# Final Source Control Evaluation Report

Dolan Property – 2700 NW Front Avenue, Portland, Oregon ECSI 6147

Prepared for:

# **Dolan and Company, LLC**

September 22, 2025 Project No. M1381.01.001

Prepared by:

Maul Foster & Alongi, Inc. 3140 NE Broadway, Portland, OR 97232

© 2025 Maul Foster & Alongi, Inc.



# **Final Source Control Evaluation Report**

# **Dolan Property – 2700 NW Front Avenue, Portland, Oregon ECSI 6147**

The material and data in this report were prepared under the supervision and direction of the undersigned.

Maul Foster & Alongi, Inc.

Chris Clough

Project Environmental Scientist

David Weatherby, RG Principal Geologist

# **Contents**

| Ab | brevia                               | tions                                   |                                             | V  |  |  |  |  |
|----|--------------------------------------|-----------------------------------------|---------------------------------------------|----|--|--|--|--|
| 1  | Intro                                | duction                                 |                                             | 1  |  |  |  |  |
|    | 1.1                                  | Purpos                                  | se                                          | 1  |  |  |  |  |
|    | 1.2                                  | SCE S                                   | cope of Work                                | 1  |  |  |  |  |
| 2  | Back                                 | ground                                  |                                             | 2  |  |  |  |  |
|    | 2.1                                  | Site Location, History, and Description |                                             |    |  |  |  |  |
|    | 2.2                                  |                                         |                                             |    |  |  |  |  |
|    | 2.3                                  | Previo                                  | us Environmental Activities                 | 4  |  |  |  |  |
|    |                                      | 2.3.1                                   | Soil Investigations                         | 4  |  |  |  |  |
|    |                                      | 2.3.2                                   | Geodesign Catch Basin Sediment SCE          | 5  |  |  |  |  |
|    |                                      | 2.3.3                                   | Geodesign Stormwater SCE                    |    |  |  |  |  |
|    |                                      | 2.3.4                                   | MFA Stormwater SCE                          | 6  |  |  |  |  |
| 3  | Cont                                 | aminan                                  | its of Interest                             | 7  |  |  |  |  |
| 4  | Source Control Evaluation Activities |                                         |                                             |    |  |  |  |  |
|    | 4.1                                  | 2021 SCE Activities                     | 9                                           |    |  |  |  |  |
|    | 4.2                                  | 1.2 Storm Conveyance System Maintenance |                                             |    |  |  |  |  |
|    | 4.3                                  | 3 Stormwater Sample Collection          |                                             |    |  |  |  |  |
|    |                                      | 4.3.1                                   | April 2022                                  | 10 |  |  |  |  |
|    |                                      | 4.3.2                                   | October 2022                                | 10 |  |  |  |  |
|    |                                      | 4.3.3                                   | March 2023                                  | 11 |  |  |  |  |
| 5  | Cher                                 | mical An                                | nalysis and Results                         | 11 |  |  |  |  |
|    | 5.1 Analysis Performed               |                                         |                                             |    |  |  |  |  |
|    |                                      | 5.1.1                                   | Stormwater Solids and Surface Soils Samples | 11 |  |  |  |  |
|    |                                      | 5.1.2                                   | Stormwater Samples                          | 11 |  |  |  |  |
|    | 5.2 Laboratory Analytical Results    |                                         |                                             |    |  |  |  |  |
|    |                                      | 5.2.1                                   | Stormwater Solids and Surface Soil Samples  | 12 |  |  |  |  |
|    |                                      | 5.2.2                                   | Stormwater Samples                          | 13 |  |  |  |  |
|    | 5.3                                  | Data E                                  | Evaluation                                  | 14 |  |  |  |  |
|    |                                      | 5.3.1                                   | Stormwater Solids and Surface Soil Samples  | 14 |  |  |  |  |
|    |                                      | 5.3.2                                   | Stormwater Samples                          |    |  |  |  |  |

| 6   | Source Control Measures                       |    |  |  |  |  |
|-----|-----------------------------------------------|----|--|--|--|--|
|     | 6.1 Identification of Source Control Measures | 18 |  |  |  |  |
| 7   | Conclusions                                   | 18 |  |  |  |  |
| Ref | eferences                                     | 20 |  |  |  |  |

#### Limitations

## **Figures**

- 1-1 Site Location
- 1-2 Site Stormwater System and Stormwater Sample Locations
- 4-1 Composite Soil Sample Locations

#### **Tables**

- 4-1 2022/2023 Water Quality Parameters
- 5-1 Soil/Catch Basin Solids Analytical Results
- 5-2 2022/2023 Stormwater Analytical Results

## **Appendixes**

#### Appendix A

Historical Investigation Data

#### Appendix B

Stormwater Solid and Surface Soil Field Sampling Data Sheets

#### Appendix C

2022 and 2023 Stormwater Event Hydrographs

#### Appendix D

**Analytical Laboratory Reports** 

#### Appendix E

**Data Validation Memorandums** 

#### Appendix F

Rank-Order Charts

# **Abbreviations**

BEHP bis(2-ethylhexyl)phthalate
COI contaminant of interest
Clarus Water Solutions

CUL cleanup level

DEQ Oregon Department of Environmental Quality

Dolan Dolan and Company, LLC

EPA U.S. Environmental Protection Agency

Geodesign Geodesign, Inc.

JSCS joint source control strategy
MFA Maul Foster & Alongi, Inc.
mg/kg milligrams per kilogram

NPDES National Pollutant Discharge Eliminations System

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyls
PGE Portland General Electric

Quantum Resource Recovery, Inc.

ROD Record of Decision

SCE source control evaluation
SCM source control measure
SLV screening level value

the site 2700 NW Front Avenue, Portland, Oregon

TSS total suspended solids ug/kg micrograms per kilogram ug/L micrograms per liter

UST underground storage tank

WISCO Willamette Iron and Steel Works Corporation

work plan 2017 Final Stormwater Source Control Evaluation

# 1 Introduction

On behalf of Dolan and Company, LLC (Dolan), Maul Foster & Alongi, Inc. (MFA) has prepared this final source control evaluation (SCE) report for the Dolan property (the site), located along the Willamette River at 2700 NW Front Avenue, Portland, Oregon (see Figure 1-1).

# 1.1 Purpose

This report has been prepared pursuant to the 2017 Final Stormwater Source Control Evaluation Work Plan (work plan; MFA 2017), the 2021 Supplemental Stormwater Source Control Evaluation Work Plan (MFA, 2021a) and the additional stormwater monitoring activities proposed in the Source Control Evaluation Report (MFA 2021b). The purpose of the investigation was to complete additional SCE activities to inform selection of stormwater source control measures (SCMs) and document the ongoing stormwater source control measures for Basins C/D, E, and F at the site. The site stormwater system is shown on Figure 1-2.

Some of the activities detailed within this report were previously documented in the 2021 Source Control Evaluation Report (2021b) and are described here to provide a complete summary of SCE information to assist with regulatory evaluation. This Final Source Control Evaluation Report presents the following:

- Section 2: A background of the site location, history, and previous SCE activities and data summaries.
- Section 3: A summary of potential contaminants of interest.
- Section 4: A detailed description of SCE activities conducted in accordance with the 2017 work plan, the January 2021 supplemental SCE work plan, and discussions with Oregon Department of Environmental Quality (DEQ).
- Section 5: Chemical analysis and results from stormwater solids and surface soil sampling
  activities in drainage Basins E and F and stormwater sampling activities in Basins C/D, E, and F.
- Section 6: A SCM proposal based on analytical data. Dolan began implementing the SCMs prior to 2022.
- Section 7: A summary of the SCE monitoring activities and source control measure that lead to the conclusion that source has been achieved for the site.

## 1.2 SCE Scope of Work

In accordance with the work plan and supplemental discussions with DEQ, the following SCE activities have been completed at the site:

 Clean-out of solids in the storm lines between catch basins CB-14 and CB-15 in Basin E and catch basins CB-16 and CB-17 in Basin F.

- Collection of two stormwater solids samples, one each from the solids removed from the storm lines in Basins E and F.
- Collection of two 10-point composite surface soil samples: one each from Basins E and F.
- Performed and documented ongoing storm system maintenance, including inspection and replacement of stormwater basin filters, clean-out of solids in the storm lines within Basins C and D, and pump station maintenance.
- Observation of site conditions during wet weather to confirm stormwater overland flow paths at Basin G, specifically at the south portion of Basin G where the driveway slopes toward Front Avenue.
- Collection of stormwater samples from three qualifying storm events.
- Analysis of surface soil and catch basin sediment samples for the following contaminants of interest (COIs): total cadmium and zinc, polycyclic aromatic hydrocarbons (PAHs), and bis(2ethylhexyl)phthalate (BEHP).
- Analysis of stormwater samples for total arsenic, total copper, total cadmium, total zinc, PAHs, and BEHP. The stormwater basin COIs were determined through review of prior stormwater data, comparison to applicable screening levels, and discussions with DEQ.
- Comparison of analytical data to the Initial Upland Screening Level Values (SLVs) from Table 3-1 of the Portland Harbor Joint Source Control Strategy (JSCS) and the rank-order charts (Appendix E in DEQ 2010). In addition, although not identified in the work plan, analytical data were also compared to cleanup levels (CULs) from Table 17 of the Portland Harbor Record of Decision (ROD; EPA, 2020)

# 2 Background

# 2.1 Site Location, History, and Description

The site is approximately 12 acres and is active and currently used as a commercial property. It is generally flat with the majority being paved. The site is bordered to the northwest by the Sulzer Pump US, Inc. (Sulzer) property, to the southwest by NW Front Avenue, and to the southeast by the former Port of Portland Terminal 1 North.

The Dolan site was once part of the Sulzer property and was included in prior environmental assessment activities. The site was developed between 1905 and 1922 with several industrial manufacturing and marine-type shipping and receiving buildings associated with the Oregon Railroad and Navigation Company. The northwest and central portion of the site was operated by Willamette Iron and Steel Works Corporation (WISCO). WISCO produced, fabricated, and repaired metal logging equipment, steam-powered locomotives, pulp and paper mill equipment, water pipelines, penstocks, steel-hulled marine vessels, and ship engines prior to 1946. During that time, there were also several tenants that manufactured paint and varnish, performed food distribution and storage of cooking oil, and/or stored vehicles and equipment at the Site.

After 1946, WISCO expanded and took over much of the site, producing penstocks, bridge cranes, spillway gates, valves, pumps, missile silos, prototype rocket fuel tanks, and marine vessels until the 1970s. In the 1970s and 1980s, industrial activities on the property were primarily related to auxiliary pump manufacturing for the nuclear power industry and tunnel boring equipment.

In the mid-to-late 1980s, Sulzer acquired the property and began metal fabrication, machining, pump testing, and painting operations, which continue on the Sulzer property to the northwest of the Site.

In March 2005, Dolan purchased the site from Sulzer. The site includes a large warehouse building, several smaller office and former manufacturing buildings, paved parking and loading areas, and a large gravel parking area. Dolan uses the warehouse, the paved parking, and the loading areas where it stores and ships packaged lighting fixtures. Two of the other buildings are currently leased to tenants for office space, and the gravel parking area is leased for truck container parking and storage. From 2010 to 2015, Dolan leased a portion of the site to Quantum Resource Recovery, Inc. (Quantum), which conducted metal recycling operations. Due to the nature of the recycling operations, a Clarus Water Solutions (Clarus) stormwater treatment system was installed in 2013 to treat stormwater from Quantum's operational areas (Basins C/D on Figure 1-2).

# 2.2 Description of Site Stormwater System

The site stormwater system includes seven stormwater drainage basins, designated Basins A through G, as shown on Figure 1-2.

Basin A includes the northwest half of the warehouse building and a portion of the alley between the Sulzer property at 2800 NW Front Avenue and Dolan property. Runoff from this basin is conveyed through a series of roof drains that run below grade along the northwest side of the building. These roof drains are believed to connect to the Sulzer storm system that runs along the northwest site boundary. The roofing material is asphalt and no industrial activities are conducted by Dolan in this area. Sulzer uses the alley for material, equipment, and dumpster storage, as well as for parking.

Basin B includes the warehouse building loading areas and the southeast portion of the paved parking area along NW Front Avenue. Catch basins in this drainage area include CB-32 through CB-37. Catch basins CB-34 through CB-37 drain to a sanitary sewer vault located toward the north end of the warehouse building. The sanitary sewer vault then discharges to the south, connecting with CB-32 and 33, and discharges to the City of Portland sanitary sewer in NW Front Avenue.

Basin C includes the southeast half of the warehouse building, a small, paved area directly northeast of the warehouse building, and the northwest portion of the paved parking area along NW Front Avenue. Runoff from this drainage basin previously discharged to the Willamette River at Outfalls C and C-1. Routes to these outfalls were modified by previous tenants who no longer operate at the site. The prior outlets of catch basins CB-3 and CB-41 were plugged and the catch basins were rerouted to manhole MHSW1. Stormwater is then pumped from MHSW1 to CB-39, where it combines with runoff from Basin D.

Basin D includes the central portion of the site and buildings formerly leased by Quantum. Runoff from drainage Basins C and D is conveyed to flow-control manhole MHSW4. This manhole houses a weir that is designed to divert flows up to the 6-month, 24-hour storm event (up to approximately 400 gallons per minute) to the Clarus stormwater treatment system. Flow in excess of the 6-month, 24-hour storm event bypasses the weir and discharges to the Willamette River at Outfall D (Columbia

West 2013). The stormwater diverted for treatment flows by gravity to an oil/water separator and is then pumped to above ground storage tanks that feed into the Clarus treatment system, discussed further in Section 2.3.3. Treated stormwater is then discharged to the Willamette River at Outfall D.

Basin E is located along the northeast site boundary and includes a small portion of the Sulzer easement; Dolan has a right to use a small storage shed located in the easement. Catch basins CB-14 and CB-15 convey stormwater from this basin to the Willamette River at Outfall E.

Basin F includes an office building and small gravel parking area at the east corner of the site. Catch basins CB-16 and CB-17 convey stormwater from this basin to the Willamette River at City of Portland Outfall 15.

Basin G includes the large gravel parking area and office building on the south portion of the Site. Stormwater in this area infiltrates on the site.

# 2.3 Previous Environmental Activities

Sulzer entered into the DEQ voluntary cleanup program in August 2002, when the site was still under Sulzer ownership, and has completed multiple environmental investigations on the property that included both the current Dolan site and the adjacent Sulzer property at 2800 NW Front Avenue. Geodesign, Inc. (Geodesign) completed an expanded preliminary assessment and several SCEs, which included sampling and analysis of catch basin sediments and stormwater on both the Sulzer-and Dolan-owned properties. A Phase 1 environmental site assessment was also completed for the Dolan site in early 2015. A summary of these environmental investigations as they relate to the Dolan site is provided below.

# 2.3.1 Soil Investigations

According to the Phase I investigation completed by Partner Engineering and Science, Inc. in 2015, an oil pipeline owned by Portland General Electric (PGE) was identified on the eastern side of the site (Partner 2015). The pipeline ran across the site to a substation at the PGE property located at 2635 NE Front Avenue. Soil sampling conducted at the Site in 2004 identified gasoline and diesel fuel and heavy oil in the soil. The gasoline and diesel concentrations exceeded DEQ Level 2 numerical Soil Matrix Cleanup Standards at the time. Between 1993 and 2004, PGE decommissioned several underground storage tanks (USTs) on the PGE property and removed over 5,000 tons of petroleumcontaminated soil surrounding the USTs. Impacted soil was discovered in the south corner of the site and west corner of the Terminal 1 property. However, according to the no further action letter issued to PGE by DEQ in December 2006, DEQ stated these impacts were observed at depths greater than 16 feet below ground surface (bgs) and therefore the potential for exposure was low (DEQ 2006). The no further action letter also determined that residual soil contamination of the PGE and neighboring properties does not pose an unacceptable risk to human health or the environment. The subsurface soil contamination on the Dolan Site was left in place. Since this contaminated soil is located at depths greater than 16 feet bgs, it is not a source of stormwater contamination on the Dolan site.

Sulzer operated numerous USTs, five of which were located on the Dolan site. Four of the USTs on the Dolan site contained heating oil; one contained diesel fuel. In 2010, K&S Environmental, Inc. decommissioned one 8,000-gallon heating oil UST in place and removed a second on the Dolan site as part of a risk-based cleanup. The tanks were located between the southern former office building

and former Quantum building. Soil sampling during decommissioning encountered petroleum-contaminated soil at approximately 13 feet bgs in and around the tank area. Residual soil contamination was determined to be within generic risk-based standards for the applicable exposure pathways at the site. Therefore, no soil was removed as part of this decommissioning.

Sulzer also operated several electrical power substations on both the Sulzer and Dolan properties. Dolan still operates two substations at the site; Substations No. 5 and 6. Substation No. 5 is located at the north end of the building in Basin G; Substation No. 6 is located along the exterior of the warehouse building and extends into both Basins B and D. Dolan decommissioned Substation No. 4, which is located at the north end of the former Quantum building (Basin D). Laboratory analysis of shallow soil samples collected in this area did not detect polychlorinated biphenyls (PCBs) at concentrations above the laboratory method reporting limits.

In addition to the substations, a pad-mounted transformer is located along the eastern exterior of the warehouse building. The transformer is owned and operated by PGE. The transformer is not believed to contain PCBs and is in good condition with no evidence of leaking or damage.

### 2.3.2 Geodesign Catch Basin Sediment SCE

Geodesign conducted catch basin sediment sampling in October 2005 (Geodesign 2007) and November 2008 (Geodesign 2015). In 2005, sediment samples were collected from catch basins within the following basins on the Dolan site:

- Composite of Outfalls C and D
- Composite of Outfall E and COP Outfall 15
- Discrete sample at Outfall D

The 2005 sediment sampling data from the above locations was submitted to DEQ as part of the 2017 Final SCE Work Plan (MFA 2017) and a copy of this table is provided in Appendix A, Table A-1. With the exception of renumbering the tables for use in Appendix A, the tables presented are unchanged from the prior submission.

In 2008, sediment samples were collected from the following locations on the Dolan site:

- Composite of CB-30 and CB-31 (Outfall C)
- Composite of CB-41 and CB-49 (Outfall C-1)
- Composite of CB-39, CB-40, and CB-43 (Outfall D)
- Composite of CB-14 and CB-15 (Outfall E)
- Composite of CB-16 and CB-17 (COP Outfall 15)

The 2008 sediment sampling data from these locations are included in Appendix A, Table A-2.

Based on potential COIs associated with historical industrial activities at the site, sediment samples were analyzed for metals, PCBs, phthalates, PAHs, and total organic carbon (TOC). GeoDesign compared the results to the JSCS criteria SLVs for stormwater sediment (DEQ 2010).

## 2.3.3 Geodesign Stormwater SCE

Geodesign collected stormwater samples in May and December 2006 (Geodesign 2007) and again from 2006 through 2014 (Geodesign 2015). Stormwater samples were collected in 2006 at the following locations and associated outfall basins at the Dolan site:

- Stormwater vault downstream of MHSW-4 (Outfall D)
- Outfall C
- CB-5 (Outfall D)
- CB-15 (Outfall E)
- CB-16 (COP Outfall 15)

Stormwater sampling data from these locations are included in Appendix A, Tables A-3 and A-4.

Stormwater samples were collected from 2006 to 2014 at the following locations and associated basins at the Dolan site:

- Outfall C
- Outfall C-1
- Manhole (Outfall D)
- CB-14 and 15 (Outfall E)
- CB-16 and CB-17 (COP Outfall 15)

Based on potential COIs associated with historical industrial activities at the site and the catch basin sediment data, stormwater samples were analyzed for metals; pH; total suspended solids (TSS); oil and grease; diesel-range and heavy oil-range hydrocarbons; PCBs; phthalates; and PAHs. The results are compared to the JSCS SLVs on Tables A-3 through A-5.

In 2013, Dolan and Quantum, the site tenant at the time, installed the Clarus treatment system. The system is designed to remove solids and metals from stormwater. The Clarus stormwater treatment system was installed to comply with Quantum's National Pollutant Discharge Eliminations System (NPDES) Stormwater Discharge Permit benchmarks. Quantum vacated the property in 2015 and there is no current NPDES permit requirement for the site. The Clarus treatment system remains in operation at the site. Stormwater samples collected by Quantum under their 1200-Z Permit during the 2013-2014 monitoring year are included in Appendix A, Table A-6.

#### 2.3.4 MFA Stormwater SCE

In a February 8, 2016 letter to Dolan, DEQ requested that Dolan complete an SCE for the site. MFA conducted the SCE stormwater sampling in May, October, and November 2017 in accordance with the DEQ-approved work plan (MFA 2017). The 2017 SCE included collection and analysis of stormwater samples to characterize the Outfall D drainage basin (combined Basins C and D), the Outfall E drainage basin (Basin E), and the drainage basin that discharges to the City of Portland storm line leading to Outfall 15 (Basin F; see Figure 1-2).

Pre-treatment stormwater samples (i.e., samples collected prior to treatment in the Clarus system), were collected at MHSW-4 to evaluate combined flows from Basins C and D, samples from catch

basins CB-14 and CB-15 were composited to evaluate Basin E, and CB-16 was sampled to evaluate Basin F. A post-treatment system sample was also collected of the Clarus system effluent and identified with the sample ID CSWTS.

At MHSW-4, the entry point into the manhole vault is greater than 10 feet below ground surface. Samples were collected by opening the manhole and placing sample containers onto a stormwater swing sampling pole. The containers were then lowered into the MHSW-4 and water was collected from the influent pipe before it could enter the standing water present in the lower section of the vault. At catch basins CB-14, CB-15, and CB-16, water sheet flows across the ground surface toward these catch basins. At each location, MFA removed the catch basin grate and filter, and placed the sample containers into the vault, to collect flow as it entered at the lip of the basin.

Stormwater SCE data collected at the site for drainage basins C/D, E, and F was submitted to the DEQ through email correspondence in December 2017. Results were compared to surface water CULs and JSCS SLVs., See Appendix A, Table A-8. Hydrographs, water quality (Table A-7), and analytical laboratory reports from the 2017 events are also presented in Appendix A. Hydrographs for the samples from the Clarus system were not prepared as the discharge from the system is not directly correlated to the beginning of a storm event.

The stormwater data for each drainage basin included detections of total and dissolved metals, several PAHs, and BEHP at concentrations above either the ROD CULs or the JSCS SLVs. Concentrations above the knee of the curve on the rank-order charts (knee curve) were limited to one detection of total arsenic and total copper from the Basin C/D (from pre-treatment samples), total and dissolved cadmium and zinc from the Basin E, and a single detection of total suspended solids (TSS) from the Outfall F drainage basin. Based on the 2017 results, it was concluded that source control measures may be warranted for Basins E and F, as the exceedances within Basin C/D were addressed by the Clarus system.

# 3 Contaminants of Interest

Initial COIs were evaluated by GeoDesign and per DEQ request, stormwater was evaluated to JSCS screening levels during Sultzer's ownership of the site as early as 2006 (GeoDesign 2007). Based on the site history, a list of site COIs was developed by GeoDesign and discussed in a Supplemental SCE indicated that samples would be analyzed for the following:

- Total and TCLP metals
- pH
- TSS
- Diesel-and oil-range petroleum hydrocarbons.
- Oil and grease
- PCBs
- Phthalates

#### PAHs

According to a 2006 Supplemental SCE report, GeoDesign indicated in an August 2005 letter to DEQ that particulates on paved surfaces and catch basin sediments are the only potential sources that could directly impact the Willamette River. In the conclusion of the supplemental SCE, GeoDesign proposed reducing future sampling to eliminate TLCP metals and reduce total metals (to aluminum, cadmium, copper, lead, manganese, mercury, silver, and zinc) for stormwater samples. Catch basin sediment COIs were total organic carbon, PCBs, PAHs, total metals (aluminum, cadmium, copper, lead, manganese, mercury, silver, and zinc), and grain size analysis. GeoDesign compared these results to the JSCS SLVs for stormwater sediment (see Appendix A, Tables A-1 and A-2). Results of historical sampling indicated that remaining COIs were consistently below JSCS SLVs and other applicable screening.

GeoDesign prepared a Source Control Evaluation Report for the Site in 2015 (GeoDesign 2015). The GeoDesign SCE results were compared to the JSCS SLVs in Appendix A, Tables A-3 and A-4. GeoDesign indicated that PAHs, PCBs, and several metals remained within typical ranges for industrial sites in the Portland Habor area.

In 2017, based on the historical stormwater dataset shown on Table A-5, MFA identified site COIs for Basins C/D, E, and F. MFA assessed historical sampling data and eliminated COIs that had been continuously reported below JSCS SLVs and ROD CULs. COIs that had historically been reported above the SLVs and CULs in these basins were determined to be total metals (aluminum, arsenic, cadmium, copper, lead, manganese, and zinc), PCBs, and PAHs. Phthalates were also determined to be a COI for Basins C/D and E. Remaining Portland Harbor COIs were eliminated from future sampling scopes.

Based upon stormwater sampling data collected in 2017, the site COIs were again revised to eliminate analytes consistently below JSCS and ROD screening levels. MFA proposed to reduce the COIs for future sampling events to the following:

- Total arsenic and copper (in Basin C/D)
- Total cadmium and zinc (in Basins E and F)
- PAHs
- BEHP
- TSS

DEO approved the reduction of COIs via email in June 2021.

Dolan does not use, store, or manufacture products containing Portland Harbor COIs. The COIs are likely legacy contaminants associated with former industrial use of the site and were characterized in prior SCEs completed during the Sulzer and recent Dolan ownership. Dolan's use of the Site is commercial in nature, for the warehousing of finished products, and no industrial uses are planned. COIs present at concentrations in soil, catch basin solids, and stormwater are typical for former industrial sites.

# 4 Source Control Evaluation Activities

Based upon discussions with DEQ, the 2017 Final Stormwater SCE Work Plan (MFA 2017), the results of the SCE activities described in Section 2.3.4, and the Supplemental Stormwater SCE Work Plan (MFA 2021a), MFA conducted the following activities.

### 4.1 March 2021 SCE Activities

In March 2021, MFA conducted sampling of stormwater solids in Basins E and Basin F in accordance with the Supplemental Stormwater Source Control Evaluation Work Plan (MFA 2021a). Stormwater solids were collected and composited from CB-14 and CB-15, and from CB-16 and CB-17, in Basin E and Basin F, respectively. Catch basins and stormwater lines were previously cleaned out in 2013. Thus, the samples collected represent solids deposited between 2013 and March 2021.

In addition, MFA collected two 10-point composite surface soil samples: one each from gravel-covered areas in Basin E and Basin F. MFA removed gravel from the samples to focus the sample analysis on fine-grained material that could be entrained in stormwater. The objective of this sample collection was to confirm whether the fine soil fraction of the gravel is the source of the COIs.

Field sampling data sheets for the stormwater solids and composite surface soil samples are included in Appendix B. Soil sample locations are shown on Figure 4-1.

# 4.2 Storm Conveyance System Maintenance

After the March 2021 sampling for stormwater solids (MFA 2021), Dolan conducted maintenance of the stormwater system. Stormwater solids were removed from the storm lines using a vacuum truck. Stormwater lines were cleaned in Basins E and F, as well as the pipe openings leading from the catch basins towards the outfall. The recovered material was captured and contained using a vactor truck. After the cleanout, the subcontractor replaced each of the catch basin filters with new fabric filters. Continued maintenance included additional stormwater basin filter replacement, jet cleaning stormwater lines within Basins C and D, additional vactor removal of sediments from storm lines, vault pump maintenance, and increasing the frequency of pavement sweeping to monthly. MFA understands the pump is part of the system to convey water to the Clarus system. These activities were implemented to reduce entrainment of solids into the stormwater and reduce COI concentrations. Filter replacements and cleaning activities were completed in January and February 2022 and pump maintenance was completed later in 2022. Ongoing monthly pavement sweeping and catch basin filter maintenance has continued since early-2022.

# 4.3 Stormwater Sample Collection

Based on the DEQ request for an additional three rounds of stormwater sampling, samples were collected during qualifying storm events in April and October 2022 and March 2023. Hydrographs of each storm event are presented in charts in Appendix C and water quality data parameters collected during each event are presented in Table 4-1.

Sampling was conducted at four basins at the site. Basin C and Basin D have a combined flow that is sampled at MHSW-4, prior to the Clarus stormwater treatment system. Basin E is collected as a composite sample from the flow into catch basins CB-14 and CB-15 and Basin F is sampled at CB-16. CB-16 was selected because surface flow first enter the stormwater system at this basin and samples were most likely to be representative of first flush. The stormwater systems and sample collection locations are presented on Figure 1-2.

MFA proposed a deviation from the stormwater sampling plan described in the work plan, to eliminate the post-Clarus samples from the additional sample events. This deviation was based on the conclusion that pre-Clarus sample results would be representative of future stormwater concentrations if the Clarus system was decommissioned. Post-Clarus samples would only be representative of continued system operation, which is not currently proposed. DEQ approved sampling the pre-Clarus location in September 2021.

## 4.3.1 April 2022

On April 29, 2022, MFA completed stormwater sample collection in accordance with the 2017 work plan and subsequent DEQ communications approving a reduction of COIs and sampling Basin C/D prior to treatment. Upon arrival, MFA confirmed that discharge had not begun at any of the three stormwater basins planned for sample collection. MFA conducted observation of the discharge monitoring points and each stormwater sample was collected within approximately 20 minutes of the beginning of discharge flow. During monitoring a sensor probe in the multiparameter meter failed which prevented field collection of oxidation-reduction potential data. All other parameters were recorded in accordance with industry standard operating procedures for collection of stormwater samples. Samples were collected into laboratory provided sample containers and immediately placed on ice.

During preparation of a hydrograph for the sampling event, it was confirmed that the storm event met DEQ criteria:

- Rainfall preceding the sampling event were less than 0.1-inches over the prior 24 hours.
- Minimum predicted rainfall exceeded 0.2-inches for the event.
- The storm was forecast to exceed 3 hour duration

In addition, all the samples were considered "first flush", which the JSCS guidance defines as the sampling within the first 30 minutes of stormwater discharge (DEQ 2010).

#### 4.3.2 October 2022

A second sampling event was completed on October 21, 2022. The sampling event was completed consistent with the prior event and the work plan. Light rain was noted prior to MFA arrival on-site; however, discharge monitoring locations were checked on arrival and no discharge was observed. Discharge points were monitored continually during the event to allow for collection as soon as possible after continuous discharge was recorded. Samples were collected within approximately 20 minutes of a continuous discharge, with the exception of Basin E, where flow rate was particularly low. MFA staff monitored the catch basins and collected the sample as soon as discharge flow rate was sufficient to allow for collection.

During preparation of a hydrograph for the sampling event, it was confirmed that the storm event met DEQ criteria (described in Section 4.3.1) and all samples except Basin E were considered "first flush".

#### 4.3.3 March 2023

A third sampling event was conducted on March 31, 2023. Light rain was noted in the vicinity of the site prior to MFA arrival; however, MFA was present at the facility approximately 2 hour prior to the first rain measured by the nearby City of Portland rain gauge. MFA monitored the sampling locations during periods of light rain between arrival and first noted discharges. Samples were collected from the monitoring points for Basins C/D and F within approximately 20 minutes of continuous discharge at the sampling location. One of the two sample collection locations within Basin E was inaccessible for a period of time preventing collection of the sample in the first 30 minutes of discharge.

MFA observed Basin G during the event. Stormwater runoff was observed flowing to the southeast as depicted on Figure 1-2, but the runoff infiltrated and did not leave the site.

During preparation of a hydrograph for the sampling event, it was confirmed that the storm event met DEQ criteria (described in Section 4.3.1) and all samples were considered "first flush".

# 5 Chemical Analysis and Results

This section presents the results for the March 2021 stormwater solids and composite surface soil sampling, and the April and October 2022 and March 2023 stormwater sampling describe in Section 4.

Samples from each of the events were submitted to Apex Laboratories, LLC in Tigard, Oregon. Copies of the analytical laboratory reports are presented in Appendix D and data validation memorandums presenting quality assurance/quality control review of the analytical data are included in Appendix E. The results of the data quality review indicate that the data are of acceptable quality and are suitable for their intended purpose.

# 5.1 Analysis Performed

# **5.1.1** Stormwater Solids and Surface Soils Samples

Stormwater solids and surface soil samples were analyzed for the following COIs:

- Total cadmium and total zinc by U.S. Environmental Protection Agency (EPA) Method 6020B
- PAHs by EPA Method 8270E SIM
- BEHP by EPA Method 8270E

## 5.1.2 Stormwater Samples

Stormwater samples were analyzed for the following COIs:

#### Basin C/D

- Total arsenic and total copper by EPA Method 200.8
- PAHs by EPA Method 8270E SIM
- BEHP by EPA Method 8270E
- TSS by Standard Method 2540D.

#### Basin E

- Total cadmium and total zinc by EPA Method 200.8
- PAHs by EPA Method 8270E SIM
- BEHP by EPA Method 8270E
- TSS by Standard Method 2540D.

#### Basin F

- Total cadmium and total zinc by EPA Method 200.8
- PAHs by EPA Method 8270E SIM
- BEHP by EPA Method 8270E
- TSS by Standard Method 2540D.

# 5.2 Laboratory Analytical Results

Analytical results are presented in Tables 5-1 and 5-2 and summarized below.

# **5.2.1** Stormwater Solids and Surface Soil Samples

#### **5.2.1.1** Composite Surface Soil Samples

Cadmium, zinc, BEHP and PAHs were detected above the laboratory reporting limits in the composite surface soil sample. The results are summarized as follows:

- Cadmium: At Basin E, cadmium was detected at a concentration of 1.3 milligrams per kilogram (mg/kg) and an estimated concentration of 0.149 mg/kg in Basin F Samples.
- Zinc: At Basin E, zinc was detected at 270 mg/kg and 86.7 mg/kg in Basin F.
- BEHP: In Basin E, BEHP was detected at an estimated concentration of 162 micrograms per kilogram (ug/kg) and the Basin F sample was not detected above laboratory reporting limits.
- Twelve individual PAH analytes were detected in Basin E and two were detected in Basin F. All concentrations were low. Individual detections can be reviewed on Table 5-1, and are discussed further in Section 5.3.1.1.

#### 5.2.1.2 Catch Basin Solid Samples

• Cadmium: At Basin E, cadmium was detected in the CB-14/CB-15 sample at a concentration of 2.37 mg/kg and at 0.295 mg/kg in Basin F.

- Zinc: At Basin E, zinc was detected at a concentration of 626 mg/kg and at a concentration of 145 mg/kg in Basin F.
- BEHP: Basin E had a concentration of 5,260 ug/kg while Basin F was had an estimated detection of 454 ug/kg.
- Nine individual PAH analytes were detected in Basin E and two were detected in Basin F. Individual detections can be reviewed on Table 5-1, and are discussed further in Section 5.3.1.2.

## 5.2.2 Stormwater Samples

#### 5.2.2.1 April 2022 Stormwater Sample Event

Arsenic, cadmium, copper, zinc, BEHP, and TSS were detected in each sample that was analyzed for these COIs during the April 2022 event. Individual PAHs were detected in all three basins.

Specific results are summarized as follows:

- Arsenic: At Basin C/D, arsenic was detected at a concentration of 0.864 micrograms per liter (ug/L) in the primary samples and 0.920 ug/L in the duplicate sample.
- Copper: At Basin C/D the concentration of copper detected was 27.8 ug/L in the primary and 30.7 ug/L in the duplicate sample.
- Cadmium: At Basin E, cadmium was detected at a concentration of 0.608 ug/L and 0.148 ug/L in Basin F.
- Zinc: At Basin E zinc was detected at 463 ug/L and 101 ug/L in Basin F.
- BEHP: BEHP was not detected in either the primary or duplicate sample from Basin C/D or the sample collected from Basin F. An estimated concentration was detected in the Basin E sample at 1.1 ug/L.
- Estimated concentrations of individual PAHs were detected in several samples.
   Benzo(a)anthracene (0.0409 ug/L in Basin C/D duplicate), benzo(a)pyrene (0.0634 ug/L in Basin C/D duplicate and 0.163 ug/L in Basin E), and phenanthrene (0.0408 ug/L) in Basin E.
- TSS: Detections ranged from 14.0 to 90.9 milligrams per liter (mg/L).

#### 5.2.2.2 October 2022 Sample Event

Arsenic, cadmium, copper, zinc, and TSS were detected in each sample that was analyzed for these COIs during the October 2022 event. BEHP was detected in Basin E. Individual PAHs were detected in all three basins.

Specific results are summarized as follows:

- Arsenic: At Basin C/D, arsenic was detected at a concentration of 1.39 ug/L in the primary and 1.49 ug/L in the duplicate sample.
- Copper: At Basin C/D, copper was detected at a concentration of 44.7 ug/L in the primary and 45.3 ug/L in the duplicate sample.
- Cadmium: At Basin E, cadmium was detected at a concentration of 1.11 ug/L and in the Basin F at 0.173 ug/L.
- Zinc: At Basin E, zinc was detected at a concentration of 666 ug/L and 105 ug/L in Basin F.

- BEHP: BEHP was detected at an estimated concentration of 3.1 ug/L in Basin E.
- Estimated concentrations of individual PAHs were detected in the three basins.
   Benzo(a)anthracene (0.0959 ug/L) was detected in Basin C/D, benzo(a)pyrene (0.163 ug/L) and phenanthrene (0.188 ug/L) were detected in Basin E. Nine individual PAHs were detected in Basin F (see Table 5-2 for the complete list).
- TSS: Detections ranged from 10.0 to 95.0 mg/L.

#### 5.2.2.3 March 2023 Sample Event

Arsenic, cadmium, copper, and zinc were detected in each sample that was analyzed for these COIs during the March 2023 event. BEHP was not detected and individual PAHs were only detected within the Basin F sample. TSS was detected in Basins E and F.

Specific results are summarized as follows:

- Arsenic: At Basin C/D, arsenic was detected at a concentration of 0.297 ug/L in the primary and 0.300 ug/L in the duplicate sample.
- Copper: At Basin C/D, copper was detected at 11.1 ug/L in the primary and 11.3 ug/L in the duplicate sample.
- Cadmium: At Basin E, cadmium was detected at a concentration of 0.498 ug/L and an estimated concentration of 0.116 ug/L in Basin F.
- Zinc: Zinc was detected in Basin E at a concentration of 751 ug/L and 82.1 ug/L in Basin F.
- PAHs: Acenaphthene (0.0113 ug/L, estimated) and phenanthrene (0.0137 ug/L, estimated) were detected in Basin F. Individual PAHs were not detected in Basin C/D or Basin E.
- BEHP was not detected during the March 2023 event.
- TSS was detected at Basin F during the March event at a concentration of 236 mg/L. TSS was not detected in Basin C/D or Basin E.

## 5.3 Data Evaluation

# 5.3.1 Stormwater Solids and Surface Soil Samples

Stormwater solids and surface soil sample analytical results are presented in Table 5-1. The soil and stormwater solids results were compared to the riverbank soil/sediment CULs on Table 17 (Errata #2) of the Portland Harbor ROD and the JSCS soil/stormwater sediment SLVs.

Cadmium, zinc, and BEHP were detected in stormwater solids and/or surface soil samples at concentrations exceeding the JSCS SLVs and/or ROD CULs, but the concentrations were in the lower portion of the rank-order curve chart, see Appendix F. Individual PAHs and total PAHs were detected at concentrations significantly less than the JSCS SLVs, ROD CULs, and knee value of the rank-order curve. As detailed in Appendix E of the DEQ Guidance for Evaluating the Stormwater Pathway at Upland Sites (DEQ 2010), COI concentrations that fall within the lower portion of the rank-order curve are typical of industrial Portland Harbor upland sites and not likely to unusually impact stormwater.

#### **5.3.1.1** Composite Surface Soil Samples

Concentrations of cadmium, zinc, BEHP and PAHs were detected above the laboratory reporting limits in each composite surface soil sample. The results are summarized as follows:

- Cadmium: The only exceedance for cadmium was in the Basin E sample. At 1.3 mg/kg, the
  detection exceeds the JSCS SLV and CUL. This concentration is in the lower portion of the rankorder curve, as the knee value of the curve appears to be approximately 3 mg/kg.
- Zinc: The concentrations at Basin E of 270 mg/kg and Basin F of 86.7 mg/kg are below the screening levels.
- BEHP: The BEHP concentration at Basin E of 162 ug/kg, which exceeds the CUL. BEHP was not detected at Basin F. The inflection point of the rank-order curve appears to be approximately 27,000 ug/kg. The concentration at Basin E is below the knee of the rank-order chart.
- Individual and total PAH concentrations did not exceed any screening levels.

#### 5.3.1.2 Catch Basin Solid Samples

- Cadmium: At Basin E, the cadmium detection (2.37 mg/kg) exceeds the JSCS SLV and CUL. The
  Basin F sample detection did not exceed any screening levels for cadmium. This detection of
  2.37 mg/kg in the lower portion of the rank-order curve, as the inflection point or knee of the
  curve appears to be approximately 3 mg/kg.
- Zinc: At Basin E, the zinc detection (626 mg/kg) exceeds the JSCS SLV and CUL. The Basin F sample detection did not exceed any screening levels for zinc. The Basin E concentration is in the lower portion of the rank-order curve, as the knee of the curve appears to be approximately 1,300 mg/kg.
- BEHP: The BEHP concentrations of 5,260 ug/kg in the Basin E and 454 ug/kg in the Basin F
  exceed the JSCS SLV and CUL. These concentrations are in the lower portion of the rank-order
  curve, as the knee of the curve appears to be approximately 27,000 mg/kg.
- Detected individual and total PAH concentrations in the Basin E did not exceed any screening levels. There were no detections in the Basin F sample.

#### 5.3.1.3 Stormwater Solids and Surface Soil Sample Evaluation Conclusions

Evaluation of the data presented on Table 5-1 and discussed above indicates the following:

- COI concentrations in the catch basin solids samples were more elevated compared to the
  associated composite soil samples in both basins. This was expected, as it is likely the COIs are
  associated with the fine soil fraction in the gravel that is more susceptible to erosion and
  conveyance to and concentration in the catch basins.
- COI concentrations at Basin F are lower than Basin E.
- PAHs are not an upland COI.
- Although there are exceedances of JSCS SLVs and CULs for cadmium, zinc, and BEHP, concentrations fell within the lower/flatter portion of the rank-order charts, well below the knee of the rank-order curve chart, which has been described as typical of industrial Portland Harbor upland sites and not likely to unusually impact stormwater (DEQ 2010).

### 5.3.2 Stormwater Samples

Stormwater analytical results are presented in Table 5-2. The stormwater results were compared to the surface water CULs from Table 17 (Errata #2) of the Portland Harbor ROD, or the JSCS SLVs if no CUL is available. The stormwater sample results for the applicable COIs are displayed on the DEQ rank-order charts in Appendix F.

#### 5.3.2.1 April 2022 Stormwater Sample Event

Arsenic, copper, zinc, and BEHP were detected at concentrations exceeding the ROD CULs and cadmium exceeded the JSCS SLV, but the concentrations were in the lower portion of the rank-order curve chart. Individual PAHs were detected, including two with concentrations exceeding the ROD CULs. The total PAH concentrations were significantly less than the knee of the rank-order curve value.

Specific results are summarized as follows:

- Arsenic: At Basin C/D, the arsenic concentration of 0.920 micrograms per liter (ug/L) exceeds the JSCS SLV and ROD CUL, but is below the knee of the rank-order curve at approximately 3 ug/L.
- Copper: At Basin C/D, the copper concentration of 30.7 ug/L exceeds the JSCS SLV and ROD CUL, but is below the knee of the rank-order curve at approximately 75 ug/L.
- Cadmium: The concentrations at Basin E of 0.608 ug/L and Basin F of 0.148 ug/L exceed the JSCS SLV, but are below the knee of the rank-order curve at approximately 1.1 ug/L.
- Zinc: The concentrations at Basin E of 463 ug/L and Basin F of 101 ug/L exceed the JSCS SLV and ROD CUL, but are below the approximate knee of the rank-order curve value of 750 ug/L.
- BEHP: The estimated concentration at Basin E of 1.1 ug/L exceeds the ROD CUL, but is below
  the approximate knee of the rank-order curve value of 5 ug/L. BEHP was not detected in the
  Basins C/D or F samples.
- The estimated concentrations of two PAHs at Basins C/D and one PAH at Basin F exceed the ROD CULs, however, total PAH concentrations at all basins are well below the approximate knee of the rank-order curve value of 2 ug/L.
- TSS concentrations are below the approximate knee of the rank-order curve value of 100 ug/L.

#### 5.3.2.2 October 2022 Sample Event

Arsenic, copper, cadmium, zinc, and BEHP were detected at concentrations exceeding the JSCS SLVs and/or ROD CULs, but well below the knee of the rank-order curve, with the exception of cadmium within Basin E. Individual PAHs were detected, including six with concentrations exceeding the ROD CULs. The total PAH concentrations are less than the knee of the rank-order curve value.

Specific results are summarized as follows:

- Arsenic: At Basin C/D, the arsenic concentration of 1.49 ug/L exceeds the JSCS SLV and CUL, but is below the knee of the rank-order curve value of approximately 3 ug/L.
- Copper: At Basin C/D, the copper concentration of 45.3 ug/L exceeds the JSCS SLV and CUL, but is below the knee of the rank-order curve value of approximately 75 ug/L.

- Cadmium: At Basin E, the cadmium concentration of 1.11 ug/L exceeds the JSCS SLV, and is the same as the inflection point of the rank-order chart of approximately 1.1 ug/L (see Appendix F).
   The cadmium concentration of 0.173 ug/L at Basin F also exceeds the JSCS SLVs, but is well below the knee of the rank-order curve value.
- Zinc: The concentrations at Basin E of 666 ug/L and Basin F of 105 ug/L exceed the JSCS SLV and CUL, but are below the approximate knee of the rank-order curve value of 750 ug/L.
- BEHP: The estimated concentration at Basin E of 3.1 ug/L exceeds the CUL, but is below the approximate knee of the rank-order curve value of 5 ug/L. BEHP was not detected in the Basins C/D or F samples.
- The estimated concentrations of one PAH at Basin C/D, one PAH at Basin E, and six PAHs at Basin F exceeded the CULs, however, total PAH concentrations at all basins are well below the knee of the rank-order curve values.
- TSS concentrations are below the knee of the rank-order curve value of 100 ug/L.

#### 5.3.2.3 March 2023 Sample Event

Arsenic, copper, cadmium, and zinc were detected at concentrations exceeding the JSCS SLVs and/or ROD CULs, but the concentrations were in the lower portion of the rank-order curve charts. Only two individual PAHs were detected at Basin F at concentrations less than the JSCS SLVs; the total PAH concentration at Basin F are significantly below the knee of the rank-order curve value.

Specific results are summarized as follows:

- Arsenic: At Basin C/D, the arsenic concentration of 0.300 ug/L exceeds the JSCS SLV and ROD CUL, but is below the knee of the rank-order curve value of approximately 3 ug/L.
- Copper: At Basin C/D, the copper concentration of 11.3 ug/L exceeds the JSCS SLV and CUL, but is below the knee of the rank-order curve value of approximately 75 ug/L.
- Cadmium: The concentrations at Basin E of 0.498 ug/L and Basin F of 0.116 ug/L exceed the JSCS SLV, but are below the knee of the rank-order curve value of approximately 1.1 ug/L.
- Zinc: The concentrations at Basin E of 751 ug/L and Basin F of 82.1 ug/L exceed the JSCS SLV and CUL, but are below the approximate knee of the rank-order curve value of 750 ug/L.
- PAHs were not detected at Basins C/D and E. Acenaphthene and phenanthrene were detected at Basin F at concentrations of 0.0113 ug/L and 0.0137 ug/L, respectively, and less than the ROD CULs. The total PAH concentration at Basin F is well below the knee of the rank-order curve value.
- BEHP was not detected during the March 2023 event.
- TSS was not detected at Basin C/D. At Basin E, the TSS concentration of 5 mg/L is much less than the knee of the rank-order curve value of 100 ug/L. At Basin F, the TSS concentration of 236 mg/L exceeds the knee of the rank-order curve. Although this Basin F TSS concentration is greater than the April and October 2022 concentrations, there is no corresponding increase in the concentrations of other COIs during the March 2023 event. In fact, cadmium, zinc, and individual PAHs were detected at their lowest concentrations at Basin F during the March 2023 event, indicating that TSS alone is not a source control concern.

#### 5.3.2.4 Stormwater Sample Evaluation Conclusions

Evaluation of the data presented on Table 5-2 and discussed above indicates the following:

- Average concentrations of arsenic and copper at Basin C/D and cadmium and zinc at Basin E are
  less than average concentrations during the 2017 sampling events. Average concentrations of
  cadmium and zinc at Basin F are slightly elevated compared to the single 2017 sample event.
- Each of the individual PAHs detected during the 2022/2023 stormwater events were estimated values. These concentrations were just above the detection limits for the low-level method utilized for the analysis. All total PAH concentrations were below the knee of the rank-order curve.
- Although there are exceedances of the JSCS SLVs and CULs for arsenic, cadmium, copper, zinc, individual PAHs, and BEHP, the concentrations are below the knee value of the rank-order curves, with the exception of the cadmium concentration at Basin E during the October 2022 event, which was at the inflection point. The subsequent concentration during the March 2023 event was well below the knee value, indicating that the increased source control measures are an effective strategy for source control.
- All Basin C/D samples during the 2022/2023 events were collected from a location prior to treatment by the Clarus system. Concentrations of arsenic, copper, total PAHs, BEHP, and TSS are all well below the knee of the rank-order curve chart values, indicating operation of the Clarus system to treat Basin C/D stormwater is no longer necessary.

# **6** Source Control Measures

# 6.1 Identification of Source Control Measures

In 2017, based upon the initial stormwater sampling results, MFA concluded that additional SCMs may be needed for Basins E and F at the site. Based on the results of the stormwater sediment and surface soil sampling from 2021, MFA concluded that although cadmium, zinc, and BEHP concentrations in site soil and catch basin solids are typical of industrial Portland Harbor upland sites, stormwater quality at the site would benefit from additional SMCs such as more frequent pavement sweeping, clean-out of stormwater solids in catch basins, and more frequent monitoring and routine replacement of catch basin filters. These additional SCM were implemented as described in Section 4.2, in 2022 and the 2022/2023 stormwater sampling events confirm these SCMs are effective.

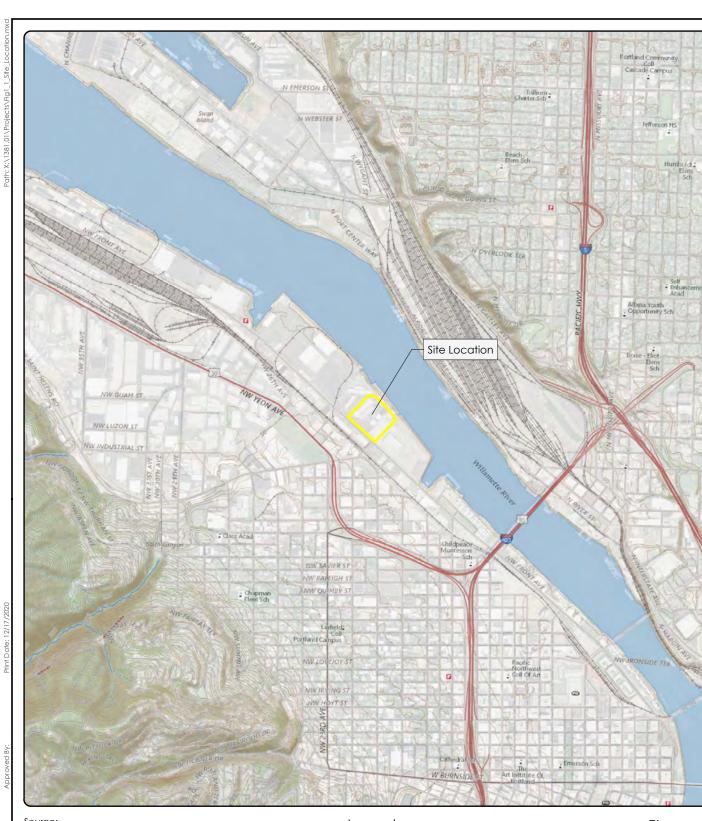
# 7 Conclusions

Historical data (presented in Appendix Tables A-1 through A-8) addressed all the prior COIs
relevant to the site based on site history and the reduction of COIs to the current list is detailed in
Section 3.0.

- Based on the results of the 2017 SCE, MFA conducted sampling of stormwater solids and composite surface soil samples (one each from Basin E and Basin F), performed stormwater conveyance system maintenance, and three rounds of stormwater sampling.
- Data results showed that concentrations of COIs in soil and stormwater solids fell within the
  lower/flatter portion of the rank-order charts (below the knee value), indicating concentrations
  are typical for industrial sites. The results indicated source control could be achieved through
  continued site maintenance, which was improved in 2022 to including more frequent clean-out
  of stormwater solids in catch basins, monthly sweeping in paved portions of the site, and the
  routine monitoring and replacement of catch basin filters.
- To ensure source control was achieved, MFA conducted three stormwater sampling events within drainage basins C/D, E, and F in 2022 and 2023.
- The results of the stormwater sampling showed that COI concentrations that were above the JSCS SLVs or CULs, remained within the lower/flatter portion of the rank-order charts. The exception is one cadmium detection for Basin E, which was at the inflection point of the rank-order curve and one elevated detection of TSS in Basin F. Detections within the lower portion of the rank-order curve charts are typical for industrial sites.
- The results indicate that source control is being achieved through continued improved site maintenance.
- All sampling conducted within Basins C and D during the 2022/2023 events, were conducted
  prior to Clarus system treatment, with DEQ approval. This was done to observe that influent
  concentrations were sufficiently low to allow for the removal of the Clarus system. Based on the
  observed concentrations, the Clarus stormwater treatment system does not appear to be
  required to meet SCE goals and Dolan requests DEQ concurrence to discontinue system use at
  the site.
- COI detections are the result of legacy industrial activities and are not associated with Dolan's commercial uses of the Site.

# References

- Columbia West. 2013. Stormwater Pollution Control Plan for Quantum recourse Recovery, Inc., Portland, Oregon. Columbia West Engineering, Inc. Vancouver, Washington. May 15.
- DEQ. 2006. Letter (re: no further action determination) to D. Norton, Portland General Electric, Portland, Oregon, from J. Anderson, Oregon Department of Environmental Quality, Portland, Oregon. December 6.
- DEQ. 2010. Guidance for evaluating the stormwater pathway at upland sites. Oregon Department of Environmental Quality Cleanup Program, Portland, Oregon. October.
- EPA. 2020. Errata #2 for Portland Harbor Superfund Site Record of Decision ROD Table 17. January 14.
- DEQ and EPA. 2005. Portland Harbor joint source control strategy. Prepared by the Oregon Department of Environmental Quality and U.S. Environmental Protection Agency. December
- GeoDesign. 2007. Supplemental Source Control Evaluation for Sulzer Pumps Facility, 2800 NW Front Avenue, Portland, Oregon. Submitted to Oregon Department of Environmental Quality. GeoDesign, Inc., Portland, Oregon. June 29.
- GeoDesign. 2015. Draft Source Control Evaluation for Sulzer Pumps Facility, 2800 NW Front Avenue, Portland, Oregon. Submitted to Oregon Department of Environmental Quality. GeoDesign, Inc., Portland, Oregon. May 7.
- MFA. 2017. Final Stormwater Source Control Evaluation Work Plan, Dolan Property. Maul Foster & Alongi, Inc., Portland, Oregon. March 29.
- MFA. 2021a. Supplemental Stormwater Source Control Evaluation Work Plan, Dolan Property. Maul Foster & Alongi, Inc., Portland, Oregon. January 8.
- MFA. 2021b. Source Control Evaluation Report, Dolan Property. Maul Foster & Alongi, Inc., Portland, Oregon. June 14.
- Partner. 2015. Phase I Environmental Site Assessment. Dolan Sulzer Pump Site, 2700 NW Front Avenue, Portland, Oregon. Prepared by Partner Engineering and Science, Inc., February 6.


# **Limitations**

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

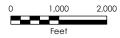
Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

# **Figures**





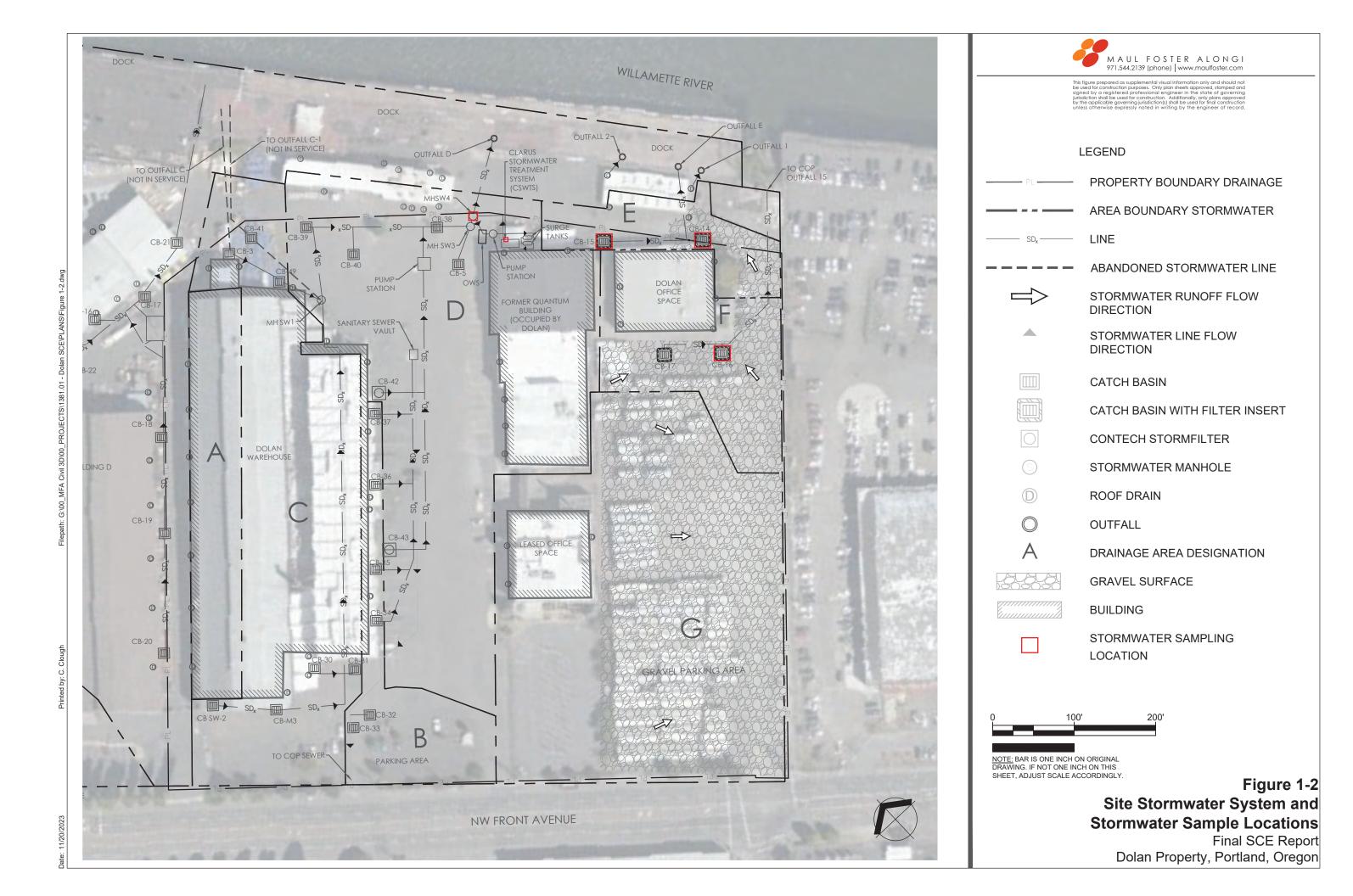
Source:

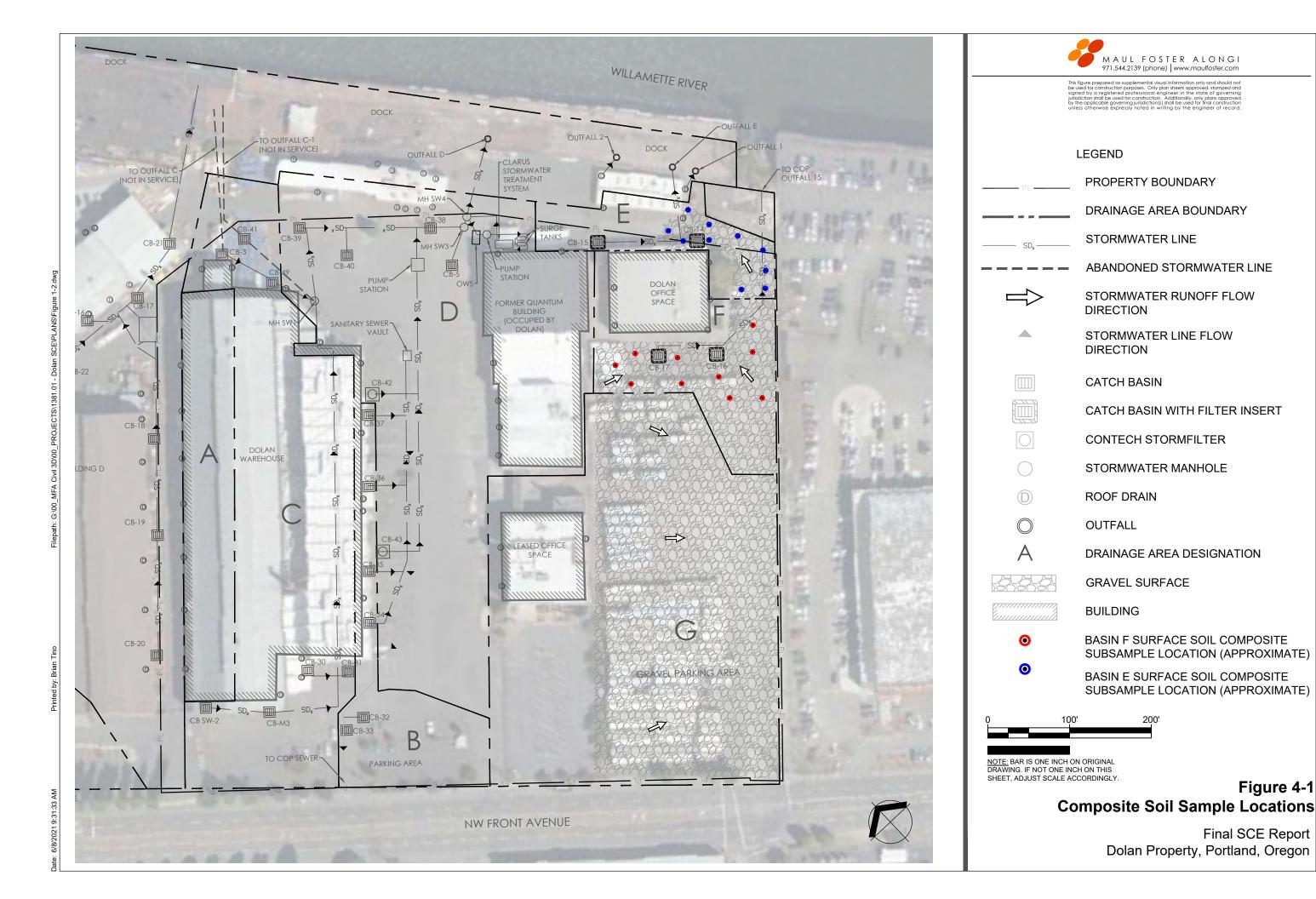

U.S. Geological Survey (2020) 7.5-minute topographic quadrangle: Portland. Township 1 North, Range 1 East, Section 28.
Property boundary obtained from Metro Region Land Information System.

Legend

Site Boundary

## Figure 1-1 Site Location


Final SCE Report Dolan Property 2700 NW Front Avenue Portland, Oregon






MAULFOSTER ALONGI p. 971 544 2139 | www.maulfoster.com

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.





# **Tables**



# Table 4-1 2022/2023 Water Quality Parameters Source Control Evaluation



SC

CL

|                         |      |                     | , <b>-</b>   |      |       |           |  |
|-------------------------|------|---------------------|--------------|------|-------|-----------|--|
| Location                | На   | Temperature<br>(°C) | · 1 DO (ma/) |      | ORP   | Turbidity |  |
| April 29, 2022 Event    |      |                     |              |      |       |           |  |
| Outfall C/D (MHSW-4)    | 7.50 | 13.4                | 1594         | 6.43 | a     | SC        |  |
| Outfall E (CB-14/CB-15) | 7.10 | 13.8                | 77.2         | 6.66 | a     | SC        |  |
| Outfall F (CB-16)       | 7.40 | 12.7                | 89.4         | 7.20 | a     | CL        |  |
| October 21, 2022 Event  |      |                     |              |      |       |           |  |
| Outfall C/D (MHSW-4)    | 7.07 | 14.8                | 917          | 6.14 | 194.7 | SC        |  |
| Outfall E (CB-14/CB-15) | 6.17 | 13.7                | 164.8        | 6.03 | 196.0 | SC        |  |
| Outfall F (CB-16)       | 6.29 | 13.1                | 60.6         | 8.61 | 192.9 | SC        |  |
| March 31, 2023 Event    |      |                     |              |      |       |           |  |
| Outfall C/D (MHSW-4)    | 7.07 | 13.5                | 20.0         | 7.20 | 233.4 | SC        |  |

13.0

26.0

6.78

8.11

290.1

228.9

13.8

13.0

Dolan and Company, LLC Portland, Oregon

#### Notes

-- = not analyzed.

Outfall F (CB-16)

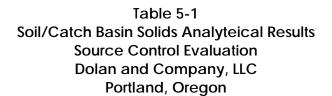
uS/cm = microSeimens per centimeter.

mg/L = milligrams per liter.

Outfall E (CB-14/CB-15)

NV = no value.

SC = slightly cloudy.


CL = cloudy.

6.54

7.00

<sup>°</sup>C = degrees Celsius.

 $<sup>^{\</sup>circ}$  = Due to equipment failure during the field event, the water quality parameter was not recorded.





| Location:                          |                                                     |                               | BAS                      | IN-E                      | BASIN-F                  |                           |  |
|------------------------------------|-----------------------------------------------------|-------------------------------|--------------------------|---------------------------|--------------------------|---------------------------|--|
| Sample ID:                         | DEQ Portland<br>Harbor JSCS<br>Soil, Initial Upland | EPA ROD<br>CUL, Sediment /    | BASINE-S-<br>20200324-CS | CB14/CB15-SS-<br>20200324 | BASINF-S-<br>20200324-CS | CB16/CB17-SS-<br>20200324 |  |
| Sample Type:                       | ·                                                   | Riverbank Soil <sup>(2)</sup> | Composite Soil           | CB Solids                 | Composite Soil           | CB Solids                 |  |
| Collection Date:                   | 1                                                   |                               | 3/24/2021                | 3/24/2021                 | 3/24/2021                | 3/24/2021                 |  |
| Total Metals (mg/kg)               |                                                     |                               |                          |                           | •                        | •                         |  |
| Cadmium                            | 1.0                                                 | 0.51                          | 1.3                      | 2.37                      | 0.149 J                  | 0.295                     |  |
| Zinc                               | 459                                                 | 459                           | 270                      | 626                       | 86.7                     | 145                       |  |
| SVOCs (ug/kg)                      |                                                     |                               |                          |                           |                          |                           |  |
| Bis(2-ethylhexyl)phthalate         | 330                                                 | 135                           | 162 J                    | 5260                      | 92 U                     | 454 J                     |  |
| PAH (ug/kg)                        |                                                     |                               |                          |                           |                          |                           |  |
| 1-Methylnaphthalene                | NV                                                  | NV                            | 5.96 U                   | 46.5 U                    | 5.69 U                   | 6.55 U                    |  |
| 2-Methylnaphthalene                | 200                                                 | NV                            | 5.96 U                   | 46.5 U                    | 5.69 U                   | 6.55 U                    |  |
| Acenaphthene                       | 300                                                 | NV                            | 5.96 U                   | 46.5 U                    | 5.69 U                   | 6.55 U                    |  |
| Acenaphthylene                     | 200                                                 | NV                            | 5.96 U                   | 46.5 U                    | 5.69 U                   | 6.55 U                    |  |
| Anthracene                         | 845                                                 | NV                            | 11.7 J                   | 46.5 U                    | 5.69 U                   | 6.55 U                    |  |
| Benzo(a)anthracene                 | 1,050                                               | NV                            | 26.7                     | 61.2 J                    | 5.69 U                   | 6.55 U                    |  |
| Benzo(a)pyrene                     | 1,450                                               | NV                            | 31.1                     | 59.2 J                    | 5.69 U                   | 6.55 U                    |  |
| Benzo(b)fluoranthene               | NV                                                  | NV                            | 109                      | 171                       | 7.02 J                   | 6.55 U                    |  |
| Benzo(ghi)perylene                 | 300                                                 | NV                            | 86.4                     | 124                       | 5.69 U                   | 6.55 U                    |  |
| Benzo(k)fluoranthene               | 13,000                                              | NV                            | 36.2 J                   | 46.5 U                    | 5.69 U                   | 6.55 U                    |  |
| Chrysene                           | 1,290                                               | NV                            | 61.5                     | 239                       | 5.69 U                   | 6.55 U                    |  |
| Dibenzo(a,h)anthracene             | 1,300                                               | NV                            | 12.3                     | 46.5 U                    | 5.69 U                   | 6.55 U                    |  |
| Dibenzofuran                       | NV                                                  | NV                            | 5.96 U                   | 46.5 U                    | 5.69 U                   | 6.55 U                    |  |
| Fluoranthene                       | 2,230                                               | NV                            | 61.4                     | 253                       | 6.22 J                   | 6.55 U                    |  |
| Fluorene                           | 536                                                 | NV                            | 5.96 U                   | 46.5 U                    | 5.69 U                   | 6.55 U                    |  |
| Indeno(1,2,3-cd)pyrene             | 100                                                 | NV                            | 83.7                     | 86.9 J                    | 5.69 U                   | 6.55 U                    |  |
| Naphthalene                        | 561                                                 | NV                            | 6.43 J                   | 46.5 U                    | 5.69 U                   | 6.55 U                    |  |
| Phenanthrene                       | 1,170                                               | NV                            | 41                       | 291                       | 5.69 U                   | 6.55 U                    |  |
| Pyrene                             | 1,520                                               | NV                            | 53.8                     | 193                       | 5.69 U                   | 6.55 U                    |  |
| Total PAHs (ND=0.5) <sup>(a)</sup> | NV                                                  | 23,000                        | 633                      | 1,664                     | 55.9                     | 6.55 U                    |  |
| cPAH TEQ(ND=0.5) <sup>(b)</sup>    | NV                                                  | 774                           | 65.8                     | 115                       | 6.99 J                   | 6.55 U                    |  |

#### Table 5-1

## Soil/Catch Basin Solids Analyteical Results Source Control Evaluation Dolan and Company, LLC

Portland, Oregon



NOTES:

**Bold** font indicates a detection.

Shading (color key below) indicates values that exceed Portland Harbor screening criteria; non-detects (U or UJ) were not compared with screening criteria.

Sediment/Riverbank Soil ROD CULs

JSCS, Soil, Initial Upland Screen

cPAH = carcinogenic PAH.

CB = catch basin.

DEQ = Oregon Department of Environmental Quality.

J = result is an estimated value.

JSCS = Joint Source Control Strategy.

mg/kg = milligrams per kilogram.

NV = no value available.

PAH = polycyclic aromatic hydrocarbon.

SLV = screening level value.

SVOC = Semivolatile organic compounds.

TEQ = toxicity equivalence.

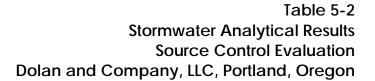
U = result is non-detect.

ug/kg = micrograms per kilogram.

(a)Total PAHs are the sum of 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3,-cd)pyrene, naphthalene, phenanthrene, and pyrene. Non-detected concentrations are treated as one-half the detection limit. When all concentrations are non-detect, the highest detection limit is used.

(b)cPAH TEQs calculated by multiplying the cPAHs (benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3,c,d)pyrene, and dibenzo(a,h)anthracene) by their respective TEFs and summing the resulting concentrations. Non-detect results were multiplied by one-half. When all cPAHs in a sample were non-detect, the highest non-detect value was reported.

#### REFERENCES:


 $\ensuremath{^{(1)}}\mbox{DEQ}$  Portland Harbor Joint Source Control Strategy, Table 3-1. December 2005.

(2) EPA Portland Harbor ROD, Table 17, June 2016



# Table 5-2 2022/2023 Stormwater Analytical Results Source Control Evaluation Dolan and Company, LLC Portland, Oregon

|                              |                                              |             |            |             | Por        | tland, Orego | n         |            |             |           |            |            |           |
|------------------------------|----------------------------------------------|-------------|------------|-------------|------------|--------------|-----------|------------|-------------|-----------|------------|------------|-----------|
| Basin:                       |                                              |             |            | Basin       | C/D        |              |           |            | Basin E     |           | Basin F    |            |           |
| Location:                    | Portland Harbor                              |             |            | MHS         | W-4        |              |           |            | CB-14/CB-15 |           |            | CB-16      |           |
| Sample ID:                   | ROD CULs,<br>Surface Water <sup>(1)(2)</sup> | OUTFALL C/D | DUP        | OUTFALL C/D | DUP        | OUTFALL C/D  | DUP       | OUTFALL E  | OUTFALL E   | OUTFALL E | CB-16      | CB-16      | CB-16     |
| Sample Date:                 | 1                                            | 04/29/2022  | 04/29/2022 | 10/21/2022  | 10/21/2022 | 3/31/2023    | 3/31/2023 | 04/29/2022 | 10/21/2022  | 3/31/2023 | 04/29/2022 | 10/21/2022 | 3/31/2023 |
| Total Metals (ug/L)          | •                                            |             |            | •           |            |              |           |            |             |           | •          |            |           |
| Aluminum                     | 50-200 <sup>(a)</sup>                        |             |            |             |            |              |           |            |             |           |            |            |           |
| Arsenic                      | 0.018                                        | 0.864       | 0.920      | 1.39        | 1.49       | 0.297        | 0.300     |            |             |           |            |            |           |
| Cadmium                      | 0.094 <sup>(a)</sup>                         |             |            |             |            |              |           | 0.608      | 1.11        | 0.498     | 0.148      | 0.173      | 0.116 J   |
| Copper                       | 2.74                                         | 27.8        | 30.7       | 44.7        | 45.3       | 11.1         | 11.3      |            |             |           |            |            |           |
| Lead                         | 0.54 <sup>(a)</sup>                          |             |            |             |            |              |           |            |             |           |            |            |           |
| Manganese                    | 50 <sup>(a)</sup>                            |             |            |             |            |              |           |            |             |           |            |            |           |
| Zinc                         | 36.5                                         |             |            |             |            |              |           | 463        | 666         | 751       | 101        | 105        | 82.1      |
| PAHs (ug/L)                  |                                              |             |            |             |            | •            |           |            |             | •         | •          |            |           |
| 1-Methylnaphthalene          | NV                                           | 0.0879 U    | 0.0808 U   | 0.190 U     | 0.190 U    | 0.0755 U     | 0.0769 U  | 0.0808 U   | 0.204 U     | 0.0769 U  | 0.0755 U   | 0.0909 U   | 0.0204 U  |
| 2-Methylnaphthalene          | 0.2 <sup>(a)</sup>                           | 0.0879 U    | 0.0808 U   | 0.190 U     | 0.190 U    | 0.0755 U     | 0.0769 U  | 0.0808 U   | 0.204 U     | 0.0769 U  | 0.0755 U   | 0.0909 U   | 0.0204 U  |
| Acenaphthene                 | 0.2 <sup>(a)</sup>                           | 0.0440 U    | 0.0404 U   | 0.0952 U    | 0.0952 U   | 0.0377 U     | 0.0385 U  | 0.0404 U   | 0.102 U     | 0.0385 U  | 0.0377 U   | 0.0455 U   | 0.0113 J  |
| Acenaphthylene               | 0.2 <sup>(a)</sup>                           | 0.0440 U    | 0.0404 U   | 0.0952 U    | 0.0952 U   | 0.0377 U     | 0.0385 U  | 0.0404 U   | 0.102 U     | 0.0385 U  | 0.0377 U   | 0.0455 U   | 0.0102 U  |
| Anthracene                   | 0.2 <sup>(a)</sup>                           | 0.0440 U    | 0.0404 U   | 0.0952 U    | 0.0952 U   | 0.0377 U     | 0.0385 U  | 0.0404 U   | 0.102 U     | 0.0385 U  | 0.0377 U   | 0.0455 U   | 0.0102 U  |
| Benzo(a)anthracene           | 0.0012                                       | 0.0440 U    | 0.0409 J   | 0.0959 J    | 0.0952 U   | 0.0377 U     | 0.0385 U  | 0.0404 U   | 0.102 U     | 0.0385 U  | 0.0377 U   | 0.0535 J   | 0.0102 U  |
| Benzo(a)pyrene               | 0.00012                                      | 0.0659 U    | 0.0634 J   | 0.143 U     | 0.143 U    | 0.0566 U     | 0.0577 U  | 0.0606 U   | 0.163 J     | 0.0577 U  | 0.0575 J   | 0.128 J    | 0.0153 U  |
| Benzo(b)fluoranthene         | 0.0012                                       | 0.0659 U    | 0.0606 U   | 0.143 U     | 0.143 U    | 0.0566 U     | 0.0577 U  | 0.0606 U   | 0.153 U     | 0.0577 U  | 0.0566 U   | 0.118 J    | 0.0153 U  |
| Benzo(ghi)perylene           | 0.2 <sup>(a)</sup>                           | 0.0440 U    | 0.0404 U   | 0.0952 U    | 0.0952 U   | 0.0377 U     | 0.0385 U  | 0.0404 U   | 0.102 U     | 0.0385 U  | 0.0377 U   | 0.0654 J   | 0.0102 U  |
| Benzo(k)fluoranthene         | 0.0013                                       | 0.0659 U    | 0.0606 U   | 0.143 U     | 0.143 U    | 0.0566 U     | 0.0577 U  | 0.0606 U   | 0.153 U     | 0.0577 U  | 0.0566 U   | 0.0698 J   | 0.0153 U  |
| Carbazole                    | 3.4 <sup>(a)</sup>                           | 0.0659 U    | 0.0606 U   | 0.143 U     | 0.143 U    | 0.0566 U     | 0.0577 U  | 0.0606 U   |             | 0.0577 U  | 0.0566 U   | 0.0682 U   | 0.0153 U  |
| Chrysene                     | 0.0013                                       | 0.0440 U    | 0.0404 U   | 0.0952 U    | 0.0952 U   | 0.0377 U     | 0.0385 U  | 0.0404 U   | 0.102 U     | 0.0385 U  | 0.0377 U   | 0.0491 J   | 0.0102 U  |
| Dibenzo(a,h)anthracene       | 0.00012                                      | 0.0440 U    | 0.0404 U   | 0.0952 U    | 0.0952 U   | 0.0377 U     | 0.0385 U  | 0.0404 U   | 0.102 U     | 0.0385 U  | 0.0377 U   | 0.0455 U   | 0.0102 U  |
| Dibenzofuran                 | 3.7 <sup>(a)</sup>                           | 0.0440 U    | 0.0404 U   | 0.0952 U    | 0.0952 U   | 0.0377 U     | 0.0385 U  | 0.0404 U   |             | 0.0385 U  | 0.0377 U   | 0.0455 U   | 0.0102 U  |
| Fluoranthene                 | 0.2 <sup>(a)</sup>                           | 0.0440 U    | 0.0404 U   | 0.0952 U    | 0.0952 U   | 0.0377 U     | 0.0385 U  | 0.0404 U   | 0.102 U     | 0.0385 U  | 0.0377 U   | 0.0455 U   | 0.0102 U  |
| Fluorene                     | 0.2 <sup>(a)</sup>                           | 0.0440 U    | 0.0404 U   | 0.0952 U    | 0.0952 U   | 0.0377 U     | 0.0385 U  | 0.0404 U   | 0.102 U     | 0.0385 U  | 0.0377 U   | 0.0455 U   | 0.0102 U  |
| Indeno(1,2,3-cd)pyrene       | 0.0012                                       | 0.0440 U    | 0.0404 U   | 0.0952 U    | 0.0952 U   | 0.0377 U     | 0.0385 U  | 0.0404 U   | 0.102 U     | 0.0385 U  | 0.0377 U   | 0.0618 J   | 0.0102 U  |
| Naphthalene                  | 12                                           | 0.0879 U    | 0.0808 U   | 0.190 U     | 0.190 U    | 0.0755 U     | 0.0769 U  | 0.0808 U   | 0.204 U     | 0.0769 U  | 0.0755 U   | 0.0909 U   | 0.0204 U  |
| Phenanthrene                 | 0.2 <sup>(a)</sup>                           | 0.0440 U    | 0.0404 U   | 0.190 U     | 0.190 U    | 0.0377 U     | 0.0385 U  | 0.0408 J   | 0.188 J     | 0.0385 U  | 0.0377 U   | 0.0583 J   | 0.0137 J  |
| Pyrene                       | 0.2 <sup>(a)</sup>                           | 0.0440 U    | 0.0404 U   | 0.0952 U    | 0.0952 U   | 0.0377 U     | 0.0385 U  | 0.0404 U   | 0.102 U     | 0.0385 U  | 0.0377 U   | 0.0455 U   | 0.0102 U  |
| Total PAHs <sup>(b)(3)</sup> | NV                                           | 0.0879 U    | 0.468 J    | 1.07 J      | 0.190 U    | 0.0755 U     | 0.0769 U  | 0.435 J    | 1.27 J      | 0.0769 U  | 0.416 J    | 0.854 J    | 0.119 J   |
| Phthalates (ug/L)            |                                              |             |            |             |            |              |           |            |             |           |            |            |           |
| Bis(2-ethylhexyl)phthalate   | 0.2                                          | 0.879 U     | 0.808 U    | 1.9 U       | 1.9 U      | 0.755 U      | 0.769 U   | 1.10 J     | 3.1 J       | 0.769 U   | 0.755 U    | 0.909 U    | 0.204 U   |
| Additional (mg/L)            |                                              |             |            |             |            |              |           |            |             |           |            |            |           |
| Total Suspended Solids       | NV                                           | 16.8        | 14.0       | 10.0        | 11.0 J     | 5.00 UJ      | 5.00 UJ   | 90.9       | 35.0        | 5.00 J    | 63.0       | 95.0       | 236       |
| Total Organic Carbon         | NV                                           |             |            |             |            |              |           |            |             |           |            |            |           |





#### Notes

Bold font indicates a detection.

