

October 13, 2025

Mr. Wes Thomas
Oregon Department of Environmental Quality
Northwest Region, Portland Office
Portland Harbor Section
700 NE Multnomah Street, No. 600
Portland, Oregon 97232

EE Project No. 2711 DEQ ECSI File No. 84

SUBJECT: Portland Liquefied Natural Gas (LNG) Electrical Distribution Upgrade Foundation Needs, Portland LNG Plant, 7900 NW St. Helens Road, Portland, Oregon

Dear Mr. Thomas.

Ede Environmental, LLC (EE) is transmitting a geotechnical evaluation report¹ and design drawings² documenting foundation needs for proposed new electrical equipment upgrades at the Portland LNG facility, which operates at the Former Gasco Manufactured Gas Plant (MGP) Operable Unit (OU). NW Natural is coordinating with DEQ for information and concurrence related to construction measures specified to mitigate potential impacts from contaminated media that may be encountered during the planned foundation preparation work, to occur after all required city permitting is completed. It is noted that piling specifications and mitigation measures provided herein are identical to those that were completed for the recent Compressor Equipment Foundation Pile Project as described in a September 13, 2023 letter (Ede to Thomas), with concurrence of the proposed mitigation measures received from DEQ via e-mail (Thomas to Ede, September 28, 2023). The new electrical equipment foundation project area is located approximately 35 feet south of the 2023 Compressor Equipment Foundation Project area between the LNG Main Office Building and the LNG Tank Basin (Figure 1).

¹ Cornforth Consultants, Inc. (2025). *Geotechnical Letter Report, Portland LNG Facility – Electrical Equipment Foundations, Portland, Oregon.* July 23, 2025.

² Norwest Engineering, Inc. (2025). Portland LNG Plant PDX MCC1 and 2 Detailed Engineering, Electrical Distribution Upgrade, D1628-S001 through S009, App Date May 30, 2025.

Mr. Wes Thomas October 13, 2025
Page 2

As documented in the attached letter report and design drawings, the new electrical equipment foundation will consist of a single pad measuring approximately 59 feet by 16 feet (see attached Figure D1628-S004, Foundation Plan and Details). Because the proposed electrical distribution upgrade is considered essential to facility operations, the foundation design was prepared to be protective of seismically induced liquefaction-related displacements.

Based on soil conditions, environmental contamination, access limitations, vibration considerations, and structure type, the geotechnical evaluation concluded that a mat foundation on driven pipe piles is the most favorable support for the proposed electrical distribution system upgrade project.

The geotechnical evaluation identified a need for nine 24-inch steel pipe piles with a minimum wall thickness of 0.75-inch embedded a minimum of 5 feet into very dense gravels at the base of the alluvium, or to the surface of basalt estimated to be between approximately 50 feet and 70 feet below ground surface (bgs) at this area.

Contaminant conditions at the site are well documented. Site residuals mapping completed as part of Gasco OU FS³ depicts dense non-aqueous phase liquid (DNAPL) presence in fill soils near the footprint of the proposed foundation that are interpreted as having saturation levels typical of potentially mobile DNAPL. High concentrations of dissolved petroleum hydrocarbons are present in groundwater within the Fill Water-Bearing Zone (WBZ) at this portion of the site, while only trace concentrations have been detected in groundwater within the underlying Alluvium WBZ in this area. The fill soils in the area of the new electrical equipment pad, as documented in the Gasco OU FS (Anchor QEA, 2024), are estimated to range between approximately 10 to 15 feet in thickness.

The upper silt unit that underlies the Fill WBZ is estimated to range from 11 to 25 feet thick in the area surrounding the proposed electrical equipment foundation, based on logs from nearby borings. The upper silt unit serves as a low permeability semi-confining layer between the Fill WBZ and the underlying Alluvium WBZ, restricting the migration of DNAPL or dissolved phase contamination downward into the Alluvium WBZ at this portion of the site.

Contaminant exacerbation concerns related to piling construction through areas of shallow contamination may typically include: 1) vertical contaminant drag-down within or at the lead edge of the pile; 2) vertical migration along the exterior of the pile if an annular space were

³ Anchor QEA, LLC. (2024). *Draft Feasibility Study Report*, Gasco OU, ECSI No. 84. December 16, 2024.

Mr. Wes Thomas October 13, 2025
Page 3

to be created; or 3) vertical migration along the interior of the pile if a breach of the pile wall or through an improperly constructed weld were to occur.

Based on an understanding of site conditions, and as recently completed for the adjacent Compressor Equipment Foundation Piling Project, the piles are to be constructed and installed using means and methods that will mitigate the potential for contaminant transfer from the Fill WBZ to the underlying Alluvium WBZ. Measures that have been incorporated into the design to address concerns related to potential contaminant drag-down or conduit creation between the Fill WBZ and the underlying Alluvium WBZ are specified on attached drawing D1628-S005, and are summarized below:

- Increased the design specification pile wall thickness from 0.75 inch to 1.0 inch to mitigate against long term corrosion of the piling wall.
- Drive the piles with a closed end to prevent incorporation of shallow contamination into the piling orifice. In addition, to avoid carrying a plug of contaminated soil directly beneath the leading end of a closed pile, the pile end will be closed using a conical pile tip that does not extend past the outside piling wall. A conical pile tip will reduce/eliminate the volume potential of soil plug drag-down from the shallow contaminated zone (fill soils) to the largely uncontaminated zone (Alluvium).
- Fill the interior of the piles with a low permeability grout as an added precaution to protect against the breach of the piling wall due to corrosion or an improperly constructed weld.
- Use long enough lengths of pipe that will restrict the need to splice/weld pipe sections together to no more than one spliced section per pile.
- All welds will be ground flush with the exterior piling wall so that in no case would there be a protrusion beyond the smooth exterior piling surface, thereby preventing creation of an annular space around the outer edge of the piling.
- All weld joints will be inspected either by the fabrication shop or in the field to ensure
 each is continuous without any detectable defects. Inspections may include, but are
 not limited to, non-destructive methods such as ultrasound or radiographic methods
 sufficient to meet any City of Portland permit requirements.

As documented in a study published by The Environment Agency⁴, solid cylindrical piles are effectively sealed with no vertical pathways created when driven through a low permeability confining layer with a thickness of two or more pile diameters, which for the Electrical Equipment Foundation (24-ich diameter piles) would equate to a minimum upper silt unit thickness of 4 feet. As described in adjacent borings, the upper silt in the proposed foundation area is estimated to range from 11 to 25 feet in thickness, which would be more than adequate to ensure effective sealing of a casing between WBZs.

Based on an understanding of site geology and contaminant conditions, as well as similar pile construction methods successfully completed at the property in the past, the above mitigative measures will best ensure that pile installation does not exacerbate contaminant conditions at the site.

NW Natural would like to proceed with the planned foundation preparation work once all required city permitting is complete and requests DEQ concurrence to proceed with the mitigation measures described in this letter.

Should you have any questions, please contact the undersigned.

Sincerely,

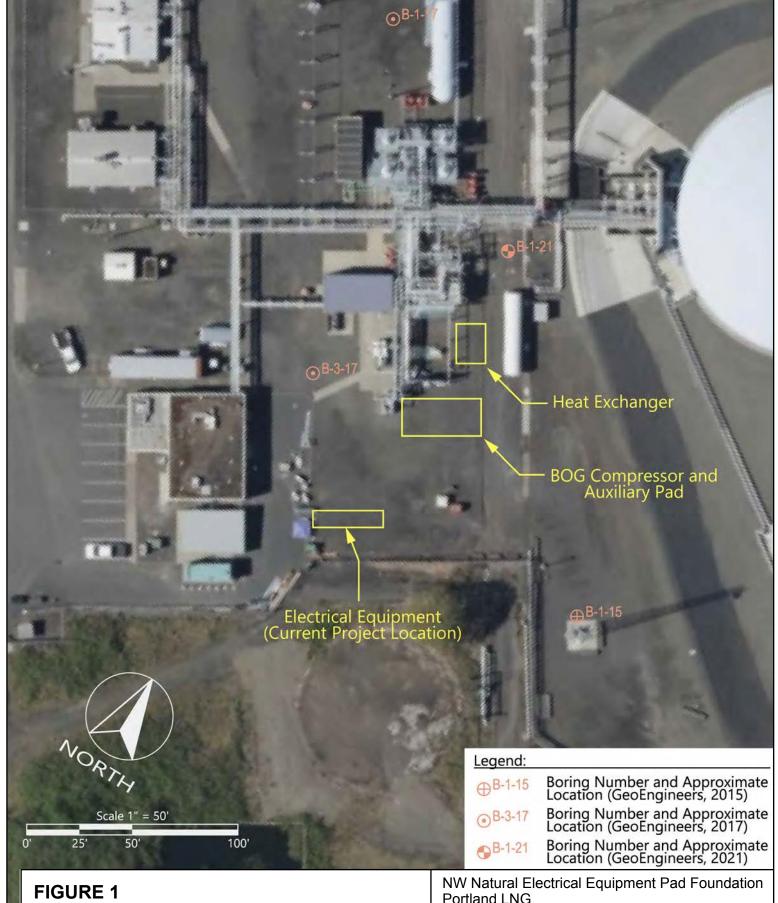
Robert Ede

Rob Ede, RG

Principal

rede@EdeEnvironmental.com

Attachments:


- 1) Geotechnical Letter Report- Electrical Equipment Foundations, July 23, 2025.
- 2) Plan Specification Drawings, D1628-S001 through S009

cc: Tim Murphy, NW Natural
Corey Raspone, NW Natural
Bob Wyatt, NW Natural
Jen Gates, Pearl Legal Group, PC
Patty Dost, Pearl Legal Group PC

⁴ Environment Agency, (2006). Piling in Layered Ground: Risks to Groundwater and Archaeology, Science Report SC020074/SR. October 2006.

Mr. Wes Thomas October 13, 2025
Page 5

Halah Voges, Anchor QEA
Matt Davis, Anchor QEA
Ryan Barth, Anchor QEA
Tim Stone, Anchor QEA
Jen Mott, Anchor QEA
Mike Crystal, Sevenson Environmental Services, Inc.
Chip Byrd, Sevenson Environmental Services, Inc

Electrical Equipment Pad Project Location

Figure from: Geotechnical Letter Report, Portland LNG Facility -Electrical Equipment Foundation, Cornforth Consultants, July 23, 2025. Portland LNG 7900 NW St. Helens Road

Portland, Oregon

Ede Environmental, LLC Project No. 2711

September 2025

Attachment 1

Geotechnical Report – Electrical Equipment Foundations, Cornforth Consultants, July 23, 2025

July 23, 2025 3335-1

Tim Murphy, PE NW Natural 250 SW Taylor Street Portland, Oregon 97204

Geotechnical Letter Report Portland LNG Facility - Electrical Equipment Foundations Portland, Oregon

Dear Mr. Murphy,

Cornforth Consultants, Inc. (CCI) is pleased to submit this geotechnical engineering letter report for the proposed new foundations to support electrical equipment at the Liquefied Natural Gas (LNG) facility in Portland, Oregon. Our services were performed in accordance with our Master Services Agreement with NW Natural dated July 25, 2022 and Purchase Order No. 4510019663.

Based on design drawings by Norwest Engineering, Inc. (Norwest), the proposed improvements will be located approximately 30 feet east of the Control Building and approximately 35 feet south of the recently constructed BOG Compressor. The electrical equipment includes a 2500kVA Pad Mount Transformer and a steel equipment shelter with associated equipment supported on a foundation pad that measures approximately 16 feet by 59 feet. While the structural loads are light (33 kips total equipment weight), the equipment is considered essential to facility operations and NW Natural has requested the foundation system be designed to account for liquefaction and related effects.

The location of the facility is shown in the Vicinity Map, Figure 1. The project location is shown relative to surrounding features in the Site Plan, Figure 2.

BACKGROUND

Numerous geotechnical studies have been completed for the Portland LNG facility. These studies have identified the susceptibility of the site to liquefaction and associated lateral spreading. Potentially liquefiable soils at the site extend from approximately 15 feet below the ground surface (bgs) to approximately 50 to 55 feet bgs near the proposed Electrical Equipment. The average liquefaction-induced vertical settlement has been estimated on the order of 9 to 16 inches. Lateral ground displacement has been estimated on the order of 1 to 3 feet. Various deep foundation and ground improvement methods have been considered to support structures at the site, including driven piles, micropiles, augercast piles, deep soil mixing, mat foundations, and aggregate piers.

SURFACE AND SUBSURFACE CONDITIONS

Previous explorations completed by GeoEngineers in 2015, 2017, and 2021 nearby encountered a variable mantling of contaminated fill consisting of very loose to medium dense fine to medium sand with silt and very soft to soft silt to depths of approximately 15 to 20 feet bgs over alluvium consisting of soft to medium stiff (occasionally stiff) silt/lean clay and very loose to medium dense sand to silty sand to a depth of approximately 50 to 74 feet bgs, over basalt bedrock. Boring B-1-15, located approximately 100 feet east of the electrical equipment foundation, encountered a 5-foot layer of very dense sandy gravel with silt between the loose to medium dense silty sand and Columbia River Basalt at a depth of 69 to 74 feet bgs. Boring B-3-17, located approximately 65 feet northwest of the proposed electrical equipment foundation, did not encounter the gravel layer and encountered basalt at 49 feet bgs.

CCI provided geotechnical construction observation during pile installation for the adjacent Compressor and Heat Exchanger pads. The dense bearing layer was first encountered approximately 52 to 55 feet bgs at the piles closest to the proposed Electrical Equipment.

Groundwater was encountered at approximately 15 to 17 feet bgs.

Exploration locations near the proposed Electrical Equipment are shown in the Site Plan, Figure 2. Nearby boring logs are provided as an attachment.

