

This report is due twenty (20) days from the date of release. Keep a copy of this report with your facility records. 06-24-0868 DEQ Project No. NA DEQ Facility ID No. Coos Bay Battery Exchange Project Name: 1000 S Broadway, Coos Bay, Oregon Project Address: **Initial Cleanup Information** 1. Type of contamination (check $\sqrt{\text{all that apply}}$): Waste Oil Heating Oil Gasoline Diesel Other (specify) 2. Estimate quantity of release (based on information known to date, select only one): 1,000-5,000 gal. <100 gal. 100-499 gal. 500-999 gal. >5,000 gal. Site Information (check $\underline{\vee}$ yes or $\underline{\vee}$ no) Did any water enter the excavation? If yes, please describe and identify the depth to groundwater in feet below ground surface: 3.5Was a sheen or odor observed on any water in the excavation? Note: If groundwater is encountered, soil samples from the soil/water interface must be collected and analyzed for BTEX and by the appropriate TPH method. At sites where diesel or other non-gasoline products have been released, the water may also have to be screened or tested for polynuclear aromatic hydrocarbons (PAHs). Please refer to OAR 340-122-0218. 5. Was water pumped from the excavation? If yes, did groundwater recharge within 24 hours after pumping? Please describe the pumping procedure and disposal option selected for the purged excavation water: NA Were any water samples collected from the excavation? If yes, please describe. Samples were collected during geophysical survey prior to test pitting to confirm source of magnetic anomaly Have any soil and/or water sample results been received at this time? If so, please attach

any lab reports.

If groundwater has been encountered, please answer questions #8-13, below. If no water has been encountered, please skip to question #14. 8. What are the known uses of groundwater within a 500-foot radius of the release site (check $\sqrt{\text{all}}$ that apply)? agricultural drinking supply industrial non-use 9. If groundwater in this area is being used as a drinking water supply, please check $\sqrt{}$ the type and size of population served by the supply: Community (community well used for drinking water year round, select only one) size: <1,000 people 1,000 - 5,000 people >5,000 people Intermittent use (public water used for drinking water only on a part-time basis, select only one) size: <50 people 50 - 300 people > 300 people Private wells (individual private well or wells used for drinking water, select only one) <10 people 10 - 25 people >25 people size: Is there any evidence this water supply has been or is likely to be impacted from the 10. petroleum product release? If yes, estimate how difficult it would be to replace the existing supply: bottled water is the only alternative on-site water treatment; bulk water delivery; new wells are available able to connect to existing water supply do not know what alternatives would be available 11. Are/were vapors present in on-site or nearby buildings? If yes: A. Are you monitoring and/or mitigating any potential fire and safety hazards posed by vapors and free product? Explain: . B. Estimate the number of people potentially affected by vapors - ● select only one: 1-2 people 3-10 people >10 people 12. Are vapors or is petroleum contamination present in the utility corridors? If yes, please explain: 13. N Are natural areas located within 1/4 mile of the site? If so, please describe types (parks, rivers, wetlands, sensitive habitats, etc.) and proximity: Park located ~1000' to the east 14. N If groundwater was not encountered in the excavation, do you believe that this cleanup project can be conducted under the requirements for an UST Cleanup Matrix site? If yes, then refer to OAR 340-122-0305 through 0360.

Area Site	Conditions			
15. Mea	an annual rainfall: <20 inches 20-45 inches >45 inches			
16. Soil	type(s) of the naturally occurring soils, not the backfill around the tank, select only one:			
	clays, compact tills, shales, and unfractured metamorphic and igneous rocks			
	sandy loams, loamy sands, silty clays, clay loams, moderately permeable limestone, dolomite, sandstones, moderately fractured igneous and metamorphic rock			
	fine and silty sands, sands and gravels, highly fractured igneous and metamorphic rock, permeable basalts and lavas, karst limestones and dolomites			
Soil Mana	agement			
17. If so	oil sample results have been received:			
✓	Y N Will the level of contamination detected require removal of contaminated soil for treatment or disposal?			
a be	contaminated soil temporarily stockpiled on-site prior to treatment or disposal must be contained within ermed area, kept covered, and the entire area secured to prevent unauthorized access by the public. It haven't done this, please explain why:			
NA				
147 (
	a violation to stockpile petroleum contaminated soil (PCS) on-site for greater than 30 days without a Waste Letter Authorization (SWLA) Permit.			
	ontaminated soil is currently stockpiled on-site, please indicate when disposal will occur or when tment will begin: NA			
20. Esti	mated volume of contaminated soil (specify tons or cubic yards): >500 tons			
21. Inte	nded disposition of soils (select only one):			
	On-site/off-site treatment, Solid Waste Letter Authorization Permit Application attached.			
Č	Thermal treatment off-site at an authorized facility. Facility name:			
•	Landfill disposal. Landfill name: Coffin Butte or similar			
	se attach additional information as necessary to explain any unusual circumstances with this project.			