Shading (color key below) indicates values that exceed Portland Harbor screening criteria; non-detect s (U or UJ) were not compared with screening criteria.

Portland Harbor ROD CULs, Surface Water

Portland Harbor JSCS Initial Upland Screening Level, Water

-- = not analyzed.

CUL = cleanup level.

DEQ = Oregon Department of Environmental Quality.

EPA = U.S. Environmental Protection Agency.

J = result is estimated.

JSCS = Joint Source Control Strategy.

mg/L = milligrams per liter.

NV = no value.

PAH = polycyclic aromatic hydrocarbon.

ROD = record of decision.

SCE = source control evaluation.

U = result is non-detect at the detection limit.

UJ = result is non-detect with an estimated detection limit.

ug/L = micrograms per liter.

(a) Where Portland Harbor ROD CULs for surface water were not available, results are screened to Portland Harbor JSCS initial upland screening levels for water.

(b)Total PAHs is the sum of 2-methylnaphthalene, acenaphthhene, acenaphthhene, acenaphthhene, anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3,-c,d)pyrene, naphthalene, phenanthrene, and pyrene. Non-detect results were multiplied by one-half. When all concentrations are non-detect, the highest detection limit is shown.

#### References

[1] EPA. 2020. Sean Sheldrake, Office of Environmental Cleanup. Errata #2 for Portland Harbor Superfund Site Record of Decision ROD Table 17. Memorandum to Portland Harbor site file. January 14.

[2] DEQ. 2005. Portland Harbor Joint Source Control Strategy. "Table 3-1, Screening Level Values for Soil/Stormwater Sediment, Stormwater, Groundwater, and Surface Water." December.

[3] EPA. 2021. Program Data Management Plan: Portland Harbor Remedial Design Investigation--Portland Harbor Superfund Site. "Section 7.0, Calculation of Analyte Group Totals." U.S. Environmental Protection Agency Region 10. December.

### Appendix A

**Historical Investigation Data** 



### **Historical Investigation Tables**



Table A-1 October 31, 2005, Catch Basin Sediment Sampling Data Sulzer Property 2007 SCE

| Sample Collection Location   | Composite #3<br>Outfalls C and D | Composite #6<br>Outfalls E and 15 | CB-SB-5<br>Outfall D | JSCS Upland<br>Soil/Sediment<br>Screening Value<br>(mg/kg) |
|------------------------------|----------------------------------|-----------------------------------|----------------------|------------------------------------------------------------|
| Hydrocarbons by Method NW    | TPH-Dx (mg/kg)                   |                                   | -                    |                                                            |
| Diesel-range                 | 2,390                            | 1,750                             | 2,020                |                                                            |
| Heavy-oil-range              | 6,180                            | 4,390                             | 5,050                |                                                            |
| TCLP Metals by USEPA 1311/60 | 000/7000 Series Meth             | nods (mg/L)                       |                      |                                                            |
| Arsenic                      | ND<1.0                           | ND<1.0                            | ND<1.0               |                                                            |
| Barium                       | ND<2.0                           | 2.32                              | ND<2.0               |                                                            |
| Cadmium                      | ND<0.20                          | ND<0.20                           | ND<0.20              |                                                            |
| Chromium                     | ND<0.20                          | ND<0.20                           | ND<0.20              | TCLP not included for                                      |
| Copper                       | ND<0.20                          | ND<0.20                           | ND<0.20              | screening against                                          |
| Lead                         | ND<0.20                          | ND<0.20                           | 0.347                | soil/stormwater                                            |
| Mercury                      | ND<0.0002                        | ND<0.0002                         | ND<0.0002            | sediment criteria                                          |
| Selenium                     | ND<1.0                           | ND<1.0                            | ND<1.0               |                                                            |
| Silver                       | ND<0.20                          | ND<0.20                           | ND<0.20              |                                                            |
| Zinc                         | 4.55                             | 2.63                              | 19.1                 |                                                            |
| PAHs by USEPA Method 8270-9  | SIM (mg/kg)                      |                                   |                      |                                                            |
| Acenaphthene                 | ND<0.330                         | ND<0.133                          | 0.747                | 0.30                                                       |
| Acenaphthylene               | ND<0.330                         | ND<0.133                          | ND<0.331             | 0.20                                                       |
| Anthracene                   | ND<0.330                         | ND<0.267                          | 1.06                 | 0.85                                                       |
| Benz(a)anthracene            | ND<0.330                         | ND<0.133                          | 0.78                 | 1.05                                                       |
| Benzo(a)pyrene               | ND<0.330                         | ND<0.267                          | ND<0.331             | 1.45                                                       |
| Benzo(b)fluoranthene         | ND<0.330                         | ND<0.267                          | 0.517                |                                                            |
| Benzo(g,h,i)perylene         | ND<0.330                         | ND<0.267                          | ND<0.331             | 0.30                                                       |
| Benzo(k)fluoranthene         | ND<0.330                         | ND<0.267                          | 0.367                | 13                                                         |
| Chrysene                     | ND<0.330                         | ND<0.133                          | 1.05                 | 1.29                                                       |
| Dibenz(a,h)anthracene        | ND<0.330                         | ND<0.267                          | ND<0.331             | 1.30                                                       |
| Fluoranthene                 | 0.5                              | 0.167                             | 4.33                 | 2.23                                                       |
| Fluorene                     | ND<0.330                         | ND<0.267                          | 1.31                 | 0.54                                                       |
| Indeno(1,2,3-cd)pyrene       | ND<0.330                         | ND<0.267                          | ND<0.331             | 0.10                                                       |
| Naphthalene                  | ND<0.330                         | ND<0.133                          | 0.355                | 0.56                                                       |
| Phenanthrene                 | 0.398                            | 0.528                             | 6.08                 | 1.17                                                       |
| Pyrene                       | 0.453                            | 0.307                             | 3.22                 | 1.52                                                       |

## Table A-1 October 31, 2005, Catch Basin Sediment Sampling Data Sulzer Property 2007 SCE

### NOTES:

Sediment sampling completed by Sterling Technologies, LLC, on October 31, 2005.

Yellow highlighting indicates analyte detected result exceeds one or more screening criteria.

Blue highlight indicates MDL of the non-detect result exceeds the screening criterion.

JSCS = Joint Source Control Strategy.

-- = not analyzed/not applicable.

MDL = method detection limit.

mg/kg = milligrams per kilogram.

mg/L = milligrams per liter.

ND = not detected at a concentration above laboratory MDL.

PAH = polycyclic aromatic hydrocarbon.

SCE = source control evaluation.

TCLP = toxicity characteristic leaching procedure.

USEPA = U.S. Environmental Protection Agency.

Table A-2 November 25, 2008, Catch Basin Sediment Sampling Data Sulzer Pumps Facility 2015 SCE

| Composite Sediment<br>Sample ID and<br>Corresponding Outfall | CB-30 and CB-31<br>Outfall C | CB-41 and CB-49<br>Outfall C-1 | CB-39, CB-40,<br>and CB-43<br>Outfall D | CB-14 and CB-15<br>Outfall E | CB-16 and CB-17<br>Outfall 15 | JSCS Upland<br>Soil/Sediment<br>Screening Value |
|--------------------------------------------------------------|------------------------------|--------------------------------|-----------------------------------------|------------------------------|-------------------------------|-------------------------------------------------|
| Total TAL 23 Metals by USEPA 6000                            | 0/7000 Series Methods (r     | ng/kg)                         |                                         |                              |                               |                                                 |
| Aluminum                                                     | 9,500                        | 8,440                          | 8,070                                   | 7,810                        | 17,900                        |                                                 |
| Antimony                                                     | 5.12                         | 4.41                           | 6.87                                    | 3.2                          | ND<2.90                       | 64                                              |
| Arsenic                                                      | 5.45                         | 4.55                           | 7.47                                    | 3.75                         | 6.07                          | 7                                               |
| Barium                                                       | 148                          | 111                            | 368                                     | 179                          | 548                           |                                                 |
| Beryllium                                                    | ND<8.19                      | ND<2.79                        | ND<5.72                                 | ND<3.79                      | ND<5.81                       |                                                 |
| Cadmium                                                      | ND<4.09                      | 4.17                           | 10.2                                    | ND<1.89                      | ND<2.90                       | 1                                               |
| Calcium                                                      | 27,600                       | 4,090                          | 4,050                                   | 5,090                        | 6,130                         |                                                 |
| Chromium                                                     | 3,260                        | 123                            | 211                                     | 50.4                         | 36.1                          | 111                                             |
| Cobalt                                                       | 17.3                         | 11.7                           | 18.1                                    | 9.28                         | 14.6                          |                                                 |
| Copper                                                       | 382                          | 137                            | 210                                     | 171                          | 83.8                          | 149                                             |
| Iron                                                         | 94,900                       | 57,900                         | 58,600                                  | 38,500                       | 96,000                        |                                                 |
| Lead                                                         | 169                          | 119                            | 150                                     | 79.3                         | 70.7                          | 17                                              |
| Magnesium                                                    | 3,310                        | 2,630                          | 2,140                                   | 2,470                        | 3,840                         |                                                 |
| Manganese                                                    | 633                          | 933                            | 1,100                                   | 560                          | 799                           | 1,100                                           |
| Mercury                                                      | ND<0.328                     | 0.195                          | ND<0.229                                | 0.17                         | ND<0.232                      | 0.07                                            |
| Nickel                                                       | 267                          | 103                            | 169                                     | 37.7                         | 28.7                          | 48.6                                            |
| Potassium                                                    | 753                          | 476                            | 487                                     | 603                          | 1,390                         |                                                 |
| Selenium                                                     | ND<4.09                      | ND<1.40                        | ND<2.86                                 | ND<1.89                      | ND<2.90                       | 2                                               |
| Silver                                                       | ND<8.19                      | ND<2.79                        | ND<5.72                                 | ND<3.79                      | ND<5.81                       | 5                                               |
| Sodium                                                       | 809                          | 670                            | 644                                     | 653                          | 1,220                         |                                                 |
| Thallium                                                     | ND<4.09                      | ND<1.40                        | ND>2.86                                 | ND<1.89                      | ND<2.90                       |                                                 |
| Vanadium                                                     | 34.4                         |                                | 68.4                                    | 71.9                         | 125                           |                                                 |
| Zinc                                                         | 1,240                        | 866                            | 1,510                                   | 638                          | 319                           | 459                                             |

Table A-2 November 25, 2008, Catch Basin Sediment Sampling Data Sulzer Pumps Facility 2015 SCE

| Composite Sediment<br>Sample ID and<br>Corresponding Outfall | CB-30 and CB-31<br>Outfall C | CB-41 and CB-49<br>Outfall C-1 | CB-39, CB-40,<br>and CB-43<br>Outfall D | CB-14 and CB-15<br>Outfall E | CB-16 and CB-17<br>Outfall 15 | JSCS Upland<br>Soil/Sediment<br>Screening Value |
|--------------------------------------------------------------|------------------------------|--------------------------------|-----------------------------------------|------------------------------|-------------------------------|-------------------------------------------------|
| PCBs by USEPA Method 8082A (ug                               | /kg) <sup>a</sup>            |                                |                                         |                              |                               |                                                 |
| Aroclor 1016                                                 | ND<71.2                      | ND<22.3                        | ND<47.0                                 | ND<25.7                      | ND<46.7                       | 530                                             |
| Aroclor 1221                                                 | ND<99.7                      | ND<31.3                        | ND<65.8                                 | ND<36.0                      | ND<65.4                       |                                                 |
| Aroclor 1232                                                 | ND<71.2                      | ND<22.3                        | ND<47.0                                 | ND<25.7                      | ND<46.7                       |                                                 |
| Aroclor 1242                                                 | ND<71.2                      | ND<22.3                        | ND<47.0                                 | ND<25.7                      | ND<46.7                       |                                                 |
| Aroclor 1248                                                 | ND<71.2                      | ND<22.3                        | ND<47.0                                 | ND<25.7                      | ND<46.7                       | 1,500                                           |
| Aroclor 1254                                                 | ND<71.2                      | 397                            | 180 J                                   | 35.9 J                       | ND<46.7                       | 300                                             |
| Aroclor 1260                                                 | ND<71.2                      | ND<22.3                        | ND<47.0                                 | ND<25.7                      | ND<46.7                       | 200                                             |
| Total PCBs                                                   | ND                           | 397                            | 180 J                                   | 35.9 J                       | ND                            | 0.39                                            |
| Total Organic Carbon (mg/kg)                                 | 322,000                      | 55,800                         | 543,000                                 | 63,800                       | 138,000                       |                                                 |
| Phthalates by USEPA Method 8270                              | C-SIM (ug/kg)                | •                              |                                         | •                            | •                             |                                                 |
| Bis (2-ethylhexyl) phthalate                                 | 7,870                        | 23,200                         | 33,800                                  | 2,870                        | 406                           | 330                                             |
| Benzylbutyl phthalate                                        | 24,200                       | ND<1,560                       | ND<1,550                                | ND<1,050                     | 99.4                          |                                                 |
| Diethyl phthalate                                            | ND<1,130                     | ND<778                         | ND<775                                  | ND<527                       | ND<42.8                       | 600                                             |
| Dimethyl phthalate                                           | ND<1,130                     | ND<778                         | ND<775                                  | ND<527                       | ND<42.8                       |                                                 |
| Di-n-butyl phthalate                                         | 3,150                        | ND<1,560                       | ND<1,550                                | ND<527                       | ND<85.6                       | 60                                              |
| Di-n-octyl phthalate                                         | ND<7,540                     | ND<6,220                       | ND<10,500                               | ND<3,510                     | ND<394                        |                                                 |
| PAHs by USEPA Method 8270-SIM                                | (ug/kg)                      |                                |                                         |                              |                               |                                                 |
| Acenaphthene                                                 | ND<377                       | ND<260                         | ND<259                                  | ND<176                       | ND<14.3                       | 300                                             |
| Acenaphthylene                                               | ND<377                       | ND<260                         | ND<259                                  | ND<176                       | ND<14.3                       | 200                                             |
| Anthracene                                                   | ND<377                       | ND<260                         | ND<259                                  | ND<176                       | ND<14.3                       | 845                                             |
| Benz(a)anthracene                                            | ND<377                       | 262 J                          | ND<259                                  | ND<176                       | ND<14.3                       | 1,050                                           |
| Benzo(a)pyrene                                               | ND<757                       | ND<521                         | ND<591                                  | ND<353                       | ND<28.7                       | 1,450                                           |
| Benzo(b)fluoranthene                                         | ND<410                       | ND<282                         | ND<281                                  | ND<191                       | ND<15.5                       |                                                 |
| Benzo(g,h,i)perylene                                         | ND<377                       | ND<260                         | ND<259                                  | ND<176                       | ND<14.3                       | 300                                             |
| Benzo(k)fluoranthene                                         | ND<377                       | ND<260                         | ND<259                                  | ND<176                       | ND<14.3                       | 13,000                                          |

### Table A-2 November 25, 2008, Catch Basin Sediment Sampling Data Sulzer Pumps Facility 2015 SCE

| Composite Sediment<br>Sample ID and<br>Corresponding Outfall | CB-30 and CB-31<br>Outfall C | CB-41 and CB-49<br>Outfall C-1 | CB-39, CB-40,<br>and CB-43<br>Outfall D | CB-14 and CB-15<br>Outfall E | CB-16 and CB-17<br>Outfall 15 | JSCS Upland<br>Soil/Sediment<br>Screening Value |
|--------------------------------------------------------------|------------------------------|--------------------------------|-----------------------------------------|------------------------------|-------------------------------|-------------------------------------------------|
| Chrysene                                                     | ND<377                       | ND<260                         | ND<259                                  | ND<176                       | ND<14.3                       | 1,290                                           |
| Dibenz(a,h)anthracene                                        | ND<377                       | ND<260                         | ND<259                                  | ND<176                       | ND<14.3                       | 1,300                                           |
| Fluoranthene                                                 | ND<377                       | 481 J                          | 353 J                                   | ND<176                       | 17.6 J                        | 2,230                                           |
| Fluorene                                                     | ND<377                       | ND<260                         | ND<259                                  | ND<176                       | ND<14.3                       | 536                                             |
| Indeno(1,2,3-cd)pyrene                                       | ND<377                       | ND<260                         | ND<259                                  | ND<176                       | ND<14.3                       | 100                                             |
| 1-Methylnaphthalene                                          | ND<377                       | ND<260                         | ND<259                                  | ND<176                       | ND<14.3                       |                                                 |
| 2-Methylnaphthalene                                          | ND<377                       | ND<260                         | ND<259                                  | ND<176                       | ND<14.3                       | 200                                             |
| Naphthalene                                                  | ND<377                       | ND<260                         | ND<259                                  | ND<176                       | ND<14.3                       | 561                                             |
| Phenanthrene                                                 | ND<497                       | 498 J                          | ND<341                                  | ND<232                       | 21 J                          | 1,170                                           |
| Pyrene                                                       | ND<377                       | 453 J                          | 330 J                                   | ND<176                       | 15.2 J                        | 1,520                                           |

#### NOTES:

Bold font indicates detected analyte.

Chemical analysis completed by Apex Laboratories, LLC, of Tigard, Oregon.

Yellow highlighting indicates analyte detected result exceeds one or more screening criteria.

Blue highlight indicates MDL of non-detect result exceeds screening criterion.

-- = not analyzed, not applicable.

J = estimated result. Result detected below lowest point of calibration curve but above statistical MDL.

JSCS = Joint Source Control Strategy.

MDL = method detection limit.

mg/kg = milligrams per kilogram.

ND = not detected at concentration above laboratory MDL and/or method reporting limit.

PAH = polycyclic aromatic hydrocarbon.

PCB = polychlorinated biphenyl.

SCE = source control evaluation.

TAL = target analyte list.

ug/kg = micrograms per kilogram.

USEPA = U.S. Environmental Protection Agency.

<sup>a</sup>Laboratory MDL reported in table.

Table A-3
December 13, 2006, Stormwater Sampling Data
Sulzer Pumps Facility 2007 SCE

| Outfall                       | Dolan Vault        | Outfall C | Outfall D | Outfall E | City Outfall 15 | JSCS Water | Portland Harbor<br>USEPA PRG for<br>RAO 3 Protected | Portland Harbor<br>USEPA PRG RAO 7<br>Direct |
|-------------------------------|--------------------|-----------|-----------|-----------|-----------------|------------|-----------------------------------------------------|----------------------------------------------|
| Sample Collection<br>Location | Dolan Vault        | Outfall C | CB-5      | CB-15     | CB-16           | SLV        | Water Uses,<br>Surface Water                        | Contact/Ingestion,<br>Surface Water          |
| Total Metals by USEPA Me      | thod 200 Series (m | g/L)      |           |           |                 |            |                                                     |                                              |
| Aluminum                      | 0.16               | ND<0.10   | ND<0.10   | 0.24      | 2.3             | 0.05-0.2   |                                                     |                                              |
| Antimony                      | ND<0.001           | ND<0.001  | ND<0.001  | ND<0.001  | ND<0.001        | 0.006      |                                                     |                                              |
| Barium                        | 0.00844            | 0.0126    | 0.014     | 0.0361    | 0.0563          |            |                                                     |                                              |
| Beryllium                     | ND<0.001           | ND<0.001  | ND<0.001  | ND<0.001  | ND<0.001        |            |                                                     |                                              |
| Cadmium                       | ND<0.001           | ND<0.001  | ND<0.001  | ND<0.001  | ND<0.001        | 0.000094   |                                                     |                                              |
| Calcium                       | 1.2                | 3.5       | 1.4       | 4.3       | 3.9             | -          | 1                                                   |                                              |
| Chromium                      | 0.00169            | ND<0.001  | ND<0.001  | 0.0016    | 0.00318         | 0.1        | 0.1                                                 |                                              |
| Cobalt                        | ND<0.010           | ND<0.010  | ND<0.010  | ND<0.010  | ND<0.010        | -          | -                                                   |                                              |
| Copper                        | ND<0.0050          | 0.00684   | 0.00875   | 0.0137    | 0.0074          | 0.0027     | 1                                                   | 0.003                                        |
| Iron                          | 0.17               | 0.13      | ND<0.10   | 0.82      | 3.4             | -          | -                                                   |                                              |
| Lead                          | 0.00142            | 0.00138   | 0.00108   | 0.003     | 0.00743         | 0.00054    | -                                                   |                                              |
| Magnesium                     | 0.18               | 0.84      | 0.28      | 0.62      | 1.3             | -          |                                                     |                                              |
| Manganese                     | 0.0217             | 0.0463    | 0.0138    | 0.0456    | 0.093           | 0.050      |                                                     |                                              |
| Mercury                       | ND<0.0002          | ND<0.0002 | ND<0.0002 | ND<0.0002 | ND<0.0002       | 0.00077    | -                                                   |                                              |
| Molybdenum                    | ND<0.0050          | ND<0.0050 | ND<0.0050 | ND<0.0050 | ND<0.0050       | -          | -                                                   |                                              |
| Nickel                        | 0.00101            | 0.00159   | 0.00217   | 0.0036    | 0.00217         | 0.016      | -                                                   |                                              |
| Potassium                     | ND<0.50            | ND<0.50   | ND<0.50   | 0.58      | 0.95            | -          |                                                     |                                              |
| Selenium                      | ND<0.001           | ND<0.001  | ND<0.001  | ND<0.001  | ND<0.001        | 0.005      |                                                     | -                                            |
| Silver                        | ND<0.002           | ND<0.002  | ND<0.002  | ND<0.002  | ND<0.002        | 0.00012    |                                                     |                                              |
| Sodium                        | 1.6                | 6.9       | 2.2       | 3.9       | 2.6             |            |                                                     |                                              |
| Thallium                      | ND<0.001           | ND<0.001  | ND<0.001  | ND<0.001  | ND<0.001        |            |                                                     |                                              |
| Vanadium                      | ND<0.010           | ND<0.010  | ND<0.010  | ND<0.010  | ND<0.010        |            |                                                     | -                                            |
| Zinc                          | 0.406              | 0.568     | 0.194     | 0.227     | 0.0239          | 0.036      |                                                     | 0.0365 (dissolved)                           |

Table A-3
December 13, 2006, Stormwater Sampling Data
Sulzer Pumps Facility 2007 SCE

| Outfall                                        | Dolan Vault            | Outfall C | Outfall D | Outfall E | City Outfall 15 | JSCS Water<br>SLV | Portland Harbor<br>USEPA PRG for<br>RAO 3 Protected | Portland Harbor<br>USEPA PRG RAO 7<br>Direct |
|------------------------------------------------|------------------------|-----------|-----------|-----------|-----------------|-------------------|-----------------------------------------------------|----------------------------------------------|
| Sample Collection<br>Location                  | Dolan Vault            | Outfall C | CB-5      | CB-15     | CB-16           | 3LV               | Water Uses,<br>Surface Water                        | Contact/Ingestion,<br>Surface Water          |
| pH (6020)                                      | 6.67                   | 6.42      | 6.22      | 6.56      | 6.84            |                   |                                                     |                                              |
| TSS by USEPA Method<br>160.2 (mg/L)            | ND<5.0                 | ND<5.0    | ND<5.0    | 5.0       | 15.0            | -                 |                                                     |                                              |
| Oil and Grease by USEPA<br>Method 1664A (mg/L) | ND<5.0                 | ND<5.0    | ND<5.0    | ND<5.0    | ND<5.0          | -                 | -1                                                  |                                              |
| Hydrocarbons by NWTPH-                         | Dx (mg/L)              |           |           |           |                 |                   |                                                     |                                              |
| Diesel-Range<br>Hydrocarbons                   | ND<0.250               | ND<0.250  | 0.329     | ND<0.250  | ND<0.250        |                   | -                                                   |                                              |
| Heavy-Oil-Range<br>Hydrocarbons                | ND<0.500               | ND<0.500  | ND<0.500  | ND<0.500  | ND<0.500        | 1                 | 1                                                   |                                              |
| PCBs by USEPA Method 80                        | 82 (ug/L) <sup>a</sup> |           |           |           |                 |                   |                                                     |                                              |
| PCB 1016                                       | ND<0.077               | ND<0.077  | ND<0.077  | ND<0.077  | ND<0.077        | 0.96              |                                                     |                                              |
| PCB 1221                                       | ND<0.16                | ND<0.16   | ND<0.16   | ND<0.16   | ND<0.16         | 0.034             |                                                     |                                              |
| PCB 1232                                       | ND<0.18                | ND<0.18   | ND<0.18   | ND<0.18   | ND<0.18         | 0.034             |                                                     |                                              |
| PCB 1242                                       | ND<0.099               | ND<0.099  | ND<0.099  | ND<0.099  | ND<0.099        | 0.034             |                                                     |                                              |
| PCB 1248                                       | ND<0.039               | ND<0.039  | ND<0.039  | ND<0.039  | ND<0.039        | 0.034             |                                                     |                                              |
| PCB 1254                                       | ND<0.12                | ND<0.12   | ND<0.12   | ND<0.12   | ND<0.12         | 0.033             |                                                     |                                              |
| PCB 1260                                       | ND<0.16                | ND<0.16   | ND<0.16   | ND<0.16   | ND<0.16         | 0.034             |                                                     |                                              |
| Phthalates by USEPA Meth                       | od 8270C (ug/L)        |           |           |           |                 |                   |                                                     |                                              |
| Total Phthalates                               | 9.9                    | ND<6.0    | ND<6.0    | ND<6.0    | ND<6.0          |                   |                                                     |                                              |
| Bis (2-ethylhexyl)<br>phthalate                | 8.9                    | ND<1.0    | 1.5       | ND<1.0    | 1.4             | 2.2               | 0.2                                                 | 3                                            |
| Benzylbutyl phthalate                          | ND<1.0                 | ND<1.0    | ND<1.0    | ND<1.0    | ND<1.0          | 3                 |                                                     |                                              |

Table A-3
December 13, 2006, Stormwater Sampling Data
Sulzer Pumps Facility 2007 SCE

| Outfall                       | Dolan Vault                  | Outfall C  | Outfall D  | Outfall E  | City Outfall 15 | JSCS Water<br>SLV | Portland Harbor<br>USEPA PRG for<br>RAO 3 Protected | Portland Harbor<br>USEPA PRG RAO 7<br>Direct |
|-------------------------------|------------------------------|------------|------------|------------|-----------------|-------------------|-----------------------------------------------------|----------------------------------------------|
| Sample Collection<br>Location | Dolan Vault                  | Outfall C  | CB-5       | CB-15      | CB-16           | 3LV               | Water Uses,<br>Surface Water                        | Contact/Ingestion,<br>Surface Water          |
| Diethyl phthalate             | ND<1.0                       | ND<1.0     | ND<1.0     | ND<1.0     | ND<1.0          | 3                 |                                                     |                                              |
| Dimethyl phthalate            | ND<1.0                       | ND<1.0     | ND<1.0     | ND<1.0     | ND<1.0          | 3                 |                                                     |                                              |
| Di-n-butyl phthalate          | ND<1.0                       | ND<1.0     | ND<1.0     | ND<1.0     | ND<1.0          | 3                 |                                                     |                                              |
| Di-n-octyl phthalate          | 1.1                          | ND<10      | ND<1.0     | ND<1.0     | ND<1.0          | 3                 |                                                     |                                              |
| PAHs by USEPA Method 82       | 270C-SIM (ug/L) <sup>a</sup> |            |            |            |                 |                   |                                                     |                                              |
| Acenaphthene                  | ND<0.0018                    | ND<0.0018  | ND<0.0018  | ND<0.0018  | ND<0.0018       | 0.2               |                                                     |                                              |
| Acenaphthylene                | ND<0.0014                    | ND<0.0014  | ND<0.0014  | ND<0.0014  | ND<0.0014       | 0.2               |                                                     |                                              |
| Anthracene                    | ND<0.00045                   | ND<0.00045 | ND<0.00045 | ND<0.00045 | ND<0.00045      | 0.2               |                                                     |                                              |
| Benz(a)anthracene             | ND<0.0010                    | ND<0.0010  | ND<0.0010  | ND<0.0010  | ND<0.0010       | 0.018             | 0.001                                               | 0.03                                         |
| Benzo(a)pyrene                | ND<0.0011                    | ND<0.0011  | ND<0.0011  | ND<0.0011  | ND<0.0011       | 0.018             | 0.0001                                              | 0.01                                         |
| Benzo(b)fluoranthene          | ND<0.0010                    | ND<0.0010  | ND<0.0010  | ND<0.0010  | ND<0.0010       | 0.018             | 0.001                                               |                                              |
| Benzo(g,h,i)perylene          | ND<0.0011                    | ND<0.0011  | ND<0.0011  | ND<0.0011  | ND<0.0011       | 0.2               |                                                     |                                              |
| Benzo(k)fluoranthene          | ND<0.0021                    | ND<0.0021  | ND<0.0021  | ND<0.0021  | ND<0.0021       | 0.018             | 0.001                                               |                                              |
| Chrysene                      | ND<0.00068                   | ND<0.00068 | ND<0.00068 | ND<0.00068 | ND<0.00068      | 0.018             | 0.001                                               |                                              |
| Dibenz(a,h)-<br>anthracene    | ND<0.00096                   | ND<0.00096 | ND<0.00096 | ND<0.00096 | ND<0.00096      | 0.018             | 0.0001                                              |                                              |
| Fluoranthene                  | ND<0.00065                   | ND<0.00065 | ND<0.00065 | ND<0.00065 | ND<0.00065      | 0.2               |                                                     |                                              |
| Fluorene                      | ND<0.0011                    | ND<0.0011  | ND<0.0011  | ND<0.0011  | ND<0.0011       | 0.2               |                                                     |                                              |
| Indeno(1,2,3-cd)<br>pyrene    | ND<0.0012                    | ND<0.0012  | ND<0.0012  | ND<0.0012  | ND<0.0012       | 0.018             | 0.001                                               |                                              |

## Table A-3 December 13, 2006, Stormwater Sampling Data Sulzer Pumps Facility 2007 SCE

| Outfall                       | Dolan Vault | Outfall C  | Outfall D  | Outfall E  | City Outfall 15 | JSCS Water | Portland Harbor<br>USEPA PRG for<br>RAO 3 Protected | Portland Harbor<br>USEPA PRG RAO 7<br>Direct |
|-------------------------------|-------------|------------|------------|------------|-----------------|------------|-----------------------------------------------------|----------------------------------------------|
| Sample Collection<br>Location | Dolan Vault | Outfall C  | CB-5       | CB-15      | CB-16           | SLV        | Water Uses,<br>Surface Water                        | Contact/Ingestion, Surface Water             |
| Naphthalene                   | ND<0.011    | ND<0.011   | ND<0.011   | ND<0.011   | ND<0.011        | 0.2        |                                                     | 12                                           |
| Phenanthrene                  | ND<0.00073  | ND<0.00073 | 0.054      | ND<0.00073 | ND<0.00073      | 0.2        |                                                     |                                              |
| Pyrene                        | ND<0.00083  | ND<0.00083 | ND<0.00083 | ND<0.00083 | ND<0.00083      | 0.2        |                                                     |                                              |
| 1-Methylnaphthalene           | ND<0.0019   | ND<0.0019  | ND<0.0019  | ND<0.0019  | ND<0.0019       |            |                                                     | -                                            |
| 2-Methylnaphthalene           | ND<0.0020   | ND<0.0020  | ND<0.0020  | ND<0.0020  | ND<0.0020       | 0.2        |                                                     | -                                            |

### NOTES:

Chemical analysis performed by Apex Laboratories, LLC, of Tigard, Oregon, and Environmental Science Corp. of Mt. Juliet, Tennessee.

Yellow highlighting indicates analyte detected result exceeds one or more screening criteria.

Blue highlight indicates method detection limit of the non-detect result exceeds the screening criterion.

-- = not analyzed/not applicable.

JSCS = Joint Source Control Strategy.

mg/L = milligrams per liter.

ND = not detected at a concentration greater than the laboratory method reporting limit.

PAH = polycyclic aromatic hydrocarbon.

PCB = polychlorinated biphenyl.

PRG = preliminary remediation goal.

RAO = remedial action objective.

SCE = source control evaluation.

SLV = screening level value.

TSS = total suspended solids.

ug/L = micrograms per liter.

USEPA = U.S. Environmental Protection Agency.

<sup>a</sup>Laboratory method detection limit reported in table.

Table A-4 May 7, 2006, Stormwater Sampling Data Sulzer Pumps Facility 2007 SCE

| Outfall                                      | Outfall C | Outfall D | Outfall E | JSCS Water | Portland Harbor USEPA<br>PRG for RAO 3 Protected | Portland Harbor USEPA<br>PRG RAO 7 Direct |
|----------------------------------------------|-----------|-----------|-----------|------------|--------------------------------------------------|-------------------------------------------|
| Sample Collection Location                   | Outfall C | CB-5      | CB-15     | SLV        | Water Uses, Surface Water                        | Contact/Ingestion,<br>Surface Water       |
| Total Metals by USEPA Method 200 Series      | (mg/L)    |           |           |            |                                                  |                                           |
| Chromium                                     | ND<0.0010 | 0.00141   | 0.00471   | 0.1        | 0.1                                              |                                           |
| Copper                                       | 0.0282    | 0.0332    | 0.0707    | 0.0027     |                                                  |                                           |
| Lead                                         | 0.0022    | 0.002     | 0.00702   | 0.00054    |                                                  |                                           |
| Zinc                                         | 0.329     | 0.693     | 0.279     | 0.036      |                                                  | 0.0365 (dissolved)                        |
| pH (field measurement)                       | 5.4       | 6.32      | 6.55      |            |                                                  |                                           |
| TSS by USEPA Method 160.2 (mg/L)             | ND<10.0   | ND<10.0   | 42        |            |                                                  |                                           |
| Oil and Grease by USEPA Method<br>1664/1664A | ND<4.85   | ND<4.76   | ND<4.76   |            |                                                  |                                           |
| PAHs by USEPA Method 8270M-SIM (ug/L)        |           |           |           |            |                                                  |                                           |
| Acenaphthene                                 | ND<0.0952 | ND<0.0952 | ND<0.0980 | 0.2        |                                                  |                                           |
| Acenaphthylene                               | ND<0.0952 | ND<0.0952 | ND<0.0980 | 0.2        |                                                  |                                           |
| Anthracene                                   | ND<0.0952 | ND<0.0952 | ND<0.0980 | 0.2        |                                                  |                                           |
| Benz(a)anthracene                            | ND<0.0952 | ND<0.0952 | ND<0.0980 | 0.018      | 0.001                                            | 0.03                                      |
| Benzo(a)pyrene                               | ND<0.0952 | ND<0.0952 | ND<0.0980 | 0.018      | 0.0001                                           | 0.01                                      |
| Benzo(b)fluoranthene                         | ND<0.0952 | ND<0.0952 | ND<0.0980 | 0.018      | 0.001                                            |                                           |
| Benzo(g,h,i)perylene                         | ND<0.0952 | ND<0.0952 | ND<0.0980 | 0.2        |                                                  |                                           |
| Benzo(k)fluoranthene                         | ND<0.0952 | ND<0.0952 | ND<0.0980 | 0.018      | 0.001                                            |                                           |
| Chrysene                                     | ND<0.0952 | ND<0.0952 | ND<0.0980 | 0.018      | 0.001                                            |                                           |
| Dibenz(a,h)anthracene                        | ND<0.190  | ND<0.190  | ND<0.0196 | 0.018      | 0.0001                                           |                                           |
| Fluoranthene                                 | ND<0.0952 | ND<0.0952 | ND<0.0980 | 0.2        |                                                  |                                           |

## Table A-4 May 7, 2006, Stormwater Sampling Data Sulzer Pumps Facility 2007 SCE

| Outfall                    | Outfall C | Outfall D | Outfall E | JSCS Water | Portland Harbor USEPA<br>PRG for RAO 3 Protected | Portland Harbor USEPA<br>PRG RAO 7 Direct |
|----------------------------|-----------|-----------|-----------|------------|--------------------------------------------------|-------------------------------------------|
| Sample Collection Location | Outfall C | CB-5      | CB-15     | SLV        | Water Uses, Surface Water                        | Contact/Ingestion,<br>Surface Water       |
| Fluorene                   | ND<0.0952 | ND<0.143  | ND<0.196  | 0.2        |                                                  |                                           |
| Indeno(1,2,3-cd)pyrene     | ND<0.0952 | ND<0.0952 | ND<0.0980 | 0.018      | 0.001                                            |                                           |
| Naphthalene                | ND<0.0952 | ND<0.190  | ND<0.147  | 0.2        |                                                  | 12                                        |
| Phenanthrene               | ND<0.0952 | ND<0.0952 | ND<0.147  | 0.2        |                                                  |                                           |
| Pyrene                     | ND<0.0952 | ND<0.0952 | ND<0.0980 | 0.2        |                                                  |                                           |

NOTES:

Stormwater sampling conducted by Sterling Technologies, LLC, during the May 7, 2006 USEPA defined rain event.

Yellow highlighting indicates analyte detected result exceeds one or more screening criteria.

Blue highlight indicates method detection limit of non-detect result exceeds screening criterion.

-- = not analyzed/not applicable.

JSCS = Joint Source Control Strategy.

mg/L = milligrams per liter.

ND = not detected at concentration greater than laboratory method reporting limit.

PAH = polycyclic aromatic hydrocarbon.

PRG = preliminary remediation goal.

RAO = remedial action objective.

SCE = source control evaluation.

SLV = screening level value.

TSS = total suspended solids.

ug/L = micrograms per liter.

USEPA = U.S. Environmental Protection Agency.

Table A-5 Historical Stormwater Sampling Data Sulzer Pumps Facility 2015 SCE

| Outfall                                                    |            | Out        | fall C       |            | Outfall C-1 |            | Out        | fall D       |            |
|------------------------------------------------------------|------------|------------|--------------|------------|-------------|------------|------------|--------------|------------|
| Sample ID                                                  |            | Out        | fall-C       |            | Outfall C-1 |            | Out        | fall-D       |            |
| Sample Collection Location                                 | Outfall-C  | Outfall-C  | Outfall-C    | Outfall-C  | Outfall C-1 | manhole    | manhole    | CB-5         | CB-5       |
| Date                                                       | 10/03/2008 | 11/12/2007 | 12/13/2006   | 05/07/2006 | 10/03/2008  | 10/03/2008 | 11/12/2007 | 12/13/2006   | 05/07/2006 |
| Total Metals by USEPA Method 200 Series (mg/L)             | 10,00,200  | 11/12/2007 | 12, 10, 2000 | 00/0//2000 | 10,00,200   | 10,00,200  | 11/12/2007 | 12, 10, 2000 | 00/01/2000 |
| Aluminum                                                   | 0.507      | ND<0.1     | ND<0.10      |            | 5.37        | ND<0.1     | ND<0.1     | ND<0.10      |            |
| Antimony                                                   | ND<0.001   |            | ND<0.001     |            | 0.00426     | ND<0.001   |            | ND<0.001     |            |
| Arsenic                                                    | ND<0.001   |            |              |            | 0.0024      | ND<0.001   |            |              |            |
| Barium                                                     | 0.026      | 0.0179     | 0.0126       |            | 0.137       | 0.0128     | 0.0126     | 0.014        |            |
| Beryllium                                                  | ND<0.001   | ND<0.001   | ND<0.001     |            | ND<0.001    | ND<0.001   | ND<0.001   | ND<0.001     |            |
| Cadmium                                                    | ND<0.001   | ND<0.001   | ND<0.001     |            | 0.00446     | ND<0.001   | ND<0.001   | ND<0.001     |            |
| Calcium                                                    | 2.31       | 1.90       | 3.5          |            | 7.33        | 1.0        | 0.873      | 1.4          |            |
| Chromium                                                   | 0.00271    | ND<0.001   | ND<0.001     | ND<0.0010  | 0.0203      | 0.00211    | ND<0.001   | ND<0.001     | 0.00141    |
| Cobalt                                                     | ND<0.002   | ND<0.002   | ND<0.010     |            | 0.00358     | ND<0.002   | ND<0.002   | ND<0.010     |            |
| Copper                                                     | 0.0163     | 0.00874    | 0.00684      | 0.0282     | 0.0722      | 0.0181     | 0.0119     | 0.00875      | 0.0332     |
| Iron                                                       | 0.958      | 0.232      | 0.13         |            | 10.9        | 0.238      | 0.141      | ND<0.10      |            |
| Lead                                                       | 0.00559    | 0.00158    | 0.00138      | 0.0022     | 0.0737      | 0.00564    | 0.00133    | 0.00108      | 0.002      |
| Magnesium                                                  | 0.335      | 0.258      | 0.84         |            | 1.76        | 0.228      | 0.151      | 0.28         |            |
| Manganese                                                  | 0.0972     | 0.0292     | 0.0463       |            | 0.454       | 0.325      | 0.0206     | 0.0138       |            |
| Mercury                                                    | ND<0.0001  | ND<0.0002  | ND<0.0002    |            | ND<0.0001   | ND<0.0001  | ND<0.0002  | ND<0.0002    |            |
| Nickel                                                     | 0.00322    | 0.00261    | 0.00159      |            | 0.0335      | 0.00216    | 0.00982    | 0.00217      |            |
| Potassium                                                  | 0.395      | 0.279      | ND<0.50      |            | 1.68        | 0.268      | 0.214      | ND<0.50      |            |
| Selenium                                                   | ND<0.001   | ND<0.001   | ND<0.001     |            | ND<0.001    | ND<0.001   | ND<0.001   | ND<0.001     |            |
| Silver                                                     | ND<0.002   | ND<0.002   | ND<0.002     |            | ND<0.002    | ND<0.002   | ND<0.002   | ND<0.002     |            |
| Sodium                                                     | 0.589      | 0.946      | 6.9          |            | 4.27        | 0.32       | 0.732      | 2.2          |            |
| Thallium                                                   | ND<0.001   | ND<0.001   | ND<0.001     |            | ND<0.001    | ND<0.001   | ND<0.001   | ND<0.001     |            |
| Vanadium                                                   | 0.00283    | ND<0.002   | ND<0.010     |            | 0.025       | 0.00274    | ND<0.002   | ND<0.010     |            |
| Zinc                                                       | 0.173      | 0.208      | 0.568        | 0.329      | 0.696       | 0.0758     | 0.0723     | 0.194        | 0.693      |
| pH by USEPA Method 6020                                    | 6.28       | 6.46       | 6.42         | 5.4        | 6.84        | 5.98       | 6.33       | 6.22         | 6.32       |
| TSS by USEPA Method 160.2 (mg/L)                           | 15.0       | ND<5.0     | ND<5.0       | ND<10.0    | 106         | 6.0        | ND<5.0     | ND<5.0       | ND<10.0    |
| Oil and Grease by<br>USEPA Method 1664A (mg/L)             | ND<4.81    | ND<5.0     | ND<5.0       | ND<4.85    | 8.66        | ND<4.76    | ND<4.96    | ND<5.0       | ND<4.76    |
| Diesel-Range Hydrocarbons by Method NWTPH-Dx (mg/L)        | 0.254      | ND<0.253   | ND<0.250     |            | 1.16        | 0.42       | ND<0.250   | 0.329        |            |
| Heavy-Oil-Range Hydrocarbons by Method NWTPH-<br>Dx (mg/L) | 0.837      | ND<0.505   | ND<0.500     |            | 6.25        | 0.842      | ND<0.500   | ND<0.500     |            |
| PCBs by USEPA Method 8082 <sup>a</sup> (ug/L)              |            |            |              |            |             |            |            |              |            |
| Aroclor 1016                                               | ND<0.01    | ND<0.021   | ND<0.077     |            | ND<0.01     | ND<0.01    | ND<0.021   | ND<0.077     |            |
| Aroclor 1221                                               | ND<0.03    | ND<0.021   | ND<0.16      |            | ND<0.03     | ND<0.03    | ND<0.021   | ND<0.16      |            |
| Aroclor 1232                                               | ND<0.02    | ND<0.021   | ND<0.18      |            | ND<0.03     | ND<0.02    | ND<0.021   | ND<0.18      |            |
| Aroclor 1242                                               | ND<0.03    | ND<0.021   | ND<0.099     |            | ND<0.03     | ND<0.03    | ND<0.021   | ND<0.099     |            |
| Aroclor 1248                                               | ND<0.03    | ND<0.021   | ND<0.039     |            | ND<0.03     | ND<0.03    | ND<0.021   | ND<0.039     |            |
| Aroclor 1254                                               | ND<0.01    | ND<0.021   | ND<0.12      |            | ND<0.01     | ND<0.01    | ND<0.021   | ND<0.12      |            |
| Aroclor 1260                                               | ND<0.02    | ND<0.021   | ND<0.16      |            | ND<0.02     | ND<0.02    | ND<0.021   | ND<0.16      |            |
| Total PCBs                                                 | ND         | ND         | ND           |            | ND          | ND         | ND         | ND           |            |

Table A-5 Historical Stormwater Sampling Data Sulzer Pumps Facility 2015 SCE

| Outfall                                                  |            | Out        | fall C     |            | Outfall C-1 |            | Out        | fall D     |            |
|----------------------------------------------------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|
| Sample ID                                                |            | Out        | fall-C     |            | Outfall C-1 |            | Out        | fall-D     |            |
| Sample Collection Location                               | Outfall-C  | Outfall-C  | Outfall-C  | Outfall-C  | Outfall C-1 | manhole    | manhole    | CB-5       | CB-5       |
| Date                                                     | 10/03/2008 | 11/12/2007 | 12/13/2006 | 05/07/2006 | 10/03/2008  | 10/03/2008 | 11/12/2007 | 12/13/2006 | 05/07/2006 |
| Phthalates by USEPA Method 8270C-SIM <sup>a</sup> (ug/L) |            |            |            |            |             |            |            |            |            |
| Bis (2-ethylhexyl) phthalate                             | ND<1.9     | ND<1.27    | ND<1.0     |            | 6.63 J      | ND<1.89    | ND<1.11    | 1.5        |            |
| Benzylbutyl phthalate                                    | ND<1.9     | ND<1.27    | ND<1.0     |            | ND<4.72     | ND<1.89    | ND<1.11    | ND<1.0     |            |
| Diethyl phthalate                                        | ND<1.9     | ND<1.27    | ND<1.0     |            | ND<4.72     | ND<1.89    | ND<1.11    | ND<1.0     |            |
| Dimethyl phthalate                                       | ND<1.9     | ND<1.27    | ND<1.0     |            | ND<4.72     | ND<1.89    | ND<1.11    | ND<1.0     |            |
| Di-n-butyl phthalate                                     | ND<1.9     | ND<1.27    | ND<1.0     |            | ND<4.72     | ND<1.89    | ND<1.11    | ND<1.0     |            |
| Di-n-octyl phthalate                                     | ND<1.9     | ND<1.27    | ND<10      |            | ND<4.72     | ND<1.89    | ND<1.11    | ND<1.0     |            |
| PAHs by USEPA Method 8270C-SIM <sup>a</sup> (ug/L)       |            |            |            |            |             |            |            |            |            |
| Acenaphthene                                             | ND<0.0381  | ND<0.0159  | ND<0.0018  | ND<0.0952  | ND<0.189    | ND<0.0377  | ND<0.0140  | ND<0.0018  | ND<0.0952  |
| Acenaphthylene                                           | ND<0.0381  | ND<0.0167  | ND<0.0014  | ND<0.0952  | ND<0.189    | ND<0.0377  | ND<0.0147  | ND<0.0014  | ND<0.0952  |
| Anthracene                                               | ND<0.0381  | ND<0.0156  | ND<0.00045 | ND<0.0952  | ND<0.189    | ND<0.0377  | ND<0.0137  | ND<0.00045 | ND<0.0952  |
| Benz(a)anthracene                                        | ND<0.0381  | ND<0.0186  | ND<0.0010  | ND<0.0952  | ND<0.377    | ND<0.0377  | 0.0181 J   | ND<0.0010  | ND<0.0952  |
| Benzo(a)pyrene                                           | ND<0.0381  | ND<0.0129  | ND<0.0011  | ND<0.0952  | ND<0.189    | ND<0.0377  | ND<0.0113  | ND<0.0011  | ND<0.0952  |
| Benzo(b)fluoranthene                                     | ND<0.0381  | ND<0.0156  | ND<0.0010  | ND<0.0952  | ND<0.189    | ND<0.0377  | ND<0.0137  | ND<0.0010  | ND<0.0952  |
| Benzo(g,h,i)perylene                                     | ND<0.0381  | ND<0.0167  | ND<0.0011  | ND<0.0952  | ND<0.189    | ND<0.0377  | ND<0.0147  | ND<0.0011  | ND<0.0952  |
| Benzo(k)fluoranthene                                     | ND<0.0381  | ND<0.0168  | ND<0.0021  | ND<0.0952  | ND<0.189    | ND<0.0377  | ND<0.0148  | ND<0.0021  | ND<0.0952  |
| Chrysene                                                 | ND<0.0381  | 0.0125 J   | ND<0.00068 | ND<0.0952  | ND<0.377    | ND<0.0377  | ND<0.00724 | ND<0.00068 | ND<0.0952  |
| Dibenz(a,h)anthracene                                    | ND<0.0381  | 0.0479 J   | ND<0.00096 | ND<0.190   | ND<0.0583   | ND<0.0377  | 0.0419 J   | ND<0.00096 | ND<0.190   |
| Fluoranthene                                             | 0.0448 J   | 0.0227 J   | ND<0.00065 | ND<0.0952  | 0.348 J     | ND<0.0377  | 0.0167 J   | ND<0.00065 | ND<0.0952  |
| Fluorene                                                 | ND<0.0381  | ND<0.0349  | ND<0.0011  | ND<0.0952  | ND<0.189    | ND<0.0377  | ND<0.0307  | ND<0.0011  | ND<0.143   |
| Indeno(1,2,3-cd)pyrene                                   | ND<0.0381  | 0.0296 J   | ND<0.0012  | ND<0.0952  | ND<0.189    | ND<0.0377  | 0.0255 J   | ND<0.0012  | ND<0.0952  |
| Naphthalene                                              | ND<0.0381  | 0.0170 J   | ND<0.011   | ND<0.0952  | ND<0.189    | ND<0.0377  | 0.0180 J   | ND<0.011   | ND<0.190   |
| Phenanthrene                                             | 0.0458 J   | ND<0.0405  | ND<0.00073 | ND<0.0952  | 0.333 J     | ND<0.0377  | ND<0.0356  | 0.054      | ND<0.0952  |
| Pyrene                                                   | ND<0.0381  | 0.0171 J   | ND<0.00083 | ND<0.0952  | 0.339 J     | ND<0.0377  | ND<0.0149  | ND<0.00083 | ND<0.0952  |

Table A-5 Historical Stormwater Sampling Data Sulzer Pumps Facility 2015 SCE

| Outfall                                                    | Outfall E                                      |               |               |            |            |            |                  | City Outfall 15 |            |               |            |            |            |
|------------------------------------------------------------|------------------------------------------------|---------------|---------------|------------|------------|------------|------------------|-----------------|------------|---------------|------------|------------|------------|
| Sample ID                                                  | DB-E                                           |               |               | Outfall-E  |            |            | OF-15 Outfall-15 |                 |            |               |            |            | JSCS Water |
| Sample Collection Location                                 | CB-15                                          | CB-14 & CB-15 | CB-14 & CB-15 | CB-14      | CB-15      | CB-15      | CB-16            | CB-16           | CB-16 & 17 | CB-16 & CB-17 | CB-16      | CB-17      | SLV        |
| Date                                                       | 07/22/2014                                     | 11/18/2013    | 10/03/2008    | 11/12/2007 | 12/13/2006 | 05/07/2006 | 07/22/2014       | 11/18/2013      | 10/03/2008 | 11/12/2007    | 12/13/2006 | 05/07/2006 |            |
|                                                            | Total Metals by USEPA Method 200 Series (mg/L) |               |               |            |            |            |                  |                 |            |               |            |            |            |
| Aluminum                                                   | 0.603                                          | 1.13          | 1.27          | ND<0.1     | 0.24       |            | 0.411            | 7.88            | 0.166      | 0.105         | 2.3        |            | 0.05-0.2   |
| Antimony                                                   | 0.00116                                        | ND<0.001      | 0.0012        |            | ND<0.001   |            | ND<0.001         | ND<0.001        | ND<0.001   |               | ND<0.001   |            | 0.006      |
| Arsenic                                                    | ND<0.001                                       | ND<0.001      | ND<0.001      |            |            |            | ND<0.001         | 0.00108         | ND<0.001   |               |            |            | 0.000045   |
| Barium                                                     | 0.0619                                         | 0.157         | 0.0454        | 0.0228     | 0.0361     |            | 0.0218           | 0.0992          | 0.0928     | 0.0865        | 0.0563     |            |            |
| Beryllium                                                  | ND<0.001                                       | ND<0.0002     | ND<0.001      | ND<0.001   | ND<0.001   |            | ND<0.001         | ND<0.0002       | ND<0.001   | ND<0.001      | ND<0.001   |            |            |
| Cadmium                                                    | 0.00264                                        | 0.00148       | ND<0.001      | ND<0.001   | ND<0.001   |            | ND<0.001         | 0.000233        | ND<0.001   | ND<0.001      | ND<0.001   |            | 0.000094   |
| Calcium                                                    | 1.960                                          | 2.30          | 5.58          | 2.3        | 4.3        |            | 3.66             | 10.80           | 7.74       | 5.27          | 3.9        |            |            |
| Chromium                                                   | 0.00659                                        | 0.00726       | 0.00293       | ND<0.001   | 0.0016     | 0.00471    | ND<0.001         | 0.00824         | 0.0012     | ND<0.001      | 0.00318    | ND<0.0010  | 0.1        |
| Cobalt                                                     | 0.00172                                        | 0.00152       | ND<0.002      | ND<0.002   | ND<0.010   |            | 0.00544          | 0.00501         | ND<0.002   | ND<0.002      | ND<0.010   |            |            |
| Copper                                                     | 0.0541                                         | 0.0346        | 0.0423        | 0.0355     | 0.0137     | 0.0707     | 0.00946          | 0.0253          | 0.00406    | 0.00522       | 0.0074     | ND<0.0020  | 0.0027     |
| Iron                                                       | 4.38                                           | 3.350         | 3.73          | 0.324      | 0.82       |            | 0.341            | 8.2             | 1.1        | 0.783         | 3.4        |            |            |
| Lead                                                       | 0.0163                                         | 0.0233        | 0.00688       | 0.00173    | 0.003      | 0.00702    | 0.000656         | 0.0176          | ND<0.001   | ND<0.001      | 0.00743    | ND<0.0010  | 0.00054    |
| Magnesium                                                  | 0.341                                          | 0.526         | 0.839         | 0.313      | 0.62       |            | 1.15             | 3.31            | 2.15       | 1.38          | 1.3        |            |            |
| Manganese                                                  | 0.143                                          | 0.121         | 0.151         | 0.0223     | 0.0456     |            | 0.0952           | 0.485           | 0.434      | 0.188         | 0.093      |            | 0.050      |
| Mercury                                                    | ND<0.00008                                     | ND<0.00008    | ND<0.0001     | ND<0.0002  | ND<0.0002  |            | ND<0.00008       | ND<0.00008      | ND<0.0001  | ND<0.0002     | ND<0.0002  |            | 0.00077    |
| Nickel                                                     | 0.00822                                        | 0.00631       | 0.00333       | 0.00362    | 0.0036     |            | 0.00224          | 0.00891         | 0.00167    | 0.00221       | 0.00217    |            | 0.016      |
| Potassium                                                  | 0.749                                          | 0.473         | 1.26          | 1.21       | 0.58       |            | 2.61             | 1.61            | 2.85       | 2.15          | 0.95       |            |            |
| Selenium                                                   | ND<0.001                                       | ND<0.001      | ND<0.001      | ND<0.001   | ND<0.001   |            | ND<0.001         | ND<0.001        | ND<0.001   | ND<0.001      | ND<0.001   |            | 0.005      |
| Silver                                                     | ND<0.0002                                      | ND<0.0002     | ND<0.002      | ND<0.002   | ND<0.002   |            | ND<0.0002        | ND<0.0002       | ND<0.002   | ND<0.002      | ND<0.002   |            | 0.00012    |
| Sodium                                                     | 0.636                                          | 1.49          | 1.26          | 0.906      | 3.9        |            | 1.59             | 5.57            | 1.91       | 1.84          | 2.6        |            |            |
| Thallium                                                   | ND<0.0002                                      | ND<0.0002     | ND<0.001      | ND<0.001   | ND<0.001   |            | ND<0.0002        | ND<0.0002       | ND<0.001   | ND<0.001      | ND<0.001   |            |            |
| Vanadium                                                   | 0.00331                                        | 0.00389       | 0.00579       | ND<0.002   | ND<0.010   |            | ND<0.002         | 0.0146          | ND<0.002   | ND<0.002      | ND<0.010   |            |            |
| Zinc                                                       | 0.313                                          | 0.238         | 0.105         | 0.121      | 0.227      | 0.279      | 0.0282           | 0.0822          | 0.00909    | 0.00802       | 0.0239     | 0.0119     | 0.036      |
| pH by USEPA Method 6020                                    | 6.42                                           | 6.87          | 6.77          | 6.83       | 6.56       | 6.55       | 6.82             | 7.22            | 6.87       | 6.83          | 6.84       | 6.62       |            |
| TSS by USEPA Method 160.2 (mg/L)                           | 43.0                                           | 35.0          | 27.0          | 8.0        | 5.0        | 42         | 5.0              | 86.0            | 7.0        | 8.0           | 15.0       | ND<10.0    |            |
| Oil and Grease by<br>USEPA Method 1664A (mg/L)             | ND<4.76                                        | ND<4.76       | ND<4.76       | ND<5.1     | ND<5.0     | ND<4.76    | ND<4.81          | ND<4.72         | ND<5.0     | ND<5.1        | ND<5.0     | ND<4.81    |            |
| Diesel-Range Hydrocarbons by Method NWTPH-Dx (mg/L)        | ND<0.192                                       | ND<0.189      | 0.295         | 0.556      | ND<0.250   |            | ND<0.192         | ND<0.943        | ND<0.240   | 0.556         | ND<0.250   |            | -          |
| Heavy-Oil-Range Hydrocarbons by Method NWTPH-<br>Dx (mg/L) | 0.717                                          | 1.08          | 0.612         | 2.65       | ND<0.500   |            | ND<0.385         | 1.93            | ND<0.481   | 2.65          | ND<0.500   |            |            |
| PCBs by USEPA Method 8082 <sup>a</sup> (ug/L)              |                                                | •             |               |            | •          | •          | •                | •               | •          | •             | •          | •          |            |
| Aroclor 1016                                               | ND<0.0192                                      | ND<0.0190     | ND<0.01       | ND<0.021   | ND<0.077   |            | ND<0.0192        | ND<0.0190       | ND<0.01    | ND<0.021      | ND<0.077   |            | 0.96       |
| Aroclor 1221                                               | ND<0.0192                                      | ND<0.0190     | ND<0.03       | ND<0.021   | ND<0.16    |            | ND<0.0192        | ND<0.0190       | ND<0.03    | ND<0.021      | ND<0.16    |            | 0.034      |
| Aroclor 1232                                               | ND<0.0192                                      | ND<0.0190     | ND<0.02       | ND<0.021   | ND<0.18    |            | ND<0.0192        | ND<0.0190       | ND<0.02    | ND<0.021      | ND<0.18    |            | 0.034      |
| Aroclor 1242                                               | 0.0367 J                                       | ND<0.0190     | ND<0.03       | ND<0.021   | ND<0.099   |            | ND<0.0192        | ND<0.0190       | ND<0.03    | ND<0.021      | ND<0.099   |            | 0.034      |
| Aroclor 1248                                               | ND<0.0192                                      | ND<0.0190     | ND<0.03       | ND<0.021   | ND<0.039   |            | ND<0.0192        | ND<0.0190       | ND<0.03    | ND<0.021      | ND<0.039   |            | 0.034      |
| Aroclor 1254                                               | 0.0273 J                                       | ND<0.0190     | ND<0.01       | ND<0.021   | ND<0.12    |            | ND<0.0192        | ND<0.0190       | ND<0.01    | ND<0.021      | ND<0.12    |            | 0.033      |
| Aroclor 1260                                               | 0.11                                           | 0.0569        | ND<0.02       | ND<0.021   | ND<0.16    |            | ND<0.0192        | ND<0.0190       | ND<0.02    | ND<0.021      | ND<0.16    |            | 0.034      |
| Total PCBs                                                 | 0.174 J                                        | 0.0569        | ND            | ND         | ND         |            | ND               | ND              | ND         | ND            | ND         |            | 0.000064   |

Table A-5 Historical Stormwater Sampling Data Sulzer Pumps Facility 2015 SCE

| Outfall                                                  | Outfall E  |                |               |            |            |                  | City Outfall 15 |            |            |               |            |            |       |
|----------------------------------------------------------|------------|----------------|---------------|------------|------------|------------------|-----------------|------------|------------|---------------|------------|------------|-------|
| Sample ID                                                | DB-E       | DB-E Outfall-E |               |            |            | OF-15 Outfall-15 |                 |            |            |               |            | JSCS Water |       |
| Sample Collection Location                               | CB-15      | CB-14 & CB-15  | CB-14 & CB-15 | CB-14      | CB-15      | CB-15            | CB-16           | CB-16      | CB-16 & 17 | CB-16 & CB-17 | CB-16      | CB-17      | SLV   |
| Date                                                     | 07/22/2014 | 11/18/2013     | 10/03/2008    | 11/12/2007 | 12/13/2006 | 05/07/2006       | 07/22/2014      | 11/18/2013 | 10/03/2008 | 11/12/2007    | 12/13/2006 | 05/07/2006 |       |
| Phthalates by USEPA Method 8270C-SIM <sup>a</sup> (ug/L) |            |                |               |            |            |                  |                 |            |            |               |            |            |       |
| Bis (2-ethylhexyl) phthalate                             | 16.2 B     | ND<4.19        | ND<1.89       | ND<2.30    | ND<1.0     |                  | ND<0.769        | ND<4.15    | ND<0.943   | ND<2.30       | 1.4        |            | 2.2   |
| Benzylbutyl phthalate                                    | ND<1.89    | ND<5.71        | ND<1.89       | ND<2.30    | ND<1.0     |                  | ND<0.769        | ND<5.66    | ND<0.943   | ND<2.30       | ND<1.0     |            | 3     |
| Diethyl phthalate                                        | ND<1.89    | ND<5.71        | ND<1.89       | ND<2.30    | ND<1.0     |                  | ND<0.769        | ND<5.66    | ND<0.943   | ND<2.30       | ND<1.0     |            | 3     |
| Dimethyl phthalate                                       | ND<1.89    | ND<5.71        | ND<1.89       | ND<2.30    | ND<1.0     |                  | 0.968 J         | ND<5.66    | ND<0.943   | ND<2.30       | ND<1.0     |            | 3     |
| Di-n-butyl phthalate                                     | ND<1.89    | ND<5.71        | ND<1.89       | ND<2.30    | ND<1.0     |                  | ND<0.769        | ND<5.66    | ND<0.943   | ND<2.30       | ND<1.0     |            | 3     |
| Di-n-octyl phthalate                                     | 6.7        | ND<5.71        | ND<1.89       | ND<2.30    | ND<1.0     |                  | ND<0.769        | ND<5.66    | ND<0.943   | ND<2.30       | ND<1.0     |            | 3     |
| PAHs by USEPA Method 8270C-SIM <sup>a</sup> (ug/L)       |            |                |               |            |            |                  |                 |            |            |               |            |            |       |
| Acenaphthene                                             | ND<0.0943  | ND<0.0381      | ND<0.0377     | ND<0.0290  | ND<0.0018  | ND<0.0980        | ND<0.0385       | ND<0.0377  | ND<0.0189  | ND<0.0156     | ND<0.0018  | ND<0.0971  | 0.2   |
| Acenaphthylene                                           | ND<0.0943  | ND<0.0381      | ND<0.0377     | ND<0.0303  | ND<0.0014  | ND<0.0980        | ND<0.0385       | ND<0.0377  | ND<0.0189  | ND<0.0163     | ND<0.0014  | ND<0.0971  | 0.2   |
| Anthracene                                               | ND<0.0943  | ND<0.0381      | ND<0.0377     | ND<0.0283  | ND<0.00045 | ND<0.0980        | ND<0.0385       | ND<0.0377  | ND<0.0189  | ND<0.0152     | ND<0.00045 | ND<0.0971  | 0.2   |
| Benz(a)anthracene                                        | ND<0.0943  | ND<0.0381      | ND<0.0377     | 0.0352 J   | ND<0.0010  | ND<0.0980        | ND<0.0385       | ND<0.0377  | ND<0.0189  | ND<0.0181     | ND<0.0010  | ND<0.0971  | 0.018 |
| Benzo(a)pyrene                                           | ND<0.142   | 0.0417 J       | ND<0.0377     | ND<0.0234  | ND<0.0011  | ND<0.0980        | ND<0.0577       | 0.0434 J   | ND<0.0189  | ND<0.0126     | ND<0.0011  | ND<0.0971  | 0.018 |
| Benzo(b)fluoranthene                                     | ND<0.0943  | ND<0.0381      | ND<0.0377     | 0.0291 J   | ND<0.0010  | ND<0.0980        | ND<0.0385       | ND<0.0377  | ND<0.0189  | ND<0.0152     | ND<0.0010  | ND<0.0971  | 0.018 |
| Benzo(g,h,i)perylene                                     | ND<0.0943  | ND<0.0381      | ND<0.0377     | ND<0.0303  | ND<0.0011  | ND<0.0980        | ND<0.0385       | ND<0.0377  | ND<0.0377  | ND<0.0163     | ND<0.0011  | ND<0.0971  | 0.2   |
| Benzo(k)fluoranthene                                     | ND<0.0943  | ND<0.0381      | ND<0.0377     | ND<0.0306  | ND<0.0021  | ND<0.0980        | ND<0.0385       | ND<0.0377  | ND<0.0189  | ND<0.0164     | ND<0.0021  | ND<0.0971  | 0.018 |
| Chrysene                                                 | ND<0.0943  | ND<0.0381      | ND<0.0377     | 0.030 J    | ND<0.00068 | ND<0.0980        | ND<0.0385       | ND<0.0377  | ND<0.0189  | ND<0.00805    | ND<0.00068 | ND<0.0971  | 0.018 |
| Dibenz(a,h)anthracene                                    | ND<0.0943  | ND<0.0381      | ND<0.0377     | 0.0910 J   | ND<0.00096 | ND<0.0196        | ND<0.0385       | ND<0.0377  | ND<0.0377  | 0.0464 J      | ND<0.00096 | ND<0.194   | 0.018 |
| Fluoranthene                                             | 0.108 J    | 0.0520 J       | ND<0.0377     | 0.0686 J   | ND<0.00065 | ND<0.0980        | ND<0.0385       | ND<0.0377  | ND<0.0189  | ND<0.00963    | ND<0.00065 | ND<0.0971  | 0.2   |
| Fluorene                                                 | ND<0.0943  | ND<0.0381      | ND<0.0377     | ND<0.0634  | ND<0.0011  | ND<0.196         | ND<0.0385       | ND<0.0377  | ND<0.0189  | ND<0.0341     | ND<0.0011  | ND<0.0971  | 0.2   |
| Indeno(1,2,3-cd)pyrene                                   | ND<0.0943  | ND<0.0381      | ND<0.0377     | 0.0619 J   | ND<0.0012  | ND<0.0980        | ND<0.0385       | ND<0.0377  | ND<0.0377  | 0.0208 J      | ND<0.0012  | ND<0.0971  | 0.018 |
| Naphthalene                                              | ND<0.189   | ND<0.0762      | 0.0795        | 0.0466 J   | ND<0.011   | ND<0.147         | ND<0.0769       | ND<0.0755  | ND<0.0189  | ND<0.0159     | ND<0.011   | ND<0.0971  | 0.2   |
| Phenanthrene                                             | 0.210      | 0.0623 J       | 0.0718 J      | 0.135      | ND<0.00073 | ND<0.147         | 0.0425 J        | ND<0.0377  | ND<0.0189  | ND<0.0395     | ND<0.00073 | ND<0.0971  | 0.2   |
| Pyrene                                                   | ND<0.0943  | 0.0443 J       | ND<0.0377     | 0.0739 J   | ND<0.00083 | ND<0.0980        | ND<0.0385       | ND<0.0377  | ND<0.0189  | ND<0.0165     | ND<0.00083 | ND<0.0971  | 0.2   |

NOTES:

Chemical analysis was performed by Apex Laboratories, LLC, of Tigard, Oregon; Analytical Resources, Inc., of Tukwila, Washington; and Keystone Laboratories of Newton, Iowa.

Yellow highlighting indicates analyte detected result exceeds one or more screening criteria.

Blue highlight indicates MDL of non-detect result exceeds screening criterion.

-- = not analyzed/applicable,

B = Analyte detected in associated blank at a level above the MRL.

J = Estimated result. Result detected below lowest point of calibration curve but above statistical MDL.

JSCS = Joint Source Control Strategy.

MDL = method detection limit.

mg/L = milligrams per liter.

MRL = method reporting limit.

ND = not detected at a concentration above laboratory MDL and/or the MRL.

PAH = polycyclic aromatic hydrocarbon.

PCB = polychlorinated biphenyl.

SCE = source control evaluation.

SLV = screening level value.

TSS = total suspended solids.

ug/L = micrograms per liter.

USEPA = U.S. Environmental Protection Agency.

<sup>a</sup>Laboratory MDL reported in table.

| Sample Point             | SL-1 (Clarus Effluent) | SL-1 (Clarus Effluent) | SL-1 (Clarus Effluent) | SL-1 (Clarus Effluent) |
|--------------------------|------------------------|------------------------|------------------------|------------------------|
| Sample Date              | 11/4/2013              | 12/17/2013             | 2/19/2014              | 3/27/2014              |
| 4,4'-dde (p,p'-ddx)      | ND<0.0000472           |                        | ND<0.00000943          |                        |
| 4,4'-ddt                 | ND<0.0000283           |                        | ND<0.000566            |                        |
| acenaphthene             | ND<0.000952            |                        | ND<0.000952            |                        |
| aldrin                   | ND<0.000283            |                        | ND<0.000566            |                        |
| aluminum                 | ND<0.05                | ND<0.0801              | 0.192                  | 0.30                   |
| anthracene               | ND<0.000952            |                        | ND<0.000952            |                        |
| benzo(a)anthracene       | ND<0.000952            |                        | ND<0.000952            |                        |
| benzo(a)pyrene           | ND<0.000952            |                        | ND<0.000952            |                        |
| benzo(b)fluoranthene     | ND<0.000952            |                        | ND<0.000952            |                        |
| benzo(k)fluoranthene     | ND<0.000952            |                        | ND<0.000952            |                        |
| cadmium                  | ND<0.0002              | 0.000211               | ND<0.0002              | 0.000333               |
| chlordane (tech)         | ND<0.000175            |                        | ND<0.000708            |                        |
| chromium                 | ND<0.001               | ND<0.001               | 0.00131                | 0.00279                |
| chrysene                 | ND<0.000952            |                        | ND<0.000952            |                        |
| cod                      | 18.70                  | 14.90                  | 10                     | 16                     |
| copper                   | 0.0076                 | 0.011                  | 0.0129                 | 0.021                  |
| cyanide - total          | ND<0.005               |                        | ND<0.005               |                        |
| dibenzo(a,h)anthracene   | ND<0.000952            |                        | ND<0.000952            |                        |
| dieldrin                 | ND<0.000189            |                        | ND<0.000377            |                        |
| fluoranthene             | ND<0.000952            |                        | ND<0.000952            |                        |
| fluorene                 | ND<0.000952            |                        | ND<0.000952            |                        |
| hexachlorobenzene        |                        | ND<0.000606            | ND<0.000566            |                        |
| indeno (1,2,3-cd) pyrene | ND<0.000952            |                        | ND<0.000952            |                        |
| iron                     | 0.282                  | 0.261                  | 0.679                  | 1.44                   |
| lead                     | 0.00122                | 0.00358                | 0.00878                | 0.0134                 |
| mercury                  | ND<0.0008              | ND<0.0008              | ND<0.0008              | ND<0.00008             |
| nickel                   | 0.00243                | 0.0024                 | 0.00308                | 0.00609                |
| oil/grease - total       | ND<5                   | ND<4.85                | ND<4.76                | ND<4.76                |
| pcb 1016                 | ND<0.000943            | ND<0.000101            | 0.00072                | 0.000895               |
| pcb 1221                 | ND<0.000943            | ND<0.000101            | ND<0.000943            | ND<0.000943            |
| pcb 1232                 | ND<0.000943            | ND<0.000101            | ND<0.000943            | ND<0.000943            |
| pcb 1242                 | ND<0.000943            | ND<0.000101            | ND<0.000943            | ND<0.000943            |
| pcb 1248                 | ND<0.000943            | ND<0.000101            | ND<0.000943            | ND<0.000943            |
| pcb 1254                 | ND<0.000943            | ND<0.000101            | ND<0.000943            | ND<0.000943            |
| pcb 1260                 | ND<0.0000943           | ND<0.000101            | ND<0.000943            | ND<0.0000943           |
| pcb, total               | <0.000943              | ND<0.000101            | 0.00072                | 0.000895               |
| pentachlorophenol        | <0.00381               |                        | ND<0.00381             |                        |
| рН                       | 6.45                   | 5.63                   | 7.30                   | 6.6                    |
| pyrene                   | ND<0.000952            |                        | ND<0.000952            |                        |
| TSS                      | ND<5                   | ND<5                   | 6.00                   | 21                     |
| zinc                     | 0.0263                 | 0.0373                 | 0.0818                 | 0.167                  |

ND = not detected at a concentration above laboratory MDL and/or the method reporting limit.

<sup>-- =</sup> not analyzed, not applicable.

# Table A-7 2017 Water Quality Parameters Source Control Evaluation Dolan and Company, LLC Portland, Oregon



| Location               | рН   | Temperature<br>(°C) | E Conductivity<br>(uS/cm) | DO (mg/L) | ORP   | Turbidity |  |
|------------------------|------|---------------------|---------------------------|-----------|-------|-----------|--|
| May 11, 2017 Event     |      | •                   |                           |           |       |           |  |
| Outfall C/D (MHSW-4)   | 6.22 | 15.7                | 50.3                      | 6.42      | 127.3 | 8.87 NTU  |  |
| Outfall E (CB-14)      | 4.71 | 16.9                | 62.1                      | 6.65      | 207.0 | 42.8 NTU  |  |
| Outfall E (CB-15)      | 5.63 | 15.6                | 53.3                      | 5.73      | 165.5 | 6.28 NTU  |  |
| October 19, 2017 Event |      |                     |                           |           |       |           |  |
| Outfall C/D (MHSW-4)   | 5.12 | 14.3                | 28.0                      | 6.20      | 123.9 | SC        |  |
| Outfall E (CB-15)      | 5.28 | 12.8                | 16.7                      | 15.4      | 115.5 | CL        |  |
| November 8, 2017 Event |      |                     |                           |           |       |           |  |
| Outfall C/D (MHSW-4)   | 7.11 | 9.2                 | 20.6                      | 8.84      | 74.6  | 6.83 NTU  |  |
| Outfall E (CB-14)      | 7.36 | 6.6                 | 21.4                      | 10.73     | 65.4  | 22.9 NTU  |  |
| Outfall E (CB-15)      | 7.85 | 7.2                 | 43.8                      | 9.14      | 77.6  | 10.19 NTU |  |
| Outfall F (CB-16)      | 7.02 | 6.6                 | 79.6                      | 9.62      | 76.8  | 26.7 NTU  |  |

#### Notes

-- = not analyzed.

°C = degrees Celsius.

uS/cm = microSeimens per centimeter.

mg/L = milligrams per liter.

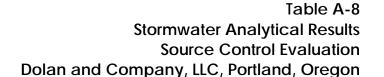
NV = no value.

NTU = nephelometric turbidity units

SC = slightly cloudy.

CL = cloudy.




