

NOTE

ISM and Composite points locations are estimates. Point locations were collected using GPS equipment at the time of sampling; however, some data point locations have been adjusted due to GPS accuracy or variations between the GPS coordinate system and the base map imagery.

2022 DU-11

Soil Sample Increment Locations

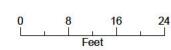
Former JH Baxter & Co. Facility Offsite Investigation Report Eugene, OR

LEGEND

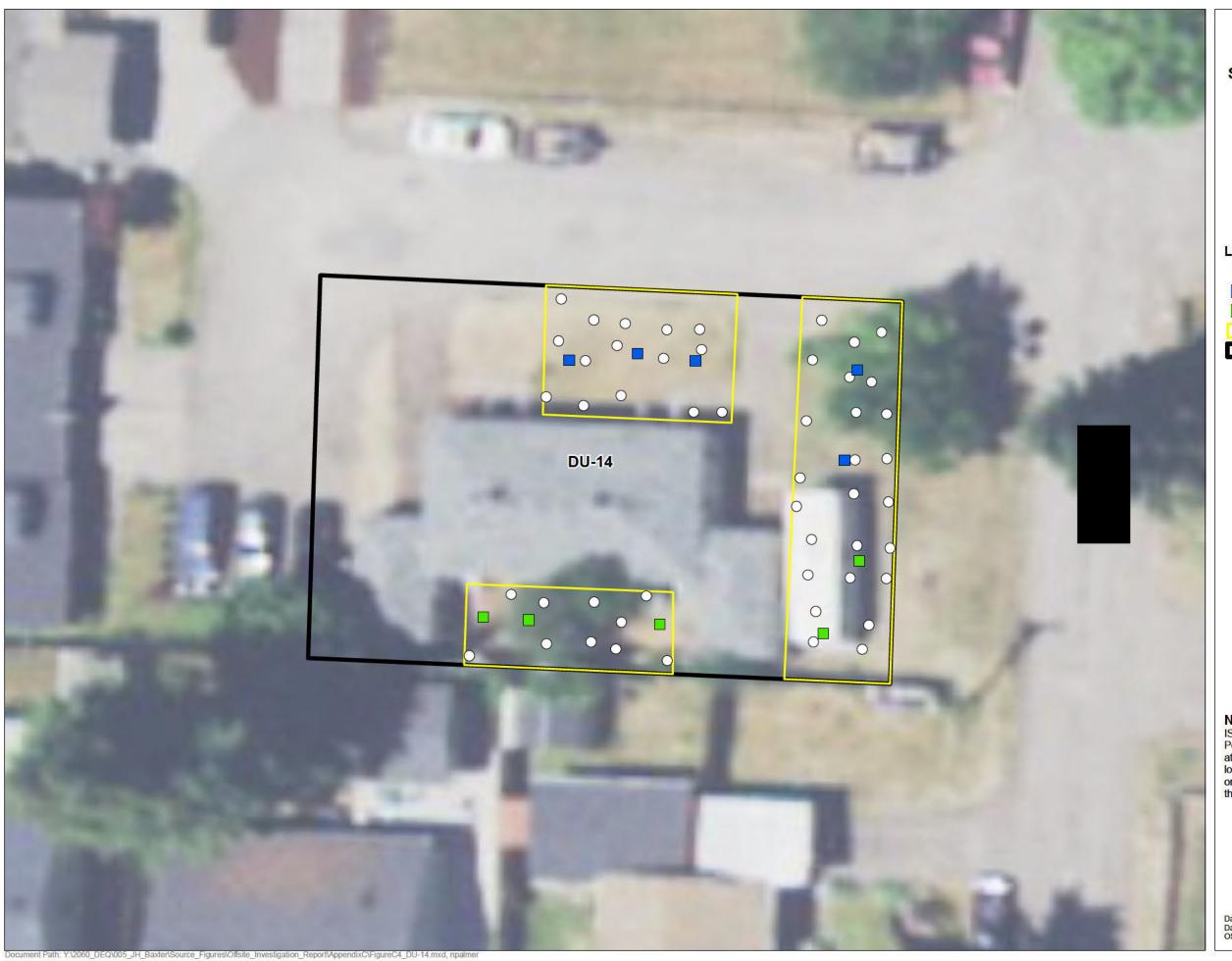
O ISM

Composite A

Composite B


Total Surface Soil Area (8325 SF) Backyard Soil Area (5,763 SF)

Decision Unit


NOTE

ISM and Composite points locations are estimates.
Point locations were collected using GPS equipment at the time of sampling; however, some data point locations have been adjusted due to GPS accuracy or variations between the GPS coordinate system and the base map imagery.

2022 DU-14

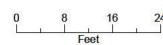
Soil Sample Increment Locations

Former JH Baxter & Co. Facility
Offsite Investigation Report Eugene, OR

LEGEND

O ISM

Composite A


Composite B

Surface Soil Area (2,334 SF)

Decision Unit

NOTE
ISM and Composite points locations are estimates.
Point locations were collected using GPS equipment at the time of sampling; however, some data point locations have been adjusted due to GPS accuracy or variations between the GPS coordinate system and the base man imagent. the base map imagery.