Page 3 of 4 Last Updated: 7/2/2024

This initial report is intended to provide the Department with the basic initial information about activities associated with the release. Future reports should provide a more detailed and complete picture of the cleanup project.

Please be aware that a DEQ permit/authorization is required for the following activities:

- 1) Soil aeration, bioremediation (on-site or off-site), or on-site thermal treatment.
- 2) Water discharges to a stream/storm drain from the excavation or treatment tank.

If these activities will be included in your cleanup project, contact the <u>regional DEQ office</u> for the appropriate application forms, information on permit fees and guidance documents.

rnis report	was prepared by:				
Individual:	Lynn D. Green	Date:	13 Jan. :	2025	
	EVREN Northwest, Inc.		503-452		
. ,	PO Box 14488				
City:	Portland	State:	OR	Zip: 97293	
,					

- Return this form to the regional office in which the site is located or by emailing info.lust@deq.oregon.gov.
- For all tanks, except heating oil tanks, you must submit an <u>UST Decommissioning Checklist and Site Assessment Report</u> to the appropriate regional office within 30 days of the UST decommissioning. Failure to do so can result in delays to your project and may result in continued bulling for the annual tank permit fees.
- 3. Copies of the LUST Cleanup Manual and other guidance can be viewed and downloaded from the Leaking Underground Storage Tank Cleanup Guidance web page.
- 4. For Program assistance Contact the DEQ regional office.

Translation or other formats

<u>Español</u> | 한국어 | 繁體中文 | <u>Pyccкий</u> | <u>Tiếng Việt</u> | <u>Munure</u> 800-452-4011 | TTY: 711 | <u>deqinfo@deq.oregon.gov</u>

Non-discrimination statement

DEQ does not discriminate on the basis of race, color, national origin, disability, age or sex in administration of its programs or activities. Visit DEQ's <u>Civil Rights and Environmental Justice page.</u>

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

November 4, 2024

Lynn Green, Project Manager Evren Northwest, Inc. PO Box 14488 Portland, OR 97293

Dear Mr Green:

Included are the results from the testing of material submitted on October 18, 2024 from the 1337-23001-02, F&BI 410367 project. There are 19 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl **Project Manager**

Enclosures

c: Neil Woller, Paul Trone, Evan Bruggeman

ENW1104R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 18, 2024 by Friedman & Bruya, Inc. from the Evren Northwest 1337-23001-02, F&BI 410367 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Evren Northwest
410367 -01	TC-MA03-241014
410367 -02	TC-MA04-241014

The 8260D calibration standard did not meet the acceptance criteria for several analytes. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/24 Date Received: 10/18/24

Project: 1337-23001-02, F&BI 410367

Date Extracted: 10/18/24

Date Analyzed: 10/21/24 and 10/22/24

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
TC-MA03-241014 410367-01 1/5	31,000	116
TC-MA04-241014 410367-02 1/10	5,200	116
Method Blank 04-2423 MB	<100	104

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/24 Date Received: 10/18/24

Project: 1337-23001-02, F&BI 410367

Date Extracted: 10/21/24 Date Analyzed: 10/21/24

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND RESIDUAL RANGE USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(\text{C}_{10}\text{-C}_{25})}$	$\frac{\text{Residual Range}}{(\text{C}_{25}\text{-C}_{36})}$	Surrogate (% Recovery) (Limit 50-150)
TC-MA03-241014 410367-01	8,300 x	380 x	ip
TC-MA04-241014 410367-02	24,000 x	940 x	68
Method Blank 04-2575 MB	<50	<250	85

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	TC-MA03-241014	Client:	Evren Northwest
-------------------	----------------	---------	-----------------

Date Received: 10/18/24 Project: 1337-23001-02, F&BI 410367

Lab ID: Date Extracted: 410367-01 1/100 10/24/24 Date Analyzed: 10/24/24 Data File: 102438.DMatrix: Instrument: GCMS13 Water Units: ug/L (ppb) Operator: IJL

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	112	71	132
Toluene-d8	102	68	139
4-Bromofluorobenzene	101	62	136