# Table A-8 2017 Stormwater Analytical Results Source Control Evaluation Dolan and Company, LLC Portland, Oregon

| Basin:                       |                                              |            |                | Basin E    |            | Basin F       |            |             |                       |            |  |
|------------------------------|----------------------------------------------|------------|----------------|------------|------------|---------------|------------|-------------|-----------------------|------------|--|
| DOSII I.                     | Portland Harbor                              |            | Post-Treatment |            |            | Pre-Treatment |            | BQ.         | SILLE                 | BUSITIF    |  |
| Sample Name:                 | ROD CULs,<br>Surface Water <sup>(1)(2)</sup> | CSWTS      | CSWTS          | CSWTS      | MHSW4      | MHSW-4        | MHSW-4     | CB-15/CB-14 | CB-14 & CB-15<br>COMP | CB-16      |  |
| Sample Date:                 |                                              | 05/11/2017 | 10/19/2017     | 11/08/2017 | 05/11/2017 | 10/19/2017    | 11/08/2017 | 05/11/2017  | 11/08/2017            | 11/08/2017 |  |
| Total Metals (ug/L)          |                                              |            | <del>-</del>   | -          |            | <del>-</del>  |            |             | -                     |            |  |
| Aluminum                     | 50-200 <sup>(a)</sup>                        | 10.0 U     | 38.1           | 34.9       | 190        | 343           | 409        | 436         | 908                   | 3,730      |  |
| Arsenic                      | 0.018                                        | 0.0496 J   | 0.270          | 1.31       | 0.488      | 0.797         | 4.07       | 0.430       | 0.599                 | 0.702      |  |
| Cadmium                      | 0.094 <sup>(a)</sup>                         | 0.123      | 0.144          | 0.161      | 0.699      | 0.423         | 0.312      | 2.50        | 1.14                  | 0.105      |  |
| Copper                       | 2.74                                         | 6.06       | 11.8           | 19.9       | 38.3 J     | 31.9          | 81.6       | 36.8        | 33.2                  | 19.0       |  |
| Lead                         | 0.54 <sup>(a)</sup>                          | 0.480      | 1.99           | 2.14       | 5.46       | 17.3          | 15.3       | 4.14        | 5.75                  | 5.41       |  |
| Manganese                    | 50 <sup>(a)</sup>                            | 38.0       | 31.4           | 33.9       | 175        | 139           | 76.4       | 60.2        | 89.9                  | 257        |  |
| Zinc                         | 36.5                                         | 105        | 95.8           | 98.8       | 363        | 185           | 186        | 1,370       | 568                   | 64.9       |  |
| Dissolved Metals (ug/L)      |                                              |            |                |            |            |               |            |             |                       |            |  |
| Aluminum                     | 50-200 <sup>(a)</sup>                        | 0.421 U    | 0.421 U        | 100 U      | 37.8 J     | 5.84 J        | 109        | 13.0 J      | 100 U                 | 568        |  |
| Arsenic                      | 0.018                                        | 0.0320 U   | 0.0759 J       | 1.26 U     | 0.357      | 0.384         | 3.64 U     | 0.185       | 0.236 U               | 0.386 U    |  |
| Cadmium                      | 0.094 <sup>(a)</sup>                         | 0.111      | 0.139          | 0.150 U    | 0.685      | 0.185         | 0.329      | 1.73        | 0.517                 | 0.100 U    |  |
| Copper                       | 2.74                                         | 4.18       | 0.111          | 18.0       | 50.0 J     | 0.165         | 0.552      | 25.7        | 14.6                  | 13.0       |  |
| Lead                         | 0.54 <sup>(a)</sup>                          | 0.0762 J   | 0.386          | 1.56 U     | 0.567      | 0.336         | 7.90       | 0.279       | 0.161                 | 2.86 U     |  |
| Manganese                    | 50 <sup>(a)</sup>                            | 1.65       | 23.6           | 28.8       | 125        | 30.6 J        | 51.4       | 28.0        | 12.6                  | 185        |  |
| Zinc                         | 36.5                                         | 87.4       | 102            | 95.6       | 401        | 133           | 155        | 915         | 333                   | 63.2       |  |
| PCBs as Aroclors (ug/L)      |                                              |            |                |            |            |               |            |             |                       |            |  |
| Aroclor 1016                 | 0.96 <sup>(a)</sup>                          | 0.00374 U  | 0.00402 U      | 0.00571 U  | 0.00379 U  | 0.00366 U     | 0.00759 U  | 0.0039 U    | 0.00379 U             | 0.00729 U  |  |
| Aroclor 1221                 | 0.034 <sup>(a)</sup>                         | 0.00374 U  | 0.00402 U      | 0.00571 U  | 0.00379 U  | 0.00366 U     | 0.00759 U  | 0.0039 U    | 0.00379 U             | 0.00729 U  |  |
| Aroclor 1232                 | 0.034 <sup>(a)</sup>                         | 0.00374 U  | 0.00402 U      | 0.00571 U  | 0.00379 U  | 0.00366 U     | 0.00759 U  | 0.0039 U    | 0.00379 U             | 0.00729 U  |  |
| Aroclor 1242                 | 0.034 <sup>(a)</sup>                         | 0.00374 U  | 0.00402 U      | 0.00571 U  | 0.00379 U  | 0.00366 U     | 0.00759 U  | 0.0039 U    | 0.00379 U             | 0.00729 U  |  |
| Aroclor 1248                 | 0.034 <sup>(a)</sup>                         | 0.00374 U  | 0.00402 U      | 0.00571 U  | 0.00379 U  | 0.00366 U     | 0.00759 U  | 0.0039 U    | 0.00379 U             | 0.00729 U  |  |
| Aroclor 1254                 | 0.034 <sup>(a)</sup>                         | 0.00374 U  | 0.00402 U      | 0.00571 U  | 0.00379 U  | 0.00366 U     | 0.00759 U  | 0.0039 U    | 0.00379 U             | 0.00729 U  |  |
| Aroclor 1260                 | 0.034 <sup>(a)</sup>                         | 0.00374 U  | 0.00402 U      | 0.00571 U  | 0.00379 U  | 0.00366 U     | 0.00759 U  | 0.0039 U    | 0.00379 U             | 0.00729 U  |  |
| Aroclor 1262                 | NV                                           | 0.00374 U  | 0.00402 U      | 0.00571 U  | 0.00379 U  | 0.00366 U     | 0.00759 U  | 0.0039 U    | 0.00379 U             | 0.00729 U  |  |
| Aroclor 1268                 | NV                                           | 0.00374 U  | 0.00402 U      | 0.00571 U  | 0.00379 U  | 0.00366 U     | 0.00759 U  | 0.0039 U    | 0.00379 U             | 0.00729 U  |  |
| Total PCBs <sup>(b)(4)</sup> | 0.0000064                                    | 0.00374 U  | 0.00402 U      | 0.00571 U  | 0.00379 U  | 0.00366 U     | 0.00759 U  | 0.0039 U    | 0.00379 U             | 0.00729 U  |  |



# Table A-8 2017 Stormwater Analytical Results Source Control Evaluation Dolan and Company, LLC Portland, Oregon

| Design                       |                                              |                |            | Dow        | Descise F     |            |            |             |                       |            |
|------------------------------|----------------------------------------------|----------------|------------|------------|---------------|------------|------------|-------------|-----------------------|------------|
| Basin:                       | Portland Harbor                              | Post-Treatment |            |            | Pre-Treatment |            |            | Bas         | Basin F               |            |
| Sample Name:                 | ROD CULs,<br>Surface Water <sup>(1)(2)</sup> | CSWTS          | CSWTS      | CSWTS      | MHSW4         | MHSW-4     | MHSW-4     | CB-15/CB-14 | CB-14 & CB-15<br>COMP | CB-16      |
| Sample Date:                 |                                              | 05/11/2017     | 10/19/2017 | 11/08/2017 | 05/11/2017    | 10/19/2017 | 11/08/2017 | 05/11/2017  | 11/08/2017            | 11/08/2017 |
| PAHs (ug/L)                  |                                              |                |            |            |               |            |            |             | -                     |            |
| 1-Methylnaphthalene          | NV                                           |                | 0.0233 U   | 0.0225 U   |               | 0.0225 U   | 0.0284 J   |             | 0.0211 U              | 0.0239 U   |
| 2-Methylnaphthalene          | 0.2 <sup>(a)</sup>                           | 0.00169 U      | 0.0267 U   | 0.0257 U   | 0.0287        | 0.0257 U   | 0.0379 J   | 0.00176 U   | 0.0241 U              | 0.0274 U   |
| Acenaphthene                 | 0.2 <sup>(a)</sup>                           | 0.00181 U      | 0.0284 U   | 0.0273 U   | 0.0018 U      | 0.0273 U   | 0.0273 U   | 0.00188 U   | 0.0256 U              | 0.0291 U   |
| Acenaphthylene               | 0.2 <sup>(a)</sup>                           | 0.00514 U      | 0.0329 U   | 0.0317 U   | 0.00511 U     | 0.0317 U   | 0.0317 U   | 0.00534 U   | 0.0297 U              | 0.0337 U   |
| Anthracene                   | 0.2 <sup>(a)</sup>                           | 0.00962 J      | 0.0216 U   | 0.0208 U   | 0.0478        | 0.0208 U   | 0.0208 U   | 0.0100 J    | 0.0195 U              | 0.0221 U   |
| Benzo(a)anthracene           | 0.0012                                       | 0.00962 J      | 0.0241 U   | 0.0232 U   | 0.0478        | 0.0232 U   | 0.0232 U   | 0.0200      | 0.0218 U              | 0.0404 J   |
| Benzo(a)pyrene               | 0.00012                                      | 0.00162 U      | 0.0166 U   | 0.0159 U   | 0.0766        | 0.0159 U   | 0.0159 U   | 0.0200      | 0.0149 U              | 0.0505     |
| Benzo(b)fluoranthene         | 0.0012                                       | 0.00282 U      | 0.0190 U   | 0.0183 U   | 0.124         | 0.0183 U   | 0.0183 U   | 0.0300      | 0.0172 U              | 0.0909     |
| Benzo(ghi)perylene           | 0.2 <sup>(a)</sup>                           | 0.00144 U      | 0.0123 U   | 0.0118 U   | 0.0766        | 0.0118 U   | 0.0118 U   | 0.0300      | 0.0111 U              | 0.0505     |
| Benzo(k)fluoranthene         | 0.0013                                       | 0.00142 U      | 0.0146 U   | 0.0140 U   | 0.0383        | 0.0140 U   | 0.0140 U   | 0.0200      | 0.0132 U              | 0.0149 U   |
| Carbazole                    | 3.4 <sup>(a)</sup>                           |                |            |            |               |            |            |             |                       |            |
| Chrysene                     | 0.0013                                       | 0.00962 J      | 0.00995 U  | 0.00957 U  | 0.0957        | 0.00957 U  | 0.00957 U  | 0.0300      | 0.00898 U             | 0.0606     |
| Dibenzo(a,h)anthracene       | 0.00012                                      | 0.00141 U      | 0.0144 U   | 0.0138 U   | 0.00140 U     | 0.0138 U   | 0.0138 U   | 0.00146 U   | 0.0130 U              | 0.0147 U   |
| Dibenzofuran                 | 3.7 <sup>(a)</sup>                           |                |            |            |               |            |            |             |                       |            |
| Fluoranthene                 | 0.2 <sup>(a)</sup>                           | 0.00962 J      | 0.0294 U   | 0.0282 U   | 0.124         | 0.0282 U   | 0.0282 U   | 0.0400      | 0.0265 U              | 0.0808     |
| Fluorene                     | 0.2 <sup>(a)</sup>                           | 0.00205 U      | 0.0210 U   | 0.0202 U   | 0.00204 U     | 0.0202 U   | 0.0202 U   | 0.00213 U   | 0.0189 U              | 0.0215 U   |
| Indeno(1,2,3-cd)pyrene       | 0.0012                                       | 0.00161 U      | 0.0263 U   | 0.0253 U   | 0.0670        | 0.0253 U   | 0.0253 U   | 0.0200      | 0.0237 U              | 0.0404 J   |
| Naphthalene                  | 12                                           | 0.00647 U      | 0.0169 U   | 0.0163 U   | 0.00643 U     | 0.0163 U   | 0.0163 U   | 0.00672 U   | 0.0153 U              | 0.0174 U   |
| Phenanthrene                 | 0.2 <sup>(a)</sup>                           | 0.00962 J      | 0.0166 U   | 0.0159 U   | 0.0478        | 0.0159 U   | 0.0159 U   | 0.0500      | 0.0267 J              | 0.0404 J   |
| Pyrene                       | 0.2 <sup>(a)</sup>                           | 0.00962 J      | 0.0179 U   | 0.0173 U   | 0.105         | 0.0284 J   | 0.0173 U   | 0.0300      | 0.0162 U              | 0.0909     |
| Total PAHs <sup>(c)(3)</sup> | NV                                           | 0.0715 J       | 0.0329 U   | 0.0317 U   | 0.888         | 0.187 J    | 0.193 J    | 0.310 J     | 0.177 J               | 0.636 J    |
| Phthalates (ug/L)            |                                              |                |            |            |               |            |            |             |                       |            |
| Bis(2-ethylhexyl)phthalate   | 0.2                                          | 0.128 U        | 0.287 U    | 0.563 U    | 1.11          | 0.839 J    | 1.54 J     | 0.510       | 1.40                  | 0.642 J    |
| Butylbenzylphthalate         | 3 <sup>(a)</sup>                             | 0.149 U        | 0.166 U    | 0.325 U    | 0.152 U       | 0.158 U    | 0.335 U    | 0.157 U     | 0.162 U               | 0.327 U    |
| Diethyl phthalate            | 3 <sup>(a)</sup>                             | 0.114 U        | 0.304 U    | 0.598 U    | 0.232 J       | 0.291 U    | 0.617 U    | 0.120 U     | 0.297 U               | 0.601 U    |
| Dimethyl phthalate           | 3 <sup>(a)</sup>                             | 0.104 U        | 0.273 U    | 0.536 U    | 0.29 J        | 0.261 U    | 0.553 U    | 0.109 U     | 0.267 U               | 0.539 U    |
| Di-n-butyl phthalate         | 3 <sup>(a)</sup>                             | 0.0997 U       | 0.373 U    | 0.733 U    | 0.299 J       | 0.357 U    | 0.756 U    | 1.21        | 0.365 U               | 0.737 U    |
| Di-n-octyl phthalate         | 3 <sup>(a)</sup>                             | 0.0560 U       | 0.148 U    | 0.29 U     | 0.0569 U      | 0.141 U    | 2.00 U     | 0.0590 U    | 0.144 U               | 0.292 U    |
| Additional (mg/L)            |                                              |                |            |            |               |            |            |             |                       |            |
| Total Suspended Solids       | NV                                           | 1.1 U          | 1.1 U      | 1.1 U      | 7.0           | 11.0       | 17.0       | 45.0        | 74.0                  | 108        |
| Total Organic Carbon         | NV                                           | 5.27           | 1.8        | 3.92       | 17.7          | 5.8        | 6.76       | 12.7        | 7.03                  | 7.36       |





### Notes

Bold font indicates a detection.

Shading (color key below) indicates values that exceed Portland Harbor screening criteria; non-detects (U or UJ) were not compared with screening criteria.

Portland Harbor ROD CULs, Surface Water

Portland Harbor JSCS Initial Upland Screening Level, Water

-- = not analyzed.

CUL = cleanup level.

DEQ = Oregon Department of Environmental Quality.

EPA = U.S. Environmental Protection Agency.

J = result is estimated.

JSCS = Joint Source Control Strategy.

mg/L = milligrams per liter.

NV = no value.

PAH = polycyclic aromatic hydrocarbon.

PCB = polychlorinated biphenyl.

ROD = record of decision.

SCE = source control evaluation.

U = result is non-detect at the detection limit.

UJ = result is non-detect with an estimated detection limit.

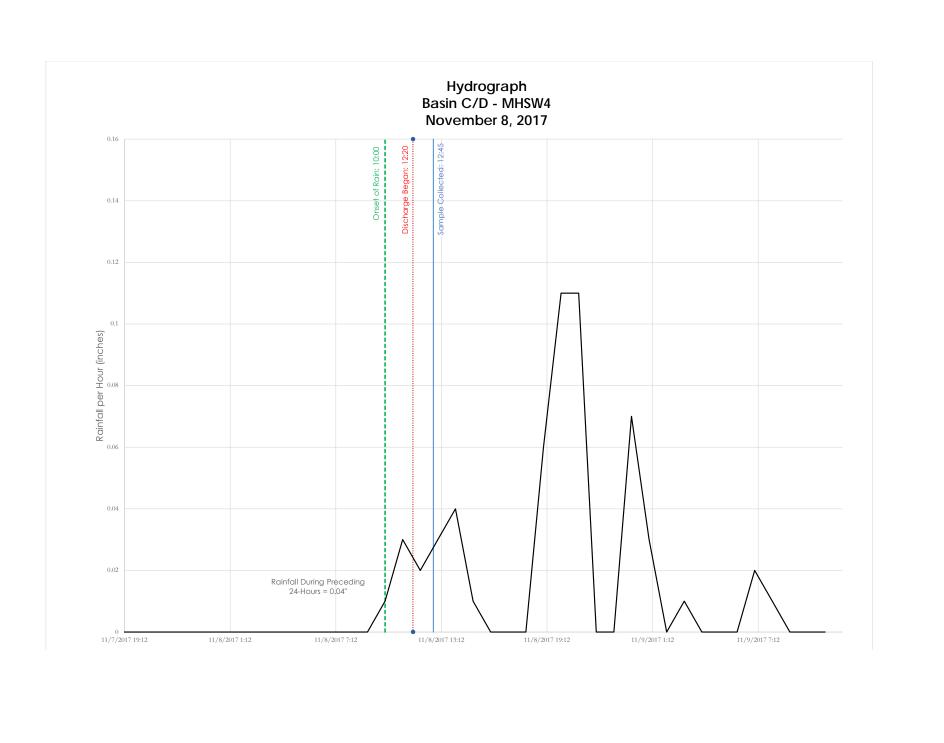
ug/L = micrograms per liter.

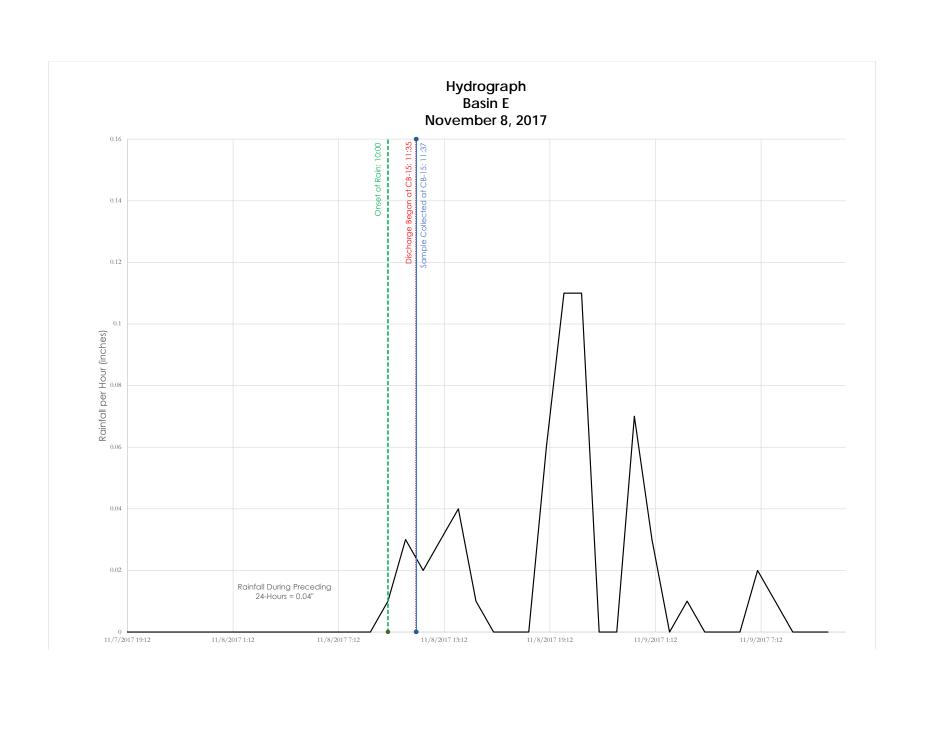
(a) Where Portland Harbor ROD CULs for surface water were not available, results are screened to Portland Harbor JSCS initial upland screening levels for water.

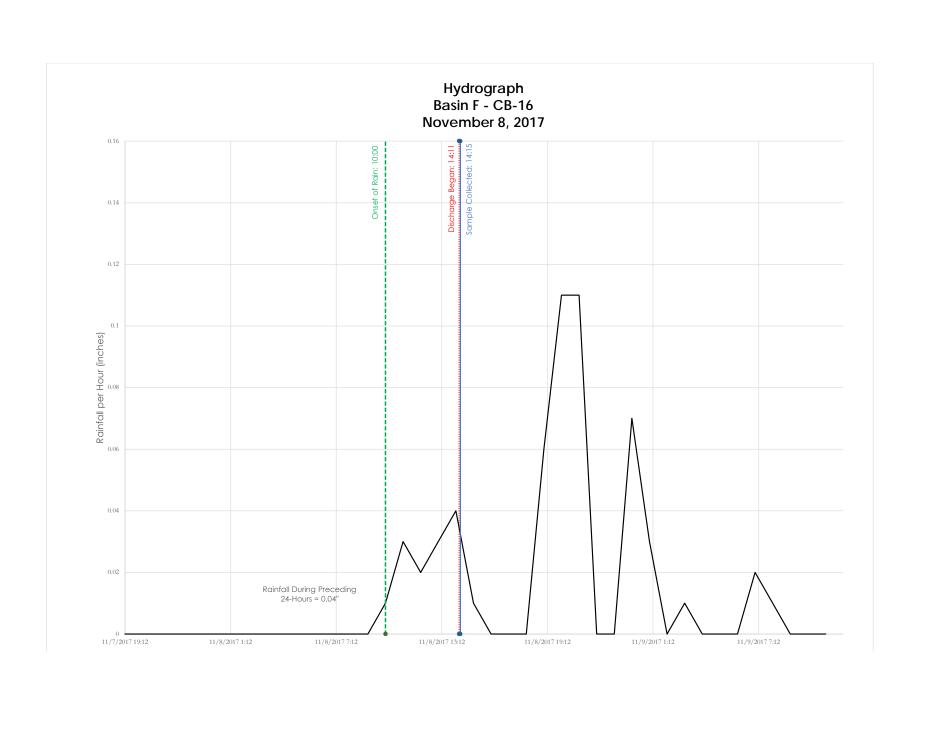
(b) Total PCBs is the sum of all PCB Aroclors. When all results are non-detect, the highest detection limit is shown.

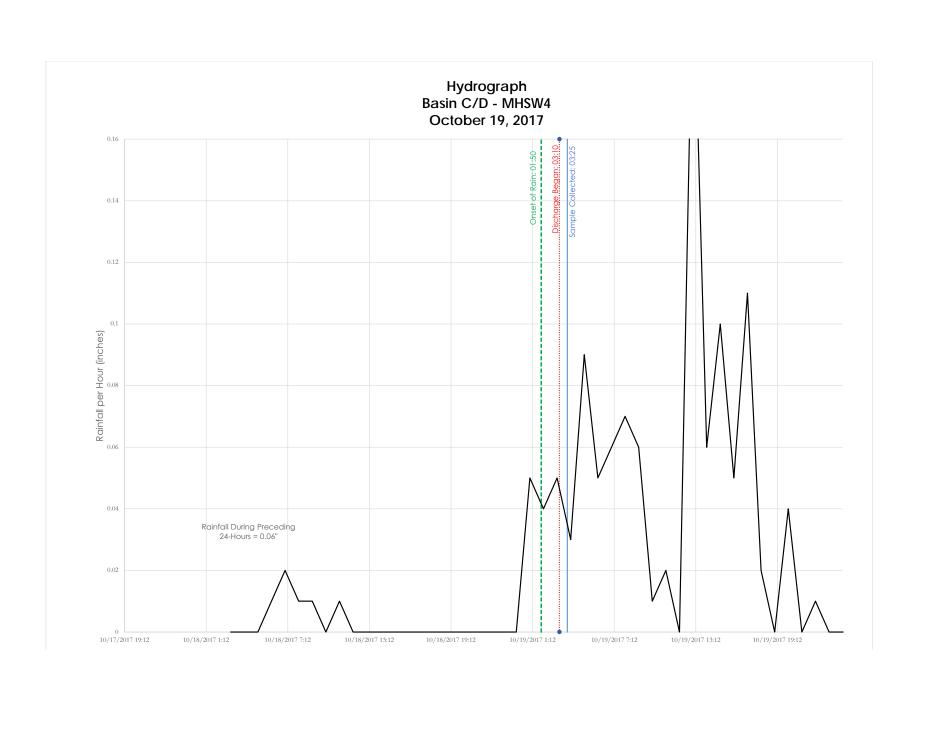
(c)Total PAHs is the sum of 2-methylnaphthalene, acenaphthylene, anthracene, benzo(a)pyrene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3,-c,d)pyrene, naphthalene, phenanthrene, and pyrene. Non-detect results were multiplied by one-half. When all concentrations are non-detect, the highest detection limit is shown.

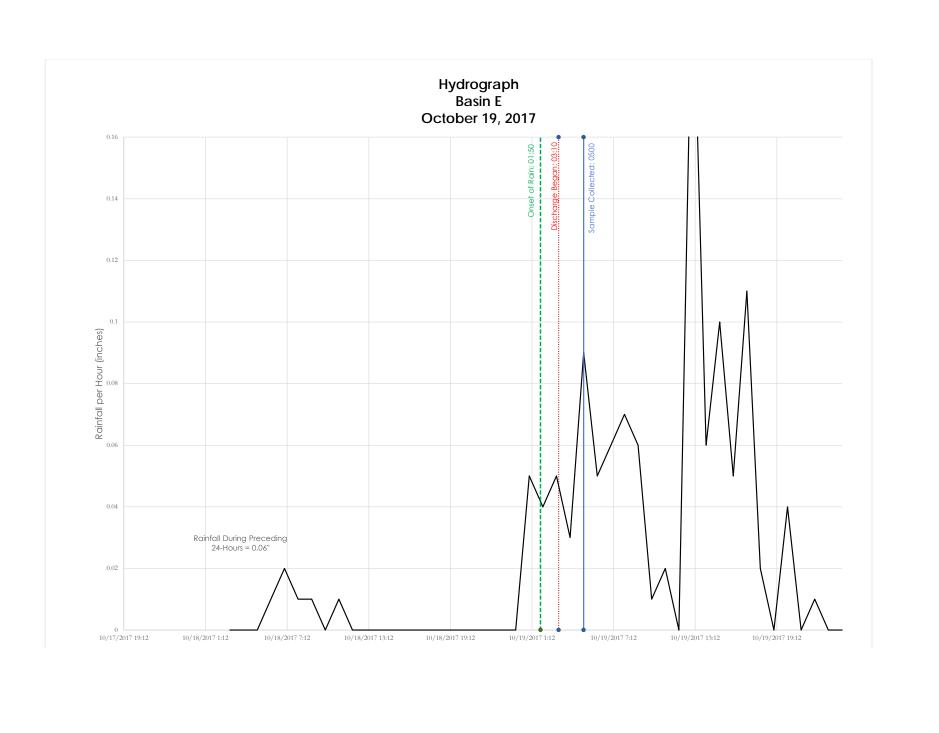
#### References

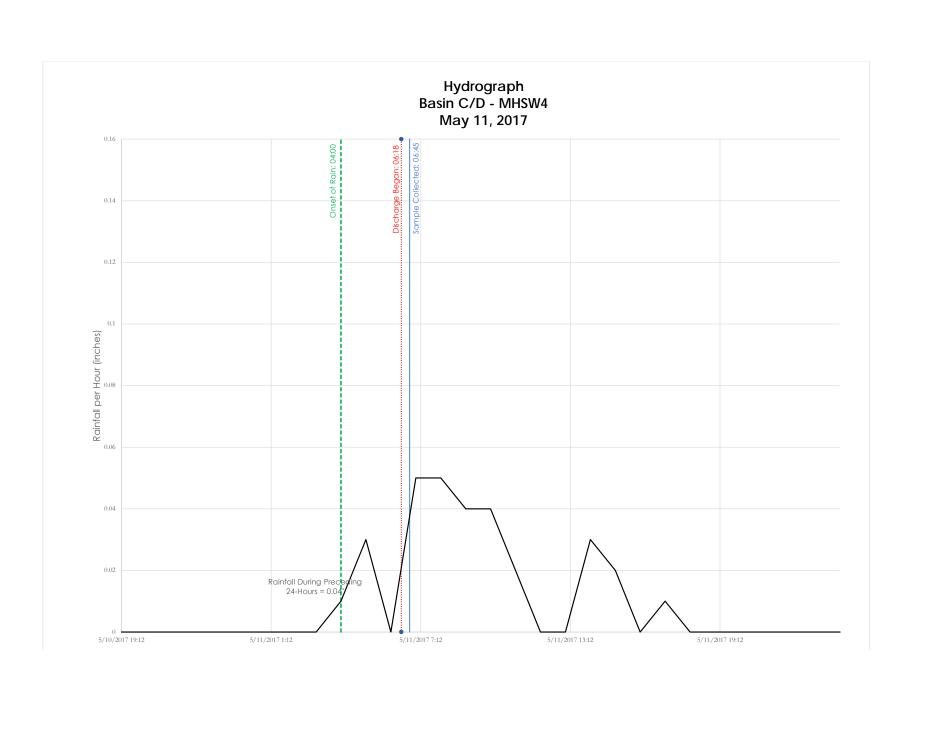

[1] EPA. 2020. Sean Sheldrake, Office of Environmental Cleanup. Errata #2 for Portland Harbor Superfund Site Record of Decision ROD Table 17. Memorandum to Portland Harbor site file. January 14.

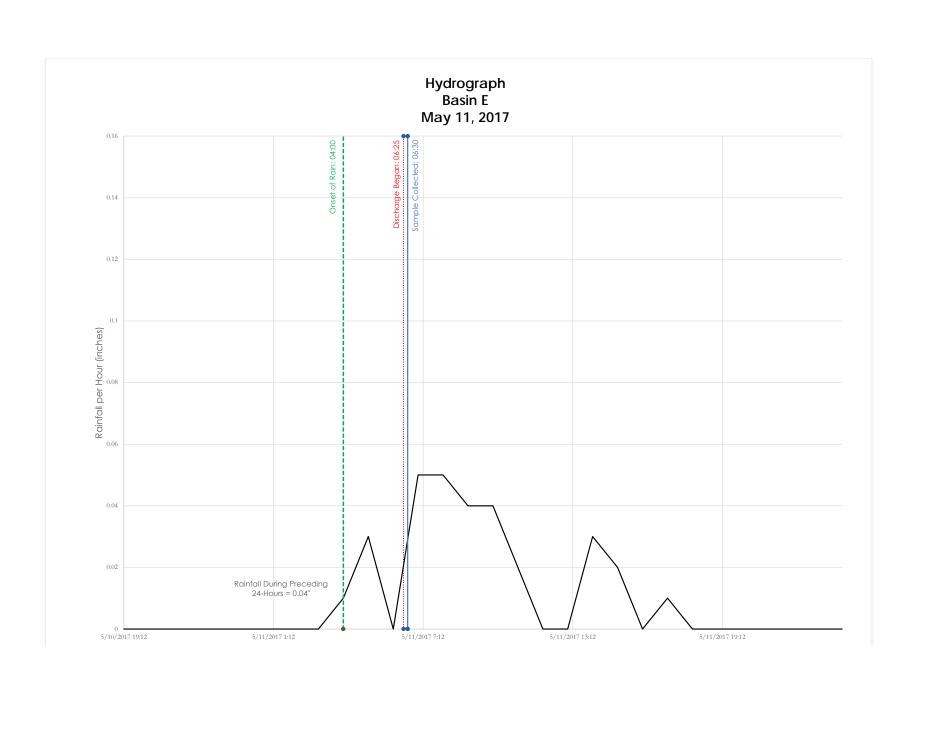

[2] DEQ. 2005. Portland Harbor Joint Source Control Strategy. "Table 3-1, Screening Level Values for Soil/Stormwater Sediment, Stormwater, Groundwater, and Surface Water." December.


[3] EPA. 2021. Program Data Management Plan: Portland Harbor Remedial Design Investigation--Portland Harbor Superfund Site. "Section 7.0, Calculation of Analyte Group Totals." U.S. Environmental Protection Agency Region 10. December.


### **Historical Hydrographs**














# **Historical Analytical Laboratory Reports**





### **Specialty Analytical**

11711 SE Capps Road, Ste B Clackamas, Oregon 97015 TEL: 503-607-1331 FAX: 503-607-1336 Website: www.specialtyanalytical.com

June 06, 2017

David Weatherby Maul Foster & Alongi 400 E. Mill Plain Blvd. Suite 400

Vancouver, WA 98660

TEL: (360) 694-2691 FAX: (360) 906-1958

RE: Dolan SCE / 1381.01.01

Dear David Weatherby: Order No.: 1705127

Specialty Analytical received 5 sample(s) on 5/15/2017 for the analyses presented in the following report.

REVISED REPORT: Please see case narrative for information on revision.

There were no problems with the analysis and all data for associated QC met EPA or laboratory specifications, except where noted in the Case Narrative, or as qualified with flags. Results apply only to the samples analyzed. Without approval of the laboratory, the reproduction of this report is only permitted in its entirety.

If you have any questions regarding these tests, please feel free to call.

Sincerely,

Marty French

Lab Director

### **Case Narrative**

WO#: **1705127**Date: **6/6/2017** 

CLIENT: Maul Foster & Alongi
Project: Dolan SCE / 1381.01.01

Revision #1-

Report has been revised to reflect the following changes:

Inclusion of LCS/LCSD in QC summary report for SW8082A PCB Aroclors and SW8270D. Addition of 2-methylnaphthalene in reported QC summary report for SW8270D PAH method blank and LCS/LCDS. Corrected E200.8 dissolved Zinc value for sample CSWTS. Confirmed E200.8 total and dissolved Copper results for sample MHSW4.

### **Specialty Analytical**

CLIENT: Maul Foster & Alongi Collection Date: 5/11/2017 6:45:00 AM

**Date Reported:** 

**Matrix:** WATER

06-Jun-17

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1705127-001 **Client Sample ID:** MHSW4

Analyses Result **MDL PQL** Qual Units DF **Date Analyzed** ICP/MS METALS- DISSOLVED RECOVERABLE E200.8 Analyst: JRC 0.421 100 1 Aluminum 37.8 μg/L 5/22/2017 11:54:17 AN Arsenic 0.357 0.0320 0.100 μg/L 1 5/22/2017 11:54:17 AN Cadmium 0.685 0.0130 0.100 1 μg/L 5/22/2017 11:54:17 AN Copper 50.0 0.0180 0.500 μg/L 1 5/22/2017 11:54:17 AN Lead 0.567 0.0270 0.100 μg/L 1 5/22/2017 11:54:17 AN Manganese 125 0.690 5.00 μg/L 10 5/22/2017 11:50:55 AN Zinc 401 1.10 20.0 μg/L 10 5/24/2017 9:33:30 AM ICP/MS METALS- TOTAL RECOVERABLE E200.8 Analyst: JRC Aluminum 10.0 190 0.421 μg/L 1 5/18/2017 2:26:26 PM Arsenic 0.488 0.0320 0.100 1 5/18/2017 2:26:26 PM μg/L 0.699 Cadmium 0.0130 0.100 μg/L 1 5/18/2017 2:26:26 PM Copper 38.3 0.0180 0.500 μg/L 1 5/18/2017 2:26:26 PM Lead 5.46 0.0270 0.100 1 5/18/2017 2:26:26 PM μg/L 175 0.690 5.00 μg/L 10 5/19/2017 10:19:43 AN Manganese Zinc 363 1.10 20.0 µg/L 10 5/19/2017 10:19:43 AN SEMIVOLATILE ORGANICS-LOW LEVEL SW8270D Analyst: CK 5/19/2017 3:07:00 PM Bis(2-ethylhexyl)phthalate 1.11 0.130 0.483 μg/L 1 0.152 0.483 Butyl benzyl phthalate ND μg/L 1 5/19/2017 3:07:00 PM Diethyl phthalate 0.232 0.116 0.483 5/19/2017 3:07:00 PM J μg/L 1 Dimethyl phthalate 0.290 0.105 0.483 J μg/L 1 5/19/2017 3:07:00 PM 0.299 0.101 0.483 J Di-n-butyl phthalate μg/L 1 5/19/2017 3:07:00 PM Di-n-octyl phthalate ND 0.0569 0.483 μg/L 1 5/19/2017 3:07:00 PM Surr: 2,4,6-Tribromophenol 92.5 3.1-129.7 %REC 1 5/19/2017 3:07:00 PM 101 3.1-126.2 %REC 5/19/2017 3:07:00 PM Surr: 2-Fluorobiphenyl 1 Surr: 2-Fluorophenol 35.8 3.4-127.1 %REC 1 5/19/2017 3:07:00 PM Surr: 4-Terphenyl-d14 65.7 41-122 %REC 1 5/19/2017 3:07:00 PM Surr: Nitrobenzene-d5 92.5 28.9-129.9 %REC 1 5/19/2017 3:07:00 PM Surr: Phenol-d6 19.8 0.6-128.5 %REC 1 5/19/2017 3:07:00 PM PAH'S BY GC/MS-LOW LEVEL SW8270D Analyst: CK 2-Methylnaphthalene 0.0287 0.00168 0.0191 μg/L 1 5/16/2017 6:06:00 PM Acenaphthene ND 0.00180 0.0191 μg/L 1 5/16/2017 6:06:00 PM Acenaphthylene ND 0.00511 0.0191 μg/L 1 5/16/2017 6:06:00 PM Anthracene 0.0478 0.00210 0.0191 1 5/16/2017 6:06:00 PM μg/L 0.0478 0.00234 Benz(a)anthracene 0.0172 μg/L 1 5/16/2017 6:06:00 PM

### **Specialty Analytical**

CLIENT: Maul Foster & Alongi Collection Date: 5/11/2017 6:45:00 AM

**Date Reported:** 

Matrix: WATER

06-Jun-17

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1705127-001 **Client Sample ID:** MHSW4

| Analyses                  | Result | MDL     | PQL    | Qual Units | DF  | Date Analyzed         |
|---------------------------|--------|---------|--------|------------|-----|-----------------------|
| PAH'S BY GC/MS- LOW LEVEL |        |         |        | SW8270D    |     | Analyst: <b>CK</b>    |
| Benzo(a)pyrene            | 0.0766 | 0.00161 | 0.0172 | μg/        | L 1 | 5/16/2017 6:06:00 PM  |
| Benzo(b)fluoranthene      | 0.124  | 0.00280 | 0.0172 | μg/        | L 1 | 5/16/2017 6:06:00 PM  |
| Benzo(g,h,i)perylene      | 0.0766 | 0.00144 | 0.0172 | μg/        | L 1 | 5/16/2017 6:06:00 PM  |
| Benzo(k)fluoranthene      | 0.0383 | 0.00142 | 0.0172 | μg/        | L 1 | 5/16/2017 6:06:00 PM  |
| Chrysene                  | 0.0957 | 0.00192 | 0.0172 | μg/        | L 1 | 5/16/2017 6:06:00 PM  |
| Dibenz(a,h)anthracene     | ND     | 0.00140 | 0.0172 | μg/        | L 1 | 5/16/2017 6:06:00 PM  |
| Fluoranthene              | 0.124  | 0.00285 | 0.0191 | μg/        | L 1 | 5/16/2017 6:06:00 PM  |
| Fluorene                  | ND     | 0.00204 | 0.0191 | μg/        |     | 5/16/2017 6:06:00 PM  |
| Indeno(1,2,3-cd)pyrene    | 0.0670 | 0.00160 | 0.0172 | μg/        | L 1 | 5/16/2017 6:06:00 PM  |
| Naphthalene               | ND     | 0.00643 | 0.0191 | μg/        |     | 5/16/2017 6:06:00 PM  |
| Phenanthrene              | 0.0478 | 0.00544 | 0.0191 | μg/        | L 1 | 5/16/2017 6:06:00 PM  |
| Pyrene                    | 0.105  | 0.00270 | 0.0191 | μg/        | L 1 | 5/16/2017 6:06:00 PM  |
| Surr: 2-Fluorobiphenyl    | 52.5   | 18      | .6-106 | %RE        | 2 1 | 5/16/2017 6:06:00 PM  |
| Surr: Nitrobenzene-d5     | 73.9   |         | 17-130 | %RE        | C 1 | 5/16/2017 6:06:00 PM  |
| Surr: p-Terphenyl-d14     | 65.4   | 39      | .6-131 | %RE        | 2 1 | 5/16/2017 6:06:00 PM  |
| PCB'S IN LIQUID           |        |         |        | SW 8082A   |     | Analyst: <b>ajr</b>   |
| Aroclor 1016              | ND     | 0.00379 | 0.0194 | μg/        | L 1 | 5/23/2017 12:37:33 PN |
| Aroclor 1221              | ND     | 0.00379 | 0.0194 | μg/        | L 1 | 5/23/2017 12:37:33 PN |
| Aroclor 1232              | ND     | 0.00379 | 0.0194 | μg/        | L 1 | 5/23/2017 12:37:33 PN |
| Aroclor 1242              | ND     | 0.00379 | 0.0194 | μg/        |     | 5/23/2017 12:37:33 PN |
| Aroclor 1248              | ND     | 0.00379 | 0.0194 | μg/        | L 1 | 5/23/2017 12:37:33 PN |
| Aroclor 1254              | ND     | 0.00379 | 0.0194 | μg/        | L 1 | 5/23/2017 12:37:33 PN |
| Aroclor 1260              | ND     | 0.00379 | 0.0194 | μg/        | L 1 | 5/23/2017 12:37:33 PN |
| Aroclor 1262              | ND     | 0.00379 | 0.0194 | μg/        | L 1 | 5/23/2017 12:37:33 PN |
| Aroclor 1268              | ND     | 0.00379 | 0.0194 | μg/        | L 1 | 5/23/2017 12:37:33 PN |
| Surr: Decachlorobiphenyl  | 46.3   | 4       | 45-107 | %RE        | C 1 | 5/23/2017 12:37:33 PN |
| ORGANIC CARBON, TOTAL     |        |         |        | M5310 B    |     | Analyst: <b>BW</b>    |
| Organic Carbon, Total     | 17.7   | 0.830   | 5.00   | mg/        | L 5 | 5/19/2017 2:11:27 PM  |
| TOTAL SUSPENDED SOLIDS    |        |         |        | M2540 D    |     | Analyst: <b>BW</b>    |
| Total Suspended Solids    | 7.0    | 1.1     | 5.0    | mg/        | L 1 | 5/16/2017 4:24:42 PM  |

CLIENT: Maul Foster & Alongi Collection Date: 5/11/2017 9:00:00 AM

**Date Reported:** 

Matrix: WATER

06-Jun-17

**Project:** Dolan SCE / 1381.01.01

 Lab ID:
 1705127-003

 Client Sample ID:
 CSWTS

| Analyses                   | Result     | MDL            | PQL    | Qual | Units | DF | Date Analyzed         |
|----------------------------|------------|----------------|--------|------|-------|----|-----------------------|
| ICP/MS METALS- DISSOLVED   | RECOVERABI | -E             |        | E20  | 0.8   |    | Analyst: <b>JRC</b>   |
| Aluminum                   | ND         | 0.421          | 100    |      | μg/L  | 1  | 5/22/2017 12:01:02 PN |
| Arsenic                    | ND         | 0.0320         | 0.100  |      | μg/L  | 1  | 5/22/2017 12:01:02 PN |
| Cadmium                    | 0.111      | 0.0130         | 0.100  |      | μg/L  | 1  | 5/22/2017 12:01:02 PN |
| Copper                     | 4.18       | 0.0180         | 0.500  |      | μg/L  | 1  | 5/22/2017 12:01:02 PN |
| Lead                       | 0.0762     | 0.0270         | 0.100  | J    | μg/L  | 1  | 5/22/2017 12:01:02 PN |
| Manganese                  | 1.65       | 0.0690         | 0.500  |      | μg/L  | 1  | 5/22/2017 12:01:02 PN |
| Zinc                       | 87.4       | 0.110          | 2.00   |      | μg/L  | 1  | 5/24/2017 3:22:48 PM  |
| ICP/MS METALS- TOTAL REC   | OVERABLE   |                |        | E20  | 0.8   |    | Analyst: JRC          |
| Aluminum                   | 8.23       | 0.421          | 10.0   | J    | μg/L  | 1  | 5/18/2017 2:43:18 PM  |
| Arsenic                    | 0.0496     | 0.0320         | 0.100  | J    | μg/L  | 1  | 5/18/2017 2:43:18 PM  |
| Cadmium                    | 0.123      | 0.0130         | 0.100  |      | μg/L  | 1  | 5/18/2017 2:43:18 PM  |
| Copper                     | 6.06       | 0.0180         | 0.500  |      | μg/L  | 1  | 5/18/2017 2:43:18 PM  |
| Lead                       | 0.480      | 0.0270         | 0.100  |      | μg/L  | 1  | 5/18/2017 2:43:18 PM  |
| Manganese                  | 38.0       | 0.0690         | 0.500  |      | μg/L  | 1  | 5/18/2017 2:43:18 PM  |
| Zinc                       | 105        | 1.10           | 20.0   |      | μg/L  | 10 | 5/19/2017 10:33:13 AN |
| SEMIVOLATILE ORGANICS-LO   | OW LEVEL   |                |        | SW82 | 70D   |    | Analyst: <b>CK</b>    |
| Bis(2-ethylhexyl)phthalate | ND         | 0.128          | 0.475  |      | μg/L  | 1  | 5/19/2017 3:33:00 PM  |
| Butyl benzyl phthalate     | ND         | 0.149          | 0.475  |      | μg/L  | 1  | 5/19/2017 3:33:00 PM  |
| Diethyl phthalate          | ND         | 0.114          | 0.475  |      | μg/L  | 1  | 5/19/2017 3:33:00 PM  |
| Dimethyl phthalate         | ND         | 0.104          | 0.475  |      | μg/L  | 1  | 5/19/2017 3:33:00 PM  |
| Di-n-butyl phthalate       | ND         | 0.0997         | 0.475  |      | μg/L  | 1  | 5/19/2017 3:33:00 PM  |
| Di-n-octyl phthalate       | ND         | 0.0560         | 0.475  |      | μg/L  | 1  | 5/19/2017 3:33:00 PM  |
| Surr: 2,4,6-Tribromophenol | 76.0       | 33.1-1         | 29.7   |      | %REC  | 1  | 5/19/2017 3:33:00 PM  |
| Surr: 2-Fluorobiphenyl     | 113        | 33.1-1         | 26.2   |      | %REC  | 1  | 5/19/2017 3:33:00 PM  |
| Surr: 2-Fluorophenol       | 38.9       | 3.4-1          | 27.1   |      | %REC  | 1  | 5/19/2017 3:33:00 PM  |
| Surr: 4-Terphenyl-d14      | 76.8       | 41             | -122   |      | %REC  | 1  | 5/19/2017 3:33:00 PM  |
| Surr: Nitrobenzene-d5      | 99.6       | <u> 28.9-1</u> | 29.9   |      | %REC  | 1  | 5/19/2017 3:33:00 PM  |
| Surr: Phenol-d6            | 21.3       | 0.6-1          | 28.5   |      | %REC  | 1  | 5/19/2017 3:33:00 PM  |
| PAH'S BY GC/MS- LOW LEVE   | L          |                |        | SW82 | 70D   |    | Analyst: <b>CK</b>    |
| 2-Methylnaphthalene        | ND         | 0.00169        | 0.0192 |      | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Acenaphthene               | ND         | 0.00181        | 0.0192 |      | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Acenaphthylene             | ND         | 0.00514        | 0.0192 |      | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Anthracene                 | 0.00962    | 0.00211        | 0.0192 | J    | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Benz(a)anthracene          | 0.00962    | 0.00236        | 0.0173 | J    | μg/L  | 1  | 5/16/2017 6:31:00 PM  |

CLIENT: Maul Foster & Alongi Collection Date: 5/11/2017 9:00:00 AM

**Date Reported:** 

Matrix: WATER

06-Jun-17

**Project:** Dolan SCE / 1381.01.01

Lab ID: 1705127-003
Client Sample ID: CSWTS

| Analyses                  | Result  | MDL     | PQL    | Qual  | Units | DF | Date Analyzed         |
|---------------------------|---------|---------|--------|-------|-------|----|-----------------------|
| PAH'S BY GC/MS- LOW LEVEL |         |         |        | SW82  | 70D   |    | Analyst: <b>CK</b>    |
| Benzo(a)pyrene            | ND      | 0.00162 | 0.0173 |       | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Benzo(b)fluoranthene      | ND      | 0.00282 | 0.0173 |       | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Benzo(g,h,i)perylene      | ND      | 0.00144 | 0.0173 |       | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Benzo(k)fluoranthene      | ND      | 0.00142 | 0.0173 |       | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Chrysene                  | 0.00962 | 0.00193 | 0.0173 | J     | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Dibenz(a,h)anthracene     | ND      | 0.00141 | 0.0173 |       | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Fluoranthene              | 0.00962 | 0.00287 | 0.0192 | J     | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Fluorene                  | ND      | 0.00205 | 0.0192 |       | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Indeno(1,2,3-cd)pyrene    | ND      | 0.00161 | 0.0173 |       | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Naphthalene               | ND      | 0.00647 | 0.0192 |       | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Phenanthrene              | 0.00962 | 0.00547 | 0.0192 | J     | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Pyrene                    | 0.00962 | 0.00271 | 0.0192 | J     | μg/L  | 1  | 5/16/2017 6:31:00 PM  |
| Surr: 2-Fluorobiphenyl    | 55.2    | 18.6    | -106   |       | %REC  | 1  | 5/16/2017 6:31:00 PM  |
| Surr: Nitrobenzene-d5     | 84.9    | 17      | ·-130  |       | %REC  | 1  | 5/16/2017 6:31:00 PM  |
| Surr: p-Terphenyl-d14     | 71.0    | 39.6    | -131   |       | %REC  | 1  | 5/16/2017 6:31:00 PM  |
| PCB'S IN LIQUID           |         |         |        | SW 80 | )82A  |    | Analyst: <b>ajr</b>   |
| Aroclor 1016              | ND      | 0.00374 | 0.0192 |       | μg/L  | 1  | 5/23/2017 12:51:33 PN |
| Aroclor 1221              | ND      | 0.00374 | 0.0192 |       | μg/L  | 1  | 5/23/2017 12:51:33 PN |
| Aroclor 1232              | ND      | 0.00374 | 0.0192 |       | μg/L  | 1  | 5/23/2017 12:51:33 PN |
| Aroclor 1242              | ND      | 0.00374 | 0.0192 |       | μg/L  | 1  | 5/23/2017 12:51:33 PN |
| Aroclor 1248              | ND      | 0.00374 | 0.0192 |       | μg/L  | 1  | 5/23/2017 12:51:33 PN |
| Aroclor 1254              | ND      | 0.00374 | 0.0192 |       | μg/L  | 1  | 5/23/2017 12:51:33 PN |
| Aroclor 1260              | ND      | 0.00374 | 0.0192 |       | μg/L  | 1  | 5/23/2017 12:51:33 PN |
| Aroclor 1262              | ND      | 0.00374 | 0.0192 |       | μg/L  | 1  | 5/23/2017 12:51:33 PN |
| Aroclor 1268              | ND      | 0.00374 | 0.0192 |       | μg/L  | 1  | 5/23/2017 12:51:33 PN |
| Surr: Decachlorobiphenyl  | 62.9    | 45      | -107   |       | %REC  | 1  | 5/23/2017 12:51:33 PN |
| ORGANIC CARBON, TOTAL     |         |         |        | M531  | 0 B   |    | Analyst: <b>BW</b>    |
| Organic Carbon, Total     | 5.27    | 0.830   | 5.00   |       | mg/L  | 5  | 5/19/2017 3:41:27 PM  |
| TOTAL SUSPENDED SOLIDS    |         |         |        | M254  | 10 D  |    | Analyst: <b>BW</b>    |
| Total Suspended Solids    | ND      | 1.1     | 5.0    |       | mg/L  | 1  | 5/16/2017 4:26:42 PM  |

CLIENT: Maul Foster & Alongi Collection Date: 5/11/2017

**Date Reported:** 

Matrix: WATER

06-Jun-17

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1705127-005 **Client Sample ID:** CB-15/CB-14

| Ellent Sample 1D. CB-13/CB |           | Manix. WATER |        |              |       |                       |                       |  |  |  |  |
|----------------------------|-----------|--------------|--------|--------------|-------|-----------------------|-----------------------|--|--|--|--|
| Analyses                   | Result    | MDL          | PQL    | Qual         | Units | DF                    | Date Analyzed         |  |  |  |  |
| ICP/MS METALS- DISSOLVED I | RECOVERAB | LE           |        | E20          | 0.8   |                       | Analyst: <b>JRC</b>   |  |  |  |  |
| Aluminum                   | 13.0      | 0.421        | 100    | J            | μg/L  | 1                     | 5/22/2017 12:07:47 PN |  |  |  |  |
| Arsenic                    | 0.185     | 0.0320       | 0.100  |              | μg/L  | 1                     | 5/22/2017 12:07:47 PN |  |  |  |  |
| Cadmium                    | 1.73      | 0.0130       | 0.100  | 0.100 μg/L 1 |       | 5/22/2017 12:07:47 PN |                       |  |  |  |  |
| Copper                     | 25.7      | 0.0180       | 0.500  |              | μg/L  | 1                     | 5/22/2017 12:07:47 PN |  |  |  |  |
| Lead                       | 0.279     | 0.0270       | 0.100  |              | μg/L  | 1                     | 5/22/2017 12:07:47 PN |  |  |  |  |
| Manganese                  | 28.0      | 0.0690       | 0.500  |              | μg/L  | 1                     | 5/22/2017 12:07:47 PN |  |  |  |  |
| Zinc                       | 915       | 1.10         | 20.0   |              | μg/L  | 10                    | 5/24/2017 9:40:16 AM  |  |  |  |  |
| ICP/MS METALS- TOTAL RECO  | VERABLE   |              |        | E20          | 0.8   |                       | Analyst: JRC          |  |  |  |  |
| Aluminum                   | 436       | 0.421        | 10.0   |              | μg/L  | 1                     | 5/18/2017 2:46:41 PM  |  |  |  |  |
| Arsenic                    | 0.430     | 0.0320       | 0.100  |              | μg/L  | 1                     | 5/18/2017 2:46:41 PM  |  |  |  |  |
| Cadmium                    | 2.50      | 0.0130       | 0.100  |              | μg/L  | 1                     | 5/18/2017 2:46:41 PM  |  |  |  |  |
| Copper                     | 36.8      | 0.0180       | 0.500  |              | μg/L  | 1                     | 5/18/2017 2:46:41 PM  |  |  |  |  |
| Lead                       | 4.14      | 0.0270       | 0.100  |              | μg/L  | 1                     | 5/18/2017 2:46:41 PM  |  |  |  |  |
| Manganese                  | 60.2      | 0.0690       | 0.500  |              | μg/L  | 1                     | 5/18/2017 2:46:41 PM  |  |  |  |  |
| Zinc                       | 1370      | 11.0         | 200    |              | μg/L  | 100                   | 5/19/2017 10:36:35 AN |  |  |  |  |
| SEMIVOLATILE ORGANICS-LO   | W LEVEL   |              |        | SW82         | 70D   |                       | Analyst: <b>CK</b>    |  |  |  |  |
| Bis(2-ethylhexyl)phthalate | 0.510     | 0.135        | 0.500  |              | μg/L  | 1                     | 5/19/2017 3:58:00 PM  |  |  |  |  |
| Butyl benzyl phthalate     | ND        | 0.157        | 0.500  |              | μg/L  | 1                     | 5/19/2017 3:58:00 PM  |  |  |  |  |
| Diethyl phthalate          | ND        | 0.120        | 0.500  |              | μg/L  | 1                     | 5/19/2017 3:58:00 PM  |  |  |  |  |
| Dimethyl phthalate         | ND        | 0.109        | 0.500  |              | μg/L  | 1                     | 5/19/2017 3:58:00 PM  |  |  |  |  |
| Di-n-butyl phthalate       | 1.21      | 0.105        | 0.500  |              | μg/L  | 1                     | 5/19/2017 3:58:00 PM  |  |  |  |  |
| Di-n-octyl phthalate       | ND        | 0.0590       | 0.500  |              | μg/L  | 1                     | 5/19/2017 3:58:00 PM  |  |  |  |  |
| Surr: 2,4,6-Tribromophenol | 104       | 33.1-12      | 29.7   |              | %REC  | 1                     | 5/19/2017 3:58:00 PM  |  |  |  |  |
| Surr: 2-Fluorobiphenyl     | 95.8      | 33.1-12      | 26.2   |              | %REC  | 1                     | 5/19/2017 3:58:00 PM  |  |  |  |  |
| Surr: 2-Fluorophenol       | 35.6      | 3.4-12       | 27.1   |              | %REC  | 1                     | 5/19/2017 3:58:00 PM  |  |  |  |  |
| Surr: 4-Terphenyl-d14      | 69.0      | 41-          | 122    |              | %REC  | 1                     | 5/19/2017 3:58:00 PM  |  |  |  |  |
| Surr: Nitrobenzene-d5      | 82.2      | !8.9-12      | 29.9   |              | %REC  | 1                     | 5/19/2017 3:58:00 PM  |  |  |  |  |
| Surr: Phenol-d6            | 20.0      | 0.6-12       | 28.5   |              | %REC  | 1                     | 5/19/2017 3:58:00 PM  |  |  |  |  |
| PAH'S BY GC/MS- LOW LEVEL  |           |              |        | SW82         | 70D   |                       | Analyst: <b>CK</b>    |  |  |  |  |
| 2-Methylnaphthalene        | ND        | 0.00176      | 0.0200 |              | μg/L  | 1                     | 5/16/2017 6:57:00 PM  |  |  |  |  |
| Acenaphthene               | ND        | 0.00188      | 0.0200 |              | μg/L  | 1                     | 5/16/2017 6:57:00 PM  |  |  |  |  |
| Acenaphthylene             | ND        | 0.00534      | 0.0200 |              |       | 5/16/2017 6:57:00 PM  |                       |  |  |  |  |
| Anthracene                 | 0.0100    | 0.00219      | 0.0200 | J            | μg/L  | 1                     | 5/16/2017 6:57:00 PM  |  |  |  |  |
| Benz(a)anthracene          | 0.0200    | 0.00245      | 0.0180 |              | μg/L  | 1                     | 5/16/2017 6:57:00 PM  |  |  |  |  |

CLIENT: Maul Foster & Alongi Collection Date: 5/11/2017

**Date Reported:** 

Matrix: WATER

06-Jun-17

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1705127-005 **Client Sample ID:** CB-15/CB-14

| Analyses                  | Result | MDL     | PQL     | Qual Units | DF  | Date Analyzed        |
|---------------------------|--------|---------|---------|------------|-----|----------------------|
| PAH'S BY GC/MS- LOW LEVEL |        |         |         | SW8270D    |     | Analyst: <b>CK</b>   |
| Benzo(a)pyrene            | 0.0200 | 0.00168 | 0.0180  | μg/L       | . 1 | 5/16/2017 6:57:00 PM |
| Benzo(b)fluoranthene      | 0.0300 | 0.00293 | 0.0180  | μg/L       | . 1 | 5/16/2017 6:57:00 PM |
| Benzo(g,h,i)perylene      | 0.0300 | 0.00150 | 0.0180  | μg/L       | . 1 | 5/16/2017 6:57:00 PM |
| Benzo(k)fluoranthene      | 0.0200 | 0.00148 | 0.0180  | μg/L       | . 1 | 5/16/2017 6:57:00 PM |
| Chrysene                  | 0.0300 | 0.00201 | 0.0180  | μg/L       | . 1 | 5/16/2017 6:57:00 PM |
| Dibenz(a,h)anthracene     | ND     | 0.00146 | 0.0180  | μg/L       |     | 5/16/2017 6:57:00 PM |
| Fluoranthene              | 0.0400 | 0.00298 | 0.0200  | μg/L       | . 1 | 5/16/2017 6:57:00 PM |
| Fluorene                  | ND     | 0.00213 | 0.0200  | μg/L       | . 1 | 5/16/2017 6:57:00 PM |
| Indeno(1,2,3-cd)pyrene    | 0.0200 | 0.00167 | 0.0180  | μg/L       | . 1 | 5/16/2017 6:57:00 PM |
| Naphthalene               | ND     | 0.00672 | 0.0200  | μg/L       | . 1 | 5/16/2017 6:57:00 PM |
| Phenanthrene              | 0.0500 | 0.00568 | 0.0200  | μg/L       |     | 5/16/2017 6:57:00 PM |
| Pyrene                    | 0.0300 | 0.00282 | 0.0200  | μg/L       | . 1 | 5/16/2017 6:57:00 PM |
| Surr: 2-Fluorobiphenyl    | 48.1   | 1       | 8.6-106 | %REC       | 1   | 5/16/2017 6:57:00 PM |
| Surr: Nitrobenzene-d5     | 72.0   |         | 17-130  | %REC       | 1   | 5/16/2017 6:57:00 PM |
| Surr: p-Terphenyl-d14     | 63.3   | 3       | 9.6-131 | %REC       | 1   | 5/16/2017 6:57:00 PM |
| PCB'S IN LIQUID           |        |         |         | SW 8082A   |     | Analyst: <b>ajr</b>  |
| Aroclor 1016              | ND     | 0.00390 | 0.0200  | μg/L       | . 1 | 5/23/2017 1:05:33 PM |
| Aroclor 1221              | ND     | 0.00390 | 0.0200  | μg/L       | . 1 | 5/23/2017 1:05:33 PM |
| Aroclor 1232              | ND     | 0.00390 | 0.0200  | μg/L       | . 1 | 5/23/2017 1:05:33 PM |
| Aroclor 1242              | ND     | 0.00390 | 0.0200  | μg/L       |     | 5/23/2017 1:05:33 PM |
| Aroclor 1248              | ND     | 0.00390 | 0.0200  | μg/L       |     | 5/23/2017 1:05:33 PM |
| Aroclor 1254              | ND     | 0.00390 | 0.0200  | μg/L       | . 1 | 5/23/2017 1:05:33 PM |
| Aroclor 1260              | ND     | 0.00390 | 0.0200  | μg/L       |     | 5/23/2017 1:05:33 PM |
| Aroclor 1262              | ND     | 0.00390 | 0.0200  | μg/L       | . 1 | 5/23/2017 1:05:33 PM |
| Aroclor 1268              | ND     | 0.00390 | 0.0200  | μg/L       | . 1 | 5/23/2017 1:05:33 PM |
| Surr: Decachlorobiphenyl  | 89.6   |         | 45-107  | %REC       | 1   | 5/23/2017 1:05:33 PM |
| ORGANIC CARBON, TOTAL     |        |         |         | M5310 B    |     | Analyst: <b>BW</b>   |
| Organic Carbon, Total     | 12.7   | 0.830   | 5.00    | mg/L       | . 5 | 5/19/2017 4:11:27 PM |
| TOTAL SUSPENDED SOLIDS    |        |         |         | M2540 D    |     | Analyst: <b>BW</b>   |
| Total Suspended Solids    | 45.0   | 1.1     | 5.0     | mg/L       | . 1 | 5/16/2017 4:28:42 PM |

1705127 WO#:

07-Jun-17

### **Specialty Analytical**

Maul Foster & Alongi **Client:** 

**Project:** Dolan SCE / 1381.01.01 TestCode: 200.8

| Sample ID: ICV | SampType: <b>ICV</b> | TestCod | TestCode: 200.8 Ur |             | Prep Date:               |          |           |             | RunNo: 21427 |          |      |
|----------------|----------------------|---------|--------------------|-------------|--------------------------|----------|-----------|-------------|--------------|----------|------|
| Client ID: ICV | Batch ID: 9948       | TestN   | No: <b>E200.8</b>  | E200.8      | Analysis Date: 5/18/2017 |          |           | 17          | SeqNo: 28    |          |      |
| Analyte        | Result               | PQL     | SPK value          | SPK Ref Val | %REC                     | LowLimit | HighLimit | RPD Ref Val | %RPD         | RPDLimit | Qual |
| Aluminum       | 504                  | 10.0    | 500.0              | 0           | 101                      | 90       | 110       |             |              |          |      |
| Arsenic        | 48.1                 | 0.100   | 50.00              | 0           | 96.2                     | 90       | 110       |             |              |          |      |
| Cadmium        | 48.3                 | 0.100   | 50.00              | 0           | 96.5                     | 90       | 110       |             |              |          |      |
| Chromium       | 50.4                 | 0.100   | 50.00              | 0           | 101                      | 90       | 110       |             |              |          |      |
| Copper         | 49.4                 | 0.500   | 50.00              | 0           | 98.7                     | 90       | 110       |             |              |          |      |
| Lead           | 48.9                 | 0.100   | 50.00              | 0           | 97.8                     | 90       | 110       |             |              |          |      |
| Manganese      | 49.9                 | 0.500   | 50.00              | 0           | 99.8                     | 90       | 110       |             |              |          |      |
| Nickel         | 49.7                 | 0.500   | 50.00              | 0           | 99.3                     | 90       | 110       |             |              |          |      |
| Zinc           | 48.7                 | 2.00    | 50.00              | 0           | 97.4                     | 90       | 110       |             |              |          |      |

| Sample ID: MB-9948 | SampType: <b>MBLK</b> | TestCode: 200.8       | Units: µg/L   | Prep Date: <b>5/17/2017</b>         | RunNo: 21427         |
|--------------------|-----------------------|-----------------------|---------------|-------------------------------------|----------------------|
| Client ID: PBW     | Batch ID: 9948        | TestNo: <b>E200.8</b> | E200.8        | Analysis Date: 5/18/2017            | SeqNo: <b>285303</b> |
| Analyte            | Result                | PQL SPK valu          | e SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Aluminum           | 0.819                 | 10.0                  |               |                                     | J                    |
| Arsenic            | ND                    | 0.100                 |               |                                     |                      |
| Cadmium            | ND                    | 0.100                 |               |                                     |                      |
| Chromium           | ND                    | 0.100                 |               |                                     |                      |
| Copper             | ND                    | 0.500                 |               |                                     |                      |
| Lead               | ND                    | 0.100                 |               |                                     |                      |
| Manganese          | 0.378                 | 0.500                 |               |                                     | J                    |
| Nickel             | ND                    | 0.500                 |               |                                     |                      |
| Zinc               | 0.778                 | 2.00                  |               |                                     | J                    |

Qualifiers: Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 1 of 25

RPD outside accepted recovery limits

Spike Recovery outside accepted reco

RSD is greater than RSDlimit

WO#: **1705127** 

07-Jun-17

### **Specialty Analytical**

Client: Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 **TestCode: 200.8** 

| Sample ID: LCS-9948 | SampType: <b>LCS</b> | TestCod | de: <b>200.8</b>  | Units: µg/L | Prep Date: 5/17/2017 |             |                    |             | RunNo: <b>21</b> 4 |          |      |
|---------------------|----------------------|---------|-------------------|-------------|----------------------|-------------|--------------------|-------------|--------------------|----------|------|
| Client ID: LCSW     | Batch ID: 9948       | TestN   | No: <b>E200.8</b> | E200.8      |                      | Analysis Da | te: <b>5/18/20</b> | 17          | SeqNo: 28          | 5304     |      |
| Analyte             | Result               | PQL     | SPK value         | SPK Ref Val | %REC                 | LowLimit    | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Aluminum            | 488                  | 10.0    | 500.0             | 0           | 97.5                 | 85          | 115                |             |                    |          |      |
| Arsenic             | 48.9                 | 0.100   | 50.00             | 0           | 97.8                 | 85          | 115                |             |                    |          |      |
| Cadmium             | 50.5                 | 0.100   | 50.00             | 0           | 101                  | 85          | 115                |             |                    |          |      |
| Chromium            | 48.8                 | 0.100   | 50.00             | 0           | 97.6                 | 85          | 115                |             |                    |          |      |
| Copper              | 50.4                 | 0.500   | 50.00             | 0           | 101                  | 85          | 115                |             |                    |          |      |
| Lead                | 50.1                 | 0.100   | 50.00             | 0           | 100                  | 85          | 115                |             |                    |          |      |
| Nickel              | 50.5                 | 0.500   | 50.00             | 0           | 101                  | 85          | 115                |             |                    |          |      |
| Zinc                | 50.0                 | 2.00    | 50.00             | 0           | 99.9                 | 85          | 115                |             |                    |          |      |

| Sample ID: 1705127-001CDUP | SampType: <b>DUP</b> | TestCode: 200.8 Units: µg/L |               | Prep Date: 5/17/2017                | RunNo: <b>21427</b>  |
|----------------------------|----------------------|-----------------------------|---------------|-------------------------------------|----------------------|
| Client ID: MHSW4           | Batch ID: 9948       | TestNo: <b>E200.8</b>       | E200.8        | Analysis Date: 5/18/2017            | SeqNo: <b>285306</b> |
| Analyte                    | Result               | PQL SPK valu                | e SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Aluminum                   | 192                  | 10.0                        |               | 189.8                               | 0.939 20             |
| Arsenic                    | 0.443                | 0.100                       |               | 0.4881                              | 9.70 20              |
| Cadmium                    | 0.763                | 0.100                       |               | 0.6993                              | 8.66 20              |
| Chromium                   | 1.57                 | 0.100                       |               | 1.928                               | 20.3 20 RF           |
| Copper                     | 38.9                 | 0.500                       |               | 38.34                               | 1.48 20              |
| Lead                       | 5.46                 | 0.100                       |               | 5.460                               | 0.0672 20            |
| Nickel                     | 9.43                 | 0.500                       |               | 9.649                               | 2.27 20              |

O RSD is greater than RSDlimit

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

WO#: **1705127** 

07-Jun-17

### **Specialty Analytical**

**Client:** 

Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 **TestCode: 200.8** 

| Sample ID: 1705127-001CMS Client ID: MHSW4 | SampType: <b>MS</b> Batch ID: <b>9948</b> |       | de: <b>200.8</b><br>lo: <b>E200.8</b> | Units: µg/L<br>E200.8 | Prep Date: 5/17/2017  Analysis Date: 5/18/2017 |          | RunNo: <b>21</b> 4<br>SeqNo: <b>28</b> 5 |             |      |          |      |
|--------------------------------------------|-------------------------------------------|-------|---------------------------------------|-----------------------|------------------------------------------------|----------|------------------------------------------|-------------|------|----------|------|
| Analyte                                    | Result                                    | PQL   | SPK value                             | SPK Ref Val           | %REC                                           | LowLimit | HighLimit                                | RPD Ref Val | %RPD | RPDLimit | Qual |
| Aluminum                                   | 678                                       | 10.0  | 500.0                                 | 189.8                 | 97.6                                           | 70       | 130                                      |             |      |          |      |
| Arsenic                                    | 50.4                                      | 0.100 | 50.00                                 | 0.4881                | 99.9                                           | 70       | 130                                      |             |      |          |      |
| Cadmium                                    | 50.8                                      | 0.100 | 50.00                                 | 0.6993                | 100                                            | 70       | 130                                      |             |      |          |      |
| Chromium                                   | 50.4                                      | 0.100 | 50.00                                 | 1.928                 | 96.9                                           | 70       | 130                                      |             |      |          |      |
| Copper                                     | 87.4                                      | 0.500 | 50.00                                 | 38.34                 | 98.1                                           | 70       | 130                                      |             |      |          |      |
| Lead                                       | 55.3                                      | 0.100 | 50.00                                 | 5.460                 | 99.7                                           | 70       | 130                                      |             |      |          |      |
| Nickel                                     | 59.1                                      | 0.500 | 50.00                                 | 9.649                 | 98.8                                           | 70       | 130                                      |             |      |          |      |

| Sample ID: 1705127-001CMSD | SampType: MSD  | TestCod | TestCode: 200.8 Units: µg/L |             |                          | Prep Dat | te: <b>5/17/20</b> | 17                   | RunNo: 21427 |          |      |
|----------------------------|----------------|---------|-----------------------------|-------------|--------------------------|----------|--------------------|----------------------|--------------|----------|------|
| Client ID: MHSW4           | Batch ID: 9948 | TestN   | lo: <b>E200.8</b>           | E200.8      | Analysis Date: 5/18/2017 |          | 17                 | SeqNo: <b>285308</b> |              |          |      |
| Analyte                    | Result         | PQL     | SPK value                   | SPK Ref Val | %REC                     | LowLimit | HighLimit          | RPD Ref Val          | %RPD         | RPDLimit | Qual |
| Aluminum                   | 660            | 10.0    | 500.0                       | 189.8       | 94.1                     | 70       | 130                | 677.7                | 2.63         | 20       |      |
| Arsenic                    | 49.3           | 0.100   | 50.00                       | 0.4881      | 97.7                     | 70       | 130                | 50.42                | 2.18         | 20       |      |
| Cadmium                    | 49.6           | 0.100   | 50.00                       | 0.6993      | 97.9                     | 70       | 130                | 50.85                | 2.42         | 20       |      |
| Chromium                   | 49.3           | 0.100   | 50.00                       | 1.928       | 94.7                     | 70       | 130                | 50.36                | 2.22         | 20       |      |
| Copper                     | 85.2           | 0.500   | 50.00                       | 38.34       | 93.8                     | 70       | 130                | 87.36                | 2.48         | 20       |      |
| Lead                       | 55.2           | 0.100   | 50.00                       | 5.460       | 99.5                     | 70       | 130                | 55.29                | 0.187        | 20       |      |
| Nickel                     | 57.6           | 0.500   | 50.00                       | 9.649       | 95.8                     | 70       | 130                | 59.06                | 2.59         | 20       |      |

O RSD is greater than RSDlimit

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

WO#: **1705127** 

07-Jun-17

### **Specialty Analytical**

| Client:<br>Project:     |            | r & Alongi<br>/ 1381.01.01 |         |                   |             |      |              | TestCode:            | 200.8                |        |      |
|-------------------------|------------|----------------------------|---------|-------------------|-------------|------|--------------|----------------------|----------------------|--------|------|
| Sample ID: <b>ICV</b>   |            | SampType: ICV              | TestCoo | de: <b>200.8</b>  | Units: μg/L |      | Prep Dat     | e:                   | RunNo: <b>21427</b>  |        |      |
| Client ID: ICV          |            | Batch ID: 9948             | TestN   | No: <b>E200.8</b> | E200.8      |      | Analysis Dat | e: <b>5/19/2017</b>  | SeqNo: <b>285491</b> |        |      |
| Analyte                 |            | Result                     | PQL     | SPK value         | SPK Ref Val | %REC | LowLimit     | HighLimit RPD Ref Va | I %RPD RP            | DLimit | Qual |
| Chromium                |            | 50.9                       | 0.100   | 50.00             | 0           | 102  | 90           | 110                  |                      |        |      |
| Manganese               |            | 49.9                       | 0.500   | 50.00             | 0           | 99.7 | 90           | 110                  |                      |        |      |
| Zinc                    |            | 49.0                       | 2.00    | 50.00             | 0           | 97.9 | 90           | 110                  |                      |        |      |
| Sample ID: <b>LCS-9</b> | 948        | SampType: LCS              | TestCod | de: <b>200.8</b>  | Units: μg/L |      | Prep Date    | e: <b>5/17/2017</b>  | RunNo: <b>21427</b>  |        |      |
| Client ID: LCSW         |            | Batch ID: 9948             | TestN   | No: <b>E200.8</b> | E200.8      |      | Analysis Dat | e: <b>5/19/2017</b>  | SeqNo: <b>285493</b> |        |      |
| Analyte                 |            | Result                     | PQL     | SPK value         | SPK Ref Val | %REC | LowLimit     | HighLimit RPD Ref Va | I %RPD RP            | DLimit | Qual |
| Manganese               |            | 48.1                       | 0.500   | 50.00             | 0           | 96.2 | 85           | 115                  |                      |        |      |
| Sample ID: <b>17051</b> | 27-001CDUP | SampType: <b>DUP</b>       | TestCoo | de: <b>200.8</b>  | Units: µg/L |      | Prep Date    | e: <b>5/17/2017</b>  | RunNo: <b>21427</b>  |        |      |
| Client ID: MHSW         | 14         | Batch ID: 9948             | TestN   | No: <b>E200.8</b> | E200.8      |      | Analysis Dat | e: <b>5/19/2017</b>  | SeqNo: <b>285495</b> |        |      |
| Analyte                 |            | Result                     | PQL     | SPK value         | SPK Ref Val | %REC | LowLimit     | HighLimit RPD Ref Va | I %RPD RP            | DLimit | Qual |
| Manganese               |            | 184                        | 5.00    |                   |             |      |              | 175.3                | 4.88                 | 20     |      |
| Zinc                    |            | 403                        | 20.0    |                   |             |      |              | 362.8                | 10.5                 | 20     |      |
| Sample ID: <b>17051</b> | 27-001CMS  | SampType: MS               | TestCoo | de: <b>200.8</b>  | Units: μg/L |      | Prep Date    | e: <b>5/17/2017</b>  | RunNo: <b>21427</b>  |        |      |
| Client ID: MHSW         | 14         | Batch ID: 9948             | TestN   | No: <b>E200.8</b> | E200.8      |      | Analysis Dat | e: <b>5/19/2017</b>  | SeqNo: <b>285496</b> |        |      |
| Analyte                 |            | Result                     | PQL     | SPK value         | SPK Ref Val | %REC | LowLimit     | HighLimit RPD Ref Va | I %RPD RP            | DLimit | Qual |
| Manganese               |            | 219                        | 5.00    | 50.00             | 175.3       | 87.5 | 70           | 130                  |                      |        |      |

WO#: **1705127** 

07-Jun-17

**Specialty Analytical** 

Client: Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 **TestCode: 200.8** 

| Sample ID: 1705127-001CMS | SampType: <b>MS</b> | TestCode: 200.8 |                              | Units: μg/L | Prep Date: 5/17/2017     |          |           |             | RunNo: <b>21</b> 4 |          |      |
|---------------------------|---------------------|-----------------|------------------------------|-------------|--------------------------|----------|-----------|-------------|--------------------|----------|------|
| Client ID: MHSW4          | Batch ID: 9948      | TestN           | TestNo: <b>E200.8 E200.8</b> |             | Analysis Date: 5/19/2017 |          |           | 17          | SeqNo: 288         |          |      |
| Analyte                   | Result              | PQL             | SPK value                    | SPK Ref Val | %REC                     | LowLimit | HighLimit | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Zinc                      | 397                 | 20.0            | 50.00                        | 362.8       | 67.5                     | 70       | 130       |             |                    |          | SMC  |

| Sample ID: 1705127-001CMSD Client ID: MHSW4 | SampType: MSD Batch ID: 9948 |              | le: <b>200.8</b><br>lo: <b>E200.8</b> | Units: µg/L<br>E200.8 |              | Prep Da <sup>·</sup><br>Analysis Da <sup>·</sup> | te: <b>5/17/20</b> |                | RunNo: <b>21</b> 4<br>SeqNo: <b>28</b> 5 |          |      |
|---------------------------------------------|------------------------------|--------------|---------------------------------------|-----------------------|--------------|--------------------------------------------------|--------------------|----------------|------------------------------------------|----------|------|
| Analyte                                     | Result                       | PQL          | SPK value                             | SPK Ref Val           | %REC         | LowLimit                                         | HighLimit          | RPD Ref Val    | %RPD                                     | RPDLimit | Qual |
| Manganese<br>Zinc                           | 221<br>401                   | 5.00<br>20.0 | 50.00<br>50.00                        | 175.3<br>362.8        | 91.3<br>76.8 | 70<br>70                                         | 130<br>130         | 219.1<br>396.5 | 0.878<br>1.16                            | 20<br>20 |      |

S Spike Recovery outside accepted reco

WO#: **1705127** 

07-Jun-17

| <b>Specialty</b> | Analytical |
|------------------|------------|
|------------------|------------|