GEOTECHNICAL DESIGN RECOMMENDATIONS

To mitigate for liquefaction-related displacements, we recommend the Electrical Equipment be supported on deep foundations consistent with recently constructed structures. Associated non-critical project components may be supported on shallow foundations, provided they can accommodate the estimated seismically induced vertical settlement and lateral ground displacement described above. The piles were sized to limit lateral displacement of the structure to 6 inches or less under seismic conditions.

Driven Pile Foundations

Based on soil conditions, environmental contamination, access limitations, vibration considerations, and proposed structure type, it is our opinion that a mat foundation supported on driven pipe piles is the most favorable foundation support option for the proposed Electrical Equipment.

Lateral Pile Capacity

Pile design for this project is controlled by the lateral forces on the foundation system (piles and pile cap) during the design earthquake. Lateral spread during the design earthquake is estimated to result in large lateral forces as the upper non-liquefied material moves toward the river. The piles were sized to limit lateral displacement resulting from these forces to 6-inches or less, as described above.

The lateral loads on the foundation system resulting from lateral spread were evaluated using procedures presented in Caltrans (2012)¹. Due to these high lateral loads, the lateral deflection under

July 23, 2025 Page | 2 of 7

¹ Caltrans. (2012). Guidelines on Foundation Loading and Deformation Due to Liquefaction Induced Lateral Spreading.

seismic conditions controls the pile design. This procedure requires the approximate dimensions of the pile cap. For our analysis we assumed an approximately 59 feet long by 16 feet wide pile cap. If alternate layouts are selected, we may need to perform additional analysis and update our recommendations.

We utilized LPILE by Ensoft, Inc. to apply foundation loads against the pile as a uniform horizontal pressure distributed over the non-liquefiable upper "crust" (0 to 15 feet bgs). A uniform horizontal load of 60 kips/ft was applied over the upper 15 feet (900 kips total). We completed analyses modeling various pile groups with an equivalent linear-elastic single "super pile" under free-head conditions. The super pile requires parameter modifications to mimic the behavior of the pile group being analyzed. Group reduction factors for the lateral analyses were estimated assuming a total of eight, 24-inch diameter piles installed in a 2 by 4 pile group. Based on the Foundation Plan (Sheet D1628-S004) prepared by Norwest, pile spacings of approximately 18 feet were measured in the lengthwise direction. If the orientation of the foundation or the pile layout changes, we may need to perform additional analysis and update our recommendations.

Based on this analysis, 24-inch diameter pipe piles with a 0.75-inch wall thickness will meet the lateral deflection criteria. We recommend the pile wall thickness be increased to 1-inch to account for potential corrosion of the steel due to groundwater and environmental contamination during the design life of the structure.

Axial Pile Capacity

The axial capacity for a single 24-inch-diameter closed-end pipe pile is presented below and includes factors of safety of 2.0 for shaft friction and 3.0 for end bearing. We recommend the piles be embedded a minimum of 5 feet into the very dense gravel or basalt encountered below approximately 50 to 69 feet bgs. A reasonable contingency should be added to the pile lengths to account for construction considerations such as variable subsurface conditions. It is generally more cost effective to require the contractor to provide longer piles than weld, inspect and redrive piles that are too short to develop capacity. As discussed below, any welds should be ground flush to the pile face to minimize the potential to carry contaminated soil into the uncontaminated zone during pile installation.

Settlement of soils surrounding piles can induce frictional downdrag loads that essentially reduce the allowable pile capacity. This typically occurs if there are large fill embankments or if liquefaction-induced settlement occurs. Liquefaction will result in downdrag or negative skin friction from the top of the deep foundation to the base of the liquefiable layer. The downdrag load has been accounted for in the axial downward capacity presented below.

The structural engineer should verify that the piling is structurally capable of supporting the anticipated loads. The axial pile capacities are for single piles and do not include a group reduction factor. Group reduction factors are not required for piles with center-to-center spacing at least 3 times the pile diameter. Based on the anticipated design loads, the 24-inch-diameter piles will adequately support the estimated loads.

July 23, 2025 Page | 3 of 7

Table 1: Axial Pile Capacity

Pile Diameter (inches)	Minimum Wall	Allowable	Allowable
	Thickness	Downward Capacity	Uplift Capacity
	(inches)	(kips)	(kips)
24	1	120	40

DESIGN AND CONSTRUCTION CONSIDERATIONS

Pile Installation

Piles may be vibrated or driven; however, all piles should be driven a minimum of the last 10 feet to their final tip elevation to verify the required capacities. We recommend using fixed leads and careful alignment and support of the piles during installation because the piles will tend to "run" in loose/soft soils or a sloping bedrock contact.

Our recommendations are based on using closed-end pipe piles. The piles should be equipped with a driving shoe to minimize damage to the pile tip during driving through underlying dense gravels and basalt. The pile driving shoe should be selected by the contractor and approved by the geotechnical engineer. To minimize the potential to carry contaminated soil into the uncontaminated zone, the driving shoe should not extend beyond the outside diameter of the pile. Any welds should be ground flush to the pile surface. Localized soil heave may occur adjacent to the pile during installation. The contractor should be prepared to remove and properly dispose of contaminated soil adjacent to the piles following installation.

During pile driving, each pile should be driven continuously, with interruptions kept to a minimum. Piles should be driven with an impact hammer to establish the required penetration and terminal blow counts in the underlying very dense gravel and hard basalt. Driving criteria, including selection of hammer size and driving cushion, should be defined when the foundation design is completed. The Wave Equation Analysis of Pile Driving (WEAP) analysis should be used for establishing the criteria. We can provide driving criteria for the piles when the foundation design has been finalized and a driving system has been selected.

A continuous record of pile driving resistance (blows per foot) should be maintained by our representative for each pile during driving. If the pile cannot be driven to the required depth following an interruption, the pile may have to be extracted and re-driven, replaced and/or used with a reduced capacity. If piles reach refusal criteria before achieving the specified penetration, the adequacy of the pile should be determined by our representative who will advise whether to accept the pile at full capacity, at a reduced capacity, or reject the pile and require installation of substitute pile(s).

We do not recommend more than one splice per pipe pile. All splices must be capable of developing the full strength of the pile. No splices should be permitted within two-pile diameters of the depth at which maximum bending moment is developed. The maximum bending moment of the pile occurs at approximately 20 feet bgs and zero bending occurs at approximately 42 feet bgs. As discussed in

July 23, 2025 Page | 4 of 7

the previous section of this report, it is generally more cost effective to require the contractor to provide longer piles than weld, inspect and redrive piles.

Pile Load Tests

Pile load testing is not required provided the piles are installed as recommended, since the anticipated axial load is significantly less than the axial capacity.

Vibration Considerations

We understand that significant vibrations are not permissible at the LNG tank periphery, but that surrounding structures are not vibration sensitive. Vibration monitoring should be completed during pile driving. The piles furthest from vibration sensitive structures should be installed first. If measured vibrations exceed the acceptable limit, alternate pile installation methods may be required, possibly including using a lower energy pile driving hammer, vibrating the piles before driving to final tip elevations, or other methods. We recommend the contractor provide a pile installation plan for review and approval by the geotechnical engineer.

In addition, a photographic survey of adjacent buildings should be considered to document preconstruction and post-construction conditions.

SEISMIC DESIGN PARAMETERS

Parameters provided in Table 2 are based on previous explorations performed adjacent to the proposed Electrical Equipment at the site. Based on the presence of liquefiable soils, Site Class F was selected for preliminary seismic design. However, since the fundamental period of the proposed structure will be less than 0.5 seconds, exceptions documented in Section 20.3.1 of the 2016 *Minimum Design Loads for Buildings and Other Structures* (American Society of Civil Engineers [ASCE] 7-16) can be used to approximate recommended seismic design parameters for the project. In determining seismic design parameters with this exception, Site Class D was selected for the project, as allowed by ASCE 7-16 for structures with a period less than 0.5 seconds.

We recommend seismic design be performed using the procedure outlined in the 2021 International Building Code (IBC) and 2022 Oregon Structural Specialty Code (OSSC). Per American Society of Civil Engineers (ASCE) 7-16 Section 11.4.8, a ground motion hazard analysis or site-specific response analysis is required to determine the design ground motions for structures on Site Class D sites with S1 greater than or equal to 0.2g.

As discussed above, the site is classified as Site Class D with an S_1 value of 0.408g; therefore, the provision of 11.4.8 applies. The parameters listed in Table 2 below may be used to determine the design ground motions if Exception 2 of Section 11.4.8 of ASCE 7-16 is used. Using this exception, the seismic response coefficient (Cs) is determined by Equation (Eq.) (12.8-2) for values of $T \le 1.5T_s$ and taken as equal to 1.5 times the value computed in accordance with either Eq. (12.8-3) for $T_L \ge T > 1.5T_s$ or Eq. (12.8-4) for $T > T_L$, where T represents the fundamental period of the structure and T_s =0.756 sec. If requested, we can complete a site-specific seismic response analysis which might provide somewhat reduced seismic demands from the parameters in Table 2 and the requirements for

July 23, 2025 Page | 5 of 7

using Exception 2 of Section 11.4.8 in ASCE 7-16. The reduced values will likely not be significant enough to warrant the additional cost of further evaluation if designing to 2021 IBC.

Table 2: Mapped 2021 IBC Seismic Design Parameters

Parameter	Value ^{1,2,3}
Site Class	F
Mapped Spectral Response Acceleration at Short Period (Ss)	0.894 g
Mapped Spectral Response Acceleration at 1 Second Period (S ₁)	0.408 g
Site Modified Peak Ground Acceleration (PGA _M)	0.484 g
Site Amplification Factor at 0.2 second period (F _a)	1.142
Site Amplification Factor at 1.0 second period (F _v)	1.892
Design Spectral Acceleration at 0.2 second period (S _{DS})	0.681 g
Design Spectral Acceleration at 1.0 second period (S _{D1})	0.515 g

Notes:

DESIGN REVIEW AND CONSTRUCTION SERVICES

Recommendations presented in this report are based on the assumptions and preliminary design information presented herein. Satisfactory foundation and earthwork performance depends to a large degree on the quality of construction. Sufficient monitoring of the contractor's activities is a key part of determining that the work is completed in accordance with the construction drawings and specifications. Subsurface conditions observed during construction should be compared with those assumed for design. Recognition of changed conditions often requires experience; therefore, qualified personnel should provide full time observation during pile driving to detect whether subsurface conditions are significantly different from those anticipated.

LIMITATIONS

This report has been prepared for the exclusive use of NW Natural and their authorized agents and/or regulatory agencies for the Portland LNG Electrical Equipment project in Portland, Oregon. This report is not intended for use by others, and information contained herein is not applicable to other sites. No other party may rely on the product of our services unless we agree in advance and in writing to such reliance.

Within the limitations of scope, schedule, and budget, our services have been executed in accordance with the generally accepted geotechnical engineering practices in the area at the time this report was prepared. No warranty or other conditions, expressed or implied, should be understood.

July 23, 2025 Page | 6 of 7

¹ In accordance with American Society of Civil Engineers (ASCE) 7-16, Site Class F soils vulnerable to potential failure or collapse under seismic loading, such as liquefiable soils, may be classified in accordance with Section 20.3, without regard for liquefaction, provided the structure under design has a fundamental period of vibration equal or less than 0.5 seconds.

² Parameters developed based on Latitude 45.578178° and Longitude -122.760778° using the ATC Hazards online tool.

³ These values are only valid if the structural engineer utilizes Exception 2 of Section 11.4.8 (ASCE 7-16).

CLOSING

We appreciate the opportunity to assist NW Natural on this project. If you have questions, please call us at (503) 452-1100.

Sincerely,

CORNFORTH CONSULTANTS, INC.

Tygh Dianella

Tygh Gianella, P.E.

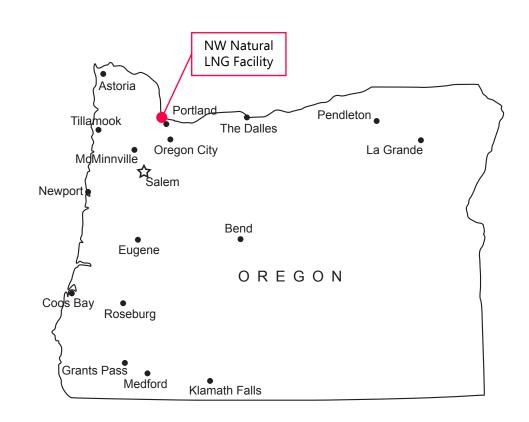
Associate Engineer

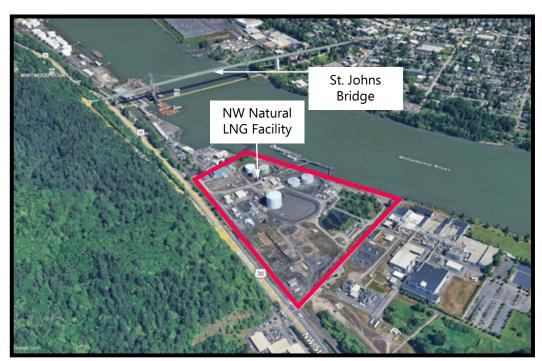
Greg A. Landau, P.E., G.E.