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<100 ca	1,3-Dichloropropane	<100
Chloromethane	<1,000	Tetrachloroethene	<5 j
Vinyl chloride	<2	Dibromochloromethane	<50
Bromomethane	< 500	1,2-Dibromoethane (EDB)	<1
Chloroethane	<100	Chlorobenzene	<100
Trichlorofluoromethane	<100	Ethylbenzene	650
Acetone	<5,000 ca	1,1,1,2-Tetrachloroethane	<100
1,1-Dichloroethene	<100	m,p-Xylene	680
Hexane	< 500	o-Xylene	240
Methylene chloride	< 500	Styrene	<100
Methyl t-butyl ether (MTBE)	<100	Isopropylbenzene	130
trans-1,2-Dichloroethene	<100	Bromoform	< 500
1,1-Dichloroethane	<100	n-Propylbenzene	350
2,2-Dichloropropane	<100	Bromobenzene	<100
cis-1,2-Dichloroethene	<100	1,3,5-Trimethylbenzene	<100
Chloroform	<100 ca	1,1,2,2-Tetrachloroethane	<20
2-Butanone (MEK)	<2,000 ca	1,2,3-Trichloropropane	<100
1,2-Dichloroethane (EDC)	<20 ca	2-Chlorotoluene	<100
1,1,1-Trichloroethane	<100	4-Chlorotoluene	<100
1,1-Dichloropropene	<100	tert-Butylbenzene	<100
Carbon tetrachloride	< 50	1,2,4-Trimethylbenzene	310
Benzene	880	sec-Butylbenzene	<100
Trichloroethene	< 50	p-Isopropyltoluene	<100
1,2-Dichloropropane	<100	1,3-Dichlorobenzene	<100
Bromodichloromethane	< 50	1,4-Dichlorobenzene	<100
Dibromomethane	<100	1,2-Dichlorobenzene	<100
4-Methyl-2-pentanone	<1,000	1,2-Dibromo-3-chloropropane	<1,000
cis-1,3-Dichloropropene	<40	1,2,4-Trichlorobenzene	<100
Toluene	820	Hexachlorobutadiene	< 50
trans-1,3-Dichloropropene	<40	Naphthalene	260
1,1,2-Trichloroethane	< 50	1,2,3-Trichlorobenzene	<100
2-Hexanone	<1,000 ca		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID: TC-MA04-241014 Cl	Client: E	Evren Northwest
-------------------------------------	-----------	-----------------

Project: 1337-23001-02, F&BI 410367 Date Received: 10/18/24Lab ID: Date Extracted: 410367-02 10/24/24 Date Analyzed: 10/24/24 Data File: 102436.DMatrix: Water Instrument: GCMS13

Units: ug/L (ppb) Operator: IJL

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	112	71	132
Toluene-d8	109	68	139
4-Bromofluorobenzene	108	62	136

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1 ca	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	< 0.01
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	1.1
Acetone	<50 ca	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	28
Chloroform	<1 ca	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20 ca	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	$0.26 \mathrm{\ ca}$	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	22
Benzene	0.42	sec-Butylbenzene	1.1
Trichloroethene	< 0.5	p-Isopropyltoluene	3.3
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	5.9
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10 ca		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D Dual Acquisition

Client Sample ID:	Method Blank	Client:	Evren Northwest
-------------------	--------------	---------	-----------------

 Date Received:
 Not Applicable
 Project:
 1337-23001-02, F&BI 410367

 Date Extracted:
 10/24/24
 Lab ID:
 04-2600 mb

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	109	71	132
Toluene-d8	100	68	139
4-Bromofluorobenzene	102	62	136

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1 ca	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<0.05 j
Vinyl chloride	< 0.02	Dibromochloromethane	< 0.5
Bromomethane	<5	1,2-Dibromoethane (EDB)	< 0.01
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<50 ca	1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<5	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<5
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1 ca	1,1,2,2-Tetrachloroethane	< 0.2
2-Butanone (MEK)	<20 ca	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<0.2 ca	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	< 0.5	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	< 0.4	1,2,4-Trichlorobenzene	<1
Toluene	<1	Hexachlorobutadiene	< 0.5
trans-1,3-Dichloropropene	< 0.4	Naphthalene	<1
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	<1
2-Hexanone	<10 ca		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	TC-MA03-241014	Client:	Evren Northwest
Date Received:	10/18/24	Project:	1337-23001-02, F&BI 410367

