

3140 NE Broadway | Portland, OR 97232 | 971 544-2139 | www.maulfoster.com

July 15, 2024 Project No. 9081.03.016

Tina Elayer
Oregon Department of Environmental Quality
Western Region
165 East 7th Avenue, Suite 100
Eugene, Oregon 97401

Re: 2023 Annual Report for Stella-Jones Corporation, Eugene, Oregon; Environmental Cleanup Site Information Identification Number 63

Dear Tina Elayer:

Maul Foster & Alongi, Inc. (MFA), has prepared this annual report for the Stella-Jones Corporation (Stella-Jones) wood-treating facility located at 90049 Highway 99 North in Eugene, Oregon (the site). The site previously referred to as McFarland Cascade Pole and Lumber Company is currently owned and operated by Stella-Jones. This annual report summarizes groundwater monitoring, extraction and treatment, well-abandonment, and site-related correspondence between Stella-Jones, MFA, the Oregon Department of Environmental Quality (DEQ), and the Oregon Department of Transportation (ODOT) for the October 1, 2022 through September 30, 2023 annual reporting period.

Monitoring Network and Treatment System Summary

Stella-Jones operates a groundwater treatment system as an interim remedial action measure (IRAM) that extracts and treats impacted groundwater and light nonaqueous-phase liquid (LNAPL) released from historical practices as outlined in the Remedial Action Work Plan (Work Plan)¹.

The IRAM consists of four recovery wells (R-1, R-2, R-3, and R-4; Figure 1), a water treatment system, and a vacuum-enhanced recovery (VER) system. Recovery wells R-1 and R-2 are used to extract groundwater and LNAPL; the DEQ authorized suspension of pumping at R-4 on January 28, 2013, and suspension of pumping at R-3 on September 25, 2015. Subsequently, DEQ authorized the abandonment of R-4 on October 31, 2022, which was then abandoned from May 31 to June 2, 2023. Well abandonment activities were communicated in detail to DEQ in the April 2024 well abandonment report².

Either the portable VER system or a shallow well hand pump is employed at selected on-site wells (AGI-6, MT-2, MT-3, MT-4, R-5, 96-2, and 96-3) for the removal of LNAPL. The VER system enhances LNAPL recovery by increasing the gradient and accelerating the movement of water and LNAPL through the aquifer. The VER increases water movement by creating areas of vacuum (i.e., negative pressure).

¹ MFA, 2013. Remedial Action Work Plan. McFarland Cascade Holdings, Inc. Wood treating Facility, Eugene, Oregon. Maul Foster & Alongi, Inc.: Portland, OR. August 27.

² MFA. 2024. Recovery Well R-4 and Monitoring Well 92-9B Abandonment Report; McFarland Cascade Pole and Lumber Company Site, Eugene, Oregon; Environmental Cleanup Site; Information Identification Number 63. Maul Foster & Alongi, Inc.: Portland, OR. April 15.

Actions Taken

Tina Elayer

July 15, 2024

Communications and Submittals

The following summarizes communications and submittals between Stella-Jones, MFA, DEQ, and ODOT during the reporting period.

Monthly IRAM and VER operations reports for September 2022 through August 2023 were submitted electronically to DEQ via email on October 12, November 9, and December 6, 2022, and January 10, February 14, March 13, April 10³, May 4, June 5⁴, July 10, August 3, and September 8, 2023.

On October 17 and 18, 2022, the DEQ requested additional information regarding monitoring well 92-9 to inform the decision to decommission a damaged monitoring well (92-9B). MFA provided the requested information to DEQ via email on October 20, 2022.

On October 31, 2022, the DEQ provided a letter authorizing the abandonment of monitoring well 92-9B and recovery well R-4, and the modification of the reporting requirements from a semiannual to an annual reporting schedule.

On February 2, 2023, MFA on behalf of Stella-Jones requested a 60-day extension to DEQ for the construction completion report documenting the septic, water main, and parking lot construction activities at the site.

On February 2, 2023, DEQ approved the extension request for the construction completion report.

On March 23, 2023, MFA on behalf of Stella-Jones submitted the construction completion report documenting the septic tank abandonment, water main repair, and parking lot upgrade to DEQ.

On March 30, 2023, Stella-Jones provided notification to ODOT that the spring 2022 semiannual monitoring event was scheduled to take place on April 5 and 6, 2023, and that Stella-Jones' representatives would be accessing ODOT property for the purposes of groundwater monitoring.

On May 19, 2023, MFA provided notification to ODOT that representatives of Stella-Jones, MFA, Applied Professional Services, Inc, Holt Services, and public utility locators responding to a *CALL BEFORE YOU DIG* request, planned to access the ODOT property for the purpose of abandoning monitoring well 92-9B and recovery well R-4. The access dates ranged from May 22 to June 7, 2023. On May 22 through 24, 2023, ODOT notified MFA that the ODOT permit #05M43173, which provided access to the worksite on ODOT property, was expired. ODOT requested Stella-Jones send an updated insurance certificate. Stella-Jones and ODOT agreed that Stella-Jones would provide an updated insurance policy to renew the permit. The permit, in turn, was renewed.

On May 22 through 24, 2023, during the previously mentioned communications about Stella-Jones permit renewal, ODOT requested a separate permit for unloading and loading of the drilling rig and equipment for decommissioning monitoring well 92-9B and recovery well R-4. Stella-Jones submitted a new permit application and traffic control plan for this activity. Stella-Jones responded to clarifying questions asked by ODOT regarding the traffic control permit and whether Stella-Jones planned to conduct work in the ODOT right of way or just load/unload equipment in the right of way. Stella-Jones clarified that loading/unloading activities would occur in the right of way, but all other work to

³ Initial report was sent on April 10; a follow up email from MFA was sent April 25 with corrected information. DEQ responded on April 26 indicating the email was sufficient notification and no updated log was needed.

⁴ Initial report was sent on June 2, and a corrected report was sent on June 5.

abandon the wells would take place on the adjacent ODOT property. Based on this clarification, ODOT approved and issued permit #05M43671 for the loading/unloading activities in the right of way.

On May 24, 2023, Stella-Jones provided notification to ODOT that representatives of Stella-Jones would be accessing the ODOT property to complete preparation for the well abandonment scheduled for the following week.

On May 24, 2023, MFA notified DEQ that the abandonment of monitoring well 92-9B and recovery well R-4 was scheduled to begin on May 31, 2023 and the anticipated completion date was on or before June 7, 2023.⁵

On May 26, 2023, MFA provided notification to ODOT of the upcoming work that would be conducted on the ODOT property referenced in permits #05M43173 and #05M43671. Activities scheduled under permit #05M43173 included access to the property on May 30, 2023 for well abandonment preparations, and well abandonment activities anticipated to take place from May 31 through June 7, 2023. Activities scheduled under permit #05M43671 included unloading the drill rig and associated equipment on May 31, 2023 and demobing the equipment sometime between June 5 and 7, 2023. ODOT would be notified once the loading date was confirmed.

On June 2, 2023, MFA provided notification to ODOT that the demobing of equipment would take place on June 6, 2023.

On August 21, 2023, MFA on behalf of Stella-Jones, submitted the 2022 Annual Report for the site to DEQ. This report covered the monitoring period from October 1, 2021 to September 30, 2022.

On August 28, 2023, Stella-Jones provided notification to ODOT that the fall 2023 semiannual monitoring event was scheduled to take place on September 12 and 13, 2022, and that Stella-Jones' representatives would be accessing ODOT property for the purposes of groundwater monitoring.

On August 28, 2023, Stella-Jones notified ODOT that it planned to access the ODOT property on August 30th between 9:00 am to 3:00 pm to prepare for the fall 2023 semiannual monitoring event.

On August 28 through September 11, 2023, Stella-Jones requested ODOT check the current state of the encampment prior to Stella-Jones representatives accessing that area for the upcoming scheduled sampling activities.

Groundwater Sampling and Surface Water Sampling

In accordance with the Work Plan, groundwater and surface water sampling was conducted at the locations summarized in Table 1 and shown on Figure 1.

See Table 1 for the list of wells sampled and the analysis schedule agreed upon in the Work Plan. Samples collected from R-3 and the North and South Ponds were additionally analyzed for pentachlorophenol (PCP) by U.S. Environmental Protection Agency (EPA) Method SW8041A to meet screening level requirements for those locations

Fieldwork conducted on January 17, 2023 included groundwater sampling at three wells and surface water sampling at the North and South Ponds (see Table 1 and Figure 1).

⁵ Final abandonment report was submitted to DEQ on April 18, 2024.

Fieldwork conducted on April 5 and 6, 2023, included groundwater sampling of 10 wells (see Table 1 and Figure 1).

Fieldwork conducted on September 12 and 13, 2023, included groundwater sampling at 10 wells (see Table 1 and Figure 1). A total of 11 wells were scheduled for sampling, but R-4 was abandoned from May 31 to June 2, 2023, and so was not sampled in September 2023. It will be removed from the monitoring schedule going forward.

Water Level Monitoring

In accordance with the Work Plan, water level monitoring was conducted at the locations summarized in Table 1 and shown on Figure 1.

The Work Plan specifies monthly and semiannual water level monitoring at monitoring well 92-9b and recovery well R-4; however, monitoring well 92-9B was struck and damaged by a car on October 5, 2021, and water levels from this well were not measured during the monitoring period due to the damage. As approved by DEQ on October 31, 2022, 92-9B and recovery well R-4 were abandoned as described in the Well Abandonment report submitted to DEQ on April 18, 2024. Due to their abandonment, water levels will no longer be collected at these two locations.

The Work Plan specifies monthly water level monitoring at 25 locations (24 well locations and the North Pond). As noted in Table 1, 92-9B and R-4 were abandoned, and monthly water level measurements were therefore collected at 23 locations. Water level measurements were collected by Stella-Jones staff and were provided to DEQ in the monthly IRAM and VER operations reports over the course of the monitoring period.

A total of 36 locations (35 wells and the North Pond) were scheduled for water level measurements during the March and September events (see Table 1 and Figure 1). As noted in Table 1, 92-9B and R-4 were abandoned, and water level measurements were therefore collected at 35 locations in March and 34 locations in September. Water level measurements were collected by both Stella-Jones staff and their representatives during these events.

Water level data are summarized in Table 2. Potentiometric surface maps are provided in Figures 2A through 2L.

Treatment System

In addition to the sampling required by the workplan, SJ staff conduct monthly monitoring of PCP at the influent and midpoint of the IRAM treatment system, and PCP concentration and potential hydrogen (pH) at the effluent. Results are shown on Table 7.

Data Collected

Data collected during the sampling and monitoring events described above for the October 1, 2022 to September 30, 2023 reporting period are summarized in the attached tables and figures. Field data forms for the water level, LNAPL level⁶, and groundwater sampling activities are provided in Attachment A. Laboratory reports and data validation memoranda are provided in Attachment B. Based on the data validation, the data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

⁶ LNAPL level is recorded as DTO (depth to oil) in the field forms.

Page 5

The Work Plan states that groundwater samples are to be analyzed for phenols by EPA Method 8040, and semivolatile organic compounds by EPA Method 8270SIM. The updated EPA Method 8270E meets the programmatic requirements for both Method 8040 and Method 8270SIM and is the most current method. Samples were analyzed by the updated method in addition to the cases where Method 8041A is also used to meet project reporting limits.

Analytical results for chlorophenols for the January, April, and September 2023 monitoring events are summarized in Table 5.

Analytical results for semivolatile organic compounds for the April and September 2023 monitoring events are summarized in Table 6.

Water level data are summarized in Table 2. Potentiometric surface maps are provided in Figures 2A through 2L.

A summary of the IRAM pumping rates and LNAPL recovery for R-1 and R-2 along with the Treatment Plant's groundwater discharge over the monitoring period are shown in Tabe 3.

A summary of the VER LNAPL recovery volumes for recovery well R-5 and six monitoring wells (AGI-6, MT-2, MT-3, MT-4, 96-2, and 96-3) over the monitoring period are shown in Tables 4.

Figures 3A and 3B show the PCP concentration plume, based on data from the April and September 2023 monitoring events, respectively. A graph of the PCP concentrations in the recovery wells over time is included as Figure 4.

Monthly monitoring results showing PCP concentration at the influent and midpoint of the IRAM treatment system, and PCP concentration and potential hydrogen (pH) at the effluent, are shown on Table 7.

As requested by DEQ, Table 8 now includes PCP data for the North and South Ponds from 2008 to the most recent monitoring event in January 2023.

Actions Anticipated

It is anticipated that the 2024 annual report for the October 1, 2023 through September 30, 2024 reporting period will include the following:

- Semiannual and monthly water level monitoring at the locations shown on Table 1, excluding 92-9B and R-4. As noted above, the number of monitoring locations have been reduced for both the semiannual and monthly events due to the abandonment of 92-9B and R-4.
- Groundwater and surface water sampling at the locations and periods shown on Table 1, excluding R-4. As noted above, the number of groundwater monitoring locations has been reduced due to the abandonment of R-4.
- IRAM operations at R-1 and R-2.
- VER extraction at wells with recoverable quantities of LNAPL.

Discussions and Problems Encountered

No problems have been encountered since the previous annual report.

Sincerely,

Maul Foster & Alongi, Inc.

David Weatherby, RG Principal Geologist Cody Schweitzer

Project Environmental Scientist

Attachments

Limitations

Figures

Figure 1—Well Locations

Figure 2A—Potentiometric Surface Map—October 2022

Figure 2B—Potentiometric Surface Map—November 2022

Figure 2C—Potentiometric Surface Map—December 2022

Figure 2D—Potentiometric Surface Map—January 2023

Figure 2E—Potentiometric Surface Map—February 2023

Figure 2F—Potentiometric Surface Map—March 2023

Figure 2G—Potentiometric Surface Map—April 2023

Figure 2H—Potentiometric Surface Map—May 2023

Figure 2I—Potentiometric Surface Map—June 2023

Figure 2J—Potentiometric Surface Map—July 2023

Figure 2K—Potentiometric Surface Map—August 2023

Figure 2L—Potentiometric Surface Map—September 2023

Figure 3A—PCP Concentrations in Groundwater—April 2023

Figure 3B—PCP Concentrations in Groundwater—September 2023

Figure 4—Pentachlorophenol Concentrations in Recovery Wells Over Time

Tables

Table 1—Monitoring Program

Table 2—Water Level Monitoring

Table 3—IRAM System Summary

Table 4—VER LNAPL Recovery Summary

Table 5—Chlorophenol Analytical Results

Table 6—Semivolatile Organic Compound Analytical Results

Table 7—IRAM Treatment System Monthly Monitoring Results

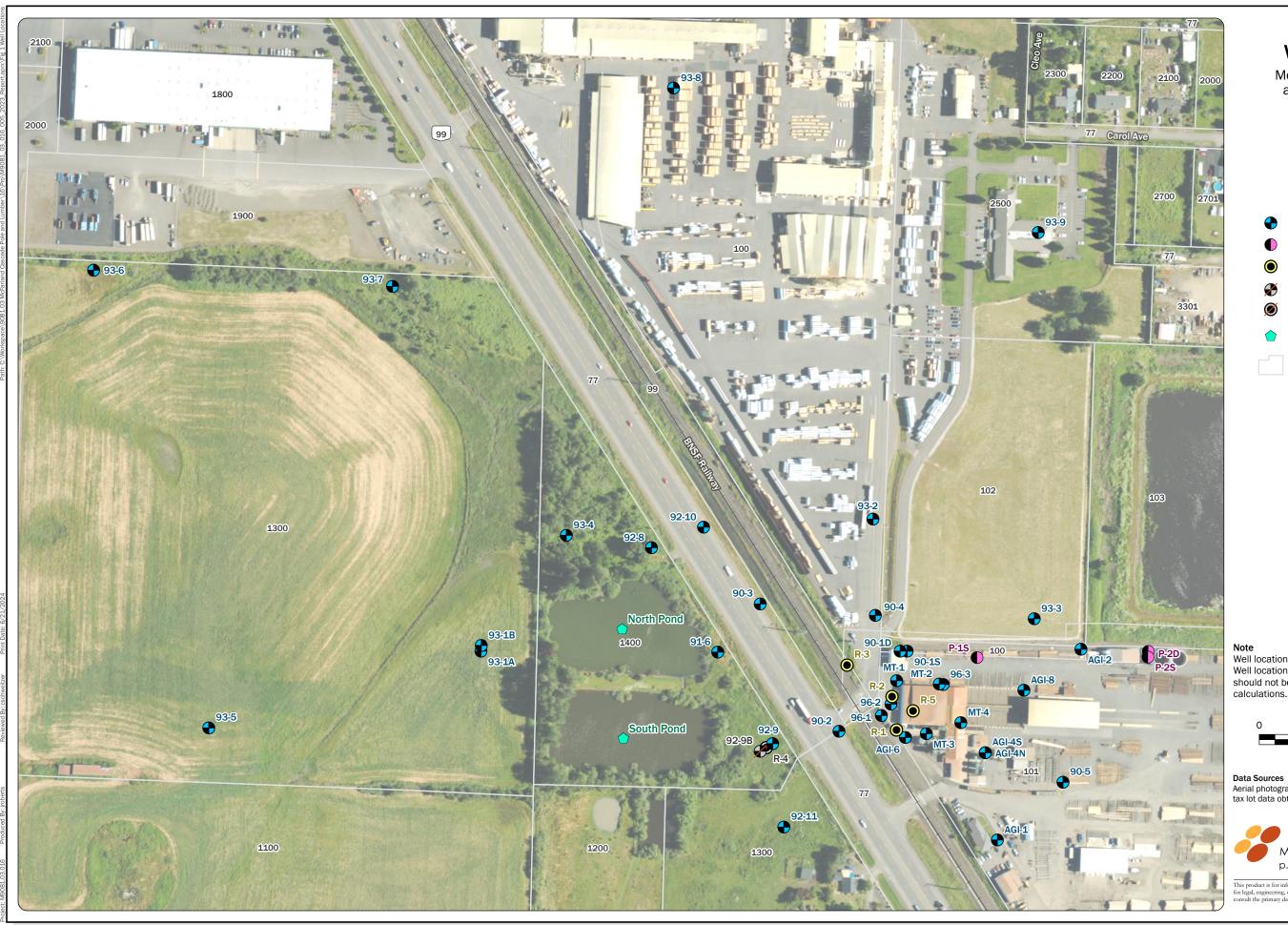
Table 8—Pentachlorophenol Analytical Results in North Pond and South Pond

A—Fluid Level Measurements and Groundwater Sampling Forms

B-Laboratory Reports and Data Validation Memoranda

cc: Alex Clark, Stella-Jones

Brian Widmer, Stella-Jones


Limitations

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

Figures

Figure 1 **Well Locations**

McFarland Cascade Pole and Lumber Company Eugene, OR

Legend

- Monitoring Well
- Piezometer
- Recovery Well
- Abandoned Monitoring Well
- Abandoned Recovery Well
- Surface Water Sample Location
- Tax Lot

Well locations are based on data provided by AECOM. Well locations are for visualization purposes only and should not be used for distance, area, or volume

Data Sources
Aerial photograph obtained from the State of Oregon (2022); tax lot data obtained from Lane County (2023).

Figure 2A Potentiometric Surface Map October 2022

McFarland Cascade Pole and Lumber Company Eugene, OR

Legend

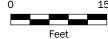
Monitoring Well

Piezometer Recovery Well

Water Level Elevation Contour (feet)

Railroad

All wells shown are included in semiannual waterlevel monitoring.


Potentiometric surface generated with Spatial Analyst extension for ArcGIS Pro 3.2.2 using natural neighbor interpolation method.

Well locations are based on data provided by AECOM.
Well locations are for visualization purposes only and should not be used for distance, area or volume calculations.

Water level measurements were taken on October 27, 2022.

Water level elevation contours that make sharp angles are likely artifacts of the interpolation process rather than precise representations of groundwater flow behavior.

NM = not measured.

Data SourcesWell locations obtained from AECOM; aerial photograph obtained from the State of Oregon (2022).

MAUL FOSTER ALONGI p. 971 544 2139 | www.maulfoster.com

Figure 2B Potentiometric Surface Map November 2022

McFarland Cascade Pole and Lumber Company Eugene, OR

Legend

Monitoring Well

Piezometer

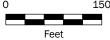
Recovery Well

Railroad

Water Level Elevation Contour (feet)

All wells shown are included in semiannual waterlevel monitoring.

Potentiometric surface generated with Spatial Analyst extension for ArcGIS Pro 3.2.2 using natural neighbor interpolation method.

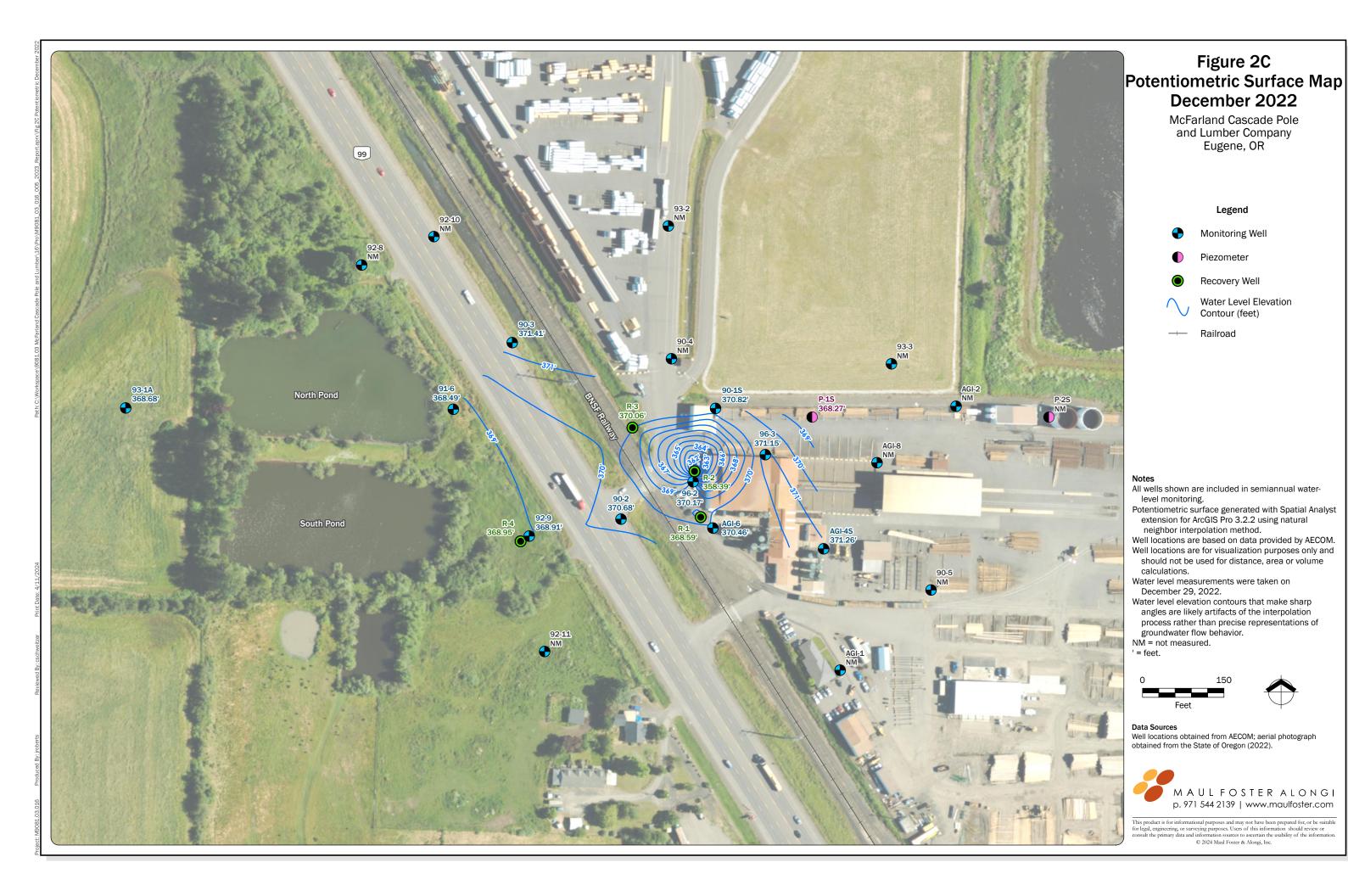

Well locations are based on data provided by AECOM.

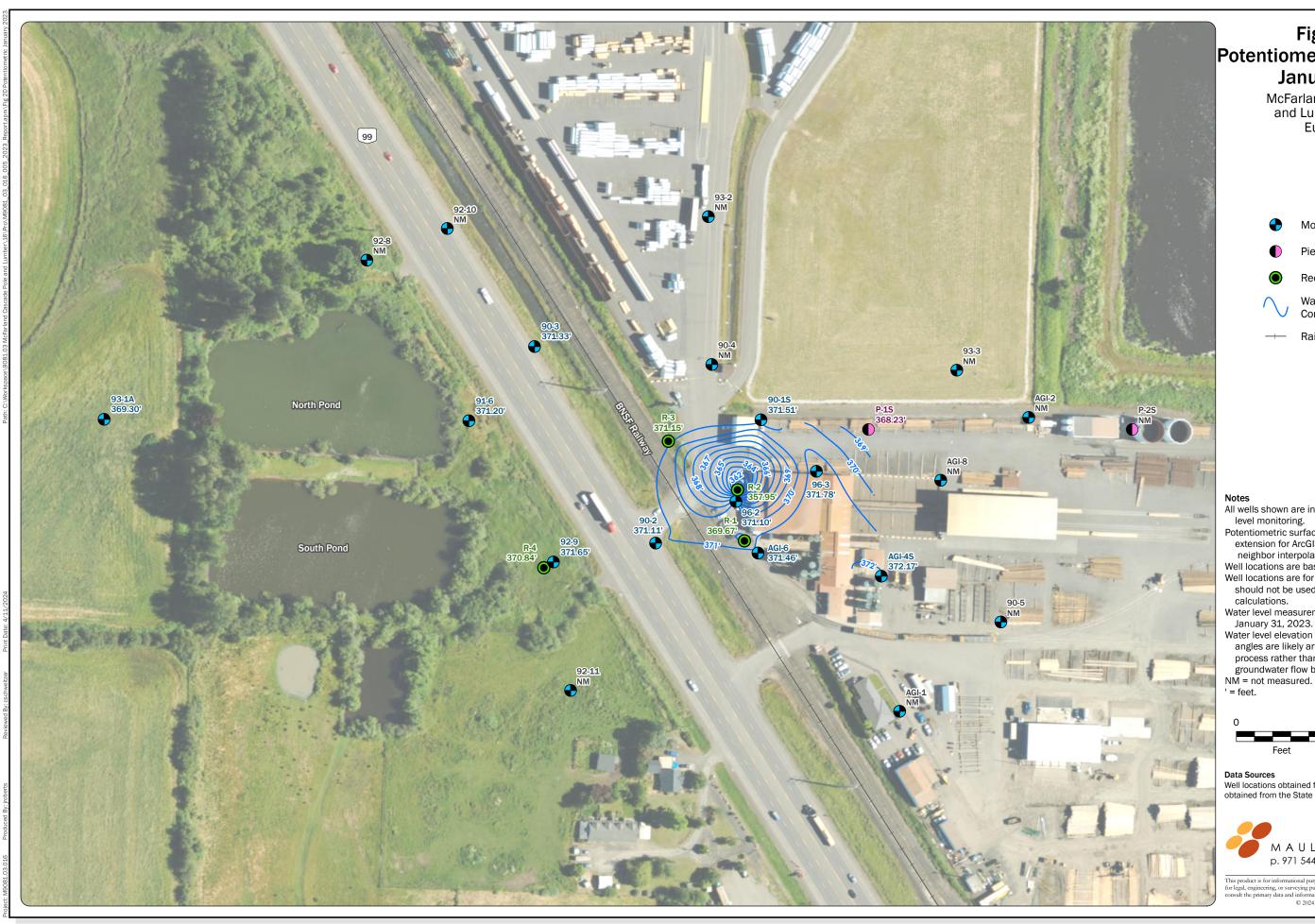
Well locations are for visualization purposes only and should not be used for distance, area or volume calculations.

Water level measurements were taken on November 23, 2022.

Water level elevation contours that make sharp angles are likely artifacts of the interpolation process rather than precise representations of groundwater flow behavior.

NM = not measured.





Data SourcesWell locations obtained from AECOM; aerial photograph obtained from the State of Oregon (2022).

MAUL FOSTER ALONGI p. 971 544 2139 | www.maulfoster.com

Figure 2D Potentiometric Surface Map January 2023

McFarland Cascade Pole and Lumber Company Eugene, OR

Legend

Monitoring Well

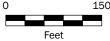
Piezometer

Recovery Well

Water Level Elevation Contour (feet)

Railroad

All wells shown are included in semiannual waterlevel monitoring.


Potentiometric surface generated with Spatial Analyst extension for ArcGIS Pro 3.2.2 using natural neighbor interpolation method.

Well locations are based on data provided by AECOM.

Well locations are for visualization purposes only and should not be used for distance, area or volume calculations.

Water level measurements were taken on January 31, 2023.

Water level elevation contours that make sharp angles are likely artifacts of the interpolation process rather than precise representations of groundwater flow behavior.

Data SourcesWell locations obtained from AECOM; aerial photograph obtained from the State of Oregon (2022).

© 2024 Maul Foster & Alongi, Inc.

Figure 2E Potentiometric Surface Map February 2023

McFarland Cascade Pole and Lumber Company Eugene, OR

Legend

Monitoring Well Piezometer

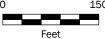
Recovery Well

Water Level Elevation Contour (feet)

Railroad

All wells shown are included in semiannual waterlevel monitoring.

Potentiometric surface generated with Spatial Analyst extension for ArcGIS Pro 3.2.2 using natural neighbor interpolation method.


Well locations are based on data provided by AECOM.

Well locations are for visualization purposes only and should not be used for distance, area or volume calculations.

Water level measurements were taken on February 23, 2023.

Water level elevation contours that make sharp angles are likely artifacts of the interpolation process rather than precise representations of groundwater flow behavior.

NM = not measured.

Data SourcesWell locations obtained from AECOM; aerial photograph obtained from the State of Oregon (2022).

Figure 2F Potentiometric Surface Map **March 2023**

McFarland Cascade Pole and Lumber Company Eugene, OR

Legend

Monitoring Well

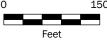
Piezometer

Recovery Well

Water Level Elevation Contour (feet)

Railroad

All wells shown are included in semiannual water-


Potentiometric surface generated with Spatial Analyst extension for ArcGIS Pro 3.2.2 using natural neighbor interpolation method.

Well locations are based on data provided by AECOM.

Well locations are for visualization purposes only and should not be used for distance, area or volume

Water level measurements were taken on

Water level elevation contours that make sharp angles are likely artifacts of the interpolation process rather than precise representations of groundwater flow behavior.

Data SourcesWell locations obtained from AECOM; aerial photograph obtained from the State of Oregon (2022).

MAUL FOSTER ALONGI p. 971 544 2139 | www.maulfoster.com

Figure 2G Potentiometric Surface Map **April 2023**

Water Level Elevation

All wells shown are included in semiannual water-

Well locations are for visualization purposes only and should not be used for distance, area or volume

Water level measurements were taken on

Water level elevation contours that make sharp angles are likely artifacts of the interpolation process rather than precise representations of

MAUL FOSTER ALONGI p. 971 544 2139 | www.maulfoster.com

Figure 2H Potentiometric Surface Map May 2023

McFarland Cascade Pole and Lumber Company Eugene, OR

Legend

Monitoring Well

Piezometer

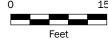
Recovery Well

Water Level Elevation Contour (feet)

Railroad

All wells shown are included in semiannual waterlevel monitoring.

Potentiometric surface generated with Spatial Analyst extension for ArcGIS Pro 3.2.2 using natural neighbor interpolation method.


Well locations are based on data provided by AECOM.

Well locations are for visualization purposes only and should not be used for distance, area or volume calculations.

Water level measurements were taken on May 25, 2023.

Water level elevation contours that make sharp angles are likely artifacts of the interpolation process rather than precise representations of groundwater flow behavior.

NM = not measured.



Data SourcesWell locations obtained from AECOM; aerial photograph obtained from the State of Oregon (2022).

MAUL FOSTER ALONGI p. 971 544 2139 | www.maulfoster.com

Figure 2I Potentiometric Surface Map June 2023

McFarland Cascade Pole and Lumber Company Eugene, OR

Legend

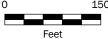
Monitoring Well

Piezometer Recovery Well

Water Level Elevation Contour (feet)

Railroad

All wells shown are included in semiannual waterlevel monitoring.


Potentiometric surface generated with Spatial Analyst extension for ArcGIS Pro 3.2.2 using natural neighbor interpolation method.

Well locations are based on data provided by AECOM.

Well locations are for visualization purposes only and should not be used for distance, area or volume calculations.

Water level measurements were taken on June 28, 2023.

Water level elevation contours that make sharp angles are likely artifacts of the interpolation process rather than precise representations of groundwater flow behavior.

Data SourcesWell locations obtained from AECOM; aerial photograph obtained from the State of Oregon (2022).

Figure 2J Potentiometric Surface Map July 2023

McFarland Cascade Pole and Lumber Company Eugene, OR

Legend

Monitoring Well

Piezometer

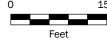
Recovery Well

Water Level Elevation Contour (feet)

Railroad

All wells shown are included in semiannual waterlevel monitoring.

Potentiometric surface generated with Spatial Analyst extension for ArcGIS Pro 3.2.2 using natural neighbor interpolation method.


Well locations are based on data provided by AECOM.

Well locations are for visualization purposes only and should not be used for distance, area or volume calculations.

Water level measurements were taken on July 27, 2023.

Water level elevation contours that make sharp angles are likely artifacts of the interpolation process rather than precise representations of groundwater flow behavior.

NM = not measured.

Data SourcesWell locations obtained from AECOM; aerial photograph obtained from the State of Oregon (2022).

MAUL FOSTER ALONGI p. 971 544 2139 | www.maulfoster.com

© 2024 Maul Foster & Alongi, Inc.

Figure 2K Potentiometric Surface Map August 2023

McFarland Cascade Pole and Lumber Company Eugene, OR

Legend

Monitoring Well

Piezometer

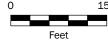
Recovery Well

Water Level Elevation Contour (feet)

Railroad

All wells shown are included in semiannual waterlevel monitoring.

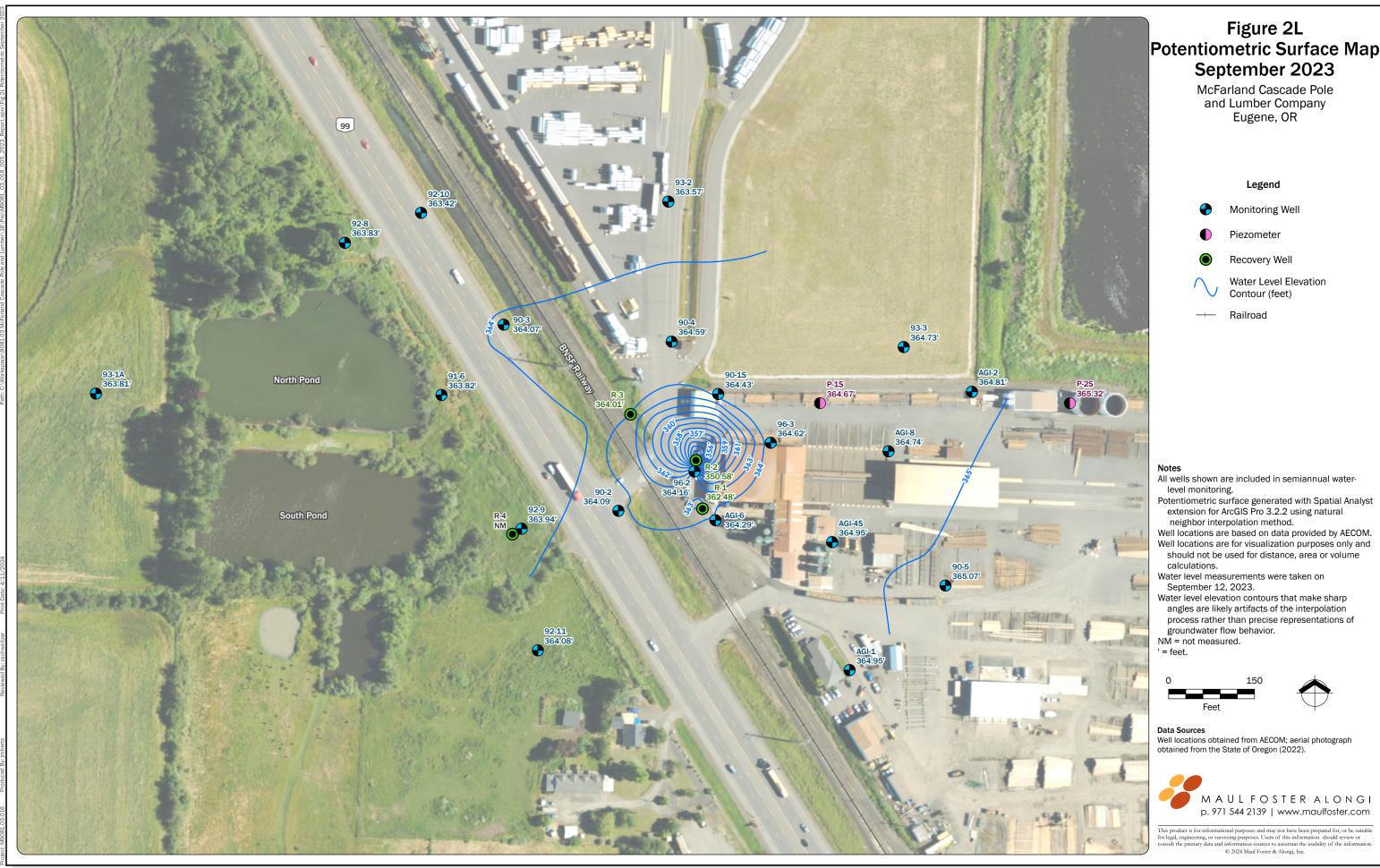
Potentiometric surface generated with Spatial Analyst extension for ArcGIS Pro 3.2.2 using natural neighbor interpolation method.


Well locations are based on data provided by AECOM.

Well locations are for visualization purposes only and should not be used for distance, area or volume calculations.

Water level measurements were taken on August 30, 2023.

Water level elevation contours that make sharp angles are likely artifacts of the interpolation process rather than precise representations of groundwater flow behavior.


NM = not measured.

Data SourcesWell locations obtained from AECOM; aerial photograph obtained from the State of Oregon (2022).

Potentiometric Surface Map September 2023

Well locations are for visualization purposes only and should not be used for distance, area or volume

angles are likely artifacts of the interpolation process rather than precise representations of

MAUL FOSTER ALONGI p. 971 544 2139 | www.maulfoster.com

Figure 3A PCP Concentration in Groundwater April 2023

McFarland Cascade Pole and Lumber Company Eugene, OR

Legend

Monitoring Well

Piezometer

Recovery Well

110001017 110

LNAPL Present

PCP Concentration in

Groundwater (µg/L)

< 1

1 - 10

10 - 100

Railroad

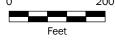
PCP concentrations have historically been non-detect in wells 90-3, 93-2, and 93-9; a value of half the method reporting limit was used for the interpolation.

The September 2022 result for 93-3 of 0.102J was used for the interpolation because this well was not sampled during the spring 2023 event.

not sampled during the spring 2023 event.

Well locations are based on data provided by AECOM.

The locations of these wells are for visualization purposes only and should not be used for distance, area or volume calculations.


Where both field sample and field sample duplicate data were available, the higher detected value was used.

J = result is an estimated value.
LNAPL = Light Non-Aqueous Phase Liquid.

 μ g/L = micrograms per liter.

NS = no sample collected. PCP = pentachlorophenol.

U = not detected at or above the method reporting limit.

Data Sources

Well locations obtained from AECOM; aerial photograph obtained from the State of Oregon (2022).

Figure 3B **PCP Concentration** in Groundwater September 2023

McFarland Cascade Pole and Lumber Company Eugene, OR

Legend

Monitoring Well

Piezometer

Recovery Well

LNAPL Present

PCP Concentration in Groundwater (µg/L)

< 1

1-10

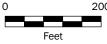
Railroad

PCP concentrations have historically been non-detect in wells 90-3, 93-2, and 93-9; a value of half the method reporting limit was used for the interpolation.

R-4 was abandoned from May 31 to June 2, 2023 and so was not sampled in the fall 2023 event.

Well locations are based on data provided by AECOM. The locations of these wells are for visualization purposes only and should not be used for distance, area or volume calculations.

Where both field sample and field sample duplicate data were available, the higher detected value was used.

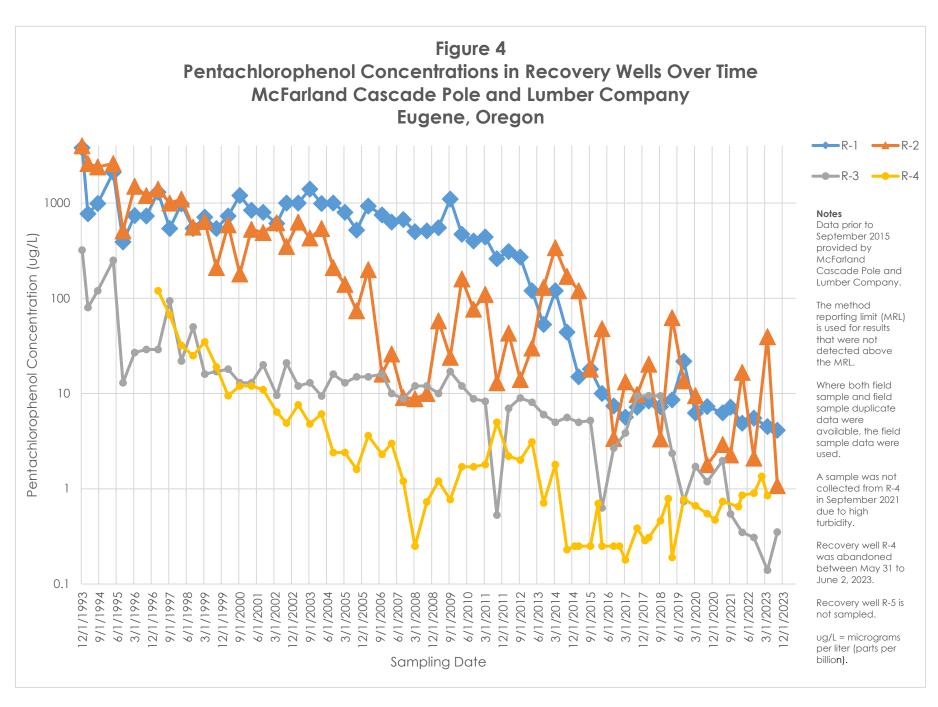

J = result is an estimated value.

LNAPL = Light Non-Aqueous Phase Liquid.

 μ g/L = micrograms per liter. NS = no sample collected.

PCP = pentachlorophenol.

U = not detected at or above the method reporting limit.



Data Sources

Well locations obtained from AECOM; aerial photograph obtained from the State of Oregon (2022).

Tables

Table 1 Monitoring Program Stella-Jones Corporation Eugene, Oregon

		Water Level Monito	ring		(Groundwater San	npling		Surface Water Sampling		
Location		Semiannual	Used for	March/Ap	oril	August/Septe	ember	December/January	December/January		
Localion	Monthly	(March/April and August/September)	Potentiometric Surface Maps	Chlorophenols	SVOCs	Chlorophenols	SVOCs	Chlorophenols	Chlorophenols		
Monitoring W	'ells										
AGI-1		Χ	Х								
AGI-2		Χ	X								
AGI-4N	Х	Х									
AGI-4S	Х	Х	Х								
AGI-6	Χ	Х	Х								
AGI-8		Х	Х								
90-18	Х	Х	Х								
90-1D	Х	Х		Х		Х					
90-2	Х	Х	Х								
90-3	Х	X	Х								
90-4		Χ	Х								
90-5		Χ	Х	Х							
91-6	Х	Х	Х								
92-8		X	Х								
92-9	Х	Χ	Х	Х		Х		Х			
92-9B	X ¹	Χ¹									
92-10		Χ	Х								
92-11		Χ	Х								
93-1A	Χ	Χ	Х			Χ		Х			
93-1B	Χ	Χ									
93-2		Χ	Х								
93-3		Х	Х			Х					
93-4				Х		Х					
93-8				Х		Х					
96-2	Х	Х	Х								
96-3	Х	Х	Х								
P-1S	Х	Χ	Х								

Table 1 Monitoring Program Stella-Jones Corporation Eugene, Oregon

		Water Level Monitor	ring		(Groundwater San	npling		Surface Water Sampling		
Location		Semiannual	Used for	March/Ap	oril	August/Septe	ember	December/January	December/January		
Localion	Monthly	(March/April and August/September)	Potentiometric Surface Maps	Chlorophenols	SVOCs	Chlorophenols	SVOCs	Chlorophenols	Chlorophenols		
P-2S		Х	Х								
P2D				Х		Х					
MT-1	Х	Х									
MT-2	Χ	Х									
MT-3	Χ	Х									
MT-4	Χ	Х									
Recovery We	ells										
R-1	Χ	Х	Х	Х	Х	Χ	Χ				
R-2	Χ	Х	Х	Х	Х	Χ	Χ				
R-3	Χ	Х	Х	χ^2	Х	χ^2	Χ				
R-4	Χ¹	Χ¹	Χ¹	X ¹		Χ¹		Χ¹			
R-5	Χ	Χ									
Ponds											
North	Χ	Х							χ^2		
South									χ^2		
IRAM Treatm	ent System										
Monthly for C	Chloropheno	ols			_						
Notos											

Notes

Chlorophenols and SVOCs analyzed by U.S. Environmental Protection Agency Method 8270E.

The current monitoring program was agreed to as part of the Remedial Action Work Plan, prepared by Maul Foster & Alongi, Inc., for McFarland Cascade Holdings, Inc., on August 27, 2013.

DEQ = Oregon Department of Environmental Quality.

IRAM = interim remedial action measure.

SVOC = semivolatile organic compound.

X = planned water level measurement, data use, or groundwater/surface water sample.

¹ Monitoring well 92-9B was damaged on October 5, 2021 and can no longer be used for water level monitoring. On October 31, 2022, the DEQ provided a letter authorizing the abandonment of monitoring well 92-9B and recovery well R-4. These wells were abandoned between May 31 to June 6, 2023. Recovery well R-4 was not apart of the monitoring program after abandonment.

²Samples are also analyzed for low level pentachlorophenol by U.S. Environmental Protection Agency Method 8041A to meet project reporting limit needs.

		10/27/2022							11/23/2022					12/29/2022		
Location	TOC	DTW	DT- LNAPL	LNAPL Thickness	CDTW	CELEV	DTW	DT- LNAPL	LNAPL Thickness	CDTW	CELEV	DTW	DT- LNAPL	LNAPL Thickness	CDTW	CELEV
AGI-1	377.39	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
AGI-2	379.52	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
AGI-4N	379.61	14.66	-	0.00	14.66	364.95	12.90		0.00	12.90	366.71	8.58		0.00	8.58	371.03
AGI-4S	379.57	14.23	-	0.00	14.23	365.34	12.46		0.00	12.46	367.11	8.31		0.00	8.31	371.26
AGI-6	378.77	14.25	14.20	0.05	14.20	364.57	12.60	12.55	0.05	12.55	366.22	8.35	8.31	0.04	8.31	370.46
AGI-8	378.47	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
90-18	376.24	11.43		0.00	11.43	364.81	9.74		0.00	9.74	366.50	5.42		0.00	5.42	370.82
90-1D	377.07	12.97		0.00	12.97	364.10	11.38		0.00	11.38	365.69	7.27		0.00	7.27	369.80
90-2	373.42	8.82		0.00	8.82	364.60	7.47		0.00	7.47	365.95	2.74		0.00	2.74	370.68
90-3	372.91	7.64		0.00	7.64	365.27	6.30		0.00	6.30	366.61	1.50		0.00	1.50	371.41
90-4	375.56	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
90-5	379.08	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
91-6	374.23	10.21		0.00	10.21	364.02	8.84		0.00	8.84	365.39	5.74		0.00	5.74	368.49
92-8	375.96	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
92-9	375.10	10.95		0.00	10.95	364.15	9.53		0.00	9.53	365.57	6.19		0.00	6.19	368.91
92-9B ^(a)	374.21	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
92-10	375.97	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
92-11	377.95	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
93-1A	375.61	11.66		0.00	11.66	363.95	10.29		0.00	10.29	365.32	6.93		0.00	6.93	368.68
93-1B	375.60	12.38		0.00	12.38	363.22	10.97		0.00	10.97	364.63	6.75		0.00	6.75	368.85
93-2	377.66	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
93-3	379.43	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
96-2	376.38	12.85	11.87	0.98	11.95	364.43	10.35	10.29	0.06	10.29	366.09	6.24	6.21	0.03	6.21	370.17
96-3	377.83	12.86	12.78	0.08	12.79	365.04	11.20	11.10	0.10	11.11	366.72	6.73	6.68	0.05	6.68	371.15
P-1S	377.22	12.12		0.00	12.12	365.10	10.40		0.00	10.40	366.82	8.95		0.00	8.95	368.27
P-2S	377.39	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
R-1	374.94	12.68	12.03	0.65	12.08	362.86	11.21	10.49	0.72	10.55	364.39	7.05	6.29	0.76	6.35	368.59
R-2	374.89	24.11		0.00	24.11	350.78	21.10		0.00	21.10	353.79	16.50		0.00	16.50	358.39
R-3	375.56	11.21		0.00	11.21	364.35	9.66		0.00	9.66	365.90	5.50		0.00	5.50	370.06
R-4 ^(b)	372.89	8.75		0.00	8.75	364.14	7.30		0.00	7.30	365.59	3.94		0.00	3.94	368.95
R-5	377.22	14.09	13.64	0.45	13.68	363.54	13.89	11.83	2.06	11.99	365.23	11.11	7.42	3.69	7.72	369.50
MT-1	377.39	12.64		0.00	12.64	364.75	10.92		0.00	10.92	366.47	6.75		0.00	6.75	370.64
MT-2	377.32	12.73	12.71	0.02	12.71	364.61	11.51	11.50	0.01	11.50	365.82	7.35		0.00	7.35	369.97
MT-3	374.94	14.38	12.60	1.78	12.74	362.20	11.52		0.00	11.52	363.42	6.90	6.88	0.02	6.88	368.06
MT-4	374.89	11.23	10.70	0.53	10.74	364.15	9.15	9.11	0.04	9.11	365.78	6.55	4.48	2.07	4.65	370.24
North Pond	375.15	0.00		0.00	0.00	375.15	0.61		0.00	0.61	374.54	3.40		0.00	3.40	371.75

				01/31/2023	01/31/2023									03/31/2023		
Location	TOC	DTW	DT- LNAPL	LNAPL Thickness	CDTW	CELEV	DTW	DT- LNAPL	LNAPL Thickness	CDTW	CELEV	DTW	DT- LNAPL	LNAPL Thickness	CDTW	CELEV
AGI-1	377.39	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
AGI-2	379.52	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
AGI-4N	379.61	7.82		0.00	7.82	371.79	8.40		0.00	8.40	371.21	7.22		0.00	7.22	372.39
AGI-4S	379.57	7.40		0.00	7.40	372.17	8.10		0.00	8.10	371.47	6.95		0.00	6.95	372.62
AGI-6	378.77	7.34	7.31	0.03	7.31	371.46	7.95	7.91	0.04	7.91	370.86	6.82	6.79	0.03	6.79	371.98
AGI-8	378.47	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
90-18	376.24	4.73		0.00	4.73	371.51	5.22		0.00	5.22	371.02	4.11		0.00	4.11	372.13
90-1D	377.07	6.88		0.00	6.88	370.19	7.00		0.00	7.00	370.07	5.81		0.00	5.81	371.26
90-2	373.42	2.31		0.00	2.31	371.11	1.72		0.00	1.72	371.70	1.22		0.00	1.22	372.20
90-3	372.91	1.58		0.00	1.58	371.33	1.57		0.00	1.57	371.34	1.39		0.00	1.39	371.52
90-4	375.56	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
90-5	379.08	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
91-6	374.23	3.03		0.00	3.03	371.20	3.62		0.00	3.62	370.61	2.73		0.00	2.73	371.50
92-8	375.96	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
92-9	375.10	3.45		0.00	3.45	371.65	4.36		0.00	4.36	370.74	3.42		0.00	3.42	371.68
92-9B ^(a)	374.21	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
92-10	375.97	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
92-11	377.95	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
93-1A	375.61	6.31		0.00	6.31	369.30	5.05		0.00	5.05	370.56	4.13		0.00	4.13	371.48
93-1B	375.60	6.24		0.00	6.24	369.36	6.34		0.00	6.34	369.26	5.23		0.00	5.23	370.37
93-2	377.66	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
93-3	379.43	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
96-2	376.38	5.34	5.28	0.06	5.28	371.10	5.85	5.81	0.04	5.81	370.57	4.81	4.78	0.03	4.78	371.60
96-3	377.83	6.09	6.05	0.04	6.05	371.78	6.70	6.65	0.05	6.65	371.18	5.44	5.41	0.03	5.41	372.42
P-1S	377.22	8.99		0.00	8.99	368.23	5.98		0.00	5.98	371.24	4.70		0.00	4.70	372.52
P-2S	377.39	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
R-1	374.94	6.15	5.19	0.96	5.27	369.67	6.60	5.70	0.90	5.77	369.17	4.92	4.60	0.32	4.63	370.31
R-2	374.89	21.91	16.51	5.40	16.94	357.95	23.10	16.80	6.30	17.30	357.59	16.28	16.20	0.08	16.21	358.68
R-3	375.56	4.41		0.00	4.41	371.15	4.94		0.00	4.94	370.62	3.93		0.00	3.93	371.63
R-4 ^(b)	372.89	2.05		0.00	2.05	370.84	2.16		0.00	2.16	370.73	1.20		0.00	1.20	371.69
R-5	377.22	13.23	6.31	6.92	6.86	370.36	13.59	6.87	6.72	7.41	369.81	12.66	5.71	6.95	6.27	370.95
MT-1	377.39	5.91		0.00	5.91	371.48	6.50		0.00	6.50	370.89	5.41		0.00	5.41	371.98
MT-2	377.32	6.50	6.09	0.41	6.12	371.20	7.15	6.44	0.71	6.50	370.82	6.23	5.45	0.78	5.51	371.81
MT-3	374.94	6.02	5.98	0.04	5.98	368.96	6.41	6.35	0.06	6.35	368.59	5.83	5.81	0.02	5.81	369.13
MT-4	374.89	8.89	3.47	5.42	3.90	370.99	10.07	3.98	6.09	4.47	370.42	8.89	2.84	6.05	3.32	371.57
North Pond	375.15	6.26		0.00	6.26	368.89	5.90		0.00	5.90	369.25	6.80		0.00	6.80	368.35

				04/05/2023					05/25/2023					06/28/2023		
Location	TOC	DTW	DT- LNAPL	LNAPL Thickness	CDTW	CELEV	DTW	DT- LNAPL	LNAPL Thickness	CDTW	CELEV	DTW	DT- LNAPL	LNAPL Thickness	CDTW	CELEV
AGI-1	377.39	3.11		0.00	3.11	374.28	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
AGI-2	379.52	6.57		0.00	6.57	372.95	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
AGI-4N	379.61	6.96		0.00	6.96	372.65	9.15		0.00	9.15	370.46	12.06		0.00	12.06	367.55
AGI-4S	379.57	6.76		0.00	6.76	372.81	8.76		0.00	8.76	370.81	11.69		0.00	11.69	367.88
AGI-6	378.77	6.57	6.55	0.02	6.55	372.22	8.65	8.62	0.03	8.62	370.15	11.54	11.51	0.03	11.51	367.26
AGI-8	378.47	4.55		0.00	4.55	373.92	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
90-18	376.24	3.84		0.00	3.84	372.40	5.99		0.00	5.99	370.25	8.89		0.00	8.89	367.35
90-1D	377.07	5.53		0.00	5.53	371.54	7.74	-	0.00	7.74	369.33	10.54		0.00	10.54	366.53
90-2	373.42	0.92		0.00	0.92	372.50	3.05	-	0.00	3.05	370.37	6.20		0.00	6.20	367.22
90-3	372.91	1.35		0.00	1.35	371.56	2.65		0.00	2.65	370.26	5.29		0.00	5.29	367.62
90-4	375.56	3.03		0.00	3.03	372.53	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
90-5	379.08	5.17		0.00	5.17	373.91	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
91-6	374.23	2.59		0.00	2.59	371.64	4.32		0.00	4.32	369.91	7.11		0.00	7.11	367.12
92-8	375.96	4.35		0.00	4.35	371.61	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
92-9	375.10	3.26		0.00	3.26	371.84	5.14		0.00	5.14	369.96	7.94		0.00	7.94	367.16
92-9B ^(a)	374.21	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
92-10	375.97	4.68		0.00	4.68	371.29	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
92-11	377.95	5.89		0.00	5.89	372.06	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
93-1A	375.61	3.96		0.00	3.96	371.65	5.80		0.00	5.80	369.81	8.60		0.00	8.60	367.01
93-1B	375.60	4.95		0.00	4.95	370.65	7.29		0.00	7.29	368.31	9.98		0.00	9.98	365.62
93-2	377.66	6.25		0.00	6.25	371.41	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
93-3	379.43	6.50		0.00	6.50	372.93	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
96-2	376.38	4.60	4.53	0.07	4.54	371.84	6.60	6.52	0.08	6.53	369.85	9.41	9.33	0.08	9.34	367.04
96-3	377.83	5.21	5.15	0.06	5.15	372.68	7.39	7.34	0.05	7.34	370.49	10.34	10.30	0.04	10.30	367.53
P-1S	377.22	4.43		0.00	4.43	372.79	6.68		0.00	6.68	370.54	9.68		0.00	9.68	367.54
P-2S	377.39	4.17		0.00	4.17	373.22	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
R-1	374.94	5.22	4.35	0.87	4.42	370.52	7.50	6.31	1.19	6.41	368.53	10.84	9.30	1.54	9.42	365.52
R-2	374.89	16.05		0.00	16.05	358.84	28.35	27.61	0.74	27.67	347.22	21.60		0.00	21.60	353.29
R-3	375.56	3.72		0.00	3.72	371.84	5.71		0.00	5.71	369.85	8.54		0.00	8.54	367.02
R-4 ^(b)	372.89	1.02		0.00	1.02	371.87	2.90		0.00	2.90	369.99	NM	NM	NM	NM	NM
R-5	377.22	12.62	5.43	7.19	6.01	371.21	13.76	7.63	6.13	8.12	369.10	13.90	10.80	3.10	11.05	366.17
MT-1	377.39	5.13		0.00	5.13	372.26	7.13		0.00	7.13	370.26	10.06		0.00	10.06	367.33
MT-2	377.32	5.88	5.02	0.86	5.09	372.23	8.45	8.10	0.35	8.13	369.19	10.52	10.11	0.41	10.14	367.18
MT-3	374.94	6.13	5.15	0.98	5.23	369.71	10.60	7.25	3.35	7.52	367.42	10.75	10.03	0.72	10.09	364.85
MT-4	374.89	9.11	2.50	6.61	3.03	371.86	9.42	4.85	4.57	5.22	369.67	10.06	8.00	2.06	8.16	366.73
North Pond	375.15	6.90		0.00	6.90	368.25	5.30		0.00	5.30	369.85	2.50		0.00	2.50	372.65

		07/27/2023							08/30/2023					09/12/2023		1
Location	TOC	DTW	DT- LNAPL	LNAPL Thickness	CDTW	CELEV	DTW	DT- LNAPL	LNAPL Thickness	CDTW	CELEV	DTW	DT- LNAPL	LNAPL Thickness	CDTW	CELEV
AGI-1	377.39	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	12.44		0.00	12.44	364.95
AGI-2	379.52	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	14.71		0.00	14.71	364.81
AGI-4N	379.61	13.79		0.00	13.79	365.82	14.75		0.00	14.75	364.86	14.95		0.00	14.95	364.66
AGI-4S	379.57	13.46		0.00	13.46	366.11	14.50		0.00	14.50	365.07	14.62		0.00	14.62	364.95
AGI-6	378.77	13.24		0.00	13.24	365.53	14.24	14.22	0.02	14.22	364.55	14.50	14.48	0.02	14.48	364.29
AGI-8	378.47	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	13.73		0.00	13.73	364.74
90-18	376.24	10.62		0.00	10.62	365.62	6.20		0.00	6.20	370.04	11.81		0.00	11.81	364.43
90-1D	377.07	12.15		0.00	12.15	364.92	13.20		0.00	13.20	363.87	13.37		0.00	13.37	363.70
90-2	373.42	7.93		0.00	7.93	365.49	9.13		0.00	9.13	364.29	9.33		0.00	9.33	364.09
90-3	372.91	7.33		0.00	7.33	365.58	8.65		0.00	8.65	364.26	8.84		0.00	8.84	364.07
90-4	375.56	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	10.97		0.00	10.97	364.59
90-5	379.08	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	14.01		0.00	14.01	365.07
91-6	374.23	9.03		0.00	9.03	365.20	10.17		0.00	10.17	364.06	10.41		0.00	10.41	363.82
92-8	375.96	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	12.13		0.00	12.13	363.83
92-9	375.10	9.81		0.00	9.81	365.29	10.93		0.00	10.93	364.17	11.16		0.00	11.16	363.94
92-9B ^(a)	374.21	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
92-10	375.97	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	12.55		0.00	12.55	363.42
92-11	377.95	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	13.87		0.00	13.87	364.08
93-1A	375.61	10.44		0.00	10.44	365.17	11.61		0.00	11.61	364.00	11.80		0.00	11.80	363.81
93-1B	375.60	11.51		0.00	11.51	364.09	12.52		0.00	12.52	363.08	12.66		0.00	12.66	362.94
93-2	377.66	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	14.09		0.00	14.09	363.57
93-3	379.43	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	14.70		0.00	14.70	364.73
96-2	376.38	11.11	10.99	0.12	11.00	365.38	12.80	11.96	0.84	12.03	364.35	13.15	12.14	1.01	12.22	364.16
96-3	377.83	12.01	11.99	0.02	11.99	365.84	13.10	13.00	0.10	13.01	364.82	13.31	13.20	0.11	13.21	364.62
P-1S	377.22	11.36		0.00	11.36	365.86	12.57		0.00	12.57	364.65	12.55		0.00	12.55	364.67
P-2S	377.39	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	12.07		0.00	12.07	365.32
R-1	374.94	12.42	10.99	1.43	11.10	363.84	15.16	12.30	2.86	12.53	362.41	13.96	12.33	1.63	12.46	362.48
R-2	374.89	23.58		0.00	23.58	351.31	24.71		0.00	24.71	350.18	24.31		0.00	24.31	350.58
R-3	375.56	10.33		0.00	10.33	365.23	11.37		0.00	11.37	364.19	11.55		0.00	11.55	364.01
R-4 ^(b)	372.89	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
R-5	377.22	14.20	12.65	1.55	12.77	364.45	14.51	13.73	0.78	13.79	363.43	14.60	13.92	0.68	13.97	363.25
MT-1	377.39	11.72		0.00	11.72	365.67	12.75		0.00	12.75	364.64	12.91		0.00	12.91	364.48
MT-2	377.32	12.17	11.80	0.37	11.83	365.49	13.40	12.80	0.60	12.85	364.47	13.60	13.02	0.58	13.07	364.25
MT-3	374.94	13.20	11.71	1.49	11.83	363.11	14.35	12.69	1.66	12.82	362.12	14.50	12.90	1.60	13.03	361.91
MT-4	374.89	11.30	9.73	1.57	9.86	365.03	11.59	10.82	0.77	10.88	364.01	11.65	11.01	0.64	11.06	363.83
North Pond	375.15	0.80		0.00	0.80	374.35	0.00		0.00	0.00	375.15	0.00		0.00	0.00	375.15

Notes

Elevations are in feet above mean sea level.

LNAPL thickness data are in feet.

TOC elevation data, formulas, and specific gravity provided by McFarland Cascade Pole and Lumber Company.

-- = no LNAPL.

CDTW = corrected depth to water. DTW measurement corrected for the presence of LNAPL, using the equation: DTW - (LNAPL Thickness * 0.92), which assumes a specific gravity of LNAPL equal to 0.92.

CELEV = corrected water elevation. Water elevation corrected for the presence of LNAPL, using the following equation: TOC - CDTW.

DT-LNAPL = depth to LNAPL.

DTW = depth to water.

LNAPL = light nonaqueous-phase liquid.

NM = not measured.

TOC = top of casing.

(a) DTW measuements were not collected at monitoring well 92-9B during the reporting period due to damaged sustained to the well on October 5, 2021. The well was abandoned from May 31 through June 2, 2023

^(b)R-4 was abandoned from May 31 to June 2, 2023.

Table 3 IRAM System Summary Stella-Jones Corporation Eugene, Oregon

Location:		R-1			R-2		Treatme	ent Plant	
Date		dwater 1g Rates	LNAPL Recovery		dwater g Rates	LNAPL Recovery	Groundwater Discharge		
Dale	Average GPM	Average GPD	(gallons) ^(a)	Average GPM	Average GPD	(gallons) ^(a)	Average GPD ^(b)	Total (gallons)	
October 2022	8.7	12,541	0.96	6.0	8,613	0.00	20,608	638,863	
November 2022	9.3	13,378	1.06	6.2	8,969	0.00	21,636	649,069	
December 2022	9.0	12,909	0.00	6.7	9,617	0.00	21,692	672,454	
Janaury 2023	9.5	13,694	1.41	9.1	13,049	7.93	25,893	802,698	
February 2023	8.8	12,643	1.32	7.8	11,214	9.26	25,221	706,184	
March 2023	8.9	12,833	0.47	8.1	11,630	0.12	28,036	869,113	
April 2023	7.7	11,017	1.28	7.1	10,179	0.00	30,850	925,508	
May 2023	8.8	12,705	1.75	7.1	10,220	1.09	26,395	818,239	
June 2023	8.1	11,691	2.26	5.9	8,449	0.00	17,013	510,391	
July 2023	7.9	11,374	2.10	5.2	7,545	0.00	21,916	679,391	
August 2023	7.9	11,371	4.20	4.7	6,809	0.00	21,497	666,410	
September 2023	6.3	9,007	2.40	4.1	5,971	0.00	17,892	536,763	
12 Month Average	8.4	12,097		6.5	9,355		23,221		
Total			19.21			18.40		8,475,083	

Notes

Data provided by McFarland Cascade Pole and Lumber Company.

Pumping at R-3 was discontinued on October 1, 2015, and pumping at R-4 was discontinued on February 8, 2013.

-- = not applicable.

GPD = gallons per day.

GPM = gallons per minute.

IRAM = interim remedial action measure.

LNAPL = light nonaqueous-phase liquid.

^(a)LNAPL recovery by product pumps.

(b) Average GPD was calculated by taking last recorded total groundwater discharge in a month devided by the total number of days in the month.