Senior Associate Engineer

ATTACHMENTS:

Figure 1 – Vicinity Map

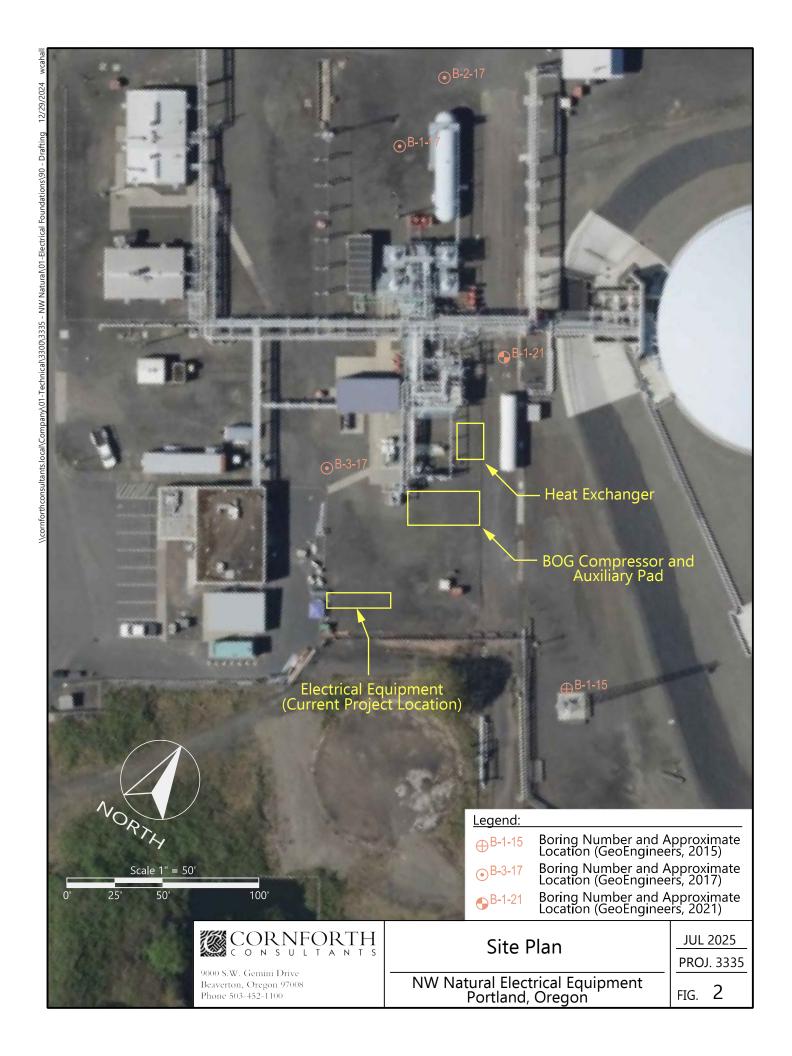

Figure 2 – Site Plan


Attachment A - Boring Logs Performed by Others

July 23, 2025 Page | 7 of 7

SCALE IN MILES

1"=.5 Miles

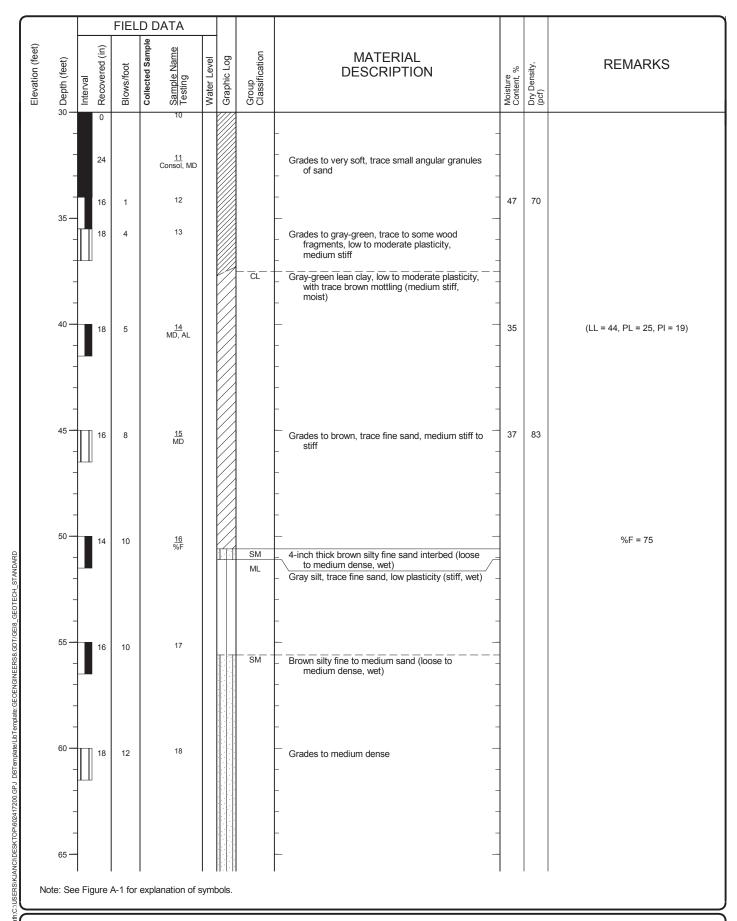


Vicinity Map

NW Natural Electrical Equipment Portland, Oregon JULY 2025 PROJ. 3335 FIG. 1

ATTACHMENT A

Boring Logs Performed by Others

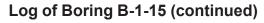

<u>Start</u> Drilled 6/12/2015	<u>End</u> 6/12/2015	Total Depth (ft)	75	Logged By Checked By	JL GAL	Driller Western States D	Drilling	Drilling Method	HSA	
Surface Elevation (ft) Vertical Datum	Undet	termined		Hammer Data	140	Auto (lbs) / 30 (in) Drop	Drilling Equipment		CME-75	
Latitude Longitude				System Datum		Geographic	Groundwate	_	Depth to Water (ft)	Elevation (ft)
Notes: D&M values i	educed by app	oroximately 50	0% to co	relate with SPT N-	-values			_		

			F	FIEL	D D	ATA							
Elevation (feet)	Depth (feet)	Interval	Recovered (III)	Blows/foot	Collected Sample	Sample Name Testing	Water Level	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Moisture Content, %	Dry Density, (pcf)	REMARKS
	0 —								GM	Dark gray silty sandy gravel, angular basalt gravel to 2 inches (dense, moist) (fill)			
	-	1	6	26		1				Black silty sand with gravel (medium dense, moist)	-		Slight sheen, strong petrochemical od
	5 —	1	4	7		<u>2</u> MD				Grades to loose	9	81	No sheen to slight sheen
	-	1	6	4		3				-	-		
	10 —	1	6	2		<u>4</u> %F			SP	Dark gray to black poorly graded fine sand with trace silt (very loose, moist)	-		No sheen, faint petrochemical odor %F = 5
	-	1	6	3		5				Grades to wet	- - -		Heavy sheen, strong petrochemical or
	15 —	1	6	5		6			— <u>—</u> — -	Black silt with organics, trace fine sand (very	- - =		Heavy sheen, strong organic odor
	-	1	6	6		7 MD			SP	Black to dark brown-black poorly graded fine sand (loose, wet)	30	88	
	20 —	1	6	10		8				Grades to loose to medium dense	-		Brown thick tarry oil residiue, heavy she strong odor
	-									- - -	-		
	25 -	1	8	3		9 MD, AL			ML/CL	Gray silt to lean clay, trace fine sand, low plasticity (soft, moist) (alluvium)	30	89	(LL = 25, PL = 23, Pl = 2) No sheen, no odor
Nc	30 -	Figur	re A.	-1 for	eynlar	nation of s	symb	nole		- 			
140	OC	, igui		1 101	CAPIGI	nauon on s	-yııı	,,,,,					
									ĺ	Log of Boring B-1-15			Facility Develop LLNO Division
(GE(οE	N	IG	INI	EER	S	1		Project: Proposed Comm Project Location: Portland, Oregon		ion	Figure A-

Log of Boring B-1-15

Figure A-5 Sheet 1 of 3 Project Number: 6024-172-00

Log of Boring B-1-15(continued)


Proposed Communication Tower - Portland LNG Plant

Project Location: Portland, Oregon

Figure A-5 Project Number: 6024-172-00 Sheet 2 of 3

Boring completed at 75 feet Groundwater encountered at 12½ feet while

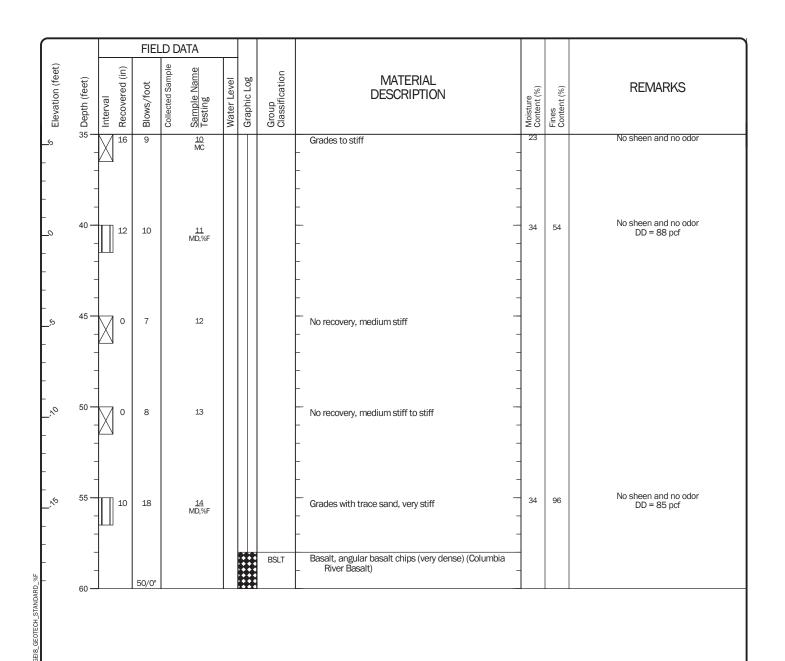
Note: See Figure A-1 for explanation of symbols.

Project: Proposed Communication Tower - Portland LNG Plant

Figure A-5 Sheet 3 of 3

Drilled	<u>Start</u> 8/3/2017	<u>End</u> 8/4/2017	Total Depth (ft)	60	Logged Checke	•	Driller Cas	cade Drilling, LF	P Drilling Hollow-stem Auger/ Method Mud Rotary		ger/	
Surface E Vertical D	Elevation (ft) Datum	-	0.57 VD88		Hammer Data	14	Automatic 0 (lbs) / 30 (in) Drop	Drilling Equipment		CME-75	
Latitude Longitude)		l' 42.942" 5' 40.5576"		System Datum	OR E	egree Decimal WGS84 (feet		Groundwater Date Measured	<u>i</u>	Depth to Water (ft) Yes	Elevation (ft)
Notes: [Notes: D&M N-values reduced by approximately 50% to roughly correlate with SPT N-values											

FIELD DATA Elevation (feet) Sample Name Testing Group Classification **MATERIAL** Graphic Log Water Level **REMARKS** Moisture Content (%) Fines Content (%) **DESCRIPTION** Interval GP 3 inches crushed aggregate Brown fine to medium sand with silt (loose to medium dense, moist) (fill) SP-SM Gray-brown to black sand with gravel (medium Heavy sheen and petrochemical-like odor 12 dense, moist) DD = 88 pcf 14 Grades to loose <u>ფ</u> MD Heavy sheen and odor 3 10 B 14 4 Grades to very loose to loose 4 SA Heavy sheen and odor 16 3 5 Grades to very loose ML Gray silt with organic matter (soft to medium stiff, moist) 15 AL (LL = 44; PI = 10) 18 4 <u>6</u> AL Heavy sheen and odor DD = 76 pcf 20 42 3 16 Grades to soft MD,%F Groundwater observed at 24 feet at time of exploration 25 Heavy sheen and odor AL (non-plastic) 14 Gray silty fine sand (very loose to loose, moist to wet) (alluvium) 30 73 No sheen and no odor 16 Gray fine sandy silt (soft, moist to wet) ML Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM


Log of Boring B-1-17

Project: NW Natural Portland LNG Liquification Facility

Project Location: Portland, Oregon Project Number: 6024-210-00

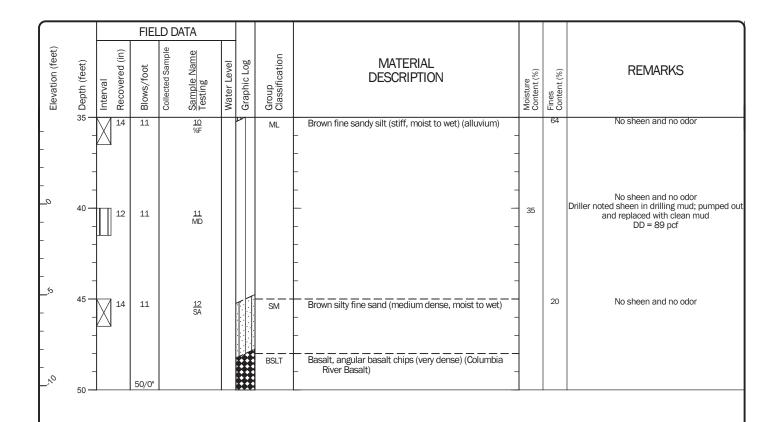
Figure A-2 Sheet 1 of 2

Log of Boring B-1-17 (continued)

Project: NW Natural Portland LNG Liquification Facility

Drilled	<u>Start</u> 8/7/2017	<u>End</u> 8/8/2017	Total Depth (ft)	50		jed By cked By	DMH GAL	Driller Cascade Drilling, LF	P Drilling Hollow-stem Auger/ Method Mud Rotary			iger/
Surface E Vertical D	Elevation (ft) Datum	_	9.77 VD88		Hammer Data		140	Automatic (lbs) / 30 (in) Drop	Drilling Equipment		CME-75	
Latitude Longitud			43.3596" 5' 40.5612"		System Datum		,	gree Decimal Minutes WGS84 (feet)	Groundwater Date Measured	<u>i</u>	Depth to Water (ft) Yes	Elevation (ft)
Notes:	Notes: D&M N-values reduced by approximately 50% to roughly correlate with SPT N-values											