10/18/24 Date Extracted: 10/22/24 Lab ID: 410367-01 1/7.2 Date Analyzed: 10/23/24 Data File: 102319.DGCMS12 Matrix: Water Instrument: Units: ug/L (ppb) VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Nitrobenzene-d5	67	11	173
2-Fluorobiphenyl	71	25	128
2,4,6-Tribromophenol	104	10	140
Terphenyl-d14	89	50	150

< 0.14

< 0.14

< 0.14

0.060 j

Concentration Compounds: ug/L (ppb) Naphthalene 43 2-Methylnaphthalene 26 1-Methylnaphthalene 29 Acenaphthylene < 0.14 Acenaphthene < 0.14 Fluorene 0.33Phenanthrene < 0.7 Anthracene < 0.14 Fluoranthene 0.32 Pyrene 0.45Benz(a)anthracene 0.17Chrysene 0.15Benzo(a)pyrene 0.15Benzo(b)fluoranthene 0.19

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Benzo(g,h,i)perylene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	TC-MA04-241014	Client:	Evren Northwest
Date Received:	10/18/24	Project:	1337-23001-02, F&BI 410367
Date Extracted:	10/23/24	Lab ID:	410367-02 1/6.25
Date Analyzed:	10/23/24	Data File:	102317.D
		_	0.0==0

Matrix: Water Instrument: GCMS12
Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Nitrobenzene-d5	84	11	173
2-Fluorobiphenyl	84	25	128
2,4,6-Tribromophenol	47	10	140
Terphenyl-d14	106	50	150

1 er piletryr-u 14	100
Compounds:	Concentration ug/L (ppb)
Naphthalene	<1.2
2-Methylnaphthalene	<1.2
1-Methylnaphthalene	<1.2
Acenaphthylene	< 0.12
Acenaphthene	< 0.12
Fluorene	< 0.12
Phenanthrene	< 0.6
Anthracene	< 0.12
Fluoranthene	< 0.12
Pyrene	< 0.12
Benz(a)anthracene	< 0.12
Chrysene	< 0.12
Benzo(a)pyrene	<0.038 j
Benzo(b)fluoranthene	< 0.12
Benzo(k)fluoranthene	< 0.12
Indeno(1,2,3-cd)pyrene	< 0.12
Dibenz(a,h)anthracene	<0.05 j
Benzo(g,h,i)perylene	< 0.12

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID:	Method Blank	Client:	Evren Northwest
D D 1	37		

Date Received: Not Applicable Project: 1337-23001-02, F&BI 410367

Date Extracted: 10/23/24 Lab ID: 04-2592 mb3 1/0.5

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Nitrobenzene-d5	68	11	173
2-Fluorobiphenyl	75	25	128
2,4,6-Tribromophenol	50	10	140
Terphenyl-d14	83	50	150

Concentration

Compounds:	ug/L (ppb)
Naphthalene	< 0.1
2-Methylnaphthalene	< 0.1
1-Methylnaphthalene	< 0.1
Acenaphthylene	< 0.01
Acenaphthene	< 0.01
Fluorene	< 0.01
Phenanthrene	< 0.05
Anthracene	< 0.01
Fluoranthene	< 0.01
Pyrene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	<0.003 j
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	<0.004 j
Benzo(g,h,i)perylene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	TC-MA03-241014	Client:	Evren Northwest
-------------------	----------------	---------	-----------------

Date Received: 10/18/24 Project: 1337-23001-02, F&BI 410367

Lab ID: Date Extracted: 10/22/24 410367-01 1/2.5 Date Analyzed: 10/23/24 Data File: 102323.DMatrix: Water Instrument: GC12 Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Tetrachlorometaxylene	18 ip	24	79
Decachlorobiphenyl	23 ip	12	82

< 0.25

Concentration Compounds: ug/L (ppb) Aroclor 1221 < 0.25 Aroclor 1232 < 0.25 Aroclor 1016 < 0.25 Aroclor 1242< 0.25 Aroclor 1248 < 0.25 Aroclor 1254 < 0.25 Aroclor 1260 < 0.25 Aroclor 1262< 0.25

Aroclor 1268

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	TC-MA04-241014	Client:	Evren Northwest
-------------------	----------------	---------	-----------------

Date Received: 10/18/24 Project: 1337-23001-02, F&BI 410367

Lab ID: Date Extracted: 10/22/24 410367-02 1/2.5 Date Analyzed: 10/24/24 Data File: 102413.DMatrix: Water Instrument: GC12 Units: ug/L (ppb) VMOperator:

Concentration

	Concentration
Compounds:	ug/L (ppb)
Aroclor 1221	< 0.25
Aroclor 1232	< 0.25
Aroclor 1016	< 0.25
Aroclor 1242	< 0.25
Aroclor 1248	< 0.25
Aroclor 1254	< 0.25
Aroclor 1260	< 0.25
Aroclor 1262	< 0.25
Aroclor 1268	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082A

Client Sample ID:	Method Blank	Client:	Evren Northwest
-------------------	--------------	---------	-----------------

Date Received: Not Applicable Project: 1337-23001-02, F&BI 410367

Lab ID: Date Extracted: 10/22/24 04-2585 mbDate Analyzed: 10/23/24 Data File: 102318.DMatrix: Water Instrument: GC12 Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Tetrachlorometaxylene	54	24	79
Decachlorobiphenyl	60	12	82

$\begin{array}{c} \text{Concentration} \\ \text{Compounds:} & \text{ug/L (ppb)} \\ \text{Aroclor 1221} & <0.1 \\ \text{Aroclor 1232} & <0.1 \\ \end{array}$

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/24 Date Received: 10/18/24

Project: 1337-23001-02, F&BI 410367

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 410322-12 (Duplicate)

	Reporting	Sample	Duplicate	RPD	
Analyte	Units	Result	Result	(Limit 20)	
Gasoline	ug/L (ppb)	<100	<100	nm	_

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	_
Gasoline	ug/L (ppb)	1,000	91	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/24 Date Received: 10/18/24

Project: 1337-23001-02, F&BI 410367

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	100	116	65-151	15

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/24 Date Received: 10/18/24

Project: 1337-23001-02, F&BI 410367

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 410371-49 (Matrix Spike)

Laboratory Code. 410371-49 (Ma	itiix Spike)			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	10	<1	84	27-164
Chloromethane	ug/L (ppb)	10	<10	115	34-141
Vinyl chloride	ug/L (ppb)	10	< 0.02	109	16-176
Bromomethane	ug/L (ppb)	10	<5	97	10-193
Chloroethane	ug/L (ppb)	10	<1	97	50-150
Trichlorofluoromethane	ug/L (ppb)	10	<1	89	50-150
Acetone	ug/L (ppb)	50	<50	48	15-179
1,1-Dichloroethene	ug/L (ppb)	10	<1	101	50-150
Hexane	ug/L (ppb)	10	<5	92	49-161
Methylene chloride	ug/L (ppb)	10	<5	102	40-143
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	<1	96	50-150
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	99	50-150
1,1-Dichloroethane	ug/L (ppb)	10 10	<1	99	50-150
2,2-Dichloropropane	ug/L (ppb)		<1	86	62-152
cis-1,2-Dichloroethene Chloroform	ug/L (ppb)	10 10	<1 1.4	101 91	50-150 50-150
	ug/L (ppb)	50	<20		
2-Butanone (MEK)	ug/L (ppb)	50 10	<0.2	55 89	34-168
1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane	ug/L (ppb)	10	<0.2 <1	89 93	50-150 50-150
1,1-Dichloropropene	ug/L (ppb)	10	<1	95 95	50-150
Carbon tetrachloride	ug/L (ppb)	10	<0.5	95 91	50-150
Benzene	ug/L (ppb) ug/L (ppb)	10	< 0.35	101	50-150
Trichloroethene	ug/L (ppb)	10	< 0.5	97	43-133
1,2-Dichloropropane	ug/L (ppb)	10	<1	99	50-150
Bromodichloromethane	ug/L (ppb)	10	< 0.5	96	50-150
Dibromomethane	ug/L (ppb) ug/L (ppb)	10	<1	98	50-150
4-Methyl-2-pentanone	ug/L (ppb)	50	<10	103	50-150
cis-1,3-Dichloropropene	ug/L (ppb)	10	< 0.4	96	48-145
Toluene	ug/L (ppb)	10	<1	94	50-150
trans-1,3-Dichloropropene	ug/L (ppb)	10	<0.4	88	37-152
1.1.2-Trichloroethane	ug/L (ppb)	10	< 0.5	94	50-150
2-Hexanone	ug/L (ppb)	50	<10	70	50-150
1,3-Dichloropropane	ug/L (ppb)	10	<1	96	50-150
Tetrachloroethene	ug/L (ppb)	10	<1	93	50-150
Dibromochloromethane	ug/L (ppb)	10	< 0.5	92	33-164
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	< 0.01	98	50-150
Chlorobenzene	ug/L (ppb)	10	<1	99	50-150
Ethylbenzene	ug/L (ppb)	10	<1	95	50-150
1,1,1,2-Tetrachloroethane	ug/L (ppb)	10	<1	97	50-150
m,p-Xylene	ug/L (ppb)	20	<2	96	50-150
o-Xylene	ug/L (ppb)	10	<1	96	50-150
Styrene	ug/L (ppb)	10	<1	94	50-150
Isopropylbenzene	ug/L (ppb)	10	<1	94	50-150
Bromoform	ug/L (ppb)	10	<5	91	23-161
n-Propylbenzene	ug/L (ppb)	10	<1	101	50-150
Bromobenzene	ug/L (ppb)	10	<1	102	50-150
1,3,5-Trimethylbenzene	ug/L (ppb)	10	<1	103	50-150
1,1,2,2-Tetrachloroethane	ug/L (ppb)	10	< 0.2	112	57-162
1,2,3-Trichloropropane	ug/L (ppb)	10	<1	99	33-151
2-Chlorotoluene	ug/L (ppb)	10	<1	102	50-150
4-Chlorotoluene	ug/L (ppb)	10	<1	99	50-150
tert-Butylbenzene	ug/L (ppb)	10	<1	102	50-150
1,2,4-Trimethylbenzene	ug/L (ppb)	10	<1	104	50-150
sec-Butylbenzene	ug/L (ppb)	10	<1	101	46-139
p-Isopropyltoluene	ug/L (ppb)	10	<1	103	46-140
1,3-Dichlorobenzene	ug/L (ppb)	10	<1	103	50-150
1,4-Dichlorobenzene	ug/L (ppb)	10	<1	103	50-150
1,2-Dichlorobenzene	ug/L (ppb)	10	<1	102	50-150
1,2-Dibromo-3-chloropropane	ug/L (ppb)	10	<10	104	50-150
1,2,4-Trichlorobenzene	ug/L (ppb)	10	<1	102	50-150
Hexachlorobutadiene	ug/L (ppb)	10	< 0.5	91	42-150
Naphthalene	ug/L (ppb)	10	<1	111	50-150
1,2,3-Trichlorobenzene	ug/L (ppb)	10	<1	106	44-155