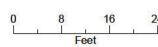
2022 DU-15 Soil Sample Increment Locations

Former JH Baxter & Co. Facility Offsite Investigation Report Eugene, OR

LEGEND

O ISM

Composite A


Composite B

Surface Soil Area (8,321 SF)

Decision Unit

NOTE
ISM and Composite points locations are estimates.
Point locations were collected using GPS equipment at the time of sampling; however, some data point locations have been adjusted due to GPS accuracy or variations between the GPS coordinate system and the base man imagent. the base map imagery.

-APPENDIX D----April 2023 Discrete and Increment Sample Locations

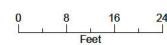
2023 DU-09

Soil Sample Increment Locations

Former JH Baxter & Co. Facility Offsite Investigation Report Eugene, OR

LEGEND

Composite A


Composite B

Surface Soil Area (2,248 SF)

Decision Unit

NOTE
ISM and Composite points locations are estimates.
Point locations were collected using GPS equipment at the time of sampling; however, some data point locations have been adjusted due to GPS accuracy or variations between the GPS coordinate system and the base man imagent. the base map imagery.

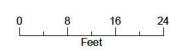
2023 DU-10 Soil Sample Increment Locations

Former JH Baxter & Co. Facility
Offsite Investigation Report Eugene, OR

LEGEND

Composite A

Composite B


Surface Soil Area (3,376 SF)

Decision Unit

NOTE

ISM and Composite points locations are estimates.
Point locations were collected using GPS equipment at the time of sampling; however, some data point locations have been adjusted due to GPS accuracy or variations between the GPS coordinate system and the base map imagery.

Date: September 6, 2024 Data Sources: BLM, ESRI, ODOT, USGS, OSIP Imagery (2018)

Document Path: Y:\2060_DEQ\005_JH_Baxter\Source_Figures\Offsite_Investigation_Report\AppendixD\FigureD2_DU-10_2023.mxd, npalmer

2023 DU-11

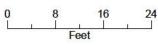
Soil Sample Increment Locations

Former JH Baxter & Co. Facility Offsite Investigation Report Eugene, OR

LEGEND

Composite A

Composite B


Total Surface Soil Area (8325 SF) Backyard Soil Area (5,763 SF)

Decision Unit

NOTE

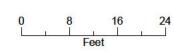
ISM and Composite points locations are estimates. Point locations were collected using GPS equipment at the time of sampling; however, some data point locations have been adjusted due to GPS accuracy or variations between the GPS coordinate system and the base map imagery.

2023 DU-15 Soil Sample Increment Locations

Former JH Baxter & Co. Facility Offsite Investigation Report Eugene, OR

LEGEND

Composite A


Composite B

Surface Soil Area (8,321 SF)

Decision Unit

NOTE
ISM and Composite points locations are estimates.
Point locations were collected using GPS equipment at the time of sampling; however, some data point locations have been adjusted due to GPS accuracy or variations between the GPS coordinate system and the base man imagent. the base map imagery.

2023 AP-01

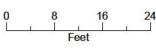
Soil Sample Increment Locations

Former JH Baxter & Co. Facility
Offsite Investigation Report
Eugene, OR

LEGEND

Composite A

Composite B


Surface Soil Area (8,028 SF)

Decision Unit

NOTE

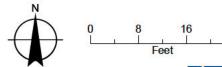
ISM and Composite points locations are estimates. Point locations were collected using GPS equipment at the time of sampling; however, some data point locations have been adjusted due to GPS accuracy or variations between the GPS coordinate system and the base map imagery.

2023 SO-06 Soil Sample Increment Locations

Former JH Baxter & Co. Facility Offsite Investigation Report Eugene, OR

LEGEND

Composite A


Composite B

Surface Soil Area (8,522 SF)

Decision Unit

NOTE

ISM and Composite points locations are estimates.
Point locations were collected using GPS equipment at the time of sampling; however, some data point locations have been adjusted due to GPS accuracy or variations between the GPS coordinate system and the base map imagery.

2023 SO-07

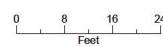
Soil Sample Increment Locations

Former JH Baxter & Co. Facility
Offsite Investigation Report
Eugene, OR

LEGEND

Composite A

Composite B


Surface Soil Area (6,886 SF)

Decision Unit

NOTE

ISM and Composite points locations are estimates. Point locations were collected using GPS equipment at the time of sampling; however, some data point locations have been adjusted due to GPS accuracy or variations between the GPS coordinate system and the base map imagery.

Date: September 6, 2024 Data Sources: BLM, ESRI, ODOT, USGS, OSIP Imagery (2018)

DT, USGS, Water Solutions

-APPENDIX E----**Arborist Reports**