FIELD DATA Elevation (feet) Sample Name Testing Group Classification **MATERIAL** Graphic Log Water Level **REMARKS** Moisture Content (%) Fines Content (%) **DESCRIPTION** Interval GP 3 inches crushed aggregate Brown fine to medium sand with silt (loose to SP-SM medium dense, moist) (fill) Heavy sheen and petrochemical-like odor 8 Becomes black _გ_ე 12 Heavy sheen and odor DD = 85 pcf 5 <u>3</u> MD SP Brown fine to medium sand (loose, moist) _S 10 16 4 Gray silt with trace organic matter (soft, moist) ML Heavy sheen and odor DD = 84 pcf 17 98 16 3 <u>5</u> MD,%F ₹. AL (LL = 43; PI = 9) 16 5 <u>6</u> AL Grades to medium stiff Heavy sheen and odor DD = 80 pcf 20 41 16 <u>/</u> MD Groundwater observed at 24 feet at time of Black silty fine sand (loose, moist to wet) SM exploration 25 33 Heavy sheen and odor 14 6 30 Heavy sheen and odor 16 Grades to very loose to loose Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM


Log of Boring B-2-17

Project: NW Natural Portland LNG Liquification Facility

Project Location: Portland, Oregon
Project Number: 6024-210-00

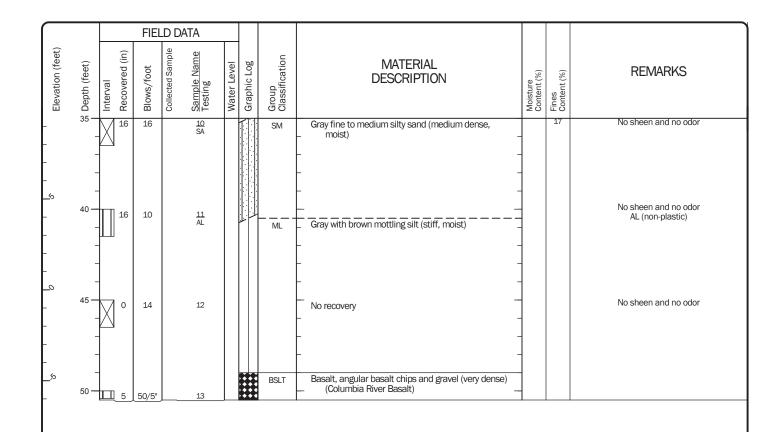
Figure A-3 Sheet 1 of 2

Log of Boring B-2-17 (continued)

Project: NW Natural Portland LNG Liquification Facility

<u>Start</u> Drilled 8/8/2017	<u>End</u> 8/9/2017	Total Depth (ft)	50.5		Logged By Checked By	DMH GAL	Driller Cascade Drilling, LF)	Drilling Hollow-stem Auger/ Method Mud Rotary		
Surface Elevation (ft) Vertical Datum		.4385 VD88		Ha Da	mmer ta	140	Automatic (lbs) / 30 (in) Drop	Drilling Equipment		CME-75	
Latitude Longitude		' 41.3508" 5' 39.7044"			stem tum	,	gree Decimal Minutes WGS84 (feet)	Groundwater Date Measured	<u>d</u>	Depth to Water (ft)	Elevation (ft)
Notes; D&M N-values reduced by approximately 50% to roughly correlate with SPT N-values											

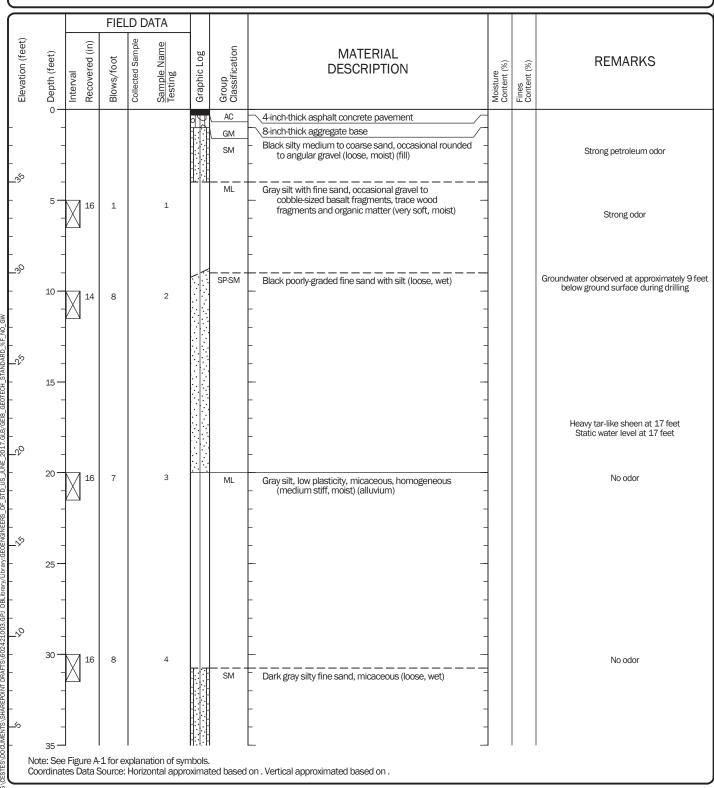
FIELD DATA Elevation (feet) Sample Name Testing Collected Sample Recovered (in) Group Classification **MATERIAL** Graphic Log Water Level **REMARKS** Moisture Content (%) **DESCRIPTION** Interval GΡ 3 inches crushed aggregate Brown fine to medium sand with gravel (dense, moist) (fill) Becomes black 1 Slight sheen and petroleum-like odor 40 Brown fine to medium sand with silt (medium SP-SM dense, moist) (fill) Moderate sheen and odor 12 14 High sheen and odor DD = 86 pcf 8 <u>3</u> MD Grades to loose <u>ფ</u>ე 10 9 16 4 4 SA Black silty fine sand (very loose to loose, moist) SM Heavy sheen and odor DD = 82 pcf 39 84 16 2 5 MD.%F ML Black silt with trace sand and organic matter (soft to medium stiff, moist) go Slight sheen and odor 15 18 <u>6</u> AL Grades to gray with brown mottling, without sand or AL (LL = 45; PI = 10) Slight sheen and odor 20 40 14 DD = 78 pcf<u>/</u> MD Grades to brown with trace sand, very soft and moist to wet Slight sheen and no odor 25 92 16 <u>8</u> %F,AL AL (LL = 36; PI = 5) No sheen and no odor 30 66 16 <u>9</u> MD,%F Gray fine to medium sandy silt (stiff, moist) ML DD = 86 pcf(alluvium) Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on Aerial Imagery, Vertical approximated based on DEM



Project: NW Natural Portland LNG Liquification Facility

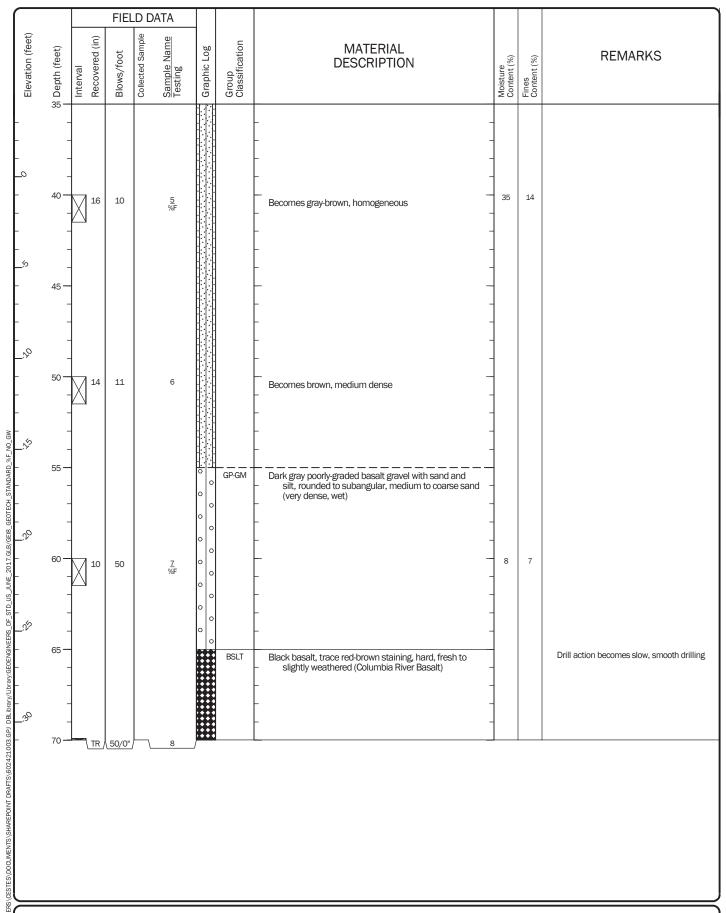
Project Location: Portland, Oregon
Project Number: 6024-210-00

Figure A-4 Sheet 1 of 2



Log of Boring B-3-17 (continued)

Project: NW Natural Portland LNG Liquification Facility


<u>Start</u> Drilled 4/22/2021	<u>End</u> 4/23/2021	Total Depth (ft)	70	Logged By Checked By	JLL BJH		Western States Soil Conservation, Inc.		Drilling Method Hollow-stem Auger/Mud-Rotary
Surface Elevation (ft) Vertical Datum		39 VD88		Hammer Data	14	Autoham O (lbs)/30	nmer) (in) Drop	Drilling Equipment	CME-75 truck
Latitude Longitude		78425 760852		System Datum		Decimal D WGS8		See "Remark	ks" section for groundwater observed
Notes:									

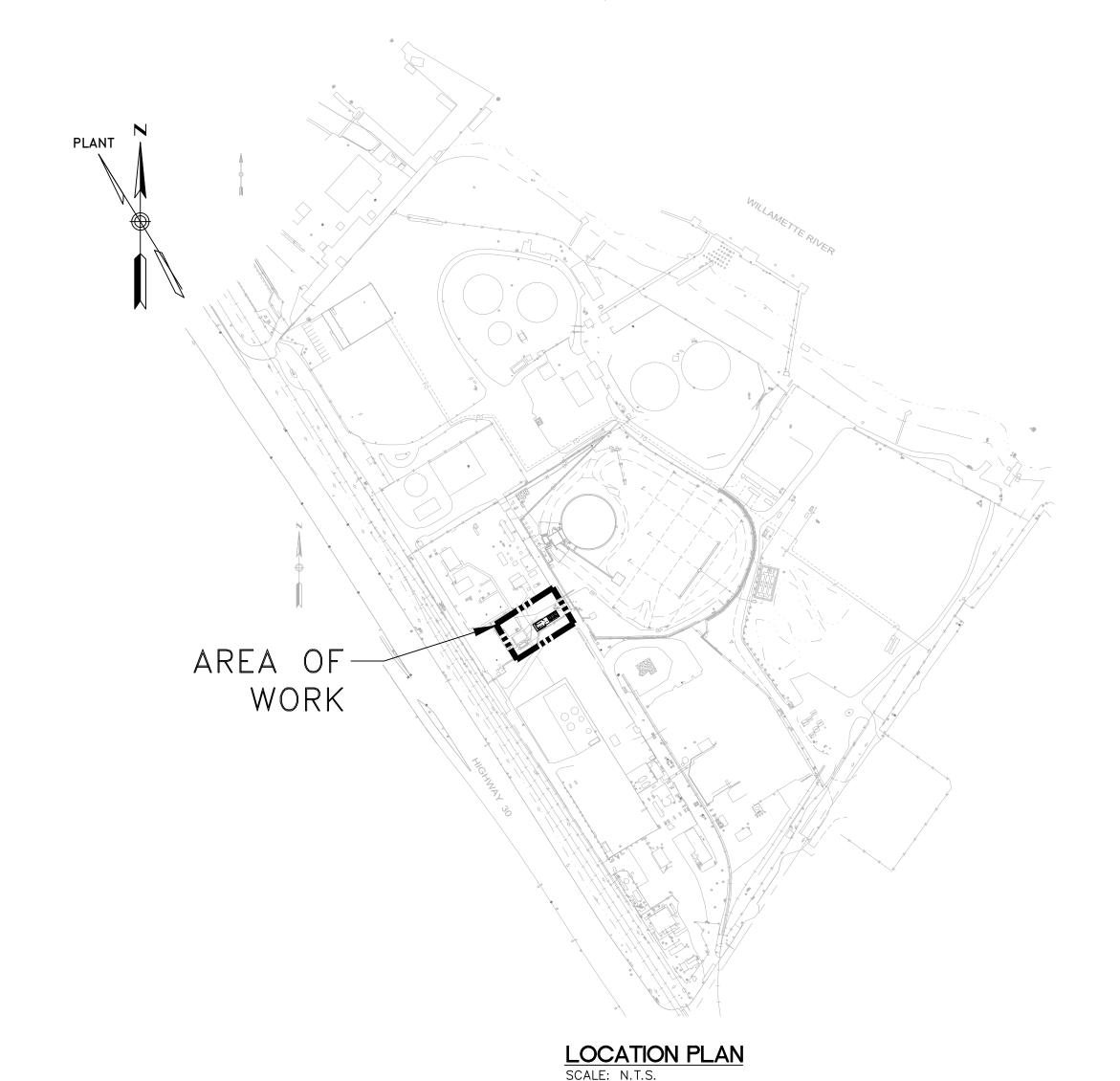
Log of Boring B-1-21

Project: NW Natural Cold Box FEED - Portland LNG Facility

Log of Boring B-1-21 (continued)

Project: NW Natural Cold Box FEED - Portland LNG Facility

Attachment 2


Plan Specification Drawings, D1628-S001 through S009

PORTLAND LNG PLANT PDX MCC1 AND 2 DETAILED ENGINEERING

PROJECT # RV1628 7900 NW Saint Helens Road Portland, OR 97210

STRUCTURAL DRAWING INDEX								
DWG. NO.	DRAWING TITLE	REV.						
D1628-S001	COVER SHEET AND DRAWING INDEX	0						
D1628-S002	GENERAL NOTES	0						
D1628-S003	LOCATION PLAN	0						
D1628-S004	FOUNDATION PLAN AND DETAILS	0						
D1628-S005	PILE DETAILS	0						
D1628-S006	SHELTER PLANS	0						
D1628-S007	SHELTER ELEVATIONS	0						
D1628-S008	FRAME CONNECTION DETAILS	0						
D1628-S009	SHELTER SECONDARY FRAMING DETAILS	0						

INSTALLATION OF SEVERAL ELECTRICAL EQUIPMENT AND RAIN SHELTER

GEOTECHNICAL AND SEISMIC HAZARDS ANALYSIS: CORNFORTH CONSULTANTS, INC. REPORT DATED JULY 23, 2025

CODE: 2022 IBC (OREGON STRUCTURAL SPECIALTY CODE)

BUILDING RISK CATEGORY; RISK CATEGORY OF IV WAS USED TO MEET DEQ REQUIREMENTS, BUT A LOWER RISK CATEGORY OF II IS REQUIRED PER OSSC TABLE 1604.5

I. FLOOR $\overline{\text{LIVE}}$ LOAD: 125 PSF WITH 5,000 LBS CONCENTRATED ON EQUIPMENT SLABS

ROOF LIVE LOAD = 20 PSF

5. WIND DESIGN DATA: 112 BASIC WIND SPEED.

EXPOSURE C 6. EARTHQUAKE DATA

IE = 1.5

S1 = 0.408 SS = 0.894

SEISMIC DESIGN CATEGORY D

BASE LOCATION = GROUND LEVEL

7. GEOTECHNICAL AND FOUNDATION INFORMATION:

CORNFORTH CONSULTANTS, INC. REPORT DATED JULY 23, 2025.