O RSD is greater than RSDlimit

|                             | Maul Foster & Alongi<br>Dolan SCE / 1381.01.01 |         |                      |               |      |               | Т                 | estCode: 2  | 00.8_DISS          |          |      |
|-----------------------------|------------------------------------------------|---------|----------------------|---------------|------|---------------|-------------------|-------------|--------------------|----------|------|
| Sample ID: <b>ICV</b>       | SampType: <b>ICV</b>                           | TestCod | de: <b>200.8_DIS</b> | S Units: μg/L |      | Prep Date     | e:                |             | RunNo: <b>21</b> 4 | 174      |      |
| Client ID: ICV              | Batch ID: 9967                                 | TestN   | No: <b>E200.8</b>    | E200.8        |      | Analysis Date | e: <b>5/22/20</b> | 17          | SeqNo: 28          | 5857     |      |
| Analyte                     | Result                                         | PQL     | SPK value            | SPK Ref Val   | %REC | LowLimit      | HighLimit         | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Aluminum                    | 470                                            | 100     | 500.0                | 0             | 94.1 | 90            | 110               |             |                    |          |      |
| Arsenic                     | 47.7                                           | 0.100   | 50.00                | 0             | 95.5 | 90            | 110               |             |                    |          |      |
| Cadmium                     | 47.0                                           | 0.100   | 50.00                | 0             | 94.0 | 90            | 110               |             |                    |          |      |
| Copper                      | 48.3                                           | 0.500   | 50.00                | 0             | 96.7 | 90            | 110               |             |                    |          |      |
| Lead                        | 46.9                                           | 0.100   | 50.00                | 0             | 93.7 | 90            | 110               |             |                    |          |      |
| Manganese                   | 47.2                                           | 0.500   | 50.00                | 0             | 94.3 | 90            | 110               |             |                    |          |      |
| Sample ID: MB-9967          | SampType: <b>MBLK</b>                          | TestCod | de: <b>200.8_DIS</b> | S Units: μg/L |      | Prep Date     | e: <b>5/22/20</b> | 17          | RunNo: <b>21</b> 4 | 174      |      |
| Client ID: PBW              | Batch ID: 9967                                 | TestN   | lo: <b>E200.8</b>    | E200.8        |      | Analysis Date | e: <b>5/22/20</b> | 17          | SeqNo: 285         | 5858     |      |
| Analyte                     | Result                                         | PQL     | SPK value            | SPK Ref Val   | %REC | LowLimit      | HighLimit         | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Aluminum                    | ND                                             | 100     |                      |               |      |               |                   |             |                    |          |      |
| Arsenic                     | ND                                             | 0.100   |                      |               |      |               |                   |             |                    |          |      |
| Cadmium                     | ND                                             | 0.100   |                      |               |      |               |                   |             |                    |          |      |
| Copper                      | ND                                             | 0.500   |                      |               |      |               |                   |             |                    |          |      |
| Lead                        | ND                                             | 0.100   |                      |               |      |               |                   |             |                    |          |      |
| Manganese                   | ND                                             | 0.500   |                      |               |      |               |                   |             |                    |          |      |
| Sample ID: <b>A170516</b> 4 | 4-001DDUP SampType: DUP                        | TestCoo | de: <b>200.8_DIS</b> | S Units: μg/L |      | Prep Date     | e: <b>5/22/20</b> | 17          | RunNo: <b>21</b> 4 | 174      |      |
| Client ID: ZZZZZZ           | Batch ID: 9967                                 | Test    | lo: <b>E200.8</b>    | E200.8        |      | Analysis Date | e: <b>5/22/20</b> | 17          | SeqNo: 28          | 5866     |      |
| Analyte                     | Result                                         | PQL     | SPK value            | SPK Ref Val   | %REC | LowLimit      | HighLimit         | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Aluminum                    | ND                                             | 100     |                      |               |      |               |                   | 0           | 0                  | 20       |      |

RPD outside accepted recovery limits

1705127 WO#:

07-Jun-17

### **Specialty Analytical**

| Client:  | Maul Foster & Alongi   |           |            |
|----------|------------------------|-----------|------------|
| Project: | Dolan SCE / 1381.01.01 | TestCode: | 200.8_DISS |

| Sample ID: <b>A1705164</b> | -001DDUP SampType: DUP | TestCo | de: <b>200.8_DIS</b> | SS Units: µg/L |      | Prep Da     | te: <b>5/22/2</b> 0 | )17         | RunNo: <b>21</b> 4 | 174      |      |
|----------------------------|------------------------|--------|----------------------|----------------|------|-------------|---------------------|-------------|--------------------|----------|------|
| Client ID: ZZZZZZ          | Batch ID: 9967         | Test   | No: <b>E200.8</b>    | E200.8         |      | Analysis Da | te: <b>5/22/2</b> 0 | )17         | SeqNo: 285         | 5866     |      |
| Analyte                    | Result                 | PQL    | SPK value            | SPK Ref Val    | %REC | LowLimit    | HighLimit           | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Arsenic                    | 0.985                  | 0.100  |                      |                |      |             |                     | 0.9824      | 0.251              | 20       |      |
| Cadmium                    | ND                     | 0.100  |                      |                |      |             |                     | 0           | 0                  | 20       |      |
| Copper                     | 0.0196                 | 0.500  |                      |                |      |             |                     | 0.02217     | 12.2               | 20       | J    |
| Lead                       | ND                     | 0.100  |                      |                |      |             |                     | 0           | 0                  | 20       |      |

| Sample ID: A1705164-001DMS | SampType: <b>MS</b> | TestCod | de: <b>200.8_DIS</b> | S Units: μg/L |      | Prep Da     | te: <b>5/22/20</b> | 17          | RunNo: <b>21</b> 4 | 174      |      |
|----------------------------|---------------------|---------|----------------------|---------------|------|-------------|--------------------|-------------|--------------------|----------|------|
| Client ID: ZZZZZZ          | Batch ID: 9967      | TestN   | No: <b>E200.8</b>    | E200.8        |      | Analysis Da | te: <b>5/22/20</b> | 17          | SeqNo: 285         | 867      |      |
| Analyte                    | Result              | PQL     | SPK value            | SPK Ref Val   | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Aluminum                   | 415                 | 100     | 500.0                | 0             | 83.0 | 80          | 120                |             |                    |          |      |
| Arsenic                    | 47.8                | 0.100   | 50.00                | 0.9824        | 93.6 | 80          | 120                |             |                    |          |      |
| Cadmium                    | 49.1                | 0.100   | 50.00                | 0             | 98.1 | 80          | 120                |             |                    |          |      |
| Copper                     | 42.4                | 0.500   | 50.00                | 0.02217       | 84.7 | 80          | 120                |             |                    |          |      |
| Lead                       | 48.0                | 0.100   | 50.00                | 0             | 96.0 | 80          | 120                |             |                    |          |      |

| Sample ID: | A1705164-001DMSD | SampType: MSD  | TestCod | de: <b>200.8_DIS</b> | S Units: μg/L |      | Prep Dat     | e: <b>5/22/20</b> | 17          | RunNo: <b>21</b> 4 | 174      |      |
|------------|------------------|----------------|---------|----------------------|---------------|------|--------------|-------------------|-------------|--------------------|----------|------|
| Client ID: | <b>ZZZZZZ</b>    | Batch ID: 9967 | TestN   | lo: <b>E200.8</b>    | E200.8        |      | Analysis Dat | e: <b>5/22/20</b> | 17          | SeqNo: 285         | 870      |      |
| Analyte    |                  | Result         | PQL     | SPK value            | SPK Ref Val   | %REC | LowLimit     | HighLimit         | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Aluminum   |                  | 419            | 100     | 500.0                | 0             | 83.8 | 80           | 120               | 414.9       | 0.981              | 20       |      |
| Arsenic    |                  | 48.1           | 0.100   | 50.00                | 0.9824        | 94.3 | 80           | 120               | 47.77       | 0.728              | 20       |      |
| Cadmium    |                  | 50.6           | 0.100   | 50.00                | 0             | 101  | 80           | 120               | 49.06       | 3.03               | 20       |      |
| Copper     |                  | 42.7           | 0.500   | 50.00                | 0.02217       | 85.4 | 80           | 120               | 42.35       | 0.819              | 20       |      |

Qualifiers: Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Spike Recovery outside accepted reco Page 7 of 25

RSD is greater than RSDlimit

RPD outside accepted recovery limits

WO#: **1705127** 

07-Jun-17

| Client:    | Maul Foster        | & Alongi              |                                  |                                     |                      |
|------------|--------------------|-----------------------|----------------------------------|-------------------------------------|----------------------|
| Project:   | Dolan SCE          | / 1381.01.01          |                                  | TestCode: 2                         | 00.8_DISS            |
| Sample ID: | A1705164-001DMSD   | SampType: MSD         | TestCode: 200.8_DISS Units: μg/L | Prep Date: 5/22/2017                | RunNo: <b>21474</b>  |
| Client ID: | ZZZZZZ             | Batch ID: 9967        | TestNo: <b>E200.8 E200.8</b>     | Analysis Date: 5/22/2017            | SeqNo: <b>285870</b> |
| Analyte    |                    | Result                | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Lead       |                    | 48.8                  | 0.100 50.00 0                    | 97.6 80 120 47.98                   | 1.70 20              |
| Sample ID: | : ICV              | SampType: ICV         | TestCode: 200.8_DISS Units: µg/L | Prep Date:                          | RunNo: <b>21474</b>  |
| Client ID: | ICV                | Batch ID: <b>9967</b> | TestNo: <b>E200.8 E200.8</b>     | Analysis Date: 5/24/2017            | SeqNo: <b>286312</b> |
| Analyte    |                    | Result                | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Zinc       |                    | 49.0                  | 2.00 50.00 0                     | 98.0 90 110                         |                      |
| Sample ID: | : MB-9967          | SampType: <b>MBLK</b> | TestCode: 200.8_DISS Units: µg/L | Prep Date: 5/22/2017                | RunNo: <b>21474</b>  |
| Client ID: | PBW                | Batch ID: 9967        | TestNo: <b>E200.8 E200.8</b>     | Analysis Date: 5/24/2017            | SeqNo: <b>286314</b> |
| Analyte    |                    | Result                | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Zinc       |                    | ND                    | 2.00                             |                                     |                      |
| Sample ID: | : A1705164-001DDUP | SampType: <b>DUP</b>  | TestCode: 200.8_DISS Units: µg/L | Prep Date: 5/22/2017                | RunNo: <b>21474</b>  |
| Client ID: | <b>ZZZZZZ</b>      | Batch ID: 9967        | TestNo: <b>E200.8 E200.8</b>     | Analysis Date: 5/24/2017            | SeqNo: <b>286319</b> |
| Analyte    |                    | Result                | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Zinc       |                    | ND                    | 2.00                             | 0                                   | 0 20                 |

Qualifiers: B Analyte detected in the associated Method Blank

4 DOD! '

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting LimitS pike Recovery outside accepted reco

Page 8 of 25

WO#: **1705127** 

07-Jun-17

| Specialt | <b>y</b> <i>P</i> | Anal | lyt | tical |
|----------|-------------------|------|-----|-------|
|----------|-------------------|------|-----|-------|

| Client:        | Maul Foster    | & Alongi     |        |         |                      |                |      |               |                   |             |                    |                    |      |
|----------------|----------------|--------------|--------|---------|----------------------|----------------|------|---------------|-------------------|-------------|--------------------|--------------------|------|
| Project:       | Dolan SCE      | / 1381.01.01 |        |         |                      |                |      |               | T                 | estCode: 2  | 200.8_DISS         |                    |      |
| Sample ID: A1  | 705164-001DMS  | SampType: I  | MS     | TestCod | de: <b>200.8_DIS</b> | S Units: µg/L  |      | Prep Date     | e: <b>5/22/20</b> | )17         | RunNo: 214         | 474                |      |
| Client ID: ZZ  | ZZZZ           | Batch ID: §  | 9967   | TestN   | lo: <b>E200.8</b>    | E200.8         |      | Analysis Date | e: <b>5/24/20</b> | 17          | SeqNo: <b>28</b> 6 | 6320               |      |
| Analyte        |                |              | Result | PQL     | SPK value            | SPK Ref Val    | %REC | LowLimit      | HighLimit         | RPD Ref Val | %RPD               | RPDLimit           | Qual |
| Zinc           |                |              | 50.9   | 2.00    | 50.00                | 0              | 102  | 80            | 120               |             |                    |                    |      |
| Sample ID: A1  | 705164-001DMSD | SampType: I  | MSD    | TestCod | de: <b>200.8_DIS</b> | S Units: μg/L  |      | Prep Date     | e: <b>5/22/20</b> | )17         | RunNo: 214         | <del></del><br>474 |      |
| Client ID: ZZ  | ZZZZ           | Batch ID: §  | 9967   | TestN   | No: <b>E200.8</b>    | E200.8         |      | Analysis Date | e: <b>5/24/20</b> | 17          | SeqNo: <b>28</b> 6 | 6321               |      |
| Analyte        |                |              | Result | PQL     | SPK value            | SPK Ref Val    | %REC | LowLimit      | HighLimit         | RPD Ref Val | %RPD               | RPDLimit           | Qual |
| Zinc           |                |              | 50.7   | 2.00    | 50.00                | 0              | 101  | 80            | 120               | 50.85       | 0.274              | 20                 |      |
| Sample ID: IC\ | V              | SampType: I  | CV     | TestCod | de: <b>200.8_DIS</b> | SS Units: μg/L |      | Prep Date     | <del></del>       |             | RunNo: 214         | 474                |      |
| Client ID: IC\ | <b>/</b>       | Batch ID: §  | 9967   | TestN   | lo: <b>E200.8</b>    | E200.8         |      | Analysis Date | e: <b>5/24/20</b> | 17          | SeqNo: <b>28</b> 6 | 6359               |      |
| Analyte        |                |              | Result | PQL     | SPK value            | SPK Ref Val    | %REC | LowLimit      | HighLimit         | RPD Ref Val | %RPD               | RPDLimit           | Qual |
| Manganese      |                |              | 48.6   | 0.500   | 50.00                | 0              | 97.3 | 90            | 110               |             |                    |                    |      |
| Zinc           |                |              | 48.8   | 2.00    | 50.00                | 0              | 97.7 | 90            | 110               |             |                    |                    |      |
| Sample ID: A1  | 705164-001DDUP | SampType: [  | DUP    | TestCod | de: <b>200.8_DIS</b> | SS Units: μg/L |      | Prep Date     | e: <b>5/22/20</b> | )17         | RunNo: 214         | 474                |      |
| Client ID: ZZ  | ZZZZ           | Batch ID: §  | 9967   | TestN   | No: <b>E200.8</b>    | E200.8         |      | Analysis Date | e: <b>5/24/20</b> | 117         | SeqNo: <b>28</b> ( | 6362               |      |
| Analyte        |                |              | Result | PQL     | SPK value            | SPK Ref Val    | %REC | LowLimit      | HighLimit         | RPD Ref Val | %RPD               | RPDLimit           | Qual |
| Manganese      |                |              | 900    | 10.0    |                      |                |      |               |                   | 949.2       | 5.33               | 20                 |      |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 9 of 25

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#: 1705127

07-Jun-17

**Specialty Analytical** 

| Client: N | Maul Foster & Alongi |
|-----------|----------------------|
|           |                      |

| Project:   | Dolan SCE                 | / 1381.01.01                 | TestCode: 200.8_DISS                |                         |               |                                  |                                             |      |  |  |
|------------|---------------------------|------------------------------|-------------------------------------|-------------------------|---------------|----------------------------------|---------------------------------------------|------|--|--|
|            | A1705164-001DMS<br>ZZZZZZ | SampType: MS Batch ID: 9967  | TestCode: 200.8_DISS                | 5 Units: μg/L<br>E200.8 |               | ate: 5/22/2017<br>ate: 5/24/2017 | RunNo: <b>21474</b><br>SeqNo: <b>286363</b> |      |  |  |
| Analyte    |                           | Result                       | PQL SPK value                       | SPK Ref Val             | %REC LowLimit | HighLimit RPD Ref Val            | I %RPD RPDLimit                             | Qual |  |  |
| Manganese  |                           | 1810                         | 10.0 1000                           | 949.2                   | 86.4 80       | 120                              |                                             |      |  |  |
|            | A1705164-001DMSD          | SampType: MSD Batch ID: 9967 | TestCode: 200.8_DISS TestNo: E200.8 | 5 Units: μg/L<br>E200.8 | •             | ate: 5/22/2017<br>ate: 5/24/2017 | RunNo: <b>21474</b><br>SeqNo: <b>286364</b> |      |  |  |
| Analyte    |                           | Result                       | PQL SPK value                       | SPK Ref Val             | %REC LowLimit | HighLimit RPD Ref Val            | I %RPD RPDLimit                             | Qual |  |  |
| Manganese  |                           | 1890                         | 10.0 1000                           | 949.2                   | 93.7 80       | 120 1813                         | 3.94 20                                     |      |  |  |
| Sample ID: |                           | SampType: CCV                | TestCode: 200.8_DISS                | . •                     | Prep Da       |                                  | RunNo: 21474                                |      |  |  |
| Client ID: | CCV                       | Batch ID: 9967               | TestNo: <b>E200.8</b>               | E200.8                  | ·             | ate: 5/24/2017                   | SeqNo: <b>286365</b>                        |      |  |  |

| Sample ID: CCV | SampType: CCV  | TestCod | de: <b>200.8_DISS</b>        | Units: µg/L |                          | Prep Dat | te:       |             | RunNo: <b>21</b> 4   | 174      |      |
|----------------|----------------|---------|------------------------------|-------------|--------------------------|----------|-----------|-------------|----------------------|----------|------|
| Client ID: CCV | Batch ID: 9967 | TestN   | TestNo: <b>E200.8 E200.8</b> |             | Analysis Date: 5/24/2017 |          |           | 17          | SeqNo: <b>286365</b> |          |      |
| Analyte        | Result         | PQL     | SPK value                    | SPK Ref Val | %REC                     | LowLimit | HighLimit | RPD Ref Val | %RPD                 | RPDLimit | Qual |
| Manganese      | 48.7           | 0.500   | 50.00                        | 0           | 97.5                     | 90       | 110       |             |                      |          |      |
| Zinc           | 48.4           | 2.00    | 50.00                        | 0           | 96.8                     | 90       | 110       |             |                      |          |      |

Analyte detected in the associated Method Blank

WO#: **1705127** 

07-Jun-17

| Client: | Maul Foster & Alongi |
|---------|----------------------|

**Specialty Analytical** 

| Sample ID: <b>1016/1260 CCV</b> | SampType: CCV         | TestCod | de: <b>8082LL_W</b> | Units: µg/L |                | Prep Date     | e:                   |             | RunNo: <b>21</b> 4 | 184      |      |
|---------------------------------|-----------------------|---------|---------------------|-------------|----------------|---------------|----------------------|-------------|--------------------|----------|------|
| Client ID: CCV                  | Batch ID: 9944        | TestN   | lo: <b>SW 8082A</b> | SW3510_PCB  | Analysis Date: |               | te: <b>5/23/2017</b> |             | SeqNo: 286         | 6036     |      |
| Analyte                         | Result                | PQL     | SPK value           | SPK Ref Val | %REC           | LowLimit      | HighLimit F          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Aroclor 1016/1260               | 2.07                  | 0.0200  | 2.000               | 0           | 103            | 85            | 115                  |             |                    |          |      |
| Sample ID: LCS-9944             | SampType: <b>LCS</b>  | TestCoo | de: <b>8082LL_W</b> | Units: µg/L |                | Prep Date     | e: 5/17/2017         | ,           | RunNo: <b>21</b> 4 | 184      |      |
| Client ID: LCSW                 | Batch ID: 9944        | TestN   | lo: <b>SW 8082A</b> | SW3510_PCB  |                | Analysis Date | e: <b>5/23/2017</b>  | •           | SeqNo: 286         | 6037     |      |
| Analyte                         | Result                | PQL     | SPK value           | SPK Ref Val | %REC           | LowLimit      | HighLimit F          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Aroclor 1016/1260               | 2.24                  | 0.0200  | 2.000               | 0           | 112            | 40.4          | 120                  |             |                    |          |      |
| Sample ID: <b>LCSD-9944</b>     | SampType: <b>LCSD</b> | TestCod | de: <b>8082LL_W</b> | Units: µg/L |                | Prep Date     | e: <b>5/17/201</b> 7 | 7           | RunNo: <b>21</b> 4 | 184      |      |
| Client ID: LCSS02               | Batch ID: 9944        | TestN   | No: SW 8082A        | SW3510_PCB  |                | Analysis Date | e: <b>5/23/2017</b>  | ,           | SeqNo: 286         | 6038     |      |
| Analyte                         | Result                | PQL     | SPK value           | SPK Ref Val | %REC           | LowLimit      | HighLimit F          | RPD Ref Val | %RPD               | RPDLimit | Qua  |
| Aroclor 1016/1260               | 1.91                  | 0.0200  | 2.000               | 0           | 95.7           | 40.4          | 120                  | 2.242       | 15.8               | 20       |      |
| Sample ID: MB-9944              | SampType: <b>MBLK</b> | TestCod | de: <b>8082LL_W</b> | Units: μg/L |                | Prep Date     | e: 5/17/2017         | 7           | RunNo: <b>21</b> 4 | 184      |      |
| Client ID: PBW                  | Batch ID: 9944        | TestN   | No: SW 8082A        | SW3510_PCB  |                | Analysis Date | e: <b>5/23/2017</b>  | ,           | SeqNo: 286         | 6039     |      |
| Analyte                         | Result                | PQL     | SPK value           | SPK Ref Val | %REC           | LowLimit      | HighLimit F          | RPD Ref Val | %RPD               | RPDLimit | Qua  |
| Aroclor 1016                    | ND                    | 0.0200  |                     |             |                |               |                      |             |                    |          |      |
| Aroclor 1221                    | ND                    | 0.0200  |                     |             |                |               |                      |             |                    |          |      |
| Aroclor 1232                    | ND                    | 0.0200  |                     |             |                |               |                      |             |                    |          |      |
| Aroclor 1242                    | ND                    | 0.0200  |                     |             |                |               |                      |             |                    |          |      |

1705127 WO#:

07-Jun-17

### **Specialty Analytical**

Maul Foster & Alongi **Client:** 

**Project:** Dolan SCE / 1381.01.01 TestCode: 8082LL\_W

| Sample ID: MB-9944 Client ID: PBW | SampType: <b>MBLK</b> Batch ID: <b>9944</b> | TestCode: 8082LL_W TestNo: SW 8082A |           | . 0         | Prep Date: <b>5/17/2017</b> Analysis Date: <b>5/23/2017</b> |          |           |             | RunNo: <b>21</b> 4<br>SeqNo: <b>28</b> 6 |          |      |
|-----------------------------------|---------------------------------------------|-------------------------------------|-----------|-------------|-------------------------------------------------------------|----------|-----------|-------------|------------------------------------------|----------|------|
| Analyte                           | Result                                      | PQL                                 | SPK value | SPK Ref Val | %REC                                                        | LowLimit | HighLimit | RPD Ref Val | %RPD                                     | RPDLimit | Qual |
| Aroclor 1248                      | ND                                          | 0.0200                              |           |             |                                                             |          |           |             |                                          |          |      |
| Aroclor 1254                      | ND                                          | 0.0200                              |           |             |                                                             |          |           |             |                                          |          |      |
| Aroclor 1260                      | ND                                          | 0.0200                              |           |             |                                                             |          |           |             |                                          |          |      |
| Aroclor 1262                      | ND                                          | 0.0200                              |           |             |                                                             |          |           |             |                                          |          |      |
| Aroclor 1268                      | ND                                          | 0.0200                              |           |             |                                                             |          |           |             |                                          |          |      |
| Surr: Decachlorobiphenyl          | 147                                         |                                     | 200.0     |             | 73.6                                                        | 45       | 107       |             |                                          |          |      |

| Sample ID: 1016/1260 CCV | SampType: CCV         | TestCode: 8082LL | _W Units: μg/L |                          | Prep Dat | e:                   |             | RunNo: <b>21</b> 4 | 184      |      |
|--------------------------|-----------------------|------------------|----------------|--------------------------|----------|----------------------|-------------|--------------------|----------|------|
| Client ID: CCV           | Batch ID: <b>9944</b> | TestNo: SW 808   | 2A SW3510_PCB  | Analysis Date: 5/23/2017 |          | SeqNo: <b>286043</b> |             |                    |          |      |
| Analyte                  | Result                | PQL SPK valu     | ie SPK Ref Val | %REC                     | LowLimit | HighLimit            | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Aroclor 1016/1260        | 1.86                  | 0.0200 2.00      | 0 0            | 93.2                     | 85       | 115                  |             |                    |          |      |

Holding times for preparation or analysis exceeded

WO#: **1705127** 

07-Jun-17

### **Specialty Analytical**

Client: Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 **TestCode: 8270LL\_W** 

| Sample ID: CCV MSSWS-1500 | SampType: <b>CCV</b> | TestCod | TestCode: 8270LL_W Units: μ |             |                          | Prep Da  | te:       |             | RunNo: <b>21462</b> |          |      |
|---------------------------|----------------------|---------|-----------------------------|-------------|--------------------------|----------|-----------|-------------|---------------------|----------|------|
| Client ID: CCV            | Batch ID: 9946       | TestN   | No: <b>SW8270D</b>          | SW 3510C    | Analysis Date: 5/19/2017 |          |           | 17          | SeqNo: 28           |          |      |
| Analyte                   | Result               | PQL     | SPK value                   | SPK Ref Val | %REC                     | LowLimit | HighLimit | RPD Ref Val | %RPD                | RPDLimit | Qual |
| 1,4-Dichlorobenzene       | 20.1                 | 0.500   | 20.00                       | 0           | 100                      | 80       | 120       |             |                     |          |      |
| 2,4,6-Trichlorophenol     | 19.1                 | 0.500   | 20.00                       | 0           | 95.4                     | 80       | 120       |             |                     |          |      |
| 2,4-Dichlorophenol        | 19.6                 | 0.500   | 20.00                       | 0           | 97.8                     | 80       | 120       |             |                     |          |      |
| 2-Nitrophenol             | 19.9                 | 0.500   | 20.00                       | 0           | 99.6                     | 80       | 120       |             |                     |          |      |
| 4-Chloro-3-methylphenol   | 23.9                 | 0.500   | 20.00                       | 0           | 120                      | 80       | 120       |             |                     |          |      |
| Acenaphthene              | 19.9                 | 0.500   | 20.00                       | 0           | 99.6                     | 80       | 120       |             |                     |          |      |
| Benzo(a)pyrene            | 21.2                 | 0.500   | 20.00                       | 0           | 106                      | 80       | 120       |             |                     |          |      |
| Di-n-octyl phthalate      | 20.9                 | 0.500   | 20.00                       | 0           | 104                      | 80       | 120       |             |                     |          |      |
| Fluoranthene              | 17.7                 | 0.500   | 20.00                       | 0           | 88.3                     | 80       | 120       |             |                     |          |      |
| Hexachlorobutadiene       | 20.4                 | 0.500   | 20.00                       | 0           | 102                      | 80       | 120       |             |                     |          |      |
| N-Nitrosodiphenylamine    | 21.3                 | 0.500   | 20.00                       | 0           | 107                      | 80       | 120       |             |                     |          |      |
| Pentachlorophenol         | 17.4                 | 0.500   | 20.00                       | 0           | 87.2                     | 80       | 120       |             |                     |          |      |
| Phenol                    | 20.0                 | 0.500   | 20.00                       | 0           | 100                      | 80       | 120       |             |                     |          |      |
|                           |                      |         |                             |             |                          |          |           |             |                     |          |      |

| Sample ID: MB-9946     | SampType: MBLK | TestCode: 8270LL_V | V Units: μg/L | Prep Date: <b>5/17/2017</b>         | RunNo: <b>21462</b>  |
|------------------------|----------------|--------------------|---------------|-------------------------------------|----------------------|
| Client ID: PBW         | Batch ID: 9946 | TestNo: SW8270D    | SW 3510C      | Analysis Date: <b>5/19/2017</b>     | SeqNo: <b>285828</b> |
| Analyte                | Result         | PQL SPK value      | SPK Ref Val   | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| 1,2,4-Trichlorobenzene | ND             | 0.500              |               |                                     |                      |
| 1,2-Dichlorobenzene    | ND             | 0.500              |               |                                     |                      |
| 1,3-Dichlorobenzene    | ND             | 0.500              |               |                                     |                      |
| 1,4-Dichlorobenzene    | ND             | 0.500              |               |                                     |                      |
| 1-Methylnaphthalene    | ND             | 0.500              |               |                                     |                      |
| 2,3,4-Trichlorophenol  | ND             | 0.500              |               |                                     |                      |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 13 of 25

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#: **1705127** 

07-Jun-17

### **Specialty Analytical**

Client: Maul Foster & Alongi

Project: Dolan SCE / 1381.01.01 TestCode: 8270LL\_W

| Sample ID: MB-9946 Client ID: PBW | SampType: <b>MBLK</b> Batch ID: <b>9946</b> | TestCode: 8270LL TestNo: SW827 | _              |               | ate: 5/17/2017<br>ate: 5/19/2017 | RunNo: <b>21462</b><br>SeqNo: <b>285828</b> |      |
|-----------------------------------|---------------------------------------------|--------------------------------|----------------|---------------|----------------------------------|---------------------------------------------|------|
| Client ID. PBVV                   | Dalcii ID. <b>3340</b>                      | 165th0. <b>34402</b> 7         | OD 344 3510C   | Allalysis Da  | ate. 3/19/2017                   | 3eq110. 203020                              |      |
| Analyte                           | Result                                      | PQL SPK valu                   | ie SPK Ref Val | %REC LowLimit | HighLimit RPD Ref Val            | %RPD RPDLimit                               | Qual |
| 2,3,5,6-Tetrachlorophenol         | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 2,3,5-Trichlorophenol             | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 2,3,6-Trichlorophenol             | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 2,4,5-Trichlorophenol             | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 2,4,6-Trichlorophenol             | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 2,4-Dichlorophenol                | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 2,4-Dimethylphenol                | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 2,4-Dinitrophenol                 | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 2,4-Dinitrotoluene                | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 2,6-Dinitrotoluene                | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 2-Chloronaphthalene               | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 2-Chlorophenol                    | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 2-Methylnaphthalene               | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 2-Methylphenol                    | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 2-Nitroaniline                    | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 2-Nitrophenol                     | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 3-&4-Methylphenol                 | ND                                          | 1.00                           |                |               |                                  |                                             |      |
| 3,3'-Dichlorobenzidine            | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 3-Nitroaniline                    | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 4,6-Dinitro-2-methylphenol        | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 4-Bromophenyl phenyl ether        | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 4-Chloro-3-methylphenol           | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 4-Chloroaniline                   | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 4-Chlorophenyl phenyl ether       | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 4-Nitroaniline                    | ND                                          | 0.500                          |                |               |                                  |                                             |      |
| 4-Nitrophenol                     | ND                                          | 0.500                          |                |               |                                  |                                             |      |

Qualifiers: B Analyte

Analyte detected in the associated Method Blank

O RSD is greater than RSDlimit

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted reco

1705127 WO#:

07-Jun-17

**Specialty Analytical** 

Maul Foster & Alongi **Client:** 

**Project:** Dolan SCE / 1381.01.01 TestCode: 8270LL\_W

| Sample ID: MB-9946          | SampType: MBLK                   | TestCode: 8270LI | _                            | •                       | e: 5/17/2017          | RunNo: 21462           |             |
|-----------------------------|----------------------------------|------------------|------------------------------|-------------------------|-----------------------|------------------------|-------------|
| Client ID: PBW              | Batch ID: 9946                   | TestNo: SW827    | OD SW 3510C                  | Analysis Date           | e: 5/19/201 <i>7</i>  | SeqNo: <b>285828</b>   |             |
| Analyte                     | Result                           | PQL SPK val      | ue SPK Ref Val               | %REC LowLimit           | HighLimit RPD Ref Val | %RPD RPDLimit          | Qual        |
| Acenaphthene                | ND                               | 0.500            |                              |                         |                       |                        |             |
| Acenaphthylene              | ND                               | 0.500            |                              |                         |                       |                        |             |
| Anthracene                  | ND                               | 0.500            |                              |                         |                       |                        |             |
| Azobenzene                  | ND                               | 0.500            |                              |                         |                       |                        |             |
| Benz(a)anthracene           | ND                               | 0.500            |                              |                         |                       |                        |             |
| Benzo(a)pyrene              | ND                               | 0.500            |                              |                         |                       |                        |             |
| Benzo(b)fluoranthene        | ND                               | 0.500            |                              |                         |                       |                        |             |
| Benzo(g,h,i)perylene        | ND                               | 0.500            |                              |                         |                       |                        |             |
| Benzo(k)fluoranthene        | ND                               | 0.500            |                              |                         |                       |                        |             |
| Benzoic Acid                | ND                               | 5.00             |                              |                         |                       |                        |             |
| Benzyl Alcohol              | ND                               | 0.500            |                              |                         |                       |                        |             |
| Bis(2-chloroethoxy)methane  | ND                               | 0.500            |                              |                         |                       |                        |             |
| Bis(2-chloroethyl)ether     | ND                               | 0.500            |                              |                         |                       |                        |             |
| Bis(2-chloroisopropyl)ether | ND                               | 0.500            |                              |                         |                       |                        |             |
| Bis(2-ethylhexyl)phthalate  | ND                               | 0.500            |                              |                         |                       |                        |             |
| Butyl benzyl phthalate      | ND                               | 0.500            |                              |                         |                       |                        |             |
| Carbazole                   | ND                               | 0.500            |                              |                         |                       |                        |             |
| Chrysene                    | ND                               | 0.500            |                              |                         |                       |                        |             |
| Dibenz(a,h)anthracene       | ND                               | 0.500            |                              |                         |                       |                        |             |
| Dibenzofuran                | ND                               | 0.500            |                              |                         |                       |                        |             |
| Diethyl phthalate           | ND                               | 0.500            |                              |                         |                       |                        |             |
| Dimethyl phthalate          | ND                               | 0.500            |                              |                         |                       |                        |             |
| Di-n-butyl phthalate        | ND                               | 0.500            |                              |                         |                       |                        |             |
| Di-n-octyl phthalate        | ND                               | 0.500            |                              |                         |                       |                        |             |
| Fluoranthene                | ND                               | 0.500            |                              |                         |                       |                        |             |
| Fluorene                    | ND                               | 0.500            |                              |                         |                       |                        |             |
| Qualifiers: B Analyte dete  | ected in the associated Method l | Blank H Ho       | olding times for preparation | on or analysis exceeded | ND Not Detected at th | ne Reporting Limit Pag | ge 15 of 2: |

RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

Page 15 of 25

WO#: **1705127** 

07-Jun-17

### **Specialty Analytical**

**Client:** 

Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 **TestCode: 8270LL\_W** 

| Sample ID: MB-9946         | SampType: <b>MBLK</b> | TestCod | e: <b>8270LL_W</b> | Units: μg/L |      | Prep Date     | e: <b>5/17/2</b> 0 | )17         | RunNo: <b>21</b> 4 | 162      |      |
|----------------------------|-----------------------|---------|--------------------|-------------|------|---------------|--------------------|-------------|--------------------|----------|------|
| Client ID: PBW             | Batch ID: 9946        | TestN   | o: <b>SW8270D</b>  | SW 3510C    |      | Analysis Date | e: <b>5/19/2</b> 0 | )17         | SeqNo: 28          | 5828     |      |
| Analyte                    | Result                | PQL     | SPK value          | SPK Ref Val | %REC | LowLimit      | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Hexachlorobenzene          | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| Hexachlorobutadiene        | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| Hexachlorocyclopentadiene  | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| Hexachloroethane           | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| Indeno(1,2,3-cd)pyrene     | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| Isophorone                 | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| Naphthalene                | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| Nitrobenzene               | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| N-Nitrosodimethylamine     | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| N-Nitrosodi-n-propylamine  | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| N-Nitrosodiphenylamine     | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| Pentachlorophenol          | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| Phenanthrene               | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| Phenol                     | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| Pyrene                     | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| Pyridine                   | ND                    | 0.500   |                    |             |      |               |                    |             |                    |          |      |
| Surr: 2,4,6-Tribromophenol | 81.8                  |         | 100.0              |             | 81.8 | 33.1          | 129.7              |             |                    |          |      |
| Surr: 2-Fluorobiphenyl     | 109                   |         | 100.0              |             | 109  | 33.1          | 126.2              |             |                    |          |      |
| Surr: 2-Fluorophenol       | 76.4                  |         | 100.0              |             | 76.4 | 13.4          | 127.1              |             |                    |          |      |
| Surr: 4-Terphenyl-d14      | 67.0                  |         | 100.0              |             | 67.0 | 41            | 122                |             |                    |          |      |
| Surr: Nitrobenzene-d5      | 83.2                  |         | 100.0              |             | 83.2 | 28.9          | 129.9              |             |                    |          |      |
| Surr: Phenol-d6            | 96.1                  |         | 100.0              |             | 96.1 | 10.6          | 128.5              |             |                    |          |      |

Qualifiers: B Analyte detected in the associated Method Blank

I mary to detected in the associated Method Blain

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 16 of 25

WO#: **1705127** 

07-Jun-17

### **Specialty Analytical**

Client: Maul Foster & Alongi
Project: Dolan SCE / 1381.01.0

Dolan SCE / 1381.01.01 **TestCode: 8270LL\_W** 

| Sample ID: LCS-9946       | SampType: <b>LCS</b> | TestCod | de: <b>8270LL_W</b> | Units: µg/L | Prep Date: 5/17/2017            |          |           | )17         | RunNo: 21462         |          |      |
|---------------------------|----------------------|---------|---------------------|-------------|---------------------------------|----------|-----------|-------------|----------------------|----------|------|
| Client ID: LCSW           | Batch ID: 9946       | TestN   | No: <b>SW8270D</b>  | SW 3510C    | Analysis Date: <b>5/19/2017</b> |          |           | 117         | SeqNo: <b>285832</b> |          |      |
| Analyte                   | Result               | PQL     | SPK value           | SPK Ref Val | %REC                            | LowLimit | HighLimit | RPD Ref Val | %RPD                 | RPDLimit | Qual |
| 1,2,4-Trichlorobenzene    | 30.6                 | 0.500   | 40.00               | 0           | 76.5                            | 42.4     | 104       |             |                      |          |      |
| 1,4-Dichlorobenzene       | 32.5                 | 0.500   | 40.00               | 0           | 81.3                            | 37.9     | 105       |             |                      |          |      |
| 2,4-Dinitrotoluene        | 41.2                 | 0.500   | 40.00               | 0           | 103                             | 52.9     | 133       |             |                      |          |      |
| 2-Chlorophenol            | 32.5                 | 0.500   | 40.00               | 0           | 81.2                            | 27.8     | 118       |             |                      |          |      |
| 4-Chloro-3-methylphenol   | 48.8                 | 0.500   | 40.00               | 0           | 122                             | 33.5     | 129       |             |                      |          |      |
| 4-Nitrophenol             | 28.9                 | 0.500   | 40.00               | 0           | 72.2                            | 11.4     | 119.1     |             |                      |          |      |
| Acenaphthene              | 36.2                 | 0.500   | 40.00               | 0           | 90.6                            | 42.4     | 124       |             |                      |          |      |
| N-Nitrosodi-n-propylamine | 39.3                 | 0.500   | 40.00               | 0           | 98.2                            | 33.9     | 138       |             |                      |          |      |
| Pentachlorophenol         | 23.5                 | 0.500   | 40.00               | 0           | 58.8                            | 43.3     | 113       |             |                      |          |      |
| Phenol                    | 33.7                 | 0.500   | 40.00               | 0           | 84.2                            | 6.73     | 124.7     |             |                      |          |      |
| Pyrene                    | 30.6                 | 0.500   | 40.00               | 0           | 76.6                            | 59.4     | 119       |             |                      |          |      |

| Sample ID: LCSD-9946      | SampType: <b>LCSD</b> | TestCo | de: <b>8270LL_W</b> | Units: µg/L |      | Prep Da     | te: <b>5/17/20</b> | 17          | RunNo: <b>21</b> 4 | 462      |      |
|---------------------------|-----------------------|--------|---------------------|-------------|------|-------------|--------------------|-------------|--------------------|----------|------|
| Client ID: LCSS02         | Batch ID: 9946        | Test   | No: <b>SW8270D</b>  | SW 3510C    |      | Analysis Da | te: <b>5/19/20</b> | 17          | SeqNo: 28          | 5833     |      |
| Analyte                   | Result                | PQL    | SPK value           | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| 1,2,4-Trichlorobenzene    | 31.1                  | 0.500  | 40.00               | 0           | 77.8 | 42.4        | 104                | 30.60       | 1.75               | 20       |      |
| 1,4-Dichlorobenzene       | 30.3                  | 0.500  | 40.00               | 0           | 75.7 | 37.9        | 105                | 32.52       | 7.13               | 20       |      |
| 2,4-Dinitrotoluene        | 39.5                  | 0.500  | 40.00               | 0           | 98.7 | 52.9        | 133                | 41.23       | 4.36               | 20       |      |
| 2-Chlorophenol            | 33.4                  | 0.500  | 40.00               | 0           | 83.6 | 27.8        | 118                | 32.50       | 2.88               | 20       |      |
| 4-Chloro-3-methylphenol   | 47.7                  | 0.500  | 40.00               | 0           | 119  | 33.5        | 129                | 48.80       | 2.24               | 20       |      |
| 4-Nitrophenol             | 30.2                  | 0.500  | 40.00               | 0           | 75.5 | 11.4        | 119.1              | 28.88       | 4.44               | 20       |      |
| Acenaphthene              | 36.4                  | 0.500  | 40.00               | 0           | 91.0 | 42.4        | 124                | 36.23       | 0.441              | 20       |      |
| N-Nitrosodi-n-propylamine | 40.9                  | 0.500  | 40.00               | 0           | 102  | 33.9        | 138                | 39.27       | 4.02               | 20       |      |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 17 of 25

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#: **1705127** 

07-Jun-17

**Specialty Analytical** 

Client: Maul Foster & Alongi
Project: Dolan SCE / 1381.01.01

TestCode: 8270LL\_W

| Sample ID: LCSD-9946 | SampType: <b>LCSD</b> | TestCoo | de: <b>8270LL_W</b> | Units: μg/L |      | Prep Dat     | te: <b>5/17/20</b> | 17          | RunNo: <b>21</b> 4 | 162      |      |
|----------------------|-----------------------|---------|---------------------|-------------|------|--------------|--------------------|-------------|--------------------|----------|------|
| Client ID: LCSS02    | Batch ID: <b>9946</b> | TestN   | lo: <b>SW8270D</b>  | SW 3510C    |      | Analysis Dat | te: <b>5/19/20</b> | 17          | SeqNo: 285         | 5833     |      |
| Analyte              | Result                | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Pentachlorophenol    | 24.7                  | 0.500   | 40.00               | 0           | 61.7 | 43.3         | 113                | 23.53       | 4.73               | 20       |      |
| Phenol               | 34.4                  | 0.500   | 40.00               | 0           | 86.1 | 6.73         | 114.7              | 33.68       | 2.20               | 20       |      |
| Pyrene               | 30.7                  | 0.500   | 40.00               | 0           | 76.8 | 59.4         | 119                | 30.64       | 0.326              | 20       |      |

1705127 WO#:

07-Jun-17

### **Specialty Analytical**

**Client:** Maul Foster & Alongi

| Sample ID: CCV MSSWS-1500 | SampType: CCV         | TestCo | de: <b>PAHRBDM</b> | _ Units: μg/L |      | Prep Date     | :                   | RunNo: 21402         |      |
|---------------------------|-----------------------|--------|--------------------|---------------|------|---------------|---------------------|----------------------|------|
| Client ID: CCV            | Batch ID: 9925        | Test   | No: <b>SW8270D</b> | SW 3510C      |      | Analysis Date | 5/16/2017           | SeqNo: <b>284964</b> |      |
| Analyte                   | Result                | PQL    | SPK value          | SPK Ref Val   | %REC | LowLimit      | HighLimit RPD Ref \ | /al %RPD RPDLimit    | : Qu |
| 2-Methylnaphthalene       | 2.30                  | 0.0200 | 2.000              | 0             | 115  | 80            | 120                 |                      |      |
| Acenaphthene              | 2.16                  | 0.0200 | 2.000              | 0             | 108  | 80            | 120                 |                      |      |
| Acenaphthylene            | 2.27                  | 0.0200 | 2.000              | 0             | 114  | 80            | 120                 |                      |      |
| Anthracene                | 2.25                  | 0.0200 | 2.000              | 0             | 112  | 80            | 120                 |                      |      |
| Benz(a)anthracene         | 2.19                  | 0.0180 | 2.000              | 0             | 110  | 80            | 120                 |                      |      |
| Benzo(a)pyrene            | 2.16                  | 0.0180 | 2.000              | 0             | 108  | 80            | 120                 |                      |      |
| Benzo(b)fluoranthene      | 2.10                  | 0.0180 | 2.000              | 0             | 105  | 80            | 120                 |                      |      |
| Benzo(g,h,i)perylene      | 2.33                  | 0.0180 | 2.000              | 0             | 116  | 80            | 120                 |                      |      |
| Benzo(k)fluoranthene      | 2.12                  | 0.0180 | 2.000              | 0             | 106  | 80            | 120                 |                      |      |
| Chrysene                  | 2.19                  | 0.0180 | 2.000              | 0             | 110  | 80            | 120                 |                      |      |
| Dibenz(a,h)anthracene     | 2.36                  | 0.0180 | 2.000              | 0             | 118  | 80            | 120                 |                      |      |
| Fluoranthene              | 2.14                  | 0.0200 | 2.000              | 0             | 107  | 80            | 120                 |                      |      |
| Fluorene                  | 2.34                  | 0.0200 | 2.000              | 0             | 117  | 80            | 120                 |                      |      |
| Indeno(1,2,3-cd)pyrene    | 2.38                  | 0.0180 | 2.000              | 0             | 119  | 80            | 120                 |                      |      |
| Naphthalene               | 2.33                  | 0.0200 | 2.000              | 0             | 116  | 80            | 120                 |                      |      |
| Phenanthrene              | 2.25                  | 0.0200 | 2.000              | 0             | 112  | 80            | 120                 |                      |      |
| Pyrene                    | 2.23                  | 0.0200 | 2.000              | 0             | 112  | 80            | 120                 |                      |      |
| Sample ID: MB-9925        | SampType: <b>MBLK</b> | TestCo | de: <b>PAHRBDM</b> | _ Units: μg/L |      | Prep Date     | : 5/15/2017         | RunNo: <b>21402</b>  |      |
| Client ID: PBW            | Batch ID: <b>9925</b> | Test   | No: <b>SW8270D</b> | SW 3510C      |      | Analysis Date | 5/16/2017           | SeqNo: <b>284965</b> |      |
| Analyte                   | Result                | PQL    | SPK value          | SPK Ref Val   | %REC | LowLimit      | HighLimit RPD Ref \ | /al %RPD RPDLimit    | : Qı |
| 2-Methylnaphthalene       | ND                    | 0.0200 |                    |               |      |               |                     |                      |      |
| Acenaphthene              | ND                    | 0.0200 |                    |               |      |               |                     |                      |      |

Qualifiers: Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 19 of 25

RSD is greater than RSDlimit

RPD outside accepted recovery limits

Spike Recovery outside accepted reco

S Spike Recovery outside accepted reco

WO#: **1705127** 

07-Jun-17

### **Specialty Analytical**

Client: Maul Foster & Alongi

O RSD is greater than RSDlimit

| Sample ID: MB-9925     | SampType: MBLK        | TestCod | de: <b>PAHRBDN</b> | I_ Units: μg/L |      | Pren Date:     | 5/15/2017    |            | RunNo: <b>214</b> | 102      |      |
|------------------------|-----------------------|---------|--------------------|----------------|------|----------------|--------------|------------|-------------------|----------|------|
| ·                      |                       |         |                    |                |      |                |              |            |                   |          |      |
| Client ID: PBW         | Batch ID: <b>9925</b> | Testi   | lo: <b>SW8270D</b> | SW 3510C       |      | Analysis Date: | 5/16/2017    |            | SeqNo: 284        | 1965     |      |
| Analyte                | Result                | PQL     | SPK value          | SPK Ref Val    | %REC | LowLimit H     | lighLimit RF | PD Ref Val | %RPD              | RPDLimit | Qual |
| cenaphthylene          | ND                    | 0.0200  |                    |                |      |                |              |            |                   |          |      |
| Inthracene             | ND                    | 0.0200  |                    |                |      |                |              |            |                   |          |      |
| enz(a)anthracene       | ND                    | 0.0180  |                    |                |      |                |              |            |                   |          |      |
| enzo(a)pyrene          | ND                    | 0.0180  |                    |                |      |                |              |            |                   |          |      |
| enzo(b)fluoranthene    | ND                    | 0.0180  |                    |                |      |                |              |            |                   |          |      |
| enzo(g,h,i)perylene    | ND                    | 0.0180  |                    |                |      |                |              |            |                   |          |      |
| enzo(k)fluoranthene    | ND                    | 0.0180  |                    |                |      |                |              |            |                   |          |      |
| hrysene                | ND                    | 0.0180  |                    |                |      |                |              |            |                   |          |      |
| ibenz(a,h)anthracene   | ND                    | 0.0180  |                    |                |      |                |              |            |                   |          |      |
| luoranthene            | ND                    | 0.0200  |                    |                |      |                |              |            |                   |          |      |
| luorene                | ND                    | 0.0200  |                    |                |      |                |              |            |                   |          |      |
| ndeno(1,2,3-cd)pyrene  | ND                    | 0.0180  |                    |                |      |                |              |            |                   |          |      |
| aphthalene             | ND                    | 0.0200  |                    |                |      |                |              |            |                   |          |      |
| henanthrene            | ND                    | 0.0200  |                    |                |      |                |              |            |                   |          |      |
| yrene                  | ND                    | 0.0200  |                    |                |      |                |              |            |                   |          |      |
| Surr: 2-Fluorobiphenyl | 47.4                  |         | 100.0              |                | 47.4 | 18.6           | 106          |            |                   |          |      |
| Surr: Nitrobenzene-d5  | 79.0                  |         | 100.0              |                | 79.0 | 17             | 130          |            |                   |          |      |
| Surr: p-Terphenyl-d14  | 65.1                  |         | 100.0              |                | 65.1 | 39.6           | 131          |            |                   |          |      |
| Sample ID: LCSD-9925   | SampType: <b>LCSD</b> | TestCod | de: <b>PAHRBDM</b> | I_ Units: μg/L |      | Prep Date:     | 5/16/2017    |            | RunNo: <b>214</b> | 102      |      |
| Client ID: LCSS02      | Batch ID: 9925        | TestN   | lo: <b>SW8270D</b> | SW 3510C       |      | Analysis Date: | 5/16/2017    |            | SeqNo: <b>284</b> | 1974     |      |
| Analyte                | Result                | PQL     | SPK value          | SPK Ref Val    | %REC | LowLimit F     | lighLimit RF | PD Ref Val | %RPD              | RPDLimit | Qua  |
| -Methylnaphthalene     | 4.31                  | 0.0200  | 5.000              | 0              | 86.2 | 30             | 130          | 4.170      | 3.30              | 20       |      |

R RPD outside accepted recovery limits

WO#: **1705127** 

07-Jun-17

### **Specialty Analytical**

Client: Maul Foster & Alongi

Project: Dolan SCE / 1381.01.01 TestCode: PAHRBDM\_W

| Sample ID: LCSD-9925   | SampType: <b>LCSD</b> | TestCod | de: <b>PAHRBDN</b> | I_ Units: μg/L |      | Prep Dat     | te: <b>5/16/20</b> | 17          | RunNo: <b>21</b> 4 | 102      |      |
|------------------------|-----------------------|---------|--------------------|----------------|------|--------------|--------------------|-------------|--------------------|----------|------|
| Client ID: LCSS02      | Batch ID: 9925        | TestN   | No: <b>SW8270D</b> | SW 3510C       |      | Analysis Dat | te: <b>5/16/20</b> | 17          | SeqNo: 284         | 1974     |      |
| Analyte                | Result                | PQL     | SPK value          | SPK Ref Val    | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Acenaphthene           | 3.60                  | 0.0200  | 5.000              | 0              | 72.0 | 26.8         | 87.5               | 3.470       | 3.68               | 20       |      |
| Acenaphthylene         | 4.00                  | 0.0200  | 5.000              | 0              | 80.0 | 29           | 89.1               | 3.860       | 3.56               | 20       |      |
| Anthracene             | 4.06                  | 0.0200  | 5.000              | 0              | 81.2 | 42           | 97.4               | 3.990       | 1.74               | 20       |      |
| Benz(a)anthracene      | 3.92                  | 0.0180  | 5.000              | 0              | 78.4 | 34.2         | 95.8               | 3.630       | 7.68               | 20       |      |
| Benzo(a)pyrene         | 4.10                  | 0.0180  | 5.000              | 0              | 82.0 | 23.4         | 103                | 3.700       | 10.3               | 20       |      |
| Benzo(b)fluoranthene   | 3.82                  | 0.0180  | 5.000              | 0              | 76.4 | 36.6         | 99.5               | 3.480       | 9.32               | 20       |      |
| Benzo(g,h,i)perylene   | 4.31                  | 0.0180  | 5.000              | 0              | 86.2 | 10.3         | 109                | 3.900       | 9.99               | 20       |      |
| Benzo(k)fluoranthene   | 3.95                  | 0.0180  | 5.000              | 0              | 79.0 | 39.7         | 93.4               | 3.570       | 10.1               | 20       |      |
| Chrysene               | 3.78                  | 0.0180  | 5.000              | 0              | 75.6 | 36.8         | 99.8               | 3.490       | 7.98               | 20       |      |
| Dibenz(a,h)anthracene  | 4.47                  | 0.0180  | 5.000              | 0              | 89.4 | 5.05         | 119                | 4.040       | 10.1               | 20       |      |
| Fluoranthene           | 3.85                  | 0.0200  | 5.000              | 0              | 77.0 | 42.4         | 95.9               | 3.760       | 2.37               | 20       |      |
| Fluorene               | 4.09                  | 0.0200  | 5.000              | 0              | 81.8 | 37.4         | 88.4               | 3.930       | 3.99               | 20       |      |
| Indeno(1,2,3-cd)pyrene | 4.46                  | 0.0180  | 5.000              | 0              | 89.2 | 10.5         | 98.4               | 4.020       | 10.4               | 20       |      |
| Naphthalene            | 4.11                  | 0.0200  | 5.000              | 0              | 82.2 | 16.8         | 96.9               | 4.010       | 2.46               | 20       |      |
| Phenanthrene           | 3.95                  | 0.0200  | 5.000              | 0              | 79.0 | 35.8         | 92.9               | 3.880       | 1.79               | 20       |      |
| Pyrene                 | 4.05                  | 0.0200  | 5.000              | 0              | 81.0 | 39.4         | 97.5               | 3.740       | 7.96               | 20       |      |

| Sample ID: LCS-9925 | SampType: LCS  | TestCod | de: <b>PAHRBDN</b> | I_ Units: μg/L |      | Prep Da     | te: <b>5/15/20</b> | 17          | RunNo: <b>21</b> 4 | 102      |      |
|---------------------|----------------|---------|--------------------|----------------|------|-------------|--------------------|-------------|--------------------|----------|------|
| Client ID: LCSW     | Batch ID: 9925 | TestN   | lo: <b>SW8270D</b> | SW 3510C       |      | Analysis Da | te: <b>5/16/20</b> | 17          | SeqNo: <b>28</b> 4 | 1975     |      |
| Analyte             | Result         | PQL     | SPK value          | SPK Ref Val    | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| 2-Methylnaphthalene | 4.17           | 0.0200  | 5.000              | 0              | 83.4 | 30          | 130                |             |                    |          |      |
| Acenaphthene        | 3.47           | 0.0200  | 5.000              | 0              | 69.4 | 26.8        | 87.5               |             |                    |          |      |
| Acenaphthylene      | 3.86           | 0.0200  | 5.000              | 0              | 77.2 | 29          | 89.1               |             |                    |          |      |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 21 of 25

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#: **1705127** 

07-Jun-17

### **Specialty Analytical**

Client: Maul Foster & Alongi

Project: Dolan SCE / 1381.01.01 TestCode: PAHRBDM\_W

| Sample ID: LCS-9925    | SampType: LCS  | TestCod | de: <b>PAHRBDM</b> | I_ Units: μg/L |      | Prep Dat     | te: <b>5/15/20</b> | 17          | RunNo: <b>21</b> 4 | 102      |      |
|------------------------|----------------|---------|--------------------|----------------|------|--------------|--------------------|-------------|--------------------|----------|------|
| Client ID: LCSW        | Batch ID: 9925 | TestN   | lo: <b>SW8270D</b> | SW 3510C       |      | Analysis Dat | te: <b>5/16/20</b> | 17          | SeqNo: 284         | 1975     |      |
| Analyte                | Result         | PQL     | SPK value          | SPK Ref Val    | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Anthracene             | 3.99           | 0.0200  | 5.000              | 0              | 79.8 | 42           | 97.4               |             |                    |          |      |
| Benz(a)anthracene      | 3.63           | 0.0180  | 5.000              | 0              | 72.6 | 34.2         | 95.8               |             |                    |          |      |
| Benzo(a)pyrene         | 3.70           | 0.0180  | 5.000              | 0              | 74.0 | 23.4         | 103                |             |                    |          |      |
| Benzo(b)fluoranthene   | 3.48           | 0.0180  | 5.000              | 0              | 69.6 | 36.6         | 99.5               |             |                    |          |      |
| Benzo(g,h,i)perylene   | 3.90           | 0.0180  | 5.000              | 0              | 78.0 | 10.3         | 109                |             |                    |          |      |
| Benzo(k)fluoranthene   | 3.57           | 0.0180  | 5.000              | 0              | 71.4 | 39.7         | 93.4               |             |                    |          |      |
| Chrysene               | 3.49           | 0.0180  | 5.000              | 0              | 69.8 | 36.8         | 99.8               |             |                    |          |      |
| Dibenz(a,h)anthracene  | 4.04           | 0.0180  | 5.000              | 0              | 80.8 | 5.05         | 119                |             |                    |          |      |
| Fluoranthene           | 3.76           | 0.0200  | 5.000              | 0              | 75.2 | 42.4         | 95.9               |             |                    |          |      |
| Fluorene               | 3.93           | 0.0200  | 5.000              | 0              | 78.6 | 37.4         | 88.4               |             |                    |          |      |
| Indeno(1,2,3-cd)pyrene | 4.02           | 0.0180  | 5.000              | 0              | 80.4 | 10.5         | 98.4               |             |                    |          |      |
| Naphthalene            | 4.01           | 0.0200  | 5.000              | 0              | 80.2 | 16.8         | 96.9               |             |                    |          |      |
| Phenanthrene           | 3.88           | 0.0200  | 5.000              | 0              | 77.6 | 35.8         | 92.9               |             |                    |          |      |
| Pyrene                 | 3.74           | 0.0200  | 5.000              | 0              | 74.8 | 39.4         | 97.5               |             |                    |          |      |

Analyte detected in the associated Method Blank

WO#: **1705127** 

07-Jun-17

| <b>Specialty</b> | Analytical |
|------------------|------------|
|------------------|------------|

| Client: M                   | aul Foster & Alongi   |                   |                    |             |      |               |                      |             |           |          |      |
|-----------------------------|-----------------------|-------------------|--------------------|-------------|------|---------------|----------------------|-------------|-----------|----------|------|
| Project: Do                 | olan SCE / 1381.01.01 |                   |                    |             |      |               | T                    | estCode: 7  | TOC_W     |          |      |
| Sample ID: MB-R2145         | 2 SampType: MBI       | L <b>K</b> TestCo | ode: TOC_W         | Units: mg/L |      | Prep Date     |                      |             | RunNo: 21 | 452      |      |
| Client ID: PBW              | Batch ID: R21         | <b>452</b> Test   | No: <b>M5310 B</b> |             |      | Analysis Date | 5/19/20 <sup>-</sup> | 17          | SeqNo: 28 | 5595     |      |
| Analyte                     | Res                   | sult PQL          | SPK value          | SPK Ref Val | %REC | LowLimit I    | HighLimit            | RPD Ref Val | %RPD      | RPDLimit | Qual |
| Organic Carbon, Total       | 0.3                   | 372 1.00          |                    |             |      |               |                      |             |           |          | J    |
| Sample ID: LCS-R214         | 52 SampType: LCS      | <b>S</b> TestCo   | ode: TOC_W         | Units: mg/L |      | Prep Date     | •                    |             | RunNo: 21 | 452      |      |
| Client ID: LCSW             | Batch ID: R21         | <b>452</b> Test   | No: <b>M5310 B</b> |             |      | Analysis Date | 5/19/20              | 17          | SeqNo: 28 | 5596     |      |
| Analyte                     | Res                   | sult PQL          | SPK value          | SPK Ref Val | %REC | LowLimit I    | HighLimit            | RPD Ref Val | %RPD      | RPDLimit | Qual |
| Organic Carbon, Total       | 9                     | .95 1.00          | 10.00              | 0           | 99.5 | 84.1          | 109                  |             |           |          |      |
| Sample ID: <b>1705127-0</b> | 01AMS SampType: MS    | TestCo            | ode: TOC_W         | Units: mg/L |      | Prep Date     | :                    |             | RunNo: 21 | 452      |      |
| Client ID: MHSW4            | Batch ID: R21         | <b>452</b> Test   | No: <b>M5310 B</b> |             |      | Analysis Date | 5/19/20 <sup>-</sup> | 17          | SeqNo: 28 | 5598     |      |
| Analyte                     | Res                   | sult PQL          | SPK value          | SPK Ref Val | %REC | LowLimit H    | HighLimit            | RPD Ref Val | %RPD      | RPDLimit | Qual |
| Organic Carbon, Total       | 4                     | 3.4 5.00          | 25.00              | 17.69       | 103  | 74.7          | 121                  |             |           |          |      |
| Sample ID: <b>1705127-0</b> | 01AMSD SampType: MSI  | <b>D</b> TestCo   | ode: TOC_W         | Units: mg/L |      | Prep Date     | <u> </u>             |             | RunNo: 21 | 452      |      |
| Client ID: MHSW4            | Batch ID: R21         | <b>452</b> Test   | No: <b>M5310 B</b> |             |      | Analysis Date | 5/19/20 <sup>-</sup> | 17          | SeqNo: 28 | 5599     |      |
| Analyte                     | Res                   | sult PQL          | SPK value          | SPK Ref Val | %REC | LowLimit H    | HighLimit            | RPD Ref Val | %RPD      | RPDLimit | Qual |
| Organic Carbon, Total       | 4                     | 3.9 5.00          | 25.00              | 17.69       | 105  | 74.7          | 121                  | 43.38       | 1.25      | 20       |      |

Qualifiers: B Analyte detected in the associated Method Blank

R RPD outside accepted recovery limits

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 23 of 25

O RSD is greater than RSDlimit

S Spike Recovery outside accepted reco

WO#: **1705127** 

07-Jun-17

**Specialty Analytical** 

Client: Maul Foster & Alongi

Project: Dolan SCE / 1381.01.01 TestCode: TOC\_W

| Sample ID: R21452CCV  | SampType: <b>CCV</b>    | TestCod | de: TOC_W          | Units: mg/L |      | Prep Dat    | te:                |             | RunNo: <b>21</b> 4 | 152      |      |
|-----------------------|-------------------------|---------|--------------------|-------------|------|-------------|--------------------|-------------|--------------------|----------|------|
| Client ID: CCV        | Batch ID: <b>R21452</b> | TestN   | No: <b>M5310 B</b> |             |      | Analysis Da | te: <b>5/19/20</b> | 17          | SeqNo: 285         | 5602     |      |
| Analyte               | Result                  | PQL     | SPK value          | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Organic Carbon, Total | 10.5                    | 1.00    | 10.00              | 0           | 105  | 90          | 110                |             |                    |          |      |

WO#: **1705127** 

07-Jun-17

| ıy | uca | IJ     |
|----|-----|--------|
|    | ıу  | lytica |

|                                   | er & Alongi<br>E / 1381.01.01 |                        |             | TestCode: T                         | rss_ww               |
|-----------------------------------|-------------------------------|------------------------|-------------|-------------------------------------|----------------------|
| Sample ID: MB-R21384              | SampType: <b>MBLK</b>         | TestCode: TSS_WW       | Units: mg/L | Prep Date:                          | RunNo: <b>21384</b>  |
| Client ID: PBW                    | Batch ID: <b>R21384</b>       | TestNo: <b>M2540 D</b> |             | Analysis Date: 5/16/2017            | SeqNo: <b>284770</b> |
| Analyte                           | Result                        | PQL SPK value SP       | PK Ref Val  | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Total Suspended Solids            | ND                            | 5.0                    |             |                                     |                      |
| Sample ID: LCS-R21384             | SampType: <b>LCS</b>          | TestCode: TSS_WW       | Units: mg/L | Prep Date:                          | RunNo: <b>21384</b>  |
| Client ID: LCSW                   | Batch ID: <b>R21384</b>       | TestNo: <b>M2540 D</b> |             | Analysis Date: 5/16/2017            | SeqNo: <b>284771</b> |
| Analyte                           | Result                        | PQL SPK value SP       | PK Ref Val  | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Total Suspended Solids            | 88.0                          | 5.0 100                | 0           | 88.0 80 105                         |                      |
| Sample ID: <b>1705113-002BDUP</b> | SampType: <b>DUP</b>          | TestCode: TSS_WW       | Units: mg/L | Prep Date:                          | RunNo: <b>21384</b>  |
| Client ID: ZZZZZZ                 | Batch ID: <b>R21384</b>       | TestNo: <b>M2540 D</b> |             | Analysis Date: 5/16/2017            | SeqNo: <b>284779</b> |
| Analyte                           | Result                        | PQL SPK value SP       | PK Ref Val  | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Total Suspended Solids            | 8.0                           | 5.0                    |             | 4.0                                 | 66.7 20 RF           |
| Sample ID: <b>1705132-002CDUP</b> | SampType: <b>DUP</b>          | TestCode: TSS_WW       | Units: mg/L | Prep Date:                          | RunNo: <b>21384</b>  |
| Client ID: ZZZZZZ                 | Batch ID: <b>R21384</b>       | TestNo: <b>M2540 D</b> |             | Analysis Date: 5/16/2017            | SeqNo: <b>284787</b> |
| Analyte                           | Result                        | PQL SPK value SP       | РК Ref Val  | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Total Suspended Solids            | 13.0                          | 5.0                    |             | 12.0                                | 8.0 20               |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted reco

Page 25 of 25

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

- A This sample contains a Gasoline Range Organic not identified as a specific hydrocarbon product. The result was quantified against gasoline calibration standards
- A1 This sample contains a Diesel Range Organic not identified as a specific hydrocarbon product. The result was quantified against diesel calibration standards.
- A2 This sample contains a Lube Oil Range Organic not identified as a specific hydrocarbon product. The result was quantified against a lube oil calibration standard.
- A3 The result was determined to be Non-Detect based on hydrocarbon pattern recognition. The product was carry-over from another hydrocarbon type.
- A4 The product appears to be aged or degraded diesel.
- B The blank exhibited a positive result great than the reporting limit for this compound.
- CN See Case Narrative.
- D Result is based from a dilution.
- E Result exceeds the calibration range for this compound. The result should be considered as estimate.
- F The positive result for this hydrocarbon is due to single component contamination. The product does not match any hydrocarbon in the fuels library.
- G Result may be biased high due to biogenic interferences. Clean up is recommended.
- H Sample was analyzed outside recommended holding time.
- HT At clients request, samples was analyzed outside of recommended holding time.
- J The result for this analyte is between the MDL and the PQL and should be considered as estimated concentration.
- K Diesel result is biased high due to amount of Oil contained in the sample.
- L Diesel result is biased high due to amount of Gasoline contained in the sample.
- M Oil result is biased high due to amount of Diesel contained in the sample.
- MC Sample concentration is greater than 4x the spiked value, the spiked value is considered insignificant.
- MI Result is outside control limits due to matrix interference.
- MSA Value determined by Method of Standard Addition.
- O Laboratory Control Standard (LCS) exceeded laboratory control limits, but meets CCV criteria. Data meets EPA requirements.
- Q Detection levels elevated due to sample matrix.
- R RPD control limits were exceeded.
- RF Duplicate failed due to result being at or near the method-reporting limit.
- RP Matrix spike values exceed established QC limits; post digestion spike is in control.
- S Recovery is outside control limits.
- SC Closing CCV or LCS exceeded high recovery control limits, but associated samples are non-detect. Data meets EPA requirements.
- \* The result for this parameter was greater that the maximum contaminant level of the TCLP regulatory limit.

# CHAIN OF CUSTODY RECORD

Contact Person/Project Manager\_\_

Company\_

MAUL TOXIBLE

Brown

TO WITHING CY

Page\_\_\_of\_\_

Address\_

2001 NW 19TH AVE.

211.5

200

なるとう

D P

97209

Phone

101-00-0701

Project Site Location OR\_

7

×

\_ other\_

P.O. No.

Project Name \_

DR47

30

Fax

Project No. 1381 . Ch. Ch

## Specialty Analytical 11711 SE Capps Road

| Collected By: Signature Printed |                                                                 |
|---------------------------------|-----------------------------------------------------------------|
| See Chase                       | Clackamas, OR 97015<br>Phone: 503-607-1331<br>Fax: 503-607-1336 |

|                                                                     | Τ_             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T |   | П |   | ľ |       |                 |          | Γ             |               | 13          | Γ          | ٦                                                                          |                          | _                              | _           |                    |
|---------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|-------|-----------------|----------|---------------|---------------|-------------|------------|----------------------------------------------------------------------------|--------------------------|--------------------------------|-------------|--------------------|
| Unless Reck                                                         | Company:       | Relinquished By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |   |   |   |       |                 | 0        |               |               | Milit       | Date       | Rush Analys                                                                | o to                     | Turn Around Time               | Printed     | Signature          |
| imed, Samp                                                          | MARK FOSTER    | By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |   |   |   |   |       |                 | 0.00     | 0900          | <b>8</b> 250  | Cleus       | Time       | es Must Be                                                                 | Normal 5-7 E             | Time                           |             |                    |
| Unless Rectaimed, Samples Will Be Disposed of 60 Days After Receipt | CIPAL PROPERTY | A STATE OF THE STA |   |   |   |   |   |       |                 | 27.2     | CSWTS         | CB-15         | MHSCOU      | Sample I.D | Specify<br>Rush Analyses Must Be Scheduled With The Lab in Advance         | Normal 5-7 Business Days |                                |             |                    |
| 60 Days After Receip                                                | S/10/12 18/00  | Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |   |   |   |       |                 |          |               |               |             | e I.D.     | ab in Advance                                                              | I                        |                                |             |                    |
| 7                                                                   | Company:       | Received By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |   |   |   |   |       |                 | ε        | E             | $\mathcal{E}$ | E           | Matrix     |                                                                            |                          |                                | •           | •                  |
|                                                                     |                | By∷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |   |   |   |       |                 | 6        | 6             | 6             | 6           |            | No. of                                                                     | Conta                    | iners                          |             |                    |
| (                                                                   |                | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |   |   |   |   |       |                 | $\times$ | X             | X.            | $\times$    | g WAX      | OC (Sh                                                                     | 153k                     | <u> </u>                       |             |                    |
|                                                                     | 7              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |   |   |   |       |                 | X        | <b>べ</b> ,    | ×.            | ×           | TS         | S (SM)                                                                     | 1320                     | <u> (a c</u>                   |             |                    |
|                                                                     | K,             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |   |   |   |       |                 | ヘ        | X             | X.            | X           | 1          | )ISSONVETS                                                                 | MEn                      | 915                            |             |                    |
|                                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | L |   |   | _ |       |                 | 7        | ス             | Χ,            | ኢ           | T          | JML ME                                                                     | TACS                     |                                | 4           |                    |
|                                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |   | _ |   |       |                 | 7        | $\frac{2}{2}$ | ζ.            | 7           |            | CB ARCCU<br>H (8270)                                                       | <u>کات ک</u>             | 8082                           | $ B\rangle$ | hnaly              |
|                                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |   |   |   |       |                 | "        |               |               | 7           | PA         |                                                                            |                          |                                |             | ses                |
| Received For Lab By                                                 | Company:       | Relinquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |   |   |   |   |       |                 | X        | 7             | <u>く</u>      | X           | 丽          | HRATES                                                                     | 15270                    | 0/827<br>sim                   | <u>た</u> り  |                    |
| Σ<br>Σ<br>Σ                                                         |                | hed By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |   |   |   |   |       |                 |          |               |               |             |            |                                                                            |                          |                                |             |                    |
| В.<br>В.                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |   |   |   |       |                 |          |               |               |             |            |                                                                            |                          | And the Control of the Control |             |                    |
|                                                                     | ( )#           | 7/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |   |   |   | CB-14 | COMPOSITE CB-15 | q        | SE A . Z      | つずった。         | MEMIS A CLO | Comments   | Specialty Analytical Containers? Y/N Specialty Analytical Trip Blanks? Y/N | Temperature On Receipt   | Shipped Via Air Bill No.       | Lab Job No. | For t              |
| Date                                                                | 57577          | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |   |   |   |       | BFI             |          |               | 7             | ر<br>ج<br>ا | ents       | al Containers? Y                                                           | Receipt 4°C              |                                | 705127      | For Laboratory Use |
| Time                                                                | 1530           | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |   |   |   |       |                 |          |               |               |             | Lab I.D.   | Z                                                                          | ດັ<br>————               |                                |             |                    |

Samples held beyond 60 days subject to storage fee(s)



11711 SE Capps Road, Ste B Clackamas, Oregon 97015 TEL: 503-607-1331 FAX: 503-607-1336 Website: www.specialtyanalytical.com

December 11, 2017

David Weatherby Maul Foster & Alongi 400 E. Mill Plain Blvd. Suite 400 Vancouver, WA 98660

TEL: (360) 694-2691 FAX: (360) 906-1958

RE: Dolan SCE / 1381.01.01

Dear David Weatherby: Order No.: 1710169

Specialty Analytical received 3 sample(s) on 10/19/2017 for the analyses presented in the following report.

REVISED REPORT: Please see case narrative for information on revision.

There were no problems with the analysis and all data for associated QC met EPA or laboratory specifications, except where noted in the Case Narrative, or as qualified with flags. Results apply only to the samples analyzed. Without approval of the laboratory, the reproduction of this report is only permitted in its entirety.

If you have any questions regarding these tests, please feel free to call.

Sincerely,

Marty French Lab Director

### **Case Narrative**

WO#: **1710169**Date: **12/11/2017** 

CLIENT: Maul Foster & Alongi
Project: Dolan SCE / 1381.01.01

### Revision 1-

This report has been revised in MDL format per client request. Full QC for PCB Aroclors by method 8082 is included.

### **Revision 2-**

This report has been revised to correct the analyte list for total and dissolved metals.