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/24 Date Received: 10/18/24

Project: 1337-23001-02, F&BI 410367

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Dasoratory couc. Dasoratory con	or Sampro		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	10	88	86	49-149	2
Chloromethane	ug/L (ppb)	10	116	114	34-143	2
Vinyl chloride	ug/L (ppb)	10	110	111	43-149	1
Bromomethane	ug/L (ppb)	10	101	98	28-182	3
Chloroethane	ug/L (ppb)	10	97	97	59-157	0
Trichlorofluoromethane	ug/L (ppb)	10	94	82	59-141	14
Acetone	ug/L (ppb)	50	42	43	20-139	$\frac{2}{2}$
1,1-Dichloroethene	ug/L (ppb)	10 10	$\frac{105}{112}$	103 112	67-138 50-161	0
Hexane Methylene chloride	ug/L (ppb) ug/L (ppb)	10	104	101	29-192	3
Methyl t-butyl ether (MTBE)	ug/L (ppb)	10	92	95	70-130	3
trans-1,2-Dichloroethene	ug/L (ppb)	10	102	102	70-130	0
1,1-Dichloroethane	ug/L (ppb)	10	100	100	70-130	0
2,2-Dichloropropane	ug/L (ppb)	10	110	121	71-148	10
cis-1,2-Dichloroethene	ug/L (ppb)	10	102	103	70-130	1
Chloroform	ug/L (ppb)	10	91	92	70-130	1
2-Butanone (MEK)	ug/L (ppb)	50	62	64	50-157	3
1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane	ug/L (ppb)	10 10	88 94	89 94	70-130 70-130	1 0
1,1-Dichloropropene	ug/L (ppb) ug/L (ppb)	10	98	99	70-130	1
Carbon tetrachloride	ug/L (ppb)	10	91	93	70-130	2
Benzene	ug/L (ppb)	10	103	103	70-130	0
Trichloroethene	ug/L (ppb)	10	100	101	70-130	1
1,2-Dichloropropane	ug/L (ppb)	10	101	101	70-130	0
Bromodichloromethane	ug/L (ppb)	10	99	98	70-130	1
Dibromomethane	ug/L (ppb)	10	95	96	70-130	1
4-Methyl-2-pentanone	ug/L (ppb)	50	99	102	70-130	3
cis-1,3-Dichloropropene Toluene	ug/L (ppb)	10 10	97 98	99 97	70-130 70-130	$\frac{2}{1}$
trans-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	10	98 94	96	70-130 70-130	$\frac{1}{2}$
1,1,2-Trichloroethane	ug/L (ppb)	10	96	96	70-130	0
2-Hexanone	ug/L (ppb)	50	72	73	66-132	1
1,3-Dichloropropane	ug/L (ppb)	10	97	99	70-130	2
Tetrachloroethene	ug/L (ppb)	10	101	100	70-130	1
Dibromochloromethane	ug/L (ppb)	10	95	96	63-142	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	10	99	100	70-130	1
Chlorobenzene	ug/L (ppb)	10	103	102	70-130	1
Ethylbenzene 1,1,1,2-Tetrachloroethane	ug/L (ppb)	10 10	100 98	101 99	70-130 70-130	1 1
m,p-Xylene	ug/L (ppb) ug/L (ppb)	20	102	103	70-130	1
o-Xylene	ug/L (ppb)	10	101	101	70-130	0
Styrene	ug/L (ppb)	10	102	104	70-130	$\overset{\circ}{2}$