Table 4 VER LNAPL Recovery Summary Stella-Jones Corporation Eugene, Oregon

Date	R-5	96-2	96-3	MT-2	MT-3	MT-4	AGI-6	Total (gallons)
October 2022	0.29	1.44	0.12	0.00	0.29	0.09	0.01	2.24
November 2022	1.35	0.09	0.15			0.01	0.01	1.61
December 2022	2.27	0.04	0.07		0.00	0.34	0.01	2.73
January 2023	4.52	0.09	0.06	0.07	0.01	0.89	0.00	5.64
February 2023	4.39	0.06	0.07	0.12	0.01	0.99	0.01	5.65
March 2023	4.54	0.04	0.04	0.13	0.00	0.99	0.02	5.76
April 2023	4.69	0.19	0.09	0.14	0.16	1.08	0.00	6.35
May 2023	4.00	0.18	0.07	0.06	0.55	0.75	0.00	5.61
June 2023	2.02	0.12	0.06	0.07	0.12	2.06	0.00	4.45
July 2023	1.01	0.18	0.03	0.06	0.24	0.26		1.78
August 2023	4.20	1.23	0.15	0.10	0.27	0.13		6.08
September 2023	0.44	1.48	0.16	0.09	0.26	0.10	0.00	2.53
Total	33.72	5.14	1.07	0.84	1.91	7.69	0.06	50.43

Notes

Data provided by MCPLC in monthly IRAM and VER operations reports, submitted electronically to the Oregon Department of Environmental Quality via email on November 9, 2022 (for October 2022); December 6, 2022 (for November 2022); January 10, 2023 (for December 2022); February 14, 2023 (for January 2023); March 13, 2023 (for February 2023); April 10, 2023 (for March 2023); May 4, 2023 (for April 2023); June 5, 2023 (for May 2023); July 10, 2023 (for June 2023); August 3, 2023 (for July 2023); September 8, 2023 (August 2023), and October 9, 2023 (for September 2023).

Shading indicates that a shallow well hand pump was used instead of the VER system.

-- = no LNAPL recovery attempted.

IRAM = interim remedial action measure.

LNAPL = light nonaqueous-phase liquid.

MCPLC = McFarland Cascade Pole and Lumber Company,

VER = vacuum-enhanced recovery.

Table 5 Chlorophenol Analytical Results Stella-Jones Corporation Eugene, Oregon

Location	Sample Name	Collection Date	Sample Type	2,3,4,5 and 2,3,4,6- Tetrachlorophenol	2,3,5,6- Tetrachlorophenol	2,4,5- Trichlorophenol	2,4,6- Trichlorophenol	2,4- Dichlorophenol	Pentachloropheno
			Units:		·	UÇ	g/L		
EPA, Groundwate	r and Drinking Water, I	MCLs [HIDE]		NV	NV	NV	NV	NV	1.0
RBC, Groundwate [HIDE]	r, Ingestion and Inhald	ation from Tapwate	r, Residential	NV	NV	NV	4.4	NV	0.044
EPA, Resident Tap	water, RSLs (THQ =1.0)	lower of c/nc [HID	E]	240 (2,3,4,6-TeCP)	NV	1200	4.1	46	0.041
		S	creening Level ^(a) :	240 ^{(b)(1)}	NV	1,200 (1)	4.4 (2)	46.0 (1)	1.0 (3)
00.15	90-1D-0423	04/05/2023	N	0.400 UJ	0.241 J	0.200 U	0.200 U	0.200 U	2.94
90-1D	90-1D-0923	09/13/2023	N	0.385 UJ	0.192 U	0.192 U	0.192 U	0.192 U	1.35
90-5	90-5-0423	04/06/2023	N	0.385 UJ	0.414	0.192 U	0.195 J	0.192 U	2.06
	92-9-0123	01/17/2023	N	0.381 UJ	0.231 J	0.190 U	0.190 U	0.190 U	10.7
92-9	92-9-0423	04/05/2023	N	0.392 UJ	0.196 U	0.196 U	0.196 U	0.196 U	5.42
	92-9-0923	09/12/2023	N	0.126 J	0.0643 J-	0.0490 UJ	0.0490 UJ	0.0490 UJ	4.74 J-
	93-1A-0123	01/17/2023	Ν	0.100 UJ	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.107 J
93-1A	DUP-0123	01/17/2023	FD	0.103 UJ	0.0515 U	0.0515 U	0.515 U	0.0515 U	0.125 J
	93-1A-0923	09/12/2023	Ν	0.100 UJ	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.100 U
93-3	93-3-0923	09/12/2023	N	0.0971 UJ	0.0485 U	0.0485 U	0.0485 U	0.0485 U	0.0971 U
00.4	93-4-0423	04/05/2023	N	0.392 UJ	0.196 U	0.196 U	0.196 U	0.196 U	3.32
93-4	93-4-0923	09/12/2023	Ν	0.100 UJ	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.127
	93-8-0423	04/05/2023	N	0.0971 UJ	0.0485 U	0.0485 U	0.0485 U	0.0485 U	0.107 J
93-8	93-8-0923	09/12/2023	Ν	0.0990 UJ	0.0495 U	0.0495 U	0.0495 U	0.0495 U	0.0990 U
North Pond	NORTH POND-0123	01/17/2023	N	0.337 UJ	0.189 U	0.189 U	0.189 U	0.189 U	0.104 J
	P-2D-0423	04/06/2023	N	0.385 UJ	0.284 J	0.192 U	0.192 U	0.192 U	3.26
P-2D	P-2D-0923	09/13/2023	Ν	0.381 UJ	0.190 U	0.190 U	0.190 U	0.190 U	0.772
	R-1-0423	04/05/2023	N	0.971 UJ	0.485 U	0.485 U	0.485 U	0.485 U	4.49
R-1	DUP-0423	04/05/2023	FD	0.962 UJ	0.481 U	0.481 U	0.481 U	0.481 U	4.93
	R-1-0923	09/12/2023	Ν	1.00 UJ	0.500 U	0.500 U	0.500 U	0.500 U	4.11
	R-2-0423	04/05/2023	Ν	2.05 J	1.27 J	1.18 J	0.971 U	1.94 U	39.6
R-2	R-2-0923	09/12/2023	Ν	1.00 UJ	0.500 U	0.500 U	0.500 U	0.500 U	1.08
	DUP-0923	09/12/2023	FD	0.952 UJ	0.476 U	0.476 U	0.476 U	0.476 U	1.08
5.0	R-3-0423	04/05/2023	N	4.81 UJ	2.40 U	2.40 U	2.40 U	2.40 U	0.140
R-3	R-3-0923	09/13/2023	N	0.485 UJ	0.243 U	0.243 U	0.243 U	0.243 U	0.352
	R-4-0123	01/17/2023	N	0.0990 UJ	0.0513 J	0.0495 U	0.0495 U	0.495 U	1.35
R-4	R-4-0423	04/05/2023	N	0.0971 UJ	0.0485 U	0.0485 U	0.0485 U	0.0485 U	0.848
	NA	NA				Abandoned ^(c)		1	
South Pond	SOUTH POND-0123	01/17/2023	N	0.377 UJ	0.189 U	0.189 U	0.189 U	0.189 U	0.092 J

Table 5 Chlorophenol Analytical Results Stella-Jones Corporation Eugene, Oregon

Notes

Detections are in **bold** font.

Shading indicates values that exceed screening criteria; non-detects (U or UJ) were not compared with screening criteria.

DEQ = Oregon Department of Environmental Quality.

EPA = U.S. Environmental Protection Agency.

FD = field duplicate sample.

J = result is estimated.

J- = result is estimated, but the result may be biased low.

MCL = maximum contaminant level.

N = normal environmental sample.

NV = no value available.

RBC = risk-based concentration.

RSL = regional screening level.

U = result is non-detect at the laboratory detection limit.

ug/L = micrograms per liter (parts per billion).

UJ = result is non-detect with an estimated detection limit.

(a) As directed by DEQ, screening levels are applied in the following order: EPA MCL, (3) DEQ RBC for groundwater, ingestion and inhalation from tapwater, (2) and the lower available cancer or noncancer EPA generic RSL for tapwater. (1) If no screening level is available, then "NV" is shown.

^(b)Value displayed is associated with 2,3,4,6-tetrachlorophenol.

 $^{(c)}$ R-4 was abandoned from May 31 to June 2, 2023.

References

[1] EPA. 2023. Regional Screening Level Summary Table (Target Cancer Risk of 1E-06, Hazard Quotient of 1.0), U.S. Environmental Protection Agency. November.

⁽²⁾DEQ. 2023. Table: Risk-Based Concentrations for Individual Chemicals . Oregon Department of Environmental Quality. August.

⁽³⁾EPA. 2023. MCLs from the Regional Screening Level Summary Table (Target Cancer Risk of 1E-06, Hazard Quotient of 1.0), U.S. Environmental Protection Agency. November.

Table 6 Semivolatile Organic Compound Analytical Results Stella-Jones Corporation Eugene, Oregon

Location:			R-1			R-2		R-3	R-3
Sample Name:	Screening	R-1-0423	DUP-0423	R-1-0923	R-2-0423	R-2-0923	DUP-0923	R-3-0423	R-3-0923
Collection Date:	Level ^(a)	04/05/2023	04/05/2023	09/12/2023	04/05/2023	09/12/2023	09/12/2023	04/05/2023	09/13/2023
Sample Type:	1	N	FD	N	N	N	FD	N	N
SVOCs (ug/L)									
1,2,4-Trichlorobenzene	70 (2)	0.243 U	0.240 U	0.250 U	0.485 U	0.250 U	0.238 U	1.20 U	0.121 U
1,2-Dichlorobenzene	600 ⁽²⁾	0.243 U	0.240 U	0.250 U	0.485 U	0.250 U	0.238 U	1.20 U	0.121 U
1,2-Dinitrobenzene	1.9 (1)	2.43 U	2.40 U	2.50 U	4.85 U	2.50 U	2.38 U	12.0 U	1.21 U
1,3-Dichlorobenzene	NV	0.243 U	0.240 U	0.250 U	0.485 U	0.250 U	0.238 U	1.20 U	0.121 U
1,3-Dinitrobenzene	2 (1)	2.43 U	2.40 U	2.50 U	4.85 U	2.50 U	2.38 U	12.0 U	1.21 U
1,4-Dichlorobenzene	75 ⁽²⁾	0.243 U	0.240 U	0.250 U	0.485 U	0.250 U	0.238 U	1.20 U	0.121 U
1,4-Dinitrobenzene	2 (1)	2.43 U	2.40 U	2.50 U	4.85 U	2.50 U	2.38 U	12.0 U	1.21 U
1-Methylnaphthalene	1.1 (1)	0.567	0.564	0.495	38.3	0.200 U	0.190 U	60.3	126
2,2'-oxybis(1-Chloropropane)	NV	0.243 U	0.240 U	0.250 U	0.485 U	0.250 U	0.238 U	1.20 U	0.121 U
2,4-Dimethylphenol	360 (1)	0.485 U	0.481 U	0.500 U	3.50 U	0.500 U	0.476 U	2.40 U	0.243 U
2,4-Dinitrophenol	39 (1)	2.43 U	2.40 U	2.50 U	4.85 U	2.50 U	2.38 U	12.0 U	1.21 U
2,4-Dinitrotoluene	0.24 (1)	0.971 U	0.962 U	1.00 U	3.88 U	1.00 U	0.952 U	4.81 U	2.91 U
2,6-Dinitrotoluene	0.049 (3)	0.971 U	0.962 U	1.00 U	1.94 U	1.00 U	0.952 U	4.81 U	0.485 U
2-Chloronaphthalene	750 ⁽¹⁾	0.0971 U	0.0962 U	0.100 U	0.388 U	0.100 U	0.0952 U	0.481 U	0.146 U
2-Chlorophenol	91 ⁽¹⁾	0.485 U	0.481 U	0.500 U	0.971 U	0.500 U	0.476 U	2.40 U	0.243 U
2-Methylnaphthalene	36 (1)	0.303 J	0.312 J	0.279	0.907	0.200 U	0.190 U	26.9	131
2-Methylphenol	930 (1)	0.243 U	0.240 U	0.250 U	0.971 U	0.250 U	0.238 U	1.20 U	0.121 U
2-Nitroaniline	190 ⁽¹⁾	1.94 U	1.92 U	2.00 U	3.88 U	2.00 U	1.90 U	9.62 U	0.971 U
2-Nitrophenol	NV	0.971 U	0.962 U	1.00 U	1.94 U	1.00 U	0.952 U	4.81 U	0.485 U
3- & 4-Methylphenol (m,p-Cresol)	NV	0.243 U	0.240 U	0.250 U	0.485 U	0.250 U	0.238 U	1.20 U	0.121 U
3,3-Dichlorobenzidine	0.17 (3)	4.85 UJ	4.81 UJ	5.00 UJ	9.71 UJ	5.00 UJ	4.76 UJ	24.0 UJ	2.43 UJ
3-Nitroaniline	NV	1.94 U	1.92 U	2.00 U	3.88 U	2.00 U	1.90 U	9.62 U	0.971 U
4,6-Dinitro-2-methylphenol	1.5 ⁽¹⁾	2.43 U	2.40 U	2.50 U	4.85 U	2.50 U	2.38 U	12.0 U	1.21 U
4-Bromophenylphenyl ether	NV	0.243 U	0.240 U	0.250 U	0.485 U	0.250 U	0.238 U	1.20 U	0.121 U
4-Chloro-3-methylphenol	1,400 (1)	0.971 U	0.962 U	1.00 U	1.94 U	1.00 U	0.952 U	4.81 U	0.485 U
4-Chloroaniline	0.37 (1)	0.243 U	0.240 U	0.250 U	0.485 U	0.250 U	0.238 U	1.20 U	0.121 U
4-Chlorophenylphenyl ether	NV	0.243 U	0.240 U	0.250 U	0.485 U	0.250 U	0.238 U	1.20 U	0.121 U
4-Nitroaniline	3.8 (1)	1.94 U	1.92 U	2.00 U	3.88 U	2.00 U	1.90 U	9.62 U	2.33 U
4-Nitrophenol	NV	0.971 U	0.962 U	1.00 U	7.57 U	1.00 U	0.952 U	4.81 U	1.55 U
Acenaphthene	510 ⁽³⁾	1.47	1.42	1.00	93.2	8.09	10.5	83.0	119
Acenaphthylene	NV	0.0971 U	0.0962 U	0.100 U	2.52 U	1.62	2.22	0.962 U	1.65 U
Aniline	13 (1)	0.485 U	0.481 U	0.500 U	0.971 U	0.500 U	0.476 U	2.40 U	0.243 U
Anthracene	1,800 (1)	0.172 J	0.145 J	0.100 U	10.0	0.171	0.181	5.29	9.25
Benzo(a)anthracene	0.03 (3)	0.0971 U	0.0962 U	0.100 U	3.83	0.100 U	0.0966	0.863 J	1.01
Benzo(a)pyrene	0.2 (2)	0.146 U	0.144 U	0.150 U	1.45	0.150 U	0.143 U	0.721 U	0.302
Benzo(b)fluoranthene	0.25 (3)	0.146 U	0.144 U	0.150 U	1.75	0.150 U	0.143 U	0.744 J	0.419 J
Benzo(ghi)perylene	NV	0.0971 U	0.0962 U	0.100 U	0.276 J	0.100 U	0.0952 U	0.481 U	0.0485 U

Table 6 Semivolatile Organic Compound Analytical Results Stella-Jones Corporation Eugene, Oregon

Location:			R-1			R-2		R-3	R-3
Sample Name:	Screening	R-1-0423	DUP-0423	R-1-0923	R-2-0423	R-2-0923	DUP-0923	R-3-0423	R-3-0923
Collection Date:	Level ^(a)	04/05/2023	04/05/2023	09/12/2023	04/05/2023	09/12/2023	09/12/2023	04/05/2023	09/13/2023
Sample Type:	1	Ν	FD	N	N	N	FD	N	N
Benzo(k)fluoranthene	2.5 (1)	0.146 U	0.144 U	0.150 U	0.878 J	0.150 U	0.143 U	0.721 U	0.207 J
Benzoic acid	75,000 (1)	12.1 U	12.0 U	12.5 U	48.5 U	12.5 U	11.9 U	60.1 U	6.07 U
Benzyl alcohol	2,000 (1)	0.971 U	0.962 U	1.00 U	1.94 U	1.00 U	0.952 U	4.81 U	0.485 U
Bis(2-chloroethoxy)methane	59 ⁽¹⁾	0.243 U	0.240 U	0.250 U	0.971 U	0.250 U	0.238 U	1.20 U	0.243 U
Bis(2-chloroethyl)ether	0.014 (3)	0.243 U	0.240 U	0.250 U	0.485 U	0.250 U	0.238 U	1.20 U	0.121 U
Bis(2-ethylhexyl)phthalate	6 ⁽²⁾	1.94 U	1.92 U	2.00 U	3.88 U	2.00 U	1.90 U	9.62 U	0.971 U
Butylbenzylphthalate	16 (1)	1.94 U	1.92 U	2.00 U	3.88 U	2.00 U	1.90 U	9.62 U	0.971 U
Carbazole	NV	0.149 J	0.17 J	0.150 U	0.583 U	0.150 U	0.143 U	4.25	10.2
Chrysene	25 ⁽¹⁾	0.0971 U	0.0962 U	0.100 U	3.80	0.100 U	0.0952 U	0.722 J	1.01
Di(2-ethylhexyl)adipate	400 (2)	2.43 U	2.40 U	2.50 U	4.85 U	2.50 U	2.38 U	12.0 U	1.21 U
Dibenzo(a,h)anthracene	0.025 (3)	0.0971 U	0.0962 U	0.100 U	0.194 U	0.100 U	0.0952 U	0.481 U	0.0485 U
Dibenzofuran	7.9 (1)	0.294	0.282	0.205	31.4	0.100 U	0.0952 U	26.9	54.6
Diethyl phthalate	15,000 (1)	1.94 U	1.92 U	2.00 U	3.88 U	2.00 U	1.90 U	9.62 U	0.971 U
Dimethyl phthalate	NV	1.94 U	1.92 U	2.00 U	3.88 U	2.00 U	1.90 U	9.62 U	0.971 U
Di-n-butyl phthalate	900 (1)	1.94 U	1.92 U	2.00 U	3.88 U	2.00 U	1.90 U	9.62 U	0.971 U
Di-n-octyl phthalate	200 (1)	1.94 U	1.92 U	2.00 U	3.88 U	2.00 U	1.90 U	9.62 U	0.971 U
Fluoranthene	800 (1)	0.291	0.266	0.146	29.7	3.57	4.05	10.1	15.3
Fluorene	280 (3)	1.45	1.43	0.942	44.5	0.300 U	0.286 U	32.3	54.7
Hexachlorobenzene	1 (2)	0.0971 U	0.0962 U	0.100 U	0.194 U	0.100 U	0.0952 U	0.481 U	0.0485 U
Hexachlorobutadiene	0.14 (1)	0.243 U	0.240 U	0.250 U	0.485 U	0.250 U	0.238 U	1.20 U	0.121 U
Hexachlorocyclopentadiene	50 ⁽²⁾	0.485 U	0.481 U	0.500 U	0.971 U	0.500 U	0.476 U	2.40 U	0.243 U
Hexachloroethane	0.34 (3)	0.243 U	0.240 U	0.250 U	0.485 U	0.250 U	0.238 U	1.20 U	0.121 U
Hydrazine, 1,2-diphenyl	0.078 (1)	0.243 U	0.240 U	0.250 U	0.971 U	0.250 U	0.238 U	1.20 U	0.291 U
Indeno(1,2,3-cd)pyrene	0.25 (1)	0.0971 U	0.0962 U	0.100 U	0.390	0.100 U	0.0952 U	0.481 U	0.0567
Isophorone	78 ⁽¹⁾	0.243 U	0.240 U	0.250 U	0.971 U	0.250 U	0.238 U	1.20 U	0.121 U
Naphthalene	0.17 (3)	0.533	0.472	0.405 J+	0.777 U	0.200 U	0.190 U	12.8	483
Nitrobenzene	0.14 (1)	0.971 U	0.962 U	1.00 U	1.94 U	1.00 U	0.952 U	4.81 U	1.26 U
N-Nitrosodimethylamine	0.00011 (1)	0.243 U	0.240 U	0.250 U	0.485 U	0.250 U	0.238 U	1.20 U	0.121 U
N-Nitrosodiphenylamine	13 ⁽³⁾	0.243 U	0.240 U	0.250 U	6.41 U	0.250 U	0.238 U	1.20 U	0.777 U
N-Nitrosodipropylamine	0.011 (3)	0.243 U	0.240 U	0.250 U	0.971 U	0.250 U	0.238 U	1.20 U	0.121 U
Phenanthrene	NV	0.299	0.289	0.139	40.3	0.100 U	0.0952 U	34.5	56.5
Phenol	5,800 (1)	1.94 U	1.92 U	2.00 U	3.88 U	2.00 U	1.90 U	9.62 U	0.971 U
Pyrene	110 ⁽³⁾	0.341	0.323	0.221	25.0	3.76	3.90	8.00	11.6
Pyridine	20 (1)	0.971 U	0.962 U	1.00 U	1.94 U	1.00 U	0.952 U	4.81 U	0.485 U

Table 6

Semivolatile Organic Compound Analytical Results Stella-Jones Corporation Eugene, Oregon

Notes

Detections are in **bold** font.

Shading indicates values that exceed screening criteria; non-detects (U or UJ) were not compared with screening criteria.

DEQ = Oregon Department of Environmental Quality.

EPA = U.S. Environmental Protection Agency.

FD = field duplicate sample.

J = result is estimated.

J+ = result is estimated, but the result may be biased high.

MCL = maximum contaminant level.

N = normal environmental sample.

NV = no screening value available.

RBC = risk-based concentration.

RSL = regional screening level.

SVOC = semivolatile organic compound.

U = result is non-detect at the method detection limit or method reporting limit.

ug/L = micrograms per liter (parts per billion).

UJ = result is non-detect with an estimated detection limit.

^(a)As directed by DEQ, screening levels are applied in the following order: EPA MCL, ⁽²⁾ DEQ RBC for groundwater, ingestion and inhalation from tapwater, ⁽³⁾ and EPA generic RSL for tapwater. ⁽¹⁾ If no screening level is available, then "NV" is shown.

References

(1) EPA. 2023. Regional Screening Level Summary Table (Target Cancer Risk of 1E-06, Hazard Quotient of 1.0), U.S. Environmental Protection Agency. November.

(2) EPA. 2023. MCLs from the Regional Screening Level Summary Table (Target Cancer Risk of 1E-06, Hazard Quotient of 1.0), U.S. Environmental Protection Agency. November.

⁽³⁾DEQ. 2023. Table: Risk-Based Concentrations for Individual Chemicals . Oregon Department of Environmental Quality. August.

Table 7 IRAM Treatment System Monthly Monitoring Results Stella-Jones Corporation Eugene, Oregon

				Collection Date										
Location	Parameter	EPA Method Number	2022				2023							
		Normber	October	November	December	January	February	March	April	May	June	July	August	September
Influent	PCP (ug/L)	8270D SIM	2.17	0.729 J	2.550	1.07	2.19	4.08	2.20	4.48	0.710 U	0.714 U	0.714 U	2.09
Midpoint	PCP (ug/L)	8270D SIM	0.900 J	0.924 J	0.95 J	0.714 J	1.89	4.20	1.74	3.00	0.710 U	0.717 U	0.720 U	3.75
Effluent	PCP (ug/L)	8270D SIM	0.528 U	0.729 J	0.551 U	0.808 J	0.717 U	1.47	0.714 U	0.714 U	0.935	0.717 U	0.720 U	2.12
EIIIOEIII	pH (Standard Unit)	150.1	7.30	7.32	7.35	7.38	7.35	7.33	7.32	7.32	7.40	7.50	7.40	7.50

Notes

Data provided by McFarland Cascade Pole and Lumber Company.

Monthly water samples were collected at the IRAM treatment system and analyzed for PCP by EPA Method 8270D SIM. The treatment system influent, midpoint (between the two carbon filters), and effluent at Outfall 001 were sampled and analyzed in accordance with approved plans and permits.

EPA = U.S. Environmental Protection Agency.

IRAM = interim remedial action measure.

PCP = pentachlorophenol.

U = result is non-detect at the method detection limit.

ug/L = micrograms per liter.

Table 8 Pentachlorophenol Analytical Results in North Pond and South Pond Stella-Jones Corporation Eugene, Oregon

Location	Collection Date	Sample Type	Pentachlorophenol
	1	Units:	ug/L
AW	/QC—Aquatic Life Criteria, Fr	eshwater CMC ⁽¹⁾ :	19
	VQC—Aquatic Life Criteria, F		15
	h, for Consumption of Water		0.03
	n Health, For Consumption of		0.04
	·	EPA MCL ⁽²⁾ :	1.0
	January 2008	Ν	0.18 J
	March 2008	Ν	0.25 U
	September 2008	Ν	0.25 U
	December 2008	Ν	0.25 U
	March 2009	Ν	0.25 U
	January 2010	Ν	0.27
	March 2010	Ν	0.25 U
	December 2010	Ν	0.25 U
	March 2011	Ν	0.25 U
	December 2011	N	0.25 U
	March 2012	Ν	0.25 U
North Donal	December 2012	N	0.25 U
North Pond	March 2013	N	0.25 U
	December 2013	N	0.63
	January 2014	N	0.25 U
	01/09/2015	N	0.27
	01/06/2016	N	0.25 U
	12/20/2016	N	0.25 U
	01/23/2018	N	0.712
	01/23/2018	FD	0.574
	01/22/2019	N	0.374 U
	01/30/2020	N	0.197
	01/31/2022	N	0.050
	01/17/2023	N	0.104 J
	January 2008	N	0.31
	December 2008	N	0.25 U
	January 2010	N	0.25 U
	December 2010	N	0.25 U
South Pond	December 2011	N	0.25 U
300111 FONG	December 2012	N	0.25 U
	December 2013	N	0.25 U
	01/09/2015	N	0.18 J
	01/06/2016	N	0.25 U
	12/20/2016	N	0.25 U

Table 8

Pentachlorophenol Analytical Results in North Pond and South Pond Stella-Jones Corporation Eugene, Oregon

Location	Collection Date	Sample Type	Pentachlorophenol						
		Units:	ug/L						
AWQC	—Aquatic Life Criteria, Fre	shwater CMC ⁽¹⁾ :	19						
AWQC	eshwater CCC ⁽¹⁾ :	15							
AWQC—Human Health, fo	AWQC—Human Health, for Consumption of Water and Organisms ⁽¹⁾ :								
AWQC—Human Hed	AWQC—Human Health, For Consumption of Organism Only (1):								
		EPA MCL ⁽²⁾ :	1.0						
	01/23/2018	Z	0.601						
	01/22/2019	Z	0.374 U						
South Pond (cont.)	01/30/2020	Ν	0.131						
	01/31/2022	Ν	0.083						
	01/17/2023	Ν	0.092 J						

Notes

Detections are in **bold** font.

Shading indicates values that exceed screening criteria; non-detects (U or UJ) were not compared with screening criteria.

On October 26, 2020, DEQ temporarily suspended monitoring of wells located on Oregon Department of Transportation property. Because of this, the ponds were not sampled during the Winter 2020-2021 monitoring event.

January 2008–January 2014 data from historical semiannual reports previously submitted to DEQ.

AWQC = aquatic water quality criteria.

CCC = criterion continuous concentration.

CMC = criterion maximum concentration.

DEQ = Oregon Department of Environmental Quality.

EPA = U.S. Environmental Protection Agency.

FD = field duplicate sample.

J = result is estimated.

MCL = maximum contaminant level.

N = normal environmental sample.

U = result is non-detect at the method detection limit.

ug/L = micrograms per liter (parts per billion).

References

⁽¹⁾EPA Water Quality Criteria.

⁽²⁾EPA National Primary Drinking Water Regulations MCL. May 2009. (EPA 816-F-09-004)

Attachment A

Fluid Level Measurements and Groundwater Sampling Forms

,	PBS Engineering and Environmental Inc.	Project No: 22588.	000			
ZPBS	SURFACE WATER	Project Name/ Location: McFarland Cascade Eugene, Oregon				
	SAMPLING	Date: 1/17/23				
	FORM	Surface Water Body Name	North Pond			
Pond Gauge Elevation (feet)	6,6	Sample ID (if not well ID)	North Pond-0/23			
Depth to Bottom	17.20	Sample Time	0740			
(feet)	[15,20	QC Sample	☐ Not collected			
Sampling method	New Disposable Bailer	type: SPtrt	ID Same Time Same			
(describe pump or sampler)	New Disposable Ballel	Field Personnel	Cary Midwood			
Purge Rate (mL/min)	NA	Weather Conditions	Goudy 40			

		SURFACE WATE	RINFORMAT	ION	
Time □ elapsed ☑ actual	Temp. (C)	Specific conductivity ☐ mS/cm 🗓 µS/cm	pН	TDS (ppm)	Observations
0735	6.9	244	7.86	171	(lear
FIELD OBSERVATI	ONS / NOTES				
SPhit to	ARI				
,					
					•
			• .		
Signature of Fiel	d Personnel:	whi			

ZPBS	PBS Engineering and Environmental Inc.	Project No: 22588.	000	
	SURFACE WATER	Project Name/ Location: McFarl	and Cascade Eugene, Oregon	
	SAMPLING	Date: 1/17/	43	
	FORM	Surface Water Body Name	South Pond	
Pond Gauge Elevation (feet)	N/A	Sample ID (if not well ID)	South Pond-0/)}	
Depth to Bottom		Sample Time	0800	
(feet)	17.22	QC Sample	☐ Not collected	
Sampling method	Now Dienosoble Bailer	type: 584+	ID Same Time Sand	
(describe pump or sampler)	New Disposable Bailer	Field Personnel	Cary Midwood	
Purge Rate (mL/min)	NA	Weather Conditions	(1040'M 40	

		SURFACE WATER	INFORMAT	ION	
Time □ elapsed ⊠ actual	Temp. (C)	Specific conductivity ☐ mS/cm ☑ µS/cm	рH	TDS (ppm)	Observations
0757	6,6	166.7	7:47 114		Clenr
FIELD OBSERVAT	IONS / NOTES				_ v
				•	
	-				
Signature of Fie	ld Personnel: 💪	~ m			

		S Engineering vironmental I			Project No: 22	588.	000		
	GF	ROUNDWAT	ER	Pro	ject Name/ Location: Mo	Farl	and Cascade Eugene, Ore	gon	
NPBS)	SAMPLING			Date: 1/1	7/	23		
		FORM		ı	Monitoring Well	ID	93-1A		
Initial DTW (feet bo	js) 4, 7	<u></u>		San	nple ID (if not well	ID)	93-1A-0/23		
Well depth (feet be	js)	34.5			Sample Time		0.950		
1 Well Volume (gallor	is) 4	4.8			QC Sam	ole	☐ Not collected		
Sampling metho		New Disposable Bailer			type: <u>Бир</u>		ID Dup-0/13 Time 5 91		
(describe pump or sample	er)	-	•	Field Personnel			Cary Midwo	od	
Purge Rate (mL/mi	n)	NA		V	Veather Condition	ns	Cloudy	v	
		promise and a second se	PURGI	VG IN	FORMATION				
Time ☐ elapsed ☑ actual	Temp. (C)	Specific conductivity mS/cm x µS/cm	pΗ	l	TDS (ppm)		Observations	Volume purged ☐ Itr ☐ 図gal	
0123	12.6	311	7.7	O	223		Clour	4.8	
0432	12.6	320	7.7	1	230		Clear	48	
0942	12.9	326	7,7	6	931		Clear	4.8	
40.114									
				•					
THE ORGANIZATIONS	/NOTES (Total Volume Purge		
			naition, g	rouna	water color, segime	entic	oad, recovery, sheen, odor, o	equipment)	
Dup	from	1 here							
							•		
_									

		Engineering vironmental I			Project No:	22588.	000		
	GR	OUNDWAT	ER	Proj	ect Name/ Location:	McFarl	and Cascade Eu	gene, Orego	n
PBS		SAMPLING FORM			Date:	117/	23		
<u> </u>		I Oldivi			Recovery Wo	ell ID	R-4		
Initial DTW (feet bgs)	,	NA		Sam	ple ID (if not w	rell ID)	R-4-0123		
Well depth (feet bgs)		NA			Sample	Time	1020		
1 Well Volume (gallons)	1	NA			QC Sa	mple	Not collecte	ed	
Sampling method	Cmin				type:		ID	Time	_
(describe pump or sampler)		Spigot			Field Perso	onnel	Car	y Midwood	: f
Purge Rate (mL/min)	1.	NA		N	eather Condi	tions	Cloudy	40	
<u></u>							*		
		RECO	VERY W	ELL IN	FORMATION				
Recovery Wells Operational Upon Arrival		`MAX] NO			
If the recovery well is not ope be purged prior to sampling.		on arrival the we	ll will be t	irned o	n prior to sampl	ing and	La minimum of 90	00 gallons of v	vater will
Totalizer Reading	Start (Ga	llons):	1269	156	0 @0	700	-		
Totalizer Reading	g End (Gal	lons):	127	157	<u>0</u> @ 0:	16.7	Ô		
·			•		<u> </u>				
		WELI	PURGI	IG'IN	FORMATION				
Time	Temp.	Specific			TDC /		Ol		Volume
☐ elapsed ☑ actual	(C)	conductivity mS/cm	p⊦	i	TDS (ppm)		Observatio	ons	purged ltr
	, 7) ·····	x µS/cm	-7 A		0.70		· · · · · · · · · · · · · · · · · · ·	10 / MT = PVV	x gal
10/2	13.7	384	7.2	<u>6 </u>	272	į	Cleur.		2470
							Total Volun		2770
FIELD OBSERVATIONS / P	NOTES (such	as well head co	ndition, g	round	water color, sedi	iment l	oad, recovery, she	en, odor, equ	ipment)
Totalizer was	5 Work	714 4 Pu-	gritry	1, 5	Lopper 1	Inva.	s Florage	,1 501-	é
Time					y .		<i>y</i> • • • • • • • • • • • • • • • • • • •		
									, si
R4@1391	M	1	1		1 2 1				
		1 UTu	Pi	im Pi	1 2, 4	10	541		

Signature of Field Personnel: 4

		Engineering vironmental I			Project No: 22	588.	000		
			· FD	Pro	ject Name/	cFarl	and Cascade E	ugene Oreg	nn -
XPBS	G	ROUNDWAT SAMPLING	EK		Location:	1	,	agene, oreg	511
		FORM				11	/22		
					Monitoring Wel	ID	92-9		
Initial DTW (feet bg	s))	<u>55</u>		San	ple ID (if not wel	ID)	92-9-012	<u> </u>	
Well depth (feet bg		29.4			Sample Ti	me	1125		
1 Well Volume (gallon	s) H,	<u>) </u>		QC Sample		Not collec	ted		
Sampling metho	d No.	w Disposable B	ailor		type:	******	ID	Time	
(describe pump or sample	r) (Ne	w Dishosable p	allei		Field Personnel		Ca	ry Midwood	I
Purge Rate (mL/min)		NA		V	Veather Condition	ons	Cloney	40	
		WELL	PURGIN	IG IN	FORMATION				
Time	Temp.	Specific			TDC ()		Oleanania		Volume
☐ elapsed 図 actual	(c)	conductivity mS/cm sylvariation mS/cm	pΗ		TDS (ppm)		Observati	ons	purged Itr X gal
1110	13.0	380	7.4	<u> </u>	770		Clean		42
11/6	13.2	791	7,5	5	274		Clein Clein	100	4.2
1121	13.4	388	7.6	0	274		Cleur		42
									,
	VA - 1500 P. TV VI								
			1			1	Total Volu	me Purged	12-6
FIELD OBSERVATIONS /	NOTES (suc	n as well head co	ndition, g	round	water color, sedim	ent l	oad, recovery, sh	een, odor, eq	.ipment)
								У	*
							•		
					-			*	
								•	

Signature of Field Personnel: \mathcal{N}

WELL GAUGING LOG

PROJECT: McFarland Cascade Pole and Lumber Company (MCPLC) - Eugene, OR

PROJECT NO: 22588.000

GAUGED BY: Cary Midwood (PBS) and MCLPC site personnel

Well ID	Date	Time	DTW	DTP	Comments	Measured by PBS	Measured by MCPLC
AGI-1	4/4/28	0747	3.11		,	·	
AGI-2	4/0/123	0800	6.67	-		/	
AGI-4S	11.0120	VIVO	0.00				1
AGI-4N							1
AGI-6							1
AGI-8	4/9/23	0803	4.55		Needs now look	✓	
90-1S	1						✓
90-1D					/	>-	✓
90-2					``		✓ -
90-3	4/4/22	0850	1.20	22		1	
90-4	4/5/23	0827	3.03	22		✓	
90-5	4/4/12	1750	5.17			✓	
91-6	113120	. 6					✓
92-8	415/23	0850	5.89	122	92-11 here	1	
92-9	1101	0,					✓
92-9B	,						✓
92-10	45/23	0836	4108			/	
92-11	14/5/12	Baul	4.35		92-8 here	✓	
93-1A	111111	0 01					✓
93-1B		1 0		181			
93-2	14/0/23	0824	(0.25			✓.	
93-3	46/23	0420	6.50			- ✓ .	
96-2	1,,,,,,,						✓
96-3							1
P-1S	4/5/23	0809	443			✓	
P-2S	415/23	NSU	4.17			✓	100
P-2D	111/0	400			- 2		7.
R-1	2.7				- W		1
R-2							1
R-3							1
R-4							, /
R-5	5						1
MT-1						7	1
MT-2							1
MT-3							✓
MT-4							√
North Pond	1						√

Notes:

DTW = depth to water DTP = depth to product -- = not applicable

DATE			04/05/23
	×.		
AGI-4 N	Boiler	DTW	6.96
AGI-4S		DTW	6.76
90-2	Ditch	DTW	0.92
91-6	Pond	DTW	2.59
92-9	R4	DTW	3.26
92-9B	R4	DTW	Down
NORTH POND			6.90
DATE			
R-1	11.00	DTO	4.35
		DTW	5.22
R-2		DTO	
		DTW	16.05
R-3	Seneca	DTO	
		DTW	3.72
R-4		DTO	
		DTW	1.02
R-5	Retort	DTO	5.43
		DTW	12.62
AGI-6	R1	DTO	6.55
		DTW	6.57
DATE			
90-18	GWTS	DTW	3.84
90-1D	GWTS	DTW	5.53
93-1A	FIELD	DTW	3.96
93-1B	FIELD	DTW	4.95
96-2		DTO	4.53
		DTW	4.60
96-3		DTO	5.15
	•	DTW	5.21
DATE			
MT-1	Gate	DTO	
MTO		DTW	5.13
MT-2		DTO	5.02
BAT O	D	DTW	5.88
MT-3	Breezway	DTO	5.15
NAT 4	D'4	DTW	6.13
MT-4	Pit	DTO	2.50
00.2		DTW	9.11
90-3 P-1S		DTW	1.35 4.41
P-15		DTW	4.41

9	PBS Engineering and Environmental Inc.	Project No: 22588.000			
PBS	GROUNDWATER	Project Name/ Location: McFarl	and Cascade Eugene, Oregon		
	SAMPLING FORM	Date: 4/5	123		
	PORIVI	Monitoring Well ID	90-1D		
Initial DTW (feet bgs)	5.54	Sample ID (if not well ID)	90-1D-0423		
Well depth (feet bgs)	63.8	Sample Time	10,00		
1 Well Volume (gallons)	9.3216	QC Sample	☑ Not collected		
Sampling method		type:	ID Time		
(describe pump or sampler)	New Disposable Bailer	Field Personnel	Janessa Sandovot		
Purge Rate (mL/min)	NA	Weather Conditions	Overcast		
	WELL BURGE	NC INCORMATION			

WELL PURGING INFORMATION										
Time ☐ elapsed ☑ actual	Temp. (C)	Specific conductivity mS/cm	рН	_ TDS (ppm)	Observations	Volume purged ltr x gal				
0925	13.3	599	7.54	425	clear	9.5				
0946	13.3	599	7.62	426	dear	9.5				
0952	13.1	602	7.58	428	dear	9.5				
V					1					
		7	+	**	1 24					
					Total Volume Purged	26.5				

FIELD OBSERVATIONS / NOTES (such as well head condition, groundwater color, sediment load, recovery, sheen, odor, equipment)

	PBS Engineering Environmental I		Pro	ject No	22588	.000	
ZPBS	GROUNDWAT	ER		t Name, ocation		land Cascade Eugene, Oreg	on
	SAMPLING FORM			Date	4/5	123	
	1011		.R	ecovery	Well ID	R-1	
Initial DTW (feet bgs)	NA		Sampl	e ID (if n	ot well ID)	R-1-0423	
Well depth (feet bgs)	'NA			Samp	ole Time	1010	
1 Well Volume (gallons)	NA			Qc	Sample	☐ Not collected	_
Sampling method	Spigot		ty	ре: <u>// и/</u>	PIS Cate	ID Dyp-042) Time Sax	<u>n</u> l
(describe pump or sampler)	Spigot			Field Pe	ersonnel	Janessa Sam	DOV.AN
Purge Rate (mL/min)	NA		Wea	ther Co	nditions	overeast	
						-	
	RECO	VERY WE	LL INFO	RMATIO	ON		
Recovery Wells Operat			VES YES		□ №		
If the recovery well is not oper be purged prior to sampling.	ational upon arrival the we	ll will be tu	ırned on _l	orior to sa	impling an	d a minimum of 700 gallons of	water will
Totalizer Reading S	Totalizer Reading Start (Gallons):) @ O	215		
Totalizer Reading	End (Gallons):	272	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	00	1003		
1							
	WELL	. PURGIN	G INFO	RMATIC)N		
Time ☐ elapsed ☑ actual	Temp. (C) Specific conductivity ☐ mS/cm ☐ wS/cm	рН		TDS (pp		Observations	Volume purged Itr
1005	4.8 488	7.4	5	346		dear	970
	1 (1) 0					Total Volume Purged	970
FIELD OBSERVATIONS / NO	OTES (such as well head co	ndition, gr	oundwat	er color,	sediment l	oad, recovery, sheen, odor, eq	uipment)
					J.		
<u>.</u>							g #
,							•
^				•			4 % • • • • • • • • • • • • • • • • • • •
				.is		() 数:2	**
						,	
,							
		1			1		м.
Signature of Field Personn	el: Karra va	۱۸.	And	m//			

****			•							
	PBS Engineering Environmental I		Project No: 2258	8.000						
NPBS	GROUNDWAT	ER	Project Name/ Location: McFarland Cascade Eugene, Oregon							
	SAMPLING FORM		Date: 4/5/73							
			Recovery Well ID	R-2						
Initial DTW (feet bgs)	NA		Sample ID (if not well ID	R-2-0423						
Well depth (feet bgs)	NA		Sample Time	1020						
1 Well Volume (gallons)	NA		QC Sample	1						
Sampling method			type: <u>MS/MSD</u>	IDTime						
(describe pump or sampler)	Spigot		Field Personne	Javes & a San	FOACH					
Purge Rate (mL/min)	NA		Weather Conditions	sverast						
RECOVERY WELL INFORMATION										
Recovery Wells Opera	Standard in 1975 in American and American Additional Standard Law and Madematical Standard and Standard American	ter petitik i sept mentil en tre kriste fill kilonetikken beken.	√ YES	□ NO	TO NEW STORY OF SECURIOR SPACE SPACE SPACE					
	If the recovery well is not operational upon arrival the well will be turned on prior to sampling and a minimum of 700 gallons of water will									
be purged prior to sampling.	attorial upon arrival the we	u wiii be u	urnea on pitor to sampany a	na a minunani of 700 galloris of	water wat					
Totalizer Readings	Start (Gallons):	90	26330 0,8	19						
Totalizer Readings	End (Gallons):	an-	2107300000	9027850 DIOI	3					
				1021110						
	WELL	PURGIN	IG INFORMATION							
Time	Temp Specific	Constitution of the Con			Volume					
elapsed	(C) conductivity	рН	TDS (ppm)	Observations	purged					
⊠ actual	⊠ μS/cm				🗵 gal					
(0(6)	5.4 498	1:16	3 355	clear	1020					
				Total Volume Purged	1020					
FIELD OBSERVATIONS / NO	OTES (such as well head co	ndition, g	roundwater color, sediment	load, recovery, sheen, odor, eq	uipment)					
	ρ	\circ	1							
Signature of Field Personn	el: James na		rolevie/							

	PBS Engineering a	and	Γ.					
	Environmental Ir			(. .)	22588.	000		
PBS	GROUNDWAT	ER	Proj	Project Name/ Location: McFarland Cascade Eugene, Oregon				
	SAMPLING FORM			Date: 4/5/29				
	TORW		N	Monitoring Well ID 93-8				
Initial DTW (feet bgs)	4.00		Sam	ple ID (if not	well ID)	93-8-0423		
Well depth (feet bgs)	45			Sample	e Time	1[20		
1 Well Volume (gallons)	6.56	6.56		QC Sample		Not collected		
Sampling method	New Disposable Ba	New Disposable Bailer		type:		ID Time		
(describe pump or sampler)			Field Personnel			412		
Purge Rate (mL/min)	NA	NA		eather Cond	ditions	lover Cast		
		PURGIN	IG IN	FORMATION	ı			
Time ☐ elapsed ☑ actual	Temp. (C) Specific conductivity mS/cm x µS/cm	pН	1	TDS (ppm	n)	Observations	Volume purged ☐ Itr ☑ gal	
10.50	15.7 583	7.4	9	415	(160h	6.5	
1100	14.9 592	1,5	8	H20		lear	6.5	
1113 1	4.7 584	1,0	07	414		clear	6.5	
·								
	± =				-			
						Total Volume Purg		
FIELD OBSERVATIONS / N	IOTES (such as well head co	ndition, g	round	water color, se	diment l	oad, recovery, sheen, odor,	, equipment)	
water a	bove top	of	(casin	ez			
*								
		\sim		1				
Signature of Field Person	MULUNA	ang	los	M				
Note: 0.18 gallons per linear feet	for 2" wells utilized to calculate	1 purge vo	lume					

	PBS Engineering and Environmental Inc.	Project No: 22588	.000.						
N PBS	GROUNDWATER SAMPLING	Project Name/ Location: McFar	land Cascade Eugene, Oregon 1 23						
	FORM	Recovery Well ID	R-3						
Initial DTW (feet bgs)	NA	Sample ID (if not well ID)	1.00						
Well depth (feet bgs)	NA NA	Sample Time							
1 Well Volume (gallons)	NA .	QC Sample	☐ Not collected						
Sampling method	Spigot	type: Fuld Blank	10 + ield - 0423 Time 1/45						
(describe pump or sampler)	Spigot	Field Personnel	Janessa Sanapvaj						
Purge Rate (mL/min)	ŅA	Weather Conditions	overcast						
. • **									
	RECOVERY V	VELLINFORMATION							
Recovery Wells Opera	tional Upon Arrival	YES	□ N _i O _i						
If the recovery well is not operational upon arrival the well will be turned on prior to sampling and a minimum of 360 gallons of water will be purged prior to sampling.									
Totalizer Readings Start (Gallons): 75% 3% @ /025									
Totalizer Readings	End (Gallons): 754	5/8/0 (4)/12-	7						
	4								
		NG INFORMATION							
Time ☐ elapsed ☑ actual	Temp. Specific conductivity p mS/cm x μS/cm	H TDS (ppm)	Volume Observations purged ☐ Itr ☐ gal						
1130 1		15 307	Clear 1290						
	VI.		Total Volume Purged 1290						
FIELD OBSERVATIONS / NO	OTES (such as well head condition,	groundwater color, sediment l	oad, recovery, sheen, odor, equipment)						
SPhit	from here. To	ARI							
Field	blank from her	2							
	e de la companya de l	_							

	PBS Engineering Environmental			-	588.	000		
XPBS	GROUNDWA ⁻		Project Name/ Location: McFarland Cascade Eugene, Oregon					
	SAMPLING FORM	i		Date: 4/5/23				
	JOKW			Recovery Well	ID	R-4		
Initial DTW (feet bgs)	ŃΑ		Sam	ple ID (if not well	ID)	R-4-0423		
Well depth (feet bgs)	NA			Sample Ti	me	1200		
1 Well Volume (gallons)	NA			QC Samj	ple	☑ Not collected		
Sampling method	Spigot			type:		IDTime_	evol	
(describe pump or sampler)				Field Person		Gary Midwoo		
Purge Rate (mL/min)	NA		į W	eather Condition	ons	UNANCAS+		
	BE-		desire (sous), e fictions	ropasatron.				
Baraway Walla Oraca	al to realist a transfer of the transfer of th	VERY W	ELLIN	FORMATION YES		No		
Recovery Wells Opera	-	ما الثيدال					water will	
be purged prior to sampling.	rational upon arrival the we	eu wui be ii	ırnea o	n prior to sampling	y ana	a minimum of 990 gallons of	water will	
Totalizer Readings	Totalizer Readings Start (Gallons):		180	(O) (O)	\mathcal{V}^{C}	· 2		
Totalizer Readings	s End (Gallons):	111	36	2006 il	4	1		
		()	•					
		LPURGIN	IG IN	ORMATION				
Time ☐ elapsed ☑ actual	Temp. (C) Specific conductivity mS/cm x µS/cm	рН		TDS (ppm)		Observations	Volume purged ☐ Itr ☑ gal	
1148	4.0 399	7.1	55	276	(clear	1790	
		, ,	.,, 🔾	\\		Total Volume Purged	1740	
FIELD OBSERVATIONS / NO	OTES (such as well head co	ondition, g	roundy	vater color, sedime	ent lo	oad, recovery, sheen, odor, eq	uipment)	
á.								
Signature of Field Personn	nel: Jamess	$a \leq$	2 21 N	dowal				

Initial DTW (feet bgs Well depth (feet bgs 1 Well Volume (gallons Sampling method (describe pump or sample) Purge Rate (mL/min	GR	GROUNDWATER SAMPLING FORM		Project No: 22588.0 Project Name/ Location: McFarla Date: // S Monitoring Well ID Sample ID (if not well ID) Sample Time QC Sample type: Field Personnek Weather Conditions			rland Cascade Eugene, Oregon 723 93-4 93-4-0423 Not collected IDTime	
Time ☐ elapsed ☐ actual	Temp. (C)	Specific conductivity MS/cm	PURGIN		TDS (ppm)		Observations	Volume purged ltr x gal
1238	12.4	430	7.3	35	306		Clear	11.0
1249	12.7	423	7.2		299	'	clear	11.0
1210	12.5	423	7.6	2	301		clear	11.0
	, 2 10							
			1441			1	Total Volume Purgeo	
		as well head co				ent l	oad, recovery, sheen, odor, e	цигртеп т)
Signature of Field Person	2000	nessas	JAM.	de	sual!			
Note: 0.16 gallons per linear fe	et for 2/ wells	utilized to calcu late	1 purge vo	lume				

Revised 01/07/19

			546	_				
		S Engineering nvironmental			Project No:	22588	.000	
ZIPBS	G	ROUNDWAT		Pro	ject Name/ Location:		land Cascade Eugene, Ore	gon
		SAMPLING FORM	•		Date: 4/5/2023			
				Monitoring Well ID			92-9	
Initial DTW (feet b	gs)	3.24		San	Sample ID (if not well ID) 92-9- 0 433		92-9-0433	
Well depth (feet b	gs)	29.4			Sample	e Time	1415	
1 Well Volume (gallo	ns)	4.2			QC S	ample		
Sampling metho	od No	w Disposable P	ailer		type:		IDTime	
(describe pump or sampl	ler)	w Disposable B	aller		Field Pers	sonnel	Jane Eary Midwood	grolovo
Purge Rate (mL/m	in)	NA		W	eather Cond	litions	overcast	
		WELI	L PURGIN	IG IN	FORMATION			
Time	Temp.	Specific						Volume
☐ elapsed ☑ actual	(c)	conductivity mS/cm x µS/cm	pН		TDS (ppm)	Observations	purged Itr Sigal
1354	13.5	395	7.7	25	280		Leav	4.7
1402	14.0	393	7.5	SX 279			lear	4.2
1410	13.6	393	7.1	jl	279		Clear	4.2
			20 - 12 P			-		
					19		8	
Y.		,				N.	Total Volume Purged	10.0
FIELD OBSERVATIONS /	NOTES (such	as well head cor	ndition, gr	oundw	ater color, sed	iment lo	ad, recovery, sheen, odor, eq	uipment)
	9			, •				
		1			1			
Signature of Field Person	1 1 111	ressas	gn	do	ve/			
Note: 0.16 gallons per linear fee	et for 27 wells ut	ilized to calculate 1	-purge volu	me	/			

Revised 01/07/19

Initial DTW (feet bg	GF	GROUNDWATER SAMPLING FORM		Pro	ject Name/ Location:	/ (o	and Cascade Eugene, Oreg	on
Well depth (feet bg	ıs)	20.9			Sample Time		0 805	
1 Well Volume (gallon	is) Z	.15			QC San	nple	☑ Not collected	
Sampling metho (describe pump or sample	od Ne	New Disposable Bailer			type:		IDTime	ndovo
Purge Rate (mL/mi	n)	NA		·W	/eather Conditi	ions	Clardy/light	-roun
		WELL	PURGIN	IG IN	FORMATION		- 3 3	
Time ☐ elapsed ☑ actual	Temp. (C)	Specific conductivity mS/cm	pН		TDS (ppm)		Observations	Volume purged Itr X gal
0743	10.5	577	69	2_	40		clearAmber	2.5
0749	10.8	612	6.	13	434		clear/Amber	25
0756	10.6	620	6.9	4	442		lear/Ambor	2.5
				•		-	n + - +	
FIELD OBSERVATIONS	/ NOTES (suc	h as well head co	ndition. a	round	water color. sedin	ent lo	Total Volume Purged	'
	d an	uber t Sma					withy clean recent in	
Signature of Field Perso	innel:	mensa<	111	da	nal		and the state of t	
Note: 0.16 gallons per linear fe							· · · · · · · · · · · · · · · · · · ·	.

Initial DTW (feet by	GF	S Engineering ovironmental I ROUNDWAT SAMPLING FORM	nc.	Pro	ject Name/ Location:	4/6 ell ID	and Cascade Eugene, O	regon
Well depth (feet bg	5	35.3			Sample			
1 Well Volume (gallon	1	105					127	
	1	.95			QC Sa	350	IDTime	
Sampling metho (describe pump or sample				Field Perso		Janossa Sary Midw	undoval	
Purge Rate (mL/mi	ate (mL/min) NA		ν	Veather Condi	tions	Cloudy		
		WELI	. PURGIN	IG IN	FORMATION			
Time ☐ elapsed ☑ actual	Temp. (C)	Specific conductivity mS/cm x µS/cm	рН	l	TDS (ppm)		Observations	Volume purged ltr x gal
0840	14.2	585	7.4	4	414		clear	5
0856	14.4	564	7.4	9	403		Clear	5
0911	14.5	562	7.4	5	398		Clear	5
	9.0	26		15.				
		No.	i e.				Total Volume Purg	ed 15
FIELD OBSERVATIONS /	NOTES (such	n as well head co	ndition, g	round	water color, sedi	iment l	oad, recovery, sheen, odor,	, equipment)
								4
	*							
			€-					
	3 .0							
	and the second	1						
Signature of Field Perso	onnel:	messa	in	ind	one 1			
Note: 0.16 gallons per linear fe			I purge vo	lume			2	

Revised 01/07/19

WELL GAUGING LOG

PROJECT: McFarland Cascade Pole and Lumber Company (MCPLC) - Eugene, OR

PROJECT NO: 22588.000

GAUGED BY: Janessa Sandoval (PBS) and MCLPC site personnel

AGI-4N AGI-8 AGI-8 90-18 90-18 90-10 90-2 90-3 90-4 91/17/2 90-18 90-5 91/17/2 90-18 90-6 90-7 90-7 90-8 90-9 90-9 90-9 90-9 90-9 90-9 90-9	Well ID	Date	Time	DTW	DTP	Comments	Measured by PBS	Measured by MCPLC
AGI-4S AGI-4N AGI-6 AGI-8 90-1S 90-1S 90-1D 90-2 90-3 90-4 9(1/17) 90-19 90-5 91-6 91-6 91-6 92-9 92-9 92-9 92-9 92-9 92-9 92-9 92	AGI-1	9/12/23	0916	12.44			✓	
AGI-4S AGI-4N AGI-6 AGI-8 90-1S 90-1S 90-1D 90-2 90-3 90-4 9(1/17) 90-16 90-5 91-6 91-6 92-9 92-9 92-9 92-9 92-9 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 92-9 92-10 91/2/25 93-10 9	AGI-2	9/12/23	0735	14.71			√	
AGI-6 AGI-8 O-1S O-1S O-1S O-1S O-1D O-1S O-1D O-1D O-2 O-3 O-3 O-4	AGI-4S							✓
AGI-8 90-1S 90-1D 90-1D 90-2 90-3 90-4 90-1D 90-6 90-5 90-6 90-7 90-1D 90-7 90-8 90-9 90-9 90-9 90-9 90-9 90-9 90-9	AGI-4N							✓
90-15 90-10 90-10 90-2 90-3 90-4 90-17 90-4 90-17 90-5 90-17 90-6 90-7 90-8 90-9 90-9 90-9 90-9 90-9 90-9 90-9	AGI-6							✓
90-15 90-10 90-10 90-2 90-3 90-4 90-17 90-4 90-17 90-5 90-17 90-6 90-7 90-8 90-9 90-9 90-9 90-9 90-9 90-9 90-9	AGI-8	9/12/23	0751	13,72			√	
90-2 90-3 90-4 90-4 90-4 90-1 90-6 90-5 90-6 90-6 90-8 92-8 92-9 92-9 92-10 91-1 91-1 91-1 91-1 91-1 91-1 91-1 9	90-1S		,	(, ,)				✓
90-3	90-1D							✓
90-4	90-2							✓
90-4	90-3	91/12/23	0906	8.80			✓	
90-5 9/12/25 05 0 1 14-0		9/12/22		10.97			✓	
91-6 92-8 92-9 92-9 92-9 92-9 92-10 92-11 93-1A 93-1B 93-2 93-3 94/12/13 93-3 94/12/13 93-3 94/12/13 93-3 94/12/13 93-3 94/12/13 93-3 94/12/13 93-3 94/12/13 93-3 94/12/13 93-3 94/12/13 94-3 95-3 96-3 96-3 96-3 97-15	90-5	9/12/25		14.01			/	
92.8 9(12/17) 60/25 12.13	91-6	1	0.00					/
92-9 92-9B 92-10 92-11 92-11 93-1A 93-1A 93-1B 93-2 94-12-73 94-2 96-2 96-3 96-3 97-15 97-12-3	92-8	0112122	1025	12.13			1	
92-10	92-9	11111	00/52					✓
92-11	92-9B							✓
92-11	92-10	9/12/22	09.14	12.55			✓	
93-1A 93-1B 93-2 9/12/72 93-3 9/12/73 96-2 96-3 9-1S 9/12/23 97-25 97-12/23 97-25 97-12/23 97-25 97-12/23 97-25 97-20 97	92-11	01/12/22	0855			's	✓	
93-2	93-1A	1 1212)	0 17 0 1	1131011				✓
93-3	93-1B							✓
93-3	93-2	9/12/72	00,26	14.09			/	
96-2 96-3 P-1S 9/12/23 072-8 12.54 P-2S P-2D R-1 R-2 R-3 R-4 R-5 MT-1 MT-2 MT-3 MT-4	93-3	9/17/53	0832				✓	
P-1S 9/12/23 072-8 12.54	96-2	1		11000				✓
P-2S	96-3	7				,		√
P-2S	P-1S	9/12/22	12728	12.54			√	
P-2D R-1 R-2 R-3 R-4 R-5 MT-1 MT-2 MT-3 MT-4 P-2D V WT-1 V WT-3 V WT-4 V WT-1 V WT-2 V WT-4 V WT-1 V WT-2 V WT-4 V WT-2 V WT-3 V WT-4 V WT-2 V WT-3 V WT-4 V WT-2 V WT-4 V WT-2 V WT-3 V WT-4 V WT-2 V WT-3 V WT-4 V WT-2 V WT-3 V WT-4 V WT-4 V WT-7 V WT-8 V WT-8 V WT-8 V WT-9	P-2S	9/12/23	M42-	12.07			√	
R-2		10,000		1,2.01				
R-3 R-4 R-5 MT-1 MT-2 MT-3 MT-4 R-3	R-1							1
R-4	R-2							1
R-5	R-3							✓
R-5								√
MT-1								√
MT-2								√
MT-4								√
MT-4	MT-3							√
								√
North Pond V	North Pond							√

Notes:

DTW = depth to water DTP = depth to product -- = not applicable

DATE			09/12/23
AGI-4 N	Boiler	DTW	14.95
AGI-4S		DTW	14.62
90-2	Ditch	DTW	9.33
91-6	Pond	DTW	10.41
92-9	R4	DTW	11.16
92-9B	R4	DTW	REMOVED
NORTH POND			0.00
			0.00
DATE			
R-1		DTO	12.33
		DTW	13.96
R-2		DTO	
		DTW	24.31
R-3	Seneca	DTO	
		DTW	11.55
R-4	1	DTO	REMOVED
		DTW	REMOVED
R-5	Retort	DTO	13.92
		DTW	14.60
AGI-6	R1	DTO	14.48
		DTW	14.50
DATE			
90-1S	GWTS	DTW	11.81
90-1D	GWTS	DTW	13.37
93-1A	FIELD	DTW	11.80
93-1B	FIELD	DTW	12.66
96-2		DTO	12.14
		DTW	13.15
96-3		DTO	13.20
		DTW	13.31
DATE			
MT-1	Gate	DTO	
		DTW	12.91
MT-2		DTO	13.02
		DTW	13.60
MT-3	Breezway	DTO	12.90
		DTW	14.50
MT-4	Pit	DTO	11.01
		DTW	11.65
90-3		DTW	8.84
P-1S		DTW	12.55

	PBS Engineering a Environmental Inc		Project No:	22588.	.000	
N DRC	GROUNDWATE	:R	Project Name/ Location:	McFarl	land Cascade Eugene, Orego	on
	SAMPLING FORM		Date:	9/1	2/2023	
	FORIVI		Monitoring \	Well ID	93-1A	
Initial DTW (feet bgs	11,8		Sample ID (if not	well ID)	93-1A- 0923	-
Well depth (feet bgs	34.5		Sample Time		1045	
1 Well Volume (gallons	3.63	3.63		Sample	X Not collected	
Sampling method		iler	type:		ID Time	
(describe pump or sampler)	(describe pump or sampler) New Disposable Bailer		Field Per	sonnel	Janessa Sando	val
Purge Rate (mL/min) NA	NA		ditions	Bunny	
	WELL	PURGIN	IG INFORMATION	Ú	<i>)</i>	
Time ☐ elapsed ☑ actual	Temp. (C) Specific conductivity ☐ mS/cm ☒ µS/cm	рН			Observations	Volume purged ltr x gal
1014		7.30	7 227		clear	3.6
1028	14.0 321	1.7	231	(clear claw	3,7
1037	13,7 323	7.65	5 230		clear	3,6
					Total Volume Purged	10.8
FIELD OBSERVATIONS / N	NOTES (such as well head cond	dition, gr	oundwater color, se	diment l	oad, recovery, sheen, odor, eq	uipment)

Signature of Field Personnel: January Mote: 0.16 gallons per linear feet for 2" wells utilized to calculate 1 purge volume

		S Engineering a vironmental Ir			Project No:	22588.	000		
NPBS	GF	ROUNDWAT	ER	Pro	ject Name/ Location:		and Cascade Eugene, Orego	on	
	'	SAMPLING FORM			Date:	9/12	12023		
					Monitoring V		92-9		
Initial DTW (feet bg	ıs)	11.13		San	nple ID (if not	well ID)	1ID) 92-9-0923		
Well depth (feet bg	ıs)	29.4			Sample	e Time			
1 Well Volume (gallon	ons) 210				QC S	Sample	Not collected		
Sampling metho (describe pump or sample		New Disposable Bailer		type:			IDTime		
				Field Personnel Weather Conditions		-	Janessa Sando	wai	
Purge Rate (mL/mi	n)	NA		V	Veather Cond	ditions	Suny		
		23 1094 10 0 0 0 0 0 0 0 0	PURGIN	IG IN	FORMATION	1			
Time □ elapsed ☑ actual	Temp. (C)	Specific conductivity mS/cm x µS/cm	pН	I	TDS (ppm	1)	Observations	Volume purged ltr sigal	
1119	14,4	385	7.10	ń	275	(lear	3	
1131	15.1	318	7.2	2	271		dear	3	
* 1141	14.5	381	7.2	5	271	(clear	3	
	<u> </u>			<i>)</i>					
		,	ta s eg di s						
							Total Volume Purged	9	
FIELD OBSERVATIONS /	/ NOTES (suc	h as well head co	ndition, g	round	water color, se	diment l	oad, recovery, sheen, odor, eq	uipment)	
,									
اد. داد را									
-%									
	. //			0					

Signature of Field Personnel: Janessa Candlo

Note: 0.16 gallons per linear feet for 2 wells utilized to calculate 1 purge volume

		S Engineering anvironmental Ir			Project No: 22	588.	000	
a dec	, GI	ROUNDWAT		Pro	oject Name/ Location:	cFarl	and Cascade Eugene, Orego	on
	'	SAMPLING FORM			Date: 0/	12	12023	
					Monitoring Well	, ,	93-4	
Initial DTW (feet bg	js)	13.19		San	nple ID (if not well	ID)	93-4-0923	
Well depth (feet bg	js)	75		<u> </u>	Sample Ti	me	1330	
1 Well Volume (gallon	ıs)	9.9			QC Sam	-	☑ Not collected	
Sampling metho		w Disposable Ba	ailer		type:		IDTime	
	(describe pump or sampler)			Field Personnel		Janessa Sando	val	
Purge Rate (mL/mii	n)	NA		V	Veather Condition	ons	Sunny	
		7	- PURGII	IG IN	IFORMATION			
Time ☐ elapsed ☑ actual	Temp. (C)	Specific conductivity mS/cm x µS/cm	pH	l	TDS (ppm)		Observations	Volume purged Itr Sal
1240	13.6	391	7.24	,	272		lear	10
1300	13.5	784	1.3		273		clar	10
1320	13.0	385	7.4		772	L	NAM	16
	· · · ·		1.	<u> </u>	60			10
							Total Volume Purged	30
FIELD OBSERVATIONS /	NOTES (such	ı as well head cor	ndition, g	round	water color, sedime	ent lo	oad, recovery, sheen, odor, equ	ıipment)
ı								
 		1			en a l			
Signature of Field Person	mmale #				1. 1 11			

Signature of Field Personnel: January Mote: 0.16 gallons per linear feet for 2 wells utilized to calcutate 1 purge volume

				_					
		S Engineering nvironmental I			Project No:	22588.	000		
⊠PBS	GI	ROUNDWAT		Pro	ject Name/ Location:	McFarl	and Cascade Eugene, Ore	egon	
	'	SAMPLING FORM			Date: 0/12/23				
				ı	Monitoring V	Vell ID	93-3		
Initial DTW (feet bo	gs) (4,66		San	mple ID (if not	well ID)	93-3-		
Well depth (feet bo	gs)	39.5			Sample Time 1425				
1 Well Volume (gallor	ns)	3.9			QC Sample		Not collected		
	Sampling method		Pailer		type:		ID Time		
	(describe pump or sampler) New Disposable Bailer			Field Pers	sonnel	Janessa San	doval		
Purge Rate (mL/mi	Purge Rate (mL/min) NA		V	Veather Cond	litions	Sunny			
WELL PURGING INFORMATION									
Time ☐ elapsed ☑ actual	Temp.	Specific conductivity mS/cm			TDS (ppm)		Observations	Volume purged Itr	
1401	14,8	290	6.5	4	209	C	rlear	4	
1411	15.4	292	6.73		208	C	clear cfear lear	4	
1421	15.8	292	6.7	2	207	C	lear	4	
								,	
							Total Volume Purge	1 /2 <u> </u>	
FIELD OBSERVATIONS /	NOTES (such	າ as well head co	ndition, gr	round	water color, sec	diment lo	oad, recovery, sheen, odor, e	quipment)	
Signature of Field Persor		1							
Signature of Field Person	nnel:	1101000 6	In	sho	40//				

Note: 0.16 gallons per linear feet for 2" wells utilized to calculate 1 purge volume

	PBS Engineering Environmental	_		Project No:	22588.	.000		
			Pro	ject Name/	N / a l a wl	l Corredo Eugano Oro		
IN PBS	GROUNDWA SAMPLING			Location:		land Cascade Eugene, Oreg	gon	
	FORM	G		Date: 9/1473				
			1	Monitoring V	Well ID	93-8		
Initial DTW (feet bgs)	12.3		San	nple ID (if not	t well ID)	93-8-		
Well depth (feet bgs)	45			Sampl	le Time	1545		
1 Well Volume (gallons)	5,2			QC S	Sample	1 		
Sampling method	4			type:	-	ID Time		
(describe pump or sampler)		Bailer		Field Per		Janessa Sand		
Purge Rate (mL/min)	in) NA		V	Veather Con	ditions	Sunny		
		PUDCI	The state of the s				on a serie de la company d	
	Specific	EEPUKGI:	1G IIV	FORMATION	1 EMERGE		Volume	
Time elapsed	conductivity		ł	TDS (ppm	n)	Observations	purged	
⊠ actual	mS/cm x µS/cm						│	
1522	163 3957	7.0	13	397		clear	5.2	
1630	10.3 540			385		rlank	5.2	
1500	1 2 2 1			700	·	clear		
1540	16.4 519	7, 2	34	406		<u>clear</u>	8.2	
						Total Volume Purged	15.6	
FIELD OBSERVATIONS / N	NOTES (such as well head c	condition, g	round	water color, se	diment k	oad, recovery, sheen, odor, eq	uipment)	
				e.				