CLIENT: Maul Foster & Alongi Collection Date: 10/19/2017 3:25:00 AM

**Date Reported:** 

11-Dec-17

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1710169-001 **Client Sample ID:** MHSW-4

| Result   MDL   PQL   Qual   Units   DF   Date Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Aluminum 5.84 0.421 100 J µg/L 1 10/23/2017 4:48:11 Arsenic 0.384 0.0320 0.100 µg/L 1 10/23/2017 4:48:11 Cadmium 0.185 0.0130 0.100 µg/L 1 10/23/2017 4:48:11 Copper 17.0 0.0180 0.500 µg/L 1 10/23/2017 4:48:11 Lead 0.336 0.0270 0.100 µg/L 1 10/23/2017 4:48:11 Manganese 30.6 0.0690 0.500 µg/L 1 10/23/2017 4:48:11 Zinc 133 1.10 20.0 µg/L 1 10/23/2017 4:48:11 Zinc 133 1.10 20.0 µg/L 1 10/23/2017 1:24:11 Arsenic 10.797 0.0320 0.100 µg/L 1 10/23/2017 11:24:11 Cadmium 0.423 0.0130 0.500 µg/L 1 10/23/2017 11:24:11 Cadmium 0.423 0.043 0.500 µg/L 1 10/23/2017 11:24:11 Cadmium 0.423 0.043  µg/L 1 10/23/2017 11:24:11 Cadmium 0.423 0.690 5.00 µg/L 1 10/23/2017 11:24:11 Copper 31.9 0.690 5.00 µg/L 1 10/23/2017 11:24:11 Cadmium 185 1.10 20.0 µg/L 1 10/23/2017 3:02:55 Cadmium 20.0 µg/L 1 10/23/2017 3:02:55 Cadmium 20.0 µg/L 1 10/23/2017 3:02:55 |     |
| Arsenic         0.384         0.0320         0.100         µg/L         1         10/23/2017 4:48:11           Cadmium         0.185         0.0130         0.100         µg/L         1         10/23/2017 4:48:11           Copper         17.0         0.0180         0.500         µg/L         1         10/23/2017 4:48:11           Lead         0.336         0.0270         0.100         µg/L         1         10/23/2017 4:48:11           Manganese         30.6         0.0690         0.500         µg/L         1         10/23/2017 4:48:11           Zinc         133         1.10         20.0         µg/L         10         10/25/2017 12:48:11           ICP/MS METALS- TOTAL RECOVERABLE         E200.8         Analyst: JRC           ICP/MS METALS- TOTAL RECOVERABLE         E200.8         Analyst: JRC           Aluminum         343         0.421         10.0         µg/L         1         10/23/2017 11:24:0           Arsenic         0.797         0.0320         0.100         µg/L         1         10/23/2017 11:24:0           Cadmium         0.423         0.0130         0.500         µg/L         1         10/23/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Arsenic         0.384         0.0320         0.100         µg/L         1         10/23/2017 4:48:11           Cadmium         0.185         0.0130         0.100         µg/L         1         10/23/2017 4:48:11           Copper         17.0         0.0180         0.500         µg/L         1         10/23/2017 4:48:11           Lead         0.336         0.0270         0.100         µg/L         1         10/23/2017 4:48:11           Manganese         30.6         0.0690         0.500         µg/L         1         10/23/2017 4:48:11           Zinc         133         1.10         20.0         µg/L         10         10/25/2017 12:48:11           ICP/MS METALS- TOTAL RECOVERABLE         E200.8         Analyst: JRC           ICP/MS METALS- TOTAL RECOVERABLE         E200.8         Analyst: JRC           Aluminum         343         0.421         10.0         µg/L         1         10/23/2017 11:24:0           Arsenic         0.797         0.0320         0.100         µg/L         1         10/23/2017 11:24:0           Cadmium         0.423         0.0130         0.500         µg/L         1         10/23/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ΡN  |
| Cadmium         0.185         0.0130         0.100         µg/L         1         10/23/2017 4:48:17           Copper         17.0         0.0180         0.500         µg/L         1         10/23/2017 4:48:17           Lead         0.336         0.0270         0.100         µg/L         1         10/23/2017 4:48:17           Manganese         30.6         0.0690         0.500         µg/L         1         10/23/2017 4:48:17           Zinc         133         1.10         20.0         µg/L         10         10/25/2017 12:48:17           ICP/MS METALS- TOTAL RECOVERABLE         E200.8         Analyst: JRC           Identify Memory Metals         E200.8         Analyst: JRC           Aluminum         343         0.421         10.0         µg/L         1         10/23/2017 11:24:8:3           Arsenic         0.797         0.0320         0.100         µg/L         1         10/23/2017 11:24:0           Cadmium         0.423         0.0130         0.100         µg/L         1         10/23/2017 11:24:0           Copper         31.9         0.0180         0.500         µg/L         1         10/23/2017 11:24:0 <t< td=""><td>ΡN</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ΡN  |
| Copper         17.0         0.0180         0.500         μg/L         1         10/23/2017 4:48:11           Lead         0.336         0.0270         0.100         μg/L         1         10/23/2017 4:48:11           Manganese         30.6         0.0690         0.500         μg/L         1         10/23/2017 4:48:11           Zinc         133         1.10         20.0         μg/L         1         10/23/2017 12:48:11           ICP/MS METALS- TOTAL RECOVERABLE         E200.8         Analyst: JRC           Aluminum         343         0.421         10.0         μg/L         1         10/23/2017 11:24:0           Arsenic         0.797         0.0320         0.100         μg/L         1         10/23/2017 11:24:0           Cadmium         0.423         0.0130         0.100         μg/L         1         10/23/2017 11:24:0           Copper         31.9         0.0180         0.500         μg/L         1         10/23/2017 11:24:0           Lead         17.3         0.0270         0.100         μg/L         1         10/23/2017 3:02:50           Zinc         185         1.10         20.0         μg/L         10         10/23/2017 3:02:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ΡN  |
| Lead         0.336         0.0270         0.100         μg/L         1         10/23/2017 4:48:13           Manganese         30.6         0.0690         0.500         μg/L         1         10/23/2017 4:48:13           Zinc         133         1.10         20.0         μg/L         1         10/23/2017 12:48:33           ICP/MS METALS- TOTAL RECOVERABLE         E200.8         Analyst: JRC           Aluminum         343         0.421         10.0         μg/L         1         10/23/2017 11:24:0           Arsenic         0.797         0.0320         0.100         μg/L         1         10/23/2017 11:24:0           Cadmium         0.423         0.0130         0.100         μg/L         1         10/23/2017 11:24:0           Copper         31.9         0.0180         0.500         μg/L         1         10/23/2017 11:24:0           Lead         17.3         0.0270         0.100         μg/L         1         10/23/2017 11:24:0           Manganese         139         0.690         5.00         μg/L         10         10/23/2017 3:02:50           Zinc         185         1.10         20.0         μg/L         10         10/23/2017 3:02:50 <td>ΡN</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ΡN  |
| Manganese         30.6         0.0690         0.500         μg/L         1         10/23/2017 4:48:13           Zinc         133         1.10         20.0         μg/L         10         10/25/2017 12:48:33           ICP/MS METALS- TOTAL RECOVERABLE         E200.8         Analyst: JRC           Aluminum         343         0.421         10.0         μg/L         1         10/23/2017 11:24:0           Arsenic         0.797         0.0320         0.100         μg/L         1         10/23/2017 11:24:0           Cadmium         0.423         0.0130         0.100         μg/L         1         10/23/2017 11:24:0           Copper         31.9         0.0180         0.500         μg/L         1         10/23/2017 11:24:0           Lead         17.3         0.0270         0.100         μg/L         1         10/23/2017 11:24:0           Manganese         139         0.690         5.00         μg/L         10         10/23/2017 3:02:58           Zinc         185         1.10         20.0         μg/L         10         10/23/2017 3:02:58           SEMI-VOLATILE COMPOUNDS - BASE/NEUTRAL         SW8270D         Analyst: CK <td>ΡN</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΡN  |
| Zinc         133         1.10         20.0         μg/L         10 /10/25/2017 12:48:30           ICP/MS METALS- TOTAL RECOVERABLE         E200.8         Analyst: JRC           Aluminum         343         0.421         10.0         μg/L         1         10/23/2017 11:24:0         43:0         10.0         μg/L         1         10/23/2017 11:24:0         11:24:0         10.0         μg/L         1         10/23/2017 11:24:0         10.0         10.0         μg/L         1         10/23/2017 11:24:0         10.0         10.0         μg/L         1         10/23/2017 11:24:0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0 <t< td=""><td>ΡN</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ΡN  |
| Aluminum       343       0.421       10.0       μg/L       1       10/23/2017 11:24:0         Arsenic       0.797       0.0320       0.100       μg/L       1       10/23/2017 11:24:0         Cadmium       0.423       0.0130       0.100       μg/L       1       10/23/2017 11:24:0         Copper       31.9       0.0180       0.500       μg/L       1       10/23/2017 11:24:0         Lead       17.3       0.0270       0.100       μg/L       1       10/23/2017 11:24:0         Manganese       139       0.690       5.00       μg/L       10       10/23/2017 3:02:50         Zinc       185       1.10       20.0       μg/L       10       10/23/2017 3:02:50         SEMI-VOLATILE COMPOUNDS - BASE/NEUTRAL       SW8270D       Analyst: CK         Bis(2-ethylhexyl)phthalate       0.839       0.274       0.943       J       μg/L       1       10/25/2017 4:10:00         Butyl benzyl phthalate       ND       0.158       0.943       J       μg/L       1       10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 P |
| Arsenic         0.797         0.0320         0.100         μg/L         1         10/23/2017 11:24:0           Cadmium         0.423         0.0130         0.100         μg/L         1         10/23/2017 11:24:0           Copper         31.9         0.0180         0.500         μg/L         1         10/23/2017 11:24:0           Lead         17.3         0.0270         0.100         μg/L         1         10/23/2017 11:24:0           Manganese         139         0.690         5.00         μg/L         10         10/23/2017 3:02:50           Zinc         185         1.10         20.0         μg/L         10         10/23/2017 3:02:50           SEMI-VOLATILE COMPOUNDS - BASE/NEUTRAL         SW8270D         Analyst: CK           Bis(2-ethylhexyl)phthalate         0.839         0.274         0.943         J         μg/L         1         10/25/2017 4:10:00           Butyl benzyl phthalate         ND         0.158         0.943         J         μg/L         1         10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| Arsenic         0.797         0.0320         0.100         μg/L         1         10/23/2017 11:24:0           Cadmium         0.423         0.0130         0.100         μg/L         1         10/23/2017 11:24:0           Copper         31.9         0.0180         0.500         μg/L         1         10/23/2017 11:24:0           Lead         17.3         0.0270         0.100         μg/L         1         10/23/2017 11:24:0           Manganese         139         0.690         5.00         μg/L         10         10/23/2017 3:02:50           Zinc         185         1.10         20.0         μg/L         10         10/23/2017 3:02:50           SEMI-VOLATILE COMPOUNDS - BASE/NEUTRAL         SW8270D         Analyst: CK           Bis(2-ethylhexyl)phthalate         0.839         0.274         0.943         J         μg/L         1         10/25/2017 4:10:00           Butyl benzyl phthalate         ND         0.158         0.943         J         μg/L         1         10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 A |
| Cadmium         0.423         0.0130         0.100         μg/L         1         10/23/2017 11:24:0           Copper         31.9         0.0180         0.500         μg/L         1         10/23/2017 11:24:0           Lead         17.3         0.0270         0.100         μg/L         1         10/23/2017 11:24:0           Manganese         139         0.690         5.00         μg/L         10         10/23/2017 3:02:50           Zinc         185         1.10         20.0         μg/L         10         10/23/2017 3:02:50           SEMI-VOLATILE COMPOUNDS - BASE/NEUTRAL         SW8270D         Analyst: CK           Bis(2-ethylhexyl)phthalate         0.839         0.274         0.943         J         μg/L         1         10/25/2017 4:10:00           Butyl benzyl phthalate         ND         0.158         0.943         μg/L         1         10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 A |
| Copper         31.9         0.0180         0.500         μg/L         1         10/23/2017 11:24:0           Lead         17.3         0.0270         0.100         μg/L         1         10/23/2017 11:24:0           Manganese         139         0.690         5.00         μg/L         10         10/23/2017 3:02:50           Zinc         185         1.10         20.0         μg/L         10         10/23/2017 3:02:50           SEMI-VOLATILE COMPOUNDS - BASE/NEUTRAL         SW8270D         Analyst: CK           Bis(2-ethylhexyl)phthalate         0.839         0.274         0.943         J         μg/L         1         10/25/2017 4:10:00           Butyl benzyl phthalate         ND         0.158         0.943         μg/L         1         10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 A |
| Lead       17.3       0.0270       0.100       μg/L       1       10/23/2017 11:24:0         Manganese       139       0.690       5.00       μg/L       10       10/23/2017 3:02:59         Zinc       185       1.10       20.0       μg/L       10       10/23/2017 3:02:59         SEMI-VOLATILE COMPOUNDS - BASE/NEUTRAL       SW8270D       Analyst: CK         Bis(2-ethylhexyl)phthalate       0.839       0.274       0.943       J       μg/L       1       10/25/2017 4:10:00         Butyl benzyl phthalate       ND       0.158       0.943       μg/L       1       10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 A |
| Zinc 185 1.10 20.0 μg/L 10 10/23/2017 3:02:59  SEMI-VOLATILE COMPOUNDS - BASE/NEUTRAL SW8270D Analyst: CK  Bis(2-ethylhexyl)phthalate 0.839 0.274 0.943 J μg/L 1 10/25/2017 4:10:00  Butyl benzyl phthalate ND 0.158 0.943 μg/L 1 10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 A |
| Zinc 185 1.10 20.0 μg/L 10 10/23/2017 3:02:59  SEMI-VOLATILE COMPOUNDS - BASE/NEUTRAL SW8270D Analyst: CK  Bis(2-ethylhexyl)phthalate 0.839 0.274 0.943 J μg/L 1 10/25/2017 4:10:00  Butyl benzyl phthalate ND 0.158 0.943 μg/L 1 10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PN  |
| Bis(2-ethylhexyl)phthalate 0.839 0.274 0.943 J μg/L 1 10/25/2017 4:10:00 Butyl benzyl phthalate ND 0.158 0.943 μg/L 1 10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΡN  |
| Butyl benzyl phthalate ND 0.158 0.943 μg/L 1 10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| Butyl benzyl phthalate ND 0.158 0.943 μg/L 1 10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PN  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PN  |
| Diethyl phthalate ND 0.291 0.943 μg/L 1 10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PN  |
| Dimethyl phthalate ND 0.261 0.943 μg/L 1 10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PN  |
| Di-n-butyl phthalate ND 0.357 0.943 μg/L 1 10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PN  |
| Di-n-octyl phthalate ND 0.141 0.943 μg/L 1 10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PN  |
| Surr: 2-Fluorobiphenyl 69.6 33.1-96.2 %REC 1 10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PN  |
| Surr: 4-Terphenyl-d14 84.7 41-122 %REC 1 10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PN  |
| Surr: Nitrobenzene-d5 58.6 28.9-99.9 %REC 1 10/25/2017 4:10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PΝ  |
| PAH'S BY GC/MS - LOW LEVEL SW8270D Analyst: CK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 1-Methylnaphthalene ND 0.0225 0.0474 μg/L 1 10/25/2017 6:13:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PN  |
| 2-Methylnaphthalene ND 0.0257 0.0474 μg/L 1 10/25/2017 6:13:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PN  |
| Acenaphthene ND 0.0273 0.0474 μg/L 1 10/25/2017 6:13:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| Acenaphthylene ND 0.0317 0.0474 µg/L 1 10/25/2017 6:13:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PN  |
| Anthracene ND 0.0208 0.0474 μg/L 1 10/25/2017 6:13:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PN  |
| Benz(a)anthracene ND 0.0232 0.0474 μg/L 1 10/25/2017 6:13:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PN  |
| Benzo(a)pyrene ND 0.0159 0.0474 μg/L 1 10/25/2017 6:13:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PN  |
| Benzo(b)fluoranthene ND 0.0183 0.0474 μg/L 1 10/25/2017 6:13:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PN  |

CLIENT: Maul Foster & Alongi Collection Date: 10/19/2017 3:25:00 AM

**Date Reported:** 

Matrix: WATER

11-Dec-17

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1710169-001 **Client Sample ID:** MHSW-4

| Analyses                  | Result       | MDL     | PQL     | Qual    | Units  | DF | Date Analyzed         |
|---------------------------|--------------|---------|---------|---------|--------|----|-----------------------|
| PAH'S BY GC/MS - LOW LEVE | iL           |         |         | SW82    | 70D    |    | Analyst: <b>CK</b>    |
| Benzo(g,h,i)perylene      | ND           | 0.0118  | 0.0474  |         | μg/L   | 1  | 10/25/2017 6:13:00 PN |
| Benzo(k)fluoranthene      | ND           | 0.0140  | 0.0474  |         | μg/L   | 1  | 10/25/2017 6:13:00 PN |
| Chrysene                  | ND           | 0.00957 | 0.0474  |         | μg/L   | 1  | 10/25/2017 6:13:00 PN |
| Dibenz(a,h)anthracene     | ND           | 0.0138  | 0.0474  |         | μg/L   | 1  | 10/25/2017 6:13:00 PN |
| Fluoranthene              | ND           | 0.0282  | 0.0474  |         | μg/L   | 1  | 10/25/2017 6:13:00 PN |
| Fluorene                  | ND           | 0.0202  | 0.0474  |         | μg/L   | 1  | 10/25/2017 6:13:00 PN |
| Indeno(1,2,3-cd)pyrene    | ND           | 0.0253  | 0.0474  |         | μg/L   | 1  | 10/25/2017 6:13:00 PN |
| Naphthalene               | ND           | 0.0163  | 0.0474  |         | μg/L   | 1  | 10/25/2017 6:13:00 PN |
| Phenanthrene              | ND           | 0.0159  | 0.0474  |         | μg/L   | 1  | 10/25/2017 6:13:00 PN |
| Pyrene                    | 0.0284       | 0.0173  | 0.0474  | J       | μg/L   | 1  | 10/25/2017 6:13:00 PN |
| Surr: 2-Fluorobiphenyl    | 63.0         | 18      | 3.6-106 |         | %REC   | 1  | 10/25/2017 6:13:00 PN |
| Surr: Nitrobenzene-d5     | 61.3         |         | 17-130  |         | %REC   | 1  | 10/25/2017 6:13:00 PN |
| Surr: Terphenyl-d14       | 113          | 39      | 9.6-131 |         | %REC   | 1  | 10/25/2017 6:13:00 PN |
| PCB'S IN LIQUID           |              |         |         | SW 80   | )82A   |    | Analyst: <b>ajr</b>   |
| Aroclor 1016              | ND           | 0.00366 | 0.0188  |         | μg/L   | 1  | 10/26/2017 3:28:37 PN |
| Aroclor 1221              | ND           | 0.00366 | 0.0188  |         | μg/L   | 1  | 10/26/2017 3:28:37 PN |
| Aroclor 1232              | ND           | 0.00366 | 0.0188  |         | μg/L   | 1  | 10/26/2017 3:28:37 PN |
| Aroclor 1242              | ND           | 0.00366 | 0.0188  |         | μg/L   | 1  | 10/26/2017 3:28:37 PN |
| Aroclor 1248              | ND           | 0.00366 | 0.0188  |         | μg/L   | 1  | 10/26/2017 3:28:37 PN |
| Aroclor 1254              | ND           | 0.00366 | 0.0188  |         | μg/L   | 1  | 10/26/2017 3:28:37 PN |
| Aroclor 1260              | ND           | 0.00366 | 0.0188  |         | μg/L   | 1  | 10/26/2017 3:28:37 PN |
| Aroclor 1262              | ND           | 0.00366 | 0.0188  |         | μg/L   | 1  | 10/26/2017 3:28:37 PN |
| Aroclor 1268              | ND           | 0.00366 | 0.0188  |         | μg/L   | 1  | 10/26/2017 3:28:37 PN |
| Surr: Decachlorobiphenyl  | 72.1         |         | 45-107  |         | %REC   | 1  | 10/26/2017 3:28:37 PN |
| SUB CONTRACTING           |              |         |         | JB_CONT | RACTIN |    | Analyst: <b>knb</b>   |
| Total Organic Carbon      | ached Report | 0       | 0       |         |        | 1  | 11/27/2017 9:09:25 AN |
| TOTAL SUSPENDED SOLIDS    |              |         |         | M254    | 10 D   |    | Analyst: <b>ml1</b>   |
| Total Suspended Solids    | 11.0         | 1.1     | 5.0     |         | mg/L   | 1  | 10/23/2017 4:51:11 PN |

CLIENT: Maul Foster & Alongi Collection Date: 10/19/2017 3:45:00 AM

**Date Reported:** 

11-Dec-17

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1710169-002

Client Sample ID: CB-15 Matrix: WATER

| Analyses                | Result    | MDL | PQL | Qual    | Units | DF | Date Analyzed        |
|-------------------------|-----------|-----|-----|---------|-------|----|----------------------|
| HOLD PER CLIENT REQUEST |           |     |     | PER CLI | ENT   |    | Analyst: <b>kel</b>  |
| Hold                    | 12/1/2017 | 0   | 0   | Н       |       | 1  | 12/1/2017 9:40:45 AM |
| HOLD PER CLIENT REQUEST |           |     |     | PER CLI | ENT   |    | Analyst: <b>kel</b>  |
| Hold                    | 12/1/2017 | 0   | 0   | Н       |       | 1  | 12/1/2017 9:40:45 AM |
| HOLD PER CLIENT REQUEST |           |     |     | PER CLI | ENT   |    | Analyst: <b>kel</b>  |
| Hold                    | 12/1/2017 | 0   | 0   | Н       |       | 1  | 12/1/2017 9:40:45 AM |
| HOLD PER CLIENT REQUEST |           |     |     | PER CLI | ENT   |    | Analyst: <b>kel</b>  |
| Hold                    | 12/1/2017 | 0   | 0   | Н       |       | 1  | 12/1/2017 9:40:45 AM |
| HOLD PER CLIENT REQUEST |           |     |     | PER CLI | ENT   |    | Analyst: <b>kel</b>  |
| Hold                    | 12/1/2017 | 0   | 0   | Н       |       | 1  | 12/1/2017 9:40:45 AM |

# **Specialty Analytical**

CLIENT: Maul Foster & Alongi Collection Date: 10/19/2017 5:00:00 AM

**Date Reported:** 

11-Dec-17

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1710169-003

Client Sample ID: CSWTS Matrix: WATER

| Analyses                    | Result    | MDL    | PQL    | Qual U  | Jnits | DF | Date Analyzed         |
|-----------------------------|-----------|--------|--------|---------|-------|----|-----------------------|
| ICP/MS METALS- DISSOLVED RE | COVERABI  | .E     |        | E200.8  |       |    | Analyst: <b>JRC</b>   |
| Aluminum                    | ND        | 0.421  | 100    |         | μg/L  | 1  | 10/23/2017 4:51:39 PN |
| Arsenic                     | 0.0759    | 0.0320 | 0.100  | J       | μg/L  | 1  | 10/23/2017 4:51:39 PN |
| Cadmium                     | 0.139     | 0.0130 | 0.100  |         | μg/L  | 1  | 10/23/2017 4:51:39 PN |
| Copper                      | 8.74      | 0.0180 | 0.500  |         | μg/L  | 1  | 10/23/2017 4:51:39 PN |
| Lead                        | 0.386     | 0.0270 | 0.100  |         | μg/L  | 1  | 10/23/2017 4:51:39 PN |
| Manganese                   | 23.6      | 0.0690 | 0.500  |         | μg/L  | 1  | 10/23/2017 4:51:39 PN |
| Zinc                        | 102       | 1.10   | 20.0   |         | μg/L  | 10 | 10/25/2017 12:51:53 P |
| ICP/MS METALS- TOTAL RECOV  | ERABLE    |        |        | E200.8  |       |    | Analyst: <b>JRC</b>   |
| Aluminum                    | 38.1      | 0.421  | 10.0   |         | μg/L  | 1  | 10/23/2017 11:45:16 A |
| Arsenic                     | 0.270     | 0.0320 | 0.100  |         | μg/L  | 1  | 10/23/2017 11:45:16 A |
| Cadmium                     | 0.144     | 0.0130 | 0.100  |         | μg/L  | 1  | 10/23/2017 11:45:16 A |
| Copper                      | 11.8      | 0.0180 | 0.500  |         | μg/L  | 1  | 10/23/2017 11:45:16 A |
| Lead                        | 1.99      | 0.0270 | 0.100  |         | μg/L  | 1  | 10/23/2017 11:45:16 A |
| Manganese                   | 31.4      | 0.0690 | 0.500  |         | μg/L  | 1  | 10/23/2017 11:45:16 A |
| Zinc                        | 95.8      | 1.10   | 20.0   |         | μg/L  | 10 | 10/23/2017 3:16:29 PN |
| SEMI-VOLATILE COMPOUNDS - I | BASE/NEUT | RAL    |        | SW8270D |       |    | Analyst: <b>CK</b>    |
| Bis(2-ethylhexyl)phthalate  | ND        | 0.287  | 0.985  |         | μg/L  | 1  | 10/25/2017 5:48:00 PN |
| Butyl benzyl phthalate      | ND        | 0.166  | 0.985  |         | μg/L  | 1  | 10/25/2017 5:48:00 PN |
| Diethyl phthalate           | ND        | 0.304  | 0.985  |         | μg/L  | 1  | 10/25/2017 5:48:00 PN |
| Dimethyl phthalate          | ND        | 0.273  | 0.985  |         | μg/L  | 1  | 10/25/2017 5:48:00 PN |
| Di-n-butyl phthalate        | ND        | 0.373  | 0.985  |         | μg/L  | 1  | 10/25/2017 5:48:00 PN |
| Di-n-octyl phthalate        | ND        | 0.148  | 0.985  |         | μg/L  | 1  | 10/25/2017 5:48:00 PN |
| Surr: 2-Fluorobiphenyl      | 72.3      | 33.1-  | 96.2   |         | %REC  | 1  | 10/25/2017 5:48:00 PN |
| Surr: 4-Terphenyl-d14       | 79.4      | 41-    | 122    |         | %REC  | 1  | 10/25/2017 5:48:00 PN |
| Surr: Nitrobenzene-d5       | 92.2      | 28.9-  | 99.9   |         | %REC  | 1  | 10/25/2017 5:48:00 PN |
| PAH'S BY GC/MS - LOW LEVEL  |           |        |        | SW8270D |       |    | Analyst: <b>CK</b>    |
| 1-Methylnaphthalene         | ND        | 0.0233 | 0.0493 |         | μg/L  | 1  | 10/25/2017 6:39:00 PN |
| 2-Methylnaphthalene         | ND        | 0.0267 | 0.0493 |         | μg/L  | 1  | 10/25/2017 6:39:00 PN |
| Acenaphthene                | ND        | 0.0284 | 0.0493 |         | μg/L  | 1  | 10/25/2017 6:39:00 PN |
| Acenaphthylene              | ND        | 0.0329 | 0.0493 |         | μg/L  | 1  | 10/25/2017 6:39:00 PN |
| Anthracene                  | ND        | 0.0216 | 0.0493 |         | μg/L  | 1  | 10/25/2017 6:39:00 PN |
| Benz(a)anthracene           | ND        | 0.0241 | 0.0493 |         | μg/L  | 1  | 10/25/2017 6:39:00 PN |
| Benzo(a)pyrene              | ND        | 0.0166 | 0.0493 |         | μg/L  | 1  | 10/25/2017 6:39:00 PN |
| Benzo(b)fluoranthene        | ND        | 0.0190 | 0.0493 |         | μg/L  | 1  | 10/25/2017 6:39:00 PN |

# **Specialty Analytical**

CLIENT: Maul Foster & Alongi Collection Date: 10/19/2017 5:00:00 AM

**Date Reported:** 

11-Dec-17

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1710169-003

Client Sample ID: CSWTS Matrix: WATER

| Analyses                   | Result      | MDL     | PQL      | Qual Units    | DF  | Date Analyzed         |
|----------------------------|-------------|---------|----------|---------------|-----|-----------------------|
| PAH'S BY GC/MS - LOW LEVEL | -           |         |          | SW8270D       |     | Analyst: <b>CK</b>    |
| Benzo(g,h,i)perylene       | ND          | 0.0123  | 0.0493   | μg/L          | . 1 | 10/25/2017 6:39:00 PN |
| Benzo(k)fluoranthene       | ND          | 0.0146  | 0.0493   | μg/L          |     | 10/25/2017 6:39:00 PN |
| Chrysene                   | ND          | 0.00995 | 0.0493   | μg/L          | . 1 | 10/25/2017 6:39:00 PN |
| Dibenz(a,h)anthracene      | ND          | 0.0144  | 0.0493   | μg/L          | . 1 | 10/25/2017 6:39:00 PN |
| Fluoranthene               | ND          | 0.0294  | 0.0493   | μg/L          | . 1 | 10/25/2017 6:39:00 PN |
| Fluorene                   | ND          | 0.0210  | 0.0493   | μg/L          | . 1 | 10/25/2017 6:39:00 PN |
| Indeno(1,2,3-cd)pyrene     | ND          | 0.0263  | 0.0493   | μg/L          | . 1 | 10/25/2017 6:39:00 PN |
| Naphthalene                | ND          | 0.0169  | 0.0493   | μg/L          |     | 10/25/2017 6:39:00 PN |
| Phenanthrene               | ND          | 0.0166  | 0.0493   | μg/L          |     | 10/25/2017 6:39:00 PN |
| Pyrene                     | ND          | 0.0179  | 0.0493   | μg/L          | . 1 | 10/25/2017 6:39:00 PN |
| Surr: 2-Fluorobiphenyl     | 64.0        | 1       | 18.6-106 | %REC          | 1   | 10/25/2017 6:39:00 PN |
| Surr: Nitrobenzene-d5      | 64.7        |         | 17-130   | %REC          | 1   | 10/25/2017 6:39:00 PN |
| Surr: Terphenyl-d14        | 114         | 3       | 39.6-131 | %REC          | 1   | 10/25/2017 6:39:00 PN |
| PCB'S IN LIQUID            |             |         |          | SW 8082A      |     | Analyst: ajr          |
| Aroclor 1016               | ND          | 0.00402 | 0.0206   | μg/L          | . 1 | 10/26/2017 3:28:37 PN |
| Aroclor 1221               | ND          | 0.00402 | 0.0206   | μg/L          | . 1 | 10/26/2017 3:28:37 PN |
| Aroclor 1232               | ND          | 0.00402 | 0.0206   | μg/L          |     | 10/26/2017 3:28:37 PN |
| Aroclor 1242               | ND          | 0.00402 | 0.0206   | μg/L          | . 1 | 10/26/2017 3:28:37 PN |
| Aroclor 1248               | ND          | 0.00402 | 0.0206   | μg/L          | . 1 | 10/26/2017 3:28:37 PN |
| Aroclor 1254               | ND          | 0.00402 | 0.0206   | μg/L          |     | 10/26/2017 3:28:37 PN |
| Aroclor 1260               | ND          | 0.00402 | 0.0206   | μg/L          | . 1 | 10/26/2017 3:28:37 PN |
| Aroclor 1262               | ND          | 0.00402 | 0.0206   | μg/L          |     | 10/26/2017 3:28:37 PN |
| Aroclor 1268               | ND          | 0.00402 | 0.0206   | μg/L          |     | 10/26/2017 3:28:37 PN |
| Surr: Decachlorobiphenyl   | 67.7        |         | 45-107   | %REC          |     | 10/26/2017 3:28:37 PN |
| SUB CONTRACTING            |             |         |          | IB_CONTRACTIN |     | Analyst: <b>knb</b>   |
| Total Organic Carbon       | ched Report | 0       | 0        |               | 1   | 11/27/2017 9:09:25 AN |
| TOTAL SUSPENDED SOLIDS     |             |         |          | M2540 D       |     | Analyst: <b>ml1</b>   |
| Total Suspended Solids     | ND          | 1.1     | 5.0      | mg/L          | . 1 | 10/23/2017 4:52:11 PN |

WO#:

1710169

03-Jan-18

**Specialty Analytical** 

**Client:** 

Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 TestCode: 200.8

| Sample ID: ICV | SampType: <b>ICV</b> | TestCo | de: <b>200.8</b>  | Units: µg/L | Prep Date: |             |                    |             | RunNo: <b>23439</b> |          |      |
|----------------|----------------------|--------|-------------------|-------------|------------|-------------|--------------------|-------------|---------------------|----------|------|
| Client ID: ICV | Batch ID: 10769      | Test   | No: <b>E200.8</b> | E200.8      |            | Analysis Da | te: <b>10/23/2</b> | 017         | SeqNo: 31'          | 1655     |      |
| Analyte        | Result               | PQL    | SPK value         | SPK Ref Val | %REC       | LowLimit    | HighLimit          | RPD Ref Val | %RPD                | RPDLimit | Qual |
| Aluminum       | 504                  | 10.0   | 500.0             | 0           | 101        | 90          | 110                |             |                     |          |      |
| Arsenic        | 51.4                 | 0.100  | 50.00             | 0           | 103        | 90          | 110                |             |                     |          |      |
| Cadmium        | 52.1                 | 0.100  | 50.00             | 0           | 104        | 90          | 110                |             |                     |          |      |
| Copper         | 51.6                 | 0.500  | 50.00             | 0           | 103        | 90          | 110                |             |                     |          |      |
| Lead           | 48.6                 | 0.100  | 50.00             | 0           | 97.2       | 90          | 110                |             |                     |          |      |
| Manganese      | 50.9                 | 0.500  | 50.00             | 0           | 102        | 90          | 110                |             |                     |          |      |
| Vanadium       | 51.0                 | 0.500  | 50.00             | 0           | 102        | 90          | 110                |             |                     |          |      |
| Zinc           | 52.9                 | 2.00   | 50.00             | 0           | 106        | 90          | 110                |             |                     |          |      |

| Sample ID: <b>MB-10769</b> | SampType: MBLK  | TestCode: | 200.8     | Units: µg/L | Prep Date: 10/19/2017     |          |                       | RunNo: 23 | 439      |      |
|----------------------------|-----------------|-----------|-----------|-------------|---------------------------|----------|-----------------------|-----------|----------|------|
| Client ID: PBW             | Batch ID: 10769 | TestNo:   | E200.8    | E200.8      | Analysis Date: 10/23/2017 |          |                       | SeqNo: 31 |          |      |
| Analyte                    | Result          | PQL S     | SPK value | SPK Ref Val | %REC                      | LowLimit | HighLimit RPD Ref Val | %RPD      | RPDLimit | Qual |
| Aluminum                   | ND              | 10.0      |           |             |                           |          |                       |           |          |      |
| Arsenic                    | ND              | 0.100     |           |             |                           |          |                       |           |          |      |
| Cadmium                    | ND              | 0.100     |           |             |                           |          |                       |           |          |      |
| Chromium                   | ND              | 0.100     |           |             |                           |          |                       |           |          |      |
| Copper                     | ND              | 0.500     |           |             |                           |          |                       |           |          |      |
| Lead                       | ND              | 0.100     |           |             |                           |          |                       |           |          |      |
| Zinc                       | 0.349           | 2.00      |           |             |                           |          |                       |           |          | J    |

Qualifiers: Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 1 of 28

RPD outside accepted recovery limits

Spike Recovery outside accepted reco

WO#:

1710169

03-Jan-18

**Specialty Analytical** 

**Client:** 

Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 TestCode: 200.8

| · ·      | 1710169-001CDUP<br>MHSW-4 | SampType: <b>DUP</b> Batch ID: <b>10769</b> |       | de: <b>200.8</b><br>No: <b>E200.8</b> |             |      | Prep Date: 10/19/2017  Analysis Date: 10/23/2017 |           |             | RunNo: <b>23</b> 4<br>SeqNo: <b>31</b> 1 |          |      |
|----------|---------------------------|---------------------------------------------|-------|---------------------------------------|-------------|------|--------------------------------------------------|-----------|-------------|------------------------------------------|----------|------|
| Analyte  |                           | Result                                      | PQL   | SPK value                             | SPK Ref Val | %REC | LowLimit                                         | HighLimit | RPD Ref Val | %RPD                                     | RPDLimit | Qual |
| Aluminum |                           | 324                                         | 10.0  |                                       |             |      |                                                  |           | 343.5       | 5.68                                     | 20       |      |
| Arsenic  |                           | 0.734                                       | 0.100 |                                       |             |      |                                                  |           | 0.7966      | 8.20                                     | 20       |      |
| Cadmium  |                           | 0.431                                       | 0.100 |                                       |             |      |                                                  |           | 0.4234      | 1.75                                     | 20       |      |
| Chromium |                           | 4.46                                        | 0.100 |                                       |             |      |                                                  |           | 5.166       | 14.7                                     | 20       |      |
| Copper   |                           | 30.1                                        | 0.500 |                                       |             |      |                                                  |           | 31.94       | 5.87                                     | 20       |      |
| Lead     |                           | 16.9                                        | 0.100 |                                       |             |      |                                                  |           | 17.34       | 2.66                                     | 20       |      |

| Sample ID: LCS-10769 | SampType: <b>LCS</b> | TestCo | de: <b>200.8</b>  | Units: µg/L | Prep Date: 10/19/2017     |          |           | RunNo: 234  | 139       |          |      |
|----------------------|----------------------|--------|-------------------|-------------|---------------------------|----------|-----------|-------------|-----------|----------|------|
| Client ID: LCSW      | Batch ID: 10769      | Test   | No: <b>E200.8</b> | E200.8      | Analysis Date: 10/23/2017 |          |           | 017         | SeqNo: 31 |          |      |
| Analyte              | Result               | PQL    | SPK value         | SPK Ref Val | %REC                      | LowLimit | HighLimit | RPD Ref Val | %RPD      | RPDLimit | Qual |
| Aluminum             | 431                  | 10.0   | 500.0             | 0           | 86.2                      | 85       | 115       |             |           |          |      |
| Arsenic              | 45.7                 | 0.100  | 50.00             | 0           | 91.3                      | 85       | 115       |             |           |          |      |
| Cadmium              | 46.1                 | 0.100  | 50.00             | 0           | 92.2                      | 85       | 115       |             |           |          |      |
| Chromium             | 43.4                 | 0.100  | 50.00             | 0           | 86.8                      | 85       | 115       |             |           |          |      |
| Copper               | 45.2                 | 0.500  | 50.00             | 0           | 90.4                      | 85       | 115       |             |           |          |      |
| Lead                 | 44.7                 | 0.100  | 50.00             | 0           | 89.4                      | 85       | 115       |             |           |          |      |
| Manganese            | 44.9                 | 0.500  | 50.00             | 0           | 89.8                      | 85       | 115       |             |           |          |      |
| Zinc                 | 49.3                 | 2.00   | 50.00             | 0           | 98.5                      | 85       | 115       |             |           |          |      |

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

1710169 WO#:

03-Jan-18

#### **Specialty Analytical**

| Client:  | Maul Foster & Alongi   |
|----------|------------------------|
| Project: | Dolan SCE / 1381.01.01 |

TestCode: 200.8 Dolan SCE / 1381.01.01

| Sample ID: <b>1710169-001CMS</b>  | SampType: MS         | TestCode: 200.8 |                   | Units: µg/L |                           | Prep Dat     | e: <b>10/19/2</b> 0 | 017         | RunNo: 234 | 139      |      |
|-----------------------------------|----------------------|-----------------|-------------------|-------------|---------------------------|--------------|---------------------|-------------|------------|----------|------|
| Client ID: MHSW-4                 | Batch ID: 10769      | Test            | No: <b>E200.8</b> | E200.8      | Analysis Date: 10/23/2017 |              |                     | SeqNo: 31'  | 1660       |          |      |
| Analyte                           | Result               | PQL             | SPK value         | SPK Ref Val | %REC                      | LowLimit     | HighLimit           | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Aluminum                          | 809                  | 10.0            | 500.0             | 343.5       | 93.1                      | 70           | 130                 |             |            |          |      |
| Arsenic                           | 48.8                 | 0.100           | 50.00             | 0.7966      | 96.1                      | 70           | 130                 |             |            |          |      |
| Cadmium                           | 49.2                 | 0.100           | 50.00             | 0.4234      | 97.5                      | 70           | 130                 |             |            |          |      |
| Chromium                          | 50.4                 | 0.100           | 50.00             | 5.166       | 90.4                      | 70           | 130                 |             |            |          |      |
| Copper                            | 76.8                 | 0.500           | 50.00             | 31.94       | 89.7                      | 70           | 130                 |             |            |          |      |
| Lead                              | 64.4                 | 0.100           | 50.00             | 17.34       | 94.1                      | 70           | 130                 |             |            |          |      |
| Sample ID: <b>1710169-001CMSD</b> | SampType: <b>MSD</b> | TestCo          | de: <b>200.8</b>  | Units: µg/L |                           | Prep Dat     | e: <b>10/19/2</b> 0 | 017         | RunNo: 234 | 139      |      |
| Client ID: MUSW 4                 | Batch ID: 10769      | T48             | Jo: E200 8        | E200 8      |                           | Analysis Dat | 40/02/0             | 047         | SoaNo: 31  | 1004     |      |

| Sample ID: <b>1710169-001CMSD</b> | SampType: <b>MSD</b> | TestCod | de: <b>200.8</b>  | Units: µg/L |                           | Prep Date: 10/19/2017 |           | RunNo: <b>23</b> 4 |                      |          |      |
|-----------------------------------|----------------------|---------|-------------------|-------------|---------------------------|-----------------------|-----------|--------------------|----------------------|----------|------|
| Client ID: MHSW-4                 | Batch ID: 10769      | TestN   | No: <b>E200.8</b> | E200.8      | Analysis Date: 10/23/2017 |                       |           | 017                | SeqNo: <b>311661</b> |          |      |
| Analyte                           | Result               | PQL     | SPK value         | SPK Ref Val | %REC                      | LowLimit              | HighLimit | RPD Ref Val        | %RPD                 | RPDLimit | Qual |
| Aluminum                          | 817                  | 10.0    | 500.0             | 343.5       | 94.7                      | 70                    | 130       | 808.9              | 0.965                | 20       |      |
| Arsenic                           | 48.1                 | 0.100   | 50.00             | 0.7966      | 94.5                      | 70                    | 130       | 48.83              | 1.58                 | 20       |      |
| Cadmium                           | 48.2                 | 0.100   | 50.00             | 0.4234      | 95.6                      | 70                    | 130       | 49.19              | 1.96                 | 20       |      |
| Chromium                          | 51.9                 | 0.100   | 50.00             | 5.166       | 93.6                      | 70                    | 130       | 50.39              | 3.05                 | 20       |      |
| Copper                            | 77.5                 | 0.500   | 50.00             | 31.94       | 91.2                      | 70                    | 130       | 76.79              | 0.962                | 20       |      |
| Lead                              | 64.8                 | 0.100   | 50.00             | 17.34       | 94.9                      | 70                    | 130       | 64.37              | 0.643                | 20       |      |

| Sample ID: CCV | SampType: CCV Batch ID: 10769 | TestCode: <b>200.8</b> TestNo: <b>E200.8</b> |       | Units: µg/L<br>E200.8 |      | Prep Dat<br>Analysis Dat |     | 117         | RunNo: <b>23</b> 4<br>SeqNo: <b>31</b> 1 |          |      |
|----------------|-------------------------------|----------------------------------------------|-------|-----------------------|------|--------------------------|-----|-------------|------------------------------------------|----------|------|
| Analyte        | Result                        | PQL                                          |       | SPK Ref Val           | %REC | •                        |     | RPD Ref Val | %RPD                                     | RPDLimit | Qual |
| Aluminum       | 503                           | 10.0                                         | 500.0 | 0                     | 101  | 90                       | 110 |             |                                          |          |      |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 3 of 28

RSD is greater than RSDlimit

RPD outside accepted recovery limits

Spike Recovery outside accepted reco

WO#: **1710169** 

03-Jan-18

#### **Specialty Analytical**

| Client:  | Maul Foster & Alongi  |
|----------|-----------------------|
| Project: | Dolan SCE / 1381.01.0 |

Dolan SCE / 1381.01.01 TestCode: 200.8

| Sample ID: CCV | SampType: <b>CCV</b> | TestCod | TestCode: 200.8 Units: µg/L |             | Prep Date:                |          |           |                      | RunNo: 234 |          |      |
|----------------|----------------------|---------|-----------------------------|-------------|---------------------------|----------|-----------|----------------------|------------|----------|------|
| Client ID: CCV | Batch ID: 10769      | TestN   | lo: <b>E200.8</b>           | E200.8      | Analysis Date: 10/23/2017 |          | 017       | SeqNo: <b>311681</b> |            |          |      |
| Analyte        | Result               | PQL     | SPK value                   | SPK Ref Val | %REC                      | LowLimit | HighLimit | RPD Ref Val          | %RPD       | RPDLimit | Qual |
| Arsenic        | 49.4                 | 0.100   | 50.00                       | 0           | 98.8                      | 90       | 110       |                      |            |          |      |
| Cadmium        | 50.8                 | 0.100   | 50.00                       | 0           | 102                       | 90       | 110       |                      |            |          |      |
| Chromium       | 48.4                 | 0.100   | 50.00                       | 0           | 96.7                      | 90       | 110       |                      |            |          |      |
| Copper         | 49.5                 | 0.500   | 50.00                       | 0           | 99.0                      | 90       | 110       |                      |            |          |      |
| Lead           | 49.9                 | 0.100   | 50.00                       | 0           | 99.9                      | 90       | 110       |                      |            |          |      |
| Zinc           | 50.9                 | 2.00    | 50.00                       | 0           | 102                       | 90       | 110       |                      |            |          |      |

| Sample ID: 1710169-001CDUP | SampType: <b>DUP</b> | TestCode: 200.8       | Units: µg/L | Prep Date: 10/19/2017               | RunNo: <b>23439</b>  |
|----------------------------|----------------------|-----------------------|-------------|-------------------------------------|----------------------|
| Client ID: MHSW-4          | Batch ID: 10769      | TestNo: <b>E200.8</b> | E200.8      | Analysis Date: 10/23/2017           | SeqNo: <b>312296</b> |
| Analyte                    | Result               | PQL SPK value         | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Manganese<br>Zinc          | 127<br>178           | 5.00<br>20.0          |             | 148.6<br>204.2                      | 16.0 20<br>13.5 20   |

| Sample ID: 1710169-001CMS | SampType: MS    |       | e: <b>200.8</b>  | Units: µg/L |      |              | te: 10/19/2017        | RunNo: <b>23</b> 4 |          |      |
|---------------------------|-----------------|-------|------------------|-------------|------|--------------|-----------------------|--------------------|----------|------|
| Client ID: MHSW-4         | Batch ID: 10769 | TestN | o: <b>E200.8</b> | E200.8      |      | Analysis Dat | te: 10/23/2017        | SeqNo: 312         | 2297     |      |
| Analyte                   | Result          | PQL   | SPK value        | SPK Ref Val | %REC | LowLimit     | HighLimit RPD Ref Val | %RPD               | RPDLimit | Qual |
| Manganese                 | 172             | 5.00  | 50.00            | 148.6       | 47.7 | 70           | 130                   |                    |          | SMC  |
| Zinc                      | 220             | 20.0  | 50.00            | 204.2       | 32.1 | 70           | 130                   |                    |          | SMC  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 4 of 28

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

1710169 WO#:

03-Jan-18

#### **Specialty Analytical**

| Client:  | Maul Foster & Alongi   |           |       |
|----------|------------------------|-----------|-------|
| Project: | Dolan SCE / 1381.01.01 | TestCode: | 200.8 |

| Project: Dolan SCI                           | E / 1381.01.01                 |                                              |                       | TestCode: 20                                                      | 00.8                                        |
|----------------------------------------------|--------------------------------|----------------------------------------------|-----------------------|-------------------------------------------------------------------|---------------------------------------------|
| Sample ID: 1710169-001CMSD Client ID: MHSW-4 | SampType: MSD Batch ID: 10769  | TestCode: <b>200.8</b> TestNo: <b>E200.8</b> | Units: µg/L<br>E200.8 | Prep Date: 10/19/2017  Analysis Date: 10/23/2017                  | RunNo: <b>23439</b><br>SeqNo: <b>312298</b> |
| Analyte                                      | Result                         | PQL SPK value                                | SPK Ref Val           | %REC LowLimit HighLimit RPD Ref Val                               | %RPD RPDLimit Qual                          |
| Manganese<br>Zinc                            | 175<br>234                     | 5.00     50.00       20.0     50.00          | 148.6<br>204.2        | 53.3     70     130     183.9       60.0     70     130     240.0 | 4.81 20 S<br>2.47 20 S                      |
| Sample ID: CCV Client ID: CCV                | SampType: CCV Batch ID: 10769  | TestCode: <b>200.8</b> TestNo: <b>E200.8</b> | Units: µg/L<br>E200.8 | Prep Date: Analysis Date: 10/25/2017                              | RunNo: <b>23439</b><br>SeqNo: <b>312414</b> |
| Analyte                                      | Result                         | PQL SPK value                                | SPK Ref Val           | %REC LowLimit HighLimit RPD Ref Val                               | %RPD RPDLimit Qual                          |
| Iron                                         | 4870                           | 100 5000                                     | 0                     | 97.4 90 110                                                       |                                             |
| Sample ID: ICV                               | SampType: <b>ICV</b>           | TestCode: 200.8                              | Units: µg/L           | Prep Date:                                                        | RunNo: <b>23531</b>                         |
| Client ID: ICV                               | Batch ID: 10769                | TestNo: <b>E200.8</b>                        | E200.8                | Analysis Date: 10/30/2017                                         | SeqNo: <b>313178</b>                        |
| Analyte                                      | Result                         | PQL SPK value                                | SPK Ref Val           | %REC LowLimit HighLimit RPD Ref Val                               | %RPD RPDLimit Qual                          |
| Tin                                          | 41.6                           | 0.500 40.00                                  | 0                     | 104 90 110                                                        |                                             |
| Sample ID: MB-10769 Client ID: PBW           | SampType: MBLK Batch ID: 10769 | TestCode: <b>200.8</b> TestNo: <b>E200.8</b> | Units: µg/L<br>E200.8 | Prep Date: 10/19/2017 Analysis Date: 10/30/2017                   | RunNo: 23531<br>SeqNo: 313179               |
| Analyte                                      | Result                         | PQL SPK value                                | SPK Ref Val           | %REC LowLimit HighLimit RPD Ref Val                               | %RPD RPDLimit Qual                          |
| Tin                                          | ND                             | 0.500                                        |                       |                                                                   |                                             |

Qualifiers: Analyte detected in the associated Method Blank

RPD outside accepted recovery limits

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 5 of 28

Spike Recovery outside accepted reco

WO#: **1710169** 

03-Jan-18

#### **Specialty Analytical**

| Client:    |              | Foster & Alongi       |                       |             |                                     |                      |
|------------|--------------|-----------------------|-----------------------|-------------|-------------------------------------|----------------------|
| Project:   | Dolar        | n SCE / 1381.01.01    |                       |             | TestCode: 20                        | 00.8                 |
| Sample ID: | : LCS-10769  | SampType: <b>LCS</b>  | TestCode: 200.8       | Units: µg/L | Prep Date: 10/19/2017               | RunNo: <b>23531</b>  |
| Client ID: | LCSW         | Batch ID: 10769       | TestNo: <b>E200.8</b> | E200.8      | Analysis Date: 10/30/2017           | SeqNo: <b>313180</b> |
| Analyte    |              | Result                | PQL SPK value         | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Tin        |              | 50.8                  | 0.500 50.00           | 0           | 102 85 115                          |                      |
| Sample ID: | : LCSD-10769 | SampType: <b>LCSD</b> | TestCode: 200.8       | Units: µg/L | Prep Date:                          | RunNo: <b>23531</b>  |
| Client ID: | LCSS02       | Batch ID: 10769       | TestNo: <b>E200.8</b> | E200.8      | Analysis Date: 10/30/2017           | SeqNo: <b>313181</b> |
| Analyte    |              | Result                | PQL SPK value         | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Tin        |              | 51.7                  | 0.500 50.00           | 0           | 103 85 115 50.77                    | 1.84 20              |
| Sample ID: | : CCV        | SampType: CCV         | TestCode: 200.8       | Units: µg/L | Prep Date:                          | RunNo: <b>23531</b>  |
| Client ID: | CCV          | Batch ID: 10769       | TestNo: <b>E200.8</b> | E200.8      | Analysis Date: 10/30/2017           | SeqNo: <b>313183</b> |
| Analyte    |              | Result                | PQL SPK value         | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Tin        |              | 41.5                  | 0.500 40.00           | 0           | 104 90 110                          |                      |
| Sample ID: | : CCB        | SampType: CCB         | TestCode: 200.8       | Units: μg/L | Prep Date:                          | RunNo: <b>23531</b>  |
| Client ID: | ССВ          | Batch ID: 10769       | TestNo: <b>E200.8</b> | E200.8      | Analysis Date: 10/30/2017           | SeqNo: <b>313184</b> |
| Analyte    |              | Result                | PQL SPK value         | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

0.500

ND

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted reco

Page 6 of 28

O RSD is greater than RSDlimit

Tin

R RPD outside accepted recovery limits

1710169 WO#:

03-Jan-18

#### **Specialty Analytical**

| Client:<br>Project: |           | aul Foster & Alongi<br>blan SCE / 1381.01.01 |                       |             | TestCode:                           | 200.8                |
|---------------------|-----------|----------------------------------------------|-----------------------|-------------|-------------------------------------|----------------------|
| Sample ID:          | ICV       | SampType: <b>ICV</b>                         | TestCode: 200.8       | Units: µg/L | Prep Date:                          | RunNo: <b>23532</b>  |
| Client ID:          | ICV       | Batch ID: 10769                              | TestNo: <b>E200.8</b> | E200.8      | Analysis Date: 10/30/2017           | SeqNo: <b>313187</b> |
| Analyte             |           | Result                                       | PQL SPK value         | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Titanium            |           | 42.7                                         | 10.0 40.00            | 0           | 107 90 110                          |                      |
| Sample ID:          | MB-10769  | SampType: <b>MBLK</b>                        | TestCode: 200.8       | Units: µg/L | Prep Date: 10/19/2017               | RunNo: <b>23532</b>  |
| Client ID:          | PBW       | Batch ID: 10769                              | TestNo: <b>E200.8</b> | E200.8      | Analysis Date: 10/30/2017           | SeqNo: <b>313188</b> |
| Analyte             |           | Result                                       | PQL SPK value         | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Titanium            |           | ND                                           | 10.0                  |             |                                     |                      |
| Sample ID:          | LCS-10769 | SampType: <b>LCS</b>                         | TestCode: 200.8       | Units: µg/L | Prep Date: 10/19/2017               | RunNo: <b>23532</b>  |
| Client ID:          | LCSW      | Batch ID: 10769                              | TestNo: <b>E200.8</b> | E200.8      | Analysis Date: 10/30/2017           | SeqNo: <b>313189</b> |
| Analyte             |           | Result                                       | PQL SPK value         | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Titanium            |           | 56.6                                         | 10.0 50.00            | 0           | 113 85 115                          |                      |
| Sample ID:          | LCSD-1076 | SampType: LCSD                               | TestCode: 200.8       | Units: µg/L | Prep Date:                          | RunNo: <b>23532</b>  |
| Client ID:          | LCSS02    | Batch ID: 10769                              | TestNo: <b>E200.8</b> | E200.8      | Analysis Date: 10/30/2017           | SeqNo: <b>313190</b> |
| Analyte             |           | Result                                       | PQL SPK value         | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Titanium            |           | 56.0                                         | 10.0 50.00            | 0           | 112 85 115 56.62                    | 1.18 20              |

Qualifiers: Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Spike Recovery outside accepted reco Page 7 of 28

RSD is greater than RSDlimit

RPD outside accepted recovery limits

WO#:

1710169

03-Jan-18

**Specialty Analytical** 

**Client:** Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 TestCode: 200.8

| Sample ID: CCV | SampType: CCV   | TestCode: 200.8      | Units: µg/L    |      | Prep Dat     | te:                   | RunNo: <b>23532</b>  |        |
|----------------|-----------------|----------------------|----------------|------|--------------|-----------------------|----------------------|--------|
| Client ID: CCV | Batch ID: 10769 | TestNo: <b>E200.</b> | E200.8         |      | Analysis Dat | te: 10/30/2017        | SeqNo: <b>313193</b> |        |
| Analyte        | Result          | PQL SPK va           | ue SPK Ref Val | %REC | LowLimit     | HighLimit RPD Ref Val | %RPD RPDLim          | t Qual |
| Titanium       | 42.5            | 10.0 40              | 00 0           | 106  | 90           | 110                   |                      |        |

| Sample ID: CCB | SampType: CCB   | TestCode: 200.8       | Units: µg/L | Prep Date:                          | RunNo: 23532         |
|----------------|-----------------|-----------------------|-------------|-------------------------------------|----------------------|
| Client ID: CCB | Batch ID: 10769 | TestNo: <b>E200.8</b> | E200.8      | Analysis Date: 10/30/2017           | SeqNo: <b>313194</b> |
| Analyte        | Result          | PQL SPK value         | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |

Titanium ND 10.0

WO#: **1710169** 

03-Jan-18

#### **Specialty Analytical**

Client: Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 **TestCode: 200.8\_DISS** 

| Sample ID: LCS-10777 | SampType: LCS   | TestCo | de: <b>200.8_DIS</b> | S Units: μg/L |      | Prep Da     | te:                |             | RunNo: 234 | 166      |      |
|----------------------|-----------------|--------|----------------------|---------------|------|-------------|--------------------|-------------|------------|----------|------|
| Client ID: LCSW      | Batch ID: 10777 | Test   | No: <b>E200.8</b>    | E200.8        |      | Analysis Da | te: <b>10/23/2</b> | 017         | SeqNo: 312 | 2265     |      |
| Analyte              | Result          | PQL    | SPK value            | SPK Ref Val   | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Aluminum             | 504             | 100    | 500.0                | 0             | 101  | 90          | 110                |             |            |          |      |
| Arsenic              | 51.4            | 0.100  | 50.00                | 0             | 103  | 90          | 110                |             |            |          |      |
| Cadmium              | 52.1            | 0.100  | 50.00                | 0             | 104  | 90          | 110                |             |            |          |      |
| Chromium             | 50.7            | 0.100  | 50.00                | 0             | 101  | 90          | 110                |             |            |          |      |
| Copper               | 51.6            | 0.500  | 50.00                | 0             | 103  | 90          | 110                |             |            |          |      |
| Lead                 | 48.6            | 0.100  | 50.00                | 0             | 97.2 | 90          | 110                |             |            |          |      |
| Manganese            | 50.9            | 0.500  | 50.00                | 0             | 102  | 90          | 110                |             |            |          |      |
| Zinc                 | 52.9            | 2.00   | 50.00                | 0             | 106  | 90          | 110                |             |            |          |      |

| Sample ID: CCV | SampType: CCV          | TestCo | de: <b>200.8_DIS</b> S | Units: μg/L |      | Prep Da     | te:                |             | RunNo: 234 | 166      |      |
|----------------|------------------------|--------|------------------------|-------------|------|-------------|--------------------|-------------|------------|----------|------|
| Client ID: CCV | Batch ID: <b>10777</b> | Test   | No: <b>E200.8</b>      | E200.8      |      | Analysis Da | te: <b>10/23/2</b> | 017         | SeqNo: 312 | 2266     |      |
| Analyte        | Result                 | PQL    | SPK value              | SPK Ref Val | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Aluminum       | 482                    | 100    | 500.0                  | 0           | 96.5 | 90          | 110                |             |            |          |      |
| Arsenic        | 49.5                   | 0.100  | 50.00                  | 0           | 99.1 | 90          | 110                |             |            |          |      |
| Cadmium        | 50.7                   | 0.100  | 50.00                  | 0           | 101  | 90          | 110                |             |            |          |      |
| Chromium       | 48.1                   | 0.100  | 50.00                  | 0           | 96.2 | 90          | 110                |             |            |          |      |
| Copper         | 49.9                   | 0.500  | 50.00                  | 0           | 99.8 | 90          | 110                |             |            |          |      |
| Lead           | 48.5                   | 0.100  | 50.00                  | 0           | 96.9 | 90          | 110                |             |            |          |      |
| Manganese      | 48.6                   | 0.500  | 50.00                  | 0           | 97.2 | 90          | 110                |             |            |          |      |
| Zinc           | 48.9                   | 2.00   | 50.00                  | 0           | 97.8 | 90          | 110                |             |            |          |      |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

1710169 WO#:

03-Jan-18

### **Specialty Analytical**

| Client:  | Maul Foster & Alongi   |           |            |
|----------|------------------------|-----------|------------|
| Project: | Dolan SCE / 1381.01.01 | TestCode: | 200.8_DISS |

| Sample ID: <b>MB-10777</b> | SampType: <b>MBLK</b> | TestCode: 200.8_D     | ISS Units: µg/L | Prep Date: 10/23/2017               | RunNo: <b>23466</b>  |
|----------------------------|-----------------------|-----------------------|-----------------|-------------------------------------|----------------------|
| Client ID: PBW             | Batch ID: 10777       | TestNo: <b>E200.8</b> | E200.8          | Analysis Date: 10/23/2017           | SeqNo: <b>312267</b> |
| Analyte                    | Result                | PQL SPK valu          | e SPK Ref Val   | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Aluminum                   | ND                    | 100                   |                 |                                     |                      |
| Arsenic                    | ND                    | 0.100                 |                 |                                     |                      |
| Cadmium                    | ND                    | 0.100                 |                 |                                     |                      |
| Chromium                   | ND                    | 0.100                 |                 |                                     |                      |
| Copper                     | ND                    | 0.500                 |                 |                                     |                      |
| Lead                       | 0.0299                | 0.100                 |                 |                                     | J                    |
| Zinc                       | 0.482                 | 2.00                  |                 |                                     | J                    |

| Sample ID: 1710151-001CDUP | SampType: <b>DUP</b> | TestCo | de: <b>200.8_DISS</b> | Units: µg/L |                           | Prep Dat | te: <b>10/23/2</b> | 017                  | RunNo: 234 | 166      |      |
|----------------------------|----------------------|--------|-----------------------|-------------|---------------------------|----------|--------------------|----------------------|------------|----------|------|
| Client ID: ZZZZZZ          | Batch ID: 10777      | Test   | No: <b>E200.8</b>     | E200.8      | Analysis Date: 10/23/2017 |          |                    | SeqNo: <b>312269</b> |            |          |      |
| Analyte                    | Result               | PQL    | SPK value             | SPK Ref Val | %REC                      | LowLimit | HighLimit          | RPD Ref Val          | %RPD       | RPDLimit | Qual |
| Arsenic                    | 0.776                | 0.100  |                       |             |                           |          |                    | 0.7954               | 2.52       | 20       |      |
| Cadmium                    | 0.0182               | 0.100  |                       |             |                           |          |                    | 0.02084              | 13.8       | 20       | J    |
| Chromium                   | 2.66                 | 0.100  |                       |             |                           |          |                    | 2.608                | 1.88       | 20       |      |
| Copper                     | 33.6                 | 0.500  |                       |             |                           |          |                    | 33.27                | 0.992      | 20       |      |
| Lead                       | 0.173                | 0.100  |                       |             |                           |          |                    | 0.1646               | 5.27       | 20       |      |

| Sample ID: 1710151-001CMS Client ID: ZZZZZZ | SampType: <b>MS</b> Batch ID: <b>10777</b> |       | le: <b>200.8_DIS</b><br>lo: <b>E200.8</b> | S Units: μg/L<br>E200.8 | Prep Date: 10/23/2017  Analysis Date: 10/23/2017 |          |                      | RunNo: <b>23466</b><br>SeqNo: <b>312270</b> |      |
|---------------------------------------------|--------------------------------------------|-------|-------------------------------------------|-------------------------|--------------------------------------------------|----------|----------------------|---------------------------------------------|------|
| Analyte                                     | Result                                     | PQL   | SPK value                                 | SPK Ref Val             | %REC                                             | LowLimit | HighLimit RPD Ref Va | al %RPD RPDLimit                            | Qual |
| Arsenic                                     | 51.0                                       | 0.100 | 50.00                                     | 0.7954                  | 101                                              | 80       | 120                  |                                             |      |

Holding times for preparation or analysis exceeded

Qualifiers: Analyte detected in the associated Method Blank

- - RSD is greater than RSDlimit RPD outside accepted recovery limits

- ND Not Detected at the Reporting Limit
  - Spike Recovery outside accepted reco

Page 10 of 28

1710169 WO#:

03-Jan-18

#### **Specialty Analytical**

| Client:  | Maul Foster & Alongi   |           |            |
|----------|------------------------|-----------|------------|
| Project: | Dolan SCE / 1381.01.01 | TestCode: | 200.8_DISS |

| Client:<br>Project: | Maul Foster<br>Dolan SCE | r & Alongi<br>/ 1381.01.01 |         |                        |               |                           |              | Т                 | TestCode: 2          | 00.8_DISS           |          |      |
|---------------------|--------------------------|----------------------------|---------|------------------------|---------------|---------------------------|--------------|-------------------|----------------------|---------------------|----------|------|
| Sample ID:          | 1710151-001CMS           | SampType: <b>MS</b>        | TestCod | de: <b>200.8_DIS</b> S | Units: μg/L   |                           | Prep Dat     | e: <b>10/23/2</b> | 2017                 | RunNo: <b>23466</b> |          |      |
| Client ID:          | ZZZZZZ                   | Batch ID: 10777            | TestN   | lo: <b>E200.8</b>      | E200.8        |                           | Analysis Dat | e: <b>10/23/2</b> | 2017                 | SeqNo: 312          | 2270     |      |
| Analyte             |                          | Result                     | PQL     | SPK value              | SPK Ref Val   | %REC                      | LowLimit     | HighLimit         | RPD Ref Val          | %RPD                | RPDLimit | Qual |
| Cadmium             |                          | 49.0                       | 0.100   | 50.00                  | 0.02084       | 98.0                      | 80           | 120               |                      |                     |          |      |
| Chromium            |                          | 50.9                       | 0.100   | 50.00                  | 2.608         | 96.5                      | 80           | 120               |                      |                     |          |      |
| Copper              |                          | 80.6                       | 0.500   | 50.00                  | 33.27         | 94.6                      | 80           | 120               |                      |                     |          |      |
| Lead                |                          | 45.1                       | 0.100   | 50.00                  | 0.1646        | 89.8                      | 80           | 120               |                      |                     |          |      |
| Sample ID:          | 1710151-001CMSD          | SampType: <b>MSD</b>       | TestCod | de: <b>200.8_DIS</b>   | S Units: μg/L |                           | Prep Dat     | e: <b>10/23/2</b> | 2017                 | RunNo: 234          | 166      |      |
| Client ID:          | ZZZZZZ                   | Batch ID: <b>10777</b>     | TestN   | lo: <b>E200.8</b>      | E200.8        | Analysis Date: 10/23/2017 |              |                   | SeqNo: <b>312271</b> |                     |          |      |
| Analyte             |                          | Result                     | PQL     | SPK value              | SPK Ref Val   | %REC                      | LowLimit     | HighLimit         | RPD Ref Val          | %RPD                | RPDLimit | Qual |
| Arsenic             |                          | 50.3                       | 0.100   | 50.00                  | 0.7954        | 99.0                      | 80           | 120               | 51.05                | 1.48                | 20       |      |
| Cadmium             |                          | 49.2                       | 0.100   | 50.00                  | 0.02084       | 98.4                      | 80           | 120               | 49.04                | 0.383               | 20       |      |
| Chromium            |                          | 50.2                       | 0.100   | 50.00                  | 2.608         | 95.2                      | 80           | 120               | 50.86                | 1.30                | 20       |      |
| Copper              |                          | 79.4                       | 0.500   | 50.00                  | 33.27         | 92.2                      | 80           | 120               | 80.56                | 1.50                | 20       |      |
| Lead                |                          | 45.7                       | 0.100   | 50.00                  | 0.1646        | 91.0                      | 80           | 120               | 45.06                | 1.34                | 20       |      |
| Sample ID:          | CCV                      | SampType: <b>CCV</b>       | TestCoo | de: <b>200.8_DIS</b>   | S Units: μg/L |                           | Prep Dat     | e:                |                      | RunNo: 234          | 166      |      |
| Client ID:          | CCV                      | Batch ID: <b>10777</b>     | TestN   | lo: <b>E200.8</b>      | E200.8        |                           | Analysis Dat | e: <b>10/23/2</b> | 2017                 | SeqNo: 312          | 2277     |      |
| Analyte             |                          | Result                     | PQL     | SPK value              | SPK Ref Val   | %REC                      | LowLimit     | HighLimit         | RPD Ref Val          | %RPD                | RPDLimit | Qual |
| Arsenic             |                          | 50.7                       | 0.100   | 50.00                  | 0             | 101                       | 90           | 110               |                      |                     |          |      |
| Cadmium             |                          | 51.0                       | 0.100   | 50.00                  | 0             | 102                       | 90           | 110               |                      |                     |          |      |
| Chromium            |                          | 50.4                       | 0.100   | 50.00                  | 0             | 101                       | 90           | 110               |                      |                     |          |      |

Analyte detected in the associated Method Blank Qualifiers:

51.0

0.500

0

102

90

110

Copper

50.00

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Spike Recovery outside accepted reco

Page 11 of 28

RSD is greater than RSDlimit

RPD outside accepted recovery limits

WO#: **1710169** 

03-Jan-18

#### **Specialty Analytical**

Maul Foster & Alongi Client: **Project:** Dolan SCE / 1381.01.01 **TestCode: 200.8 DISS** Sample ID: CCV SampType: CCV TestCode: 200.8 DISS Units: µg/L Prep Date: RunNo: 23466 Client ID: CCV Batch ID: 10777 Analysis Date: 10/23/2017 TestNo: **E200.8** E200.8 SeqNo: 312277 **PQL** SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD RPDLimit Analyte Result %REC Qual Lead 47.6 0.100 50.00 0 95.2 90 110 51.7 2.00 50.00 0 103 90 110 Zinc Sample ID: ICV SampType: ICV TestCode: 200.8 DISS Units: µg/L Prep Date: RunNo: 23466 Client ID: ICV Batch ID: 10777 TestNo: **E200.8** E200.8 Analysis Date: 10/25/2017 SeqNo: 312397 %RPD RPDLimit Qual Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val 51.4 2.00 50.00 0 103 90 110 Zinc Sample ID: CCV SampType: CCV TestCode: 200.8 DISS Units: µg/L Prep Date: RunNo: 23466 Client ID: CCV Batch ID: 10777 TestNo: **E200.8** E200.8 Analysis Date: 10/25/2017 SeqNo: 312398 **PQL** SPK value SPK Ref Val %REC HighLimit RPD Ref Val %RPD RPDLimit Analyte Result LowLimit Qual 90 Zinc 52.2 2.00 50.00 0 104 110

| Sample ID: 1710151-001CDUP | SampType: <b>DUP</b> | TestCode: 200.8_DISS  | Units: µg/L   | Prep Date: 10/23/2017              | RunNo: <b>23466</b>  |
|----------------------------|----------------------|-----------------------|---------------|------------------------------------|----------------------|
| Client ID: ZZZZZZ          | Batch ID: 10777      | TestNo: <b>E200.8</b> | E200.8        | Analysis Date: 10/25/2017          | SeqNo: <b>312400</b> |
| Analyte                    | Result               | PQL SPK value SF      | PK Ref Val %R | REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Zinc                       | 113                  | 20.0                  |               | 107.3                              | 5.29 20              |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 12 of 28

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#: **1710169** 

03-Jan-18

#### **Specialty Analytical**

| Client:<br>Project: | Maul Foster<br>Dolan SCE | c & Alongi<br>/ 1381.01.01 |        |         |                     |               |      |               | Т                 | estCode: 2  | 200.8_DISS |          |      |
|---------------------|--------------------------|----------------------------|--------|---------|---------------------|---------------|------|---------------|-------------------|-------------|------------|----------|------|
| Sample ID: 17       | 710151-001CMS            | SampType: <b>M</b>         | ıs     | TestCod | e: <b>200.8_DIS</b> | S Units: µg/L |      | Prep Date     | e: <b>10/23/2</b> | 017         | RunNo: 234 | 166      |      |
| Client ID: ZZ       | 77777                    | Batch ID: 10               | 0777   | TestN   | o: <b>E200.8</b>    | E200.8        |      | Analysis Date | e: <b>10/25/2</b> | 017         | SeqNo: 312 | 2401     |      |
| Analyte             |                          | F                          | Result | PQL     | SPK value           | SPK Ref Val   | %REC | LowLimit      | HighLimit         | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Zinc                |                          |                            | 607    | 20.0    | 500.0               | 107.3         | 99.9 | 80            | 120               |             |            |          |      |
|                     |                          |                            |        |         |                     |               |      |               |                   |             |            |          |      |
| Sample ID: Co       | cv                       | SampType: <b>C</b>         | CV     | TestCod | e: <b>200.8_DIS</b> | S Units: μg/L |      | Prep Date     | e:                |             | RunNo: 234 | 166      |      |
| Client ID: Co       | cv                       | Batch ID: 10               | 0777   | TestN   | o: <b>E200.8</b>    | E200.8        |      | Analysis Date | e: <b>10/25/2</b> | 017         | SeqNo: 312 | 2402     |      |
| Analyte             |                          | F                          | Result | PQL     | SPK value           | SPK Ref Val   | %REC | LowLimit      | HighLimit         | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Zinc                |                          |                            | 52.5   | 2.00    | 50.00               | 0             | 105  | 90            | 110               |             |            |          |      |
| Sample ID: 17       | 710151-001CMSD           | SampType: <b>M</b>         | ISD    | TestCod | e: <b>200.8_DIS</b> | S Units: µg/L |      | Prep Date     | e: <b>10/23/2</b> | 017         | RunNo: 234 | 166      |      |
| Client ID: ZZ       | ZZZZZ                    | Batch ID: 10               | 0777   | TestN   | o: <b>E200.8</b>    | E200.8        |      | Analysis Date | e: <b>10/25/2</b> | 017         | SeqNo: 312 | 2403     |      |
| Analyte             |                          | F                          | Result | PQL     | SPK value           | SPK Ref Val   | %REC | LowLimit      | HighLimit         | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Zinc                |                          |                            | 604    | 20.0    | 500.0               | 107.3         | 99.3 | 80            | 120               | 607.1       | 0.555      | 20       |      |
|                     |                          |                            |        |         |                     |               |      |               |                   |             |            |          |      |
| Sample ID: Co       | CV                       | SampType: <b>C</b>         | CV     | TestCod | e: <b>200.8_DIS</b> | S Units: μg/L |      | Prep Date     | e:                |             | RunNo: 234 | 166      |      |
| Client ID: Co       | cv                       | Batch ID: 10               | 0777   | TestN   | o: <b>E200.8</b>    | E200.8        |      | Analysis Date | e: <b>10/25/2</b> | 017         | SeqNo: 312 | 2407     |      |
| Analyte             |                          | F                          | Result | PQL     | SPK value           | SPK Ref Val   | %REC | LowLimit      | HighLimit         | RPD Ref Val | %RPD       | RPDLimit | Qual |
| -                   |                          |                            |        |         |                     |               |      |               |                   |             |            |          |      |

Qualifiers: B Analyte detected in the associated Method Blank

Zinc

52.1

2.00

H Holding times for preparation or analysis exceeded

50.00

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted reco

110

90

Page 13 of 28

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

0

104

WO#: 1710169

03-Jan-18

### **Specialty Analytical**

| Client:  | Maul Foster & Alongi   |           |          |
|----------|------------------------|-----------|----------|
| Project: | Dolan SCE / 1381.01.01 | TestCode: | 8082LL_W |

|                                         | E / 1381.01.01                |                    |               | TestCode: 8082LL_W                                                                                |
|-----------------------------------------|-------------------------------|--------------------|---------------|---------------------------------------------------------------------------------------------------|
| Sample ID: 1016/1260 CCV Client ID: CCV | SampType: CCV Batch ID: 10781 | TestCode: 8082LL_W | . •           | Prep Date:         RunNo: 23488           Analysis Date:         10/26/2017         SeqNo: 312655 |
| Analyte                                 | Result                        | PQL SPK value      | SPK Ref Val   | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual                                            |
| Aroclor 1016/1260                       | 1.87                          | 0.0200 2.000       | 0             | 93.6 85 115                                                                                       |
| Sample ID: MB-10781                     | SampType: <b>MBLK</b>         | TestCode: 8082LL_W | Units: μg/L   | Prep Date: 10/23/2017 RunNo: 23488                                                                |
| Client ID: PBW                          | Batch ID: 10781               | TestNo: SW 8082A   | SW3510_PCB    | Analysis Date: 10/26/2017 SeqNo: 312656                                                           |
| Analyte                                 | Result                        | PQL SPK value      | SPK Ref Val   | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual                                            |
| Aroclor 1016                            | ND                            | 0.0200             |               |                                                                                                   |
| Aroclor 1221                            | ND                            | 0.0200             |               |                                                                                                   |
| Aroclor 1232                            | ND                            | 0.0200             |               |                                                                                                   |
| Aroclor 1242                            | ND                            | 0.0200             |               |                                                                                                   |
| Aroclor 1248                            | ND                            | 0.0200             |               |                                                                                                   |
| Aroclor 1254                            | ND                            | 0.0200             |               |                                                                                                   |
| Aroclor 1260                            | ND                            | 0.0200             |               |                                                                                                   |
| Aroclor 1262                            | ND                            | 0.0200             |               |                                                                                                   |
| Aroclor 1268                            | ND                            | 0.0200             |               |                                                                                                   |
| Surr: Decachlorobiphenyl                | 167                           | 200.0              |               | 83.4 45 107                                                                                       |
| Sample ID: LCS-10781                    | SampType: <b>LCS</b>          | TestCode: 8082LL_W | / Units: μg/L | Prep Date: 10/23/2017 RunNo: 23488                                                                |
| Client ID: LCSW                         | Batch ID: 10781               | TestNo: SW 8082A   | SW3510_PCB    | Analysis Date: 10/26/2017 SeqNo: 312657                                                           |
| Analyte                                 | Result                        | PQL SPK value      | SPK Ref Val   | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual                                            |
| Aroclor 1016/1260                       | 1.80                          | 0.0200 2.000       | 0             | 90.0 40.4 120                                                                                     |

| Sample ID: LCS-10781 | ample ID: LCS-10781 SampType: LCS |                  | TestCode: <b>8082LL_W</b> Units: μg/L |                                     | Prep Date: 10/23/2017 |           |                      | RunNo: 23488 |          |      |
|----------------------|-----------------------------------|------------------|---------------------------------------|-------------------------------------|-----------------------|-----------|----------------------|--------------|----------|------|
| Client ID: LCSW      | Batch ID: 10781                   | TestNo: SW 8082A | SW3510_PCB                            | W3510_PCB Analysis Date: 10/26/2017 |                       |           | SeqNo: <b>312657</b> |              |          |      |
| Analyte              | Result                            | PQL SPK value    | SPK Ref Val                           | %REC                                | LowLimit              | HighLimit | RPD Ref Val          | %RPD         | RPDLimit | Qual |
| Aroclor 1016/1260    | 1.80                              | 0.0200 2.000     | 0                                     | 90.0                                | 40.4                  | 120       |                      |              |          |      |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 14 of 28

RSD is greater than RSDlimit

RPD outside accepted recovery limits

Spike Recovery outside accepted reco

1710169 WO#:

03-Jan-18

#### **Specialty Analytical**

Maul Foster & Alongi Client:

2.000

| Project: Dolan                             | SCE / 1381.01.01               | TestCode: 8082LL_W                  |                           |                                                                                        |      |  |  |  |  |  |
|--------------------------------------------|--------------------------------|-------------------------------------|---------------------------|----------------------------------------------------------------------------------------|------|--|--|--|--|--|
| Sample ID: LCSD-10781 Client ID: LCSS02    | SampType: LCSD Batch ID: 10781 | TestCode: 8082LL_W TestNo: SW 8082A | Units: µg/L<br>SW3510_PCB | Prep Date: 10/23/2017 RunNo: 23488  B Analysis Date: 10/26/2017 SeqNo: 312658          |      |  |  |  |  |  |
| Analyte                                    | Result                         | PQL SPK value                       | SPK Ref Val               | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu                                   | Qual |  |  |  |  |  |
| Aroclor 1016/1260                          | 2.00                           | 0.0200 2.000                        | 0                         | 100 40.4 120 1.800 10.7 20                                                             |      |  |  |  |  |  |
| Sample ID: 1016/1260 CCV<br>Client ID: CCV | SampType: CCV Batch ID: 10781  | TestCode: 8082LL_W TestNo: SW 8082A | Units: µg/L<br>SW3510_PCB | Prep Date: RunNo: <b>23488 B</b> Analysis Date: <b>10/26/2017</b> SeqNo: <b>312661</b> |      |  |  |  |  |  |
| Analyte                                    | Result                         | PQL SPK value                       | SPK Ref Val               | %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qu                                   | Qual |  |  |  |  |  |

0

99.3

85

115

Aroclor 1016/1260

1.99

0.0200

WO#:

1710169

03-Jan-18

**Specialty Analytical** 

**Client:** 

Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 **TestCode: 8270BN\_W** 

| Sample ID: CCV MSSWS-1510   | SampType: CCV   | TestCod | de: <b>8270BN_V</b> | V Units: μg/L | Prep Date:                |          |           | RunNo: 235  | 507  |          |      |
|-----------------------------|-----------------|---------|---------------------|---------------|---------------------------|----------|-----------|-------------|------|----------|------|
| Client ID: CCV              | Batch ID: 10784 | TestN   | No: <b>SW8270D</b>  | SW 3510C      | Analysis Date: 10/25/2017 |          |           | SeqNo: 312  | 2848 |          |      |
| Analyte                     | Result          | PQL     | SPK value           | SPK Ref Val   | %REC                      | LowLimit | HighLimit | RPD Ref Val | %RPD | RPDLimit | Qual |
| 1,2,4-Trichlorobenzene      | 18.5            | 1.00    | 20.00               | 0             | 92.6                      | 80       | 120       |             |      |          |      |
| 1,2-Dichlorobenzene         | 19.6            | 1.00    | 20.00               | 0             | 98.2                      | 80       | 120       |             |      |          |      |
| 1,3-Dichlorobenzene         | 19.1            | 1.00    | 20.00               | 0             | 95.6                      | 80       | 120       |             |      |          |      |
| 1,4-Dichlorobenzene         | 20.3            | 1.00    | 20.00               | 0             | 101                       | 80       | 120       |             |      |          |      |
| 2,4-Dinitrotoluene          | 16.3            | 5.00    | 20.00               | 0             | 81.7                      | 80       | 120       |             |      |          |      |
| 2,6-Dinitrotoluene          | 18.4            | 5.00    | 20.00               | 0             | 92.0                      | 80       | 120       |             |      |          |      |
| 2-Chloronaphthalene         | 22.7            | 1.00    | 20.00               | 0             | 113                       | 80       | 120       |             |      |          |      |
| 2-Methylnaphthalene         | 19.1            | 1.00    | 20.00               | 0             | 95.7                      | 80       | 120       |             |      |          |      |
| 3-Nitroaniline              | 20.6            | 6.00    | 20.00               | 0             | 103                       | 80       | 120       |             |      |          |      |
| 4-Bromophenyl phenyl ether  | 23.1            | 1.00    | 20.00               | 0             | 115                       | 80       | 120       |             |      |          |      |
| 4-Chlorophenyl phenyl ether | 19.6            | 1.00    | 20.00               | 0             | 98.2                      | 80       | 120       |             |      |          |      |
| 4-Nitroaniline              | 20.6            | 5.00    | 20.00               | 0             | 103                       | 80       | 120       |             |      |          |      |
| Acenaphthene                | 19.6            | 1.00    | 20.00               | 0             | 98.2                      | 80       | 120       |             |      |          |      |
| Acenaphthylene              | 19.9            | 1.00    | 20.00               | 0             | 99.4                      | 80       | 120       |             |      |          |      |
| Anthracene                  | 19.3            | 1.00    | 20.00               | 0             | 96.7                      | 80       | 120       |             |      |          |      |
| Benz(a)anthracene           | 20.1            | 1.00    | 20.00               | 0             | 100                       | 80       | 120       |             |      |          |      |
| Benzo(a)pyrene              | 21.9            | 1.00    | 20.00               | 0             | 110                       | 80       | 120       |             |      |          |      |
| Benzo(b)fluoranthene        | 18.0            | 1.00    | 20.00               | 0             | 90.1                      | 80       | 120       |             |      |          |      |
| Benzo(g,h,i)perylene        | 18.7            | 1.00    | 20.00               | 0             | 93.4                      | 80       | 120       |             |      |          |      |
| Benzo(k)fluoranthene        | 23.9            | 1.00    | 20.00               | 0             | 119                       | 80       | 120       |             |      |          |      |
| Bis(2-chloroethoxy)methane  | 23.6            | 1.00    | 20.00               | 0             | 118                       | 80       | 120       |             |      |          |      |
| Bis(2-chloroethyl)ether     | 21.3            | 2.00    | 20.00               | 0             | 107                       | 80       | 120       |             |      |          |      |
| Bis(2-chloroisopropyl)ether | 21.6            | 1.00    | 20.00               | 0             | 108                       | 80       | 120       |             |      |          |      |
| Bis(2-ethylhexyl)phthalate  | 22.3            | 1.00    | 20.00               | 0             | 112                       | 80       | 120       |             |      |          |      |
| Butyl benzyl phthalate      | 22.8            | 1.00    | 20.00               | 0             | 114                       | 80       | 120       |             |      |          |      |
| Chrysene                    | 21.7            | 1.00    | 20.00               | 0             | 109                       | 80       | 120       |             |      |          |      |

