First Semi-Annual 2025 Groundwater Monitoring Results

Terminal Core Redevelopment Portland International Airport

Prepared for:

Port of Portland

October 6, 2025 Project No. M0232.17.090

Prepared by:

Maul Foster & Alongi, Inc. 3140 NE Broadway, Portland, OR 97232

First Semi-Annual 2025 Groundwater Monitoring Results

Terminal Core Redevelopment

The material and data in this report were prepared under the supervision and direction of the undersigned.

Maul Foster & Alongi, Inc.

Michael Pickering, RG Principal Geologist

Chris Clough

Project Environmental Scientist

Contents

ΑŁ	brevia	tions and Acronyms	. V
1	Intro	duction	.1
2	Back	ground	.1
	2.1	Site Description	.1
	2.2	Geology and Hydrogeology	.1
	2.3	City of Portland Well Field	
	2.4	Environmental Conditions	.2
	2.5	TCORE Baseline Monitoring Preparation	.3
3	May :	2025 Groundwater Sampling	.3
	3.1	Preparatory Activities	.3
	3.2	Field Activities	.4
	3.3	Groundwater Elevation and Gradients	.4
	3.4	Analytical Results	.5
4	Data	Evaluation	.5
5	Apex	Forensics Review	.6
6	Conc	lusions and Future Activities	.6
Lii	mitatio	ns	.7
Re	eferenc	es	.8

Figures

- 1-1 Site Location, Portland International Airport
- 2-1 Groundwater Monitoring Well Locations
- 3-1 Groundwater Elevation, Columbia River Sand Aquifer May 2025

Tables

- 3-1 Groundwater Elevations
- 3-2 Groundwater Analytical Results

Appendixes

Appendix A

Standard Operating Procedures

Appendix B

Field Sampling Data Sheets

Appendix C

Laboratory Reports and Data Validation Memorandum

Appendix D

Apex Forensics Letter Report, August 2025

Abbreviations and Acronyms

bgs below ground surface

City City of Portland

CRSA Columbia River Sand Aquifer
CSSWF Columbia South Shore Well Field

DEQ Oregon Department of Environmental Quality
ECSI Environmental Cleanup Site Information
EPA U.S. Environmental Protection Agency

FSDS field sampling data sheets
HASP health and safety plan
MFA Maul Foster & Alongi, Inc.

mg/L milligrams per liter
MRL method reporting limit

NFA no further action

NWTPH Northwest Total Petroleum Hydrocarbons

OD overbank deposits

PAH polycyclic aromatic hydrocarbon PDX Portland International Airport

Port Port of Portland

RBC risk-based concentration

ROD Record of Decision

Site Port of Portland Terminal Core Redevelopment site at the Portland

International Airport

SOP Standard Operating Procedure
TCORE Terminal Core Redevelopment
TES Terminal Expansion South
TPH total petroleum hydrocarbons
VOC volatile organic compound

1 Introduction

Maul Foster & Alongi, Inc. (MFA) prepared this report to present the results of the first semi-annual groundwater sampling conducted at the Port of Portland (Port) Terminal Core (TCORE) Redevelopment site (the Site) at the Portland International Airport (PDX) (Figure 1-1).

2 Background

The TCORE project includes an expansion of the footprint of the main terminal. A portion of TCORE project overlaps with the location of a 1974 jet fuel release, which received no further action (NFA) letters in 2006 and 2008 (for soil and groundwater, respectively) from the Oregon Department of Environmental Quality (DEQ) (Environmental Cleanup Site Information [ECSI] No. 2118). The project includes approximately 300 micropile installations for the seismic protection of the existing and new terminal building. These installations began in January 2021 and were substantially complete in November 2023, however, several additional micropiles are scheduled for installation through the end of the project in 2026.

2.1 Site Description

The portion of the TCORE construction site that is expected to contain impacted soil and groundwater includes a portion of Concourse C and the area west of the existing terminal core, and within the terminal core western expansion footprint. The location of this area is further described as the NW quarter of Section 8, Township 1 North, Range 2 East of the Willamette Meridian (Figure 1-1). The entire Site is paved (with asphalt or Portland cement concrete) or covered with buildings and is surrounded by other impervious PDX facilities. The Site has been used as an airport since the late 1930s, and the main terminal has been present since 1957.

2.2 Geology and Hydrogeology

The Site is situated in the Columbia River Floodplain. Shallow soils (0 to 20 feet below ground surface [bgs]) at the Site are composed of imported dredge sand. Beneath those soils are 40 to 60 feet of overbank deposits (OD) characterized by fine-grained strata with discontinuous sand lenses interbedded in silts and clays that act as aquitards (i.e., inhibiting the vertical migration of groundwater). The sand lenses are more common in the lower portion of the OD. Historical geotechnical work for the Site encountered the OD to a depth of approximately 60 feet underlain by the Columbia River Sand Aquifer (CRSA); a filled paleochannel of the ancestral Columbia River. The top of the CRSA was encountered between 58 and 76 feet bgs in well installations located in the vicinity of TCORE project area.

The shallow water table aquifer is comprised of the sand fill that overlies the OD. Seasonal depths to shallow groundwater in wells from the vicinity of the TCORE construction activities historically ranged from 9 to 12 feet bgs in quarterly monitoring (with seasonal low water levels in the fall [fourth quarter] and seasonal high water levels in the spring [second quarter]). In the first quarter of 2020, groundwater depths measured in two wells at the Site were 12.5 and 12.8 feet bgs. The groundwater elevations from the Terminal Expansion South (TES) project indicated a consistent flow direction to the south/southeast.

The groundwater flow direction, as determined by water levels measured during eleven separate TCORE events conducted between October 2020 and May 2025, have demonstrated little seasonal variability within the CRSA. Groundwater within the CRSA generally flows to the south, away from the Columbia River which is approximately 2,600 feet north of the Site. The only exceptions have been the October 2020 and March 2023 events where groundwater flow in the CRSA was generally toward the Columbia River.

2.3 City of Portland Well Field

The City of Portland (City) maintains a well field to the southeast of the PDX property referred to as the Columbia South Shore Well Field (CSSWF). The City uses the CSSWF as an emergency backup water supply and sometimes to seasonally augment the drinking water supply. The CSSWF has municipal wells installed in the CRSA and deeper aquifers (City of Portland, 2009). As of 2020, the CSSWF had been used in its emergency capacity 12 times and for seasonal augmentation or maintenance 27 times since 1985 (City of Portland, 2020a). The closest active City water supply well is located within the Troutdale Sand Aquifer, over 300 feet bgs, and located approximately 3 miles southeast of the Site. The City indicated that there are three additional planned water supply well locations on established easements negotiated with the Port closer to the Site, with the nearest approximately 1.25 miles to the southeast (City of Portland, 2020b).

2.4 Environmental Conditions

In September 1996, the Port joined the DEQ Voluntary Cleanup Program to obtain oversight of investigation and cleanup associated with the TES construction project at PDX. The Site was assigned ECSI number 2118. The sources of contamination historically identified at the Site include jet fuel associated with fuel hydrants and a 1974 fuel line rupture. The selected remedial action as stated in the TES Phase I and Phase II/III Records of Decision (RODs) includes a pavement cap with institutional controls (Apex, 2005). The TES NFA states that following regarding risk at the Site.

• Non-cancer risk under an industrial worker scenario exceeded the DEQ acceptable risk level in the TES I Gate Area and Pipeline Area, primarily as a result of potential direct contact with soil containing total petroleum, hydrocarbons (TPH). Cancer risk exceeded the acceptable risk level for benzo(a)pyrene in the TES I Pipeline Area and TES II/III Gate Area and Taxiway area. The total TES II/III Release Area risk was equal to the acceptable risk level (1 x 10-6 for carcinogenic compounds or a Hazard Index of 1 for non-carcinogens), and due to the presence of high concentrations of TPH (up to 25,000 milligrams per kilogram) the remedy was extended to this area of the site.

Following the final construction activities, the Site will be fully paved and will remain paved in the future (with buildings or a minimum of 24-inches of pavement). The presence of pavement

eliminates the dermal contact pathway in an industrial worker scenario, reducing risk of exposure to hazardous substances to acceptable levels. The TES soil NFA determination is conditioned per the following:

Maintaining the pavement cap in accordance with the ROD, implementing the Airport Layout
Plan provisions for the Cap Management Area, and implementing the Soil Management Plan if
contaminated soil is exposed in the future.

Institutional controls implemented for the Site consist of documentation on the Port's Airport Layout Plan. The Airport Layout Plan is required by the Federal Aviation Administration and is utilized by Port planners and engineers when new projects are developed.

2.5 TCORE Baseline Monitoring Preparation

As discussed above, micropile installations began in January 2021. These micropiles were installed through an area of known jet fuel impacts. Construction protocols were employed during micropile drilling to minimize the potential for vertical migration of jet fuel contamination. There were no existing monitoring wells in the vicinity of the Site installed in the lower OD or upper CRSA. Based on communication with DEQ and the City, the Port agreed to install two wells in the lower OD and five wells in the upper CRSA. To monitor aguifer impacts from the construction project, a network of groundwater monitoring wells was installed in September and October 2020, see Figure 2-1. Wells within the CRSA are gauged during sampling events to measure horizontal groundwater gradients, and wells within the OD aguifer allow for measurement of vertical gradients between the aguifers. Each of the wells were installed and developed in accordance with State regulations, as documented in the Revised Baseline Monitoring Results (MFA 2021). An initial baseline sampling event was conducted in October 2020, prior to micropile installations. Semi-annual groundwater sampling was expected to be undertaken for two years following the completion of micropile installations, however, based on DEQ's recommendation, semi-annual groundwater monitoring began in October 2022, during a break in the micropile installations which were scheduled to be completed in May 2024. Due to construction schedule changes and additional micropile installations planned in winter 2024, semi-annual monitoring was paused after the May 2024 event. The May 2025 event represents the first of the two years of post-micropile semi-annual monitoring events.

3 May 2025 Groundwater Sampling

3.1 Preparatory Activities

Health and Safety Plan (HASP). A site-specific HASP was prepared for the activities conducted at the Site. The HASP was prepared in general accordance with the Occupational Safety and Health Act and the Oregon Administrative Rules. A copy of the HASP was maintained on-site for use by MFA staff during the field activities.

Work in Aircraft Operations Areas. Work performed in aircraft operations areas was conducted in coordination with Port Airport Operations and airlines operating at the affected gate areas.

3.2 Field Activities

Groundwater monitoring was conducted from the seven TCORE wells on May 13 and 14, 2025. Groundwater sampling and water level measurements were completed in accordance with standard operating procedure (SOP) 9 and SOP 13 (Appendix A), respectively.

In accordance with the SOP the wells were opened to allow the water level to equilibrate with the ambient air pressure, followed by measurement of the static water level, using a water level indicator. The water levels were recorded on the water field sampling data sheets (FSDS), which are included as Appendix B. Groundwater levels and groundwater level elevations are discussed in Section 3.3.

In accordance with SOP 9, the monitoring wells were purged before they were sampled. Water quality parameter measurements were collected during low-flow purging with a flow-through cell and an inline, multiprobe meter at approximately three-minute intervals. Water levels were also measured during purging to monitor drawdown. Parameter measurements recorded during purging included purge volume, purge flow rate, water level, temperature, specific conductivity, dissolved oxygen, pH, oxygen reduction potential, and turbidity. Once the monitoring parameters stabilized, sampling was conducted using a peristaltic pump with tubing dedicated to each well.

Laboratory-supplied containers appropriate for the analytical suite were filled, capped, labeled, and preserved consistent with method requirements. The sample bottles were then transferred to a cooler chilled with ice and delivered to the analytical laboratory. Primary samples were delivered to Apex Laboratories, LLC, in Tigard, Oregon by MFA field staff, under standard chain-of-custody procedures. Split samples from each of the wells with historical low-level TPH detections (TCORE-2, TCORE-2OD, and TCORE-3) were collected and submitted to Specialty Analytical in Clackamas, Oregon.

Approximately 15.5 gallons of purge water and decontamination water investigation-derived waste were generated during the monitoring event. The investigation-derived waste was placed in an accumulation drum located in the PDX Waste Storage Building.

3.3 Groundwater Elevation and Gradients

The static water levels and groundwater level elevations measured on May 13, 2025, are presented in Table 3-1. The upper CRSA groundwater level elevations with potentiometric contours are shown on Figure 3-1. The potentiometric contours shown on Figure 3-1 indicate that groundwater in the upper CRSA during the May 2025 event generally flows away from the Columbia River, to the southwest, across PDX including the TCORE project area.

Groundwater level measurements from well pairs screened in distinct water-bearing zones revealed divergent hydraulic gradient patterns. In well pair TCORE-1/10D, an upward gradient was observed from the lower OD zone to the upper CRSA zone, with a hydraulic head difference of 0.19 feet. Conversely, TCORE-2/20D exhibited a downward gradient, showing a hydraulic head difference of 0.98 feet (see Table 3-1). Historically, monitoring events have consistently indicated a downward gradient, except during May 2023, May 2024, and the current event. This marks the third instance where the two well pairs have shown opposing gradient directions.

3.4 Analytical Results

The primary groundwater samples collected from the sampling event were submitted to Apex Laboratories, LLC in Tigard, Oregon, for chemical analysis. Split samples for each of the wells with low-level historical petroleum detections were submitted to Specialty Analytical of Clackamas, Oregon. The groundwater samples were analyzed on a standard turnaround time for the following:

- Diesel and oil-range TPH by Northwest Method NWTPH-Dx (with silica gel cleanup)
- Polycyclic aromatic hydrocarbons (PAH) by U.S. Environmental Protection Agency (EPA) Method 8270D-SIM
- Volatile organic compounds (VOC) by EPA Method 8260D

The analytical laboratory reports and a data validation memorandum, which presents the quality assurance/quality control review of the data, are included as Appendix C. The results of the data quality review indicate that the data are of acceptable quality and are suitable for their intended purpose. The groundwater analytical results are presented in Table 3-2.

- TPH. Oil-range TPH was detected in the TCORE-20D primary sample, TCORE-3 split sample, and TCORE-4 at concentrations of 0.158 (estimated) milligrams per liter (mg/L), 0.200 mg/L, and 0.161 mg/L, respectively.
- PAHs. PAHs were not detected above the MRLs.
- VOCs. VOC were not detected above the MRLs.

4 Data Evaluation

The data presented in Table 3-2 were screened against the DEQ Risk-Based Concentrations (RBCs) (DEQ 2023) from the Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites (DEQ 2017). Potentially applicable exposure scenarios for groundwater include ingestion and inhalation from tapwater for residential, urban residential, and occupational pathways.

- TCORE-20D. The estimated detection of oil-range TPH exceeded the RBCs for residential and urban residential exposure pathways for tapwater ingestion at 0.100 mg/L. The MRL for the split sample was higher than the primary sample concentration.
- TCORE-3. The detection of oil-range TPH in the split sample exceeded the RBCs for residential and urban residential exposure pathways for tapwater ingestion at 0.100 mg/L. The MRL for the primary sample was approximately 78.5 percent of the split sample concentration.
- TCORE-4. The detection of oil-range TPH in the split sample exceeded the RBCs for residential and urban residential exposure pathways for tapwater ingestion at 0.100 mg/L.

Low level oil-range TPH detections had previously been observed in three wells (TCORE-2, TCORE-3, and TCORE-20D) since October 2022 and subsequent detections have been inconsistent and highly variable. These wells were redeveloped in late 2022 to assess if the detections could be attributed to other factors that were not representative of the overall aquifer. The May 2025 event was the first detection of TPH in well TCORE-4.

5 Apex Forensics Review

To further evaluate the low-level TPH detections, Apex Forensics reviewed laboratory analytical data collected since 2023. Their assessment included an analysis of the detected compounds and a comparison of chromatograms against known laboratory solvents and jet fuel standards. Based on this review, Apex Forensics concluded that the oil-range organics found in groundwater at the Site exhibit chromatographic patterns inconsistent with both laboratory contamination and jet fuel. The detected material has a boiling range higher than jet fuel, and the absence of diesel-range detections further supports that these compounds are not linked to the historical jet fuel release at the TCORE Site. Additionally, Apex Forensics observed similar oil-range organics in other Site samples, though at concentrations below analytical reporting limits. Their findings and supporting chromatograms are documented in a letter report included in Appendix D.

6 Conclusions and Future Activities

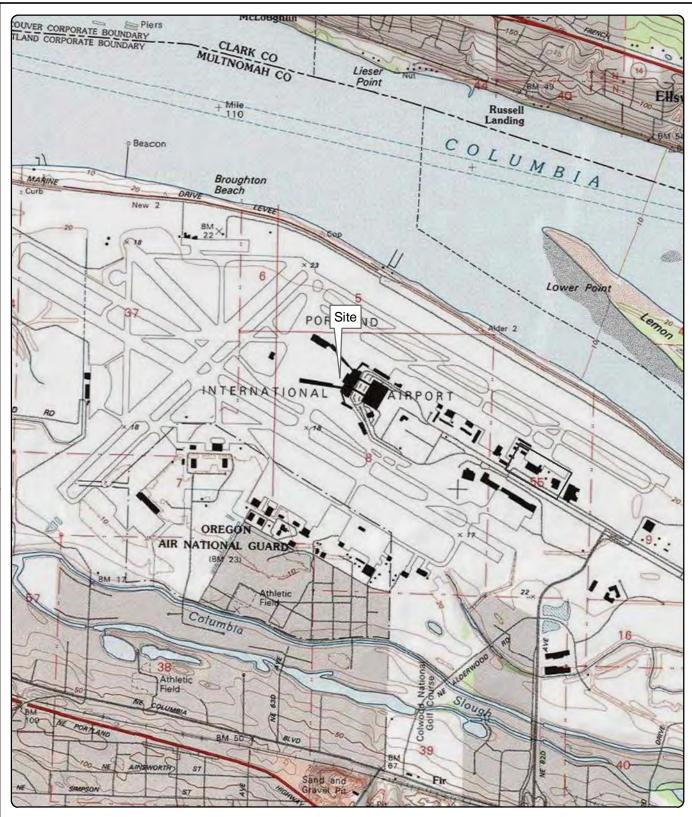
The previously implemented semi-annual groundwater monitoring program targets one low river stage (October) and one high river stage (May) during each year of the monitoring period. The final micropile within the footprint of the historical TES project area (and the associated contaminated media management area) was installed in April 2025, however, additional micropiles outside the media management area are expected to be installed through 2026. The planned two years of semi-annual monitoring started with the May 2025 monitoring event and will continue through October 2026

Apex Forensics review of the historical data indicated that the detected oil-range organics are inconsistent with impacts from historical jet fuel release at the TCORE Site. Consequently, split sample analysis by a secondary laboratory is no longer warranted and will not be conducted during the subsequent sampling events.

Limitations

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

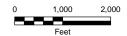
Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.


References

- Apex Companies (Apex). 2005. Soil Closure Report, Terminal Expansion South, Portland International Airport, Portland, Oregon. February 21.
- City of Portland. 2009. Portland Water Bureau Response to Portland City Council Questions on Bull Run Treatment Presentation. June 23.
- City of Portland. 2020a. *Development & Use of Groundwater*. Online article (viewed July 21, 2020). https://www.portlandoregon.gov/water/article/344756.
- City of Portland. 2020b. Comments on Groundwater Monitoring Plan, Terminal Core Redevelopment. September 23.
- DEQ. 2017. Guidance for Risk-Based Decision Making for the Remediation of Contaminated Sites.

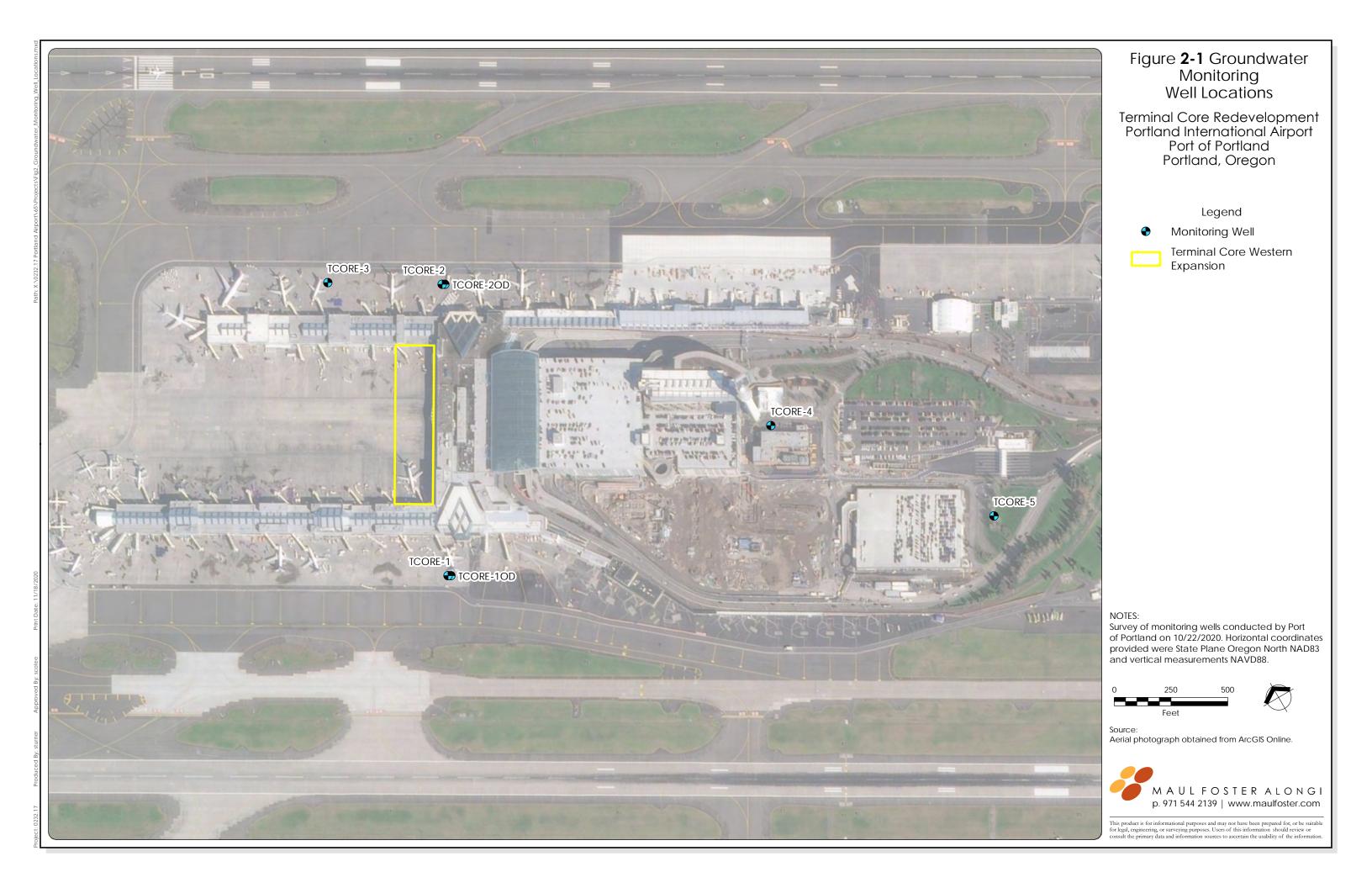
 Oregon Department of Environmental Quality. October 2.
- DEQ. 2018. Table of Risk-Based Concentrations. Oregon Department of Environmental Quality. May, revised August 2023.
- MFA. 2021. Revised Baseline Monitoring Results. Terminal Core Redevelopment. Portland International Airport. Maul Foster and Alongi: Portland, OR. March 4.

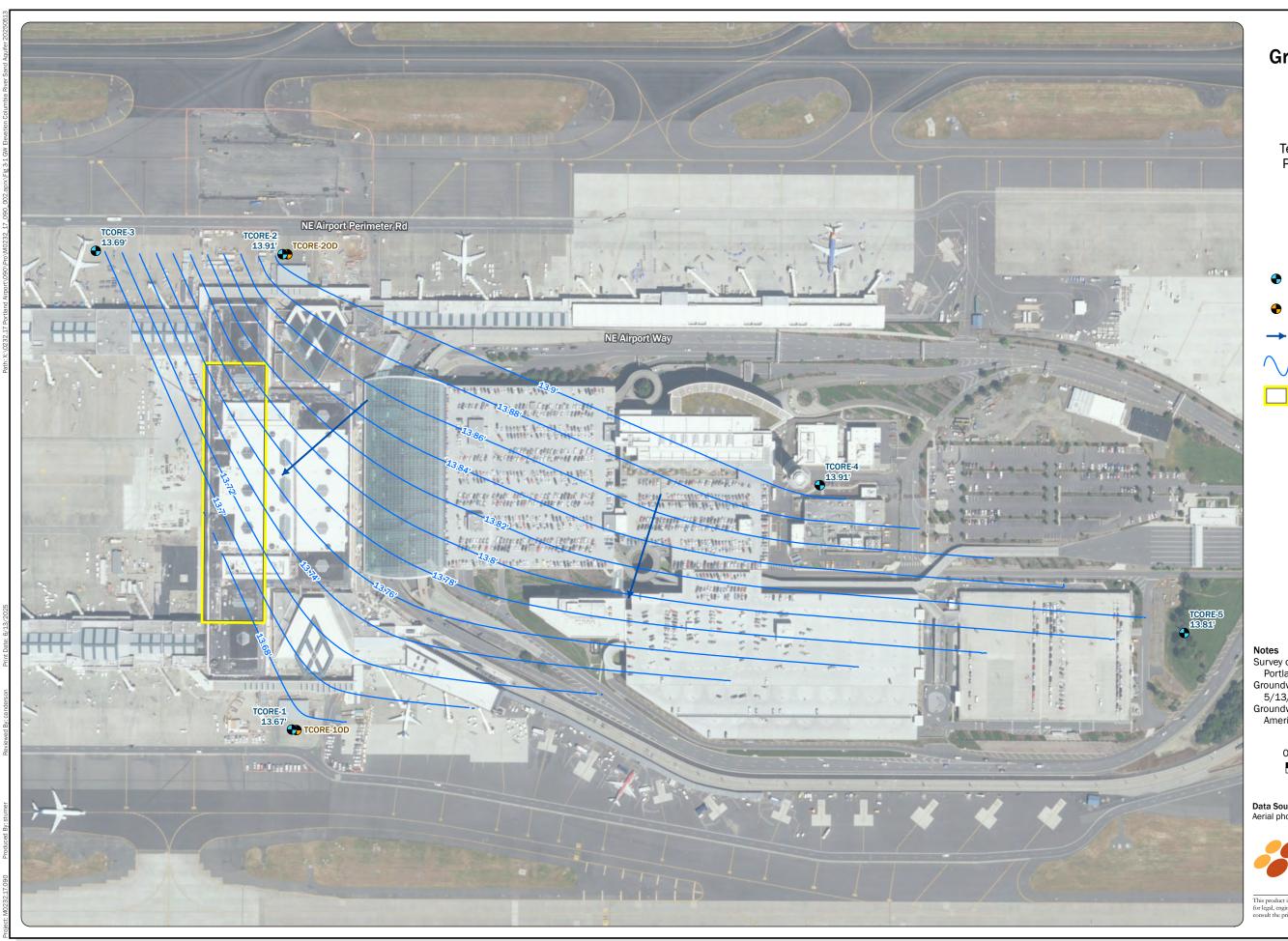
Figures



Source: US Geological Survey (1990) 7.5-minute topographic quadrangle: Mount Tabor Section 8 & 9, Township 1 North, Range 2 East

Figure 1-1 Site Location


Terminal Core Redevelopment Portland International Airport Port of Portland Portland, Oregon



MAULFOSTERALONGI p. 971 544 2139 | www.maulfoster.com

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Figure 3-1 **Groundwater Elevation Columbia River Sand Aquifer** May 13, 2025

Terminal Core Redevelopment Portland International Airport Port of Portland Portland, OR

Legend

- Monitoring Well (Columbia River Sand Aquifer)
- Monitoring Well (Overbank Deposit)
- → Groundwater Flow Direction
- Groundwater Elevation Contour (0.02-foot, NAVD88)
- Terminal Core Western Expansion

Survey of monitoring wells conducted by Port of Portland on 10/22/2020.

Groundwater measurements taken on 5/13/2025.

Groundwater elevations are relative to the North American Vertical Datum of 1988 (NAVD88).

Aerial photograph obtained from the City of Portland (2024).

MAUL FOSTER ALONGI p. 971 544 2139 | www.maulfoster.com

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information. © 2025 Maul Foster & Alongi, Inc.

Tables

Location	Top of Screen (feet bgs)	Bottom of Screen (feet bgs)	TOC Elevation (feet)	Date	Water Level (feet below TOC)	Water Level Elevation (feet)	Difference in Hydraulic Head (feet)	Gage height (feet)	Calculated Vertical Gradient (negative value indicates downward gradient)
				02/09/2021	12.52	12.22	0.29	n/a	
				02/25/2021	11.96	12.78	0.29	n/a	
				05/18/2021	12.80	11.94	0.29	n/a	
				08/20/2021	16.76	7.98	0.29	n/a	
				10/26/2021	15.00	9.74	0.29	n/a	
TCORE-1	120	135	24.74	10/24/2022	18.59	6.15	0.29	n/a	See below.
				03/30/2023	13.34	11.40	0.29	n/a	
				05/11/2023	8.79	15.95	0.29	n/a	
				10/25/2023	16.97	7.77	0.29	n/a	
				05/22/2024	12.07	12.67	0.29	n/a	
				05/13/2025	11.07	13.67	0.29	n/a	
				02/09/2021	12.28	12.51	0.29	n/a	-0.29
				02/25/2021	11.91	12.88	0.29	n/a	-0.10
				05/18/2021	12.54	12.25	0.29	n/a	-0.31
				08/20/2021	15.52	9.27	0.29	n/a	-1.29
				10/26/2021	14.70	10.09	0.29	n/a	-0.35
TCORE-10D	45	55	24.79	10/24/2022	16.58	8.21	0.29	n/a	-2.06
				03/30/2023	12.56	12.23	0.29	n/a	-0.83
				05/11/2023	9.52	15.27	0.29	n/a	0.68
				10/25/2023	15.74	9.05	0.29	n/a	-1.28
				05/22/2024	11.83	12.96	0.29	n/a	-0.29
				05/13/2025	11.31	13.48	0.29	n/a	0.19
				02/09/2021	13.60	12.23	1.29	n/a	
				02/25/2021	12.99	12.84	1.29	n/a	
				05/18/2021	13.85	11.98	1.29	n/a	
				08/20/2021	17.60	8.23	1.29	n/a	
				10/26/2021	15.98	9.85	1.29	n/a	
TCORE-2	100	115	25.83	10/24/2022	19.45	6.38	1.29	n/a	See below.
				03/30/2023	14.55	11.28	1.29	n/a	
				05/11/2023	9.48	16.35	1.29	n/a	
				10/25/2023	17.92	7.91	1.29	n/a	
				05/22/2024	13.02	12.81	1.29	n/a	
				05/13/2025	11.92	13.91	1.29	n/a	
				02/09/2021	12.22	13.52	1.29	n/a	-1.29
				02/25/2021	11.82	13.92	1.29	n/a	-1.08
				05/18/2021	11.98	13.76	1.29	n/a	-1.78
				08/20/2021	13.78	11.96	1.29	n/a	-3.73
				10/26/2021	13.60	12.14	1.29	n/a	-2.29
TCORE-20D	37	47	25.74	10/24/2022	14.27	11.47	1.29	n/a	-5.09
				03/30/2023	11.96	13.78	1.29	n/a	-2.50
				05/11/2023	10.49	15.25	1.29	n/a	1.10
				10/25/2023	13.91	11.83	1.29	n/a	-3.92
				05/22/2024	13.46	12.28	1.29	n/a	0.53
				05/13/2025	10.85	14.89	1.29	n/a	-0.98

Location	Top of Screen (feet bgs)	Bottom of Screen (feet bgs)	TOC Elevation (feet)	Date	Water Level (feet below TOC)	Water Level Elevation (feet)	Difference in Hydraulic Head (feet)	Gage height (feet)	Calculated Vertical Gradient (negative value indicates downward gradient)
				02/09/2021	13.62	12.15	n/a	n/a	n/a
				02/25/2021	13.02	12.75	n/a	n/a	n/a
				05/18/2021	13.89	11.88	n/a	n/a	n/a
				08/20/2021	17.57	8.20	n/a	n/a	n/a
				10/26/2021	15.98	9.79	n/a	n/a	n/a
TCORE-3	120	135	25.77	10/24/2022	19.30	6.47	n/a	n/a	n/a
				03/30/2023	14.55	11.22	n/a	n/a	n/a
				05/11/2023	9.59	16.18	n/a	n/a	n/a
				10/25/2023	17.91	7.86	n/a	n/a	n/a
				05/22/2024	13.00	12.77	n/a	n/a	n/a
				05/13/2025	12.08	13.69	n/a	n/a	n/a
				02/09/2021	13.94	12.15	n/a	n/a	n/a
				02/25/2021	13.36	12.73	n/a	n/a	n/a
				05/18/2021	14.14	11.95	n/a	n/a	n/a
				08/20/2021	18.08	8.01	n/a	n/a	n/a
				10/26/2021	16.29	9.80	n/a	n/a	n/a
TCORE-4	105	120	26.09	10/24/2022	19.84	6.25	n/a	n/a	n/a
				03/30/2023	14.80	11.29	n/a	n/a	n/a
				05/11/2023	9.71	16.38	n/a	n/a	n/a
				10/25/2023	18.20	7.89	n/a	n/a	n/a
				05/22/2024	13.30	12.79	n/a	n/a	n/a
				05/13/2025	12.18	13.91	n/a	n/a	n/a
				02/09/2021	12.41	12.16	n/a	n/a	n/a
				02/25/2021	11.83	12.74	n/a	n/a	n/a
				05/18/2021	12.60	11.97	n/a	n/a	n/a
				08/20/2021	16.46	8.11	n/a	n/a	n/a
				10/26/2021	14.68	9.89	n/a	n/a	n/a
TCORE-5	105	120	24.57	10/24/2022	18.22	6.35	n/a	n/a	n/a
				03/30/2023	13.29	11.28	n/a	n/a	n/a
				05/11/2023	8.26	16.31	n/a	n/a	n/a
				10/25/2023	16.47	8.10	n/a	n/a	n/a
				05/22/2024	11.76	12.81	n/a	n/a	n/a
				05/13/2025	10.76	13.81	n/a	n/a	n/a
				02/09/2021	n/a	n/a	n/a	4.55	n/a
				02/25/2021	n/a	n/a	n/a	5.22	n/a
				05/18/2021	n/a	n/a	n/a	4.85	n/a
Columbia				08/20/2021	n/a	n/a	n/a	2.15	n/a
River - NWS				10/26/2021	n/a	n/a	n/a	3.90	n/a
Gage on	n/a	n/a	n/a	10/24/2022	n/a	n/a	n/a	0.78	n/a
I-5 Bridge				03/30/2023	n/a	n/a	n/a	2.84	n/a
				05/11/2023	n/a	n/a	n/a	10.64	n/a
				10/25/2023	n/a	n/a	n/a	1.95	n/a
				05/22/2024	n/a	n/a	n/a	6.02	n/a
				05/13/2025	n/a	n/a	n/a	7.86	n/a

Location:							TCORE-1						TCC	DRE-2	
Sample Name:		water, Ingestior from Tapwater ⁽¹		TCORE-1-GW	TCORE-1-GW	TCORE-1-GW	TCORE-1-GW	TCORE-1-GW	TCORE-1	TCORE-1-GW	TCORE-2-GW	TCORE-2-GW	TCORE-2- GW ^(a)	TCORE-2-GW	TCORE-2-GW
Collection Date:	Residential	Urban Residential	Occupational	10/26/2020	10/24/2022	03/31/2023	05/12/2023	10/26/2023	05/23/2024	05/13/2025	10/26/2020	10/24/2022	11/30/2022	03/30/2023	05/11/2023
TPH with Silica-Gel Cleanup (mg/L)	!	<u>!</u>	!	!	!		!		!	.!		.		!	!
Initial Analysis															
Diesel-range hydrocarbons	0.100	0.100	0.430	0.208 U	0.0792 U	0.0777 U	0.0777 U	0.0816 U	0.0792 U	0.0762 U	0.202 U	0.0762 U	0.0777 U	0.0784 U	0.0792 U
Oil-range hydrocarbons	0.100 ^(b)	0.100 ^(b)	0.430 ^(b)	0.417 U	0.158 U	0.155 U	0.155 U	0.163 U	0.158 U	0.152 U	0.404 U	1.55	0.155 U	0.157 U	0.158 U
Confirmation Analysis					•										
Diesel-range hydrocarbons	0.100	0.100	0.430		0.0769 UJ							0.0792 UJ	0.0777 UJ		
Oil-range hydrocarbons	0.100 ^(b)	0.100 ^(b)	0.430 ^(b)		0.154 UJ							0.583 J	0.155 UJ		
VOCs (ug/L)				•			•			•					
1,1,1,2-Tetrachloroethane	NV	NV	NV	1 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	1 U	0.4 U		0.4 U	0.4 U
1,1,1-Trichloroethane	8,000	30,000	37,000	0.4 U		0.4 U	0.4 U								
1,1,2,2-Tetrachloroethane	NV	NV	NV	0.5 U		0.5 U	0.5 U								
1,1,2-Trichloroethane	0.28	1.3	1.3	0.5 U		0.5 ∪	0.5 U								
1,1-Dichloroethane	2.8	13	13	0.4 U		0.4 U	0.4 U								
1,1-Dichloroethene	280	1,100	1,400	0.4 U		0.4 U	0.4 U								
1,1-Dichloropropene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 υ	1 U
1,2,3-Trichlorobenzene	NV	NV	NV	2 U	2 U	2 UJ	2 U	2 U	2 U	2 U	2 U	2 U		2 UJ	2 U
1,2,3-Trichloropropane	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 υ	1 U
1,2,4-Trichlorobenzene	NV	NV	NV	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U		2 U	2 U
1,2,4-Trimethylbenzene	54	230	250	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U
1,2-Dibromo-3-chloropropane	NV	NV	NV	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U		5 U	5 U
1,2-Dibromoethane	0.0075	0.034	0.034	0.5 U		0.5 U	0.5 U								
1,2-Dichlorobenzene	300	1,200	1,400	0.5 U		0.5 U	0.5 U								
1,2-Dichloroethane	0.17	0.78	0.78	0.4 U		0.4 U	0.4 U								
1,2-Dichloropropane	NV	NV	NV	0.5 U		0.5 U	0.5 U								
1,3,5-Trimethylbenzene	59	240	280	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 υ	1 U
1,3-Dichlorobenzene	NV	NV	NV	0.5 U		0.5 U	0.5 U								
1,3-Dichloropropane	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 υ	1 U
1,4-Dichlorobenzene	0.48	2.3	2.1	0.5 U		0.5 U	0.5 U								
2,2-Dichloropropane	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U
2-Butanone	NV	NV	NV	10 U		10 υ	10 U								
2-Chlorotoluene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U
2-Hexanone	NV	NV	NV	10 U		10 υ	10 U								
4-Chlorotoluene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U
4-Isopropyltoluene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U
4-Methyl-2-pentanone	NV	NV	NV	10 U		10 U	10 U								
Acetone	NV	NV	NV	20 U		20 U	20 U								
Acrylonitrile	0.052	0.23	0.25	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U		2 U	2 U
Benzene	0.46	2	2.1	0.2 U		0.2 U	0.2 U								

Location:							TCORE-1						TCC	DRE-2	
Sample Name:		dwater, Ingestion from Tapwater ⁽¹		TCORE-1-GW	TCORE-1-GW	TCORE-1-GW	TCORE-1-GW	TCORE-1-GW	TCORE-1	TCORE-1-GW	TCORE-2-GW	TCORE-2-GW	TCORE-2- GW ^(a)	TCORE-2-GW	TCORE-2-GW
Collection Date:	Residential	Urban Residential	Occupational	10/26/2020	10/24/2022	03/31/2023	05/12/2023	10/26/2023	05/23/2024	05/13/2025	10/26/2020	10/24/2022	11/30/2022	03/30/2023	05/11/2023
VOCs cont. (ug/L)	!	· ·	I	!			l .			·	l	l l			!
Bromobenzene	NV	NV	NV	0.5 U		0.5 U	0.5 U								
Bromodichloromethane	0.13	0.62	0.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U
Bromoform	3.3	15	16	2 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	1 U		1 U	1 U
Bromomethane	7.5	28	36	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U		5 U	5 U
Carbon disulfide	NV	NV	NV	10 U		10 U	10 U								
Carbon tetrachloride	0.46	2	2.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 υ	1 U
Chlorobenzene	77	290	350	0.5 U		0.5 U	0.5 U								
Chlorobromomethane	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U
Chloroethane	21,000	76,000	88,000	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U		5 U	5 U
Chloroform	0.22	1	0.98	5.6	1 U	1 U	1 U	1 U	1 U	1 U	6.58	1 U		1 U	1 U
Chloromethane	190	690	790	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U		5 U	5 U
cis-1,2-Dichloroethene	36	140	260	0.4 U		0.4 U	0.4 U								
cis-1,3-Dichloropropene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U
Dibromochloromethane	0.17	0.77	0.77	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 υ	1 U
Dibromomethane	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 υ	1 U
Dichlorodifluoromethane (Freon 12)	NV	NV	NV	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U		1 Մյ	1 U
Ethylbenzene	1.5	6.7	6.4	0.5 U		0.5 U	0.5 U								
Freon 113	55,000	NV	NV												
Hexachlorobutadiene	NV	NV	NV	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U		5 U	5 U
Isopropylbenzene	440	1,800	2,000	4 U	1 U	1 U	1 U	1 U	1 U	1 U	4 U	1 U		1 U	1 U
m,p-Xylene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U
Methyl tert-butyl ether	14	64	68	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 υ	1 U
Methylene chloride	11	37	200	10 U		10 υ	10 U								
Naphthalene	0.17	0.78	0.72	4 U	2 U	2 UJ	2 UJ	5 UJ	5 U	5 U	4 U	2 U		2 UJ	2 UJ
n-Butylbenzene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 υ	1 U
n-Propylbenzene	NV	NV	NV	0.5 U		0.5 ∪	0.5 U								
o-Xylene	NV	NV	NV	0.5 U		0.5 ∪	0.5 U								
sec-Butylbenzene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U
Styrene	1,200	4,600	5,700	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U
tert-Butylbenzene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U
Tetrachloroethene	12	49	48	0.4 U		0.4 U	0.4 U								
Toluene	1,100	4,400	6,300	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U
trans-1,2-Dichloroethene	360	1,400	2,600	0.4 U		0.4 U	0.4 U								
trans-1,3-Dichloropropene	NV	NV	NV	2 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	1 U		1 U	1 U
Trichloroethene	0.49	2	3.3	0.4 U		0.4 U	0.4 U								
Trichlorofluoromethane (Freon 11)	1,100	4,200	5,200	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U		2 U	2 U
Vinyl chloride	0.027	0.066	0.49	0.4 U	0.4 U	0.4 U	0.4 U	0.2 U	0.2 U	0.2 U	0.4 U	0.4 U		0.4 U	0.4 U
Xylenes (total) ^(c)	190	710	830	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U		1 υ	

Location:	55.0	C, Groundwater, Ingestion & Inhalation					TCORE-1						TCC	DRE-2	
Sample Name:		lwater, Ingestior from Tapwater ⁽¹		TCORE-1-GW	TCORE-1-GW	TCORE-1-GW	TCORE-1-GW	TCORE-1-GW	TCORE-1	TCORE-1-GW	TCORE-2-GW	TCORE-2-GW	TCORE-2- GW ^(a)	TCORE-2-GW	TCORE-2-GW
Collection Date:	Residential	Urban Residential	Occupational	10/26/2020	10/24/2022	03/31/2023	05/12/2023	10/26/2023	05/23/2024	05/13/2025	10/26/2020	10/24/2022	11/30/2022	03/30/2023	05/11/2023
PAHs (ug/L)	•	•	•	•	•	•	•			•	•			•	•
1-Methylnaphthalene	NV	NV	NV	0.0777 UJ	0.0698 U	0.0709 U	0.0693 U	0.0687 U	0.0679 U	0.0756 UJ	0.0792 U	0.0692 U		0.077 U	0.0684 U
2-Methylnaphthalene	NV	NV	NV	0.0777 UJ	0.0698 U	0.0709 U	0.0693 U	0.0687 U	0.0679 U	0.0756 UJ	0.0792 U	0.0692 U		0.077 U	0.0684 U
Acenaphthene	510	2400	2500	0.0388 UJ	0.0349 U	0.0354 U	0.0346 U	0.0344 U	0.034 U	0.0378 UJ	0.0396 U	0.0346 U		0.0385 U	0.0342 U
Acenaphthylene	NV	NV	NV	0.0388 UJ	0.0349 U	0.0354 U	0.0346 U	0.0344 U	0.034 U	0.0378 UJ	0.0396 U	0.0346 U		0.0385 U	0.0342 U
Anthracene	NV	NV	NV	0.0388 UJ	0.0349 U	0.0354 U	0.0346 U	0.0344 U	0.034 U	0.0378 UJ	0.0396 U	0.0346 U		0.0385 U	0.0342 U
Benzo(a)anthracene	0.03	0.11	0.38	0.0388 UJ	0.0175 U	0.0177 U	0.0173 U	0.0172 U	0.017 U	0.0189 UJ	0.0396 U	0.0173 U		0.0193 U	0.0171 U
Benzo(a)pyrene	0.025	0.08	0.47	0.0388 UJ	0.0175 U	0.0177 U	0.0173 U	0.0172 U	0.017 U	0.0189 UJ	0.0396 U	0.0173 U		0.0193 U	0.0171 U
Benzo(b)fluoranthene	0.25	0.8	NV	0.0388 UJ	0.0175 U	0.0177 U	0.0173 U	0.0172 U	0.017 U	0.0189 UJ	0.0396 U	0.0173 U		0.0193 U	0.0171 U
Benzo(ghi)perylene	NV	NV	NV	0.0388 UJ	0.0349 U	0.0354 U	0.0346 U	0.0344 U	0.034 U	0.0378 UJ	0.0396 U	0.0346 U		0.0385 U	0.0342 U
Benzo(k)fluoranthene	NV	NV	NV	0.0388 UJ	0.0175 U	0.0177 U	0.0173 U	0.0172 U	0.017 U	0.0189 UJ	0.0396 U	0.0173 U		0.0193 U	0.0171 U
Chrysene	NV	NV	NV	0.0388 UJ	0.0175 U	0.0177 U	0.0173 U	0.0172 U	0.017 U	0.0189 UJ	0.0396 U	0.0173 U		0.0193 U	0.0171 U
Dibenzo(a,h)anthracene	0.025	0.08	0.47	0.0388 UJ	0.0175 U	0.0177 U	0.0173 U	0.0172 U	0.017 U	0.0189 UJ	0.0396 U	0.0173 U		0.0193 U	0.0171 U
Dibenzofuran	NV	NV	NV	0.0388 UJ	0.0349 U	0.0354 U	0.0346 U	0.0344 U	0.034 U	0.0378 UJ	0.0396 U	0.0346 U		0.0385 U	0.0342 U
Fluoranthene	NV	NV	NV	0.0388 UJ	0.0349 U	0.0354 U	0.0346 U	0.0344 U	0.034 U	0.0378 UJ	0.0396 U	0.0346 U		0.0385 U	0.0342 U
Fluorene	280	1400	1300	0.0388 UJ	0.0349 U	0.0354 U	0.0346 U	0.0344 U	0.034 U	0.0378 UJ	0.0396 U	0.0346 U		0.0385 U	0.0342 U
Indeno(1,2,3-cd)pyrene	NV	NV	NV	0.0388 UJ	0.0175 U	0.0177 U	0.0173 U	0.0172 U	0.017 U	0.0189 UJ	0.0396 U	0.0173 U		0.0193 U	0.0171 U
Naphthalene	0.17	0.78	0.72	0.0777 UJ	0.0698 U	0.0709 U	0.0693 U	0.0687 U	0.0679 U	0.0812 J+	0.0792 U	0.0692 U		0.077 U	0.0684 U
Phenanthrene	NV	NV	NV	0.0388 UJ	0.0698 U	0.0709 U	0.0693 U	0.0687 U	0.0679 U	0.0756 UJ	0.0396 U	0.0692 U		0.077 U	0.0684 U
Pyrene	110	NV	NV	0.0388 UJ	0.0349 U	0.0354 U	0.0346 U	0.0344 U	0.034 U	0.0378 UJ	0.0396 U	0.0346 U		0.0385 U	0.0342 U
cPAH TEQ ^{(d)(2)}	0.025	0.08	0.47	ND		ND	ND								