Signature of Field Personnel:

Note: 0.16 gallons per linear feet for 2" wells utilized to calculate 1 purge volume

	PBS Engineering Environmental I		Project No:	22588.	000		
ZPBS	GROUNDWAT	ER	Project Name/ Location: McFarland Cascade Eugene, Oregon				
	SAMPLING FORM		Date: (9/12	12013		
			Recovery V		R-1		
Initial DTW (feet bgs)	NA		Sample ID (if not	well ID)	R-1- 0923		
Well depth (feet bgs)	NA		Sample	e Time	1615		
1 Well Volume (gallons)	NA		QC S	ample	☐ Not collected	_	
Sampling method	Spigot		type: MG/1	15D	IDSAME Time SOM	<u>u</u>	
(describe pump or sampler)	Spigot		Field Pers	onnel	Janessa Sando	oval	
Purge Rate (mL/min)	NA		Weather Cond	litions	Partly Crovely		
						·	
	RECO	VERY WI	LL INFORMATION	L ight			
Recovery Wells Operate	tional Upon Arrival		YES YES		□NO		
If the recovery well is not oper be purged prior to sampling.	ational upon arrival the we	ell will be to	urned on prior to sam	pling and	d a minimum of 700 gallons of	water will	
Totalizer Reading Start (Gallons):		36	1572390	w 0	713		
Totalizer Reading	End (Gallons):	45	1572390 J	11	010		
		A RESIDENCE OF THE PROPERTY OF				2	
	WELI	PURGIN	IG INFORMATION				
Time □ elapsed ☑ actual	Temp. (C) Specific conductivity ☐ mS/cm ☑ μS/cm	рН	TDS (ppm)		Observations	Volume purged ltr x gal	
1611	6.8 470	7.40	1 336		Clear	4230	
					Total Volume Purged	4230	
FIELD OBSERVATIONS / NO	TES (such as well head co	ndition, gr	oundwater color, sed	liment lo	oad, recovery, sheen, odor, equ	uipment)	
Signature of Field Personne	messa	San	doual				

	PBS Engineering and Environmental Inc.	Project No: 22588.000				
GROUNDWA SAMPLING FORM	GROUNDWATER	Project Name/ Location: McFarl	and Cascade Eugene, Oregon			
		Date: 9/12/2023				
	· OKW	Recovery Well ID	R-2			
Initial DTW (feet bgs)	NA	Sample ID (if not well ID)	R-2-0923			
Well depth (feet bgs)	NA	Sample Time	W018			
1 Well Volume (gallons)	NA	QC Sample	☐ Not collected			
Sampling method	Spigot	type: Publicate	ID DIJP-0923 0730			
(describe pump or sampler)	Spigot	Field Personnel	Janessa Sandoval			
Purge Rate (mL/min)	NA	Weather Conditions	Svnny			

RECOVERY WELL INFORMATION

Recovery Wells Op	erational U	oon Arrival		✓ YES	□NO			
If the recovery well is not be purged prior to sampli		oon arrival the we	ell will be turned	on prior to samplin	g and a minimum of 700 gallons	s of water will		
Totalizer Readi	allons):	363200 @ 0713						
Totalizer Readi	illons):	345102	00/162	3				
		WELL	PURGING IN	FORMATION				
Time □ elapsed ⊠ actual	Temp.	Specific conductivity mS/cm	рН	TDS (ppm)	Observations	Volume purged ltr square		
1623	16.7	471	7.40	1337	Clear	2420		
					Total Volume Purge	d 2420		
FIELD OBSERVATIONS	/ NOTES (such	as well head co	ndition, ground	water color, sedime	ent load, recovery, sheen, odor,	equipment)		
Duplicate	tak	en En	om he	rl				

Signature of Field Personnel: James Landoux

				т				
,		S Engineering a vironmental Ir			Project No:	22588.	.000	
⊠PBS	GF	ROUNDWAT	ER	Proj	ject Name/ Location:	McFarl	land Cascade Eugene, Orego	on
	,	SAMPLING FORM			Date:	9/12	3/2023	
			V	N	Monitoring V	Vell ID	90-1D	and the property of the second se
Initial DTW (feet bg	js)	3.60		Sam	ple ID (if not	well ID)	90-1D-	
Well depth (feet bg	js)	63.8			Sample	e Time	0815	,
1 Well Volume (gallon	ıs)	8.0			QC Sample		□ Not collected	
Sampling metho		New Disposable Bailer			type: Field		IDField 0923 Time 098	
(describe pump or sample					Field Per		Janessa Sando	val
Purge Rate (mL/min) NA		W	/eather Cond	ditions	Cloudy			
		WELL	. PURGII	VG IN	FORMATION			
Time ☐ elapsed ☑ actual	Temp. (C)	Specific conductivity mS/cm x µS/cm	рН	1	TDS (ppm	1)	Observations	Volume purged ltr x gal
0734	14.9	566	7.31		401		clear	8
0752	14.8	572	7.4	15	404		clear	8
0808	14.8	569	7.4	16	405		clear	8
,								
.S						3.	*	
		· .				*	Total Volume Purged	24
FIELD OBSERVATIONS /	/ NOTES (such	n as well head co	ndition, g	round	water color, se	diment l	oad, recovery, sheen, odor, equ	uipment)
Signature of Field Perso								
Signature of Field Perso	nnel: 🥢 👊	nana	ann	do.	mel			

Note: 0.16 gallons per linear feet for 2 wells utilized to calculate 2 purge volume

	En	Environmental Inc. GROUNDWATER SAMPLING FORM			Project No. 22	566.	000				
⊠PBS	GF				Project Name/ Location: McFarland Cascade Eugene, Oregon						
					Date: 9/13/2023						
					Recovery Wel	ID	R-3				
Initial DTW (feet bgs)	NA			Sample ID (if not well ID) R-3-						
Well depth (feet bgs)	NA			Sample Time 0845						
1 Well Volume (gallons))	NA			QC Şample		☐ Not collected				
Sampling method		Spigot			type: Split		ID R3-0923 Time OSL	K S			
(describe pump or sampler)					Field Person	nel	Janessa Sandoval				
Purge Rate (mL/min))	NA			/eather Condition	ons	Cloudy				
							8				
RECOVERY WELL INFORMATION											
Recovery Wells Operational Upon Arrival				YES			□NO				
If the recovery well is not ope be purged prior to sampling		on arrival the we	ll will be tu	ırned d	on prior to sampling	g ana	l a minimum of 360 gallons of	water will			
Totalizer Reading	s Start (G	allons):	758	26	00 @	07	04				
				7583790@ 0826							
		***************************************			00			THE RESERVE OF THE PARTY OF THE			
WELL PURGING INFORMATION											
Time	Temp.	Specific	l once					Volume			
elapsed	(C)	conductivity	pН		TDS (ppm)		Observations	purged Itr			
082\$	15.7	1 (3	776		293		clear	x gal			
0 0 0 0		117	1, 1	4			Total Volume Purged	1110			
FIELD OBSERVATIONS / N	NOTES (such	as well head co	ndition. a	round	water color, sedim	ent lo	pad, recovery, sheen, odor, eq	uipment)			
Split sam	ple to	O ARI	fron	n V	une.						
v	,										

Janessa Sandonal

Signature of Field Personnel:

PBS Engineering and

		PBS Engineering and Environmental Inc.			Project No: 22588.000							
X PRS	GR	GROUNDWATER SAMPLING FORM			Project Name/ Location: McFarland Cascade Eugene, Oregon							
					Date: 9/13/2023							
					/lonitoring Well	ID	P-2D					
Initial DTW (feet bg	s) /	12,56			ple ID (if not well	ID)	P-2D-					
Well depth (feet bg		35.3			Sample Ti	me	0955					
1 Well Volume (gallon	s)	3,0		QC Sample			Not collected					
Sampling metho	d	New Disposable Bailer			type:	-	IDTime					
(describe pump or sample					Field Person	nel	Janessa Sandoval					
Purge Rate (mL/mi	Purge Rate (mL/min)			Weather Conditions			Cloudy					
WELL PURGING INFORMATION												
Time □ elapsed ☑ actual	Temp. (C)	Specific conductivity mS/cm x µS/cm	рH		TDS (ppm)		Observations	Volume purged ltr x gal				
0922	15.2	537	75	1	2-701		Clear	3.6				
0935		100	7. 0	1	7 70		clear					
0935	15.3	5.50	1,4	70	3/0		cleon	3-6				
0941	15.2	529	7.2	74	375		<u>Clew</u>	3.8				
								,				
			1			L	Total Volume Purged	11				
FIELD OBSERVATIONS /	NOTES (such	n as well head co	ndition, g	round	water color, sedim	ent lo	oad, recovery, sheen, odor, equ	ıipment)				
6:	1											

Signature of Field Personnel: Ames sa Sandoural

Note: 0.16 gallons per linear feet for 2 wells utilized to calculate 1 purge volume

Attachment B

Laboratory Reports and Data Validation Memoranda

15 February 2023

Kelly Titkemeier Maul, Foster & Alongi, Inc. 2001 NW 19th Avenue, Suite 200 Portland, WA 97209

RE: McFarland Cascade Pole and Lumber Company - Eugene (22588.000)

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) Associated SDG ID(s) 23A0367

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, LLC

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its

Kelly Bottem, Client Services Manager

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: 2340367	Turn-around	Requested: 5	tonlard		Page:	n de sant e	of				Analytic	al Resources, LLC al Chemists and Consultants
ART Client Company:	itel		37015		Date:		Ice Preser	nt?			4611 Soi	uth 134th Place, Suite 100 WA 98168
Client Contact:	empir				No. of Coolers:		Cooler Temps	0.	6	September Segri	206-695	-6200 206-695-6201 (fax)
Mic Full								Analysis F	Requested			Notes/Comments
Client Project #: ววรฯฯ. บบบ	Samplers:	かしい	1	WO.	a -							
Sample ID	Date	Time	Matrix	No. Containers	1768 80411							
North Pond-0123	1/17/23	0790	W	2	X							
Sonts Pond -0123	1	9800)							

									ja			
5	•								7			
=								¥				
Comments/Special Instructions	Relinquished by: (Signature)	nh	\sim	Received by: (Signature)	p hele	y 1	7	Relinquished (Signature)	l by:	- 1 Sa	Received by (Signature)	
	Printed Name:	$n \sim n \sim$	INOUI		hillip	В	ates	Printed Nam	e:		Printed Nam	е:
	Compone	ØS.		The second secon	AR			Company:			Company:	
	Date & Time:	130	0	Date & Time:	7/23	10	1:07	Date & Time			Date & Time	:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analytical Report

Maul, Foster & Alongi, Inc.

Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: 22588.000Reported:Portland WA, 97209Project Manager: Kelly Titkemeier15-Feb-2023 11:59

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
North Pond-0123	23A0367-01	Water	17-Jan-2023 07:40	18-Jan-2023 10:07
South Pond-0123	23A0367-02	Water	17-Jan-2023 08:00	18-Jan-2023 10:07

Maul, Foster & Alongi, Inc. Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: 22588.000Reported:Portland WA, 97209Project Manager: Kelly Titkemeier15-Feb-2023 11:59

Work Order Case Narrative

Pentachlorophenol - EPA Method SW8041A

The sample(s) were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

Cooler Receipt Form

ARI Client:MQul	Fostele and Alongi	Project Name: Mc Fc	pland		
COC No/e):	MO			. 20	_
COC No(s):Assigned ARI Job No: 23A	NA	Delivered by: Fed-Ex UPS Cou		Other:	
	206 /	Tracking No: 0201 1710	75 85		NA
Preliminary Examination Phase:				- 23	
Were intact, properly signed and o	dated custody seals attached to	the outside of the cooler?	YES	S	NO
Were custody papers included wit	h the cooler?		YES	S	NO
Were custody papers properly fille			YES	5	NO
Temperature of Cooler(s) (°C) (red	commended 2.0-6.0 °C for chem	nistry)			
Time 10:02		0.6			
If cooler temperature is out of com	A CONTRACTOR OF THE CONTRACTOR		Temp Gun ID#:	50097	-08
Cooler Accepted by:	I B	_Date:Tim	e:_ 10:07		
	Complete custody forms a	nd attach all shipping documents			
Log-In Phase:					
Was a temperature blank include	ed in the cooler?	\		YES	(NO
What kind of packing material	was used? Bubble Wr	ap Wet Ice Gel Packs Baggies Foar	n Block Paper Other		
Was sufficient ice used (if approp	priate)?		NA	YES	NO
How were bottles sealed in plast	ic bags?		Individually	Grouped	Not
· · · · · · · · · · · · · · · · · · ·	* S*2			YES	NÓ
Were all bottle labels complete a	nd legible?			(YES)	NO
		ber of containers received?	5-3/.	YES	NO
ALERO ALERO ARREST A RESERVI				YES	NO
	(2)			YES	NO
		eservation sheet, excluding VOCs).	(NA)	YES	NO
Were all VOC vials free of air bu			(NA)	YES	NO
				YES	NO
Were the sample(s) solit			(NA)		-
by ARI?	A YES Date/Time:	Equipment:		Split by:	
Samples Logged by: O	** Notify Project Manager	7 Time: 1532 L	abels checked by: _	TCS	
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample	ID on COC	
Additional Notes, Discrepancie	Amber bottle	FOR Sample	Northfo	ind -01	23
received br					
By: PIB Da	1/18/23				

0016F 01/17/2018 Cooler Receipt Form

Revision 014A

Analytical Report

Maul, Foster & Alongi, Inc. Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: 22588.000Reported:Portland WA, 97209Project Manager: Kelly Titkemeier15-Feb-2023 11:59

North Pond-0123 23A0367-01 (Water)

Phenols

 Method: EPA 8041A
 Sampled: 01/17/2023 07:40

 Instrument: ECD8 Analyst: JGR
 Analyzed: 02/09/2023 22:34

Analysis by: Analytical Resources, LLC

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 23A0367-01 A 01

Preparation Batch: BLA0552 Sample Size: 500 mL Prepared: 01/24/2023 Final Volume: 5 mL

Prepared: 01/24/2023 Final Volume: 5 n

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Pentachlorophenol	87-86-5	1	0.014	0.025	0.104	ug/L	
Surrogate: 2,4,6-Tribromophenol				10-181 %	58.5	%	
Surrogate: 2,4,6-Tribromophenol [2C]				10-181 %	54.5	%	

Analytical Report

Maul, Foster & Alongi, Inc. Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: 22588.000Reported:Portland WA, 97209Project Manager: Kelly Titkemeier15-Feb-2023 11:59

South Pond-0123 23A0367-02 (Water)

Phenols

 Method: EPA 8041A
 Sampled: 01/17/2023 08:00

 Instrument: ECD8 Analyst: JGR
 Analyzed: 02/09/2023 22:51

Analysis by: Analytical Resources, LLC

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 23A0367-02 A 01

Preparation Batch: BLA0552 Sample Size: 500 mL Prepared: 01/24/2023 Final Volume: 5 mL

Detection Reporting CAS Number Limit Dilution Limit Result Notes Analyte Pentachlorophenol 87-86-5 0.014 0.025 0.092 ug/L 10-181 % % Surrogate: 2,4,6-Tribromophenol 67.7 Surrogate: 2,4,6-Tribromophenol [2C] 10-181 % 54.4 %

Maul, Foster & Alongi, Inc. Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: 22588.000Reported:Portland WA, 97209Project Manager: Kelly Titkemeier15-Feb-2023 11:59

Analysis by: Analytical Resources, LLC

Phenols - Quality Control

Batch BLA0552 - EPA 8041A

Instrument: ECD8 Analyst: JGR

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BLA0552-BLK1)				Prep	ared: 24-Jan	-2023 Ana	alyzed: 09-F	Feb-2023 21	:41		
Pentachlorophenol	ND	0.014	0.025	ug/L							U
Surrogate: 2,4,6-Tribromophenol	0.108			ug/L	0.250		43.3	10-181			
Surrogate: 2,4,6-Tribromophenol [2C]	0.106			ug/L	0.250		42.5	10-181			
LCS (BLA0552-BS1)				Prep	ared: 24-Jan	-2023 Ana	alyzed: 09-F	Feb-2023 21	:58		
Pentachlorophenol	0.157	0.014	0.025	ug/L	0.250		62.9	36-159			
Surrogate: 2,4,6-Tribromophenol	0.117			ug/L	0.250		46.8	10-181			
Surrogate: 2,4,6-Tribromophenol [2C]	0.115			ug/L	0.250		46.0	10-181			
LCS Dup (BLA0552-BSD1)				Prep	ared: 24-Jan	-2023 Ana	alyzed: 09-F	Feb-2023 22	:16		
Pentachlorophenol	0.172	0.014	0.025	ug/L	0.250		68.7	36-159	8.91	30	
Surrogate: 2,4,6-Tribromophenol	0.116			ug/L	0.250		46.5	10-181			
Surrogate: 2,4,6-Tribromophenol [2C]	0.114			ug/L	0.250		45.6	10-181			

Maul, Foster & Alongi, Inc. Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: 22588.000Reported:Portland WA, 97209Project Manager: Kelly Titkemeier15-Feb-2023 11:59

Certified Analyses included in this Report

Analyte Certifications

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	03/28/2023
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program, PJLA Testing	66169	02/28/2023
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2023
WADOE	WA Dept of Ecology	C558	06/30/2023
WA-DW	Ecology - Drinking Water	C558	06/30/2023

Analytical Report

Maul, Foster & Alongi, Inc. Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: 22588.000Reported:Portland WA, 97209Project Manager: Kelly Titkemeier15-Feb-2023 11:59

Notes and Definitions

P1 The reported value is greater than 40% difference between the concentrations determined on two GC columns where applicable.

U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Tuesday, January 31, 2023 Kelly Titkemeier Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

RE: A3A0551 - McFarland Cascade-Eugene - 22588.000

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3A0551, which was received by the laboratory on 1/17/2023 at 11:45:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 4.2 degC Cooler #2

4.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 14

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Kelly Titkemeier
 A3A0551 - 01 31 23 1549

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
92-9-0123	A3A0551-01	Water	01/17/23 11:25	01/17/23 11:45
93-1A-0123	A3A0551-02	Water	01/17/23 09:50	01/17/23 11:45
R-4-0123	A3A0551-03	Water	01/17/23 10:20	01/17/23 11:45
NORTH POND-0123	A3A0551-04	Water	01/17/23 07:40	01/17/23 11:45
SOUTH POND-0123	A3A0551-05	Water	01/17/23 08:00	01/17/23 11:45
DUP-0123	A3A0551-06	Water	01/17/23 07:00	01/17/23 11:45

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number:
 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager:
 Kelly Titkemeier
 A3A0551 - 01 31 23 1549

ANALYTICAL SAMPLE RESULTS

	Selected	l Semivolatile	Organic C	ompounds by E	PA 8270	E		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
92-9-0123 (A3A0551-01)				Matrix: Wate	r	Batch: 2	23A0774	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.381	0.762	ug/L	4	01/23/23 16:02	EPA 8270E	A-01
2,4-Dichlorophenol	ND	0.190	0.381	ug/L	4	01/23/23 16:02	EPA 8270E	
Pentachlorophenol (PCP)	10.7	0.381	0.762	ug/L	4	01/23/23 16:02	EPA 8270E	
2,3,5,6-Tetrachlorophenol	0.231	0.190	0.381	ug/L	4	01/23/23 16:02	EPA 8270E	J
2,4,5-Trichlorophenol	ND	0.190	0.381	ug/L	4	01/23/23 16:02	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.190	0.381	ug/L	4	01/23/23 16:02	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recov	ery: 115 %	Limits: 44-120 %	4	01/23/23 16:02	EPA 8270E	
2-Fluorobiphenyl (Surr)			83 %	44-120 %	4	01/23/23 16:02	EPA 8270E	
Phenol-d6 (Surr)			26 %	10-133 %	4	01/23/23 16:02	EPA 8270E	
p-Terphenyl-d14 (Surr)			69 %	50-134 %	4	01/23/23 16:02	EPA 8270E	
2-Fluorophenol (Surr)			48 %	19-120 %	4	01/23/23 16:02	EPA 8270E	
2,4,6-Tribromophenol (Surr)			107 %	43-140 %	4	01/23/23 16:02	EPA 8270E	
93-1A-0123 (A3A0551-02)				Matrix: Wate	r	Batch: 2	23A0774	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.100	0.200	ug/L	1	01/23/23 18:18	EPA 8270E	A-01
2,4-Dichlorophenol	ND	0.0500	0.100	ug/L	1	01/23/23 18:18	EPA 8270E	
Pentachlorophenol (PCP)	0.107	0.100	0.200	ug/L	1	01/23/23 18:18	EPA 8270E	J
2,3,5,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1	01/23/23 18:18	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.0500	0.100	ug/L	1	01/23/23 18:18	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.0500	0.100	ug/L	1	01/23/23 18:18	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recove	ery: 102 %	Limits: 44-120 %	1	01/23/23 18:18	EPA 8270E	
2-Fluorobiphenyl (Surr)			72 %	44-120 %	1	01/23/23 18:18	EPA 8270E	
Phenol-d6 (Surr)			25 %	10-133 %	1	01/23/23 18:18	EPA 8270E	
p-Terphenyl-d14 (Surr)			59 %	50-134 %	1	01/23/23 18:18	EPA 8270E	
2-Fluorophenol (Surr)			51 %	19-120 %	1	01/23/23 18:18	EPA 8270E	
2,4,6-Tribromophenol (Surr)			110 %	43-140 %	1	01/23/23 18:18	EPA 8270E	
R-4-0123 (A3A0551-03)				Matrix: Wate	r	Batch: 2	23A0774	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.0990	0.198	ug/L	1	01/23/23 18:52	EPA 8270E	A-01
2,4-Dichlorophenol	ND	0.0495	0.0990	ug/L	1	01/23/23 18:52	EPA 8270E	
Pentachlorophenol (PCP)	1.35	0.0990	0.198	ug/L	1	01/23/23 18:52	EPA 8270E	
2,3,5,6-Tetrachlorophenol	0.0513	0.0495	0.0990	ug/L	1	01/23/23 18:52	EPA 8270E	J
2,4,5-Trichlorophenol	ND	0.0495	0.0990	ug/L	1	01/23/23 18:52	EPA 8270E	
* * * 1				Đ				
2,4,6-Trichlorophenol	ND	0.0495	0.0990	ug/L	1	01/23/23 18:52	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 14

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Kelly Titkemeier
 A3A0551 - 01 31 23 1549

ANALYTICAL SAMPLE RESULTS

	Selected	3emiyolatile	Organic C	ompounds by E	-FA 02/U	<u> </u>		
A 1	Sample	Detection	Reporting	TT. 14	Dilect	Date	Made 1D C	NT /
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
R-4-0123 (A3A0551-03)				Matrix: Wate	er	Batch: 2	23A0774	
Surrogate: 2-Fluorobiphenyl (Surr)		Recor	very: 74 %	Limits: 44-120 %	1	01/23/23 18:52	EPA 8270E	
Phenol-d6 (Surr)			25 %	10-133 %	1	01/23/23 18:52	EPA 8270E	
p-Terphenyl-d14 (Surr)			72 %	50-134 %	1	01/23/23 18:52	EPA 8270E	
2-Fluorophenol (Surr)			52 %	19-120 %		01/23/23 18:52	EPA 8270E	
2,4,6-Tribromophenol (Surr)			105 %	43-140 %	I	01/23/23 18:52	EPA 8270E	
NORTH POND-0123 (A3A0551-04RE1)				Matrix: Wate	er	Batch:	23A0774	R-04
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.377	0.755	ug/L	4	01/24/23 11:05	EPA 8270E	A-01
2,4-Dichlorophenol	ND	0.189	0.377	ug/L	4	01/24/23 11:05	EPA 8270E	
Pentachlorophenol (PCP)	0.402	0.377	0.755	ug/L	4	01/24/23 11:05	EPA 8270E	J
2,3,5,6-Tetrachlorophenol	ND	0.189	0.377	ug/L	4	01/24/23 11:05	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.189	0.377	ug/L	4	01/24/23 11:05	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.189	0.377	ug/L	4	01/24/23 11:05	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recove	ery: 115 %	Limits: 44-120 %	4	01/24/23 11:05	EPA 8270E	Q-41
2-Fluorobiphenyl (Surr)			92 %	44-120 %	4	01/24/23 11:05	EPA 8270E	
Phenol-d6 (Surr)			25 %	10-133 %	4	01/24/23 11:05	EPA 8270E	
p-Terphenyl-d14 (Surr)			79 %	50-134 %	4	01/24/23 11:05	EPA 8270E	
2-Fluorophenol (Surr)			47 %	19-120 %	4	01/24/23 11:05	EPA 8270E	
2,4,6-Tribromophenol (Surr)			111 %	43-140 %	4	01/24/23 11:05	EPA 8270E	
SOUTH POND-0123 (A3A0551-05RE1)				Matrix: Wate	er	Batch: 2	23A0774	R-04
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.377	0.755	ug/L	4	01/24/23 11:39	EPA 8270E	A-01
2,4-Dichlorophenol	ND	0.189	0.377	ug/L	4	01/24/23 11:39	EPA 8270E	
Pentachlorophenol (PCP)	0.398	0.377	0.755	ug/L	4	01/24/23 11:39	EPA 8270E	J
2,3,5,6-Tetrachlorophenol	ND	0.189	0.377	ug/L	4	01/24/23 11:39	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.189	0.377	ug/L	4	01/24/23 11:39	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.189	0.377	ug/L	4	01/24/23 11:39	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)			ry: 122 %	Limits: 44-120 %	4	01/24/23 11:39	EPA 8270E	O-41, S-06
2-Fluorobiphenyl (Surr)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	91%	44-120 %		01/24/23 11:39	EPA 8270E	2 . ,
Phenol-d6 (Surr)			28 %	10-133 %		01/24/23 11:39	EPA 8270E	
p-Terphenyl-d14 (Surr)			81 %	50-134 %		01/24/23 11:39	EPA 8270E	
2-Fluorophenol (Surr)			49 %	19-120 %		01/24/23 11:39	EPA 8270E	
2,4,6-Tribromophenol (Surr)			109 %	43-140 %	4	01/24/23 11:39	EPA 8270E	
DUP-0123 (A3A0551-06RE1)				Matrix: Wate		Batch: 2	20.4.077.4	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 4 of 14

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number:
 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager:
 Kelly Titkemeier
 A3A0551 - 01 31 23 1549

ANALYTICAL SAMPLE RESULTS

	Selected	Semivolatile	Organic C	ompounds by E	EPA 8270	<u>E</u>		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DUP-0123 (A3A0551-06RE1)				Matrix: Wate)r	Batch:	23A0774	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.103	0.206	ug/L	1	01/24/23 10:31	EPA 8270E	A-01
2,4-Dichlorophenol	ND	0.0515	0.103	ug/L	1	01/24/23 10:31	EPA 8270E	
Pentachlorophenol (PCP)	0.125	0.103	0.206	ug/L	1	01/24/23 10:31	EPA 8270E	J
2,3,5,6-Tetrachlorophenol	ND	0.0515	0.103	ug/L	1	01/24/23 10:31	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.0515	0.103	ug/L	1	01/24/23 10:31	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.0515	0.103	ug/L	1	01/24/23 10:31	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recove	ery: 108 %	Limits: 44-120 %	1	01/24/23 10:31	EPA 8270E	Q-41
2-Fluorobiphenyl (Surr)			73 %	44-120 %	1	01/24/23 10:31	EPA 8270E	
Phenol-d6 (Surr)			30 %	10-133 %	1	01/24/23 10:31	EPA 8270E	
p-Terphenyl-d14 (Surr)			55 %	50-134 %	1	01/24/23 10:31	EPA 8270E	
2-Fluorophenol (Surr)			61 %	19-120 %	1	01/24/23 10:31	EPA 8270E	
2,4,6-Tribromophenol (Surr)			114 %	43-140 %	1	01/24/23 10:31	EPA 8270E	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Kelly Titkemeier
 A3A0551 - 01 31 23 1549

QUALITY CONTROL (QC) SAMPLE RESULTS

		Selecte	d Semivol	atile Orga	ailic Com	pourias D	y EPA 82	LIUE				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23A0774 - EPA 3510C (A	Acid Extra	ection)					Wa	ter				
Blank (23A0774-BLK1)			Prepared	1: 01/23/23	06:51 Ana	lyzed: 01/23	/23 12:04					
EPA 8270E												
2,3,4,6- &	ND	0.100	0.200	ug/L	1							A
2,3,4,5-Tetrachlorophenol(s)												
2,4-Dichlorophenol	ND	0.0500	0.100	ug/L	1							
Pentachlorophenol (PCP)	ND	0.100	0.200	ug/L	1							
2,3,5,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,5-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,6-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 95 %	Limits: 44	1-120 %	Dili	ution: 1x					
2-Fluorobiphenyl (Surr)			69 %	44	1-120 %		"					
Phenol-d6 (Surr)			25 %	10	133 %		"					
p-Terphenyl-d14 (Surr)			83 %	50	-134 %		"					
2-Fluorophenol (Surr)			47 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			101 %	43	3-140 %		"					
LCS (23A0774-BS1)			Prepared	1: 01/23/23	06:51 Ana	lyzed: 01/23	/23 12:38					
EPA 8270E												
2,4-Dichlorophenol	3.93	0.200	0.400	ug/L	4	4.00		98	47-121%			
Pentachlorophenol (PCP)	4.49	0.400	0.800	ug/L	4	4.00		112	35-138%			
2,3,4,6-Tetrachlorophenol	4.22	0.200	0.400	ug/L	4	4.00		105	50-128%			
2,3,5,6-Tetrachlorophenol	4.31	0.200	0.400	ug/L	4	4.00		108	50-121%			
2,4,5-Trichlorophenol	4.26	0.200	0.400	ug/L	4	4.00		106	53-123%			
2,4,6-Trichlorophenol	4.37	0.200	0.400	ug/L	4	4.00		109	50-125%			
Surr: Nitrobenzene-d5 (Surr)		Recov	ery: 109 %	Limits: 44	1-120 %	Dila	ution: 4x					
2-Fluorobiphenyl (Surr)			92 %	44	1-120 %		"					
Phenol-d6 (Surr)			28 %	10	-133 %		"					
p-Terphenyl-d14 (Surr)			105 %	50	-134 %		"					
2-Fluorophenol (Surr)			49 %	19	0-120 %		"					
2,4,6-Tribromophenol (Surr)			100 %	43	2-140 %		"					
LCS Dup (23A0774-BSD1)			Prepared	1: 01/23/23	06:51 Ana	lyzed: 01/23	/23 13:12					Q-19
EPA 8270E												
2,4-Dichlorophenol	3.94	0.200	0.400	ug/L	4	4.00		98	47-121%	0.06	30%	
	4.65	0.400	0.800	ug/L	4	4.00		116	35-138%	3	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 6 of 14

2,4,6-Tribromophenol (Surr)

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number:22588.000Report ID:Portland, OR 97232Project Manager:Kelly TitkemeierA3A0551 - 01 31 23 1549

QUALITY CONTROL (QC) SAMPLE RESULTS

Selected Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike % REC **RPD** Source Dilution Analyte Result Limit Units Amount Result % REC Limits RPD Limit Limit Notes Batch 23A0774 - EPA 3510C (Acid Extraction) Water LCS Dup (23A0774-BSD1) Prepared: 01/23/23 06:51 Analyzed: 01/23/23 13:12 Q-19 2,3,4,6-Tetrachlorophenol 4.19 0.200 0.400 ug/L 4.00 105 50-128% 30% 0.6 4.30 0.200 0.400 4.00 2,3,5,6-Tetrachlorophenol ug/L 4 107 50-121% 0.3 30% 2,4,5-Trichlorophenol 4.27 4.00 0.200 0.400ug/L 4 107 53-123% 0.3 30% 2,4,6-Trichlorophenol 4.20 0.200 0.400 ug/L 4 4.00 105 50-125% 4 30% Surr: Nitrobenzene-d5 (Surr) 112 % Limits: 44-120 % Dilution: Recovery: 2-Fluorobiphenyl (Surr) 87% 44-120 % Phenol-d6 (Surr) 27% 10-133 % p-Terphenyl-d14 (Surr) 50-134 % 106 % 2-Fluorophenol (Surr) 47 % 19-120 %

43-140 %

97%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 7 of 14

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Kelly Titkemeier
 A3A0551 - 01 31 23 1549

SAMPLE PREPARATION INFORMATION

		Selected Semi	volatile Organic Com	pounds by EPA 827	'0E		
Prep: EPA 3510C (A	cid Extraction)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23A0774							
A3A0551-01	Water	EPA 8270E	01/17/23 11:25	01/23/23 06:51	1050 mL/1 mL	1000 mL/1 mL	0.95
A3A0551-02	Water	EPA 8270E	01/17/23 09:50	01/23/23 06:51	1000 mL/1 mL	1000 mL/1 mL	1.00
A3A0551-03	Water	EPA 8270E	01/17/23 10:20	01/23/23 06:51	1010 mL/1 mL	1000 mL/1 mL	0.99
A3A0551-04RE1	Water	EPA 8270E	01/17/23 07:40	01/23/23 06:51	1060 mL/1 mL	1000 mL/1 mL	0.94
A3A0551-05RE1	Water	EPA 8270E	01/17/23 08:00	01/23/23 06:51	1060 mL/1 mL	1000 mL/1 mL	0.94
A3A0551-06RE1	Water	EPA 8270E	01/17/23 07:00	01/23/23 06:51	970mL/1mL	1000 mL/1 mL	1.03

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number:
 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager:
 Kelly Titkemeier
 A3A0551 - 01 31 23 1549

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- A-01 Due to coelution of isomers, 2,3,4,6- and 2,3,4,5-Tetrachlorophenol (TCP) are reported as a sum and are Estimated Values. Results are calculated using the response factor of 2,3,4,6-TCP. Batch results accepted based on spike recovery of 2,3,4,6-TCP.
- J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
- R-04 Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.
- **S-06** Surrogate recovery is outside of established control limits.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 9 of 14

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number:22588.000Report ID:Portland, OR 97232Project Manager:Kelly TitkemeierA3A0551 - 01 31 23 1549

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"***" Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 10 of 14

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number:
 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager:
 Kelly Titkemeier
 A3A0551 - 01 31 23 1549

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Kelly Titkemeier
 A3A0551 - 01 31 23 1549

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation
Water	EPA 8270E		2,3,4,6- & 2,3,4,5-Tetrachloro	ophenol(s)	
		All reported analytes are included in A	pex Laboratories' current ORELAP sc	ope.	

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Philip Nevenberg

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 12 of 14

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Kelly Titkemeier
 A3A0551 - 01 31 23 1549

COTENT 185 Equivaries Place Type 195	APEX LABS					5	CHAIN OF CUSTODY	5	3	ב כ	Ž			-	4	3Ac	199		3	1 01 1	-1
Figure F	12232 S.W. Garden Place, Tig	ard, OR 9.	7223 Pł	7: 503-71	8-2323	Fax: 5	03-718	3-0333						La B	:			1			
ANALYSIS RE	Company: PBS Engineering + Env	rironmental		oject Mgr. (Cary Midw	B) poor	S) Kelly T	itkemeier	(MFA)Pro	ject Na	me: Mcf	-arland C	ascade	Eugene		Projec	x# 2258	88.000			
1/7/2 1/25 W	Address: 3500 Chad Drive, Suite 1	100 , Euger	ne OR 97.	408			à	Jone: (5	41) 686	-8684		ax		Email	cary.mid	умоод@р	bsusa.co	om; ktitke	emeier@	maulfost	er.com
1/7/2 1/25 1/25	Sampled by: Cary Midwood											AN	ALYSIS	REQUE	ST						
1/7/3 1/2	SAMPLEID	# di 8A.J	BTAQ .			PHENOLS		1.4							``.						
	92-9-01 3 3	4	1/1/13/1		~	×											-	ļ			
	93-14-0123		17/230	35		×						_			-			<u> </u>		-	
	R-4-0123		1 2011	Ogo		×														 	I
Ceircle) 1 DAY 2 DAY 3 DAY 1 DAY 5 DAY 0 Other. SAMPLES ARE HELD FOR 30 DAYS Time: Time: Printed Kalmer Printed Ka	NORTH POND-0123		0 87/11	740 1	<u> </u>	×						-			-			-	<u> </u>	╁┈	[
Normal Turn Around Time (TAT) 6-10 Bysiness Days 1 DAY 2 DAY 3 DAY 4 DAY 5 DAY 3 DAY SAMPLES ARE HELD FOR 30 DAYS RECEIVED BY: SAMPLES ARE HELD FOR 30 DAYS RECEIVED BY: Time: Time: Company. Company.	SOUTH POND-(1) 2}		17/20	90%(×														 	
Sted (circle) 1 DAY 2 DAY 3 DAY SAMPLES ARE HELD FOR 30 DAYS RECEIVED BY: Company Time: Company	DUP- 0123	1/4	7/230	28		×	\vdash													\vdash	
Sted (circle) 4 DAY 2 DAY 3 DAY SAMPLES ARE HELD FOR 30 DAYS RECEIVED BY: RECEIVED			+-															+			
Sted (circle) 1 DAY 2 DAY 3 DAY 1 DAY 5 DAY 0 Other. SAMPLES ARE HELD FOR 30 DAYS RECEIVED BY: SIGNATURE OF TIME 17/23 STATES 17/23							+			+-		-			+	-		-		 	
Sted (circle) 1 DAY 2 DAY 3 DAY sted (circle) 4 DAY 5 DAY 3 DAY SAMPLES ARE HELD FOR 30 DAYS RECEIVED BY: Date:				+						-		-			-					+	I
Sted (circle) 4 DAY 5 DAY 3 DAY SAMPLES ARE HELD FOR 30 DAYS RECEIVED BY: SAMPLES ARE HELD FOR 30 DAYS RECEIVED BY: Time: Frombediene: Frombediene: Time: Frombediene: Company: Company	Normal Tu	rn Around	Time (TA	T) = 6-10 I	Brisines	s Days			SPECI	AL INST	RUCTIC	NS:							1		
SAMPLES ARE HELD FOR 30 DAYS SAMPLES ARE HELD FOR 30 DAYS RECEIVED BY: Supering A Company		1 DAY		DAY	3 DA	>			DIRE	CT BILL:	McFarlan	d Cascade	Pole and	Lumber (company	(MCPLC)	Attention	1: Reonsh	ia Sullivai	_	
SAMPLES ARE HELD FOR 30 DAYS RELINQUISHED BY: Date: Supporting Time: Time: Principle Mile Time: Time	TAT Requested (circle)	4 DAY		DAY	Othe	Ë.						7						Ī	į	5	
Date: Superfice Date: 1/7/23 Suprange: Date:	S	AMPLES A	R HELD	FOR 30 C	SYAC						X	\ .				7	3		1	3	24 1
me. And Marie Time. Time. W. W. Wall White Mine. Time. A. Marie Wall of Marie	4	() [] [] () () () () () ()	a is	ECEIVED B	E Ali	Date:	111.	3	RELING		ä Nau			e 47	Si Si	CEINED			+ 1		# 1
	# 2 2	1 Tme:	Œ 0	rinter Kame	B. B.	Time	4. 110	1/2	Compan			SIGN		, T	E W 3	nted Nam mpany:	1			ime:	r
									1	1	1				V		Ì	7	All Control	4.1]

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 13 of 14

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: McFarland Cascade-Eugene

Project Number: 22588.000

Project Manager: Kelly Titkemeier

Report ID: A3A0551 - 01 31 23 1549

	APEX LABS COOLE	R RECEIPT FORM
Client: PBS	Engineering & Environm	NPMAL Element WO#: A3 A0551
	MCFAMAND CASCAGE, EUD	
Delivery Info:		act consider
	117123@ BH5 By: 1	2140
Delivered by: Apex>	Client ESS * FedEx UPS Rad	dioMorganSDSEvergreenOther
Cooler Inspection	Date/time inspected: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	@ 1345 By: Ryp
Chain of Custody inc	luded? Yes Y No	ву. темр
Signed/dated by clien	• 1	
		#3 Cooler #4 Cooler #5 Cooler #6 Cooler
Temperature (°C)	4.2 4.4	Cooler#5 Cooler#6 Cooler
Custody seals? (Y/N)	N N	
Received on ice? (Y/N	D _ 1 _ A	
Temp. blanks? (Y/N)	N 7	
ce type: (Gel/Real/Ot	her) (PD) Real	
Condition (In/Out):	30 lo	
Green dots applied to o Out of temperature san Sample Inspection:	Possible reason why: out of temperature samples? Yes/No uples form initiated? Yes/No Date/time inspected:	1435 By: 535
Green dots applied to concept of the same of temperature same same of the same	out of temperature samples? Yes/No	1435 By: 535
Green dots applied to common to temperature sand sample Inspection: All samples intact? Ye	out of temperature samples? Yes/Nonples form initiated? Yes/Nonples form initiated? Yes/Nonples form initiated? Yes/Nonples form initiated? Yes/Nonples Yes/Nonple	1435 By: 535
Green dots applied to common of temperature san temperature sa	out of temperature samples? Yes/No pples form initiated? Yes/No Date/time inspected: 4-17-23 @ es× No Comments:	1435 By: D35
OC/container discrepa	put of temperature samples? Yes/No pples form initiated? Yes/No Date/time inspected:	1435 By: D35
Green dots applied to country of temperature san sample Inspection: All samples intact? Yestottle labels/COCs agree OC/container discrepance ontainers/volumes reconstructions.	out of temperature samples? Yes/No pples form initiated? Yes/No Date/time inspected: Yes/No Date/time inspected: Yes/No Comments: Yes No Comments: Yes No No Comments: Yes No Served appropriate for analysis? Yes No Served appropriate for analysis? Yes	
Green dots applied to control of temperature san temperature s	put of temperature samples? Yes/No pples form initiated? Yes/No Date/time inspected:	
Green dots applied to control of temperature san Emple Inspection: All samples intact? Yester the sample Inspection: Could be samples intact? Yester the sam	out of temperature samples? Yes/No ples form initiated? Yes/No Date/time inspected:	
Green dots applied to count of temperature san Eample Inspection: All samples intact? Yes could be counted as a count of temperature san OC/container discrepa ontainers/volumes recount of VOA vials have visit of the counter samples: pH check counter samples: pH check counter the counter samples: pH check counter the counter samples: pH check counter samp	out of temperature samples? Yes/No pples form initiated? Yes/No Date/time inspected: Yes/No Date/time inspected: Yes/No Comments: Yes No Comments: Yes No Comments: Yes No Comments: Yes No No Phappropriate for analysis? Yes ble headspace? Yes No	
Green dots applied to control of temperature san temperature samples intact? Yes temperature samples intact? Yes temperature samples intact? Yes temperature samples intact? Yes temperature samples inter samples int	put of temperature samples? Yes/No pples form initiated? Yes/No Date/time inspected:	
Green dots applied to control of temperature san temperature samples intact? Yes temperature samples intact? Yes temperature samples intact? Yes temperature samples intact? Yes temperature samples inter samples int	put of temperature samples? Yes/No pples form initiated? Yes/No Date/time inspected:	
Green dots applied to co Out of temperature san Sample Inspection: All samples intact? Ye Bottle labels/COCs agre COC/container discrepa Containers/volumes received VOA vials have visi comments	put of temperature samples? Yes/No pples form initiated? Yes/No Date/time inspected:	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg Philip Nerenberg, Lab Director

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. M9081.03.016 | FEBRUARY 27, 2023 | MCFARLAND CASCADE HOLDINGS, INC.

Maul Foster & Alongi, Inc. (MFA), conducted an independent Stage 2A review of the quality of analytical results for groundwater, surface water, and associated quality control samples collected on January 17, 2023, at the property located at 90049 Highway 99 North in Eugene, Oregon.

Analytical Resources, LLC (ARL), and Apex Laboratories, LLC (Apex), performed the analyses. ARL report number 23A0367 and Apex report number A3A0551 were reviewed. Samples North Pond-0123 and South Pond-0123 were sent to both laboratories as a split sample to meet project reporting limit needs for pentachlorophenol. The analyses performed and the samples analyzed are listed below.

Analysis	Reference
Pentachlorophenol	EPA 8041A
Phenols	EPA 8270E
Note EPA = U.S. Environmental Protection Agency.	

Samples	Analyzed
Report 2	23A0367
North Po	ond-0123
South Po	ond-0123
Report A	\3A0551
92-9-0123	NORTH POND-0123
93-1A-0123	SOUTH POND-0123
R-4-0123	DUP-0123

DATA QUALIFICATION

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2020) and appropriate laboratory-and method-specific guidelines (Apex 2022, ARL 2021, EPA 1986).

Based on the results of the data quality review procedures described below, and with the appropriate final data qualifiers assigned, the data are considered acceptable for their intended use. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, as well as data qualifiers assigned by the reviewer during validation.

Final data qualifiers:

- J = result is estimated.
- U = result is non-detect at the laboratory detection limit (LDL).
- UJ = result is non-detect with an estimated LDL.

Samples North Pond-0123 and South Pound-0123 were analyzed for pentachlorophenol by both laboratories; Apex analyzed via EPA Method 8270E in report A3A0551 and ARL analyzed via EPA Method 8041A in report 23A0367. The result of record is based on the lower-limit EPA Method 8041A analysis and is shown in the table below. The remaining result has been flagged by the reviewer as not reportable.

Report	Sample	Component	Laboratory Result (ug/L)	Result of Record (ug/L)
23A0367	North Pond-	Dontachlorophonol	0.104	0.104
A3A0551	0123	Pentachlorophenol	0.402 J (NR)	
23A0367	South Pond-	Donto obloro ob op ol	0.092	0.092
A3A0551	0123	Pentachlorophenol	0.398 J (NR)	

Notes

-- = not applicable.

J = result is estimated.

NR = not reportable.

ug/L = micrograms per liter.

In report A3A0551, Apex reported the EPA Method 8270E 2,3,4,5-tetrachlorophenol and 2,3,4,6-tetrachlorophenol results as single coeluted results. Apex stated that the coeluted results had been calculated using the response factor of 2,3,4,6-tetrachlorophenol and that results were estimated values. Apex also noted that the coeluted results are not included on the Apex Oregon Environmental Laboratory Accreditation Program scope of certification. The reviewer qualified the results as shown in the following table.

Report	Sample	Component	Original Result (ug/L)	Qualified Result (ug/L)
	92-9-0123		0.381 U	0.381 UJ
	93-1A-0123		0.100 U	0.100 UJ
A2A0551	R-4-0123	2,3,4,6- & 2,3,4,5-	0.0990 U	0.0990 UJ
A3A0551	NORTH POND-0123	Tetrachlorophenol(s)	0.377 U	0.377 UJ
	SOUTH POND-0123		0.377 U	0.377 UJ
	DUP-0123		0.103 U	0.103 UJ

Notes

U = result is non-detect at the laboratory detection limit.

ug/L = micrograms per liter.

UJ = result is non-detect with an estimated laboratory detection limit.

SAMPLE CONDITIONS

Sample Custody

Sample custody was appropriately documented on the chain-of-custody (COC) form accompanying the reports.

The reviewer confirmed that the gap in custody associated with the COC form in report 23A0367 was due to third-party shipment. No action was required by the reviewer.

According to the cooler receipt form accompanying report 23A0367, ARL noted that one of the two 500-milliliter amber bottles was received broken for sample North Pond-0123. The reviewer confirmed with ARL that the intact amber bottle had sufficient sample volume for analysis.

On the COC form accompanying report A3A0551, the reviewer confirmed with the laboratory that the secondary relinquishment and receipt area was filled out erroneously.

Holding Times

Extractions and analyses were performed within the recommended holding times.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

REPORTING LIMITS

Apex and ARL evaluated results to detection limits. Samples requiring dilutions because of high analyte concentrations and/or matrix interference were reported with raised detection limits and method reporting limits (MRLs) and required no action by the reviewer.

In report A3A0551, results between the LDL and the MRL were qualified by Apex with J, as estimated.

In report A3A0551, Apex noted that some LDLs and MRLs for EPA Method 8270E had been raised to account for interference from coeluting organic compounds present in the samples.

BLANKS

Method Blanks

Laboratory method blanks are used to assess whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the laboratory method blanks were associated with all samples prepared in the analytical batch.

 $R:\ \ \ Annual\ Report\ Attachment\ B-Lab\ Reports\ and\ DVM\ 1. DVM_McFarland\ Cascade\ Pole_Jan2023.docx$

All laboratory method blank results were non-detect.

Equipment Rinsate Blanks

Equipment rinsate blanks are used to evaluate field equipment decontamination. These blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

Trip Blanks

Trip blanks are used to evaluate whether volatile organic compound contamination was introduced during sample storage or during shipment between the sampling location and the laboratory.

Trip blank samples were not required for this sampling event because samples were not analyzed for volatile organic compounds.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample (LCS) and a laboratory control sample duplicate (LCSD) are spiked with target analytes to provide information about laboratory precision and accuracy. The LCS and the LCSD were prepared and analyzed at the required frequency.

All LCS and LCSD results were within acceptance limits for percent recovery and relative percent difference (RPD).

LABORATORY DUPLICATE RESULTS

Laboratory duplicate results are used to evaluate laboratory precision. Laboratory duplicate results were not reported; laboratory precision was evaluated using LCS and LCSD results.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RESULTS

Matrix spike and matrix spike duplicate results are used to evaluate laboratory precision and accuracy as well as the effect of the sample matrix on sample preparation and analysis. Matrix spike and matrix spike duplicate samples were not reported; laboratory precision and accuracy were evaluated using LCS and LCSD results.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance for individual samples.

According to report A3A0551, the EPA Method 8270E nitrobenzene-d5 surrogate result for sample SOUTH POND-0123 was above the upper percent recovery acceptance limit of 120

percent, at 122 percent. The remaining five surrogate results were within percent recovery acceptance limits, and the exceedance was considered minor; thus, qualification was not necessary.

All remaining surrogate results were within percent recovery acceptance limits.

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. Apex and ARL did not report CCV results, but Apex appropriately flagged batch quality control results associated with CCV exceedances in report A3A0551.

Batch quality control results flagged by the laboratory based on CCV exceedances, but meeting percent recovery and/or RPD acceptance criteria, required no action from the reviewer.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. The following field duplicate and parent sample pair was submitted for analysis:

Report	Parent Sample	Field Duplicate Sample
A3A0551	93-1A-0123	DUP-0123

MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL, or 50 percent RPD for results that are greater than five times the MRL. RPD was not evaluated when both parent sample and associated field duplicate results were non-detect. Where either the parent or the field duplicate result was detected and the other associated result was non-detect, RPD was evaluated using the LDL of the non-detect result.

All field duplicate results met the RPD acceptance criteria.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

No issues were found.

Apex. 2022. Quality Systems Manual. Rev. 10. Apex Laboratories, LLC: Tigard, OR. June 20.

ARL. 2021. Quality Assurance Plan. Rev. 19.0. Analytical Resources, LLC: Tukwila, WA. December 29.

EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase II (2019), VII phase I (2019), and VII phase II (2020).

EPA. 2020. National Functional Guidelines for Organic Superfund Methods Data Review. EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.

04 May 2023

Kelly Titkemeier Maul, Foster & Alongi, Inc. 2001 NW 19th Avenue, Suite 200 Portland, WA 97209

RE: McFarland Cascade Pole and Lumber Company - Eugene (22588.000)

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

23D0109

Associated SDG ID(s)
N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, LLC

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kelly Bottem, Client Services Manager

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: 2300109	Turn-around		Standa-U		Page:	1	of /				Analytic	cal Resources, LLC cal Chemists and Consultants
ARI Client Company:		Phone: 50	3.50%	5215	Date:		Ice Prese	nt?			4611 So	outh 134th Place, Suite 100, WA 98168
Client Contact: [[]] T.]	Compin				No. of Coolers:)	Coole Temps	114)			5-6200 206-695-6201 (fax)
Mc Far la	n d	10.115						Analysis F	lequested	T		Notes/Comments
Client Project #: 22568.000	Samplers:	Junessa	Saudova	1	P(P							
Sample ID	Date	Time	Matrix	No. Containers	177							
R-3-0423	4/13	140	W	4	×							
	l'											
				36.5								
					1	1						
Comments/Special Instructions	Relinquished by: (Signature)	w	_	Received by: (Signature)	1/1/	1		Relinquished (Signature)	by:		Received by (Signature)	
	Printed Name:	midn	000	Printed Name	Tacol	sheely	20	Printed Nam	э:		Printed Nam	e:
aud	Company:			Company:	1-1-0			Company:	en e	THE RESERVE OF THE PARTY OF THE	Company:	
	Date & Time: 4/5/13	143	0	Date & Time:	6/27	19	21	Date & Time			Date & Time	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analytical Report

Maul, Foster & Alongi, Inc.

Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: 22588.000Reported:Portland WA, 97209Project Manager: Kelly Titkemeier04-May-2023 12:07

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
R-3-0423	23D0109-01	Water	05-Apr-2023 11:40	06-Apr-2023 10:23

Maul, Foster & Alongi, Inc. Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: 22588.000Reported:Portland WA, 97209Project Manager: Kelly Titkemeier04-May-2023 12:07

Work Order Case Narrative

Pentachlorophenol - EPA Method SW8041A

The sample(s) were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

	Analytical Resources, LLC Analytical Chemists and Consultants
	M.F.A.
ADLOU I	OCC CALLORNON

Cooler Receipt Form

Mitata		.1 (- / /		
ARI Client: POS Eny neerly	Project Na	ne: Mc	aland		
COC No(s):	Delivered b		ourier Hand Delivered	-	_
Assigned ARI Job No: 23 DOLO 4	Tracking N	o: 7717 L	1448 817	79	NA
Preliminary Examination Phase:					
Were intact, properly signed and dated custody seals atta	ached to the outside of the	e cooler?	YES	3	NO
Were custody papers included with the cooler?			YES	}	NO
Were custody papers properly filled out (ink, signed, etc.)		******	YES		NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C	for chemistry)	TW.			
Time LOD3		<u>, 4</u>			
If cooler temperature is out of compliance fill out form 000	070F	1	Temp Gun ID#:	00970	28
Cooler Accepted by:	Date: <u></u>	16/23 TI	me: 1473		
Complete custody	forms and attach all sh	ipping documen	ts		
Log-In Phase:					
Was a temperature blank included in the cooler?				YES	(NO)
What kind of packing material was used? B			am Block Paper Other		1,0
Was sufficient ice used (if appropriate)?		= 3	NA	YES	NO
How were bottles sealed in plastic bags?			Individually	Grouped	Not
Did all bottles arrive in good condition (unbroken)?				YES	NO
Were all bottle labels complete and legible?			*	YÉS	NO
Did the number of containers listed on COC match with	the number of containers	received?		YES	NO
Did all bottle labels and tags agree with custody papers	3?			YES	NO
Were all bottles used correct for the requested analyses	s?			YES	NO
Do any of the analyses (bottles) require preservation? (attach preservation sheet	, excluding VOCs) (NA)	YES	NO
Were all VOC vials free of air bubbles?			NA	YES	NO
Was sufficient amount of sample sent in each bottle?			- 3	YES	NO
Date VOC Trip Blank was made at ARI			NA	-	
Were the sample(s) split by ARI? YES Date/T	ime:	Equipment:		Split by:	
PIA	4/6/23 Time:	1201		MIN	<u> </u>
			_Labels checked by: _ *	120	
Notiny Project	Manager of discrepanci	es or concerns			
Sample ID on Bottle Sample ID on	COC Samo	le ID on Bottle	Sample	ID on COC	
Cample is on some	- Samp	ie ib on bottle	Campie	ID 011 000	
Additional Notes, Discrepancies, & Resolutions:					
By: Data:					

Analytical Report

Extract ID: 23D0109-01 A 01

Maul, Foster & Alongi, Inc. Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: 22588.000Reported:Portland WA, 97209Project Manager: Kelly Titkemeier04-May-2023 12:07

R-3-0423 23D0109-01 (Water)

Phenols

 Method: EPA 8041A
 Sampled: 04/05/2023 11:40

 Instrument: ECD8 Analyst: RJL
 Analyzed: 04/28/2023 15:32

Analysis by: Analytical Resources, LLC

Sample Preparation: Preparation Method: EPA 3510C SepF

Preparation Batch: BLD0217 Sample Size: 500 mL Prepared: 04/12/2023 Final Volume: 5 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Pentachlorophenol	87-86-5	1	0.014	0.025	0.140	ug/L	
Surrogate: 2,4,6-Tribromophenol				10-181 %	37.6	%	
Surrogate: 2,4,6-Tribromophenol [2C]				10-181 %	37.7	%	

Maul, Foster & Alongi, Inc.

Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: 22588.000Reported:Portland WA, 97209Project Manager: Kelly Titkemeier04-May-2023 12:07

Analysis by: Analytical Resources, LLC

Phenols - Quality Control

Batch BLD0217 - EPA 8041A

Instrument: ECD8 Analyst: RJL

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BLD0217-BLK1)				Prepa	ared: 12-Apı	r-2023 Ar	nalyzed: 28-	Apr-2023 14	1:37		
Pentachlorophenol	0.016	0.014	0.025	ug/L							J
Surrogate: 2,4,6-Tribromophenol	0.103			ug/L	0.250		41.2	10-181			
Surrogate: 2,4,6-Tribromophenol [2C]	0.107			ug/L	0.250		42.9	10-181			
LCS (BLD0217-BS1)				Prepa	ared: 12-Apı	r-2023 Ar	nalyzed: 28-	Apr-2023 14	1:56		
Pentachlorophenol	0.102	0.014	0.025	ug/L	0.250		41.0	36-159			
Surrogate: 2,4,6-Tribromophenol	0.0981			ug/L	0.250		39.3	10-181			
Surrogate: 2,4,6-Tribromophenol [2C]	0.104			ug/L	0.250		41.6	10-181			
LCS Dup (BLD0217-BSD1)				Prepa	ared: 12-Apı	r-2023 Ar	nalyzed: 28-	Apr-2023 15	5:14		
Pentachlorophenol	0.095	0.014	0.025	ug/L	0.250		38.2	36-159	7.04	30	
Surrogate: 2,4,6-Tribromophenol	0.0974			ug/L	0.250		39.0	10-181			
Surrogate: 2,4,6-Tribromophenol [2C]	0.103			ug/L	0.250		41.1	10-181			

Maul, Foster & Alongi, Inc.

Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: 22588.000Reported:Portland WA, 97209Project Manager: Kelly Titkemeier04-May-2023 12:07

Certified Analyses included in this Report

Analyte Certifications

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	03/28/2025
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program, PJLA Testing	66169	02/28/2025
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2023
WADOE	WA Dept of Ecology	C558	06/30/2023
WA-DW	Ecology - Drinking Water	C558	06/30/2023

Analytical Report

Maul, Foster & Alongi, Inc. Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: 22588.000Reported:Portland WA, 97209Project Manager: Kelly Titkemeier04-May-2023 12:07

Notes and Definitions

J Estimated concentration value detected below the reporting limit.

P1 The reported value is greater than 40% difference between the concentrations determined on two GC columns where applicable.