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 16 of 28

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

WO#: **17** 

1710169

03-Jan-18

**Specialty Analytical** 

Client: Maul Foster & Alongi
Project: Dolan SCE / 1381.01.01

TestCode: 8270BN\_W

| Sample ID: CCV MSSWS-1510 | SampType: <b>CCV</b> | TestCod | de: <b>8270BN_W</b> | / Units: μg/L | Prep Date:                |          |           | RunNo: <b>23507</b> |      |          |      |
|---------------------------|----------------------|---------|---------------------|---------------|---------------------------|----------|-----------|---------------------|------|----------|------|
| Client ID: CCV            | Batch ID: 10784      | TestN   | No: <b>SW8270D</b>  | SW 3510C      | Analysis Date: 10/25/2017 |          |           | SeqNo: 312          | 2848 |          |      |
| Analyte                   | Result               | PQL     | SPK value           | SPK Ref Val   | %REC                      | LowLimit | HighLimit | RPD Ref Val         | %RPD | RPDLimit | Qual |
| Dibenz(a,h)anthracene     | 18.7                 | 1.00    | 20.00               | 0             | 93.4                      | 80       | 120       |                     |      |          |      |
| Dibenzofuran              | 17.9                 | 1.00    | 20.00               | 0             | 89.4                      | 80       | 120       |                     |      |          |      |
| Diethyl phthalate         | 18.1                 | 1.00    | 20.00               | 0             | 90.6                      | 80       | 120       |                     |      |          |      |
| Dimethyl phthalate        | 20.1                 | 1.00    | 20.00               | 0             | 101                       | 80       | 120       |                     |      |          |      |
| Di-n-butyl phthalate      | 19.2                 | 1.00    | 20.00               | 0             | 96.2                      | 80       | 120       |                     |      |          |      |
| Di-n-octyl phthalate      | 22.4                 | 1.00    | 20.00               | 0             | 112                       | 80       | 120       |                     |      |          |      |
| Fluoranthene              | 21.3                 | 1.00    | 20.00               | 0             | 106                       | 80       | 120       |                     |      |          |      |
| Fluorene                  | 21.4                 | 1.00    | 20.00               | 0             | 107                       | 80       | 120       |                     |      |          |      |
| Hexachlorobenzene         | 23.6                 | 1.00    | 20.00               | 0             | 118                       | 80       | 120       |                     |      |          |      |
| Hexachlorobutadiene       | 19.3                 | 2.00    | 20.00               | 0             | 96.6                      | 80       | 120       |                     |      |          |      |
| Hexachlorocyclopentadiene | 18.2                 | 5.00    | 20.00               | 0             | 90.8                      | 80       | 120       |                     |      |          |      |
| Hexachloroethane          | 20.6                 | 2.00    | 20.00               | 0             | 103                       | 80       | 120       |                     |      |          |      |
| Indeno(1,2,3-cd)pyrene    | 20.2                 | 1.00    | 20.00               | 0             | 101                       | 80       | 120       |                     |      |          |      |
| Isophorone                | 23.9                 | 1.00    | 20.00               | 0             | 120                       | 80       | 120       |                     |      |          |      |
| Naphthalene               | 17.9                 | 1.00    | 20.00               | 0             | 89.3                      | 80       | 120       |                     |      |          |      |
| Nitrobenzene              | 23.9                 | 1.00    | 20.00               | 0             | 120                       | 80       | 120       |                     |      |          |      |
| N-nitrosodimethylamine    | 19.3                 | 5.00    | 20.00               | 0             | 96.5                      | 80       | 120       |                     |      |          |      |
| N-Nitrosodi-n-propylamine | 19.7                 | 2.00    | 20.00               | 0             | 98.4                      | 80       | 120       |                     |      |          |      |
| N-Nitrosodiphenylamine    | 20.8                 | 1.00    | 20.00               | 0             | 104                       | 80       | 120       |                     |      |          |      |
| Phenanthrene              | 19.0                 | 1.00    | 20.00               | 0             | 95.2                      | 80       | 120       |                     |      |          |      |
| Pyrene                    | 22.8                 | 1.00    | 20.00               | 0             | 114                       | 80       | 120       |                     |      |          |      |
| Pyridine                  | 19.6                 | 25.0    | 20.00               | 0             | 98.2                      | 80       | 120       |                     |      |          |      |

Qualifiers: B Analyte detected in the associated Method Blank

O RSD is greater than RSDlimit

H Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

WO#: **1710169** 

03-Jan-18

#### **Specialty Analytical**

Client: Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 **TestCode: 8270BN\_W** 

| Sample ID: MB-10784         | SampType: MBLK  | TestCode: 8270BN_W | Units: µg/L | Prep Date: 10/23/201      | 7 RunNo: <b>23507</b>        |     |
|-----------------------------|-----------------|--------------------|-------------|---------------------------|------------------------------|-----|
| Client ID: PBW              | Batch ID: 10784 | TestNo: SW8270D    | SW 3510C    | Analysis Date: 10/25/201  | I7 SeqNo: <b>312849</b>      |     |
| Analyte                     | Result          | PQL SPK value      | SPK Ref Val | %REC LowLimit HighLimit R | RPD Ref Val %RPD RPDLimit Qu | ual |
| 1,2,4-Trichlorobenzene      | ND              | 1.00               |             |                           |                              |     |
| 1,2-Dichlorobenzene         | ND              | 1.00               |             |                           |                              |     |
| 1,3-Dichlorobenzene         | ND              | 1.00               |             |                           |                              |     |
| 1,4-Dichlorobenzene         | ND              | 1.00               |             |                           |                              |     |
| 2,4-Dinitrotoluene          | ND              | 5.00               |             |                           |                              |     |
| 2,6-Dinitrotoluene          | ND              | 5.00               |             |                           |                              |     |
| 2-Chloronaphthalene         | ND              | 1.00               |             |                           |                              |     |
| 2-Methylnaphthalene         | ND              | 1.00               |             |                           |                              |     |
| 3-Nitroaniline              | ND              | 6.00               |             |                           |                              |     |
| 4-Bromophenyl phenyl ether  | ND              | 1.00               |             |                           |                              |     |
| 4-Chlorophenyl phenyl ether | ND              | 1.00               |             |                           |                              |     |
| 4-Nitroaniline              | ND              | 5.00               |             |                           |                              |     |
| Acenaphthene                | ND              | 1.00               |             |                           |                              |     |
| Acenaphthylene              | ND              | 1.00               |             |                           |                              |     |
| Anthracene                  | ND              | 1.00               |             |                           |                              |     |
| Benz(a)anthracene           | ND              | 1.00               |             |                           |                              |     |
| Benzo(a)pyrene              | ND              | 1.00               |             |                           |                              |     |
| Benzo(b)fluoranthene        | ND              | 1.00               |             |                           |                              |     |
| Benzo(g,h,i)perylene        | ND              | 1.00               |             |                           |                              |     |
| Benzo(k)fluoranthene        | ND              | 1.00               |             |                           |                              |     |
| Bis(2-chloroethoxy)methane  | ND              | 1.00               |             |                           |                              |     |
| Bis(2-chloroethyl)ether     | ND              | 2.00               |             |                           |                              |     |
| Bis(2-chloroisopropyl)ether | ND              | 1.00               |             |                           |                              |     |
| Bis(2-ethylhexyl)phthalate  | ND              | 1.00               |             |                           |                              |     |
| Butyl benzyl phthalate      | ND              | 1.00               |             |                           |                              |     |
| Chrysene                    | ND              | 1.00               |             |                           |                              |     |

Qualifiers: B Analyte det

Analyte detected in the associated Method Blank

RSD is greater than RSDlimit

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted reco

1710169 WO#:

03-Jan-18

#### **Specialty Analytical**

Maul Foster & Alongi **Client:** 

**Project:** Dolan SCE / 1381.01.01 TestCode: 8270BN\_W

| Sample ID: MB-10784       | SampType: MBLK  | TestCo | de: <b>8270BN_W</b> | Units: μg/L |      | Prep Dat     | e: <b>10/23/2</b>  | 2017        | RunNo: 23  | 507      |      |
|---------------------------|-----------------|--------|---------------------|-------------|------|--------------|--------------------|-------------|------------|----------|------|
| Client ID: PBW            | Batch ID: 10784 | Test   | No: <b>SW8270D</b>  | SW 3510C    |      | Analysis Dat | e: <b>10/25/</b> 2 | 2017        | SeqNo: 312 | 2849     |      |
| Analyte                   | Result          | PQL    | SPK value           | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Dibenz(a,h)anthracene     | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| Dibenzofuran              | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| Diethyl phthalate         | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| Dimethyl phthalate        | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| Di-n-butyl phthalate      | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| 0i-n-octyl phthalate      | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| luoranthene               | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| luorene                   | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| lexachlorobenzene         | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| łexachlorobutadiene       | ND              | 2.00   |                     |             |      |              |                    |             |            |          |      |
| lexachlorocyclopentadiene | ND              | 5.00   |                     |             |      |              |                    |             |            |          |      |
| lexachloroethane          | ND              | 2.00   |                     |             |      |              |                    |             |            |          |      |
| ndeno(1,2,3-cd)pyrene     | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| sophorone                 | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| Naphthalene               | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| Nitrobenzene              | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| l-nitrosodimethylamine    | ND              | 5.00   |                     |             |      |              |                    |             |            |          |      |
| N-Nitrosodi-n-propylamine | ND              | 2.00   |                     |             |      |              |                    |             |            |          |      |
| N-Nitrosodiphenylamine    | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| Phenanthrene              | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| Pyrene                    | ND              | 1.00   |                     |             |      |              |                    |             |            |          |      |
| Pyridine                  | ND              | 25.0   |                     |             |      |              |                    |             |            |          |      |
| Surr: 2-Fluorobiphenyl    | 98.1            |        | 100.0               |             | 98.1 | 33.1         | 116.2              |             |            |          |      |
| Surr: 4-Terphenyl-d14     | 102             |        | 100.0               |             | 102  | 41           | 122                |             |            |          |      |
| Surr: Nitrobenzene-d5     | 76.1            |        | 100.0               |             | 76.1 | 28.9         | 119.9              |             |            |          |      |

S Spike Recovery outside accepted reco

Page 19 of 28

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

WO#: **1710169** 

03-Jan-18

#### **Specialty Analytical**

Client: Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 **TestCode: 8270BN\_W** 

| Sample ID: LCS-10784        | SampType: <b>LCS</b> | TestCo | de: <b>8270BN_V</b> | / Units: μg/L |      | Prep Da     | te: <b>10/23/2</b> | 017         | RunNo: 23  | 507      |      |
|-----------------------------|----------------------|--------|---------------------|---------------|------|-------------|--------------------|-------------|------------|----------|------|
| Client ID: LCSW             | Batch ID: 10784      | Test   | No: <b>SW8270D</b>  | SW 3510C      |      | Analysis Da | te: <b>10/25/2</b> | 017         | SeqNo: 312 | 2853     |      |
| Analyte                     | Result               | PQL    | SPK value           | SPK Ref Val   | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual |
| 1,2,4-Trichlorobenzene      | 27.9                 | 1.00   | 40.00               | 0             | 69.8 | 27.5        | 128.1              |             |            |          |      |
| 1,2-Dichlorobenzene         | 24.8                 | 1.00   | 40.00               | 0             | 61.9 | 40          | 120                |             |            |          |      |
| 1,3-Dichlorobenzene         | 23.6                 | 1.00   | 40.00               | 0             | 58.9 | 40          | 120                |             |            |          |      |
| 1,4-Dichlorobenzene         | 25.3                 | 1.00   | 40.00               | 0             | 63.2 | 27.8        | 120.9              |             |            |          |      |
| 2,4-Dinitrotoluene          | 30.9                 | 5.00   | 40.00               | 0             | 77.2 | 52.9        | 117.6              |             |            |          |      |
| 2,6-Dinitrotoluene          | 29.4                 | 5.00   | 40.00               | 0             | 73.5 | 40          | 120                |             |            |          |      |
| 2-Chloronaphthalene         | 36.0                 | 1.00   | 40.00               | 0             | 90.0 | 40          | 120                |             |            |          |      |
| 2-Methylnaphthalene         | 30.4                 | 1.00   | 40.00               | 0             | 76.1 | 40          | 120                |             |            |          |      |
| 3-Nitroaniline              | 28.5                 | 6.00   | 40.00               | 0             | 71.4 | 40          | 120                |             |            |          |      |
| 4-Bromophenyl phenyl ether  | 31.0                 | 1.00   | 40.00               | 0             | 77.5 | 40          | 120                |             |            |          |      |
| 4-Chlorophenyl phenyl ether | 30.3                 | 1.00   | 40.00               | 0             | 75.7 | 40          | 120                |             |            |          |      |
| 4-Nitroaniline              | 28.6                 | 5.00   | 40.00               | 0             | 71.4 | 40          | 120                |             |            |          |      |
| Acenaphthene                | 28.9                 | 1.00   | 40.00               | 0             | 72.3 | 39.8        | 114.2              |             |            |          |      |
| Acenaphthylene              | 30.4                 | 1.00   | 40.00               | 0             | 76.0 | 40          | 120                |             |            |          |      |
| Anthracene                  | 31.8                 | 1.00   | 40.00               | 0             | 79.6 | 40          | 120                |             |            |          |      |
| Benz(a)anthracene           | 31.8                 | 1.00   | 40.00               | 0             | 79.4 | 40          | 120                |             |            |          |      |
| Benzo(a)pyrene              | 34.8                 | 1.00   | 40.00               | 0             | 87.1 | 40          | 120                |             |            |          |      |
| Benzo(b)fluoranthene        | 28.6                 | 1.00   | 40.00               | 0             | 71.5 | 40          | 120                |             |            |          |      |
| Benzo(g,h,i)perylene        | 30.6                 | 1.00   | 40.00               | 0             | 76.4 | 40          | 120                |             |            |          |      |
| Benzo(k)fluoranthene        | 39.1                 | 1.00   | 40.00               | 0             | 97.6 | 40          | 120                |             |            |          |      |
| Bis(2-chloroethoxy)methane  | 29.2                 | 1.00   | 40.00               | 0             | 73.1 | 40          | 120                |             |            |          |      |
| Bis(2-chloroethyl)ether     | 28.6                 | 2.00   | 40.00               | 0             | 71.5 | 40          | 120                |             |            |          |      |
| Bis(2-chloroisopropyl)ether | 23.4                 | 1.00   | 40.00               | 0             | 58.4 | 40          | 120                |             |            |          |      |
| Bis(2-ethylhexyl)phthalate  | 32.8                 | 1.00   | 40.00               | 0             | 82.0 | 40          | 120                |             |            |          |      |
| Butyl benzyl phthalate      | 33.5                 | 1.00   | 40.00               | 0             | 83.8 | 40          | 120                |             |            |          |      |
| Chrysene                    | 32.8                 | 1.00   | 40.00               | 0             | 82.0 | 40          | 120                |             |            |          |      |

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 20 of 28

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#:

1710169

03-Jan-18

**Specialty Analytical** 

**Client:** 

Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 TestCode: 8270BN\_W

| Sample ID: LCS-10784      | SampType: LCS   | TestCod | de: <b>8270BN_W</b> | / Units: μg/L |      | Prep Dat     | e: <b>10/23/2</b> | 017         | RunNo: 23  | 507      |      |
|---------------------------|-----------------|---------|---------------------|---------------|------|--------------|-------------------|-------------|------------|----------|------|
| Client ID: LCSW           | Batch ID: 10784 | TestN   | lo: <b>SW8270D</b>  | SW 3510C      |      | Analysis Dat | e: <b>10/25/2</b> | 017         | SeqNo: 312 | 2853     |      |
| Analyte                   | Result          | PQL     | SPK value           | SPK Ref Val   | %REC | LowLimit     | HighLimit         | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Dibenz(a,h)anthracene     | 31.1            | 1.00    | 40.00               | 0             | 77.8 | 40           | 120               |             |            |          |      |
| Dibenzofuran              | 31.7            | 1.00    | 40.00               | 0             | 79.2 | 40           | 120               |             |            |          |      |
| Diethyl phthalate         | 29.7            | 1.00    | 40.00               | 0             | 74.3 | 40           | 120               |             |            |          |      |
| Dimethyl phthalate        | 34.1            | 1.00    | 40.00               | 0             | 85.3 | 40           | 120               |             |            |          |      |
| Di-n-butyl phthalate      | 32.8            | 1.00    | 40.00               | 0             | 82.1 | 40           | 120               |             |            |          |      |
| Di-n-octyl phthalate      | 34.7            | 1.00    | 40.00               | 0             | 86.7 | 40           | 120               |             |            |          |      |
| Fluoranthene              | 34.1            | 1.00    | 40.00               | 0             | 85.3 | 40           | 120               |             |            |          |      |
| Fluorene                  | 31.3            | 1.00    | 40.00               | 0             | 78.2 | 40           | 120               |             |            |          |      |
| Hexachlorobenzene         | 30.3            | 1.00    | 40.00               | 0             | 75.8 | 40           | 120               |             |            |          |      |
| Hexachlorobutadiene       | 24.4            | 2.00    | 40.00               | 0             | 61.1 | 40           | 120               |             |            |          |      |
| Hexachlorocyclopentadiene | 27.9            | 5.00    | 40.00               | 0             | 69.7 | 40           | 120               |             |            |          |      |
| Hexachloroethane          | 24.4            | 2.00    | 40.00               | 0             | 60.9 | 40           | 120               |             |            |          |      |
| Indeno(1,2,3-cd)pyrene    | 31.9            | 1.00    | 40.00               | 0             | 79.8 | 40           | 120               |             |            |          |      |
| Isophorone                | 29.6            | 1.00    | 40.00               | 0             | 74.1 | 40           | 120               |             |            |          |      |
| Naphthalene               | 27.8            | 1.00    | 40.00               | 0             | 69.4 | 40           | 120               |             |            |          |      |
| Nitrobenzene              | 27.4            | 1.00    | 40.00               | 0             | 68.4 | 40           | 120               |             |            |          |      |
| N-nitrosodimethylamine    | 24.5            | 5.00    | 40.00               | 0             | 61.2 | 40           | 120               |             |            |          |      |
| N-Nitrosodi-n-propylamine | 29.2            | 2.00    | 40.00               | 0             | 72.9 | 33.9         | 112.1             |             |            |          |      |
| N-Nitrosodiphenylamine    | 33.4            | 1.00    | 40.00               | 0             | 83.5 | 40           | 120               |             |            |          |      |
| Phenanthrene              | 30.7            | 1.00    | 40.00               | 0             | 76.8 | 40           | 120               |             |            |          |      |
| Pyrene                    | 33.1            | 1.00    | 40.00               | 0             | 82.7 | 25           | 119               |             |            |          |      |
| Pyridine                  | 22.0            | 1.00    | 40.00               | 0             | 55.1 | 20           | 120               |             |            |          |      |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 21 of 28

WO#: **1710169** 

03-Jan-18

#### **Specialty Analytical**

Client: Maul Foster & Alongi
Project: Dolan SCE / 1381.01.01

TestCode: 8270BN\_W

| Sample ID: LCSD-10784       | SampType: <b>LCSD</b> | TestCod | de: <b>8270BN_W</b> | Units: μg/L |      | Prep Date     | : 10/23/2 | 017         | RunNo: <b>235</b> | 507      |      |
|-----------------------------|-----------------------|---------|---------------------|-------------|------|---------------|-----------|-------------|-------------------|----------|------|
| Client ID: LCSS02           | Batch ID: 10784       | TestN   | lo: <b>SW8270D</b>  | SW 3510C    |      | Analysis Date | : 10/25/2 | 017         | SeqNo: 312        | 854      |      |
| Analyte                     | Result                | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit      | HighLimit | RPD Ref Val | %RPD              | RPDLimit | Qual |
| 1,2,4-Trichlorobenzene      | 28.9                  | 1.00    | 40.00               | 0           | 72.3 | 27.5          | 128.1     | 27.92       | 3.45              | 20       |      |
| 1,2-Dichlorobenzene         | 24.5                  | 1.00    | 40.00               | 0           | 61.2 | 40            | 120       | 24.76       | 1.22              | 20       |      |
| 1,3-Dichlorobenzene         | 24.3                  | 1.00    | 40.00               | 0           | 60.8 | 40            | 120       | 23.55       | 3.13              | 20       |      |
| 1,4-Dichlorobenzene         | 24.5                  | 1.00    | 40.00               | 0           | 61.2 | 27.8          | 120.9     | 25.26       | 3.14              | 20       |      |
| 2,4-Dinitrotoluene          | 31.8                  | 5.00    | 40.00               | 0           | 79.6 | 52.9          | 117.6     | 30.86       | 3.16              | 20       |      |
| 2,6-Dinitrotoluene          | 30.5                  | 5.00    | 40.00               | 0           | 76.3 | 40            | 120       | 29.38       | 3.84              | 20       |      |
| 2-Chloronaphthalene         | 32.5                  | 1.00    | 40.00               | 0           | 81.4 | 40            | 120       | 35.99       | 10.1              | 20       |      |
| 2-Methylnaphthalene         | 31.6                  | 1.00    | 40.00               | 0           | 79.1 | 40            | 120       | 30.45       | 3.80              | 20       |      |
| 3-Nitroaniline              | 33.9                  | 6.00    | 40.00               | 0           | 84.8 | 40            | 120       | 28.54       | 17.3              | 20       |      |
| 4-Bromophenyl phenyl ether  | 31.0                  | 1.00    | 40.00               | 0           | 77.6 | 40            | 120       | 30.99       | 0.129             | 20       |      |
| 4-Chlorophenyl phenyl ether | 29.9                  | 1.00    | 40.00               | 0           | 74.9 | 40            | 120       | 30.29       | 1.16              | 20       |      |
| 4-Nitroaniline              | 34.0                  | 5.00    | 40.00               | 0           | 84.9 | 40            | 120       | 28.55       | 17.3              | 20       |      |
| Acenaphthene                | 28.4                  | 1.00    | 40.00               | 0           | 70.9 | 39.8          | 114.2     | 28.90       | 1.85              | 20       |      |
| Acenaphthylene              | 27.5                  | 1.00    | 40.00               | 0           | 68.8 | 40            | 120       | 30.41       | 9.98              | 20       |      |
| Anthracene                  | 31.4                  | 1.00    | 40.00               | 0           | 78.4 | 40            | 120       | 31.84       | 1.55              | 20       |      |
| Benz(a)anthracene           | 33.6                  | 1.00    | 40.00               | 0           | 84.0 | 40            | 120       | 31.75       | 5.63              | 20       |      |
| Benzo(a)pyrene              | 36.8                  | 1.00    | 40.00               | 0           | 92.1 | 40            | 120       | 34.83       | 5.64              | 20       |      |
| Benzo(b)fluoranthene        | 31.6                  | 1.00    | 40.00               | 0           | 79.0 | 40            | 120       | 28.59       | 9.97              | 20       |      |
| Benzo(g,h,i)perylene        | 36.3                  | 1.00    | 40.00               | 0           | 90.8 | 40            | 120       | 30.56       | 17.2              | 20       |      |
| Benzo(k)fluoranthene        | 36.5                  | 1.00    | 40.00               | 0           | 91.3 | 40            | 120       | 39.06       | 6.75              | 20       |      |
| Bis(2-chloroethoxy)methane  | 30.9                  | 1.00    | 40.00               | 0           | 77.2 | 40            | 120       | 29.25       | 5.36              | 20       |      |
| Bis(2-chloroethyl)ether     | 27.5                  | 2.00    | 40.00               | 0           | 68.7 | 40            | 120       | 28.61       | 4.03              | 20       |      |
| Bis(2-chloroisopropyl)ether | 20.0                  | 1.00    | 40.00               | 0           | 50.0 | 40            | 120       | 23.36       | 15.6              | 20       |      |
| Bis(2-ethylhexyl)phthalate  | 31.8                  | 1.00    | 40.00               | 0           | 79.6 | 40            | 120       | 32.79       | 2.91              | 20       |      |
| Butyl benzyl phthalate      | 32.6                  | 1.00    | 40.00               | 0           | 81.4 | 40            | 120       | 33.52       | 2.87              | 20       |      |
| Chrysene                    | 32.6                  | 1.00    | 40.00               | 0           | 81.6 | 40            | 120       | 32.78       | 0.397             | 20       |      |

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 22 of 28

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#: **1710169** 

03-Jan-18

#### **Specialty Analytical**

Client: Maul Foster & Alongi
Project: Dolan SCE / 1381.01.01

TestCode: 8270BN\_W

| Sample ID: LCSD-10784     | SampType: <b>LCSD</b> | TestCod | de: <b>8270BN_W</b> | Units: μg/L |      | Prep Date    | e: <b>10/23/2</b> | 017         | RunNo: 235 | 507      |      |
|---------------------------|-----------------------|---------|---------------------|-------------|------|--------------|-------------------|-------------|------------|----------|------|
| Client ID: LCSS02         | Batch ID: 10784       | TestN   | No: <b>SW8270D</b>  | SW 3510C    |      | Analysis Dat | e: <b>10/25/2</b> | 017         | SeqNo: 312 | 2854     |      |
| Analyte                   | Result                | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit     | HighLimit         | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Dibenz(a,h)anthracene     | 37.4                  | 1.00    | 40.00               | 0           | 93.6 | 40           | 120               | 31.14       | 18.3       | 20       |      |
| Dibenzofuran              | 29.4                  | 1.00    | 40.00               | 0           | 73.4 | 40           | 120               | 31.68       | 7.64       | 20       |      |
| Diethyl phthalate         | 29.8                  | 1.00    | 40.00               | 0           | 74.6 | 40           | 120               | 29.73       | 0.302      | 20       |      |
| Dimethyl phthalate        | 31.6                  | 1.00    | 40.00               | 0           | 79.0 | 40           | 120               | 34.12       | 7.64       | 20       |      |
| Di-n-butyl phthalate      | 29.4                  | 1.00    | 40.00               | 0           | 73.6 | 40           | 120               | 32.83       | 10.9       | 20       |      |
| Di-n-octyl phthalate      | 34.4                  | 1.00    | 40.00               | 0           | 86.1 | 40           | 120               | 34.68       | 0.723      | 20       |      |
| Fluoranthene              | 35.1                  | 1.00    | 40.00               | 0           | 87.7 | 40           | 120               | 34.13       | 2.75       | 20       |      |
| Fluorene                  | 27.8                  | 1.00    | 40.00               | 0           | 69.6 | 40           | 120               | 31.29       | 11.7       | 20       |      |
| Hexachlorobenzene         | 34.6                  | 1.00    | 40.00               | 0           | 86.6 | 40           | 120               | 30.33       | 13.2       | 20       |      |
| Hexachlorobutadiene       | 25.1                  | 2.00    | 40.00               | 0           | 62.8 | 40           | 120               | 24.44       | 2.66       | 20       |      |
| Hexachlorocyclopentadiene | 31.1                  | 5.00    | 40.00               | 0           | 77.8 | 40           | 120               | 27.89       | 11.0       | 20       |      |
| Hexachloroethane          | 25.0                  | 2.00    | 40.00               | 0           | 62.5 | 40           | 120               | 24.35       | 2.67       | 20       |      |
| Indeno(1,2,3-cd)pyrene    | 37.6                  | 1.00    | 40.00               | 0           | 94.1 | 40           | 120               | 31.92       | 16.4       | 20       |      |
| Isophorone                | 31.7                  | 1.00    | 40.00               | 0           | 79.2 | 40           | 120               | 29.65       | 6.68       | 20       |      |
| Naphthalene               | 27.7                  | 1.00    | 40.00               | 0           | 69.3 | 40           | 120               | 27.75       | 0.144      | 20       |      |
| Nitrobenzene              | 29.4                  | 1.00    | 40.00               | 0           | 73.4 | 40           | 120               | 27.35       | 7.09       | 20       |      |
| N-nitrosodimethylamine    | 25.1                  | 5.00    | 40.00               | 0           | 62.9 | 40           | 120               | 24.48       | 2.66       | 20       |      |
| N-Nitrosodi-n-propylamine | 33.7                  | 2.00    | 40.00               | 0           | 84.2 | 33.9         | 112.1             | 29.16       | 14.4       | 20       |      |
| N-Nitrosodiphenylamine    | 28.8                  | 1.00    | 40.00               | 0           | 72.0 | 40           | 120               | 33.41       | 14.8       | 20       |      |
| Phenanthrene              | 30.1                  | 1.00    | 40.00               | 0           | 75.2 | 40           | 120               | 30.71       | 2.01       | 20       |      |
| Pyrene                    | 30.9                  | 1.00    | 40.00               | 0           | 77.3 | 25           | 119               | 33.08       | 6.75       | 20       |      |
| Pyridine                  | 25.4                  | 25.0    | 40.00               | 0           | 63.6 | 20           | 120               | 22.04       | 14.3       | 20       |      |

Qualifiers: B Analyte detected in the associated Method Blank

O RSD is greater than RSDlimit

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

D 4 11 4 1

WO#:

1710169

03-Jan-18

**Specialty Analytical** 

**Client:** 

Maul Foster & Alongi

Project: Dolan SCE / 1381.01.01 TestCode: PAHLL\_W

| Sample ID: CCV MSSWS-1510 | SampType: <b>CCV</b> | TestCo | de: <b>PAHLL_W</b> | Units: µg/L |      | Prep Date    | e:                |             | RunNo: 234 | 185      |      |
|---------------------------|----------------------|--------|--------------------|-------------|------|--------------|-------------------|-------------|------------|----------|------|
| Client ID: CCV            | Batch ID: 10774      | Test   | No: <b>SW8270D</b> | SW 3510C    |      | Analysis Dat | e: <b>10/25/2</b> | 2017        | SeqNo: 312 | 2594     |      |
| Analyte                   | Result               | PQL    | SPK value          | SPK Ref Val | %REC | LowLimit     | HighLimit         | RPD Ref Val | %RPD       | RPDLimit | Qual |
| 1-Methylnaphthalene       | 2.01                 | 0.0500 | 2.000              | 0           | 101  | 80           | 120               |             |            |          |      |
| 2-Methylnaphthalene       | 2.04                 | 0.0500 | 2.000              | 0           | 102  | 80           | 120               |             |            |          |      |
| Acenaphthene              | 1.97                 | 0.0500 | 2.000              | 0           | 98.5 | 80           | 120               |             |            |          |      |
| Acenaphthylene            | 2.15                 | 0.0500 | 2.000              | 0           | 108  | 80           | 120               |             |            |          |      |
| Anthracene                | 1.91                 | 0.0500 | 2.000              | 0           | 95.5 | 80           | 120               |             |            |          |      |
| Benz(a)anthracene         | 2.11                 | 0.0500 | 2.000              | 0           | 106  | 80           | 120               |             |            |          |      |
| Benzo(a)pyrene            | 2.28                 | 0.0500 | 2.000              | 0           | 114  | 80           | 120               |             |            |          |      |
| Benzo(b)fluoranthene      | 2.18                 | 0.0500 | 2.000              | 0           | 109  | 80           | 120               |             |            |          |      |
| Benzo(g,h,i)perylene      | 2.14                 | 0.0500 | 2.000              | 0           | 107  | 80           | 120               |             |            |          |      |
| Benzo(k)fluoranthene      | 2.30                 | 0.0500 | 2.000              | 0           | 115  | 80           | 120               |             |            |          |      |
| Carbazole                 | 2.09                 | 0.0500 | 2.000              | 0           | 104  | 80           | 120               |             |            |          |      |
| Chrysene                  | 2.07                 | 0.0500 | 2.000              | 0           | 104  | 80           | 120               |             |            |          |      |
| Dibenz(a,h)anthracene     | 2.24                 | 0.0500 | 2.000              | 0           | 112  | 80           | 120               |             |            |          |      |
| Dibenzofuran              | 1.96                 | 0.0500 | 2.000              | 0           | 98.0 | 80           | 120               |             |            |          |      |
| Fluoranthene              | 2.08                 | 0.0500 | 2.000              | 0           | 104  | 80           | 120               |             |            |          |      |
| Fluorene                  | 2.06                 | 0.0500 | 2.000              | 0           | 103  | 80           | 120               |             |            |          |      |
| Indeno(1,2,3-cd)pyrene    | 2.17                 | 0.0500 | 2.000              | 0           | 108  | 80           | 120               |             |            |          |      |
| Naphthalene               | 2.03                 | 0.0500 | 2.000              | 0           | 102  | 80           | 120               |             |            |          |      |
| Phenanthrene              | 1.89                 | 0.0500 | 2.000              | 0           | 94.5 | 80           | 120               |             |            |          |      |
| Pyrene                    | 2.23                 | 0.0500 | 2.000              | 0           | 112  | 80           | 120               |             |            |          |      |

Qualifiers: B Analyte detected in the associated Method Blank

O RSD is greater than RSDlimit

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

1710169 WO#:

03-Jan-18

#### **Specialty Analytical**

Maul Foster & Alongi **Client:** 

**Project:** Dolan SCE / 1381.01.01 TestCode: PAHLL\_W

| Sample ID: <b>MB-10774</b> | SampType: MBLK  | TestCod | le: PAHLL_W        | Units: µg/L |      | Prep Date:     | 10/20/2  | <u>'</u> 017 | RunNo: <b>23</b> 4 | 185          |      |
|----------------------------|-----------------|---------|--------------------|-------------|------|----------------|----------|--------------|--------------------|--------------|------|
| Client ID: PBW             | Batch ID: 10774 | TestN   | lo: <b>SW8270D</b> | SW 3510C    |      | Analysis Date: | 10/25/2  | <u>'</u> 017 | SeqNo: 312         | <b>!</b> 595 |      |
| Analyte                    | Result          | PQL     | SPK value          | SPK Ref Val | %REC | LowLimit Hi    | ighLimit | RPD Ref Val  | %RPD               | RPDLimit     | Qual |
| 1-Methylnaphthalene        | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| 2-Methylnaphthalene        | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Acenaphthene               | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Acenaphthylene             | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Anthracene                 | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Benz(a)anthracene          | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Benzo(a)pyrene             | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Benzo(b)fluoranthene       | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Benzo(g,h,i)perylene       | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Benzo(k)fluoranthene       | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Carbazole                  | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Chrysene                   | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Dibenz(a,h)anthracene      | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Dibenzofuran               | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Fluoranthene               | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Fluorene                   | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Indeno(1,2,3-cd)pyrene     | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Naphthalene                | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Phenanthrene               | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Pyrene                     | ND              | 0.0500  |                    |             |      |                |          |              |                    |              |      |
| Surr: 2-Fluorobiphenyl     | 81.0            |         | 100.0              |             | 81.0 | 18.6           | 106      |              |                    |              |      |
| Surr: Nitrobenzene-d5      | 87.5            |         | 100.0              |             | 87.5 | 17             | 130      |              |                    |              |      |
| Surr: Terphenyl-d14        | 94.6            |         | 100.0              |             | 94.6 | 39.6           | 131      |              |                    |              |      |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

Page 25 of 28

TestCode: PAHLL\_W

WO#:

1710169

03-Jan-18

**Specialty Analytical** 

**Client:** 

Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01

| Sample ID: LCS-10774   | SampType: <b>LCS</b> | TestCod | de: <b>PAHLL_W</b> | Units: µg/L |      | Prep Date     | 10/20/2   | 017         | RunNo: 234 | 485      |      |
|------------------------|----------------------|---------|--------------------|-------------|------|---------------|-----------|-------------|------------|----------|------|
| Client ID: LCSW        | Batch ID: 10774      | TestN   | No: <b>SW8270D</b> | SW 3510C    |      | Analysis Date | 10/25/2   | 017         | SeqNo: 312 | 2598     |      |
| Analyte                | Result               | PQL     | SPK value          | SPK Ref Val | %REC | LowLimit I    | HighLimit | RPD Ref Val | %RPD       | RPDLimit | Qual |
| 1-Methylnaphthalene    | 3.26                 | 0.0500  | 5.000              | 0           | 65.2 | 39.6          | 131       |             |            |          |      |
| 2-Methylnaphthalene    | 3.38                 | 0.0500  | 5.000              | 0           | 67.6 | 25.6          | 106       |             |            |          |      |
| Acenaphthene           | 3.08                 | 0.0500  | 5.000              | 0           | 61.6 | 35.1          | 131       |             |            |          |      |
| Acenaphthylene         | 3.54                 | 0.0500  | 5.000              | 0           | 70.8 | 29            | 126       |             |            |          |      |
| Anthracene             | 3.48                 | 0.0500  | 5.000              | 0           | 69.6 | 42            | 130       |             |            |          |      |
| Benz(a)anthracene      | 4.59                 | 0.0500  | 5.000              | 0           | 91.8 | 34.2          | 129.1     |             |            |          |      |
| Benzo(a)pyrene         | 4.01                 | 0.0500  | 5.000              | 0           | 80.2 | 23.4          | 127.4     |             |            |          |      |
| Benzo(b)fluoranthene   | 3.86                 | 0.0500  | 5.000              | 0           | 77.2 | 36.6          | 125.8     |             |            |          |      |
| Benzo(g,h,i)perylene   | 3.67                 | 0.0500  | 5.000              | 0           | 73.4 | 20.8          | 123       |             |            |          |      |
| Benzo(k)fluoranthene   | 4.07                 | 0.0500  | 5.000              | 0           | 81.4 | 39.7          | 129.5     |             |            |          |      |
| Carbazole              | 3.88                 | 0.0500  | 5.000              | 0           | 77.6 | 60            | 126       |             |            |          |      |
| Chrysene               | 4.29                 | 0.0500  | 5.000              | 0           | 85.8 | 39.1          | 120       |             |            |          |      |
| Dibenz(a,h)anthracene  | 3.88                 | 0.0500  | 5.000              | 0           | 77.6 | 5.05          | 123.4     |             |            |          |      |
| Dibenzofuran           | 3.43                 | 0.0500  | 5.000              | 0           | 68.6 | 60            | 118       |             |            |          |      |
| Fluoranthene           | 3.88                 | 0.0500  | 5.000              | 0           | 77.6 | 42.4          | 119       |             |            |          |      |
| Fluorene               | 3.43                 | 0.0500  | 5.000              | 0           | 68.6 | 37.4          | 129       |             |            |          |      |
| Indeno(1,2,3-cd)pyrene | 3.78                 | 0.0500  | 5.000              | 0           | 75.6 | 10.5          | 125.9     |             |            |          |      |
| Naphthalene            | 3.09                 | 0.0500  | 5.000              | 0           | 61.8 | 25.6          | 128.4     |             |            |          |      |
| Phenanthrene           | 3.38                 | 0.0500  | 5.000              | 0           | 67.6 | 38.1          | 128.4     |             |            |          |      |
| Pyrene                 | 4.85                 | 0.0500  | 5.000              | 0           | 97.0 | 41.3          | 126       |             |            |          |      |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 26 of 28

WO#: **1710169** 

03-Jan-18

#### **Specialty Analytical**

Client: Maul Foster & Alongi
Project: Dolan SCE / 1381.01.0

Dolan SCE / 1381.01.01 TestCode: PAHLL\_W

| Sample ID: LCSD-10774  | SampType: LCSD  | TestCod | de: PAHLL_W        | Units: µg/L |      | Prep Dat     | e: <b>10/20/2</b> | 017         | RunNo: <b>23</b> 4 | 185      |      |
|------------------------|-----------------|---------|--------------------|-------------|------|--------------|-------------------|-------------|--------------------|----------|------|
| Client ID: LCSS02      | Batch ID: 10774 | TestN   | No: <b>SW8270D</b> | SW 3510C    |      | Analysis Dat | e: <b>10/25/2</b> | 017         | SeqNo: 312         | 2599     |      |
| Analyte                | Result          | PQL     | SPK value          | SPK Ref Val | %REC | LowLimit     | HighLimit         | RPD Ref Val | %RPD               | RPDLimit | Qual |
| 1-Methylnaphthalene    | 3.35            | 0.0500  | 5.000              | 0           | 67.0 | 39.6         | 131               | 3.260       | 2.72               | 20       |      |
| 2-Methylnaphthalene    | 3.51            | 0.0500  | 5.000              | 0           | 70.2 | 25.6         | 106               | 3.380       | 3.77               | 20       |      |
| Acenaphthene           | 3.18            | 0.0500  | 5.000              | 0           | 63.6 | 35.1         | 131               | 3.080       | 3.19               | 20       |      |
| Acenaphthylene         | 3.67            | 0.0500  | 5.000              | 0           | 73.4 | 29           | 126               | 3.540       | 3.61               | 20       |      |
| Anthracene             | 3.60            | 0.0500  | 5.000              | 0           | 72.0 | 42           | 130               | 3.480       | 3.39               | 20       |      |
| Benz(a)anthracene      | 4.72            | 0.0500  | 5.000              | 0           | 94.4 | 34.2         | 129.1             | 4.590       | 2.79               | 20       |      |
| Benzo(a)pyrene         | 4.17            | 0.0500  | 5.000              | 0           | 83.4 | 23.4         | 127.4             | 4.010       | 3.91               | 20       |      |
| Benzo(b)fluoranthene   | 3.88            | 0.0500  | 5.000              | 0           | 77.6 | 36.6         | 125.8             | 3.860       | 0.517              | 20       |      |
| Benzo(g,h,i)perylene   | 3.79            | 0.0500  | 5.000              | 0           | 75.8 | 20.8         | 123               | 3.670       | 3.22               | 20       |      |
| Benzo(k)fluoranthene   | 4.10            | 0.0500  | 5.000              | 0           | 82.0 | 39.7         | 129.5             | 4.070       | 0.734              | 20       |      |
| Carbazole              | 4.04            | 0.0500  | 5.000              | 0           | 80.8 | 60           | 126               | 3.880       | 4.04               | 20       |      |
| Chrysene               | 4.40            | 0.0500  | 5.000              | 0           | 88.0 | 39.1         | 120               | 4.290       | 2.53               | 20       |      |
| Dibenz(a,h)anthracene  | 4.01            | 0.0500  | 5.000              | 0           | 80.2 | 5.05         | 123.4             | 3.880       | 3.30               | 20       |      |
| Dibenzofuran           | 3.54            | 0.0500  | 5.000              | 0           | 70.8 | 60           | 118               | 3.430       | 3.16               | 20       |      |
| Fluoranthene           | 4.03            | 0.0500  | 5.000              | 0           | 80.6 | 42.4         | 119               | 3.880       | 3.79               | 20       |      |
| Fluorene               | 3.53            | 0.0500  | 5.000              | 0           | 70.6 | 37.4         | 129               | 3.430       | 2.87               | 20       |      |
| Indeno(1,2,3-cd)pyrene | 3.93            | 0.0500  | 5.000              | 0           | 78.6 | 10.5         | 125.9             | 3.780       | 3.89               | 20       |      |
| Naphthalene            | 3.21            | 0.0500  | 5.000              | 0           | 64.2 | 25.6         | 128.4             | 3.090       | 3.81               | 20       |      |
| Phenanthrene           | 3.49            | 0.0500  | 5.000              | 0           | 69.8 | 38.1         | 128.4             | 3.380       | 3.20               | 20       |      |
| Pyrene                 | 5.14            | 0.0500  | 5.000              | 0           | 103  | 41.3         | 126               | 4.850       | 5.81               | 20       |      |

Qualifiers: B Analyte detected in the associated Method Blank

O RSD is greater than RSDlimit

H Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

WO#: **1710169** 

03-Jan-18

| <b>Specialty</b> | Analytical |
|------------------|------------|
|------------------|------------|

|                                  | oster & Alongi<br>CE / 1381.01.01 |                              | TestCode: T                         | SS_WW                |
|----------------------------------|-----------------------------------|------------------------------|-------------------------------------|----------------------|
| Sample ID: MB-R23448             | SampType: MBLK                    | TestCode: TSS_WW Units: mg/L | Prep Date:                          | RunNo: <b>23448</b>  |
| Client ID: PBW                   | Batch ID: <b>R23448</b>           | TestNo: <b>M2540 D</b>       | Analysis Date: 10/23/2017           | SeqNo: <b>311794</b> |
| Analyte                          | Result                            | PQL SPK value SPK Ref Val    | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Total Suspended Solids           | ND                                | 5.0                          |                                     |                      |
| Sample ID: LCS-R23448            | SampType: <b>LCS</b>              | TestCode: TSS_WW Units: mg/L | Prep Date:                          | RunNo: <b>23448</b>  |
| Client ID: LCSW                  | Batch ID: <b>R23448</b>           | TestNo: <b>M2540 D</b>       | Analysis Date: 10/23/2017           | SeqNo: <b>311795</b> |
| Analyte                          | Result                            | PQL SPK value SPK Ref Val    | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Total Suspended Solids           | 94.0                              | 5.0 100.0 0                  | 94.0 80 105                         |                      |
| Sample ID: <b>1710163-003BDU</b> | JP SampType: DUP                  | TestCode: TSS_WW Units: mg/L | Prep Date:                          | RunNo: <b>23448</b>  |
| Client ID: ZZZZZZ                | Batch ID: <b>R23448</b>           | TestNo: <b>M2540 D</b>       | Analysis Date: 10/23/2017           | SeqNo: <b>311802</b> |
| Analyte                          | Result                            | PQL SPK value SPK Ref Val    | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Total Suspended Solids           | ND                                | 5.0                          | 0                                   | 0 20                 |
| Sample ID: 1710181-002ADU        | JP SampType: DUP                  | TestCode: TSS_WW Units: mg/L | Prep Date:                          | RunNo: <b>23448</b>  |
| Client ID: ZZZZZZ                | Batch ID: <b>R23448</b>           | TestNo: <b>M2540 D</b>       | Analysis Date: 10/23/2017           | SeqNo: <b>311814</b> |
| Analyte                          | Result                            | PQL SPK value SPK Ref Val    | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Total Suspended Solids           | ND                                | 5.0                          | 0                                   | 0 20                 |

O RSD is greater than RSDlimit

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

Page 28 of 28



ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T:+1 360 577 7222

ALS Environmental

F:+1 360 636 1068 www.alsglobal.com

November 20, 2017

Analytical Report for Service Request No: K1711554

Katherine Lynch Specialty Analytical 9011 SE Jannsen Road Clackamas, OR 97015

RE: 1710169

Dear Katherine.

Enclosed are the results of the sample(s) submitted to our laboratory October 24, 2017 For your reference, these analyses have been assigned our service request number **K1711554**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsqlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Howard Holmes Project Manager



ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

#### **Table of Contents**

Acronyms
Qualifiers
State Certifications, Accreditations, And Licenses
Chain of Custody
General Chemistry

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

#### **Inorganic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- $\boldsymbol{Q}$   $\;\;$  See case narrative. One or more quality control criteria was outside the limits.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

# ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

| Agency                   | Web Site                                                                                                                                                     | Number      |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Alaska DEH               | http://dec.alaska.gov/eh/lab/cs/csapproval.htm                                                                                                               | UST-040     |
| Arizona DHS              | http://www.azdhs.gov/lab/license/env.htm                                                                                                                     | AZ0339      |
| Arkansas - DEQ           | http://www.adeq.state.ar.us/techsvs/labcert.htm                                                                                                              | 88-0637     |
| California DHS (ELAP)    | http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx                                                                                                          | 2795        |
| Florida DOH              | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm                                                                                                      | E87412      |
| Hawaii DOH               | http://health.hawaii.gov/                                                                                                                                    | -           |
| Louisiana DEQ            | http://www.deq.louisiana.gov/page/la-lab-accreditation                                                                                                       | 03016       |
| Maine DHS                | http://www.maine.gov/dhhs/                                                                                                                                   | WA01276     |
| Minnesota DOH            | http://www.health.state.mn.us/accreditation                                                                                                                  | 053-999-457 |
| Nevada DEP               | http://ndep.nv.gov/bsdw/labservice.htm                                                                                                                       | WA01276     |
| New Jersey DEP           | http://www.nj.gov/dep/enforcement/oqa.html                                                                                                                   | WA005       |
| New York - DOH           | https://www.wadsworth.org/regulatory/elap                                                                                                                    | 12060       |
| North Carolina DEQ       | https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-certification | 605         |
| Oklahoma DEQ             | http://www.deq.state.ok.us/CSDnew/labcert.htm                                                                                                                | 9801        |
| Oregon – DEQ (NELAP)     | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx                                                     | WA100010    |
| South Carolina DHEC      | http://www.scdhec.gov/environment/EnvironmentalLabCertification/                                                                                             | 61002       |
| Texas CEQ                | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                                                                                                | T104704427  |
| Washington DOE           | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html                                                                                               | C544        |
| Wyoming (EPA Region 8)   | https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water                                                                                   | -           |
| Kelso Laboratory Website | www.alsglobal.com                                                                                                                                            | NA          |

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.



# **Chain of Custody**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1 068 www.alsglobal.com

#### Contact Person/Project Manager Katherine Lynch Company Katherine Specialtyanalyticalicom CHAIN OF CUSTODY RECORD Specialty Analytical 11711 SE Capps Road Clackamas, OR 97015 Address Phone: 503-607-1331 Fax: 503-607-1336 Phone\_\_\_\_\_Fax\_\_\_\_ Collected By: Project Site Location OR \_\_\_\_\_ WA \_\_\_ Other \_\_\_\_ Signature\_\_\_\_ Invoice To \_\_\_\_\_\_ P.O. No. Printed\_\_\_\_\_ For Laboratory Use Signature\_\_\_\_\_ Analyses Printed\_\_\_\_\_ Lab Job No. Shipped Via Containers Air Bill No. \_\_\_\_\_\_ Turn Around Time Normal 5-7 Business Days Temperature On Receipt °C ☐ Rush \_\_\_\_\_ Specify Specialty Analytical Containers? Y / N Specialty Analytical Trip Blanks? Y / N Rush Analyses Must Be Scheduled With The Lab In Advance Sample I.D. Matrix Comments Lab I.D. Date Time 10-19-17 MHSW-4 water X water Water 10-19-17 0500 CSWTS Received By Relinquished By: Relinquished By: Date Time 121 Date Time SA Company: 7 Company: Company: 10124117 12:15

Received For Lab By:

Date

Time

Unless Reclaimed, Samples Will Be Disposed of 60 Days After Receipt.

Samples held beyond 60 days subject to storage fee(s)



| Cooler Receipt and Preservation Form  Service Request K17  Service Request K17  Samples were received via? USPS Fed Ex UPS DHL PDX Courier Hand Delivered  Samples were received in: (circle) Cooler Box Envelope Other  Were custody seals on coolers? NA Y N If yes, how many and where?  If present, were custody seals intact? Y N If present, were they signed and dated? Y N  Few Cooler Temp Blank Corrected Temp Blank Tem |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Samples were received via? USPS Fed Ex UPS DHL PDX Courier Hand Delivered  Samples were received in: (circle) Cooler Box Envelope Other  Were custody seals on coolers?  If present, were custody seals intact?  Y N If yes, how many and where?  If present, were they signed and dated?  Y N  Raw Corrected Temp Blank Blank Blank Temp Blank Bla |
| Samples were received via? USPS Fed Ex UPS DHL PDX Courier Hand Delivered  Samples were received in: (circle) Cooler Box Envelope Other  Were custody seals on coolers? NA Y N If yes, how many and where?  If present, were custody seals intact? Y N If present, were they signed and dated? Y N  Row Corrected Temp Blank Temp Blank Factor ID  Packing material: Inserts Baggles Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves  Were custody papers properly filled out (ink, signed, etc.)?  Were samples received in good condition (temperature, unbroken)? Indicate in the table below.  If applicable, tissue samples were received: Frozen Partially Thawed Thawed  Were all sample labels complete (i. e analysis, preservation, etc.)?  Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA Y N  Were appropriate bottles/containers and volumes received for the tests indicated?  NA Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Samples were received via? USPS Fed Ex UPS DHL PDX Courier Hand Delivered  Samples were received in: (circle) Cooler Box Envelope Other  Were custody seals on coolers? NA Y N If yes, how many and where?  If present, were custody seals intact? Y N If present, were they signed and dated? Y N  Row Corrected Temp Blank Temp Blank Factor ID  Packing material: Inserts Baggles Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves  Were custody papers properly filled out (ink, signed, etc.)?  Were samples received in good condition (temperature, unbroken)? Indicate in the table below.  If applicable, tissue samples were received: Frozen Partially Thawed Thawed  Were all sample labels complete (i. e analysis, preservation, etc.)?  Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA Y N  Were appropriate bottles/containers and volumes received for the tests indicated?  NA Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Samples were received in: (circle) Cooler Box Envelope Other  Were custody seals on coolers?  If present, were custody seals intact?  Y N If yes, how many and where?  If present, were they signed and dated?  Y N If present, were they signed and dated?  Y N If present, were they signed and dated?  Y N Packing material: Inserts Dagles Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves  Were custody papers properly filled out (ink, signed, etc.)?  Were samples received in good condition (temperature, unbroken)? Indicate in the table below.  If applicable, tissue samples were received: Frozen Partially Thawed Thawed  Were all sample labels complete (i.e analysis, preservation, etc.)?  Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA NA NA NA Were appropriate bottles/containers and volumes received at the appropriate pH? Indicate in the table below NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Were custody seals on coolers?  If present, were custody seals intact?  Y N If present, were they signed and dated?  Y N Corrected Permy Blank Corrected Feeting Blank Factor ID  Packing material: Inserts Pagies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves  Were custody papers properly filled out (ink, signed, etc.)?  Were samples received in good condition (temperature, unbroken)? Indicate in the table below.  If applicable, tissue samples were received: Frozen Partially Thawed Thawed  Were all sample labels complete (i.e analysis, preservation, etc.)?  Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA NA NA NA NA Were appropriate bottles/containers and volumes received for the tests indicated?  O. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| If present, were custody seals intact?  Y N If present, were they signed and dated?  Y N  Row Corrected Row Temp Blank Color. Thermometer Cooler/COC ID NA  Packing material: Inserts Daggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves  Were custody papers properly filled out (ink, signed, etc.)?  NA  Were samples received in good condition (temperature, unbroken)? Indicate in the table below.  If applicable, tissue samples were received: Frozen Partially Thawed Thawed  Were all sample labels complete (i.e analysis, preservation, etc.)?  Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.  Were appropriate bottles/containers and volumes received at the appropriate pH? Indicate in the table below  NA  Y  N  N  N  N  N  N  N  N  N  N  N  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Raw Corrected Temp Blank Corrected Temp Blank Factor ID Tracking Number NA Files Cooler Temp Blank Temp Blank Temp Blank Factor ID Tracking Number NA Files Cooler Temp Blank Te |
| Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves  Were custody papers properly filled out (ink, signed, etc.)?  Were samples received in good condition (temperature, unbroken)? Indicate in the table below.  If applicable, tissue samples were received: Frozen Partially Thawed Thawed  Were all sample labels complete (i.e analysis, preservation, etc.)?  Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA  Were appropriate bottles/containers and volumes received for the tests indicated?  NA  NA  NA  NA  NA  NA  NA  NA  NA  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| . Were custody papers properly filled out (ink, signed, etc.)?  . Were samples received in good condition (temperature, unbroken)? Indicate in the table below.  If applicable, tissue samples were received: Frozen Partially Thawed Thawed  . Were all sample labels complete (i.e analysis, preservation, etc.)?  Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.  NA Y N  Were appropriate bottles/containers and volumes received for the tests indicated?  NA Y N  Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below  NA Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Were custody papers properly filled out (ink, signed, etc.)?  NA  N  Were samples received in good condition (temperature, unbroken)? Indicate in the table below.  If applicable, tissue samples were received: Frozen Partially Thawed Thawed  NA  N  N  N  N  N  N  N  N  N  N  N  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Were custody papers properly filled out (ink, signed, etc.)?  No. Were samples received in good condition (temperature, unbroken)? Indicate in the table below.  If applicable, tissue samples were received: Frozen Partially Thawed Thawed  Were all sample labels complete (i.e analysis, preservation, etc.)?  Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.  No. Were appropriate bottles/containers and volumes received for the tests indicated?  No. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below  No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Were custody papers properly filled out (ink, signed, etc.)?  No. Were samples received in good condition (temperature, unbroken)? Indicate in the table below.  If applicable, tissue samples were received: Frozen Partially Thawed Thawed  Were all sample labels complete (i.e analysis, preservation, etc.)?  Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.  No. Were appropriate bottles/containers and volumes received for the tests indicated?  No. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below  No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Were custody papers properly filled out (ink, signed, etc.)?  No. Were samples received in good condition (temperature, unbroken)? Indicate in the table below.  If applicable, tissue samples were received: Frozen Partially Thawed Thawed  Were all sample labels complete (i.e analysis, preservation, etc.)?  Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.  No. Were appropriate bottles/containers and volumes received for the tests indicated?  No. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below  No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Were custody papers properly filled out (ink, signed, etc.)?  Were samples received in good condition (temperature, unbroken)? Indicate in the table below.  If applicable, tissue samples were received: Frozen Partially Thawed Thawed  Were all sample labels complete (i.e analysis, preservation, etc.)?  Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.  Were appropriate bottles/containers and volumes received for the tests indicated?  NA Y N  Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below  NA Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Were samples received in good condition (temperature, unbroken)? Indicate in the table below.  If applicable, tissue samples were received: Frozen Partially Thawed Thawed  Were all sample labels complete (i.e analysis, preservation, etc.)?  Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.  Were appropriate bottles/containers and volumes received for the tests indicated?  NA Y N  Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below  NA Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| If applicable, tissue samples were received: Frozen Partially Thawed Thawed  Were all sample labels complete (i.e analysis, preservation, etc.)?  Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.  NA Y N  Were appropriate bottles/containers and volumes received for the tests indicated?  NA Y N  Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below  NA Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Were all sample labels complete (i.e analysis, preservation, etc.)?  Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2.  NA Y N  Were appropriate bottles/containers and volumes received for the tests indicated?  NA Y N  NO Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below  NA Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| . Were appropriate bottles/containers and volumes received for the tests indicated?  NA  N  N  N  N  N  N  N  N  N  N  N  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below NA Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2. Was C12/Res negative?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample ID on Bottle Sample ID on COC Identified by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bottle Count Out of Head- Volume Reagent Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sample ID Bottle Type Temp space Broke pH Reagent added Number Initials Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Notes, Discrepancies, & Resolutions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Troots pricesus a resultations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tives, Distribution, & Accountations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tions, Discrepancies, & Accountains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Page 8 of 14



# General Chemistry

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1 068 www.alsglobal.com

#### ALS Group USA, Corp. dba ALS Environmental

Analytical Report

**Client:** Specialty Analytical

Service Request: K1711554 **Date Collected:** 10/19/17 **Project:** 1710169 **Sample Matrix:** Water **Date Received:** 10/24/17

SM 5310 C Units: mg/L

**Analysis Method: Prep Method:** Basis: NA None

#### Carbon, Total Organic

| Sample Name  | Lab Code     | Result | MRL  | Dil. | Date<br>Analyzed | Q |
|--------------|--------------|--------|------|------|------------------|---|
| MHSW-4       | K1711554-001 | 5.80   | 0.50 | 1    | 11/15/17 04:27   |   |
| CSWTS        | K1711554-002 | 1.8    | 1.0  | 2    | 11/09/17 17:58   |   |
| Method Blank | K1711554-MB1 | ND U   | 0.50 | 1    | 11/09/17 13:45   |   |
| Method Blank | K1711554-MB2 | ND U   | 0.50 | 1    | 11/14/17 17:29   |   |
| Method Blank | K1711554-MB3 | ND U   | 0.50 | 1    | 11/15/17 02:51   |   |

# ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Specialty Analytical

Project 1710169
Sample Matrix: Water

**Date Collected:**10/19/17 **Date Received:**10/24/17

Service Request:K1711554

**Analysis Method:** SM 5310 C **Prep Method:** None Units:mg/L Basis:NA

#### Replicate Sample Summary Carbon, Total Organic

|              |                  |      | Sample | Duplicate |         |     | RPD   | Date     |
|--------------|------------------|------|--------|-----------|---------|-----|-------|----------|
| Sample Name: | Lab Code:        | MRL  | Result | Result    | Average | RPD | Limit | Analyzed |
| MHSW-4       | K1711554-001DUP2 | 0.50 | 5.80   | 6.12      | 5.96    | 5   | 10    | 11/15/17 |
| CSWTS        | K1711554-002DUP  | 1.0  | 1.8    | 1.7       | 1.71    | 6   | 10    | 11/09/17 |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 11/16/2017 4:53:07 PM Superset Reference:17-0000444111 rev 00

# ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Specialty Analytical

**Project:** 1710169 **Sample Matrix:** Water **Service Request:** 

K1711554

**Date Collected:** 

10/19/17 10/24/17

Date Received: Date Analyzed:

11/15/17

**Date Extracted:** 

NA

**Matrix Spike Summary** 

Carbon, Total Organic

**Sample Name:** MHSW-4

Lab Code:

K1711554-001

**Analysis Method:** 

 $SM\ 5310\ C$ 

Prep Method:

None

Units: Basis:

mg/L NA

Matrix Spike

K1711554-001MS2

| Analyte Name          | Sample Result | Result | Spike Amount | % Rec | % Rec Limits |
|-----------------------|---------------|--------|--------------|-------|--------------|
| Carbon, Total Organic | 5.80          | 31.9   | 25.0         | 105   | 83-117       |

Results flagged with an asterisk (\*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 11/16/2017 4:53:16 PM

Superset Reference:17-0000444111 rev 00

#### ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Specialty Analytical **Client:** 

**Project:** 1710169

Sample Matrix: Water **Service Request:** 

K1711554

**Date Analyzed:** 

11/09/17

**Date Extracted:** 

NA

**Lab Control Sample Summary** Carbon, Total Organic

**Analysis Method:** 

SM 5310 C

**Prep Method:** 

None

**Units:** 

mg/L

**Basis:** 

NA

**Analysis Lot:** 

569461

|                    |               |        | Spike  |       | % Rec  |
|--------------------|---------------|--------|--------|-------|--------|
| Sample Name        | Lab Code      | Result | Amount | % Rec | Limits |
| Lab Control Sample | K1711554-LCS1 | 24.3   | 24.0   | 101   | 83-117 |

# ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Specialty Analytical

**Project:** 1710169

Water

**Service Request:** 

K1711554

Date Analyzed:

11/14/17

**Date Extracted:** 

NA

Lab Control Sample Summary Carbon, Total Organic

**Analysis Method:** 

Sample Matrix:

SM 5310 C

**Prep Method:** 

None

**Units:** 

mg/L

**Basis:** 

NA

**Analysis Lot:** 

570031

|                    |               |        | Spike  |       | % Rec  |
|--------------------|---------------|--------|--------|-------|--------|
| Sample Name        | Lab Code      | Result | Amount | % Rec | Limits |
| Lab Control Sample | K1711554-LCS2 | 24.6   | 24.0   | 103   | 83-117 |
| Lab Control Sample | K1711554-LCS3 | 24.7   | 24.0   | 103   | 83-117 |

- A This sample contains a Gasoline Range Organic not identified as a specific hydrocarbon product. The result was quantified against gasoline calibration standards
- A1 This sample contains a Diesel Range Organic not identified as a specific hydrocarbon product. The result was quantified against diesel calibration standards.
- A2 This sample contains a Lube Oil Range Organic not identified as a specific hydrocarbon product. The result was quantified against a lube oil calibration standard.
- A3 The result was determined to be Non-Detect based on hydrocarbon pattern recognition. The product was carry-over from another hydrocarbon type.
- A4 The product appears to be aged or degraded diesel.
- B The blank exhibited a positive result great than the reporting limit for this compound.
- CN See Case Narrative.
- D Result is based from a dilution.
- E Result exceeds the calibration range for this compound. The result should be considered as estimate.
- F The positive result for this hydrocarbon is due to single component contamination. The product does not match any hydrocarbon in the fuels library.
- G Result may be biased high due to biogenic interferences. Clean up is recommended.
- H Sample was analyzed outside recommended holding time.
- HT At clients request, samples was analyzed outside of recommended holding time.
- J The result for this analyte is between the MDL and the PQL and should be considered as estimated concentration.
- K Diesel result is biased high due to amount of Oil contained in the sample.
- L Diesel result is biased high due to amount of Gasoline contained in the sample.
- M Oil result is biased high due to amount of Diesel contained in the sample.
- MC Sample concentration is greater than 4x the spiked value, the spiked value is considered insignificant.
- MI Result is outside control limits due to matrix interference.
- MSA Value determined by Method of Standard Addition.
- O Laboratory Control Standard (LCS) exceeded laboratory control limits, but meets CCV criteria. Data meets EPA requirements.
- Q Detection levels elevated due to sample matrix.
- R RPD control limits were exceeded.
- RF Duplicate failed due to result being at or near the method-reporting limit.
- RP Matrix spike values exceed established QC limits; post digestion spike is in control.
- S Recovery is outside control limits.
- SC Closing CCV or LCS exceeded high recovery control limits, but associated samples are non-detect. Data meets EPA requirements.
- \* The result for this parameter was greater that the maximum contaminant level of the TCLP regulatory limit.

# CHAIN OF CUSTODY RECORD

# Specialty Analytical 11711 SE Capps Road

|          | Printed Lindsey Crosby                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Signature Control Cont | Collected By:          | Fax: 503-60/-1336  | Phone: 503-607-1331 | Clackamas, OR 97015                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|---------------------|------------------------------------|
| Angiveor | Invoice To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project Site Location ORX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Project No. 1381.01.01 | Phone 503-501-5204 | Portland, OR 97209  | Address 2001 NW 19th Ave SUite 200 |
|          | The state of the s | WAO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Project Nam            |                    |                     | SUite 200                          |

| P.O. No.        |          | Invoice To                                               |
|-----------------|----------|----------------------------------------------------------|
| other Dolan SCE | WA       | Project Site Location ORX                                |
| Project Name    | Proj     | Project No. 1381.01.01                                   |
| Fax             |          | Phone 503-501-5204                                       |
|                 | Jite 200 | Address 2001 NW 19th Ave SUite 200<br>Portland, OR 97209 |
|                 |          | Company Maul Foster Alongi                               |
| S SPEEDS        |          | Contact Person/Project Manager David DEPATATIONS         |
| Page 1 / of 1   |          |                                                          |

|                                                                                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |   |          |                | T            |                                                                                                               | T                                                |               |                      | T**.                        |             | ٦ .                                                                                               |                    |
|------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|---|----------|----------------|--------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|----------------------|-----------------------------|-------------|---------------------------------------------------------------------------------------------------|--------------------|
| Unless Rec<br>Samples hel                                                                                                    | Company:       | Relinquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |   |          |                |              |                                                                                                               |                                                  | 10/19/17      | 10/19/017            | 10/19/17                    | Date        | PrintedTurn Around Time    Norm   Rush   Rush   Rush Analyses                                     | Signature          |
| laimed, San<br>d beyond 60                                                                                                   | ろりな            | d-By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |   |          |                |              |                                                                                                               |                                                  | 0500          | 0345                 | 0325                        | Time        | d Time<br>(Normal 5-7<br>Rush                                                                     |                    |
| Unless Reclaimed, Samples Will Be Disposed of 60 Days After Receipt<br>Samples held beyond 60 days subject to storage fee(s) |                | The second secon | and the same of th |   |          |   |          |                |              |                                                                                                               |                                                  | CSWTS         | CB-15                | MHSW-4                      | Sample I.D. | Printed Turn Around Time    All Normal 5-7 Business Days                                          |                    |
| 60 Days After Receipt.                                                                                                       | 15/14/18 07/30 | Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |   |          |                |              |                                                                                                               |                                                  |               |                      |                             | e I.D.      | ab in Advance                                                                                     |                    |
| :                                                                                                                            | Company        | Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |   |          |                |              |                                                                                                               |                                                  | W             | W                    | W                           | Matrix      |                                                                                                   |                    |
|                                                                                                                              | "              | By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Г |          |   |          |                |              |                                                                                                               |                                                  | 6             | ത                    | 0                           |             | No. of Containers                                                                                 |                    |
|                                                                                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | -        |   |          |                | \            | <del>                                     </del>                                                              | _                                                | X             | ×                    | ×                           | то          | C (SM5310)                                                                                        | T                  |
|                                                                                                                              | 5              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | -        | _ |          |                | <u> </u>     | -                                                                                                             | <del>                                     </del> | ×             | ×                    | ×                           | TS          | S (SM2320B)                                                                                       | 1                  |
|                                                                                                                              | 12             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - | -        |   |          | _              |              | _                                                                                                             |                                                  | ×             | ×                    | ×                           | DIs         | ssolved MEtals                                                                                    | 1                  |
|                                                                                                                              | Ž              | 1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | -        |   | <u> </u> | _              |              | -                                                                                                             |                                                  | ×             | ×                    | ×                           | TO          | tal TiMeals                                                                                       | 1                  |
|                                                                                                                              | 1              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | <u> </u> |   |          | -              | _            | _                                                                                                             |                                                  | ×             | ×                    | ×                           | PC          | B Aroclors (8087A)                                                                                | A                  |
|                                                                                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | _        |   | -        | _              |              | -                                                                                                             | -                                                | ×             | ×                    | ×                           | PA          | .H (8270D/8270D Sim)                                                                              | Analyses           |
|                                                                                                                              |                | 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | _        |   |          |                | _            | _                                                                                                             | <del>                                     </del> | ×             | ×                    |                             |             | nalates (82700/8270D<br>n)                                                                        | ľ                  |
| Received For Lab By:                                                                                                         | Company:       | Relinquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |   |          | <u> </u>       |              |                                                                                                               | -                                                |               |                      |                             | Sin         | m)                                                                                                | ┨                  |
| ed F                                                                                                                         | Ϋ́             | ished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |   |          |                |              |                                                                                                               | ┢                                                |               | 五<br>C               | $\mathcal{A}$               |             |                                                                                                   | +                  |
| rlab                                                                                                                         |                | Ву                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |          |   |          |                |              | _                                                                                                             | -                                                |               | S                    | <i>!!</i>                   |             |                                                                                                   | 1                  |
| <u>d</u> 1 8                                                                                                                 | 6              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |   |          |                |              |                                                                                                               | HQ.O                                             |               | Hg, Ni,              | Metals:                     |             | Lab Job No. Shipped Via Air Bill No. Temperature Specialty Ar                                     |                    |
| T                                                                                                                            | A              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |   |          |                |              | de per him septise Campa Lies septis (in 1920 in 1921 in 1920 | 0 66-15                                          |               | Hg, Ni, 💢 Ag, Zn, Se | Metals: As, Cd, Cr, Cu, Pb, | Comments    | Shipped Via  Shipped Via  Air Bill No.  Temperature On Receipt  Specialty Analytical Trip Blanks? | For Labo           |
| Date Time                                                                                                                    | 16-14-17       | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |   |          | 200            |              |                                                                                                               | S                                                | oganyaka-te-p | Se                   | Cu, Pb,                     |             | pt                                                                                                | For Laboratory Use |
| Time<br>1524                                                                                                                 | ا ا            | Time ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |          |   |          | ************** | for our best |                                                                                                               |                                                  |               |                      |                             | Lab I.D.    |                                                                                                   |                    |

Copies: White-Original

Yellow-Project File

Pink-Customer Copy



11711 SE Capps Road, Ste B Clackamas, Oregon 97015 TEL: 503-607-1331 FAX: 503-607-1336 Website: www.specialtyanalytical.com

January 03, 2018

David Weatherby Maul Foster & Alongi 400 E. Mill Plain Blvd. Suite 400 Vancouver, WA 98660

TEL: (360) 694-2691 FAX: (360) 906-1958

RE: Dolan SCE / 1381.01.01

Dear David Weatherby: Order No.: 1711081

Specialty Analytical received 6 sample(s) on 11/9/2017 for the analyses presented in the following report.

REVISED REPORT: Please see case narrative for information on revision.

There were no problems with the analysis and all data for associated QC met EPA or laboratory specifications, except where noted in the Case Narrative, or as qualified with flags. Results apply only to the samples analyzed. Without approval of the laboratory, the reproduction of this report is only permitted in its entirety.

If you have any questions regarding these tests, please feel free to call.

Sincerely,

Marty French Lab Director

#### **Case Narrative**

WO#: **1711081**Date: **1/3/2018** 

CLIENT: Maul Foster & Alongi
Project: Dolan SCE / 1381.01.01

#### Revision 1-

This report has been revised in MDL format per client request. Full QC for PCB Aroclors by method 8082 is included.

#### **Revision 2-**

This report has been revised to correct the analyte list for total and dissolved metals.