Collection Date: Residential Urban Residential Occupational 10, TPH with Silica-Gel Cleanup (mg/L) Initial Analysis Diesel-range hydrocarbons 0.100 0.100 0.430 0.000	
Collection Date: Residential Urban U	
Residential Residential Residential Residential Residential Residential Residential Italy	RE-2-GW
Diesel-range hydrocarbons	25/2023
Diesel-range hydrocarbons 0.100 0.100 0.430 0 Oil-range hydrocarbons 0.100(b) 0.100(b) 0.430(b) 0 Confirmation Analysis Diesel-range hydrocarbons 0.100 0.100 0.430 0 Oil-range hydrocarbons 0.100(b) 0.100(b) 0.430(b) 0 VOCs (ug/L) 1,1,2-Tetrachloroethane NV NV NV NV 1,1,1-Trichloroethane 8,000 30,000 37,000 37,000 1,1,2-Tetrachloroethane NV NV NV NV 1,1,2-Trichloroethane 0.28 1.3 1.3 1.3 1,1-Dichloroethane 2.8 13 13 1.3 1,1-Dichloroethane 280 1,100 1,400 1,400 1,1-Dichloropropene NV NV NV NV 1,2,3-Trichlorobenzene NV NV NV NV 1,2,4-Trichlorobenzene NV NV NV NV 1,2,4-Tri	
Oil-range hydrocarbons 0.100 ^(b) 0.100 ^(b) 0.430 ^(b) Confirmation Analysis Diesel-range hydrocarbons 0.100 0.100 0.430 Oil-range hydrocarbons 0.100 ^(b) 0.100 ^(b) 0.430 ^(b) VOCs (ug/L) 1,1,1,2-Tetrachloroethane NV NV NV 1,1,1-Trichloroethane 8,000 30,000 37,000 1,1,2-Tetrachloroethane NV NV NV 1,1,2-Trichloroethane 0.28 1.3 1.3 1,1-Dichloroethane 2.8 13 13 1,1-Dichloroethene 280 1,100 1,400 1,1-Dichloropropene NV NV NV 1,2,3-Trichlorobenzene NV NV NV 1,2,3-Trichloropropane NV NV NV 1,2,4-Trimethylbenzene 54 230 250	
Confirmation Analysis Diesel-range hydrocarbons 0.100 0.100 0.430 Oil-range hydrocarbons 0.100(b) 0.100(b) 0.430(b) VOCs (ug/L) 1,1,1,2-Tetrachloroethane NV NV NV 1,1,1-Trichloroethane 8,000 30,000 37,000 1,1,2-Tetrachloroethane NV NV NV 1,1,2-Trichloroethane 0.28 1.3 1.3 1,1-Dichloroethane 2.8 13 13 1,1-Dichloroethene 280 1,100 1,400 1,1-Dichloropropene NV NV NV 1,2,3-Trichlorobenzene NV NV NV 1,2,3-Trichlorobenzene NV NV NV 1,2,4-Trichlorobenzene NV NV NV 1,2,4-Trimethylbenzene 54 230 250	.0792 U
Diesel-range hydrocarbons 0.100 0.100 0.430 Oil-range hydrocarbons 0.100(b) 0.100(b) 0.430(b) VOCs (ug/L) V NV NV NV 1,1,2-Tetrachloroethane NV NV NV NV 1,1,2-Trichloroethane NV NV NV NV 1,1,2-Trichloroethane 0.28 1.3 1.3 1.3 1,1-Dichloroethane 2.8 13 13 1.3 1,1-Dichloroethene 280 1,100 1,400 1,1400 1,2,3-Trichlorobenzene NV NV NV NV 1,2,3-Trichloropropane NV NV NV NV 1,2,4-Trichlorobenzene NV NV NV NV 1,2,4-Trimethylbenzene 54 230 250	0.318
Oil-range hydrocarbons 0.100 ^(b) 0.100 ^(b) 0.430 ^(b) VOCs (ug/L) NV NV NV 1,1,1,2-Tetrachloroethane NV NV NV 1,1,1-Trichloroethane 8,000 30,000 37,000 1,1,2,2-Tetrachloroethane NV NV NV 1,1,2-Trichloroethane 0.28 1.3 1.3 1,1-Dichloroethane 2.8 13 13 1,1-Dichloroethane 280 1,100 1,400 1,1-Dichloropropene NV NV NV 1,2,3-Trichlorobenzene NV NV NV 1,2,3-Trichlorobenzene NV NV NV 1,2,4-Trichlorobenzene NV NV NV 1,2,4-Trimethylbenzene 54 230 250	
VOCs (ug/L) NV NV NV 1,1,1,2-Tetrachloroethane 8,000 30,000 37,000 1,1,2,2-Tetrachloroethane NV NV NV 1,1,2-Trichloroethane 0.28 1.3 1.3 1,1-Dichloroethane 2.8 13 13 1,1-Dichloroethene 280 1,100 1,400 1,1-Dichloropropene NV NV NV 1,2,3-Trichlorobenzene NV NV NV 1,2,3-Trichlorobenzene NV NV NV 1,2,4-Trichlorobenzene NV NV NV 1,2,4-Trimethylbenzene 54 230 250	
1,1,1,2-Tetrachloroethane NV NV NV 1,1,1-Trichloroethane 8,000 30,000 37,000 1,1,2,2-Tetrachloroethane NV NV NV 1,1,2-Trichloroethane 0.28 1.3 1.3 1,1-Dichloroethane 2.8 13 13 1,1-Dichloroethene 280 1,100 1,400 1,1-Dichloropropene NV NV NV 1,2,3-Trichlorobenzene NV NV NV 1,2,3-Trichloropropane NV NV NV 1,2,4-Trichlorobenzene NV NV NV 1,2,4-Trimethylbenzene 54 230 250	
1,1,1-Trichloroethane 8,000 30,000 37,000 1,1,2,2-Tetrachloroethane NV NV NV 1,1,2-Trichloroethane 0.28 1.3 1.3 1,1-Dichloroethane 2.8 13 13 1,1-Dichloroethane 280 1,100 1,400 1,1-Dichloropropene NV NV NV 1,2,3-Trichlorobenzene NV NV NV 1,2,3-Trichloropropane NV NV NV 1,2,4-Trichlorobenzene NV NV NV 1,2,4-Trimethylbenzene 54 230 250	
1,1,2,2-Tetrachloroethane NV NV NV 1,1,2-Trichloroethane 0.28 1.3 1.3 1,1-Dichloroethane 2.8 13 13 1,1-Dichloroethene 280 1,100 1,400 1,1-Dichloropropene NV NV NV 1,2,3-Trichlorobenzene NV NV NV 1,2,3-Trichloropropane NV NV NV 1,2,4-Trichlorobenzene NV NV NV 1,2,4-Trimethylbenzene 54 230 250	0.4 U
1,1,2-Trichloroethane 0.28 1.3 1.3 1,1-Dichloroethane 2.8 13 13 1,1-Dichloroethene 280 1,100 1,400 1,1-Dichloropropene NV NV NV 1,2,3-Trichlorobenzene NV NV NV 1,2,3-Trichloropropane NV NV NV 1,2,4-Trichlorobenzene NV NV NV 1,2,4-Trimethylbenzene 54 230 250	0.4 U
1,1-Dichloroethane 2.8 13 13 1,1-Dichloroethene 280 1,100 1,400 1,1-Dichloropropene NV NV NV 1,2,3-Trichlorobenzene NV NV NV 1,2,3-Trichloropropane NV NV NV 1,2,4-Trichlorobenzene NV NV NV 1,2,4-Trimethylbenzene 54 230 250	0.5 U
1,1-Dichloroethene 280 1,100 1,400 1,1-Dichloropropene NV NV NV 1,2,3-Trichlorobenzene NV NV NV 1,2,3-Trichloropropane NV NV NV 1,2,4-Trichlorobenzene NV NV NV 1,2,4-Trimethylbenzene 54 230 250	0.5 U
1,1-Dichloropropene NV NV NV 1,2,3-Trichlorobenzene NV NV NV 1,2,3-Trichloropropane NV NV NV 1,2,4-Trichlorobenzene NV NV NV 1,2,4-Trimethylbenzene 54 230 250	0.4 U
1,2,3-Trichlorobenzene NV NV NV 1,2,3-Trichloropropane NV NV NV 1,2,4-Trichlorobenzene NV NV NV 1,2,4-Trimethylbenzene 54 230 250	0.4 U
1,2,3-TrichloropropaneNVNV1,2,4-TrichlorobenzeneNVNV1,2,4-Trimethylbenzene54230250	1 U
1,2,4-Trichlorobenzene NV NV NV 1,2,4-Trimethylbenzene 54 230 250	2 U
1,2,4-Trimethylbenzene 54 230 250	1 U
· · · · · · · · · · · · · · · · · · ·	2 U
1,2-Dibromo-3-chloropropane NV NV NV	1 U
and the contract of the contra	5 U
1,2-Dibromoethane 0.0075 0.034 0.034	0.5 U
1,2-Dichlorobenzene 300 1,200 1,400	0.5 U
1,2-Dichloroethane 0.17 0.78 0.78	0.4 U
1,2-Dichloropropane NV NV NV	0.5 U
1,3,5-Trimethylbenzene 59 240 280	1 U
1,3-Dichlorobenzene NV NV NV	0.5 U
1,3-Dichloropropane NV NV NV	1 U
1,4-Dichlorobenzene 0.48 2.3 2.1	0.5 U
2,2-Dichloropropane NV NV NV	1 U
2-Butanone NV NV NV	10 U
2-Chlorotoluene NV NV NV	1 U
2-Hexanone NV NV NV	10 U
4-Chlorotoluene NV NV NV	1 U
4-Isopropyltoluene NV NV NV	1 U
4-Methyl-2-pentanone NV NV NV	10 U
Acetone NV NV NV	20 U
Acrylonitrile 0.052 0.23 0.25	2 U
Benzene 0.46 2 2.1	0.2 U

Location:		lwater, Ingestio		
Sample Name:		from Tapwater	• ,	TCORE-2-GW
Collection Date:	Residential	Urban Residential	Occupational	10/25/2023
VOCs cont. (ug/L)		-		
Bromobenzene	NV	NV	NV	0.5 U
Bromodichloromethane	0.13	0.62	0.6	1 U
Bromoform	3.3	15	16	1 U
Bromomethane	7.5	28	36	5 U
Carbon disulfide	NV	NV	NV	10 U
Carbon tetrachloride	0.46	2	2.1	1 U
Chlorobenzene	77	290	350	0.5 U
Chlorobromomethane	NV	NV	NV	1 U
Chloroethane	21,000	76,000	88,000	5 U
Chloroform	0.22	1	0.98	1 U
Chloromethane	190	690	790	5 UJ
cis-1,2-Dichloroethene	36	140	260	0.4 U
cis-1,3-Dichloropropene	NV	NV	NV	1 U
Dibromochloromethane	0.17	0.77	0.77	1 U
Dibromomethane	NV	NV	NV	1 U
Dichlorodifluoromethane (Freon 12)	NV	NV	NV	1 U
Ethylbenzene	1.5	6.7	6.4	0.5 U
Freon 113	55,000	NV	NV	
Hexachlorobutadiene	NV	NV	NV	5 U
Isopropylbenzene	440	1,800	2,000	1 U
m,p-Xylene	NV	NV	NV	1 U
Methyl tert-butyl ether	14	64	68	1 U
Methylene chloride	11	37	200	10 U
Naphthalene	0.17	0.78	0.72	5 UJ
n-Butylbenzene	NV	NV	NV	1 U
n-Propylbenzene	NV	NV	NV	0.5 U
o-Xylene	NV	NV	NV	0.5 U
sec-Butylbenzene	NV	NV	NV	1 U
Styrene	1,200	4,600	5,700	1 U
tert-Butylbenzene	NV	NV	NV	1 U
Tetrachloroethene	12	49	48	0.4 U
Toluene	1,100	4,400	6,300	1 U
trans-1,2-Dichloroethene	360	1,400	2,600	0.4 U
trans-1,3-Dichloropropene	NV	NV	NV	1 U
Trichloroethene	0.49	2	3.3	0.4 U
Trichlorofluoromethane (Freon 11)	1,100	4,200	5,200	2 U
Vinyl chloride	0.027	0.066	0.49	0.2 U
Xylenes (total) ^(c)	190	710	830	1 U

Location:	RRC Ground	lwater, Ingestion	n & Inhalation	
Sample Name:		from Tapwater ⁽		TCORE-2-GW
Collection Date:	Residential	Urban Residential	Occupational	10/25/2023
PAHs (ug/L)	•	•	•	
1-Methylnaphthalene	NV	NV	NV	0.0683 U
2-Methylnaphthalene	NV	NV	NV	0.0683 U
Acenaphthene	510	2400	2500	0.0341 U
Acenaphthylene	NV	NV	NV	0.0341 U
Anthracene	NV	NV	NV	0.0341 U
Benzo(a)anthracene	0.03	0.11	0.38	0.0171 U
Benzo(a)pyrene	0.025	0.08	0.47	0.0171 U
Benzo(b)fluoranthene	0.25	0.8	NV	0.0171 U
Benzo(ghi)perylene	NV	NV	NV	0.0341 U
Benzo(k)fluoranthene	NV	NV	NV	0.0171 U
Chrysene	NV	NV	NV	0.0171 U
Dibenzo(a,h)anthracene	0.025	0.08	0.47	0.0171 U
Dibenzofuran	NV	NV	NV	0.0341 U
Fluoranthene	NV	NV	NV	0.0341 U
Fluorene	280	1400	1300	0.0341 U
Indeno(1,2,3-cd)pyrene	NV	NV	NV	0.0171 U
Naphthalene	0.17	0.78	0.72	0.0683 U
Phenanthrene	NV	NV	NV	0.0683 U
Pyrene	110	NV	NV	0.0341 U
cPAH TEQ ^{(d)(2)}	0.025	0.08	0.47	ND

Location:	DDC C					TCORE-2 (cont	.)				TCC	RE-3		
Sample Name:		lwater, Ingestio from Tapwater ⁽		TCORE-2-GW- DUP	TCORE-2	TCORE-2 DUP	TCORE-2-GW	TCORE-2-GW- DUP	TCORE-3-GW	TCORE-3-GW	TCORE-3- GW ^(a)	TCORE-3-GW- PRE	TCORE-3-GW- POST	TCORE-3-GW
Collection Date:	Residential	Urban Residential	Occupational	10/25/2023	05/22/2024	05/22/2024	05/13/2025	05/13/2025	10/26/2020	10/25/2022	11/30/2022	02/28/2023	02/28/2023	03/30/2023
TPH with Silica-Gel Cleanup (mg/L)	•	•	•			•		•	•				•	
Initial Analysis														
Diesel-range hydrocarbons	0.100	0.100	0.430	0.0638 U	0.0800 U	0.0806 U	0.0784 U	0.0762 U	0.204 U	0.0777 U	0.0792 U	0.0769 U	0.0769 U	0.0762 U
Oil-range hydrocarbons	0.100 ^(b)	0.100 ^(b)	0.430 ^(b)	0.112 J	0.160 U	0.270	0.157 U	0.191 U	0.408 U	0.195 U	0.964 J	0.154 U	0.154 U	0.152 U
Confirmation Analysis			•					•						
Diesel-range hydrocarbons	0.100	0.100	0.430							0.0769 UJ	0.0784 U			
Oil-range hydrocarbons	0.100 ^(b)	0.100 ^(b)	0.430 ^(b)							0.278 J	0.383			
VOCs (ug/L)			•			•		•	•				•	•
1,1,1,2-Tetrachloroethane	NV	NV	NV		0.4 U		0.4 U		1 U	0.4 U		0.4 U	0.4 U	0.4 U
1,1,1-Trichloroethane	8,000	30,000	37,000		0.4 U		0.4 U		0.4 U	0.4 U		0.4 U	0.4 U	0.4 U
1,1,2,2-Tetrachloroethane	NV	NV	NV		0.5 U		0.5 U		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	0.28	1.3	1.3		0.5 U		0.5 U		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	2.8	13	13		0.4 U		0.4 U		0.4 U	0.4 U		0.4 U	0.4 U	0.4 U
1,1-Dichloroethene	280	1,100	1,400		0.4 U		0.4 U		0.4 U	0.4 U		0.4 U	0.4 U	0.4 U
1,1-Dichloropropene	NV	NV	NV		1 U		1 U		1 U	1 U		1 υ	1 υ	1 U
1,2,3-Trichlorobenzene	NV	NV	NV		2 U		2 U		2 U	2 U		2 U	2 U	2 UJ
1,2,3-Trichloropropane	NV	NV	NV		1 U		1 U		1 U	1 U		1 U	1 U	1 U
1,2,4-Trichlorobenzene	NV	NV	NV		2 U		2 U		2 U	2 U		2 U	2 U	2 U
1,2,4-Trimethylbenzene	54	230	250		1 U		1 U		1 U	1 U		1 U	1 U	1 U
1,2-Dibromo-3-chloropropane	NV	NV	NV		5 U		5 U		5 U	5 U		5 U	5 U	5 U
1,2-Dibromoethane	0.0075	0.034	0.034		0.5 U		0.5 U		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	300	1,200	1,400		0.5 U		0.5 U		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.17	0.78	0.78		0.4 U		0.4 U		0.4 U	0.4 U		0.4 U	0.4 U	0.4 U
1,2-Dichloropropane	NV	NV	NV		0.5 U		0.5 U		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
1,3,5-Trimethylbenzene	59	240	280		1 U		1 U		1 U	1 U		1 U	1 U	1 U
1,3-Dichlorobenzene	NV	NV	NV		0.5 U		0.5 U		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	NV	NV	NV		1 U		1 U		1 U	1 U		1 U	1 U	1 U
1,4-Dichlorobenzene	0.48	2.3	2.1		0.5 U		0.5 U		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
2,2-Dichloropropane	NV	NV	NV		1 U		1 U		1 U	1 U		1 U	1 U	1 U
2-Butanone	NV	NV	NV		10 U		10 U		10 U	10 U		10 U	10 υ	10 υ
2-Chlorotoluene	NV	NV	NV		1 U		1 U		1 U	1 U		1 U	1 U	1 U
2-Hexanone	NV	NV	NV		10 U		10 U		10 U	10 U		10 υ	10 U	10 U
4-Chlorotoluene	NV	NV	NV		1 U		1 U		1 U	1 U		1 U	1 U	1 U
4-Isopropyltoluene	NV	NV	NV		1 U		1 U		1 U	1 U		1 U	1 U	1 U
4-Methyl-2-pentanone	NV	NV	NV		10 U		10 U		10 U	10 U		10 U	10 U	10 U
Acetone	NV	NV	NV		20 U		20 U		20 U	20 U		20 U	20 U	20 U
Acrylonitrile								1						
	0.052	0.23	0.25		2 U		2 U		2 U	2 U		2 U	2 U	2 U

Location:						TCORE-2 (cont.	.)				TCC	DRE-3		
Sample Name:		dwater, Ingestion from Tapwater ⁽		TCORE-2-GW- DUP	TCORE-2		TCORE-2-GW	TCORE-2-GW- DUP	TCORE-3-GW	TCORE-3-GW	TCORE-3- GW ^(a)	TCORE-3-GW- PRE	TCORE-3-GW- POST	TCORE-3-GW
Collection Date:	Residential	Urban Residential	Occupational	10/25/2023	05/22/2024	05/22/2024	05/13/2025	05/13/2025	10/26/2020	10/25/2022	11/30/2022	02/28/2023	02/28/2023	03/30/2023
VOCs cont. (ug/L)			·	!			<u>!</u>					•		!
Bromobenzene	NV	NV	NV		0.5 U		0.5 U		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
Bromodichloromethane	0.13	0.62	0.6		1 U		1 U		1 U	1 U		1 U	1 U	1 U
Bromoform	3.3	15	16		1 U		1 U		2 U	1 U		1 U	1 U	1 U
Bromomethane	7.5	28	36		5 U		5 U		5 U	5 U		5 U	5 U	5 U
Carbon disulfide	NV	NV	NV		10 U		10 U		10 U	10 U		10 υ	10 υ	10 U
Carbon tetrachloride	0.46	2	2.1		1 U		1 U		1 U	1 U		1 U	1 U	1 U
Chlorobenzene	77	290	350		0.5 U		0.5 U		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
Chlorobromomethane	NV	NV	NV		1 U		1 U		1 U	1 U		1 U	1 U	1 U
Chloroethane	21,000	76,000	88,000		5 U		5 U		5 U	5 U		5 U	5 U	5 U
Chloroform	0.22	1	0.98		1 U		1 U		3.42	1 U		1 U	1 U	1 U
Chloromethane	190	690	790		5 U		5 U		5 U	5 U		5 U	5 U	5 U
cis-1,2-Dichloroethene	36	140	260		0.4 U		0.4 U		0.4 U	0.4 U		0.4 U	0.4 U	0.4 U
cis-1,3-Dichloropropene	NV	NV	NV		1 U		1 U		1 U	1 U		1 υ	1 U	1 υ
Dibromochloromethane	0.17	0.77	0.77		1 U		1 U		1 U	1 U		1 υ	1 U	1 υ
Dibromomethane	NV	NV	NV		1 U		1 U		1 U	1 U		1 U	1 U	1 U
Dichlorodifluoromethane (Freon 12)	NV	NV	NV		1 U		1 U		1 U	1 U		1 υ	1 U	1 UJ
Ethylbenzene	1.5	6.7	6.4		0.5 U		0.5 U		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
Freon 113	55,000	NV	NV									5 U	5 U	5 U
Hexachlorobutadiene	NV	NV	NV		5 U		5 U		5 U	5 U		1 U	1 U	1 U
Isopropylbenzene	440	1,800	2,000		1 U		1 U		4 U	1 U		1 U	1 U	1 U
m,p-Xylene	NV	NV	NV		1 U		1 U		1 U	1 U		1 υ	1 U	1 U
Methyl tert-butyl ether	14	64	68		1 U		1 U		1 U	1 U		1 υ	1 U	1 υ
Methylene chloride	11	37	200		10 U		10 U		10 U	10 U		10 υ	10 υ	10 υ
Naphthalene	0.17	0.78	0.72		5 U		5 U		4 U	2 U		2 U	2 U	2 UJ
n-Butylbenzene	NV	NV	NV		1 U		1 U		1 U	1 U		1 υ	1 U	1 U
n-Propylbenzene	NV	NV	NV		0.5 U		0.5 U		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
o-Xylene	NV	NV	NV		0.5 U		0.5 U		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
sec-Butylbenzene	NV	NV	NV		1 U		1 U		1 U	1 U		1 U	1 U	1 U
Styrene	1,200	4,600	5,700		1 U		1 U		1 U	1 U		1 υ	1 U	1 U
tert-Butylbenzene	NV	NV	NV		1 U		1 U		1 U	1 U		1 υ	1 U	1 υ
Tetrachloroethene	12	49	48		0.4 U		0.4 U		0.4 U	0.4 U		0.4 ∪	0.4 ∪	0.4 ∪
Toluene	1,100	4,400	6,300		1 U		1 U		1 U	1 U		1 U	1 U	1 U
trans-1,2-Dichloroethene	360	1,400	2,600		0.4 U		0.4 U		0.4 U	0.4 U		0.4 ∪	0.4 U	0.4 ∪
trans-1,3-Dichloropropene	NV	NV	NV		1 U		1 U		2 U	1 U		1 U	1 U	1 U
Trichloroethene	0.49	2	3.3		0.4 U		0.4 U		0.4 U	0.4 U		0.4 U	0.4 U	0.4 U
Trichlorofluoromethane (Freon 11)	1,100	4,200	5,200		2 U		2 U		2 U	2 U		2 U	2 U	2 U
Vinyl chloride	0.027	0.066	0.49		0.2 U		0.2 U		0.4 U	0.4 U		0.4 U	0.4 U	0.4 U
Xylenes (total) ^(c)	190	710	830		1 U		1 U		1 U	1 U		1 U	1 U	1 U

Location:	DD 0					TCORE-2 (cont)				TCC	DRE-3		
Sample Name:		dwater, Ingestio from Tapwater ⁽		TCORE-2-GW- DUP	TCORE-2	TCORE-2 DUP	TCORE-2-GW	TCORE-2-GW- DUP	TCORE-3-GW	TCORE-3-GW	TCORE-3- GW ^(a)	TCORE-3-GW- PRE	TCORE-3-GW- POST	TCORE-3-GW
Collection Date:	Residential	Urban Residential	Occupational	10/25/2023	05/22/2024	05/22/2024	05/13/2025	05/13/2025	10/26/2020	10/25/2022	11/30/2022	02/28/2023	02/28/2023	03/30/2023
PAHs (ug/L)	•		•			•			•					•
1-Methylnaphthalene	NV	NV	NV		0.0662 U		0.0698 UJ		0.0784 U	0.0679 U		0.0642 U	0.0642 U	0.0708 U
2-Methylnaphthalene	NV	NV	NV		0.0662 U		0.0698 UJ		0.0784 U	0.0679 U		0.0642 U	0.0642 U	0.0708 U
Acenaphthene	510	2400	2500		0.0331 U		0.0349 UJ		0.0392 U	0.0339 U		0.0321 U	0.0321 U	0.0354 U
Acenaphthylene	NV	NV	NV		0.0331 U		0.0349 UJ		0.0392 U	0.0339 U		0.0321 U	0.0321 U	0.0354 U
Anthracene	NV	NV	NV		0.0331 U		0.0349 UJ		0.0392 U	0.0339 U		0.0321 U	0.0321 U	0.0354 U
Benzo(a)anthracene	0.03	0.11	0.38		0.0165 U		0.0175 UJ		0.0392 U	0.017 U		0.016 U	0.0161 U	0.01 <i>77</i> U
Benzo(a)pyrene	0.025	0.08	0.47		0.0165 U		0.0175 UJ		0.0392 U	0.017 U		0.016 U	0.0161 U	0.0177 U
Benzo(b)fluoranthene	0.25	0.8	NV		0.0165 U		0.0175 UJ		0.0392 U	0.017 U		0.016 U	0.0161 U	0.01 <i>77</i> U
Benzo(ghi)perylene	NV	NV	NV		0.0331 U		0.0349 UJ		0.0392 U	0.0339 U		0.0321 U	0.0321 U	0.0354 U
Benzo(k)fluoranthene	NV	NV	NV		0.0165 U		0.0175 UJ		0.0392 U	0.017 U		0.016 U	0.0161 U	0.0177 U
Chrysene	NV	NV	NV		0.0165 U		0.0175 UJ		0.0392 U	0.017 U		0.016 U	0.0161 U	0.0177 U
Dibenzo(a,h)anthracene	0.025	0.08	0.47		0.0165 U		0.0175 UJ		0.0392 U	0.017 U		0.016 U	0.0161 U	0.0177 U
Dibenzofuran	NV	NV	NV		0.0331 U		0.0349 UJ		0.0392 U	0.0339 U		0.0321 U	0.0321 U	0.0354 U
Fluoranthene	NV	NV	NV		0.0331 U		0.0349 UJ		0.0392 U	0.0339 U		0.0321 U	0.0321 U	0.0354 U
Fluorene	280	1400	1300		0.0331 U		0.0349 UJ		0.0392 U	0.0339 U		0.0321 U	0.0321 U	0.0354 U
Indeno(1,2,3-cd)pyrene	NV	NV	NV		0.0165 U		0.0175 UJ		0.0392 U	0.017 U		0.016 U	0.0161 U	0.01 <i>77</i> U
Naphthalene	0.17	0.78	0.72		0.0662 U		0.0698 UJ		0.0784 U	0.0679 U		0.0642 U	0.0642 U	0.0708 U
Phenanthrene	NV	NV	NV		0.0662 U		0.0698 UJ		0.0392 U	0.0679 U		0.0642 U	0.0642 U	0.0708 U
Pyrene	110	NV	NV		0.0331 U		0.0349 UJ		0.0392 U	0.0339 U		0.0321 U	0.0321 U	0.0354 U
cPAH TEQ ^{(d)(2)}	0.025	0.08	0.47		ND		ND		ND	ND		ND	ND	ND

Location:				TCORE-3 (cont.)								TCORE-4					
Sample Name:		water, Ingestior from Tapwater ⁽¹		TCORE-3-GW	TCORE-3-GW	TCORE-3-GW- DUP	TCORE-3	TCORE-3 DUP	TCORE-3-GW	TCORE-3-GW- DUP	TCORE-4-GW	TCORE-4-GW	TCORE-4-GW	TCORE-4-GW	TCORE-4-GW		
Collection Date:	Residential	Urban Residential	Occupational	05/11/2023	10/25/2023	10/25/2023	05/22/2024	05/22/2024	05/13/2025	05/13/2025	10/26/2020	10/24/2022	03/30/2023	05/11/2023	10/26/2023		
TPH with Silica-Gel Cleanup (mg/L)								•	•	•		•		•	•		
Initial Analysis																	
Diesel-range hydrocarbons	0.100	0.100	0.430	0.0769 U	0.0816 U	0.0707 J	0.0784 U	0.0791 U	0.0784 U	0.0801 U	0.196 U	0.0777 U	0.0777 U	0.0777 U	0.08 U		
Oil-range hydrocarbons	0.100 ^(b)	0.100 ^(b)	0.430 ^(b)	0.395	0.163 U	0.275 J	0.157 U	0.198 U	0.157 U	0.200	0.392 U	0.218 U	0.155 U	0.155 U	0.160 U		
Confirmation Analysis																	
Diesel-range hydrocarbons	0.100	0.100	0.430									0.0769 UJ					
Oil-range hydrocarbons	0.100 ^(b)	0.100 ^(b)	0.430 ^(b)									0.154 UJ					
VOCs (ug/L)					-	-			-		-	-		-	-		
1,1,1,2-Tetrachloroethane	NV	NV	NV	0.4 U	0.4 U		0.4 U		0.4 U		1 U	0.4 U	0.4 U	0.4 U	0.4 U		
1,1,1-Trichloroethane	8,000	30,000	37,000	0.4 U	0.4 U		0.4 U		0.4 U		0.4 U						
1,1,2,2-Tetrachloroethane	NV	NV	NV	0.5 U	0.5 U		0.5 U		0.5 U		0.5 U						
1,1,2-Trichloroethane	0.28	1.3	1.3	0.5 U	0.5 U		0.5 U		0.5 U		0.5 U						
1,1-Dichloroethane	2.8	13	13	0.4 U	0.4 U		0.4 U		0.4 U		0.4 U						
1,1-Dichloroethene	280	1,100	1,400	0.4 U	0.4 U		0.4 U		0.4 U		0.4 U						
1,1-Dichloropropene	NV	NV	NV	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U		
1,2,3-Trichlorobenzene	NV	NV	NV	2 U	2 U		2 U		2 U		2 U	2 U	2 UJ	2 U	2 U		
1,2,3-Trichloropropane	NV	NV	NV	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U		
1,2,4-Trichlorobenzene	NV	NV	NV	2 U	2 U		2 U		2 U		2 U	2 U	2 U	2 U	2 U		
1,2,4-Trimethylbenzene	54	230	250	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U		
1,2-Dibromo-3-chloropropane	NV	NV	NV	5 U	5 U		5 U		5 U		5 U	5 U	5 U	5 U	5 U		
1,2-Dibromoethane	0.0075	0.034	0.034	0.5 U	0.5 U		0.5 U		0.5 U		0.5 U						
1,2-Dichlorobenzene	300	1,200	1,400	0.5 U	0.5 U		0.5 U		0.5 U		0.5 U						
1,2-Dichloroethane	0.17	0.78	0.78	0.4 U	0.4 U		0.4 U		0.4 U		0.4 U						
1,2-Dichloropropane	NV	NV	NV	0.5 U	0.5 U		0.5 U		0.5 U		0.5 U						
1,3,5-Trimethylbenzene	59	240	280	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U		
1,3-Dichlorobenzene	NV	NV	NV	0.5 U	0.5 U		0.5 U		0.5 U		0.5 U						
1,3-Dichloropropane	NV	NV	NV	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U		
1,4-Dichlorobenzene	0.48	2.3	2.1	0.5 U	0.5 U		0.5 U		0.5 U		0.5 U						
2,2-Dichloropropane	NV	NV	NV	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U		
2-Butanone	NV	NV	NV	10 U	10 U		10 U		10 U		10 U						
2-Chlorotoluene	NV	NV	NV	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U		
2-Hexanone	NV	NV	NV	10 U	10 U		10 U		10 U		10 U						
4-Chlorotoluene	NV	NV	NV	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U		
4-Isopropyltoluene	NV	NV	NV	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U		
4-Methyl-2-pentanone	NV	NV	NV	10 U	10 U		10 U		10 U		10 U						
Acetone	NV	NV	NV	20 U	20 U		20 U		20 U		20 U						
Acrylonitrile	0.052	0.23	0.25	2 U	2 U		2 U		2 U		2 U	2 U	2 U	2 U	2 U		
Benzene	0.46	2	2.1	0.2 U	0.2 U		0.2 U		0.2 U		0.2 U						

Location:				I			TCORE-3 (cont.	TCORE-4								
Localion.	RBC, Ground	dwater, Ingestio	n & Inhalation		ī		TCORE-3 (COIII.	<u> </u>	T		ICONL-4					
Sample Name:		from Tapwater ⁽	1)	TCORE-3-GW	TCORE-3-GW	TCORE-3-GW- DUP	TCORE-3	TCORE-3 DUP	TCORE-3-GW	TCORE-3-GW- DUP	TCORE-4-GW	TCORE-4-GW	TCORE-4-GW	TCORE-4-GW	TCORE-4-GW	
Collection Date:	Residential	Urban Residential	Occupational	05/11/2023	10/25/2023	10/25/2023	05/22/2024	05/22/2024	05/13/2025	05/13/2025	10/26/2020	10/24/2022	03/30/2023	05/11/2023	10/26/2023	
VOCs cont. (ug/L)	•	•	•	•	•	•		•	•	•	•	•				
Bromobenzene	NV	NV	NV	0.5 U	0.5 U		0.5 U		0.5 U		0.5 U					
Bromodichloromethane	0.13	0.62	0.6	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U	
Bromoform	3.3	15	16	1 U	1 U		1 U		1 U		2 U	1 U	1 U	1 U	1 U	
Bromomethane	7.5	28	36	5 U	5 U		5 U		5 U		5 U	5 U	5 U	5 U	5 U	
Carbon disulfide	NV	NV	NV	10 U	10 U		10 U		10 U		10 U					
Carbon tetrachloride	0.46	2	2.1	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U	
Chlorobenzene	77	290	350	0.5 U	0.5 U		0.5 U		0.5 U		0.5 U					
Chlorobromomethane	NV	NV	NV	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U	
Chloroethane	21,000	76,000	88,000	5 U	5 U		5 U		5 U		5 U	5 U	5 U	5 U	5 U	
Chloroform	0.22	1	0.98	1 U	1 U		1 U		1 U		4.73	1 U	1 U	1 U	1 U	
Chloromethane	190	690	790	5 U	5 UJ		5 U		5 U		5 U	5 U	5 U	5 U	5 UJ	
cis-1,2-Dichloroethene	36	140	260	0.4 U	0.4 U		0.4 U		0.4 U		0.4 U					
cis-1,3-Dichloropropene	NV	NV	NV	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U	
Dibromochloromethane	0.17	0.77	0.77	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U	
Dibromomethane	NV	NV	NV	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U	
Dichlorodifluoromethane (Freon 12)	NV	NV	NV	1 U	1 U		1 U		1 U		1 U	1 U	1 UJ	1 U	1 U	
Ethylbenzene	1.5	6.7	6.4	0.5 U	0.5 U		0.5 U		0.5 U		0.5 U					
Freon 113	55,000	NV	NV													
Hexachlorobutadiene	NV	NV	NV	5 U	5 U		5 U		5 U		5 U	5 U	5 U	5 U	5 U	
Isopropylbenzene	440	1,800	2,000	1 U	1 U		1 U		1 U		4 U	1 U	1 U	1 U	1 U	
m,p-Xylene	NV	NV	NV	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U	
Methyl tert-butyl ether	14	64	68	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U	
Methylene chloride	11	37	200	10 U	10 U		10 U		10 U		10 U					
Naphthalene	0.17	0.78	0.72	2 UJ	5 UJ		5 U		5 U		4 U	2 U	2 UJ	2 UJ	5 UJ	
n-Butylbenzene	NV	NV	NV	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U	
n-Propylbenzene	NV	NV	NV	0.5 U	0.5 U		0.5 U		0.5 U		0.5 U					
o-Xylene	NV	NV	NV	0.5 U	0.5 U		0.5 U		0.5 U		0.5 U					
sec-Butylbenzene	NV	NV	NV	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U	
Styrene	1,200	4,600	5,700	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U	
tert-Butylbenzene	NV	NV	NV	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U	
Tetrachloroethene	12	49	48	0.4 U	0.4 U		0.4 U		0.4 U		0.4 U					
Toluene	1,100	4,400	6,300	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U	
trans-1,2-Dichloroethene	360	1,400	2,600	0.4 U	0.4 U		0.4 U		0.4 U		0.4 U					
trans-1,3-Dichloropropene	NV	NV	NV	1 U	1 U		1 U		1 U		2 U	1 U	1 U	1 U	1 U	
Trichloroethene	0.49	2	3.3	0.4 U	0.4 U		0.4 U		0.4 U		0.4 U					
Trichlorofluoromethane (Freon 11)	1,100	4,200	5,200	2 U	2 U		2 U		2 U		2 U	2 U	2 U	2 U	2 U	
Vinyl chloride	0.027	0.066	0.49	0.4 U	0.2 U		0.2 U		0.2 U		0.4 U	0.4 U	0.4 U	0.4 U	0.2 U	
Xylenes (total) ^(c)	190	710	830	1 U	1 U		1 U		1 U		1 U	1 U	1 U	1 U	1 U	

Location:							TCORE-3 (cont.	.)				TCORE-4					
Sample Name:	RBC, Groundwater, Ingestion & Inhalation from Tapwater ⁽¹⁾			TCORE-3-GW	TCORE-3-GW	TCORE-3-GW- DUP	TCORE-3	TCORE-3 DUP	TCORE-3-GW	TCORE-3-GW- DUP	TCORE-4-GW	TCORE-4-GW	TCORE-4-GW	TCORE-4-GW	TCORE-4-GW		
Collection Date:	Residential	Urban Residential	Occupational	05/11/2023	10/25/2023	10/25/2023	05/22/2024	05/22/2024	05/13/2025	05/13/2025	10/26/2020	10/24/2022	03/30/2023	05/11/2023	10/26/2023		
PAHs (ug/L)																	
1-Methylnaphthalene	NV	NV	NV	0.0721 U	0.0685 U		0.0674 U		0.0717 UJ		0.0777 UJ	0.0711 U	0.074 U	0.0705 U	0.0673 U		
2-Methylnaphthalene	NV	NV	NV	0.0721 U	0.0685 U		0.0674 U		0.0717 UJ		0.0777 UJ	0.0711 U	0.074 U	0.0705 U	0.0673 U		
Acenaphthene	510	2400	2500	0.036 U	0.0342 U		0.0337 U		0.0359 UJ		0.0388 UJ	0.0355 U	0.037 U	0.0352 U	0.0337 U		
Acenaphthylene	NV	NV	NV	0.036 U	0.0342 U		0.0337 U		0.0359 UJ		0.0388 UJ	0.0355 U	0.037 U	0.0352 U	0.0337 U		
Anthracene	NV	NV	NV	0.036 U	0.0342 U		0.0337 U		0.0359 UJ		0.0388 UJ	0.0355 U	0.037 U	0.0352 U	0.0337 U		
Benzo(a)anthracene	0.03	0.11	0.38	0.018 U	0.0171 U		0.0168 U		0.0179 UJ		0.0388 UJ	0.0178 U	0.0185 U	0.0176 U	0.0168 U		
Benzo(a)pyrene	0.025	0.08	0.47	0.018 U	0.0171 U		0.0168 U		0.0179 UJ		0.0388 UJ	0.0178 U	0.0185 U	0.0176 U	0.0168 U		
Benzo(b)fluoranthene	0.25	0.8	NV	0.018 U	0.0171 U		0.0168 U		0.0179 UJ		0.0388 UJ	0.0178 U	0.0185 U	0.0176 U	0.0168 U		
Benzo(ghi)perylene	NV	NV	NV	0.036 U	0.0342 U		0.0337 U		0.0359 UJ		0.0388 UJ	0.0355 U	0.037 U	0.0352 U	0.0337 U		
Benzo(k)fluoranthene	NV	NV	NV	0.018 U	0.0171 U		0.0168 U		0.0179 UJ		0.0388 UJ	0.0178 U	0.0185 U	0.0176 U	0.0168 U		
Chrysene	NV	NV	NV	0.018 U	0.0171 U		0.0168 U		0.0179 UJ		0.0388 UJ	0.0178 U	0.0185 U	0.0176 U	0.0168 U		
Dibenzo(a,h)anthracene	0.025	0.08	0.47	0.018 U	0.0171 U		0.0168 U		0.0179 UJ		0.0388 UJ	0.0178 U	0.0185 U	0.0176 U	0.0168 U		
Dibenzofuran	NV	NV	NV	0.036 U	0.0342 U		0.0337 U		0.0359 UJ		0.0388 UJ	0.0355 U	0.037 U	0.0352 U	0.0337 U		
Fluoranthene	NV	NV	NV	0.036 U	0.0342 U		0.0337 U		0.0359 UJ		0.0388 UJ	0.0355 U	0.037 U	0.0352 U	0.0337 U		
Fluorene	280	1400	1300	0.036 U	0.0342 U		0.0337 U		0.0359 UJ		0.0388 UJ	0.0355 U	0.037 U	0.0352 U	0.0337 U		
Indeno(1,2,3-cd)pyrene	NV	NV	NV	0.018 U	0.0171 U		0.0168 U		0.0179 UJ		0.0388 UJ	0.0178 U	0.0185 U	0.0176 U	0.0168 U		
Naphthalene	0.17	0.78	0.72	0.0721 U	0.0685 U		0.0674 U		0.0717 UJ		0.0777 UJ	0.0711 U	0.074 U	0.0705 U	0.0673 U		
Phenanthrene	NV	NV	NV	0.0721 U	0.0685 U		0.0674 U		0.0717 UJ		0.0388 UJ	0.0711 U	0.074 U	0.0705 U	0.0673 U		
Pyrene	110	NV	NV	0.036 U	0.0342 U		0.0337 U		0.0359 UJ		0.0388 UJ	0.0355 U	0.037 U	0.0352 U	0.0337 U		
cPAH TEQ ^{(d)(2)}	0.025	0.08	0.47	ND	ND		ND		ND		ND	ND	ND	ND	ND		

Location:			0.1.1.7.12	TCORE-	-4 (cont.)	TCORE-5								TCORE-10D		
Sample Name:		water, Ingestion from Tapwater ⁽¹		TCORE-4	TCORE-4-GW	TCORE-5-GW	TCORE-5-GW	TCORE-5-GW	TCORE-5-GW	TCORE-5-GW	TCORE-5	TCORE-5-GW	TCORE-10D- GW	TCORE-10D- GW	TCORE-10D- GW	
Collection Date:	Residential	Urban Residential	Occupational	05/22/2024	05/14/2025	10/26/2020	10/24/2022	03/31/2023	05/11/2023	10/26/2023	05/23/2024	05/14/2025	10/26/2020	10/24/2022	03/31/2023	
TPH with Silica-Gel Cleanup (mg/L)		!	!				!		!	!	!	·!	!		!	
Initial Analysis																
Diesel-range hydrocarbons	0.100	0.100	0.430	0.0784 U	0.08 U	0.192 U	0.0762 U	0.0777 U	0.0769 U	0.0800 U	U 0080.0	0.0792 U	0.189 U	0.0784 U	0.0777 U	
Oil-range hydrocarbons	0.100 ^(b)	0.100 ^(b)	0.430 ^(b)	0.157 U	0.161	0.385 U	0.152 U	0.155 U	0.154 U	0.160 U	0.160 U	0.158 U	0.377 U	0.157 U	0.155 U	
Confirmation Analysis																
Diesel-range hydrocarbons	0.100	0.100	0.430				0.0784 UJ							0.0777 UJ		
Oil-range hydrocarbons	0.100 ^(b)	0.100 ^(b)	0.430 ^(b)				0.157 UJ							0.155 UJ		
VOCs (ug/L)	•	•	•		•		•		•	•		•		•	•	
1,1,1,2-Tetrachloroethane	NV	NV	NV	0.4 U	0.4 U	1 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	1 U	0.4 U	0.4 U	
1,1,1-Trichloroethane	8,000	30,000	37,000	0.4 U	0.4 U	0.4 U										
1,1,2,2-Tetrachloroethane	NV	NV	NV	0.5 U	0.5 U	0.5 U										
1,1,2-Trichloroethane	0.28	1.3	1.3	0.5 U	0.5 U	0.5 U										
1,1-Dichloroethane	2.8	13	13	0.4 U	0.4 U	0.4 U										
1,1-Dichloroethene	280	1,100	1,400	0.4 U	0.4 U	0.4 U										
1,1-Dichloropropene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,2,3-Trichlorobenzene	NV	NV	NV	2 U	2 U	2 U	2 U	2 UJ	2 U	2 U	2 U	2 U	2 U	2 U	2 UJ	
1,2,3-Trichloropropane	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,2,4-Trichlorobenzene	NV	NV	NV	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	
1,2,4-Trimethylbenzene	54	230	250	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,2-Dibromo-3-chloropropane	NV	NV	NV	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,2-Dibromoethane	0.0075	0.034	0.034	0.5 U	0.5 U	0.5 U										
1,2-Dichlorobenzene	300	1,200	1,400	0.5 U	0.5 U	0.5 U										
1,2-Dichloroethane	0.17	0.78	0.78	0.4 U	0.4 U	0.4 U										
1,2-Dichloropropane	NV	NV	NV	0.5 U	0.5 U	0.5 U										
1,3,5-Trimethylbenzene	59	240	280	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,3-Dichlorobenzene	NV	NV	NV	0.5 U	0.5 U	0.5 U										
1,3-Dichloropropane	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
1,4-Dichlorobenzene	0.48	2.3	2.1	0.5 U	0.5 U	0.5 U										
2,2-Dichloropropane	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
2-Butanone	NV	NV	NV	10 U	10 U	10 U	10 U	10 υ	10 U	10 U	10 U					
2-Chlorotoluene	NV	NV	NV	1 U	1 U	1 U	1 U	1 υ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
2-Hexanone	NV	NV	NV	10 U	10 U	10 U	10 U	10 υ	10 U	10 U	10 U					
4-Chlorotoluene	NV	NV	NV	1 U	1 U	1 U	1 U	1 υ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
4-Isopropyltoluene	NV	NV	NV	1 U	1 U	1 U	1 U	1 υ	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
4-Methyl-2-pentanone	NV	NV	NV	10 U	10 U	17.5	10 U	10 U	10 U							
Acetone	NV	NV	NV	20 U	20 U	20 U										
Acrylonitrile	0.052	0.23	0.25	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	
Benzene	0.46	2	2.1	0.2 U	0.2 U	0.2 U										

Color Colo	Location:	RBC, Groundwater, Ingestion & Inhalation			TCORE-	4 (cont.)	TCORE-5								TCORE-10D	
Note Part	Sample Name:		_		TCORE-4	TCORE-4-GW	TCORE-5-GW	TCORE-5-GW	TCORE-5-GW	TCORE-5-GW	TCORE-5-GW	TCORE-5	TCORE-5-GW			
Bernardemanare	Collection Date:	Residential		Occupational	05/22/2024	05/14/2025	10/26/2020	10/24/2022	03/31/2023	05/11/2023	10/26/2023	05/23/2024	05/14/2025	10/26/2020	10/24/2022	03/31/2023
Nonestationementhnee 10.5	VOCs cont. (ug/L)			'									•	•	•	
Bernerdern	Bromobenzene	NV	NV	NV	0.5 U											
Second Process 7.5 7.5 7.8 7.5 7.8 7.5	Bromodichloromethane	0.13	0.62	0.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Corbon cloubled NV	Bromoform	3.3	15	16	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	1 U	1 U
Corbon lefrochiolide	Bromomethane	7.5	28	36	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chlorobermane	Carbon disulfide	NV	NV	NV	10 U	10 U	10 U	10 U	10 υ	10 U						
Chlorostromomethane	Carbon tetrachloride	0.46	2	2.1	1 U	1 U	1 U	1 U	1 υ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethone 21,000 76,000 88,000 5 U	Chlorobenzene	77	290	350	0.5 U											
Chicromorphisme 190	Chlorobromomethane	NV	NV	NV	1 U	1 U	1 U	1 U	1 υ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chicomethories 190 890 790 50 50 50 50 50 50 50	Chloroethane	21,000	76,000	88,000	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Cis 1,20 Cis	Chloroform	0.22	1	0.98	1 U	1 U	2.21	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cist-13-Dichloropropene	Chloromethane	190	690	790	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U
Dibromochloromethane Dibromochloromethane	cis-1,2-Dichloroethene	36	140	260	0.4 U											
Distribution Dist	cis-1,3-Dichloropropene	NV	NV	NV	1 U	1 U	1 U	1 U	1 υ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dichlorodiffuormethane (Freon 12) NV NV NV NV 1 U 1	Dibromochloromethane	0.17	0.77	0.77	1 U	1 U	1 U	1 U	1 υ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	Dibromomethane	NV	NV	NV	1 U	1 U	1 U	1 U	1 υ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Freon 113 S5,000	Dichlorodifluoromethane (Freon 12)	NV	NV	NV	1 U	1 U	1 U	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U	1 U	1 UJ
Hexachlorobutadiene	Ethylbenzene	1.5	6.7	6.4	0.5 U											
Sopropylbenzene	Freon 113	55,000	NV	NV												
Methylerdener NV NV NV NV 1 U	Hexachlorobutadiene	NV	NV	NV	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl terl-butyl ether 14 64 68 1 U	Isopropylbenzene	440	1,800	2,000	1 U	1 U	4 U	1 U	1 U	1 U	1 U	1 U	1 U	4 U	1 U	1 U
Methylene chloride 11 37 200 10 U	m,p-Xylene	NV	NV	NV	1 U	1 U	1 U	1 U	1 υ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Naphthalene 0.17 0.78 0.72 5 U 5 U 4 U 2 U 2 UJ 5 UJ 5 U 4 U 2 UJ n-Butylbenzene NV NV NV NV 1 U	Methyl tert-butyl ether	14	64	68	1 U	1 U	1 U	1 U	1 υ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
NV NV NV NV NV NV NV NV	Methylene chloride	11	37	200	10 U	10 U	10 U	10 U	10 υ	10 U						
n-Propylbenzene NV NV NV NV 0.5 U 0	Naphthalene	0.17	0.78	0.72	5 U	5 U	4 U	2 U	2 UJ	2 UJ	5 UJ	5 U	5 U	4 U	2 U	2 UJ
o-Xylene NV NV NV NV 0.5 U 0.5 U <td>n-Butylbenzene</td> <td>NV</td> <td>NV</td> <td>NV</td> <td>1 U</td>	n-Butylbenzene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
sec-Butylbenzene NV NV NV 1U	n-Propylbenzene	NV	NV	NV	0.5 U											
Styrene 1,200 4,600 5,700 1 U <	o-Xylene	NV	NV	NV	0.5 U											
tert-Butylbenzene NV NV NV 1 U	sec-Butylbenzene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene 12 49 48 0.4 U	Styrene	1,200	4,600	5,700	1 U	1 U	1 U	1 U	1 υ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene 1,100 4,400 6,300 1 U <	tert-Butylbenzene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene 360 1,400 2,600 0.4 U	Tetrachloroethene	12	49	48	0.4 U											
	Toluene	1,100	4,400	6,300	1 U	1 U	1 U	1 U	1 υ	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene NV NV NV 1U 1U 2U 1U	trans-1,2-Dichloroethene	360	1,400	2,600	0.4 U											
	trans-1,3-Dichloropropene	NV	NV	NV	1 U	1 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U	1 U	1 U
Trichloroethene 0.49 2 3.3 0.4 U	Trichloroethene	0.49	2	3.3	0.4 U											
Trichlorofluoromethane (Freon 11) 1,100 4,200 5,200 2U	Trichlorofluoromethane (Freon 11)	1,100	4,200	5,200	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Vinyl chloride 0.027 0.066 0.49 0.2 U 0.2 U 0.4 U 0.4 U 0.4 U 0.2 U 0.2 U 0.4 U 0.4 U	Vinyl chloride	0.027	0.066	0.49	0.2 U	0.2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.2 U	0.2 U	0.2 U	0.4 U	0.4 U	0.4 U
Xylenes (total) ^(c) 190 710 830 1U	Xylenes (total) ^(c)	190	710	830	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Location:				TCORE-	4 (cont.)				TCORE-5				TCORE-1OD			
Sample Name:	RBC, Groundwater, Ingestion & Inhalation from Tapwater ⁽¹⁾			TCORE-4	TCORE-4-GW	TCORE-5-GW	TCORE-5-GW	TCORE-5-GW	TCORE-5-GW	TCORE-5-GW	TCORE-5	TCORE-5-GW	TCORE-10D- GW	TCORE-10D- GW	TCORE-10D- GW	
Collection Date:	Residential	Urban Residential	Occupational	05/22/2024	05/14/2025	10/26/2020	10/24/2022	03/31/2023	05/11/2023	10/26/2023	05/23/2024	05/14/2025	10/26/2020	10/24/2022	03/31/2023	
PAHs (ug/L)	•															
1-Methylnaphthalene	NV	NV	NV	0.0679 U	0.0683 U	0.0792 U	0.0673 U	0.0695 U	0.0696 U	0.0672 U	0.0685 U	0.0684 U	0.0784 U	0.0781 U	0.0779 U	
2-Methylnaphthalene	NV	NV	NV	0.0679 U	0.0683 U	0.0792 U	0.0673 U	0.0695 U	0.0696 U	0.0672 U	0.0685 U	0.0684 U	0.0784 U	0.0781 U	0.0779 U	
Acenaphthene	510	2400	2500	0.0339 U	0.0342 U	0.0396 U	0.0336 U	0.0347 U	0.0348 U	0.0336 U	0.0343 U	0.0342 U	0.0392 U	0.039 U	0.039 U	
Acenaphthylene	NV	NV	NV	0.0339 U	0.0342 U	0.0396 U	0.0336 U	0.0347 U	0.0348 U	0.0336 U	0.0343 U	0.0342 U	0.0392 U	0.039 U	0.039 U	
Anthracene	NV	NV	NV	0.0339 U	0.0342 U	0.0396 U	0.0336 U	0.0347 U	0.0348 U	0.0336 U	0.0343 U	0.0342 U	0.0392 U	0.039 U	0.039 U	
Benzo(a)anthracene	0.03	0.11	0.38	0.017 U	0.0171 U	0.0396 U	0.0168 U	0.0174 U	0.0174 U	0.0168 U	0.0171 U	0.0171 U	0.0392 U	0.0195 U	0.0195 U	
Benzo(a)pyrene	0.025	0.08	0.47	0.017 U	0.0171 U	0.0396 U	0.0168 U	0.0174 U	0.0174 U	0.0168 U	0.0171 U	0.0171 U	0.0392 U	0.0195 U	0.0195 U	
Benzo(b)fluoranthene	0.25	0.8	NV	0.017 U	0.0171 U	0.0396 U	0.0168 U	0.0174 U	0.0174 U	0.0168 U	0.0171 U	0.0171 U	0.0392 U	0.0195 U	0.0195 U	
Benzo(ghi)perylene	NV	NV	NV	0.0339 U	0.0342 U	0.0396 U	0.0336 U	0.0347 U	0.0348 U	0.0336 U	0.0343 U	0.0342 U	0.0392 U	0.039 U	0.039 U	
Benzo(k)fluoranthene	NV	NV	NV	0.017 U	0.0171 U	0.0396 U	0.0168 U	0.0174 U	0.0174 U	0.0168 U	0.0171 U	0.0171 U	0.0392 U	0.0195 U	0.0195 U	
Chrysene	NV	NV	NV	0.017 U	0.0171 U	0.0396 U	0.0168 U	0.0174 U	0.0174 U	0.0168 U	0.0171 U	0.0171 U	0.0392 U	0.0195 U	0.0195 U	
Dibenzo(a,h)anthracene	0.025	0.08	0.47	0.017 U	0.0171 U	0.0396 U	0.0168 U	0.0174 U	0.0174 U	0.0168 U	0.0171 U	0.0171 U	0.0392 U	0.0195 U	0.0195 U	
Dibenzofuran	NV	NV	NV	0.0339 U	0.0342 U	0.0396 U	0.0336 U	0.0347 U	0.0348 U	0.0336 U	0.0343 U	0.0342 U	0.0392 U	0.039 U	0.039 U	
Fluoranthene	NV	NV	NV	0.0339 U	0.0342 U	0.0396 U	0.0336 U	0.0347 U	0.0348 U	0.0336 U	0.0343 U	0.0342 U	0.0392 U	0.039 U	0.039 U	
Fluorene	280	1400	1300	0.0339 U	0.0342 U	0.0396 U	0.0336 U	0.0347 U	0.0348 U	0.0336 U	0.0343 U	0.0342 U	0.0392 U	0.039 U	0.039 U	
Indeno(1,2,3-cd)pyrene	NV	NV	NV	0.017 U	0.0171 U	0.0396 U	0.0168 U	0.0174 U	0.0174 U	0.0168 U	0.0171 U	0.0171 U	0.0392 U	0.0195 U	0.0195 U	
Naphthalene	0.17	0.78	0.72	0.0679 U	0.0683 U	0.0792 U	0.0673 U	0.0695 U	0.0696 U	0.0672 U	0.0685 U	0.0684 U	0.0784 U	0.0781 U	0.0779 U	
Phenanthrene	NV	NV	NV	0.0679 U	0.0683 U	0.0396 U	0.0673 U	0.0695 U	0.0696 U	0.0672 U	0.0685 U	0.0684 U	0.0392 U	0.0781 U	0.0779 U	
Pyrene	110	NV	NV	0.0339 U	0.0342 U	0.0396 U	0.0336 U	0.0347 U	0.0348 U	0.0336 U	0.0343 U	0.0342 U	0.0392 U	0.039 U	0.039 U	
cPAH TEQ ^{(d)(2)}	0.025	0.08	0.47	ND	ND	ND										