U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Wednesday, April 26, 2023 Kelly Titkemeier Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

> Cooler #1 Cooler #3

RE: A3D0912 - McFarland Cascade-Eugene - 22588.000

2.7 degC

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3D0912, which was received by the laboratory on 4/6/2023 at 11:57:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receip	t Information	
(See Cooler Receip	t Form for details)	
3.1 deaC	Cooler #2	1.2 deaC

Cooler #4

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

3.4 degC

Philip Nerenberg, Lab Director

Page 1 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number: 22588.000Report ID:Portland, OR 97232Project Manager: Kelly TitkemeierA3D0912 - 04 26 23 1335

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
90-1D-0423	A3D0912-01	Water	04/05/23 10:00	04/06/23 11:57
90-5-0423	A3D0912-02	Water	04/06/23 08:05	04/06/23 11:57
92-9-0423	A3D0912-03	Water	04/05/23 14:15	04/06/23 11:57
93-4-0423	A3D0912-04	Water	04/05/23 13:20	04/06/23 11:57
93-8-0423	A3D0912-05	Water	04/05/23 11:20	04/06/23 11:57
P-2D-0423	A3D0912-06	Water	04/06/23 09:25	04/06/23 11:57
R-1-0423	A3D0912-07	Water	04/05/23 10:10	04/06/23 11:57
R-2-0423	A3D0912-08	Water	04/05/23 10:20	04/06/23 11:57
R-3-0423	A3D0912-09	Water	04/05/23 11:40	04/06/23 11:57
R-4-0423	A3D0912-10	Water	04/05/23 12:00	04/06/23 11:57
DUP-0423	A3D0912-11	Water	04/05/23 08:00	04/06/23 11:57
FIELD-0423	A3D0912-12	Water	04/05/23 11:45	04/06/23 11:57

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number:
 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager:
 Kelly Titkemeier
 A3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

	Selected	Semivolatile (Organic C	ompounds by E	PA 8270	E		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
90-1D-0423 (A3D0912-01)				Matrix: Wate	er	Batch:	23D0435	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.400	0.800	ug/L	4	04/13/23 12:16	EPA 8270E	A-01
2,4-Dichlorophenol	ND	0.200	0.400	ug/L	4	04/13/23 12:16	EPA 8270E	
Pentachlorophenol (PCP)	2.94	0.400	0.800	ug/L	4	04/13/23 12:16	EPA 8270E	
2,3,5,6-Tetrachlorophenol	0.241	0.200	0.400	ug/L	4	04/13/23 12:16	EPA 8270E	J
2,4,5-Trichlorophenol	ND	0.200	0.400	ug/L	4	04/13/23 12:16	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.200	0.400	ug/L	4	04/13/23 12:16	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recover	ry: 75 %	Limits: 44-120 %	4	04/13/23 12:16	EPA 8270E	Q-41
2-Fluorobiphenyl (Surr)			67 %	44-120 %	4	04/13/23 12:16	EPA 8270E	
Phenol-d6 (Surr)			22 %	10-133 %	4	04/13/23 12:16	EPA 8270E	Q-41
p-Terphenyl-d14 (Surr)			73 %	50-134 %	4	04/13/23 12:16	EPA 8270E	
2-Fluorophenol (Surr)			31 %	19-120 %	4	04/13/23 12:16	EPA 8270E	
2,4,6-Tribromophenol (Surr)			83 %	43-140 %	4	04/13/23 12:16	EPA 8270E	
90-5-0423 (A3D0912-02)		Matrix: Water Batch: 23D0435						
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.385	0.769	ug/L	4	04/14/23 15:24	EPA 8270E	A-01
2,4-Dichlorophenol	ND	0.192	0.385	ug/L	4	04/14/23 15:24	EPA 8270E	
Pentachlorophenol (PCP)	2.06	0.385	0.769	ug/L	4	04/14/23 15:24	EPA 8270E	
2,3,5,6-Tetrachlorophenol	0.414	0.192	0.385	ug/L	4	04/14/23 15:24	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.192	0.385	ug/L	4	04/14/23 15:24	EPA 8270E	
2,4,6-Trichlorophenol	0.195	0.192	0.385	ug/L	4	04/14/23 15:24	EPA 8270E	J
Surrogate: Nitrobenzene-d5 (Surr)		Recover	ry: 87%	Limits: 44-120 %	4	04/14/23 15:24	EPA 8270E	Q-41
2-Fluorobiphenyl (Surr)			74 %	44-120 %	4	04/14/23 15:24	EPA 8270E	
Phenol-d6 (Surr)			24 %	10-133 %	4	04/14/23 15:24	EPA 8270E	Q-41
p-Terphenyl-d14 (Surr)			63 %	50-134 %	4	04/14/23 15:24	EPA 8270E	
2-Fluorophenol (Surr)			36 %	19-120 %	4	04/14/23 15:24	EPA 8270E	
2,4,6-Tribromophenol (Surr)			102 %	43-140 %	4	04/14/23 15:24	EPA 8270E	
92-9-0423 (A3D0912-03)				Matrix: Wate	er	Batch:	23D0435	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.392	0.784	ug/L	4	04/14/23 15:58	EPA 8270E	A-01
2,4-Dichlorophenol	ND	0.196	0.392	ug/L	4	04/14/23 15:58	EPA 8270E	
Pentachlorophenol (PCP)	5.42	0.392	0.784	ug/L	4	04/14/23 15:58	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	0.196	0.392	ug/L	4	04/14/23 15:58	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.196	0.392	ug/L	4	04/14/23 15:58	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.196	0.392	ug/L	4	04/14/23 15:58	EPA 8270E	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Kelly Titkemeier
 A3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

				ompounds by E				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
	Result	Lillit	Limit					INOIE
92-9-0423 (A3D0912-03)				Matrix: Wate		Batch: 2	23D0435	
Surrogate: Nitrobenzene-d5 (Surr)		Recover	ry: 72 %	Limits: 44-120 %		04/14/23 15:58	EPA 8270E	Q-41
2-Fluorobiphenyl (Surr)			61 %	44-120 %		04/14/23 15:58	EPA 8270E	
Phenol-d6 (Surr)			19 %	10-133 %		04/14/23 15:58	EPA 8270E	Q-41
p-Terphenyl-d14 (Surr)			56 %	50-134 %		04/14/23 15:58	EPA 8270E	
2-Fluorophenol (Surr)			27 %	19-120 %		04/14/23 15:58	EPA 8270E	
2,4,6-Tribromophenol (Surr)			79 %	43-140 %	4	04/14/23 15:58	EPA 8270E	
93-4-0423 (A3D0912-04)				Matrix: Wate	r	Batch: 2	23D0435	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.392	0.784	ug/L	4	04/14/23 16:34	EPA 8270E	A-01
2,4-Dichlorophenol	ND	0.196	0.392	ug/L	4	04/14/23 16:34	EPA 8270E	
Pentachlorophenol (PCP)	3.32	0.392	0.784	ug/L	4	04/14/23 16:34	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	0.196	0.392	ug/L	4	04/14/23 16:34	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.196	0.392	ug/L	4	04/14/23 16:34	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.196	0.392	ug/L	4	04/14/23 16:34	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recover	ry: 68 %	Limits: 44-120 %	4	04/14/23 16:34	EPA 8270E	Q-41
2-Fluorobiphenyl (Surr)			60 %	44-120 %	4	04/14/23 16:34	EPA 8270E	
Phenol-d6 (Surr)			18 %	10-133 %	4	04/14/23 16:34	EPA 8270E	Q-41
p-Terphenyl-d14 (Surr)			63 %	50-134 %		04/14/23 16:34	EPA 8270E	
2-Fluorophenol (Surr)			29 %	19-120 %		04/14/23 16:34	EPA 8270E	
2,4,6-Tribromophenol (Surr)			77 %	43-140 %	4	04/14/23 16:34	EPA 8270E	
93-8-0423 (A3D0912-05)				Matrix: Wate	r	Batch: 2	23D0435	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.0971	0.194	ug/L	1	04/14/23 18:43	EPA 8270E	A-01
2,4-Dichlorophenol	ND	0.0485	0.0971	ug/L	1	04/14/23 18:43	EPA 8270E	
Pentachlorophenol (PCP)	0.107	0.0971	0.194	ug/L	1	04/14/23 18:43	EPA 8270E	J
2,3,5,6-Tetrachlorophenol	ND	0.0485	0.0971	ug/L	1	04/14/23 18:43	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.0485	0.0971	ug/L	1	04/14/23 18:43	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.0485	0.0971	ug/L	1	04/14/23 18:43	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recover	ry: 74 %	Limits: 44-120 %	1	04/14/23 18:43	EPA 8270E	Q-41
2-Fluorobiphenyl (Surr)			60 %	44-120 %	1	04/14/23 18:43	EPA 8270E	-
Phenol-d6 (Surr)			19 %	10-133 %	1	04/14/23 18:43	EPA 8270E	Q-41
p-Terphenyl-d14 (Surr)			61 %	50-134 %	1	04/14/23 18:43	EPA 8270E	
2-Fluorophenol (Surr)			33 %	19-120 %	1	04/14/23 18:43	EPA 8270E	
2,4,6-Tribromophenol (Surr)			86 %	43-140 %	1	04/14/23 18:43	EPA 8270E	
P-2D-0423 (A3D0912-06)				Matrix: Wate	r	Ratch: 1	23D0435	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 4 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number:22588.000Report ID:Portland, OR 97232Project Manager:Kelly TitkemeierA3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

	Selected	l Semivolatile	Organic C	ompounds by E	PA 8270	E		
	Sample	Detection	Reporting	** **	Dil di	Date	M.d. 15.0	**
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
P-2D-0423 (A3D0912-06)				Matrix: Wate	er	Batch:	23D0435	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.385	0.769	ug/L	4	04/14/23 19:13	EPA 8270E	A-01
2,4-Dichlorophenol	ND	0.192	0.385	ug/L	4	04/14/23 19:13	EPA 8270E	
Pentachlorophenol (PCP)	3.26	0.385	0.769	ug/L	4	04/14/23 19:13	EPA 8270E	
2,3,5,6-Tetrachlorophenol	0.284	0.192	0.385	ug/L	4	04/14/23 19:13	EPA 8270E	J
2,4,5-Trichlorophenol	ND	0.192	0.385	ug/L	4	04/14/23 19:13	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.192	0.385	ug/L	4	04/14/23 19:13	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 85 %	Limits: 44-120 %	4	04/14/23 19:13	EPA 8270E	Q-41
2-Fluorobiphenyl (Surr)			67 %	44-120 %	4	04/14/23 19:13	EPA 8270E	
Phenol-d6 (Surr)			24 %	10-133 %	4	04/14/23 19:13	EPA 8270E	Q-41
p-Terphenyl-d14 (Surr)			55 %	50-134 %	4	04/14/23 19:13	EPA 8270E	
2-Fluorophenol (Surr)			32 %	19-120 %	4	04/14/23 19:13	EPA 8270E	
2,4,6-Tribromophenol (Surr)			106 %	43-140 %	4	04/14/23 19:13	EPA 8270E	
R-4-0423 (A3D0912-10)				Matrix: Wate	er	Batch:	23D0435	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.0971	0.194	ug/L	1	04/14/23 19:43	EPA 8270E	A-01
2,4-Dichlorophenol	ND	0.0485	0.0971	ug/L	1	04/14/23 19:43	EPA 8270E	
Pentachlorophenol (PCP)	0.848	0.0971	0.194	ug/L	1	04/14/23 19:43	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	0.0485	0.0971	ug/L	1	04/14/23 19:43	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.0485	0.0971	ug/L	1	04/14/23 19:43	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.0485	0.0971	ug/L	1	04/14/23 19:43	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 76 %	Limits: 44-120 %	1	04/14/23 19:43	EPA 8270E	Q-41
2-Fluorobiphenyl (Surr)			54 %	44-120 %	1	04/14/23 19:43	EPA 8270E	~
Phenol-d6 (Surr)			20 %	10-133 %	1	04/14/23 19:43	EPA 8270E	Q-41
p-Terphenyl-d14 (Surr)			64 %	50-134 %	1	04/14/23 19:43	EPA 8270E	
2-Fluorophenol (Surr)			34 %	19-120 %	1	04/14/23 19:43	EPA 8270E	
2,4,6-Tribromophenol (Surr)			75 %	43-140 %	1	04/14/23 19:43	EPA 8270E	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number: 22588.000Report ID:Portland, OR 97232Project Manager: Kelly TitkemeierA3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
R-1-0423 (A3D0912-07)				Matrix: Wa	ater	Batch:	23D0367	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.971	1.94	ug/L	10	04/12/23 10:44	EPA 8270E	A-0
Acenaphthene	1.47	0.0971	0.194	ug/L	10	04/12/23 10:44	EPA 8270E	
Acenaphthylene	ND	0.0971	0.194	ug/L	10	04/12/23 10:44	EPA 8270E	
Anthracene	0.172	0.0971	0.194	ug/L	10	04/12/23 10:44	EPA 8270E	J
Benz(a)anthracene	ND	0.0971	0.194	ug/L	10	04/12/23 10:44	EPA 8270E	
Benzo(a)pyrene	ND	0.146	0.291	ug/L	10	04/12/23 10:44	EPA 8270E	
Benzo(b)fluoranthene	ND	0.146	0.291	ug/L	10	04/12/23 10:44	EPA 8270E	
Benzo(k)fluoranthene	ND	0.146	0.291	ug/L	10	04/12/23 10:44	EPA 8270E	
Benzo(g,h,i)perylene	ND	0.0971	0.194	ug/L	10	04/12/23 10:44	EPA 8270E	
Chrysene	ND	0.0971	0.194	ug/L	10	04/12/23 10:44	EPA 8270E	
Dibenz(a,h)anthracene	ND	0.0971	0.194	ug/L	10	04/12/23 10:44	EPA 8270E	
Fluoranthene	0.291	0.0971	0.194	ug/L	10	04/12/23 10:44	EPA 8270E	
Fluorene	1.45	0.0971	0.194	ug/L	10	04/12/23 10:44	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	0.0971	0.194	ug/L	10	04/12/23 10:44	EPA 8270E	
1-Methylnaphthalene	0.567	0.194	0.388	ug/L	10	04/12/23 10:44	EPA 8270E	
2-Methylnaphthalene	0.303	0.194	0.388	ug/L	10	04/12/23 10:44	EPA 8270E	J
Naphthalene	0.533	0.194	0.388	ug/L	10	04/12/23 10:44	EPA 8270E	
Phenanthrene	0.299	0.0971	0.194	ug/L	10	04/12/23 10:44	EPA 8270E	
Pyrene	0.341	0.0971	0.194	ug/L	10	04/12/23 10:44	EPA 8270E	
Carbazole	0.149	0.146	0.291	ug/L	10	04/12/23 10:44	EPA 8270E	J
Dibenzofuran	0.294	0.0971	0.194	ug/L	10	04/12/23 10:44	EPA 8270E	
2-Chlorophenol	ND	0.485	0.971	ug/L	10	04/12/23 10:44	EPA 8270E	
4-Chloro-3-methylphenol	ND	0.971	1.94	ug/L	10	04/12/23 10:44	EPA 8270E	
2,4-Dichlorophenol	ND	0.485	0.971	ug/L	10	04/12/23 10:44	EPA 8270E	
2,4-Dimethylphenol	ND	0.485	0.971	ug/L	10	04/12/23 10:44	EPA 8270E	
2,4-Dinitrophenol	ND	2.43	4.85	ug/L	10	04/12/23 10:44	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	2.43	4.85	ug/L	10	04/12/23 10:44	EPA 8270E	
2-Methylphenol	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
3+4-Methylphenol(s)	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
2-Nitrophenol	ND	0.971	1.94	ug/L	10	04/12/23 10:44	EPA 8270E	
4-Nitrophenol	ND	0.971	1.94	ug/L	10	04/12/23 10:44	EPA 8270E	
Pentachlorophenol (PCP)	4.49	0.971	1.94	ug/L	10	04/12/23 10:44	EPA 8270E	
Phenol	ND	1.94	3.88	ug/L	10	04/12/23 10:44	EPA 8270E	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 6 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number: 22588.000Report ID:Portland, OR 97232Project Manager: Kelly TitkemeierA3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
R-1-0423 (A3D0912-07)				Matrix: Wa	ater	Batch:	23D0367	
2,3,5,6-Tetrachlorophenol	ND	0.485	0.971	ug/L	10	04/12/23 10:44	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.485	0.971	ug/L	10	04/12/23 10:44	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.485	0.971	ug/L	10	04/12/23 10:44	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	1.94	3.88	ug/L	10	04/12/23 10:44	EPA 8270E	
Butyl benzyl phthalate	ND	1.94	3.88	ug/L	10	04/12/23 10:44	EPA 8270E	
Diethylphthalate	ND	1.94	3.88	ug/L	10	04/12/23 10:44	EPA 8270E	
Dimethylphthalate	ND	1.94	3.88	ug/L	10	04/12/23 10:44	EPA 8270E	
Di-n-butylphthalate	ND	1.94	3.88	ug/L	10	04/12/23 10:44	EPA 8270E	
Di-n-octyl phthalate	ND	1.94	3.88	ug/L	10	04/12/23 10:44	EPA 8270E	
N-Nitrosodimethylamine	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
N-Nitrosodiphenylamine	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
Hexachlorobenzene	ND	0.0971	0.194	ug/L	10	04/12/23 10:44	EPA 8270E	
Hexachlorobutadiene	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
Hexachlorocyclopentadiene	ND	0.485	0.971	ug/L	10	04/12/23 10:44	EPA 8270E	
Hexachloroethane	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
2-Chloronaphthalene	ND	0.0971	0.194	ug/L	10	04/12/23 10:44	EPA 8270E	
1,2,4-Trichlorobenzene	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
1-Bromophenyl phenyl ether	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
1-Chlorophenyl phenyl ether	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
Aniline	ND	0.485	0.971	ug/L	10	04/12/23 10:44	EPA 8270E	
l-Chloroaniline	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
-Nitroaniline	ND	1.94	3.88	ug/L	10	04/12/23 10:44	EPA 8270E	
-Nitroaniline	ND	1.94	3.88	ug/L	10	04/12/23 10:44	EPA 8270E	
-Nitroaniline	ND	1.94	3.88	ug/L	10	04/12/23 10:44	EPA 8270E	
Titrobenzene	ND	0.971	1.94	ug/L	10	04/12/23 10:44	EPA 8270E	
,4-Dinitrotoluene	ND	0.971	1.94	ug/L	10	04/12/23 10:44	EPA 8270E	
,6-Dinitrotoluene	ND	0.971	1.94	ug/L	10	04/12/23 10:44	EPA 8270E	
Senzoic acid	ND	12.1	24.3	ug/L	10	04/12/23 10:44	EPA 8270E	
enzyl alcohol	ND	0.971	1.94	ug/L	10	04/12/23 10:44	EPA 8270E	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Kelly Titkemeier
 A3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
R-1-0423 (A3D0912-07)				Matrix: Wate	r	Batch: 2	23D0367	
Isophorone	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
Azobenzene (1,2-DPH)	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	2.43	4.85	ug/L	10	04/12/23 10:44	EPA 8270E	
3,3'-Dichlorobenzidine	ND	4.85	9.71	ug/L	10	04/12/23 10:44	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	2.43	4.85	ug/L	10	04/12/23 10:44	EPA 8270E	
1,3-Dinitrobenzene	ND	2.43	4.85	ug/L	10	04/12/23 10:44	EPA 8270E	
1,4-Dinitrobenzene	ND	2.43	4.85	ug/L	10	04/12/23 10:44	EPA 8270E	
Pyridine	ND	0.971	1.94	ug/L	10	04/12/23 10:44	EPA 8270E	
1,2-Dichlorobenzene	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
1,3-Dichlorobenzene	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
1,4-Dichlorobenzene	ND	0.243	0.485	ug/L	10	04/12/23 10:44	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recove	ery: 68 %	Limits: 44-120 %	10	04/12/23 10:44	EPA 8270E	
2-Fluorobiphenyl (Surr)			77 %	44-120 %	10	04/12/23 10:44	EPA 8270E	
Phenol-d6 (Surr)			20 %	10-133 %		04/12/23 10:44	EPA 8270E	
p-Terphenyl-d14 (Surr)			96 %	50-134 %		04/12/23 10:44	EPA 8270E	
2-Fluorophenol (Surr)			24 %	19-120 %		04/12/23 10:44	EPA 8270E	
2,4,6-Tribromophenol (Surr)			95 %	43-140 %	10	04/12/23 10:44	EPA 8270E	
R-2-0423 (A3D0912-08)				Matrix: Wate	r	Batch: 2	23D0367	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	2.05	1.94	3.88	ug/L	20	04/11/23 15:27	EPA 8270E	A-01
Acenaphthene	93.2	0.194	0.388	ug/L	20	04/11/23 15:27	EPA 8270E	
Acenaphthylene	ND	2.52	2.52	ug/L	20	04/11/23 15:27	EPA 8270E	R-02
Anthracene	10.0	0.194	0.388	ug/L	20	04/11/23 15:27	EPA 8270E	
Benz(a)anthracene	3.83	0.194	0.388	ug/L	20	04/11/23 15:27	EPA 8270E	
Benzo(a)pyrene	1.45	0.291	0.583	ug/L	20	04/11/23 15:27	EPA 8270E	
Benzo(b)fluoranthene	1.75	0.291	0.583	ug/L	20	04/11/23 15:27	EPA 8270E	
Benzo(k)fluoranthene	0.878	0.291	0.583	ug/L	20	04/11/23 15:27	EPA 8270E	M-05
Benzo(g,h,i)perylene	0.276	0.194	0.388	ug/L	20	04/11/23 15:27	EPA 8270E	J
Chrysene	3.80	0.194	0.388	ug/L	20	04/11/23 15:27	EPA 8270E	
	ND	0.194	0.388	ug/L	20	04/11/23 15:27	EPA 8270E	
Dibenz(a,h)anthracene			0.388	ug/L	20	04/11/23 15:27	EPA 8270E	
* ' '	29.7	0.194	0.566					
Fluoranthene	29.7 44.5	0.194 0.194		_	20	04/11/23 15:27	EPA 8270E	
Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene			0.388 0.388	ug/L ug/L	20 20	04/11/23 15:27 04/11/23 15:27	EPA 8270E EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 8 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number:22588.000Report ID:Portland, OR 97232Project Manager:Kelly TitkemeierA3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting		- ·	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
R-2-0423 (A3D0912-08)				Matrix: Wa	ater	Batch:	23D0367	
2-Methylnaphthalene	0.907	0.388	0.777	ug/L	20	04/11/23 15:27	EPA 8270E	
Naphthalene	ND	0.777	0.777	ug/L	20	04/11/23 15:27	EPA 8270E	
Phenanthrene	40.3	0.194	0.388	ug/L	20	04/11/23 15:27	EPA 8270E	
Pyrene	25.0	0.194	0.388	ug/L	20	04/11/23 15:27	EPA 8270E	
Carbazole	ND	0.583	0.583	ug/L	20	04/11/23 15:27	EPA 8270E	
Dibenzofuran	31.4	0.194	0.388	ug/L	20	04/11/23 15:27	EPA 8270E	
2-Chlorophenol	ND	0.971	1.94	ug/L	20	04/11/23 15:27	EPA 8270E	
4-Chloro-3-methylphenol	ND	1.94	3.88	ug/L	20	04/11/23 15:27	EPA 8270E	
2,4-Dichlorophenol	ND	1.94	1.94	ug/L	20	04/11/23 15:27	EPA 8270E	
2,4-Dimethylphenol	ND	3.50	3.50	ug/L	20	04/11/23 15:27	EPA 8270E	R-02
2,4-Dinitrophenol	ND	4.85	9.71	ug/L	20	04/11/23 15:27	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	4.85	9.71	ug/L	20	04/11/23 15:27	EPA 8270E	
2-Methylphenol	ND	0.971	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
3+4-Methylphenol(s)	ND	0.485	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
2-Nitrophenol	ND	1.94	3.88	ug/L	20	04/11/23 15:27	EPA 8270E	
4-Nitrophenol	ND	7.57	7.57	ug/L	20	04/11/23 15:27	EPA 8270E	R-02
Pentachlorophenol (PCP)	39.6	1.94	3.88	ug/L	20	04/11/23 15:27	EPA 8270E	
Phenol	ND	3.88	7.77	ug/L	20	04/11/23 15:27	EPA 8270E	
2,3,5,6-Tetrachlorophenol	1.27	0.971	1.94	ug/L	20	04/11/23 15:27	EPA 8270E	J
2,4,5-Trichlorophenol	1.18	0.971	1.94	ug/L	20	04/11/23 15:27	EPA 8270E	J
2,4,6-Trichlorophenol	ND	0.971	1.94	ug/L	20	04/11/23 15:27	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	3.88	7.77	ug/L	20	04/11/23 15:27	EPA 8270E	
Butyl benzyl phthalate	ND	3.88	7.77	ug/L	20	04/11/23 15:27	EPA 8270E	
Diethylphthalate	ND	3.88	7.77	ug/L	20	04/11/23 15:27	EPA 8270E	
Dimethylphthalate	ND	3.88	7.77	ug/L	20	04/11/23 15:27	EPA 8270E	
Di-n-butylphthalate	ND	3.88	7.77	ug/L	20	04/11/23 15:27	EPA 8270E	
Di-n-octyl phthalate	ND	3.88	7.77	ug/L	20	04/11/23 15:27	EPA 8270E	
N-Nitrosodimethylamine	ND	0.485	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.971	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
N-Nitrosodiphenylamine	ND	6.41	6.41	ug/L	20	04/11/23 15:27	EPA 8270E	R-02
Bis(2-Chloroethoxy) methane	ND	0.971	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	0.485	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	0.485	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Kelly Titkemeier
 A3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		· -
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
R-2-0423 (A3D0912-08)				Matrix: Wate	er	Batch:	23D0367	
Hexachlorobenzene	ND	0.194	0.388	ug/L	20	04/11/23 15:27	EPA 8270E	
Hexachlorobutadiene	ND	0.485	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
Hexachlorocyclopentadiene	ND	0.971	1.94	ug/L	20	04/11/23 15:27	EPA 8270E	
Hexachloroethane	ND	0.485	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
2-Chloronaphthalene	ND	0.388	0.388	ug/L	20	04/11/23 15:27	EPA 8270E	
1,2,4-Trichlorobenzene	ND	0.485	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
4-Bromophenyl phenyl ether	ND	0.485	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	0.485	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
Aniline	ND	0.971	1.94	ug/L	20	04/11/23 15:27	EPA 8270E	
4-Chloroaniline	ND	0.485	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
2-Nitroaniline	ND	3.88	7.77	ug/L	20	04/11/23 15:27	EPA 8270E	
3-Nitroaniline	ND	3.88	7.77	ug/L	20	04/11/23 15:27	EPA 8270E	
4-Nitroaniline	ND	3.88	7.77	ug/L	20	04/11/23 15:27	EPA 8270E	
Nitrobenzene	ND	1.94	3.88	ug/L	20	04/11/23 15:27	EPA 8270E	
2,4-Dinitrotoluene	ND	3.88	3.88	ug/L	20	04/11/23 15:27	EPA 8270E	
2,6-Dinitrotoluene	ND	1.94	3.88	ug/L	20	04/11/23 15:27	EPA 8270E	
Benzoic acid	ND	48.5	48.5	ug/L	20	04/11/23 15:27	EPA 8270E	
Benzyl alcohol	ND	1.94	3.88	ug/L	20	04/11/23 15:27	EPA 8270E	
Isophorone	ND	0.971	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
Azobenzene (1,2-DPH)	ND	0.971	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	4.85	9.71	ug/L	20	04/11/23 15:27	EPA 8270E	
3,3'-Dichlorobenzidine	ND	9.71	19.4	ug/L	20	04/11/23 15:27	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	4.85	9.71	ug/L	20	04/11/23 15:27	EPA 8270E	
1,3-Dinitrobenzene	ND	4.85	9.71	ug/L	20	04/11/23 15:27	EPA 8270E	
1,4-Dinitrobenzene	ND	4.85	9.71	ug/L	20	04/11/23 15:27	EPA 8270E	
Pyridine	ND	1.94	3.88	ug/L	20	04/11/23 15:27	EPA 8270E	
1,2-Dichlorobenzene	ND	0.485	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
1,3-Dichlorobenzene	ND	0.485	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
1,4-Dichlorobenzene	ND	0.485	0.971	ug/L	20	04/11/23 15:27	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recon	very: 70 %	Limits: 44-120 %	5 20	04/11/23 15:27	EPA 8270E	Q-4
2-Fluorobiphenyl (Surr)			82 %	44-120 %	20	04/11/23 15:27	EPA 8270E	
Phenol-d6 (Surr)			31 %	10-133 %		04/11/23 15:27	EPA 8270E	Q-4
p-Terphenyl-d14 (Surr)			81 %	50-134 %		04/11/23 15:27	EPA 8270E	
2-Fluorophenol (Surr)			32 %	19-120 %	20	04/11/23 15:27	EPA 8270E	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Kelly Titkemeier
 A3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
·	Result	Liiiit	Limit			-	23D0367	11010
R-2-0423 (A3D0912-08)			100.07	Matrix: Wate				
Surrogate: 2,4,6-Tribromophenol (Surr)		Recove	ery: 108 %	Limits: 43-140 %	20	04/11/23 15:27	EPA 8270E	
R-3-0423 (A3D0912-09)				Matrix: Wate	er	Batch: 2	23D0367	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	4.81	9.62	ug/L	50	04/13/23 14:59	EPA 8270E	A-01
Acenaphthene	83.0	0.481	0.962	ug/L	50	04/13/23 14:59	EPA 8270E	
Acenaphthylene	ND	0.962	0.962	ug/L	50	04/13/23 14:59	EPA 8270E	
Anthracene	5.29	0.481	0.962	ug/L	50	04/13/23 14:59	EPA 8270E	
Benz(a)anthracene	0.863	0.481	0.962	ug/L	50	04/13/23 14:59	EPA 8270E	J
Benzo(a)pyrene	ND	0.721	1.44	ug/L	50	04/13/23 14:59	EPA 8270E	
Benzo(b)fluoranthene	0.744	0.721	1.44	ug/L	50	04/13/23 14:59	EPA 8270E	J
Benzo(k)fluoranthene	ND	0.721	1.44	ug/L	50	04/13/23 14:59	EPA 8270E	
Benzo(g,h,i)perylene	ND	0.481	0.962	ug/L	50	04/13/23 14:59	EPA 8270E	
Chrysene	0.722	0.481	0.962	ug/L	50	04/13/23 14:59	EPA 8270E	J
Dibenz(a,h)anthracene	ND	0.481	0.962	ug/L	50	04/13/23 14:59	EPA 8270E	
Fluoranthene	10.1	0.481	0.962	ug/L	50	04/13/23 14:59	EPA 8270E	
Fluorene	32.3	0.481	0.962	ug/L	50	04/13/23 14:59	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	0.481	0.962	ug/L	50	04/13/23 14:59	EPA 8270E	
1-Methylnaphthalene	60.3	0.962	1.92	ug/L	50	04/13/23 14:59	EPA 8270E	
2-Methylnaphthalene	26.9	0.962	1.92	ug/L	50	04/13/23 14:59	EPA 8270E	
Naphthalene	12.8	0.962	1.92	ug/L	50	04/13/23 14:59	EPA 8270E	
Phenanthrene	34.5	0.481	0.962	ug/L	50	04/13/23 14:59	EPA 8270E	
Pyrene	8.00	0.481	0.962	ug/L	50	04/13/23 14:59	EPA 8270E	
Carbazole	4.25	0.721	1.44	ug/L	50	04/13/23 14:59	EPA 8270E	
Dibenzofuran	26.9	0.481	0.962	ug/L	50	04/13/23 14:59	EPA 8270E	
2-Chlorophenol	ND	2.40	4.81	ug/L	50	04/13/23 14:59	EPA 8270E	
4-Chloro-3-methylphenol	ND	4.81	9.62	ug/L	50	04/13/23 14:59	EPA 8270E	
2,4-Dichlorophenol	ND	2.40	4.81	ug/L	50	04/13/23 14:59	EPA 8270E	
,4-Dimethylphenol	ND	2.40	4.81	ug/L	50	04/13/23 14:59	EPA 8270E	
,4-Dinitrophenol	ND	12.0	24.0	ug/L	50	04/13/23 14:59	EPA 8270E	
,6-Dinitro-2-methylphenol	ND	12.0	24.0	ug/L	50	04/13/23 14:59	EPA 8270E	
2-Methylphenol	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E	
3+4-Methylphenol(s)	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E	
2-Nitrophenol	ND	4.81	9.62	ug/L	50	04/13/23 14:59	EPA 8270E	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number: 22588.000Report ID:Portland, OR 97232Project Manager: Kelly TitkemeierA3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

	Semivolatile Organic Compounds by EPA 8270E									
	Sample	Detection	Reporting			Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
R-3-0423 (A3D0912-09)				Matrix: Wa	ater	Batch:	23D0367			
4-Nitrophenol	ND	4.81	9.62	ug/L	50	04/13/23 14:59	EPA 8270E			
Pentachlorophenol (PCP)	ND	4.81	9.62	ug/L	50	04/13/23 14:59	EPA 8270E			
Phenol	ND	9.62	19.2	ug/L	50	04/13/23 14:59	EPA 8270E			
2,3,5,6-Tetrachlorophenol	ND	2.40	4.81	ug/L	50	04/13/23 14:59	EPA 8270E			
2,4,5-Trichlorophenol	ND	2.40	4.81	ug/L	50	04/13/23 14:59	EPA 8270E			
2,4,6-Trichlorophenol	ND	2.40	4.81	ug/L	50	04/13/23 14:59	EPA 8270E			
Bis(2-ethylhexyl)phthalate	ND	9.62	19.2	ug/L	50	04/13/23 14:59	EPA 8270E			
Butyl benzyl phthalate	ND	9.62	19.2	ug/L	50	04/13/23 14:59	EPA 8270E			
Diethylphthalate	ND	9.62	19.2	ug/L	50	04/13/23 14:59	EPA 8270E			
Dimethylphthalate	ND	9.62	19.2	ug/L	50	04/13/23 14:59	EPA 8270E			
Di-n-butylphthalate	ND	9.62	19.2	ug/L	50	04/13/23 14:59	EPA 8270E			
Di-n-octyl phthalate	ND	9.62	19.2	ug/L	50	04/13/23 14:59	EPA 8270E			
N-Nitrosodimethylamine	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E			
N-Nitroso-di-n-propylamine	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E			
N-Nitrosodiphenylamine	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E			
Bis(2-Chloroethoxy) methane	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E			
Bis(2-Chloroethyl) ether	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E			
2,2'-Oxybis(1-Chloropropane)	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E			
Hexachlorobenzene	ND	0.481	0.962	ug/L	50	04/13/23 14:59	EPA 8270E			
Hexachlorobutadiene	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E			
Hexachlorocyclopentadiene	ND	2.40	4.81	ug/L	50	04/13/23 14:59	EPA 8270E			
Hexachloroethane	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E			
2-Chloronaphthalene	ND	0.481	0.962	ug/L	50	04/13/23 14:59	EPA 8270E			
1,2,4-Trichlorobenzene	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E			
4-Bromophenyl phenyl ether	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E			
4-Chlorophenyl phenyl ether	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E			
Aniline	ND	2.40	4.81	ug/L	50	04/13/23 14:59	EPA 8270E			
4-Chloroaniline	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E			
2-Nitroaniline	ND	9.62	19.2	ug/L	50	04/13/23 14:59	EPA 8270E			
3-Nitroaniline	ND	9.62	19.2	ug/L	50	04/13/23 14:59	EPA 8270E			
4-Nitroaniline	ND	9.62	19.2	ug/L	50	04/13/23 14:59	EPA 8270E			
Nitrobenzene	ND	4.81	9.62	ug/L	50	04/13/23 14:59	EPA 8270E			
2,4-Dinitrotoluene	ND	4.81	9.62	ug/L	50	04/13/23 14:59	EPA 8270E			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number: 22588.000Report ID:Portland, OR 97232Project Manager: Kelly TitkemeierA3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

	Sen	nivolatile Org	anic Comp	ounds by EPA 8	270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
R-3-0423 (A3D0912-09)				Matrix: Wate	r	Batch: 2	23D0367	
2,6-Dinitrotoluene	ND	4.81	9.62	ug/L	50	04/13/23 14:59	EPA 8270E	
Benzoic acid	ND	60.1	120	ug/L	50	04/13/23 14:59	EPA 8270E	
Benzyl alcohol	ND	4.81	9.62	ug/L	50	04/13/23 14:59	EPA 8270E	
Isophorone	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E	
Azobenzene (1,2-DPH)	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	12.0	24.0	ug/L	50	04/13/23 14:59	EPA 8270E	
3,3'-Dichlorobenzidine	ND	24.0	48.1	ug/L	50	04/13/23 14:59	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	12.0	24.0	ug/L	50	04/13/23 14:59	EPA 8270E	
1,3-Dinitrobenzene	ND	12.0	24.0	ug/L	50	04/13/23 14:59	EPA 8270E	
1,4-Dinitrobenzene	ND	12.0	24.0	ug/L	50	04/13/23 14:59	EPA 8270E	
Pyridine	ND	4.81	9.62	ug/L	50	04/13/23 14:59	EPA 8270E	
1,2-Dichlorobenzene	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E	
1,3-Dichlorobenzene	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E	
1,4-Dichlorobenzene	ND	1.20	2.40	ug/L	50	04/13/23 14:59	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 78 %	Limits: 44-120 %	50	04/13/23 14:59	EPA 8270E	S-05
2-Fluorobiphenyl (Surr)			81 %	44-120 %	50	04/13/23 14:59	EPA 8270E	S-05
Phenol-d6 (Surr)			44 %	10-133 %		04/13/23 14:59	EPA 8270E	S-05
p-Terphenyl-d14 (Surr)			93 %	50-134 %		04/13/23 14:59	EPA 8270E	S-05
2-Fluorophenol (Surr)			29 %	19-120 %		04/13/23 14:59	EPA 8270E	S-05
2,4,6-Tribromophenol (Surr)			103 %	43-140 %	50	04/13/23 14:59	EPA 8270E	S-05
DUP-0423 (A3D0912-11RE1)				Matrix: Wate	r	Batch:	23D0367	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.962	1.92	ug/L	10	04/13/23 16:39	EPA 8270E	A-01
Acenaphthene	1.42	0.0962	0.192	ug/L	10	04/13/23 16:39	EPA 8270E	
Acenaphthylene	ND	0.0962	0.192	ug/L	10	04/13/23 16:39	EPA 8270E	
Anthracene	0.145	0.0962	0.192	ug/L	10	04/13/23 16:39	EPA 8270E	J
Benz(a)anthracene	ND	0.0962	0.192	ug/L	10	04/13/23 16:39	EPA 8270E	
Benzo(a)pyrene	ND	0.144	0.288	ug/L	10	04/13/23 16:39	EPA 8270E	
Benzo(b)fluoranthene	ND	0.144	0.288	ug/L	10	04/13/23 16:39	EPA 8270E	
Benzo(k)fluoranthene	ND	0.144	0.288	ug/L	10	04/13/23 16:39	EPA 8270E	
Benzo(g,h,i)perylene	ND	0.0962	0.192	ug/L	10	04/13/23 16:39	EPA 8270E	
Chrysene	ND	0.0962	0.192	ug/L	10	04/13/23 16:39	EPA 8270E	
Dibenz(a,h)anthracene	ND	0.0962	0.192	ug/L	10	04/13/23 16:39	EPA 8270E	
× * /	0.266	0.0962	0.192	ug/L	10	04/13/23 16:39	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 13 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number:
 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager:
 Kelly Titkemeier
 A3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
DUP-0423 (A3D0912-11RE1)				Matrix: Wa	ater	Batch:	23D0367	
Fluorene	1.43	0.0962	0.192	ug/L	10	04/13/23 16:39	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	0.0962	0.192	ug/L	10	04/13/23 16:39	EPA 8270E	
1-Methylnaphthalene	0.564	0.192	0.385	ug/L	10	04/13/23 16:39	EPA 8270E	
2-Methylnaphthalene	0.312	0.192	0.385	ug/L	10	04/13/23 16:39	EPA 8270E	J
Naphthalene	0.472	0.192	0.385	ug/L	10	04/13/23 16:39	EPA 8270E	
Phenanthrene	0.289	0.0962	0.192	ug/L	10	04/13/23 16:39	EPA 8270E	
Pyrene	0.323	0.0962	0.192	ug/L	10	04/13/23 16:39	EPA 8270E	
Carbazole	0.170	0.144	0.288	ug/L	10	04/13/23 16:39	EPA 8270E	J
Dibenzofuran	0.282	0.0962	0.192	ug/L	10	04/13/23 16:39	EPA 8270E	
2-Chlorophenol	ND	0.481	0.962	ug/L	10	04/13/23 16:39	EPA 8270E	
4-Chloro-3-methylphenol	ND	0.962	1.92	ug/L	10	04/13/23 16:39	EPA 8270E	
2,4-Dichlorophenol	ND	0.481	0.962	ug/L	10	04/13/23 16:39	EPA 8270E	
2,4-Dimethylphenol	ND	0.481	0.962	ug/L	10	04/13/23 16:39	EPA 8270E	
2,4-Dinitrophenol	ND	2.40	4.81	ug/L	10	04/13/23 16:39	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	2.40	4.81	ug/L	10	04/13/23 16:39	EPA 8270E	
2-Methylphenol	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
3+4-Methylphenol(s)	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
2-Nitrophenol	ND	0.962	1.92	ug/L	10	04/13/23 16:39	EPA 8270E	
4-Nitrophenol	ND	0.962	1.92	ug/L	10	04/13/23 16:39	EPA 8270E	
Pentachlorophenol (PCP)	4.93	0.962	1.92	ug/L	10	04/13/23 16:39	EPA 8270E	
Phenol	ND	1.92	3.85	ug/L	10	04/13/23 16:39	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	0.481	0.962	ug/L	10	04/13/23 16:39	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.481	0.962	ug/L	10	04/13/23 16:39	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.481	0.962	ug/L	10	04/13/23 16:39	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	1.92	3.85	ug/L	10	04/13/23 16:39	EPA 8270E	
Butyl benzyl phthalate	ND	1.92	3.85	ug/L	10	04/13/23 16:39	EPA 8270E	
Diethylphthalate	ND	1.92	3.85	ug/L	10	04/13/23 16:39	EPA 8270E	
Dimethylphthalate	ND	1.92	3.85	ug/L	10	04/13/23 16:39	EPA 8270E	
Di-n-butylphthalate	ND	1.92	3.85	ug/L	10	04/13/23 16:39	EPA 8270E	
Di-n-octyl phthalate	ND	1.92	3.85	ug/L	10	04/13/23 16:39	EPA 8270E	
N-Nitrosodimethylamine	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
N-Nitrosodiphenylamine	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number:
 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager:
 Kelly Titkemeier
 A3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

Analyta	Sample Result	Detection Limit	Reporting	I Init-	Dibet:	Date Analyzed	Mathad D. C	NT ·
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
DUP-0423 (A3D0912-11RE1)				Matrix: Wate	r	Batch:	23D0367	
Bis(2-Chloroethoxy) methane	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
Hexachlorobenzene	ND	0.0962	0.192	ug/L	10	04/13/23 16:39	EPA 8270E	
Hexachlorobutadiene	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
Hexachlorocyclopentadiene	ND	0.481	0.962	ug/L	10	04/13/23 16:39	EPA 8270E	
Hexachloroethane	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
2-Chloronaphthalene	ND	0.0962	0.192	ug/L	10	04/13/23 16:39	EPA 8270E	
1,2,4-Trichlorobenzene	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
4-Bromophenyl phenyl ether	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
Aniline	ND	0.481	0.962	ug/L	10	04/13/23 16:39	EPA 8270E	
4-Chloroaniline	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
2-Nitroaniline	ND	1.92	3.85	ug/L	10	04/13/23 16:39	EPA 8270E	
3-Nitroaniline	ND	1.92	3.85	ug/L	10	04/13/23 16:39	EPA 8270E	
4-Nitroaniline	ND	1.92	3.85	ug/L	10	04/13/23 16:39	EPA 8270E	
Nitrobenzene	ND	0.962	1.92	ug/L	10	04/13/23 16:39	EPA 8270E	
2,4-Dinitrotoluene	ND	0.962	1.92	ug/L	10	04/13/23 16:39	EPA 8270E	
2,6-Dinitrotoluene	ND	0.962	1.92	ug/L	10	04/13/23 16:39	EPA 8270E	
Benzoic acid	ND	12.0	24.0	ug/L	10	04/13/23 16:39	EPA 8270E	
Benzyl alcohol	ND	0.962	1.92	ug/L	10	04/13/23 16:39	EPA 8270E	
Isophorone	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
Azobenzene (1,2-DPH)	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	2.40	4.81	ug/L	10	04/13/23 16:39	EPA 8270E	
3,3'-Dichlorobenzidine	ND	4.81	9.62	ug/L	10	04/13/23 16:39	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	2.40	4.81	ug/L	10	04/13/23 16:39	EPA 8270E	
,3-Dinitrobenzene	ND	2.40	4.81	ug/L	10	04/13/23 16:39	EPA 8270E	
,4-Dinitrobenzene	ND	2.40	4.81	ug/L	10	04/13/23 16:39	EPA 8270E	
yridine	ND	0.962	1.92	ug/L	10	04/13/23 16:39	EPA 8270E	
,2-Dichlorobenzene	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
,3-Dichlorobenzene	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
,4-Dichlorobenzene	ND	0.240	0.481	ug/L	10	04/13/23 16:39	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 78 %	Limits: 44-120 %	10	04/13/23 16:39	EPA 8270E	Q-4.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number: 22588.000Report ID:Portland, OR 97232Project Manager: Kelly TitkemeierA3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
DUP-0423 (A3D0912-11RE1)				Matrix: Wate	r	Batch: 2	23D0367	
Surrogate: 2-Fluorobiphenyl (Surr)		Recon	very: 76 %	Limits: 44-120 %	5 10	04/13/23 16:39	EPA 8270E	
Phenol-d6 (Surr)			24 %	10-133 %		04/13/23 16:39	EPA 8270E	Q-41
p-Terphenyl-d14 (Surr)			93 %	50-134 %		04/13/23 16:39	EPA 8270E	
2-Fluorophenol (Surr)			33 %	19-120 %		04/13/23 16:39	EPA 8270E	
2,4,6-Tribromophenol (Surr)			100 %	43-140 %		04/13/23 16:39	EPA 8270E	
FIELD-0423 (A3D0912-12)				Matrix: Wate	ir	Batch: 2	23D0367	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.102	0.204	ug/L	1	04/13/23 16:05	EPA 8270E	A-01
Acenaphthene	ND	0.0102	0.0204	ug/L	1	04/13/23 16:05	EPA 8270E	
Acenaphthylene	ND	0.0102	0.0204	ug/L	1	04/13/23 16:05	EPA 8270E	
Anthracene	ND	0.0102	0.0204	ug/L	1	04/13/23 16:05	EPA 8270E	
Benz(a)anthracene	ND	0.0102	0.0204	ug/L	1	04/13/23 16:05	EPA 8270E	
Benzo(a)pyrene	ND	0.0153	0.0306	ug/L	1	04/13/23 16:05	EPA 8270E	
Benzo(b)fluoranthene	ND	0.0153	0.0306	ug/L	1	04/13/23 16:05	EPA 8270E	
Benzo(k)fluoranthene	ND	0.0153	0.0306	ug/L	1	04/13/23 16:05	EPA 8270E	
Benzo(g,h,i)perylene	ND	0.0102	0.0204	ug/L	1	04/13/23 16:05	EPA 8270E	
Chrysene	ND	0.0102	0.0204	ug/L	1	04/13/23 16:05	EPA 8270E	
Dibenz(a,h)anthracene	ND	0.0102	0.0204	ug/L	1	04/13/23 16:05	EPA 8270E	
Fluoranthene	ND	0.0102	0.0204	ug/L	1	04/13/23 16:05	EPA 8270E	
Fluorene	ND	0.0102	0.0204	ug/L	1	04/13/23 16:05	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	0.0102	0.0204	ug/L	1	04/13/23 16:05	EPA 8270E	
l-Methylnaphthalene	ND	0.0204	0.0408	ug/L	1	04/13/23 16:05	EPA 8270E	
2-Methylnaphthalene	ND	0.0204	0.0408	ug/L	1	04/13/23 16:05	EPA 8270E	
Naphthalene	ND	0.0204	0.0408	ug/L	1	04/13/23 16:05	EPA 8270E	
Phenanthrene	0.0121	0.0102	0.0204	ug/L	1	04/13/23 16:05	EPA 8270E	J
Pyrene	ND	0.0102	0.0204	ug/L	1	04/13/23 16:05	EPA 8270E	
Carbazole	ND	0.0153	0.0306	ug/L	1	04/13/23 16:05	EPA 8270E	
Dibenzofuran	ND	0.0102	0.0204	ug/L	1	04/13/23 16:05	EPA 8270E	
-Chlorophenol	ND	0.0510	0.102	ug/L	1	04/13/23 16:05	EPA 8270E	
-Chloro-3-methylphenol	ND	0.102	0.204	ug/L	1	04/13/23 16:05	EPA 8270E	
,4-Dichlorophenol	ND	0.0510	0.102	ug/L	1	04/13/23 16:05	EPA 8270E	
4,4-Dimethylphenol	ND	0.0510	0.102	ug/L	1	04/13/23 16:05	EPA 8270E	
2,4-Dinitrophenol	ND	0.255	0.510	ug/L	1	04/13/23 16:05	EPA 8270E	
,6-Dinitro-2-methylphenol	ND	0.255	0.510	ug/L ug/L	1	04/13/23 16:05	EPA 8270E	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 16 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Kelly Titkemeier
 A3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
FIELD-0423 (A3D0912-12)				Matrix: Wa	ater	Batch:	23D0367	
2-Methylphenol	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
3+4-Methylphenol(s)	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
2-Nitrophenol	ND	0.102	0.204	ug/L	1	04/13/23 16:05	EPA 8270E	
1-Nitrophenol	ND	0.102	0.204	ug/L	1	04/13/23 16:05	EPA 8270E	
Pentachlorophenol (PCP)	ND	0.102	0.204	ug/L	1	04/13/23 16:05	EPA 8270E	
Phenol	ND	0.204	0.408	ug/L	1	04/13/23 16:05	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	0.0510	0.102	ug/L	1	04/13/23 16:05	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.0510	0.102	ug/L	1	04/13/23 16:05	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.0510	0.102	ug/L	1	04/13/23 16:05	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	0.204	0.408	ug/L	1	04/13/23 16:05	EPA 8270E	
Butyl benzyl phthalate	ND	0.204	0.408	ug/L	1	04/13/23 16:05	EPA 8270E	
Diethylphthalate	ND	0.204	0.408	ug/L	1	04/13/23 16:05	EPA 8270E	
Dimethylphthalate	ND	0.204	0.408	ug/L	1	04/13/23 16:05	EPA 8270E	
Di-n-butylphthalate	ND	0.204	0.408	ug/L	1	04/13/23 16:05	EPA 8270E	
Di-n-octyl phthalate	ND	0.204	0.408	ug/L	1	04/13/23 16:05	EPA 8270E	
N-Nitrosodimethylamine	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
N-Nitrosodiphenylamine	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
Hexachlorobenzene	ND	0.0102	0.0204	ug/L	1	04/13/23 16:05	EPA 8270E	
Hexachlorobutadiene	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
Hexachlorocyclopentadiene	ND	0.0510	0.102	ug/L	1	04/13/23 16:05	EPA 8270E	
Hexachloroethane	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
-Chloronaphthalene	ND	0.0102	0.0204	ug/L	1	04/13/23 16:05	EPA 8270E	
,2,4-Trichlorobenzene	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
-Bromophenyl phenyl ether	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
-Chlorophenyl phenyl ether	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
niline	ND	0.0510	0.102	ug/L	1	04/13/23 16:05	EPA 8270E	
-Chloroaniline	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
-Nitroaniline	ND	0.204	0.408	ug/L ug/L	1	04/13/23 16:05	EPA 8270E	
-Nitroaniline	ND	0.204	0.408	ug/L ug/L	1	04/13/23 16:05	EPA 8270E	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Kelly Titkemeier
 A3D0912 - 04 26 23 1335

ANALYTICAL SAMPLE RESULTS

	Sen	nivolatile Org	anic Compo	ounds by EPA	82/UE			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
FIELD-0423 (A3D0912-12)				Matrix: Wate	er	Batch:	23D0367	
4-Nitroaniline	ND	0.204	0.408	ug/L	1	04/13/23 16:05	EPA 8270E	
Nitrobenzene	ND	0.102	0.204	ug/L	1	04/13/23 16:05	EPA 8270E	
2,4-Dinitrotoluene	ND	0.102	0.204	ug/L	1	04/13/23 16:05	EPA 8270E	
2,6-Dinitrotoluene	ND	0.102	0.204	ug/L	1	04/13/23 16:05	EPA 8270E	
Benzoic acid	ND	1.28	2.55	ug/L	1	04/13/23 16:05	EPA 8270E	
Benzyl alcohol	ND	0.102	0.204	ug/L	1	04/13/23 16:05	EPA 8270E	
Isophorone	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
Azobenzene (1,2-DPH)	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	0.255	0.510	ug/L	1	04/13/23 16:05	EPA 8270E	
3,3'-Dichlorobenzidine	ND	0.510	1.02	ug/L	1	04/13/23 16:05	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	0.255	0.510	ug/L	1	04/13/23 16:05	EPA 8270E	
1,3-Dinitrobenzene	ND	0.255	0.510	ug/L	1	04/13/23 16:05	EPA 8270E	
1,4-Dinitrobenzene	ND	0.255	0.510	ug/L	1	04/13/23 16:05	EPA 8270E	
Pyridine	ND	0.102	0.204	ug/L	1	04/13/23 16:05	EPA 8270E	
1,2-Dichlorobenzene	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
1,3-Dichlorobenzene	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
1,4-Dichlorobenzene	ND	0.0255	0.0510	ug/L	1	04/13/23 16:05	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 58 %	Limits: 44-120 %	6 I	04/13/23 16:05	EPA 8270E	Q-41
2-Fluorobiphenyl (Surr)			45 %	44-120 %	6 I	04/13/23 16:05	EPA 8270E	
Phenol-d6 (Surr)			16 %	10-133 %		04/13/23 16:05	EPA 8270E	Q-41
p-Terphenyl-d14 (Surr)			77 %	50-134 %		04/13/23 16:05	EPA 8270E	
2-Fluorophenol (Surr)			26 %	19-120 %		04/13/23 16:05	EPA 8270E	
2,4,6-Tribromophenol (Surr)			70 %	43-140 %	6 I	04/13/23 16:05	EPA 8270E	

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway Street Project Number: 22588.000 Report ID:

Portland, OR 97232 Project Manager: Kelly Titkemeier A3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

Selected Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23D0435 - EPA 3510C (Acid Extraction) Water Blank (23D0435-BLK1) Prepared: 04/12/23 07:19 Analyzed: 04/13/23 10:35 EPA 8270E 2,3,4,6-& ND 0.100 0.200 ug/L A-01 2,3,4,5-Tetrachlorophenol(s) Acenaphthene ND 0.0100 0.0200 ug/L 1 0.0100 0.0200 Acenaphthylene ND ug/L 1 ND 0.0100 0.0200 Anthracene ug/L 1 ND 0.0100 Benz(a)anthracene 0.0200ug/L 1 Benzo(a)pyrene ND 0.0150 0.0300 ug/L 1 Benzo(b)fluoranthene ND 0.0150 0.0300 ug/L 1 ---ND 0.0150 0.0300 Benzo(k)fluoranthene ug/L 1 ND 0.0100 0.0200 Benzo(g,h,i)perylene ug/L 1 ------------Chrysene ND 0.0100 0.0200 ug/L 1 0.0100 0.0200 Dibenz(a,h)anthracene ND ug/L 1 Fluoranthene ND 0.0100 0.0200 ug/L 1 Fluorene ND 0.0100 0.0200 ug/L 1 ---------Indeno(1,2,3-cd)pyrene ND 0.0100 0.0200 ug/L 1 1-Methylnaphthalene 0.0200 0.0400 ND ug/L 1 2-Methylnaphthalene ND 0.0200 0.0400 ug/L 1 ND 0.0200 0.0400 Naphthalene ug/L 1 Phenanthrene ND 0.01000.0200ug/L 1 Pyrene ND 0.0100 0.0200 ug/L 1 ---------Carbazole ND 0.0150 0.0300 ug/L 1 ND 0.0100 0.0200 Dibenzofuran ug/L 1 ---2-Chlorophenol ND 0.0500 0.100 ug/L 1 4-Chloro-3-methylphenol ND 0.100 0.200 ug/L 1 2,4-Dichlorophenol ND 0.05000.100ug/L 1 2,4-Dimethylphenol ND 0.0500 0.100 ug/L 1 ---------2,4-Dinitrophenol ND 0.250 0.500 ug/L 1 4,6-Dinitro-2-methylphenol ND 0.250 0.500 ug/L 1 2-Methylphenol ND 0.02500.0500ug/L 1 ___ 3+4-Methylphenol(s) ND 0.0250 0.0500 ug/L 1 ---------2-Nitrophenol ND 0.1000.200 ug/L 1 4-Nitrophenol ND 0.100 0.200 ug/L 1 Pentachlorophenol (PCP) ND 0.100 0.200 ug/L 1 Phenol ND 0.200 0.400 ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 19 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number: 22588.000Report ID:Portland, OR 97232Project Manager: Kelly TitkemeierA3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0435 - EPA 3510C (Acid Extra	ction)					Wa	ter				
Blank (23D0435-BLK1)			Prepared	: 04/12/23 07	7:19 Anal	yzed: 04/13/	23 10:35					
2,3,5,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,5-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,6-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
Bis(2-ethylhexyl)phthalate	ND	0.200	0.400	ug/L	1							
Butyl benzyl phthalate	ND	0.200	0.400	ug/L	1							
Diethylphthalate	ND	0.200	0.400	ug/L	1							
Dimethylphthalate	ND	0.200	0.400	ug/L	1							
Di-n-butylphthalate	ND	0.200	0.400	ug/L	1							
Di-n-octyl phthalate	ND	0.200	0.400	ug/L	1							
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 69 %	Limits: 44-	120 %	Dilu	tion: 1x					Q-41
2-Fluorobiphenyl (Surr)			52 %	44-1	120 %		"					
Phenol-d6 (Surr)			18 %	10-1	133 %		"					Q-41
p-Terphenyl-d14 (Surr)			74 %	50-1	134 %		"					
2-Fluorophenol (Surr)			30 %	19-1	120 %		"					
2,4,6-Tribromophenol (Surr)			75 %	43-1	!40 %		"					
LCS (23D0435-BS1)			Prepared	: 04/12/23 07	7:19 Anal	yzed: 04/13/	/23 11:09					
EPA 8270E												
Acenaphthene	3.06	0.0400	0.0800	ug/L	4	4.00		76	47-122%			
Acenaphthylene	2.90	0.0400	0.0800	ug/L	4	4.00		72	41-130%			
Anthracene	3.44	0.0400	0.0800	ug/L	4	4.00		86	57-123%			
Antinacciic				-				90	58-125%			
Benz(a)anthracene	3.59	0.0400	0.0800	ug/L	4	4.00		90	30 12370			
	3.59 3.34	0.0400 0.0600	0.0800 0.120	ug/L ug/L	4 4	4.00 4.00		83	54-128%			
Benz(a)anthracene				_								
Benz(a)anthracene Benzo(a)pyrene	3.34	0.0600	0.120	ug/L	4	4.00		83	54-128%			
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	3.34 3.33	0.0600 0.0600	0.120 0.120	ug/L ug/L	4 4	4.00 4.00		83 83	54-128% 53-131%			
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene	3.34 3.33 3.38	0.0600 0.0600 0.0600	0.120 0.120 0.120	ug/L ug/L ug/L	4 4 4	4.00 4.00 4.00	 	83 83 85	54-128% 53-131% 57-129%			
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene	3.34 3.33 3.38 3.83	0.0600 0.0600 0.0600 0.0400	0.120 0.120 0.120 0.0800	ug/L ug/L ug/L ug/L ug/L	4 4 4 4	4.00 4.00 4.00 4.00		83 83 85 96	54-128% 53-131% 57-129% 50-134%		 	
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene	3.34 3.33 3.38 3.83 3.61	0.0600 0.0600 0.0600 0.0400 0.0400	0.120 0.120 0.120 0.0800 0.0800	ug/L ug/L ug/L ug/L	4 4 4 4	4.00 4.00 4.00 4.00 4.00	 	83 83 85 96 90	54-128% 53-131% 57-129% 50-134% 59-123%	 	 	
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene	3.34 3.33 3.38 3.83 3.61 3.67	0.0600 0.0600 0.0600 0.0400 0.0400	0.120 0.120 0.120 0.0800 0.0800 0.0800	ug/L ug/L ug/L ug/L ug/L ug/L	4 4 4 4 4	4.00 4.00 4.00 4.00 4.00 4.00	 	83 83 85 96 90 92	54-128% 53-131% 57-129% 50-134% 59-123% 51-134%	 		
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene	3.34 3.33 3.38 3.83 3.61 3.67 3.65 3.09	0.0600 0.0600 0.0600 0.0400 0.0400 0.0400	0.120 0.120 0.120 0.0800 0.0800 0.0800 0.0800	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4 4 4 4 4 4	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	 	83 83 85 96 90 92 91 77	54-128% 53-131% 57-129% 50-134% 59-123% 51-134% 57-128% 52-124%	 		
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	3.34 3.33 3.38 3.83 3.61 3.67 3.65 3.09 3.44	0.0600 0.0600 0.0600 0.0400 0.0400 0.0400 0.0400 0.0400	0.120 0.120 0.120 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4 4 4 4 4 4 4	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	 	83 83 85 96 90 92 91 77 86	54-128% 53-131% 57-129% 50-134% 59-123% 51-134% 57-128% 52-124% 52-134%	 		
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene	3.34 3.33 3.38 3.83 3.61 3.67 3.65 3.09	0.0600 0.0600 0.0600 0.0400 0.0400 0.0400 0.0400	0.120 0.120 0.120 0.0800 0.0800 0.0800 0.0800 0.0800	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4 4 4 4 4 4 4 4	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	 	83 83 85 96 90 92 91 77	54-128% 53-131% 57-129% 50-134% 59-123% 51-134% 57-128% 52-124%	 		

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number: 22588.000Report ID:Portland, OR 97232Project Manager: Kelly TitkemeierA3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

		Detection	Reporting			Spike	Source		% REC		RPD	
Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 23D0435 - EPA 3510C (Acid Extra	ction)					Wa	ter				
LCS (23D0435-BS1)			Prepared	: 04/12/23	07:19 Anal	lyzed: 04/13/	/23 11:09					
Phenanthrene	3.25	0.0400	0.0800	ug/L	4	4.00		81	59-120%			
Pyrene	3.56	0.0400	0.0800	ug/L	4	4.00		89	57-126%			
Carbazole	3.89	0.0600	0.120	ug/L	4	4.00		97	60-122%			
Dibenzofuran	3.13	0.0400	0.0800	ug/L	4	4.00		78	53-120%			
2-Chlorophenol	2.95	0.200	0.400	ug/L	4	4.00		74	38-120%			
4-Chloro-3-methylphenol	3.29	0.400	0.800	ug/L	4	4.00		82	52-120%			
2,4-Dichlorophenol	3.49	0.200	0.400	ug/L	4	4.00		87	47-121%			
2,4-Dimethylphenol	2.80	0.200	0.400	ug/L	4	4.00		70	31-124%			
2,4-Dinitrophenol	4.31	1.00	2.00	ug/L	4	4.00		108	23-143%			
4,6-Dinitro-2-methylphenol	3.78	1.00	2.00	ug/L	4	4.00		95	44-137%			
2-Methylphenol	2.84	0.100	0.200	ug/L	4	4.00		71	30-120%			
3+4-Methylphenol(s)	2.78	0.100	0.200	ug/L	4	4.00		70	29-120%			
2-Nitrophenol	3.57	0.400	0.800	ug/L	4	4.00		89	47-123%			
4-Nitrophenol	1.36	0.400	0.800	ug/L	4	4.00		34	10-120%			
Pentachlorophenol (PCP)	3.45	0.400	0.800	ug/L	4	4.00		86	35-138%			
Phenol	1.22	0.800	0.800	ug/L	4	4.00		30	10-120%			
2,3,4,6-Tetrachlorophenol	3.37	0.200	0.400	ug/L	4	4.00		84	50-128%			
2,3,5,6-Tetrachlorophenol	3.51	0.200	0.400	ug/L	4	4.00		88	50-121%			
2,4,5-Trichlorophenol	3.53	0.200	0.400	ug/L	4	4.00		88	53-123%			
2,4,6-Trichlorophenol	3.31	0.200	0.400	ug/L	4	4.00		83	50-125%			
Bis(2-ethylhexyl)phthalate	3.89	0.800	1.60	ug/L	4	4.00		97	55-135%			
Butyl benzyl phthalate	4.22	0.800	1.60	ug/L	4	4.00		106	53-134%			
Diethylphthalate	3.36	0.800	1.60	ug/L	4	4.00		84	56-125%			
Dimethylphthalate	3.39	0.800	1.60	ug/L	4	4.00		85	45-127%			
Di-n-butylphthalate	4.13	0.800	1.60	ug/L	4	4.00		103	59-127%			
Di-n-octyl phthalate	3.65	0.800	1.60	ug/L	4	4.00		91	51-140%			
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 82 %	Limits: 44	1-120 %	Dilı	ution: 4x					Q-41
2-Fluorobiphenyl (Surr)			72 %	44	-120 %		"					
Phenol-d6 (Surr)			26 %	10	-133 %		"					Q-41
p-Terphenyl-d14 (Surr)			86 %	50	-134 %		"					-
2-Fluorophenol (Surr)			38 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			84 %	43	-140 %		"					

Apex Laboratories

LCS Dup (23D0435-BSD1)

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Q-19

Philip Nerenberg, Lab Director

Prepared: 04/12/23 07:19 Analyzed: 04/13/23 11:42

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number: 22588.000Report ID:Portland, OR 97232Project Manager: Kelly TitkemeierA3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS Selected Semivolatile Organic Compounds by EPA 8270E

Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit

- Indiy &	resuit	LIIIII	Dillit	Omto	Dilution	Amount	resurt	70 KEC	Lillits	МЪ	Liiiit	110103
Batch 23D0435 - EPA 3510C (Acid Extract	ion)					Wa	ater				
LCS Dup (23D0435-BSD1)			Prepared:	04/12/23 0	7:19 Ana	lyzed: 04/13/	/23 11:42					Q-19
EPA 8270E												
Acenaphthene	3.04	0.0400	0.0800	ug/L	4	4.00		76	47-122%	0.6	30%	
Acenaphthylene	2.90	0.0400	0.0800	ug/L	4	4.00		72	41-130%	0.02	30%	
Anthracene	3.39	0.0400	0.0800	ug/L	4	4.00		85	57-123%	1	30%	
Benz(a)anthracene	3.58	0.0400	0.0800	ug/L	4	4.00		90	58-125%	0.3	30%	
Benzo(a)pyrene	3.40	0.0600	0.120	ug/L	4	4.00		85	54-128%	2	30%	
Benzo(b)fluoranthene	3.35	0.0600	0.120	ug/L	4	4.00		84	53-131%	0.5	30%	
Benzo(k)fluoranthene	3.46	0.0600	0.120	ug/L	4	4.00		87	57-129%	2	30%	
Benzo(g,h,i)perylene	3.85	0.0400	0.0800	ug/L	4	4.00		96	50-134%	0.5	30%	
Chrysene	3.64	0.0400	0.0800	ug/L	4	4.00		91	59-123%	0.8	30%	
Dibenz(a,h)anthracene	3.71	0.0400	0.0800	ug/L	4	4.00		93	51-134%	1	30%	
Fluoranthene	3.52	0.0400	0.0800	ug/L	4	4.00		88	57-128%	4	30%	
Fluorene	3.02	0.0400	0.0800	ug/L	4	4.00		75	52-124%	2	30%	
ndeno(1,2,3-cd)pyrene	3.48	0.0400	0.0800	ug/L	4	4.00		87	52-134%	1	30%	
-Methylnaphthalene	2.76	0.0800	0.160	ug/L	4	4.00		69	41-120%	2	30%	
2-Methylnaphthalene	2.96	0.0800	0.160	ug/L	4	4.00		74	40-121%	1	30%	
Naphthalene	2.67	0.0800	0.160	ug/L	4	4.00		67	40-121%	3	30%	
Phenanthrene	3.22	0.0400	0.0800	ug/L	4	4.00		80	59-120%	1	30%	
Pyrene	3.49	0.0400	0.0800	ug/L	4	4.00		87	57-126%	2	30%	
Carbazole	3.72	0.0600	0.120	ug/L	4	4.00		93	60-122%	4	30%	
Dibenzofuran	3.13	0.0400	0.0800	ug/L	4	4.00		78	53-120%	0.2	30%	
2-Chlorophenol	3.11	0.200	0.400	ug/L	4	4.00		78	38-120%	5	30%	
4-Chloro-3-methylphenol	3.35	0.400	0.800	ug/L	4	4.00		84	52-120%	2	30%	
2,4-Dichlorophenol	3.50	0.200	0.400	ug/L	4	4.00		87	47-121%	0.3	30%	
2,4-Dimethylphenol	2.94	0.200	0.400	ug/L	4	4.00		73	31-124%	5	30%	
2,4-Dinitrophenol	4.06	1.00	2.00	ug/L	4	4.00		102	23-143%	6	30%	Q
4,6-Dinitro-2-methylphenol	3.53	1.00	2.00	ug/L	4	4.00		88	44-137%	7	30%	
2-Methylphenol	3.07	0.100	0.200	ug/L	4	4.00		77	30-120%	8	30%	Q
3+4-Methylphenol(s)	2.97	0.100	0.200	ug/L	4	4.00		74	29-120%	7	30%	
2-Nitrophenol	3.55	0.400	0.800	ug/L	4	4.00		89	47-123%	0.3	30%	Q
1-Nitrophenol	1.32	0.400	0.800	ug/L	4	4.00		33	10-120%	3	30%	
Pentachlorophenol (PCP)	3.32	0.400	0.800	ug/L	4	4.00		83	35-138%	4	30%	
Phenol	1.32	0.800	0.800	ug/L	4	4.00		33	10-120%	8	30%	
2,3,4,6-Tetrachlorophenol	3.22	0.200	0.400	ug/L	4	4.00		81	50-128%	5	30%	

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway Street Project Number: 22588.000 Report ID:
Portland, OR 97232 Project Manager: Kelly Titkemeier A3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

Selected Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike % REC RPD Source Dilution Analyte Result Limit Units Result % REC Limits RPD Limit Limit Amount Notes Batch 23D0435 - EPA 3510C (Acid Extraction) Water LCS Dup (23D0435-BSD1) Prepared: 04/12/23 07:19 Analyzed: 04/13/23 11:42 Q-19 2,3,5,6-Tetrachlorophenol 3.45 0.200 0.400 ug/L 4.00 86 50-121% 2 30% 0.200 0.400 ug/L 2,4,5-Trichlorophenol 3.50 4 4.00 88 53-123% 0.8 30% 2,4,6-Trichlorophenol 3.35 0.2000.400 ug/L 4 4.00 84 50-125% 1 30% Bis(2-ethylhexyl)phthalate 3.84 0.800 1.60 ug/L 4 4.00 96 55-135% 1 30% 4.01 0.800 Butyl benzyl phthalate 1.60 4 4.00 100 53-134% 5 30% ug/L Diethylphthalate 3.29 0.800 4.00 82 56-125% 2 1.60 ug/L 4 30% Dimethylphthalate 0.800 3.44 1.60 ug/L 4 4.00 86 45-127% 1 30% Di-n-butylphthalate 4.03 0.800 4 4.00 101 59-127% 2 30% 1.60 ug/L 0.800 1.60 4 4.00 91 51-140% Di-n-octyl phthalate 3.64 ug/L 0.4 30% Surr: Nitrobenzene-d5 (Surr) Recovery: 86 % Limits: 44-120 % Dilution: 4x Q-41 2-Fluorobiphenyl (Surr) 75 % 44-120 % Phenol-d6 (Surr) 29 % 10-133 % Q-41 p-Terphenyl-d14 (Surr) 87% 50-134 % 19-120 % 2-Fluorophenol (Surr) 41%

43-140 %

82 %

Apex Laboratories

Philip Nevenberg

2,4,6-Tribromophenol (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway Street Project Number: 22588.000 Report ID:

Portland, OR 97232 Project Manager: Kelly Titkemeier A3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution Result RPD Limit Amount Limits Limit Notes Batch 23D0367 - EPA 3510C (Acid/Base Neutral) Water Blank (23D0367-BLK1) Prepared: 04/11/23 07:10 Analyzed: 04/11/23 13:47 EPA 8270E 2,3,4,6-& ND 0.100 0.200 ug/L A-01 2,3,4,5-Tetrachlorophenol(s) Acenaphthene ND 0.0100 0.0200 ug/L 1 0.0100 0.0200 Acenaphthylene ND ug/L 1 ND 0.0100 0.0200 Anthracene ug/L 1 ND 0.0100 Benz(a)anthracene 0.0200ug/L 1 Benzo(a)pyrene ND 0.0150 0.0300 ug/L 1 Benzo(b)fluoranthene ND 0.0150 0.0300 ug/L 1 ---ND 0.0150 0.0300 Benzo(k)fluoranthene ug/L 1 0.0100 ND 0.0200 Benzo(g,h,i)perylene ug/L 1 ___ ---------Chrysene ND 0.0100 0.0200 ug/L 1 0.0100 0.0200 Dibenz(a,h)anthracene ND ug/L 1 Fluoranthene ND 0.0100 0.0200 ug/L 1 Fluorene ND 0.0100 0.0200 ug/L 1 ---------Indeno(1,2,3-cd)pyrene ND 0.0100 0.0200 ug/L 1 0.0200 0.0400 1-Methylnaphthalene ND ug/L 1 2-Methylnaphthalene ND 0.0200 0.0400 ug/L 1 ND 0.0200 0.0400 Naphthalene ug/L 1 Phenanthrene ND 0.01000.0200ug/L 1 Pyrene ND 0.0100 0.0200 ug/L 1 ---------Carbazole ND 0.0150 0.0300 ug/L 1 ND 0.0100 0.0200 Dibenzofuran ug/L 1 ---2-Chlorophenol ND 0.0500 0.100 ug/L 1 4-Chloro-3-methylphenol ND 0.100 0.200 ug/L 1 2,4-Dichlorophenol ND 0.05000.100ug/L 1 2,4-Dimethylphenol ND 0.0500 0.100 ug/L 1 ---------2,4-Dinitrophenol ND 0.250 0.500 ug/L 1 4,6-Dinitro-2-methylphenol ND 0.250 0.500 ug/L 1 2-Methylphenol ND 0.02500.0500ug/L 1 ___ 3+4-Methylphenol(s) ND 0.0250 0.0500 ug/L 1 ---------2-Nitrophenol ND 0.1000.200 ug/L 1 4-Nitrophenol ND 0.100 0.200 ug/L 1 Pentachlorophenol (PCP) ND 0.100 0.200 ug/L 1 Phenol ND 0.200 0.400 ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 24 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number: 22588.000Report ID:Portland, OR 97232Project Manager: Kelly TitkemeierA3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0367 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
Blank (23D0367-BLK1) Prepared: 04/11/23 07:10 Analyzed: 04/11/23 13:47												
2,3,4,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1							
2,3,5,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,5-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,6-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
Bis(2-ethylhexyl)phthalate	ND	0.200	0.400	ug/L	1							
Butyl benzyl phthalate	ND	0.200	0.400	ug/L	1							
Diethylphthalate	ND	0.200	0.400	ug/L	1							
Dimethylphthalate	ND	0.200	0.400	ug/L	1							
Di-n-butylphthalate	ND	0.200	0.400	ug/L	1							
Di-n-octyl phthalate	ND	0.200	0.400	ug/L	1							
N-Nitrosodimethylamine	ND	0.0250	0.0500	ug/L	1							
N-Nitroso-di-n-propylamine	ND	0.0250	0.0500	ug/L	1							
N-Nitrosodiphenylamine	ND	0.0250	0.0500	ug/L	1							
Bis(2-Chloroethoxy) methane	ND	0.0250	0.0500	ug/L	1							
Bis(2-Chloroethyl) ether	ND	0.0250	0.0500	ug/L	1							
2,2'-Oxybis(1-Chloropropane)	ND	0.0250	0.0500	ug/L	1							
Hexachlorobenzene	ND	0.0100	0.0200	ug/L	1							
Hexachlorobutadiene	ND	0.0250	0.0500	ug/L	1							
Hexachlorocyclopentadiene	ND	0.0500	0.100	ug/L	1							
Hexachloroethane	ND	0.0250	0.0500	ug/L	1							
2-Chloronaphthalene	ND	0.0100	0.0200	ug/L	1							
1,2,4-Trichlorobenzene	ND	0.0250	0.0500	ug/L	1							
4-Bromophenyl phenyl ether	ND	0.0250	0.0500	ug/L	1							
4-Chlorophenyl phenyl ether	ND	0.0250	0.0500	ug/L	1							
Aniline	ND	0.0500	0.100	ug/L	1							
4-Chloroaniline	ND	0.0250	0.0500	ug/L	1							
2-Nitroaniline	ND	0.200	0.400	ug/L	1							
3-Nitroaniline	ND	0.200	0.400	ug/L	1							
4-Nitroaniline	ND	0.200	0.400	ug/L	1							
Nitrobenzene	ND	0.100	0.200	ug/L	1							
2,4-Dinitrotoluene	ND	0.100	0.200	ug/L	1							
2,6-Dinitrotoluene	ND	0.100	0.200	ug/L	1							
Benzoic acid	ND	1.25	2.50	ug/L ug/L	1							
Benzyl alcohol	ND	0.100	0.200	ug/L ug/L	1							

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number: 22588.000Report ID:Portland, OR 97232Project Manager: Kelly TitkemeierA3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

			mivolatile	gaine \	poul	~ y = 1 /						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0367 - EPA 3510C (A	Acid/Base	Neutral)					Wa	ter				
Blank (23D0367-BLK1)			Prepared	: 04/11/23	07:10 Anal	yzed: 04/11/	/23 13:47					
Sophorone	ND	0.0250	0.0500	ug/L	1							
Azobenzene (1,2-DPH)	ND	0.0250	0.0500	ug/L	1							
Bis(2-Ethylhexyl) adipate	ND	0.250	0.500	ug/L	1							
3,3'-Dichlorobenzidine	ND	0.500	1.00	ug/L	1							Ç
1,2-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
1,3-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
1,4-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
Pyridine	ND	0.100	0.200	ug/L	1							
1,2-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							
1,3-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							
1,4-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 51 %	Limits: 44	1-120 %	Dilu	ution: 1x					Q-41
2-Fluorobiphenyl (Surr)			42 %	44	-120 %		"					S-06
Phenol-d6 (Surr)			13 %	10	-133 %		"					Q-41
p-Terphenyl-d14 (Surr)			78 %	50	-134 %		"					
2-Fluorophenol (Surr)			22 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			58 %	43	-140 %		"					
LCS (23D0367-BS1)			Prepared	: 04/11/23	07:10 Anal	yzed: 04/11/	/23 14:21					
EPA 8270E			•			-						
Acenaphthene	2.88	0.0400	0.0800	ug/L	4	4.00		72	47-122%			
Acenaphthylene	2.68	0.0400	0.0800	ug/L	4	4.00		67	41-130%			
Anthracene	3.73	0.0400	0.0800	ug/L	4	4.00		93	57-123%			
Benz(a)anthracene	4.03	0.0400	0.0800	ug/L	4	4.00		101	58-125%			
Benzo(a)pyrene	3.73	0.0600	0.120	ug/L	4	4.00		93	54-128%			
Benzo(b)fluoranthene	3.76	0.0600	0.120	ug/L	4	4.00		94	53-131%			
Benzo(k)fluoranthene	3.80	0.0600	0.120	ug/L	4	4.00		95	57-129%			
Benzo(g,h,i)perylene	4.25	0.0400	0.0800	ug/L	4	4.00		106	50-134%			
Chrysene	4.04	0.0400	0.0800	ug/L	4	4.00		101	59-123%			
Dibenz(a,h)anthracene	4.12	0.0400	0.0800	ug/L	4	4.00		103	51-134%			
Fluoranthene	4.02	0.0400	0.0800	ug/L	4	4.00		100	57-128%			
Fluorene	3.10	0.0400	0.0800	ug/L	4	4.00		78	52-124%			
				_								
Indeno(1,2,3-cd)pyrene	3.87	0.0400	0.0800	ug/L	4	4.00		97	52-134%			

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number: 22588.000Report ID:Portland, OR 97232Project Manager: Kelly TitkemeierA3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0367 - EPA 3510C (A	Acid/Base	Neutral)					Wa	ter				
LCS (23D0367-BS1)			Prepared	: 04/11/23	07:10 Anal	yzed: 04/11/	23 14:21					
2-Methylnaphthalene	2.57	0.0800	0.160	ug/L	4	4.00		64	40-121%			
Naphthalene	2.28	0.0800	0.160	ug/L	4	4.00		57	40-121%			
Phenanthrene	3.53	0.0400	0.0800	ug/L	4	4.00		88	59-120%			
Pyrene	4.00	0.0400	0.0800	ug/L	4	4.00		100	57-126%			
Carbazole	4.29	0.0600	0.120	ug/L	4	4.00		107	60-122%			
Dibenzofuran	3.02	0.0400	0.0800	ug/L	4	4.00		76	53-120%			
2-Chlorophenol	2.30	0.200	0.400	ug/L	4	4.00		57	38-120%			
4-Chloro-3-methylphenol	3.11	0.400	0.800	ug/L	4	4.00		78	52-120%			
2,4-Dichlorophenol	2.90	0.200	0.400	ug/L	4	4.00		72	47-121%			Q-41
2,4-Dimethylphenol	2.60	0.200	0.400	ug/L	4	4.00		65	31-124%			
2,4-Dinitrophenol	3.92	1.00	2.00	ug/L	4	4.00		98	23-143%			Q-41
4,6-Dinitro-2-methylphenol	3.74	1.00	2.00	ug/L	4	4.00		94	44-137%			
2-Methylphenol	2.48	0.100	0.200	ug/L	4	4.00		62	30-120%			Q-41
3+4-Methylphenol(s)	2.46	0.100	0.200	ug/L	4	4.00		62	29-120%			
2-Nitrophenol	3.29	0.400	0.800	ug/L	4	4.00		82	47-123%			Q-41
4-Nitrophenol	1.48	0.400	0.800	ug/L	4	4.00		37	10-120%			
Pentachlorophenol (PCP)	3.77	0.400	0.800	ug/L	4	4.00		94	35-138%			
Phenol	1.09	0.800	0.800	ug/L	4	4.00		27	10-120%			
2,3,4,6-Tetrachlorophenol	3.44	0.200	0.400	ug/L	4	4.00		86	50-128%			
2,3,5,6-Tetrachlorophenol	3.69	0.200	0.400	ug/L	4	4.00		92	50-121%			
2,4,5-Trichlorophenol	3.35	0.200	0.400	ug/L	4	4.00		84	53-123%			
2,4,6-Trichlorophenol	3.05	0.200	0.400	ug/L	4	4.00		76	50-125%			
Bis(2-ethylhexyl)phthalate	4.41	0.800	1.60	ug/L	4	4.00		110	55-135%			
Butyl benzyl phthalate	4.62	0.800	1.60	ug/L	4	4.00		116	53-134%			
Diethylphthalate	3.67	0.800	1.60	ug/L	4	4.00		92	56-125%			
Dimethylphthalate	3.57	0.800	1.60	ug/L	4	4.00		89	45-127%			
Di-n-butylphthalate	4.59	0.800	1.60	ug/L	4	4.00		115	59-127%			
Di-n-octyl phthalate	4.13	0.800	1.60	ug/L	4	4.00		103	51-140%			
N-Nitrosodimethylamine	1.55	0.100	0.200	ug/L	4	4.00		39	19-120%			
N-Nitroso-di-n-propylamine	2.77	0.100	0.200	ug/L	4	4.00		69	49-120%			
N-Nitrosodiphenylamine	3.66	0.100	0.200	ug/L	4	4.00		91	51-123%			
Bis(2-Chloroethoxy) methane	2.98	0.100	0.200	ug/L	4	4.00		74	48-120%			Q-41
Bis(2-Chloroethyl) ether	2.11	0.100	0.200	ug/L	4	4.00		53	43-120%			Q-41
2,2'-Oxybis(1-Chloropropane)	2.19	0.100	0.200	ug/L	4	4.00		55	41-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number:22588.000Report ID:Portland, OR 97232Project Manager:Kelly TitkemeierA3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution RPD Limit Amount Result Limits Limit Notes Batch 23D0367 - EPA 3510C (Acid/Base Neutral) Water LCS (23D0367-BS1) Prepared: 04/11/23 07:10 Analyzed: 04/11/23 14:21 3.36 0.0400 0.0800 4 4.00 84 Hexachlorobenzene ug/L 53-125% Hexachlorobutadiene 1.79 0.100 0.200 4 4.00 45 22-124% ug/L ------Hexachlorocyclopentadiene 2.28 0.200 0.400 ug/L 4 4.00 57 10-127% O-41 Hexachloroethane 1.77 0.1000.200 ug/L 4 4.00 44 21-120% 70 2-Chloronaphthalene 2.81 0.0400 0.08004 4.00 40-120% ug/L ug/L 1,2,4-Trichlorobenzene 2.05 0.100 0.200 4 4.00 51 29-120% 4-Bromophenyl phenyl ether 3.61 0.100 0.200 ug/L 4 4.00 90 55-124% 4 4.00 82 4-Chlorophenyl phenyl ether 3.28 0.100 0.200 ug/L 53-121% Q-31 0.200 0.400 Aniline 1.31 ug/L 4 4.00 33 10-120% 4-Chloroaniline 2.09 0.1000.200 ug/L 4 4.00 52 33-120% 2-Nitroaniline 4 4.00 87 55-127% 3.46 0.800 1.60 ug/L 0.800 3-Nitroaniline 3.19 1.60 ug/L 4 4.00 80 41-128% 4.04 0.800 4 4.00 101 25-120% 4-Nitroaniline 1.60 ug/L Nitrobenzene 2.82 0.400 0.800 ug/L 4 4.00 71 45-121% Q-41 0.400 0.800 4 4.00 93 57-128% 2,4-Dinitrotoluene 3.71 ug/L 2,6-Dinitrotoluene 3.61 0.400 0.800 ug/L 4 4.00 90 57-124% 4.00 4.00 4 8.00 Benzoic acid 4.26 53 10-120% ug/L Benzyl alcohol 2.31 0.400 4 4.00 58 31-120% 0.800 ug/L 2.65 0.100 0.200 4 4.00 42-124% Isophorone ug/L ---66 ---Azobenzene (1,2-DPH) 3.55 0.100 0.200 ug/L 4 4.00 89 61-120% 4.54 1.00 2.00 4 4.00 114 63-121% Bis(2-Ethylhexyl) adipate ug/L ---3,3'-Dichlorobenzidine 14.0 2.00 4.00 ug/L 4 8.00 175 27-129% Q-29, Q-31, O-52 1,2-Dinitrobenzene 3.54 1.00 2.00 ug/L 4 4.00 89 59-120% 1,3-Dinitrobenzene 3.69 1.00 2.00 ug/L 4 4.00 92 49-128% 1,4-Dinitrobenzene 3.76 1.00 2.00 4 4.00 94 54-120% ug/L 0.400 Pyridine 0.800 4 4.00 28 10-120% 1.13 ug/L 0.100 47 1,2-Dichlorobenzene 1.88 0.200 ug/L 4 4.00 32-120% 1.77 4.00 1,3-Dichlorobenzene 0.100 0.200 ug/L 4 44 28-120% ---1,4-Dichlorobenzene 1.82 0.100 0.200 ug/L 4 46 29-120% Surr: Nitrobenzene-d5 (Surr) Recovery: 70 % Limits: 44-120 % Dilution: 4x Q-41 2-Fluorobiphenyl (Surr) 44-120 % 69% Phenol-d6 (Surr) 22 % 10-133 % Q-41 108 % p-Terphenyl-d14 (Surr) 50-134 % 2-Fluorophenol (Surr) 31% 19-120 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number:22588.000Report ID:Portland, OR 97232Project Manager:Kelly TitkemeierA3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution RPD Limit Amount Result Limits Limit Notes Batch 23D0367 - EPA 3510C (Acid/Base Neutral) Water LCS (23D0367-BS1) Prepared: 04/11/23 07:10 Analyzed: 04/11/23 14:21 Surr: 2,4,6-Tribromophenol (Surr) Recovery: 94% Limits: 43-140 % Dilution: 4x LCS Dup (23D0367-BSD1) Prepared: 04/11/23 07:10 Analyzed: 04/11/23 14:55 Q-19 EPA 8270E 3.20 0.0400 0.0800 4 4.00 80 47-122% 10 30% Acenaphthene ug/L Acenaphthylene 2.99 0.0400 0.0800 ug/L 4 4.00 75 41-130% 11 30% Anthracene 3.67 0.0400 0.0800 ug/L 4 4.00 92 57-123% 2 30% Benz(a)anthracene 3.90 0.0400 0.0800 4 4.00 97 58-125% 3 30% ug/L 0.0600 91 0.120 4 4.00 54-128% 3 30% Benzo(a)pyrene 3.63 ug/L Benzo(b)fluoranthene 3.64 0.0600 0.120 4 4.00 91 53-131% 3 30% ug/L Benzo(k)fluoranthene 3.73 0.0600 0.120 4 4.00 93 30% ug/L 57-129% 2 Benzo(g,h,i)perylene 4.09 0.0400 0.0800 ug/L 4 4.00 102 50-134% 4 30% Chrysene 3.90 0.0400 0.0800 ug/L 4 4.00 98 59-123% 4 30% Dibenz(a,h)anthracene 3.97 0.04000.0800 ug/L 4 4.00 99 51-134% 4 30% Fluoranthene 3.93 0.0400 0.0800 ug/L 4 4.00 98 57-128% 2 30% ---Fluorene 3.26 0.0400 0.08004 4.00 81 52-124% 5 30% ug/L 3.74 0.0400 0.0800 4 4.00 94 52-134% 3 30% Indeno(1,2,3-cd)pyrene ug/L 1-Methylnaphthalene 2.89 0.0800 0.160 ug/L 4 4.00 72 41-120% 17 30% 2-Methylnaphthalene 3.15 0.0800 0.160 ug/L 4 4.00 79 40-121% 20 30% Naphthalene 2.76 0.08000.160 ug/L 4 4.00 69 40-121% 19 30% 3.49 0.0400 0.0800 ug/L 4 4.00 87 59-120% 1 30% Phenanthrene 97 57-126% 3 Pyrene 3.86 0.0400 0.0800 ug/L 4 4.00 30% Carbazole 4.12 0.0600 0.120 4 4.00 103 60-122% 4 30% ug/L Dibenzofuran 3.33 0.0400 0.0800 ug/L 4 4.00 83 53-120% 10 30% 2-Chlorophenol 2.86 0.200 0.400 ug/L 4 4.00 72 38-120% 22 30% 0.8004-Chloro-3-methylphenol 3.43 0.400 ug/L 4 4.00 86 52-120% 10 30% 2,4-Dichlorophenol 3.48 0.200 0.400 ug/L 4 4.00 87 47-121% 18 30% Q-41 3.06 0.200 77 2,4-Dimethylphenol 0.400 ug/L 4 4.00 31-124% 16 30% ug/L 2,4-Dinitrophenol 3.95 1.00 2.00 4 4.00 99 23-143% 0.8 30% Q-41 91 4,6-Dinitro-2-methylphenol 3.65 1.00 2.00 ug/L 4 4.00 44-137% 2 30% ug/L 2-Methylphenol 3.00 0.100 0.200 4 4.00 75 30-120% 19 30% Q-41 3+4-Methylphenol(s) 2.90 0.100 0.200 4 4.00 72 29-120% 30% ug/L 16 Q-41 2-Nitrophenol 4.21 0.400 0.800 ug/L 4 4.00 105 47-123% 25 30% 4-Nitrophenol 1.46 0.4000.800 4.00 10-120% 2 30% ug/L 4 36

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 29 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number: 22588.000Report ID:Portland, OR 97232Project Manager: Kelly TitkemeierA3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0367 - EPA 3510C (Acid/Base	Neutral)					Wa	ter				
LCS Dup (23D0367-BSD1)	Prepared: 04/11/23 07:10 Analyzed: 04/11/23 14:55										Q-19	
Pentachlorophenol (PCP)	3.73	0.400	0.800	ug/L	4	4.00		93	35-138%	1	30%	
Phenol	1.35	0.800	0.800	ug/L	4	4.00		34	10-120%	22	30%	
2,3,4,6-Tetrachlorophenol	3.54	0.200	0.400	ug/L	4	4.00		88	50-128%	3	30%	
2,3,5,6-Tetrachlorophenol	3.75	0.200	0.400	ug/L	4	4.00		94	50-121%	2	30%	
2,4,5-Trichlorophenol	3.62	0.200	0.400	ug/L	4	4.00		91	53-123%	8	30%	
2,4,6-Trichlorophenol	3.39	0.200	0.400	ug/L	4	4.00		85	50-125%	11	30%	
Bis(2-ethylhexyl)phthalate	4.22	0.800	1.60	ug/L	4	4.00		106	55-135%	4	30%	
Butyl benzyl phthalate	4.49	0.800	1.60	ug/L	4	4.00		112	53-134%	3	30%	
Diethylphthalate	3.63	0.800	1.60	ug/L	4	4.00		91	56-125%	1	30%	
Dimethylphthalate	3.63	0.800	1.60	ug/L	4	4.00		91	45-127%	2	30%	
Di-n-butylphthalate	4.50	0.800	1.60	ug/L	4	4.00		112	59-127%	2	30%	
Di-n-octyl phthalate	3.98	0.800	1.60	ug/L	4	4.00		100	51-140%	4	30%	
N-Nitrosodimethylamine	1.92	0.100	0.200	ug/L	4	4.00		48	19-120%	22	30%	
N-Nitroso-di-n-propylamine	3.45	0.100	0.200	ug/L	4	4.00		86	49-120%	22	30%	
N-Nitrosodiphenylamine	3.65	0.100	0.200	ug/L	4	4.00		91	51-123%	0.4	30%	
Bis(2-Chloroethoxy) methane	3.63	0.100	0.200	ug/L	4	4.00		91	48-120%	20	30%	Q-41
Bis(2-Chloroethyl) ether	2.74	0.100	0.200	ug/L	4	4.00		69	43-120%	26	30%	Q-41
2,2'-Oxybis(1-Chloropropane)	2.74	0.100	0.200	ug/L	4	4.00		69	41-120%	22	30%	
Hexachlorobenzene	3.33	0.0400	0.0800	ug/L	4	4.00		83	53-125%	1	30%	
Hexachlorobutadiene	2.23	0.100	0.200	ug/L	4	4.00		56	22-124%	22	30%	
Hexachlorocyclopentadiene	2.68	0.200	0.400	ug/L	4	4.00		67	10-127%	16	30%	Q-41
Hexachloroethane	2.19	0.100	0.200	ug/L	4	4.00		55	21-120%	21	30%	
2-Chloronaphthalene	3.27	0.0400	0.0800	ug/L	4	4.00		82	40-120%	15	30%	
1,2,4-Trichlorobenzene	2.54	0.100	0.200	ug/L	4	4.00		64	29-120%	22	30%	
4-Bromophenyl phenyl ether	3.67	0.100	0.200	ug/L	4	4.00		92	55-124%	1	30%	
4-Chlorophenyl phenyl ether	3.43	0.100	0.200	ug/L	4	4.00		86	53-121%	4	30%	
Aniline	1.28	0.200	0.400	ug/L	4	4.00		32	10-120%	2	30%	Q-31
4-Chloroaniline	2.87	0.100	0.200	ug/L	4	4.00		72	33-120%		30%	Q-24
2-Nitroaniline	3.65	0.800	1.60	ug/L	4	4.00		91	55-127%		30%	
3-Nitroaniline	2.94	0.800	1.60	ug/L	4	4.00		73	41-128%		30%	
4-Nitroaniline	3.86	0.800	1.60	ug/L	4	4.00		96	25-120%		30%	
Nitrobenzene	3.51	0.400	0.800	ug/L	4	4.00		88	45-121%		30%	Q-41
2,4-Dinitrotoluene	3.61	0.400	0.800	ug/L	4	4.00		90	57-128%		30%	
2,6-Dinitrotoluene	3.74	0.400	0.800	ug/L	4	4.00		93	57-124%		30%	

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number: 22588.000Report ID:Portland, OR 97232Project Manager: Kelly TitkemeierA3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

	Semivolatile Organic Compounds by EPA 8270E											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0367 - EPA 3510C (A	Acid/Base	Neutral)					Wa	iter				
LCS Dup (23D0367-BSD1)			Prepared	1: 04/11/23	07:10 Ana	lyzed: 04/11	/23 14:55					Q-19
Benzoic acid	4.39	4.00	4.00	ug/L	4	8.00		55	10-120%	3	30%	
Benzyl alcohol	2.83	0.400	0.800	ug/L	4	4.00		71	31-120%	20	30%	
Isophorone	3.13	0.100	0.200	ug/L	4	4.00		78	42-124%	16	30%	
Azobenzene (1,2-DPH)	3.58	0.100	0.200	ug/L	4	4.00		90	61-120%	0.9	30%	
Bis(2-Ethylhexyl) adipate	4.38	1.00	2.00	ug/L	4	4.00		109	63-121%	4	30%	
3,3'-Dichlorobenzidine	12.1	2.00	4.00	ug/L	4	8.00		152	27-129%	14	30%	Q-29, Q-31 Q-5
1,2-Dinitrobenzene	3.63	1.00	2.00	ug/L	4	4.00		91	59-120%	2	30%	
1,3-Dinitrobenzene	3.81	1.00	2.00	ug/L	4	4.00		95	49-128%	3	30%	
1,4-Dinitrobenzene	3.81	1.00	2.00	ug/L	4	4.00		95	54-120%	2	30%	
Pyridine	1.44	0.400	0.800	ug/L	4	4.00		36	10-120%	24	30%	
1,2-Dichlorobenzene	2.34	0.100	0.200	ug/L	4	4.00		59	32-120%	22	30%	
1,3-Dichlorobenzene	2.18	0.100	0.200	ug/L	4	4.00		54	28-120%	20	30%	
1,4-Dichlorobenzene	2.24	0.100	0.200	ug/L	4	4.00		56	29-120%	21	30%	
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 85 %	Limits: 44	4-120 %	Dilı	ution: 4x					Q-41
2-Fluorobiphenyl (Surr)			79 %	44	4-120 %		"					
Phenol-d6 (Surr)			26 %	10	0-133 %		"					Q-41
p-Terphenyl-d14 (Surr)			101 %	50	0-134 %		"					
2-Fluorophenol (Surr)			38 %	19	0-120 %		"					
2,4,6-Tribromophenol (Surr)			90 %	43	3-140 %		"					
Matrix Spike (23D0367-MS1)			Prepared	1: 04/11/23	07:10 Ana	lyzed: 04/11	/23 15:57					
OC Source Sample: R-2-0423 (A3	D0912-08)											
EPA 8270E												
Acenaphthene	97.4	0.196	0.392	ug/L	20	3.92	93.2	107	47-122%			
Acenaphthylene	4.54	2.55	2.55	ug/L	20	3.92	ND	116	41-130%			
Anthracene	12.2	0.196	0.392	ug/L	20	3.92	10.0	56	57-123%			Q-0
Benz(a)anthracene	6.01	0.196	0.392	ug/L	20	3.92	3.83	56	58-125%			Q-0
Benzo(a)pyrene	4.29	0.294	0.588	ug/L	20	3.92	1.45	72	54-128%			
Benzo(b)fluoranthene	4.37	0.294	0.588	ug/L	20	3.92	1.75	67	53-131%			
Benzo(k)fluoranthene	3.96	0.294	0.588	ug/L	20	3.92	0.878	79	57-129%			
Benzo(g,h,i)perylene	4.00	0.196	0.392	ug/L	20	3.92	0.276	95	50-134%			
Chrysene	6.03	0.196	0.392	ug/L	20	3.92	3.80	57	59-123%			Q-0
D'' (1) d	2.02	0.106	0.202	- 07	20	2.02	ND	00	51 12 40/			

Apex Laboratories

Dibenz(a,h)anthracene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

98

ND

51-134%

Philip Nevenberg

3.83

0.196

0.392

Philip Nerenberg, Lab Director

20

ug/L

3.92

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number:22588.000Report ID:Portland, OR 97232Project Manager:Kelly TitkemeierA3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23D0367 - EPA 3510C (Acid/Base Neutral) Water Matrix Spike (23D0367-MS1) Prepared: 04/11/23 07:10 Analyzed: 04/11/23 15:57 QC Source Sample: R-2-0423 (A3D0912-08) Fluoranthene 23.7 0.196 0.392 ug/L 20 3.92 29.7 -152 57-128% O - 030.196 0.392 3.92 Q-03 Fluorene 46.0 ug/L 20 44.5 38 52-124% ug/L Indeno(1,2,3-cd)pyrene 3.64 0.196 0.392 20 3.92 0.390 83 52-134% Q-03 1-Methylnaphthalene 53.4 0.392 0.784 ug/L 20 3.92 38.3 386 41-120% 2-Methylnaphthalene 6.78 0.392 0.784 20 3.92 0.907 150 40-121% Q-03 ug/L ---3.92 ND 40-121% Naphthalene 3.40 0.784 0.784 ug/L 20 87 Q-03 Phenanthrene 38.3 0.196 0.392 ug/L 20 3.92 40.3 -49 59-120% 0.392 3.92 25.0 Q-03 Pyrene 20.5 0.196 ug/L 20 -116 57-126% ---Carbazole 4.41 0.588 0.588 ug/L 20 3.92 ND 112 60-122% Dibenzofuran 36.2 0.196 0.392 ug/L 20 3.92 31.4 123 53-120% Q-03 2-Chlorophenol 2.89 0.980 1.96 ug/L 20 3.92 ND 74 38-120% 0-11 4.77 1.96 3.92 20 3.92 ND 52-120% 4-Chloro-3-methylphenol ug/L 122 3.92 Q-41 2,4-Dichlorophenol 4.58 0.980 1.96 ug/L 20 ND 88 47-121% O-022,4-Dimethylphenol 6.01 3.53 3.53 3.92 ND 153 31-124% ug/L 20 ---Q-11, Q-41, J 2,4-Dinitrophenol 7.11 4.90 9.80 ug/L 20 3.92 ND 181 23-143% 4,6-Dinitro-2-methylphenol 6.84 4.90 9.80 ug/L 20 3.92 ND 174 44-137% ___ Q-11, J 2-Methylphenol 3.43 0.980 0.980 ug/L 20 3.92 ND 87 30-120% Q-41 3.71 0.490 0.980 3.92 ND 95 3+4-Methylphenol(s) 20 29-120% ug/L ---5.09 3.92 ND 47-123% Q-11, Q-41 2-Nitrophenol 1.96 3.92 ug/L 20 130 Q-02 3.92 4-Nitrophenol ND 7.65 7.65 20 ND 10-120% ug/L Pentachlorophenol (PCP) 43.2 3.92 39.6 92 35-138% 1.96 3.92 ug/L 20 Q-11 Phenol ND 3.92 7.84 ug/L 20 3.92 ND 10-120% ---2,3,4,6-Tetrachlorophenol 5.63 0.980 1.96 ug/L 20 3.92 2.05 91 50-128% 5.09 0.980 1.96 3 92 97 2,3,5,6-Tetrachlorophenol ug/L 20 1.27 50-121% 0.980 1.96 3.92 88 53-123% 2,4,5-Trichlorophenol 4.64 ug/L 20 1.18 4.05 0.980 3.92 2,4,6-Trichlorophenol 1.96 20 ND 103 50-125% ug/L Bis(2-ethylhexyl)phthalate 5.63 3.92 7.84 20 3.92 ND 55-135% Q-11, J ug/L 143 3.92 ND Butyl benzyl phthalate 4.73 3.92 7.84 ug/L 20 121 53-134% ---J Q-11 Diethylphthalate ND 3.92 7.84 ug/L 20 3.92 ND 56-125% ND 3.92 7.84 20 3 92 ND 45-127% Q-11 Dimethylphthalate ug/L ---Di-n-butylphthalate 4.64 3.92 7.84 ug/L 20 3.92 ND 118 59-127%

Apex Laboratories

Philip Nevenberg

N-Nitrosodimethylamine

Di-n-octyl phthalate

5.07

1.65

3.92

0.490

7.84

0.980

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

129

42

51-140%

19-120%

Philip Nerenberg, Lab Director

Page 32 of 44

20

20

ug/L

ug/L

3.92

3.92

ND

ND

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway Street Project Number: 22588.000 Report ID:
Portland, OR 97232 Project Manager: Kelly Titkemeier A3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23D0367 - EPA 3510C (Acid/Base Neutral) Water Matrix Spike (23D0367-MS1) Prepared: 04/11/23 07:10 Analyzed: 04/11/23 15:57 QC Source Sample: R-2-0423 (A3D0912-08) N-Nitroso-di-n-propylamine 3.66 0.980 0.980 ug/L 20 3.92 ND 93 49-120% 3.92 Q-02 N-Nitrosodiphenylamine 9.48 6.47 6.47 ug/L 20 ND 242 51-123% ug/L Bis(2-Chloroethoxy) methane 4.55 0.980 0.980 20 3.92 ND 116 48-120% 0-41Q-41 Bis(2-Chloroethyl) ether 2.60 0.490 0.980 ug/L 20 3.92 ND 66 43-120% 2,2'-Oxybis(1-Chloropropane) 2.50 0.490 0.980 20 3.92 ND 64 41-120% ug/L ---0.196 0.392 3.92 90 Hexachlorobenzene 3.52 ug/L 20 ND 53-125% ug/L Hexachlorobutadiene 2.29 0.490 0.980 20 3.92 ND 58 22-124% 0.980 3.92 80 O-41 Hexachlorocyclopentadiene 3.15 1.96 ug/L 20 ND 10-127% ---Hexachloroethane 1.80 0.490 0.980 ug/L 20 3.92 ND 46 21-120% 2-Chloronaphthalene 3.57 0.392 0.392 ug/L 20 3.92 ND 91 40-120% 1,2,4-Trichlorobenzene 2.55 0.490 0.980 ug/L 20 3.92 ND 65 29-120% 0.490 4-Bromophenyl phenyl ether 0.980 20 3.92 ND 97 3.82 ug/L 55-124% 3.92 4-Chlorophenyl phenyl ether 3.64 0.490 0.980 ug/L 20 ND 93 53-121% Q-31, J Aniline 1.94 0.980 1.96 3.92 ND 50 ug/L 20 10-120% 0.490 ug/L 4-Chloroaniline 4.10 0.980 20 3.92 ND 105 33-120% 2-Nitroaniline 4.43 3.92 7.84 ug/L 20 3.92 ND 113 55-127% ___ J 3-Nitroaniline ND 3.92 7.84 ug/L 20 3.92 ND 41-128% Q-11 5.54 3.92 3.92 ND Q-11, J 4-Nitroaniline 7.84 20 141 25-120% ug/L 3.92 ND 45-121% Q-41 Nitrobenzene 4.45 1.96 3.92 ug/L 20 114 1.96 3.92 O-11 4.14 20 3.92 ND 53 57-128% 2,4-Dinitrotoluene ug/L 2.6-Dinitrotoluene 3.92 ND 57-124% 4.81 1.96 3.92 ug/L 20 123 Q-02 Benzoic acid ND 49.0 49.0 ug/L 20 7.84 ND 10-120% ---Benzyl alcohol 3.27 1.96 3.92 ug/L 20 3.92 ND 83 31-120% J 0.980 0.980 3 92 98 Isophorone 3.85 20 ND 42-124% ug/L ---0.980 0.980 3.92 Azobenzene (1,2-DPH) 4.05 ug/L 20 ND 103 61-120% 3.92 Q-11, J 5.08 4.90 9.80 ND Bis(2-Ethylhexyl) adipate ug/L 20 129 63-121% 3,3'-Dichlorobenzidine ND 9.80 19.6 20 7.84 ND 27-129% Q-11, Q-31, ug/L O - 524.90 3.92 1,2-Dinitrobenzene ND 9.80 20 ND 59-120% Q-11 ug/L ------Q-11 1,3-Dinitrobenzene ND 4.90 9.80 ug/L 20 3.92 ND 49-128% 1,4-Dinitrobenzene ND 4.90 9.80 ug/L 20 3.92 ND 54-120% Q-11 Q-11 Pyridine ND 1.96 3.92 20 3.92 ND ug/L 10-120% 1,2-Dichlorobenzene 2.14 0.490 0.980 ug/L 20 3.92 ND 54 32-120%

Apex Laboratories

Philip Menberg

1,3-Dichlorobenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

28-120%

55

ND

Philip Nerenberg, Lab Director

Page 33 of 44

20

3.92

0.490

2.14

0.980

ug/L

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number: 22588.000Report ID:Portland, OR 97232Project Manager: Kelly TitkemeierA3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0367 - EPA 3510C (A	Acid/Base	Neutral)					Wa	ter				
Matrix Spike (23D0367-MS1)			Prepared	1: 04/11/23	07:10 Ana	lyzed: 04/11	/23 15:57					
QC Source Sample: R-2-0423 (A3	D0912-08)											
1,4-Dichlorobenzene	2.13	0.490	0.980	ug/L	20	3.92	ND	54	29-120%			
Surr: Nitrobenzene-d5 (Surr)		Rece	overy: 76 %	Limits: 4	4-120 %	Dil	ution: 20x					Q-41
2-Fluorobiphenyl (Surr)			89 %	44	4-120 %		"					
Phenol-d6 (Surr)			31 %	10	0-133 %		"					Q-41
p-Terphenyl-d14 (Surr)			89 %	50	0-134 %		"					
2-Fluorophenol (Surr)			33 %	19	9-120 %		"					
2,4,6-Tribromophenol (Surr)			109 %	43	3-140 %		"					
Matrix Spike Dup (23D0367-M	ISD1)		Prepared	1: 04/11/23	07:10 Ana	lyzed: 04/11	/23 16:30					
QC Source Sample: R-2-0423 (A3	D0912-08)											
EPA 8270E												
Acenaphthene	93.2	0.194	0.388	ug/L	20	3.88	93.2	0.9	47-122%	4	30%	Q-
Acenaphthylene	4.51	2.52	2.52	ug/L	20	3.88	ND	116	41-130%	0.8	30%	
Anthracene	11.8	0.194	0.388	ug/L	20	3.88	10.0	44	57-123%	4	30%	Q-
Benz(a)anthracene	5.98	0.194	0.388	ug/L	20	3.88	3.83	55	58-125%	0.5	30%	Q-
Benzo(a)pyrene	4.27	0.291	0.583	ug/L	20	3.88	1.45	72	54-128%	0.6	30%	
Benzo(b)fluoranthene	4.23	0.291	0.583	ug/L	20	3.88	1.75	64	53-131%	3	30%	
Benzo(k)fluoranthene	3.93	0.291	0.583	ug/L	20	3.88	0.878	79	57-129%	0.7	30%	
Benzo(g,h,i)perylene	3.87	0.194	0.388	ug/L	20	3.88	0.276	93	50-134%	3	30%	
Chrysene	6.01	0.194	0.388	ug/L	20	3.88	3.80	57	59-123%	0.3	30%	Q-
Dibenz(a,h)anthracene	3.77	0.194	0.388	ug/L	20	3.88	ND	97	51-134%	2	30%	
Fluoranthene	23.7	0.194	0.388	ug/L	20	3.88	29.7	-154	57-128%	0.2	30%	Q-
Fluorene	44.9	0.194	0.388	ug/L	20	3.88	44.5	10	52-124%	2	30%	Q-
Indeno(1,2,3-cd)pyrene	3.68	0.194	0.388	ug/L	20	3.88	0.390	85	52-134%	1	30%	
1-Methylnaphthalene	45.2	0.388	0.777	ug/L	20	3.88	38.3	179	41-120%	17	30%	Q-
2-Methylnaphthalene	4.63	0.388	0.777	ug/L	20	3.88	0.907	96	40-121%	38	30%	Q-
Naphthalene	3.33	0.777	0.777	ug/L	20	3.88	ND	86	40-121%	2	30%	
Phenanthrene	35.6	0.194	0.388	ug/L	20	3.88	40.3	-121	59-120%	7	30%	Q-
Pyrene	20.4	0.194	0.388	ug/L	20	3.88	25.0	-118	57-126%	0.2	30%	Q-
Carbazole	4.43	0.583	0.583	ug/L	20	3.88	ND	114	60-122%	0.4	30%	
Dibenzofuran	34.8	0.194	0.388	ug/L	20	3.88	31.4	89	53-120%	4	30%	
2-Chlorophenol	2.78	0.971	1.94	ug/L	20	3.88	ND	72	38-120%	4	30%	
4-Chloro-3-methylphenol	4.85	1.94	3.88	ug/L	20	3.88	ND	125	52-120%	2	30%	Q-

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway Street Project Number: 22588.000 Report ID: Portland, OR 97232 Project Manager: Kelly Titkemeier A3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23D0367 - EPA 3510C (Acid/Base Neutral) Water Matrix Spike Dup (23D0367-MSD1) Prepared: 04/11/23 07:10 Analyzed: 04/11/23 16:30 QC Source Sample: R-2-0423 (A3D0912-08) 2,4-Dichlorophenol 4.55 0.971 1.94 ug/L 20 3.88 ND 88 47-121% 0.7 30% Q-41 3.50 Q-02 20 3.88 2,4-Dimethylphenol 5.69 3.50 ug/L ND 147 31-124% 5 30% ug/L Q-11, Q-41, J 2,4-Dinitrophenol 7.28 4.85 9.71 20 3.88 ND 187 23-143% 2 30% Q-11, J 4,6-Dinitro-2-methylphenol 6.73 4.85 9.71 ug/L 20 3.88 ND 173 44-137% 2 30% 2-Methylphenol 3.47 0.971 0.971 20 3.88 ND 89 30-120% 1 30% Q-41 ug/L 3+4-Methylphenol(s) 0.485 0.971 3.88 ND 94 29-120% 30% 3.66 ug/L 20 1 Q-11, Q-41 2-Nitrophenol 5.08 1.94 3.88 ug/L 20 3.88 ND 131 47-123% 0.2 30% 4-Nitrophenol ND 3.88 ND 30% Q-02 7.57 7.57 ug/L 20 10-120% Pentachlorophenol (PCP) 44.8 1.94 3.88 ug/L 20 3.88 39.6 133 35-138% 4 30% Phenol ND 3.88 7.77 ug/L 20 3.88 ND 10-120% 30% Q-11 2,3,4,6-Tetrachlorophenol 5.67 0.971 1.94 ug/L 20 3.88 2.05 93 50-128% 0.7 30% 0.971 1.94 20 3.88 1.27 106 50-121% 30% 2,3,5,6-Tetrachlorophenol 5.41 ug/L 6 0.971 3.88 2,4,5-Trichlorophenol 4.58 1.94 ug/L 20 1.18 88 53-123% 1 30% 0.971 30% 3.98 1.94 3.88 ND 102 50-125% 2 2,4,6-Trichlorophenol ug/L 20 ug/L Q-11, J Bis(2-ethylhexyl)phthalate 5.71 3.88 7.77 20 3.88 ND 147 55-135% 2 30% Butyl benzyl phthalate 4.70 3.88 7.77 ug/L 20 3.88 ND 121 53-134% 0.8 30% J Diethylphthalate ND 3.88 7.77 ug/L 20 3.88 ND 56-125% 30% Q-11 ND 7.77 3.88 ND 30% Q-11 Dimethylphthalate 3.88 20 45-127% ug/L 4.72 7.77 3.88 ND 122 59-127% J Di-n-butylphthalate 3.88 ug/L 20 2 30% J Di-n-octyl phthalate 4.88 3.88 7.77 20 3.88 ND 126 51-140% 4 30% ug/L N-Nitrosodimethylamine 0.485 0.971 3.88 ND 19-120% 3 1.69 ug/L 20 44 30% 0.971 0.971 N-Nitroso-di-n-propylamine 3.52 ug/L 20 3.88 ND 91 49-120% 4 30% N-Nitrosodiphenylamine 9.16 6.41 6.41 ug/L 20 3.88 ND 236 51-123% 3 30% Q-02 4.69 0.971 0.971 ug/L 3.88 ND 3 30% Q-02, Q-41 Bis(2-Chloroethoxy) methane 20 121 48-120% 0.485 0.971 3.88 ND 69 43-120% 3 30% Q-41 Bis(2-Chloroethyl) ether 2.67 ug/L 20 2,2'-Oxybis(1-Chloropropane) 2.54 0.485 0.971 20 3.88 ND 66 41-120% 2 30% ug/L Hexachlorobenzene 3.45 0.194 0.388 20 3.88 ND 89 53-125% 2 30% ug/L 0.971 Hexachlorobutadiene 2.25 0.485 20 3.88 ND 58 22-124% 2 30%

Apex Laboratories

Hexachlorocyclopentadiene

4-Bromophenyl phenyl ether

Philip Nevenberg

Hexachloroethane

2-Chloronaphthalene

1,2,4-Trichlorobenzene

2.88

1.82

3.49

2.59

3.95

0.971

0.485

0.388

0.485

0.485

1.94

0.971

0.388

0.971

0.971

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

74

47

90

67

102

10-127%

21-120%

40-120%

29-120%

55-124%

9

0.9

2

2

3

30%

30%

30%

30%

30%

O-41

Page 35 of 44 Philip Nerenberg, Lab Director

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

20

20

20

20

20

3.88

3.88

3.88

3.88

3.88

ND

ND

ND

ND

ND

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway Street Project Number: 22588.000 Report ID:
Portland, OR 97232 Project Manager: Kelly Titkemeier A3D0912 - 04 26 23 1335

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23D0367 - EPA 3510C (Acid/Base Neutral) Water Matrix Spike Dup (23D0367-MSD1) Prepared: 04/11/23 07:10 Analyzed: 04/11/23 16:30 QC Source Sample: R-2-0423 (A3D0912-08) 91 4-Chlorophenyl phenyl ether 3.54 0.485 0.971 ug/L 20 3.88 ND 53-121% 3 30% 0.971 1.94 3.88 Q-31, J Aniline 1.64 ug/L 20 ND 42. 10-120% 17 30% ug/L 4-Chloroaniline 3.05 0.485 0.971 20 3.88 ND 78 33-120% 29 30% 2-Nitroaniline 4.23 3.88 7.77 ug/L 20 3.88 ND 109 55-127% 5 30% J 3-Nitroaniline ND 3.88 7.77 ug/L 20 3.88 ND 41-128% 30% Q-11 7.77 3.88 O-11, J 4-Nitroaniline 5.10 3.88 ug/L 20 ND 131 25-120% 8 30% Nitrobenzene 4.47 1.94 3.88 ug/L 20 3.88 ND 115 45-121% 0.3 30% O-41 3.88 30% Q-11 2,4-Dinitrotoluene 4.13 1.94 3.88 ug/L 20 ND 53 57-128% 0.03 2,6-Dinitrotoluene 4.37 1.94 3.88 ug/L 20 3.88 ND 112 57-124% 10 30% Q-02 Benzoic acid ND 48.5 48.5 ug/L 20 7.77 ND 10-120% 30% Benzyl alcohol 3.18 1.94 3.88 ug/L 20 3.88 ND 82 31-120% 3 30% J 0.971 0.971 3.88 ND 42-124% 30% Isophorone 3.71 ug/L 20 96 4 0.971 0.971 3.88 Azobenzene (1,2-DPH) 4.01 ug/L 20 ND 103 61-120% 1 30% Q-11, J Bis(2-Ethylhexyl) adipate 4.96 4.85 9.71 3.88 ND 63-121% 2 30% ug/L 20 128 9.71 Q-11, Q-31, 3,3'-Dichlorobenzidine ND 19.4 ug/L 20 7.77 ND 27-129% 30% O - 521,2-Dinitrobenzene ND 4.85 9.71 20 3.88 ND 59-120% 30% Q-11 ug/L Q-11 1,3-Dinitrobenzene ND 4.85 9.71 ug/L 20 3.88 ND 49-128% 30% ND 4.85 9.71 3.88 ND 54-120% 30% Q-11 1,4-Dinitrobenzene 20 ug/L Q-11 Pyridine ND 1.94 3.88 ug/L 20 3.88 ND 10-120% 30% 1.2-Dichlorobenzene 2.09 0.485 0.971 ug/L 20 3.88 ND 54 32-120% 2 30% 2.04 0.971 5 30% 1,3-Dichlorobenzene 0.485 ug/L 20 3.88 ND 53 28-120% 1,4-Dichlorobenzene 2.13 0.485 0.971 20 3.88 ND 55 29-120% 0.03 30% ug/L Surr: Nitrobenzene-d5 (Surr) 75 % Limits: 44-120 % Dilution: 20x O-41 Recovery: 2-Fluorobiphenyl (Surr) 88 % 44-120 % Phenol-d6 (Surr) 33 % 10-133 % Q-41 p-Terphenyl-d14 (Surr) 86 % 50-134 % 2-Fluorophenol (Surr) 35 % 19-120 %

Apex Laboratories

2,4,6-Tribromophenol (Surr)

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 36 of 44

43-140 %

109 %

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number:22588.000Report ID:Portland, OR 97232Project Manager:Kelly TitkemeierA3D0912 - 04 26 23 1335

SAMPLE PREPARATION INFORMATION

	•	Selected Semi	volatile Organic Com	pounds by EPA 827	'0E		
Prep: EPA 3510C (A	Acid Extraction)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23D0435							
A3D0912-01	Water	EPA 8270E	04/05/23 10:00	04/12/23 06:36	1000 mL/1 mL	1000mL/1mL	1.00
A3D0912-02	Water	EPA 8270E	04/06/23 08:05	04/12/23 01:40	1040 mL/1 mL	1000mL/1mL	0.96
A3D0912-03	Water	EPA 8270E	04/05/23 14:15	04/12/23 06:36	1020 mL/1 mL	1000mL/1mL	0.98
A3D0912-04	Water	EPA 8270E	04/05/23 13:20	04/12/23 06:36	1020 mL/1 mL	1000 mL/1 mL	0.98
A3D0912-05	Water	EPA 8270E	04/05/23 11:20	04/12/23 06:36	1030 mL/1 mL	1000mL/1mL	0.97
A3D0912-06	Water	EPA 8270E	04/06/23 09:25	04/12/23 01:40	1040 mL/1 mL	1000mL/1mL	0.96
A3D0912-10	Water	EPA 8270E	04/05/23 12:00	04/12/23 06:36	1030 mL/1 mL	1000mL/1mL	0.97

Semivolatile Organic Compounds by EPA 8270E Prep: EPA 3510C (Acid/Base Neutral) Sample Default RL Prep Initial/Final Initial/Final Factor Lab Number Matrix Method Sampled Prepared Batch: 23D0367 EPA 8270E 1030mL/1mL 0.97 A3D0912-07 Water 04/05/23 10:10 04/11/23 07:10 1000mL/1mLA3D0912-08 Water EPA 8270E 04/05/23 10:20 04/11/23 07:10 1030mL/1mL1000 mL/1 mL0.97 Water EPA 8270E 1040mL/1mLA3D0912-09 04/05/23 11:40 04/11/23 07:10 1000 mL/1 mL0.96 A3D0912-11RE1 Water EPA 8270E 04/05/23 08:00 04/11/23 07:10 1040mL/1mL1000 mL/1 mL0.96 A3D0912-12 Water EPA 8270E 04/05/23 11:45 04/11/23 07:10 980mL/1mL 1000 mL/1 mL1.02

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway Street Project Number: 22588.000 Report ID:
Portland, OR 97232 Project Manager: Kelly Titkemeier A3D0912 - 04 26 23 1335

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- A-01 Due to coelution of isomers, 2,3,4,6- and 2,3,4,5-Tetrachlorophenol (TCP) are reported as a sum and are Estimated Values. Results are calculated using the response factor of 2,3,4,6-TCP. Batch results accepted based on spike recovery of 2,3,4,6-TCP.
 J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- M-05 Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
- Q-02 Spike recovery is outside of established control limits due to matrix interference.
- Q-03 Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
- Q-11 Spike recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-24 The RPD for this spike and spike duplicate is above established control limits. Recoveries for both the spike and spike duplicate are within control limits.
- Q-29 Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
- Q-31 Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
- Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
- Q-52 Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
- R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
- S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
- **S-06** Surrogate recovery is outside of established control limits.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 38 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway Street Project Number: 22588.000 Report ID:
Portland, OR 97232 Project Manager: Kelly Titkemeier A3D0912 - 04 26 23 1335

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 39 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number:22588.000Report ID:Portland, OR 97232Project Manager:Kelly TitkemeierA3D0912 - 04 26 23 1335

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 40 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

3140 NE Broadway StreetProject Number:22588.000Report ID:Portland, OR 97232Project Manager:Kelly TitkemeierA3D0912 - 04 26 23 1335

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation
Water	EPA 8270E		2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)		
Water	EPA 8270E		2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)		
		All reported analytes are included in Apex	Laboratories' current ORELAP scope.		

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Philip Nevenberg

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 41 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number:
 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager:
 Kelly Titkemeier
 A3D0912 - 04 26 23 1335

Communic DBS Emissions (1787)	(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	rm. 303-1	10-23	2 7 3	506	718-0.	233		ſ		
Company - Too Engireemy + Environmental Projection - Proj	Of Financial	Project Mg	r. cary M	dwood	(SBS)	ally Titke	neser (MFA) Project Nar	Project Mgr. Cary Miawood (PBS) Kelly Tikemeer (MFA/Project Name: McFarfand Cascade, Eugene	ngene Pro	roject # 22588.000	
F Contraction of the contraction	ou, Lugaria On	147				Puon L	Pnone: (541) 686-8684	Fax	mail: cary.midwood	@pbsusa.com; ktitk	.mail: cary.midwood@pbsusa.com; ktitkemeier@maulfoster.com
Sampled by: Cary Midwood	297655a 26360/a		}		L			ANALYSIS REQUEST	EQUEST		
			NERS						~		
SAMPLE ID	LAB ID #	BMIT	# OF COUT,	PHENOLS	SAOC\$	asm/sm*	5				
90-10- 0423	4/2/2	17/2/OCDV	7	×	_						
90-5- 0423	16/3	508053/84	7	×							
92-9-0413	45/2	5/1/4/5/14	7	×	ļ						
93-4-04}}	7/5/h	15/23 1320	7	_, ×							
33-8- 0 H L Z	44/28	02//5	7	×							
P-2D- 0413	46/23	828 623	7	×							
R-1- 0423	425	101 85%	7	×	×						
2- 0423	25/4	0201825/1	-9	×	×	4					
R.3. 0423	4/9/23	4/9/23 [140	7	×	×	-					
R-4- 0423	4/5/13	45/B 1200	7	×							
Normal Tu	Normal Turn Around Time (TAT) ≠ 6-10 Business Days	TAT) ≠6-1(Busine	ss Da	ß		SPECIAL INSTRUCTIONS	RUCTIONS:			
	1 DAY	2 DAY	3 DAY	⋩			DIRECT BILL: M	DIRECT BILL: McFarland Cascade Pole and Lumber Company (MCPLC) Attention: Roland Mueller	mber Company (MCPL	C) Attention: Roland	Mueller
IAI Kequested (circle)	4 DAY	5 DAY	9	Other:			*Extra volume/bo	Extra volume/bottles collected to run MS/MSD			
	SAMPLES ARE HELD FOR 30 DAYS	LD FOR 30	DAYS								20
RELINQUISHED BY: Signature:	Date WW	Signature BY:	$\mathcal{U}_{\mathbb{Z}}$	a V	Date #	23	RELINQUISHED BY: Signature:	.y: Date:	RECEIVED BY: Signature:	D BY:	Date:
THE SAMPOUR	7 Time:	Printe Grame: Rownline	W.W.E.	T.	V	1	Printed Name:	Time:	Printed Name:	ame:	Time:
company:	>	Company:	7				Company	7747700	Company:		770.71

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 42 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number:
 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager:
 Kelly Titkemeier
 A3D0912 - 04 26 23 1335

							145.52 C.W. Catualii iace, ngatu, ON 87.450 in. Coorto 2620 in. Coorto						
Company: PBS Engineering + Environmental	onmental		Project N	Mgr. Ca	y Midwo	od (PB	S) Kelly Titkemei	r (MFA/Project Na	ame: McFark	Project Mgr. Cary Midwood (PBS) Kelly Titkemeier (MFA/Project Name: McFarland Cascade, Eugene	g .	Project # 22588.000	
Address: 3500 Chad Drive Suite 100 , Eugene OR 97408	, Euger	e OK 9	1408		-		Phone:	Phone: (541) 686-8684	Lax:	am#	II: cary.mic	twood@pbsusa.com; ktr	f mail: cary.midwood@pbsusa.com, ktitkemeerf@maulioster.com
Sampled by: Gary Midwood auros Sandov M	ST.	S.	व	\$	3					ANALYSIS REQUEST	EST		
SAMPI EID	# OI 9∀1	∃TA O	TIME	хіятам	# OF CONTAINERS	bHENO F8	SAOCs				401		
oup. 0423	1	15/73	15/130800	3-	7	×	×						
FIELD- O423		1913	14Gm 1145	L	7	×	×						
Andrews Andrews													
91													
											+		
			1	9							\dashv		
Normal Turn Around Time (TAT) = 6-10 Business Days	Around	1 Time (TAT	6-10 Br	usines	s Days	8	SPECIAL INSTRUCTIONS:	TRUCTIONS	<i>i</i> 0			
TAT Doguestod (circle)	1 DAY		2 DAY		3 DAY								
IA: Requested (circle)	4 DAY		5 DAY		Other: _								
	SAMPLES ARE HELD FOR 30 DAYS	ARE HE	P FOR	30 D/					.xa		ă	CEIVED BY:	
RELINQUISHED BY: Signayore:	Date:	1/0/2	Signature:	M	1	Date:	Date: 4/6/23	Signature:		Date:	2 8	Signature:	Date:
Printed Name:	Time	(Printed Name: T	Z me.		Time	157	Printed Name:		Time:	ă	Printed Name:	Time:
			Compar	Company:	_	-	<u>}</u>	Company:		Annual Control of the	ŏ	Company:	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 43 of 44

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.

3140 NE Broadway Street

Portland, OR 97232

Project:

McFarland Cascade-Eugene

Project Number: 22588.000

Project Manager: Kelly Titkemeier

Report ID:

A3D0912 - 04 26 23 1335

	: PBS Engineering + Environmenta (Element WO#: A3 DOGIT
Projec	ot/Project #: McFayland Cascade, Eugene 27588.00
Delive Date/ti Delive Cooler Chain Signed	me received: 4 4 7 3@ 1157 By: Radio Morgan SDS Evergreen Other Inspection Date/time inspected: 4 4 7 3@ 4159 By: Standard By: Apex Client ESS FedEx UPS Radio Morgan SDS Evergreen Other Inspection Date/time inspected: 4 4 7 3@ 4159 By: Standard By: Sta
	rature (°C) $\frac{1}{2}$ $$
	ed on ice? (Y/N)
Temp.	blanks? (Y/N)
Ice typ	e: (Gel/Real/Other) Yeal
Condit	ion (In/Out):
Sample All sam	temperature samples form initiated? Yes/No e Inspection: Date/time inspected: 460 @16.57 By: April By: Apr
Bottle l	devise of the first firs
COC/co	ontainer discrepancies form initiated? Yes No
COC/co	ontainer discrepancies form initiated? Yes No No No Comments: No No No No No NA No NA
COC/co Contair Do VO. Comme Water s	ontainer discrepancies form initiated? Yes No No No Comments: No No No No No NA No NA
COC/co Contair Do VO. Comme Water s	ontainer discrepancies form initiated? Yes No

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 44 of 44

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. M9081.03.016 | MAY 11, 2023 | MCFARLAND CASCADE HOLDINGS, INC.

Maul Foster & Alongi, Inc. (MFA), conducted an independent Stage 2A review of the quality of analytical results for groundwater and associated quality control samples collected on April 5 and 6, 2023, at the property located at 90049 Highway 99 North in Eugene, Oregon.

Analytical Resources, LLC (ARL), and Apex Laboratories, LLC (Apex), performed the analyses. ARL report number 23D0109 and Apex report number A3D0912 were reviewed. Sample R-3-0423 was sent to both laboratories as a split sample to meet project reporting limit needs for pentachlorophenol. The analyses performed and the samples analyzed are listed below.

Analysis	Reference
Pentachlorophenol	EPA 8041A
Semivolatile organic compounds	EPA 8270E
Note EPA = U.S. Environmental Protection Agency.	

Samples	Analyzed
Report A	A3D0912
90-1D-0423	R-1-0423
90-5-0423	R-2-0423
92-9-0423	R-3-0423
93-4-0423	R-4-0423
93-8-0423	DUP-0423
P-2D-0423	FIELD-0423
Report 2	23D0109
R-3-0	0423

DATA QUALIFICATION

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2020) and appropriate laboratory-and method-specific guidelines (Apex 2022, ARL 2021, EPA 1986).

Based on the results of the data quality review procedures described below, the data, with the appropriate final data qualifiers assigned, are considered acceptable for their intended use.

Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, and data qualifiers assigned by the reviewer during validation.

Final data qualifiers:

- J = result is estimated.
- U = result is non-detect at the laboratory detection limit (LDL).
- UJ = result is non-detect with an estimated LDL.

Sample R-3-0423 was analyzed for pentachlorophenol by both laboratories; Apex included EPA Method 8270E results in report A3D0912, and ARL discussed EPA Method 8041A results in report 23D0109. The result of record is based on the lower-limit EPA Method 8041A analysis and is shown in the table below. The remaining result has been flagged by the reviewer as not reportable.

Report	Sample	Component	Laboratory Result (ug/L)	Result of Record (ug/L)
23D0109	R-3-0423	Dontachlorophonol	0.140	0.140
A3D0912	K-3-0423	Pentachlorophenol	4.81 U (NR)	

Notes

-- = not applicable.

NR = not reportable.

U = result is non-detect at the laboratory detection limit.

ug/L = micrograms per liter.

In report A3D0912, Apex reported the EPA Method 8270E 2,3,4,5-tetrachlorophenol and 2,3,4,6-tetrachlorophenol results as single coeluted results for each. Apex stated that the coeluted results had been calculated using the response factor of 2,3,4,6-tetrachlorophenol and that results were estimated values. Apex also noted that the coeluted results are not included on the Apex Oregon Environmental Laboratory Accreditation Program scope of certification. The reviewer qualified the results, as shown in the following table.

Report	Sample	Component	Original Result (ug/L)	Qualified Result (ug/L)
	90-1D-0423		0.400 U	0.400 UJ
	90-5-0423		0.385 U	0.385 UJ
	92-9-0423		0.392 U	0.392 UJ
	93-4-0423		0.392 U	0.392 UJ
A3D0912	93-8-0423	2,3,4,6- & 2,3,4,5- Tetrachlorophenol(s)	0.0971 U	0.0971 UJ
	P-2D-0423		0.385 U	0.385 UJ
	R-4-0423		0.0971 U	0.0971 UJ
	R-1-0423		0.971 U	0.971 UJ
	R-2-0423		2.05 J	2.05 J

Report	Sample	Component	Original Result (ug/L)	Qualified Result (ug/L)
	R-3-0423		4.81 U	4.81 UJ
	DUP-0423		0.962 U	0.962 UJ
	FIELD-0423		0.102 U	0.102 UJ

Notes

According to report A3D0912, Apex flagged the benzo(k)fluoranthene EPA Method 8270E result for sample R-2-0423 as estimated because of insufficient peak separation of structural isomers. The associated sample result has been qualified by the reviewer with J, as shown in the following table.

Report	Sample	Component	Original Result (ug/L)	Qualified Result (ug/L)
A3D0912	R-2-0423	Benzo(k)fluoranthene	0.878	0.878 J

Notes

J = result is estimated.

SAMPLE CONDITIONS

Sample Custody

Because the sampler was from a different firm, the reviewer could not confirm the gap in custody.

Holding Times

Extractions and analyses were performed within the recommended holding times.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

REPORTING LIMITS

Apex and ARL evaluated results to detection limits. Samples requiring dilutions because of high analyte concentrations and/or matrix interference were reported with raised detection limits and method reporting limits (MRLs) and required no action by the reviewer.

J = result is estimated.

U = result is non-detect at the laboratory detection limit.

ug/L = micrograms per liter.

UJ = result is non-detect with an estimated laboratory detection limit.

ug/L = micrograms per liter.

In report A3D0912, results between the LDL and the MRL were qualified by Apex with J, as estimated.

In report A3D0912, Apex noted that some LDLs and MRLs for EPA Method 8270E had been raised to account for interference from coeluting organic compounds present in the samples.

In report A3D0912, Apex flagged the 3,3'-dichlorobenzidine reporting levels as estimated, based on known erratic recoveries. The reviewer qualified the non-detect 3,3'-dichlorobenzidine results with UJ, as shown in the following table.

Report	Sample	Component	Original Result (ug/L)	Qualified Result (ug/L)
	R-1-0423		4.85 U	4.85 UJ
	R-2-0423		9.71 U	9.71 UJ
A3D0912	R-3-0423	3,3'-Dichlorobenzidine	24.0 U	24.0 UJ
	DUP-0423		4.81 U	4.81 UJ
	FIELD-0423		0.510 U	0.510 UJ

Notes

 $\mbox{\bf U}$ = result is non-detect at the laboratory detection limit.

ug/L = micrograms per liter.

UJ = result is non-detect with an estimated laboratory detection limit.

BLANKS

Method Blanks

Laboratory method blanks are used to assess whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the laboratory method blanks were associated with all samples prepared in the analytical batch.

According to report 23D0109, the EPA Method 8041A batch BLD0217 laboratory method blank had a pentachlorophenol detection between the MDL and the MRL, at a concentration of 0.016 micrograms per liter (ug/L). The associated sample pentachlorophenol result was greater than five times the concentration detected in the blank; thus, no qualifications were necessary.

All remaining laboratory method blank results were non-detect to LDLs.

Field Blanks

According to report A3D0912, one field blank (FIELD-0423) was submitted for analysis. The field blank had a phenanthrene detection between the LDL and the MRL, at a concentration

of 0.0121 ug/L. The associated sample results were greater than five times the concentration detected in the blank; thus, no qualifications were necessary.

All remaining field blank results were non-detect to LDLs.

Trip Blanks

Trip blanks are used to evaluate whether volatile organic compound contamination was introduced during sample storage and during shipment between the sampling location and the laboratory.

Trip blank samples were not required for this sampling event because samples were not analyzed for volatile organic compounds.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample (LCS) and a laboratory control sample duplicate (LCSD) are spiked with target analytes to provide information about laboratory precision and accuracy. The LCS and the LCSD were prepared and analyzed at the required frequency.

According to report A3D0912, the EPA Method 8270E batch 23D0367 LCS and LCSD results for 3,3'-dichlorobenzidine were above the upper percent recovery acceptance limit of 129 percent, at 175 percent and 152 percent, respectively. Additionally, the relative percent difference (RPD) between the LCS and LCSD results for 4-chloroaniline was greater than the 30 percent acceptance limit, at 31 percent. The associated 3,3'-dichlorobenzidine and 4-chloroaniline results were non-detect; thus, no qualifications based on LCS or LCSD exceedances were necessary. 3,3'-dichlorobenzidine sample results have been qualified in the Reporting Limits section above.

All remaining LCS and LCSD results were within acceptance limits for percent recovery and RPD.

LABORATORY DUPLICATE RESULTS

Laboratory duplicate results are used to evaluate laboratory precision. ARL and Apex did not report laboratory duplicate results. Laboratory precision was evaluated using LCS and LCSD results or matrix spike (MS) and matrix spike duplicate (MSD) results.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RESULTS

MS and MSD results are used to evaluate laboratory precision, accuracy, and the effect of the sample matrix on sample preparation and analysis.