Isopropylbenzene	ug/L (ppb)	10	101	101	70-130	0
Bromoform	ug/L (ppb)	10	88	92	50-157	4
n-Propylbenzene	ug/L (ppb)	10	107	106	70-130	1
Bromobenzene	ug/L (ppb)	10	105	104	70-130	1
1,3,5-Trimethylbenzene	ug/L (ppb)	10	107	106	52-150	1
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	10 10	111 99	111 99	75-140 $40-153$	0
2-Chlorotoluene	ug/L (ppb)	10	105	105	70-130	0
4-Chlorotoluene	ug/L (ppb)	10	105	105	70-130	0
tert-Butylbenzene	ug/L (ppb)	10	106	106	70-130	ő
1,2,4-Trimethylbenzene	ug/L (ppb)	10	108	107	70-130	1
sec-Butylbenzene	ug/L (ppb)	10	108	108	70-130	0
p-Isopropyltoluene	ug/L (ppb)	10	110	109	70-130	1
1,3-Dichlorobenzene	ug/L (ppb)	10	109	108	70-130	1
1,4-Dichlorobenzene	ug/L (ppb)	10	107	105	70-130	2
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	ug/L (ppb)	10 10	105 101	106 106	70-130 70-130	1 5
1,2-Dibromo-3-chioropropane 1,2,4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	10 10	101	106	70-130 70-130	5 2
Hexachlorobutadiene	ug/L (ppb) ug/L (ppb)	10	102	104	70-130	$\frac{2}{2}$
Naphthalene	ug/L (ppb)	10	109	114	61-133	4
1,2,3-Trichlorobenzene	ug/L (ppb)	10	107	111	69-143	4

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/24 Date Received: 10/18/24

Project: 1337-23001-02, F&BI 410367

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	ug/L (ppb)	10	77	77	50-104	0
2-Methylnaphthalene	ug/L (ppb)	10	80	80	52-113	0
1-Methylnaphthalene	ug/L (ppb)	10	79	80	51-115	1
Acenaphthylene	ug/L (ppb)	10	89	89	60-114	0
Acenaphthene	ug/L (ppb)	10	85	89	57-110	5
Fluorene	ug/L (ppb)	10	93	96	61-115	3
Phenanthrene	ug/L (ppb)	10	90	93	63-113	3
Anthracene	ug/L (ppb)	10	93	94	65-117	1
Fluoranthene	ug/L (ppb)	10	95	99	68-121	4
Pyrene	ug/L (ppb)	10	86	84	62-133	2
Benz(a)anthracene	ug/L (ppb)	10	90	92	66-131	2
Chrysene	ug/L (ppb)	10	90	91	66-129	1
Benzo(a)pyrene	ug/L (ppb)	10	89	89	66-129	0
Benzo(b)fluoranthene	ug/L (ppb)	10	89	91	55-144	2
Benzo(k)fluoranthene	ug/L (ppb)	10	89	87	58-139	2
Indeno(1,2,3-cd)pyrene	ug/L (ppb)	10	106	106	62-136	0
Dibenz(a,h)anthracene	ug/L (ppb)	10	104	103	55-146	1
Benzo(g,h,i)perylene	ug/L (ppb)	10	102	100	58-137	2

ENVIRONMENTAL CHEMISTS

Date of Report: 11/04/24 Date Received: 10/18/24

Project: 1337-23001-02, F&BI 410367

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	ug/L (ppb)	0.25	66	70	31-105	6
Aroclor 1260	ug/L (ppb)	0.25	73	78	44-110	7