Location:	RBC, Groundwater, Ingestion & Inhalation				TCORE-10	OD (cont.)	TCORE-2OD								
Sample Name:		water, Ingestior from Tapwater ⁽¹		TCORE-10D- GW	TCORE-10D- GW	TCORE-10D	TCORE-10D- GW	TCORE-20D- GW	TCORE-20D- GW	TCORE-20D- GW ^(a)	TCORE-20D- GW	TCORE-20D- GW-DUP	TCORE-20D- GW	TCORE-20D- GW-DUP	TCORE-20D- GW
Collection Date:	Residential	Urban Residential	Occupational	05/12/2023	10/26/2023	05/22/2024	05/13/2025	10/26/2020	10/24/2022	11/30/2022	03/30/2023	03/30/2023	05/11/2023	05/11/2023	10/25/2023
TPH with Silica-Gel Cleanup (mg/L)						•	•		•	•	•	•	•	•	
Initial Analysis															
Diesel-range hydrocarbons	0.100	0.100	0.430	0.0784 U	0.0755 U	0.0784 U	0.0784 U	0.202 U	78.4 U	0.0784 U	0.0808 UJ	0.0766 U	0.0769 UJ	0.0796 U	0.0800 UJ
Oil-range hydrocarbons	0.100 ^(b)	0.100 ^(b)	0.430 ^(b)	0.157 U	0.151 U	0.157 U	0.157 U	0.404 U	1.94	0.908	0.174 J	0.191 U	0.154 UJ	0.199 U	0.201 J
Confirmation Analysis															
Diesel-range hydrocarbons	0.100	0.100	0.430						0.0879 UJ	0.0784 UJ					-
Oil-range hydrocarbons	0.100 ^(b)	0.100 ^(b)	0.430 ^(b)						0.344 J	0.280 J-					
VOCs (ug/L)	-		-		-	-	-		-	-	-	-		-	
1,1,1,2-Tetrachloroethane	NV	NV	NV	0.4 U	0.4 U	0.4 U	0.4 U	1 U	0.4 U		0.4 U	1 U	0.4 U		0.4 U
1,1,1-Trichloroethane	8,000	30,000	37,000	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U		0.4 U	1 U	0.4 U		0.4 U
1,1,2,2-Tetrachloroethane	NV	NV	NV	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	1 U	0.5 U		0.5 U
1,1,2-Trichloroethane	0.28	1.3	1.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	1 U	0.5 U		0.5 U
1,1-Dichloroethane	2.8	13	13	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U		0.4 U	1 U	0.4 U		0.4 U
1,1-Dichloroethene	280	1,100	1,400	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U		0.4 U	1 U	0.4 U		0.4 U
1,1-Dichloropropene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
1,2,3-Trichlorobenzene	NV	NV	NV	2 U	2 U	2 U	2 U	2 U	2 U		2 UJ	1 U	2 U		2 U
1,2,3-Trichloropropane	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
1,2,4-Trichlorobenzene	NV	NV	NV	2 U	2 U	2 U	2 U	2 U	2 U		2 U	1 U	2 U		2 U
1,2,4-Trimethylbenzene	54	230	250	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
1,2-Dibromo-3-chloropropane	NV	NV	NV	5 U	5 U	5 U	5 U	5 U	5 U		5 U	1 U	5 U		5 U
1,2-Dibromoethane	0.0075	0.034	0.034	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	1 U	0.5 U		0.5 U
1,2-Dichlorobenzene	300	1,200	1,400	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	1 U	0.5 U		0.5 U
1,2-Dichloroethane	0.17	0.78	0.78	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U		0.4 U	1 U	0.4 U		0.4 U
1,2-Dichloropropane	NV	NV	NV	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	1 U	0.5 U		0.5 U
1,3,5-Trimethylbenzene	59	240	280	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
1,3-Dichlorobenzene	NV	NV	NV	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	1 U	0.5 U		0.5 U
1,3-Dichloropropane	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
1,4-Dichlorobenzene	0.48	2.3	2.1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	1 υ	0.5 U		0.5 U
2,2-Dichloropropane	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 υ	1 U		1 U
2-Butanone	NV	NV	NV	10 U	10 U	10 U	10 U	10 U	10 U		10 υ	10 υ	10 U		10 U
2-Chlorotoluene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
2-Hexanone	NV	NV	NV	10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 υ	10 U		10 U
4-Chlorotoluene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
4-Isopropyltoluene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
4-Methyl-2-pentanone	NV	NV	NV	10 U	10 U	10 U	10 U	10 U	10 U		10 U	10 U	10 U		10 U
Acetone	NV	NV	NV	20 U	20 U	20 U	20 U	20 U	20 U		20 U	20 U	20 U		20 U
Acrylonitrile	0.052	0.23	0.25	2 U	2 U	2 U	2 U	2 U	2 U		2 U	5 U	2 U		2 U
Benzene	0.46	2	2.1	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		0.2 U	0.3 U	0.2 U		0.2 U

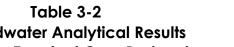
Table 3-2 Groundwater Analytical Results Port of Portland - Terminal Core Redevelopment Portland International Airport

Location:	22.2.0				TCORE-10	OD (cont.)					TCOR	RE-2OD			
Sample Name:		water, Ingestior from Tapwater ⁽¹		TCORE-10D- GW	TCORE-10D- GW	TCORE-10D	TCORE-1OD- GW	TCORE-20D- GW	TCORE-20D- GW	TCORE-20D- GW ^(a)	TCORE-20D- GW	TCORE-20D- GW-DUP	TCORE-20D- GW	TCORE-20D- GW-DUP	TCORE-20D- GW
Collection Date:	Residential	Urban Residential	Occupational	05/12/2023	10/26/2023	05/22/2024	05/13/2025	10/26/2020	10/24/2022	11/30/2022	03/30/2023	03/30/2023	05/11/2023	05/11/2023	10/25/2023
VOCs cont. (ug/L)	•		•				'		•		'	'			
Bromobenzene	NV	NV	NV	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	1 U	0.5 U		0.5 U
Bromodichloromethane	0.13	0.62	0.6	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 υ	1 U		1 U
Bromoform	3.3	15	16	1 U	1 U	1 U	1 U	2 U	1 U		1 U	1 U	1 U		1 U
Bromomethane	7.5	28	36	5 U	5 U	5 U	5 U	5 U	5 U		5 U	1 U	5 U		5 U
Carbon disulfide	NV	NV	NV	10 U	10 U	10 U	10 U	10 U	10 U		10 υ	2 υ	10 U		10 U
Carbon tetrachloride	0.46	2	2.1	1 U	1 U	1 U	1 U	1 U	1 U		1 υ	1 U	1 U		1 U
Chlorobenzene	77	290	350	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	1 U	0.5 U		0.5 U
Chlorobromomethane	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
Chloroethane	21,000	76,000	88,000	5 U	5 U	5 U	5 U	5 U	5 U		5 U	1 U	5 U		5 U
Chloroform	0.22	1	0.98	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
Chloromethane	190	690	790	5 U	5 UJ	5 U	5 U	5 U	5 U		5 U	1 U	5 U		5 UJ
cis-1,2-Dichloroethene	36	140	260	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U		0.4 U	1 U	0.4 U		0.4 U
cis-1,3-Dichloropropene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
Dibromochloromethane	0.17	0.77	0.77	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
Dibromomethane	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U		1 υ	1 U	1 U		1 U
Dichlorodifluoromethane (Freon 12)	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U		1 UJ	1 U	1 U		1 U
Ethylbenzene	1.5	6.7	6.4	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	1 U	0.5 U		0.5 U
Freon 113	55,000	NV	NV									1 U			-
Hexachlorobutadiene	NV	NV	NV	5 U	5 U	5 U	5 U	5 U	5 U		5 U	1 U	5 U		5 U
Isopropylbenzene	440	1,800	2,000	1 U	1 U	1 U	1 U	4 U	1 U		1 U	1 U	1 U		1 U
m,p-Xylene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U		1 υ	2 U	1 U		1 U
Methyl tert-butyl ether	14	64	68	1 U	1 U	1 U	1 U	1 U	1 U		1 υ	1 U	1 U		1 U
Methylene chloride	11	37	200	10 U	10 U	10 U	10 U	10 U	10 U		10 υ	50 U	10 U		10 U
Naphthalene	0.17	0.78	0.72	2 UJ	5 UJ	5 U	5 U	4 U	2 U		2 UJ	1 U	2 UJ		5 UJ
n-Butylbenzene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
n-Propylbenzene	NV	NV	NV	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	1 υ	0.5 U		0.5 U
o-Xylene	NV	NV	NV	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	1 U	0.5 U		0.5 U
sec-Butylbenzene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
Styrene	1,200	4,600	5,700	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 υ	1 U		1 U
tert-Butylbenzene	NV	NV	NV	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
Tetrachloroethene	12	49	48	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U		0.4 U	1 U	0.4 U		0.4 U
Toluene	1,100	4,400	6,300	1 U	1 U	1 U	1 U	1 U	1 U		1 U	1 U	1 U		1 U
trans-1,2-Dichloroethene	360	1,400	2,600	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U		0.4 U	1 U	0.4 U		0.4 U
trans-1,3-Dichloropropene	NV	NV	NV	1 U	1 U	1 U	1 U	2 U	1 U		1 U	1 U	1 U		1 U
Trichloroethene	0.49	2	3.3	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U		0.4 U	1 υ	0.4 U		0.4 U
Trichlorofluoromethane (Freon 11)	1,100	4,200	5,200	2 U	2 U	2 U	2 U	2 U	2 U		2 U	1 υ	2 U		2 U
Vinyl chloride	0.027	0.066	0.49	0.4 U	0.2 U	0.2 U	0.2 U	0.4 U	0.4 U		0.4 U	1 U	0.4 U		0.2 U
Xylenes (total) ^(c)	190	710	830	1 U	1 U	1 U	1 U	1 U	1 U		1 U	2 U	1 U		1 U

Table 3-2 Groundwater Analytical Results Port of Portland - Terminal Core Redevelopment Portland International Airport

Location:	220.0				TCORE-10	OD (cont.)					TCOR	RE-2OD			
Sample Name:		lwater, Ingestion from Tapwater ⁽		TCORE-10D- GW	TCORE-10D- GW	TCORE-10D	TCORE-10D- GW	TCORE-20D- GW	TCORE-20D- GW	TCORE-20D- GW ^(a)	TCORE-20D- GW	TCORE-20D- GW-DUP	TCORE-20D- GW	TCORE-20D- GW-DUP	TCORE-20D- GW
Collection Date:	Residential	Urban Residential	Occupational	05/12/2023	10/26/2023	05/22/2024	05/13/2025	10/26/2020	10/24/2022	11/30/2022	03/30/2023	03/30/2023	05/11/2023	05/11/2023	10/25/2023
PAHs (ug/L)	-							•				-	•		•
1-Methylnaphthalene	NV	NV	NV	0.0756 U	0.0776 U	0.0762 UJ	0.0797 UJ	0.0755 U	0.0787 U		0.0772 U	0.094 U	0.075 U		0.0808 U
2-Methylnaphthalene	NV	NV	NV	0.0756 U	0.0776 U	0.0762 UJ	0.0797 UJ	0.0755 U	0.0787 U		0.0772 U	0.094 U	0.075 U		0.0808 U
Acenaphthene	510	2400	2500	0.0378 U	0.0388 U	0.0381 UJ	0.0398 UJ	0.0377 U	0.0394 U		0.0386 U	0.094 U	0.0375 U		0.0404 U
Acenaphthylene	NV	NV	NV	0.0378 U	0.0388 U	0.0381 UJ	0.0398 UJ	0.0377 U	0.0394 U		0.0386 U	0.094 U	0.0375 U		0.0404 U
Anthracene	NV	NV	NV	0.0378 U	0.0388 U	0.0381 UJ	0.0398 UJ	0.0377 U	0.0394 U		0.0386 U	0.094 U	0.0375 U		0.0404 U
Benzo(a)anthracene	0.03	0.11	0.38	0.0189 U	0.0194 U	0.019 UJ	0.0199 UJ	0.0377 U	0.0197 U		0.0193 U	0.094 U	0.0187 U		0.0202 U
Benzo(a)pyrene	0.025	0.08	0.47	0.0189 U	0.0194 U	0.019 UJ	0.0199 UJ	0.0377 U	0.0197 U		0.0193 U	0.094 U	0.0187 U		0.0202 U
Benzo(b)fluoranthene	0.25	0.8	NV	0.0189 U	0.0194 U	0.019 UJ	0.0199 UJ	0.0377 U	0.0197 U		0.0193 U	0.094 U	0.0187 U		0.0202 U
Benzo(ghi)perylene	NV	NV	NV	0.0378 U	0.0388 U	0.0381 UJ	0.0398 UJ	0.0377 U	0.0394 U		0.0386 U	0.094 U	0.0375 U		0.0404 U
Benzo(k)fluoranthene	NV	NV	NV	0.0189 U	0.0194 U	0.019 UJ	0.0199 UJ	0.0377 U	0.0197 U		0.0193 U	0.094 U	0.0187 U		0.0202 U
Chrysene	NV	NV	NV	0.0189 U	0.0194 U	0.019 UJ	0.0199 UJ	0.0377 U	0.0197 U		0.0193 U	0.094 U	0.0187 U		0.0202 U
Dibenzo(a,h)anthracene	0.025	0.08	0.47	0.0189 U	0.0194 U	0.019 UJ	0.0199 UJ	0.0377 U	0.0197 U		0.0193 U	0.094 U	0.0187 U		0.0202 U
Dibenzofuran	NV	NV	NV	0.0378 U	0.0388 U	0.0381 UJ	0.0398 UJ	0.0377 U	0.0394 U		0.0386 U	0.094 U	0.0375 U		0.0404 U
Fluoranthene	NV	NV	NV	0.0378 U	0.0388 U	0.0381 UJ	0.0398 UJ	0.0377 U	0.0394 U		0.0386 U	0.094 U	0.0375 U		0.0404 U
Fluorene	280	1400	1300	0.0378 U	0.0388 U	0.0381 UJ	0.0398 UJ	0.0377 U	0.0394 U		0.0386 U	0.094 U	0.0375 U		0.0404 U
Indeno(1,2,3-cd)pyrene	NV	NV	NV	0.0189 U	0.0194 U	0.019 UJ	0.0199 UJ	0.0377 U	0.0197 U		0.0193 U	0.094 U	0.0187 U		0.0202 U
Naphthalene	0.17	0.78	0.72	0.0756 U	0.0776 U	0.0762 UJ	0.0797 UJ	0.0755 U	0.0787 U		0.0772 U	0.094 U	0.075 U		0.0808 U
Phenanthrene	NV	NV	NV	0.0756 U	0.0776 U	0.0762 UJ	0.0797 UJ	0.0377 U	0.0787 U		0.0772 U	0.094 U	0.075 U		0.0808 U
Pyrene	110	NV	NV	0.0378 U	0.0388 U	0.0381 UJ	0.0398 UJ	0.0377 U	0.0394 U		0.0386 U	0.188 U	0.0375 U		0.0404 U
cPAH TEQ ^{(d)(2)}	0.025	0.08	0.47	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND

Groundwater Analytical Results Port of Portland - Terminal Core Redevelopment **Portland International Airport**


Location:	550.0				TC	CORE-2OD (cor	nt.)	
Sample Name:		lwater, Ingestion from Tapwater ⁽		TCORE-20D- GW-DUP	TCORE-20D	TCORE-2OD DUP	TCORE-2OD- GW	TCORE-2OD- GW-DUP
Collection Date:	Residential	Urban Residential	Occupational	10/25/2023	05/22/2024	05/22/2024	05/13/2025	05/13/2025
TPH with Silica-Gel Cleanup (mg/L)	!	!	!		!	!	į.	!
Initial Analysis								
Diesel-range hydrocarbons	0.100	0.100	0.430	0.0654 U	0.0792 U	0.129	0.0762 UJ	0.0796 U
Oil-range hydrocarbons	0.100 ^(b)	0.100 ^(b)	0.430 ^(b)	0.146 J	0.158 U	0.195 U	0.158 J	0.199 U
Confirmation Analysis	27,22	30.00				I		
Diesel-range hydrocarbons	0.100	0.100	0.430					
Oil-range hydrocarbons	0.100 ^(b)	0.100 ^(b)	0.430 ^(b)					
VOCs (ug/L)						!	!	!
1,1,1,2-Tetrachloroethane	NV	NV	NV		0.4 U		0.4 U	
1,1,1-Trichloroethane	8,000	30,000	37,000		0.4 U		0.4 U	
1,1,2,2-Tetrachloroethane	NV	NV	NV		0.5 U		0.5 U	
1,1,2-Trichloroethane	0.28	1.3	1.3		0.5 U		0.5 U	
1,1-Dichloroethane	2.8	13	13		0.4 U		0.4 U	
1,1-Dichloroethene	280	1,100	1,400		0.4 U		0.4 U	
1,1-Dichloropropene	NV	NV	NV		1 U		1 U	
1,2,3-Trichlorobenzene	NV	NV	NV		2 U		2 U	
1,2,3-Trichloropropane	NV	NV	NV		1 U		1 U	
1,2,4-Trichlorobenzene	NV	NV	NV		2 U		2 U	
1,2,4-Trimethylbenzene	54	230	250		1 U		1 U	
1,2-Dibromo-3-chloropropane	NV	NV	NV		5 U		5 U	
1,2-Dibromoethane	0.0075	0.034	0.034		0.5 U		0.5 U	
1,2-Dichlorobenzene	300	1,200	1,400		0.5 U		0.5 U	
1,2-Dichloroethane	0.17	0.78	0.78		0.4 U		0.4 U	
1,2-Dichloropropane	NV	NV	NV		0.5 U		0.5 U	
1,3,5-Trimethylbenzene	59	240	280		1 U		1 U	
1,3-Dichlorobenzene	NV	NV	NV		0.5 U		0.5 U	
1,3-Dichloropropane	NV	NV	NV		1 U		1 U	
1,4-Dichlorobenzene	0.48	2.3	2.1		0.5 U		0.5 U	
2,2-Dichloropropane	NV	NV	NV		1 U		1 U	
2-Butanone	NV	NV	NV		10 U		10 U	
2-Chlorotoluene	NV	NV	NV		1 U		1 U	
2-Hexanone	NV	NV	NV		10 U		10 U	
4-Chlorotoluene	NV	NV	NV		1 U		1 U	
4-Isopropyltoluene	NV	NV	NV		1 U		1 U	
4-Methyl-2-pentanone	NV	NV	NV		10 U		10 U	
Acetone	NV	NV	NV		20 U		20 U	
Acrylonitrile	0.052	0.23	0.25		2 U		2 U	
Benzene	0.46	2	2.1		0.2 U		0.2 U	

Groundwater Analytical Results Port of Portland - Terminal Core Redevelopment **Portland International Airport**

Location:	DDC C				TC	CORE-2OD (cor	nt.)	
Sample Name:		lwater, Ingestion from Tapwater ⁽		TCORE-20D- GW-DUP	TCORE-20D	TCORE-20D DUP	TCORE-2OD- GW	TCORE-2OD GW-DUP
Collection Date:	Residential	Urban Residential	Occupational	10/25/2023	05/22/2024	05/22/2024	05/13/2025	05/13/2025
VOCs cont. (ug/L)	l	l .	· L		l .	l .	l	
Bromobenzene	NV	NV	NV		0.5 U		0.5 U	
Bromodichloromethane	0.13	0.62	0.6		1 U		1 U	
Bromoform	3.3	15	16		1 U		1 U	
Bromomethane	7.5	28	36		5 U		5 U	
Carbon disulfide	NV	NV	NV		10 U		10 U	
Carbon tetrachloride	0.46	2	2.1		1 U		1 U	
Chlorobenzene	77	290	350		0.5 U		0.5 U	
Chlorobromomethane	NV	NV	NV		1 U		1 U	
Chloroethane	21,000	76,000	88,000		5 U		5 U	
Chloroform	0.22	1	0.98		1 U		1 U	
Chloromethane	190	690	790		5 U		5 U	
cis-1,2-Dichloroethene	36	140	260		0.4 U		0.4 U	
cis-1,3-Dichloropropene	NV	NV	NV		1 U		1 U	
Dibromochloromethane	0.17	0.77	0.77		1 U		1 U	
Dibromomethane	NV	NV	NV		1 U		1 U	
Dichlorodifluoromethane (Freon 12)	NV	NV	NV		1 U		1 U	
Ethylbenzene	1.5	6.7	6.4		0.5 U		0.5 U	
Freon 113	55,000	NV	NV					
Hexachlorobutadiene	NV	NV	NV		5 U		5 U	
Isopropylbenzene	440	1,800	2,000		1 U		1 U	
m,p-Xylene	NV	NV	NV		1 U		1 U	
Methyl tert-butyl ether	14	64	68		1 U		1 U	
Methylene chloride	11	37	200		10 U		10 U	
Naphthalene	0.17	0.78	0.72		5 U		5 U	
n-Butylbenzene	NV	NV	NV		1 U		1 U	
n-Propylbenzene	NV	NV	NV		0.5 U		0.5 U	
o-Xylene	NV	NV	NV		0.5 U		0.5 U	
sec-Butylbenzene	NV	NV	NV		1 U		1 U	
Styrene	1,200	4,600	5,700		1 U		1 U	
tert-Butylbenzene	NV	NV	NV		1 U		1 U	
Tetrachloroethene	12	49	48		0.4 U		0.4 U	
Toluene	1,100	4,400	6,300		1 U		1 U	
trans-1,2-Dichloroethene	360	1,400	2,600		0.4 U		0.4 U	
trans-1,3-Dichloropropene	NV	NV	NV		1 U		1 U	
Trichloroethene	0.49	2	3.3		0.4 U		0.4 U	
Trichlorofluoromethane (Freon 11)	1,100	4,200	5,200		2 U		2 U	
Vinyl chloride	0.027	0.066	0.49		0.2 U		0.2 U	
Xylenes (total) ^(c)	190	710	830		1 U		1 U	

Groundwater Analytical Results Port of Portland - Terminal Core Redevelopment **Portland International Airport**

Location:	22.0				TC	CORE-2OD (con	nt.)	
Sample Name:		lwater, Ingestion from Tapwater ⁽		TCORE-20D- GW-DUP	TCORE-20D	TCORE-2OD DUP	TCORE-2OD- GW	TCORE-2OD- GW-DUP
Collection Date:	Residential	Urban Residential	Occupational	10/25/2023	05/22/2024	05/22/2024	05/13/2025	05/13/2025
PAHs (ug/L)	•	•	•		•		•	•
1-Methylnaphthalene	NV	NV	NV		0.0834 UJ		0.0815 UJ	
2-Methylnaphthalene	NV	NV	NV		0.0834 UJ		0.0815 UJ	
Acenaphthene	510	2400	2500		0.0417 UJ		0.0407 UJ	
Acenaphthylene	NV	NV	NV		0.0417 UJ		0.0407 UJ	
Anthracene	NV	NV	NV		0.0417 UJ		0.0407 UJ	
Benzo(a)anthracene	0.03	0.11	0.38		0.0208 UJ		0.0204 UJ	
Benzo(a)pyrene	0.025	0.08	0.47		0.0208 UJ		0.0204 UJ	
Benzo(b)fluoranthene	0.25	0.8	NV		0.0208 UJ		0.0204 UJ	
Benzo(ghi)perylene	NV	NV	NV		0.0417 UJ		0.0407 UJ	
Benzo(k)fluoranthene	NV	NV	NV		0.0208 UJ		0.0204 UJ	
Chrysene	NV	NV	NV		0.0208 UJ		0.0204 UJ	
Dibenzo(a,h)anthracene	0.025	0.08	0.47		0.0208 UJ		0.0204 UJ	
Dibenzofuran	NV	NV	NV		0.0417 UJ		0.0407 UJ	
Fluoranthene	NV	NV	NV		0.0417 UJ		0.0407 UJ	
Fluorene	280	1400	1300		0.0417 UJ		0.0407 UJ	
Indeno(1,2,3-cd)pyrene	NV	NV	NV		0.0208 UJ		0.0204 UJ	
Naphthalene	0.17	0.78	0.72		0.0834 UJ		0.0815 UJ	
Phenanthrene	NV	NV	NV		0.0834 UJ		0.0815 UJ	
Pyrene	110	NV	NV		0.0417 UJ		0.0407 UJ	
cPAH TEQ ^{(d)(2)}	0.025	0.08	0.47		ND		ND	

Table 3-2

Groundwater Analytical Results Port of Portland - Terminal Core Redevelopment Portland International Airport

Notes

Bolded sample ID and dates indicate samples from the current reporting period.

Split samples collected after 2020 were submitted to Speciality Analytical. The sample name was amended in this table to include "DUP" to indicate that it was not the sample analyzed by Apex Laboratories.

Shading (color key below) indicates values that exceed screening criteria; non-detects (U and UJ) were not compared with screening criteria are exceeded, the result is shaded based on the highest criterion. When multiple screening criteria with the same value are exceeded, the result is shaded based on the criterion presented to the right.

RBC, Groundwater, Ingestion & Inhalation from Tapwater, Residential

RBC, Groundwater, Ingestion & Inhalation from Tapwater, Urban Residential

RBC, Groundwater, Ingestion & Inhalation from Tapwater, Occupational

-- = not analyzed.

cont. = continued.

cPAH = carcinogenic polycyclic aromatic hydrocarbon.

J = result is estimated.

J+ = result is estimated, but the result may be biased high.

J- = result is estimated, but the result may be biased low.

mg/L = milligrams per liter.

ND = non-detect.

NV = no value.

PAH = polycyclic aromatic hydrocarbon.

RBC = risk-based concentration.

TEQ = toxicity equivalency.

TPH = total petroleum hydrocarbons.

U = result is non-detect at the method detection limit or method reporting limit.

ug/L = micrograms per liter.

UJ = result is non-detect with an estimated method reporting limit.

VOC = volatile organic compound.

^(a)Groundwater collected for TPH confirmation reanalysis.

(b) Value is for generic diesel/heating oil, since generic residual-range hydrocarbons values are not available.

^(c)Total xylenes is the sum of m,p-xylene and o-xylene. When both results are non-detect, the higher reporting limit is shown.

^(d)cPAH TEQ calculated with non-detect results multiplied by one-half the reporting limit. When all cPAHs are non-detect, the TEQ is reported as non-detect.

References

[1] DEQ. 2023. Table: Risk-Based Concentrations for Individual Chemicals. Oregon Department of Environmental Quality, Environmental Cleanup Program. August.

⁽²⁾EPA. 1993. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons . 600/R-93/089. U.S. Environmental Protection Agency. July.

Appendix A

Standard Operating Procedures

Standard Operating Procedure

Low-Flow Groundwater Sampling

SOP Number: 9

Date: 06/29/2023

Revision Number: 0.2

Scope and Application

This standard operating procedure (SOP) describes use of the low-flow sampling method for collection of reconnaissance groundwater samples from borings and groundwater samples from monitoring wells. The method uses low pumping rates during purging and sample collection to minimize water-level drawdown and hydraulic stress at the well-aguifer interface.

Equipment and Materials Required

The following materials are necessary for this procedure:

- Personal protective equipment (as specified in the health and safety plan)
- Water quality meter (e.g., Oakton, YSI Inc. multiparameter meter)
- Turbidity meter
- Water-level meter
- Peristaltic pump and tubing
- Laboratory-supplied sample containers
- · Laboratory chain-of-custody form and cooler with ice
- Filter if dissolved analyses will be performed
- Well construction logs documenting the screen depth and interval for all wells to be sampled
- Equipment decontamination supplies if sampling equipment will be reused between sample locations (see SOP 1 for equipment decontamination procedures)
- 5-gallon buckets with lids
- Department of Transportation-approved storage containers (e.g., drums, totes)
- Groundwater field sampling datasheet and notebook

Methodology

When the project-specific sampling and analysis plan (SAP) provides additional or different requirements for low-flow groundwater sampling, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

General Sampling Procedure (Heading 3 No Number Style):

Water Level Measurement

Water-level measurement procedures are described in detail in SOP 13.

SOP Number: 9 Page 2

- Open the well cap to allow the water level to equilibrate (approximately ten minutes).
- Measure the water level in the well, using an electronic water-level meter to the nearest 0.01 foot to determine the depth to groundwater below the top of the well casing.
- If light nonaqueous-phase liquid (LNAPL)is present (typically indicated by a dark, oily sheen on the top of the water level meter), discuss with the MFA project manager how to proceed.

Purging

- If the water level is above the top of the well screen, place the end of the sample tubing in the middle of the well screen interval. If the water level is below the top of the screen, place the end of the sample tubing at the midpoint between the water level and the bottom of the well screen.
- Typical low-flow sampling pumping rates range from 0.1 to 0.5 liters per minute, depending on the hydrogeologic characteristics at the site. The objective of the rate selected is to minimize excessive drawdown (<0.3 feet) of the water level.
- Measure water quality parameters (dissolved oxygen, pH, electrical conductivity, turbidity, and temperature) using a flow-through cell connected to the discharge end of the peristaltic pump tubing. Purging will be considered complete when the water quality parameters stabilize per the following for three consecutive readings taken over 3-minute intervals (consistent with EPA guidance)¹:

Dissolved Oxygen (10% for values greater than 0.5 mg/L, if three Dissolved Oxygen values are less than 0.5 mg/L, consider the values as stabilized),

Specific Conductance (3%),

Temperature (3%),
pH (± 0.1 unit),

Oxidation/Reduction Potential (±10 millivolts).

- Document the purge procedures, including pumping rates, water quality parameter measurements, and the water level during purging, on the groundwater field sampling datasheet.
- Place purge water in Department of Transportation-approved containers (e.g., 55-gallon drum) stored on site. See SOP 1 for drum storage, labeling, and documentation procedures.

Sample Collection

Following the purging process, collect groundwater samples in laboratory-supplied containers.

Confirm the laboratory analytical methods and sample container requirement with the MFA
project manager or project chemist. If analysis for gasoline-range petroleum hydrocarbons or
volatile organic compounds (VOCs) is proposed, fill the sample containers for gasoline and VOC
analysis before filling sample containers for other analytical methods. Sample containers for
gasoline and VOC analysis shall be filled to capacity without overfilling and capped so that no
headspace or air bubbles remain in the container.

¹ EPA. 2017. Low stress (low flow) purging and sampling procedure for the collection of groundwater samples from monitoring wells. September 19.

SOP Number: 9 Page 3

Low Yield (Alternate Method)

• If drawdown of the water table cannot be avoided by reducing the pumping rate, and the well goes dry during purging, discontinue pumping and water quality parameter measurements.

- Collect the groundwater sample after the water level above the well bottom recovers to 90 percent of the prepurge water level. For example, if the water level was 10 feet above the well bottom before purging, begin sampling when the water level has recovered to 9 feet or more above the well bottom.
- If the water column volume is insufficient to meet the sample volume requirement, allow the water level to again recover to 90 percent before continuing sampling. Repeat this procedure until all sample containers are filled.

Standard Operating Procedure

Monitoring Well-Water Elevation

SOP Number: 13

Date: 03/09/2021

Revision Number: 0.1

Scope and Application

This standard operating procedure (SOP) describes the methods for obtaining groundwater level measurements and light nonaqueous-phase liquid (LNAPL) measurements from monitoring wells. Measurement may be collected as an independent event or in conjunction with groundwater sampling or sampling of removed LNAPL.

Equipment and Materials Required

The following materials are necessary for this procedure:

- Personal protective equipment (as specified in the health and safety plan)
- Equipment decontamination supplies if equipment will be reused between well locations (see SOP 1 for equipment decontamination procedures)
- Field notebook
- Water-level meter or oil/water interface probe if water levels and LNAPL levels will be measured
- Bailers or tape/paste to confirm LNAPL detections if required; see SOP 10 for procedures for managing LNAPL when removing LNAPL from a well

Methodology

When the project-specific sampling and analysis plan (SAP) provides additional or different requirements for water-level and LNAPL measurements, it takes precedence over this SOP. In the absence of a SAP, the procedures in this SOP shall be used.

General Sampling Procedure:

Review well construction details and historical groundwater and LNAPL levels and thicknesses if available.

During groundwater sampling events, measurements should be collected before, during, and after purging and sampling. During purging and low-flow sampling, water-level measurements are conducted to ensure that drawdown is not occurring. Low-flow sampling methods are described in SOP 9. The following procedures should be followed when collecting groundwater-level and LNAPL measurements from wells.

Water Level Measurement

- 1. Test the water-level meter to ensure proper instrument response. This can be accomplished by immersing the probe tip in a small container of water.
- 2. Open the well cover and cap and allow the water level to equilibrate with atmospheric pressure for several minutes so that a static water level is attained. Audible air movement into or out of

SOP Number: 13 Page 2

- the well upon loosening of the well cap is an indication that the water level is not in equilibrium with atmospheric pressure.
- 3. Locate the measurement reference point at the top of the well casing. Typically, this is a small notch in the casing or a point marked with a pen. If no measure point is present, measure the water level from the north side of the casing and note the result in the field notebook.
- 4. Lower the water-level meter probe into the well casing until the probe signal indicates that water has been contacted.
- 5. Observe the depth-to-water (DTW) reading from the measurement reference point at the top of the well casing to the nearest 0.01 foot. Over the course of about a minute, raise and re-lower the probe and observe the resulting DTW reading. If the reading remains unchanged to within 0.01 foot, this is an indication that the water level has equilibrated with atmospheric pressure; the reading can then be recorded in the field notebook as the static water level reading. If the reading changes, allow more time for the water level to become static.
- 6. If the work scope or SAP requires measurement of the depth-to-bottom (DTB), lower the probe to the bottom of the well and record the DTB reading from the reference point to the nearest 0.01 foot.
- 7. Remove the probe and decontaminate the probe and the portion of the probe tape inserted into the well casing.

Water Level and LNAPL Measurement

- 1. Repeat above steps 1 through 7.
- 2. Lower the interface probe into the well casing until the probe signal indicates that LNAPL has been contacted. Typically, the interface probe will signal by a repeating beep when LNAPL is present. A steady signal indicates that LNAPL is absent and that the probe is recording the DTW.
- 3. Observe the LNAPL reading as described in step 5 above until a static reading to the nearest 0.01 foot is achieved, and record the reading in the field notebook.
- 4. Lower the probe until a steady signal indicates that water has been contacted. Observe the water-level reading as described in step 5 above to confirm a static water level, and record the reading in the field notebook.
- 5. If LNAPL is detected in a well with no prior history of LNAPL presence, or the LNAPL thickness is greater than in prior observations, verify the presence and thickness using an alternative technique (e.g., bailer, tape, and water/petroleum colorimetric paste). See SOP 10 for procedures for managing LNAPL when removing LNAPL from a well.
- 6. Remove the interface probe and decontaminate the probe and the portion of the probe tape inserted into the well casing.

Appendix B

Field Sampling Data Sheets

Project Infor	mation								
Projec	t No.	Client	Name	Project	Name	Samplin	ng Event	Samp	oler(s)
M0232.	17.090	Port of	Portland	TCORE GW I	Monitoring	May	2025	C. And	derson
Well Informa	ation								
Location ID	Well	I Туре	Monum	ent Type	Depth Mea	asuring Point	Well Diameter (in)	Screen Interval (ft)	Sample Depth (ft)
TCORE-1	Moni	itoring	Flush-	mount	Торо	f Casing	2.0	120-135	127.5
Hydrology/L	evel Measur	ements							
Date	Time	Depth to Bottom (ft)	Depth to Product (ft)	Depth to Water (ft)	Product Thickness (ft)	Water Column (ft)	Well Casing Volume (gal)	0.75" = 0.023 g 1" = 0.041 gal	
Date		DTB	DTP	DTW	DTW - DTP	DTB - DTW	(gal/ft x water column)	1.5" = 0.092 gd	al/ft
05/13/2025	13:58	135.0		11.0		124.00	20.21	3" = 0.367 gal,	/ft
Water Qualit	ty Data					•		4" = 0.653 gal,	-
Purge Method	Peristal	tic Pump		Methods: perista dicated pump, dis				6" = 1.469 gal, 8" = 2.611 gal,	=
Purge Start	14	1:03	ideally < 0.3 ft drawdown	± 0.1	± 3%	± 3%	± 10% if > 0.5	± 10	< 5 or ± 10% if > 5
Time	Cumulative Purge Volume	Flowrate	Water Level	pH	Temperature	Conductivity	Dissolved	ORP	Turbidity
Time	gal	L/min	ft	SU	degrees C	uS/cm	Oxygen mg/L	mV	NTU
14:07	0.32	0.3	11.01	7.47	17.3	362.0	2.25	-43.6	7.25
14:10	0.56	0.3	11.01	7.47	17.2	357.4	0.48	-48.9	4.58
14:13	0.80	0.3	11.10	7.47	17.2	356.9	0.36	-50.9	2.97
14:16	1.04	0.3	11.00	7.47	17.2	356.8	0.33	-51.7	2.49
14:19	1.28	0.3	11.00	7.47	17.2	356.4	0.32	-51.9	2.81
Last row of wate	er quality data a T	re considered find	al field paramete	rs unless otherwis	e noted.	Sample Info			
Water Quality						Method	!	Peristaltic Pum	p
Observations (clarity, tint,	Clear, colorle	955				Sample Name		TCORE-1	
odor, sheen,						Sample Date	05/13/2025	Sample Time	14:19
etc.)						Container Type	Preservative	Filtered (Y/N)	No. Container
General Com	nments					VOA	HCl	N	3
						Amber glass	HCl	N	3
						Poly		N	1
						Amber poly		N	2
							7.4.41	la Contain	
							Iotal N	Io. Containers:	9

Project Infor	mation								
Projec	t No.	Client	Name	Project	Name	Samplir	ng Event	Samp	oler(s)
M0232.	17.090	Port of	Portland	TCORE GW I	Monitoring	May	2025	C. And	derson
Well Informa	tion								
Location ID	Well	Туре	Monum	ent Type	Depth Mea	asuring Point	Well Diameter (in)	Screen Interval (ft)	Sample Depth (ft)
TCORE-1OD	Moni	toring	Flush-	mount	Тор о	f Casing	2.0	45-55	50.0
Hydrology/L	evel Measur	ements							
		Depth to	Depth to Product (ft)	Depth to Water	Product	Water Column	Well Casing Volume (gal)	0.75" = 0.023	
Date	Time	Bottom (ft) DTB	DTP	(ft)	Thickness (ft) DTW - DTP	(ft) DTB - DTW	(gal/ft x water	1" = 0.041 gal, 1.5" = 0.092 g	-
05/13/2025	12:59	55.00		11.26		43.74	7.13	2" = 0.163 gal, 3" = 0.367 gal,	/ft
Water Qualit		33.00		11.20		13.71	7.13	4" = 0.653 gal,	-
Purge Method	ĺ	tic Pump	Purge/Sampling	Methods: perista	ltic pump, subm	nersible pump, va	сиит ритр,	6" = 1.469 gal,	=
Purge Start	renstai	tic Fullip	inertia pump, de ideally < 0.3 ft	dicated pump, dis	sposable bailer,	bladder pump, ot	ther	8" = 2.611 gal,	/ _J τ < 5 or
Time		:01	drawdown	± 0.1	± 3%	± 3%	± 10% if > 0.5	± 10	± 10% if > 5
Time	Cumulative Purge Volume	Flowrate	Water Level	pН	Temperature	Conductivity	Dissolved Oxygen	ORP	Turbidity
	gal	L/min	ft	SU	degrees C	uS/cm	mg/L	mV	NTU
13:14	0.24	0.3	11.69	6.82	17.2	784	0.34	-67.4	50.8
13:17	0.48	0.3	11.69	6.82	17.3	782	0.27	-76.7	50.4
13:20	0.72	0.3	11.70	6.82	17.2	781	0.23	-82.6	30.7
13:23	0.96	0.3	11.71	6.82	17.3	779	0.22	-86.5	22.2
13:26	1.20	0.3	11.69	6.82	17.3	780	0.20	-89.9	19.6
13:29	1.44	0.3	11.68	6.82	17.3	781	0.19	-91.9	12.0
13:32	1.68	0.3	11.68	6.82	17.4	782	0.18	-93.7	8.41
13:35	1.92	0.3	11.65	6.82	17.5	783	0.16	-95.3	8.07
13:38	2.16	0.3	11.64	6.82	17.5	782	0.16	-96.8	6.43
13:41	2.40	0.3	11.66	6.82	17.5	781	0.16	-97.7	5.70
13:44	2.64	0.3	11.66	6.82	17.6	779	0.16	-98.9	5.85
13:47	2.88	0.3	11.65	6.82	17.6	778	0.15	-99.6	5.26
Last row of wate	r quality data a	re considered find	al field paramete	rs unless otherwis	e noted.	Sample Infor	mation		
Water Quality						Sampling Method	ı	Peristaltic Pum	р
Observations						Sample Name		TCORE-10D	
(clarity, tint, odor, sheen,	Clear, colorle	ss, effervescer	it.			Sample Date	05/13/2025	Sample Time	13:47
etc.)						Container Type	Preservative	Filtered (Y/N)	No. Container
General Com	iments					VOA	HCl	N	3
						Amber glass	HCI	N	3
						Poly		N	1
						Amber poly		N	2
							Total N	Io. Containers:	9

Project Infor	mation								
Projec	t No.	Client	Name	Project	Name	Samplir	ng Event	Samp	oler(s)
M0232.	17.090	Port of	Portland	TCORE GW I	Monitoring	May	2025	C. And	derson
Well Informa	ation								
Location ID	Wel	Туре	Monum	ent Type	Depth Mea	asuring Point	Well Diameter (in)	Screen Interval (ft)	Sample Depth (ft)
TCORE-2	Moni	toring	Flush-	mount	Тор о	f Casing	2.0	100-115	105.0
Hydrology/L	evel Measur	ements							
		Depth to Bottom (ft)	Depth to Product (ft)	Depth to Water (ft)	Product Thickness (ft)	Water Column (ft)	Well Casing Volume (gal)	0.75" = 0.023	
Date	Time	DTB	DTP	DTW	DTW - DTP	DTB - DTW	(gal/ft x water column)	1" = 0.041 gal, 1.5" = 0.092 ga	al/ft
05/13/2025	11:09	115.00		11.93		103.07	16.80	2" = 0.163 gal, 3" = 0.367 gal,	-
Water Qualit	ty Data							4" = 0.653 gal,	-
Purge Method	Peristal	tic Pump		Methods: perista				6" = 1.469 gal, 8" = 2.611 gal,	-
Purge Start	11	.:11	ideally < 0.3 ft	dicated pump, dis					< 5 or
Time	Cumulative	Flowrate	drawdown Water Level	± 0.1	± 3% Temperature	± 3% Conductivity	± 10% if > 0.5 Dissolved	± 10	± 10% if > 5 Turbidity
Time	Purge Volume				•	,	Oxygen		_
11:14	<i>gal</i> 0.24	<i>L/min</i> 0.3	ft 11.95	7.13	degrees C 17.0	uS/cm 649	3.01	-18.8	4.14
11:17	0.48	0.3	11.94	7.23	16.9	634	0.91	-44.7	2.97
11:20	0.72	0.3	11.95	7.26	16.9	630	0.45	-61.9	2.14
11:23	0.96	0.3	11.95	7.26	16.9	625	0.35	-72.9	1.98
11:26	1.20	0.3	11.94	7.28	16.9	622	0.28	-80.0	1.92
11:29	1.44	0.3	11.95	7.30	16.9	618	0.25	-84.9	1.79
11:32	1.68	0.3	11.95	7.31	16.9	616	0.22	-89.2	2.33
Last row of wate	er quality data a T	re considered find	al field paramete	rs unless otherwis	e noted.	Sample Infor	rmation		
Water Quality						Method	1	Peristaltic Pum	p
Observations (clarity, tint,	Clear, colorle	SS				Sample Name		TCORE-2	
odor, sheen,						Sample Date	05/13/2025	Sample Time	11:32
etc.)						Container Type	Preservative	Filtered (Y/N)	No. Container
General Com	nments					VOA	HCl	N	3
						Amber glass	HCl	N	4
						Poly		N	1
Split sample co	ollected.					Amber poly		N	2
							Total N	Io. Containers:	10