ARL did not report MS and MSD results, and Apex did not report MS and MSD results for EPA Method 8270E batch 23D0435. Laboratory precision and accuracy were evaluated using

LCS and LCSD results. Apex reported MS and MSD results for EPA Method 8270E batch 23D0367 analysis with the source sample R-2-0423, as requested on the chain of custody.

When MS and MSD were prepared from samples with high concentrations of target analytes, associated MS and/or MSD percent recovery and/or RPD control limit exceedances did not require qualification because spike concentrations could not be accurately quantified. High concentrations of target analytes are defined as four times the spike amount for all analyses.

All remaining MS and MSD results were within acceptance limits for percent recovery and RPD.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance for individual samples for organic analyses.

The laboratory appropriately documented and qualified surrogate outliers. When surrogate percent recoveries were outside acceptance limits because of dilutions necessary to quantify high concentrations of target analytes, qualification by the reviewer was not required. The reviewer confirmed that batch quality control results for samples with surrogate outliers were within acceptance limits.

All remaining surrogate results were within percent recovery acceptance limits.

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. The laboratory did not report CCV results, but appropriately flagged results associated with CCV exceedances. Surrogate or batch quality control results flagged by the laboratory based on CCV exceedances but meeting percent recovery and/or RPD acceptance criteria required no action from the reviewer.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. The following field duplicate and parent sample pair was submitted for analysis:

Report	Parent Sample	Field Duplicate Sample
A3D0912	R-1-0423	DUP-0423

MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL or 50 percent RPD for results that are greater than five times the MRL. RPD was not evaluated when both results in the sample pair were non-detect.

All field duplicate results met the RPD acceptance criteria.

DATA PACKAGE
The data packages were reviewed for transcription errors, omissions, and anomalies. None were found.

Apex. 2022. Quality Systems Manual. Rev. 10. Apex Laboratories, LLC: Tigard, OR. June 20.

ARL. 2021. Quality Assurance Plan. Rev. 19.0. Analytical Resources, LLC: Tukwila, WA. December 29.

EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase II (2019), VII phase I (2019), and VII phase II (2020).

EPA. 2020. National Functional Guidelines for Organic Superfund Methods Data Review. EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.

16 October 2023

Kelly Titkemeier Maul, Foster & Alongi, Inc. 2001 NW 19th Avenue, Suite 200 Portland, WA 97209

RE: McFarland Cascade Pole and Lumber Company - Eugene (M9081.03.016)

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

2310373

Associated SDG ID(s)
N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Analytical Resources, LLC

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kelly Bottem, Client Services Manager

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around	und Requested: Standard				I	of 1	æ				Analytical Resources, LLC Analytical Chemists and Consultants		
ARI Client Company: MFA		Phone: 5032		is	Date:		Ice Prese	nt? Yes)		4611 So Tukwila	outh 134th Place, Suite 100 , WA 98168		
Client Contact: Cody Schu	veitze				No. of Coolers:	olers: Temps: 6						5-6200 206-695-6201 (fax)		
Client Project Name: MCPLC- Eugene						T		Analysis F	Requested			Notes/Comments		
Client Project #: M9081.03.016	Samplers: James	sa San	ndova	′	8041									
Sample ID	Date	Time	Matrix	No. Containers	474 508 77			T						
R-3-0923	9/13/23	0845	W	4	X									
											1.00			
Comments/Special Instructions	Relinquished by:			Received by:	1			Relinquished	by:		Received by			
send report to:	(Signature)	mesoa		(Signature)	bre			(Signature)			(Signature)			
cschweitzer@ maylfoster.com	Printed Name:	a San	dovat	Printed Name:	Jaco	bhai	He	Printed Name	e: 		Printed Nam	е.		
cschweitzer@ mavifoster.com cjohnson@maulfoster.com	Company:		354-168	Company:	LLC			Company:			Company:			
mbenzinger@manlfoster .com	Date & Time: 0(13/20	23 00	200	Date & Time:	14/2-	100	a	Date & Time:			Date & Time	;		

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Maul, Foster & Alongi, Inc.

Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: M9081.03.016Reported:Portland WA, 97209Project Manager: Kelly Titkemeier16-Oct-2023 08:30

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
R-3-0923	2310373-01	Water	13-Sen-2023 08:45	14-Sep-2023 10:00

Maul, Foster & Alongi, Inc. Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: M9081.03.016Reported:Portland WA, 97209Project Manager: Kelly Titkemeier16-Oct-2023 08:30

Work Order Case Narrative

Pentachlorophenol - EPA Method SW8041A

The sample(s) were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The blank spike (BS/LCS) percent recoveries were within control limits.

Cooler Receipt Form

ARI Client: Maul, Cos	Le. Along;	Project Name: MCPLC	- Eugen		
		Delivered by: Fed-Ex UPS Courie			
COC No(s):	710777	Tracking No: 7737	C190 G	1110	— NA
Assigned ARI Job No:	370313	Tracking No	2118 8	070	INA
Were intact, properly signed and da	ated custody spale attached to the	outside of the cooler?	YES	. 1	NO
Were custody papers included with	355		YES		NO
			7		
Were custody papers properly filled Temperature of Cooler(s) (°C) (reco			YES)	NO
Time 1440		8,6	8 8 8		<u></u> 3
If cooler temperature is out of comp	oliance fill out form 00070F		Temp Gun ID#:	70009	708
Cooler Accepted by:	3~	Date: <u>C 9/14/23</u> Time:	1000		
800 (1990-1990-1990-1990-1990-1990-1997) 75-0 - - 000	Complete custody forms and	l attach all shipping documents			
Log-In Phase:					
Was a temperature blank include	d in the cooler?			YES	(NO)
		Wet Ice Gel Packs Baggies Foam	Block Paper Other	l	
Was sufficient ice used (if approp	riate)?		NA	YES	NO
How were bottles sealed in plastic	c bags?		Individually	Grouped	Not
Did all bottles arrive in good cond	lition (unbroken)?			YES-	NO
Were all bottle labels complete ar	nd legible?			YES	NO
Did the number of containers liste	ed on COC match with the numbe	r of containers received?		YES	NO
Did all bottle labels and tags agre	e with custody papers?			YES	NO
Were all bottles used correct for t	the requested analyses?			YES	NO
Do any of the analyses (bottles) r	equire preservation? (attach prese	ervation sheet, excluding VOCs)	NA	YES	NO
Were all VOC vials free of air bub	obles?		NA	YES	NO
Was sufficient amount of sample	sent in each bottle?			YES	NO
	at ARI		NA		
Were the sample(s) split by ARI?	A YES Date/Time:	Equipment:		Split by:	 a
Samples Logged by:	Date: 69/6/2	Time:La	bels checked by: _	Ja-	
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample	ID on COC	
			-		
			-		
			-		
Additional Notes, Discrepancie	es, & Resolutions:				
, , , , , , , , , , , , , , , , , , , ,					
By: Da	ate.				

0016F 01/17/2018 Cooler Receipt Form

Revision 014A

Maul, Foster & Alongi, Inc. Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: M9081.03.016Reported:Portland WA, 97209Project Manager: Kelly Titkemeier16-Oct-2023 08:30

R-3-0923 23I0373-01 (Water)

Phenols

 Method: EPA 8041A
 Sampled: 09/13/2023 08:45

 Instrument: ECD8 Analyst: RJL
 Analyzed: 10/11/2023 17:05

Sample Preparation: Preparation Method: EPA 3510C SepF Extract ID: 23I0373-01 A 01

Preparation Batch: BLI0546 Sample Size: 500 mL Prepared: 09/20/2023 Final Volume: 5 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Notes Pentachlorophenol 87-86-5 0.014 0.025 0.352 ug/L Surrogate: 2,4,6-Tribromophenol 10-181 % 76.1 % Surrogate: 2,4,6-Tribromophenol [2C] 10-181 % 87.7 %

Maul, Foster & Alongi, Inc. Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: M9081.03.016Reported:Portland WA, 97209Project Manager: Kelly Titkemeier16-Oct-2023 08:30

Analysis by: Analytical Resources, LLC

Phenols - Quality Control

Batch BLI0546 - EPA 8041A

Instrument: ECD8 Analyst: RJL

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BLI0546-BLK1)				Prep	ared: 20-Sep	-2023 Ana	ılyzed: 11-0	Oct-2023 16	:11		
Pentachlorophenol	ND	0.014	0.025	ug/L							U
Surrogate: 2,4,6-Tribromophenol	0.177			ug/L	0.250		70.6	10-181			
Surrogate: 2,4,6-Tribromophenol [2C]	0.220			ug/L	0.250		87.9	10-181			

Maul, Foster & Alongi, Inc. Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: M9081.03.016Reported:Portland WA, 97209Project Manager: Kelly Titkemeier16-Oct-2023 08:30

Analysis by: Analytical Resources, LLC

Phenols - Quality Control

Batch BLI0546 - EPA 8041A

Instrument: ECD8 Analyst: RJL

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS (BLI0546-BS1)				Prep	ared: 20-Sep	-2023 Ana	ılyzed: 11-0	Oct-2023 16	:29		
Pentachlorophenol [2C]	0.188	0.014	0.025	ug/L	0.250		75.4	36-159			
Surrogate: 2,4,6-Tribromophenol	0.194			ug/L	0.250		77.6	10-181			
Surrogate: 2,4,6-Tribromophenol [2C]	0.239			ug/L	0.250		95.7	10-181			

Maul, Foster & Alongi, Inc. Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: M9081.03.016Reported:Portland WA, 97209Project Manager: Kelly Titkemeier16-Oct-2023 08:30

Analysis by: Analytical Resources, LLC

Phenols - Quality Control

Batch BLI0546 - EPA 8041A

Instrument: ECD8 Analyst: RJL

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BLI0546-BSD1)				Prep	ared: 20-Sep	-2023 Ana	lyzed: 11-0	Oct-2023 16	:47		
Pentachlorophenol [2C]	0.211	0.014	0.025	ug/L	0.250		84.3	36-159	11.20	30	
Surrogate: 2,4,6-Tribromophenol	0.197			ug/L	0.250		78.6	10-181			
Surrogate: 2,4,6-Tribromophenol [2C]	0.243			ug/L	0.250		97.0	10-181			

Maul, Foster & Alongi, Inc.

Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: M9081.03.016Reported:Portland WA, 97209Project Manager: Kelly Titkemeier16-Oct-2023 08:30

Certified Analyses included in this Report

Analyte Certifications

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	03/28/2025
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program, PJLA Testing	66169	02/28/2025
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-012	05/12/2024

Maul, Foster & Alongi, Inc. Project: McFarland Cascade Pole and Lumber Company - Eugene

2001 NW 19th Avenue, Suite 200Project Number: M9081.03.016Reported:Portland WA, 97209Project Manager: Kelly Titkemeier16-Oct-2023 08:30

Notes and Definitions

P1 The reported value is greater than 40% difference between the concentrations determined on two GC columns where applicable.

U This analyte is not detected above the reporting limit (RL) or if noted, not detected above the limit of detection (LOD).

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, October 12, 2023 Cody Schweitzer Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

RE: A3I1084 - McFarland Cascade-Eugene - 22588.000

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3I1084, which was received by the laboratory on 9/13/2023 at 12:05:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Cooler #1	3.4 degC	Cooler #2	2.9 degC
Cooler #3	2.3 degC	Cooler #4	1.7 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION								
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received				
90-1D-0923	A3I1084-01	Water	09/13/23 08:15	09/13/23 12:05				
92-9-0923	A3I1084-02	Water	09/12/23 11:50	09/13/23 12:05				
93-1A-0923	A3I1084-03	Water	09/12/23 10:45	09/13/23 12:05				
93-3-0923	A3I1084-04	Water	09/12/23 14:25	09/13/23 12:05				
93-4-0923	A3I1084-05	Water	09/12/23 13:30	09/13/23 12:05				
93-8-0923	A3I1084-06	Water	09/12/23 15:45	09/13/23 12:05				
P-2D-0923	A3I1084-07	Water	09/13/23 09:55	09/13/23 12:05				
R-1-0923	A3I1084-08	Water	09/12/23 16:15	09/13/23 12:05				
R-2-0923	A3I1084-09	Water	09/12/23 16:28	09/13/23 12:05				
R-3-0923	A3I1084-10	Water	09/13/23 08:45	09/13/23 12:05				
DUP-0923	A3I1084-11	Water	09/12/23 07:30	09/13/23 12:05				
FIELD-0923	A3I1084-12	Water	09/13/23 09:00	09/13/23 12:05				

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 2 of 59

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A3I1084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

	Selected	Semivolatile (organic C	Compounds by EPA 8270E					
	Sample	Detection	Reporting			Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
90-1D-0923 (A3I1084-01RE1)				Matrix: Wate	Matrix: Water Batch: 2310638				
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.385	0.769	ug/L	4	09/22/23 12:29	EPA 8270E	A-01	
2,4-Dichlorophenol	ND	0.192	0.385	ug/L	4	09/22/23 12:29	EPA 8270E		
Pentachlorophenol (PCP)	1.35	0.385	0.769	ug/L	4	09/22/23 12:29	EPA 8270E		
2,3,5,6-Tetrachlorophenol	ND	0.192	0.385	ug/L	4	09/22/23 12:29	EPA 8270E		
2,4,5-Trichlorophenol	ND	0.192	0.385	ug/L	4	09/22/23 12:29	EPA 8270E		
2,4,6-Trichlorophenol	ND	0.192	0.385	ug/L	4	09/22/23 12:29	EPA 8270E		
Surrogate: Nitrobenzene-d5 (Surr)		Recover	ry: 40 %	Limits: 44-120 %	4	09/22/23 12:29	EPA 8270E	S-03	
2-Fluorobiphenyl (Surr)			40 %	44-120 %	4	09/22/23 12:29	EPA 8270E	S-03	
Phenol-d6 (Surr)			11 %	10-133 %	4	09/22/23 12:29	EPA 8270E		
p-Terphenyl-d14 (Surr)			74 %	50-134 %	4	09/22/23 12:29	EPA 8270E		
2-Fluorophenol (Surr)			18 %	19-120 %	4	09/22/23 12:29	EPA 8270E	S-03	
2,4,6-Tribromophenol (Surr)			59 %	43-140 %	4	09/22/23 12:29	EPA 8270E		
92-9-0923 (A3I1084-02RE1)		Matrix: Water			er	Batch: 23I0559			
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	0.126	0.0980	0.196	ug/L	1	09/19/23 17:19	EPA 8270E	A-01	
2,4-Dichlorophenol	ND	0.0490	0.0980	ug/L	1	09/19/23 17:19	EPA 8270E		
Pentachlorophenol (PCP)	4.74	0.0980	0.196	ug/L	1	09/19/23 17:19	EPA 8270E		
2,3,5,6-Tetrachlorophenol	0.0643	0.0490	0.0980	ug/L	1	09/19/23 17:19	EPA 8270E	J	
2,4,5-Trichlorophenol	ND	0.0490	0.0980	ug/L	1	09/19/23 17:19	EPA 8270E		
2,4,6-Trichlorophenol	ND	0.0490	0.0980	ug/L	1	09/19/23 17:19	EPA 8270E		
Surrogate: Nitrobenzene-d5 (Surr)		Recover	ry: 43 %	Limits: 44-120 %	1	09/19/23 17:19	EPA 8270E	S-03	
2-Fluorobiphenyl (Surr)			39 %	44-120 %	1	09/19/23 17:19	EPA 8270E	S-03	
Phenol-d6 (Surr)			9 %	10-133 %	1	09/19/23 17:19	EPA 8270E	S-03	
p-Terphenyl-d14 (Surr)			37 %	50-134 %	1	09/19/23 17:19	EPA 8270E	S-03	
2-Fluorophenol (Surr)			16 %	19-120 %	1	09/19/23 17:19	EPA 8270E	S-03	
2,4,6-Tribromophenol (Surr)			74 %	43-140 %	1	09/19/23 17:19	EPA 8270E		
93-1A-0923 (A3I1084-03RE2)				Matrix: Water Batch: 23		2310559			
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.100	0.200	ug/L	1	09/20/23 21:35	EPA 8270E	A-01	
2,4-Dichlorophenol	ND	0.0500	0.100	ug/L	1	09/20/23 21:35	EPA 8270E		
Pentachlorophenol (PCP)	ND	0.100	0.200	ug/L	1	09/20/23 21:35	EPA 8270E		
2,3,5,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1	09/20/23 21:35	EPA 8270E		
2,4,5-Trichlorophenol	ND	0.0500	0.100	ug/L	1	09/20/23 21:35	EPA 8270E		
2,4,6-Trichlorophenol	ND	0.0500	0.100	ug/L	1	09/20/23 21:35	EPA 8270E		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A3I1084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

	Gelecieu	Selected Semivolatile Organic Compounds by EPA 8270E							
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
93-1A-0923 (A3I1084-03RE2)				Matrix: Water		Batch:	2310559		
Surrogate: Nitrobenzene-d5 (Surr)		Recovery	y: 55 %	Limits: 44-120 %	I	09/20/23 21:35	EPA 8270E		
2-Fluorobiphenyl (Surr)			42 %	44-120 %	1	09/20/23 21:35	EPA 8270E	S-03	
Phenol-d6 (Surr)			15 %	10-133 %	1	09/20/23 21:35	EPA 8270E		
p-Terphenyl-d14 (Surr)			39 %	50-134 %	1	09/20/23 21:35	EPA 8270E	S-03	
2-Fluorophenol (Surr)			24 %	19-120 %	1	09/20/23 21:35	EPA 8270E		
2,4,6-Tribromophenol (Surr)			71 %	43-140 %	1	09/20/23 21:35	EPA 8270E		
93-3-0923 (A3I1084-04)		Matrix: Water		r	Batch: 23I0506				
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.0971	0.194	ug/L	1	09/18/23 19:15	EPA 8270E	A-01	
2,4-Dichlorophenol	ND	0.0485	0.0971	ug/L	1	09/18/23 19:15	EPA 8270E		
Pentachlorophenol (PCP)	ND	0.0971	0.194	ug/L	1	09/18/23 19:15	EPA 8270E		
2,3,5,6-Tetrachlorophenol	ND	0.0485	0.0971	ug/L	1	09/18/23 19:15	EPA 8270E		
2,4,5-Trichlorophenol	ND	0.0485	0.0971	ug/L	1	09/18/23 19:15	EPA 8270E		
2,4,6-Trichlorophenol	ND	0.0485	0.0971	ug/L	1	09/18/23 19:15	EPA 8270E		
Surrogate: Nitrobenzene-d5 (Surr)		Recovery	v: 57 %	Limits: 44-120 %	1	09/18/23 19:15	EPA 8270E		
2-Fluorobiphenyl (Surr)			53 %	44-120 %	1	09/18/23 19:15	EPA 8270E		
Phenol-d6 (Surr)			17 %	10-133 %	1	09/18/23 19:15	EPA 8270E		
p-Terphenyl-d14 (Surr)			51 %	50-134 %	1	09/18/23 19:15	EPA 8270E		
2-Fluorophenol (Surr)			30 %	19-120 %	1	09/18/23 19:15	EPA 8270E		
2,4,6-Tribromophenol (Surr)			70 %	43-140 %	1	09/18/23 19:15	EPA 8270E		
93-4-0923 (A3I1084-05RE2)		Ma		Matrix: Water		Batch: 23I0559			
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.100	0.200	ug/L	1	09/20/23 22:08	EPA 8270E	A-01	
2,4-Dichlorophenol	ND	0.0500	0.100	ug/L	1	09/20/23 22:08	EPA 8270E		
Pentachlorophenol (PCP)	0.127	0.100	0.200	ug/L	1	09/20/23 22:08	EPA 8270E	J	
2,3,5,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1	09/20/23 22:08	EPA 8270E		
2,4,5-Trichlorophenol	ND	0.0500	0.100	ug/L	1	09/20/23 22:08	EPA 8270E		
2,4,6-Trichlorophenol	ND	0.0500	0.100	ug/L	1	09/20/23 22:08	EPA 8270E		
Surrogate: Nitrobenzene-d5 (Surr)		Recovery	y: 53 %	Limits: 44-120 %	1	09/20/23 22:08	EPA 8270E		
2-Fluorobiphenyl (Surr)			44 %	44-120 %	1	09/20/23 22:08	EPA 8270E		
Phenol-d6 (Surr)			17 %	10-133 %	1	09/20/23 22:08	EPA 8270E		
p-Terphenyl-d14 (Surr)			52 %	50-134 %	1	09/20/23 22:08	EPA 8270E		
2-Fluorophenol (Surr)			25 %	19-120 %	1	09/20/23 22:08	EPA 8270E		
2,4,6-Tribromophenol (Surr)			69 %	43-140 %	1	09/20/23 22:08	EPA 8270E		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 4 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A3I1084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

	Selected	Selected Semivolatile Organic Compounds by EPA 8270E							
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
93-8-0923 (A3I1084-06)				Matrix: Wate	er	Batch:	Batch: 2310506		
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.0990	0.198	ug/L	1	09/18/23 20:27	EPA 8270E	A-01	
2,4-Dichlorophenol	ND	0.0495	0.0990	ug/L	1	09/18/23 20:27	EPA 8270E		
Pentachlorophenol (PCP)	ND	0.0990	0.198	ug/L	1	09/18/23 20:27	EPA 8270E		
2,3,5,6-Tetrachlorophenol	ND	0.0495	0.0990	ug/L	1	09/18/23 20:27	EPA 8270E		
2,4,5-Trichlorophenol	ND	0.0495	0.0990	ug/L	1	09/18/23 20:27	EPA 8270E		
2,4,6-Trichlorophenol	ND	0.0495	0.0990	ug/L	1	09/18/23 20:27	EPA 8270E		
Surrogate: Nitrobenzene-d5 (Surr)		Recover	ry: 47 %	Limits: 44-120 %	1	09/18/23 20:27	EPA 8270E		
2-Fluorobiphenyl (Surr)			47 %	44-120 %	1	09/18/23 20:27	EPA 8270E		
Phenol-d6 (Surr)			16 %	10-133 %	1	09/18/23 20:27	EPA 8270E		
p-Terphenyl-d14 (Surr)			56 %	50-134 %	1	09/18/23 20:27	EPA 8270E		
2-Fluorophenol (Surr)			25 %	19-120 %	1	09/18/23 20:27	EPA 8270E		
2,4,6-Tribromophenol (Surr)			70 %	43-140 %	1	09/18/23 20:27	EPA 8270E		
P-2D-0923 (A3I1084-07RE1)				Matrix: Water		Batch: 23I0638			
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.381	0.762	ug/L	4	09/22/23 13:03	EPA 8270E	A-01	
2,4-Dichlorophenol	ND	0.190	0.381	ug/L	4	09/22/23 13:03	EPA 8270E		
Pentachlorophenol (PCP)	0.772	0.381	0.762	ug/L	4	09/22/23 13:03	EPA 8270E		
2,3,5,6-Tetrachlorophenol	ND	0.190	0.381	ug/L	4	09/22/23 13:03	EPA 8270E		
2,4,5-Trichlorophenol	ND	0.190	0.381	ug/L	4	09/22/23 13:03	EPA 8270E		
2,4,6-Trichlorophenol	ND	0.190	0.381	ug/L	4	09/22/23 13:03	EPA 8270E		
Surrogate: Nitrobenzene-d5 (Surr)		Recover	ry: 34 %	Limits: 44-120 %	4	09/22/23 13:03	EPA 8270E	S-03	
2-Fluorobiphenyl (Surr)			33 %	44-120 %	4	09/22/23 13:03	EPA 8270E	S-03	
Phenol-d6 (Surr)			10 %	10-133 %	4	09/22/23 13:03	EPA 8270E		
p-Terphenyl-d14 (Surr)			57 %	50-134 %	4	09/22/23 13:03	EPA 8270E		
2-Fluorophenol (Surr)			16 %	19-120 %	4	09/22/23 13:03	EPA 8270E	S-03	
2,4,6-Tribromophenol (Surr)			54 %	43-140 %	4	09/22/23 13:03	EPA 8270E		

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

	Sem	nivolatile Org	anic Compo	unds by EPA	A 8270E			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
R-1-0923 (A3I1084-08)				Matrix: Wa	ater	Batch:	2310511	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	1.00	2.00	ug/L	10	09/18/23 16:34	EPA 8270E	A-01
Acenaphthene	1.00	0.100	0.200	ug/L	10	09/18/23 16:34	EPA 8270E	
Acenaphthylene	ND	0.100	0.200	ug/L	10	09/18/23 16:34	EPA 8270E	
Anthracene	ND	0.100	0.200	ug/L	10	09/18/23 16:34	EPA 8270E	
Benz(a)anthracene	ND	0.100	0.200	ug/L	10	09/18/23 16:34	EPA 8270E	
Benzo(a)pyrene	ND	0.150	0.300	ug/L	10	09/18/23 16:34	EPA 8270E	
Benzo(b)fluoranthene	ND	0.150	0.300	ug/L	10	09/18/23 16:34	EPA 8270E	
Benzo(k)fluoranthene	ND	0.150	0.300	ug/L	10	09/18/23 16:34	EPA 8270E	
Benzo(g,h,i)perylene	ND	0.100	0.200	ug/L	10	09/18/23 16:34	EPA 8270E	
Chrysene	ND	0.100	0.200	ug/L	10	09/18/23 16:34	EPA 8270E	
Dibenz(a,h)anthracene	ND	0.100	0.200	ug/L	10	09/18/23 16:34	EPA 8270E	
Fluoranthene	0.146	0.100	0.200	ug/L	10	09/18/23 16:34	EPA 8270E	J
Fluorene	0.942	0.100	0.200	ug/L	10	09/18/23 16:34	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	0.100	0.200	ug/L	10	09/18/23 16:34	EPA 8270E	
1-Methylnaphthalene	0.495	0.200	0.400	ug/L	10	09/18/23 16:34	EPA 8270E	
2-Methylnaphthalene	0.279	0.200	0.400	ug/L	10	09/18/23 16:34	EPA 8270E	J
Naphthalene	0.405	0.200	0.400	ug/L	10	09/18/23 16:34	EPA 8270E	
Phenanthrene	0.139	0.100	0.200	ug/L	10	09/18/23 16:34	EPA 8270E	J
Pyrene	0.221	0.100	0.200	ug/L	10	09/18/23 16:34	EPA 8270E	
Carbazole	ND	0.150	0.300	ug/L	10	09/18/23 16:34	EPA 8270E	
Dibenzofuran	0.205	0.100	0.200	ug/L	10	09/18/23 16:34	EPA 8270E	
2-Chlorophenol	ND	0.500	1.00	ug/L	10	09/18/23 16:34	EPA 8270E	
4-Chloro-3-methylphenol	ND	1.00	2.00	ug/L	10	09/18/23 16:34	EPA 8270E	
2,4-Dichlorophenol	ND	0.500	1.00	ug/L	10	09/18/23 16:34	EPA 8270E	
2,4-Dimethylphenol	ND	0.500	1.00	ug/L	10	09/18/23 16:34	EPA 8270E	
2,4-Dinitrophenol	ND	2.50	5.00	ug/L	10	09/18/23 16:34	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	2.50	5.00	ug/L	10	09/18/23 16:34	EPA 8270E	
2-Methylphenol	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
3+4-Methylphenol(s)	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
2-Nitrophenol	ND	1.00	2.00	ug/L	10	09/18/23 16:34	EPA 8270E	
4-Nitrophenol	ND	1.00	2.00	ug/L	10	09/18/23 16:34	EPA 8270E	
Pentachlorophenol (PCP)	4.11	1.00	2.00	ug/L	10	09/18/23 16:34	EPA 8270E	
Phenol	ND	2.00	4.00	ug/L	10	09/18/23 16:34	EPA 8270E	Q-42
				6	-			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 6 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

	Sem	nivolatile Orga	anic Compou	unds by EP/	4 8270E			
	Sample	Detection	Reporting			Date	_	
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
R-1-0923 (A3I1084-08)				Matrix: Wa	ater	Batch:	: 2310511	
2,3,5,6-Tetrachlorophenol	ND	0.500	1.00	ug/L	10	09/18/23 16:34	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.500	1.00	ug/L	10	09/18/23 16:34	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.500	1.00	ug/L	10	09/18/23 16:34	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	2.00	4.00	ug/L	10	09/18/23 16:34	EPA 8270E	
Butyl benzyl phthalate	ND	2.00	4.00	ug/L	10	09/18/23 16:34	EPA 8270E	
Diethylphthalate	ND	2.00	4.00	ug/L	10	09/18/23 16:34	EPA 8270E	
Dimethylphthalate	ND	2.00	4.00	ug/L	10	09/18/23 16:34	EPA 8270E	
Di-n-butylphthalate	ND	2.00	4.00	ug/L	10	09/18/23 16:34	EPA 8270E	
Di-n-octyl phthalate	ND	2.00	4.00	ug/L	10	09/18/23 16:34	EPA 8270E	
N-Nitrosodimethylamine	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
N-Nitrosodiphenylamine	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
Hexachlorobenzene	ND	0.100	0.200	ug/L	10	09/18/23 16:34	EPA 8270E	
Hexachlorobutadiene	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
Hexachlorocyclopentadiene	ND	0.500	1.00	ug/L	10	09/18/23 16:34	EPA 8270E	
Hexachloroethane	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
2-Chloronaphthalene	ND	0.100	0.200	ug/L	10	09/18/23 16:34	EPA 8270E	
1,2,4-Trichlorobenzene	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
4-Bromophenyl phenyl ether	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
Aniline	ND	0.500	1.00	ug/L	10	09/18/23 16:34	EPA 8270E	
4-Chloroaniline	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
2-Nitroaniline	ND	2.00	4.00	ug/L	10	09/18/23 16:34	EPA 8270E	
3-Nitroaniline	ND	2.00	4.00	ug/L	10	09/18/23 16:34	EPA 8270E	
4-Nitroaniline	ND	2.00	4.00	ug/L	10	09/18/23 16:34	EPA 8270E	
Nitrobenzene	ND	1.00	2.00	ug/L	10	09/18/23 16:34	EPA 8270E	
2,4-Dinitrotoluene	ND	1.00	2.00	ug/L	10	09/18/23 16:34	EPA 8270E	
2,6-Dinitrotoluene	ND	1.00	2.00	ug/L	10	09/18/23 16:34	EPA 8270E	
Benzoic acid	ND	12.5	25.0	ug/L	10	09/18/23 16:34	EPA 8270E	
Benzyl alcohol	ND	1.00	2.00	ug/L ug/L	10	09/18/23 16:34	EPA 8270E	
· ·	1112	1.00	2.00	⊶g/ L	10	10.01	- 02,00	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

	Sen	involatile Org	anic compo	ounds by EPA 8	2/UE			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
R-1-0923 (A3I1084-08)				Matrix: Wate	r	Batch:	2310511	
Isophorone	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
Azobenzene (1,2-DPH)	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	2.50	5.00	ug/L	10	09/18/23 16:34	EPA 8270E	
3,3'-Dichlorobenzidine	ND	5.00	10.0	ug/L	10	09/18/23 16:34	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	2.50	5.00	ug/L	10	09/18/23 16:34	EPA 8270E	
1,3-Dinitrobenzene	ND	2.50	5.00	ug/L	10	09/18/23 16:34	EPA 8270E	
1,4-Dinitrobenzene	ND	2.50	5.00	ug/L	10	09/18/23 16:34	EPA 8270E	
Pyridine	ND	1.00	2.00	ug/L	10	09/18/23 16:34	EPA 8270E	
1,2-Dichlorobenzene	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
1,3-Dichlorobenzene	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
1,4-Dichlorobenzene	ND	0.250	0.500	ug/L	10	09/18/23 16:34	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recov	very: 68 %	Limits: 44-120 %	10	09/18/23 16:34	EPA 8270E	
2-Fluorobiphenyl (Surr)			60 %	44-120 %	10	09/18/23 16:34	EPA 8270E	
Phenol-d6 (Surr)			22 %	10-133 %	10	09/18/23 16:34	EPA 8270E	
p-Terphenyl-d14 (Surr)			79 %	50-134 %	10	09/18/23 16:34	EPA 8270E	
2-Fluorophenol (Surr)			36 %	19-120 %	10	09/18/23 16:34	EPA 8270E	
2,4,6-Tribromophenol (Surr)			76 %	43-140 %	10	09/18/23 16:34	EPA 8270E	
R-2-0923 (A3I1084-09RE1)				Matrix: Wate	r	Batch:	2310511	
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	1.00	2.00	ug/L	10	09/19/23 13:12	EPA 8270E	A-0
Acenaphthene	8.09	0.100	0.200	ug/L	10	09/19/23 13:12	EPA 8270E	
Acenaphthylene	1.62	0.100	0.200	ug/L	10	09/19/23 13:12	EPA 8270E	
Anthracene	0.171	0.100	0.200	ug/L	10	09/19/23 13:12	EPA 8270E	J
Benz(a)anthracene	ND	0.100	0.200	ug/L	10	09/19/23 13:12	EPA 8270E	
Benzo(a)pyrene	ND	0.150	0.300	ug/L	10	09/19/23 13:12	EPA 8270E	
Benzo(b)fluoranthene	ND	0.150	0.300	ug/L	10	09/19/23 13:12	EPA 8270E	
Benzo(k)fluoranthene	ND	0.150	0.300	ug/L	10	09/19/23 13:12	EPA 8270E	
Benzo(g,h,i)perylene	ND	0.100	0.200	ug/L	10	09/19/23 13:12	EPA 8270E	
Chrysene	ND	0.100	0.200	ug/L	10	09/19/23 13:12	EPA 8270E	
Dibenz(a,h)anthracene	ND	0.100	0.200	ug/L	10	09/19/23 13:12	EPA 8270E	
Fluoranthene	3.57	0.100	0.200	ug/L	10	09/19/23 13:12	EPA 8270E	
Fluorene	ND	0.300	0.300	ug/L	10	09/19/23 13:12	EPA 8270E	R-0
				2				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 8 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A3I1084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
R-2-0923 (A3I1084-09RE1)				Matrix: Wa	ater	Batch:	2310511	
1-Methylnaphthalene	ND	0.200	0.400	ug/L	10	09/19/23 13:12	EPA 8270E	
2-Methylnaphthalene	ND	0.200	0.400	ug/L	10	09/19/23 13:12	EPA 8270E	
Naphthalene	ND	0.200	0.400	ug/L	10	09/19/23 13:12	EPA 8270E	
Phenanthrene	ND	0.100	0.200	ug/L	10	09/19/23 13:12	EPA 8270E	
Pyrene	3.76	0.100	0.200	ug/L	10	09/19/23 13:12	EPA 8270E	
Carbazole	ND	0.150	0.300	ug/L	10	09/19/23 13:12	EPA 8270E	
Dibenzofuran	ND	0.100	0.200	ug/L	10	09/19/23 13:12	EPA 8270E	
2-Chlorophenol	ND	0.500	1.00	ug/L	10	09/19/23 13:12	EPA 8270E	
4-Chloro-3-methylphenol	ND	1.00	2.00	ug/L	10	09/19/23 13:12	EPA 8270E	
2,4-Dichlorophenol	ND	0.500	1.00	ug/L	10	09/19/23 13:12	EPA 8270E	
2,4-Dimethylphenol	ND	0.500	1.00	ug/L	10	09/19/23 13:12	EPA 8270E	
2,4-Dinitrophenol	ND	2.50	5.00	ug/L	10	09/19/23 13:12	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	2.50	5.00	ug/L	10	09/19/23 13:12	EPA 8270E	
2-Methylphenol	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
3+4-Methylphenol(s)	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
2-Nitrophenol	ND	1.00	2.00	ug/L	10	09/19/23 13:12	EPA 8270E	
4-Nitrophenol	ND	1.00	2.00	ug/L	10	09/19/23 13:12	EPA 8270E	
Pentachlorophenol (PCP)	1.08	1.00	2.00	ug/L	10	09/19/23 13:12	EPA 8270E	J
Phenol	ND	2.00	4.00	ug/L	10	09/19/23 13:12	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	0.500	1.00	ug/L	10	09/19/23 13:12	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.500	1.00	ug/L	10	09/19/23 13:12	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.500	1.00	ug/L	10	09/19/23 13:12	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	2.00	4.00	ug/L	10	09/19/23 13:12	EPA 8270E	
Butyl benzyl phthalate	ND	2.00	4.00	ug/L	10	09/19/23 13:12	EPA 8270E	
Diethylphthalate	ND	2.00	4.00	ug/L	10	09/19/23 13:12	EPA 8270E	
Dimethylphthalate	ND	2.00	4.00	ug/L	10	09/19/23 13:12	EPA 8270E	
Di-n-butylphthalate	ND	2.00	4.00	ug/L	10	09/19/23 13:12	EPA 8270E	
Di-n-octyl phthalate	ND	2.00	4.00	ug/L	10	09/19/23 13:12	EPA 8270E	
N-Nitrosodimethylamine	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
N-Nitrosodiphenylamine	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number:
 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager:
 Cody Schweitzer
 A311084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
R-2-0923 (A3I1084-09RE1)				Matrix: Wate	r	Batch:	2310511	
2,2'-Oxybis(1-Chloropropane)	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
Hexachlorobenzene	ND	0.100	0.200	ug/L	10	09/19/23 13:12	EPA 8270E	
Hexachlorobutadiene	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
Hexachlorocyclopentadiene	ND	0.500	1.00	ug/L	10	09/19/23 13:12	EPA 8270E	
Hexachloroethane	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
2-Chloronaphthalene	ND	0.100	0.200	ug/L	10	09/19/23 13:12	EPA 8270E	
1,2,4-Trichlorobenzene	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
4-Bromophenyl phenyl ether	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
Aniline	ND	0.500	1.00	ug/L	10	09/19/23 13:12	EPA 8270E	
4-Chloroaniline	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
2-Nitroaniline	ND	2.00	4.00	ug/L	10	09/19/23 13:12	EPA 8270E	
3-Nitroaniline	ND	2.00	4.00	ug/L	10	09/19/23 13:12	EPA 8270E	
4-Nitroaniline	ND	2.00	4.00	ug/L	10	09/19/23 13:12	EPA 8270E	
Nitrobenzene	ND	1.00	2.00	ug/L	10	09/19/23 13:12	EPA 8270E	
2,4-Dinitrotoluene	ND	1.00	2.00	ug/L	10	09/19/23 13:12	EPA 8270E	
2,6-Dinitrotoluene	ND	1.00	2.00	ug/L	10	09/19/23 13:12	EPA 8270E	
Benzoic acid	ND	12.5	25.0	ug/L	10	09/19/23 13:12	EPA 8270E	
Benzyl alcohol	ND	1.00	2.00	ug/L	10	09/19/23 13:12	EPA 8270E	
Isophorone	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
Azobenzene (1,2-DPH)	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	2.50	5.00	ug/L	10	09/19/23 13:12	EPA 8270E	
3,3'-Dichlorobenzidine	ND	5.00	10.0	ug/L	10	09/19/23 13:12	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	2.50	5.00	ug/L	10	09/19/23 13:12	EPA 8270E	
1,3-Dinitrobenzene	ND	2.50	5.00	ug/L	10	09/19/23 13:12	EPA 8270E	
1,4-Dinitrobenzene	ND	2.50	5.00	ug/L	10	09/19/23 13:12	EPA 8270E	
Pyridine	ND	1.00	2.00	ug/L	10	09/19/23 13:12	EPA 8270E	
,2-Dichlorobenzene	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
,3-Dichlorobenzene	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
,4-Dichlorobenzene	ND	0.250	0.500	ug/L	10	09/19/23 13:12	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recov	very: 74 %	Limits: 44-120 %	6 10	09/19/23 13:12	EPA 8270E	
2-Fluorobiphenyl (Surr)			68 %	44-120 %	6 10	09/19/23 13:12	EPA 8270E	
Phenol-d6 (Surr)			24 %	10-133 %	6 10	09/19/23 13:12	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 10 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

	Sem	ivolatile Org	anic Compo	ounds by EPA 8	270E			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
R-2-0923 (A3I1084-09RE1)				Matrix: Wate	r	Batch:	2310511	
Surrogate: p-Terphenyl-d14 (Surr)		Reco	very: 78 %	Limits: 50-134 %	10	09/19/23 13:12	EPA 8270E	
2-Fluorophenol (Surr)			41 %	19-120 %	10	09/19/23 13:12	EPA 8270E	
2,4,6-Tribromophenol (Surr)			87 %	43-140 %	10	09/19/23 13:12	EPA 8270E	
R-3-0923 (A3I1084-10)			Matrix: Water		Batch:	2310610		
Acenaphthene	119	0.194	0.388	ug/L	20	09/20/23 20:27	EPA 8270E	B-02
Fluorene	54.7	0.194	0.388	ug/L	20	09/20/23 20:27	EPA 8270E	
1-Methylnaphthalene	126	0.388	0.777	ug/L	20	09/20/23 20:27	EPA 8270E	B-02
2-Methylnaphthalene	131	0.388	0.777	ug/L	20	09/20/23 20:27	EPA 8270E	B-02
Phenanthrene	56.5	0.194	0.388	ug/L	20	09/20/23 20:27	EPA 8270E	
Carbazole	10.2	0.291	0.583	ug/L	20	09/20/23 20:27	EPA 8270E	
Dibenzofuran	54.6	0.194	0.388	ug/L	20	09/20/23 20:27	EPA 8270E	
R-3-0923 (A3I1084-10RE1)		Matrix: Water Batch: 2310610		2310610				
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.485	0.971	ug/L	5	09/22/23 20:37	EPA 8270E	A-01
Acenaphthylene	ND	1.65	1.65	ug/L	5	09/22/23 20:37	EPA 8270E	R-02
Anthracene	9.25	0.0485	0.0971	ug/L	5	09/22/23 20:37	EPA 8270E	
Benz(a)anthracene	1.01	0.0485	0.0971	ug/L	5	09/22/23 20:37	EPA 8270E	
Benzo(a)pyrene	0.302	0.0728	0.146	ug/L	5	09/22/23 20:37	EPA 8270E	
Benzo(b)fluoranthene	0.419	0.0728	0.146	ug/L	5	09/22/23 20:37	EPA 8270E	M-05
Benzo(k)fluoranthene	0.207	0.0728	0.146	ug/L	5	09/22/23 20:37	EPA 8270E	M-05
Benzo(g,h,i)perylene	ND	0.0485	0.0971	ug/L	5	09/22/23 20:37	EPA 8270E	
Chrysene	1.01	0.0485	0.0971	ug/L	5	09/22/23 20:37	EPA 8270E	
Dibenz(a,h)anthracene	ND	0.0485	0.0971	ug/L	5	09/22/23 20:37	EPA 8270E	
Fluoranthene	15.3	0.0485	0.0971	ug/L	5	09/22/23 20:37	EPA 8270E	
Indeno(1,2,3-cd)pyrene	0.0567	0.0485	0.0971	ug/L	5	09/22/23 20:37	EPA 8270E	J
Pyrene	11.6	0.0485	0.0971	ug/L	5	09/22/23 20:37	EPA 8270E	
2-Chlorophenol	ND	0.243	0.485	ug/L	5	09/22/23 20:37	EPA 8270E	
4-Chloro-3-methylphenol	ND	0.485	0.971	ug/L	5	09/22/23 20:37	EPA 8270E	
2,4-Dichlorophenol	ND	0.243	0.485	ug/L	5	09/22/23 20:37	EPA 8270E	
2,4-Dimethylphenol	ND	0.243	0.485	ug/L	5	09/22/23 20:37	EPA 8270E	
2,4-Dinitrophenol	ND	1.21	2.43	ug/L	5	09/22/23 20:37	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	1.21	2.43	ug/L	5	09/22/23 20:37	EPA 8270E	
2-Methylphenol	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 11 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

		Detection	•			Dete		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
R-3-0923 (A3I1084-10RE1)				Matrix: Wa	ater	Batch: 23I0610		
3+4-Methylphenol(s)	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
2-Nitrophenol	ND	0.485	0.971	ug/L	5	09/22/23 20:37	EPA 8270E	
4-Nitrophenol	ND	1.55	1.55	ug/L	5	09/22/23 20:37	EPA 8270E	R-02
Pentachlorophenol (PCP)	0.633	0.485	0.971	ug/L	5	09/22/23 20:37	EPA 8270E	J
Phenol	ND	0.971	1.94	ug/L	5	09/22/23 20:37	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	0.243	0.485	ug/L	5	09/22/23 20:37	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.243	0.485	ug/L	5	09/22/23 20:37	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.243	0.485	ug/L	5	09/22/23 20:37	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	0.971	1.94	ug/L	5	09/22/23 20:37	EPA 8270E	
Butyl benzyl phthalate	ND	0.971	1.94	ug/L	5	09/22/23 20:37	EPA 8270E	
Diethylphthalate	ND	0.971	1.94	ug/L	5	09/22/23 20:37	EPA 8270E	
Dimethylphthalate	ND	0.971	1.94	ug/L	5	09/22/23 20:37	EPA 8270E	
Di-n-butylphthalate	ND	0.971	1.94	ug/L	5	09/22/23 20:37	EPA 8270E	
Di-n-octyl phthalate	ND	0.971	1.94	ug/L	5	09/22/23 20:37	EPA 8270E	
N-Nitrosodimethylamine	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
N-Nitrosodiphenylamine	ND	0.777	0.777	ug/L	5	09/22/23 20:37	EPA 8270E	R-02
Bis(2-Chloroethoxy) methane	ND	0.243	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
Hexachlorobenzene	ND	0.0485	0.0971	ug/L	5	09/22/23 20:37	EPA 8270E	
Hexachlorobutadiene	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
Hexachlorocyclopentadiene	ND	0.243	0.485	ug/L	5	09/22/23 20:37	EPA 8270E	
Hexachloroethane	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
2-Chloronaphthalene	ND	0.146	0.146	ug/L	5	09/22/23 20:37	EPA 8270E	R-02
1,2,4-Trichlorobenzene	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
4-Bromophenyl phenyl ether	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
Aniline	ND	0.243	0.485	ug/L	5	09/22/23 20:37	EPA 8270E	
4-Chloroaniline	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
2-Nitroaniline	ND	0.971	1.94	ug/L	5	09/22/23 20:37	EPA 8270E	
3-Nitroaniline	ND	0.971	1.94	ug/L	5	09/22/23 20:37	EPA 8270E	
4-Nitroaniline	ND	2.33	2.33	ug/L	5	09/22/23 20:37	EPA 8270E	R-02

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 12 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A3I1084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

	Sem	nivolatile Org	anic Comp	ounds by EPA 8	270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
R-3-0923 (A3I1084-10RE1)				Matrix: Wate	r	Batch:	2310610	
Nitrobenzene	ND	1.26	1.26	ug/L	5	09/22/23 20:37	EPA 8270E	R-02
2,4-Dinitrotoluene	ND	2.91	2.91	ug/L	5	09/22/23 20:37	EPA 8270E	R-02
2,6-Dinitrotoluene	ND	0.485	0.971	ug/L	5	09/22/23 20:37	EPA 8270E	
Benzoic acid	ND	6.07	12.1	ug/L	5	09/22/23 20:37	EPA 8270E	
Benzyl alcohol	ND	0.485	0.971	ug/L	5	09/22/23 20:37	EPA 8270E	
sophorone	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
Azobenzene (1,2-DPH)	ND	0.291	0.291	ug/L	5	09/22/23 20:37	EPA 8270E	R-02
Bis(2-Ethylhexyl) adipate	ND	1.21	2.43	ug/L	5	09/22/23 20:37	EPA 8270E	
3,3'-Dichlorobenzidine	ND	2.43	4.85	ug/L	5	09/22/23 20:37	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	1.21	2.43	ug/L	5	09/22/23 20:37	EPA 8270E	
,3-Dinitrobenzene	ND	1.21	2.43	ug/L	5	09/22/23 20:37	EPA 8270E	
,4-Dinitrobenzene	ND	1.21	2.43	ug/L	5	09/22/23 20:37	EPA 8270E	
Pyridine	ND	0.485	0.971	ug/L	5	09/22/23 20:37	EPA 8270E	
,2-Dichlorobenzene	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
,3-Dichlorobenzene	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
,4-Dichlorobenzene	ND	0.121	0.243	ug/L	5	09/22/23 20:37	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 77 %	Limits: 44-120 %	5	09/22/23 20:37	EPA 8270E	
2-Fluorobiphenyl (Surr)			68 %	44-120 %	5	09/22/23 20:37	EPA 8270E	
Phenol-d6 (Surr)			25 %	10-133 %	5	09/22/23 20:37	EPA 8270E	
p-Terphenyl-d14 (Surr)			82 %	50-134 %	5	09/22/23 20:37	EPA 8270E	
2-Fluorophenol (Surr)			36 %	19-120 %	5	09/22/23 20:37	EPA 8270E	
2,4,6-Tribromophenol (Surr)			89 %	43-140 %	5	09/22/23 20:37	EPA 8270E	
R-3-0923 (A3I1084-10RE2)				Matrix: Wate	r	Batch:	2310610	
Naphthalene	483	3.88	7.77	ug/L	200	09/21/23 16:54	EPA 8270E	В
DUP-0923 (A3I1084-11RE1)				Matrix: Wate	Matrix: Water Batch: 23I0511			
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.952	1.90	ug/L	10	09/19/23 13:47	EPA 8270E	A-01
Acenaphthene	10.5	0.0952	0.190	ug/L	10	09/19/23 13:47	EPA 8270E	
Acenaphthylene	2.22	0.0952	0.190	ug/L	10	09/19/23 13:47	EPA 8270E	
Anthracene	0.181	0.0952	0.190	ug/L	10	09/19/23 13:47	EPA 8270E	J
Benz(a)anthracene	0.0966	0.0952	0.190	ug/L	10	09/19/23 13:47	EPA 8270E	J
Benzo(a)pyrene	ND	0.143	0.286	ug/L	10	09/19/23 13:47	EPA 8270E	
				Č				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 13 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

	Sem	nivolatile Org	anic Compo	unds by EPA	A 8270E			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DUP-0923 (A3I1084-11RE1)				Matrix: Wa	ater	Batch:	2310511	
Benzo(k)fluoranthene	ND	0.143	0.286	ug/L	10	09/19/23 13:47	EPA 8270E	
Benzo(g,h,i)perylene	ND	0.0952	0.190	ug/L	10	09/19/23 13:47	EPA 8270E	
Chrysene	ND	0.0952	0.190	ug/L	10	09/19/23 13:47	EPA 8270E	
Dibenz(a,h)anthracene	ND	0.0952	0.190	ug/L	10	09/19/23 13:47	EPA 8270E	
Fluoranthene	4.05	0.0952	0.190	ug/L	10	09/19/23 13:47	EPA 8270E	
Fluorene	ND	0.286	0.286	ug/L	10	09/19/23 13:47	EPA 8270E	R-02
Indeno(1,2,3-cd)pyrene	ND	0.0952	0.190	ug/L	10	09/19/23 13:47	EPA 8270E	
1-Methylnaphthalene	ND	0.190	0.381	ug/L	10	09/19/23 13:47	EPA 8270E	
2-Methylnaphthalene	ND	0.190	0.381	ug/L	10	09/19/23 13:47	EPA 8270E	
Naphthalene	ND	0.190	0.381	ug/L	10	09/19/23 13:47	EPA 8270E	
Phenanthrene	ND	0.0952	0.190	ug/L	10	09/19/23 13:47	EPA 8270E	
Pyrene	3.90	0.0952	0.190	ug/L	10	09/19/23 13:47	EPA 8270E	
Carbazole	ND	0.143	0.286	ug/L	10	09/19/23 13:47	EPA 8270E	
Dibenzofuran	ND	0.0952	0.190	ug/L	10	09/19/23 13:47	EPA 8270E	
2-Chlorophenol	ND	0.476	0.952	ug/L	10	09/19/23 13:47	EPA 8270E	
4-Chloro-3-methylphenol	ND	0.952	1.90	ug/L	10	09/19/23 13:47	EPA 8270E	
2,4-Dichlorophenol	ND	0.476	0.952	ug/L	10	09/19/23 13:47	EPA 8270E	
2,4-Dimethylphenol	ND	0.476	0.952	ug/L	10	09/19/23 13:47	EPA 8270E	
2,4-Dinitrophenol	ND	2.38	4.76	ug/L	10	09/19/23 13:47	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	2.38	4.76	ug/L	10	09/19/23 13:47	EPA 8270E	
2-Methylphenol	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
3+4-Methylphenol(s)	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
2-Nitrophenol	ND	0.952	1.90	ug/L	10	09/19/23 13:47	EPA 8270E	
4-Nitrophenol	ND	0.952	1.90	ug/L	10	09/19/23 13:47	EPA 8270E	
Pentachlorophenol (PCP)	1.08	0.952	1.90	ug/L	10	09/19/23 13:47	EPA 8270E	J
Phenol	ND	1.90	3.81	ug/L	10	09/19/23 13:47	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	0.476	0.952	ug/L	10	09/19/23 13:47	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.476	0.952	ug/L	10	09/19/23 13:47	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.476	0.952	ug/L	10	09/19/23 13:47	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	1.90	3.81	ug/L	10	09/19/23 13:47	EPA 8270E	
Butyl benzyl phthalate	ND	1.90	3.81	ug/L	10	09/19/23 13:47	EPA 8270E	
Diethylphthalate	ND	1.90	3.81	ug/L	10	09/19/23 13:47	EPA 8270E	
Dimethylphthalate	ND	1.90	3.81	ug/L	10	09/19/23 13:47	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 14 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
DUP-0923 (A3I1084-11RE1)				Matrix: Wa	ater	Batch:	2310511	
Di-n-butylphthalate	ND	1.90	3.81	ug/L	10	09/19/23 13:47	EPA 8270E	
Di-n-octyl phthalate	ND	1.90	3.81	ug/L	10	09/19/23 13:47	EPA 8270E	
N-Nitrosodimethylamine	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
N-Nitrosodiphenylamine	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
Hexachlorobenzene	ND	0.0952	0.190	ug/L	10	09/19/23 13:47	EPA 8270E	
Hexachlorobutadiene	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
Hexachlorocyclopentadiene	ND	0.476	0.952	ug/L	10	09/19/23 13:47	EPA 8270E	
Hexachloroethane	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
2-Chloronaphthalene	ND	0.0952	0.190	ug/L	10	09/19/23 13:47	EPA 8270E	
,2,4-Trichlorobenzene	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
1-Bromophenyl phenyl ether	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
I-Chlorophenyl phenyl ether	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
Aniline	ND	0.476	0.952	ug/L	10	09/19/23 13:47	EPA 8270E	
1-Chloroaniline	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
2-Nitroaniline	ND	1.90	3.81	ug/L	10	09/19/23 13:47	EPA 8270E	
3-Nitroaniline	ND	1.90	3.81	ug/L	10	09/19/23 13:47	EPA 8270E	
1-Nitroaniline	ND	1.90	3.81	ug/L	10	09/19/23 13:47	EPA 8270E	
Nitrobenzene	ND	0.952	1.90	ug/L	10	09/19/23 13:47	EPA 8270E	
2,4-Dinitrotoluene	ND	0.952	1.90	ug/L	10	09/19/23 13:47	EPA 8270E	
2,6-Dinitrotoluene	ND	0.952	1.90	ug/L	10	09/19/23 13:47	EPA 8270E	
Benzoic acid	ND	11.9	23.8	ug/L	10	09/19/23 13:47	EPA 8270E	
Benzyl alcohol	ND	0.952	1.90	ug/L	10	09/19/23 13:47	EPA 8270E	
sophorone	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
zobenzene (1,2-DPH)	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
is(2-Ethylhexyl) adipate	ND	2.38	4.76	ug/L	10	09/19/23 13:47	EPA 8270E	
,3'-Dichlorobenzidine	ND	4.76	9.52	ug/L	10	09/19/23 13:47	EPA 8270E	Q-52
,2-Dinitrobenzene	ND	2.38	4.76	ug/L	10	09/19/23 13:47	EPA 8270E	
,3-Dinitrobenzene	ND	2.38	4.76	ug/L	10	09/19/23 13:47	EPA 8270E	
4-Dinitrobenzene	ND	2.38	4.76	ug/L	10	09/19/23 13:47	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

				ounds by EPA 8		D.		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DUP-0923 (A3I1084-11RE1)	Trobuit	2		Matrix: Wate		<u> </u>	2310511	
,								
Pyridine	ND	0.952	1.90	ug/L	10	09/19/23 13:47	EPA 8270E	
1,2-Dichlorobenzene	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
1,3-Dichlorobenzene	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
1,4-Dichlorobenzene	ND	0.238	0.476	ug/L	10	09/19/23 13:47	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recove	ery: 84 %	Limits: 44-120 %	10	09/19/23 13:47	EPA 8270E	
2-Fluorobiphenyl (Surr)			76 %	44-120 %	10	09/19/23 13:47	EPA 8270E	
Phenol-d6 (Surr)			26 %	10-133 %		09/19/23 13:47	EPA 8270E	
p-Terphenyl-d14 (Surr)			82 %	50-134 %		09/19/23 13:47	EPA 8270E	
2-Fluorophenol (Surr)			43 %	19-120 %		09/19/23 13:47	EPA 8270E	
2,4,6-Tribromophenol (Surr)			98 %	43-140 %	10	09/19/23 13:47	EPA 8270E	
FIELD-0923 (A3I1084-12)		Matrix: Water Batch: 2310610		2310610				
2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	ND	0.0990	0.198	ug/L	1	09/21/23 11:39	EPA 8270E	A-01
Acenaphthene	0.0198	0.00990	0.0198	ug/L	1	09/21/23 11:39	EPA 8270E	B-02
Acenaphthylene	ND	0.00990	0.0198	ug/L	1	09/21/23 11:39	EPA 8270E	
Anthracene	ND	0.00990	0.0198	ug/L	1	09/21/23 11:39	EPA 8270E	
Benz(a)anthracene	ND	0.00990	0.0198	ug/L	1	09/21/23 11:39	EPA 8270E	
Benzo(a)pyrene	ND	0.0149	0.0297	ug/L	1	09/21/23 11:39	EPA 8270E	
Benzo(b)fluoranthene	ND	0.0149	0.0297	ug/L	1	09/21/23 11:39	EPA 8270E	
Benzo(k)fluoranthene	ND	0.0149	0.0297	ug/L	1	09/21/23 11:39	EPA 8270E	
Benzo(g,h,i)perylene	ND	0.00990	0.0198	ug/L	1	09/21/23 11:39	EPA 8270E	
Chrysene	ND	0.00990	0.0198	ug/L	1	09/21/23 11:39	EPA 8270E	
Dibenz(a,h)anthracene	ND	0.00990	0.0198	ug/L	1	09/21/23 11:39	EPA 8270E	
Fluoranthene	ND	0.00990	0.0198	ug/L	1	09/21/23 11:39	EPA 8270E	
Fluorene	ND	0.00990	0.0198	ug/L	1	09/21/23 11:39	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	0.00990	0.0198	ug/L	1	09/21/23 11:39	EPA 8270E	
1-Methylnaphthalene	ND	0.0396	0.0396	ug/L	1	09/21/23 11:39	EPA 8270E	
2-Methylnaphthalene	ND	0.0396	0.0396	ug/L	1	09/21/23 11:39	EPA 8270E	
Naphthalene	0.156	0.0198	0.0396	ug/L	1	09/21/23 11:39	EPA 8270E	В
Phenanthrene	ND	0.00990	0.0198	ug/L	1	09/21/23 11:39	EPA 8270E	
Pyrene	ND	0.00990	0.0198	ug/L	1	09/21/23 11:39	EPA 8270E	
Carbazole	ND	0.0149	0.0297	ug/L	1	09/21/23 11:39	EPA 8270E	
Dibenzofuran	ND	0.00990	0.0198	ug/L	1	09/21/23 11:39	EPA 8270E	
2-Chlorophenol	ND	0.0495	0.0990	ug/L	1	09/21/23 11:39	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 16 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

	Sem	ivolatile Org	anic Compo	unds by EPA	A 8270E			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
FIELD-0923 (A3I1084-12)				Matrix: Wa	ater	Batch:	2310610	
4-Chloro-3-methylphenol	ND	0.0990	0.198	ug/L	1	09/21/23 11:39	EPA 8270E	
2,4-Dichlorophenol	ND	0.0495	0.0990	ug/L	1	09/21/23 11:39	EPA 8270E	
2,4-Dimethylphenol	ND	0.0495	0.0990	ug/L	1	09/21/23 11:39	EPA 8270E	
2,4-Dinitrophenol	ND	0.248	0.495	ug/L	1	09/21/23 11:39	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	0.248	0.495	ug/L	1	09/21/23 11:39	EPA 8270E	
2-Methylphenol	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
3+4-Methylphenol(s)	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
2-Nitrophenol	ND	0.0990	0.198	ug/L	1	09/21/23 11:39	EPA 8270E	
4-Nitrophenol	ND	0.0990	0.198	ug/L	1	09/21/23 11:39	EPA 8270E	
Pentachlorophenol (PCP)	ND	0.0990	0.198	ug/L	1	09/21/23 11:39	EPA 8270E	
Phenol	ND	0.198	0.396	ug/L	1	09/21/23 11:39	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	0.0495	0.0990	ug/L	1	09/21/23 11:39	EPA 8270E	
2,4,5-Trichlorophenol	ND	0.0495	0.0990	ug/L	1	09/21/23 11:39	EPA 8270E	
2,4,6-Trichlorophenol	ND	0.0495	0.0990	ug/L	1	09/21/23 11:39	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	0.198	0.396	ug/L	1	09/21/23 11:39	EPA 8270E	
Butyl benzyl phthalate	ND	0.198	0.396	ug/L	1	09/21/23 11:39	EPA 8270E	
Diethylphthalate	ND	0.198	0.396	ug/L	1	09/21/23 11:39	EPA 8270E	
Dimethylphthalate	ND	0.198	0.396	ug/L	1	09/21/23 11:39	EPA 8270E	
Di-n-butylphthalate	ND	0.396	0.396	ug/L	1	09/21/23 11:39	EPA 8270E	
Di-n-octyl phthalate	ND	0.198	0.396	ug/L	1	09/21/23 11:39	EPA 8270E	
N-Nitrosodimethylamine	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
N-Nitrosodiphenylamine	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
Hexachlorobenzene	ND	0.00990	0.0198	ug/L	1	09/21/23 11:39	EPA 8270E	
Hexachlorobutadiene	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
Hexachlorocyclopentadiene	ND	0.0495	0.0990	ug/L	1	09/21/23 11:39	EPA 8270E	
Hexachloroethane	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
2-Chloronaphthalene	ND	0.00990	0.0198	ug/L	1	09/21/23 11:39	EPA 8270E	
1,2,4-Trichlorobenzene	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
4-Bromophenyl phenyl ether	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 17 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A3I1084 - 10 12 23 1512

ANALYTICAL SAMPLE RESULTS

	Sen	nivolatile Organ	ic Compo	ounds by EPA 82	270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
FIELD-0923 (A3I1084-12)				Matrix: Water	,	Batch:	2310610	
4-Chlorophenyl phenyl ether	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
Aniline	ND	0.0495	0.0990	ug/L	1	09/21/23 11:39	EPA 8270E	
4-Chloroaniline	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
2-Nitroaniline	ND	0.198	0.396	ug/L	1	09/21/23 11:39	EPA 8270E	
3-Nitroaniline	ND	0.198	0.396	ug/L	1	09/21/23 11:39	EPA 8270E	
4-Nitroaniline	ND	0.198	0.396	ug/L	1	09/21/23 11:39	EPA 8270E	
Nitrobenzene	ND	0.0990	0.198	ug/L	1	09/21/23 11:39	EPA 8270E	
2,4-Dinitrotoluene	ND	0.0990	0.198	ug/L	1	09/21/23 11:39	EPA 8270E	
2,6-Dinitrotoluene	ND	0.0990	0.198	ug/L	1	09/21/23 11:39	EPA 8270E	
Benzoic acid	ND	1.24	2.48	ug/L	1	09/21/23 11:39	EPA 8270E	
Benzyl alcohol	ND	0.0990	0.198	ug/L	1	09/21/23 11:39	EPA 8270E	
Isophorone	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
Azobenzene (1,2-DPH)	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	0.248	0.495	ug/L	1	09/21/23 11:39	EPA 8270E	
3,3'-Dichlorobenzidine	ND	0.495	0.990	ug/L	1	09/21/23 11:39	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	0.248	0.495	ug/L	1	09/21/23 11:39	EPA 8270E	
1,3-Dinitrobenzene	ND	0.248	0.495	ug/L	1	09/21/23 11:39	EPA 8270E	
1,4-Dinitrobenzene	ND	0.248	0.495	ug/L	1	09/21/23 11:39	EPA 8270E	
Pyridine	ND	0.0990	0.198	ug/L	1	09/21/23 11:39	EPA 8270E	
1,2-Dichlorobenzene	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
1,3-Dichlorobenzene	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
1,4-Dichlorobenzene	ND	0.0248	0.0495	ug/L	1	09/21/23 11:39	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recovery	v: 70 %	Limits: 44-120 %	1	09/21/23 11:39	EPA 8270E	
2-Fluorobiphenyl (Surr)			60 %	44-120 %	1	09/21/23 11:39	EPA 8270E	
Phenol-d6 (Surr)			23 %	10-133 %	I	09/21/23 11:39	EPA 8270E	
p-Terphenyl-d14 (Surr)			69 %	50-134 %	1	09/21/23 11:39	EPA 8270E	
2-Fluorophenol (Surr)			34 %	19-120 %	1	09/21/23 11:39	EPA 8270E	
2,4,6-Tribromophenol (Surr)			64 %	43-140 %	1	09/21/23 11:39	EPA 8270E	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 18 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS Selected Semivolatile Organic Compounds by EPA 8270E

Detection Reporting Spike Source % REC **RPD** Dilution % REC Analyte Result Ĺimit Units Amount Result Limits RPD Limit Notes Limit

Blank (23I0506-BLK2)			Prepared: (09/18/23 06	5:00 Anal	yzed: 09/18	3/23 12:01			
<u>EPA 8270E</u>			*			•				
2,3,4,6- & 2,3,4,5-Tetrachloroph	henol(N)D	0.100	0.200	ug/L	1			 	 	A-0
Acenaphthene	ND	0.0100	0.0200	ug/L	1			 	 	
Acenaphthylene	ND	0.0100	0.0200	ug/L	1			 	 	
Anthracene	ND	0.0100	0.0200	ug/L	1			 	 	
Benz(a)anthracene	ND	0.0100	0.0200	ug/L	1			 	 	
Benzo(a)pyrene	ND	0.0150	0.0300	ug/L	1			 	 	
Benzo(b)fluoranthene	ND	0.0150	0.0300	ug/L	1			 	 	
Benzo(k)fluoranthene	ND	0.0150	0.0300	ug/L	1			 	 	
Benzo(g,h,i)perylene	ND	0.0100	0.0200	ug/L	1			 	 	
Chrysene	ND	0.0100	0.0200	ug/L	1			 	 	
Dibenz(a,h)anthracene	ND	0.0100	0.0200	ug/L	1			 	 	
Fluoranthene	ND	0.0100	0.0200	ug/L	1			 	 	
Fluorene	ND	0.0100	0.0200	ug/L	1			 	 	
Indeno(1,2,3-cd)pyrene	ND	0.0100	0.0200	ug/L	1			 	 	
1-Methylnaphthalene	ND	0.0200	0.0400	ug/L	1			 	 	
2-Methylnaphthalene	ND	0.0200	0.0400	ug/L	1			 	 	
Naphthalene	ND	0.0200	0.0400	ug/L	1			 	 	
Phenanthrene	ND	0.0100	0.0200	ug/L	1			 	 	
Pyrene	ND	0.0100	0.0200	ug/L	1			 	 	
Carbazole	ND	0.0150	0.0300	ug/L	1			 	 	
Dibenzofuran	ND	0.0100	0.0200	ug/L	1			 	 	
2-Chlorophenol	ND	0.0500	0.100	ug/L	1			 	 	
4-Chloro-3-methylphenol	ND	0.100	0.200	ug/L	1			 	 	
2,4-Dichlorophenol	ND	0.0500	0.100	ug/L	1			 	 	
2,4-Dimethylphenol	ND	0.0500	0.100	ug/L	1			 	 	
2,4-Dinitrophenol	ND	0.250	0.500	ug/L	1			 	 	
4,6-Dinitro-2-methylphenol	ND	0.250	0.500	ug/L	1			 	 	
2-Methylphenol	ND	0.0250	0.0500	ug/L	1			 	 	
3+4-Methylphenol(s)	ND	0.0250	0.0500	ug/L	1			 	 	
2-Nitrophenol	ND	0.100	0.200	ug/L	1			 	 	
4-Nitrophenol	ND	0.100	0.200	ug/L	1			 	 	
Pentachlorophenol (PCP)	ND	0.100	0.200	ug/L	1			 	 	
Phenol	ND	0.200	0.400	ug/L	1			 	 	