CLIENT: Maul Foster & Alongi Collection Date: 11/8/2017 12:45:00 PM

**Date Reported:** 

Matrix: WATER

03-Jan-18

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1711081-002 **Client Sample ID:** MHSW-4

| Cheft Sample 1D. Will'SW-4 | 1             |         |        | IVIa    | uix. WA | LLK |                       |
|----------------------------|---------------|---------|--------|---------|---------|-----|-----------------------|
| Analyses                   | Result        | MDL     | PQL    | Qual    | Units   | DF  | Date Analyzed         |
| ICP/MS METALS- DISSOLVED   | RECOVERABL    | .E      |        | E200    | 0.8     |     | Analyst: <b>JRC</b>   |
| Aluminum                   | 109           | 0.421   | 100    |         | μg/L    | 1   | 11/13/2017 1:40:07 PN |
| Arsenic                    | 3.64          | 0.0320  | 0.100  |         | μg/L    | 1   | 11/13/2017 1:40:07 PN |
| Cadmium                    | 0.329         | 0.0130  | 0.100  |         | μg/L    | 1   | 11/13/2017 1:40:07 PN |
| Copper                     | 69.9          | 0.0180  | 0.500  |         | μg/L    | 1   | 11/13/2017 1:40:07 PN |
| Lead                       | 7.90          | 0.0270  | 0.100  |         | μg/L    | 1   | 11/13/2017 1:40:07 PN |
| Manganese                  | 51.4          | 0.0690  | 0.500  |         | μg/L    | 1   | 11/13/2017 1:40:07 PN |
| Zinc                       | 155           | 1.10    | 20.0   |         | μg/L    | 10  | 11/15/2017 10:10:44 A |
| ICP/MS METALS- TOTAL REC   | OVERABLE      |         |        | E200    | 0.8     |     | Analyst: JRC          |
| Aluminum                   | 409           | 0.421   | 10.0   |         | μg/L    | 1   | 11/13/2017 3:00:08 PN |
| Arsenic                    | 4.07          | 0.0320  | 0.100  |         | μg/L    | 1   | 11/13/2017 3:00:08 PN |
| Cadmium                    | 0.312         | 0.0130  | 0.100  |         | μg/L    | 1   | 11/13/2017 3:00:08 PN |
| Copper                     | 81.6          | 0.0180  | 0.500  |         | μg/L    | 1   | 11/13/2017 3:00:08 PN |
| Lead                       | 15.3          | 0.0270  | 0.100  |         | μg/L    | 1   | 11/13/2017 3:00:08 PN |
| Manganese                  | 76.4          | 0.0690  | 0.500  |         | μg/L    | 1   | 11/13/2017 3:00:08 PN |
| Zinc                       | 186           | 1.10    | 20.0   |         | μg/L    | 10  | 11/15/2017 10:27:36 A |
| SEMI-VOLATILE COMPOUNDS    | S - BASE/NEUT | RAL     |        | SW8270D |         |     | Analyst: <b>CK</b>    |
| Bis(2-ethylhexyl)phthalate | 1.54          | 0.581   | 2.00   | J       | μg/L    | 1   | 11/13/2017 2:37:00 PN |
| Butyl benzyl phthalate     | ND            | 0.335   | 2.00   |         | μg/L    | 1   | 11/13/2017 2:37:00 PN |
| Diethyl phthalate          | ND            | 0.617   | 2.00   |         | μg/L    | 1   | 11/13/2017 2:37:00 PN |
| Dimethyl phthalate         | ND            | 0.553   | 2.00   |         | μg/L    | 1   | 11/13/2017 2:37:00 PN |
| Di-n-butyl phthalate       | ND            | 0.756   | 2.00   |         | μg/L    | 1   | 11/13/2017 2:37:00 PN |
| Di-n-octyl phthalate       | 0.539         | 0.299   | 2.00   | J       | μg/L    | 1   | 11/13/2017 2:37:00 PN |
| Surr: 2-Fluorobiphenyl     | 93.6          | 33.1-11 | 12.3   |         | %REC    | 1   | 11/13/2017 2:37:00 PN |
| Surr: 4-Terphenyl-d14      | 99.0          | 41-     | 122    |         | %REC    | 1   | 11/13/2017 2:37:00 PN |
| Surr: Nitrobenzene-d5      | 56.3          | 28.9-9  | 9.9    |         | %REC    | 1   | 11/13/2017 2:37:00 PN |
| PAH'S BY GC/MS - LOW LEVE  | :L            |         |        | SW82    | 70D     |     | Analyst: <b>CK</b>    |
| 1-Methylnaphthalene        | 0.0284        | 0.0225  | 0.0474 | J       | μg/L    | 1   | 11/14/2017 2:01:00 PN |
| 2-Methylnaphthalene        | 0.0379        | 0.0257  | 0.0474 | J       | μg/L    | 1   | 11/14/2017 2:01:00 PN |
| Acenaphthene               | ND            | 0.0273  | 0.0474 |         | μg/L    | 1   | 11/14/2017 2:01:00 PN |
| Acenaphthylene             | ND            | 0.0317  | 0.0474 |         | μg/L    | 1   | 11/14/2017 2:01:00 PN |
| Anthracene                 | ND            | 0.0208  | 0.0474 |         | μg/L    | 1   | 11/14/2017 2:01:00 PN |
| Benz(a)anthracene          | ND            | 0.0232  | 0.0474 |         | μg/L    | 1   | 11/14/2017 2:01:00 PN |
| Benzo(a)pyrene             | ND            | 0.0159  | 0.0474 |         | μg/L    | 1   | 11/14/2017 2:01:00 PN |
| Benzo(b)fluoranthene       | ND            | 0.0183  | 0.0474 |         | μg/L    | 1   | 11/14/2017 2:01:00 PN |
|                            |               |         |        |         |         |     |                       |

CLIENT: Maul Foster & Alongi Collection Date: 11/8/2017 12:45:00 PM

**Date Reported:** 

Matrix: WATER

03-Jan-18

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1711081-002 **Client Sample ID:** MHSW-4

| Analyses                  | Result       | MDL     | PQL     | Qual Uni      | ts   | DF | Date Analyzed         |  |  |  |  |  |
|---------------------------|--------------|---------|---------|---------------|------|----|-----------------------|--|--|--|--|--|
| PAH'S BY GC/MS - LOW LEVE | L            |         | SW827   |               | 270D |    | Analyst: <b>CK</b>    |  |  |  |  |  |
| Benzo(g,h,i)perylene      | ND           | 0.0118  | 0.0474  | μ             | g/L  | 1  | 11/14/2017 2:01:00 PN |  |  |  |  |  |
| Benzo(k)fluoranthene      | ND           | 0.0140  | 0.0474  | μ             | g/L  | 1  | 11/14/2017 2:01:00 PN |  |  |  |  |  |
| Chrysene                  | ND           | 0.00957 | 0.0474  | μ             | g/L  | 1  | 11/14/2017 2:01:00 PN |  |  |  |  |  |
| Dibenz(a,h)anthracene     | ND           | 0.0138  | 0.0474  |               | g/L  | 1  | 11/14/2017 2:01:00 PN |  |  |  |  |  |
| Fluoranthene              | ND           | 0.0282  | 0.0474  |               | g/L  | 1  | 11/14/2017 2:01:00 PN |  |  |  |  |  |
| Fluorene                  | ND           | 0.0202  | 0.0474  |               | g/L  | 1  | 11/14/2017 2:01:00 PN |  |  |  |  |  |
| Indeno(1,2,3-cd)pyrene    | ND           | 0.0253  | 0.0474  | μ             | g/L  | 1  | 11/14/2017 2:01:00 PN |  |  |  |  |  |
| Naphthalene               | ND           | 0.0163  | 0.0474  |               | g/L  | 1  | 11/14/2017 2:01:00 PN |  |  |  |  |  |
| Phenanthrene              | ND           | 0.0159  | 0.0474  | μ             | g/L  | 1  | 11/14/2017 2:01:00 PN |  |  |  |  |  |
| Pyrene                    | ND           | 0.0173  | 0.0474  | μ             | g/L  | 1  | 11/14/2017 2:01:00 PN |  |  |  |  |  |
| Surr: 2-Fluorobiphenyl    | 67.4         | 18      | 3.6-106 | %R            | EC   | 1  | 11/14/2017 2:01:00 PN |  |  |  |  |  |
| Surr: Nitrobenzene-d5     | 68.3         |         | 17-130  | %R            | EC   | 1  | 11/14/2017 2:01:00 PN |  |  |  |  |  |
| Surr: Terphenyl-d14       | 91.9         | 39      | 9.6-131 | %R            | EC   | 1  | 11/14/2017 2:01:00 PN |  |  |  |  |  |
| PCB'S IN LIQUID           |              |         |         | SW 8082A      |      |    | Analyst: <b>ajr</b>   |  |  |  |  |  |
| Aroclor 1016              | ND           | 0.00759 | 0.0389  | μ             | g/L  | 1  | 11/13/2017 2:46:00 PN |  |  |  |  |  |
| Aroclor 1221              | ND           | 0.00759 | 0.0389  | μ             | g/L  | 1  | 11/13/2017 2:46:00 PN |  |  |  |  |  |
| Aroclor 1232              | ND           | 0.00759 | 0.0389  | μ             | g/L  | 1  | 11/13/2017 2:46:00 PN |  |  |  |  |  |
| Aroclor 1242              | ND           | 0.00759 | 0.0389  | μ             | g/L  | 1  | 11/13/2017 2:46:00 PN |  |  |  |  |  |
| Aroclor 1248              | ND           | 0.00759 | 0.0389  | μ             | g/L  | 1  | 11/13/2017 2:46:00 PN |  |  |  |  |  |
| Aroclor 1254              | ND           | 0.00759 | 0.0389  | μ             | g/L  | 1  | 11/13/2017 2:46:00 PN |  |  |  |  |  |
| Aroclor 1260              | ND           | 0.00759 | 0.0389  | μ             | g/L  | 1  | 11/13/2017 2:46:00 PN |  |  |  |  |  |
| Aroclor 1262              | ND           | 0.00759 | 0.0389  | μ             | g/L  | 1  | 11/13/2017 2:46:00 PN |  |  |  |  |  |
| Aroclor 1268              | ND           | 0.00759 | 0.0389  | μ             | g/L  | 1  | 11/13/2017 2:46:00 PN |  |  |  |  |  |
| Surr: Decachlorobiphenyl  | 54.5         |         | 45-107  | %R            | EC   | 1  | 11/13/2017 2:46:00 PN |  |  |  |  |  |
| SUB CONTRACTING           |              |         |         | JB_CONTRACTII | •    |    | Analyst: <b>knb</b>   |  |  |  |  |  |
| Total Organic Carbon      | ached Report | 0       | 0       |               |      | 1  | 11/27/2017 9:09:25 AN |  |  |  |  |  |
| TOTAL SUSPENDED SOLIDS    |              |         |         | M2540 D       |      |    | Analyst: <b>jtt</b>   |  |  |  |  |  |
| Total Suspended Solids    | 17.0         | 1.1     | 5.0     | m             | g/L  | 1  | 11/13/2017 4:05:43 PN |  |  |  |  |  |

CLIENT: Maul Foster & Alongi Collection Date: 11/8/2017 2:15:00 PM

**Date Reported:** 

03-Jan-18

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1711081-004

Client Sample ID: CB-16 Matrix: WATER

| Analyses                               | Result     | MDL    | PQL    | Qual | Units | DF | Date Analyzed         |
|----------------------------------------|------------|--------|--------|------|-------|----|-----------------------|
| ICP/MS METALS- DISSOLVED               | RECOVERABL | .E     |        | E200 | 0.8   |    | Analyst: <b>JRC</b>   |
| Aluminum                               | 568        | 0.421  | 100    |      | μg/L  | 1  | 11/13/2017 1:54:11 PN |
| Arsenic                                | 0.386      | 0.0320 | 0.100  |      | μg/L  | 1  | 11/13/2017 1:54:11 PN |
| Cadmium                                | 0.0837     | 0.0130 | 0.100  | J    | μg/L  | 1  | 11/13/2017 1:54:11 PN |
| Copper                                 | 13.0       | 0.0180 | 0.500  |      | μg/L  | 1  | 11/13/2017 1:54:11 PN |
| Lead                                   | 2.86       | 0.0270 | 0.100  |      | μg/L  | 1  | 11/13/2017 1:54:11 PN |
| Manganese                              | 185        | 0.690  | 5.00   |      | μg/L  | 10 | 12/12/2017 9:52:35 AN |
| Zinc                                   | 63.2       | 0.110  | 2.00   |      | μg/L  | 1  | 11/13/2017 1:54:11 PN |
| ICP/MS METALS- TOTAL REC               | OVERABLE   |        |        | E200 | 0.8   |    | Analyst: JRC          |
| Aluminum                               | 3730       | 4.21   | 100    |      | μg/L  | 10 | 12/12/2017 9:55:58 AN |
| Arsenic                                | 0.702      | 0.0320 | 0.100  |      | μg/L  | 1  | 11/13/2017 3:03:30 PN |
| Cadmium                                | 0.105      | 0.0130 | 0.100  |      | μg/L  | 1  | 11/13/2017 3:03:30 PN |
| Copper                                 | 19.0       | 0.0180 | 0.500  |      | μg/L  | 1  | 11/13/2017 3:03:30 PN |
| Lead                                   | 5.41       | 0.0270 | 0.100  |      | μg/L  | 1  | 11/13/2017 3:03:30 PN |
| Manganese                              | 257        | 0.690  | 5.00   |      | μg/L  | 10 | 12/12/2017 9:55:58 AN |
| Zinc                                   | 64.9       | 0.110  | 2.00   |      | μg/L  | 1  | 11/13/2017 3:03:30 PN |
| SEMI-VOLATILE COMPOUNDS - BASE/NEUTRAL |            |        |        | SW82 | 70D   |    | Analyst: <b>CK</b>    |
| Bis(2-ethylhexyl)phthalate             | 0.642      | 0.566  | 1.95   | J    | μg/L  | 1  | 11/13/2017 3:02:00 PN |
| Butyl benzyl phthalate                 | ND         | 0.327  | 1.95   |      | μg/L  | 1  | 11/13/2017 3:02:00 PN |
| Diethyl phthalate                      | ND         | 0.601  | 1.95   |      | μg/L  | 1  | 11/13/2017 3:02:00 PN |
| Dimethyl phthalate                     | ND         | 0.539  | 1.95   |      | μg/L  | 1  | 11/13/2017 3:02:00 PN |
| Di-n-butyl phthalate                   | ND         | 0.737  | 1.95   |      | μg/L  | 1  | 11/13/2017 3:02:00 PN |
| Di-n-octyl phthalate                   | ND         | 0.292  | 1.95   |      | μg/L  | 1  | 11/13/2017 3:02:00 PN |
| Surr: 2-Fluorobiphenyl                 | 61.8       | 3.1-1  | 12.3   |      | %REC  | 1  | 11/13/2017 3:02:00 PN |
| Surr: 4-Terphenyl-d14                  | 98.0       | 41     | -122   |      | %REC  | 1  | 11/13/2017 3:02:00 PN |
| Surr: Nitrobenzene-d5                  | 52.5       | 28.9-  | 99.9   |      | %REC  | 1  | 11/13/2017 3:02:00 PN |
| PAH'S BY GC/MS - LOW LEVI              | EL         |        |        | SW82 | 70D   |    | Analyst: <b>CK</b>    |
| 1-Methylnaphthalene                    | ND         | 0.0239 | 0.0505 |      | μg/L  | 1  | 11/14/2017 2:26:00 PN |
| 2-Methylnaphthalene                    | ND         | 0.0274 | 0.0505 |      | μg/L  | 1  | 11/14/2017 2:26:00 PN |
| Acenaphthene                           | ND         | 0.0291 | 0.0505 |      | μg/L  | 1  | 11/14/2017 2:26:00 PN |
| Acenaphthylene                         | ND         | 0.0337 | 0.0505 |      | μg/L  | 1  | 11/14/2017 2:26:00 PN |
| Anthracene                             | ND         | 0.0221 | 0.0505 |      | μg/L  | 1  | 11/14/2017 2:26:00 PN |
| Benz(a)anthracene                      | 0.0404     | 0.0247 | 0.0505 | J    | μg/L  | 1  | 11/14/2017 2:26:00 PN |
| Benzo(a)pyrene                         | 0.0505     | 0.0170 | 0.0505 |      | μg/L  | 1  | 11/14/2017 2:26:00 PN |
| Benzo(b)fluoranthene                   | 0.0909     | 0.0195 | 0.0505 |      | μg/L  | 1  | 11/14/2017 2:26:00 PN |

CLIENT: Maul Foster & Alongi Collection Date: 11/8/2017 2:15:00 PM

**Date Reported:** 

03-Jan-18

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1711081-004

Client Sample ID: CB-16 Matrix: WATER

| Analyses                  | Result       | MDL     | PQL      | Qual    | Units   | DF | Date Analyzed         |
|---------------------------|--------------|---------|----------|---------|---------|----|-----------------------|
| PAH'S BY GC/MS - LOW LEVE | :L           |         |          | SW82    | 270D    |    | Analyst: <b>CK</b>    |
| Benzo(g,h,i)perylene      | 0.0505       | 0.0126  | 0.0505   |         | μg/L    | 1  | 11/14/2017 2:26:00 PN |
| Benzo(k)fluoranthene      | ND           | 0.0149  | 0.0505   |         | μg/L    | 1  | 11/14/2017 2:26:00 PN |
| Chrysene                  | 0.0606       | 0.0102  | 0.0505   |         | μg/L    | 1  | 11/14/2017 2:26:00 PN |
| Dibenz(a,h)anthracene     | ND           | 0.0147  | 0.0505   |         | μg/L    | 1  | 11/14/2017 2:26:00 PN |
| Fluoranthene              | 0.0808       | 0.0301  | 0.0505   |         | μg/L    | 1  | 11/14/2017 2:26:00 PN |
| Fluorene                  | ND           | 0.0215  | 0.0505   |         | μg/L    | 1  | 11/14/2017 2:26:00 PN |
| Indeno(1,2,3-cd)pyrene    | 0.0404       | 0.0270  | 0.0505   | J       | μg/L    | 1  | 11/14/2017 2:26:00 PN |
| Naphthalene               | ND           | 0.0174  | 0.0505   |         | μg/L    | 1  | 11/14/2017 2:26:00 PN |
| Phenanthrene              | 0.0404       | 0.0170  | 0.0505   | J       | μg/L    | 1  | 11/14/2017 2:26:00 PN |
| Pyrene                    | 0.0909       | 0.0184  | 0.0505   |         | μg/L    | 1  | 11/14/2017 2:26:00 PN |
| Surr: 2-Fluorobiphenyl    | 63.0         | 1       | 18.6-106 |         | %REC    | 1  | 11/14/2017 2:26:00 PN |
| Surr: Nitrobenzene-d5     | 63.9         |         | 17-130   |         | %REC    | 1  | 11/14/2017 2:26:00 PN |
| Surr: Terphenyl-d14       | 101          | 3       | 39.6-131 |         | %REC    | 1  | 11/14/2017 2:26:00 PN |
| PCB'S IN LIQUID           |              |         |          | SW 8    | 082A    |    | Analyst: <b>ajr</b>   |
| Aroclor 1016              | ND           | 0.00729 | 0.0374   |         | μg/L    | 1  | 11/13/2017 3:03:00 PN |
| Aroclor 1221              | ND           | 0.00729 | 0.0374   |         | μg/L    | 1  | 11/13/2017 3:03:00 PN |
| Aroclor 1232              | ND           | 0.00729 | 0.0374   |         | μg/L    | 1  | 11/13/2017 3:03:00 PN |
| Aroclor 1242              | ND           | 0.00729 | 0.0374   |         | μg/L    | 1  | 11/13/2017 3:03:00 PN |
| Aroclor 1248              | ND           | 0.00729 | 0.0374   |         | μg/L    | 1  | 11/13/2017 3:03:00 PN |
| Aroclor 1254              | ND           | 0.00729 | 0.0374   |         | μg/L    | 1  | 11/13/2017 3:03:00 PN |
| Aroclor 1260              | ND           | 0.00729 | 0.0374   |         | μg/L    | 1  | 11/13/2017 3:03:00 PN |
| Aroclor 1262              | ND           | 0.00729 | 0.0374   |         | μg/L    | 1  | 11/13/2017 3:03:00 PN |
| Aroclor 1268              | ND           | 0.00729 | 0.0374   |         | μg/L    | 1  | 11/13/2017 3:03:00 PN |
| Surr: Decachlorobiphenyl  | 86.9         |         | 45-107   |         | %REC    | 1  | 11/13/2017 3:03:00 PN |
| SUB CONTRACTING           |              |         | ,        | JB_CON. | TRACTIN |    | Analyst: <b>knb</b>   |
| Total Organic Carbon      | ached Report | 0       | 0        |         |         | 1  | 11/27/2017 9:09:25 AN |
| TOTAL SUSPENDED SOLIDS    |              |         |          | M25     | 40 D    |    | Analyst: <b>jtt</b>   |
| Total Suspended Solids    | 108          | 1.1     | 5.0      |         | mg/L    | 1  | 11/13/2017 4:06:43 PN |

CLIENT: Maul Foster & Alongi Collection Date: 11/8/2017 2:55:00 PM

**Date Reported:** 

03-Jan-18

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1711081-005

Client Sample ID: CSWTS

Client Sample ID: CSWTS Matrix: WATER

| Analyses                   | Result    | MDL     | PQL           | Qual U  | Jnits                   | DF | Date Analyzed         |
|----------------------------|-----------|---------|---------------|---------|-------------------------|----|-----------------------|
| ICP/MS METALS- DISSOLVED R | ECOVERABL | .E      |               | E200.8  |                         |    | Analyst: <b>JRC</b>   |
| Aluminum                   | 17.9      | 0.421   | 100           | J       | μg/L                    | 1  | 11/13/2017 1:57:33 PN |
| Arsenic                    | 1.26      | 0.0320  | 0.100         |         | μg/L                    | 1  | 11/13/2017 1:57:33 PN |
| Cadmium                    | 0.150     | 0.0130  | 0.100         |         | μg/L                    | 1  | 11/13/2017 1:57:33 PN |
| Copper                     | 18.0      | 0.0180  | 0.500         |         | μg/L                    | 1  | 11/13/2017 1:57:33 PN |
| Lead                       | 1.56      | 0.0270  | 0.100         |         | μg/L                    | 1  | 11/13/2017 1:57:33 PN |
| Manganese                  | 28.8      | 0.0690  | 0.500         |         | μg/L                    | 1  | 11/13/2017 1:57:33 PN |
| Zinc                       | 95.6      | 1.10    | 20.0          |         | μg/L                    | 10 | 11/15/2017 10:14:07 A |
| ICP/MS METALS- TOTAL RECOV | /ERABLE   |         |               | E200.8  |                         |    | Analyst: <b>JRC</b>   |
| Aluminum                   | 34.9      | 0.421   | 10.0          |         | μg/L                    | 1  | 11/13/2017 3:06:52 PN |
| Arsenic                    | 1.31      | 0.0320  | 0.100         |         | μg/L                    | 1  | 11/13/2017 3:06:52 PN |
| Cadmium                    | 0.161     | 0.0130  | 0.100         |         | μg/L                    | 1  | 11/13/2017 3:06:52 PN |
| Copper                     | 19.9      | 0.0180  | 0.500         |         | μg/L                    | 1  | 11/13/2017 3:06:52 PN |
| Lead                       | 2.14      | 0.0270  | 0.100         |         | μg/L                    | 1  | 11/13/2017 3:06:52 PN |
| Manganese                  | 33.9      | 0.0690  | 0.500         |         | μg/L                    | 1  | 11/13/2017 3:06:52 PN |
| Zinc                       | 98.8      | 0.110   | 2.00          |         | μg/L                    | 1  | 11/13/2017 3:06:52 PN |
| SEMI-VOLATILE COMPOUNDS -  | BASE/NEUT | RAL     |               | SW8270D |                         |    | Analyst: <b>CK</b>    |
| Bis(2-ethylhexyl)phthalate | ND        | 0.563   | 1.93          |         | μg/L                    | 1  | 11/13/2017 3:26:00 PN |
| Butyl benzyl phthalate     | ND        | 0.325   | 1.93          |         | μg/L                    | 1  | 11/13/2017 3:26:00 PN |
| Diethyl phthalate          | ND        | 0.598   | 1.93          |         | μg/L                    | 1  | 11/13/2017 3:26:00 PN |
| Dimethyl phthalate         | ND        | 0.536   | 1.93          |         | μg/L                    | 1  | 11/13/2017 3:26:00 PN |
| Di-n-butyl phthalate       | ND        | 0.733   | 1.93          |         | μg/L                    | 1  | 11/13/2017 3:26:00 PN |
| Di-n-octyl phthalate       | ND        | 0.290   | 1.93          |         | μg/L                    | 1  | 11/13/2017 3:26:00 PN |
| Surr: 2-Fluorobiphenyl     | 101       | 33.1-11 | 12.3          | C       | %REC                    | 1  | 11/13/2017 3:26:00 PN |
| Surr: 4-Terphenyl-d14      | 112       | 41-     | 122           | C       | %REC                    | 1  | 11/13/2017 3:26:00 PN |
| Surr: Nitrobenzene-d5      | 74.9      | 28.9-9  | 99.9          | C       | %REC                    | 1  | 11/13/2017 3:26:00 PN |
| PAH'S BY GC/MS - LOW LEVEL |           |         |               | SW8270D |                         |    | Analyst: <b>CK</b>    |
| 1-Methylnaphthalene        | ND        | 0.0225  | 0.0474        |         | μg/L                    | 1  | 11/14/2017 2:52:00 PN |
| 2-Methylnaphthalene        | ND        | 0.0257  | 0.0474        |         | μg/L                    | 1  | 11/14/2017 2:52:00 PN |
| Acenaphthene               | ND        | 0.0273  | 0.0474        |         | μg/L                    | 1  | 11/14/2017 2:52:00 PN |
| Acenaphthylene             | ND        | 0.0317  | 0.0474        |         | μg/L                    | 1  | 11/14/2017 2:52:00 PN |
| Anthracene                 | ND        | 0.0208  | 0.0474        |         | μg/L                    | 1  | 11/14/2017 2:52:00 PN |
| Benz(a)anthracene          | ND        | 0.0232  | 0.0474 μg/L 1 |         | 1 11/14/2017 2:52:00 PI |    |                       |
| Benzo(a)pyrene             | ND        | 0.0159  | 0.0474        |         | μg/L                    | 1  | 11/14/2017 2:52:00 PN |
| Benzo(b)fluoranthene       | ND        | 0.0183  | 0.0474        |         | μg/L                    | 1  | 11/14/2017 2:52:00 PN |

CLIENT: Maul Foster & Alongi Collection Date: 11/8/2017 2:55:00 PM

**Date Reported:** 

03-Jan-18

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1711081-005

Client Sample ID: CSWTS Matrix: WATER

| Analyses                   | Result      | MDL     | PQL      | Qual Units    | DF | Date Analyzed         |
|----------------------------|-------------|---------|----------|---------------|----|-----------------------|
| PAH'S BY GC/MS - LOW LEVEL |             |         |          | SW8270D       |    | Analyst: <b>CK</b>    |
| Benzo(g,h,i)perylene       | ND          | 0.0118  | 0.0474   | μg/L          | 1  | 11/14/2017 2:52:00 PN |
| Benzo(k)fluoranthene       | ND          | 0.0140  | 0.0474   | μg/L          | 1  | 11/14/2017 2:52:00 PN |
| Chrysene                   | ND          | 0.00957 | 0.0474   | μg/L          | 1  | 11/14/2017 2:52:00 PN |
| Dibenz(a,h)anthracene      | ND          | 0.0138  | 0.0474   | μg/L          | 1  | 11/14/2017 2:52:00 PN |
| Fluoranthene               | ND          | 0.0282  | 0.0474   | μg/L          | 1  | 11/14/2017 2:52:00 PN |
| Fluorene                   | ND          | 0.0202  | 0.0474   | μg/L          | 1  | 11/14/2017 2:52:00 PN |
| Indeno(1,2,3-cd)pyrene     | ND          | 0.0253  | 0.0474   | μg/L          | 1  | 11/14/2017 2:52:00 PN |
| Naphthalene                | ND          | 0.0163  | 0.0474   | μg/L          | 1  | 11/14/2017 2:52:00 PN |
| Phenanthrene               | ND          | 0.0159  | 0.0474   | μg/L          | 1  | 11/14/2017 2:52:00 PN |
| Pyrene                     | ND          | 0.0173  | 0.0474   | μg/L          | 1  | 11/14/2017 2:52:00 PN |
| Surr: 2-Fluorobiphenyl     | 67.1        |         | 18.6-106 | %REC          | 1  | 11/14/2017 2:52:00 PN |
| Surr: Nitrobenzene-d5      | 71.1        |         | 17-130   | %REC          | 1  | 11/14/2017 2:52:00 PN |
| Surr: Terphenyl-d14        | 94.3        | ;       | 39.6-131 | %REC          | 1  | 11/14/2017 2:52:00 PN |
| PCB'S IN LIQUID            |             |         |          | SW 8082A      |    | Analyst: <b>ajr</b>   |
| Aroclor 1016               | ND          | 0.00571 | 0.0293   | μg/L          | 1  | 11/13/2017 3:20:00 PN |
| Aroclor 1221               | ND          | 0.00571 | 0.0293   | μg/L          | 1  | 11/13/2017 3:20:00 PN |
| Aroclor 1232               | ND          | 0.00571 | 0.0293   | μg/L          | 1  | 11/13/2017 3:20:00 PN |
| Aroclor 1242               | ND          | 0.00571 | 0.0293   | μg/L          | 1  | 11/13/2017 3:20:00 PN |
| Aroclor 1248               | ND          | 0.00571 | 0.0293   | μg/L          | 1  | 11/13/2017 3:20:00 PN |
| Aroclor 1254               | ND          | 0.00571 | 0.0293   | μg/L          | 1  | 11/13/2017 3:20:00 PN |
| Aroclor 1260               | ND          | 0.00571 | 0.0293   | μg/L          | 1  | 11/13/2017 3:20:00 PN |
| Aroclor 1262               | ND          | 0.00571 | 0.0293   | μg/L          | 1  | 11/13/2017 3:20:00 PN |
| Aroclor 1268               | ND          | 0.00571 | 0.0293   | μg/L          | 1  | 11/13/2017 3:20:00 PN |
| Surr: Decachlorobiphenyl   | 60.7        |         | 45-107   | %REC          | 1  | 11/13/2017 3:20:00 PN |
| SUB CONTRACTING            |             |         | ļ        | IB_CONTRACTIN |    | Analyst: <b>knb</b>   |
| Total Organic Carbon       | ched Report | 0       | 0        |               | 1  | 11/27/2017 9:09:25 AN |
| TOTAL SUSPENDED SOLIDS     |             |         |          | M2540 D       |    | Analyst: <b>jtt</b>   |
| Total Suspended Solids     | ND          | 1.1     | 5.0      | mg/L          | 1  | 11/13/2017 4:07:43 PN |

CLIENT: Maul Foster & Alongi Collection Date: 11/8/2017

**Date Reported:** 

03-Jan-18

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1711081-006

Client Sample ID: CB-14 & CB-15 COMP Matrix: WATER

| Analyses                   | Result    | MDL     | PQL              | Qual | Units                 | DF                    | Date Analyzed         |
|----------------------------|-----------|---------|------------------|------|-----------------------|-----------------------|-----------------------|
| ICP/MS METALS- DISSOLVED R | ECOVERABL | .E      |                  | E200 | 0.8                   |                       | Analyst: <b>JRC</b>   |
| Aluminum                   | 12.7      | 0.421   | 100              | J    | μg/L                  | 1                     | 11/13/2017 2:00:55 PN |
| Arsenic                    | 0.236     | 0.0320  | 0.100            | В    | μg/L                  | 1                     | 11/13/2017 2:00:55 PN |
| Cadmium                    | 0.517     | 0.0130  | 0.100            |      | μg/L                  | 1                     | 11/13/2017 2:00:55 PN |
| Copper                     | 14.6      | 0.0180  | 0.500            |      | μg/L                  | 1                     | 11/13/2017 2:00:55 PN |
| Lead                       | 0.161     | 0.0270  | 0.100            | В    | μg/L                  | 1                     | 11/13/2017 2:00:55 PN |
| Manganese                  | 12.6      | 0.0690  | 0.500            |      | μg/L                  | 1                     | 11/13/2017 2:00:55 PN |
| Zinc                       | 333       | 1.10    | 20.0             |      | μg/L                  | 10                    | 11/15/2017 10:17:29 A |
| ICP/MS METALS- TOTAL RECOV | /ERABLE   |         |                  | E200 | 0.8                   |                       | Analyst: JRC          |
| Aluminum                   | 908       | 0.421   | 10.0             |      | μg/L                  | 1                     | 11/13/2017 3:10:14 PN |
| Arsenic                    | 0.599     | 0.0320  | 0.100            |      | μg/L                  | 1                     | 11/13/2017 3:10:14 PN |
| Cadmium                    | 1.14      | 0.0130  | 0.100            |      | μg/L                  | 1                     | 11/13/2017 3:10:14 PN |
| Copper                     | 33.2      | 0.0180  | 0.500            |      | μg/L                  | 1                     | 11/13/2017 3:10:14 PN |
| Lead                       | 5.75      | 0.0270  | 0.100            |      | μg/L                  | 1                     | 11/13/2017 3:10:14 PN |
| Manganese                  | 89.9      | 0.0690  | 0.500            |      | μg/L                  | 1                     | 11/13/2017 3:10:14 PN |
| Zinc                       | 568       | 1.10    | 20.0             |      | μg/L                  | 10                    | 11/15/2017 10:30:58 A |
| SEMI-VOLATILE COMPOUNDS -  | BASE/NEUT | RAL     |                  | SW82 | 70D                   |                       | Analyst: <b>CK</b>    |
| Bis(2-ethylhexyl)phthalate | 1.40      | 0.280   | 0.962            |      | μg/L                  | 1                     | 11/13/2017 3:51:00 PN |
| Butyl benzyl phthalate     | ND        | 0.162   | 0.962            |      | μg/L                  | 1                     | 11/13/2017 3:51:00 PN |
| Diethyl phthalate          | ND        | 0.297   | 0.962            |      | μg/L                  | 1                     | 11/13/2017 3:51:00 PN |
| Dimethyl phthalate         | ND        | 0.267   | 0.962            |      | μg/L                  | 1                     | 11/13/2017 3:51:00 PN |
| Di-n-butyl phthalate       | ND        | 0.365   | 0.962            |      | μg/L                  | 1                     | 11/13/2017 3:51:00 PN |
| Di-n-octyl phthalate       | ND        | 0.144   | 0.962            |      | μg/L                  | 1                     | 11/13/2017 3:51:00 PN |
| Surr: 2-Fluorobiphenyl     | 95.3      | 33.1-11 | 12.3             |      | %REC                  | 1                     | 11/13/2017 3:51:00 PN |
| Surr: 4-Terphenyl-d14      | 101       | 41-     | 122              |      | %REC                  | 1                     | 11/13/2017 3:51:00 PN |
| Surr: Nitrobenzene-d5      | 93.6      | 28.9-9  | 99.9             |      | %REC                  | 1                     | 11/13/2017 3:51:00 PN |
| PAH'S BY GC/MS - LOW LEVEL |           |         |                  | SW82 | 70D                   |                       | Analyst: <b>CK</b>    |
| 1-Methylnaphthalene        | ND        | 0.0211  | 0.0444           |      | μg/L                  | 1                     | 11/14/2017 3:17:00 PN |
| 2-Methylnaphthalene        | ND        | 0.0241  | 0.0444           |      | μg/L                  | 1                     | 11/14/2017 3:17:00 PN |
| Acenaphthene               | ND        | 0.0256  | 0.0444           |      | μg/L                  | 1                     | 11/14/2017 3:17:00 PN |
| Acenaphthylene             | ND        | 0.0297  | 0.0444           |      | μg/L                  | 1                     | 11/14/2017 3:17:00 PN |
| Anthracene                 | ND        | 0.0195  | 0.0444           |      |                       | 1                     | 11/14/2017 3:17:00 PN |
| Benz(a)anthracene          | ND        | 0.0218  | 0.0444 μg/L 1 11 |      | 11/14/2017 3:17:00 PN |                       |                       |
| Benzo(a)pyrene             | ND        | 0.0149  | 0.0444           |      |                       | 11/14/2017 3:17:00 PN |                       |
| Benzo(b)fluoranthene       | ND        | 0.0172  | 0.0444           |      | μg/L                  | 1                     | 11/14/2017 3:17:00 PN |

CLIENT: Maul Foster & Alongi Collection Date: 11/8/2017

**Date Reported:** 

03-Jan-18

**Project:** Dolan SCE / 1381.01.01

**Lab ID:** 1711081-006

Client Sample ID: CB-14 & CB-15 COMP Matrix: WATER

| Analyses                  | Result       | MDL     | PQL      | Qual    | Units  | DF | Date Analyzed         |
|---------------------------|--------------|---------|----------|---------|--------|----|-----------------------|
| PAH'S BY GC/MS - LOW LEVE | L            |         |          | SW82    | 70D    |    | Analyst: <b>CK</b>    |
| Benzo(g,h,i)perylene      | ND           | 0.0111  | 0.0444   |         | μg/L   | 1  | 11/14/2017 3:17:00 PN |
| Benzo(k)fluoranthene      | ND           | 0.0132  | 0.0444   |         | μg/L   | 1  | 11/14/2017 3:17:00 PN |
| Chrysene                  | ND           | 0.00898 | 0.0444   |         | μg/L   | 1  | 11/14/2017 3:17:00 PN |
| Dibenz(a,h)anthracene     | ND           | 0.0130  | 0.0444   |         | μg/L   | 1  | 11/14/2017 3:17:00 PN |
| Fluoranthene              | ND           | 0.0265  | 0.0444   |         | μg/L   | 1  | 11/14/2017 3:17:00 PN |
| Fluorene                  | ND           | 0.0189  | 0.0444   |         | μg/L   | 1  | 11/14/2017 3:17:00 PN |
| Indeno(1,2,3-cd)pyrene    | ND           | 0.0237  | 0.0444   |         | μg/L   | 1  | 11/14/2017 3:17:00 PN |
| Naphthalene               | ND           | 0.0153  | 0.0444   |         | μg/L   | 1  | 11/14/2017 3:17:00 PN |
| Phenanthrene              | 0.0267       | 0.0149  | 0.0444   | J       | μg/L   | 1  | 11/14/2017 3:17:00 PN |
| Pyrene                    | ND           | 0.0162  | 0.0444   |         | μg/L   | 1  | 11/14/2017 3:17:00 PN |
| Surr: 2-Fluorobiphenyl    | 58.0         |         | 18.6-106 |         | %REC   | 1  | 11/14/2017 3:17:00 PN |
| Surr: Nitrobenzene-d5     | 60.0         |         | 17-130   |         | %REC   | 1  | 11/14/2017 3:17:00 PN |
| Surr: Terphenyl-d14       | 90.2         |         | 39.6-131 |         | %REC   | 1  | 11/14/2017 3:17:00 PN |
| PCB'S IN LIQUID           |              |         |          | SW 80   | 82A    |    | Analyst: <b>ajr</b>   |
| Aroclor 1016              | ND           | 0.00379 | 0.0194   |         | μg/L   | 1  | 11/13/2017 3:37:00 PN |
| Aroclor 1221              | ND           | 0.00379 | 0.0194   |         | μg/L   | 1  | 11/13/2017 3:37:00 PN |
| Aroclor 1232              | ND           | 0.00379 | 0.0194   |         | μg/L   | 1  | 11/13/2017 3:37:00 PN |
| Aroclor 1242              | ND           | 0.00379 | 0.0194   |         | μg/L   | 1  | 11/13/2017 3:37:00 PN |
| Aroclor 1248              | ND           | 0.00379 | 0.0194   |         | μg/L   | 1  | 11/13/2017 3:37:00 PN |
| Aroclor 1254              | ND           | 0.00379 | 0.0194   |         | μg/L   | 1  | 11/13/2017 3:37:00 PN |
| Aroclor 1260              | ND           | 0.00379 | 0.0194   |         | μg/L   | 1  | 11/13/2017 3:37:00 PN |
| Aroclor 1262              | ND           | 0.00379 | 0.0194   |         | μg/L   | 1  | 11/13/2017 3:37:00 PN |
| Aroclor 1268              | ND           | 0.00379 | 0.0194   |         | μg/L   | 1  | 11/13/2017 3:37:00 PN |
| Surr: Decachlorobiphenyl  | 74.6         |         | 45-107   |         | %REC   | 1  | 11/13/2017 3:37:00 PN |
| SUB CONTRACTING           |              |         |          | JB_CONT | RACTIN |    | Analyst: <b>knb</b>   |
| Total Organic Carbon      | ached Report | 0       | 0        |         |        | 1  | 11/27/2017 9:09:25 AN |
| TOTAL SUSPENDED SOLIDS    |              |         |          | M254    | 0 D    |    | Analyst: jtt          |
| Total Suspended Solids    | 74.0         | 1.1     | 5.0      |         | mg/L   | 1  | 11/13/2017 4:08:43 PN |

WO#: 1'

1711081

03-Jan-18

**Specialty Analytical** 

**Client:** 

Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 **TestCode: 200.8** 

| Sample ID: ICV | SampType: ICV   |       | de: <b>200.8</b>  | Units: µg/L |                           | Prep Date: |           |             | RunNo: 23719 |          |      |
|----------------|-----------------|-------|-------------------|-------------|---------------------------|------------|-----------|-------------|--------------|----------|------|
| Client ID: ICV | Batch ID: 10915 | TestN | lo: <b>E200.8</b> | E200.8      | Analysis Date: 11/13/2017 |            | :017      | SeqNo: 318  | 5615         |          |      |
| Analyte        | Result          | PQL   | SPK value         | SPK Ref Val | %REC                      | LowLimit   | HighLimit | RPD Ref Val | %RPD         | RPDLimit | Qual |
| Aluminum       | 503             | 10.0  | 500.0             | 0           | 101                       | 90         | 110       |             |              |          |      |
| Arsenic        | 49.9            | 0.100 | 50.00             | 0           | 99.8                      | 90         | 110       |             |              |          |      |
| Cadmium        | 51.9            | 0.100 | 50.00             | 0           | 104                       | 90         | 110       |             |              |          |      |
| Copper         | 50.8            | 0.500 | 50.00             | 0           | 102                       | 90         | 110       |             |              |          |      |
| Lead           | 49.2            | 0.100 | 50.00             | 0           | 98.5                      | 90         | 110       |             |              |          |      |
| Manganese      | 50.7            | 0.500 | 50.00             | 0           | 101                       | 90         | 110       |             |              |          |      |
| Zinc           | 50.2            | 2.00  | 50.00             | 0           | 100                       | 90         | 110       |             |              |          |      |

| Sample ID: CCV | SampType: CCV   | TestCo | de: <b>200.8</b>  | Units: µg/L | μg/L Prep Date:           |          |           | RunNo: 23719         |      |          |      |
|----------------|-----------------|--------|-------------------|-------------|---------------------------|----------|-----------|----------------------|------|----------|------|
| Client ID: CCV | Batch ID: 10915 | Test   | No: <b>E200.8</b> | E200.8      | Analysis Date: 11/13/2017 |          | 017       | SeqNo: <b>315616</b> |      |          |      |
| Analyte        | Result          | PQL    | SPK value         | SPK Ref Val | %REC                      | LowLimit | HighLimit | RPD Ref Val          | %RPD | RPDLimit | Qual |
| Aluminum       | 528             | 10.0   | 500.0             | 0           | 106                       | 90       | 110       |                      |      |          |      |
| Arsenic        | 47.6            | 0.100  | 50.00             | 0           | 95.2                      | 90       | 110       |                      |      |          |      |
| Cadmium        | 50.5            | 0.100  | 50.00             | 0           | 101                       | 90       | 110       |                      |      |          |      |
| Copper         | 51.3            | 0.500  | 50.00             | 0           | 103                       | 90       | 110       |                      |      |          |      |
| Lead           | 48.3            | 0.100  | 50.00             | 0           | 96.5                      | 90       | 110       |                      |      |          |      |
| Manganese      | 51.5            | 0.500  | 50.00             | 0           | 103                       | 90       | 110       |                      |      |          |      |
| Zinc           | 48.7            | 2.00   | 50.00             | 0           | 97.3                      | 90       | 110       |                      |      |          |      |

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

WO#:

1711081

03-Jan-18

**Specialty Analytical** 

**Client:** 

Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 TestCode: 200.8

| Sample ID: MB-10915<br>Client ID: PBW | SampType: MBLK Batch ID: 10915 | TestCode: 200.8<br>TestNo: E200 | . 3              |          |                              | RunNo: <b>23719</b><br>SeqNo: <b>315617</b> |
|---------------------------------------|--------------------------------|---------------------------------|------------------|----------|------------------------------|---------------------------------------------|
| Analyte                               | Result                         | PQL SPK va                      | alue SPK Ref Val | %REC Low | wLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual                          |
| Aluminum                              | ND                             | 10.0                            |                  |          |                              |                                             |
| Arsenic                               | ND                             | 0.100                           |                  |          |                              |                                             |
| Cadmium                               | ND                             | 0.100                           |                  |          |                              |                                             |
| Copper                                | 0.0535                         | 0.500                           |                  |          |                              | J                                           |
| Lead                                  | ND                             | 0.100                           |                  |          |                              |                                             |
| Manganese                             | ND                             | 0.500                           |                  |          |                              |                                             |
| Zinc                                  | 0.121                          | 2.00                            |                  |          |                              | J                                           |

| Sample ID: LCS-10915 | SampType: <b>LCS</b> | TestCode | 200.8     | Units: µg/L Prep Date: 11/13/2017 |                           | 017      | RunNo: 237           |             |      |          |      |
|----------------------|----------------------|----------|-----------|-----------------------------------|---------------------------|----------|----------------------|-------------|------|----------|------|
| Client ID: LCSW      | Batch ID: 10915      | TestNo   | : E200.8  | E200.8                            | Analysis Date: 11/13/2017 |          | SeqNo: <b>315618</b> |             |      |          |      |
| Analyte              | Result               | PQL      | SPK value | SPK Ref Val                       | %REC                      | LowLimit | HighLimit            | RPD Ref Val | %RPD | RPDLimit | Qual |
| Aluminum             | 475                  | 10.0     | 500.0     | 0                                 | 95.0                      | 85       | 115                  |             |      |          |      |
| Arsenic              | 45.6                 | 0.100    | 50.00     | 0                                 | 91.1                      | 85       | 115                  |             |      |          |      |
| Cadmium              | 51.5                 | 0.100    | 50.00     | 0                                 | 103                       | 85       | 115                  |             |      |          |      |
| Copper               | 49.4                 | 0.500    | 50.00     | 0                                 | 98.9                      | 85       | 115                  |             |      |          |      |
| Lead                 | 48.1                 | 0.100    | 50.00     | 0                                 | 96.2                      | 85       | 115                  |             |      |          |      |
| Manganese            | 48.6                 | 0.500    | 50.00     | 0                                 | 97.2                      | 85       | 115                  |             |      |          |      |
| Zinc                 | 49.6                 | 2.00     | 50.00     | 0                                 | 99.3                      | 85       | 115                  |             |      |          |      |

Holding times for preparation or analysis exceeded

1711081 WO#:

03-Jan-18

#### **Specialty Analytical**

| Client:  | Maul Foster & Alongi  |
|----------|-----------------------|
| Project: | Dolan SCE / 1381.01.0 |

TestCode: 200.8 Dolan SCE / 1381.01.01

| Sample ID: A1711097-002ADUP | SampType: <b>DUP</b> | TestCod | e: <b>200.8</b>  | Units: µg/L |                           | Prep Da  | te: 11/13/2 | 017                  | RunNo: 23719 |          |      |
|-----------------------------|----------------------|---------|------------------|-------------|---------------------------|----------|-------------|----------------------|--------------|----------|------|
| Client ID: ZZZZZZ           | Batch ID: 10915      | TestN   | o: <b>E200.8</b> | E200.8      | Analysis Date: 11/13/2017 |          | 017         | SeqNo: <b>315620</b> |              |          |      |
| Analyte                     | Result               | PQL     | SPK value        | SPK Ref Val | %REC                      | LowLimit | HighLimit   | RPD Ref Val          | %RPD         | RPDLimit | Qual |
| Aluminum                    | 252                  | 100     |                  |             |                           |          |             | 281.9                | 11.3         | 20       |      |
| Arsenic                     | 0.727                | 1.00    |                  |             |                           |          |             | 2.033                | 94.7         | 20       | JRF  |
| Cadmium                     | 1.55                 | 1.00    |                  |             |                           |          |             | 2.020                | 26.4         | 20       | RF   |
| Copper                      | 39.8                 | 5.00    |                  |             |                           |          |             | 50.96                | 24.6         | 20       | RF   |
| Lead                        | 115                  | 1.00    |                  |             |                           |          |             | 131.3                | 12.9         | 20       |      |
| Manganese                   | 836                  | 5.00    |                  |             |                           |          |             | 943.8                | 12.1         | 20       |      |
| Zinc                        | 2740                 | 20.0    |                  |             |                           |          |             | 2981                 | 8.42         | 20       | E    |

| Sample ID: <b>A1711097-00</b> | 2AMS SampType: MS | TestCo | ode: 200.8        | Units: µg/L |      | Prep Da                   | te: 11/13/2017       | RunNo: <b>2371</b> | RunNo: 23719         |      |  |
|-------------------------------|-------------------|--------|-------------------|-------------|------|---------------------------|----------------------|--------------------|----------------------|------|--|
| Client ID: ZZZZZZ             | Batch ID: 10915   | Test   | No: <b>E200.8</b> | E200.8      |      | Analysis Date: 11/13/2017 |                      | SeqNo: <b>3156</b> | SeqNo: <b>315621</b> |      |  |
| Analyte                       | Result            | PQL    | SPK value         | SPK Ref Val | %REC | LowLimit                  | HighLimit RPD Ref Va | I %RPD             | RPDLimit             | Qual |  |
| Aluminum                      | 806               | 100    | 500.0             | 281.9       | 105  | 70                        | 130                  |                    |                      |      |  |
| Arsenic                       | 50.1              | 1.00   | 50.00             | 2.033       | 96.0 | 70                        | 130                  |                    |                      |      |  |
| Cadmium                       | 54.8              | 1.00   | 50.00             | 2.020       | 106  | 70                        | 130                  |                    |                      |      |  |
| Copper                        | 95.4              | 5.00   | 50.00             | 50.96       | 88.9 | 70                        | 130                  |                    |                      |      |  |
| Lead                          | 177               | 1.00   | 50.00             | 131.3       | 92.3 | 70                        | 130                  |                    |                      |      |  |
| Manganese                     | 976               | 5.00   | 50.00             | 943.8       | 64.5 | 70                        | 130                  |                    |                      | SMC  |  |

| Sample ID: | A1711097-002AMSD | SampType: | MSD    | TestCod | e: <b>200.8</b>  | Units: µg/L |      | Prep Date:     | 11/13/2   | 017         | RunNo: 23 | 719      |      |
|------------|------------------|-----------|--------|---------|------------------|-------------|------|----------------|-----------|-------------|-----------|----------|------|
| Client ID: | <b>ZZZZZZ</b>    | Batch ID: | 10915  | TestN   | o: <b>E200.8</b> | E200.8      |      | Analysis Date: | 11/13/2   | 017         | SeqNo: 31 | 5622     |      |
| Analyte    |                  |           | Result | PQL     | SPK value        | SPK Ref Val | %REC | LowLimit H     | HighLimit | RPD Ref Val | %RPD      | RPDLimit | Qual |

Analyte detected in the associated Method Blank Qualifiers:

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 3 of 29

RPD outside accepted recovery limits

Spike Recovery outside accepted reco

WO#: **1711081** 

03-Jan-18

#### **Specialty Analytical**

Client: Maul Foster & Alongi
Project: Dolan SCE / 1381 01 01

TestCode: 200.8

| Project: Dolan          | 13CE / 1381.01.01                   |        |                                       |                       |      |                          | 1           | estCode: 2  | 200.0      |          |      |
|-------------------------|-------------------------------------|--------|---------------------------------------|-----------------------|------|--------------------------|-------------|-------------|------------|----------|------|
| Sample ID: A1711097-002 | AMSD SampType: MSD  Batch ID: 10915 |        | de: <b>200.8</b><br>No: <b>E200.8</b> | Units: µg/L<br>E200.8 |      | Prep Dat<br>Analysis Dat | te: 11/13/2 |             | RunNo: 23  |          |      |
| Analyte                 | Result                              | PQL    | SPK value                             | SPK Ref Val           | %REC | LowLimit                 | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Aluminum                | 834                                 | 100    | 500.0                                 | 281.9                 | 110  | 70                       | 130         | 805.8       | 3.38       | 20       |      |
| Arsenic                 | 50.9                                | 1.00   | 50.00                                 | 2.033                 | 97.7 | 70                       | 130         | 50.06       | 1.65       | 20       |      |
| Cadmium                 | 55.9                                | 1.00   | 50.00                                 | 2.020                 | 108  | 70                       | 130         | 54.82       | 1.89       | 20       |      |
| Copper                  | 98.8                                | 5.00   | 50.00                                 | 50.96                 | 95.8 | 70                       | 130         | 95.40       | 3.56       | 20       |      |
| Lead                    | 195                                 | 1.00   | 50.00                                 | 131.3                 | 128  | 70                       | 130         | 177.5       | 9.53       | 20       |      |
| Manganese               | 1070                                | 5.00   | 50.00                                 | 943.8                 | 249  | 70                       | 130         | 976.0       | 9.05       | 20       | SEMC |
| Sample ID: CCV          | SampType: <b>CCV</b>                | TestCo | de: <b>200.8</b>                      | Units: µg/L           |      | Prep Dat                 | e:          |             | RunNo: 23  | 719      |      |
| Client ID: CCV          | Potob ID: 4004E                     | Tooth  | No. E200 0                            | E200 8                |      | Analysis Det             | . 44/42/2   | 047         | Coalles 24 | E720     |      |

| Sample ID: CCV | SampType: CCV   | TestCo | de: <b>200.8</b>  | Units: µg/L |      | Prep Da     | te:         |             | RunNo: 237 | 719      |      |
|----------------|-----------------|--------|-------------------|-------------|------|-------------|-------------|-------------|------------|----------|------|
| Client ID: CCV | Batch ID: 10915 | Test   | No: <b>E200.8</b> | E200.8      |      | Analysis Da | te: 11/13/2 | 017         | SeqNo: 31  | 5728     |      |
| Analyte        | Result          | PQL    | SPK value         | SPK Ref Val | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Aluminum       | 537             | 10.0   | 500.0             | 0           | 107  | 90          | 110         |             |            |          |      |
| Arsenic        | 48.1            | 0.100  | 50.00             | 0           | 96.1 | 90          | 110         |             |            |          |      |
| Cadmium        | 51.8            | 0.100  | 50.00             | 0           | 104  | 90          | 110         |             |            |          |      |
| Copper         | 51.6            | 0.500  | 50.00             | 0           | 103  | 90          | 110         |             |            |          |      |
| Lead           | 47.3            | 0.100  | 50.00             | 0           | 94.5 | 90          | 110         |             |            |          |      |
| Manganese      | 50.7            | 0.500  | 50.00             | 0           | 101  | 90          | 110         |             |            |          |      |
| Zinc           | 49.4            | 2.00   | 50.00             | 0           | 98.9 | 90          | 110         |             |            |          |      |

| Sample ID: ICV | SampType: <b>ICV</b> | TestCode: 200.8       | Units: µg/L | Prep Date:                          | RunNo: <b>23719</b>  |
|----------------|----------------------|-----------------------|-------------|-------------------------------------|----------------------|
| Client ID: ICV | Batch ID: 10915      | TestNo: <b>E200.8</b> | E200.8      | Analysis Date: 11/15/2017           | SeqNo: <b>316041</b> |
| Analyte        | Result               | PQL SPK value         | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 4 of 29

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#: **1711081** 

03-Jan-18

#### **Specialty Analytical**

| Client:<br>Project:                  | Maul Foster & Alongi<br>Dolan SCE / 1381.01.0 | )1          |                     |                                                         |                       |                     |                                        | TestCode:                          | 200.8                                       |      |
|--------------------------------------|-----------------------------------------------|-------------|---------------------|---------------------------------------------------------|-----------------------|---------------------|----------------------------------------|------------------------------------|---------------------------------------------|------|
| Sample ID: ICV                       | SampType<br>Batch ID                          |             |                     | de: <b>200.8</b><br>No: <b>E200.8</b>                   | Units: µg/L<br>E200.8 |                     | Prep Date<br>Analysis Date             | e:<br>e: <b>11/15/2017</b>         | RunNo: <b>23719</b><br>SeqNo: <b>316041</b> |      |
| Analyte                              |                                               | Result      | PQL                 | SPK value                                               | SPK Ref Val           | %REC                | LowLimit                               | HighLimit RPD Ref \                | /al %RPD RPDLimit                           | Qual |
| Aluminum<br>Zinc                     |                                               | 523<br>50.0 | 10.0<br>2.00        | 500.0<br>50.00                                          | 0<br>0                | 105<br>100          | 90<br>90                               | 110<br>110                         |                                             |      |
| Sample ID: MB                        | 1 31                                          |             |                     | de: <b>200.8</b>                                        | Units: µg/L           |                     |                                        | e: 11/13/2017                      | RunNo: 23719                                |      |
| Client ID: PBV                       | <b>N</b> Batch ID                             | 10915       | TestN               | lo: <b>E200.8</b>                                       | E200.8                |                     | Analysis Date                          | e: <b>11/15/2017</b>               | SeqNo: <b>316042</b>                        |      |
| Analyte                              |                                               | Result      | PQL                 | SPK value                                               | SPK Ref Val           | %REC                | LowLimit                               | HighLimit RPD Ref \                | /al %RPD RPDLimit                           | Qual |
| Aluminum<br>Zinc                     |                                               | ND<br>ND    | 10.0<br>2.00        |                                                         |                       |                     |                                        |                                    |                                             |      |
| Sample ID: <b>CC\</b>                | / SampType                                    | : CCV       | TestCod             | de: <b>200.8</b>                                        | Units: μg/L           |                     | Prep Date                              | e:                                 | RunNo: <b>23719</b>                         |      |
| Client ID: CC                        | / Ratch ID                                    | : 10915     | TestN               | lo: <b>E200.8</b>                                       | E200.8                |                     | Analysis Date                          | e: <b>11/15/2017</b>               | SeqNo: <b>316048</b>                        |      |
| CHEILID. CC                          | , Datch ID                                    |             |                     |                                                         |                       |                     |                                        |                                    |                                             |      |
| Analyte                              | y Balcii ib                                   | Result      | PQL                 | SPK value                                               | SPK Ref Val           | %REC                | LowLimit                               | HighLimit RPD Ref \                | /al %RPD RPDLimit                           | Qual |
| Analyte<br>Aluminum                  | Battill                                       | Signature   | PQL<br>10.0<br>2.00 | SPK value<br>500.0<br>50.00                             | SPK Ref Val  0 0      |                     | LowLimit<br>90<br>90                   | HighLimit RPD Ref \                | /al %RPD RPDLimit                           | Qual |
|                                      |                                               | 539<br>49.2 | 10.0<br>2.00        | 500.0                                                   | 0                     | %REC<br>108         | 90<br>90                               | 110                                | /al %RPD RPDLimit                           | Qual |
| Analyte<br>Aluminum<br>Zinc          | <b>3-10915</b> SampType                       | 539<br>49.2 | 10.0<br>2.00        | 500.0<br>50.00                                          | 0                     | %REC<br>108<br>98.5 | 90<br>90<br>Prep Date                  | 110<br>110                         |                                             | Qual |
| Analyte Aluminum Zinc Sample ID: LCS | <b>3-10915</b> SampType                       | 539<br>49.2 | 10.0<br>2.00        | 500.0<br>50.00<br>de: <b>200.8</b><br>No: <b>E200.8</b> | 0<br>0<br>Units: μg/L | %REC<br>108<br>98.5 | 90<br>90<br>Prep Date<br>Analysis Date | 110<br>110<br>e: <b>11/13/2017</b> | RunNo: <b>23719</b><br>SeqNo: <b>316052</b> |      |

WO#: **1711081** 

03-Jan-18

#### **Specialty Analytical**

Client: Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 **TestCode: 200.8** 

| Sample ID: LCS-10915 Client ID: LCSW | SampType: <b>LCS</b> Batch ID: <b>10915</b> | TestCode: 20 |         | Units: µg/L<br>E200.8 |      |          | ie: 11/13/2017<br>ie: 11/15/2017 | RunNo: <b>237</b><br>SeqNo: <b>316</b> |          |      |
|--------------------------------------|---------------------------------------------|--------------|---------|-----------------------|------|----------|----------------------------------|----------------------------------------|----------|------|
| Analyte                              | Result                                      | PQL SPI      | K value | SPK Ref Val           | %REC | LowLimit | HighLimit RPD Ref Val            | %RPD                                   | RPDLimit | Qual |
| Zinc                                 | 49.3                                        | 2.00         | 50.00   | 0                     | 98.6 | 85       | 115                              |                                        |          |      |

| Sample ID: ICV | SampType: <b>ICV</b> | TestCode: 200.8       | Units: µg/L |      | Prep Dat     | e:                  |             | RunNo: 239 | 931      |      |
|----------------|----------------------|-----------------------|-------------|------|--------------|---------------------|-------------|------------|----------|------|
| Client ID: ICV | Batch ID: 10979      | TestNo: <b>E200.8</b> | E200.8      | А    | Analysis Dat | e: <b>11/29/2</b> 0 | )17         | SeqNo: 318 | 3556     |      |
| Analyte        | Result               | PQL SPK value         | SPK Ref Val | %REC | LowLimit     | HighLimit           | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Zinc           | 49.3                 | 2.00 50.00            | 0           | 98.5 | 90           | 110                 |             |            |          |      |

| Sample ID: ICV | SampType: <b>ICV</b> | TestCo | de: <b>200.8</b>  | Units: µg/L |      | Prep Da     | te:         |             | RunNo: <b>23</b> 9 | 931      |      |
|----------------|----------------------|--------|-------------------|-------------|------|-------------|-------------|-------------|--------------------|----------|------|
| Client ID: ICV | Batch ID: 10979      | Test   | No: <b>E200.8</b> | E200.8      |      | Analysis Da | te: 11/30/2 | 017         | SeqNo: 318         | 3917     |      |
| Analyte        | Result               | PQL    | SPK value         | SPK Ref Val | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD               | RPDLimit | Qual |
| Arsenic        | 50.1                 | 0.100  | 50.00             | 0           | 100  | 90          | 110         |             |                    |          |      |
| Cadmium        | 51.0                 | 0.100  | 50.00             | 0           | 102  | 90          | 110         |             |                    |          |      |
| Chromium       | 51.2                 | 0.100  | 50.00             | 0           | 102  | 90          | 110         |             |                    |          |      |
| Copper         | 50.8                 | 0.500  | 50.00             | 0           | 102  | 90          | 110         |             |                    |          |      |
| Iron           | 5000                 | 100    | 5000              | 0           | 99.9 | 90          | 110         |             |                    |          |      |
| Lead           | 49.6                 | 0.100  | 50.00             | 0           | 99.3 | 90          | 110         |             |                    |          |      |
| Nickel         | 49.4                 | 0.500  | 50.00             | 0           | 98.8 | 90          | 110         |             |                    |          |      |
| Zinc           | 49.9                 | 2.00   | 50.00             | 0           | 99.8 | 90          | 110         |             |                    |          |      |

Qualifiers: B Analyte detected in the associated Method Blank

RSD is greater than RSDlimit R RPD

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted reco

WO#: **1711081** 

03-Jan-18

#### **Specialty Analytical**

| Client:<br>Project:   | Maul Foster & Alongi<br>Dolan SCE / 1381.01.01 |         |                   |                          |               |             | ī                   | TestCode: 2        | 200.8           |          |         |
|-----------------------|------------------------------------------------|---------|-------------------|--------------------------|---------------|-------------|---------------------|--------------------|-----------------|----------|---------|
| Sample ID: CCV        | SampType: <b>CCV</b>                           | TestCo  | de: <b>200.8</b>  | Units: µg/L              |               | Prep Da     | te:                 |                    | RunNo: 23       | 931      |         |
| Client ID: CCV        | Batch ID: 10979                                | Test    | lo: <b>E200.8</b> | E200.8                   |               | Analysis Da | te: <b>12/1/2</b> 0 | )17                | SeqNo: 31       | 9282     |         |
| Analyte               | Result                                         | PQL     | SPK value         | SPK Ref Val              | %REC          | LowLimit    | HighLimit           | RPD Ref Val        | %RPD            | RPDLimit | Qual    |
| Zinc                  | 49.4                                           | 2.00    | 50.00             | 0                        | 98.8          | 90          | 110                 |                    |                 |          |         |
| Sample ID: <b>ICV</b> | SampType: <b>ICV</b>                           | TestCo  | de: <b>200.8</b>  | Units: µg/L              |               | Prep Da     | te:                 |                    | RunNo: 23       | 719      |         |
| Client ID: ICV        | Batch ID: 10915                                | Test    | lo: <b>E200.8</b> | E200.8                   |               | Analysis Da | te: <b>12/12/</b> 2 | 2017               | SeqNo: 32       | 1455     |         |
| Analyte               | Result                                         | PQL     | SPK value         | SPK Ref Val              | %REC          | LowLimit    | HighLimit           | RPD Ref Val        | %RPD            | RPDLimit | Qual    |
| Manganese             | 49.1                                           | 0.500   | 50.00             | 0                        | 98.2          | 90          | 110                 |                    |                 |          |         |
| Sample ID: CCV        | SampType: <b>CCV</b>                           | TestCo  | de: <b>200.8</b>  | Units: µg/L              |               | Prep Da     | te:                 |                    | RunNo: 23       | 719      |         |
| Client ID: CCV        | Batch ID: 10915                                | Test    | lo: <b>E200.8</b> | E200.8                   |               | Analysis Da | te: <b>12/12/</b> 2 | 2017               | SeqNo: 32       | 1456     |         |
| Analyte               | Result                                         | PQL     | SPK value         | SPK Ref Val              | %REC          | LowLimit    | HighLimit           | RPD Ref Val        | %RPD            | RPDLimit | Qual    |
| Aluminum              | 513                                            | 10.0    | 500.0             | 0                        | 103           | 90          | 110                 |                    |                 |          |         |
| Manganese             | 48.8                                           | 0.500   | 50.00             | 0                        | 97.7          | 90          | 110                 |                    |                 |          |         |
| Sample ID: CCV        | SampType: <b>CCV</b>                           | TestCo  | de: <b>200.8</b>  | Units: µg/L              |               | Prep Da     | te:                 |                    | RunNo: 23       | 719      |         |
| Client ID: CCV        | Batch ID: 10915                                | Test    | lo: <b>E200.8</b> | E200.8                   |               | Analysis Da | te: <b>12/12/</b> 2 | 2017               | SeqNo: 32       | 1459     |         |
| Analyte               | Result                                         | PQL     | SPK value         | SPK Ref Val              | %REC          | LowLimit    | HighLimit           | RPD Ref Val        | %RPD            | RPDLimit | Qual    |
| Aluminum              | 519                                            | 10.0    | 500.0             | 0                        | 104           | 90          | 110                 |                    |                 |          |         |
| Manganese             | 50.1                                           | 0.500   | 50.00             | 0                        | 100           | 90          | 110                 |                    |                 |          |         |
| Zinc                  | 50.4                                           | 2.00    | 50.00             | 0                        | 101           | 90          | 110                 |                    |                 |          |         |
| Qualifiers: B         | Analyte detected in the associated Method      | d Blank | H Holdin          | ng times for preparation | on or analysi | s exceeded  | ND                  | Not Detected at th | e Reporting Lin | nit Pa   | ige 7 d |
| O                     | RSD is greater than RSDlimit                   |         | R RPD o           | outside accepted recov   | ery limits    |             | S                   | Spike Recovery or  | utside accepted |          | _       |

WO#:

1711081

03-Jan-18

**Client:** Maul Foster & Alongi

**Specialty Analytical** 

**Project:** Dolan SCE / 1381.01.01 TestCode: 200.8

Sample ID: CCV Prep Date: SampType: CCV Units: µg/L TestCode: 200.8 RunNo: 23719 Client ID: CCV Batch ID: 10915 TestNo: **E200.8** Analysis Date: 12/12/2017 SeqNo: 321459

E200.8 Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Analyte Qual

WO#:

1711081

03-Jan-18

**Specialty Analytical** 

Maul Foster & Alongi **Client:** 

**Project:** Dolan SCE / 1381.01.01 TestCode: 200.8\_DISS

| Sample ID: ICV | SampType: <b>ICV</b> | TestCo | de: <b>200.8_DIS</b> | S Units: μg/L |      | Prep Da     | te:         |             | RunNo: 237 | 721      |      |
|----------------|----------------------|--------|----------------------|---------------|------|-------------|-------------|-------------|------------|----------|------|
| Client ID: ICV | Batch ID: 10902      | Test   | No: <b>E200.8</b>    | E200.8        |      | Analysis Da | te: 11/13/2 | 017         | SeqNo: 318 | 5659     |      |
| Analyte        | Result               | PQL    | SPK value            | SPK Ref Val   | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Aluminum       | 503                  | 100    | 500.0                | 0             | 101  | 90          | 110         |             |            |          |      |
| Arsenic        | 49.9                 | 0.100  | 50.00                | 0             | 99.8 | 90          | 110         |             |            |          |      |
| Cadmium        | 51.9                 | 0.100  | 50.00                | 0             | 104  | 90          | 110         |             |            |          |      |
| Copper         | 50.8                 | 0.500  | 50.00                | 0             | 102  | 90          | 110         |             |            |          |      |
| Lead           | 49.2                 | 0.100  | 50.00                | 0             | 98.5 | 90          | 110         |             |            |          |      |
| Manganese      | 50.7                 | 0.500  | 50.00                | 0             | 101  | 90          | 110         |             |            |          |      |
| Zinc           | 50.2                 | 2.00   | 50.00                | 0             | 100  | 90          | 110         |             |            |          |      |

| Sample ID: CCV | SampType: <b>CCV</b> | TestCo | de: <b>200.8_DIS</b> | S Units: μg/L |      | Prep Dat     | e:                 |             | RunNo: 237 | 721      |      |
|----------------|----------------------|--------|----------------------|---------------|------|--------------|--------------------|-------------|------------|----------|------|
| Client ID: CCV | Batch ID: 10902      | Test   | No: <b>E200.8</b>    | E200.8        |      | Analysis Dat | te: <b>11/13/2</b> | 017         | SeqNo: 315 | 5660     |      |
| Analyte        | Result               | PQL    | SPK value            | SPK Ref Val   | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Aluminum       | 533                  | 100    | 500.0                | 0             | 107  | 90           | 110                |             |            |          |      |
| Arsenic        | 48.6                 | 0.100  | 50.00                | 0             | 97.1 | 90           | 110                |             |            |          |      |
| Cadmium        | 51.0                 | 0.100  | 50.00                | 0             | 102  | 90           | 110                |             |            |          |      |
| Copper         | 52.3                 | 0.500  | 50.00                | 0             | 105  | 90           | 110                |             |            |          |      |
| Lead           | 49.9                 | 0.100  | 50.00                | 0             | 99.9 | 90           | 110                |             |            |          |      |
| Manganese      | 52.0                 | 0.500  | 50.00                | 0             | 104  | 90           | 110                |             |            |          |      |
| Zinc           | 49.6                 | 2.00   | 50.00                | 0             | 99.2 | 90           | 110                |             |            |          |      |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

Page 9 of 29

WO#:

1711081

03-Jan-18

#### **Specialty Analytical**

**Client:** 

Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 TestCode: 200.8\_DISS

| Sample ID: MB-10902 | SampType: <b>MBLK</b> | TestCode: 200 | .8_DISS Units: μg/L | Prep Date: 11/10/2017           | RunNo: <b>23721</b>    |
|---------------------|-----------------------|---------------|---------------------|---------------------------------|------------------------|
| Client ID: PBW      | Batch ID: 10902       | TestNo: E20   | 0.8 E200.8          | Analysis Date: 11/13/2017       | SeqNo: <b>315661</b>   |
| Analyte             | Result                | PQL SPK       | value SPK Ref Val   | %REC LowLimit HighLimit RPD Ref | Val %RPD RPDLimit Qual |
| Aluminum            | 2.92                  | 100           |                     |                                 | J                      |
| Arsenic             | 0.533                 | 0.100         |                     |                                 |                        |
| Cadmium             | 0.0207                | 0.100         |                     |                                 | J                      |
| Chromium            | ND                    | 0.100         |                     |                                 |                        |
| Copper              | 0.119                 | 0.500         |                     |                                 | J                      |
| Lead                | 0.311                 | 0.100         |                     |                                 |                        |
| Manganese           | 0.194                 | 0.500         |                     |                                 | J                      |
| Zinc                | 0.219                 | 2.00          |                     |                                 | J                      |

| Sample ID: 1711026-001BDUP | SampType: <b>DUP</b> | TestCod | de: <b>200.8_DIS</b> | S Units: μg/L | s: µg/L Prep Date: 11/10/2017 |          |           | RunNo: 23721         |       |          |      |
|----------------------------|----------------------|---------|----------------------|---------------|-------------------------------|----------|-----------|----------------------|-------|----------|------|
| Client ID: ZZZZZZ          | Batch ID: 10902      | TestN   | lo: <b>E200.8</b>    | E200.8        | Analysis Date: 11/13/2017     |          |           | SeqNo: <b>315663</b> |       |          |      |
| Analyte                    | Result               | PQL     | SPK value            | SPK Ref Val   | %REC                          | LowLimit | HighLimit | RPD Ref Val          | %RPD  | RPDLimit | Qual |
| Aluminum                   | 8.36                 | 100     |                      |               |                               |          |           | 8.195                | 1.94  | 20       | J    |
| Arsenic                    | 0.681                | 0.100   |                      |               |                               |          |           | 0.7889               | 14.6  | 20       |      |
| Chromium                   | 0.243                | 0.100   |                      |               |                               |          |           | 0.2526               | 3.76  | 20       |      |
| Copper                     | 3.50                 | 0.500   |                      |               |                               |          |           | 3.541                | 1.07  | 20       |      |
| Lead                       | 0.0777               | 0.100   |                      |               |                               |          |           | 0.1344               | 53.5  | 20       | JRF  |
| Manganese                  | 0.203                | 0.500   |                      |               |                               |          |           | 0.2304               | 12.9  | 20       | J    |
| Zinc                       | 15.6                 | 2.00    |                      |               |                               |          |           | 15.62                | 0.300 | 20       |      |

Qualifiers: Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 10 of 29

RSD is greater than RSDlimit

RPD outside accepted recovery limits

1711081 WO#:

03-Jan-18

#### **Specialty Analytical**

Maul Foster & Alongi **Client:** 

**Project:** Dolan SCE / 1381.01.01 TestCode: 200.8\_DISS

| Sample ID: <b>1711026-001BMS</b> | SampType: <b>MS</b> |       | de: <b>200.8_DIS</b> | S Units: μg/L | Prep Date: 11/10/2017 |              |             | RunNo: <b>23721</b> |                      |          |      |
|----------------------------------|---------------------|-------|----------------------|---------------|-----------------------|--------------|-------------|---------------------|----------------------|----------|------|
| Client ID: ZZZZZZ                | Batch ID: 10902     | TestN | No: <b>E200.8</b>    | E200.8        |                       | Analysis Dat | te: 11/13/2 | 017                 | SeqNo: <b>315664</b> |          |      |
| Analyte                          | Result              | PQL   | SPK value            | SPK Ref Val   | %REC                  | LowLimit     | HighLimit   | RPD Ref Val         | %RPD                 | RPDLimit | Qual |
| Aluminum                         | 429                 | 100   | 500.0                | 8.195         | 84.2                  | 80           | 120         |                     |                      |          |      |
| Arsenic                          | 48.1                | 0.100 | 50.00                | 0.7889        | 94.6                  | 80           | 120         |                     |                      |          |      |
| Cadmium                          | 53.7                | 0.100 | 50.00                | 0.05716       | 107                   | 80           | 120         |                     |                      |          |      |
| Copper                           | 50.1                | 0.500 | 50.00                | 3.541         | 93.0                  | 80           | 120         |                     |                      |          |      |
| Lead                             | 54.1                | 0.100 | 50.00                | 0.1344        | 108                   | 80           | 120         |                     |                      |          |      |
| Manganese                        | 44.5                | 0.500 | 50.00                | 0.2304        | 88.5                  | 80           | 120         |                     |                      |          |      |
| Zinc                             | 67.9                | 2.00  | 50.00                | 15.62         | 105                   | 80           | 120         |                     |                      |          |      |

| Sample ID: 1711026-001BMSD | SampType: MSD   | TestCo | TestCode: 200.8_DISS Units: µg/L |             |                           | Prep Da  | te: 11/10/2 | 017         | RunNo: 23721         |          |      |
|----------------------------|-----------------|--------|----------------------------------|-------------|---------------------------|----------|-------------|-------------|----------------------|----------|------|
| Client ID: ZZZZZZ          | Batch ID: 10902 | Test   | No: <b>E200.8</b>                | E200.8      | Analysis Date: 11/13/2017 |          |             | 017         | SeqNo: <b>315665</b> |          |      |
| Analyte                    | Result          | PQL    | SPK value                        | SPK Ref Val | %REC                      | LowLimit | HighLimit   | RPD Ref Val | %RPD                 | RPDLimit | Qual |
| Aluminum                   | 430             | 100    | 500.0                            | 8.195       | 84.4                      | 80       | 120         | 429.2       | 0.276                | 20       |      |
| Arsenic                    | 48.1            | 0.100  | 50.00                            | 0.7889      | 94.5                      | 80       | 120         | 48.09       | 0.0869               | 20       |      |
| Cadmium                    | 53.7            | 0.100  | 50.00                            | 0.05716     | 107                       | 80       | 120         | 53.74       | 0.0489               | 20       |      |
| Copper                     | 49.6            | 0.500  | 50.00                            | 3.541       | 92.0                      | 80       | 120         | 50.06       | 1.02                 | 20       |      |
| Lead                       | 49.3            | 0.100  | 50.00                            | 0.1344      | 98.3                      | 80       | 120         | 54.15       | 9.42                 | 20       |      |
| Manganese                  | 43.9            | 0.500  | 50.00                            | 0.2304      | 87.4                      | 80       | 120         | 44.50       | 1.28                 | 20       |      |
| Zinc                       | 67.2            | 2.00   | 50.00                            | 15.62       | 103                       | 80       | 120         | 67.93       | 1.04                 | 20       |      |

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

WO#: **1711081** 

03-Jan-18

#### **Specialty Analytical**

Client: Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 **TestCode: 200.8\_DISS** 

| Sample ID: CCV | SampType: CCV   | TestCode: 200.8_DISS Units: μg/L |                   |             | Prep Date:                |          |           |             | RunNo: <b>23721</b>  |          |      |
|----------------|-----------------|----------------------------------|-------------------|-------------|---------------------------|----------|-----------|-------------|----------------------|----------|------|
| Client ID: CCV | Batch ID: 10902 | TestN                            | No: <b>E200.8</b> | E200.8      | Analysis Date: 11/13/2017 |          |           | 017         | SeqNo: <b>315667</b> |          |      |
| Analyte        | Result          | PQL                              | SPK value         | SPK Ref Val | %REC                      | LowLimit | HighLimit | RPD Ref Val | %RPD                 | RPDLimit | Qual |
| Aluminum       | 540             | 100                              | 500.0             | 0           | 108                       | 90       | 110       |             |                      |          |      |
| Arsenic        | 47.4            | 0.100                            | 50.00             | 0           | 94.8                      | 90       | 110       |             |                      |          |      |
| Cadmium        | 51.7            | 0.100                            | 50.00             | 0           | 103                       | 90       | 110       |             |                      |          |      |
| Chromium       | 51.7            | 0.100                            | 50.00             | 0           | 103                       | 90       | 110       |             |                      |          |      |
| Copper         | 50.6            | 0.500                            | 50.00             | 0           | 101                       | 90       | 110       |             |                      |          |      |
| Lead           | 47.2            | 0.100                            | 50.00             | 0           | 94.3                      | 90       | 110       |             |                      |          |      |
| Nickel         | 50.7            | 0.500                            | 50.00             | 0           | 101                       | 90       | 110       |             |                      |          |      |
| Selenium       | 47.7            | 1.00                             | 50.00             | 0           | 95.5                      | 90       | 110       |             |                      |          |      |
| Silver         | 51.2            | 0.100                            | 50.00             | 0           | 102                       | 90       | 110       |             |                      |          |      |
| Zinc           | 48.9            | 2.00                             | 50.00             | 0           | 97.8                      | 90       | 110       |             |                      |          |      |

| Sample ID: ICV | SampType: ICV   | TestCo | TestCode: 200.8_DISS Units: µg/L |             |                           | Prep Date: |           |                      |      | RunNo: 23721 |      |  |
|----------------|-----------------|--------|----------------------------------|-------------|---------------------------|------------|-----------|----------------------|------|--------------|------|--|
| Client ID: ICV | Batch ID: 10902 | Test   | No: <b>E200.8</b>                | E200.8      | Analysis Date: 11/15/2017 |            |           | SeqNo: <b>316028</b> |      |              |      |  |
| Analyte        | Result          | PQL    | SPK value                        | SPK Ref Val | %REC                      | LowLimit   | HighLimit | RPD Ref Val          | %RPD | RPDLimit     | Qual |  |
| Aluminum       | 523             | 100    | 500.0                            | 0           | 105                       | 90         | 110       |                      |      |              |      |  |
| Arsenic        | 49.7            | 0.100  | 50.00                            | 0           | 99.4                      | 90         | 110       |                      |      |              |      |  |
| Cadmium        | 51.2            | 0.100  | 50.00                            | 0           | 102                       | 90         | 110       |                      |      |              |      |  |
| Chromium       | 51.2            | 0.100  | 50.00                            | 0           | 102                       | 90         | 110       |                      |      |              |      |  |
| Copper         | 50.8            | 0.500  | 50.00                            | 0           | 102                       | 90         | 110       |                      |      |              |      |  |
| Lead           | 49.4            | 0.100  | 50.00                            | 0           | 98.9                      | 90         | 110       |                      |      |              |      |  |
| Magnesium      | 5280            | 100    | 5000                             | 0           | 106                       | 90         | 110       |                      |      |              | E    |  |
| Zinc           | 50.0            | 2.00   | 50.00                            | 0           | 100                       | 90         | 110       |                      |      |              |      |  |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 12 of 29

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#: 1711081

03-Jan-18

#### **Specialty Analytical**

| Client:  | Maul Foster & Alongi   |           |            |
|----------|------------------------|-----------|------------|
| Project: | Dolan SCE / 1381.01.01 | TestCode: | 200.8_DISS |

|                                       | oster & Alongi<br>SCE / 1381.01.01 |                       |                         | TestCode: 200.8_DISS                             |                                             |  |  |  |  |  |  |  |
|---------------------------------------|------------------------------------|-----------------------|-------------------------|--------------------------------------------------|---------------------------------------------|--|--|--|--|--|--|--|
| Sample ID: MB-10902<br>Client ID: PBW | SampType: MBLK Batch ID: 10902     | TestCode: 200.8_DIS   | S Units: μg/L<br>E200.8 | Prep Date: 11/10/2017  Analysis Date: 11/15/2017 | RunNo: <b>23721</b><br>SeqNo: <b>316029</b> |  |  |  |  |  |  |  |
| Analyte                               | Result                             | PQL SPK value         | SPK Ref Val             | %REC LowLimit HighLimit RPD Ref V                | al %RPD RPDLimit Qual                       |  |  |  |  |  |  |  |
| Aluminum                              | ND                                 | 100                   |                         |                                                  |                                             |  |  |  |  |  |  |  |
| Arsenic                               | ND                                 | 0.100                 |                         |                                                  |                                             |  |  |  |  |  |  |  |
| Cadmium                               | ND                                 | 0.100                 |                         |                                                  |                                             |  |  |  |  |  |  |  |
| Chromium                              | ND                                 | 0.100                 |                         |                                                  |                                             |  |  |  |  |  |  |  |
| Copper                                | ND                                 | 0.500                 |                         |                                                  |                                             |  |  |  |  |  |  |  |
| Lead                                  | ND                                 | 0.100                 |                         |                                                  |                                             |  |  |  |  |  |  |  |
| Manganese                             | ND                                 | 0.500                 |                         |                                                  |                                             |  |  |  |  |  |  |  |
| Zinc                                  | ND                                 | 2.00                  |                         |                                                  |                                             |  |  |  |  |  |  |  |
| Sample ID: ICV                        | SampType: <b>ICV</b>               | TestCode: 200.8_DIS   | S Units: μg/L           | Prep Date:                                       | RunNo: <b>23721</b>                         |  |  |  |  |  |  |  |
| Client ID: ICV                        | Batch ID: 10902                    | TestNo: <b>E200.8</b> | E200.8                  | Analysis Date: 12/12/2017                        | SeqNo: <b>321463</b>                        |  |  |  |  |  |  |  |
| Analyte                               | Result                             | PQL SPK value         | SPK Ref Val             | %REC LowLimit HighLimit RPD Ref V                | al %RPD RPDLimit Qual                       |  |  |  |  |  |  |  |
| Aluminum                              | 495                                | 100 500.0             | 0                       | 99.1 90 110                                      |                                             |  |  |  |  |  |  |  |
| Manganese                             | 49.1                               | 0.500 50.00           | 0                       | 98.2 90 110                                      |                                             |  |  |  |  |  |  |  |
| Sample ID: CCV                        | SampType: <b>CCV</b>               | TestCode: 200.8_DIS   | S Units: μg/L           | Prep Date:                                       | RunNo: <b>23721</b>                         |  |  |  |  |  |  |  |
| Client ID: CCV                        | Batch ID: 10902                    | TestNo: <b>E200.8</b> | E200.8                  | Analysis Date: 12/12/2017                        | SegNo: <b>321464</b>                        |  |  |  |  |  |  |  |

| Sample ID: CCV Client ID: CCV | SampType: CCV Batch ID: 10902 | TestCode: 200.8_DISS Units: μg/L TestNo: E200.8 E200.8 |                |             | Prep Date: Analysis Date: 12/12/2017 |          |            |             | RunNo: <b>23721</b><br>SeqNo: <b>321464</b> |          |      |
|-------------------------------|-------------------------------|--------------------------------------------------------|----------------|-------------|--------------------------------------|----------|------------|-------------|---------------------------------------------|----------|------|
| Analyte                       | Result                        | PQL                                                    | SPK value      | SPK Ref Val | %REC                                 | LowLimit | HighLimit  | RPD Ref Val | %RPD                                        | RPDLimit | Qual |
| Aluminum<br>Manganese         | 513<br>48.8                   | 100<br>0.500                                           | 500.0<br>50.00 | 0<br>0      | 103<br>97.7                          | 90<br>90 | 110<br>110 |             |                                             |          |      |