Project Infor	mation								
Projec	t No.	Client	Name	Project	Name	Samplir	ng Event	Samp	oler(s)
M0232.	17.090	Port of	Portland	TCORE GW I	Monitoring	May	2025	C. And	derson
Well Informa	ation								
Location ID	Well	Туре	Monum	ent Type	Depth Mea	asuring Point	Well Diameter (in)	Screen Interval (ft)	Sample Depth (ft)
TCORE-2OD	Moni	toring	Flush-	mount	Тор о	f Casing	2.0	37-47	40.0
Hydrology/L	evel Measur	ements							
		Depth to	Depth to	Depth to Water	Product	Water Column	Well Casing Volume (gal)	0.75" = 0.023	
Date	Time	Bottom (ft) DTB	Product (ft) DTP	(ft) DTW	Thickness (ft) DTW - DTP	(ft) DTB - DTW	(gal/ft x water	1" = 0.041 gal, 1.5" = 0.092 ga	-
05/13/2025	9:58	55.00		13.46		41.54	<i>column)</i> 6.77	2" = 0.163 gal, 3" = 0.367 gal,	-
Water Qualit	ty Data							4" = 0.653 gal,	/ft
Purge Method	ľ	tic Pump		Methods: perista				6" = 1.469 gal, 8" = 2.611 gal,	-
Purge Start		inertia pump, dedicated pump, disposable bailer, bladder pump, other ideally < 0.3 ft						< 5 or	
Time):00	drawdown	± 0.1	± 3%	± 3%	± 10% if > 0.5	± 10	± 10% if > 5
Time	Cumulative Purge Volume	Flowrate	Water Level	pН	Temperature	Conductivity	Dissolved Oxygen	ORP	Turbidity
	gal	L/min	ft	SU	degrees C	uS/cm	mg/L	mV	NTU
10:02	0.16	0.3	12.00	6.54	17.0	1,304	1.04	-0.7	8.8
10:05	0.40	0.3	12.39	6.54	17.0	1,577	0.61	-50.6	6.2
10:08	0.64	0.3	12.63	6.55	17.1	1,592	0.51	-72.0	17.1
10:11	0.88	0.3	12.79	6.55	17.1	1,597	0.39	-81.4	20.6
10:14	1.12	0.3	12.91	6.54	17.0	1,602	0.31	-86.7	28.1
10:17	1.36	0.3	12.99	6.55	17.0	1,598	0.28	-90.4	29.0
10:20	1.60	0.3	13.04	6.55	17.0	1,598	0.25	-92.9	34.5
10:23	1.84	0.3	13.11	6.55	17.0	1,604	0.24	-94.8	13.4
10:26	2.08	0.3	13.20	6.55	17.0	1,603	0.23	-96.5	21.8
10:29	2.32	0.3	13.24	6.55	16.9	1,603	0.22	-97.6	11.4
10:32	2.56	0.3	13.22	6.55	16.9	1,603	0.20	-98.7	10.5
10:35	2.80	0.3	13.22	6.55	16.9	1,601	0.18	-99.5	8.0
Last row of wate	r quality data a	re considered fin	al field paramete	rs unless otherwis	e noted.	Sample Infor	mation		
Water Quality						Sampling Method	ı	Peristaltic Pum	p
Observations	Class salasis	offor				Sample Name		TCORE-2OD	
(clarity, tint, odor, sheen,	clear, colorie	ss, effervescer	11.			Sample Date		Sample Time	
etc.)						Container Type	Preservative	Filtered (Y/N)	No. Container
General Com	ments					VOA	HCl	N	3
						Amber glass	HCI	N	4
						Poly		N	1
Split sample co	ollected.					Amber poly		N	2
							Total N	lo. Containers:	10

Project Infor	mation								
Projec	t No.	Client	Name	Project	Name	Samplir	ng Event	Samp	oler(s)
M0232.	17.090	Port of	Portland	TCORE GW I	Monitoring	May	2025	C. And	derson
Well Informa	ation								
Location ID	Well	I Туре	Monum	ent Type	Depth Mea	asuring Point	Well Diameter (in)	Screen Interval (ft)	Sample Depth (ft)
TCORE-3	Moni	itoring	Flush-	mount	Тор о	f Casing	2.0	120-135	125.0
Hydrology/L	evel Measur	ements						•	
		Depth to Bottom (ft)	Depth to Product (ft)	Depth to Water (ft)	Product Thickness (ft)	Water Column (ft)	Well Casing Volume (gal)	0.75" = 0.023	
Date	Time	DTB	DTP	DTW	DTW - DTP	DTB - DTW	(gal/ft x water column)	1" = 0.041 gal, 1.5" = 0.092 g	al/ft
05/13/2025	7:53	135.00		12.10		122.90	20.03	2" = 0.163 gal, 3" = 0.367 gal,	-
Water Qualit	ty Data							4" = 0.653 gal,	-
Purge Method	Peristal	tic Pump		Methods: perista dicated pump, dis				6" = 1.469 gal, 8" = 2.611 gal,	-
Purge Start	8	:24	ideally < 0.3 ft						< 5 or
Time	Cumulative		drawdown	± 0.1	± 3%	± 3%	± 10% if > 0.5 Dissolved	± 10	± 10% if > 5
Time	Purge Volume	Flowrate	Water Level	рН	Temperature	Conductivity	Oxygen	ORP	Turbidity
	gal	L/min	ft	SU	degrees C	uS/cm	mg/L	mV	NTU
8:34	0.79	0.3	12.10	7.46	16.0	715	0.31	10.0	0.56
8:37	1.03	0.3	12.11	7.49	16.0	709	0.27	-15.6	0.94
8:40	1.27	0.3	12.11	7.51	16.4	707	0.24	-31.8	0.62
8:43	1.51	0.3	12.12	7.52	16.5	709	0.23	-43.7	0.52
8:46	1.75	0.3	12.11	7.53	16.4	710	0.21	-52.8	0.80
8:49	1.99	0.3	12.10	7.54	16.4	708	0.20	-61.8	1.07
8:52	2.23	0.3	12.10	7.54	16.2	710	0.20	-69.3	1.20
8:55	2.47	0.3	12.10	7.55	16.3	708	0.20	-76.9	1.61
8:58	2.71	0.3	12.10	7.55	16.3	708	0.19	-82.0	0.88
9:01	2.95	0.3	12.11	7.56	16.5	708	0.20	-87.3	0.66
9:04	3.19	0.3	12.10	7.57	16.6	708	0.20	-92.0	0.88
9:07	3.43	0.3	12.10	7.57	16.6	707	0.22	-96.6	1.03
Last row of wate	er quality data a	re considered fin	al field paramete	rs unless otherwis	e noted.	Sample Infor	mation		
Water Quality						Sampling Method		Peristaltic Pum	р
Observations	Class salasia					Sample Name		TCORE-3	
(clarity, tint, odor, sheen,	Clear, colorle	! \$\$				Sample Date	05/13/2025	Sample Time	9:07
etc.)						Container Type	Preservative	Filtered (Y/N)	No. Containers
General Com	ments					VOA	HCl	N	3
						Amber glass	HCI	N	4
						Poly		N	1
Split sample co	ollected.					Amber poly		N	2
							Total N	lo. Containers:	10

Project Infor	mation								
Projec	t No.	Client	Name	Project	Name	Samplir	ng Event	Samp	oler(s)
M0232.	17.090	Port of	Portland	TCORE GW I	Monitoring	May	2025	C. And	derson
Well Informa	ation								
Location ID	Wel	I Т уре	Monum	ent Type	Depth Me	asuring Point	Well Diameter (in)	Screen Interval (ft)	Sample Depth (ft)
TCORE-4	Moni	itoring	Flush-	mount	Тор о	f Casing	2.0	105-120	112.5
Hydrology/L	evel Measur	ements							
		Depth to Bottom (ft)	Depth to Product (ft)	Depth to Water (ft)	Product Thickness (ft)	Water Column (ft)	Well Casing Volume (gal)	0.75" = 0.023 g	
Date	Time	DTB	DTP	DTW	DTW - DTP	DTB - DTW	(gal/ft x water	1" = 0.041 gal, 1.5" = 0.092 ga	-
05/13/2025	10:15	135.00		12.18		122.82	20.02	2" = 0.163 gal,	/ft
Water Quali		133.00		12.18		122.82	20.02	3" = 0.367 gal, 4" = 0.653 gal,	-
Purge Method	Ĭ	tic Dumn		Methods: perista				6" = 1.469 gal/	-
Purge Start	inertia pump, dedicated pump, disposable bailer, bladder pump, other							8" = 2.611 gal,	/ _J τ < 5 or
Time	11:45							± 10	± 10% if > 5
Time	Cumulative Purge Volume	Flowrate	Water Level	рН	Temperature	Conductivity	Dissolved Oxygen	ORP	Turbidity
	gal	L/min	ft	SU	degrees C	uS/cm	mg/L	mV	NTU
11:48	0.16	0.2	12.22	7.13	17.3	536.2	1.18	47.1	12.6
11:51	0.32	0.2	12.23	7.29	17.3	449.2	0.64	36.8	4.5
11:54	0.48	0.2	12.23	7.44	16.9	371.8	0.46	23.4	2.8
11:57	0.64	0.2	12.23	7.49	16.8	360.0	0.42	15.3	2.7
12:00	0.80	0.2	12.23	7.52	16.7	350.1	0.38	6.9	2.7
12:03	0.96	0.2	12.23	7.54	16.7	337.9	0.35	-3.1	2.2
12:06	1.12	0.2	12.23	7.56	17.0	342.2	0.33	-14.8	2.1
12:09	1.28	0.2	12.23	7.58	17.3	335.8	0.30	-31.9	2.2
12:12	1.44	0.2	12.23	7.59	17.6	334.0	0.27	-39.7	1.5
12:15	1.60	0.2	12.23	7.60	17.3	330.3	0.26	-49.8	1.9
12:18	1.76	0.2	12.23	7.61	17.4	330.0	0.25	-57.9	2.1
12:21	1.92	0.2	12.23	7.61	17.4	330.3	0.24	-58.8	2.4
Last row of wate	er quality data a	re considered fin	al field paramete	rs unless otherwis	e noted.	Sample Infor	mation		
Water Quality						Sampling Method	ı	Peristaltic Pum _l	р
Observations						Sample Name		TCORE-4	
(clarity, tint, odor, sheen,	Clear, colorle	ess.				Sample Date	05/14/2025	Sample Time	12:21
etc.)						Container Type	Preservative	Filtered (Y/N)	No. Container
General Com	nments					VOA	HCI	N	3
						Amber glass	HCl	N	3
						Poly		N	1
						Amber poly		N	2
							Total N	Io. Containers:	9

Project Infor	mation								
Projec	t No.	Client	Name	Project	Name	Samplin	ng Event	Samp	oler(s)
M0232.	17.090	Port of	Portland	TCORE GW I	Monitoring	May	2025	C. And	lerson
Well Informa	ation								
Location ID	Wel	I Туре	Monum	ent Type	Depth Mea	asuring Point	Well Diameter (in)	Screen Interval (ft)	Sample Depth (ft)
TCORE-5	Moni	itoring	Flush-	mount	Тор о	f Casing	2.0	105-120	112.5
Hydrology/L	evel Measur	ements							
		Depth to	Depth to	Depth to Water	Product	Water Column	Well Casing	0.75" = 0.023	
Date	Time	Bottom (ft) DTB	Product (ft) DTP	(ft) DTW	Thickness (ft) DTW - DTP	(ft) DTB - DTW	Volume (gal) (gal/ft x water column)	1" = 0.041 gal, 1.5" = 0.092 ga	
05/13/2025	6:45	120.00		10.76		109.24	17.81	2" = 0.163 gal, 3" = 0.367 gal,	-
Water Quali	tv Data							4" = 0.653 gal,	/ft
Purge Method	Ĭ	tic Pump		Methods: perista				6" = 1.469 gal,	•
Purge Start	renstai	tic ruiiip	inertia pump, de ideally < 0.3 ft	dicated pump, dis	posable bailer,	bladder pump, ot	ther	8" = 2.611 gal,	/ _J τ < 5 or
rurge start Time	13	3:24	drawdown	± 0.1	± 3%	± 3%	± 10% if > 0.5	± 10	± 10% if > 5
Time	Cumulative Purge Volume	Flowrate	Water Level	pН	Temperature	Conductivity	Dissolved Oxygen	ORP	Turbidity
	gal	L/min	ft	SU	degrees C	uS/cm	mg/L	mV	NTU
13:27	0.24	0.3	10.81	7.64	14.0	245.6	0.88	28.6	6.34
13:30	0.48	0.3	10.82	7.68	14.0	243.6	0.72	25.8	1.86
13:33	0.72	0.3	10.82	7.70	14.0	242.6	0.62	22.4	1.35
13:36	0.96	0.3	10.82	7.71	14.1	242.1	0.55	18.3	2.78
13:39	1.20	0.3	10.82	7.67	14.1	242.1	0.54	18.5	1.47
13:42	1.44	0.3	10.82	7.68	14.1	241.9	0.52	15.2	1.65
Last row of wate	er quality data a	re considered fin	al field paramete	rs unless otherwis	e noted.	Sample Infor	mation		
Water Quality						Sampling Method	ı	Peristaltic Pum	p
Observations	Slava da la					Sample Name		TCORE-5	
(clarity, tint, odor, sheen,	Clear, colorle	ess				Sample Date	05/14/2025	Sample Time	13:42
etc.)						Container Type	Preservative	Filtered (Y/N)	No. Container
General Com	nments					VOA	HCI	N	3
						Amber glass	HCl	N	3
						Poly		N	1
						Amber poly		N	2
							Total N	Io. Containers:	9

Appendix C

Laboratory Reports and Data Validation Memorandum

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Tuesday, June 3, 2025 Michael Pickering Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

RE: A5E1360 - POPTCORE-GWM - M0232.17.090

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A5E1360, which was received by the laboratory on 5/15/2025 at 12:55:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Cooler #1 4.6 degC

Cooler #2 2.8 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

 3140 NE Broadway Street
 Project Number:
 M0232.17.090
 Report ID:

 Portland, OR 97232
 Project Manager:
 Michael Pickering
 A5E1360 - 06 03 25 1042

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
TCORE-1-GW	A5E1360-01	Water	05/13/25 14:19	05/15/25 12:55
TCORE-1OD-GW	A5E1360-02	Water	05/13/25 13:47	05/15/25 12:55
TCORE-2-GW	A5E1360-03	Water	05/13/25 11:32	05/15/25 12:55
TCORE-2OD-GW	A5E1360-04	Water	05/13/25 10:35	05/15/25 12:55
TCORE-3-GW	A5E1360-05	Water	05/13/25 09:07	05/15/25 12:55
ΓCORE-4-GW	A5E1360-06	Water	05/14/25 12:21	05/15/25 12:55
TCORE-5-GW	A5E1360-07	Water	05/14/25 13:42	05/15/25 12:55

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: POP TCORE - GWM
Project Number: M0232.17.090
Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

Die	esel and/or Oil Hy	drocarbons	by NWTPH	-Dx with Silica	Gel Colu	mn Cleanup		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TCORE-1-GW (A5E1360-01)				Matrix: Wat	er	Batch:	25E0812	
Diesel	ND		0.0762	mg/L	1	05/23/25 20:40	NWTPH-Dx/SGC	
Oil	ND		0.152	mg/L	1	05/23/25 20:40	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recov	very: 81 %	Limits: 50-150 %	6 1	05/23/25 20:40	NWTPH-Dx/SGC	
TCORE-10D-GW (A5E1360-02)				Matrix: Wat	er	Batch:	25E0812	
Diesel	ND		0.0784	mg/L	1	05/23/25 21:01	NWTPH-Dx/SGC	
Oil	ND		0.157	mg/L	1	05/23/25 21:01	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recov	very: 68 %	Limits: 50-150 %	6 1	05/23/25 21:01	NWTPH-Dx/SGC	
TCORE-2-GW (A5E1360-03)				Matrix: Wat	er	Batch	25E0812	
Diesel	ND		0.0784	mg/L	1	05/23/25 21:42	NWTPH-Dx/SGC	
Oil	ND		0.157	mg/L	1	05/23/25 21:42	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recov	very: 69 %	Limits: 50-150 %	6 1	05/23/25 21:42	NWTPH-Dx/SGC	
TCORE-20D-GW (A5E1360-04)				Matrix: Wat	er	Batch	25E0812	PRES
Diesel	ND		0.0762	mg/L	1	05/23/25 22:02	NWTPH-Dx/SGC	
Oil	0.158		0.152	mg/L	1	05/23/25 22:02	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recov	very: 57 %	Limits: 50-150 %	6 1	05/23/25 22:02	NWTPH-Dx/SGC	
TCORE-3-GW (A5E1360-05)				Matrix: Wat	er	Batch	25E0812	
Diesel	ND		0.0784	mg/L	1	05/23/25 22:44	NWTPH-Dx/SGC	
Oil	ND		0.157	mg/L	1	05/23/25 22:44	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recov	very: 60 %	Limits: 50-150 %	6 1	05/23/25 22:44	NWTPH-Dx/SGC	
TCORE-4-GW (A5E1360-06)				Matrix: Wat	er	Batch	25E0812	
Diesel	ND		0.0800	mg/L	1	05/23/25 23:04	NWTPH-Dx/SGC	
Oil	0.161		0.160	mg/L	1	05/23/25 23:04	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recov	very: 69 %	Limits: 50-150 %	6 1	05/23/25 23:04	NWTPH-Dx/SGC	
TCORE-5-GW (A5E1360-07)				Matrix: Wat	er	Batch	25E0812	
Diesel	ND		0.0792	mg/L	1	05/23/25 23:46	NWTPH-Dx/SGC	
Oil	ND		0.158	mg/L	1	05/23/25 23:46	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Recov	very: 81 %	Limits: 50-150 %	6 1	05/23/25 23:46	NWTPH-Dx/SGC	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

POP TCORE - GWM Maul Foster & Alongi, INC. Project:

3140 NE Broadway Street Project Number: M0232.17.090 Portland, OR 97232 Project Manager: Michael Pickering A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
TCORE-1-GW (A5E1360-01)				Matrix: Wa	ater	Batch:	25E0580	
Acetone	ND		20.0	ug/L	1	05/16/25 17:14	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	05/16/25 17:14	EPA 8260D	
Benzene	ND		0.200	ug/L	1	05/16/25 17:14	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	05/16/25 17:14	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	05/16/25 17:14	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	05/16/25 17:14	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
eec-Butylbenzene	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
ert-Butylbenzene	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	05/16/25 17:14	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	05/16/25 17:14	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	05/16/25 17:14	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	05/16/25 17:14	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
1-Chlorotoluene	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	05/16/25 17:14	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	05/16/25 17:14	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
,2-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 17:14	EPA 8260D	
,3-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 17:14	EPA 8260D	
,4-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 17:14	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
,1-Dichloroethane	ND		0.400	ug/L	1	05/16/25 17:14	EPA 8260D	
,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	05/16/25 17:14	EPA 8260D	
,1-Dichloroethene	ND		0.400	ug/L	1	05/16/25 17:14	EPA 8260D	
is-1,2-Dichloroethene	ND		0.400	ug/L ug/L	1	05/16/25 17:14	EPA 8260D	
ans-1,2-Dichloroethene	ND		0.400	ug/L ug/L	1	05/16/25 17:14	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway Street Project Number: M0232.17.090
Portland, OR 97232 Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	T To:+-	Dillori	Date Analyzed	Mathad D-f	N T - 4
Analyte	Kesult	Limit	Limit	Units	Dilution	-	Method Ref.	Note
TCORE-1-GW (A5E1360-01)				Matrix: Wa	ater	Batch:	25E0580	
1,2-Dichloropropane	ND		0.500	ug/L	1	05/16/25 17:14	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	05/16/25 17:14	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	05/16/25 17:14	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	05/16/25 17:14	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	05/16/25 17:14	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	05/16/25 17:14	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
Naphthalene	ND		5.00	ug/L	1	05/16/25 17:14	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	05/16/25 17:14	EPA 8260D	
Styrene	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	05/16/25 17:14	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	05/16/25 17:14	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	05/16/25 17:14	EPA 8260D	
Toluene	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	05/16/25 17:14	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	05/16/25 17:14	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	05/16/25 17:14	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	05/16/25 17:14	EPA 8260D	
Trichloroethene (TCE)	ND		0.400	ug/L	1	05/16/25 17:14	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	05/16/25 17:14	EPA 8260D	
,2,3-Trichloropropane	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
,2,4-Trimethylbenzene	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
,3,5-Trimethylbenzene	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
√inyl chloride	ND		0.200	ug/L	1	05/16/25 17:14	EPA 8260D	
n,p-Xylene	ND		1.00	ug/L	1	05/16/25 17:14	EPA 8260D	
o-Xylene	ND		0.500	ug/L ug/L	1	05/16/25 17:14	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: **POP TCORE - GWM**

Project Number: M0232.17.090
Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TCORE-1-GW (A5E1360-01)					Matrix: Water		Batch: 25E0580	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 109 %	Limits: 80-120 %	1	05/16/25 17:14	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	05/16/25 17:14	EPA 8260D	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	05/16/25 17:14	EPA 8260D	
TCORE-10D-GW (A5E1360-02)				Matrix: Wate	r	Batch: 2	25E0580	
Acetone	ND		20.0	ug/L	1	05/16/25 17:36	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	05/16/25 17:36	EPA 8260D	
Benzene	ND		0.200	ug/L	1	05/16/25 17:36	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	05/16/25 17:36	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	05/16/25 17:36	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	05/16/25 17:36	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
ec-Butylbenzene	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
ert-Butylbenzene	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	05/16/25 17:36	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	05/16/25 17:36	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	05/16/25 17:36	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	05/16/25 17:36	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
1-Chlorotoluene	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	05/16/25 17:36	EPA 8260D	
,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	05/16/25 17:36	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 17:36	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 17:36	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 17:36	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	05/16/25 17:36	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: POP TCORE - GWM

Project Number: M0232.17.090
Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

Analyte Sample Result Detection Limit Reporting Limit Units Datum Date Method Ref. TCORE-1OD-GW (ASE1360-02) Wartx: Wartx: Wartx: Wartx: Wartx: Use 35/16/25 17:36 EPA 8260D 1,-Dichloroethene ND — 0.400 ug/L 1 05/16/25 17:36 EPA 8260D cis-1,2-Dichloroethene ND — 0.400 ug/L 1 05/16/25 17:36 EPA 8260D trans-1,2-Dichloroethene ND — 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,3-Dichloropropane ND — 0.500 ug/L 1 05/16/25 17:36 EPA 8260D 1,3-Dichloropropane ND — 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,3-Dichloropropane ND — 1.00 ug/L 1 05/16/25 17:36 EPA 8260D cis-1,3-Dichloropropene ND — 1.00 ug/L 1 05/16/25 17:36 EPA 8260D		Vo	olatile Organ	ic Compound	ds by EPA 8	260D			
1,2-Dichloroethane (EDC)	Analyte				Units	Dilution		Method Ref.	Notes
1,1-Dichloroethene	TCORE-10D-GW (A5E1360-02)				Matrix: Wa	ater	Batch:	25E0580	
1,1-Dichloroethene	1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	05/16/25 17:36	EPA 8260D	
cis-1,2-Dichloroethene ND 0,400 ug/L 1 05/16/25 17:36 EPA 8260D trans-1,2-Dichloroethene ND 0,400 ug/L 1 05/16/25 17:36 EPA 8260D 1,2-Dichloropropane ND 0,500 ug/L 1 05/16/25 17:36 EPA 8260D 1,3-Dichloropropane ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1-Dichloropropane ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1-Dichloropropene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D cis-1,3-Dichloropropene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Ethylbenzene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Hexachlorobutadiene ND 5.00 ug/L 1 05/16/25 17:36 EPA 8260D Hexachlorobutadiene ND <td>1,1-Dichloroethene</td> <td>ND</td> <td></td> <td>0.400</td> <td>_</td> <td>1</td> <td>05/16/25 17:36</td> <td>EPA 8260D</td> <td></td>	1,1-Dichloroethene	ND		0.400	_	1	05/16/25 17:36	EPA 8260D	
trans-1,2-Dichloroethene ND 0,400 ug/L 1 05/16/25 17:36 EPA 8260D 1,2-Dichloropropane ND 0,500 ug/L 1 05/16/25 17:36 EPA 8260D 1,3-Dichloropropane ND 1,00 ug/L 1 05/16/25 17:36 EPA 8260D 2,2-Dichloropropane ND 1,00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1-Dichloropropene ND 1,00 ug/L 1 05/16/25 17:36 EPA 8260D cis-1,3-Dichloropropene ND 1,00 ug/L 1 05/16/25 17:36 EPA 8260D Ethylsenzene ND 1,00 ug/L 1 05/16/25 17:36 EPA 8260D Ethylsenzene ND 1,00 ug/L 1 05/16/25 17:36 EPA 8260D Leexanone ND 1,00 ug/L 1 05/16/25 17:36 EPA 8260D Leexanone ND <	cis-1,2-Dichloroethene	ND		0.400	_	1	05/16/25 17:36	EPA 8260D	
1,2-Dichloropropane ND	trans-1,2-Dichloroethene	ND		0.400		1	05/16/25 17:36	EPA 8260D	
1.3-Dichloropropane ND	1,2-Dichloropropane	ND		0.500		1	05/16/25 17:36	EPA 8260D	
2,2-Dichloropropane ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1-Dichloropropene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D cis-1,3-Dichloropropene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D trans-1,3-Dichloropropene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Ethylbenzene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Hexachlorobutadiene ND 5.00 ug/L 1 05/16/25 17:36 EPA 8260D Hexachlorobutadiene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Hexachlorobutadiene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1-sorropylbenzene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Methyl tert-butyl ether (MTBE) N	1,3-Dichloropropane	ND		1.00		1	05/16/25 17:36	EPA 8260D	
1,1-Dichloropropene	2,2-Dichloropropane	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
trans-1,3-Dichloropropene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Ethylbenzene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Hexachlorobutadiene ND 5.00 ug/L 1 05/16/25 17:36 EPA 8260D 2-Hexanone ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D Isopropylbenzene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 4-Isopropylbenzene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 4-Methyl-2-pentanone (MiBK) ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Napthalene ND 5.00 ug/L 1 05/16/25 17:36 EPA 8260D Styrene ND	1,1-Dichloropropene	ND		1.00		1	05/16/25 17:36	EPA 8260D	
Ethylbenzene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Hexachlorobutadiene ND 5.00 ug/L 1 05/16/25 17:36 EPA 8260D 2-Hexanone ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D Isopropylbenzene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 4-Isopropylbeluene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Methylene chloride ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D 4-Methyl-2-pentanone (MiBK) ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Naphthalene ND 5.00 ug/L 1 05/16/25 17:36 EPA 8260D N-Propylbenzene ND	cis-1,3-Dichloropropene	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
Ethylbenzene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Hexachlorobutadiene ND 5.00 ug/L 1 05/16/25 17:36 EPA 8260D 2-Hexanone ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D Isopropylbenzene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 4-Isopropyltoluene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Methylene chloride ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D 4-Methyl-2-pentanone (MiBK) ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Naphthalene ND 5.00 ug/L 1 05/16/25 17:36 EPA 8260D Styrene ND	trans-1,3-Dichloropropene	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
2-Hexanone ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D Isopropylbenzene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 4-Isopropylbenzene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Methylene chloride ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D 4-Methyl-2-pentanone (MiBK) ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Naphthalene ND 5.00 ug/L 1 05/16/25 17:36 EPA 8260D n-Propylbenzene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Styrene ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2,2-Tetrachloroethane ND <td>Ethylbenzene</td> <td>ND</td> <td></td> <td>0.500</td> <td></td> <td>1</td> <td>05/16/25 17:36</td> <td>EPA 8260D</td> <td></td>	Ethylbenzene	ND		0.500		1	05/16/25 17:36	EPA 8260D	
2-Hexanone ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D Isopropylbenzene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 4-Isopropylbenzene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Methylene chloride ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D 4-Methyl-2-pentanone (MiBK) ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Naphthalene ND 5.00 ug/L 1 05/16/25 17:36 EPA 8260D n-Propylbenzene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Styrene ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2,2-Tetrachloroethane ND <td>Hexachlorobutadiene</td> <td>ND</td> <td></td> <td>5.00</td> <td>ug/L</td> <td>1</td> <td>05/16/25 17:36</td> <td>EPA 8260D</td> <td></td>	Hexachlorobutadiene	ND		5.00	ug/L	1	05/16/25 17:36	EPA 8260D	
4-Isopropyltoluene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Methylene chloride ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D 4-Methyl-2-pentanone (MiBK) ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Naphthalene ND 5.00 ug/L 1 05/16/25 17:36 EPA 8260D n-Propylbenzene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Styrene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2-Tetrachloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D Toluene ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,3-Trichlorobenzene ND	2-Hexanone	ND		10.0		1	05/16/25 17:36	EPA 8260D	
4-Isopropyltoluene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Methylene chloride ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D 4-Methyl-2-pentanone (MiBK) ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Naphthalene ND 5.00 ug/L 1 05/16/25 17:36 EPA 8260D n-Propylbenzene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Styrene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2-Tetrachloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D Toluene ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,3-Trichlorobenzene ND	Isopropylbenzene	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
4-Methyl-2-pentanone (MiBK) ND 10.0 ug/L 1 05/16/25 17:36 EPA 8260D Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Naphthalene ND 5.00 ug/L 1 05/16/25 17:36 EPA 8260D n-Propylbenzene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Styrene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1,2-Tetrachloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D Tetrachloroethene (PCE) ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Toluene ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,3-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1-Trichloroethane ND	4-Isopropyltoluene	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D Naphthalene ND 5.00 ug/L 1 05/16/25 17:36 EPA 8260D n-Propylbenzene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Styrene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1,2-Tetrachloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D Tetrachloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Toluene ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,3-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,4-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2-Trichloroethane ND <	Methylene chloride	ND		10.0	ug/L	1	05/16/25 17:36	EPA 8260D	
Naphthalene ND 5.00 ug/L 1 05/16/25 17:36 EPA 8260D n-Propylbenzene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Styrene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1,2-Tetrachloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2,2-Tetrachloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Tetrachloroethane (PCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D Toluene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,3-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1-Trichloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D Trichloroethane ND	4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	05/16/25 17:36	EPA 8260D	
n-Propylbenzene ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Styrene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1,2-Tetrachloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2,2-Tetrachloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Tetrachloroethene (PCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D Toluene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,3-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,4-Trichloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1-Trichloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Trichloroethene (TCE) ND	Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
Styrene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1,2-Tetrachloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2,2-Tetrachloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Tetrachloroethene (PCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D Toluene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,3-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1-Trichloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2-Trichloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Trichloroethene (TCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D	Naphthalene	ND		5.00	ug/L	1	05/16/25 17:36	EPA 8260D	
1,1,1,2-Tetrachloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2,2-Tetrachloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Tetrachloroethene (PCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D Toluene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,3-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,4-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1-Trichloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2-Trichloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Trichloroethene (TCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D	n-Propylbenzene	ND		0.500	ug/L	1	05/16/25 17:36	EPA 8260D	
1,1,2,2-Tetrachloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Tetrachloroethene (PCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D Toluene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,3-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,4-Trichloroethane ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1-Trichloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2-Trichloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Trichloroethene (TCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D	Styrene	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
Tetrachloroethene (PCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D Toluene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,3-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,4-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1-Trichloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2-Trichloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Trichloroethene (TCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D	1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	05/16/25 17:36	EPA 8260D	
Toluene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,3-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,4-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1-Trichloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2-Trichloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Trichloroethene (TCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D	1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	05/16/25 17:36	EPA 8260D	
Toluene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,3-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,4-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1-Trichloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2-Trichloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Trichloroethene (TCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D	Tetrachloroethene (PCE)	ND		0.400	ug/L	1	05/16/25 17:36	EPA 8260D	
1,2,3-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,2,4-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1-Trichloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2-Trichloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Trichloroethene (TCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D	Toluene	ND		1.00		1	05/16/25 17:36	EPA 8260D	
1,2,4-Trichlorobenzene ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,1-Trichloroethane ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D 1,1,2-Trichloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Trichloroethene (TCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D	1,2,3-Trichlorobenzene	ND		2.00	_	1	05/16/25 17:36	EPA 8260D	
1,1,2-Trichloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Trichloroethene (TCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D	1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	05/16/25 17:36	EPA 8260D	
1,1,2-Trichloroethane ND 0.500 ug/L 1 05/16/25 17:36 EPA 8260D Trichloroethene (TCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D	1,1,1-Trichloroethane	ND		0.400	ug/L	1	05/16/25 17:36	EPA 8260D	
Trichloroethene (TCE) ND 0.400 ug/L 1 05/16/25 17:36 EPA 8260D	1,1,2-Trichloroethane	ND		0.500		1	05/16/25 17:36	EPA 8260D	
	Trichloroethene (TCE)	ND		0.400		1	05/16/25 17:36	EPA 8260D	
Trichlorofluoromethane ND 2.00 ug/L 1 05/16/25 17:36 EPA 8260D	Trichlorofluoromethane	ND		2.00		1	05/16/25 17:36	EPA 8260D	
1,2,3-Trichloropropane ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D	1,2,3-Trichloropropane	ND		1.00		1	05/16/25 17:36	EPA 8260D	
1,2,4-Trimethylbenzene ND 1.00 ug/L 1 05/16/25 17:36 EPA 8260D	• •	ND		1.00		1	05/16/25 17:36	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: <u>POP TCORE - GWM</u>

Project Number: M0232.17.090
Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TCORE-10D-GW (A5E1360-02)				Matrix: Wate	r	Batch: 25E0580		
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
Vinyl chloride	ND		0.200	ug/L	1	05/16/25 17:36	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	05/16/25 17:36	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	05/16/25 17:36	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 109 %	Limits: 80-120 %	1	05/16/25 17:36	EPA 8260D	
Toluene-d8 (Surr)			100 %	80-120 %	1	05/16/25 17:36	EPA 8260D	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	05/16/25 17:36	EPA 8260D	
TCORE-2-GW (A5E1360-03)				Matrix: Wate	r	Batch: 2	25E0580	
Acetone	ND		20.0	ug/L	1	05/16/25 17:59	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	05/16/25 17:59	EPA 8260D	
Benzene	ND		0.200	ug/L	1	05/16/25 17:59	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	05/16/25 17:59	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	05/16/25 17:59	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	05/16/25 17:59	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	05/16/25 17:59	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	05/16/25 17:59	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	05/16/25 17:59	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	05/16/25 17:59	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	05/16/25 17:59	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	05/16/25 17:59	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 17:59	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

 3140 NE Broadway Street
 Project Number:
 M0232.17.090
 Report ID:

 Portland, OR 97232
 Project Manager:
 Michael Pickering
 A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 8	260D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TCORE-2-GW (A5E1360-03)				Matrix: Wa	ater	Batch:	25E0580	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 17:59	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 17:59	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	05/16/25 17:59	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	05/16/25 17:59	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	05/16/25 17:59	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	05/16/25 17:59	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	05/16/25 17:59	EPA 8260D	
1,2-Dichloropropane	ND		0.500	ug/L	1	05/16/25 17:59	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	05/16/25 17:59	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	05/16/25 17:59	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	05/16/25 17:59	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	05/16/25 17:59	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	05/16/25 17:59	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
Naphthalene	ND		5.00	ug/L	1	05/16/25 17:59	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	05/16/25 17:59	EPA 8260D	
Styrene	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	05/16/25 17:59	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	05/16/25 17:59	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	05/16/25 17:59	EPA 8260D	
Toluene	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	05/16/25 17:59	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	05/16/25 17:59	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	05/16/25 17:59	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	05/16/25 17:59	EPA 8260D	
, ,	1,12		3.500	-5 L				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: POP TCORE - GWM

Project Number: M0232.17.090
Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	compou	nds by EPA 826	טט			
A 1.	Sample	Detection	Reporting	TT *-	Du e	Date	M 4 48 2	3.7
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TCORE-2-GW (A5E1360-03)				Matrix: Wate	r	Batch:	25E0580	
Trichloroethene (TCE)	ND		0.400	ug/L	1	05/16/25 17:59	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	05/16/25 17:59	EPA 8260D	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
Vinyl chloride	ND		0.200	ug/L	1	05/16/25 17:59	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	05/16/25 17:59	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	05/16/25 17:59	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	110 %	Limits: 80-120 %	1	05/16/25 17:59	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	05/16/25 17:59	EPA 8260D	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	05/16/25 17:59	EPA 8260D	
TCORE-20D-GW (A5E1360-04)				Matrix: Water B		Batch:	atch: 25E0580	
Acetone	ND		20.0	ug/L	1	05/16/25 18:22	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	05/16/25 18:22	EPA 8260D	
Benzene	ND		0.200	ug/L	1	05/16/25 18:22	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	05/16/25 18:22	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	05/16/25 18:22	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	05/16/25 18:22	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	05/16/25 18:22	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	05/16/25 18:22	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	05/16/25 18:22	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	05/16/25 18:22	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway Street Project Number: M0232.17.090
Portland, OR 97232 Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TCORE-20D-GW (A5E1360-04)				Matrix: Wa	ater	Batch: 25E0580		
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	05/16/25 18:22	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	05/16/25 18:22	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 18:22	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 18:22	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 18:22	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	05/16/25 18:22	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	05/16/25 18:22	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	05/16/25 18:22	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	05/16/25 18:22	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	05/16/25 18:22	EPA 8260D	
1,2-Dichloropropane	ND		0.500	ug/L	1	05/16/25 18:22	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	05/16/25 18:22	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	05/16/25 18:22	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	05/16/25 18:22	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	05/16/25 18:22	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	05/16/25 18:22	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
Naphthalene	ND		5.00	ug/L	1	05/16/25 18:22	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	05/16/25 18:22	EPA 8260D	
Styrene	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	05/16/25 18:22	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	05/16/25 18:22	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	05/16/25 18:22	EPA 8260D	
Toluene	ND		1.00	ug/L ug/L	1	05/16/25 18:22	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:POP TCORE - GWM3140 NE Broadway StreetProject Number:M0232.17.090

Portland, OR 97232 Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

	V	olatile Organi	Compou	nds by EPA 826	0D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TCORE-2OD-GW (A5E1360-04)				Matrix: Wate	er	Batch:	25E0580	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	05/16/25 18:22	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	05/16/25 18:22	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	05/16/25 18:22	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	05/16/25 18:22	EPA 8260D	
Trichloroethene (TCE)	ND		0.400	ug/L	1	05/16/25 18:22	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	05/16/25 18:22	EPA 8260D	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
Vinyl chloride	ND		0.200	ug/L	1	05/16/25 18:22	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	05/16/25 18:22	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	05/16/25 18:22	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 111 %	Limits: 80-120 %	1	05/16/25 18:22	EPA 8260D	
Toluene-d8 (Surr)			100 %	80-120 %	1	05/16/25 18:22	EPA 8260D	
4-Bromofluorobenzene (Surr)			97 %	80-120 %	1	05/16/25 18:22	EPA 8260D	
TCORE-3-GW (A5E1360-05)				Matrix: Wate	er	Batch:	25E0580	
Acetone	ND		20.0	ug/L	1	05/16/25 19:06	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	05/16/25 19:06	EPA 8260D	
Benzene	ND		0.200	ug/L	1	05/16/25 19:06	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	05/16/25 19:06	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	05/16/25 19:06	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	05/16/25 19:06	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	05/16/25 19:06	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	05/16/25 19:06	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	05/16/25 19:06	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway StreetProject Number: M0232.17.090Portland, OR 97232Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TCORE-3-GW (A5E1360-05)				Matrix: Wa	ater	Batch:		
Chloromethane	ND		5.00	ug/L	1	05/16/25 19:06	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	05/16/25 19:06	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	05/16/25 19:06	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 19:06	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 19:06	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 19:06	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	05/16/25 19:06	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	05/16/25 19:06	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	05/16/25 19:06	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	05/16/25 19:06	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	05/16/25 19:06	EPA 8260D	
1,2-Dichloropropane	ND		0.500	ug/L	1	05/16/25 19:06	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	05/16/25 19:06	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	05/16/25 19:06	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	05/16/25 19:06	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	05/16/25 19:06	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	05/16/25 19:06	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
Naphthalene	ND		5.00	ug/L	1	05/16/25 19:06	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	05/16/25 19:06	EPA 8260D	
Styrene	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

Project:

3140 NE Broadway Street Project Number: M0232.17.090
Portland, OR 97232 Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

POP TCORE - GWM

	Sample	Detection	Reporting			Date		Notes
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	
TCORE-3-GW (A5E1360-05)				Matrix: Water		Batch: 25E0580		
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	05/16/25 19:06	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	05/16/25 19:06	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	05/16/25 19:06	EPA 8260D	
Toluene	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	05/16/25 19:06	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	05/16/25 19:06	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	05/16/25 19:06	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	05/16/25 19:06	EPA 8260D	
Trichloroethene (TCE)	ND		0.400	ug/L	1	05/16/25 19:06	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	05/16/25 19:06	EPA 8260D	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
Vinyl chloride	ND		0.200	ug/L	1	05/16/25 19:06	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	05/16/25 19:06	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	05/16/25 19:06	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 111 %	Limits: 80-120 %	1	05/16/25 19:06	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	05/16/25 19:06	EPA 8260D	
4-Bromofluorobenzene (Surr)			96 %	80-120 %	1	05/16/25 19:06	EPA 8260D	
TCORE-4-GW (A5E1360-06)				Matrix: Wate	r	Batch: 25E0580		
Acetone	ND		20.0	ug/L	1	05/16/25 18:44	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	05/16/25 18:44	EPA 8260D	
Benzene	ND		0.200	ug/L	1	05/16/25 18:44	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	05/16/25 18:44	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	05/16/25 18:44	EPA 8260D	
-Butanone (MEK)	ND		10.0	ug/L	1	05/16/25 18:44	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D	
ec-Butylbenzene	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D	
ert-Butylbenzene	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D	
				-				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

 3140 NE Broadway Street
 Project Number:
 M0232.17.090
 Report ID:

 Portland, OR 97232
 Project Manager:
 Michael Pickering
 A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

Sample Detection Reporting Date												
Analyte	Result	Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
TCORE-4-GW (A5E1360-06)				Matrix: Wa	ıter	Batch: 25E0580						
Carbon tetrachloride	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D					
Chlorobenzene	ND		0.500	ug/L	1	05/16/25 18:44	EPA 8260D					
Chloroethane	ND		5.00	ug/L	1	05/16/25 18:44	EPA 8260D					
Chloroform	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D					
Chloromethane	ND		5.00	ug/L	1	05/16/25 18:44	EPA 8260D					
2-Chlorotoluene	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D					
4-Chlorotoluene	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D					
Dibromochloromethane	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D					
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	05/16/25 18:44	EPA 8260D					
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	05/16/25 18:44	EPA 8260D					
Dibromomethane	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D					
1,2-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 18:44	EPA 8260D					
1,3-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 18:44	EPA 8260D					
1,4-Dichlorobenzene	ND		0.500	ug/L	1	05/16/25 18:44	EPA 8260D					
Dichlorodifluoromethane	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D					
1,1-Dichloroethane	ND		0.400	ug/L	1	05/16/25 18:44	EPA 8260D					
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	05/16/25 18:44	EPA 8260D					
1,1-Dichloroethene	ND		0.400	ug/L	1	05/16/25 18:44	EPA 8260D					
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	05/16/25 18:44	EPA 8260D					
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	05/16/25 18:44	EPA 8260D					
1,2-Dichloropropane	ND		0.500	ug/L	1	05/16/25 18:44	EPA 8260D					
1,3-Dichloropropane	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D					
2,2-Dichloropropane	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D					
1,1-Dichloropropene	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D					
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D					
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D					
Ethylbenzene	ND		0.500	ug/L	1	05/16/25 18:44	EPA 8260D					
Hexachlorobutadiene	ND		5.00	ug/L	1	05/16/25 18:44	EPA 8260D					
2-Hexanone	ND		10.0	ug/L	1	05/16/25 18:44	EPA 8260D					
Isopropylbenzene	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D					
4-Isopropyltoluene	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D					
Methylene chloride	ND		10.0	ug/L	1	05/16/25 18:44	EPA 8260D					
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L ug/L	1	05/16/25 18:44	EPA 8260D					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: <u>POP TCORE - GWM</u>

Project Number: **M0232.17.090**Project Manager: **Michael Pickering**

Report ID: A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	0D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TCORE-4-GW (A5E1360-06)				Matrix: Wate	r	Batch:	25E0580	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D	
Naphthalene	ND		5.00	ug/L	1	05/16/25 18:44	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	05/16/25 18:44	EPA 8260D	
Styrene	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	05/16/25 18:44	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	05/16/25 18:44	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	05/16/25 18:44	EPA 8260D	
Toluene	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	05/16/25 18:44	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	05/16/25 18:44	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	05/16/25 18:44	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	05/16/25 18:44	EPA 8260D	
Trichloroethene (TCE)	ND		0.400	ug/L	1	05/16/25 18:44	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	05/16/25 18:44	EPA 8260D	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D	
Vinyl chloride	ND		0.200	ug/L	1	05/16/25 18:44	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	05/16/25 18:44	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	05/16/25 18:44	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 111 %	Limits: 80-120 %	1	05/16/25 18:44	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %	1	05/16/25 18:44	EPA 8260D	
4-Bromofluorobenzene (Surr)			96 %	80-120 %	1	05/16/25 18:44	EPA 8260D	
TCORE-5-GW (A5E1360-07)				Matrix: Wate	er	Batch:	25E0606	
Acetone	ND		20.0	ug/L	1	05/19/25 15:59	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	05/19/25 15:59	EPA 8260D	
Benzene	ND		0.200	ug/L	1	05/19/25 15:59	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	05/19/25 15:59	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	05/19/25 15:59	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	05/19/25 15:59	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway StreetProject Number: M0232.17.090Portland, OR 97232Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

	V	Diatile Organ	ic Compound	us by EPA 8	∠סטט			
A 1.	Sample	Detection	Reporting	** *.	D11 -1	Date	3.7	
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TCORE-5-GW (A5E1360-07)				Matrix: Wa	ater	Batch:	25E0606	
n-Butylbenzene	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
ert-Butylbenzene	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	05/19/25 15:59	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	05/19/25 15:59	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	05/19/25 15:59	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	05/19/25 15:59	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	05/19/25 15:59	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	05/19/25 15:59	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	05/19/25 15:59	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	05/19/25 15:59	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	05/19/25 15:59	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	05/19/25 15:59	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	05/19/25 15:59	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	05/19/25 15:59	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	05/19/25 15:59	EPA 8260D	
rans-1,2-Dichloroethene	ND		0.400	ug/L	1	05/19/25 15:59	EPA 8260D	
1,2-Dichloropropane	ND		0.500	ug/L	1	05/19/25 15:59	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
rans-1,3-Dichloropropene	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	05/19/25 15:59	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	05/19/25 15:59	EPA 8260D	
2-Hexanone	ND		10.0	ug/L ug/L	1	05/19/25 15:59	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway Street Project Number: M0232.17.090
Portland, OR 97232 Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compour	nds by EPA 826	30D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TCORE-5-GW (A5E1360-07)				Matrix: Wate)r	Batch: 2	25E0606	
Isopropylbenzene	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	05/19/25 15:59	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	05/19/25 15:59	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
Naphthalene	ND		5.00	ug/L	1	05/19/25 15:59	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	05/19/25 15:59	EPA 8260D	
Styrene	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	05/19/25 15:59	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	05/19/25 15:59	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	05/19/25 15:59	EPA 8260D	
Toluene	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	05/19/25 15:59	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	05/19/25 15:59	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	05/19/25 15:59	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	05/19/25 15:59	EPA 8260D	
Trichloroethene (TCE)	ND		0.400	ug/L	1	05/19/25 15:59	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	05/19/25 15:59	EPA 8260D	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
Vinyl chloride	ND		0.200	ug/L	1	05/19/25 15:59	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	05/19/25 15:59	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	05/19/25 15:59	EPA 8260D	_
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	6 I	05/19/25 15:59	EPA 8260D	
Toluene-d8 (Surr)			101 %	80-120 %		05/19/25 15:59	EPA 8260D	
4-Bromofluorobenzene (Surr)			94 %	80-120 %	6 I	05/19/25 15:59	EPA 8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

 3140 NE Broadway Street
 Project Number:
 M0232.17.090
 Report ID:

 Portland, OR 97232
 Project Manager:
 Michael Pickering
 A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TCORE-1-GW (A5E1360-01)				Matrix: Wate	ər	Batch:	25E0639	DCNT
Acenaphthene	ND		0.0378	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Acenaphthylene	ND		0.0378	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Anthracene	ND		0.0378	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0189	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0189	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0189	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0189	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0378	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Chrysene	ND		0.0189	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0189	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Fluoranthene	ND		0.0378	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Fluorene	ND		0.0378	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0189	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
1-Methylnaphthalene	ND		0.0756	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0756	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Naphthalene	0.0812		0.0756	ug/L	1	05/20/25 14:49	EPA 8270E LVI	B-02, Q-29
Phenanthrene	ND		0.0756	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Pyrene	ND		0.0378	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Dibenzofuran	ND		0.0378	ug/L	1	05/20/25 14:49	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Reco	very: 99 %	Limits: 78-134 %	5 1	05/20/25 14:49	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			116 %	80-132 %	5 1	05/20/25 14:49	EPA 8270E LVI	
TCORE-10D-GW (A5E1360-02)				Matrix: Wate	er	Batch:	25E0639	DCNT
Acenaphthene	ND		0.0398	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Acenaphthylene	ND		0.0398	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Anthracene	ND		0.0398	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0199	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0199	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0199	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0199	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0398	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Chrysene	ND		0.0199	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0199	ug/L	1	05/20/25 18:36	EPA 8270E LVI	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway StreetProject Number:M0232.17.090Report ID:Portland, OR 97232Project Manager:Michael PickeringA5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TCORE-1OD-GW (A5E1360-02)				Matrix: Wate			25E0639	DCNT
Fluoranthene	ND		0.0398	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Fluorene	ND		0.0398	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0199	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
1-Methylnaphthalene	ND		0.0797	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0797	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Naphthalene	ND		0.0797	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Phenanthrene	ND		0.0797	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Pyrene	ND		0.0398	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Dibenzofuran	ND		0.0398	ug/L	1	05/20/25 18:36	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Recover	y: 100 %	Limits: 78-134 %		05/20/25 18:36	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)		1100000	119 %	80-132 %		05/20/25 18:36	EPA 8270E LVI	
TCORE-2-GW (A5E1360-03)				Matrix: Wate			25E0639	DCNT
Acenaphthene	ND		0.0349	ug/L	1	05/20/25 19:08	EPA 8270E LVI	
Acenaphthylene	ND ND		0.0349	_	1	05/20/25 19:08	EPA 8270E LVI EPA 8270E LVI	
Acenaphinylene Anthracene	ND ND		0.0349	ug/L ug/L	1	05/20/25 19:08	EPA 8270E LVI EPA 8270E LVI	
Anthracene Benz(a)anthracene	ND ND		0.0349		1	05/20/25 19:08	EPA 8270E LVI EPA 8270E LVI	
Benz(a)anthracene Benzo(a)pyrene	ND ND		0.0175	ug/L	1	05/20/25 19:08	EPA 8270E LVI EPA 8270E LVI	
Benzo(a)pyrene Benzo(b)fluoranthene	ND ND		0.0175	ug/L	1	05/20/25 19:08	EPA 8270E LVI EPA 8270E LVI	
Benzo(b)fluoranthene Benzo(k)fluoranthene	ND ND		0.0175	ug/L	•	05/20/25 19:08	EPA 8270E LVI EPA 8270E LVI	
` '				ug/L	1		EPA 8270E LVI EPA 8270E LVI	
Benzo(g,h,i)perylene	ND ND		0.0349	ug/L	1 1	05/20/25 19:08		
Chrysene Dibonz(a b)onthrocono			0.0175	ug/L	•	05/20/25 19:08	EPA 8270E LVI	
Dibenz(a,h)anthracene Fluoranthene	ND		0.0175	ug/L	1	05/20/25 19:08	EPA 8270E LVI	
	ND		0.0349	ug/L	1	05/20/25 19:08	EPA 8270E LVI	
Fluorene	ND		0.0349	ug/L	1	05/20/25 19:08	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0175	ug/L	1	05/20/25 19:08	EPA 8270E LVI	
l-Methylnaphthalene	ND		0.0698	ug/L	1	05/20/25 19:08	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0698	ug/L	1	05/20/25 19:08	EPA 8270E LVI	
Naphthalene	ND		0.0698	ug/L	1	05/20/25 19:08	EPA 8270E LVI	
Phenanthrene	ND		0.0698	ug/L	1	05/20/25 19:08	EPA 8270E LVI	
Pyrene	ND		0.0349	ug/L	1	05/20/25 19:08	EPA 8270E LVI	
Dibenzofuran	ND		0.0349	ug/L	1	05/20/25 19:08	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Recovery	y: 102 %	Limits: 78-134 %		05/20/25 19:08	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			119 %	80-132 %	1	05/20/25 19:08	EPA 8270E LVI	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