8. FLOOD DATA: NA 9. SPECIAL LOADS:

DETAILED EQUIPMENT LOADS TO COME WITH IFC PACKAGE REFER TO VENDOR CUT SHEETS.

10. ROOF RAIN LOAD DATA:

15 MIN. RAINFALL INTENSITY - IN./HR.

60 MIN. RAINFALL INTENSITY - IN./HR.

STATEMENT OF SPECIAL INSPECTIONS AND TESTS 2022 IBC (CBC OR OSSC) 1704.3

THE FOLLOWING SYSTEMS ARE DESIGNATED FOR SPECIAL INSPECTIONS AND TESTS BY THE REGISTERED DESIGN PROFESSIONAL:

STRUCTURAL STEEL - IBC TABLE 1705.2

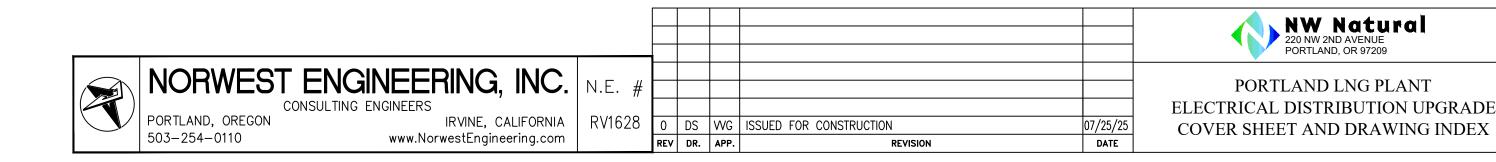
CONCRETE AND ANCHORING - IBC TABLE 1705.3

SOILS - IBC TABLE 1705.6

DEEP DRIVEN FOUNDATION PILES - IBC TABLE 1705.7

CAST-IN-PLACE FOUNDATIONS - IBC TABLE 1705.8

SPECIAL INSPECTION FOR SEISMIC AND WIND RESISTING SYSTEMS IS NOT REQUIRED.


THE BDS FORM WITH APPROVED TESTING AGENCY INFORMATION WILL BE PROVIDED WHEN THE CONSTRUCTION CONTRACTOR

IS SELECTED.

STATEMENT OF STRUCTURAL OBSERVATION 2022 IBC 1704.6

THE OWNER WILL EMPLOY A FULL TIME CONSTRUCTION INSPECTOR, DEDICATED STRUCTURAL OBSERVATION BY A REGISTERED DESIGN PROFESSIONAL IS NOT REQUIRED BUT NORWEST ENGINEERING WILL PROVIDE CONSULTATION WITH THE INSPECTOR AND WILL REVIEW MATERIAL SUBMITTALS.

NW Natural PORTLAND LNG PLANT ELECTRICAL DISTRIBUTION UPGRADE

ADJUST SCALE
AS SHOWN
ACCORDINGLY.

SCALE NONE APP. 05/30/25 DR. DSAPP. BY VVG

CONCRETE - CAST IN PLACE

1. CONCRETE RELATED WORK ON THIS PROJECT SHALL CONFORM TO ALL REQUIREMENTS OF ACI 301, LATEST EDITION, STANDARD SPECIFICATIONS FOR STRUCTURAL CONCRETE PUBLISHED BY THE AMERICAN CONCRETE INSTITUTE.

2 STRUCTURAL CONCRETE:

3	SIKUCI	UKAL	CONCR	IIE.						
	EXPOSURE CATEGORY			? Y	f'c AT	CEMENT	ENTRAINED	W/C RATIO	SLUMP	CHLORIDE CONTENT
			-		28 DAYS		AIR		RANGE*	CONTENT
	F	S	W	С	4.500 PSI	TYPE I	5.5-6%	0.45 MAX	4" – 6"	0.30% MAX
	F2	S0	WO	C1	4,500 F31	111 🗅 1	3.5-0%	U.43 MAX	4 - 0	0.30% WAX

* CONFORMANCE OF SLUMP TO THIS RANGE SPECIFICATION DOES NOT, ON IT'S OWN, CONSTITUTE ACCEPTANCE.

FINISHES

 111101120		
SLABS	BROOM	
TOP SURFACE	FLOAT	
EXPOSED SIDES	FORM	
EXPOSED EDGES	¾" CHAMFER	

TYPICAL UNLESS INDICATED ON PLANS, SECTIONS OR DETAILS

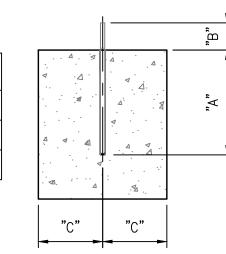
- 4. CURING: CURE ALL CONCRETE WITH MIST OR MEMBRANE CURING CONFORMING TO THE STANDARDS SPECIFICATION.
- 5. REINFORCING STEEL SHALL BE DEFORMED BARS CONFORMING TO ASTM A615 GRADE 60.

POST-INSTALLED ANCHORING

- 1. ALL POST-INSTALLED ANCHORS ARE "DRILL AND ANCHOR" TYPE ADHESIVE ANCHORS, UNLESS NOTED OTHERWISE.
- 2. INSTALLER TRAINING: CONDUCT A THOROUGH TRAINING WITH THE MANUFACTURER OR THE MANUFACTURER'S REPRESENTATIVE FOR THE INSTALLERS ON THE PROJECT. TRAINING TO CONSIST OF A REVIEW OF THE COMPLETE INSTALLATION PROCESS FOR DRILLED-IN ANCHORS, TO INCLUDE BUT NOT LIMITED TO: HOLE DRILLING PROCEDURE HOLE PREPARATION & CLEANING TECHNIQUE ADHESIVE INJECTION TECHNIQUE & DISPENSER TRAINING / MAINTENANCE
- REBAR DOWEL PREPARATION AND INSTALLATION
- PROOF LOADING/INSTALLATION TORQUE EMBEDMENT
- 3. LOCATE REINFORCING STEEL PRIOR TO HOLE DRILLING.
- 4. ADHESIVE FOR DRILL AND ANCHOR REINFORCING BARS AND ANCHOR RODS TO BE SET-3G SIMPSON STRONG TIE ADHESIVE ANCHORING ADHESIVE. FOR MISCELLANEOUS EQUIPMENT AND PIPE SUPPORT INSTALLATION, ANCHOR RODS TO BE ASTM F1554 GRADE 55, ATR (ALL THREAD ROD), FURNISH BLACK, U.N.O. FURNISH WITH 45° CHISEL POINT FOR EMBEDDED END, AND HEAVY HEX NUT AND COMPATIBLE ROUND PLATE WASHER. NUTS FOR ANCHOR RODS SHALL BE TIGHTENED TO SNUG CONDITION EXCEPT WHERE TORQUE VALUE IS SPECIFIED ON THE DESIGN DRAWINGS, OR AT THE LOCATIONS OF SLIDE PLATES.

DEFORMED REINFORCING BARS

ADHESIVE DOWELS


ASTM A615 GR 60

ADHESIVE /	<u>ANCHO</u>	<u> </u>	
THREADED	RODS	(ATR)	AS

REA	DED	ROI	DS (ATR)	ASTM	
					NLESS	
FFI	TYP	FΡ	FR	DFTAII	S	

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		T EIN DE	
DIA.	"A"	"B"	"C" MIN.
火"	6"	3"	4"
5⁄8"	10"	4"	6"
3/4"	12"	4"	7"
½"	14"	4"	9"
1"	15"	4"	10"

DIA.	"A"	"B"	"C" MIN.		
#4	6"	AS NOTED ON PLAN	4"		
# 5	10"	AS N ON F	6"		
#6	12"		7"		

CAST-IN ANCHORING

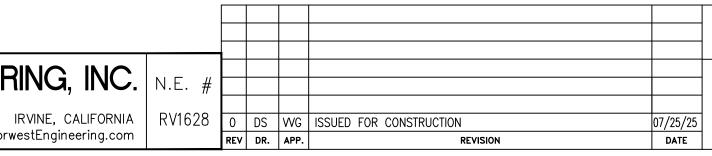
1. CAST-IN ANCHOR RODS TO BE ASTM F1554 GRADE 36, U.N.O. EMBEDMENT DEPTH AND THREADED PROJECTION SHOWN ON DETAILS. FURNISH WITH JAM NUTS FOR LEVELING AND COMPATIBLE ROUND PLATE WASHER AND HEAVY HEX NUT. ANCHORAGE END TO BE HEAVY HEX HEADED. NUTS FOR ANCHOR RODS SHALL BE TIGHTENED TO SNUG CONDITION EXCEPT WHERE TORQUE VALUE IS SPECIFIED ON THE DESIGN DRAWINGS.

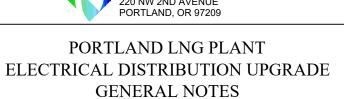
STRUCTURAL STEEL

- 1. FABRICATION & ERECTION OF STRUCTURAL STEEL TO BE IN ACCORDANCE WITH THE AISC SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS ANSI/AISC 360-16 AND AISC CODE OF STANDARD PRACTICE FOR STEEL BUILDINGS AND BRIDGES ANSI/AISC 303-16.
- 2. MATERIAL WILL MEET THE REQUIREMENTS OF THE FOLLOWING SPECIFICATIONS, UNLESS NOTED OTHERWISE (U.N.O.): W-SHAPES AND TEES - ASTM A992
- PLATES AND BARS ASTM A36 PIPE SECTIONS - ASTM A53 GR. B HOLLOW STRUCTURAL SHAPES - A500 GR. B OTHER SHAPES - ASTM A36
- 3. BOLTING PRACTICE TO BE IN ACCORDANCE WITH RCSC SPECIFICATION FOR STRUCTURAL JOINTS USING HIGH-STRENGTH BOLTS, AUGUST 1, 2014. JOINT TYPES AS FOLLOWS: BRACING AND BOLTED MOMENT CONNECTIONS: PRETENSIONED ALL OTHERS: SNUG-TIGHTENED
- 4. ALL STRUCTURAL BOLTS TO BE 3/4" ASTM F3125, GRADE A325, TYPE 1.
- 5. ALL WELDING TO BE DONE IN ACCORDANCE WITH AWS D1.1. WELDING ELECTRODES TO BE E70XX.
- 6. STRUCTURAL STEEL TO BE HOT DIPPED GALVANIZED PER COMPANY SPECIFICATIONS.
- 7. WHERE PERSONNEL MIGHT BE SUBJECTED TO CONTACT HAZARD (7'-6" ABOVE GRADE AND BELOW), ROUND EXPOSED CORNERS OF FLANGES, ANGLE LEGS AND PLATES WITH 1/2" RADIUS MINIMUM.