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 19 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

		Selecte	d Semivola	atile Orga	nic Com	pounds by	y EPA 82	270E				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0506 - EPA 3510C (A	cid Extrac	tion)					Wa	ter				
Blank (23I0506-BLK2)			Prepared	: 09/18/23	06:00 Anal	yzed: 09/18/	/23 12:01					
2,3,4,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1							
2,3,5,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,5-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,6-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
Bis(2-ethylhexyl)phthalate	ND	0.200	0.400	ug/L	1							
Butyl benzyl phthalate	ND	0.200	0.400	ug/L	1							
Diethylphthalate	ND	0.200	0.400	ug/L	1							
Dimethylphthalate	ND	0.200	0.400	ug/L	1							
Di-n-butylphthalate	ND	0.200	0.400	ug/L	1							
Di-n-octyl phthalate	ND	0.200	0.400	ug/L	1							
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 47 %	Limits: 44	-120 %	Dilu	ition: 1x					
2-Fluorobiphenyl (Surr)			43 %	44	-120 %		"					S-06
Phenol-d6 (Surr)			17 %	10	-133 %		"					
p-Terphenyl-d14 (Surr)			65 %	50	-134 %		"					
2-Fluorophenol (Surr)			26 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			59 %	43	-140 %		"					
LCS (23I0506-BS2)			Prepared	: 09/18/23 (06:00 Anal	yzed: 09/18/	/23 12:38					
EPA 8270E												
Acenaphthene	2.65	0.0400	0.0800	ug/L	4	4.00		66	47-122%			
Acenaphthylene	2.69	0.0400	0.0800	ug/L	4	4.00		67	41-130%			
Anthracene	3.05	0.0400	0.0800	ug/L	4	4.00		76	57-123%			
Benz(a)anthracene	3.11	0.0400	0.0800	ug/L	4	4.00		78	58-125%			
Benzo(a)pyrene	3.55	0.0600	0.120	ug/L	4	4.00		89	54-128%			
Benzo(b)fluoranthene	3.28	0.0600	0.120	ug/L	4	4.00		82	53-131%			
Benzo(k)fluoranthene	3.49	0.0600	0.120	ug/L	4	4.00		87	57-129%			
Benzo(g,h,i)perylene	3.27	0.0400	0.0800	ug/L	4	4.00		82	50-134%			
Chrysene	3.27	0.0400	0.0800	ug/L	4	4.00		82	59-123%			
Dibenz(a,h)anthracene	3.23	0.0400	0.0800	ug/L	4	4.00		81	51-134%			
Fluoranthene	3.29	0.0400	0.0800	ug/L	4	4.00		82	57-128%			
Fluorene	2.86	0.0400	0.0800	ug/L	4	4.00		71	52-124%			
Indeno(1,2,3-cd)pyrene	3.02	0.0400	0.0800	ug/L	4	4.00		76	52-134%			
1-Methylnaphthalene	2.51	0.0800	0.160	ug/L	4	4.00		63	41-120%			
2-Methylnaphthalene	2.62	0.0800	0.160	ug/L	4	4.00		66	40-121%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

		Selecte	d Semivola	atile Orga	anic Com	pounds b	y EPA 82	270E				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23l0506 - EPA 3510C (<i>A</i>	cid Extrac	tion)					Wa	ter				
LCS (23I0506-BS2)			Prepared	: 09/18/23	06:00 Ana	lyzed: 09/18/	/23 12:38					
Naphthalene	2.32	0.0800	0.160	ug/L	4	4.00		58	40-121%			
Phenanthrene	2.96	0.0400	0.0800	ug/L	4	4.00		74	59-120%			
Pyrene	3.27	0.0400	0.0800	ug/L	4	4.00		82	57-126%			
Carbazole	4.05	0.0600	0.120	ug/L	4	4.00		101	60-122%			Q-4
Dibenzofuran	2.66	0.0400	0.0800	ug/L	4	4.00		67	53-120%			
2-Chlorophenol	2.16	0.200	0.400	ug/L	4	4.00		54	38-120%			
4-Chloro-3-methylphenol	2.97	0.400	0.800	ug/L	4	4.00		74	52-120%			
2,4-Dichlorophenol	2.70	0.200	0.400	ug/L	4	4.00		67	47-121%			
2,4-Dimethylphenol	2.67	0.200	0.400	ug/L	4	4.00		67	31-124%			
2,4-Dinitrophenol	2.91	1.00	2.00	ug/L	4	4.00		73	23-143%			
4,6-Dinitro-2-methylphenol	3.44	1.00	2.00	ug/L	4	4.00		86	44-137%			
2-Methylphenol	2.07	0.100	0.200	ug/L	4	4.00		52	30-120%			
3+4-Methylphenol(s)	2.04	0.100	0.200	ug/L	4	4.00		51	29-120%			
2-Nitrophenol	2.36	0.400	0.800	ug/L	4	4.00		59	47-123%			
4-Nitrophenol	1.10	0.400	0.800	ug/L	4	4.00		28	10-120%			
Pentachlorophenol (PCP)	2.97	0.400	0.800	ug/L	4	4.00		74	35-138%			
Phenol	0.870	0.800	0.800	ug/L	4	4.00		22	10-120%			
2,3,4,6-Tetrachlorophenol	3.03	0.200	0.400	ug/L	4	4.00		76	50-128%			
2,3,5,6-Tetrachlorophenol	3.03	0.200	0.400	ug/L	4	4.00		76	50-121%			
2,4,5-Trichlorophenol	2.77	0.200	0.400	ug/L	4	4.00		69	53-123%			
2,4,6-Trichlorophenol	2.68	0.200	0.400	ug/L	4	4.00		67	50-125%			
Bis(2-ethylhexyl)phthalate	3.39	0.800	1.60	ug/L	4	4.00		85	55-135%			
Butyl benzyl phthalate	3.35	0.800	1.60	ug/L	4	4.00		84	53-134%			
Diethylphthalate	3.19	0.800	1.60	ug/L	4	4.00		80	56-125%			
Dimethylphthalate	2.95	0.800	1.60	ug/L	4	4.00		74	45-127%			
Di-n-butylphthalate	3.44	0.800	1.60	ug/L	4	4.00		86	59-127%			
Di-n-octyl phthalate	3.33	0.800	1.60	ug/L	4	4.00		83	51-140%			
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 58 %	Limits: 44	4-120 %	Dilı	ution: 4x					
2-Fluorobiphenyl (Surr)			55 %	44	4-120 %		"					
Phenol-d6 (Surr)			21 %	10	0-133 %		"					
p-Terphenyl-d14 (Surr)			72 %		0-134 %		"					
2-Fluorophenol (Surr)			30 %	19	0-120 %		"					
2,4,6-Tribromophenol (Surr)			73 %	43	3-140 %		"					

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Selected Semivolatile Organic Compounds by EPA 8270E Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23I0506 - EPA 3510C (Acid Extraction) Water LCS Dup (23I0506-BSD2) Prepared: 09/18/23 06:00 Analyzed: 09/18/23 13:14 Q-19 EPA 8270E 2.62 0.0400 0.0800 ug/L 4 4.00 66 47-122% 30% Acenaphthene 4 4.00 2 2.64 0.0400 0.0800 66 41-130% 30% Acenaphthylene ug/L Anthracene 2.85 0.0400 0.0800 ug/L 4 4.00 71 57-123% 7 30% Benz(a)anthracene 2.87 0.0400 0.0800 4 4.00 72 58-125% 8 30% ug/L Benzo(a)pyrene 3.27 0.0600 0.120 4 4.00 82 54-128% 8 30% ug/L 4 4.00 74 53-131% 10 Benzo(b)fluoranthene 2.96 0.0600 0.120 ug/L 30% ---Benzo(k)fluoranthene 3.21 0.0600 0.120 4 4.00 80 57-129% 9 30% ug/L 0.0400 0.0800 4 4.00 73 Benzo(g,h,i)perylene 2.94 50-134% 11 30% ug/L Chrysene 3.01 0.0400 0.0800 ug/L 4 4.00 75 59-123% 8 30% Dibenz(a,h)anthracene 2.92 0.0400 0.0800 ug/L 4 4.00 73 51-134% 10 30% Fluoranthene 3.05 0.04000.0800 ug/L 4 4.00 76 57-128% 8 30% 0.0800 2.74 0.0400 4 4.00 68 52-124% 30% Fluorene 4 ug/L 0.0400 Indeno(1,2,3-cd)pyrene 2.76 0.0800 ug/L 4 4.00 69 52-134% 9 30% 1-Methylnaphthalene 2.51 0.0800 0.160 4 4.00 63 41-120% 0.2 30% ug/L 2-Methylnaphthalene 2.57 0.08000.160 ug/L 4 4.00 64 40-121% 2 30% Naphthalene 2.36 0.0800 0.160 ug/L 4 4.00 59 40-121% 2 30% ---Phenanthrene 2.74 0.04000.0800 ug/L 4 4.00 69 59-120% 8 30% Pyrene 2.97 0.0400 0.0800 4 4.00 74 57-126% 10 30% ug/L 91 Q-41 Carbazole 3.66 0.06000.120 ug/L 4 4.00 60-122% 10 30% Dibenzofuran 2.61 0.0400 0.0800 ug/L 4 4.00 65 53-120% 2 30% 2.32 7 2-Chlorophenol 0.200 0.400 ug/L 4 4.00 58 38-120% 30% 4-Chloro-3-methylphenol 2.98 0.400 0.800 ug/L 4 4.00 75 52-120% 0.6 30% 0.200 71 2,4-Dichlorophenol 2.84 0.400 ug/L 4 4.00 47-121% 5 30% 2,4-Dimethylphenol 2.80 0.200 0.400 ug/L 4 4.00 70 31-124% 5 30% 2,4-Dinitrophenol 2.72 1.00 2.00 7 ug/L 4 4.00 68 23-143% 30% 4,6-Dinitro-2-methylphenol 3.24 1.00 2.00 ug/L 4 4.00 81 44-137% 6 30% 55 30% 2-Methylphenol 2.18 0.1000.200 ug/L 4 4.00 30-120% 6 3+4-Methylphenol(s) 2.09 0.100 0.200 ug/L 4 4.00 52 29-120% 3 30% 2-Nitrophenol 2.43 0.400 0.800 4 4.00 61 47-123% 3 30% ug/L 4-Nitrophenol 0.980 0.4000.800 ug/L 4 4.00 24 10-120% 12 30% 2.71 9 Pentachlorophenol (PCP) 0.400 0.800 4 4.00 68 35-138% 30% ug/L 22 Phenol 0.869 0.800 0.800 ug/L 4 4.00 10-120% 0.07 30% 2,3,4,6-Tetrachlorophenol 2.89 0.200 0.400 4 4.00 72 50-128% 30% ug/L 5

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 22 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Selected Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike % REC RPD Source Dilution Analyte Result Limit Units Result % REC Limits RPD Limit Amount Limit Notes Batch 23I0506 - EPA 3510C (Acid Extraction) Water LCS Dup (23I0506-BSD2) Prepared: 09/18/23 06:00 Analyzed: 09/18/23 13:14 Q-19 2,3,5,6-Tetrachlorophenol 2.89 0.200 0.400 ug/L 4.00 72 50-121% 5 30% 2,4,5-Trichlorophenol 0.400 70 2.79 0.200 ug/L 4 4.00 53-123% 0.7 30% 2,4,6-Trichlorophenol 2.67 0.200 0.400 ug/L 4 4.00 67 50-125% 0.5 30% Bis(2-ethylhexyl)phthalate 3.17 0.800 1.60 ug/L 4 4.00 79 55-135% 7 30% 79 Butyl benzyl phthalate 3.15 0.8001.60 4 4.00 53-134% 30% ug/L 6 Diethylphthalate 3.04 0.800 76 56-125% 1.60 ug/L 4 4.00 5 30% Dimethylphthalate 0.800 2.88 1.60 ug/L 4 4.00 72 45-127% 2 30% Di-n-butylphthalate 3.19 0.800 4 4.00 80 59-127% 8 1.60 ug/L 30% 0.800 Di-n-octyl phthalate 1.60 4 4.00 78 51-140% 3.10 ug/L 30% Surr: Nitrobenzene-d5 (Surr) Recovery: 65 % Limits: 44-120 % Dilution: 4x 2-Fluorobiphenyl (Surr) 61% 44-120 % Phenol-d6 (Surr) 22 % 10-133 % p-Terphenyl-d14 (Surr) 50-134 % 75 % 19-120 % 2-Fluorophenol (Surr) 32 % 2,4,6-Tribromophenol (Surr) 73 % 43-140 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 23 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS Selected Semivolatile Organic Compounds by EPA 8270E

Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit Batch 23I0559 - EPA 3510C (Acid Extraction) Water

Batch 23I0559 - EPA 3510C (A	cid Extracti	on)					Wa	ater		
Blank (23I0559-BLK1)			Prepared:	09/19/23 07	:07 Ana	lyzed: 09/19	/23 13:17			
EPA 8270E										
2,3,4,6- & 2,3,4,5-Tetrachloropl	henol(N)D	0.100	0.200	ug/L	1				 	 A-0
Acenaphthene	ND	0.0100	0.0200	ug/L	1				 	
Acenaphthylene	ND	0.0100	0.0200	ug/L	1				 	
Anthracene	ND	0.0100	0.0200	ug/L	1				 	
Benz(a)anthracene	ND	0.0100	0.0200	ug/L	1				 	
Benzo(a)pyrene	ND	0.0150	0.0300	ug/L	1				 	
Benzo(b)fluoranthene	ND	0.0150	0.0300	ug/L	1				 	
Benzo(k)fluoranthene	ND	0.0150	0.0300	ug/L	1				 	
Benzo(g,h,i)perylene	ND	0.0100	0.0200	ug/L	1				 	
Chrysene	ND	0.0100	0.0200	ug/L	1				 	
Dibenz(a,h)anthracene	ND	0.0100	0.0200	ug/L	1				 	
Fluoranthene	ND	0.0100	0.0200	ug/L	1				 	
Fluorene	ND	0.0100	0.0200	ug/L	1				 	
Indeno(1,2,3-cd)pyrene	ND	0.0100	0.0200	ug/L	1				 	
1-Methylnaphthalene	ND	0.0200	0.0400	ug/L	1				 	
2-Methylnaphthalene	ND	0.0200	0.0400	ug/L	1				 	
Naphthalene	ND	0.0200	0.0400	ug/L	1				 	
Phenanthrene	ND	0.0100	0.0200	ug/L	1				 	
Pyrene	ND	0.0100	0.0200	ug/L	1				 	
Carbazole	ND	0.0150	0.0300	ug/L	1				 	
Dibenzofuran	ND	0.0100	0.0200	ug/L	1				 	
2-Chlorophenol	ND	0.0500	0.100	ug/L	1				 	
4-Chloro-3-methylphenol	ND	0.100	0.200	ug/L	1				 	
2,4-Dichlorophenol	ND	0.0500	0.100	ug/L	1				 	
2,4-Dimethylphenol	ND	0.0500	0.100	ug/L	1				 	
2,4-Dinitrophenol	ND	0.250	0.500	ug/L	1				 	
4,6-Dinitro-2-methylphenol	ND	0.250	0.500	ug/L	1				 	
2-Methylphenol	ND	0.0250	0.0500	ug/L	1				 	
3+4-Methylphenol(s)	ND	0.0250	0.0500	ug/L	1				 	
2-Nitrophenol	ND	0.100	0.200	ug/L	1				 	
4-Nitrophenol	ND	0.100	0.200	ug/L	1				 	
Pentachlorophenol (PCP)	ND	0.100	0.200	ug/L	1				 	
Phenol	ND	0.200	0.400	ug/L	1				 	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 24 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23l0559 - EPA 3510C (A	cid Extrac	tion)					Wa	ter				
Blank (23I0559-BLK1)			Prepared	: 09/19/23 (07:07 Anal	yzed: 09/19/	23 13:17					
2,3,5,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,5-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,6-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
Bis(2-ethylhexyl)phthalate	ND	0.200	0.400	ug/L	1							
Butyl benzyl phthalate	ND	0.200	0.400	ug/L	1							
Diethylphthalate	ND	0.200	0.400	ug/L	1							
Dimethylphthalate	ND	0.200	0.400	ug/L	1							
Di-n-butylphthalate	ND	0.200	0.400	ug/L	1							
Di-n-octyl phthalate	ND	0.200	0.400	ug/L	1							
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 57%	Limits: 44	-120 %	Dilu	tion: 1x					
2-Fluorobiphenyl (Surr)			51 %	44	-120 %		"					
Phenol-d6 (Surr)			18 %	10-	-133 %		"					
p-Terphenyl-d14 (Surr)			74 %	50-	-134 %		"					
2-Fluorophenol (Surr)			33 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			78 %	43	-140 %		"					
LCS (23I0559-BS1)			Prepared	: 09/19/23 (07:07 Anal	yzed: 09/19/	/23 13:52					
EPA 8270E												
Acenaphthene	3.15	0.0400	0.0800	ug/L	4	4.00		79	47-122%			
Acenaphthylene	2.99	0.0400	0.0800	ug/L	4	4.00		75	41-130%			
	3.62	0.0400	0.0800	ug/L	4	4.00		90	57-123%			
Anthracene	2.02			ug/L	4	4.00		94	58-125%			
Anthracene Benz(a)anthracene	3.76	0.0400	0.0800		7	4.00						
		0.0400 0.0600	0.0800 0.120	ug/L	4	4.00		104	54-128%			
Benz(a)anthracene	3.76			ug/L ug/L	•			104 97	54-128% 53-131%			
Benz(a)anthracene Benzo(a)pyrene	3.76 4.16	0.0600	0.120		4	4.00						
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	3.76 4.16 3.88	0.0600 0.0600	0.120 0.120	ug/L	4	4.00 4.00		97	53-131%			
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene	3.76 4.16 3.88 4.10	0.0600 0.0600 0.0600	0.120 0.120 0.120	ug/L ug/L	4 4 4	4.00 4.00 4.00		97 102	53-131% 57-129%			
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene	3.76 4.16 3.88 4.10 3.88	0.0600 0.0600 0.0600 0.0400	0.120 0.120 0.120 0.0800	ug/L ug/L ug/L	4 4 4 4	4.00 4.00 4.00 4.00		97 102 97	53-131% 57-129% 50-134%	 		
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene	3.76 4.16 3.88 4.10 3.88 3.77	0.0600 0.0600 0.0600 0.0400 0.0400	0.120 0.120 0.120 0.0800 0.0800	ug/L ug/L ug/L ug/L	4 4 4 4	4.00 4.00 4.00 4.00 4.00		97 102 97 94	53-131% 57-129% 50-134% 59-123%		 	
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	3.76 4.16 3.88 4.10 3.88 3.77 3.82	0.0600 0.0600 0.0600 0.0400 0.0400 0.0400	0.120 0.120 0.120 0.0800 0.0800 0.0800	ug/L ug/L ug/L ug/L ug/L	4 4 4 4 4	4.00 4.00 4.00 4.00 4.00 4.00	 	97 102 97 94 96	53-131% 57-129% 50-134% 59-123% 51-134%		 	
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene	3.76 4.16 3.88 4.10 3.88 3.77 3.82 3.99	0.0600 0.0600 0.0600 0.0400 0.0400 0.0400	0.120 0.120 0.120 0.0800 0.0800 0.0800 0.0800	ug/L ug/L ug/L ug/L ug/L ug/L	4 4 4 4 4 4	4.00 4.00 4.00 4.00 4.00 4.00 4.00	 	97 102 97 94 96 100	53-131% 57-129% 50-134% 59-123% 51-134% 57-128%	 	 	
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	3.76 4.16 3.88 4.10 3.88 3.77 3.82 3.99 3.14	0.0600 0.0600 0.0600 0.0400 0.0400 0.0400 0.0400	0.120 0.120 0.120 0.0800 0.0800 0.0800 0.0800 0.0800	ug/L ug/L ug/L ug/L ug/L ug/L	4 4 4 4 4 4 4	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00		97 102 97 94 96 100 78	53-131% 57-129% 50-134% 59-123% 51-134% 57-128% 52-124%	 	 	
Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	3.76 4.16 3.88 4.10 3.88 3.77 3.82 3.99 3.14 3.60	0.0600 0.0600 0.0600 0.0400 0.0400 0.0400 0.0400 0.0400	0.120 0.120 0.120 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4 4 4 4 4 4 4 4	4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	 	97 102 97 94 96 100 78 90	53-131% 57-129% 50-134% 59-123% 51-134% 57-128% 52-124% 52-134%	 	 	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0559 - EPA 3510C (A	cid Extrac	tion)					Wa	ter				
LCS (23I0559-BS1)			Prepared	: 09/19/23	07:07 Anal	yzed: 09/19/	23 13:52					
Phenanthrene	3.42	0.0400	0.0800	ug/L	4	4.00		86	59-120%			
Pyrene	3.82	0.0400	0.0800	ug/L	4	4.00		95	57-126%			
Carbazole	3.91	0.0600	0.120	ug/L	4	4.00		98	60-122%			
Dibenzofuran	3.12	0.0400	0.0800	ug/L	4	4.00		78	53-120%			
2-Chlorophenol	2.49	0.200	0.400	ug/L	4	4.00		62	38-120%			
4-Chloro-3-methylphenol	2.92	0.400	0.800	ug/L	4	4.00		73	52-120%			
2,4-Dichlorophenol	2.83	0.200	0.400	ug/L	4	4.00		71	47-121%			
2,4-Dimethylphenol	2.52	0.200	0.400	ug/L	4	4.00		63	31-124%			
2,4-Dinitrophenol	3.32	1.00	2.00	ug/L	4	4.00		83	23-143%			
4,6-Dinitro-2-methylphenol	3.82	1.00	2.00	ug/L	4	4.00		95	44-137%			
2-Methylphenol	1.95	0.100	0.200	ug/L	4	4.00		49	30-120%			
3+4-Methylphenol(s)	1.81	0.100	0.200	ug/L	4	4.00		45	29-120%			
2-Nitrophenol	2.56	0.400	0.800	ug/L	4	4.00		64	47-123%			
4-Nitrophenol	1.11	0.400	0.800	ug/L	4	4.00		28	10-120%			
Pentachlorophenol (PCP)	3.45	0.400	0.800	ug/L	4	4.00		86	35-138%			
Phenol	0.789	0.400	0.400	ug/L	4	4.00		20	10-120%			
2,3,4,6-Tetrachlorophenol	3.59	0.200	0.400	ug/L	4	4.00		90	50-128%			
2,3,5,6-Tetrachlorophenol	3.37	0.200	0.400	ug/L	4	4.00		84	50-121%			
2,4,5-Trichlorophenol	3.21	0.200	0.400	ug/L	4	4.00		80	53-123%			
2,4,6-Trichlorophenol	3.13	0.200	0.400	ug/L	4	4.00		78	50-125%			
Bis(2-ethylhexyl)phthalate	3.86	0.800	1.60	ug/L	4	4.00		96	55-135%			
Butyl benzyl phthalate	4.07	0.800	1.60	ug/L	4	4.00		102	53-134%			
Diethylphthalate	3.79	0.800	1.60	ug/L	4	4.00		95	56-125%			
Dimethylphthalate	3.53	0.800	1.60	ug/L	4	4.00		88	45-127%			
Di-n-butylphthalate	4.44	0.800	1.60	ug/L	4	4.00		111	59-127%			
Di-n-octyl phthalate	4.02	0.800	1.60	ug/L	4	4.00		101	51-140%			
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 60 %	Limits: 44	1-120 %	Dilu	tion: 4x					
2-Fluorobiphenyl (Surr)			64 %	44	-120 %		"					
Phenol-d6 (Surr)			20 %	10	-133 %		"					
p-Terphenyl-d14 (Surr)			90 %	50	-134 %		"					
2-Fluorophenol (Surr)			34 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			84 %	43	-140 %		,,					

Prepared: 09/19/23 07:07 Analyzed: 09/19/23 14:27

Apex Laboratories

LCS Dup (23I0559-BSD1)

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Q-19

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Selected Semivolatile Organic Compounds by EPA 8270E Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23I0559 - EPA 3510C (Acid Extraction) Water LCS Dup (23I0559-BSD1) Prepared: 09/19/23 07:07 Analyzed: 09/19/23 14:27 Q-19 EPA 8270E Acenaphthene 2.90 0.0400 0.0800 ug/L 4 4.00 73 47-122% 8 30% 4 4.00 69 8 2.77 0.0400 0.0800 41-130% 30% Acenaphthylene ug/L Anthracene 3.41 0.0400 0.0800 ug/L 4 4.00 85 57-123% 6 30% Benz(a)anthracene 3.70 0.0400 0.0800 4 4.00 93 58-125% 30% ug/L 1 Benzo(a)pyrene 4.02 0.0600 0.120 4 4.00 100 54-128% 3 30% ug/L 3.78 ug/L 4 4.00 95 53-131% 2 Benzo(b)fluoranthene 0.0600 0.120 30% ---Benzo(k)fluoranthene 3.97 0.0600 0.120 4 4.00 99 57-129% 3 30% ug/L 0.0400 0.0800 4 4.00 Benzo(g,h,i)perylene 3.84 96 50-134% 1 30% ug/L Chrysene 3.71 0.0400 0.0800 ug/L 4 4.00 93 59-123% 2 30% Dibenz(a,h)anthracene 3.78 0.0400 0.0800 ug/L 4 4.00 94 51-134% 1 30% Fluoranthene 3.82 0.04000.0800 ug/L 4 4.00 95 57-128% 5 30% 0.0800 2.96 0.0400 4 4.00 74 52-124% 30% Fluorene 6 ug/L 0.0400 Indeno(1,2,3-cd)pyrene 3.53 0.0800 ug/L 4 4.00 88 52-134% 2 30% 1-Methylnaphthalene 2.30 0.0800 0.160 4 4.00 57 41-120% 17 30% ug/L 2-Methylnaphthalene 2.41 0.08000.160 ug/L 4 4.00 60 40-121% 18 30% Naphthalene 2.32 0.0800 0.160 ug/L 4 4.00 58 40-121% 16 30% ---Phenanthrene 3.25 0.04000.0800 ug/L 4 4.00 81 59-120% 5 30% Pyrene 0.0400 0.0800 4 4.00 91 57-126% 4 30% 3.66 ug/L 91 Carbazole 3.65 0.06000.120 ug/L 4 4.00 60-122% 7 30% Dibenzofuran 2.83 0.0400 0.0800 ug/L 4 4.00 71 53-120% 10 30% 2-Chlorophenol 2.23 0.200 0.400 ug/L 4 4.00 56 38-120% 11 30% 4-Chloro-3-methylphenol 2.62 0.400 0.800 ug/L 4 4.00 66 52-120% 11 30% 0.200 2,4-Dichlorophenol 2.54 0.400 ug/L 4 4.00 64 47-121% 11 30% 2,4-Dimethylphenol 2.37 0.200 0.400 ug/L 4 4.00 59 31-124% 6 30% 2,4-Dinitrophenol 2.94 1.00 2.00 ug/L 4 4.00 74 23-143% 12 30% 4,6-Dinitro-2-methylphenol 3.47 1.00 2.00 ug/L 4 4.00 87 44-137% 9 30% 45 8 30% 2-Methylphenol 1.80 0.1000.200 ug/L 4 4.00 30-120% 3+4-Methylphenol(s) 1.72 0.100 0.200 ug/L 4 4.00 43 29-120% 5 30% 2-Nitrophenol 2.26 0.400 0.800 4 4.00 57 47-123% 12 30% ug/L 4-Nitrophenol 1.04 0.4000.800ug/L 4 4.00 26 10-120% 6 30% Pentachlorophenol (PCP) 3.26 0.400 0.800 4 4.00 81 35-138% 6 30% ug/L Phenol 0.772 0.400 0.400 ug/L 4 4.00 19 10-120% 2 30% 2,3,4,6-Tetrachlorophenol 3.27 0.200 0.400 4 4.00 82 50-128% 30% ug/L

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 27 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Selected Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike % REC RPD Source Dilution Analyte Result Limit Units Result % REC Limits RPD Limit Amount Limit Notes Batch 23I0559 - EPA 3510C (Acid Extraction) Water LCS Dup (23I0559-BSD1) Prepared: 09/19/23 07:07 Analyzed: 09/19/23 14:27 Q-19 2,3,5,6-Tetrachlorophenol 3.12 0.200 0.400 ug/L 4.00 78 50-121% 30% 2,4,5-Trichlorophenol 2.99 0.200 0.400 75 ug/L 4 4.00 53-123% 7 30% 2,4,6-Trichlorophenol 2.95 0.200 0.400 ug/L 4 4.00 74 50-125% 6 30% Bis(2-ethylhexyl)phthalate 3.77 0.800 1.60 ug/L 4 4.00 94 55-135% 2 30% 98 Butyl benzyl phthalate 3.90 0.8001.60 4 4.00 53-134% 4 30% ug/L Diethylphthalate 0.800 91 56-125% 3.66 1.60 ug/L 4 4.00 4 30% Dimethylphthalate 0.800 3 3.41 1.60 ug/L 4 4.00 85 45-127% 30% Di-n-butylphthalate 4.22 0.800 4 4.00 106 59-127% 5 1.60 ug/L 30% 0.800 Di-n-octyl phthalate 4.05 1.60 4 4.00 51-140% ug/L 101 0.6 30% Surr: Nitrobenzene-d5 (Surr) 53 % Recovery: Limits: 44-120 % Dilution: 4x 2-Fluorobiphenyl (Surr) 58% 44-120 % Phenol-d6 (Surr) 19% 10-133 % p-Terphenyl-d14 (Surr) 91% 50-134 % 19-120 % 2-Fluorophenol (Surr) 33 % 2,4,6-Tribromophenol (Surr) 81% 43-140 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 28 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

		Selecte	d Semivol	atile Orga	anic Com	pourius D	y EFA 64	LIVE				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23l0638 - EPA 3510C (Acid Extra	ction)					Wa	ter				
Blank (23I0638-BLK2)			Prepared	1: 09/20/23	14:28 Ana	lyzed: 09/22	/23 10:44					
EPA 8270E												
2,3,4,6- & 2,3,4,5-Tetrachlorop	phenol(N)D	0.100	0.200	ug/L	1							A-
2,4-Dichlorophenol	ND	0.0500	0.100	ug/L	1							
Pentachlorophenol (PCP)	ND	0.100	0.200	ug/L	1							
2,3,5,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,5-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
2,4,6-Trichlorophenol	ND	0.0500	0.100	ug/L	1							
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 63 %	Limits: 4	4-120 %	Dilt	ution: 1x					
2-Fluorobiphenyl (Surr)			53 %	44	4-120 %		"					
Phenol-d6 (Surr)			22 %	10	0-133 %		"					
p-Terphenyl-d14 (Surr)			71 %	50	0-134 %		"					
2-Fluorophenol (Surr)			34 %	19	9-120 %		"					
2,4,6-Tribromophenol (Surr)			48 %	43	3-140 %		"					
LCS (23I0638-BS2)			Prepared	d: 09/20/23	14:28 Ana	lyzed: 09/22	/23 11:19					
EPA 8270E												
2,4-Dichlorophenol	2.29	0.200	0.400	ug/L	4	4.00		57	47-121%			
Pentachlorophenol (PCP)	2.46	0.400	0.800	ug/L	4	4.00		62	35-138%			
2,3,4,6-Tetrachlorophenol	2.27	0.200	0.400	ug/L	4	4.00		57	50-128%			
2,3,5,6-Tetrachlorophenol	2.30	0.200	0.400	ug/L	4	4.00		57	50-121%			
2,4,5-Trichlorophenol	2.31	0.200	0.400	ug/L	4	4.00		58	53-123%			
2,4,6-Trichlorophenol	2.23	0.200	0.400	ug/L	4	4.00		56	50-125%			
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 63 %	Limits: 4	4-120 %	Dilı	ution: 4x					
2-Fluorobiphenyl (Surr)			57 %	44	4-120 %		"					
Phenol-d6 (Surr)			22 %	10	0-133 %		"					
p-Terphenyl-d14 (Surr)			74 %	50	0-134 %		"					
2-Fluorophenol (Surr)			34 %	19	9-120 %		"					
2,4,6-Tribromophenol (Surr)			65 %	4.	3-140 %		"					
LCS Dup (23I0638-BSD2)			Prepared	1: 09/20/23	14:28 Ana	lyzed: 09/22	/23 11:54					Q-19
EPA 8270E						-						
2,4-Dichlorophenol	2.36	0.200	0.400	ug/L	4	4.00		59	47-121%	3	30%	
Pentachlorophenol (PCP)	2.68	0.400	0.800	ug/L	4	4.00		67	35-138%	9	30%	
i chiacinolophichol (i Ci)												

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 29 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Selected Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike % REC **RPD** Source Limits RPD Analyte Result Limit Units Dilution Result % REC Limit Amount Limit Notes Batch 23I0638 - EPA 3510C (Acid Extraction) Water LCS Dup (23I0638-BSD2) Prepared: 09/20/23 14:28 Analyzed: 09/22/23 11:54 Q-19 2,3,5,6-Tetrachlorophenol 2.59 0.200 0.400 ug/L 4.00 65 50-121% 30% 12 2,4,5-Trichlorophenol 2.50 0.200 0.400 4.00 62 8 ug/L 4 53-123% 30% 0.200 4.00 2,4,6-Trichlorophenol 2.36 0.400 ug/L 4 59 50-125% 6 30% Surr: Nitrobenzene-d5 (Surr) 64 % Limits: 44-120 % Dilution: 4x Recovery: 2-Fluorobiphenyl (Surr) 44-120 % 58 % Phenol-d6 (Surr) 20 % 10-133 % p-Terphenyl-d14 (Surr) 77 % 50-134 % 2-Fluorophenol (Surr) 33 % 19-120 % 2,4,6-Tribromophenol (Surr) 69 % 43-140 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 30 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23I0511 - EPA 3510C (Acid/Base Neutral) Water Blank (23I0511-BLK1) Prepared: 09/18/23 06:33 Analyzed: 09/18/23 14:52 EPA 8270E 2,3,4,6- & 2,3,4,5-Tetrachlorophenol(ND) 0.100 0.200 ug/L A-01 0.0100 ND 0.0200 ug/L 1 Acenaphthene Acenaphthylene ND 0.0100 0.0200 ug/L 1 ND 0.0100 0.0200 1 Anthracene ug/L Benz(a)anthracene ND 0.0100 0.0200 ug/L 1 0.0150 Benzo(a)pyrene ND 0.0300 ug/L 1 ---Benzo(b)fluoranthene ND 0.0150 0.0300 1 ug/L Benzo(k)fluoranthene 0.0150 0.0300 ND ug/L 1 Benzo(g,h,i)perylene ND 0.0100 0.0200 ug/L 1 Chrysene ND 0.0100 0.0200 ug/L 1 Dibenz(a,h)anthracene ND 0.01000.0200ug/L 1 Fluoranthene ND 0.0100 0.0200 1 ug/L ---Fluorene 0.0100 ND 0.0200 ug/L 1 ND 0.0100 0.0200 Indeno(1,2,3-cd)pyrene ug/L 1 1-Methylnaphthalene ND 0.02000.0400ug/L 1 2-Methylnaphthalene ND 0.0200 0.0400 ug/L 1 ---------Naphthalene ND 0.02000.0400ug/L 1 Phenanthrene ND 0.0100 0.0200 ug/L 1 ---------Pyrene ND 0.0100 0.0200 ug/L 1 Carbazole ND 0.0150 0.0300 ug/L 1 Dibenzofuran ND 0.01000.0200ug/L 1 2-Chlorophenol ND 0.0500 0.100 ug/L 1 4-Chloro-3-methylphenol ND 0.100 0.200 ug/L 1 2,4-Dichlorophenol ND 0.0500 0.100 ug/L 1 0.0500 0.100 2,4-Dimethylphenol ND ug/L 1 2,4-Dinitrophenol ND 0.250 0.500 ug/L 1 4,6-Dinitro-2-methylphenol ND 0.250 0.500 ug/L 1 2-Methylphenol ND 0.0250 0.0500 ug/L 1 ------3+4-Methylphenol(s) ND 0.02500.0500 ug/L 1 2-Nitrophenol ND 0.1000.200 ug/L 1 4-Nitrophenol ND 0.100 0.200 ug/L 1

Apex Laboratories

Phenol

Pentachlorophenol (PCP)

Philip Marenberg

ND

ND

0.100

0.200

0.200

0.400

ug/L

ug/L

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 31 of 59

1

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution Result % REC RPD Limit Limit Amount Limits Limit Notes Batch 23I0511 - EPA 3510C (Acid/Base Neutral) Water Blank (23I0511-BLK1) Prepared: 09/18/23 06:33 Analyzed: 09/18/23 14:52 2,3,5,6-Tetrachlorophenol ND 0.0500 0.100 ug/L 0.0500 2,4,5-Trichlorophenol ND 0.100 ug/L 1 ------2,4,6-Trichlorophenol ND 0.0500 0.100 ug/L 1 Bis(2-ethylhexyl)phthalate ND 0.200 0.400 ug/L 1 Butyl benzyl phthalate ND 0.200 0.400 ug/L 1 Diethylphthalate ND 0.200 0.400 ug/L 1 Dimethylphthalate ND 0.2000.400 ug/L 1 Di-n-butylphthalate ND 0.200 0.400 ug/L 1 0.200 0.400 Di-n-octyl phthalate ND ug/L 1 N-Nitrosodimethylamine ND 0.0250 0.0500ug/L 1 ND N-Nitroso-di-n-propylamine 0.02500.0500ug/L 1 N-Nitrosodiphenylamine 0.0250 0.0500 ND ug/L 1 Bis(2-Chloroethoxy) methane ND 0.0250 0.0500 ug/L 1 ---------Bis(2-Chloroethyl) ether ND 0.0250 0.0500ug/L 1 2,2'-Oxybis(1-Chloropropane) ND 0.0250 0.0500 ug/L 1 Hexachlorobenzene ND 0.0100 0.0200 ug/L 1 Hexachlorobutadiene ND 0.0250 0.0500 1 ug/L Hexachlorocyclopentadiene ND 0.0500 0.100 1 ug/L ND Hexachloroethane 0.0250 0.0500 ug/L 1 ---------2-Chloronaphthalene ND 0.0100 0.0200 ug/L 1 1,2,4-Trichlorobenzene ND 0.0250 0.0500 ug/L 1 ---4-Bromophenyl phenyl ether ND 0.0250 0.0500 ug/L 1 4-Chlorophenyl phenyl ether ND 0.0250 0.0500 ug/L 1 Aniline ND 0.05000.100 ug/L 1 4-Chloroaniline ND 0.0250 0.0500 ug/L 1 ------------2-Nitroaniline ND 0.200 0.400 ug/L 1 3-Nitroaniline ND 0.200 0.400 ug/L 1 ------4-Nitroaniline ND 0.200 0.400 ug/L 1 Nitrobenzene ND 0.100 0.200 ug/L 1 ---2,4-Dinitrotoluene ND 0.1000.200 ug/L 1 2,6-Dinitrotoluene ND 0.100 0.200 ug/L 1 ---Benzoic acid ND 1.25 2.50 ug/L 1 Benzyl alcohol ND 0.100 0.200 ug/L 1

Apex Laboratories

Philip Nevenberg

ND

0.0250

0.0500

ug/L

Isophorone

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 32 of 59

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

		56	mivolatile	organic (compour	us by EP/	A 82/UE					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0511 - EPA 3510C (A	cid/Base N	Neutral)					Wa	ter				
Blank (23I0511-BLK1)			Prepared	: 09/18/23	06:33 Anal	yzed: 09/18/	/23 14:52					
Azobenzene (1,2-DPH)	ND	0.0250	0.0500	ug/L	1							
Bis(2-Ethylhexyl) adipate	ND	0.250	0.500	ug/L	1							
3,3'-Dichlorobenzidine	ND	0.500	1.00	ug/L	1							Q-5
1,2-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
1,3-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
1,4-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
Pyridine	ND	0.100	0.200	ug/L	1							
1,2-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							
1,3-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							
1,4-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 63 %	Limits: 44	1-120 %	Dilı	ution: 1x					
2-Fluorobiphenyl (Surr)			51 %	44	-120 %		"					
Phenol-d6 (Surr)			24 %	10	-133 %		"					
p-Terphenyl-d14 (Surr)			67 %	50	-134 %		"					
2-Fluorophenol (Surr)			36 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			61 %	43	-140 %		"					
LCS (23I0511-BS1)			Prepared	: 09/18/23	06:33 Ana	yzed: 09/18/	/23 15:27					
EPA 8270E												
Acenaphthene	2.58	0.0400	0.0800	ug/L	4	4.00		64	47-122%			
Acenaphthylene	2.77	0.0400	0.0800	ug/L	4	4.00		69	41-130%			
Anthracene	3.14	0.0400	0.0800	ug/L	4	4.00		78	57-123%			
Benz(a)anthracene	3.35	0.0400	0.0800	ug/L	4	4.00		84	58-125%			
Benzo(a)pyrene	3.62	0.0600	0.120	ug/L	4	4.00		90	54-128%			
Benzo(b)fluoranthene	3.43	0.0600	0.120	ug/L	4	4.00		86	53-131%			
Benzo(k)fluoranthene	3.52	0.0600	0.120	ug/L	4	4.00		88	57-129%			
Benzo(g,h,i)perylene	3.25	0.0400	0.0800	ug/L	4	4.00		81	50-134%			
Chrysene	3.39	0.0400	0.0800	ug/L	4	4.00		85	59-123%			
Dibenz(a,h)anthracene	3.25	0.0400	0.0800	ug/L	4	4.00		81	51-134%			
Fluoranthene	3.45	0.0400	0.0800	ug/L	4	4.00		86	57-128%			
Fluorene	3.04	0.0400	0.0800	ug/L	4	4.00		76	52-124%			
Indeno(1,2,3-cd)pyrene	3.07	0.0400	0.0800	ug/L	4	4.00		77	52-134%			
1-Methylnaphthalene	2.20	0.0800	0.160	ug/L	4	4.00		55	41-120%			
2-Methylnaphthalene	2.26	0.0800	0.160	ug/L	4	4.00		56	40-121%			

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 33 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23I0511 - EPA 3510C (Acid/Base Neutral) Water LCS (23I0511-BS1) Prepared: 09/18/23 06:33 Analyzed: 09/18/23 15:27 2.15 0.0800 0.160 4 4.00 54 40-121% Naphthalene ug/L 0.0400 Phenanthrene 2.95 0.0800 ug/L 4 4.00 74 59-120% ---------Pyrene 3.44 0.0400 0.0800 ug/L 4 4.00 86 57-126% Carbazole 3.69 0.06000.120 ug/L 4 4.00 92 60-122% 71 Dibenzofuran 2.85 0.04000.08004 4.00 53-120% ug/L 2-Chlorophenol 2.76 0.200 0.400 ug/L 4 4.00 69 38-120% 4-Chloro-3-methylphenol 3.13 0.400 0.800 ug/L 4 4.00 78 52-120% 4 4.00 2,4-Dichlorophenol 2.93 0.200 0.400 ug/L 73 47-121% 0.200 0.400 2,4-Dimethylphenol 2.58 ug/L 4 4.00 64 31-124% 2,4-Dinitrophenol 3.19 1.00 2.00 ug/L 4 4.00 80 23-143% 4,6-Dinitro-2-methylphenol 3.13 1.00 2.00 4 4.00 78 44-137% ug/L 0.100 2-Methylphenol 2.57 0.200 ug/L 4 4.00 64 30-120% 0.200 3+4-Methylphenol(s) 2.41 0.100 4 4.00 60 ug/L ---29-120% ---2-Nitrophenol 3.05 0.400 0.800 ug/L 4 4.00 76 47-123% 29 4-Nitrophenol 0.400 0.800 4 4.00 10-120% 1.15 ug/L Pentachlorophenol (PCP) 3.09 0.400 0.800 ug/L 4 4.00 77 35-138% Phenol 1.35 0.800 0.800 4 4.00 34 10-120% ug/L 2,3,4,6-Tetrachlorophenol 2.90 0.200 0.400 4 4.00 72 50-128% ug/L 0.400 2,3,5,6-Tetrachlorophenol 2.93 0.200 4 4.00 73 50-121% ug/L ------2,4,5-Trichlorophenol 2.87 0.200 0.400 ug/L 4 4.00 72 53-123% 2,4,6-Trichlorophenol 2.70 0.200 0.400 4 4.00 67 50-125% ug/L Bis(2-ethylhexyl)phthalate 3.43 0.800 1.60 ug/L 4 4.00 86 55-135% Butyl benzyl phthalate 3.68 0.800 1.60 4 4.00 92 53-134% ug/L Diethylphthalate 3.47 0.8001.60 ug/L 4 4.00 87 56-125% 0.800 4 4.00 82 Dimethylphthalate 3.28 1.60 ug/L 45-127% ------Di-n-butylphthalate 3.72 0.800 1.60 ug/L 4 4.00 93 59-127% Di-n-octyl phthalate 3.75 0.800 1.60 4 4 00 94 51-140% ug/L ---N-Nitrosodimethylamine 1.85 0.100 0.200 ug/L 4 4.00 46 19-120% N-Nitroso-di-n-propylamine 3.34 0.100 0.200 4 4.00 84 49-120% ug/L ---N-Nitrosodiphenylamine 3.32 0.100 0.200 ug/L 4 4.00 83 51-123% Bis(2-Chloroethoxy) methane 3.03 0.100 4 4.00 76 48-120% 0.200 ug/L Bis(2-Chloroethyl) ether 2.95 0.100 0.200 ug/L 4 4.00 74 43-120% 2,2'-Oxybis(1-Chloropropane) 3.10 0.100 0.200 ug/L 4 4.00 77 41-120% Hexachlorobenzene 2.74 0.04000.0800ug/L 4 4.00 68 53-125%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 34 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic	Compour	nds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
3atch 23I0511 - EPA 3510C (A	cid/Base N	leutral)					Wa	ter				
LCS (23I0511-BS1)			Prepared	: 09/18/23	06:33 Ana	lyzed: 09/18	/23 15:27					
Hexachlorobutadiene	1.22	0.100	0.200	ug/L	4	4.00		31	22-124%			
Hexachlorocyclopentadiene	0.674	0.200	0.400	ug/L	4	4.00		17	10-127%			
Hexachloroethane	1.25	0.100	0.200	ug/L	4	4.00		31	21-120%			
2-Chloronaphthalene	2.25	0.0400	0.0800	ug/L	4	4.00		56	40-120%			
1,2,4-Trichlorobenzene	1.60	0.100	0.200	ug/L	4	4.00		40	29-120%			
4-Bromophenyl phenyl ether	2.82	0.100	0.200	ug/L	4	4.00		70	55-124%			
4-Chlorophenyl phenyl ether	2.89	0.100	0.200	ug/L	4	4.00		72	53-121%			
Aniline	2.74	0.200	0.400	ug/L	4	4.00		68	10-120%			
4-Chloroaniline	3.22	0.100	0.200	ug/L	4	4.00		81	33-120%			
2-Nitroaniline	3.29	0.800	1.60	ug/L	4	4.00		82	55-127%			
3-Nitroaniline	4.69	0.800	1.60	ug/L	4	4.00		117	41-128%			Q-
4-Nitroaniline	3.45	0.800	1.60	ug/L	4	4.00		86	25-120%			
Nitrobenzene	2.96	0.400	0.800	ug/L	4	4.00		74	45-121%			
2,4-Dinitrotoluene	3.09	0.400	0.800	ug/L	4	4.00		77	57-128%			
2,6-Dinitrotoluene	3.13	0.400	0.800	ug/L	4	4.00		78	57-124%			
Benzoic acid	3.55	2.00	2.00	ug/L	4	8.00		44	10-120%			
Benzyl alcohol	2.58	0.400	0.800	ug/L	4	4.00		65	31-120%			
Isophorone	3.13	0.100	0.200	ug/L	4	4.00		78	42-124%			
Azobenzene (1,2-DPH)	3.20	0.100	0.200	ug/L	4	4.00		80	61-120%			
Bis(2-Ethylhexyl) adipate	3.56	1.00	2.00	ug/L	4	4.00		89	63-121%			
3,3'-Dichlorobenzidine	23.0	2.00	4.00	ug/L	4	8.00		287	27-129%			Q-29, Q-5 O-
1,2-Dinitrobenzene	2.81	1.00	2.00	ug/L	4	4.00		70	59-120%			
1,3-Dinitrobenzene	3.05	1.00	2.00	ug/L	4	4.00		76	49-128%			
1,4-Dinitrobenzene	2.98	1.00	2.00	ug/L	4	4.00		75	54-120%			
Pyridine	1.67	0.400	0.800	ug/L	4	4.00		42	10-120%			
1,2-Dichlorobenzene	1.53	0.100	0.200	ug/L	4	4.00		38	32-120%			
1,3-Dichlorobenzene	1.38	0.100	0.200	ug/L	4	4.00		35	28-120%			
1,4-Dichlorobenzene	1.43	0.100	0.200	ug/L	4	4.00		36	29-120%			
urr: Nitrobenzene-d5 (Surr)		Reco	very: 71%	Limits: 4	4-120 %	Dilı	ıtion: 4x					
2-Fluorobiphenyl (Surr)		1.000	61 %		4-120 %	2	"					
Phenol-d6 (Surr)			26 %		0-133 %		"					
p-Terphenyl-d14 (Surr)			78 %)-133 %)-134 %		"					
2-Fluorophenol (Surr)			39 %		9-120 %		"					
2,4,6-Tribromophenol (Surr)			73 %		3-140 %		"					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

		Sei	mivolatile (organic (Compoun	as by EP/	4 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
3atch 23I0511 - EPA 3510C (A	Acid/Base N	Neutral)					Wa	ter				
LCS Dup (23I0511-BSD1)			Prepared	09/18/23	06:33 Anal	yzed: 09/18/	/23 16:02					Q-19
EPA 8270E												
Acenaphthene	2.50	0.0400	0.0800	ug/L	4	4.00		63	47-122%	3	30%	
Acenaphthylene	2.64	0.0400	0.0800	ug/L	4	4.00		66	41-130%	4	30%	
Anthracene	2.95	0.0400	0.0800	ug/L	4	4.00		74	57-123%	6	30%	
Benz(a)anthracene	2.98	0.0400	0.0800	ug/L	4	4.00		75	58-125%	12	30%	
Benzo(a)pyrene	3.24	0.0600	0.120	ug/L	4	4.00		81	54-128%	11	30%	
Benzo(b)fluoranthene	3.00	0.0600	0.120	ug/L	4	4.00		75	53-131%	13	30%	
Benzo(k)fluoranthene	3.20	0.0600	0.120	ug/L	4	4.00		80	57-129%	9	30%	
Benzo(g,h,i)perylene	2.88	0.0400	0.0800	ug/L	4	4.00		72	50-134%	12	30%	
Chrysene	3.06	0.0400	0.0800	ug/L	4	4.00		76	59-123%	10	30%	
Dibenz(a,h)anthracene	2.93	0.0400	0.0800	ug/L	4	4.00		73	51-134%	10	30%	
Fluoranthene	3.12	0.0400	0.0800	ug/L	4	4.00		78	57-128%	10	30%	
Fluorene	2.91	0.0400	0.0800	ug/L	4	4.00		73	52-124%	4	30%	
Indeno(1,2,3-cd)pyrene	2.74	0.0400	0.0800	ug/L	4	4.00		69	52-134%	11	30%	
1-Methylnaphthalene	2.20	0.0800	0.160	ug/L	4	4.00		55	41-120%	0.07	30%	
2-Methylnaphthalene	2.30	0.0800	0.160	ug/L	4	4.00		57	40-121%	2	30%	
Naphthalene	2.14	0.0800	0.160	ug/L	4	4.00		54	40-121%	0.4	30%	
Phenanthrene	2.76	0.0400	0.0800	ug/L	4	4.00		69	59-120%	7	30%	
Pyrene	3.10	0.0400	0.0800	ug/L	4	4.00		77	57-126%	10	30%	
Carbazole	3.30	0.0600	0.120	ug/L	4	4.00		82	60-122%	11	30%	
Dibenzofuran	2.70	0.0400	0.0800	ug/L	4	4.00		67	53-120%	6	30%	
2-Chlorophenol	2.27	0.200	0.400	ug/L	4	4.00		57	38-120%	19	30%	
4-Chloro-3-methylphenol	2.71	0.400	0.800	ug/L	4	4.00		68	52-120%	15	30%	
2,4-Dichlorophenol	2.53	0.200	0.400	ug/L	4	4.00		63	47-121%	15	30%	
2,4-Dimethylphenol	2.42	0.200	0.400	ug/L	4	4.00		60	31-124%	6	30%	
2,4-Dinitrophenol	2.77	1.00	2.00	ug/L	4	4.00		69	23-143%	14	30%	
4,6-Dinitro-2-methylphenol	2.79	1.00	2.00	ug/L	4	4.00		70	44-137%	12	30%	
2-Methylphenol	2.10	0.100	0.200	ug/L	4	4.00		52	30-120%	20	30%	
3+4-Methylphenol(s)	1.99	0.100	0.200	ug/L	4	4.00		50	29-120%	19	30%	
2-Nitrophenol	2.82	0.400	0.800	ug/L	4	4.00		71	47-123%	8	30%	
4-Nitrophenol	0.993	0.400	0.800	ug/L	4	4.00		25	10-120%	15	30%	
Pentachlorophenol (PCP)	2.79	0.400	0.800	ug/L	4	4.00		70	35-138%	10	30%	
Phenol	1.11	0.800	0.800	ug/L	4	4.00		28	10-120%	19	30%	
2,3,4,6-Tetrachlorophenol	2.68	0.200	0.400	ug/L	4	4.00		67	50-128%	8	30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike Source % REC RPD

Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 23I0511 - EPA 3510C (A	cid/Base N	leutral)					Wa	ter				
LCS Dup (23I0511-BSD1)			Prepared	: 09/18/23	06:33 Anal	lyzed: 09/18/	/23 16:02					Q-19
2,3,5,6-Tetrachlorophenol	2.66	0.200	0.400	ug/L	4	4.00		66	50-121%	10	30%	
2,4,5-Trichlorophenol	2.57	0.200	0.400	ug/L	4	4.00		64	53-123%	11	30%	
2,4,6-Trichlorophenol	2.46	0.200	0.400	ug/L	4	4.00		62	50-125%	9	30%	
Bis(2-ethylhexyl)phthalate	3.11	0.800	1.60	ug/L	4	4.00		78	55-135%	10	30%	
Butyl benzyl phthalate	3.28	0.800	1.60	ug/L	4	4.00		82	53-134%	11	30%	
Diethylphthalate	3.20	0.800	1.60	ug/L	4	4.00		80	56-125%	8	30%	
Dimethylphthalate	3.00	0.800	1.60	ug/L	4	4.00		75	45-127%	9	30%	
Di-n-butylphthalate	3.36	0.800	1.60	ug/L	4	4.00		84	59-127%	10	30%	
Di-n-octyl phthalate	3.36	0.800	1.60	ug/L	4	4.00		84	51-140%	11	30%	
N-Nitrosodimethylamine	1.61	0.100	0.200	ug/L	4	4.00		40	19-120%	14	30%	
N-Nitroso-di-n-propylamine	3.06	0.100	0.200	ug/L	4	4.00		77	49-120%	9	30%	
N-Nitrosodiphenylamine	3.12	0.100	0.200	ug/L	4	4.00		78	51-123%	6	30%	
Bis(2-Chloroethoxy) methane	2.74	0.100	0.200	ug/L	4	4.00		69	48-120%	10	30%	
Bis(2-Chloroethyl) ether	2.63	0.100	0.200	ug/L	4	4.00		66	43-120%	11	30%	
2,2'-Oxybis(1-Chloropropane)	2.82	0.100	0.200	ug/L	4	4.00		71	41-120%	9	30%	
Hexachlorobenzene	2.61	0.0400	0.0800	ug/L	4	4.00		65	53-125%	5	30%	
Hexachlorobutadiene	1.40	0.100	0.200	ug/L	4	4.00		35	22-124%	13	30%	
Hexachlorocyclopentadiene	0.833	0.200	0.400	ug/L	4	4.00		21	10-127%	21	30%	
Hexachloroethane	1.42	0.100	0.200	ug/L	4	4.00		36	21-120%	13	30%	
2-Chloronaphthalene	2.24	0.0400	0.0800	ug/L	4	4.00		56	40-120%	0.3	30%	
1,2,4-Trichlorobenzene	1.68	0.100	0.200	ug/L	4	4.00		42	29-120%	5	30%	
4-Bromophenyl phenyl ether	2.66	0.100	0.200	ug/L	4	4.00		67	55-124%	6	30%	
4-Chlorophenyl phenyl ether	2.80	0.100	0.200	ug/L	4	4.00		70	53-121%	3	30%	
Aniline	2.58	0.200	0.400	ug/L	4	4.00		64	10-120%	6	30%	
4-Chloroaniline	3.12	0.100	0.200	ug/L	4	4.00		78	33-120%	3	30%	
2-Nitroaniline	2.95	0.800	1.60	ug/L	4	4.00		74	55-127%	11	30%	
3-Nitroaniline	4.19	0.800	1.60	ug/L	4	4.00		105	41-128%	11	30%	Q-
4-Nitroaniline	2.98	0.800	1.60	ug/L	4	4.00		75	25-120%	15	30%	
Nitrobenzene	2.71	0.400	0.800	ug/L	4	4.00		68	45-121%	9	30%	
2,4-Dinitrotoluene	2.84	0.400	0.800	ug/L	4	4.00		71	57-128%	9	30%	
2,6-Dinitrotoluene	2.86	0.400	0.800	ug/L	4	4.00		72	57-124%	9	30%	
Benzoic acid	3.31	2.00	2.00	ug/L	4	8.00		41	10-120%		30%	
Benzyl alcohol	2.21	0.400	0.800	ug/L	4	4.00		55	31-120%		30%	
Isophorone	2.85	0.100	0.200	ug/L	4	4.00		71	42-124%		30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 37 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic	Compour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0511 - EPA 3510C (A	cid/Base I	Neutral)					Wa	ter				
LCS Dup (23I0511-BSD1)			Prepared	1: 09/18/23	06:33 Ana	lyzed: 09/18	/23 16:02					Q-19
Azobenzene (1,2-DPH)	3.01	0.100	0.200	ug/L	4	4.00		75	61-120%	6	30%	
Bis(2-Ethylhexyl) adipate	3.21	1.00	2.00	ug/L	4	4.00		80	63-121%	10	30%	
3,3'-Dichlorobenzidine	20.2	2.00	4.00	ug/L	4	8.00		253	27-129%	13	30%	Q-29, Q-5 Q-
1,2-Dinitrobenzene	2.62	1.00	2.00	ug/L	4	4.00		66	59-120%	7	30%	Q
1,3-Dinitrobenzene	2.88	1.00	2.00	ug/L	4	4.00		72	49-128%	6	30%	
1,4-Dinitrobenzene	2.79	1.00	2.00	ug/L	4	4.00		70	54-120%	7	30%	
Pyridine	1.52	0.400	0.800	ug/L	4	4.00		38	10-120%	9	30%	
1,2-Dichlorobenzene	1.62	0.100	0.200	ug/L	4	4.00		41	32-120%	6	30%	
1,3-Dichlorobenzene	1.51	0.100	0.200	ug/L	4	4.00		38	28-120%	9	30%	
1,4-Dichlorobenzene	1.54	0.100	0.200	ug/L	4	4.00		39	29-120%	7	30%	
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 70 %	Limits: 44	4-120 %	Dilı	ution: 4x					
2-Fluorobiphenyl (Surr)		61 %		44-120 %			"					
Phenol-d6 (Surr)			22 %		0-133 %		"					
p-Terphenyl-d14 (Surr)			75 %	50-134 %			"					
2-Fluorophenol (Surr)			33 %	19-120 %			"					
2,4,6-Tribromophenol (Surr)			73 %	43	3-140 %		"					
Matrix Spike (23I0511-MS1)			Prepared	1: 09/18/23	06:33 Ana	lyzed: 09/18	/23 17:09					
QC Source Sample: R-1-0923 (A3	5I1084-08 <u>)</u>											
EPA 8270E												
Acenaphthene	4.02	0.100	0.200	ug/L	10	4.00	1.00	75	47-122%			
Acenaphthylene	2.99	0.100	0.200	ug/L	10	4.00	ND	75	41-130%			
Anthracene	3.35	0.100	0.200	ug/L	10	4.00	ND	84	57-123%			
Benz(a)anthracene	3.32	0.100	0.200	ug/L	10	4.00	ND	83	58-125%			
Benzo(a)pyrene	3.60	0.150	0.300	ug/L	10	4.00	ND	90	54-128%			
Benzo(b)fluoranthene	3.34	0.150	0.300	ug/L	10	4.00	ND	83	53-131%			
Benzo(k)fluoranthene	3.53	0.150	0.300	ug/L	10	4.00	ND	88	57-129%			
Benzo(g,h,i)perylene	3.14	0.100	0.200	ug/L	10	4.00	ND	79	50-134%			
Chrysene	3.32	0.100	0.200	ug/L	10	4.00	ND	83	59-123%			
Dibenz(a,h)anthracene	3.17	0.100	0.200	ug/L	10	4.00	ND	79	51-134%			
Fluoranthene	3.69	0.100	0.200	ug/L	10	4.00	0.146	89	57-128%			
Fluorene	4.29	0.100	0.200	ug/L	10	4.00	0.942	84	52-124%			
Indeno(1,2,3-cd)pyrene	3.03	0.100	0.200	ug/L	10	4.00	ND	76	52-134%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23I0511 - EPA 3510C (Acid/Base Neutral) Water Matrix Spike (23I0511-MS1) Prepared: 09/18/23 06:33 Analyzed: 09/18/23 17:09 QC Source Sample: R-1-0923 (A3I1084-08) 1-Methylnaphthalene 3.16 0.200 0.400 ug/L 10 4.00 0.495 67 41-120% 2-Methylnaphthalene 0.200 0.400 70 40-121% 3.08 ug/L 10 4.00 0.279 ug/L Naphthalene 3.11 0.200 0.400 10 4.00 0.405 68 40-121% Phenanthrene 3.27 0.100 0.200 ug/L 10 4.00 0.139 78 59-120% Pyrene 3.65 0.100 0.200 10 4.00 0.221 86 57-126% ug/L 3.77 0.150 0.300 4.00 ND 94 Carbazole ug/L 10 60-122% Dibenzofuran 3.24 0.1000.200 ug/L 10 4.00 0.205 76 53-120% 2.74 4.00 2-Chlorophenol 0.500 1.00 ug/L 10 ND 68 38-120% 4-Chloro-3-methylphenol 3.31 1.00 2.00 ug/L 10 4.00 ND 83 52-120% 2,4-Dichlorophenol 2.83 0.500 1.00 ug/L 10 4.00 ND 71 47-121% 2,4-Dimethylphenol 2.92 0.500 1.00 ug/L 10 4.00 ND 73 31-124% 2,4-Dinitrophenol 2.50 5.00 10 4.00 ND 95 23-143% 3.80 ug/L 4.00 87 4,6-Dinitro-2-methylphenol 3.47 2.50 5.00 ug/L 10 ND 44-137% 4.00 30-120% 2-Methylphenol 2.62 0.250 0.500 10 ND ug/L 66 3+4-Methylphenol(s) 0.250 ug/L 2.50 0.500 10 4.00 ND 63 29-120% 2-Nitrophenol 2.84 1.00 2.00 ug/L 10 4.00 ND 71 47-123% ___ 4-Nitrophenol 1.43 1.00 2.00 ug/L 10 4.00 ND 36 10-120% J Pentachlorophenol (PCP) 7.60 1.00 2.00 4.00 4.11 87 35-138% 10 ug/L ---ND 10-120% Q-01 Phenol 2.00 4.00 ug/L 10 4.00 ND 0.500 1.00 2,3,4,6-Tetrachlorophenol 3.26 10 4.00 ND 82 50-128% ug/L 2,3,5,6-Tetrachlorophenol 3.19 0.500 4.00 ND 80 50-121% 1.00 ug/L 10 2,4,5-Trichlorophenol 3.03 0.500 1.00 ug/L 10 4.00 ND 76 53-123% ---2,4,6-Trichlorophenol 2.76 0.500 1.00 ug/L 10 4.00 ND 69 50-125% 4.00 4.00 ND Bis(2-ethylhexyl)phthalate 3.36 2.00 ug/L 10 84 55-135% ---Butyl benzyl phthalate 2.00 4.00 4.00 ND 96 53-134% 3.84 ug/L 10 Diethylphthalate 3.66 2.00 4.00 10 4.00 ND 92 56-125% ug/L Dimethylphthalate 3.44 2.00 4.00 10 4.00 ND 86 45-127% ug/L 59-127% 4.00 Di-n-butylphthalate 3.81 2.00 4.00 ug/L 10 ND 95 Di-n-octyl phthalate 3.95 2.00 4.00 ug/L 10 4.00 ND 99 51-140% N-Nitrosodimethylamine 1.81 0.250 0.500 10 4.00 ND 45 19-120% ug/L ---N-Nitroso-di-n-propylamine 3.65 0.250 0.500 ug/L 10 4.00 ND 91 49-120% 0.250 0.500 4.00 90 N-Nitrosodiphenylamine 3.59 10 ND 51-123% ug/L ---Bis(2-Chloroethoxy) methane 3.18 0.250 0.500 ug/L 10 4.00 ND 80 48-120%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 39 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23I0511 - EPA 3510C (Acid/Base Neutral) Water Matrix Spike (23I0511-MS1) Prepared: 09/18/23 06:33 Analyzed: 09/18/23 17:09 QC Source Sample: R-1-0923 (A3I1084-08) Bis(2-Chloroethyl) ether 2.98 0.250 0.500 ug/L 10 4.00 ND 75 43-120% 2,2'-Oxybis(1-Chloropropane) 0.250 3.34 0.500 ug/L 10 4.00 ND 84 41-120% ug/L Hexachlorobenzene 2.99 0.100 0.200 10 4.00 ND 75 53-125% Hexachlorobutadiene 1.66 0.250 0.500 ug/L 10 4.00 ND 41 22-124% Hexachlorocyclopentadiene 0.943 0.500 1.00 10 4.00 ND 24 10-127% ug/L ---0.250 4.00 Hexachloroethane 2.31 0.500 ug/L 10 ND 58 21-120% 2-Chloronaphthalene 2.53 0.1000.200 10 4.00 ND 63 40-120% ug/L 4.00 1,2,4-Trichlorobenzene 2.00 0.250 0.500 ug/L 10 ND 50 29-120% 4-Bromophenyl phenyl ether 3.16 0.250 0.500 ug/L 10 4.00 ND 79 55-124% 4-Chlorophenyl phenyl ether 3.23 0.250 0.500 ug/L 10 4.00 ND 81 53-121% Aniline 2.70 0.500 1.00 ug/L 10 4.00 ND 67 10-120% 4-Chloroaniline 0.250 0.500 4.00 72 2.88 ug/L 10 ND 33-120% 4.00 2-Nitroaniline 3.10 2.00 4.00 ug/L 10 ND 78 55-127% O-41, J 2.00 4.00 10 4.00 ND 85 3-Nitroaniline 3.40 ug/L 41-128% ug/L 4-Nitroaniline 3.22 2.00 4.00 10 4.00 ND 81 25-120% Nitrobenzene 3.07 1.00 2.00 ug/L 10 4.00 ND 77 45-121% 2,4-Dinitrotoluene 3.10 1.00 2.00 ug/L 10 4.00 ND 78 57-128% 4.00 79 2,6-Dinitrotoluene 3.15 1.00 2.00 10 ND 57-124% ug/L ND 10-120% Q-11 Benzoic acid 12.5 25.0 ug/L 10 8.00 ND Benzyl alcohol 2.33 1.00 2.00 10 4.00 ND 58 31-120% ug/L 3.34 0.250 4.00 ND 83 42-124% Isophorone 0.500 ug/L 10 Azobenzene (1,2-DPH) 0.250 3.44 0.500 ug/L 10 4.00 ND 86 61-120% ---Bis(2-Ethylhexyl) adipate 3.39 2.50 5.00 ug/L 10 4.00 ND 85 63-121% ND 8.00 ND Q-11, Q-52 3,3'-Dichlorobenzidine 5.00 10.0 10 27-129% ug/L ---1,2-Dinitrobenzene 2.50 5.00 4.00 59-120% J 2.70 ug/L 10 ND 67 1.3-Dinitrobenzene 2.79 2.50 5.00 10 4.00 ND 70 49-128% ug/L 1,4-Dinitrobenzene 2.79 2.50 5.00 10 4.00 ND 70 54-120% T ug/L Pyridine 47 1.87 1.00 2.00 ug/L 10 4.00 ND 10-120% 1,2-Dichlorobenzene 1.95 0.250 0.500 ug/L 10 4.00 ND 49 32-120% 1.3-Dichlorobenzene 1.80 0.250 0.500 10 4.00 ND 45 ug/L 28-120% 1,4-Dichlorobenzene 1.83 0.250 0.500 10 4.00 ND 46 29-120% ug/L Surr: Nitrobenzene-d5 (Surr) Recovery: 73 % Limits: 44-120 % Dilution: 10x