 3140 NE Broadway Street
 Project Number:
 M0232.17.090
 Report ID:

 Portland, OR 97232
 Project Manager:
 Michael Pickering
 A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

Polycy	clic Aromatic	Hydrocarbor	is (PAHs) by	/ EPA 8270E (La	arge Volu	ıme Injection)		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
TCORE-2-GW (A5E1360-03)				Matrix: Wate	er	Batch:	25E0639	DCNT
TCORE-2OD-GW (A5E1360-04)				Matrix: Wate	er	Batch:	25E0639	DCNT
Acenaphthene	ND		0.0407	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Acenaphthylene	ND		0.0407	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Anthracene	ND		0.0407	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0204	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0204	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0204	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0204	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0407	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Chrysene	ND		0.0204	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0204	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Fluoranthene	ND		0.0407	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Fluorene	ND		0.0407	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0204	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
1-Methylnaphthalene	ND		0.0815	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0815	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Naphthalene	ND		0.0815	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Phenanthrene	ND		0.0815	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Pyrene	ND		0.0407	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Dibenzofuran	ND		0.0407	ug/L	1	05/20/25 19:40	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Recov	ery: 100 %	Limits: 78-134 %	1	05/20/25 19:40	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			120 %	80-132 %	1	05/20/25 19:40	EPA 8270E LVI	
TCORE-3-GW (A5E1360-05)				Matrix: Wate	er	Batch:	25E0639	DCNT
Acenaphthene	ND		0.0359	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Acenaphthylene	ND		0.0359	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Anthracene	ND		0.0359	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0179	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0179	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0179	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0179	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0359	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Chrysene	ND		0.0179	ug/L	1	05/20/25 20:13	EPA 8270E LVI	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Dund by frail

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

 3140 NE Broadway Street
 Project Number:
 M0232.17.090
 Report ID:

 Portland, OR 97232
 Project Manager:
 Michael Pickering
 A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TCORE-3-GW (A5E1360-05)				Matrix: Wate	er	Batch:	25E0639	DCNT
Dibenz(a,h)anthracene	ND		0.0179	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Fluoranthene	ND		0.0359	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Fluorene	ND		0.0359	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0179	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
l-Methylnaphthalene	ND		0.0717	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0717	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Naphthalene	ND		0.0717	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Phenanthrene	ND		0.0717	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Pyrene	ND		0.0359	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Dibenzofuran	ND		0.0359	ug/L	1	05/20/25 20:13	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Recove	ry: 100 %	Limits: 78-134 %	5 1	05/20/25 20:13	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			121 %	80-132 %	5 1	05/20/25 20:13	EPA 8270E LVI	
CORE-4-GW (A5E1360-06)				Matrix: Wate	er	Batch:	25E0639	
Acenaphthene	ND		0.0342	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
Acenaphthylene	ND		0.0342	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
Anthracene	ND		0.0342	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0171	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0171	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0171	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0171	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0342	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
Chrysene	ND		0.0171	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0171	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
Fluoranthene	ND		0.0342	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
Fluorene	ND		0.0342	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
ndeno(1,2,3-cd)pyrene	ND		0.0171	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
-Methylnaphthalene	ND		0.0683	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
-Methylnaphthalene	ND		0.0683	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
Naphthalene	ND		0.0683	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
henanthrene	ND		0.0683	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
Pyrene	ND		0.0342	ug/L	1	05/20/25 20:45	EPA 8270E LVI	
Dibenzofuran	ND		0.0342	ug/L	1	05/20/25 20:45	EPA 8270E LVI	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: <u>POP TCORE - GWM</u>

Project Number: M0232.17.090
Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TCORE-4-GW (A5E1360-06)				Matrix: Wate	er	Batch:	25E0639	
Surrogate: Acenaphthylene-d8 (Surr)		Recove	ery: 104 %	Limits: 78-134 %	1	05/20/25 20:45	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			118 %	80-132 %	1	05/20/25 20:45	EPA 8270E LVI	
TCORE-5-GW (A5E1360-07)				Matrix: Wate	er	Batch:	25E0639	
Acenaphthene	ND		0.0342	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Acenaphthylene	ND		0.0342	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Anthracene	ND		0.0342	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0171	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0171	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0171	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0171	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0342	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Chrysene	ND		0.0171	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0171	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Fluoranthene	ND		0.0342	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Fluorene	ND		0.0342	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0171	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
l-Methylnaphthalene	ND		0.0684	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0684	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Naphthalene	ND		0.0684	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Phenanthrene	ND		0.0684	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Pyrene	ND		0.0342	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Dibenzofuran	ND		0.0342	ug/L	1	05/20/25 21:17	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Recove	ery: 102 %	Limits: 78-134 %	1	05/20/25 21:17	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			117 %	80-132 %	1	05/20/25 21:17	EPA 8270E LVI	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:POP TCORE - GWM3140 NE Broadway StreetProject Number:M0232.17.090

Portland, OR 97232 Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel a	and/or Oil I	Hydrocarbo	ons by N	WTPH-Dx	with Silic	ca Gel Co	olumn Cle	anup			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25E0812 - EPA 3510C	(Fuels/Acid	Ext.) w/SG0					Wa	ter				
Blank (25E0812-BLK1)			Prepared	1: 05/23/25	07:24 Ana	lyzed: 05/23	/25 19:38					
NWTPH-Dx/SGC												
Diesel	ND		0.0800	mg/L	1							
Oil	ND		0.160	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 84 %	Limits: 50	0-150 %	Dilt	ution: 1x					
LCS (25E0812-BS1)			Prepared	1: 05/23/25	07:24 Ana	lyzed: 05/23	/25 19:59					
NWTPH-Dx/SGC												
Diesel	0.330		0.0800	mg/L	1	0.500		66	36-132%			
Surr: o-Terphenyl (Surr)		Reco	overy: 91 %	Limits: 50	0-150 %	Dili	ution: 1x					
LCS Dup (25E0812-BSD1)			Prepared	1: 05/23/25	07:24 Ana	lyzed: 05/23	/25 20:19					Q-1
NWTPH-Dx/SGC												
Diesel	0.320		0.0800	mg/L	1	0.500		64	36-132%	3	30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 91 %	Limits: 50	0-150 %	Dili	ution: 1x					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway StreetProject Number:M0232.17.090Report ID:Portland, OR 97232Project Manager:Michael PickeringA5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 25E0580 - EPA 5030C Water Blank (25E0580-BLK1) Prepared: 05/16/25 14:00 Analyzed: 05/16/25 16:07 EPA 8260D ND 20.0 ug/L Acetone ND 2.00 Acrylonitrile ug/L 1 ---Benzene ND 0.200 ug/L 1 0.500 ND Bromobenzene ug/L 1 Bromochloromethane ND 1.00 ug/L ug/L ND 1.00 Bromodichloromethane 1 ---Bromoform ND 1.00 ug/L 5.00 Bromomethane ND ug/L 1 2-Butanone (MEK) ND 10.0 ug/L 1 n-Butylbenzene ND 1.00 ug/L 1 sec-Butylbenzene ND 1.00 ug/L 1 ND 1.00 tert-Butylbenzene ug/L 1 Carbon disulfide ND 10.0 ug/L Carbon tetrachloride ND 1.00 ug/L 1 Chlorobenzene ND 0.500ug/L 1 Chloroethane ND 5.00 ug/L 1 ------Chloroform ND 1.00 ug/L 1 Chloromethane ND 5.00 ug/L 1 ------2-Chlorotoluene ND 1.00 ug/L 1 4-Chlorotoluene ND 1.00 ug/L 1 ND 1.00 Dibromochloromethane ug/L 1 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 1,2-Dibromoethane (EDB) 0.500ND ug/L Dibromomethane ND 1.00 ug/L 1 0.500 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.500 ug/L 1 Dichlorodifluoromethane ND 1.00 ug/L 1 ND 0.4001,1-Dichloroethane ug/L 1 1,2-Dichloroethane (EDC) 0.400ND ug/L 1 1,1-Dichloroethene ND 0.400ug/L 1 cis-1,2-Dichloroethene ND 0.400 ug/L 1

Apex Laboratories

trans-1,2-Dichloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Chund la finil

ND

0.400

ug/L

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway Street Project Number: M0232.17.090 Report ID:
Portland, OR 97232 Project Manager: Michael Pickering A5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 25E0580 - EPA 5030C Water Blank (25E0580-BLK1) Prepared: 05/16/25 14:00 Analyzed: 05/16/25 16:07 ND 0.500 ug/L 1,2-Dichloropropane 1,3-Dichloropropane ND 1.00 ug/L 1 ------2,2-Dichloropropane ND 1.00 ug/L 1 1,1-Dichloropropene ND 1.00 ug/L 1 1.00 cis-1,3-Dichloropropene ND ug/L 1 trans-1,3-Dichloropropene ND 1.00 ug/L 1 0.500 Ethylbenzene ND ug/L 1 5.00 Hexachlorobutadiene ND ug/L 2-Hexanone 10.0 ND ug/L 1 Isopropylbenzene ND 1.00 ug/L 1 4-Isopropyltoluene ND 1.00 ug/L 1 Methylene chloride 10.0 ND ug/L 1 10.0 4-Methyl-2-pentanone (MiBK) ND ug/L 1 ---Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 Naphthalene ND 5.00 ug/L 1 n-Propylbenzene ND 0.500 ug/L ND 1.00 Stvrene ug/L 1 1,1,1,2-Tetrachloroethane ND 0.400 ug/L 1 0.500 1,1,2,2-Tetrachloroethane ND ug/L 1 ------Tetrachloroethene (PCE) ND 0.400 ug/L Toluene ND 1.00 ug/L 1 1,2,3-Trichlorobenzene ND 2.00 ug/L 1,2,4-Trichlorobenzene ND 2.00 ug/L 1 1,1,1-Trichloroethane ND 0.400ug/L ND 0.500 1,1,2-Trichloroethane ug/L 1 ---------Trichloroethene (TCE) ND 0.400 ug/L Trichlorofluoromethane ND 2.00 ug/L 1 ------1,2,3-Trichloropropane ND 1.00 ug/L 1 1,2,4-Trimethylbenzene ND 1.00 ug/L 1 1,3,5-Trimethylbenzene ND 1.00 ug/L 1

Surr: 1,4-Difluorobenzene (Surr) Recovery: 107 % Limits: 80-120 % Dilution: 1x

0.200

1.00

0.500

ug/L

ug/L

ug/L

1

1

1

ND

ND

ND

Apex Laboratories

Vinyl chloride

m,p-Xylene

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Chund la finil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

 3140 NE Broadway Street
 Project Number:
 M0232.17.090
 Report ID:

 Portland, OR 97232
 Project Manager:
 Michael Pickering
 A5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

		,	Volatile Or	ganic Co	mpounds	by EPA	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25E0580 - EPA 5030C							Wa	iter				
Blank (25E0580-BLK1)			Prepared	1: 05/16/25	14:00 Ana	lyzed: 05/16	5/25 16:07					
Surr: Toluene-d8 (Surr)		Recor	very: 101 %	Limits: 80	0-120 %	Dil	ution: 1x					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					
LCS (25E0580-BS1)			Prepared	1: 05/16/25	14:00 Ana	lyzed: 05/16	5/25 15:21					
EPA 8260D												
Acetone	41.5		20.0	ug/L	1	40.0		104	80-120%			
Acrylonitrile	20.9		2.00	ug/L	1	20.0		105	80-120%			
Benzene	20.8		0.200	ug/L	1	20.0		104	80-120%			
Bromobenzene	19.1		0.500	ug/L	1	20.0		96	80-120%			
Bromochloromethane	22.0		1.00	ug/L	1	20.0		110	80-120%			
Bromodichloromethane	24.1		1.00	ug/L	1	20.0		121	80-120%			Q-5
Bromoform	22.6		1.00	ug/L	1	20.0		113	80-120%			
Bromomethane	22.4		5.00	ug/L	1	20.0		112	80-120%			
2-Butanone (MEK)	40.5		10.0	ug/L	1	40.0		101	80-120%			
n-Butylbenzene	22.0		1.00	ug/L	1	20.0		110	80-120%			
sec-Butylbenzene	22.6		1.00	ug/L	1	20.0		113	80-120%			
tert-Butylbenzene	20.2		1.00	ug/L	1	20.0		101	80-120%			
Carbon disulfide	26.4		10.0	ug/L	1	20.0		132	80-120%			Q-5
Carbon tetrachloride	24.5		1.00	ug/L	1	20.0		122	80-120%			Q-5
Chlorobenzene	20.0		0.500	ug/L	1	20.0		100	80-120%			
Chloroethane	21.6		5.00	ug/L	1	20.0		108	80-120%			
Chloroform	21.7		1.00	ug/L	1	20.0		108	80-120%			
Chloromethane	20.8		5.00	ug/L	1	20.0		104	80-120%			
2-Chlorotoluene	20.2		1.00	ug/L	1	20.0		101	80-120%			
4-Chlorotoluene	20.0		1.00	ug/L	1	20.0		100	80-120%			
Dibromochloromethane	21.3		1.00	ug/L	1	20.0		107	80-120%			
1,2-Dibromo-3-chloropropane	22.2		5.00	ug/L	1	20.0		111	80-120%			
1,2-Dibromoethane (EDB)	21.0		0.500	ug/L	1	20.0		105	80-120%			
Dibromomethane	22.5		1.00	ug/L	1	20.0		113	80-120%			
1,2-Dichlorobenzene	20.1		0.500	ug/L	1	20.0		101	80-120%			
1,3-Dichlorobenzene	20.7		0.500	ug/L	1	20.0		103	80-120%			
1,4-Dichlorobenzene	19.8		0.500	ug/L	1	20.0		99	80-120%			
Dichlorodifluoromethane	22.8		1.00	ug/L	1	20.0		114	80-120%			
1,1-Dichloroethane	21.7		0.400	ug/L	1	20.0		109	80-120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway StreetProject Number:M0232.17.090Report ID:Portland, OR 97232Project Manager:Michael PickeringA5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 25E0580 - EPA 5030C Water LCS (25E0580-BS1) Prepared: 05/16/25 14:00 Analyzed: 05/16/25 15:21 1,2-Dichloroethane (EDC) 20.8 0.400 ug/L 20.0 104 80-120% 0.400 1,1-Dichloroethene 21.5 ug/L 1 20.0 108 80-120% -----cis-1,2-Dichloroethene 20.6 0.400 ug/L 1 20.0 103 80-120% trans-1,2-Dichloroethene 20.7 0.400 ug/L 1 20.0 104 80-120% 20.0 104 1,2-Dichloropropane 20.8 0.500ug/L 80-120% 1 1,3-Dichloropropane 20.2 1.00 ug/L 1 20.0 101 80-120% 2,2-Dichloropropane 1.00 80-120% 23.9 ug/L 1 20.0 119 1,1-Dichloropropene 21.2 1.00 ug/L 20.0 106 80-120% 20.0 1.00 cis-1,3-Dichloropropene ug/L 1 20.0 100 80-120% trans-1,3-Dichloropropene 20.9 1.00 ug/L 1 20.0 104 80-120% 20.3 Ethylbenzene 0.50020.0 101 80-120% ug/L 1 Hexachlorobutadiene 5.00 21.0 ug/L 1 20.0 105 80-120% 10.0 80-120% 40.0 40.0 100 2-Hexanone ug/L 1 Isopropylbenzene 20.5 1.00 ug/L 1 20.0 102 80-120% 4-Isopropyltoluene 22.0 1.00 20.0 110 80-120% ug/L 1 Methylene chloride 22.6 10.0 ug/L 20.0 113 80-120% 4-Methyl-2-pentanone (MiBK) 38.2 10.0 40.0 95 ug/L 1 80-120% Methyl tert-butyl ether (MTBE) 20.4 1.00 ug/L 1 20.0 102 80-120% Naphthalene 16.7 5.00 20.0 84 ug/L 1 80-120% --n-Propylbenzene 20.6 0.500 ug/L 1 20.0 103 80-120% 20.3 1.00 20.0 102 80-120% Styrene ug/L 1 1,1,1,2-Tetrachloroethane 21.2 0.400 ug/L 1 20.0 106 80-120% 1,1,2,2-Tetrachloroethane 22.3 0.500 ug/L 1 20.0 111 80-120% Tetrachloroethene (PCE) 20.2 0.400ug/L 1 20.0 101 80-120% 80-120% Toluene 19.5 1.00 20.0 97 ug/L 1 ------1,2,3-Trichlorobenzene 19.6 2.00 ug/L 1 20.0 98 80-120% 1.2.4-Trichlorobenzene 18.8 2.00 20.0 94 80-120% ug/L 1 ------1,1,1-Trichloroethane 23.2 0.400 ug/L 1 20.0 116 80-120% 1,1,2-Trichloroethane 21.1 0.500 ug/L 1 20.0 105 80-120% Trichloroethene (TCE) 20.2 0.400ug/L 1 20.0 101 80-120% Trichlorofluoromethane 27.9 2.00 20.0 140 80-120% Q-56 ug/L 1 1,2,3-Trichloropropane 21.3 1.00 ug/L 1 20.0 107 80-120% 1,2,4-Trimethylbenzene 22.3 1.00 ug/L 1 20.0 111 80-120% 1,3,5-Trimethylbenzene 21.4 1.00 ug/L 1 20.0 107 80-120%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Quant la famil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Maul Foster & Alongi, INC.</u> Project: <u>POP TCORE - GWM</u>

 3140 NE Broadway Street
 Project Number:
 M0232.17.090
 Report ID:

 Portland, OR 97232
 Project Manager:
 Michael Pickering
 A5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25E0580 - EPA 5030C							Wa	ter				
LCS (25E0580-BS1)			Prepared	1: 05/16/25	14:00 Ana	lyzed: 05/16	/25 15:21					
Vinyl chloride	21.1		0.200	ug/L	1	20.0		105	80-120%			
m,p-Xylene	41.8		1.00	ug/L	1	40.0		105	80-120%			
o-Xylene	19.5		0.500	ug/L	1	20.0		98	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 106 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	0-120 %		"					
Duplicate (25E0580-DUP1)			Prepared	1: 05/16/25	14:00 Ana	lyzed: 05/16	/25 23:36					
OC Source Sample: Non-SDG (A5	E1408-03)											
Acetone	ND		200	ug/L	10		ND				30%	
Acrylonitrile	ND		140	ug/L	10		ND				30%	R-0
Benzene	184		2.00	ug/L	10		197			7	30%	
Bromobenzene	ND		5.00	ug/L	10		ND				30%	
Bromochloromethane	ND		10.0	ug/L	10		ND				30%	
Bromodichloromethane	ND		10.0	ug/L	10		ND				30%	
Bromoform	ND		10.0	ug/L	10		ND				30%	
Bromomethane	ND		50.0	ug/L	10		ND				30%	
2-Butanone (MEK)	ND		100	ug/L	10		ND				30%	
n-Butylbenzene	18.3		10.0	ug/L	10		19.6			7	30%	M-0
sec-Butylbenzene	11.6		10.0	ug/L	10		12.2			5	30%	
tert-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
Carbon disulfide	ND		100	ug/L	10		ND				30%	
Carbon tetrachloride	ND		10.0	ug/L	10		ND				30%	
Chlorobenzene	ND		5.00	ug/L	10		ND				30%	
Chloroethane	ND		50.0	ug/L	10		ND				30%	
Chloroform	ND		10.0	ug/L	10		ND				30%	
Chloromethane	ND		50.0	ug/L	10		ND				30%	
2-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
4-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
Dibromochloromethane	ND		10.0	ug/L	10		ND				30%	
1,2-Dibromo-3-chloropropane	ND		50.0	ug/L	10		ND				30%	
1,2-Dibromoethane (EDB)	ND		5.00	ug/L	10		ND				30%	
Dibromomethane	ND		10.0	ug/L	10		ND				30%	
1,2-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway StreetProject Number:M0232.17.090Report ID:Portland, OR 97232Project Manager:Michael PickeringA5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 25E0580 - EPA 5030C Water Duplicate (25E0580-DUP1) Prepared: 05/16/25 14:00 Analyzed: 05/16/25 23:36 QC Source Sample: Non-SDG (A5E1408-03) 1,3-Dichlorobenzene ND 5.00 ug/L 10 ND 30% ND 5.00 ug/L 30% 1,4-Dichlorobenzene 10 ND Dichlorodifluoromethane ND 10.0 ug/L 10 ND 30% 1,1-Dichloroethane ND 4.00 ug/L 10 ND 30% 1,2-Dichloroethane (EDC) ND 4.00 10 ND 30% ug/L ---------ND 4.00 30% 1,1-Dichloroethene ug/L 10 ND cis-1,2-Dichloroethene ND 4.00 ug/L 10 ND 30% ND 4.00 30% trans-1,2-Dichloroethene ug/L 10 ND 1,2-Dichloropropane ND 5.00 ug/L 10 ND 30% 1,3-Dichloropropane ND 10.0 ug/L 10 ND 30% 2,2-Dichloropropane ND 10.0 ug/L 10 ND 30% 10.0 1,1-Dichloropropene ND ND 30% ug/L 10 ND 10.0 cis-1,3-Dichloropropene ug/L 10 ND 30% 10.0 trans-1,3-Dichloropropene ND 10 ND 30% ug/L 5.00 Ethylbenzene 956 ug/L 10 1000 5 30% Hexachlorobutadiene ND 50.0 ug/L 10 ND ___ 30% 2-Hexanone ND 100 ug/L 10 ND 30% 10.0 10 54.2 2 30% Isopropylbenzene 53.3 ug/L 4-Isopropyltoluene ND 10.0 10.6 *** 30% M-02 ug/L 10 Methylene chloride 100 30% ND ug/L 10 ND ---4-Methyl-2-pentanone (MiBK) ND 100 ND 30% ug/L 10 10.0 Methyl tert-butyl ether (MTBE) ND ug/L 10 ND ___ ---30% Naphthalene 305 50.0 ug/L 10 313 2 30% 103 5.00 3 30% n-Propylbenzene ug/L 10 106 ---ND 10.0 7.70 *** 30% Stvrene ug/L 10 ND 4.00 ND 30% 1,1,1,2-Tetrachloroethane 10 ug/L ---1,1,2,2-Tetrachloroethane ND 5.00 ug/L 10 ND 30% Tetrachloroethene (PCE) ND 4.00 30% ug/L 10 ND Toluene 74.8 10.0 ug/L 10 77.6 4 30% 1.2.3-Trichlorobenzene ND 20.0 10 ND 30% ug/L ---1,2,4-Trichlorobenzene ND 20.0 ug/L 10 ND 30% 1,1,1-Trichloroethane ND 4.00 10 30% ND ug/L ---1,1,2-Trichloroethane ND 5.00 ug/L 10 ND 30%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Quant la famil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:POP TCORE - GWM3140 NE Broadway StreetProject Number:M0232.17.090

Portland, OR 97232 Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25E0580 - EPA 5030C							Wat	ter				
Duplicate (25E0580-DUP1)			Prepared	1: 05/16/25	14:00 Anal	yzed: 05/16/	/25 23:36					
QC Source Sample: Non-SDG (A5	E1408-03)											
Trichloroethene (TCE)	ND		4.00	ug/L	10		ND				30%	
Trichlorofluoromethane	ND		20.0	ug/L	10		ND				30%	
1,2,3-Trichloropropane	ND		10.0	ug/L	10		ND				30%	
1,2,4-Trimethylbenzene	101		10.0	ug/L	10		105			4	30%	
1,3,5-Trimethylbenzene	54.4		10.0	ug/L	10		55.7			2	30%	
Vinyl chloride	ND		2.00	ug/L	10		ND				30%	
m,p-Xylene	534		10.0	ug/L	10		558			4	30%	
o-Xylene	14.9		5.00	ug/L	10		15.2			2	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 110 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	80	-120 %		"					
QC Source Sample: Non-SDG (A5			2000	~	100						2007	
Acetone	ND		2000	ug/L	100		ND				30%	
Acrylonitrile	ND		200	ug/L	100		ND				30%	
Benzene	ND		20.0	ug/L	100		ND				30%	
Bromobenzene	ND		50.0	ug/L	100		ND				30%	
Bromochloromethane	ND		100	ug/L	100		ND				30%	
Bromodichloromethane	ND		100	ug/L	100		ND				30%	
Bromoform	ND		100	ug/L	100		ND				30%	
Bromomethane	ND		500	ug/L	100		ND				30%	
2-Butanone (MEK)	ND		1000	ug/L	100		ND				30%	
n-Butylbenzene	ND		100	ug/L	100		ND				30%	
sec-Butylbenzene	ND		100	ug/L	100		ND				30%	
tert-Butylbenzene	ND		100	ug/L	100		ND				30%	
Carbon disulfide	ND		1000	ug/L	100		ND				30%	
Carbon tetrachloride	ND		100	ug/L	100		ND				30%	
Chlorobenzene	ND		50.0	ug/L	100		ND				30%	
Chloroethane	ND		500	ug/L	100		ND				30%	
Chloroform	ND		100	ug/L	100		ND				30%	
Chloromethane	ND		500	ug/L	100		ND				30%	
2-Chlorotoluene	ND		100	ug/L	100		ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

 3140 NE Broadway Street
 Project Number:
 M0232.17.090
 Report ID:

 Portland, OR 97232
 Project Manager:
 Michael Pickering
 A5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 25E0580 - EPA 5030C Water Duplicate (25E0580-DUP2) Prepared: 05/16/25 14:00 Analyzed: 05/17/25 01:06 QC Source Sample: Non-SDG (A5E1326-01) 4-Chlorotoluene ND 100 ug/L 100 ND 30% 100 Dibromochloromethane ND ug/L 100 30% ND 500 1,2-Dibromo-3-chloropropane ND ug/L 100 ND 30% 1,2-Dibromoethane (EDB) ND 50.0 ug/L 100 ND 30% Dibromomethane ND 100 ug/L 100 ND 30% ------ND 50.0 30% 1,2-Dichlorobenzene ug/L 100 ND 50.0 1,3-Dichlorobenzene ND ug/L 100 ND 30% 30% ND 50.0 100 1,4-Dichlorobenzene ug/L ND ---Dichlorodifluoromethane ND 100 ug/L 100 ND 30% 1,1-Dichloroethane ND 40.0 ug/L 100 ND 30% 1,2-Dichloroethane (EDC) ND 40.0 ug/L 100 ND 30% 40.0 1,1-Dichloroethene 59.0 ug/L 60.0 2 30% 100 35900 40.0 33800 30% Е cis-1,2-Dichloroethene ug/L 100 6 Q-17 40.0 30% trans-1,2-Dichloroethene 97.0 100 159 48 ug/L 50.0 1,2-Dichloropropane ND ug/L 100 ND 30% 1,3-Dichloropropane ND 100 ug/L 100 ND ___ 30% 2,2-Dichloropropane ND 100 ug/L 100 ND 30% ND 100 100 ND 30% 1,1-Dichloropropene ug/L ---ND 100 ND 30% cis-1,3-Dichloropropene ug/L 100 100 trans-1,3-Dichloropropene 30% ND ug/L 100 ND Ethylbenzene ND 50.0 ug/L ND 30% 100 500 Hexachlorobutadiene ND --ug/L 100 ND ------30% 2-Hexanone ND 1000 ug/L 100 ND 30% ND 100 100 30% Isopropylbenzene ug/L ND ---4-Isopropyltoluene ND 100 ND 30% ug/L 100 ug/L ND 1000 ND 30% Methylene chloride 100 4-Methyl-2-pentanone (MiBK) ND 1000 ug/L 100 ND 30% Methyl tert-butyl ether (MTBE) ND 30% 100 ug/L 100 ND ---Naphthalene ND 500 ug/L 100 ND 30% n-Propylbenzene ND 50.0 ug/L 100 ND 30% ------Styrene ND 100 ug/L 100 ND 30% ND 40.0 30% 1,1,1,2-Tetrachloroethane ug/L 100 ND ---1,1,2,2-Tetrachloroethane ND 50.0 ug/L 100 ND 30%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Quant la famil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway StreetProject Number:M0232.17.090Report ID:Portland, OR 97232Project Manager:Michael PickeringA5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25E0580 - EPA 5030C							Wat	ter				
Duplicate (25E0580-DUP2)			Prepared	1: 05/16/25	14:00 Anal	yzed: 05/17/	/25 01:06					
QC Source Sample: Non-SDG (A5	E1326-01)											
Tetrachloroethene (PCE)	ND		40.0	ug/L	100		ND				30%	
Toluene	ND		100	ug/L	100		ND				30%	
1,2,3-Trichlorobenzene	ND		200	ug/L	100		ND				30%	
1,2,4-Trichlorobenzene	ND		200	ug/L	100		ND				30%	
1,1,1-Trichloroethane	ND		40.0	ug/L	100		ND				30%	
1,1,2-Trichloroethane	64.0		50.0	ug/L	100		58.0			10	30%	
Trichloroethene (TCE)	959		40.0	ug/L	100		912			5	30%	
Trichlorofluoromethane	ND		200	ug/L	100		ND				30%	
1,2,3-Trichloropropane	ND		100	ug/L	100		ND				30%	
1,2,4-Trimethylbenzene	ND		100	ug/L	100		ND				30%	
1,3,5-Trimethylbenzene	ND		100	ug/L	100		ND				30%	
Vinyl chloride	270		20.0	ug/L	100		239			12	30%	
m,p-Xylene	ND		100	ug/L	100		ND				30%	
o-Xylene	ND		50.0	ug/L	100		ND				30%	
urr: 1,4-Difluorobenzene (Surr)		Reco	very: 111 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			100 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80)-120 %		"					
Matrix Spike (25E0580-MS1)			Prepared	1: 05/16/25	14:00 Anal	yzed: 05/16/	/25 19:29					
QC Source Sample: TCORE-3-GV	V (A5E1360) <u>-05)</u>										
EPA 8260D												
Acetone	43.3		20.0	ug/L	1	40.0	ND	108	39-160%			
Acrylonitrile	21.1		2.00	ug/L	1	20.0	ND	106	63-135%			
Benzene	22.1		0.200	ug/L	1	20.0	ND	110	79-120%			
Bromobenzene	19.5		0.500	ug/L	1	20.0	ND	97	80-120%			
Bromochloromethane	23.1		1.00	ug/L	1	20.0	ND	116	78-123%			
Bromodichloromethane	25.6		1.00	ug/L	1	20.0	ND	128	79-125%			(
Bromoform	22.1		1.00	ug/L	1	20.0	ND	110	66-130%			
Bromomethane	24.3		5.00	ug/L	1	20.0	ND	121	53-141%			
2-Butanone (MEK)	40.2		10.0	ug/L	1	40.0	ND	100	56-143%			
n-Butylbenzene	22.2		1.00	ug/L	1	20.0	ND	111	75-128%			
sec-Butylbenzene	23.2		1.00	ug/L	1	20.0	ND	116	77-126%			
tert-Butylbenzene	20.1		1.00	ug/L	1	20.0	ND	100	78-124%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway StreetProject Number:M0232.17.090Report ID:Portland, OR 97232Project Manager:Michael PickeringA5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 25E0580 - EPA 5030C Water Matrix Spike (25E0580-MS1) Prepared: 05/16/25 14:00 Analyzed: 05/16/25 19:29 QC Source Sample: TCORE-3-GW (A5E1360-05) Carbon disulfide 30.4 10.0 ug/L 1 20.0 ND 152 64-133% Q-54a 1.00 Carbon tetrachloride ug/L 20.0 Q-54c 29.4 1 ND 147 72-136% 0.500 Chlorobenzene 21.3 ug/L 1 20.0 ND 107 80-120% Chloroethane 22.1 5.00 ug/L 1 20.0 ND 110 60-138% Chloroform 23.3 1.00 1 20.0 ND 116 79-124% ug/L Chloromethane 20.6 5.00 20.0 ug/L 1 ND 103 50-139% 2-Chlorotoluene 20.8 1.00 ug/L 1 20.0 ND 104 79-122% 20.5 1.00 20.0 4-Chlorotoluene ug/L 1 ND 103 78-122% Dibromochloromethane 21.6 1.00 ug/L 1 20.0 ND 108 74-126% 1,2-Dibromo-3-chloropropane 21.7 5.00 ug/L 1 20.0 ND 109 62-128% 1,2-Dibromoethane (EDB) 21.5 0.500 ug/L 1 20.0 ND 107 77-121% 1.00 Dibromomethane 23.7 1 20.0 79-123% ug/L ND 118 20.5 0.500 1,2-Dichlorobenzene ug/L 20.0 ND 102 80-120% 1,3-Dichlorobenzene 21.5 0.500 1 20.0 ND 108 80-120% ug/L 0.500 1,4-Dichlorobenzene 20.8 ug/L 1 20.0 ND 104 79-120% Dichlorodifluoromethane 18.9 1.00 ug/L 1 20.0 ND 95 32-152% ___ 1,1-Dichloroethane 23.3 0.400 ug/L 1 20.0 ND 117 77-125% 1,2-Dichloroethane (EDC) 0.400 20.0 ND 109 73-128% 21.8 ug/L 1 23.1 0.400 71-131% 1,1-Dichloroethene ug/L 1 20.0 ND 116 cis-1,2-Dichloroethene 0.400 21.0 1 20.0 ND 105 78-123% ug/L trans-1,2-Dichloroethene 21.8 0.400 ND 75-124% ug/L 1 20.0 109 0.500 20.0 78-122% 1,2-Dichloropropane 22.0 --ug/L 1 ND 110 1,3-Dichloropropane 20.3 1.00 ug/L 20.0 ND 102 80-120% 24.2 1.00 20.0 60-139% 2,2-Dichloropropane ug/L 1 ND 121 ------1,1-Dichloropropene 22.7 1.00 20.0 ND 79-125% ug/L 1 113 cis-1,3-Dichloropropene 1.00 ND 17.3 20.0 86 75-124% ug/L 1 trans-1,3-Dichloropropene 20.6 1.00 ug/L 20.0 ND 103 73-127% 0.500 79-121% Ethylbenzene 21.5 ug/L 1 20.0 ND 108 ---Hexachlorobutadiene 20.9 5.00 ug/L 1 20.0 ND 105 66-134% 2-Hexanone 37.6 10.0 1 40.0 ND 94 57-139% ug/L Isopropylbenzene 21.1 1.00 ug/L 1 20.0 ND 105 72-131% 4-Isopropyltoluene 22.5 1.00 20.0 ND 113 77-127% ug/L 1 ---Methylene chloride 23.2 10.0 ug/L 1 20.0 ND 116 74-124%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Quant la famil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:POP TCORE - GWM

3140 NE Broadway StreetProject Number:M0232.17.090Report ID:Portland, OR 97232Project Manager:Michael PickeringA5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 25E0580 - EPA 5030C Water Matrix Spike (25E0580-MS1) Prepared: 05/16/25 14:00 Analyzed: 05/16/25 19:29 QC Source Sample: TCORE-3-GW (A5E1360-05) 4-Methyl-2-pentanone (MiBK) 35.6 10.0 ug/L 1 40.0 ND 89 67-130% 1.00 ug/L Methyl tert-butyl ether (MTBE) 19.5 20.0 71-124% 1 ND 98 Naphthalene 15.4 5.00 ug/L 1 20.0 ND 77 61-128% n-Propylbenzene 21.7 0.500 ug/L 1 20.0 ND 108 76-126% Styrene 21.2 1.00 1 20.0 ND 106 78-123% ug/L 1,1,1,2-Tetrachloroethane 22.2 0.40020.0 78-124% ug/L 1 ND 111 1,1,2,2-Tetrachloroethane 0.500 24.3 ug/L 1 20.0 ND 121 71-121% 103 Tetrachloroethene (PCE) 20.7 0.40020.0 74-129% ug/L 1 ND Toluene 20.7 1.00 ug/L 1 20.0 ND 103 80-121% 1,2,3-Trichlorobenzene 18.6 2.00 ug/L 1 20.0 ND 93 69-129% 1,2,4-Trichlorobenzene 17.6 2.00 ug/L 1 20.0 ND 88 69-130% 0.400 1,1,1-Trichloroethane 25.2 20.0 74-131% ug/L 1 ND 126 1,1,2-Trichloroethane 0.500 80-120% 21.6 ug/L 20.0 ND 108 Trichloroethene (TCE) 20.0 0.400 1 20.0 ND 100 79-123% ug/L Trichlorofluoromethane Q-54d 31.1 2.00 ug/L 1 20.0 ND 155 65-141% 1,2,3-Trichloropropane 20.9 1.00 ug/L 1 20.0 ND 104 73-122% 1,2,4-Trimethylbenzene 22.6 1.00 ug/L 1 20.0 ND 113 76-124% 1,3,5-Trimethylbenzene 22.4 1.00 20.0 ND 75-124% ug/L 1 112 Vinyl chloride 22.0 0.200 20.0 ND 58-137% ug/L 1 110 m,p-Xylene 1.00 44.3 ug/L 40.0 ND 111 80-121% 1 19.9 0.500 20.0 ND 99 78-122% o-Xylene ug/L 1 Surr: 1,4-Difluorobenzene (Surr) Recovery: 107 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 97 % 80-120 % 4-Bromofluorobenzene (Surr) 92 % 80-120 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Dunal la frail

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway StreetProject Number:M0232.17.090Report ID:Portland, OR 97232Project Manager:Michael PickeringA5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 25E0606 - EPA 5030C Water Blank (25E0606-BLK1) Prepared: 05/19/25 10:43 Analyzed: 05/19/25 13:17 EPA 8260D ND 20.0 ug/L Acetone ND 2.00 Acrylonitrile ug/L 1 ---Benzene ND 0.200 ug/L 1 0.500 ND Bromobenzene ug/L 1 Bromochloromethane ND 1.00 ug/L ug/L ND 1.00 Bromodichloromethane 1 ---Bromoform ND 1.00 ug/L 5.00 Bromomethane ND ug/L 1 2-Butanone (MEK) ND 10.0 ug/L 1 n-Butylbenzene ND 1.00 ug/L 1 sec-Butylbenzene ND 1.00 ug/L 1 ND 1.00 tert-Butylbenzene ug/L 1 Carbon disulfide ND 10.0 ug/L Carbon tetrachloride ND 1.00 ug/L 1 Chlorobenzene ND 0.500ug/L 1 Chloroethane ND 5.00 ug/L 1 ------Chloroform ND 1.00 ug/L 1 Chloromethane ND 5.00 ug/L 1 ------2-Chlorotoluene ND 1.00 ug/L 1 4-Chlorotoluene ND 1.00 ug/L 1 ND Dibromochloromethane 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 1,2-Dibromoethane (EDB) 0.500ND ug/L Dibromomethane ND 1.00 ug/L 1 0.500 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.500 ug/L 1 Dichlorodifluoromethane ND 1.00 ug/L 1 ND 0.4001,1-Dichloroethane ug/L 1 1,2-Dichloroethane (EDC) 0.400ND ug/L 1 1,1-Dichloroethene ND 0.400ug/L 1 cis-1,2-Dichloroethene ND 0.400 ug/L 1 trans-1,2-Dichloroethene ND 0.400 ug/L 1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Chund la finil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

 3140 NE Broadway Street
 Project Number:
 M0232.17.090
 Report ID:

 Portland, OR 97232
 Project Manager:
 Michael Pickering
 A5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Result Analyte Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 25E0606 - EPA 5030C Water Blank (25E0606-BLK1) Prepared: 05/19/25 10:43 Analyzed: 05/19/25 13:17 ND 0.500 ug/L 1,2-Dichloropropane 1,3-Dichloropropane ND 1.00 ug/L 1 ---------2,2-Dichloropropane ND 1.00 ug/L 1 1,1-Dichloropropene ND 1.00 ug/L 1 1.00 cis-1,3-Dichloropropene ND ug/L 1 trans-1,3-Dichloropropene ND 1.00 ug/L 1 0.500 Ethylbenzene ND ug/L 1 5.00 Hexachlorobutadiene ND ug/L 2-Hexanone 10.0 ND ug/L 1 Isopropylbenzene ND 1.00 ug/L 1 4-Isopropyltoluene ND 1.00 ug/L 1 Methylene chloride 10.0 ND ug/L 1 10.0 4-Methyl-2-pentanone (MiBK) ND ug/L 1 ---Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 Naphthalene ND 5.00 ug/L 1 n-Propylbenzene ND 0.500 ug/L ND 1.00 Stvrene ug/L 1 1,1,1,2-Tetrachloroethane ND 0.400 ug/L 1 0.500 1,1,2,2-Tetrachloroethane ND ug/L 1 ------Tetrachloroethene (PCE) ND 0.400 ug/L Toluene ND 1.00 ug/L 1 1,2,3-Trichlorobenzene ND 2.00 ug/L 1.2.4-Trichlorobenzene ND 2.00 ug/L 1 1,1,1-Trichloroethane ND 0.400ug/L ND 0.500 1,1,2-Trichloroethane ug/L 1 ---------Trichloroethene (TCE) ND 0.400 ug/L Trichlorofluoromethane ND 2.00 ug/L 1 ------1,2,3-Trichloropropane ND 1.00 ug/L 1 1,2,4-Trimethylbenzene ND 1.00 ug/L 1 1,3,5-Trimethylbenzene ND 1.00 ug/L 1 Vinyl chloride ND 0.200 ug/L 1 m,p-Xylene ND 1.00 ug/L 1 o-Xylene ND 0.500 ug/L 1

Recovery: 98 %

Limits: 80-120 %

Apex Laboratories

Surr: 1,4-Difluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Dilution: 1x

Chund la finil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Maul Foster & Alongi, INC.</u> Project: <u>POP TCORE - GWM</u>

3140 NE Broadway StreetProject Number:M0232.17.090Report ID:Portland, OR 97232Project Manager:Michael PickeringA5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25E0606 - EPA 5030C							Wa	ter				
Blank (25E0606-BLK1)			Prepared	1: 05/19/25	10:43 Anal	yzed: 05/19	/25 13:17					
Surr: Toluene-d8 (Surr)		Reco	very: 102 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
4-Bromofluorobenzene (Surr)			96 %	80	0-120 %		"					
LCS (25E0606-BS1)			Prepared	1: 05/19/25	10:43 Anal	yzed: 05/19	/25 12:23					
EPA 8260D												
Acetone	40.0		20.0	ug/L	1	40.0		100	80-120%			
Acrylonitrile	20.4		2.00	ug/L	1	20.0		102	80-120%			
Benzene	19.1		0.200	ug/L	1	20.0		95	80-120%			
Bromobenzene	17.0		0.500	ug/L	1	20.0		85	80-120%			
Bromochloromethane	20.9		1.00	ug/L	1	20.0		105	80-120%			
Bromodichloromethane	20.5		1.00	ug/L	1	20.0		103	80-120%			
Bromoform	20.0		1.00	ug/L	1	20.0		100	80-120%			
Bromomethane	23.2		5.00	ug/L	1	20.0		116	80-120%			
2-Butanone (MEK)	40.8		10.0	ug/L	1	40.0		102	80-120%			
n-Butylbenzene	17.9		1.00	ug/L	1	20.0		89	80-120%			
sec-Butylbenzene	18.6		1.00	ug/L	1	20.0		93	80-120%			
tert-Butylbenzene	19.7		1.00	ug/L	1	20.0		99	80-120%			
Carbon disulfide	27.2		10.0	ug/L	1	20.0		136	80-120%			Q-
Carbon tetrachloride	23.5		1.00	ug/L	1	20.0		118	80-120%			
Chlorobenzene	19.0		0.500	ug/L	1	20.0		95	80-120%			
Chloroethane	24.7		5.00	ug/L	1	20.0		124	80-120%			Q-
Chloroform	19.0		1.00	ug/L	1	20.0		95	80-120%			
Chloromethane	20.6		5.00	ug/L	1	20.0		103	80-120%			
2-Chlorotoluene	19.0		1.00	ug/L	1	20.0		95	80-120%			
4-Chlorotoluene	20.6		1.00	ug/L	1	20.0		103	80-120%			
Dibromochloromethane	20.6		1.00	ug/L	1	20.0		103	80-120%			
1,2-Dibromo-3-chloropropane	18.8		5.00	ug/L	1	20.0		94	80-120%			
1,2-Dibromoethane (EDB)	19.9		0.500	ug/L	1	20.0		100	80-120%			
Dibromomethane	19.6		1.00	ug/L	1	20.0		98	80-120%			
1,2-Dichlorobenzene	18.7		0.500	ug/L	1	20.0		94	80-120%			
1,3-Dichlorobenzene	19.3		0.500	ug/L	1	20.0		97	80-120%			
1,4-Dichlorobenzene	18.4		0.500	ug/L	1	20.0		92	80-120%			
Dichlorodifluoromethane	18.5		1.00	ug/L	1	20.0		93	80-120%			
1,1-Dichloroethane	19.7		0.400	ug/L	1	20.0		98	80-120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway StreetProject Number:M0232.17.090Report ID:Portland, OR 97232Project Manager:Michael PickeringA5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 25E0606 - EPA 5030C Water LCS (25E0606-BS1) Prepared: 05/19/25 10:43 Analyzed: 05/19/25 12:23 1,2-Dichloroethane (EDC) 20.1 0.400 ug/L 20.0 100 80-120% 0.400 1,1-Dichloroethene 22.4 ug/L 1 20.0 112 80-120% ------80-120% cis-1,2-Dichloroethene 19.0 0.400 ug/L 1 20.0 95 trans-1,2-Dichloroethene 18.0 0.400 ug/L 1 20.0 90 80-120% 19.1 20.0 95 1,2-Dichloropropane 0.500ug/L 80-120% 1 98 1,3-Dichloropropane 19.6 1.00 ug/L 1 20.0 80-120% 2,2-Dichloropropane 1.00 80-120% 21.9 ug/L 1 20.0 109 1,1-Dichloropropene 19.6 1.00 ug/L 20.0 98 80-120% 1.00 cis-1,3-Dichloropropene 20.2 ug/L 1 20.0 101 80-120% trans-1,3-Dichloropropene 20.4 1.00 ug/L 1 20.0 102 80-120% 19.9 Ethylbenzene 0.50020.0 100 80-120% ug/L 1 Hexachlorobutadiene 5.00 17.1 ug/L 1 20.0 86 80-120% 10.0 80-120% 42.3 40.0 106 2-Hexanone ug/L 1 Isopropylbenzene 17.6 1.00 ug/L 1 20.0 88 80-120% 4-Isopropyltoluene 1.00 20.0 90 80-120% 18.1 ug/L 1 Methylene chloride 20.3 10.0 ug/L 20.0 101 80-120% 4-Methyl-2-pentanone (MiBK) 42.5 10.0 40.0 ug/L 1 106 80-120% Methyl tert-butyl ether (MTBE) 19.7 1.00 ug/L 1 20.0 99 80-120% Naphthalene 17.1 5.00 20.0 85 80-120% ug/L 1 --n-Propylbenzene 20.0 0.500 ug/L 1 20.0 100 80-120% 20.0 19.1 1.00 96 80-120% Styrene ug/L 1 1,1,1,2-Tetrachloroethane 20.5 0.400 ug/L 1 20.0 103 80-120% 1,1,2,2-Tetrachloroethane 19.3 0.500 ug/L 1 20.0 96 80-120% Tetrachloroethene (PCE) 17.7 0.400ug/L 1 20.0 89 80-120% 80-120% Toluene 18.5 1.00 20.0 93 ug/L 1 ---1,2,3-Trichlorobenzene 18.1 2.00 ug/L 1 20.0 91 80-120% 1.2.4-Trichlorobenzene 169 2.00 20.0 85 80-120% ug/L 1 ------1,1,1-Trichloroethane 20.0 0.400 ug/L 1 20.0 100 80-120% 1,1,2-Trichloroethane 19.2 0.500 ug/L 1 20.0 96 80-120% Trichloroethene (TCE) 18.3 0.400ug/L 1 20.0 92 80-120% Trichlorofluoromethane 25.2 2.00 20.0 126 80-120% Q-56 ug/L 1 1,2,3-Trichloropropane 20.1 1.00 ug/L 1 20.0 101 80-120% 1,2,4-Trimethylbenzene 21.3 1.00 ug/L 1 20.0 106 80-120% 1,3,5-Trimethylbenzene 21.7 1.00 ug/L 1 20.0 108 80-120%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Quant la famil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

 3140 NE Broadway Street
 Project Number:
 M0232.17.090
 Report ID:

 Portland, OR 97232
 Project Manager:
 Michael Pickering
 A5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25E0606 - EPA 5030C							Wa	ter				
LCS (25E0606-BS1)			Prepared	1: 05/19/25	10:43 Ana	lyzed: 05/19	/25 12:23					
Vinyl chloride	19.4		0.200	ug/L	1	20.0		97	80-120%			
m,p-Xylene	42.6		1.00	ug/L	1	40.0		106	80-120%			
o-Xylene	20.2		0.500	ug/L	1	20.0		101	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 99 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			91 %	80	0-120 %		"					
Duplicate (25E0606-DUP1)			Prepared	d: 05/19/25	10:43 Ana	lyzed: 05/19	/25 18:41					
OC Source Sample: Non-SDG (A5	E1372-03)											
Acetone	ND		400	ug/L	20		ND				30%	
Acrylonitrile	ND		100	ug/L	20		ND				30%	R-0
Benzene	4770		4.00	ug/L	20		4630			3	30%	
Bromobenzene	ND		10.0	ug/L	20		ND				30%	
Bromochloromethane	ND		20.0	ug/L	20		ND				30%	
Bromodichloromethane	ND		20.0	ug/L	20		ND				30%	
Bromoform	ND		20.0	ug/L	20		ND				30%	
Bromomethane	ND		100	ug/L	20		ND				30%	
2-Butanone (MEK)	ND		200	ug/L	20		ND				30%	
n-Butylbenzene	21.0		20.0	ug/L	20		22.0			5	30%	
sec-Butylbenzene	ND		20.0	ug/L	20		13.2			***	30%	
tert-Butylbenzene	ND		20.0	ug/L	20		ND				30%	
Carbon disulfide	ND		200	ug/L	20		ND				30%	
Carbon tetrachloride	ND		20.0	ug/L	20		ND				30%	
Chlorobenzene	ND		10.0	ug/L	20		ND				30%	
Chloroethane	ND		100	ug/L	20		ND				30%	
Chloroform	ND		20.0	ug/L	20		ND				30%	
Chloromethane	ND		100	ug/L	20		ND				30%	
2-Chlorotoluene	ND		20.0	ug/L	20		ND				30%	
4-Chlorotoluene	ND		20.0	ug/L	20		ND				30%	
Dibromochloromethane	ND		20.0	ug/L	20		ND				30%	
1,2-Dibromo-3-chloropropane	ND		100	ug/L	20		ND				30%	
1,2-Dibromoethane (EDB)	ND		10.0	ug/L	20		ND				30%	
Dibromomethane	ND		20.0	ug/L	20		ND				30%	
1,2-Dichlorobenzene	ND		10.0	ug/L	20		ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Maul Foster & Alongi, INC.</u> Project: <u>POP TCORE - GWM</u>