EARTHWORK

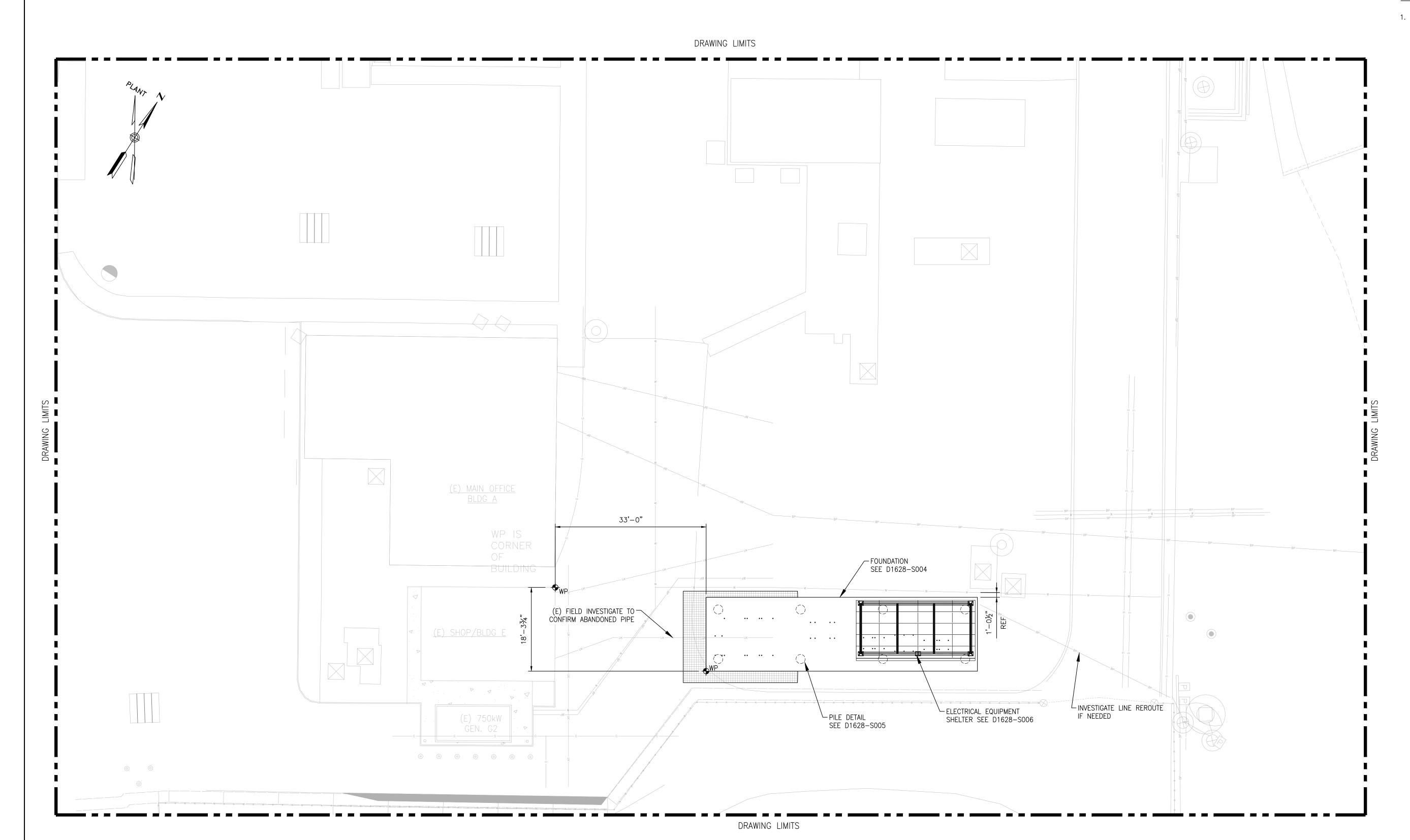
- 1. SUBGRADE PREPARATION: REMOVE ALL LOOSE OR SOFT MATERIAL, ORGANICS, UNSUITABLE FILL, PRIOR TOPSOIL ZONES, AND SOFTENED SUBGRADES PRIOR TO PREPARATION AND REPLACE WITH STRUCTURAL FILL. FOUNDATION-BEARING SURFACES MUST NOT BE EXPOSED TO STANDING WATER FOR PROLONGED PERIODS OF TIME. SHOULD WATER INFILTRATE AND POOL IN THE EXCAVATION. REMOVE BEFORE PLACING REINFORCING STEEL OR CONCRETE. COMPACT TO A FIRM, UNYIELDING CONDITION AND PROOF ROLL.
- 2. STRUCTURAL FILL: USE AGGREGATE BASE ROCK CONSISTING OF 3/4 INCH MINUS OR 11/5 INCH MINUS MATERIAL MEETING THE LOCAL STANDARDS FOR SUBBASE, BASE AND SHOULDERS, WITH THE EXCEPTION THAT THE AGGREGATE SHOULD HAVE LESS THAN 5 PERCENT BY DRY WEIGHT PASSING THE U.S. STANDARD NO. 200 SIEVE. PLACE THE AGGREGATE BASE ROCK MATERIAL IN LIFTS WITH A MAXIMUM UNCOMPACTED THICKNESS OF 12 INCHES AND COMPACTED TO NOT LESS THAN 95 PERCENT OF THE MAXIMUM DRY DENSITY, AS DETERMINED BY ASTM D 1557.


ALTERNATIVE TO AGGREGATE BASE ROCK IS IMPORTED GRANULAR MATERIAL CONSISTING OF PIT- OR QUARRY-RUN ROCK, CRUSHED ROCK, OR CRUSHED GRAVEL AND SAND THAT MEET THE REQUIREMENTS FOR SELECTED GRANULAR BACKFILL PER LOCAL STANDARDS, IMPORTED GRANULAR MATERIAL TO BE WELL GRADED BETWEEN COARSE AND FINE MATERIAL AND HAVE LESS THAN 5 PERCENT BY DRY WEIGHT PASSING THE U.S. STANDARD NO. 200 SIEVE.


ABBREVIATIONS:

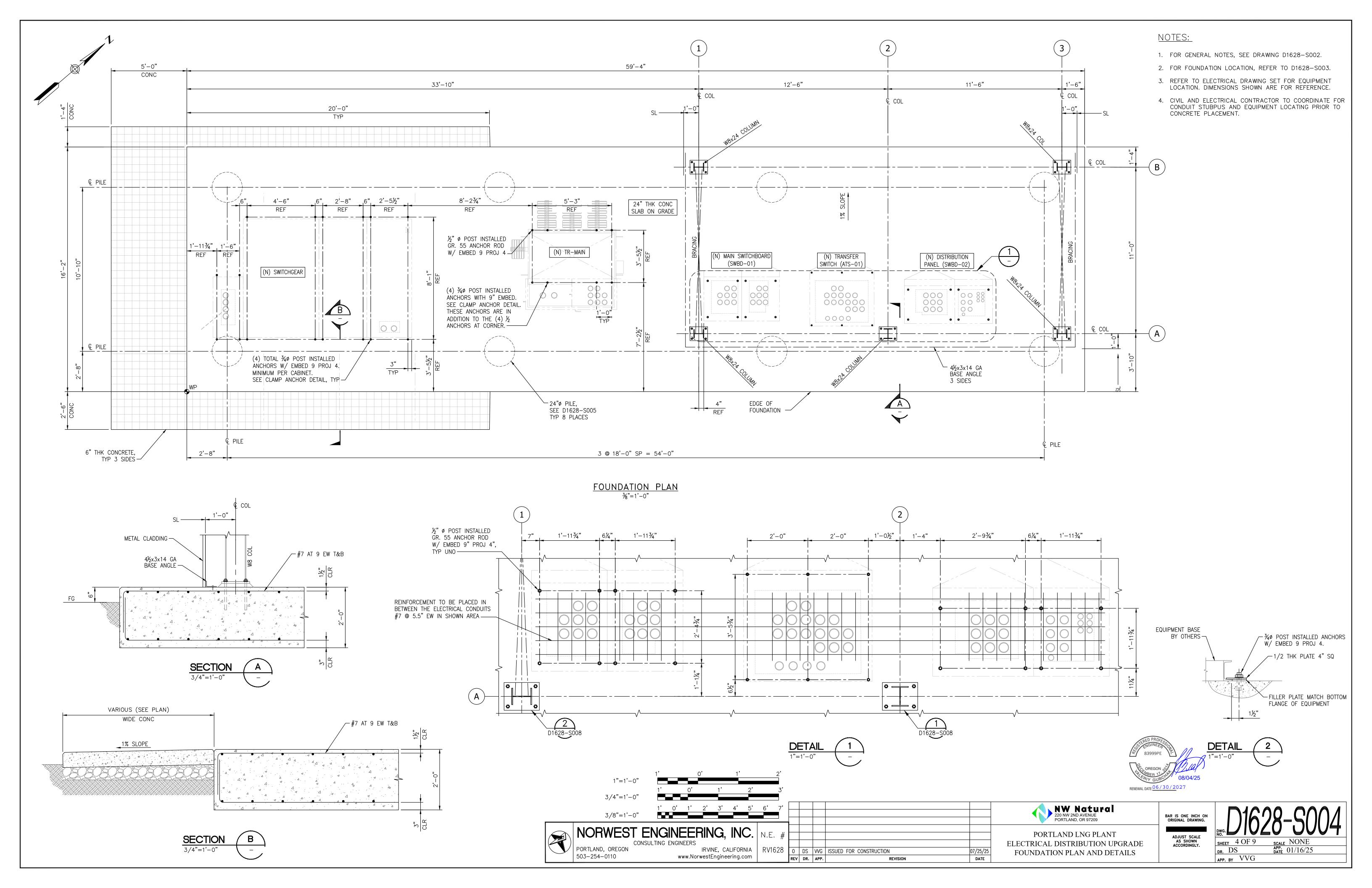
ABBREVIATIONS:			
Ç / CL # .	CENTERLINE POUND	LG LP	LONG LOW POINT
(E) (N) AR	EXISTING NEW ANCHOR ROD	MAX MIN MISC	MAXIMUM MINIMUM MISCELLANEOUS
ACI ADDL AISC	AMERICAN CONCRETE INSTITUTE ADDITIONAL AMERICAN INSTITUTE OF STEEL CONSTRUCTION	NO NS NTS	NUMBER NEAR SIDE NOT TO SCALE
ALT ALUM ANSI	ALTERNATE ALUMINUM AMERICAN NATIONAL STANDARDS INSTITUTE	OC OPNG OPP	ON CENTER OPENING OPPOSITE
ARCH ASTM	ARCHITECTURAL AMERICAN SOCIETY FOR TESTING & MATERIALS	PL PSF PSI	PLATE POUNDS PER SQUARE FOOT POUNDS PER SQUARE INCH
AWS BM BOT BOBP	AMERICAN WELDING SOCIETY BEAM BOTTOM BOTTOM OF BASE PLATE	R / RAD REINF REQD	RADIUS REINFORCING REQUIRED
C CJ CLR COL CONC CONT	CHANNEL CONSTRUCTION JOINT CLEAR COLUMN CONCRETE CONTINUOUS DIAMETER DIAGONAL	SCH SHT SIM SL SOG SPECS SQ STAG STIFF	SCHEDULE SHEET SIMILAR STEEL LINE SLAB ON GRADE SPECIFICATIONS SQUARE STAGGERED STANDARD STIFFENER
DIM DTL DWG	DIMENSION DETAIL DRAWING	STL T/0	STEEL TOP OF
EG EF EJ ELV/EL ELEC EMBED EQ EQUIP ES EW	EXISTING GRADING EACH FACE EXPANSION JOINT ELEVATION ELECTRICAL EMBEDMENT EQUAL EQUIPMENT EACH SIDE EACH WAY	T&B TBD THK TOB TOC TOF TOG TOP TOS	TOP & BOTTOM TO BE DETERMINED THICK TOP OF BEAM TOP OF CONCRETE TOP OF FRAMING TOP OF GRATING TOP OF PLYWOOD/PAVING TOP OF STEEL/SHEATHING TYPICAL
FND FG FS FT FTG	FOUNDATION FINISH GRADE FAR SIDE FOOT/FEET FOOTING	UNO U/S VERT VIF	UNLESS NOTED OTHERWISE UNDER SIDE OF VERTICAL VERIFY IN FIELD
GA GALV	GAUGE GALVANIZED	WP W/ W/O	WORK POINT WITH WITHOUT
HORIZ HP HSS	HORIZONTAL HIGH POINT HOLLOW STRUCTURAL SECTION	W W WT	WIDE FLANGE BEAM STRUCTURAL TEE
∠ LB	ANGLE POUND		

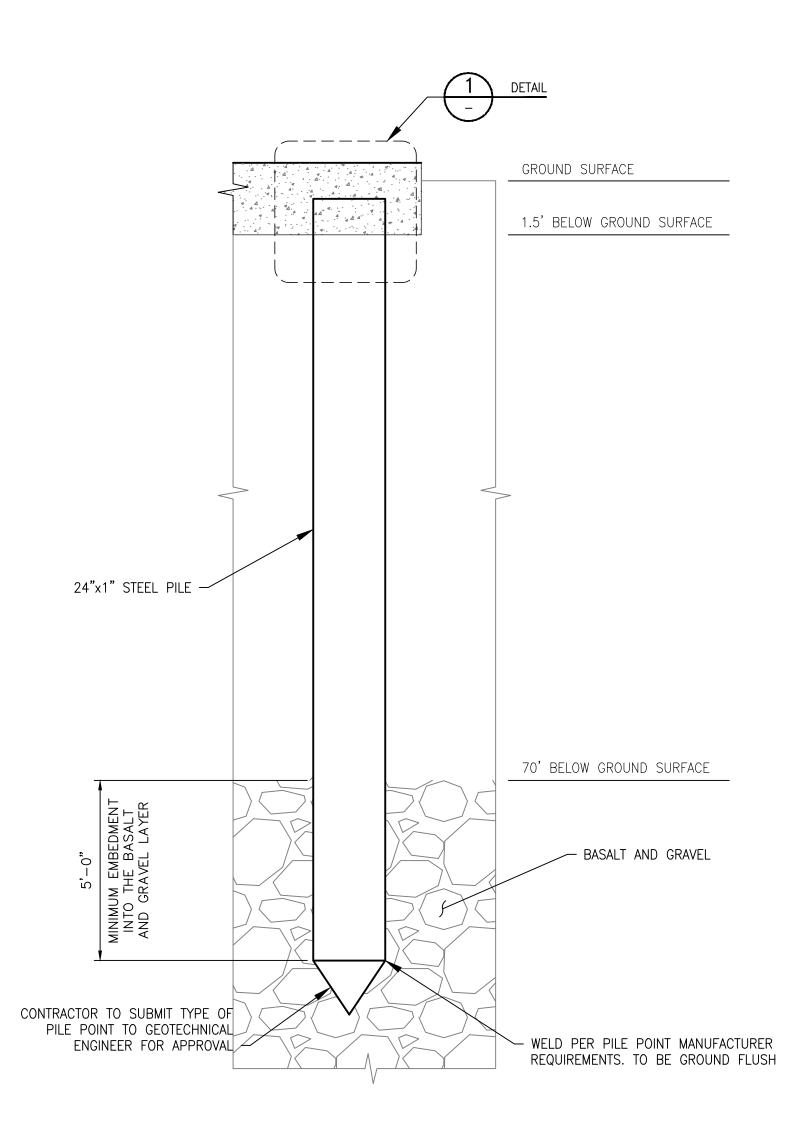

NORWEST ENGINEERING, INC. | N.E. # CONSULTING ENGINEERS PORTLAND, OREGON 503-254-0110 www.NorwestEngineering.com