Apex Laboratories

2-Fluorobiphenyl (Surr)

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 40 of 59

44-120 %

63 %

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0511 - EPA 3510C (A	cid/Base N	Neutral)					Wa	ter				
Matrix Spike (23I0511-MS1)	Prepared: 09/18/23 06:33 Analyzed: 09/18/23 17:09											
QC Source Sample: R-1-0923 (A3	<u>3I1084-08)</u>											
Surr: Phenol-d6 (Surr)		Reco	overy: 24 %	Limits: 10	0-133 %	Dili	ution: 10x					
p-Terphenyl-d14 (Surr)		76 %		50-134 %			"					
2-Fluorophenol (Surr)			37 %	19-120 %		"						
2,4,6-Tribromophenol (Surr)			81 %	43	3-140 %		"					
Matrix Spike Dup (23I0511-M	SD1)		Prepared	l: 09/18/23	06:33 Anal	lvzed: 09/18	/23 17:43					
QC Source Sample: R-1-0923 (A3			Treparec			5,224. 05/10						
EPA 8270E												
Acenaphthene	4.02	0.100	0.200	ug/L	10	4.00	1.00	75	47-122%	0.1	30%	
Acenaphthylene	3.11	0.100	0.200	ug/L	10	4.00	ND	78	41-130%	4	30%	
Anthracene	3.40	0.100	0.200	ug/L	10	4.00	ND	85	57-123%		30%	
Benz(a)anthracene	3.32	0.100	0.200	ug/L	10	4.00	ND	83	58-125%	0.2	30%	
Benzo(a)pyrene	3.64	0.150	0.300	ug/L	10	4.00	ND	91	54-128%	0.9	30%	
Benzo(b)fluoranthene	3.41	0.150	0.300	ug/L	10	4.00	ND	85	53-131%	2	30%	
Benzo(k)fluoranthene	3.50	0.150	0.300	ug/L	10	4.00	ND	87	57-129%	0.9	30%	
Benzo(g,h,i)perylene	3.11	0.100	0.200	ug/L	10	4.00	ND	78	50-134%	0.9	30%	
Chrysene	3.38	0.100	0.200	ug/L	10	4.00	ND	85	59-123%	2	30%	
Dibenz(a,h)anthracene	3.20	0.100	0.200	ug/L	10	4.00	ND	80	51-134%	0.8	30%	
Fluoranthene	3.70	0.100	0.200	ug/L	10	4.00	0.146	89	57-128%	0.03	30%	
Fluorene	4.30	0.100	0.200	ug/L	10	4.00	0.942	84	52-124%	0.4	30%	
Indeno(1,2,3-cd)pyrene	3.04	0.100	0.200	ug/L	10	4.00	ND	76	52-134%	0.4	30%	
1-Methylnaphthalene	3.34	0.200	0.400	ug/L	10	4.00	0.495	71	41-120%	6	30%	
2-Methylnaphthalene	3.14	0.200	0.400	ug/L	10	4.00	0.279	72	40-121%	2	30%	
Naphthalene	2.95	0.200	0.400	ug/L	10	4.00	0.405	64	40-121%	5	30%	
Phenanthrene	3.28	0.100	0.200	ug/L	10	4.00	0.139	79	59-120%	0.2	30%	
Pyrene	3.61	0.100	0.200	ug/L	10	4.00	0.221	85	57-126%	1	30%	
Carbazole	3.76	0.150	0.300	ug/L	10	4.00	ND	94	60-122%	0.4	30%	
Dibenzofuran	3.33	0.100	0.200	ug/L	10	4.00	0.205	78	53-120%	3	30%	
2-Chlorophenol	2.96	0.500	1.00	ug/L	10	4.00	ND	74	38-120%	8	30%	
4-Chloro-3-methylphenol	3.41	1.00	2.00	ug/L	10	4.00	ND	85	52-120%	3	30%	
2,4-Dichlorophenol	3.03	0.500	1.00	ug/L	10	4.00	ND	76	47-121%	7	30%	
2,4-Dimethylphenol	3.15	0.500	1.00	ug/L	10	4.00	ND	79	31-124%	8	30%	
2,4-Dinitrophenol	3.69	2.50	5.00	ug/L	10	4.00	ND	92	23-143%	3	30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23I0511 - EPA 3510C (Acid/Base Neutral) Water Matrix Spike Dup (23I0511-MSD1) Prepared: 09/18/23 06:33 Analyzed: 09/18/23 17:43 QC Source Sample: R-1-0923 (A3I1084-08) 4.00 4,6-Dinitro-2-methylphenol 3.48 2.50 5.00 ug/L 10 ND 87 44-137% 0.4 30% 10 2-Methylphenol 0.250 0.500 4.00 2.87 ug/L ND 72 30-120% 9 30% ug/L 3+4-Methylphenol(s) 2.67 0.250 0.500 10 4.00 ND 67 29-120% 7 30% 2-Nitrophenol 3.08 1.00 2.00 ug/L 10 4.00 ND 77 47-123% 8 30% 4-Nitrophenol 1.45 1.00 2.00 10 4.00 ND 36 10-120% 1 30% ug/L Pentachlorophenol (PCP) 1.00 2.00 4.00 89 7.69 ug/L 10 4.11 35-138% 1 30% Q-01 Phenol ND 2.00 4.00 ug/L 10 4.00 ND 10-120% 30% 3.23 1.00 4.00 ND 50-128% 30% 2,3,4,6-Tetrachlorophenol 0.500 ug/L 10 81 0.8 2,3,5,6-Tetrachlorophenol 3.16 0.500 1.00 ug/L 10 4.00 ND 79 50-121% 1 30% 2,4,5-Trichlorophenol 3.09 0.500 1.00 ug/L 10 4.00 ND 77 53-123% 2 30% 2,4,6-Trichlorophenol 2.87 0.500 1.00 ug/L 10 4.00 ND 72 50-125% 4 30% Bis(2-ethylhexyl)phthalate 2.00 4.00 4.00 ND 55-135% 0.6 30% 3.34 ug/L 10 84 4.00 Butyl benzyl phthalate 3.83 2.00 4.00 ug/L 10 ND 96 53-134% 0.2 30% 4.00 30% Diethylphthalate 3.68 2.00 4.00 10 ND 92 56-125% 0.4 ug/L Dimethylphthalate ug/L 3.43 2.00 4.00 10 4.00 ND 86 45-127% 0.5 30% Di-n-butylphthalate 3.80 2.00 4.00 ug/L 10 4.00 ND 95 59-127% 0.3 30% Di-n-octyl phthalate 3.94 2.00 4.00 ug/L 10 4.00 ND 99 51-140% 0.2 30% 1.75 0.250 0.500 4.00 ND 44 19-120% 30% N-Nitrosodimethylamine 10 4 ug/L 4.08 ND 49-120% N-Nitroso-di-n-propylamine 0.250 0.500 ug/L 10 4.00 102 11 30% N-Nitrosodiphenylamine 0.250 3.65 0.500 10 4.00 ND 91 51-123% 2 30% ug/L 3.42 0.250 4.00 ND 85 48-120% 7 Bis(2-Chloroethoxy) methane 0.500 ug/L 10 30% 0.250 Bis(2-Chloroethyl) ether 3.19 0.500 ug/L 10 4.00 ND 80 43-120% 7 30% 2,2'-Oxybis(1-Chloropropane) 3.66 0.250 0.500 ug/L 10 4.00 ND 92 41-120% 9 30% 3.02 4.00 ND 76 1 30% Hexachlorobenzene 0.1000.200 ug/L 10 53-125% Hexachlorobutadiene 1.63 0.250 0.500 4.00 ND 41 22-124% 2 ug/L 10 30% 0.957 4.00 Hexachlorocyclopentadiene 0.500 1.00 10 ND 24 10-127% 2 30% ug/L Hexachloroethane 2.26 0.250 0.500 10 4.00 ND 21-120% 2 30% ug/L 56 4.00 40-120% 2-Chloronaphthalene 2.62 0.100 0.200 ug/L 10 ND 66 4 30% 1,2,4-Trichlorobenzene 2.00 0.250 0.500 ug/L 10 4.00 ND 50 29-120% 0.2 30% 4-Bromophenyl phenyl ether 3.16 0.250 0.500 10 4.00 ND 79 55-124% 0.02 30% ug/L 4-Chlorophenyl phenyl ether 3.30 0.250 0.500 10 4.00 ND 83 53-121% 2 30% ug/L Aniline 0.500 1.00 4.00 ND 57 2.27 10 10-120% 17 30% ug/L 4-Chloroaniline 2.77 0.250 0.500 ug/L 10 4.00 ND 69 33-120% 4 30%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 42 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23I0511 - EPA 3510C (Acid/Base Neutral) Water Matrix Spike Dup (23I0511-MSD1) Prepared: 09/18/23 06:33 Analyzed: 09/18/23 17:43 QC Source Sample: R-1-0923 (A3I1084-08) 4.00 2-Nitroaniline 3.16 2.00 4.00 ug/L 10 ND 79 55-127% 2 30% 3-Nitroaniline 3.23 2.00 4.00 Q-41, J 4.00 ug/L 10 ND 81 41-128% 5 30% 4-Nitroaniline 3.14 2.00 4.00 ug/L 10 4.00 ND 78 25-120% 3 30% Nitrobenzene 3.43 1.00 2.00 ug/L 10 4.00 ND 86 45-121% 11 30% 2,4-Dinitrotoluene 3.19 1.00 2.00 ug/L 10 4.00 ND 80 57-128% 3 30% 1.00 2,6-Dinitrotoluene 3.09 2.00 4.00 2 ug/L 10 ND 77 57-124% 30% Q-11 Benzoic acid ND 12.5 25.0 ug/L 10 8.00 ND 10-120% 30% 4.00 31-120% 30% Benzyl alcohol 2.45 1.00 2.00 ug/L 10 ND 61 5 Isophorone 3.52 0.250 0.500 ug/L 10 4.00 ND 88 42-124% 5 30% 0.250 Azobenzene (1,2-DPH) 3.49 0.500 ug/L 10 4.00 ND 87 61-120% 1 30% Bis(2-Ethylhexyl) adipate 3.49 2.50 5.00 ug/L 10 4.00 ND 87 63-121% 3 30% Q-11, Q-52 3,3'-Dichlorobenzidine ND 5.00 10.0 8.00 ND 27-129% 30% ug/L 10 4.00 59-120% 1,2-Dinitrobenzene 2.71 2.50 5.00 ug/L 10 ND 68 0.2 30% 4.00 30% 2.87 2.50 5.00 10 ND 72 3 1,3-Dinitrobenzene ug/L 49-128% 1,4-Dinitrobenzene 2.75 2.50 5.00 ug/L 10 4.00 ND 69 54-120% 2 30% Pyridine 1.69 1.00 2.00 ug/L 10 4.00 ND 42 10-120% 10 30% 1,2-Dichlorobenzene 2.03 0.250 0.500 ug/L 10 4.00 ND 51 32-120% 4 30% 1.86 0.250 0.500 4.00 ND 47 30% 1,3-Dichlorobenzene ug/L 10 28-120% 3 1.91 0.250 ND 48 29-120% 30% 1,4-Dichlorobenzene 0.500 ug/L 10 4.00 84 % Surr: Nitrobenzene-d5 (Surr) Recovery: Limits: 44-120 % Dilution: 10x 2-Fluorobiphenyl (Surr) 68 % 44-120% Phenol-d6 (Surr) 10-133 % 26 % 78 % p-Terphenyl-d14 (Surr) 50-134 % 2-Fluorophenol (Surr) 40 % 19-120 %

Apex Laboratories

Philip Nevenberg

2,4,6-Tribromophenol (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 43 of 59

43-140 %

83 %

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23I0610 - EPA 3510C (Acid/Base Neutral) Water Blank (23I0610-BLK1) Prepared: 09/20/23 06:36 Analyzed: 09/20/23 16:59 EPA 8270E 2,3,4,6- & 2,3,4,5-Tetrachlorophenol(ND) 0.100 0.200 ug/L A-01 0.0100 B-02, J 0.0194 0.0200 ug/L 1 Acenaphthene Acenaphthylene ND 0.0100 0.0200 ug/L 1 ND 0.0100 0.0200 1 Anthracene ug/L Benz(a)anthracene ND 0.0100 0.0200 ug/L 1 0.0150 ug/L Benzo(a)pyrene ND 0.0300 1 ---Benzo(b)fluoranthene ND 0.0150 0.0300 1 ug/L Benzo(k)fluoranthene 0.0150 0.0300 ND ug/L 1 Benzo(g,h,i)perylene ND 0.0100 0.0200 ug/L 1 Chrysene ND 0.0100 0.0200 ug/L 1 Dibenz(a,h)anthracene ND 0.01000.0200ug/L 1 Fluoranthene ND 0.0100 0.0200 1 ug/L ---Fluorene 0.0100 ND 0.0200 ug/L 1 ND 0.0100 0.0200 Indeno(1,2,3-cd)pyrene ug/L 1 B-02, J 1-Methylnaphthalene 0.0291 0.02000.0400ug/L 1 B-02, J 2-Methylnaphthalene 0.0306 0.0200 0.0400 ug/L 1 ---------В Naphthalene 0.112 0.02000.0400ug/L 1 Phenanthrene ND 0.0100 0.0200 ug/L 1 ---------Pyrene ND 0.0100 0.0200 ug/L 1 Carbazole ND 0.0150 0.0300 ug/L 1 Dibenzofuran ND 0.01000.0200ug/L 1 2-Chlorophenol ND 0.0500 0.100 ug/L 1 4-Chloro-3-methylphenol ND 0.100 0.200 ug/L 1 2,4-Dichlorophenol ND 0.0500 0.100 ug/L 1 0.0500 0.100 2,4-Dimethylphenol ND ug/L 1 2,4-Dinitrophenol ND 0.250 0.500 ug/L 1 4,6-Dinitro-2-methylphenol ND 0.250 0.500 ug/L 1 2-Methylphenol ND 0.0250 0.0500 ug/L 1 ------3+4-Methylphenol(s) ND 0.0250 0.0500 ug/L 1 2-Nitrophenol ND 0.1000.200 ug/L 1 4-Nitrophenol ND 0.100 0.200 ug/L 1

Apex Laboratories

Phenol

Pentachlorophenol (PCP)

Philip Marenberg

ND

ND

0.100

0.200

0.200

0.400

ug/L

ug/L

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 44 of 59

1

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS Semivolatile Organic Compounds by EPA 8270E

Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit

Batch 23I0610 - EPA 3510C (Ac	id/Base Ne	utral)					Wa	ater		
Blank (23I0610-BLK1)			Prepared:	09/20/23 06	5:36 Ana	yzed: 09/20	/23 16:59			
2,3,4,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1				 	
2,3,5,6-Tetrachlorophenol	ND	0.0500	0.100	ug/L	1				 	
2,4,5-Trichlorophenol	ND	0.0500	0.100	ug/L	1				 	
2,4,6-Trichlorophenol	ND	0.0500	0.100	ug/L	1				 	
Bis(2-ethylhexyl)phthalate	ND	0.200	0.400	ug/L	1				 	
Butyl benzyl phthalate	ND	0.200	0.400	ug/L	1				 	
Diethylphthalate	ND	0.200	0.400	ug/L	1				 	
Dimethylphthalate	ND	0.200	0.400	ug/L	1				 	
Di-n-butylphthalate	0.381	0.200	0.400	ug/L	1				 	 B-02,
Di-n-octyl phthalate	ND	0.200	0.400	ug/L	1				 	
N-Nitrosodimethylamine	ND	0.0250	0.0500	ug/L	1				 	
N-Nitroso-di-n-propylamine	ND	0.0250	0.0500	ug/L	1				 	
N-Nitrosodiphenylamine	ND	0.0250	0.0500	ug/L	1				 	
Bis(2-Chloroethoxy) methane	ND	0.0250	0.0500	ug/L	1				 	
Bis(2-Chloroethyl) ether	ND	0.0250	0.0500	ug/L	1				 	
2,2'-Oxybis(1-Chloropropane)	ND	0.0250	0.0500	ug/L	1				 	
Hexachlorobenzene	ND	0.0100	0.0200	ug/L	1				 	
Hexachlorobutadiene	ND	0.0250	0.0500	ug/L	1				 	
Hexachlorocyclopentadiene	ND	0.0500	0.100	ug/L	1				 	
Hexachloroethane	ND	0.0250	0.0500	ug/L	1				 	
2-Chloronaphthalene	ND	0.0100	0.0200	ug/L	1				 	
1,2,4-Trichlorobenzene	ND	0.0250	0.0500	ug/L	1				 	
4-Bromophenyl phenyl ether	ND	0.0250	0.0500	ug/L	1				 	
4-Chlorophenyl phenyl ether	ND	0.0250	0.0500	ug/L	1				 	
Aniline	ND	0.0500	0.100	ug/L	1				 	
4-Chloroaniline	ND	0.0250	0.0500	ug/L	1				 	
2-Nitroaniline	ND	0.200	0.400	ug/L	1				 	
3-Nitroaniline	ND	0.200	0.400	ug/L	1				 	
4-Nitroaniline	ND	0.200	0.400	ug/L	1				 	
Nitrobenzene	ND	0.100	0.200	ug/L	1				 	
2,4-Dinitrotoluene	ND	0.100	0.200	ug/L	1				 	
2,6-Dinitrotoluene	ND	0.100	0.200	ug/L	1				 	
Benzoic acid	ND	1.25	2.50	ug/L	1				 	
Benzyl alcohol	ND	0.100	0.200	ug/L	1				 	

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 45 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

		Sei	mivolatile (Organic (Compour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23l0610 - EPA 3510C (A	cid/Base I	Neutral)					Wat	ter				
Blank (23I0610-BLK1)			Prepared	: 09/20/23	06:36 Ana	lyzed: 09/20	/23 16:59					
Isophorone	ND	0.0250	0.0500	ug/L	1							
Azobenzene (1,2-DPH)	ND	0.0250	0.0500	ug/L	1							
Bis(2-Ethylhexyl) adipate	ND	0.250	0.500	ug/L	1							
3,3'-Dichlorobenzidine	ND	0.500	1.00	ug/L	1							Q-5
1,2-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
1,3-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
1,4-Dinitrobenzene	ND	0.250	0.500	ug/L	1							
Pyridine	ND	0.100	0.200	ug/L	1							
1,2-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							
1,3-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							
1,4-Dichlorobenzene	ND	0.0250	0.0500	ug/L	1							
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 63 %	Limits: 44	1-120 %	Dilı	ution: 1x					
2-Fluorobiphenyl (Surr)			49 %	44	!-120 %		"					
Phenol-d6 (Surr)			21 %	10	-133 %		"					
p-Terphenyl-d14 (Surr)			75 %	50	-134 %		"					
2-Fluorophenol (Surr)			31 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			72 %	43	?-140 %		"					
LCS (23I0610-BS2)			Prepared	: 09/20/23	06:36 Anal	lyzed: 09/21	/23 14:34					Q-16
EPA 8270E												
Acenaphthene	2.65	0.0400	0.0800	ug/L	4	4.00		66	47-122%			B-0
Acenaphthylene	2.82	0.0400	0.0800	ug/L	4	4.00		70	41-130%			
Anthracene	3.43	0.0400	0.0800	ug/L	4	4.00		86	57-123%			
Benz(a)anthracene	3.50	0.0400	0.0800	ug/L	4	4.00		88	58-125%			
Benzo(a)pyrene	3.85	0.0600	0.120	ug/L	4	4.00		96	54-128%			
Benzo(b)fluoranthene	3.55	0.0600	0.120	ug/L	4	4.00		89	53-131%			
Benzo(k)fluoranthene	3.72	0.0600	0.120	ug/L	4	4.00		93	57-129%			
Benzo(g,h,i)perylene	3.39	0.0400	0.0800	ug/L	4	4.00		85	50-134%			
Chrysene	3.56	0.0400	0.0800	ug/L	4	4.00		89	59-123%			
Dibenz(a,h)anthracene	3.41	0.0400	0.0800	ug/L	4	4.00		85	51-134%			
Fluoranthene	3.77	0.0400	0.0800	ug/L	4	4.00		94	57-128%			
Fluorene	3.17	0.0400	0.0800	ug/L	4	4.00		79	52-124%			
Indeno(1,2,3-cd)pyrene	3.18	0.0400	0.0800	ug/L	4	4.00		79	52-134%			
1-Methylnaphthalene	2.15	0.0800	0.160	ug/L	4	4.00		54	41-120%			B-0

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 46 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0610 - EPA 3510C (Ad	cid/Base	Neutral)					Wa	ter				
LCS (23I0610-BS2)			Prepared	: 09/20/23	06:36 Anal	lyzed: 09/21/	/23 14:34					Q-16
2-Methylnaphthalene	2.22	0.0800	0.160	ug/L	4	4.00		55	40-121%			B-02
Naphthalene	2.24	0.0800	0.160	ug/L	4	4.00		56	40-121%			В
Phenanthrene	3.26	0.0400	0.0800	ug/L	4	4.00		81	59-120%			
Pyrene	3.69	0.0400	0.0800	ug/L	4	4.00		92	57-126%			
Carbazole	3.94	0.0600	0.120	ug/L	4	4.00		98	60-122%			
Dibenzofuran	2.93	0.0400	0.0800	ug/L	4	4.00		73	53-120%			
2-Chlorophenol	2.67	0.200	0.400	ug/L	4	4.00		67	38-120%			
4-Chloro-3-methylphenol	3.26	0.400	0.800	ug/L	4	4.00		81	52-120%			
2,4-Dichlorophenol	2.96	0.200	0.400	ug/L	4	4.00		74	47-121%			
2,4-Dimethylphenol	2.36	0.200	0.400	ug/L	4	4.00		59	31-124%			
2,4-Dinitrophenol	3.72	1.00	2.00	ug/L	4	4.00		93	23-143%			
4,6-Dinitro-2-methylphenol	3.49	1.00	2.00	ug/L	4	4.00		87	44-137%			
2-Methylphenol	2.55	0.100	0.200	ug/L	4	4.00		64	30-120%			
3+4-Methylphenol(s)	2.38	0.100	0.200	ug/L	4	4.00		60	29-120%			
2-Nitrophenol	3.06	0.400	0.800	ug/L	4	4.00		77	47-123%			
4-Nitrophenol	1.24	0.400	0.800	ug/L	4	4.00		31	10-120%			Q-31
Pentachlorophenol (PCP)	3.26	0.400	0.800	ug/L	4	4.00		81	35-138%			
Phenol	1.34	0.800	0.800	ug/L	4	4.00		34	10-120%			
2,3,4,6-Tetrachlorophenol	3.04	0.200	0.400	ug/L	4	4.00		76	50-128%			
2,3,5,6-Tetrachlorophenol	3.06	0.200	0.400	ug/L	4	4.00		76	50-121%			
2,4,5-Trichlorophenol	3.00	0.200	0.400	ug/L	4	4.00		75	53-123%			
2,4,6-Trichlorophenol	2.93	0.200	0.400	ug/L	4	4.00		73	50-125%			
Bis(2-ethylhexyl)phthalate	3.49	0.800	1.60	ug/L	4	4.00		87	55-135%			
Butyl benzyl phthalate	3.71	0.800	1.60	ug/L	4	4.00		93	53-134%			
Diethylphthalate	3.63	0.800	1.60	ug/L	4	4.00		91	56-125%			
Dimethylphthalate	3.41	0.800	1.60	ug/L	4	4.00		85	45-127%			
Di-n-butylphthalate	3.88	0.800	1.60	ug/L	4	4.00		97	59-127%			B-02
Di-n-octyl phthalate	3.70	0.800	1.60	ug/L	4	4.00		92	51-140%			
N-Nitrosodimethylamine	1.95	0.100	0.200	ug/L	4	4.00		49	19-120%			
N-Nitroso-di-n-propylamine	3.31	0.100	0.200	ug/L	4	4.00		83	49-120%			
N-Nitrosodiphenylamine	3.61	0.100	0.200	ug/L	4	4.00		90	51-123%			Q-41
Bis(2-Chloroethoxy) methane	3.07	0.100	0.200	ug/L	4	4.00		77	48-120%			`
Bis(2-Chloroethyl) ether	2.97	0.100	0.200	ug/L	4	4.00		74	43-120%			
2,2'-Oxybis(1-Chloropropane)	2.91	0.100	0.200	ug/L	4	4.00		73	41-120%			

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 47 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile (Organic	Compour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0610 - EPA 3510C (A	cid/Base I	Neutral)					Wa	ter				
LCS (23I0610-BS2)			Prepared	: 09/20/23	06:36 Ana	lyzed: 09/21/	/23 14:34					Q-16
Hexachlorobenzene	3.08	0.0400	0.0800	ug/L	4	4.00		77	53-125%			
Hexachlorobutadiene	1.09	0.100	0.200	ug/L	4	4.00		27	22-124%			
Hexachlorocyclopentadiene	0.855	0.200	0.400	ug/L	4	4.00		21	10-127%			
Hexachloroethane	1.13	0.100	0.200	ug/L	4	4.00		28	21-120%			
2-Chloronaphthalene	2.28	0.0400	0.0800	ug/L	4	4.00		57	40-120%			
1,2,4-Trichlorobenzene	1.50	0.100	0.200	ug/L	4	4.00		37	29-120%			
4-Bromophenyl phenyl ether	3.08	0.100	0.200	ug/L	4	4.00		77	55-124%			
4-Chlorophenyl phenyl ether	3.00	0.100	0.200	ug/L	4	4.00		75	53-121%			
Aniline	2.60	0.200	0.400	ug/L	4	4.00		65	10-120%			
4-Chloroaniline	2.95	0.100	0.200	ug/L	4	4.00		74	33-120%			
2-Nitroaniline	3.48	0.800	1.60	ug/L	4	4.00		87	55-127%			
3-Nitroaniline	4.83	0.800	1.60	ug/L	4	4.00		121	41-128%			Q-4
4-Nitroaniline	3.40	0.800	1.60	ug/L	4	4.00		85	25-120%			
Nitrobenzene	2.92	0.400	0.800	ug/L	4	4.00		73	45-121%			
2,4-Dinitrotoluene	3.31	0.400	0.800	ug/L	4	4.00		83	57-128%			
2,6-Dinitrotoluene	3.34	0.400	0.800	ug/L	4	4.00		83	57-124%			
Benzoic acid	4.35	4.00	4.00	ug/L	4	8.00		54	10-120%			
Benzyl alcohol	2.54	0.400	0.800	ug/L	4	4.00		63	31-120%			
Isophorone	3.15	0.100	0.200	ug/L	4	4.00		79	42-124%			
Azobenzene (1,2-DPH)	3.55	0.100	0.200	ug/L	4	4.00		89	61-120%			
Bis(2-Ethylhexyl) adipate	3.60	1.00	2.00	ug/L	4	4.00		90	63-121%			
3,3'-Dichlorobenzidine	22.7	2.00	4.00	ug/L	4	8.00		284	27-129%			Q-29, Q-41 Q-5
1,2-Dinitrobenzene	3.05	1.00	2.00	ug/L	4	4.00		76	59-120%			`
1,3-Dinitrobenzene	3.28	1.00	2.00	ug/L	4	4.00		82	49-128%			
1,4-Dinitrobenzene	3.25	1.00	2.00	ug/L	4	4.00		81	54-120%			
Pyridine	1.63	0.400	0.800	ug/L	4	4.00		41	10-120%			
1,2-Dichlorobenzene	1.40	0.100	0.200	ug/L	4	4.00		35	32-120%			
1,3-Dichlorobenzene	1.29	0.100	0.200	ug/L	4	4.00		32	28-120%			
1,4-Dichlorobenzene	1.32	0.100	0.200	ug/L	4	4.00		33	29-120%			
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 72 %	Limits: 44	4-120 %	Dilı	ution: 4x					
2-Fluorobiphenyl (Surr)			61 %		1-120 %		"					
Phenol-d6 (Surr)			26 %		0-133 %		"					
p-Terphenyl-d14 (Surr)			80 %		0-134 %		"					
2-Fluorophenol (Surr)			38 %		0-120 %		"					

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic	Compour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0610 - EPA 3510C (A	cid/Base	Neutral)					Wa	ter				
LCS (23I0610-BS2)			Prepared	1: 09/20/23	06:36 Ana	lyzed: 09/21	/23 14:34					Q-16
Surr: 2,4,6-Tribromophenol (Surr)		Reco	very: 79 %	Limits: 4.	3-140 %	Dilt	ution: 4x					
LCS Dup (23I0610-BSD2)			Prepared	1: 09/20/23	06:36 Ana	lyzed: 09/21	/23 15:09					Q-16, Q-19
EPA 8270E												
Acenaphthene	2.87	0.0400	0.0800	ug/L	4	4.00		72	47-122%	8	30%	B-0
Acenaphthylene	3.09	0.0400	0.0800	ug/L	4	4.00		77	41-130%	9	30%	
Anthracene	3.55	0.0400	0.0800	ug/L	4	4.00		89	57-123%	3	30%	
Benz(a)anthracene	3.66	0.0400	0.0800	ug/L	4	4.00		91	58-125%	4	30%	
Benzo(a)pyrene	3.97	0.0600	0.120	ug/L	4	4.00		99	54-128%	3	30%	
Benzo(b)fluoranthene	3.68	0.0600	0.120	ug/L	4	4.00		92	53-131%	4	30%	
Benzo(k)fluoranthene	4.00	0.0600	0.120	ug/L	4	4.00		100	57-129%	7	30%	
Benzo(g,h,i)perylene	3.56	0.0400	0.0800	ug/L	4	4.00		89	50-134%	5	30%	
Chrysene	3.77	0.0400	0.0800	ug/L	4	4.00		94	59-123%	6	30%	
Dibenz(a,h)anthracene	3.82	0.0400	0.0800	ug/L	4	4.00		95	51-134%	11	30%	
Fluoranthene	3.70	0.0400	0.0800	ug/L	4	4.00		92	57-128%	2	30%	
Fluorene	3.26	0.0400	0.0800	ug/L	4	4.00		81	52-124%	3	30%	
Indeno(1,2,3-cd)pyrene	3.38	0.0400	0.0800	ug/L	4	4.00		84	52-134%	6	30%	
1-Methylnaphthalene	2.30	0.0800	0.160	ug/L	4	4.00		57	41-120%	7	30%	B-0
2-Methylnaphthalene	2.36	0.0800	0.160	ug/L	4	4.00		59	40-121%	6	30%	B-0
Naphthalene	2.50	0.0800	0.160	ug/L	4	4.00		62	40-121%	11	30%	
Phenanthrene	3.40	0.0400	0.0800	ug/L	4	4.00		85	59-120%	4	30%	
Pyrene	3.67	0.0400	0.0800	ug/L	4	4.00		92	57-126%	0.4	30%	
Carbazole	3.90	0.0600	0.120	ug/L	4	4.00		98	60-122%	0.8	30%	
Dibenzofuran	3.05	0.0400	0.0800	ug/L	4	4.00		76	53-120%	4	30%	
2-Chlorophenol	2.93	0.200	0.400	ug/L	4	4.00		73	38-120%	9	30%	
4-Chloro-3-methylphenol	3.25	0.400	0.800	ug/L	4	4.00		81	52-120%	0.3	30%	
2,4-Dichlorophenol	3.10	0.200	0.400	ug/L	4	4.00		78	47-121%	5	30%	
2,4-Dimethylphenol	3.05	0.200	0.400	ug/L	4	4.00		76	31-124%	26	30%	
2,4-Dinitrophenol	3.44	1.00	2.00	ug/L	4	4.00		86	23-143%	8	30%	
4,6-Dinitro-2-methylphenol	3.32	1.00	2.00	ug/L	4	4.00		83	44-137%	5	30%	
2-Methylphenol	2.77	0.100	0.200	ug/L	4	4.00		69	30-120%	8	30%	
3+4-Methylphenol(s)	2.56	0.100	0.200	ug/L	4	4.00		64	29-120%	7	30%	
2-Nitrophenol	3.35	0.400	0.800	ug/L	4	4.00		84	47-123%	9	30%	
4-Nitrophenol	1.08	0.400	0.800	ug/L	4	4.00		27	10-120%	14	30%	Q-3

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23I0610 - EPA 3510C (A	cid/Base I	Neutral)					Wa	ter				
LCS Dup (23I0610-BSD2)			Prepared	: 09/20/23	06:36 Ana	lyzed: 09/21	/23 15:09					Q-16, Q-19
Pentachlorophenol (PCP)	3.26	0.400	0.800	ug/L	4	4.00		82	35-138%	0.05	30%	
Phenol	1.41	0.800	0.800	ug/L	4	4.00		35	10-120%	5	30%	
2,3,4,6-Tetrachlorophenol	3.07	0.200	0.400	ug/L	4	4.00		77	50-128%	1	30%	
2,3,5,6-Tetrachlorophenol	3.11	0.200	0.400	ug/L	4	4.00		78	50-121%	2	30%	
2,4,5-Trichlorophenol	3.19	0.200	0.400	ug/L	4	4.00		80	53-123%	6	30%	
2,4,6-Trichlorophenol	3.12	0.200	0.400	ug/L	4	4.00		78	50-125%	6	30%	
Bis(2-ethylhexyl)phthalate	3.72	0.800	1.60	ug/L	4	4.00		93	55-135%	7	30%	
Butyl benzyl phthalate	3.93	0.800	1.60	ug/L	4	4.00		98	53-134%	6	30%	
Diethylphthalate	3.75	0.800	1.60	ug/L	4	4.00		94	56-125%	3	30%	
Dimethylphthalate	3.70	0.800	1.60	ug/L	4	4.00		93	45-127%	8	30%	
Di-n-butylphthalate	3.98	0.800	1.60	ug/L	4	4.00		100	59-127%	3	30%	B-02
Di-n-octyl phthalate	3.84	0.800	1.60	ug/L	4	4.00		96	51-140%	4	30%	
N-Nitrosodimethylamine	2.07	0.100	0.200	ug/L	4	4.00		52	19-120%	6	30%	
N-Nitroso-di-n-propylamine	3.61	0.100	0.200	ug/L	4	4.00		90	49-120%	9	30%	
N-Nitrosodiphenylamine	3.93	0.100	0.200	ug/L	4	4.00		98	51-123%	8	30%	Q-4
Bis(2-Chloroethoxy) methane	3.35	0.100	0.200	ug/L	4	4.00		84	48-120%	9	30%	
Bis(2-Chloroethyl) ether	3.33	0.100	0.200	ug/L	4	4.00		83	43-120%	11	30%	
2,2'-Oxybis(1-Chloropropane)	3.22	0.100	0.200	ug/L	4	4.00		80	41-120%	10	30%	
Hexachlorobenzene	3.23	0.0400	0.0800	ug/L	4	4.00		81	53-125%	5	30%	
Hexachlorobutadiene	1.32	0.100	0.200	ug/L	4	4.00		33	22-124%	19	30%	
Hexachlorocyclopentadiene	0.891	0.200	0.400	ug/L	4	4.00		22	10-127%	4	30%	
Hexachloroethane	1.33	0.100	0.200	ug/L	4	4.00		33	21-120%	16	30%	
2-Chloronaphthalene	2.48	0.0400	0.0800	ug/L	4	4.00		62	40-120%	8	30%	
1,2,4-Trichlorobenzene	1.71	0.100	0.200	ug/L	4	4.00		43	29-120%	13	30%	
4-Bromophenyl phenyl ether	3.33	0.100	0.200	ug/L	4	4.00		83	55-124%	8	30%	
4-Chlorophenyl phenyl ether	3.09	0.100	0.200	ug/L	4	4.00		77	53-121%	3	30%	
Aniline	2.50	0.200	0.400	ug/L	4	4.00		63	10-120%	4	30%	
4-Chloroaniline	2.91	0.100	0.200	ug/L	4	4.00		73	33-120%	1	30%	
2-Nitroaniline	3.60	0.800	1.60	ug/L	4	4.00		90	55-127%	4	30%	
3-Nitroaniline	4.78	0.800	1.60	ug/L	4	4.00		119	41-128%	1	30%	Q-4
4-Nitroaniline	3.11	0.800	1.60	ug/L	4	4.00		78	25-120%	9	30%	
Nitrobenzene	3.15	0.400	0.800	ug/L	4	4.00		79	45-121%	7	30%	
2,4-Dinitrotoluene	3.26	0.400	0.800	ug/L	4	4.00		81	57-128%	2	30%	
2,6-Dinitrotoluene	3.49	0.400	0.800	ug/L	4	4.00		87	57-124%	5	30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 50 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A3I1084 - 10 12 23 1512

QUALITY CONTROL (QC) SAMPLE RESULTS Semivolatile Organic Compounds by EPA 8270E

Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit

Batch 23I0610 - EPA 3510C (Ad	cid/Base Ne	utral)					W	ater				
LCS Dup (23I0610-BSD2)			Prepared	1: 09/20/23 06	5:36 Ana	alyzed: 09/21/	23 15:09					Q-16, Q-19
Benzoic acid	3.74	0.200	10.0	ug/L	4	8.00		47	10-120%	15	30%	
Benzyl alcohol	2.72	0.400	0.800	ug/L	4	4.00		68	31-120%	7	30%	
Isophorone	3.41	0.100	0.200	ug/L	4	4.00		85	42-124%	8	30%	
Azobenzene (1,2-DPH)	3.81	0.100	0.200	ug/L	4	4.00		95	61-120%	7	30%	
Bis(2-Ethylhexyl) adipate	3.80	1.00	2.00	ug/L	4	4.00		95	63-121%	5	30%	
3,3'-Dichlorobenzidine	21.8	2.00	4.00	ug/L	4	8.00		272	27-129%	4	30%	Q-29, Q-41, Q-5
1,2-Dinitrobenzene	3.15	1.00	2.00	ug/L	4	4.00		79	59-120%	3	30%	
1,3-Dinitrobenzene	3.35	1.00	2.00	ug/L	4	4.00		84	49-128%	2	30%	
1,4-Dinitrobenzene	3.36	1.00	2.00	ug/L	4	4.00		84	54-120%	3	30%	
Pyridine	1.70	0.400	0.800	ug/L	4	4.00		43	10-120%	4	30%	
1,2-Dichlorobenzene	1.60	0.100	0.200	ug/L	4	4.00		40	32-120%	13	30%	
1,3-Dichlorobenzene	1.48	0.100	0.200	ug/L	4	4.00		37	28-120%	14	30%	
1,4-Dichlorobenzene	1.53	0.100	0.200	ug/L	4	4.00		38	29-120%	14	30%	
Surr: Nitrobenzene-d5 (Surr)		Recove	ry: 77%	Limits: 44-1	20 %	Dilu	tion: 4x					
2-Fluorobiphenyl (Surr)			69 %	44-1	20 %		"					
Phenol-d6 (Surr)			28 %	10-1	33 %		"					
p-Terphenyl-d14 (Surr)			86 %	50-1	34 %		"					
2-Fluorophenol (Surr)			42 %	19-1	20 %		"					
2,4,6-Tribromophenol (Surr)			86 %	43-1	40 %		"					

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 51 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number:
 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager:
 Cody Schweitzer
 A3I1084 - 10 12 23 1512

SAMPLE PREPARATION INFORMATION

		Selected Semi	volatile Organic Com	pounds by EPA 827	0E		
Prep: EPA 3510C (Ad	cid Extraction)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23I0506							
A3I1084-04	Water	EPA 8270E	09/12/23 14:25	09/18/23 06:00	1030 mL/1 mL	1000 mL/1 mL	0.97
A3I1084-06	Water	EPA 8270E	09/12/23 15:45	09/18/23 06:00	1010 mL/1 mL	1000 mL/1 mL	0.99
Batch: 23I0559							
A3I1084-02RE1	Water	EPA 8270E	09/12/23 11:50	09/19/23 11:54	1020 mL/1 mL	1000 mL/1 mL	0.98
A3I1084-03RE2	Water	EPA 8270E	09/12/23 10:45	09/19/23 11:54	1000 mL/1 mL	1000 mL/1 mL	1.00
A3I1084-05RE2	Water	EPA 8270E	09/12/23 13:30	09/19/23 11:54	1000 mL/1 mL	1000 mL/1 mL	1.00
Batch: 23I0638							
A3I1084-01RE1	Water	EPA 8270E	09/13/23 08:15	09/20/23 14:28	1040mL/1mL	1000 mL/1 mL	0.96
A3I1084-07RE1	Water	EPA 8270E	09/13/23 09:55	09/20/23 14:28	1050 mL/1 mL	1000 mL/1 mL	0.95

Prep: EPA 3510C (Ad	cid/Base Neutral)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23I0511							
A3I1084-08	Water	EPA 8270E	09/12/23 16:15	09/18/23 06:33	1000 mL/1 mL	1000 mL/1 mL	1.00
A3I1084-09RE1	Water	EPA 8270E	09/12/23 16:28	09/18/23 06:33	1000 mL/1 mL	1000mL/1mL	1.00
A3I1084-11RE1	Water	EPA 8270E	09/12/23 07:30	09/18/23 06:33	1050 mL/1 mL	1000 mL/1 mL	0.95
Batch: 23I0610							
A3I1084-10	Water	EPA 8270E	09/13/23 08:45	09/20/23 06:36	1030mL/1mL	1000mL/1mL	0.97
A3I1084-10RE1	Water	EPA 8270E	09/13/23 08:45	09/20/23 06:36	1030mL/1mL	1000mL/1mL	0.97
A3I1084-10RE2	Water	EPA 8270E	09/13/23 08:45	09/20/23 06:36	1030mL/1mL	1000mL/1mL	0.97
A3I1084-12	Water	EPA 8270E	09/13/23 09:00	09/20/23 06:36	1010mL/1mL	1000mL/1mL	0.99

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number:
 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager:
 Cody Schweitzer
 A311084 - 10 12 23 1512

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- A-01 Due to coelution of isomers, 2,3,4,6- and 2,3,4,5-Tetrachlorophenol (TCP) are reported as a sum and are Estimated Values. Results are calculated using the response factor of 2,3,4,6-TCP. Batch results accepted based on spike recovery of 2,3,4,6-TCP.
 B Analyte detected in an associated blank at a level above the MRL. (See Notes and Conventions below.)
- B-02 Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)
- J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- M-05 Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
- Q-01 Spike recovery and/or RPD is outside acceptance limits.
- Q-11 Spike recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
- Q-16 Reanalysis of an original Batch QC sample.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-29 Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
- Q-31 Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
- Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
- Q-52 Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
- R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
- S-03 Sample re-extract, or the analysis of an associated Batch QC sample, confirms surrogate failure due to sample matrix effect.
- **S-06** Surrogate recovery is outside of established control limits.

Apex Laboratories

Philip Nevemberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 53 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

<u>Detection Limits:</u> Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 54 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number:
 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager:
 Cody Schweitzer
 A3I1084 - 10 12 23 1512

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

- Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).
- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 55 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number:
 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager:
 Cody Schweitzer
 A3I1084 - 10 12 23 1512

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation
Water	EPA 8270E		2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)		
Water	EPA 8270E		2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)		
		All reported analytes are included in Apex	Laboratories' current ORELAP scope.		

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Philip Manhera

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 56 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333	1, OR 97223	Ph: 503	-718-2	323 Fax	c 503-	718-0	333			Lat	Lab # // / / 1007	Ĩ
Company: PBS Engineering + Environmental		Janessa Sandoval (PBS) Project Mgr. Cody Schweitzer (MFA)	Jane Jr. Cody	ssa San Schwei	idoval (PBS)		Project Na	me: McFarlar	nd Cascade, Euger	Project Name: McFarland Cascade, Eugene Project # 22588.000	88.000
Address: 3500 Chad Drive Suite 100, Eugene OR 97408	Eugene OR 9	7408				Phon	e: (541	Phone: (541) 686-8684	Fax:	Em	janessa.sandoval@pb il:cschweitzer@maulfos	susa.com ter.com
Sampled by: Janessa Sandoval										ANALYSIS REQUEST	IS	-
SAMPLE ID	# di 8A.J ETAD	TIME	XIATAM	PHENOLS # OF CONTAINERS	\$AOC\$	dsw/sw.						
90-1D- 0923	461/15	W (180 EHEN)	_	× ×	_							
92-9- 0923	3/2/16	MOS11 82/21/6		×								
93-1A 0923	1/1/16	Wight lousin	<u>``</u>	× ×								
93-3 0923	OVIN	311/2	3	ν ×								
93-4- 0923	MOES 132011	13 13ga	<u>}</u>	<i>×</i>								
93-8-0925	9/11/2	9/148 KKW 2	3	× 7								
P-2D- 0923	9/13/	9/3/23 0/g W	3	× ×								
R-1- 0923	9/12/2	41123 1615 W 6	3	×	×	×						
R-2. 0923	2/d/no	4/2/28 1628 W 2	3	×	×							
R.3. 0923	8/13/	9/13/25/05/45 W 2	3	×	×							
Normal Turn Around Time (TAT) = \$-10 Business Days	Around Time	(TAT) = 0	-10 Bus	ness D	ays		Т	SPECIAL INS	SPECIAL INSTRUCTIONS:			
	1 DAY	2 DAY		3 DAY				JIRECT BILL: !	1cFarland Casce	ide Pole and Lumber	DIRECT BILL: McFarland Cascade Pole and Lumber Company (MCPLC) Attention: Roland Mueller	n: Roland Mueller
TAT Requested (circle)	4 DAY	5 DAY	٥	Other:			ı	Extra volume/t	Extra volume/bottles collected to run MS/MSD	o run MS/MSD		
	SAMPLES ARE HELD FOR 30 DAYS	ELD FOR	30 DAY				_	Carrainolla	×	200	DECEMENDO.	
KELINGIASHED BY Signatyle: Ambernary	Pate: 1/3/23	Signatur	D	_	Date: 9/13/23	3/2	**	KELINGUISHEU BY Signature:	:	Date:	Signature:	Date:
med Name: Show Show Show Show Show Show Show Show	11me: 1205	S C	d Name: Time:	m &	Time: 1205	8		Printed Name:		Time:	Printed Name:	Time:
TAC .		Company	De la company		3		ŭ	Company:			Company:	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 57 of 59

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: McFarland Cascade-Eugene

 3140 NE Broadway Street
 Project Number: 22588.000
 Report ID:

 Portland, OR 97232
 Project Manager: Cody Schweitzer
 A311084 - 10 12 23 1512

12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-716-2323 Fax: 503-718-0333 Janessa Sandoval (PBS)	JR 97225	2 Dh. 502.7	110 222	1	2001	0000				
		Janessa Sandoval (PBS)	Janes	sa Sar	BT/-EUG:	-0333 S)				
Company: PBS Engineering + Environmental	ental	Project Mc	Jr. Cody	Schwe	eitzer (MFA		Project Name: McF	rrland Cascade, E	ne Project # 22588.000 ianessa sandoval@obsusa g	2588.000 @phsusa.com
Address: 3500 Chad Drive, Suite 100 , Eugene OR 97408	ngene Of	3 97408		20000	-P	one: (541	Phone: (541) 686-8684 Fax:		Email: cschweitzer@maulfoster.com	Jfoster.com
Sampled by: Janessa Sandoval	ļ	-	-					ANALYSIS REQUEST	ST	
								-		
			SA							
· · · · · · · · · · · · · · · · · · ·			3NIAT							
	.B ID #	NE	УТRIX ОF СОИ	ENOF	OCS					
LEID	-	\dashv	\dashv	-	\rightarrow					
R4-0944	+	1	6 N	*	1					
DUP- 0923	d/h	4/1/12 MZO W	1	×	×					
FIELD- 0923	9/4/2	9/4/23 MID W	7	×	×					
	-									
								5		
- 148-AG				\dashv						
	_		_					200		
			-	_						
			-	4						
Normal Turn Around Time (TALF 6-10 Business Days	und Time	(FAU) = 6-16	Busine	ss Day	s	T T	SPECIAL INSTRUCTIONS:			
11.	1 DAY	2 DAY	3 DAY	≽						
4 E	4 DAY	5 DAY	Other: _	Ë		-				
	ES ARE H	SAMPLES ARE HELD FOR 30 DAYS	DAYS			П				
RELINGUESHED BY: Signature: Signa	(3/23)	Signature:	!	Par C	(2/5//Ged		RELINQUISHED BY: Signature:	Date:	RECEIVED BY: Signature:	Date:
Jan PSSA SANDON I	$\mathcal{S}_{\underline{s}}$	Printed Name: RKnWh		Time 2	Time: 12:05	\$ \$	Printed Name:	Time:	Printed Name:	Time:
Company:	S	Company					Сотрапу:		Company:	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Merenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

3140 NE Broadway Street Portland, OR 97232 Project: <u>McFarland Cascade-Eugene</u>

Project Number: 22588.000
Project Manager: Cody Schweitzer

Report ID: A3I1084 - 10 12 23 1512

	APEX LABS COOLER RECEIPT FORM				
Client: PBS EAC	TIMERING + ENVIRONMENTAFILEMENT WOH: A3 I 6084				
Project/Project #: MCFATIAND CASCADE, EUGENE 1 1588.000					
Delivery Info:					
	173@ 1705 By: RY				
Delivered by: Apex XCI					
Cooler Inspection Date	e/time inspected: 9 13 123@ 1205 By: 15/RK				
Chain of Custody included					
Signed/dated by client?	Yes No No				
Signed/dated by Apex?	Yes V No				
Out of temperature samples Sample Inspection: Date All samples intact? Yes	f temperature samples? Yes (No				
<u> </u>	es form initiated? Yes No Comments:				
Do VOA vials have visible	headspace? Yes No NA Yes No NA pH appropriate? Yes No NA Strip ID: A23A348				
Additional information:					
Labeled by:	Witness: Cooler Inspected by:				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Neimberg

Data Quality Assurance/Quality Control Review

Project No. M9081.03.016 | January 22, 2024 | McFarland Cascade Holdings, Inc.

Maul Foster & Alongi, Inc. (MFA), conducted an independent Stage 2A review of the quality of analytical results for groundwater and associated quality control samples collected on September 12 and 13, 2023 at the property located at 90049 Highway 99 North in Eugene, Oregon.

Analytical Resources, LLC (ARL), and Apex Laboratories, LLC (Apex), performed the analyses. ARL report number 23I0373 and Apex report number A3I1084 were reviewed. Sample R-3-0923 was sent to both laboratories as a split sample to meet project reporting limit needs for pentachlorophenol. The analyses performed and the samples analyzed are listed below.

Analysis	Reference
Pentachlorophenol	EPA 8041A
Semivolatile organic compounds	EPA 8270E

Notes

EPA = U.S. Environmental Protection Agency.

Samples Analyzed					
Report A3I1084					
90-1D-0923	P-2D-0923				
92-9-0923	R-1-0923				
93-1A-0923	R-2-0923				
93-3-0923	R-3-0923				
93-4-0923	DUP-0923				
93-8-0923	FIELD-0923				
Report 23I0373					
R-3-0923	-				

Data Qualification

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2020) and appropriate laboratory- and method-specific guidelines (Apex 2023, ARL 2023, EPA 1986).

Based on the results of the data quality review procedures described below, the data, with the appropriate final data qualifiers assigned, are considered acceptable for their intended use. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, and data qualifiers assigned by the reviewer during validation.

Final data qualifiers:

- J = result is estimated.
- J+ = result is estimated, but the result may be biased high.
- J- = result is estimated, but the result may be biased low.
- U = result is non-detect at the laboratory detection limit (LDL) or method reporting limit (MRL).

UJ = result is non-detect with an estimated LDL.

Sample R-3-0923 was analyzed for pentachlorophenol by both laboratories; Apex included EPA Method 8270E results in report A3I1084, and ARL discussed EPA Method 8041A results in report 23I0373. The result of record is based on the lower-limit EPA Method 8041A analysis and is shown in the table below. The remaining result has been flagged by the reviewer as not reportable.

Report	Sample	Analyte	Laboratory Result (ug/L)	Result of Record (ug/L)
2310373	D 2 0002	Dontooblorophonol	0.352	0.352
A3I1084	R-3-0923	Pentachlorophenol	0.633 J (NR)	-

Notes

- -- = not applicable.
- J = result is estimated.
- NR = not reportable.
- U = result is non-detect at the laboratory detection limit.
- ug/L = micrograms per liter.

In report A3I1084, Apex reported the EPA Method 8270E 2,3,4,5-tetrachlorophenol and 2,3,4,6-tetrachlorophenol results as single coeluted results. Apex stated that the coeluted results had been calculated using the response factor of 2,3,4,6-tetrachlorophenol and that results were estimated values. Apex also noted that the coeluted results are not included on the Apex Oregon Environmental Laboratory Accreditation Program scope of certification. The reviewer qualified the results, as shown in the following table.

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
	90-1D-0923		0.385 U	0.385 UJ
	92-9-0923		0.126	0.126 J ^(a)
	93-1A-0923		0.100 U	0.100 UJ
	93-3-0923		0.0971 U	0.0971 UJ
	93-4-0923	2,3,4,6- & 2,3,4,5-	0.100 U	0.100 UJ
A3I1084	93-8-0923		0.0990 U	0.0990 UJ
A311064	P-2D-0923	Tetrachlorophenol(s)	0.381 U	0.381 UJ
	R-1-0923		1.00 U	1.00 UJ
	R-2-0923		1.00 U	1.00 UJ
	R-3-0923		0.485 U	0.485 UJ
	DUP-0923		0.952 U	0.952 UJ
	FIELD-0923	0.0990 U	0.0990 UJ	

Notes

- J = result is estimated.
- U = result is non-detect at the laboratory detection limit.
- ug/L = micrograms per liter.
- UJ = result is non-detect with an estimated laboratory detection limit.
- (a)Result is also qualified based on surrogate recovery as discussed in the Surrogate Recovery Results section. Final qualification is shown

According to report A3I1084, Apex flagged EPA Method 8270E benzo(b)fluoranthene and benzo(k)fluoranthene results for sample R-3-0923 as estimated because of insufficient peak separation of structural isomers. The associated sample results have been qualified by the reviewer with J, as shown in the following table.

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
A214004	R-3-0923	Benzo(b)fluoranthene	0.419	0.419 J
A311004		Benzo(k)fluoranthene	0.207	0.207 J

Notes

J = result is estimated. ug/L = micrograms per liter.

In report A3I1084, Apex flagged all EPA Method 8270E 3,3'-dichlorobenzidine results as estimated due to erratic recoveries. The reviewer qualified the results with UJ, as shown in the following table.

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
	R-1-0923		5.00 U	5.00 UJ
	R-2-0923	3,3'-Dichlorobenzidine	5.00 U	5.00 UJ
A3I1084	R-3-0923		2.43 U	2.43 UJ
	DUP-0923		4.76 U	4.76 UJ
	FIELD-0923		0.495 U	0.495 UJ

Notes

Sample Conditions

Sample Custody

Sample custody was appropriately documented on the chain-of-custody form accompanying the report.

Holding Times

Extractions and analyses were performed within the recommended holding times.

Preservation and Sample Storage

The samples were preserved and stored appropriately. The reviewer confirmed that the sample submitted to ARL for report 23I0373 was received at 0.6 degrees Celsius.

Reporting Limits

The laboratory evaluated results to LDLs. Samples that required dilutions because of high analyte concentrations, coeluting compounds, matrix interferences, and/or dilutions necessary for preparation and/or analysis were reported with raised LDLs and MRLs.

The laboratory qualified results between the LDL and the MRL with J, as estimated.

Blanks

Method Blanks

Laboratory method blanks are used to assess whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the

U = result is non-detect at the laboratory detection limit.

ug/L = micrograms per liter.

UJ = result is non-detect with an estimated laboratory detection limit.

required frequencies. For purposes of data qualification, the laboratory method blanks were associated with all samples prepared in the analytical batch.

According to report A3I1084, the EPA Method 8270E batch 23I0610 laboratory method blank had acenaphthene, 1-methylnaphthalene, 2-methylnaphthalene, di-n-butylphthalate detections between the LDL and MRL, at concentrations of 0.0194 micrograms per liter (ug/L), 0.0291 ug/L, 0.0306 ug/L and 0.381 ug/L, respectively, and a naphthalene detection above the MRL, at a concentration of 0.112 ug/L. The associated sample results that were either non-detect or detected at concentrations greater than five times the concentrations detected in the laboratory method blank did not require qualification. The reviewer confirmed that the acenaphthene detection at the MRL without a J flag is due to rounding. The associated sample results less than five times the concentration detected in the laboratory method blank were qualified by the reviewer, as shown in the following table.

Report	Sample	Analyte	Method Blank Concentration (ug/L)	Original Result (ug/L)	Qualified Result (ug/L)
1211001	A3I1084 FIELD-0923	Acenaphthene	0.0194 J	0.0198	0.0198 U
A311004		Naphthalene	0.112	0.156	0.156 J+

Notes

J = result is estimated.

J+ = result is estimated, but the result may be biased high.

U = result is non-detect at method reporting limit.

ug/L = micrograms per liter.

All remaining laboratory method blank results were non-detect to LDLs.

Field Blanks

According to report A3I1084, one field blank (FIELD-0923) was submitted for analysis. The field blank had an acenaphthene detection between the LDL and the MRL, at a concentration of 0.0198 ug/L and a naphthalene detection above the MRL, at a concentration of 0.156. The associated sample results above the MRL and greater than five times the concentration detected in the blank did not require qualification. The associated sample result above the MRL and less than five times the concentration detected in the blank was qualified, as shown in the following table.

Report	Sample	Analyte	Method Blank Concentration (ug/L)	Original Result (ug/L)	Qualified Result (ug/L)
A3I1084	R-1-0923	Naphthalene	0.156	0.405	0.405 J+

Notes

J+ = result is estimated, but the result may be biased high. ug/L = micrograms per liter.

All remaining field blank results were non-detect to LDLs.

Trip Blanks

Trip blanks are used to evaluate whether volatile organic compound contamination was introduced during sample storage and during shipment between the sampling location and the laboratory.

Trip blank samples were not required for this sampling event because samples were not analyzed for volatile organic compounds.

Laboratory Control Sample and Laboratory Control Sample Duplicate Results

A laboratory control sample (LCS) and a laboratory control sample duplicate (LCSD) are spiked with target analytes to provide information about laboratory precision and accuracy. The LCS and the LCSD were prepared and analyzed at the required frequency.

According to report A3I1084, the EPA Method 8270E batch 23I0511 LCS and LCSD results for 3,3'-dichlorobenzidine were above the upper percent recovery acceptance limit of 129 percent, at 287 percent and 253 percent, respectively. The associated 3,3'-dichlorobenzidine results were non-detect; thus, qualifications were not necessary.

According to report A3I1084, the EPA Method 8270E batch 23I0610 LCS and LCSD results for 3,3'-dichlorobenzidine was above the upper percent recovery acceptance limit of 129 percent, at 284 percent and 272 percent, respectively. The associated 3,3'-dichlorobenzidine results were non-detect; thus, qualifications were not necessary.

All remaining LCS and LCSD results were within acceptance limits for percent recovery and relative percent difference (RPD).

Laboratory Duplicate Results

Laboratory duplicate results are used to evaluate laboratory precision. ARL and Apex did not report laboratory duplicate results. Laboratory precision was evaluated using LCS and LCSD results or matrix spike (MS) and matrix spike duplicate (MSD) results.

Matrix Spike and Matrix Spike Duplicate Results

MS and MSD results are used to evaluate laboratory precision, accuracy, and the effect of the sample matrix on sample preparation and analysis.

Apex only reported MS and MSD results with EPA Method 8270E batch 23I0511 and ARI did not report MS and MSD results. Batch precision was evaluated based on the LCS and LCSD results when MS and MSD results were not provided.

According to report A3I1084, the EPA Method 8270E batch 23I0511 MS and MSD phenol; benzoic acid; and 3,3'-dichlorobenzidine did not have any recovery. The MS and MSD analysis was performed using a dilution factor of ten and the expected MS and MSD concentrations were less than or around the MRL for phenol; benzoic acid; and 3,3'-dichlorobenzidine, so the reviewer determined that matrix spike recovery for these analytes could not be evaluated; qualification was not necessary.

All remaining MS and MSD results were within acceptance limits for percent recovery and RPD.

Surrogate Recovery Results

The samples were spiked with surrogate compounds to evaluate laboratory performance for individual samples for organic analyses.

The laboratory appropriately documented and qualified surrogate outliers. When surrogate percent recoveries were outside of acceptance limits because of dilutions necessary to quantify high concentrations of target analytes, qualification by the reviewer was not required. The reviewer

confirmed that batch quality control results for samples with surrogate outliers were within acceptance limits.

According to report A3I1084, the EPA Method 8270E surrogate compound nitrobenzene-d5, 2-fluorobiphenyl, and 2-fluorophenol results were below their respective lower percent recovery acceptance limits, ranging from 16 percent to 40 percent, for samples 90-1D-0923 and P-2D-0923. 2-Fluorobiphenyl and nitrobenzene-d5 are base/neutral surrogates and no base/neutral compounds were reported with 90-1D-0923 and P-2D-0923. The reviewer confirmed that the two acid-fraction surrogate compounds representing the reported analytes, phenol-d6 and 2,4,6-tribromophenol, were within acceptable recovery; thus, qualifications were not necessary.

According to report A3I1084, the EPA Method 8270E surrogate compound nitrobenzene-d5, 2-fluorobiphenyl, phenol-d6, p-terphenyl-d14, and 2-fluorophenol results were below their respective lower percent recovery acceptance limits, ranging from 9 percent to 43 percent for sample 92-9-0923. The reviewer qualified the associated sample results, as shown in the following table.

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
	A3I1084 92-9-0923	2,3,4,6- & 2,3,4,5-Tetrachlorophenol(s)	0.126	0.126 J ^(a)
		2,4-Dichlorophenol	0.0490 U	0.0490 UJ
1211001		Pentachlorophenol	4.74	4.74 J-
A311084		2,3,5,6-Tetrachlorophenol	0.0643 J	0.0643 J-
	2,4,5-Trichlorophenol	0.0490 U	0.0490 UJ	
		2,4,6-Trichlorophenol	0.0490 U	0.0490 UJ

Notes

- J = result is estimated.
- J- = result is estimated, but the result may be biased low.
- U = result is non-detect at the laboratory detection limit.
- ug/L = micrograms per liter.
- UJ = result is non-detect with an estimated laboratory detection limit.

According to report A3I1084, the EPA Method 8270E surrogate compound 2-fluorobiphenyl and pterphenyl-d14 results were below their respective lower percent recovery acceptance limits, at 42 percent and 39 percent, respectively, for sample 93-1A-0923. 2-Fluorobiphenyl and p-terphenyl-d14 are base/neutral surrogates, and the reported results are all acidic compounds represented by acid-fraction surrogates with acceptable percent recoveries; thus, qualifications were not necessary.

According to report A3I1084, the EPA Method 8270E batch 23I0506 laboratory method blank had the surrogate compound 2-fluorobiphenyl result below lower percent recovery acceptance limit of 44 percent, at 43 percent. No qualifications were necessary as the exceedance was minimal and all results were non-detect.

All remaining surrogate results were within percent recovery acceptance limits.

Continuing Calibration Verification Results

The laboratory did not report CCV results, but appropriately flagged results associated with CCV exceedances. Surrogate or batch quality control results flagged by the laboratory based on CCV exceedances but meeting percent recovery and/or RPD acceptance criteria required no action from the reviewer.

⁽a) Result also qualified based on coeluting compounds, as described in the DQ section. Final qualification is shown.

Field Duplicate Results

Field duplicate samples measure both field and laboratory precision. The following field duplicate and parent sample pair was submitted for analysis:

Report	Parent Sample	Field Duplicate Sample
A3I1084	R-2-0923	DUP-0923

MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL or 50 percent RPD for results that are greater than five times the MRL. RPD was not evaluated when both results in the sample pair were non-detect. When one result in the sample pair was non-detect, RPD was evaluated using the LDL of the non-detect result.

All field duplicate results met the RPD acceptance criteria.

Data Package

The data packages were reviewed for transcription errors, omissions, and anomalies. None were found.

References

Apex. 2023. Quality Systems Manual. Rev. 11. Apex Laboratories, LLC: Tigard, OR. June 20.

ARL. 2023. Quality Assurance Plan. Rev. 21.0. Analytical Resources, LLC: Tukwila, WA. January 23.EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase III (2019), VII phase I (2019), and VII phase II (2020).

EPA. 2020. National Functional Guidelines for Organic Superfund Methods Data Review. EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.