 3140 NE Broadway Street
 Project Number:
 M0232.17.090
 Report ID:

 Portland, OR 97232
 Project Manager:
 Michael Pickering
 A5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Orç	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25E0606 - EPA 5030C							Wat	ter				
Ouplicate (25E0606-DUP1)			Prepared	: 05/19/25	10:43 Anal	yzed: 05/19	/25 18:41					
QC Source Sample: Non-SDG (A5E	21372-03)											
1,3-Dichlorobenzene	ND		10.0	ug/L	20		ND				30%	
1,4-Dichlorobenzene	ND		10.0	ug/L	20		ND				30%	
Dichlorodifluoromethane	ND		20.0	ug/L	20		ND				30%	
1,1-Dichloroethane	ND		8.00	ug/L	20		ND				30%	
1,2-Dichloroethane (EDC)	ND		8.00	ug/L	20		ND				30%	
1,1-Dichloroethene	ND		8.00	ug/L	20		ND				30%	
cis-1,2-Dichloroethene	ND		8.00	ug/L	20		ND				30%	
trans-1,2-Dichloroethene	ND		8.00	ug/L	20		ND				30%	
1,2-Dichloropropane	ND		10.0	ug/L	20		ND				30%	
1,3-Dichloropropane	ND		20.0	ug/L	20		ND				30%	
2,2-Dichloropropane	ND		20.0	ug/L	20		ND				30%	
1,1-Dichloropropene	ND		20.0	ug/L	20		ND				30%	
cis-1,3-Dichloropropene	ND		20.0	ug/L	20		ND				30%	
trans-1,3-Dichloropropene	ND		20.0	ug/L	20		ND				30%	
Ethylbenzene	540		10.0	ug/L	20		516			5	30%	
Hexachlorobutadiene	ND		100	ug/L	20		ND				30%	
2-Hexanone	ND		200	ug/L	20		ND				30%	
Isopropylbenzene	75.8		20.0	ug/L	20		72.2			5	30%	
4-Isopropyltoluene	ND		20.0	ug/L	20		ND				30%	
Methylene chloride	ND		200	ug/L	20		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		200	ug/L	20		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		20.0	ug/L	20		ND				30%	
Naphthalene	ND		100	ug/L	20		ND				30%	
n-Propylbenzene	234		10.0	ug/L	20		227			3	30%	
Styrene	ND		20.0	ug/L	20		ND				30%	
1,1,1,2-Tetrachloroethane	ND		8.00	ug/L	20		ND				30%	
1,1,2,2-Tetrachloroethane	ND		10.0	ug/L	20		ND				30%	
Tetrachloroethene (PCE)	ND		8.00	ug/L	20		ND				30%	
Toluene	211		20.0	ug/L	20		203			4	30%	
1,2,3-Trichlorobenzene	ND		40.0	ug/L	20		ND				30%	
1,2,4-Trichlorobenzene	ND		40.0	ug/L	20		ND				30%	
1,1,1-Trichloroethane	ND		8.00	ug/L	20		ND				30%	
1,1,2-Trichloroethane	ND		10.0	ug/L	20		ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:POP TCORE - GWM3140 NE Broadway StreetProject Number:M0232.17.090

Portland, OR 97232 Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25E0606 - EPA 5030C							Wa	ter				
Duplicate (25E0606-DUP1)			Prepared	1: 05/19/25	10:43 Ana	lyzed: 05/19/	/25 18:41					
QC Source Sample: Non-SDG (A5	E1372-03)											
Trichloroethene (TCE)	ND		8.00	ug/L	20		ND				30%	
Trichlorofluoromethane	ND		40.0	ug/L	20		ND				30%	
1,2,3-Trichloropropane	ND		20.0	ug/L	20		ND				30%	
1,2,4-Trimethylbenzene	23.0		20.0	ug/L	20		22.2			4	30%	
1,3,5-Trimethylbenzene	22.4		20.0	ug/L	20		22.6			0.9	30%	
Vinyl chloride	ND		4.00	ug/L	20		ND				30%	
m,p-Xylene	388		20.0	ug/L	20		371			4	30%	
o-Xylene	32.2		10.0	ug/L	20		31.8			1	30%	
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 95 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			104 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	0-120 %		"					
QC Source Sample: TCORE-5-GV	V (A5E1360	<u>0-07)</u>										
EPA 8260D	44.2		20.0			40.0			20.1600/			
Acetone	44.3		20.0	ug/L	1	40.0	ND	111	39-160%			
Acrylonitrile	20.7		2.00	ug/L	1	20.0	ND	103	63-135%			
Benzene	21.5		0.200	ug/L	1	20.0	ND	108	79-120%			
Bromobenzene	18.0		0.500	ug/L	1	20.0	ND	90	80-120%			
Bromochloromethane	22.1		1.00	ug/L	1	20.0	ND	111	78-123%			
Bromodichloromethane	21.5		1.00	ug/L	1	20.0	ND	108	79-125%			
Bromoform	20.6		1.00	ug/L	1	20.0	ND	103	66-130%			
Bromomethane	27.8		5.00	ug/L	1	20.0	ND	139	53-141%			
2-Butanone (MEK)	42.0		10.0	ug/L	1	40.0	ND	105	56-143%			
n-Butylbenzene	19.5		1.00	ug/L	1	20.0	ND	98	75-128%			
sec-Butylbenzene	20.6		1.00	ug/L	1	20.0	ND	103	77-126%			
tert-Butylbenzene	22.2		1.00	ug/L	1	20.0	ND	111	78-124%			
Carbon disulfide	31.9		10.0	ug/L	1	20.0	ND	159	64-133%			Q
Carbon tetrachloride	25.4		1.00	ug/L	1	20.0	ND	127	72-136%			
Chlorobenzene	20.7		0.500	ug/L	1	20.0	ND	103	80-120%			
Chloroethane	24.9		5.00	ug/L	1	20.0	ND	124	60-138%			Q
Chloroform	20.4		1.00	ug/L	1	20.0	ND	102	79-124%			

Apex Laboratories

Chloromethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

50-139%

114

22.8

5.00

ug/L

1

20.0

ND

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway StreetProject Number:M0232.17.090Report ID:Portland, OR 97232Project Manager:Michael PickeringA5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 25E0606 - EPA 5030C Water Matrix Spike (25E0606-MS1) Prepared: 05/19/25 10:43 Analyzed: 05/19/25 19:08 QC Source Sample: TCORE-5-GW (A5E1360-07) 2-Chlorotoluene 1.00 ug/L 1 20.0 ND 107 79-122% 1.00 4-Chlorotoluene ug/L 20.0 22.4 1 ND 112 78-122% Dibromochloromethane 21.4 1.00 ug/L 1 20.0 ND 107 74-126% 1,2-Dibromo-3-chloropropane 18.6 5.00 ug/L 1 20.0 ND 93 62-128% 1,2-Dibromoethane (EDB) 21.0 0.500 1 20.0 ND 105 77-121% ug/L 20.5 1.00 20.0 ND 102 79-123% Dibromomethane ug/L 1 0.500 1,2-Dichlorobenzene 19.9 ug/L 1 20.0 ND 99 80-120% 20.4 0.50020.0 102 80-120% 1,3-Dichlorobenzene ug/L 1 ND 1,4-Dichlorobenzene 19.5 0.500 ug/L 1 20.0 ND 98 79-120% Dichlorodifluoromethane 20.4 1.00 ug/L 1 20.0 ND 102 32-152% 1,1-Dichloroethane 21.6 0.400 ug/L 1 20.0 ND 108 77-125% 1,2-Dichloroethane (EDC) 0.400 1 20.0 107 73-128% 21.4 ug/L ND 0.400 1,1-Dichloroethene 26.2 ug/L 20.0 ND 131 71-131% ND cis-1,2-Dichloroethene 21.5 0.400 1 20.0 107 78-123% ug/L trans-1,2-Dichloroethene 0.400 20.9 ug/L 1 20.0 ND 104 75-124% 1,2-Dichloropropane 20.8 0.500 ug/L 1 20.0 ND 104 78-122% ___ 1,3-Dichloropropane 20.9 1.00 ug/L 1 20.0 ND 104 80-120% 22.2 1.00 20.0 ND 60-139% 2,2-Dichloropropane ug/L 1 111 22.5 79-125% 1,1-Dichloropropene 1.00 ug/L 1 20.0 ND 112 cis-1,3-Dichloropropene 19.5 1.00 1 20.0 ND 98 75-124% ug/L trans-1,3-Dichloropropene 21.8 1.00 1 ND 109 73-127% ug/L 20.0 Ethylbenzene 0.500 21.6 --ug/L 1 20.0 ND 108 79-121% Hexachlorobutadiene 18.3 5.00 ug/L 20.0 ND 92 66-134% 45.3 10.0 40.0 57-139% 2-Hexanone ug/L 1 ND 113 ------Isopropylbenzene 20.2 1.00 20.0 ND 101 72-131% ug/L 1 1.00 ND 99 4-Isopropyltoluene 19.8 20.0 77-127% ug/L 1 Methylene chloride 21.3 10.0 ug/L 20.0 ND 107 74-124% 44.9 10.0 67-130% 4-Methyl-2-pentanone (MiBK) ug/L 1 40.0 ND 112 ---Methyl tert-butyl ether (MTBE) 21.7 1.00 ug/L 1 20.0 ND 108 71-124% Naphthalene 174 5.00 1 20.0 ND 87 61-128% ug/L n-Propylbenzene 22.0 0.500 ug/L 1 20.0 ND 110 76-126% 20.9 1.00 ug/L 105 Styrene 20.0 ND 78-123% 1 ---1,1,1,2-Tetrachloroethane 22.5 0.400ug/L 1 20.0 ND 113 78-124%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Quant la finil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

 3140 NE Broadway Street
 Project Number:
 M0232.17.090
 Report ID:

 Portland, OR 97232
 Project Manager:
 Michael Pickering
 A5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25E0606 - EPA 5030C							Wa	iter				
Matrix Spike (25E0606-MS1)			Prepared	: 05/19/25	10:43 Ana	lyzed: 05/19/	/25 19:08					
QC Source Sample: TCORE-5-GW	(A5E1360	<u>0-07)</u>										
1,1,2,2-Tetrachloroethane	20.3		0.500	ug/L	1	20.0	ND	102	71-121%			
Tetrachloroethene (PCE)	19.7		0.400	ug/L	1	20.0	ND	99	74-129%			
Toluene	20.7		1.00	ug/L	1	20.0	ND	104	80-121%			
1,2,3-Trichlorobenzene	18.9		2.00	ug/L	1	20.0	ND	94	69-129%			
1,2,4-Trichlorobenzene	17.7		2.00	ug/L	1	20.0	ND	89	69-130%			
1,1,1-Trichloroethane	22.0		0.400	ug/L	1	20.0	ND	110	74-131%			
1,1,2-Trichloroethane	20.2		0.500	ug/L	1	20.0	ND	101	80-120%			
Trichloroethene (TCE)	19.9		0.400	ug/L	1	20.0	ND	100	79-123%			
Trichlorofluoromethane	26.7		2.00	ug/L	1	20.0	ND	133	65-141%			Q-5
1,2,3-Trichloropropane	20.0		1.00	ug/L	1	20.0	ND	100	73-122%			
1,2,4-Trimethylbenzene	22.7		1.00	ug/L	1	20.0	ND	113	76-124%			
1,3,5-Trimethylbenzene	23.6		1.00	ug/L	1	20.0	ND	118	75-124%			
Vinyl chloride	22.6		0.200	ug/L	1	20.0	ND	113	58-137%			
m,p-Xylene	46.8		1.00	ug/L	1	40.0	ND	117	80-121%			
o-Xylene	22.4		0.500	ug/L	1	20.0	ND	112	78-122%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 98 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			100 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			91 %	80	0-120 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway StreetProject Number:M0232.17.090Report ID:Portland, OR 97232Project Manager:Michael PickeringA5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polycycl	ic Aromati	c Hydrocar	bons (PA	Hs) by El	PA 8270E	(Large V	olume Inj	ection)			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25E0639 - EPA 3511 (E	Bottle Extra	ction)					Wa	ter				
Blank (25E0639-BLK1)			Prepared	: 05/20/25	07:06 Anal	yzed: 05/20	/25 12:40					
EPA 8270E LVI												
Acenaphthene	ND		0.0320	ug/L	1							
Acenaphthylene	ND		0.0320	ug/L	1							
Anthracene	ND		0.0320	ug/L	1							
Benz(a)anthracene	ND		0.0160	ug/L	1							
Benzo(a)pyrene	ND		0.0160	ug/L	1							
Benzo(b)fluoranthene	ND		0.0160	ug/L	1							
Benzo(k)fluoranthene	ND		0.0160	ug/L	1							
Benzo(g,h,i)perylene	ND		0.0320	ug/L	1							
Chrysene	ND		0.0160	ug/L	1							
Dibenz(a,h)anthracene	ND		0.0160	ug/L	1							
Fluoranthene	ND		0.0320	ug/L	1							
Fluorene	ND		0.0320	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND		0.0160	ug/L	1							
1-Methylnaphthalene	ND		0.0640	ug/L	1							
2-Methylnaphthalene	ND		0.0640	ug/L	1							
Naphthalene	ND		0.0640	ug/L	1							B-0
Phenanthrene	ND		0.0640	ug/L	1							
Pyrene	ND		0.0320	ug/L	1							
Carbazole	ND		0.0320	ug/L	1							
Dibenzofuran	ND		0.0320	ug/L	1							
Surr: Acenaphthylene-d8 (Surr)		Reco	very: 111 %	Limits: 78	8-134 %	Dila	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			108 %	80)-132 %		"					
LCS (25E0639-BS1)			Prepared	: 05/20/25	07:06 Anal	yzed: 05/20	/25 13:12					
EPA 8270E LVI												
Acenaphthene	1.97		0.0320	ug/L	1	1.60		123	80-120%			Q-2
Acenaphthylene	2.13		0.0320	ug/L	1	1.60		133	80-124%			Q-2
Anthracene	1.93		0.0320	ug/L	1	1.60		120	80-123%			
Benz(a)anthracene	1.95		0.0160	ug/L	1	1.60		122	80-122%			
Benzo(a)pyrene	2.15		0.0160	ug/L	1	1.60		134	80-129%			Q-2
Benzo(b)fluoranthene	1.97		0.0160	ug/L	1	1.60		123	80-124%			•
Benzo(k)fluoranthene	2.04		0.0160	ug/L	1	1.60		128	80-125%			Q-2
Benzo(g,h,i)perylene	1.84		0.0320	ug/L	1	1.60		115	80-120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

 3140 NE Broadway Street
 Project Number:
 M0232.17.090
 Report ID:

 Portland, OR 97232
 Project Manager:
 Michael Pickering
 A5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25E0639 - EPA 3511 (B	ottle Extra	ction)					Wa	ter				
LCS (25E0639-BS1)			Prepared	: 05/20/25	07:06 Ana	lyzed: 05/20	/25 13:12					
Chrysene	1.85		0.0160	ug/L	1	1.60		116	80-120%			
Dibenz(a,h)anthracene	1.91		0.0160	ug/L	1	1.60		120	80-120%			
Fluoranthene	1.95		0.0320	ug/L	1	1.60		122	80-126%			
Fluorene	2.20		0.0320	ug/L	1	1.60		137	77-127%			Q-2
Indeno(1,2,3-cd)pyrene	1.87		0.0160	ug/L	1	1.60		117	80-121%			
1-Methylnaphthalene	2.27		0.0640	ug/L	1	1.60		142	53-148%			
2-Methylnaphthalene	2.31		0.0640	ug/L	1	1.60		144	48-150%			
Naphthalene	2.09		0.0640	ug/L	1	1.60		131	78-120%			B-02, Q-2
Phenanthrene	1.89		0.0640	ug/L	1	1.60		118	80-120%			
Pyrene	1.98		0.0320	ug/L	1	1.60		124	80-125%			
Carbazole	2.07		0.0320	ug/L	1	1.60		129	65-141%			
Dibenzofuran	2.14		0.0320	ug/L	1	1.60		134	76-121%			Q-2
Surr: Acenaphthylene-d8 (Surr)		Reco	very: 105 %	Limits: 78	8-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			115 %	80)-132 %		"					
LCS Dup (25E0639-BSD1) EPA 8270E LVI			Prepared	: 05/20/25	07:06 Ana	lyzed: 05/20	/25 13:45					Q-19
Acenaphthene	1.79		0.0320	ug/L	1	1.60		112	80-120%	10	30%	
Acenaphthylene	1.90		0.0320	ug/L	1	1.60		119	80-124%	11	30%	
Anthracene	1.79		0.0320	ug/L	1	1.60		112	80-123%	7	30%	
Benz(a)anthracene	1.79		0.0160	ug/L	1	1.60		112	80-122%	8	30%	
Benzo(a)pyrene	1.96		0.0160	ug/L	1	1.60		122	80-129%	9	30%	
Benzo(b)fluoranthene	1.75		0.0160	ug/L	1	1.60		109	80-124%	12	30%	
Benzo(k)fluoranthene	1.84		0.0160	ug/L	1	1.60		115	80-125%	11	30%	
Benzo(g,h,i)perylene	1.66		0.0320	ug/L	1	1.60		104	80-120%	11	30%	
Chrysene	1.69		0.0160	ug/L	1	1.60		106	80-120%	9	30%	
70 (1) d	1.70		0.0160	ug/L	1	1.60		106	80-120%	12	30%	
Dibenz(a,h)anthracene	1 77		0.0320	ug/L	1	1.60		110	80-126%	10	30%	
Dibenz(a,h)anthracene Fluoranthene	1.77			_	1	1.60		126	77-127%	9	30%	
· · ·	2.01		0.0320	ug/L								
Fluoranthene Fluorene			0.0320 0.0160	_	1	1.60		105	80-121%	10	30%	
Fluoranthene	2.01			ug/L ug/L ug/L		1.60 1.60		105 125	80-121% 53-148%	10 13	30% 30%	
Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	2.01 1.69		0.0160	ug/L	1							
Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene	2.01 1.69 2.00		0.0160 0.0640	ug/L ug/L	1 1	1.60		125	53-148%	13	30%	В-0

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

 3140 NE Broadway Street
 Project Number:
 M0232.17.090
 Report ID:

 Portland, OR 97232
 Project Manager:
 Michael Pickering
 A5E1360 - 06 03 25 1042

QUALITY CONTROL (QC) SAMPLE RESULTS

Polycyclic Aromatic Hydrocarbons (PAHs) by EPA 8270E (Large Volume Injection) Detection Reporting Spike Source % REC RPD Analyte Result Limit Units Dilution Result % REC Limits RPD Limit Notes Limit Amount Batch 25E0639 - EPA 3511 (Bottle Extraction) Water LCS Dup (25E0639-BSD1) Prepared: 05/20/25 07:06 Analyzed: 05/20/25 13:45 Q-19 Pyrene 1.80 0.0320 ug/L 1.60 112 80-125% 9 30% Carbazole 1.89 0.0320 118 65-141% 9 30% ug/L 1 1.60 Dibenzofuran 0.0320 ug/L 1.60 30% 1.88 1 117 76-121% 13 Surr: Acenaphthylene-d8 (Surr) 104 % 78-134 % Dilution: 1x Recovery: Limits: Benzo(a)pyrene-d12 (Surr) 115 % 80-132 %

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: <u>POP TCORE - GWM</u>

Project Number: M0232.17.090
Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

SAMPLE PREPARATION INFORMATION

Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup							
Prep: EPA 3510C (F	uels/Acid Ext.) w/	SGC			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 25E0812							
A5E1360-01	Water	NWTPH-Dx/SGC	05/13/25 14:19	05/23/25 07:24	1050mL/2mL	1000mL/2mL	0.95
A5E1360-02	Water	NWTPH-Dx/SGC	05/13/25 13:47	05/23/25 07:24	1020mL/2mL	1000mL/2mL	0.98
A5E1360-03	Water	NWTPH-Dx/SGC	05/13/25 11:32	05/23/25 07:24	1020mL/2mL	1000mL/2mL	0.98
A5E1360-04	Water	NWTPH-Dx/SGC	05/13/25 10:35	05/23/25 07:24	1050mL/2mL	1000mL/2mL	0.95
A5E1360-05	Water	NWTPH-Dx/SGC	05/13/25 09:07	05/23/25 07:24	1020mL/2mL	1000mL/2mL	0.98
A5E1360-06	Water	NWTPH-Dx/SGC	05/14/25 12:21	05/23/25 07:24	1000mL/2mL	1000mL/2mL	1.00
A5E1360-07	Water	NWTPH-Dx/SGC	05/14/25 13:42	05/23/25 07:24	1010mL/2mL	1000mL/2mL	0.99

Volatile Organic Compounds by EPA 8260D								
Prep: EPA 5030C					Sample	Default	RL Prep	
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
Batch: 25E0580								
A5E1360-01	Water	EPA 8260D	05/13/25 14:19	05/16/25 14:00	5mL/5mL	5mL/5mL	1.00	
A5E1360-02	Water	EPA 8260D	05/13/25 13:47	05/16/25 14:00	5mL/5mL	5mL/5mL	1.00	
A5E1360-03	Water	EPA 8260D	05/13/25 11:32	05/16/25 14:00	5mL/5mL	5mL/5mL	1.00	
A5E1360-04	Water	EPA 8260D	05/13/25 10:35	05/16/25 14:00	5mL/5mL	5mL/5mL	1.00	
A5E1360-05	Water	EPA 8260D	05/13/25 09:07	05/16/25 14:00	5mL/5mL	5mL/5mL	1.00	
A5E1360-06	Water	EPA 8260D	05/14/25 12:21	05/16/25 14:00	5mL/5mL	5mL/5mL	1.00	
Batch: 25E0606								
A5E1360-07	Water	EPA 8260D	05/14/25 13:42	05/19/25 13:10	5mL/5mL	5mL/5mL	1.00	

Prep: EPA 3511 (Bo	ttle Extraction)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 25E0639							
A5E1360-01	Water	EPA 8270E LVI	05/13/25 14:19	05/20/25 07:06	105.85mL/5mL	125mL/5mL	1.18
A5E1360-02	Water	EPA 8270E LVI	05/13/25 13:47	05/20/25 07:06	100.43 mL/5 mL	125mL/5mL	1.24
A5E1360-03	Water	EPA 8270E LVI	05/13/25 11:32	05/20/25 07:06	114.6mL/5mL	125mL/5mL	1.09
A5E1360-04	Water	EPA 8270E LVI	05/13/25 10:35	05/20/25 07:06	98.19mL/5mL	125mL/5mL	1.27
A5E1360-05	Water	EPA 8270E LVI	05/13/25 09:07	05/20/25 07:06	111.52mL/5mL	125mL/5mL	1.12
A5E1360-06	Water	EPA 8270E LVI	05/14/25 12:21	05/20/25 07:07	117.1mL/5mL	125mL/5mL	1.07
A5E1360-07	Water	EPA 8270E LVI	05/14/25 13:42	05/20/25 07:07	117.02mL/5mL	125mL/5mL	1.07

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: **POP TCORE - GWM** 3140 NE Broadway Street Project Number: M0232.17.090 Portland, OR 97232 Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Ape

pex Laborato	<u>pries</u>
B-02	Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)
DCNT	Sample decanted due to the presence of sediment in water samples, or water in sediment or soil samples. (Note: Decanted aqueous sample bottles are not solvent rinsed.)
E	Estimated Value. The result is above the calibration range of the instrument.
M-02	Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.
PRES	Incomplete field preservation. Additional preservative was added to adjust the pH within the appropriate range for this analysis.
Q-17	RPD between original and duplicate sample, or spike duplicates, is outside of established control limits.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
Q-29	Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +1%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +12%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +16%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +2%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +20%. The results are reported as Estimated Values.
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +4%. The results are reported as Estimated Values.
Q-54f	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +6%. The results are reported as Estimated Values.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260. Samples that are ND (Non-Detect) are not impacted.
R-02	The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Dund la buil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:POP TCORE - GWM3140 NE Broadway StreetProject Number:M0232.17.090

Portland, OR 97232 Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Validated Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting and Detection Limits: Default Limits

Default Reporting and Detection Limits are based on 100% dry weight with the minimum dilution for the analysis. Reporting and Detection Limits are raised due to moisture content, additional dilutions required for analysis, matrix interferences and in other cases, as necessary.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

my 11 la famil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:POP TCORE - GWM3140 NE Broadway StreetProject Number:M0232.17.090

Portland, OR 97232 Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL).

Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level.

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

mul la finish

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway StreetProject Number:M0232.17.090Report ID:Portland, OR 97232Project Manager:Michael PickeringA5E1360 - 06 03 25 1042

Decanted Samples:

Soils/Sediments:

Unless TCLP analysis is required or there is notification otherwise for a specific project, all Soil and Sediments containing excess water are decanted prior to analysis in order to provide the most representative sample for analysis.

Water Samples

Water samples containing solids and sediment may need to be decanted in order to eliminate these particulates from the water extractions. In the case of organics extractions, a solvent rinse of the container will not be performed.

Volatiles Soils (5035s)

Samples that are field preserved by 5035 for volatiles are dry weight corrected using the same dry weight corretion as for normal analyses. In the case of decanted samples, the dry weight may be performed on a decanted sample, while the aliquot for 5035 may not have been treated the same way. If this is a concern, please submit separate containers for dry weight analysis for volatiles can be provided.

All samples decanted in the laboratory are noted in this report with the DCNT qualifier indicating the sample was decanted.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Dunnell la fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: POP TCORE - GWM

3140 NE Broadway StreetProject Number:M0232.17.090Report ID:Portland, OR 97232Project Manager:Michael PickeringA5E1360 - 06 03 25 1042

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

mund by frail

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project:

POP TCORE - GWM

Drainat Managan

Project Number: M0232.17.090

Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

MAUL FOSTER ALONG!	ALONGI		• (Add	Address:	314	NE E	3140 NE Broadway	ig v		, ,			9	Telephone Number: 971-227-2566	Mumbe	5	27-25	, ,	186 57775	7,0
Project Manager: Michael Pickering	: Michael Pic	kering	5	City/State/Zip:	:diz	2	tiand,	Portland, OK 97232	32		i	4	Analytical Lab: Apex Labs	al Lab	: Ape	Labs			D T	<u>-</u>	≨
Project Name:	Project Name: POP - TCORE GWM	RE GWI	5										, Ba	or To	mpic	Report To: mpickering@maulfoster.com	@man	foster	moo:		
Project Number: M0232.17.090	M0232.17.0	8												Page: 1	-	5	-1	-			ŀ
Sampler Name:	Sampler Name: C. Anderson	ے			Ī	-		1	l										Ĭ		
Control of the Contro			-		\exists	ļ	Preservative	vative	\dagger	_	Matrix	ŀ			Ans	Analyze For	٠	-	\dashv		Г
Sample ID / Description	Date Sampled	begaids agaistagg to all	No. of Containers Shipped Grab	əfisoqmoO	Field Filtered	HNO ³ (Keq Fapel)	HCI (Blue Label) NaOH (Orange Label)	H ₂ SO ₄ Pisatic (Yellow Label) H ₂ SO ₄ Giass(Yellow Label)	Groundwater	Wastewater	Soil Sludge	Offuer (shecify):	MW-TPH-dx (Silica Gel)	AOCs (8260)	≥HA9 MIS 0728				(Pre-Schedule)	Standard TAT brandsa sultee Results	Send QC with report
TCORE-1-GW	5/13/25 1	14:19	×										×	×	×					×	
TCORE-10D-GW	5/13/25	13:47	×										×	×	×					×	I 1
TCORE-2-GW	5/13/25 1	11:32	×										×	×	×					×	
TCORE-20D-GW	5/13/25	10:35	×										×	×	×					×	_
TCORE-3-GW	5/13/25	9:07	×										×	×	×					×	1
TCORE-4-GW	5/14/25	12:21	×										×	×	×				_	×	_
TCORE-5-GW	5/14/25 1	13:42	× 6					1					×	×	×					×	_
		1	+				1		1							4			-		
			_			\exists	\dashv	\exists	1				_			_					- 1
Special Instructions: Follow protocol per Kurt Johnson's email from May 13, 2024.	Bill to MFA using Port rates EQuIS 4-file EDD required with final report.	sing Por	t rates lired w	# I	al rep	ų								P	ratory	Laboratory Comments:	ints:				
,						Metho	d of S	Method of Shipment:	ב ב	Dropped off	off			Temp	erature	Temperature Upon Receipt:	Receipt				
Reinquisfied by: Name/Company MFA	5/15/15 5/15/15 5/14/2025		Time 7255	L.L.	ived by	in 3	Mercomp MSFA	eceived by: NamerCompany LudStack Norbet Prock	E	2 2	Date 5 15 25		Time 255	Samp	ole Coni	Sample Containers Intact? VOCs Free of Headspace?	ntact? space?	> >		zz	
Relinquished by: Name/Company	Date		Time	Rece	Received by: Name/Company	Nam	Comi	any		۵	Date		Time								
Relinquished by: Name/Company	Date		Time	Rece	Received by: Name/Company	Nam	/Comp	any		Ä	Date		Time								4.4.
Relinquished by: Name/Company	Date		Time	Rece	Received by: Name/Company	Nam	уСощ	any		ä	Date		Time								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: <u>POP TCORE - GWM</u>

Project Number: M0232.17.090
Project Manager: Michael Pickering

Report ID: A5E1360 - 06 03 25 1042

Client: Maw F7	Stev & Mongi Element WO#: A5 6 340
	P-TCORE GINM / M0232,17.090
	1 100100 GIVIN 1 111022211 1.00 10
Delivery Info:	Implant a summer a summer.
	15 125 @ 1255 By: KN
	ent XESS FedEx UPS Radio Morgan SDS Evergreen Other
From USDA Regulated C	
	ate/time inspected: 5 15 25 @ 255 By: KN
Chain of Custody include	
Signed/dated by client?	Yes J No
Contains USDA Reg. Soi	
999	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Femperature (°C)	4.6 2.8
Custody seals? (Y/N)	N N
Received on ice? (Y/N)	<u> </u>
Γemp, blanks? (Y/N)	Deal Deal
ce type: (Gel/Real/Other	
Condition (In/Out):	<u> h h </u>
	DPossible reason why:of temperature samples? Yes/No
	les form initiated? Yes/80/15a 1450 By:
	* 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
All samples intact? Yes_	No Comments:
	11 - 1 - 1
3ottle labels/COCs agree	? Yes No V Comments: All Samples missing
Suffix - GW	
_	cies form initiated? Yes No
Containers/volumes recei	ved appropriate for analysis? Yes No Comments:
Oo VOA vials have visib	le headspace? Yes NoX NA
Comments	
Water samples: pH check	red: Yes No_NA_ pH appropriate? Yes No_NA_ pH ID: H23I172
Comments:	
	manus - Tanana - Tana
Labeled by: F	Witness: Cooler Inspected by:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Data Validation Memorandum

Project No. M0232.17.090 | June 17, 2025 | Port of Portland

Maul Foster & Alongi, Inc. (MFA), conducted an independent Stage 2A review of the quality of analytical results for groundwater and associated quality control samples collected on May 13 and 14, 2025, at the Port of Portland Terminal Core Redevelopment site at the Portland International Airport.

Apex Laboratories, LLC (Apex) and Specialty Analytical Inc. (SA) performed the analyses. MFA reviewed Apex report number A5E1360 and SA report number 2505112. The reviewer confirmed that samples TCORE-3-GW/TCORE-3, TCORE-2-GW/TCORE-2 and TCORE-2OD-GW/TCORE-2OD are field split samples, respectively, and were submitted to both Apex and SA for Northwest Total Petroleum Hydrocarbons (NWTPH)-Dx analysis with silica-gel cleanup (SG). The analyses performed and the samples analyzed are listed in the following tables.

Analysis	Reference
Diesel- and oil-range hydrocarbons with silica-gel cleanup	NWTPH-Dx/SG
Polycyclic aromatic hydrocarbons	EPA 8270E
Volatile organic compounds	EPA 8260D

Notes

EPA = U.S. Environmental Protection Agency. NWTPH = Northwest Total Petroleum Hydrocarbons. SG = silica gel cleanup.

	Samples Analyzed	
Report A	A5E1360	Report 2505112
TCORE-1-GW	TCORE-3-GW	TCORE-3
TCORE-10D-GW	TCORE-4-GW	TCORE-2
TCORE-2-GW	TCORE-5-GW	TCORE-20D
TCORE-20D-GW		

Data Validation Procedures

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2020) and appropriate laboratory- and method-specific guidelines (Apex 2023, EPA 1986, SA 2024).

Data validation procedures were modified, as appropriate, to accommodate quality control requirements for methods that EPA data review guidelines do not specifically address (e.g., NWTPH-Dx/SG).

Based on the data quality assurance/quality control review described herein, the data, with the appropriate final data qualifiers assigned, are considered acceptable for their intended use. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, and data qualifiers assigned by the reviewer during validation.

Final data qualifiers:

• J = result is estimated.

- J+ = result is estimated, but the result may be biased high.
- U = result is non-detect at the method reporting limit (MRL).
- UJ = result is non-detect with an estimated MRL.

Sample Conditions

Sample Custody

Sample custody was appropriately documented on the chain-of-custody (COC) forms accompanying the reports.

Holding Times

Extractions and analyses were performed within the recommended holding times.

Preservation and Sample Storage

According to report A5E1360, the NWTPH-Dx/SG fraction of sample TCORE-20D-GW was outside the method-recommended pH and additional preservative was added prior to analysis. According to the cooler receipt form, pH was acceptable upon receipt at the laboratory. The reviewer confirmed that the sample was collected into a container pre-preserved with hydrochloric acid. Since the pH was not within the method-recommended pH upon receipt, the sample is considered unpreserved and thus the holding time could not be extended from 7 days for unpreserved samples to 14 samples for preserved samples. NWTPH-Dx/SG preparation of sample TCORE-20D-GW was performed 10 days after sample collection, which exceeds the 7-day holding time. The reviewer qualified the associated sample results, as shown in the following table.

Report	Sample	Analyte	Original Result (mg/L)	Qualified Result (mg/L)
A5E1360	TCORE-20D-GW	Diesel-range hydrocarbons	0.0762 U	0.0762 UJ
ASE1360	TCORE-20D-GW	Oil-range hydrocarbons	0.158	0.158 J

Notes

J = result is estimated.

mg/L= milligrams per liter.

U = result is non-detect at the method reporting limit.

UJ = result is non-detect with an estimated method reporting limit.

According to report A5E1360, the EPA Method 8270E portions of samples TCORE-1-GW, TCORE-1OD-GW, TCORE-2-GW, TCORE-2OD-GW, and TCORE-3-GW were decanted prior to preparation due to the presence of sediment. Apex noted that the sample bottles were not rinsed with solvent, so the reviewer qualified the associated sample results, as shown in the following table. The TCORE-1-GW detected naphthalene result is separately qualified in the Method Blanks section below.

Report	Samples	Analysis	Original Results	Qualification
	TCORE-1-GW			
	TCORE-10D-GW			
A5E1360	TCORE-2-GW	EPA 8270E	Non-detect	UJ
	TCORE-20D-GW			
	TCORE-3-GW			

Notes

EPA = U.S. Environmental Protection Agency.

UJ = result is non-detect with an estimated method reporting limit.

The remaining samples were preserved and stored appropriately.

Reporting Limits

The laboratory evaluated results to MRLs.

Blank Results

Method Blanks

Laboratory method blanks are used to evaluate whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the required frequencies, in accordance with laboratory- and method-specific requirements.

According to report A5E1360, the EPA Method 8270E batch 25E0639 laboratory method blank had a naphthalene result between one-half the MRL and the MRL. The blank was reported as non-detect at the MRL. The associate TCORE-1-GW naphthalene result was within five times the MRL and was qualified by the reviewer, as shown in the following table. All remaining associated sample results were non-detect and did not require qualification based on the blank result.

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
A5E1360	TCORE-1-GW	Naphthalene	0.0812	0.0812 J+(a)

Notes

J+ = result is estimated, but the result may be biased high ug/L = micrograms per liter.

(a) Final qualification based on laboratory method blank detection and laboratory control sample results. Sample fraction was also decanted without rinsing. Directional bias was applied due to overwhelming influence in one direction.

All remaining laboratory method blank results were non-detect to MRLs.

Equipment Rinsate Blanks

Equipment rinsate blanks are used to evaluate the adequacy of the field equipment decontamination process when decontaminated sampling equipment is used to collect samples.

These blanks were not required for this sampling event, as all samples were collected using dedicated or single-use equipment.

Trip Blanks

Trip blanks are used to evaluate whether volatile organic compound contamination was introduced during shipping and field handling procedures.

No trip blank samples were submitted for analysis. All field samples were non-detect for volatile organic compounds by EPA Method 8260D.

Laboratory Control Sample and Laboratory Control Sample Duplicate Results

Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) results are used to evaluate laboratory precision and accuracy. Where LCSD were not reported, laboratory precision was evaluated using laboratory duplicate results. All LCS and LCSD were prepared and analyzed at the required frequency, in accordance with laboratory- and method-specific requirements.

According to report A5E1360, the EPA Method 8260D batch 25E0580 LCS results for bromodichloromethane, carbon disulfide, carbon tetrachloride, and trichlorofluoromethane were above the upper percent recovery acceptance limit of 120 percent, ranging from 122 percent to 140 percent. All associated sample results were non-detect and thus did not require qualification.

According to report A5E1360, the EPA Method 8260D batch 25E0606 LCS results for carbon disulfide, chloroethane, and trichlorofluoromethane were above the upper percent recovery acceptance limit of 120 percent, ranging from 124 percent to 136 percent. All associated sample results were non-detect and thus did not require qualification.

According to report A5E1360, the EPA Method 8270E batch 25E0639 LCS results for acenaphthene, acenaphthylene, benzo(a)pyrene, benzo(k)fluoranthene, fluorene, naphthalene, and dibenzofuran were above their respective upper percent recovery acceptance limits, ranging from 123 percent to 137 percent. The associated detected TCORE-1-GW naphthalene results is qualified in the Method Blanks section above. The remaining associated sample results were non-detect and thus did not require qualification.

All remaining LCS and LCSD results were within acceptance limits for percent recovery and relative percent difference (RPD).

Laboratory Duplicate Results

Laboratory duplicate results are used to evaluate laboratory precision and sample homogeneity. All laboratory duplicate samples were prepared and analyzed at the required frequency, in accordance with laboratory- and method-specific requirements.

Laboratory duplicate results greater than five times the MRL were evaluated using laboratory RPD control limits. A secondary criterion was used when laboratory duplicate results were non-detect or less than five times the MRL. Results meet the secondary criterion if the absolute difference of the laboratory duplicate sample result and the parent sample result, or the MRL for non-detects, is equal to or less than the MRL value of the parent sample.

In cases where the laboratory had prepared laboratory duplicates with samples from unrelated projects, laboratory duplicate RPD control limit exceedances did not require qualification because these sample matrices were not representative of project sample matrices.

All remaining laboratory duplicate results met the acceptance criteria.

Matrix Spike and Matrix Spike Duplicate Results

Matrix spike (MS) and matrix spike duplicate (MSD) results are used to evaluate laboratory precision, accuracy, and the effect of the sample matrix on sample preparation and target analyte recovery. No MSD were reported; all MS samples were prepared and analyzed at the required frequency, in accordance with laboratory- and method-specific requirements.

According to report A5E1360, the EPA Method 8260D batch 25E0580 MS prepared with sample TCORE-3-GW had bromodichloromethane, carbon disulfide, carbon tetrachloride, and trichlorofluoromethane results above their respective upper percent recovery acceptance limits, ranging from 128 percent to 155 percent. All associated sample results were non-detect and thus did not require qualification.

According to report A5E1360, the EPA Method 8260D batch 25E0606 MS prepared with sample TCORE-5-GW had a carbon disulfide result above the upper percent recovery acceptance limit of 133

© 2025 Maul Foster & Alongi, Inc. Page **4**

percent, at 159 percent. The associated sample result was non-detect and thus did not require qualification.

All remaining MS results were within acceptance limits for percent recovery.

Continuing Calibration Verification Results

Continuing calibration verification (CCV) results are used to evaluate instrument sensitivity, precision, and accuracy throughout the analytical sequence.

CCV results are not required for Stage 2A validation, however, the reviewer evaluated CCV results when provided by the laboratory in report 2505112.

All CCV results were within percent recovery acceptance limits.

Surrogate Results

Surrogate results are used to evaluate laboratory performance of target organic compounds for individual samples.

In report 2505112, the NWTPH-Dx/SG decanoic acid surrogate recoveries are not listed. The reviewer confirmed with the laboratory that the decanoic acid is a negative control that demonstrates whether the silica gel cleanup is removing the correct fraction of the sample. Decanoic acid was not recovered in any samples; thus, qualification by the reviewer was not required.

All surrogate results were within percent recovery acceptance limits.

Field Duplicate Results

Field duplicate results are used to evaluate field precision and sample homogeneity.

No field duplicate samples were submitted for analysis.

Data Package

The data package was reviewed for transcription errors, omissions, and anomalies.

According to the cooler receipt form accompanying report A5E1360, all sample labels were missing the "-GW" suffix. The reviewer confirmed Apex was able to correctly identify all samples, and the laboratory correctly logged samples using the sample names provided on the COC form.

No other issues were found.

References

Apex. 2023. Quality Systems Manual. Rev. 11. Apex Laboratories, LLC: Tigard, OR. June 20.

- EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase II (2019), VII phase I (2019), and VII phase II (2020).
- EPA. 2020. *National Functional Guidelines for Organic Superfund Methods Data Review.* EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.
- SA. 2024. *Quality Assurance Manual*. Rev. 2024-1. Specialty Analytical Inc.: Clackamas, OR. January 19.

Appendix D

Apex Forensics Letter Report, August 2025

August 19, 2025

Michael Pickering Maul Foster & Alongi, Inc. 3140 NE Broadway Street Portland, OR 97232

Dear Mr. Pickering:

As requested, we have reviewed the reports issued by Apex Laboratories, LLC in 2023, 2024, and 2025 for your POP-TCORE GW Monitoring, M0232.17.090/M0232.17.65/0232.17.63, Apex WO A3E1348/A3J1754/A4E1568/A5E1360 project. These reports included results from the testing of water samples collected from monitoring events at the Site between May 2023 and May 2025. The purpose of this review was to evaluate whether or not contamination related to a documented release of Jet A fuel has impacted these water samples.

1.0 WATER SAMPLE ANALYSIS SUMMARY

The analytical work completed at Apex included testing of water samples collected in May 2023, October 2023, May 2024, and May 2025 from the TCORE-1-GW, TCORE-2-GW, TCORE-3-GW, TCORE-4-GW, TCORE-5-GW, TCORE-10D-GW, and TCORE-2OD-GW locations at the Site. These samples were analyzed for diesel and oil range hydrocarbons with silica gel column cleanup (SGCC) using a gas chromatograph fitted with a flame ionization detector (GC/FID) following Method NWTPH-Dx. The GC/FID traces generated from this analysis are provided in Appendix A.

2.0 WATER SAMPLE TESTING RESULTS SUMMARY

The results of the NWTPH-Dx testing with SGCC of the samples TCORE-1-GW, TCORE-2-GW, TCORE-3-GW, TCORE-4-GW, TCORE-5-GW, TCORE-1OD-GW, and TCORE-2OD-GW between 2023 and 2025 are provided in Table 1. It should be noted that diesel range hydrocarbons were not identified in any of the samples analyzed, therefore only oil range hydrocarbon results are included in Table 1.

	Table 1. Summ	ary of NWTPH-Dx v	with SGCC ${ m I}$	Results in	Water	Sample
--	---------------	-------------------	--------------------	------------	-------	--------

Sample ID	Lab ID	Date Sampled	Oil (ug/L)
	A3E1348-01	05/12/23	<160
TCORE-1-GW	A3J1754-01	10/26/23	<160
1CORE-1-GW	A4E1568-01	05/23/24	<160
	A5E1360-01	05/13/25	<150
	A3E1348-03	05/11/23	<160
TCORE-2-GW	A3J1754-03	10/25/23	320
ICORE-2-GW	A4E1568-03	05/22/24	<160
	A5E1360-03	05/13/25	<160
	A3E1348-05	05/11/23	400
TCORE-3-GW	A3J1754-05	10/25/23	<160
TORE-3-GW	A4E1568-05	05/22/24	<160
	A5E1360-05	05/13/25	<160
	A3E1348-06	05/11/23	<160
TOODE 4 OW	A3J1754-06	10/26/23	<160
TCORE-4-GW	A4E1568-06	05/22/24	<160
	A5E1360-06	05/14/25	160
	A3E1348-07	05/11/23	<150
TOODE & OW	A3J1754-07	10/26/23	<160
TCORE-5-GW	A4E1568-07	05/23/24	<160
	A5E1360-07	05/14/25	<160
	A3E1348-02	05/12/23	<160
TCORE-1OD-GW	A3J1754-02	10/26/23	<150
TCORE-TOD-GW	A4E1568-02	05/22/24	<160
	A5E1360-02	05/13/25	<160
	A3E1348-04	05/11/23	<150
TCORE-2OD-GW	A3J1754-04	10/25/23	200
TOOKE-ZOD-GW	A4E1568-04	05/22/24	<160
	A5E1360-04	05/13/25	160

3.0 DISCUSSION OF WATER SAMPLE TESTING RESULTS

3.1 Method Blank and Jet A Standard Evaluation

The method blanks associated with the water samples were first evaluated. For example, the GC/FID trace of one of these method blanks is provided as Figure 1. The peak corresponding to the extraction solvent is seen eluting between 0.8 and 1.8 minutes. The peak near 6.2 minutes corresponds to the surrogate (a compound added as a quality assurance check for this GC analysis). In addition, peaks are seen eluting between approximately 3.4 and 4.0 minutes which are indicative of laboratory contamination. The peaks corresponding to the extraction solvent, surrogate compound, and laboratory contamination are labeled on Figure 1 with a blue "x".

For reference, the GC/FID trace of a typical undegraded Jet A fuel is provided as Figure 2. This material elutes as a dominant, Gaussian pattern of peaks on top of a broad hump or unresolved complex mixture (UCM) between approximately 3.2 and 6.6 minutes. These dominant peaks are indicative of normal alkanes. The Jet A fuel range is shown on Figure 2 with a red bracket. The peak corresponding to the extraction solvent is labeled on Figure 2 with a blue "x".

Figure 1. Method Blank

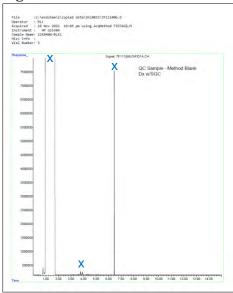
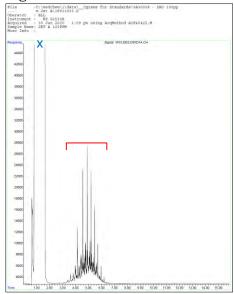



Figure 2. Jet A Standard

3.2 Water Sample Evaluation

The GC/FID traces of the water samples TCORE-1-GW, TCORE-2-GW, TCORE-3-GW, TCORE-4-GW, TCORE-5-GW, TCORE-10D-GW, and TCORE-2OD-GW were then evaluated. The GC/FID traces of the samples with oil range detections after SGCC are provided as Figures 3 through 7. These include the samples TCORE-2-GW (October 2023), TCORE-3-GW (May 2023), TCORE-4-GW (May 2025), TCORE-2OD-GW (October 2023) and TCORE-2OD-GW (May 2025). The peaks corresponding to the extraction solvent, surrogate compound, and laboratory contamination are labeled on these figures with a blue "x".

Figure 3. TCORE-2-GW (October 2023)

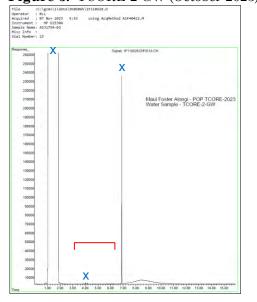


Figure 4. TCORE-3-GW (May 2023)

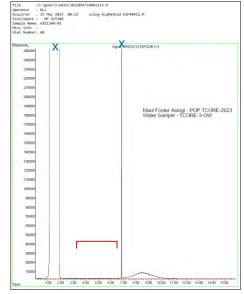


Figure 5. TCORE-4-GW (May 2025)

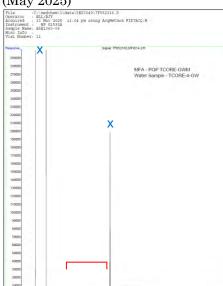


Figure 6. TCORE-20D-GW (October 2023)

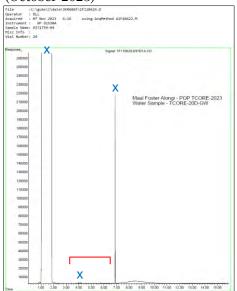
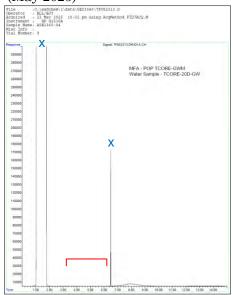



Figure 7. TCORE-20D-GW (May 2025)

As shown in Figures 3 through 7, the material identified in the site samples elutes as a broad hump or UCM between approximately 7 and 9 or 10 minutes on the GC/FID trace. Within this range, a dominant, Gaussian pattern of peaks indicative of the normal alkanes was not present.

Comparison of Figures 3 through 7 to Figure 2 shows that the material present in the Site samples elutes in a higher boiling range than Jet A. In addition, the dominant pattern of normal alkanes present in the Jet A standard are not present in the site samples. The Jet A range is shown with a red bracket in Figures 3 through 7. Based on the GC/FID traces generated, the material quantified at the Site is not indicative of Jet A.