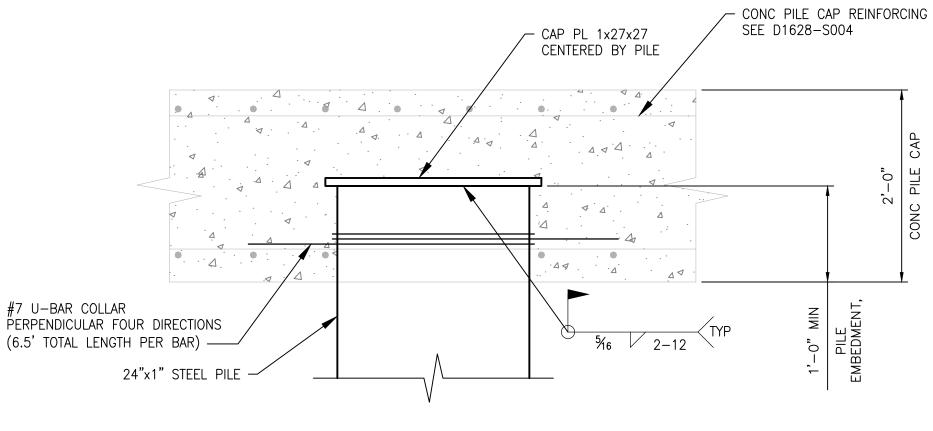
NW Natural

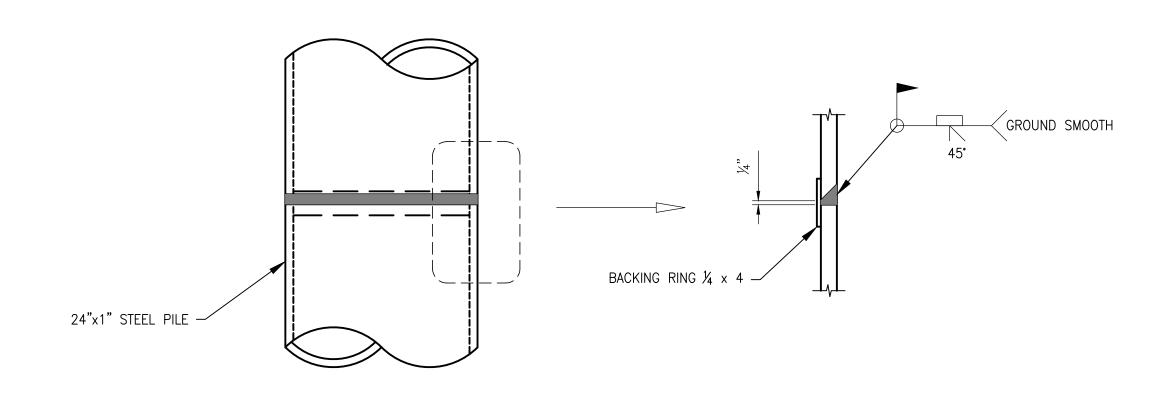
ADJUST SCALE AS SHOWN ACCORDINGLY.


1. FOR GENERAL NOTES, SEE DRAWING D1628-S002.



LOCATION PLAN
SCALE: 3/32"=1'-0"


3/32"=1'-0" 5' 0' 10' 20'	30'		NW Natural 220 NW 2ND AVENUE PORTLAND, OR 97209	BAR IS ONE INCH ON ORIGINAL DRAWING.	D1628-S003
NORWEST ENGINEERING, INC. CONSULTING ENGINEERS PORTLAND, OREGON 503-254-0110 RVINE, CALIFORNIA www.NorwestEngineering.com	N.E. #	'25/25 DATE	PORTLAND LNG PLANT ELECTRICAL DISTRIBUTION UPGRADE COVER SHEET AND DRAWING INDEX	ADJUST SCALE AS SHOWN ACCORDINGLY.	DWG. DO



GENERALIZED SUBSURFACE PROFILE SCALE: 3/8"=1'-0"

FOR SUBSURFACE LAYERS OF SOILS REFER TO GEOTECHNICAL REPORT BY CORNFORTH CONSULTANTS

NORWEST ENGINEERING, INC. | N.E. # PORTLAND, OREGON 503-254-0110 IRVINE, CALIFORNIA RV1628 0 DS WG ISSUED FOR CONSTRUCTION www.NorwestEngineering.com REV DR. APP. DATE REVISION

NOTES:

PILE NOTES:

80-90FT.

6. STEEL PILE DRIVING:

MINIMUM.

1. FOR GENERAL NOTES, SEE DRAWING D1628-S002.

1. THE CENTER OF THE PILES AND CAISSONS HAVE A HORIZONTAL INSTALLATION TOLERANCE OF ± 4 ". THE ENGINEER SHALL BE NOTIFIED OF OUT OF TOLERANCE PILES AND GIVEN SUFFICIENT TIME TO DETERMINE THE SAFETY OF THE STRUCTURE, BEFORE ANY ADDITIONAL

MEMBERS CAN BE ATTACH ED TO THE PILE.

2. CLOSED END STEEL PIPE PILES SHALL CONFORM TO THE REQUIREMENTS OF ASTM A252, GRADE 2 OR HIGHER.

OUTLINED IN THE PLAN SHEETS. ALL PILES SHALL BE

EMBEDDED PER THE GEOTECHNICAL REPORT TO PROVIDE

SUFFICIENT BEARING, SHEAR, AND MOMENT CAPACITY. (CALCULATIONS FOR PIPE PILES HAVE BEEN PERFORMED BY AN OWNER SPECIFIED INDEPENDENT DESIGN AGENCY.)

3. THE STEEL PILES BENEATH THE SLABS SHALL BE AS

4. THE STEEL PILES SHOULD NOT HAVE MORE THAN ONE

SPLICE PER PILE. ALL WELDED SPLICES SHALL BE

16 FEET BELOW GROUND SURFACE.

CAPABLE OF DEVELOPING FULL STRENGTH OF THE PILE.

NO SPLICES SHALL BE WITHIN TWO-PILE DIAMETERS OF THE DEPTH OF MAXIMUM BENDING MOMENT WHICH IS AT

5. APPROXIMATE PRETRIMMED PILE ESTIMATED TO BE WITHIN

A. GEOTECHNICAL ENGINEER OF RECORD SHALL BE ON

B. SHOE SHALL BE INSTALLED AT THE PILE TIP TO

CALL THE TERMINATION OF THE PILE.

THE OUTSIDE DIAMETER OF THE PILE.

CONTACT WITH A SLOPED BEDRÓCK.

DENSE GRAVEL AND HARD BASALT.

SELECTED BY THE CONTRACTOR.

BELOW GROUND SURFACE.

SITE DURING THE PILE DRIVING PROCESS AND SHALL

PREVENT DAMAGE TO THE PILE DURING THE DRIVING

PROCESS. THE SHOE SHALL BE SELECTED BY THE CONTRACTOR AND APPROVED BY THE GEOTECHN1CAL ENGINEER. THE SHOE SHOULD NOT EXTEND BEYOND

C. DURING PILE DRIVING, EACH PILE SHOULD BE DRIVEN CONTINUOUSLY WITH INTERRUPTIONS TO BE KEPT TO A

D. FIXED LEADS AND CAREFUL ALIGNMENT AND SUPPORT

OF THE PILES SHOULD BE USED TO PREVENT THE PILE FROM MALIGNING IN LOOSE/SOFT SOILS OR UPON

E. PILES SHOULD BE DRIVEN WITH AN IMPACT HAMMER TO ESTABLISH THE REQUIRED PENETRATION AND

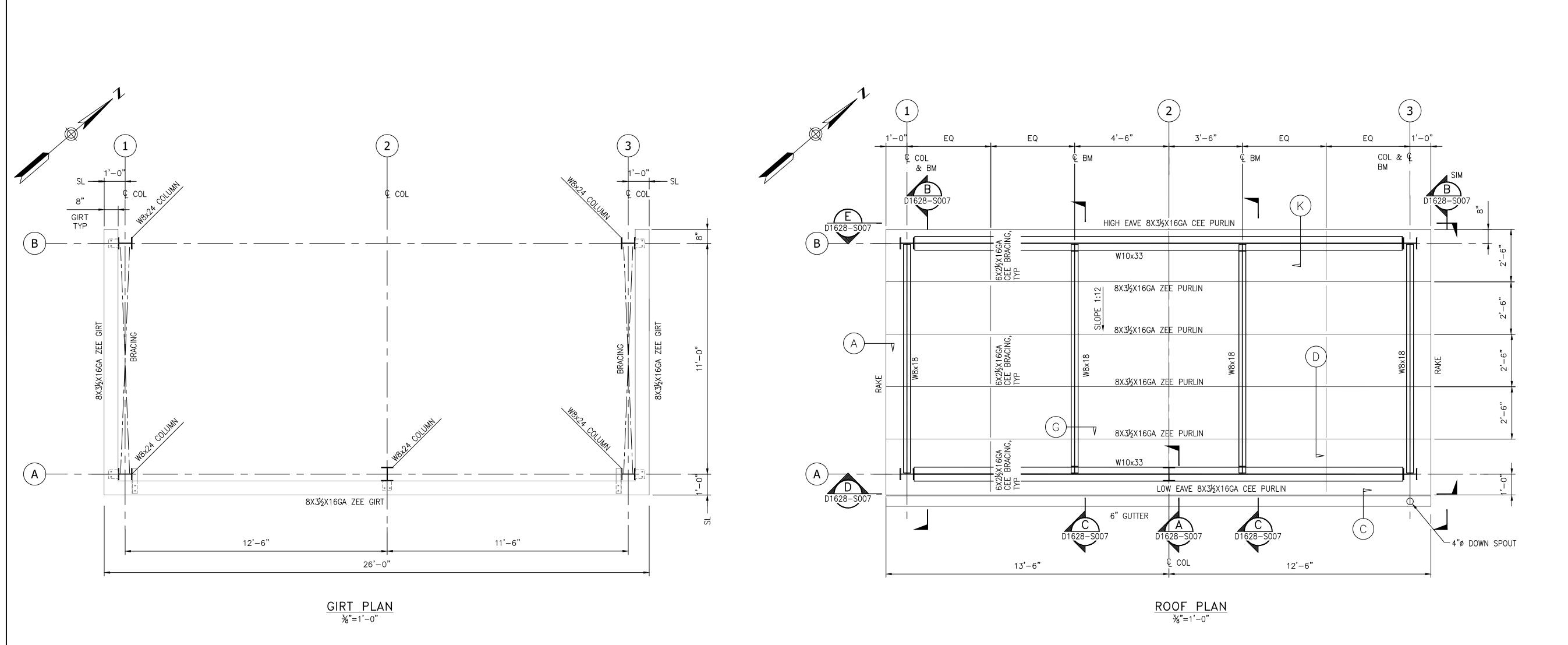
TERMINAL BLOW COUNTS IN THE UNDERLYING VERY

F. PILES SHALL BE EMBEDDED 5 FEET INTO THE DENSE GRAVEL OR BASALT LAYER APPROXIMATELY 70 FEET

G. PILE DRIVING CRITERIA, INCLUDING SELECTION OF HAMMER SIZE AND DRIVING CUSHION SHALL BE PROVIDED BY THE GEOTECHNICAL ENGINEER OF RECORD AFTER THE PILE DRIVING SYSTEM HAS BEEN

7. GROUT FILL THE PILES AFTER PILE DRIVING IS COMPLETE

ADJUST SCALE
AS SHOWN
ACCORDINGLY.


APP. BY VVG

SCALE NONE
APP. 5/30/25 DR. DS

NW Natural
220 NW 2ND AVENUE
PORTLAND, OR 97209 PORTLAND LNG PLANT ELECTRICAL DISTRIBUTION UPGRADE

PILE DETAILS

PILE EMBED DETAIL

1. FOR GENERAL NOTES, SEE DRAWING D1628-S002.

LEGEND:

(A) SECONDARY FRAMING DETAILS, SEE DWG D1628-S009

PREFORMED WALL AND ROOF PANELS

1. REFERENCES

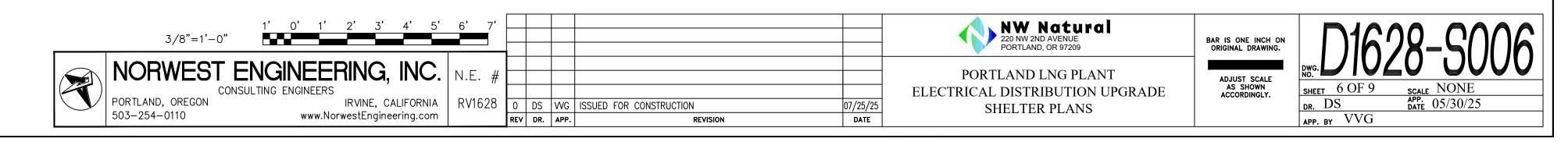
A. AISI "AMERICAN IRON AND STEEL INSTITUTE"
B. NRCA "NATIONAL ROOFING CONTRACTORS ASSOC."