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

410367

Report To Lynn Green

Address 40 SE 24th Ave

Company EVREN-NW

City, State, ZIP Portland, Oregon 97214

Phone 503-452-5561

Email lynng@evren-nw.com

Project Specific RLs - Yes / No

REMARKS

SAMPLE CHAIN OF CUSTODY

SAMPLERS (signature)

PROJECT NAME 120 10de-144

Rush charges authorized by:

INVOICE TO

Standard Turnaround RUSH TURNAROUND TIME

Other Dispose after 30 days Archive Samples SAMPLE DISPOSAL

Ph. (206) 285-8282	0	3012 16th Avenue West	Friedman & Bruya, Inc.								110112 -hotm-JA	JC-14403-7411014	Sample ID	
Received by:	Relinquished by:	Received by: /	Relinquished by:	. S						, 1	02 🖶	01 A-E	Lab ID	
	sim land	1. 0.	Judlen Mor	SIGNATURE							12-41-01	01 A-E 10-14-24	Date Sampled	
	5		12								17.25	17:00	Time Sampled	
	DIN	, 1,	Jo								ligher 5%	Water 5%	Sample Type	
	Dhan		ordour	PRINT NAME							· Comme		# of Jars	
			_	N							×	X	NWTPH-Dx	
	LVVV	2	Coms	AME							X	X	NWTPH-Gx	
	3)	35										BTEX EPA 8021	$\ \cdot \ $
									-		Ø	<u>≻</u>	VOCs EPA 8260	ANA
				Н							V	×:	PAHs EPA 8270 PCBs EPA 8082	
(L	7 2	7	3								/	/ \	rcds era ouoz	SES
13 13 24	6400	0 +	War 1	8				-						REQ
Samples received		,	do	COMPANY	-									LYSES REQUESTED
003			Costung	N.				<u> </u>						B
33			th				_							
18 W	10/8/04	10/10/	16:00 18:00	DATE									Mg- Wites	
	10,00	3.00	18:00	TIME									& F	

SAMPLE CONDITION UPON RECEIPT CHECKLIST

PROJECT # 410367	CLIENT_	Evren		I	NITIAL DATE:_	S/ (N/P)	10/18/2
If custody seals are	present on co	oler, are the	intact?		/ NA	□ YES	□ NO
Cooler/Sample temp	perature				Ther	mometer ID: F	9 °C
Were samples receiv	ved on ice/colo	d packs?	2	5	11101	✓ YES	□ NO
How did samples ar	rive? he Counter	□ Picked up	by F&BI	ø	FedEx	/UPS/GS	9)
Is there a Chain-of-6 *or other representative do] NO	Init Dat	ials/ AP e: 10 1	8/24
Number of days san	nples have bee	en sitting pri	or to rece	ipt at la	borat	ory <u>4</u>	days
Are the samples clearly identified? (explain "no" answer below)						∠ YES	□ NO
Were all sample con leaking etc.)? (explain			. not brol	ken,		YES	□ NO
Were appropriate sa	ample contain	ers used?	·	YES	□ N	0 🗆	Unknown
If custody seals are	present on sa	mples, are th	ey intact	? ,2	NA	□ YES	□ NO
Are samples requiri	ng no headsp	ace, headspa	ce free?) NA	∠ YES	□ NO
Is the following info (explain "no" answer below		ided on the (COC, and	does it	match	the samp	ple label?
Sample ID's	Yes 🗆 No				_[□ Not on C	COC/label
Date Sampled	☐ Yes ☐ No					Not on C	COC/label
Time Sampled	☐ Yes ☐ No				[Not on C	COC/label
# of Containers	☐ Yes ☐ No						
Relinquished	☐ Yes ☐ No						
Requested analysis	Yes On I						
Other comments (us	se a separate pa	ge if needed)					
Air Samples: Were a	ny additional		bes receiv	ved?	NA	□ YES	□ NO

www.gls-us.com 800-322-5555

PDS

Tracking #: 562046288

DAN SAJKO **EVREN NW** Ship From 40 SE 24TH AVE PORTLAND, OR 97214

SAMPLE RECEIVING 5500 4TH AVENUE SOUTH FRIEDMAN & BRUYA, INC. SEATTLE, WA 98108

Weight: 0 lb(s) COD: \$0.00

Signature Type: STANDARD Delivery Instructions:

SEATTLE

S06437C

KNT WA980-7C0

Print Date: 9/27/2024 9:07 AM

Package 17 of 25