It should also be noted that based on the GC/FID traces generated, some samples such as TCORE-2-GW (May 2025), TCORE-3-GW (May 2025), TCORE-4-GW (May 2023), TCORE-4-GW (May 2024), TCORE-5-GW (October 2023), TCORE-1OD-GW (May 2025), and TCORE-2OD-GW (May 2023) contain material with a high boiling UCM similar to that seen in Figures 3 through 7. This material was present in these samples below the analytical reporting limit. The presence of this material in these samples indicates that the high boiling UCM at the Site is widespread.

CONCLUSION

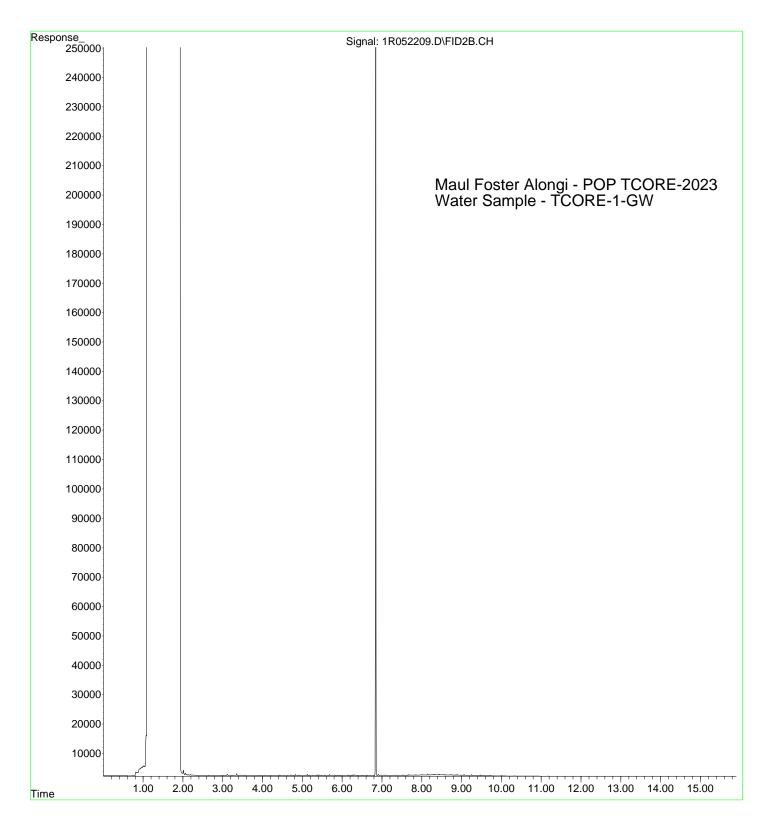
It was requested that we review the data generated in order to evaluate whether contamination related to Jet A fuel had impacted the water samples collected in 2023 through 2025 at the POP-TCORE Site. Review of the GC/FID traces generated shows that the boiling range and general chemical composition of the material present in the site samples analyzed is not related to a release of Jet A.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Respectfully,

Kurt Johnson, Senior Chemist Director of Forensic Services Apex Laboratories, LLC

Enclosures

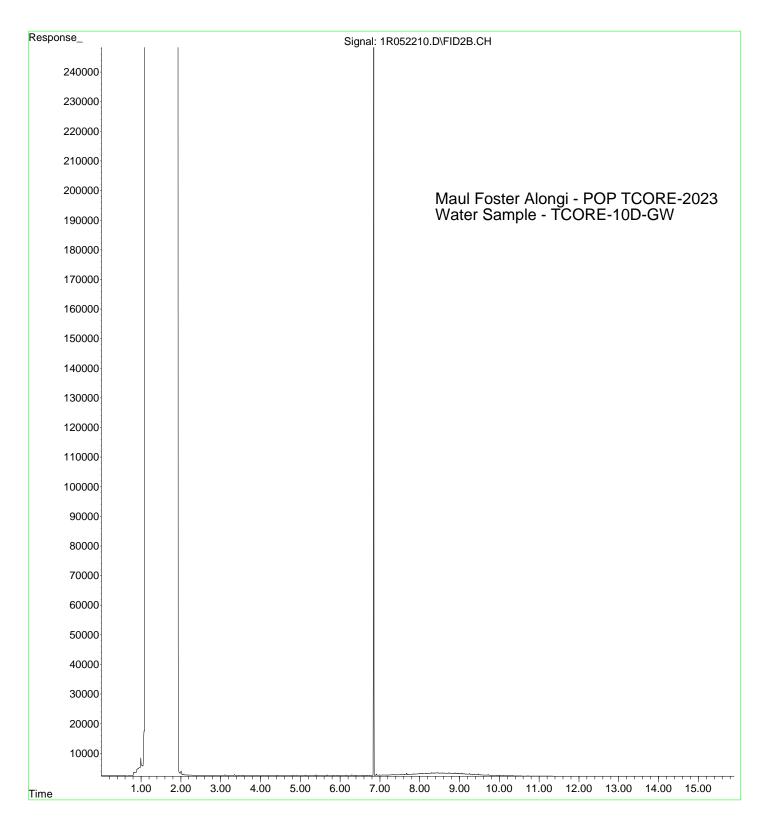

APPENDIX A

File : C: $\gcms\1\data\3E22054\1R052209$. D

Operator : BLL

Acquired : 22 May 2023 22:50 using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A3E1348-01

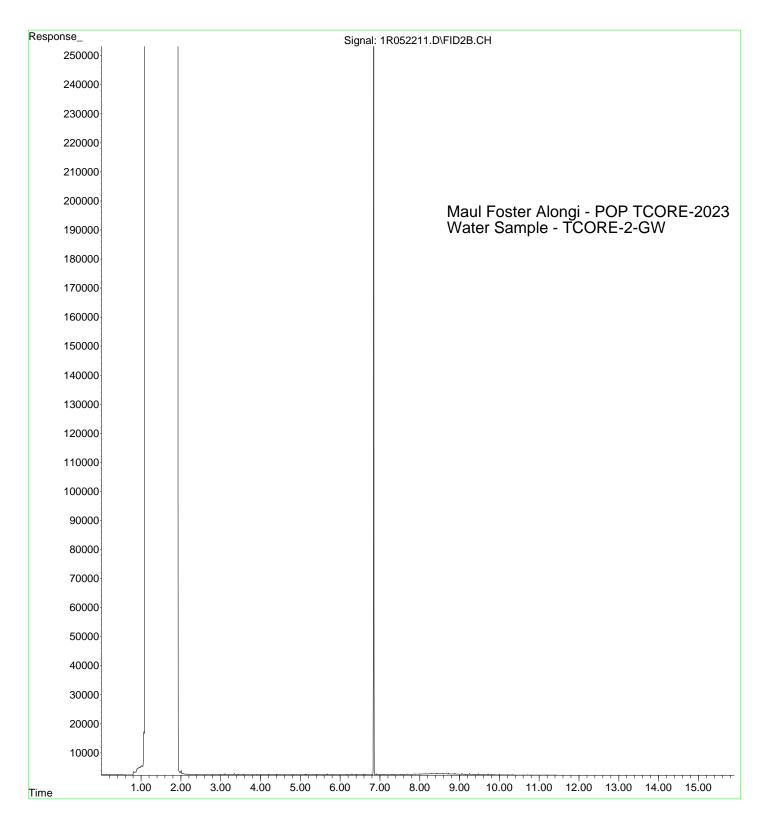


File : C: $\gcms\1\data\3E22054\1R052210$. D

Operator : BLL

Acquired : 22 May 2023 23:13 using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A3E1348-02

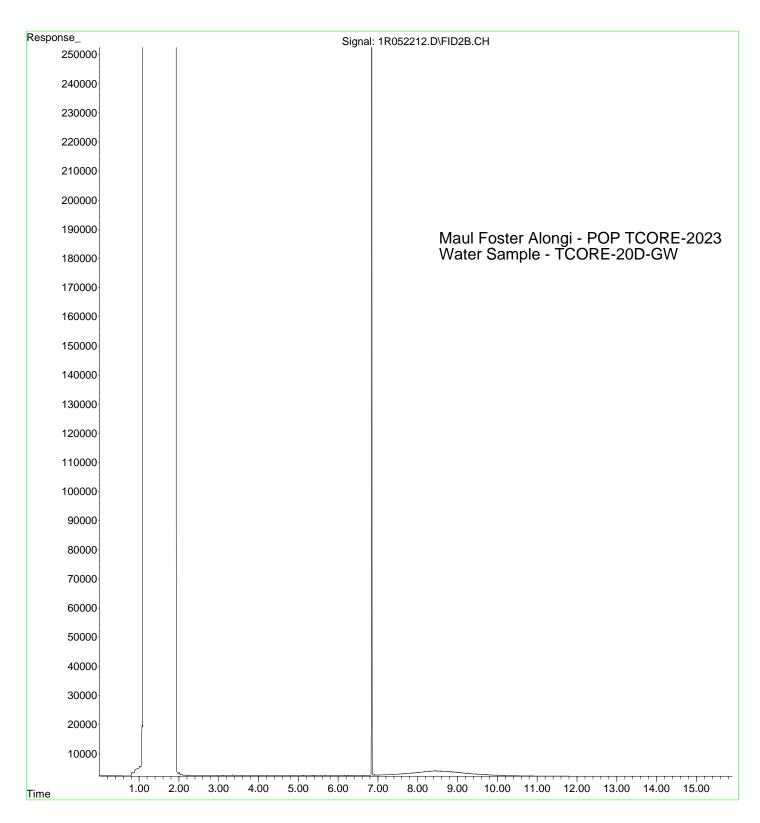


File : C: $\gcms\1\data\3E22054\1R052211.D$

Operator : BLL

Acquired : 22 May 2023 23:36 using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A3E1348-03

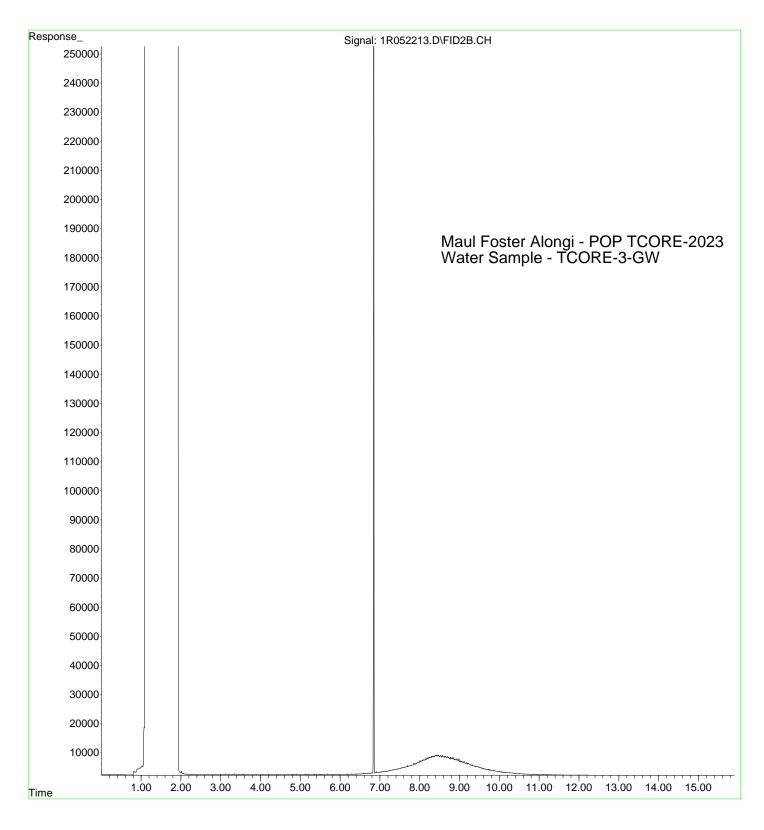


File : C: $\gcms\1\data\3E22054\1R052212$. D

Operator : BLL

Acquired : 22 May 2023 00:00 using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A3E1348-04

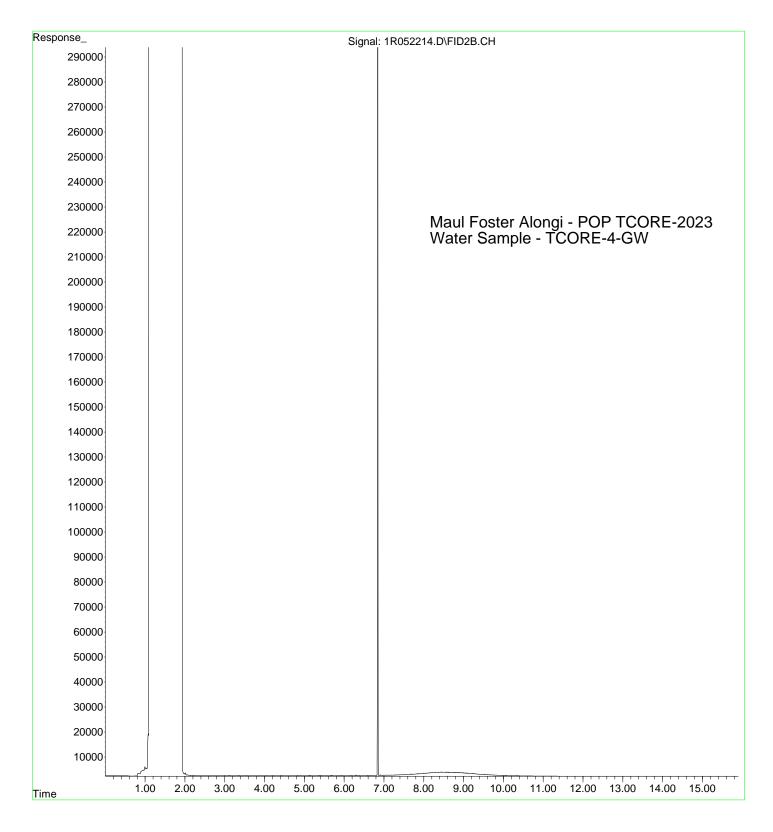


File : C: $\gcms\1\data\3E22054\1R052213$. D

Operator : BLL

Acquired : 23 May 2023 00:23 using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A3E1348-05

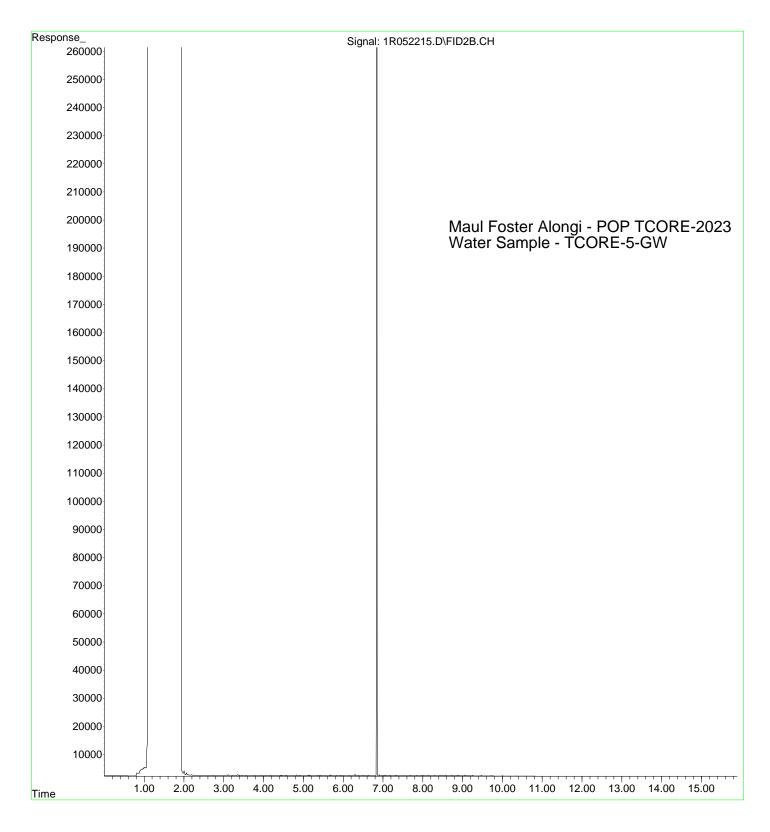


File : C: $\gcms\1\data\3E22054\1R052214$. D

Operator : BLL

Acquired : 23 May 2023 00:46 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A3E1348-06

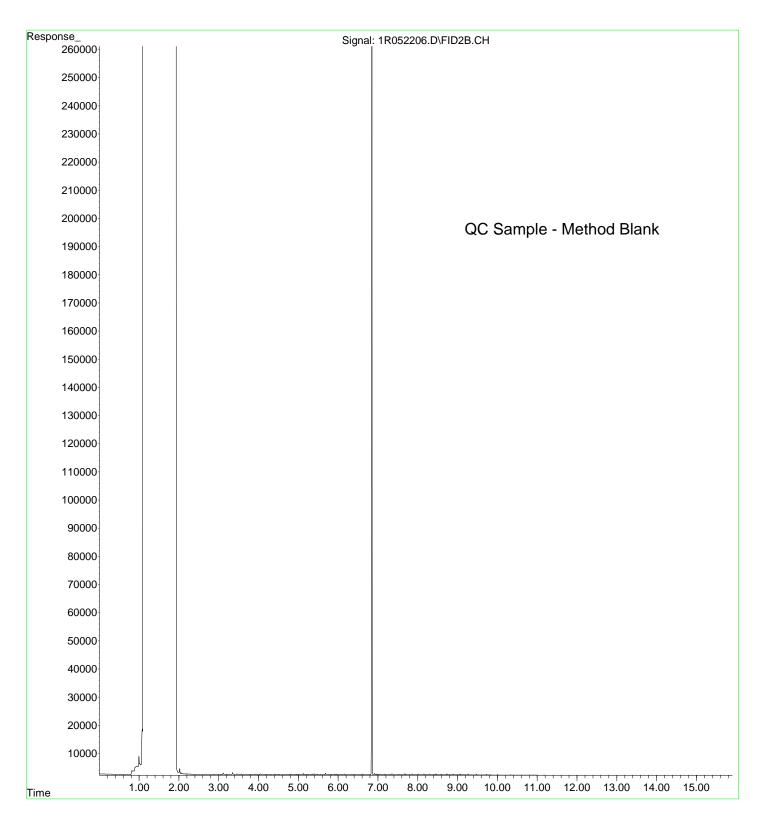


File : C: $\gcms\1\data\3E22054\1R052215$. D

Operator : BLL

Acquired : 23 May 2023 1:10 using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A3E1348-07

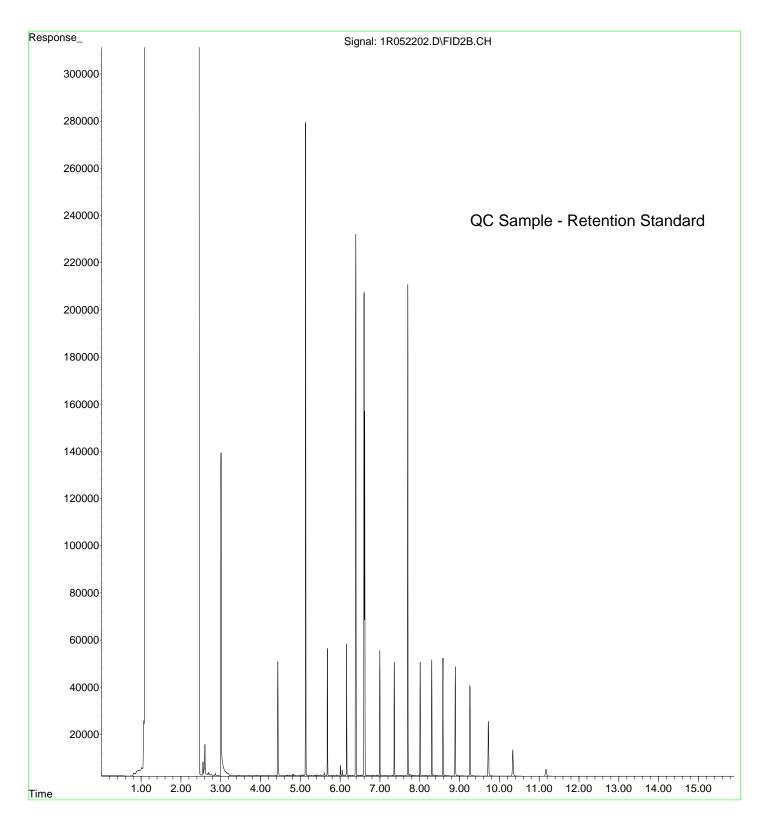


File : C: $\gcms\1\data\3E22054\1R052206$. D

 ${\tt Operator} \quad : \ {\tt BL\breve{L}}$

Acquired : 22 May 2023 21:39 using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: 23E0919-BLK1

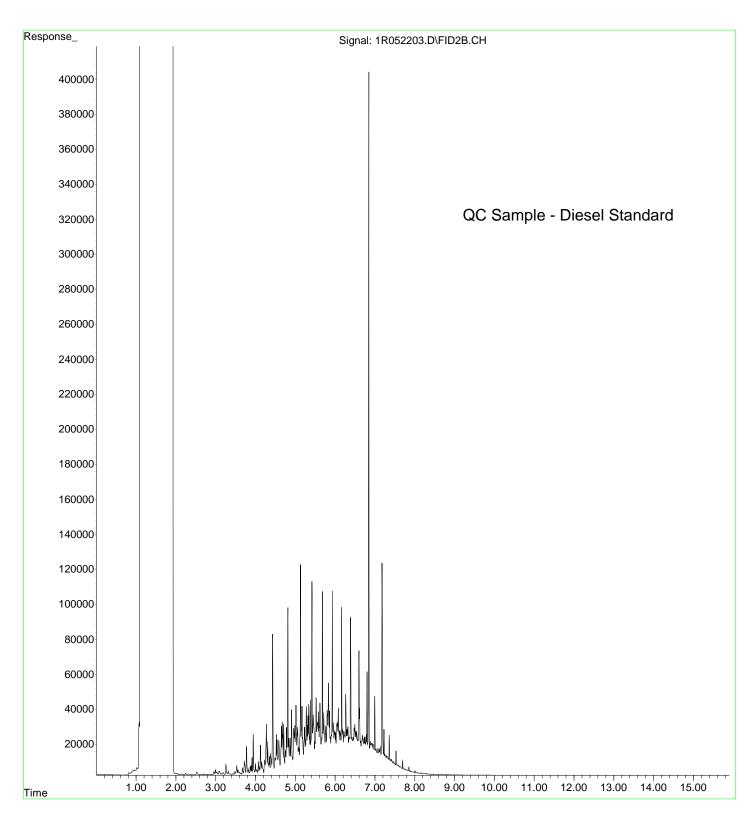


File : C: $\gcms\1\data\3E22054\1R052202$. D

Operator : BLL

Acquired : 22 May 2023 13:01 using AcqMethod A1F40422.M

Instrument : HP G1530A Sample Name: 3E22054-RES1

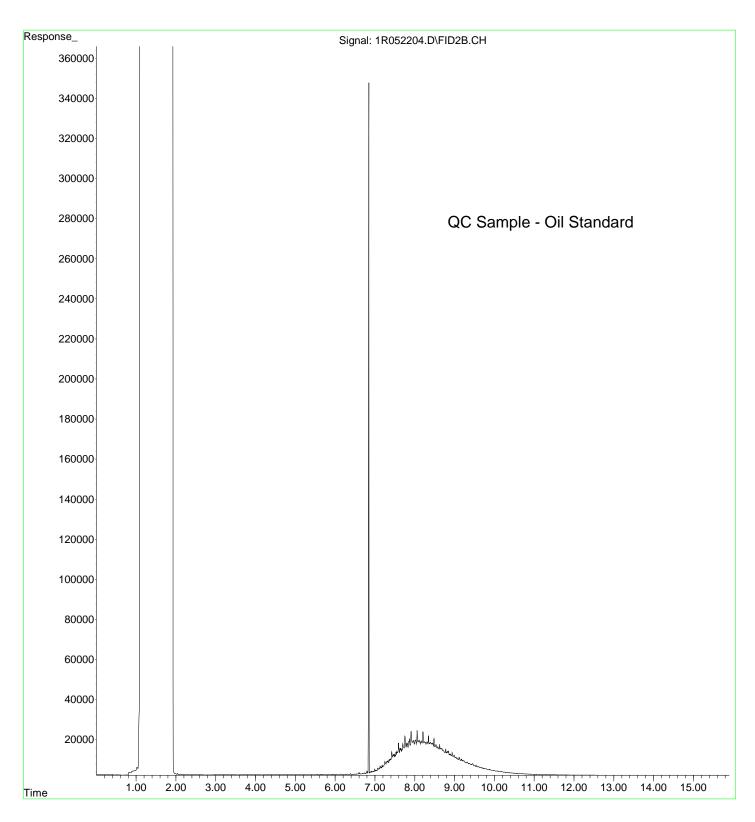


File : C: $\gcms\1\data\3E22054\1R052203$. D

Operator

: BLL : 22 May 2023 13:24 Acqui red using AcqMethod A1F40422.M

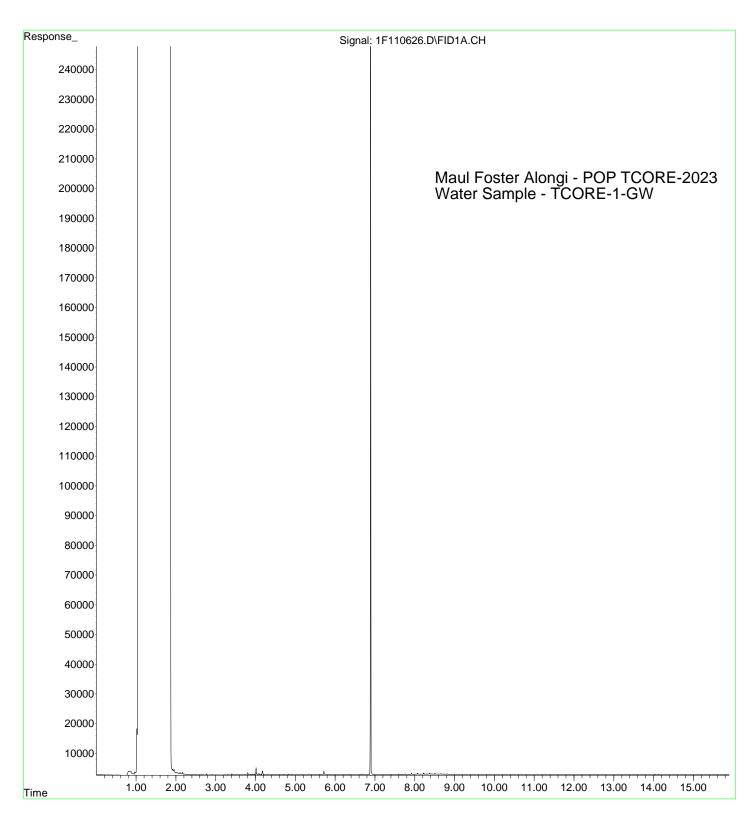
Instrument: HP G1530A Sample Name: 3E22054-CCV1



File : C: $\gcms\1\data\3E22054\1R052204$. D

Operator

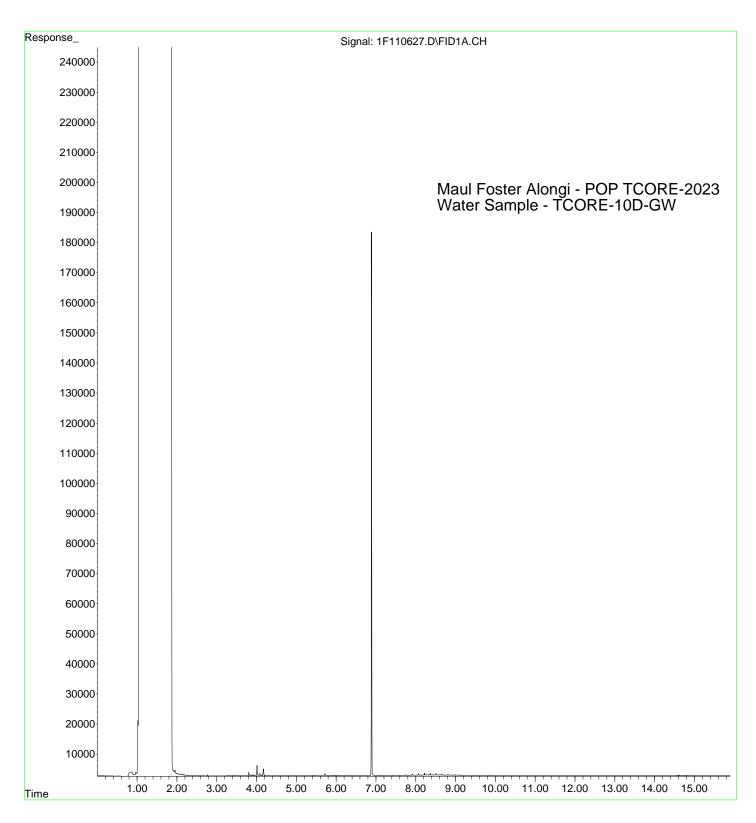
: BLL : 22 May 2023 13:48 Acqui red using AcqMethod A1F40422.M


Instrument: HP G1530A Sample Name: 3E22054-CCV2

Operator : BLL

Acquired : 07 Nov 2023 5:06 using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A3J1754-01

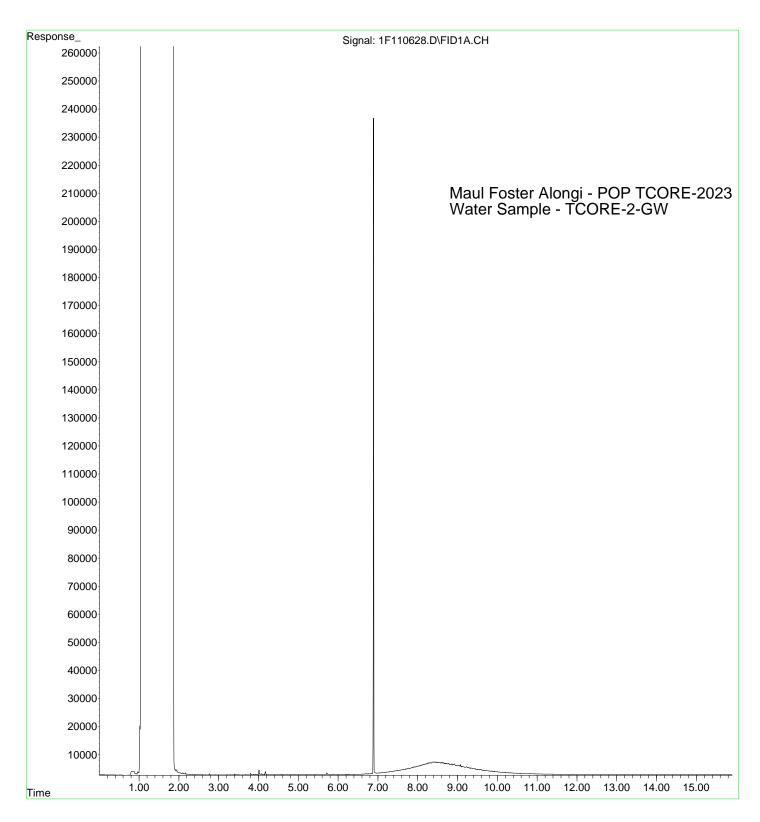


 $\label{eq:file:c:gcmsl} File: C: \gcms\l\data\3K06065\1F110627. \ D$

Operator : BLL

Acquired : 07 Nov 2023 5:29 using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A3J1754-02RE1

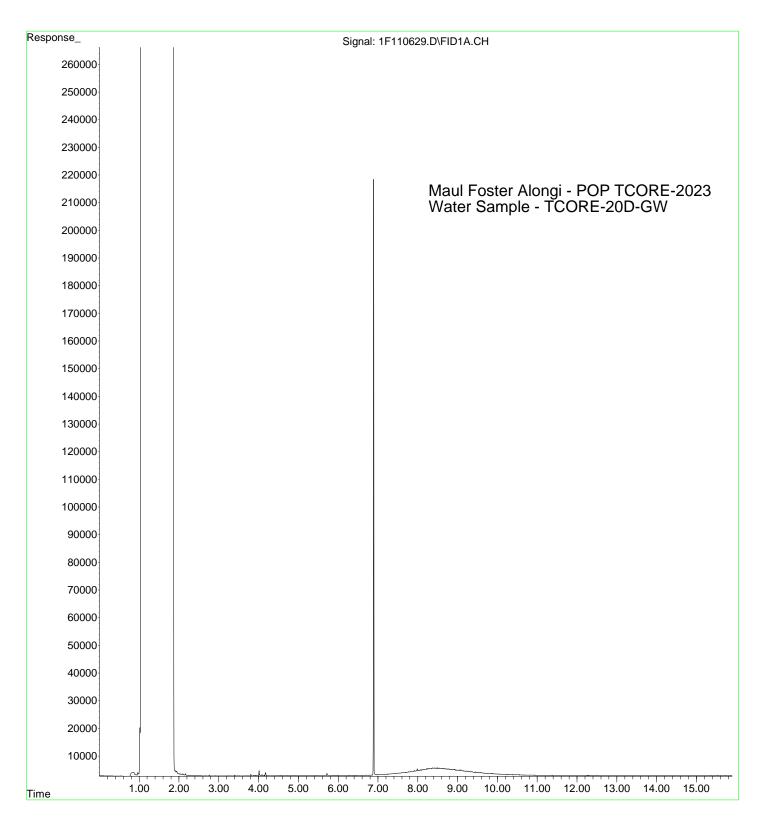


 $File : C: \gcms\1\data\3K06065\1F110628. \ D$

Operator : BLL

Acquired : 07 Nov 2023 5:53 using AcqMethod A1F40422.M

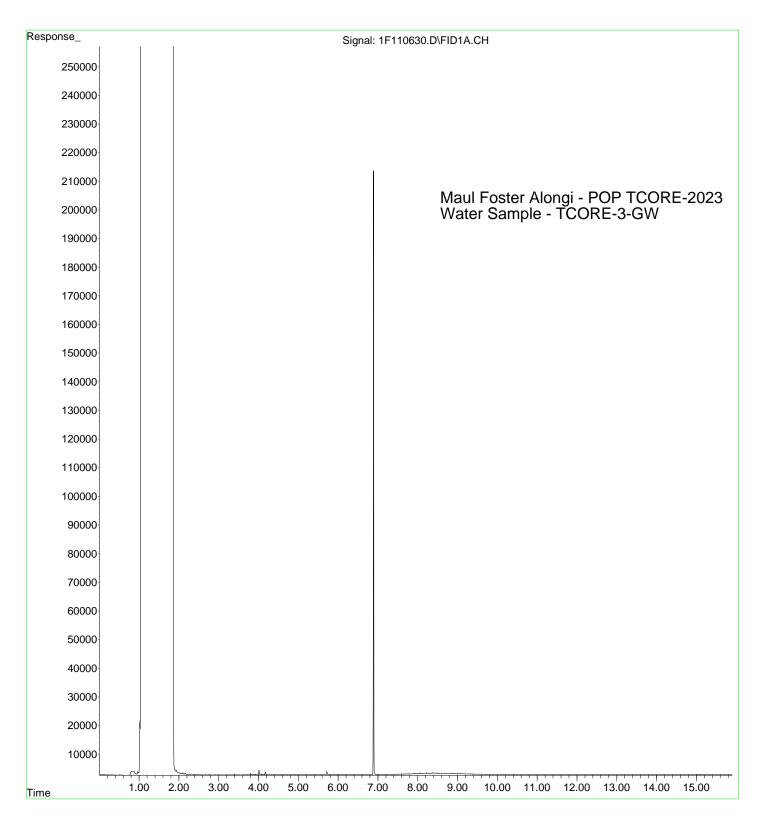
Instrument: HP G1530A Sample Name: A3J1754-03



File : C: $\gcms\1\data\3K06065\1F110629$. D

Operator : BLL

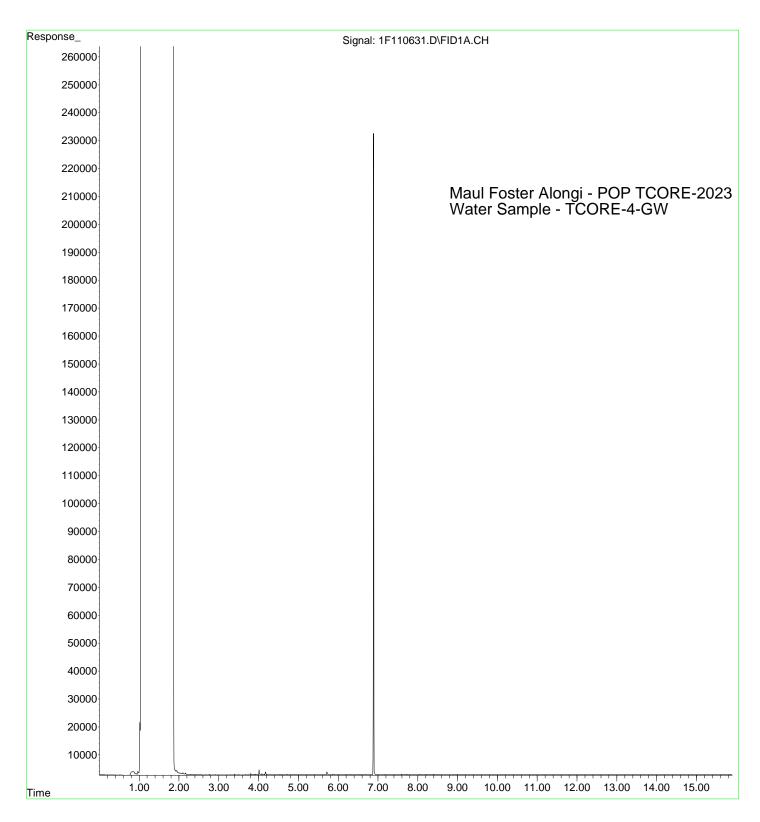
Acquired : 07 Nov 2023 6:16 using AcqMethod A1F40422.M


Instrument: HP G1530A Sample Name: A3J1754-04

Operator : BLL

Acquired : 07 Nov 2023 6:40 using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A3J1754-05

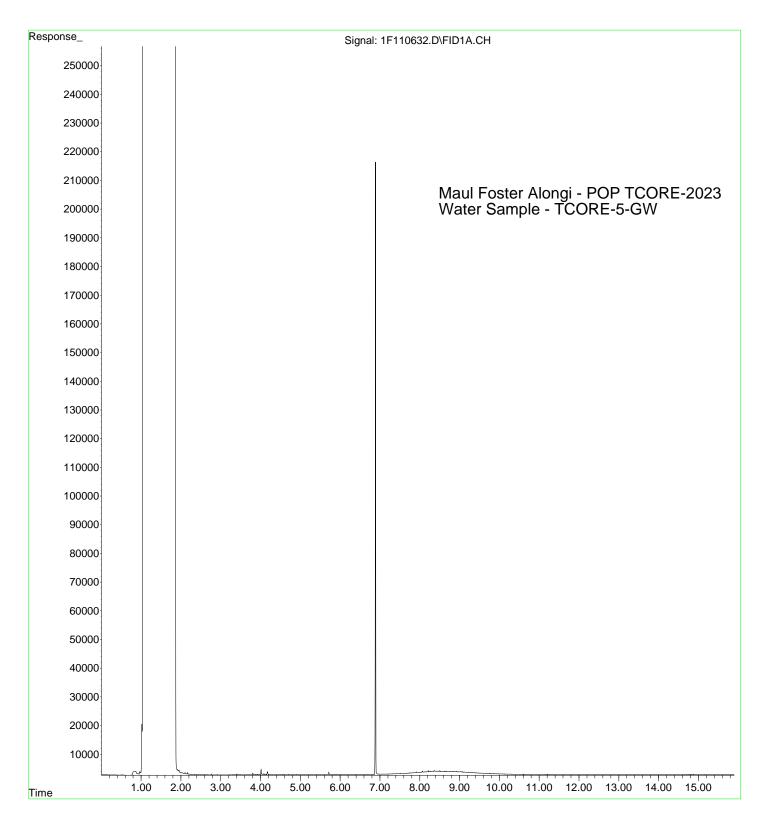


 $File : C: \gcms\1\data\3K06065\1F110631. D$

Operator : BLL

Acquired : 07 Nov 2023 7:03 using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A3J1754-06

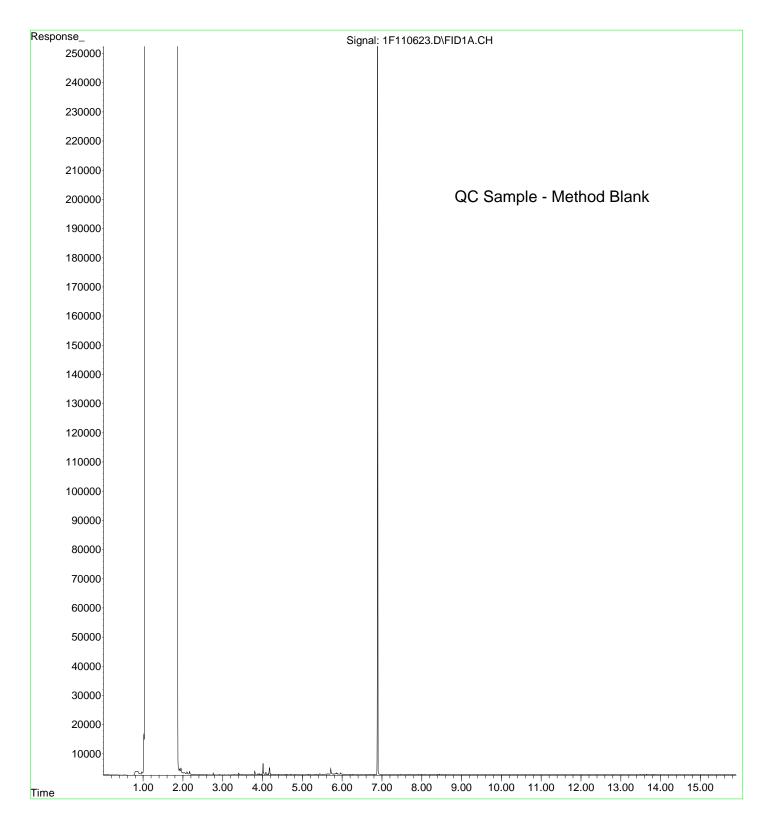


File : C: $\gcms\1\data\3K06065\1F110632$. D

Operator : BLL

Acquired : 07 Nov 2023 7:27 using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A3J1754-07

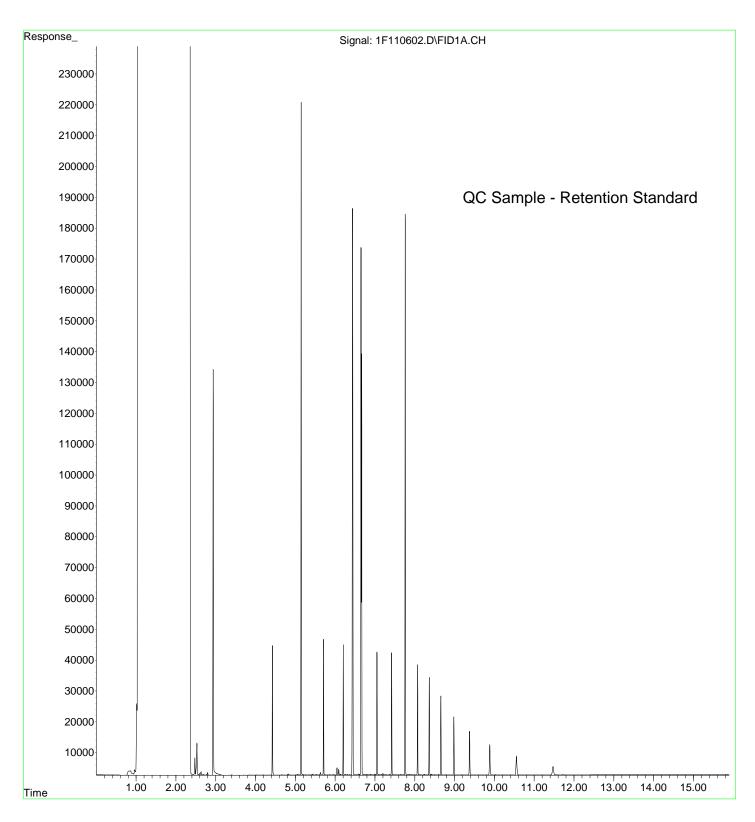


File : C: $\gcms\1\data\3K06065\1F110623$. D

Operator : BLL

Acquired : 07 Nov 2023 3:56 using AcqMethod A1F40422.M

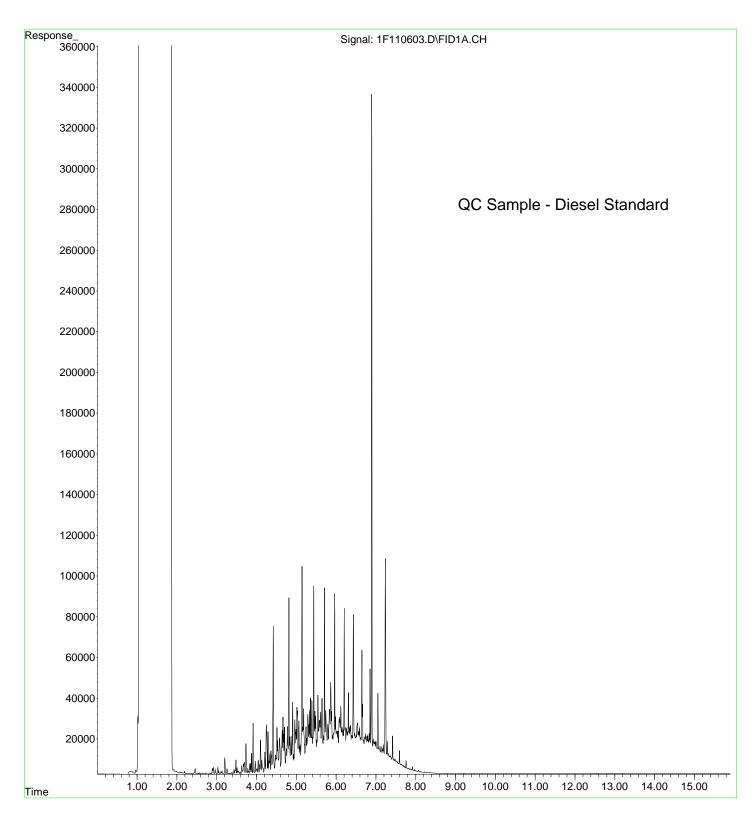
Instrument : HP G1530A Sample Name: 23K0198-BLK1



File : C: $\gcms\1\data\3K06065\1F110602$. D

Operator : BLL

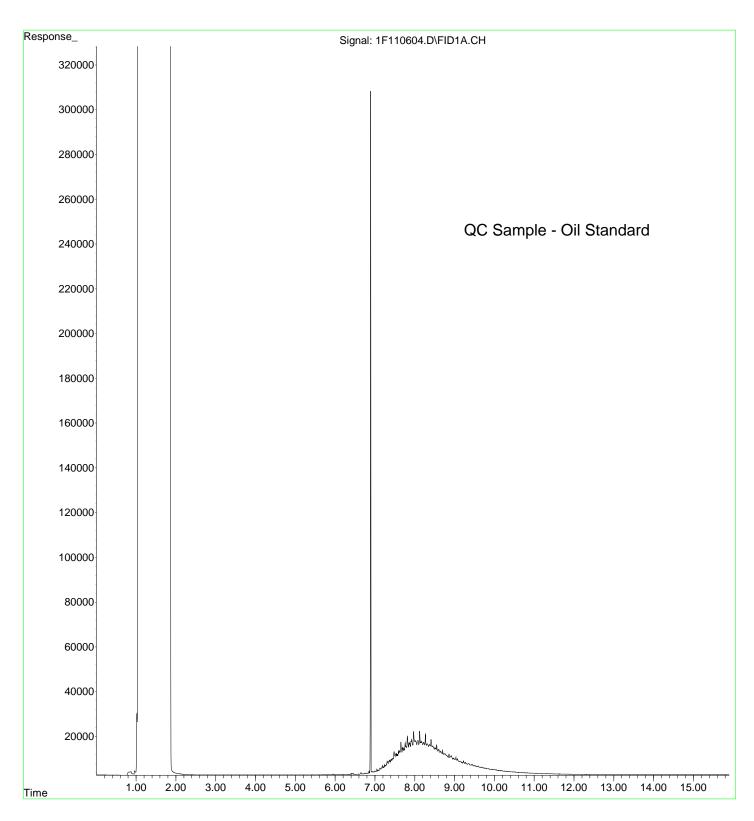
Acquired : 06 Nov 2023 17:25 using AcqMethod A1F40422. M


Instrument: HP G1530A Sample Name: 3K06065-RES1

Operator : BLL

Acquired : 06 Nov 2023 17:49 using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: 3K06065-CCV1

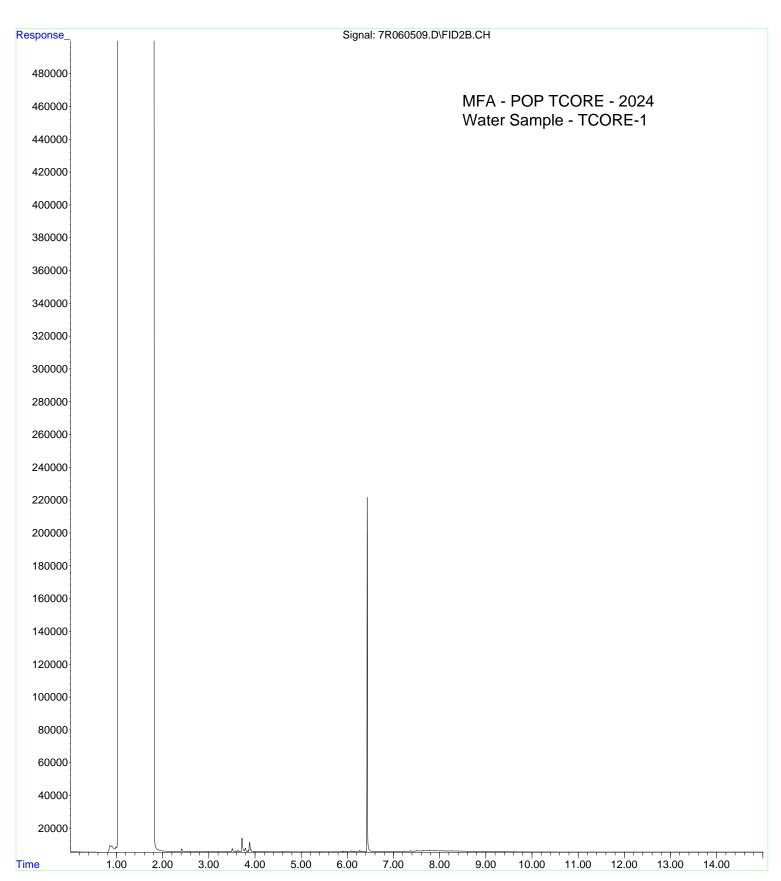


File : C: $\gcms\1\data\3K06065\1F110604$. D

Operator : BLL

Acquired : 06 Nov 2023 18:13 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 3K06065-CCV2