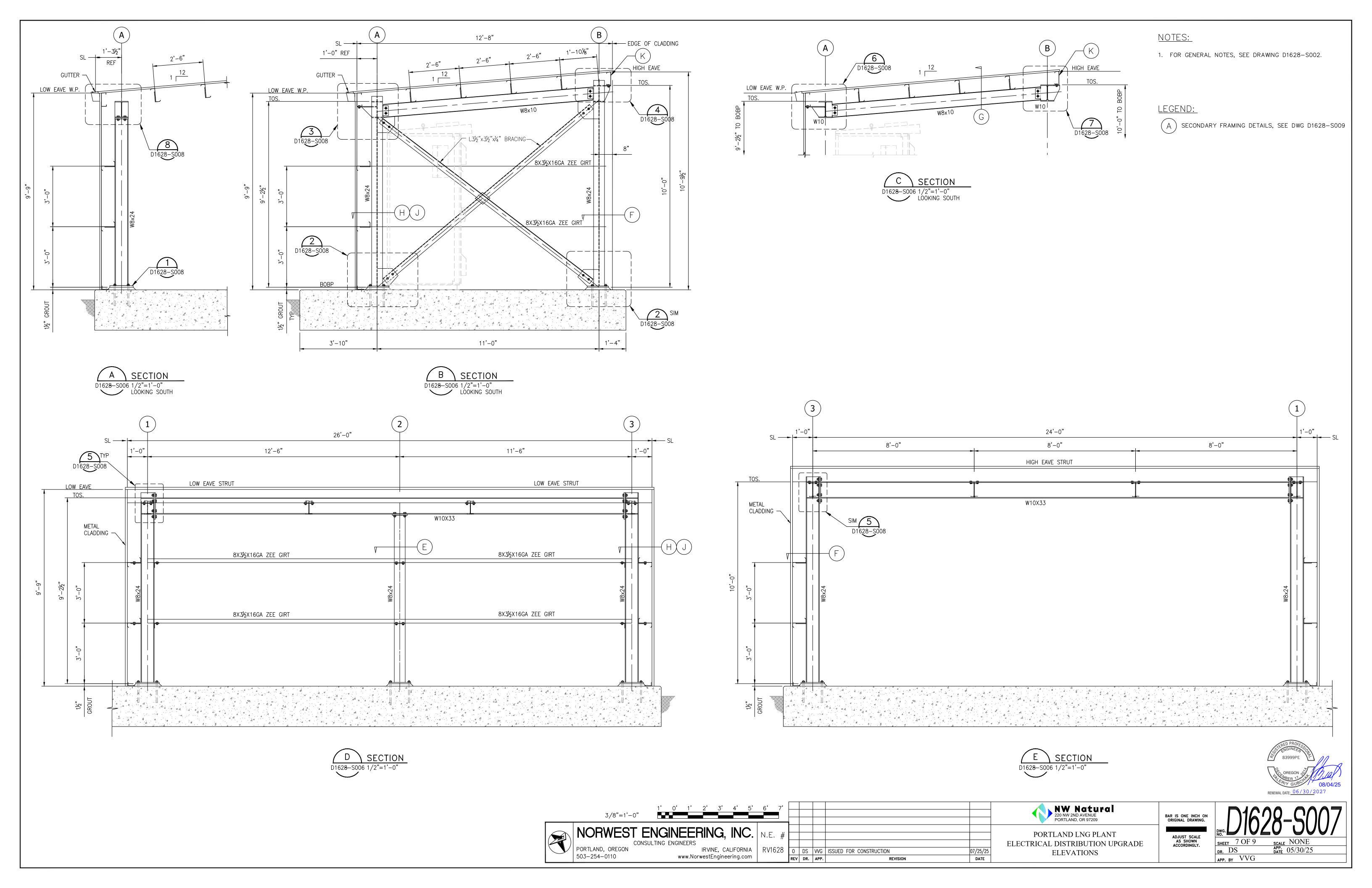
2. ROOF AND WALL PANELS ARE TO BE INSTALLED WITH FLASHING. SEALS AND CLOSER STRIPS TO PROVIDE WEATHER TIGHT ENCLOSURE. ALTERNATE BUT EQUAL WALL AND ROOF PANEL SECTIONS MAY BE USED UPON APPROVAL BY THE CONSTRUCTION MANAGER BUT ALL PANELS, ACCESSORIES, TRIMS, FASTENERS, MUST BE FROM A SINGLE—SOURCE PROVIDER. ALL ROOF AND WALL PANELS TO HAVE A 20 YEAR WARRANTY.

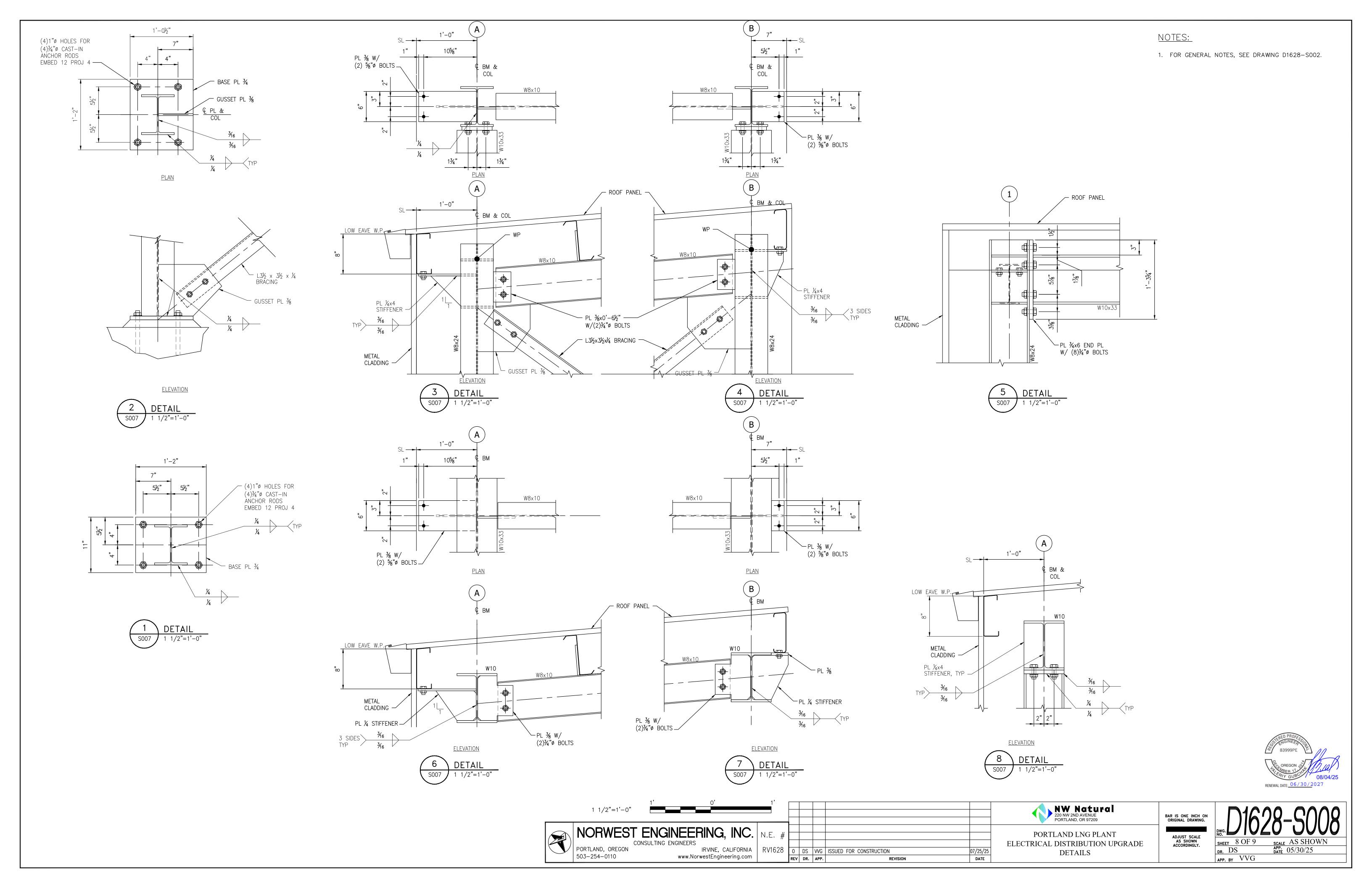
MATERIALS: (STANDARD GALVALUME COATING)

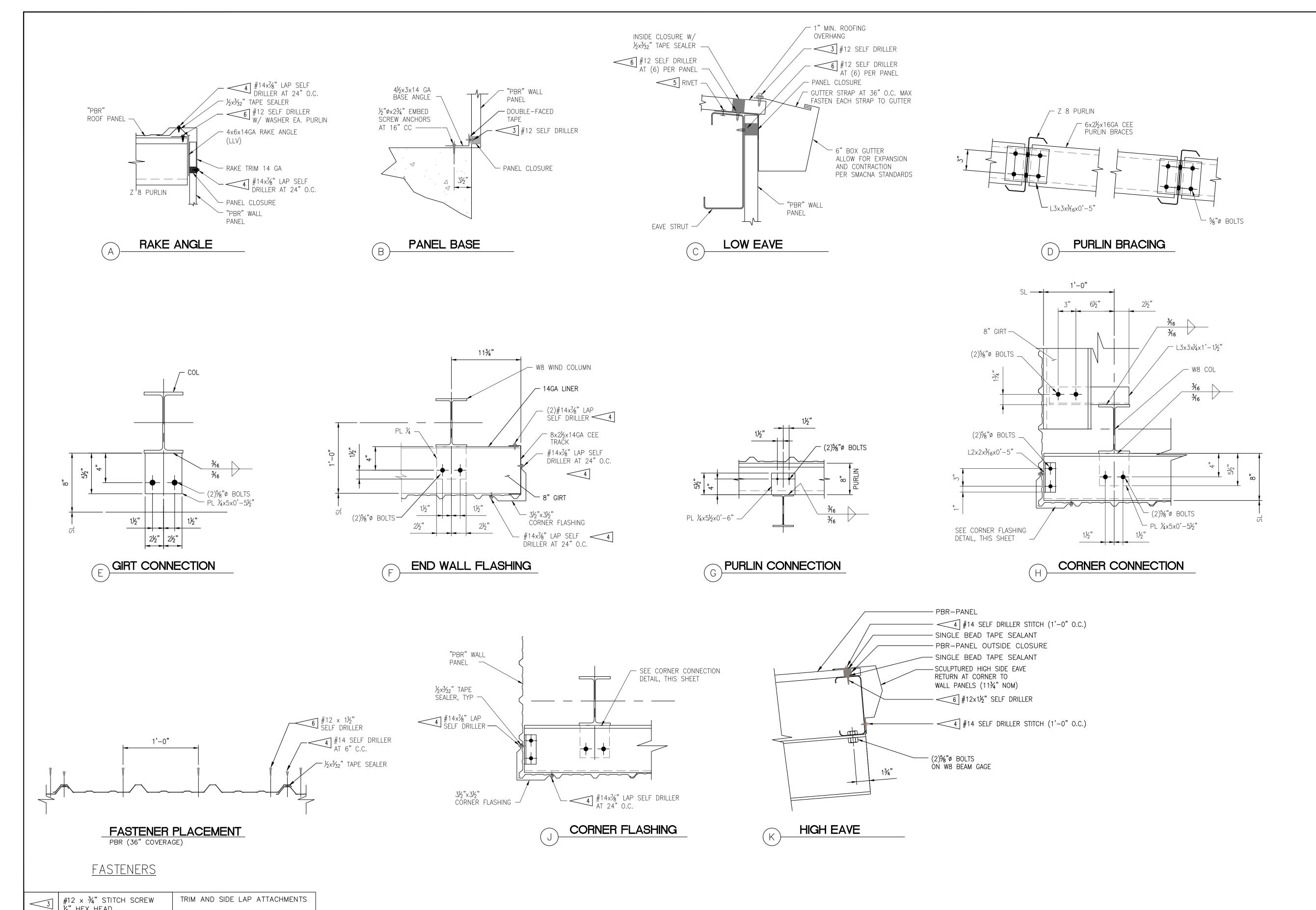
A. ROOF PANELS — 26 GAUGE, GRD. 80 "PBR" PROFILE

B. WALL PANELS — 24 GAUGE, GRD. 80 "PBR" PROFILE


SECONDARY AND METAL STUD FRAMING


1. REFERENCES


A. LGSI "LIGHT GAGE STRUCTURAL INSTITUTE"
B. SSMA "STEEL STUD MANUFACTURERS ASSOC"


- 2. LIGHT GAGE MEMBERS TO BE OF THE SIZES AND FINISH AS SHOWN AND BE PRODUCED BY AN LGSI MEMBER COMPANY
- 3. %"ø BOLTING TO BE ASTM A307, GR A. GALV
- 4. BOLT GAGES/HOLE LINES FOR LIGHT GAGE MEMBERS MAY BE ADJUSTED FROM THE DIMENSIONS SHOWN TO FIT STD. OR PREFERRED DIMENSIONS FOR THE LIGHT GAGE SUPPLIER.

$\overline{3}$	#12 x % STITCH SCREW TRIM AND SIDE LAP ATTACHMENTS 1/4" HEX HEAD			RENEWAL DATE: 06/30/2027
4	#14 x 7/8" LAP SELF DRILLER, TRIM AND SIDE LAP ATTACHMENTS 5/16" HEX HEAD	1 1/2"=1'-0" 1 1/2"=1'-0" NW Natural 220 NW 2ND AVENUE	DAD IS ONE INCIL ON	
5	STST-42 SS RIVET 1/8×1/8 *REQUIRES SEALANT TRIM-TO-TRIM OR TRIM-TO-WALL PANEL ATTACHMENT	1 1/2"=1'-0" NORWEST ENGINEERING, INC. N.E. # PORTLAND LNG PLANT	BAR IS ONE INCH ON ORIGINAL DRAWING.	D1628-S009
6	#12x 1", 1½", 2", 2½" SELF PANEL TO PURLIN/GIRT ATTACHMENTS	CONSULTING ENGINEERS CONSULTING ENGINEERS PORTLAND, OREGON RVINE, CALIFORNIA RVI628 RVIFT RVI	ADJUST SCALE AS SHOWN ACCORDINGLY.	SHEET 9 OF 9 SCALE AS SHOWN DR. DS APP. 05/30/25
		503-254-0110 www.NorwestEngineering.com REV DR. APP. REVISION DATE STIELTER SECONDART TRAINING DETAILS		APP. BY VVG

NOTES:

1. FOR GENERAL NOTES, SEE DRAWING D1628-S002.