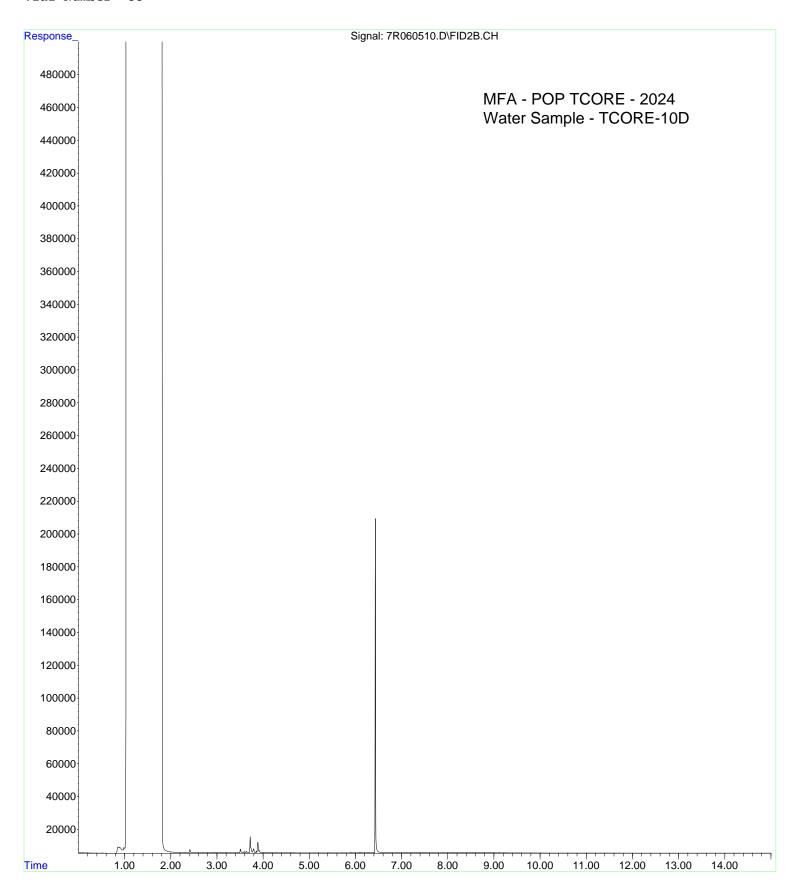


File :C:\msdchem\1\data\4F05074\7R060509.D

Operator : BLL/BJY

Acquired : 05 Jun 2024 9:06 pm using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: A4E1568-01

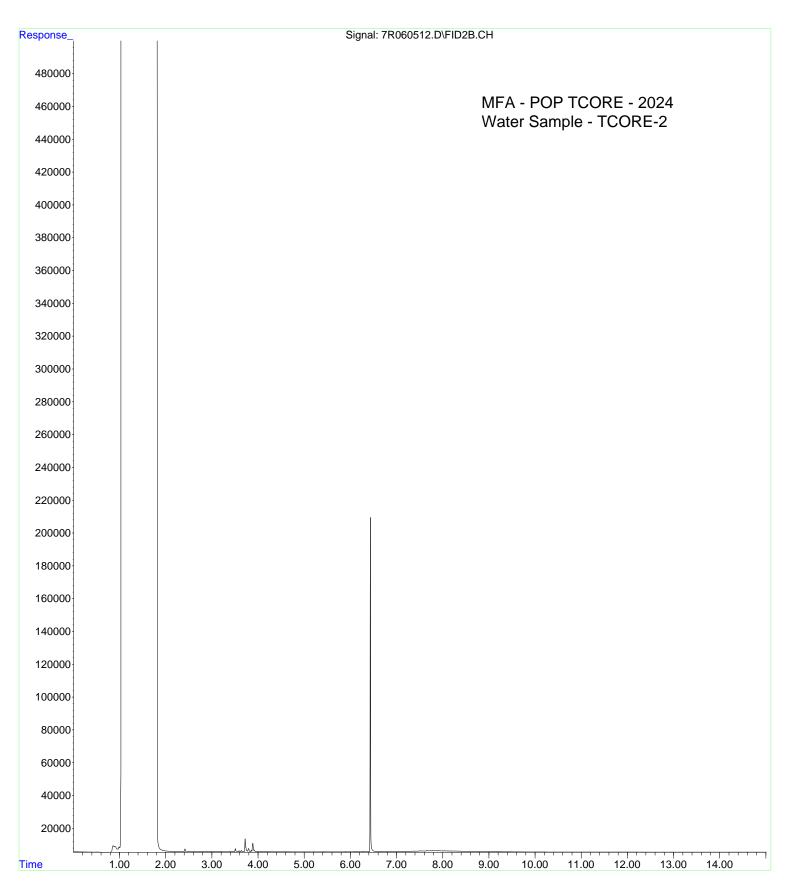


File :C:\msdchem\1\data\4F05074\7R060510.D

Operator : BLL/BJY

Acquired : 05 Jun 2024 9:27 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: A4E1568-02

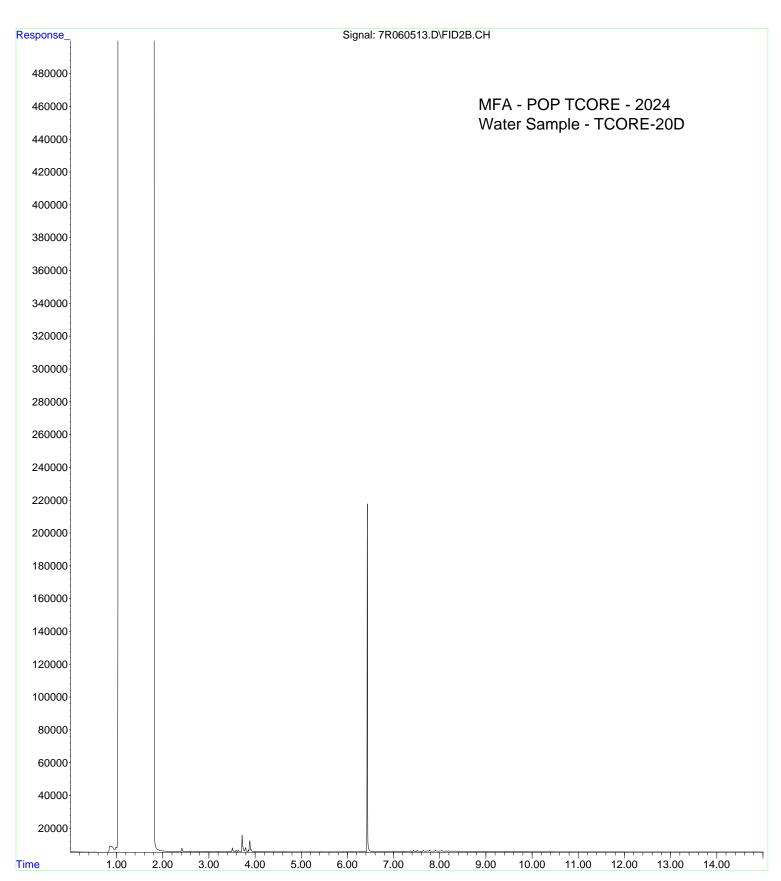


File :C:\msdchem\1\data\4F05074\7R060512.D

Operator : BLL/BJY

Acquired : 05 Jun 2024 10:09 pm using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: A4E1568-03

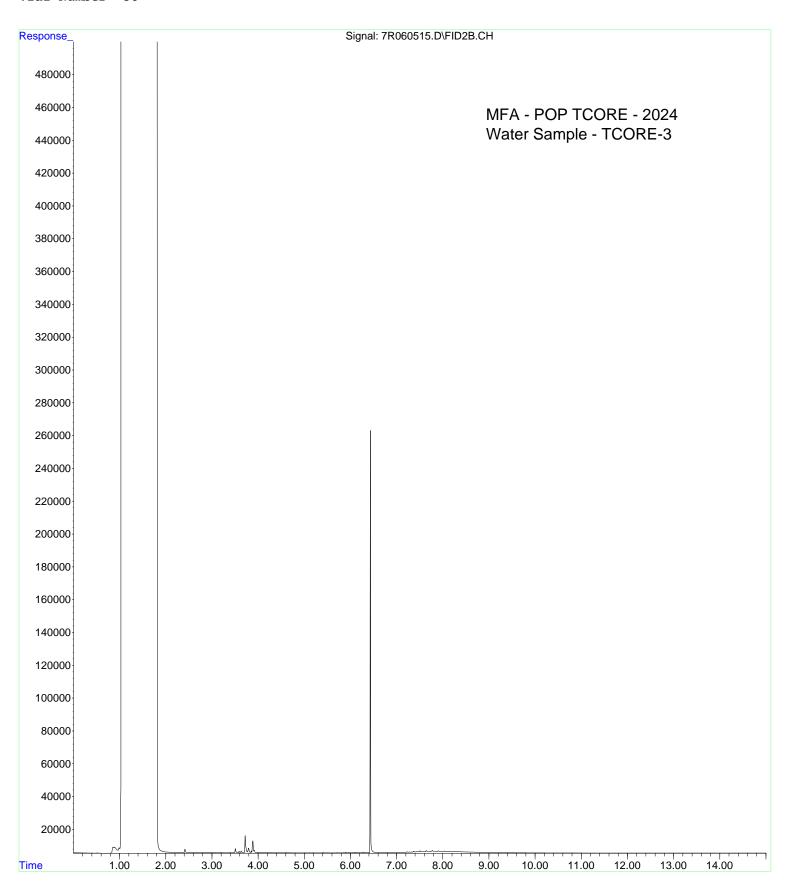


File :C:\msdchem\1\data\4F05074\7R060513.D

Operator : BLL/BJY

Acquired : 05 Jun 2024 10:29 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: A4E1568-04

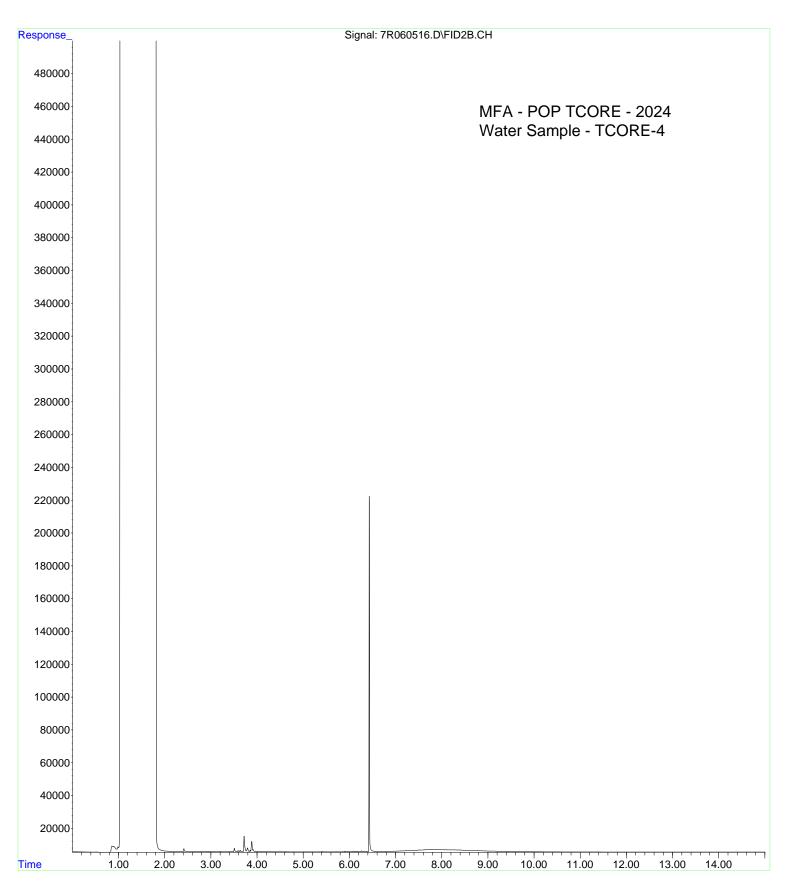


File :C:\msdchem\1\data\4F05074\7R060515.D

Operator : BLL/BJY

Acquired : 05 Jun 2024 11:11 pm using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: A4E1568-05

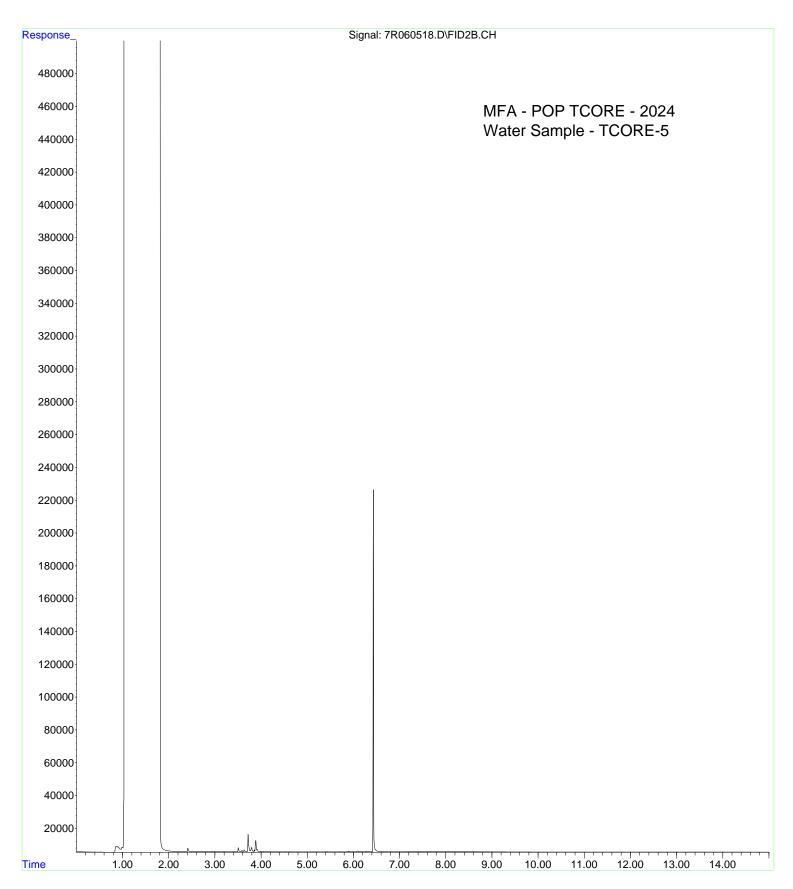


File :C:\msdchem\1\data\4F05074\7R060516.D

Operator : BLL/BJY

Acquired : 05 Jun 2024 11:31 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: A4E1568-06

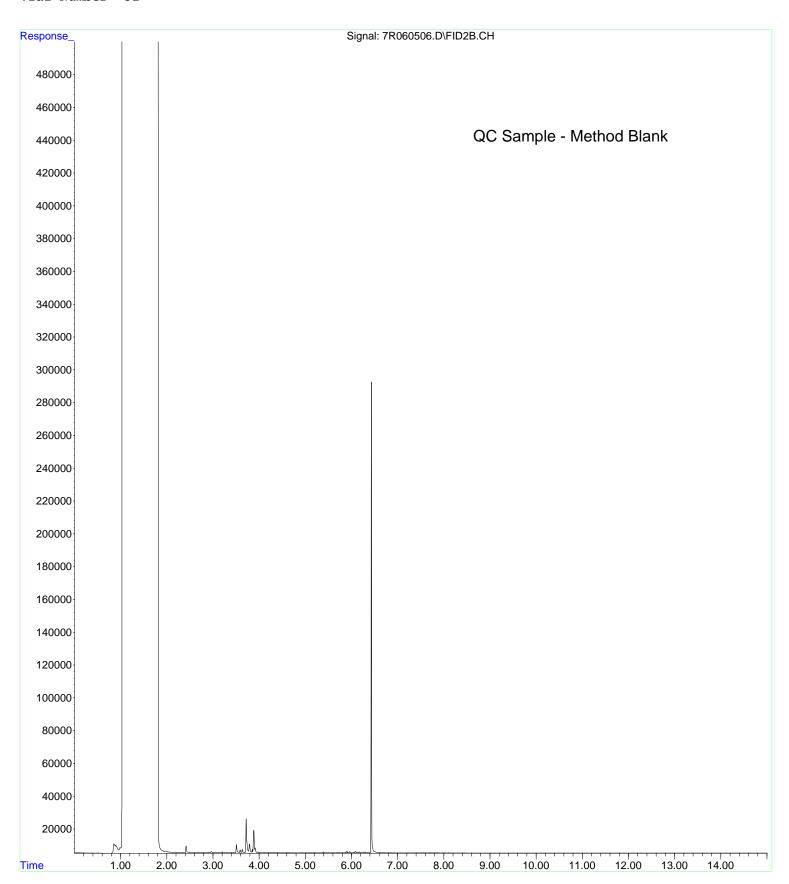


File :C:\msdchem\1\data\4F05074\7R060518.D

Operator : BLL/BJY

Acquired : 06 Jun 2024 12:13 am using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: A4E1568-07

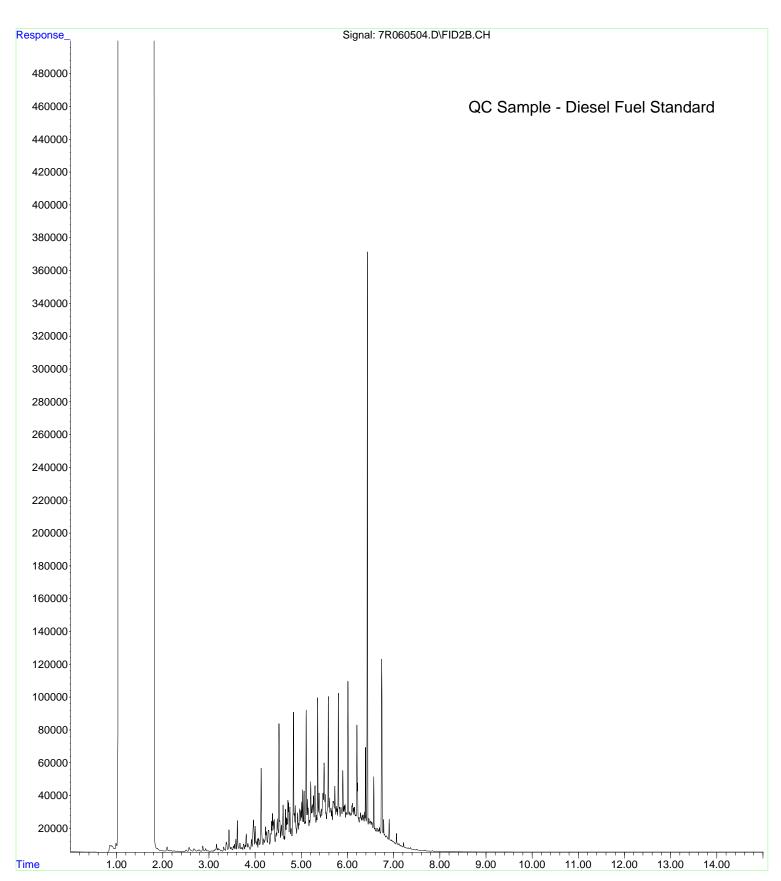


File :C:\msdchem\1\data\4F05074\7R060506.D

Operator : BLL/BJY

Acquired : 05 Jun 2024 8:04 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: 24F0114-BLK1

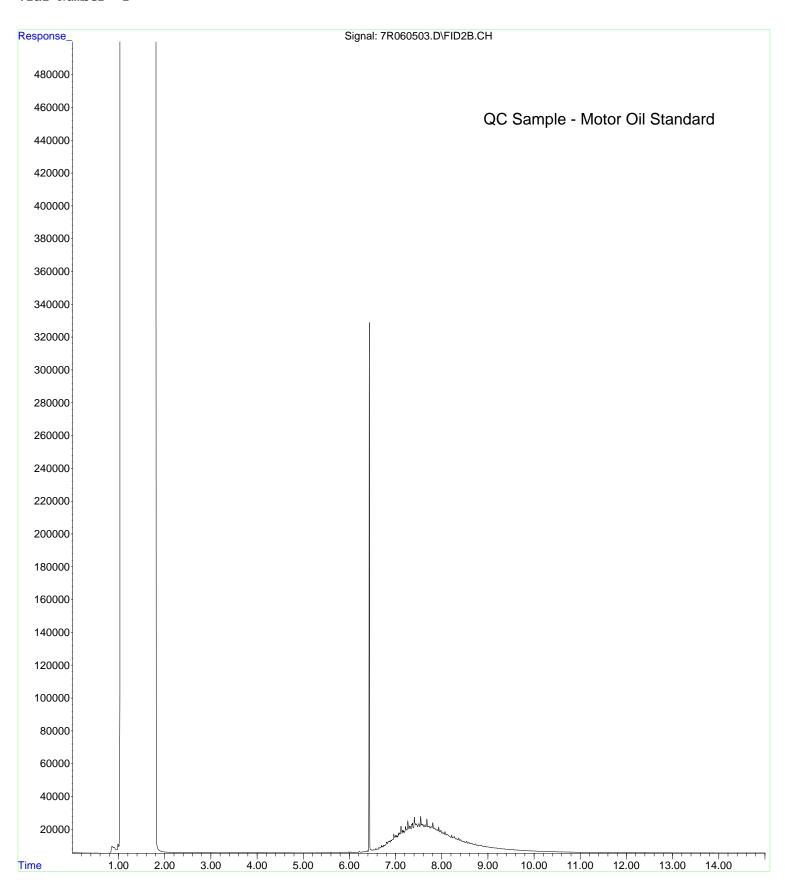


File :C:\msdchem\1\data\4F05074\7R060504.D

Operator : BLL/BJY

Acquired : 05 Jun 2024 4:14 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: 4F05074-CCV2

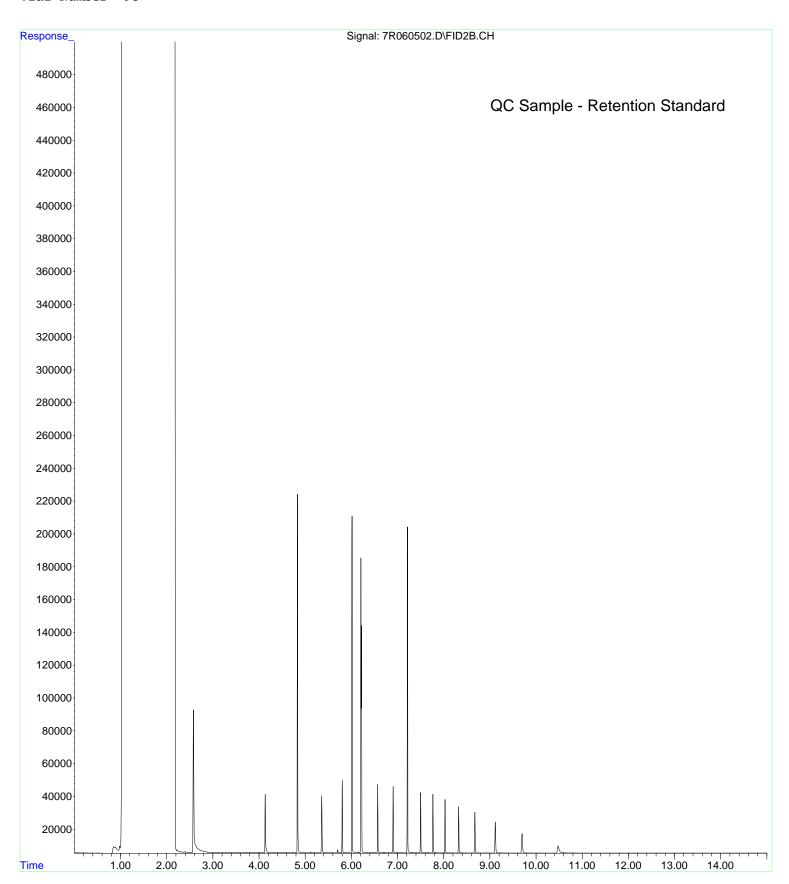


File :C:\msdchem\1\data\4F05074\7R060503.D

Operator : BLL/BJY

Acquired : 05 Jun 2024 3:53 pm using AcqMethod FID7ACQ.M

Instrument : HP G1530A
Sample Name: 4F05074-CCV1

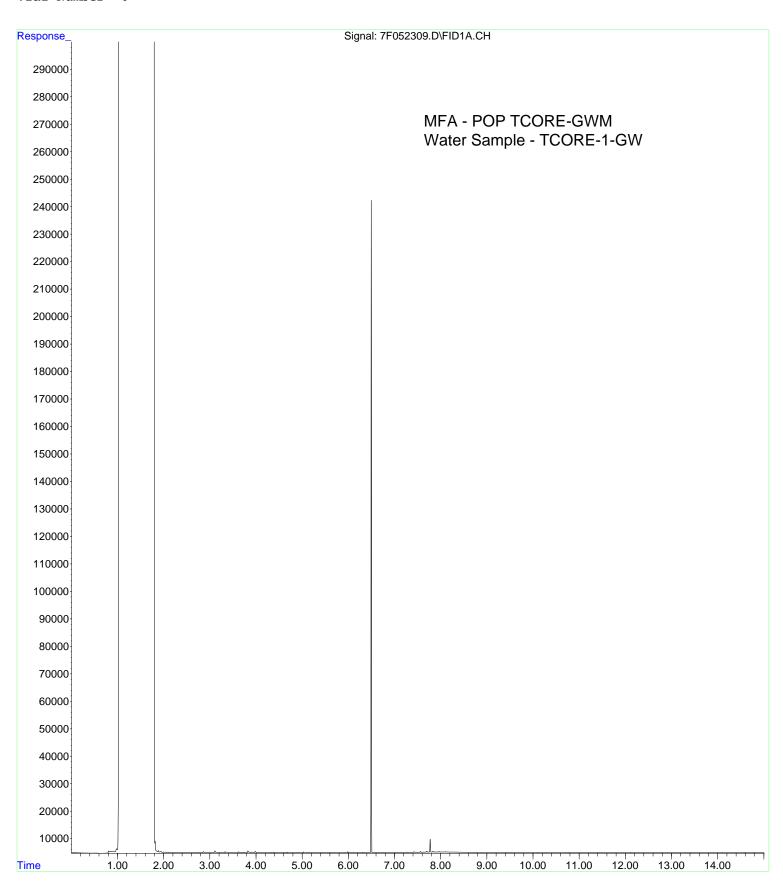


File :C:\msdchem\1\data\4F05074\7R060502.D

Operator : BLL/BJY

Acquired : 05 Jun 2024 3:33 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: 4F05074-RES1

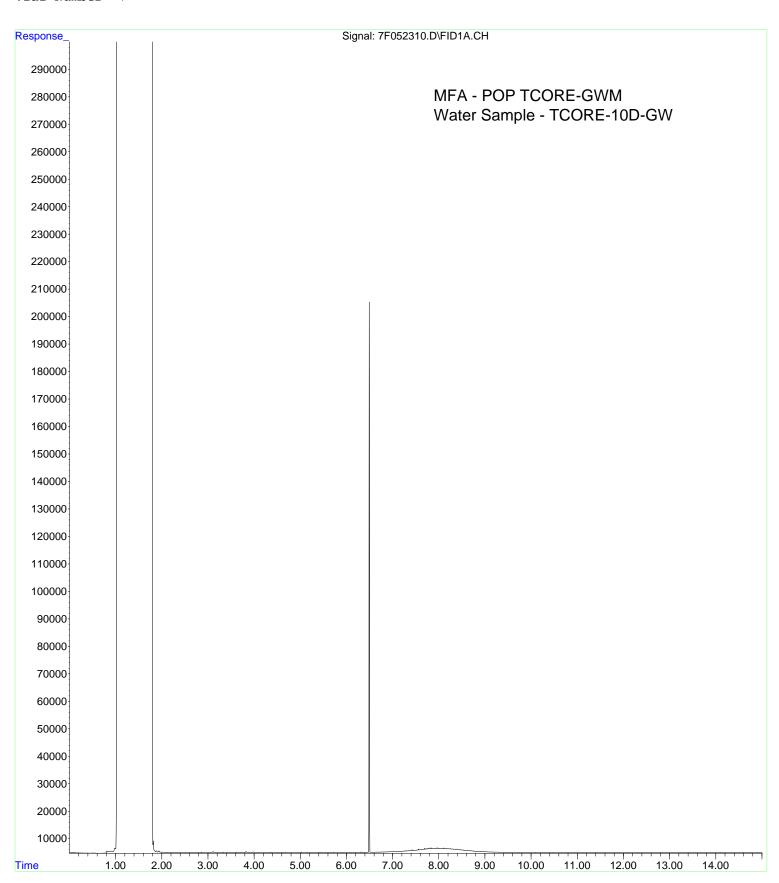


File :C:\msdchem\1\data\5E23040\7F052309.D

Operator : BLL/BJY

Acquired : 23 May 2025 8:40 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: A5E1360-01

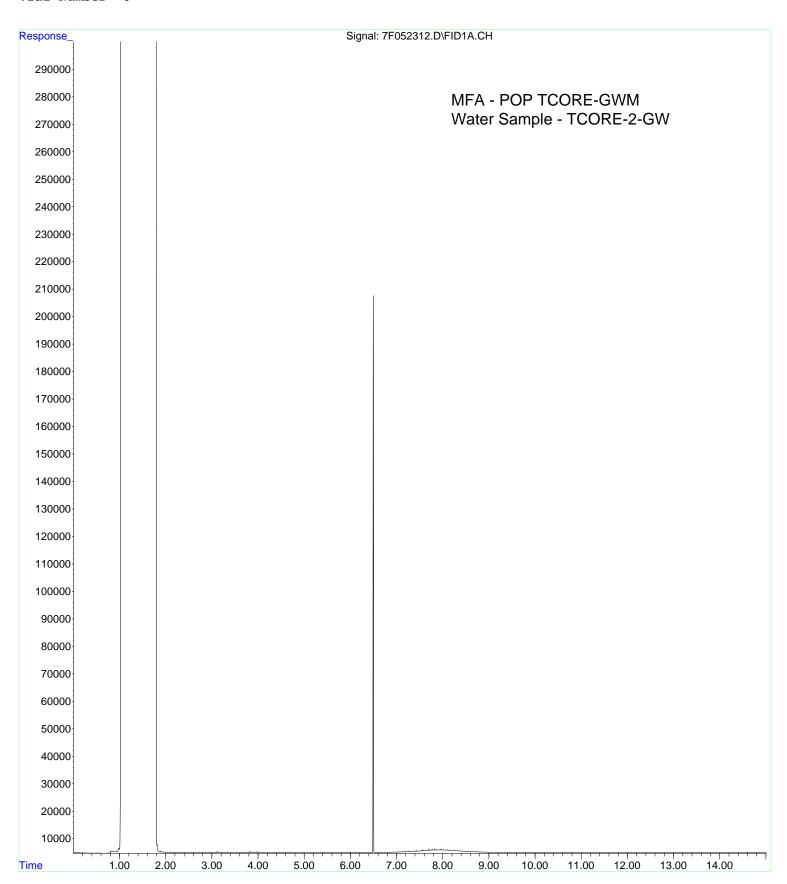


File :C:\msdchem\1\data\5E23040\7F052310.D

Operator : BLL/BJY

Acquired : 23 May 2025 9:01 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: A5E1360-02

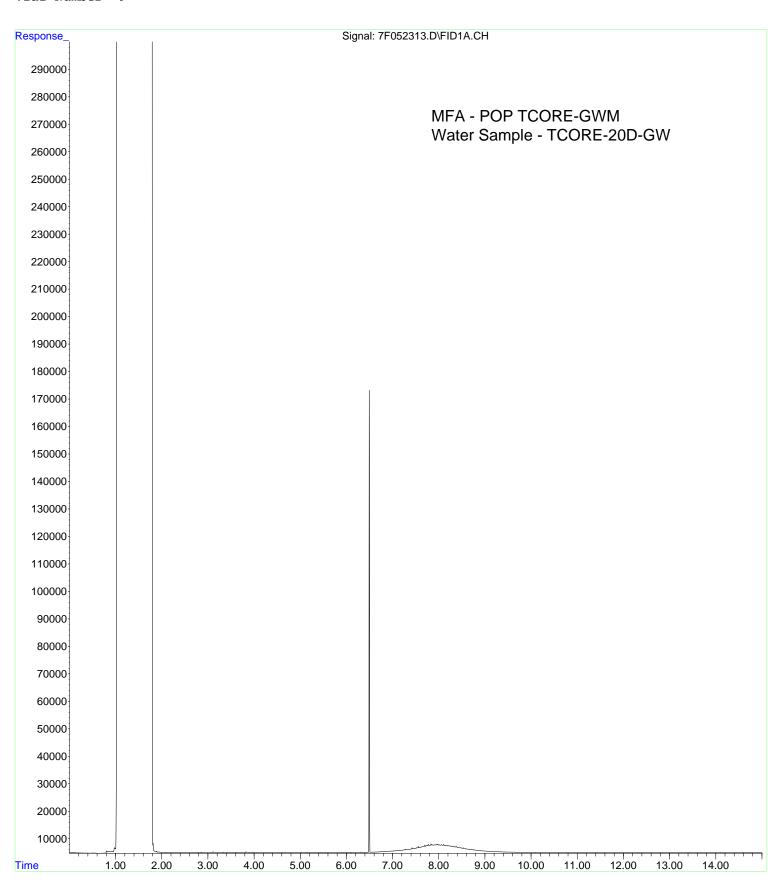


File :C:\msdchem\1\data\5E23040\7F052312.D

Operator : BLL/BJY

Acquired : 23 May 2025 9:42 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: A5E1360-03

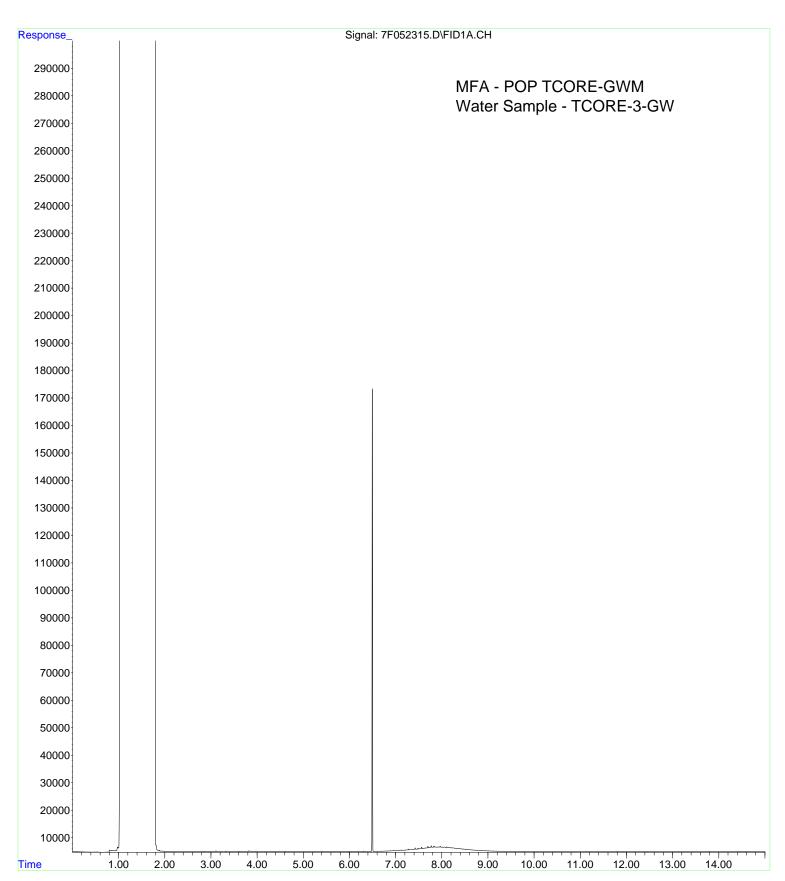


File :C:\msdchem\1\data\5E23040\7F052313.D

Operator : BLL/BJY

Acquired : 23 May 2025 10:02 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: A5E1360-04

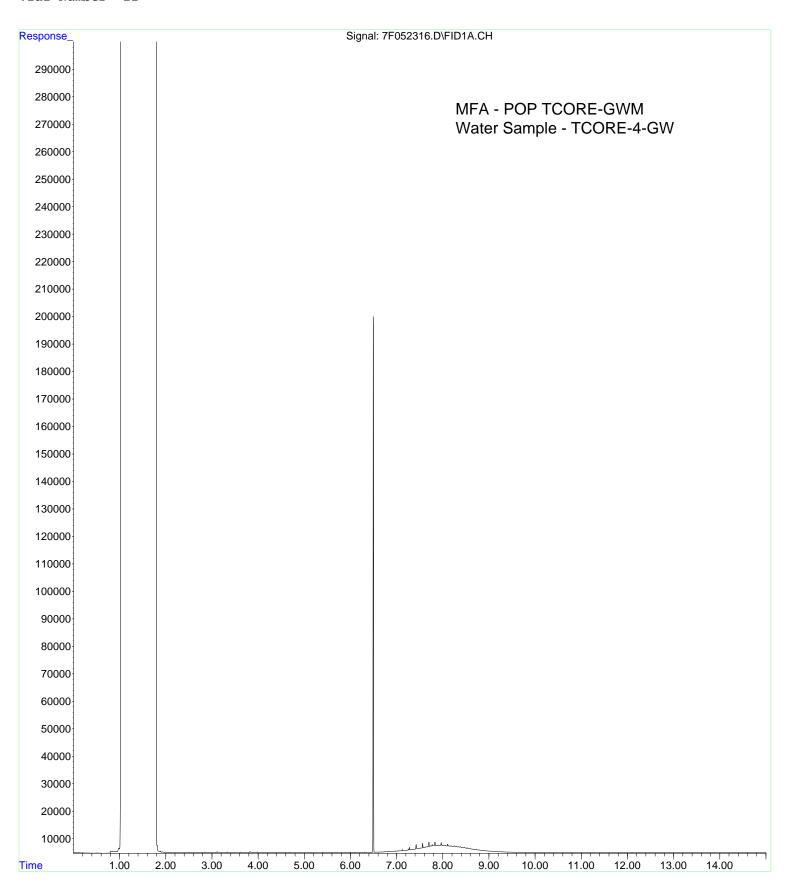


File :C:\msdchem\1\data\5E23040\7F052315.D

Operator : BLL/BJY

Acquired : 23 May 2025 10:44 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: A5E1360-05

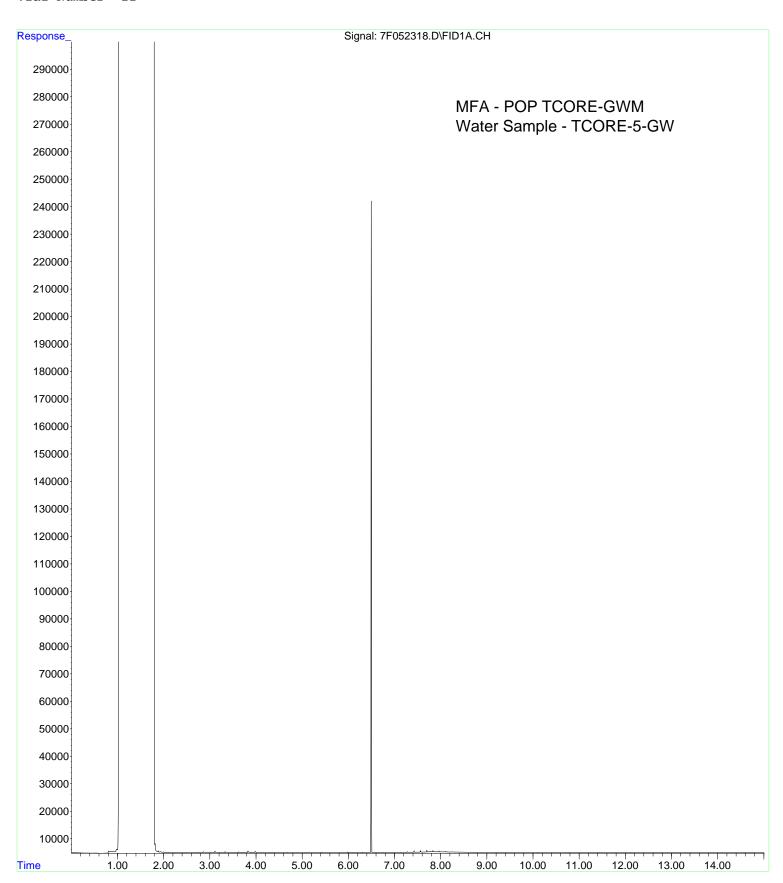


File :C:\msdchem\1\data\5E23040\7F052316.D

Operator : BLL/BJY

Acquired : 23 May 2025 11:04 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: A5E1360-06

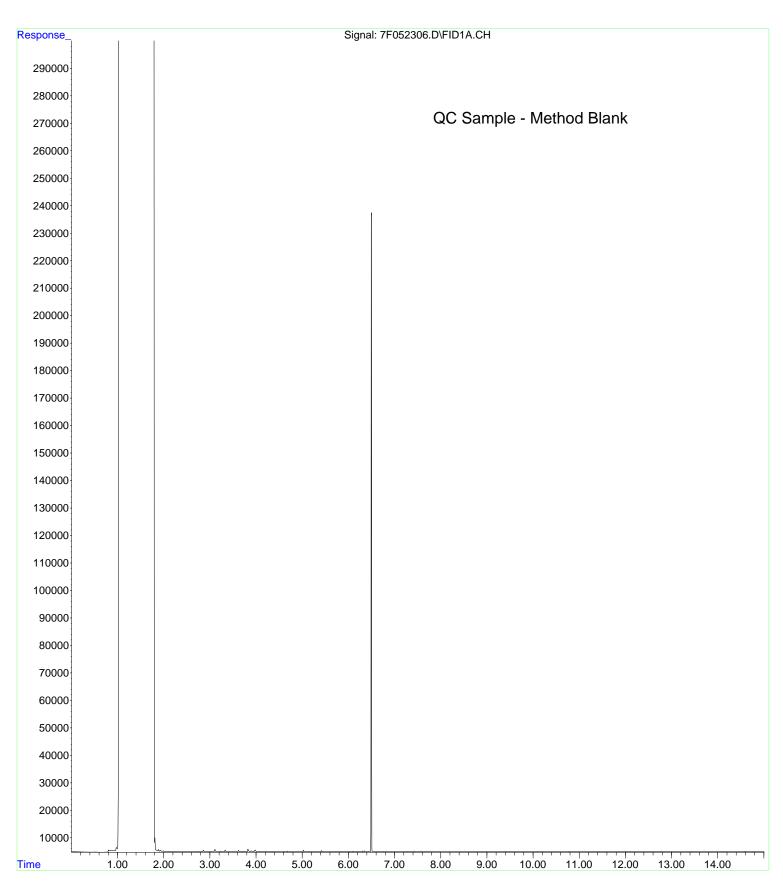


File :C:\msdchem\1\data\5E23040\7F052318.D

Operator : BLL/BJY

Acquired : 23 May 2025 11:46 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: A5E1360-07

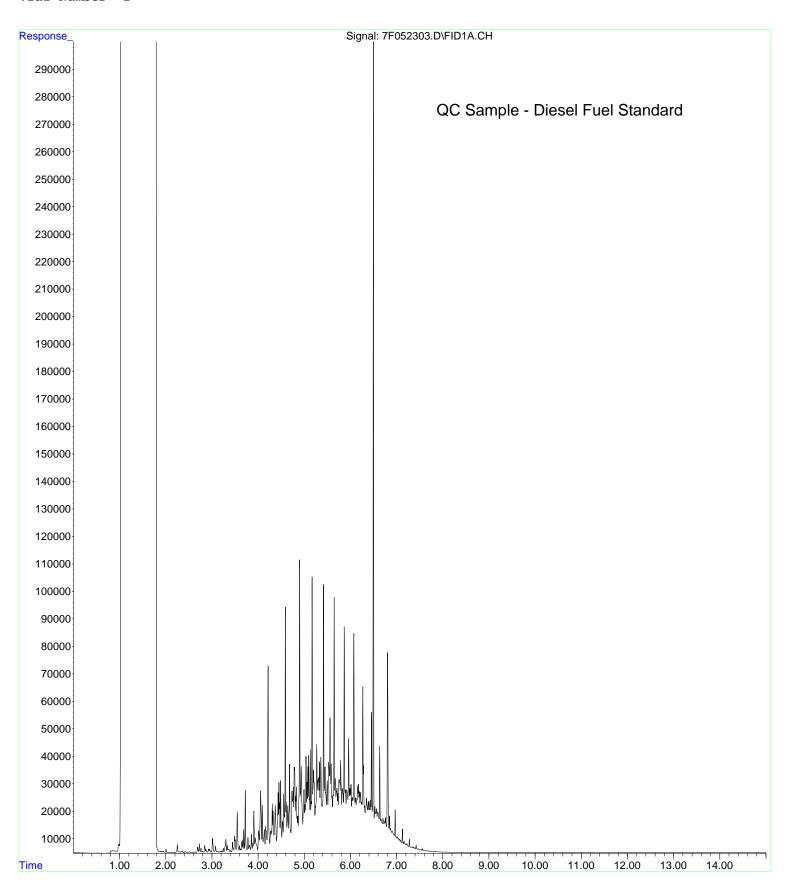


File :C:\msdchem\1\data\5E23040\7F052306.D

Operator : BLL/BJY

Acquired : 23 May 2025 7:38 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: 25E0812-BLK1

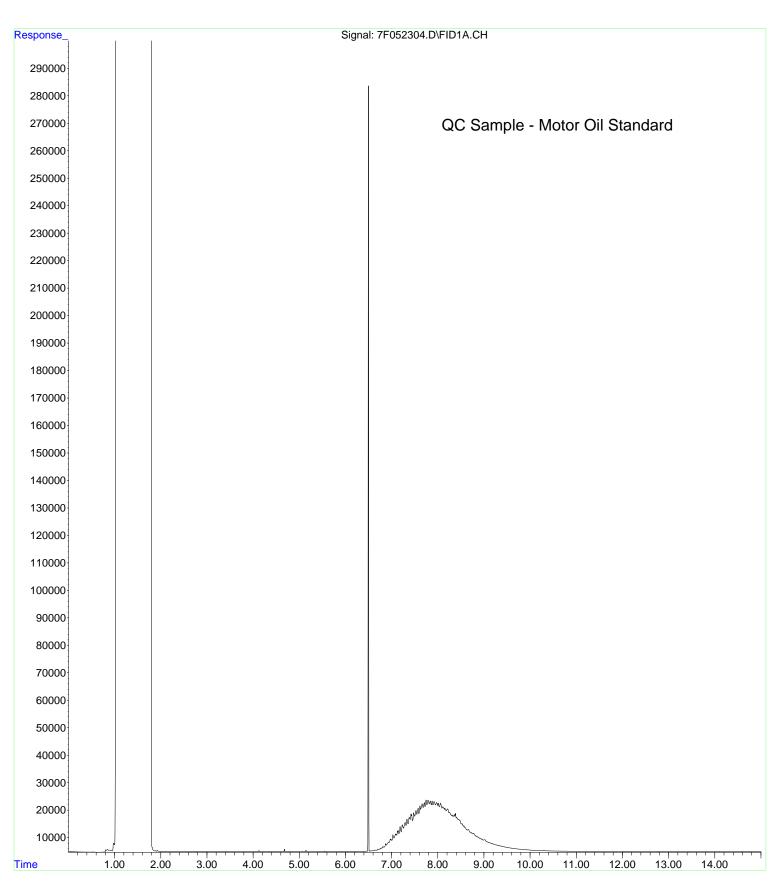


File :C:\msdchem\1\data\5E23040\7F052303.D

Operator : BLL/BJY

Acquired : 23 May 2025 5:37 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: 5E23040-CCV1

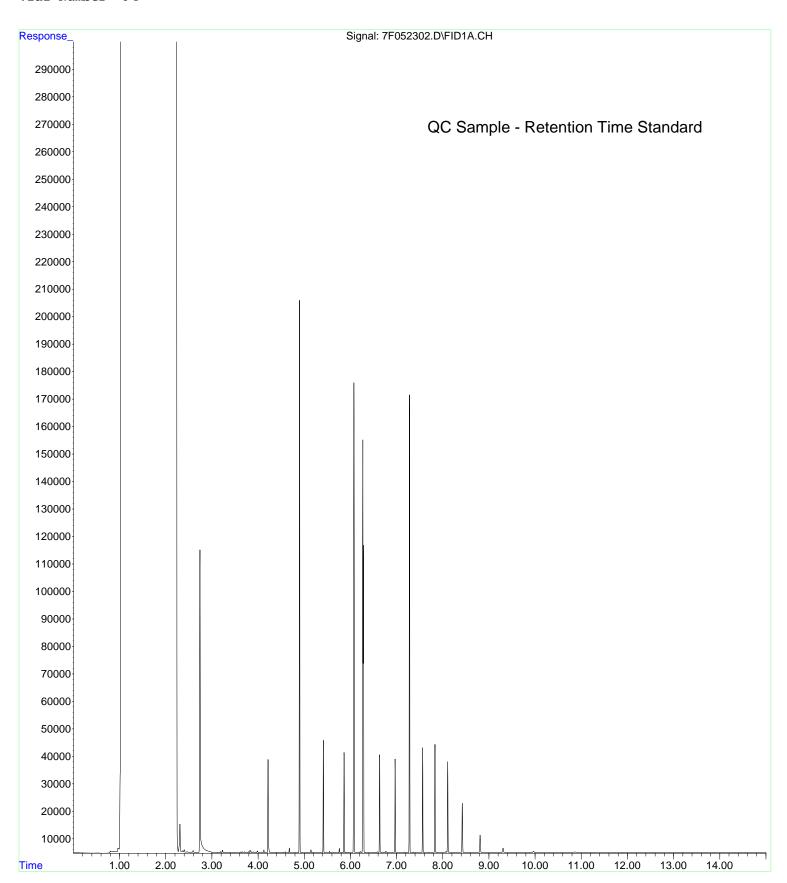


File :C:\msdchem\1\data\5E23040\7F052304.D

Operator : BLL/BJY

Acquired : 23 May 2025 5:58 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: 5E23040-CCV2



File :C:\msdchem\1\data\5E23040\7F052302.D

Operator : BLL/BJY

Acquired : 23 May 2025 5:16 pm using AcqMethod FID7ACQ.M

Instrument: HP G1530A Sample Name: 5E23040-RES1