Holding times for preparation or analysis exceeded

Qualifiers: Analyte detected in the associated Method Blank

RSD is greater than RSDlimit

RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

Page 13 of 29

Spike Recovery outside accepted reco

WO#:

1711081

03-Jan-18

**Specialty Analytical** 

Maul Foster & Alongi **Client:** 

**Project:** Dolan SCE / 1381.01.01 TestCode: 200.8\_DISS

| Sample ID: CCV | SampType: <b>CCV</b> | TestCode: 200.8_DISS Units: μg/L | Prep Date:                          | RunNo: 23721         |
|----------------|----------------------|----------------------------------|-------------------------------------|----------------------|
| Client ID: CCV | Batch ID: 10902      | TestNo: <b>E200.8 E200.8</b>     | Analysis Date: 12/12/2017           | SeqNo: <b>321467</b> |
| Analyte        | Result               | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Aluminum       | 519                  | 100 500.0 0                      | 104 90 110                          |                      |
| Manganese      | 50.1                 | 0.500 50.00 0                    | 100 90 110                          |                      |
|                |                      |                                  |                                     |                      |
| Sample ID: CCB | SampType: <b>CCB</b> | TestCode: 200.8_DISS Units: µg/L | Prep Date:                          | RunNo: <b>23721</b>  |
| Client ID: CCB | Batch ID: 10902      | TestNo: <b>E200.8 E200.8</b>     | Analysis Date: 12/12/2017           | SeqNo: <b>321468</b> |
| Analyte        | Result               | PQL SPK value SPK Ref Val        | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |

Aluminum

ND

100

Holding times for preparation or analysis exceeded

WO#: **1711081** 

03-Jan-18

#### **Specialty Analytical**

|                            | Maul Foster & Alongi<br>Dolan SCE / 1381.01. |                 |         |                     |             |      |              | Т                   | estCode: 8  | 8082LL W            |             |      |
|----------------------------|----------------------------------------------|-----------------|---------|---------------------|-------------|------|--------------|---------------------|-------------|---------------------|-------------|------|
| rroject: 1                 | Joian SCE / 1381.01.                         | 01              |         |                     |             |      |              | 1                   | estCoue: d  | OUOZLL_VV           |             |      |
| Sample ID: LCS-109         | 08 SampTyp                                   | e: <b>LCS</b>   | TestCod | le: <b>8082LL_W</b> | Units: µg/L |      | Prep Date    | e: <b>11/10/2</b> 0 | 017         | RunNo: <b>237</b>   | <b>'</b> 27 |      |
| Client ID: LCSW            | Batch I                                      | D: <b>10908</b> | TestN   | lo: SW 8082A        | SW3510_PCB  |      | Analysis Dat | e: <b>11/13/2</b> 0 | 017         | SeqNo: 315          | 5801        |      |
| Analyte                    |                                              | Result          | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit     | HighLimit           | RPD Ref Val | %RPD                | RPDLimit    | Qual |
| Aroclor 1016/1260          |                                              | 1.72            | 0.0200  | 2.000               | 0           | 86.1 | 40.4         | 120                 |             |                     |             |      |
| Sample ID: LCSD-10         | 908 SampTyp                                  | e: <b>LCSD</b>  | TestCod | le: <b>8082LL_W</b> | Units: µg/L |      | Prep Date    | e: <b>11/10/2</b>   | )17         | RunNo: <b>237</b>   | 727         |      |
| Client ID: LCSS02          | Batch II                                     | D: <b>10908</b> | TestN   | lo: SW 8082A        | SW3510_PCB  |      | Analysis Dat | e: <b>11/13/2</b> 0 | 017         | SeqNo: 315          | 802         |      |
| Analyte                    |                                              | Result          | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit     | HighLimit           | RPD Ref Val | %RPD                | RPDLimit    | Qual |
| Aroclor 1016/1260          |                                              | 1.86            | 0.0200  | 2.000               | 0           | 92.8 | 40.4         | 120                 | 1.722       | 7.46                | 20          |      |
| Sample ID: <b>1016/126</b> | 0 CCV SampType                               | e: CCV          | TestCod | le: <b>8082LL_W</b> | Units: µg/L |      | Prep Date    | e:                  |             | RunNo: <b>23727</b> |             |      |
| Client ID: CCV             | Batch ID                                     | D: <b>10908</b> | TestN   | lo: <b>SW 8082A</b> | SW3510_PCB  |      | Analysis Dat | e: <b>11/13/2</b> 0 | 017         | SeqNo: 315          | 808         |      |
| Analyte                    |                                              | Result          | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit     | HighLimit           | RPD Ref Val | %RPD                | RPDLimit    | Qual |
| Aroclor 1016/1260          |                                              | 1.80            | 0.0200  | 2.000               | 0           | 90.0 | 85           | 115                 |             |                     |             |      |
| Sample ID: <b>1016/126</b> | 0 CCV SampTyp                                | e: CCV          | TestCod | le: <b>8082LL_W</b> | Units: µg/L |      | Prep Date    | e:                  |             | RunNo: <b>237</b>   | <b>727</b>  |      |
| Client ID: CCV             | Batch ID                                     | D: <b>10908</b> | TestN   | lo: SW 8082A        | SW3510_PCB  |      | Analysis Dat | e: <b>11/13/2</b> 0 | 017         | SeqNo: 315          | 809         |      |
| Analyte                    |                                              | Result          | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit     | HighLimit           | RPD Ref Val | %RPD                | RPDLimit    | Qual |
| Aroclor 1016/1260          |                                              | 1.87            | 0.0200  | 2.000               | 0           | 93.6 | 85           | 115                 |             |                     |             |      |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 15 of 29

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#: **1** 

1711081

03-Jan-18

Specialty Analytical

**Client:** 

Maul Foster & Alongi

Project: Dolan SCE / 1381.01.01 TestCode: 8082LL\_W

| Sample ID: MB-10908      | SampType: MBLK  | TestCode: 8082LL_W Units: µg/L |                    |             |            | Prep Da  | te: 11/10/2 | 2017                      | RunNo: 237 |          |      |
|--------------------------|-----------------|--------------------------------|--------------------|-------------|------------|----------|-------------|---------------------------|------------|----------|------|
| Client ID: PBW           | Batch ID: 10908 | TestN                          | o: <b>SW 8082A</b> | SW3510_PCB  | SW3510_PCB |          |             | Analysis Date: 11/13/2017 |            |          |      |
| Analyte                  | Result          | PQL                            | SPK value          | SPK Ref Val | %REC       | LowLimit | HighLimit   | RPD Ref Val               | %RPD       | RPDLimit | Qual |
| Aroclor 1016             | ND              | 0.0200                         |                    |             |            |          |             |                           |            |          |      |
| Aroclor 1221             | ND              | 0.0200                         |                    |             |            |          |             |                           |            |          |      |
| Aroclor 1232             | ND              | 0.0200                         |                    |             |            |          |             |                           |            |          |      |
| Aroclor 1242             | ND              | 0.0200                         |                    |             |            |          |             |                           |            |          |      |
| Aroclor 1248             | ND              | 0.0200                         |                    |             |            |          |             |                           |            |          |      |
| Aroclor 1254             | ND              | 0.0200                         |                    |             |            |          |             |                           |            |          |      |
| Aroclor 1260             | ND              | 0.0200                         |                    |             |            |          |             |                           |            |          |      |
| Aroclor 1262             | ND              | 0.0200                         |                    |             |            |          |             |                           |            |          |      |
| Aroclor 1268             | ND              | 0.0200                         |                    |             |            |          |             |                           |            |          |      |
| Surr: Decachlorobiphenyl | 147             |                                | 200.0              |             | 73.4       | 45       | 107         |                           |            |          |      |

WO#:

1711081

03-Jan-18

**Specialty Analytical** 

Client: Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 **TestCode: 8270BN\_W** 

| Sample ID: CCV MSSWS-1510   | SampType: CCV   | TestCod | de: <b>8270BN_V</b> | / Units: μg/L |      |             |                    |             | RunNo: 237        | 776      |      |
|-----------------------------|-----------------|---------|---------------------|---------------|------|-------------|--------------------|-------------|-------------------|----------|------|
| Client ID: CCV              | Batch ID: 10909 | TestN   | lo: <b>SW8270D</b>  | SW 3510C      |      | Analysis Da | te: <b>11/13/2</b> | 017         | SeqNo: <b>316</b> | 6477     |      |
| Analyte                     | Result          | PQL     | SPK value           | SPK Ref Val   | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD              | RPDLimit | Qual |
| 1,2,4-Trichlorobenzene      | 20.8            | 1.00    | 20.00               | 0             | 104  | 80          | 120                |             |                   |          |      |
| 1,2-Dichlorobenzene         | 19.3            | 1.00    | 20.00               | 0             | 96.7 | 80          | 120                |             |                   |          |      |
| 1,3-Dichlorobenzene         | 19.0            | 1.00    | 20.00               | 0             | 94.8 | 80          | 120                |             |                   |          |      |
| 1,4-Dichlorobenzene         | 20.2            | 1.00    | 20.00               | 0             | 101  | 80          | 120                |             |                   |          |      |
| 2,4-Dinitrotoluene          | 18.5            | 5.00    | 20.00               | 0             | 92.7 | 80          | 120                |             |                   |          |      |
| 2,6-Dinitrotoluene          | 18.6            | 5.00    | 20.00               | 0             | 93.0 | 80          | 120                |             |                   |          |      |
| 2-Chloronaphthalene         | 20.4            | 1.00    | 20.00               | 0             | 102  | 80          | 120                |             |                   |          |      |
| 2-Methylnaphthalene         | 20.1            | 1.00    | 20.00               | 0             | 101  | 80          | 120                |             |                   |          |      |
| 3-Nitroaniline              | 18.3            | 6.00    | 20.00               | 0             | 91.5 | 80          | 120                |             |                   |          |      |
| 4-Bromophenyl phenyl ether  | 17.3            | 1.00    | 20.00               | 0             | 86.4 | 80          | 120                |             |                   |          |      |
| 4-Chlorophenyl phenyl ether | 18.4            | 1.00    | 20.00               | 0             | 91.9 | 80          | 120                |             |                   |          |      |
| 4-Nitroaniline              | 18.3            | 5.00    | 20.00               | 0             | 91.6 | 80          | 120                |             |                   |          |      |
| Acenaphthene                | 19.3            | 1.00    | 20.00               | 0             | 96.3 | 80          | 120                |             |                   |          |      |
| Acenaphthylene              | 20.2            | 1.00    | 20.00               | 0             | 101  | 80          | 120                |             |                   |          |      |
| Anthracene                  | 20.4            | 1.00    | 20.00               | 0             | 102  | 80          | 120                |             |                   |          |      |
| Benz(a)anthracene           | 21.9            | 1.00    | 20.00               | 0             | 110  | 80          | 120                |             |                   |          |      |
| Benzo(a)pyrene              | 22.8            | 1.00    | 20.00               | 0             | 114  | 80          | 120                |             |                   |          |      |
| Benzo(b)fluoranthene        | 17.7            | 1.00    | 20.00               | 0             | 88.6 | 80          | 120                |             |                   |          |      |
| Benzo(g,h,i)perylene        | 21.6            | 1.00    | 20.00               | 0             | 108  | 80          | 120                |             |                   |          |      |
| Benzo(k)fluoranthene        | 23.2            | 1.00    | 20.00               | 0             | 116  | 80          | 120                |             |                   |          |      |
| Bis(2-chloroethoxy)methane  | 21.0            | 1.00    | 20.00               | 0             | 105  | 80          | 120                |             |                   |          |      |
| Bis(2-chloroethyl)ether     | 19.9            | 2.00    | 20.00               | 0             | 99.6 | 80          | 120                |             |                   |          |      |
| Bis(2-chloroisopropyl)ether | 19.3            | 1.00    | 20.00               | 0             | 96.7 | 80          | 120                |             |                   |          |      |
| Bis(2-ethylhexyl)phthalate  | 21.4            | 1.00    | 20.00               | 0             | 107  | 80          | 120                |             |                   |          |      |
| Butyl benzyl phthalate      | 23.8            | 1.00    | 20.00               | 0             | 119  | 80          | 120                |             |                   |          |      |
| Chrysene                    | 25.1            | 1.00    | 20.00               | 0             | 126  | 80          | 120                |             |                   |          | S    |

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 17 of 29

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

TestCode: 8270BN\_W

WO#:

1711081

03-Jan-18

**Specialty Analytical** 

Client: Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01

| Sample ID: CCV MSSWS-1510 | SampType: CCV   | TestCod | de: <b>8270BN_W</b> | Units: µg/L |      | Prep Dat     | e:                 |             | RunNo: 23 | 776      |      |
|---------------------------|-----------------|---------|---------------------|-------------|------|--------------|--------------------|-------------|-----------|----------|------|
| Client ID: CCV            | Batch ID: 10909 | TestN   | No: <b>SW8270D</b>  | SW 3510C    |      | Analysis Dat | ie: <b>11/13/2</b> | 017         | SeqNo: 31 | 6477     |      |
| Analyte                   | Result          | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD      | RPDLimit | Qual |
| Dibenz(a,h)anthracene     | 20.2            | 1.00    | 20.00               | 0           | 101  | 80           | 120                |             |           |          |      |
| Dibenzofuran              | 17.5            | 1.00    | 20.00               | 0           | 87.5 | 80           | 120                |             |           |          |      |
| Diethyl phthalate         | 18.3            | 1.00    | 20.00               | 0           | 91.5 | 80           | 120                |             |           |          |      |
| Dimethyl phthalate        | 20.1            | 1.00    | 20.00               | 0           | 100  | 80           | 120                |             |           |          |      |
| Di-n-butyl phthalate      | 20.7            | 1.00    | 20.00               | 0           | 104  | 80           | 120                |             |           |          |      |
| Di-n-octyl phthalate      | 23.7            | 1.00    | 20.00               | 0           | 118  | 80           | 120                |             |           |          |      |
| Fluoranthene              | 20.7            | 1.00    | 20.00               | 0           | 104  | 80           | 120                |             |           |          |      |
| Fluorene                  | 18.6            | 1.00    | 20.00               | 0           | 93.3 | 80           | 120                |             |           |          |      |
| Hexachlorobenzene         | 20.0            | 1.00    | 20.00               | 0           | 99.9 | 80           | 120                |             |           |          |      |
| Hexachlorobutadiene       | 22.0            | 2.00    | 20.00               | 0           | 110  | 80           | 120                |             |           |          |      |
| Hexachlorocyclopentadiene | 20.6            | 5.00    | 20.00               | 0           | 103  | 80           | 120                |             |           |          |      |
| Hexachloroethane          | 20.2            | 2.00    | 20.00               | 0           | 101  | 80           | 120                |             |           |          |      |
| Indeno(1,2,3-cd)pyrene    | 21.7            | 1.00    | 20.00               | 0           | 109  | 80           | 120                |             |           |          |      |
| Isophorone                | 23.2            | 1.00    | 20.00               | 0           | 116  | 80           | 120                |             |           |          |      |
| Naphthalene               | 19.2            | 1.00    | 20.00               | 0           | 95.8 | 80           | 120                |             |           |          |      |
| Nitrobenzene              | 23.1            | 1.00    | 20.00               | 0           | 115  | 80           | 120                |             |           |          |      |
| N-nitrosodimethylamine    | 23.3            | 5.00    | 20.00               | 0           | 117  | 80           | 120                |             |           |          |      |
| N-Nitrosodi-n-propylamine | 20.1            | 2.00    | 20.00               | 0           | 101  | 80           | 120                |             |           |          |      |
| N-Nitrosodiphenylamine    | 17.7            | 1.00    | 20.00               | 0           | 88.4 | 80           | 120                |             |           |          |      |
| Phenanthrene              | 20.0            | 1.00    | 20.00               | 0           | 100  | 80           | 120                |             |           |          |      |
| Pyrene                    | 23.5            | 1.00    | 20.00               | 0           | 118  | 80           | 120                |             |           |          |      |
|                           |                 |         |                     |             |      |              |                    |             |           |          |      |

Qualifiers: B Analyte detected in the associated Method Blank

Pyridine

0

102

80

120

25.0

20.00

20.4

O RSD is greater than RSDlimit

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

WO#: 1

1711081

03-Jan-18

**Specialty Analytical** 

**Client:** 

Maul Foster & Alongi

Project: Dolan SCE / 1381.01.01 TestCode: **8270BN\_W** 

| Sample ID: MB-10909         | SampType: MBLK  | TestCod | le: <b>8270BN_W</b> | Units: µg/L |      | Prep Da     | te: 11/10/2  | 2017        | RunNo: 237 | 776      |      |
|-----------------------------|-----------------|---------|---------------------|-------------|------|-------------|--------------|-------------|------------|----------|------|
| Client ID: PBW              | Batch ID: 10909 | TestN   | lo: <b>SW8270D</b>  | SW 3510C    |      | Analysis Da | ite: 11/13/2 | 2017        | SeqNo: 316 | 6478     |      |
| Analyte                     | Result          | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit    | HighLimit    | RPD Ref Val | %RPD       | RPDLimit | Qual |
| 1,2,4-Trichlorobenzene      | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| 1,2-Dichlorobenzene         | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| 1,3-Dichlorobenzene         | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| 1,4-Dichlorobenzene         | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| 2,4-Dinitrotoluene          | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| 2,6-Dinitrotoluene          | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| 2-Chloronaphthalene         | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| 2-Methylnaphthalene         | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| 3-Nitroaniline              | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| 4-Bromophenyl phenyl ether  | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| 4-Chlorophenyl phenyl ether | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| 4-Nitroaniline              | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| Acenaphthene                | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| Acenaphthylene              | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| Anthracene                  | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| Benz(a)anthracene           | 0.480           | 1.00    |                     |             |      |             |              |             |            |          | J    |
| Benzo(a)pyrene              | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| Benzo(b)fluoranthene        | 0.150           | 1.00    |                     |             |      |             |              |             |            |          | J    |
| Benzo(g,h,i)perylene        | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| Benzo(k)fluoranthene        | 0.150           | 1.00    |                     |             |      |             |              |             |            |          | J    |
| Bis(2-chloroethoxy)methane  | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| Bis(2-chloroethyl)ether     | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| Bis(2-chloroisopropyl)ether | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| Bis(2-ethylhexyl)phthalate  | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| Butyl benzyl phthalate      | ND              | 1.00    |                     |             |      |             |              |             |            |          |      |
| Chrysene                    | 0.170           | 1.00    |                     |             |      |             |              |             |            |          | J    |

Qualifiers: B Analyte detected in the associated Method Blank

Tethod Blank H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 19 of 29

O RSD is greater than RSDlimit

RPD outside accepted recovery limits

WO#:

1711081

03-Jan-18

**Specialty Analytical** 

**Client:** 

Maul Foster & Alongi

Project: Dolan SCE / 1381.01.01 TestCode: 8270BN\_W

| Result  ND | TestN<br>PQL<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.0      | SPK value                                                                                                                                       | SW 3510C<br>SPK Ref Val                                                                                                                                                                         | %REC                                                                                                                                                                    | Analysis Date                                                                                                                                                                                                                             |                                                                                                                                                                                                         | RPD Ref Val                                                                                                                                                                                           | SeqNo: 316<br>%RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND ND ND ND ND ND ND O.370 ND ND ND            | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                     | SPK value                                                                                                                                       | SPK Ref Val                                                                                                                                                                                     | %REC                                                                                                                                                                    | LowLimit                                                                                                                                                                                                                                  | HighLimit                                                                                                                                                                                               | RPD Ref Val                                                                                                                                                                                           | %RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RPDLimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND<br>ND<br>ND<br>ND<br>0.370<br>ND<br>ND      | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND<br>ND<br>ND<br>0.370<br>ND<br>ND            | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                                     |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND<br>ND<br>0.370<br>ND<br>ND<br>ND            | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                                     |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND<br>0.370<br>ND<br>ND<br>ND                  | 1.00<br>1.00<br>1.00<br>1.00<br>1.00                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.370<br>ND<br>ND<br>ND                        | 1.00<br>1.00<br>1.00<br>1.00                                                     |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND<br>ND<br>ND                                 | 1.00<br>1.00<br>1.00                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND<br>ND                                       | 1.00<br>1.00                                                                     |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND                                             | 1.00                                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                |                                                                                  |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND                                             | 1.00                                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                | 1.00                                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND                                             | 1.00                                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND                                             | 1.00                                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND                                             | 1.00                                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND                                             | 1.00                                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND                                             | 1.00                                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND                                             | 1.00                                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND                                             | 1.00                                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND                                             | 1.00                                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND                                             | 1.00                                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND                                             | 1.00                                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND                                             | 1.00                                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ND                                             | 1.00                                                                             |                                                                                                                                                 |                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 66.6                                           |                                                                                  | 100.0                                                                                                                                           |                                                                                                                                                                                                 | 66.6                                                                                                                                                                    | 33.1                                                                                                                                                                                                                                      | 112.3                                                                                                                                                                                                   |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 79.2                                           |                                                                                  | 100.0                                                                                                                                           |                                                                                                                                                                                                 | 79.2                                                                                                                                                                    | 41                                                                                                                                                                                                                                        | 122                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 63.2                                           |                                                                                  | 100.0                                                                                                                                           |                                                                                                                                                                                                 | 63.2                                                                                                                                                                    | 28.9                                                                                                                                                                                                                                      | 99.9                                                                                                                                                                                                    |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>66.6<br>79.2<br>63.2 | ND 1.00 | ND 1.00 | ND 1.00 Second 100.0 79.2 100.0 | ND 1.00 66.6 79.2 100.0 79.2 63.2 | ND 1.00<br>ND 79.2 41<br>63.2 100.0 63.2 28.9 | ND 1.00<br>ND 79.2 41 122<br>63.2 100.0 63.2 28.9 99.9 | ND 1.00 Solution of the state o | ND 1.00 Solution of the state of the | ND 1.00<br>ND 1.00<br>Solution of the second of the secon |

S Spike Recovery outside accepted reco

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

WO#:

1711081

03-Jan-18

**Specialty Analytical** 

Client: Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 **TestCode: 8270BN\_W** 

| Sample ID: LCS-10909        | SampType: LCS   | TestCo | de: <b>8270BN_V</b> | / Units: μg/L |      |             |                    | 017         | RunNo: 237 | 76       |      |
|-----------------------------|-----------------|--------|---------------------|---------------|------|-------------|--------------------|-------------|------------|----------|------|
| Client ID: LCSW             | Batch ID: 10909 | Test   | No: <b>SW8270D</b>  | SW 3510C      |      | Analysis Da | te: <b>11/13/2</b> | 017         | SeqNo: 316 | 6483     |      |
| Analyte                     | Result          | PQL    | SPK value           | SPK Ref Val   | %REC | LowLimit    | HighLimit          | RPD Ref Val | %RPD       | RPDLimit | Qual |
| 1,2,4-Trichlorobenzene      | 30.0            | 1.00   | 40.00               | 0             | 75.1 | 27.5        | 128.1              |             |            |          |      |
| 1,2-Dichlorobenzene         | 19.6            | 1.00   | 40.00               | 0             | 49.0 | 30          | 120                |             |            |          |      |
| 1,3-Dichlorobenzene         | 13.8            | 1.00   | 40.00               | 0             | 34.6 | 30          | 120                |             |            |          |      |
| 1,4-Dichlorobenzene         | 12.8            | 1.00   | 40.00               | 0             | 31.9 | 27.8        | 120.9              |             |            |          |      |
| 2,4-Dinitrotoluene          | 32.4            | 1.00   | 40.00               | 0             | 80.9 | 52.9        | 117.6              |             |            |          |      |
| 2,6-Dinitrotoluene          | 29.0            | 1.00   | 40.00               | 0             | 72.6 | 30          | 120                |             |            |          |      |
| 2-Chloronaphthalene         | 31.6            | 1.00   | 40.00               | 0             | 78.9 | 30          | 120                |             |            |          |      |
| 2-Methylnaphthalene         | 25.3            | 1.00   | 40.00               | 0             | 63.2 | 30          | 120                |             |            |          |      |
| 3-Nitroaniline              | 28.3            | 1.00   | 40.00               | 0             | 70.8 | 30          | 120                |             |            |          |      |
| 4-Bromophenyl phenyl ether  | 35.3            | 1.00   | 40.00               | 0             | 88.2 | 30          | 120                |             |            |          |      |
| 4-Chlorophenyl phenyl ether | 33.8            | 1.00   | 40.00               | 0             | 84.4 | 30          | 120                |             |            |          |      |
| 4-Nitroaniline              | 28.3            | 1.00   | 40.00               | 0             | 70.8 | 30          | 120                |             |            |          |      |
| Acenaphthene                | 29.2            | 1.00   | 40.00               | 0             | 72.9 | 39.8        | 114.2              |             |            |          |      |
| Acenaphthylene              | 29.6            | 1.00   | 40.00               | 0             | 73.9 | 30          | 120                |             |            |          |      |
| Anthracene                  | 33.6            | 1.00   | 40.00               | 0             | 84.0 | 30          | 120                |             |            |          |      |
| Benz(a)anthracene           | 20.0            | 1.00   | 40.00               | 0             | 50.0 | 30          | 120                |             |            |          |      |
| Benzo(a)pyrene              | 41.0            | 1.00   | 40.00               | 0             | 103  | 30          | 120                |             |            |          |      |
| Benzo(b)fluoranthene        | 41.9            | 1.00   | 40.00               | 0             | 105  | 30          | 120                |             |            |          |      |
| Benzo(g,h,i)perylene        | 29.7            | 1.00   | 40.00               | 0             | 74.2 | 30          | 120                |             |            |          |      |
| Benzo(k)fluoranthene        | 41.4            | 1.00   | 40.00               | 0             | 104  | 30          | 120                |             |            |          |      |
| Bis(2-chloroethoxy)methane  | 29.7            | 1.00   | 40.00               | 0             | 74.3 | 30          | 120                |             |            |          |      |
| Bis(2-chloroethyl)ether     | 16.1            | 1.00   | 40.00               | 0             | 40.2 | 30          | 120                |             |            |          |      |
| Bis(2-chloroisopropyl)ether | 20.1            | 1.00   | 40.00               | 0             | 50.3 | 30          | 120                |             |            |          |      |
| Bis(2-ethylhexyl)phthalate  | 28.7            | 1.00   | 40.00               | 0             | 71.7 | 30          | 120                |             |            |          |      |
| Butyl benzyl phthalate      | 25.3            | 1.00   | 40.00               | 0             | 63.4 | 30          | 120                |             |            |          |      |
| Chrysene                    | 24.5            | 1.00   | 40.00               | 0             | 61.2 | 30          | 120                |             |            |          |      |

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 21 of 29

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#:

1711081

03-Jan-18

**Specialty Analytical** 

Maul Foster & Alongi **Client: Project:** Dolan SCE / 1381.01.01

TestCode: 8270BN\_W

| Sample ID: LCS-10909      | SampType: <b>LCS</b> | TestCo | de: <b>8270BN_W</b> | Units: µg/L |      |             |             |             | RunNo: 237 | 776      |      |
|---------------------------|----------------------|--------|---------------------|-------------|------|-------------|-------------|-------------|------------|----------|------|
| Client ID: LCSW           | Batch ID: 10909      | Test   | No: <b>SW8270D</b>  | SW 3510C    |      | Analysis Da | te: 11/13/2 | 017         | SeqNo: 316 | 6483     |      |
| Analyte                   | Result               | PQL    | SPK value           | SPK Ref Val | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual |
| Dibenz(a,h)anthracene     | 33.1                 | 1.00   | 40.00               | 0           | 82.8 | 30          | 120         |             |            |          |      |
| Dibenzofuran              | 34.5                 | 1.00   | 40.00               | 0           | 86.3 | 30          | 120         |             |            |          |      |
| Diethyl phthalate         | 30.4                 | 1.00   | 40.00               | 0           | 75.9 | 30          | 120         |             |            |          |      |
| Dimethyl phthalate        | 21.2                 | 1.00   | 40.00               | 0           | 53.0 | 30          | 120         |             |            |          |      |
| Di-n-butyl phthalate      | 36.1                 | 1.00   | 40.00               | 0           | 90.2 | 30          | 120         |             |            |          |      |
| Di-n-octyl phthalate      | 31.9                 | 1.00   | 40.00               | 0           | 79.8 | 30          | 120         |             |            |          |      |
| Fluoranthene              | 33.1                 | 1.00   | 40.00               | 0           | 82.7 | 30          | 120         |             |            |          |      |
| Fluorene                  | 32.5                 | 1.00   | 40.00               | 0           | 81.2 | 30          | 120         |             |            |          |      |
| Hexachlorobenzene         | 35.5                 | 1.00   | 40.00               | 0           | 88.7 | 30          | 120         |             |            |          |      |
| Hexachlorobutadiene       | 26.2                 | 1.00   | 40.00               | 0           | 65.5 | 30          | 120         |             |            |          |      |
| Hexachlorocyclopentadiene | 18.4                 | 1.00   | 40.00               | 0           | 46.1 | 30          | 120         |             |            |          |      |
| Hexachloroethane          | 15.4                 | 1.00   | 40.00               | 0           | 38.4 | 30          | 120         |             |            |          |      |
| Indeno(1,2,3-cd)pyrene    | 32.0                 | 1.00   | 40.00               | 0           | 80.1 | 30          | 120         |             |            |          |      |
| Isophorone                | 30.2                 | 1.00   | 40.00               | 0           | 75.6 | 30          | 120         |             |            |          |      |
| Naphthalene               | 28.8                 | 1.00   | 40.00               | 0           | 72.1 | 30          | 120         |             |            |          |      |
| Nitrobenzene              | 34.3                 | 1.00   | 40.00               | 0           | 85.7 | 30          | 120         |             |            |          |      |
| N-nitrosodimethylamine    | 16.7                 | 1.00   | 40.00               | 0           | 41.7 | 30          | 120         |             |            |          |      |
| N-Nitrosodi-n-propylamine | 44.5                 | 1.00   | 40.00               | 0           | 111  | 33.9        | 112.1       |             |            |          |      |
| N-Nitrosodiphenylamine    | 35.0                 | 1.00   | 40.00               | 0           | 87.5 | 30          | 120         |             |            |          |      |
| Phenanthrene              | 31.8                 | 1.00   | 40.00               | 0           | 79.5 | 30          | 120         |             |            |          |      |
| Pyrene                    | 30.8                 | 1.00   | 40.00               | 0           | 76.9 | 25          | 119         |             |            |          |      |
| Pyridine                  | 9.42                 | 1.00   | 40.00               | 0           | 23.6 | 20          | 120         |             |            |          |      |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 22 of 29

WO#: **1711081** 

03-Jan-18

## **Specialty Analytical**

Client: Maul Foster & Alongi

**Project:** Dolan SCE / 1381.01.01 **TestCode: 8270BN\_W** 

| Sample ID: LCSD-10909       | SampType: <b>LCSD</b> | TestCod | de: <b>8270BN_V</b> | / Units: µg/L | · -  |             |             |             | RunNo: <b>237</b> | 776      |      |
|-----------------------------|-----------------------|---------|---------------------|---------------|------|-------------|-------------|-------------|-------------------|----------|------|
| Client ID: LCSS02           | Batch ID: 10909       | TestN   | No: <b>SW8270D</b>  | SW 3510C      |      | Analysis Da | te: 11/13/2 | 017         | SeqNo: <b>316</b> | 506      |      |
| Analyte                     | Result                | PQL     | SPK value           | SPK Ref Val   | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD              | RPDLimit | Qual |
| 1,2,4-Trichlorobenzene      | 30.9                  | 1.00    | 40.00               | 0             | 77.2 | 27.5        | 128.1       | 30.04       | 2.69              | 20       |      |
| 1,2-Dichlorobenzene         | 19.1                  | 1.00    | 40.00               | 0             | 47.7 | 30          | 120         | 19.61       | 2.74              | 20       |      |
| 1,3-Dichlorobenzene         | 14.4                  | 1.00    | 40.00               | 0             | 36.0 | 30          | 120         | 13.83       | 4.11              | 20       |      |
| 1,4-Dichlorobenzene         | 13.3                  | 1.00    | 40.00               | 0             | 33.2 | 27.8        | 120.9       | 12.75       | 4.00              | 20       |      |
| 2,4-Dinitrotoluene          | 30.4                  | 1.00    | 40.00               | 0             | 76.0 | 52.9        | 117.6       | 32.35       | 6.22              | 20       |      |
| 2,6-Dinitrotoluene          | 32.2                  | 1.00    | 40.00               | 0             | 80.4 | 30          | 120         | 29.02       | 10.3              | 20       |      |
| 2-Chloronaphthalene         | 31.9                  | 1.00    | 40.00               | 0             | 79.6 | 30          | 120         | 31.56       | 0.946             | 20       |      |
| 2-Methylnaphthalene         | 29.5                  | 1.00    | 40.00               | 0             | 73.7 | 30          | 120         | 25.29       | 15.3              | 20       |      |
| 3-Nitroaniline              | 28.2                  | 1.00    | 40.00               | 0             | 70.4 | 30          | 120         | 28.30       | 0.425             | 20       |      |
| 4-Bromophenyl phenyl ether  | 40.4                  | 1.00    | 40.00               | 0             | 101  | 30          | 120         | 35.27       | 13.5              | 20       |      |
| 4-Chlorophenyl phenyl ether | 30.0                  | 1.00    | 40.00               | 0             | 75.0 | 30          | 120         | 33.77       | 11.8              | 20       |      |
| 4-Nitroaniline              | 28.2                  | 1.00    | 40.00               | 0             | 70.5 | 30          | 120         | 28.32       | 0.460             | 20       |      |
| Acenaphthene                | 32.0                  | 1.00    | 40.00               | 0             | 79.9 | 39.8        | 114.2       | 29.15       | 9.23              | 20       |      |
| Acenaphthylene              | 27.3                  | 1.00    | 40.00               | 0             | 68.2 | 30          | 120         | 29.56       | 8.06              | 20       |      |
| Anthracene                  | 36.0                  | 1.00    | 40.00               | 0             | 90.1 | 30          | 120         | 33.60       | 7.04              | 20       |      |
| Benz(a)anthracene           | 23.2                  | 1.00    | 40.00               | 0             | 58.0 | 30          | 120         | 20.00       | 14.7              | 20       |      |
| Benzo(a)pyrene              | 38.6                  | 1.00    | 40.00               | 0             | 96.6 | 30          | 120         | 41.04       | 6.08              | 20       |      |
| Benzo(b)fluoranthene        | 40.4                  | 1.00    | 40.00               | 0             | 101  | 30          | 120         | 41.90       | 3.57              | 20       |      |
| Benzo(g,h,i)perylene        | 30.2                  | 1.00    | 40.00               | 0             | 75.5 | 30          | 120         | 29.67       | 1.74              | 20       |      |
| Benzo(k)fluoranthene        | 43.3                  | 1.00    | 40.00               | 0             | 108  | 30          | 120         | 41.44       | 4.48              | 20       |      |
| Bis(2-chloroethoxy)methane  | 32.1                  | 1.00    | 40.00               | 0             | 80.2 | 30          | 120         | 29.72       | 7.61              | 20       |      |
| Bis(2-chloroethyl)ether     | 16.8                  | 1.00    | 40.00               | 0             | 41.9 | 30          | 120         | 16.06       | 4.27              | 20       |      |
| Bis(2-chloroisopropyl)ether | 22.3                  | 1.00    | 40.00               | 0             | 55.8 | 30          | 120         | 20.12       | 10.3              | 20       |      |
| Bis(2-ethylhexyl)phthalate  | 31.3                  | 1.00    | 40.00               | 0             | 78.2 | 30          | 120         | 28.69       | 8.57              | 20       |      |
| Butyl benzyl phthalate      | 26.2                  | 1.00    | 40.00               | 0             | 65.4 | 30          | 120         | 25.34       | 3.18              | 20       |      |
| Chrysene                    | 27.8                  | 1.00    | 40.00               | 0             | 69.5 | 30          | 120         | 24.46       | 12.8              | 20       |      |

Qualifiers: B Analyte dete

RSD is greater than RSDlimit

Holding times for preparation or analysis exceeded

Analyte detected in the associated Method Blank

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

Page 23 of 29

S Spike Recovery outside accepted reco

WO#: **1711081** 

03-Jan-18

**Specialty Analytical** 

Client: Maul Foster & Alongi
Project: Dolan SCE / 1381.01.01

TestCode: 8270BN\_W

| Sample ID: LCSD-10909     | SampType: <b>LCSD</b> | TestCod | de: <b>8270BN_W</b> | Units: μg/L |      | Prep Dat     | e: 11/10/2        | 2017        | RunNo: 237        | 776          |      |
|---------------------------|-----------------------|---------|---------------------|-------------|------|--------------|-------------------|-------------|-------------------|--------------|------|
| Client ID: LCSS02         | Batch ID: 10909       | TestN   | lo: <b>SW8270D</b>  | SW 3510C    |      | Analysis Dat | e: <b>11/13/2</b> | 2017        | SeqNo: <b>316</b> | 350 <b>6</b> |      |
| Analyte                   | Result                | PQL     | SPK value           | SPK Ref Val | %REC | LowLimit     | HighLimit         | RPD Ref Val | %RPD              | RPDLimit     | Qual |
| Dibenz(a,h)anthracene     | 34.7                  | 1.00    | 40.00               | 0           | 86.7 | 30           | 120               | 33.12       | 4.54              | 20           |      |
| Dibenzofuran              | 28.7                  | 1.00    | 40.00               | 0           | 71.7 | 30           | 120               | 34.51       | 18.4              | 20           |      |
| Diethyl phthalate         | 28.4                  | 1.00    | 40.00               | 0           | 70.9 | 30           | 120               | 30.36       | 6.85              | 20           |      |
| Dimethyl phthalate        | 19.5                  | 1.00    | 40.00               | 0           | 48.8 | 30           | 120               | 21.21       | 8.20              | 20           |      |
| Di-n-butyl phthalate      | 37.5                  | 1.00    | 40.00               | 0           | 93.7 | 30           | 120               | 36.07       | 3.81              | 20           |      |
| Di-n-octyl phthalate      | 33.0                  | 1.00    | 40.00               | 0           | 82.5 | 30           | 120               | 31.94       | 3.20              | 20           |      |
| Fluoranthene              | 36.9                  | 1.00    | 40.00               | 0           | 92.3 | 30           | 120               | 33.09       | 10.9              | 20           |      |
| Fluorene                  | 28.6                  | 1.00    | 40.00               | 0           | 71.5 | 30           | 120               | 32.49       | 12.8              | 20           |      |
| Hexachlorobenzene         | 39.6                  | 1.00    | 40.00               | 0           | 98.9 | 30           | 120               | 35.49       | 10.8              | 20           |      |
| Hexachlorobutadiene       | 27.2                  | 1.00    | 40.00               | 0           | 68.0 | 30           | 120               | 26.19       | 3.75              | 20           |      |
| Hexachlorocyclopentadiene | 19.1                  | 1.00    | 40.00               | 0           | 47.7 | 30           | 120               | 18.44       | 3.41              | 20           |      |
| Hexachloroethane          | 16.9                  | 1.00    | 40.00               | 0           | 42.2 | 30           | 120               | 15.37       | 9.36              | 20           |      |
| Indeno(1,2,3-cd)pyrene    | 34.1                  | 1.00    | 40.00               | 0           | 85.4 | 30           | 120               | 32.05       | 6.32              | 20           |      |
| Isophorone                | 32.8                  | 1.00    | 40.00               | 0           | 82.1 | 30           | 120               | 30.24       | 8.24              | 20           |      |
| Naphthalene               | 29.8                  | 1.00    | 40.00               | 0           | 74.4 | 30           | 120               | 28.84       | 3.14              | 20           |      |
| Nitrobenzene              | 31.8                  | 1.00    | 40.00               | 0           | 79.5 | 30           | 120               | 34.27       | 7.45              | 20           |      |
| N-nitrosodimethylamine    | 16.1                  | 1.00    | 40.00               | 0           | 40.4 | 30           | 120               | 16.67       | 3.23              | 20           |      |
| N-Nitrosodi-n-propylamine | 39.9                  | 1.00    | 40.00               | 0           | 99.7 | 33.9         | 112.1             | 44.48       | 10.9              | 20           |      |
| N-Nitrosodiphenylamine    | 30.4                  | 1.00    | 40.00               | 0           | 76.1 | 30           | 120               | 35.00       | 14.0              | 20           |      |
| Phenanthrene              | 32.8                  | 1.00    | 40.00               | 0           | 82.0 | 30           | 120               | 31.79       | 3.16              | 20           |      |
| Pyrene                    | 30.3                  | 1.00    | 40.00               | 0           | 75.8 | 25           | 119               | 30.75       | 1.34              | 20           |      |
| Pyridine                  | 9.71                  | 1.00    | 40.00               | 0           | 24.3 | 20           | 120               | 9.420       | 3.03              | 20           |      |

Qualifiers: B Analyte detected in the associated Method Blank

O RSD is greater than RSDlimit

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

WO#:

1711081

03-Jan-18

**Specialty Analytical** 

**Client:** 

Maul Foster & Alongi

Project: Dolan SCE / 1381.01.01 TestCode: PAHLL\_W

| Sample ID: CCV MSSWS-1510 | SampType: CCV   | TestCo | de: <b>PAHLL_W</b> | Units: µg/L |      | Prep Da     | te:         |             | RunNo: 237 | 784      |      |
|---------------------------|-----------------|--------|--------------------|-------------|------|-------------|-------------|-------------|------------|----------|------|
| Client ID: CCV            | Batch ID: 10911 | Test   | No: <b>SW8270D</b> | SW 3510C    |      | Analysis Da | te: 11/14/2 | 017         | SeqNo: 316 | 6592     |      |
| Analyte                   | Result          | PQL    | SPK value          | SPK Ref Val | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD       | RPDLimit | Qual |
| 1-Methylnaphthalene       | 1.73            | 0.0500 | 2.000              | 0           | 86.5 | 80          | 120         |             |            |          |      |
| 2-Methylnaphthalene       | 1.75            | 0.0500 | 2.000              | 0           | 87.5 | 80          | 120         |             |            |          |      |
| Acenaphthene              | 1.70            | 0.0500 | 2.000              | 0           | 85.0 | 80          | 120         |             |            |          |      |
| Acenaphthylene            | 1.81            | 0.0500 | 2.000              | 0           | 90.5 | 80          | 120         |             |            |          |      |
| Anthracene                | 1.64            | 0.0500 | 2.000              | 0           | 82.0 | 80          | 120         |             |            |          |      |
| Benz(a)anthracene         | 1.95            | 0.0500 | 2.000              | 0           | 97.5 | 80          | 120         |             |            |          |      |
| Benzo(a)pyrene            | 1.69            | 0.0500 | 2.000              | 0           | 84.5 | 80          | 120         |             |            |          |      |
| Benzo(b)fluoranthene      | 1.71            | 0.0500 | 2.000              | 0           | 85.5 | 80          | 120         |             |            |          |      |
| Benzo(g,h,i)perylene      | 1.74            | 0.0500 | 2.000              | 0           | 87.0 | 80          | 120         |             |            |          |      |
| Benzo(k)fluoranthene      | 1.89            | 0.0500 | 2.000              | 0           | 94.5 | 80          | 120         |             |            |          |      |
| Carbazole                 | 1.74            | 0.0500 | 2.000              | 0           | 87.0 | 80          | 120         |             |            |          |      |
| Chrysene                  | 1.97            | 0.0500 | 2.000              | 0           | 98.5 | 80          | 120         |             |            |          |      |
| Dibenz(a,h)anthracene     | 1.67            | 0.0500 | 2.000              | 0           | 83.5 | 80          | 120         |             |            |          |      |
| Dibenzofuran              | 1.76            | 0.0500 | 2.000              | 0           | 88.0 | 80          | 120         |             |            |          |      |
| Fluoranthene              | 1.78            | 0.0500 | 2.000              | 0           | 89.0 | 80          | 120         |             |            |          |      |
| Fluorene                  | 1.77            | 0.0500 | 2.000              | 0           | 88.5 | 80          | 120         |             |            |          |      |
| Indeno(1,2,3-cd)pyrene    | 1.68            | 0.0500 | 2.000              | 0           | 84.0 | 80          | 120         |             |            |          |      |
| Naphthalene               | 1.80            | 0.0500 | 2.000              | 0           | 90.0 | 80          | 120         |             |            |          |      |
| Phenanthrene              | 1.65            | 0.0500 | 2.000              | 0           | 82.5 | 80          | 120         |             |            |          |      |
| Pyrene                    | 2.12            | 0.0500 | 2.000              | 0           | 106  | 80          | 120         |             |            |          |      |

Qualifiers: B Analyte detected in the associated Method Blank

O RSD is greater than RSDlimit

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

WO#: 1'

1711081

03-Jan-18

**Specialty Analytical** 

Client: Maul Foster & Alongi

Project: Dolan SCE / 1381.01.01 TestCode: PAHLL\_W

| Sample ID: <b>MB-10911</b> | SampType: MBLK  | TestCod | de: <b>PAHLL_W</b> | Units: µg/L |      |                |           |             | RunNo: 237 | 784      |      |
|----------------------------|-----------------|---------|--------------------|-------------|------|----------------|-----------|-------------|------------|----------|------|
| Client ID: PBW             | Batch ID: 10911 | TestN   | lo: <b>SW8270D</b> | SW 3510C    |      | Analysis Date: | 11/14/2   | 2017        | SeqNo: 316 | 593      |      |
| Analyte                    | Result          | PQL     | SPK value          | SPK Ref Val | %REC | LowLimit H     | HighLimit | RPD Ref Val | %RPD       | RPDLimit | Qual |
| 1-Methylnaphthalene        | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| 2-Methylnaphthalene        | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Acenaphthene               | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Acenaphthylene             | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Anthracene                 | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Benz(a)anthracene          | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Benzo(a)pyrene             | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Benzo(b)fluoranthene       | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Benzo(g,h,i)perylene       | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Benzo(k)fluoranthene       | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Carbazole                  | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Chrysene                   | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Dibenz(a,h)anthracene      | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Dibenzofuran               | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Fluoranthene               | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Fluorene                   | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Indeno(1,2,3-cd)pyrene     | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Naphthalene                | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Phenanthrene               | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Pyrene                     | ND              | 0.0500  |                    |             |      |                |           |             |            |          |      |
| Surr: 2-Fluorobiphenyl     | 77.4            |         | 100.0              |             | 77.4 | 18.6           | 106       |             |            |          |      |
| Surr: Nitrobenzene-d5      | 75.9            |         | 100.0              |             | 75.9 | 17             | 130       |             |            |          |      |
| Surr: Terphenyl-d14        | 101             |         | 100.0              |             | 101  | 39.6           | 131       |             |            |          |      |

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

detected in the associated Method Blank

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

WO#:

1711081

03-Jan-18

**Specialty Analytical** 

Maul Foster & Alongi **Client: Project:** Dolan SCE / 1381.01.01

TestCode: PAHLL\_W

| Sample ID: LCS-10911   | SampType: <b>LCS</b> | TestCod | de: <b>PAHLL_W</b> | Units: µg/L |      | Prep Da     | te: 11/10/2 | 2017        | RunNo: 237        | 784      |      |
|------------------------|----------------------|---------|--------------------|-------------|------|-------------|-------------|-------------|-------------------|----------|------|
| Client ID: LCSW        | Batch ID: 10911      | TestN   | No: <b>SW8270D</b> | SW 3510C    |      | Analysis Da | te: 11/14/2 | 2017        | SeqNo: <b>316</b> | 600      |      |
| Analyte                | Result               | PQL     | SPK value          | SPK Ref Val | %REC | LowLimit    | HighLimit   | RPD Ref Val | %RPD              | RPDLimit | Qual |
| 1-Methylnaphthalene    | 3.13                 | 0.0500  | 5.000              | 0           | 62.6 | 39.6        | 131         |             |                   |          |      |
| 2-Methylnaphthalene    | 3.16                 | 0.0500  | 5.000              | 0           | 63.2 | 25.6        | 106         |             |                   |          |      |
| Acenaphthene           | 2.95                 | 0.0500  | 5.000              | 0           | 59.0 | 35.1        | 131         |             |                   |          |      |
| Acenaphthylene         | 3.10                 | 0.0500  | 5.000              | 0           | 62.0 | 29          | 126         |             |                   |          |      |
| Anthracene             | 3.16                 | 0.0500  | 5.000              | 0           | 63.2 | 42          | 130         |             |                   |          |      |
| Benz(a)anthracene      | 3.90                 | 0.0500  | 5.000              | 0           | 78.0 | 34.2        | 129.1       |             |                   |          |      |
| Benzo(a)pyrene         | 3.62                 | 0.0500  | 5.000              | 0           | 72.4 | 23.4        | 127.4       |             |                   |          |      |
| Benzo(b)fluoranthene   | 3.30                 | 0.0500  | 5.000              | 0           | 66.0 | 36.6        | 125.8       |             |                   |          |      |
| Benzo(g,h,i)perylene   | 3.37                 | 0.0500  | 5.000              | 0           | 67.4 | 20.8        | 123         |             |                   |          |      |
| Benzo(k)fluoranthene   | 3.59                 | 0.0500  | 5.000              | 0           | 71.8 | 39.7        | 129.5       |             |                   |          |      |
| Carbazole              | 3.42                 | 0.0500  | 5.000              | 0           | 68.4 | 60          | 126         |             |                   |          |      |
| Chrysene               | 3.76                 | 0.0500  | 5.000              | 0           | 75.2 | 39.1        | 120         |             |                   |          |      |
| Dibenz(a,h)anthracene  | 3.48                 | 0.0500  | 5.000              | 0           | 69.6 | 5.05        | 123.4       |             |                   |          |      |
| Dibenzofuran           | 3.17                 | 0.0500  | 5.000              | 0           | 63.4 | 60          | 118         |             |                   |          |      |
| Fluoranthene           | 3.50                 | 0.0500  | 5.000              | 0           | 70.0 | 42.4        | 119         |             |                   |          |      |
| Fluorene               | 3.17                 | 0.0500  | 5.000              | 0           | 63.4 | 37.4        | 129         |             |                   |          |      |
| Indeno(1,2,3-cd)pyrene | 3.46                 | 0.0500  | 5.000              | 0           | 69.2 | 10.5        | 125.9       |             |                   |          |      |
| Naphthalene            | 2.96                 | 0.0500  | 5.000              | 0           | 59.2 | 25.6        | 128.4       |             |                   |          |      |
| Phenanthrene           | 3.10                 | 0.0500  | 5.000              | 0           | 62.0 | 38.1        | 128.4       |             |                   |          |      |
| Pyrene                 | 4.37                 | 0.0500  | 5.000              | 0           | 87.4 | 41.3        | 126         |             |                   |          |      |

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 27 of 29

WO#: **1711081** 

03-Jan-18

## **Specialty Analytical**

Client: Maul Foster & Alongi

Project: Dolan SCE / 1381.01.01 TestCode: PAHLL\_W

| Sample ID: LCSD-10911  | SampType: <b>LCSD</b> | TestCod | de: <b>PAHLL_W</b> | Units: µg/L |      |              |                   | 2017        | RunNo: <b>237</b> | '84      |      |
|------------------------|-----------------------|---------|--------------------|-------------|------|--------------|-------------------|-------------|-------------------|----------|------|
| Client ID: LCSS02      | Batch ID: 10911       | TestN   | No: <b>SW8270D</b> | SW 3510C    |      | Analysis Dat | e: <b>11/14/2</b> | 017         | SeqNo: <b>316</b> | 6601     |      |
| Analyte                | Result                | PQL     | SPK value          | SPK Ref Val | %REC | LowLimit     | HighLimit         | RPD Ref Val | %RPD              | RPDLimit | Qual |
| 1-Methylnaphthalene    | 3.19                  | 0.0500  | 5.000              | 0           | 63.8 | 39.6         | 131               | 3.130       | 1.90              | 20       |      |
| 2-Methylnaphthalene    | 3.21                  | 0.0500  | 5.000              | 0           | 64.2 | 25.6         | 106               | 3.160       | 1.57              | 20       |      |
| Acenaphthene           | 3.00                  | 0.0500  | 5.000              | 0           | 60.0 | 35.1         | 131               | 2.950       | 1.68              | 20       |      |
| Acenaphthylene         | 3.18                  | 0.0500  | 5.000              | 0           | 63.6 | 29           | 126               | 3.100       | 2.55              | 20       |      |
| Anthracene             | 3.23                  | 0.0500  | 5.000              | 0           | 64.6 | 42           | 130               | 3.160       | 2.19              | 20       |      |
| Benz(a)anthracene      | 3.95                  | 0.0500  | 5.000              | 0           | 79.0 | 34.2         | 129.1             | 3.900       | 1.27              | 20       |      |
| Benzo(a)pyrene         | 3.72                  | 0.0500  | 5.000              | 0           | 74.4 | 23.4         | 127.4             | 3.620       | 2.72              | 20       |      |
| Benzo(b)fluoranthene   | 3.30                  | 0.0500  | 5.000              | 0           | 66.0 | 36.6         | 125.8             | 3.300       | 0                 | 20       |      |
| Benzo(g,h,i)perylene   | 3.48                  | 0.0500  | 5.000              | 0           | 69.6 | 20.8         | 123               | 3.370       | 3.21              | 20       |      |
| Benzo(k)fluoranthene   | 3.72                  | 0.0500  | 5.000              | 0           | 74.4 | 39.7         | 129.5             | 3.590       | 3.56              | 20       |      |
| Carbazole              | 3.48                  | 0.0500  | 5.000              | 0           | 69.6 | 60           | 126               | 3.420       | 1.74              | 20       |      |
| Chrysene               | 3.86                  | 0.0500  | 5.000              | 0           | 77.2 | 39.1         | 120               | 3.760       | 2.62              | 20       |      |
| Dibenz(a,h)anthracene  | 3.61                  | 0.0500  | 5.000              | 0           | 72.2 | 5.05         | 123.4             | 3.480       | 3.67              | 20       |      |
| Dibenzofuran           | 3.25                  | 0.0500  | 5.000              | 0           | 65.0 | 60           | 118               | 3.170       | 2.49              | 20       |      |
| Fluoranthene           | 3.57                  | 0.0500  | 5.000              | 0           | 71.4 | 42.4         | 119               | 3.500       | 1.98              | 20       |      |
| Fluorene               | 3.29                  | 0.0500  | 5.000              | 0           | 65.8 | 37.4         | 129               | 3.170       | 3.72              | 20       |      |
| Indeno(1,2,3-cd)pyrene | 3.59                  | 0.0500  | 5.000              | 0           | 71.8 | 10.5         | 125.9             | 3.460       | 3.69              | 20       |      |
| Naphthalene            | 3.06                  | 0.0500  | 5.000              | 0           | 61.2 | 25.6         | 128.4             | 2.960       | 3.32              | 20       |      |
| Phenanthrene           | 3.18                  | 0.0500  | 5.000              | 0           | 63.6 | 38.1         | 128.4             | 3.100       | 2.55              | 20       |      |
| Pyrene                 | 4.19                  | 0.0500  | 5.000              | 0           | 83.8 | 41.3         | 126               | 4.370       | 4.21              | 20       |      |

Qualifiers: B Analyte detected in the associated Method Blank

O RSD is greater than RSDlimit

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted reco

WO#: **1711081** 

03-Jan-18

## **Specialty Analytical**

| Client: Maul Foste Project: Dolan SCE | r & Alongi<br>/ 1381.01.01 |                        |             | TestCode: T                         | SS_WW                |
|---------------------------------------|----------------------------|------------------------|-------------|-------------------------------------|----------------------|
| Sample ID: MB-R23724                  | SampType: MBLK             | TestCode: TSS_WW       | Units: mg/L | Prep Date:                          | RunNo: 23724         |
| Client ID: PBW                        | Batch ID: <b>R23724</b>    | TestNo: M2540 D        |             | Analysis Date: 11/13/2017           | SeqNo: <b>315701</b> |
| Analyte                               | Result                     | PQL SPK value          | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Total Suspended Solids                | ND                         | 5.0                    |             |                                     |                      |
| Sample ID: LCS-R23724                 | SampType: <b>LCS</b>       | TestCode: TSS_WW       | Units: mg/L | Prep Date:                          | RunNo: <b>23724</b>  |
| Client ID: LCSW                       | Batch ID: <b>R23724</b>    | TestNo: <b>M2540 D</b> |             | Analysis Date: 11/13/2017           | SeqNo: <b>315702</b> |
| Analyte                               | Result                     | PQL SPK value          | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Total Suspended Solids                | 95.0                       | 5.0 100.0              | 0           | 95.0 80 105                         |                      |
| Sample ID: <b>1711097-001CDUP</b>     | SampType: <b>DUP</b>       | TestCode: TSS_WW       | Units: mg/L | Prep Date:                          | RunNo: <b>23724</b>  |
| Client ID: ZZZZZZ                     | Batch ID: <b>R23724</b>    | TestNo: <b>M2540 D</b> |             | Analysis Date: 11/13/2017           | SeqNo: <b>315704</b> |
| Analyte                               | Result                     | PQL SPK value          | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Total Suspended Solids                | 3.0                        | 5.0                    |             | 3.0                                 | 0 20 J               |
| Sample ID: <b>1711088-001ADUP</b>     | SampType: <b>DUP</b>       | TestCode: TSS_WW       | Units: mg/L | Prep Date:                          | RunNo: <b>23724</b>  |
| Client ID: ZZZZZZ                     | Batch ID: <b>R23724</b>    | TestNo: M2540 D        |             | Analysis Date: 11/13/2017           | SeqNo: <b>315837</b> |
| Analyte                               | Result                     | PQL SPK value          | SPK Ref Val | %REC LowLimit HighLimit RPD Ref Val | %RPD RPDLimit Qual   |
| Total Suspended Solids                | 18.0                       | 5.0                    |             | 17.0                                | 5.7 20               |

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 29 of 29

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco



3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Specialty Analytical Katherine Lynch 11711 SE Capps Road Clackamas, OR 97015

RE: 1711081

Work Order Number: 1711235

November 21, 2017

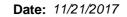
#### **Attention Katherine Lynch:**

Fremont Analytical, Inc. received 4 sample(s) on 11/14/2017 for the analyses presented in the following report.

#### Total Organic Carbon by SM 5310C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)





CLIENT: Specialty Analytical Work Order Sample Summary

**Project:** 1711081 **Work Order:** 1711235

| Lab Sample ID | Client Sample ID   | Date/Time Collected | Date/Time Received |
|---------------|--------------------|---------------------|--------------------|
| 1711235-001   | MHSW-4             | 11/08/2017 12:45 PM | 11/14/2017 1:20 PM |
| 1711235-002   | CB-16              | 11/08/2017 2:15 PM  | 11/14/2017 1:20 PM |
| 1711235-003   | CSWTS              | 11/08/2017 2:55 PM  | 11/14/2017 1:20 PM |
| 1711235-004   | CB-14 & CB-15 COMP | 11/08/2017 12:00 AM | 11/14/2017 1:20 PM |



#### **Case Narrative**

WO#: **1711235**Date: **11/21/2017** 

**CLIENT:** Specialty Analytical

**Project:** 1711081

#### I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

#### II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

#### III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.



### **Qualifiers & Acronyms**

WO#: **1711235** 

Date Reported: 11/21/2017

#### Qualifiers:

- \* Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

#### Acronyms:

%Rec - Percent Recovery

**CCB - Continued Calibration Blank** 

**CCV - Continued Calibration Verification** 

DF - Dilution Factor

**HEM - Hexane Extractable Material** 

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate



### **Analytical Report**

Work Order: 1711235

Date Reported: 11/21/2017

**CLIENT:** Specialty Analytical

**Project:** 1711081

**Lab ID:** 1711235-001 **Collection Date:** 11/8/2017 12:45:00 PM

Client Sample ID: MHSW-4 Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Total Organic Carbon by SM 5310C Batch ID: R40038 Analyst: KT

Total Organic Carbon 6.76 2.50 D mg/L 5 11/20/2017 4:37:12 PM

**Lab ID:** 1711235-002 **Collection Date:** 11/8/2017 2:15:00 PM

Client Sample ID: CB-16 Matrix: Water

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Total Organic Carbon by SM 5310C
 Batch ID: R40038
 Analyst: KT

 Total Organic Carbon
 7.36
 2.50
 D
 mg/L
 5
 11/20/2017 6:10:46 PM

**Lab ID:** 1711235-003 **Collection Date:** 11/8/2017 2:55:00 PM

Client Sample ID: CSWTS Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

<u>Total Organic Carbon by SM 5310C</u>
Batch ID: R40038 Analyst: KT

Total Organic Carbon 3.92 2.50 D mg/L 5 11/20/2017 6:35:36 PM



## **Analytical Report**

Work Order: **1711235** 

Analyst: KT

Date Reported: 11/21/2017

Batch ID: R40038

**CLIENT:** Specialty Analytical

**Project:** 1711081

**Lab ID:** 1711235-004 **Collection Date:** 11/8/2017

Client Sample ID: CB-14 & CB-15 COMP Matrix: Water

Analyses Result RL Qual Units DF Date Analyzed

Total Organic Carbon by SM 5310C

Total Organic Carbon 7.03 2.50 D mg/L 5 11/20/2017 6:55:53 PM





**Work Order:** 1711235

**QC SUMMARY REPORT** 

**CLIENT:** Specialty Analytical

Total Organic Carbon by SM 5310C

| Project:          | 1711081     |           |        |       |           |             |      |              |                    | Total Org   | anic Carb | on by SM | 5310 |
|-------------------|-------------|-----------|--------|-------|-----------|-------------|------|--------------|--------------------|-------------|-----------|----------|------|
| Sample ID MB-R    | 40038       | SampType: | MBLK   |       |           | Units: mg/L |      | Prep Dat     | e: <b>11/20/</b> 2 | 2017        | RunNo: 40 | 038      |      |
| Client ID: MBLK   | ΚW          | Batch ID: | R40038 |       |           |             |      | Analysis Dat | e: <b>11/20/</b> 2 | 2017        | SeqNo: 77 | 1196     |      |
| Analyte           |             | Re        | esult  | RL    | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD      | RPDLimit | Qual |
| Total Organic Car | bon         |           | ND     | 0.500 |           |             |      |              |                    |             |           |          |      |
| Sample ID LCS-F   | R40038      | SampType: | LCS    |       |           | Units: mg/L |      | Prep Dat     | e: <b>11/20/</b> 2 | 2017        | RunNo: 40 | 038      |      |
| Client ID: LCSW   | V           | Batch ID: | R40038 |       |           |             |      | Analysis Dat | e: <b>11/20/</b> 2 | 2017        | SeqNo: 77 | 1197     |      |
| Analyte           |             | Re        | esult  | RL    | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD      | RPDLimit | Qual |
| Total Organic Car | bon         | Ę         | 5.62   | 0.500 | 5.000     | 0           | 112  | 80           | 120                |             |           |          |      |
| Sample ID 17112   | 235-001ADUP | SampType: | DUP    |       |           | Units: mg/L |      | Prep Dat     | e: <b>11/20/</b> 2 | 2017        | RunNo: 40 | 038      |      |
| Client ID: MHSV   | W-4         | Batch ID: | R40038 |       |           |             |      | Analysis Dat | e: <b>11/20/</b> 2 | 2017        | SeqNo: 77 | 1199     |      |
| Analyte           |             | Re        | esult  | RL    | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD      | RPDLimit | Qual |
| Total Organic Car | bon         | 7         | 7.08   | 2.50  |           |             |      |              |                    | 6.765       | 4.62      | 20       | D    |
| Sample ID 17112   | 235-001AMS  | SampType: | MS     |       |           | Units: mg/L |      | Prep Dat     | e: <b>11/20/</b> 2 | 2017        | RunNo: 40 | 038      |      |
| Client ID: MHSV   | W-4         | Batch ID: | R40038 |       |           |             |      | Analysis Dat | e: <b>11/20/</b> 2 | 2017        | SeqNo: 77 | 1200     |      |
| Analyte           |             | Re        | esult  | RL    | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD      | RPDLimit | Qual |
| Total Organic Car | bon         | 3         | 33.3   | 2.50  | 25.00     | 6.765       | 106  | 70           | 130                |             |           |          | D    |
| Sample ID 17112   | 235-001AMSD | SampType: | MSD    |       |           | Units: mg/L |      | Prep Dat     | e: <b>11/20/</b> 2 | 2017        | RunNo: 40 | 038      |      |
| Client ID: MHSV   | W-4         | Batch ID: | R40038 |       |           |             |      | Analysis Dat | e: <b>11/20/</b> 2 | 2017        | SeqNo: 77 | 1201     |      |
| Analyte           |             | Re        | esult  | RL    | SPK value | SPK Ref Val | %REC | LowLimit     | HighLimit          | RPD Ref Val | %RPD      | RPDLimit | Qual |
| Total Organic Car | bon         | 3         | 33.8   | 2.50  | 25.00     | 6.765       | 108  | 70           | 130                | 33.26       | 1.55      | 30       | D    |

Original Page 7 of 9



## Sample Log-In Check List

| C           | ient Name:      | SPECIAL          |                                                        | Work C     | order Nur | mber: <b>1711235</b> |                |   |
|-------------|-----------------|------------------|--------------------------------------------------------|------------|-----------|----------------------|----------------|---|
| Lo          | ogged by:       | Brianna Ba       | arnes                                                  | Date R     | eceived:  | 11/14/20             | 017 1:20:00 PM |   |
| <u>Ch</u> a | in of Custo     | od <u>y</u>      |                                                        |            |           |                      |                |   |
|             | Is Chain of C   | -                | olete?                                                 | Yes        | <b>✓</b>  | No 🗆                 | Not Present    |   |
| 2.          | How was the     | sample deliv     | vered?                                                 | <u>Fed</u> | <u>Ex</u> |                      |                |   |
| <u>Log</u>  | In              |                  |                                                        |            |           |                      |                |   |
| _           | Coolers are p   | resent?          |                                                        | Ves        | •         | No 🗆                 | NA 🗆           |   |
| ა.          | Coolers are p   | nesent:          |                                                        | 163        | •         | 110 🗀                | IVA 🗆          |   |
| 4.          | Shipping conf   | tainer/cooler    | in good condition?                                     | Yes        | <b>✓</b>  | No $\square$         |                |   |
| 5.          |                 |                  | shipping container/cooler?<br>ustody Seals not intact) | Yes        |           | No 🗸                 | Not Required   |   |
| 6.          | Was an atten    | npt made to      | cool the samples?                                      | Yes        | ✓         | No 🗌                 | na 🗆           |   |
| 7.          | Were all item   | s received a     | t a temperature of >0°C to 10.0°C                      | Yes        | ✓         | No $\square$         | NA $\square$   |   |
| 8.          | Sample(s) in    | proper conta     | ainer(s)?                                              | Yes        |           | No 🗹                 |                |   |
| 9.          | Sufficient san  | nple volume      | for indicated test(s)?                                 | Yes        | <b>✓</b>  | No 🗌                 |                |   |
| 10.         | Are samples     | properly pre     | served?                                                | Yes        | <b>✓</b>  | No $\square$         |                |   |
| 11.         | Was preserva    | ative added      | to bottles?                                            | Yes        |           | No 🗸                 | NA $\square$   |   |
| 12.         | Is there head   | space in the     | VOA vials?                                             | Yes        |           | No 🗌                 | NA 🗸           |   |
| 13.         | Did all sample  | es container     | s arrive in good condition(unbroken)                   | )? Yes     | ✓         | No $\square$         |                |   |
| 14.         | Does paperw     | ork match b      | ottle labels?                                          | Yes        | ✓         | No 🗌                 |                |   |
| 15.         | Are matrices    | correctly ide    | ntified on Chain of Custody?                           | Yes        | •         | No 🗌                 |                |   |
| 16.         | Is it clear wha | at analyses v    | vere requested?                                        | Yes        | ✓         | No 🗌                 |                |   |
| 17.         | Were all hold   | ing times ab     | le to be met?                                          | Yes        | ✓         | No 🗌                 |                |   |
| <u>Spe</u>  | cial Handli     | ing (if app      | olicable)                                              |            |           |                      |                |   |
| 18.         | Was client no   | otified of all o | liscrepancies with this order?                         | Yes        |           | No $\square$         | NA 🗹           |   |
|             | Person          | Notified:        |                                                        | Date       |           |                      |                |   |
|             | By Who          | m:               | V                                                      | /ia: eM    | ail 🗌 P   | Phone  Fax           | ☐ In Person    |   |
|             | Regardi         | ng:              |                                                        |            |           |                      |                |   |
|             | Client In       | structions:      |                                                        |            |           |                      |                |   |
| 19.         | Additional rer  | marks:           |                                                        |            |           |                      |                | _ |
|             | Volume          | for TOC was      | s received in poly bottles.                            |            |           |                      |                |   |
| ltem        | Information     |                  |                                                        |            |           |                      |                |   |

| Item # | Temp °C |
|--------|---------|
| Cooler | 3.8     |
| Sample | 1.8     |

\* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

| Specialty Analytical 11711 SE Capps Road Clackams, OR 97015 Phone: 503-607-1331 Fax: 503-607-1336 Phone: 503-607-1331 Fax: 503-607-1336 Phone: 503 |                       |                                                              | CHAIN  | 0    | F C | UST            | ODY                           | RE        | COR      | D         |           | 1711235             | Page          | e of                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------|--------|------|-----|----------------|-------------------------------|-----------|----------|-----------|-----------|---------------------|---------------|----------------------------------------|
| Collected By:  Collec | CI<br>PH              | 711 SE Capps Road<br>ackamas, OR 97015<br>none: 503-607-1331 | )      |      | >   | Co<br>Co<br>Ad | ntact Pe<br>ompany_<br>dress_ | Sy        | oject Ma | anager_   | Ka        | therine l<br>Analy- | you           | 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| rinted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                                              | 1 00 6 | )    |     | PI             | none                          |           |          |           |           | Fax                 |               |                                        |
| In Around Time   Normal 5-7 Business Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | Kathe                                                        | iru f  |      |     | Pr             | oject No                      | 0         |          |           | _ Proj    | ect Name 17110      | 181           |                                        |
| rinted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                                              | specio | 411  | 4.  | Pro            | oject Sit                     | e Locatio | on OR_   | _         | WA        | Other               |               |                                        |
| In Around Time   Normal 5-7 Business Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rinted                |                                                              | . And  | May  | HCC | CON            | oice To                       |           |          |           |           |                     | P.O. No       |                                        |
| Interest of the second of the  | gnature               |                                                              |        |      |     | -              | 1                             | Analys    | es       |           |           | For L               | aboratory Use |                                        |
| m Around Time    Normal 5-7 Business Days   Rush   Specify   Analytical Containers? Y/N   Specify   Analytical Trip Blanks? Y/N      National 5-7 Business Days   February   Specify   Spe | inted                 |                                                              |        |      |     |                |                               |           |          |           |           |                     |               |                                        |
| Marriar   Normal 5-7 Business Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                              |        | 5    |     |                |                               |           |          |           |           |                     |               |                                        |
| Specify  sh Analyses Must Be Scheduled With The Lab In Advance  Date Time Sample I.D. Matrix  I S I T I 2 45 M + S W - 4 W I X  I S I T I 1 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I T I 4 5 C S W T S W I X  I S I Analysical Containers? Y/N  Specialty Analytical Trip Blanks? Y/N  Comments  Specialty Analytical Trip Blanks? Y/N  Specialty Analytical Containers? Y/N  Specialty Analytical Trip Blanks? Y/N  Specialty Analytical Trip Bl |                       |                                                              |        | ine  |     |                |                               |           |          |           |           |                     |               |                                        |
| Specify  Ish Analyses Must Be Scheduled With The Lab In Advance  Date Time Sample I.D. Matrix  I 8 117 12 45 M + S.W - 4 W I X  I 8 117 14 5 C.B - 1 C W I X  I 8 117 - C.B - 1 4 3 (B-15 (OMP) W I X  Ishinquished By Date Time I Time Received By: Company:  Ompany: Relinquished By: Company: Co |                       |                                                              |        | onta |     |                |                               |           |          |           |           |                     |               |                                        |
| Specially Analyses Must Be Scheduled With The Lab In Advance    Specially Analysical Containers? Y/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | □ Rush                |                                                              |        | 1    |     |                |                               |           |          |           |           | Temperature On R    | eceipt 4      | °C                                     |
| Date   Time   Sample I.D.   Matrix   Comments   Lab I   I   I   I   I   I   I   I   I   I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                                              |        |      | . 1 |                |                               |           |          |           |           | Specialty Analytica | I Containers? | Y/N                                    |
| 18   17   12   15   14   15   15   16   16   16   16   16   16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ISh Analyses Must Be  | Scheduled With The Lab In Advance                            |        | ž    | 0   |                |                               |           |          |           |           | Specialty Analytica | Trip Blanks?  | Y/N                                    |
| 18/17 1245 M + SW - 4 18/17 1415 CB-16 W   X   18/17 145 CB-16 W   X   18/17 1- CB-14 3 CB-15 COMP W   X   18/17 - CB-14 3 CB-15 COMP W   X    Date   Time   Received By:   Relinquished By:   Company:   Company | Date Time             | Sample I.D.                                                  | Matrix | 1    | 1-  |                |                               |           |          |           |           | Comme               | ante          | Lakin                                  |
| Inquished By:    Date   Time   Received By:   Company:   Company:  | 18117 1245            | MHSW-4                                                       | W      | 1    | X   |                |                               |           |          |           |           | Contine             | illo          | Lab I.D.                               |
| Alinquished By:  Date Time Received By:  Company:  Relinquished By:  Company:  Company | 18/17 1415            | CB-16                                                        | W      | 1    | X   |                |                               |           |          |           |           |                     |               |                                        |
| Alinquished By: Company:  Date Time Received By: Company: Company:  Relinquished By: Company: Company:  Relinquished By: Company: | 8117 1455             | CSWTS                                                        | W      | 1    | X   |                |                               |           |          |           |           |                     |               |                                        |
| Sinquished By:  Date Time Received By: Company:  Relinquished By: R | 18/17 -               | CB-14 3 (B-15 COMP                                           | W      | 1    | X   |                |                               |           |          |           |           |                     |               |                                        |
| ompany: US 11-13-79 954 Company: Compan |                       |                                                              |        |      |     |                |                               |           |          |           |           |                     |               |                                        |
| ompany: US 11-13-17 954 Company: Compan |                       |                                                              |        |      |     |                |                               |           |          |           | +         |                     |               |                                        |
| Impany: US 11-13-17 954 Company: Compan |                       |                                                              |        |      |     |                |                               |           |          |           | +         |                     |               |                                        |
| Impany: US 11-13-17 954 Company: Compan |                       |                                                              |        |      |     | _              |                               |           |          |           | +         |                     |               |                                        |
| mpany:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                                              |        |      |     | _              |                               |           | +        |           | +         |                     |               | -                                      |
| Impany: US 11-13-17 954 Company: Compan |                       |                                                              |        |      |     | -              | -                             | -         |          |           | +         |                     |               |                                        |
| ompany: US 11-13-17 954 Company: Compan |                       |                                                              |        |      |     | +              | +                             | -         | -        |           | +         |                     |               |                                        |
| ompany: US 11-13-79 954 Company: Compan |                       |                                                              |        |      |     | 1              | +-                            | -         | +        |           | +         |                     |               |                                        |
| ompany:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | linguished Dur.       |                                                              |        | 1    | 1   | /              | 1                             |           | -        |           |           |                     |               |                                        |
| pless Reclaimed Samples Will Re Disposed of 60 Days After Receipt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ///                   | (01) -01                                                     | 1      | -    | 1   | 1/             | ~                             |           |          |           | Ву:       |                     | (LL)          | Time 2                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | less Reclaimed, Sampl |                                                              |        | -    | 1   | V              |                               |           | Pan      | aived Eas | r l ah D. |                     | Date          | Time                                   |

- A This sample contains a Gasoline Range Organic not identified as a specific hydrocarbon product. The result was quantified against gasoline calibration standards
- A1 This sample contains a Diesel Range Organic not identified as a specific hydrocarbon product. The result was quantified against diesel calibration standards.
- A2 This sample contains a Lube Oil Range Organic not identified as a specific hydrocarbon product. The result was quantified against a lube oil calibration standard.
- A3 The result was determined to be Non-Detect based on hydrocarbon pattern recognition. The product was carry-over from another hydrocarbon type.
- A4 The product appears to be aged or degraded diesel.
- B The blank exhibited a positive result great than the reporting limit for this compound.
- CN See Case Narrative.
- D Result is based from a dilution.
- E Result exceeds the calibration range for this compound. The result should be considered as estimate.
- F The positive result for this hydrocarbon is due to single component contamination. The product does not match any hydrocarbon in the fuels library.
- G Result may be biased high due to biogenic interferences. Clean up is recommended.
- H Sample was analyzed outside recommended holding time.
- HT At clients request, samples was analyzed outside of recommended holding time.
- J The result for this analyte is between the MDL and the PQL and should be considered as estimated concentration.
- K Diesel result is biased high due to amount of Oil contained in the sample.
- L Diesel result is biased high due to amount of Gasoline contained in the sample.
- M Oil result is biased high due to amount of Diesel contained in the sample.
- MC Sample concentration is greater than 4x the spiked value, the spiked value is considered insignificant.
- MI Result is outside control limits due to matrix interference.
- MSA Value determined by Method of Standard Addition.
- O Laboratory Control Standard (LCS) exceeded laboratory control limits, but meets CCV criteria. Data meets EPA requirements.
- Q Detection levels elevated due to sample matrix.
- R RPD control limits were exceeded.
- RF Duplicate failed due to result being at or near the method-reporting limit.
- RP Matrix spike values exceed established QC limits; post digestion spike is in control.
- S Recovery is outside control limits.
- SC Closing CCV or LCS exceeded high recovery control limits, but associated samples are non-detect. Data meets EPA requirements.
- \* The result for this parameter was greater that the maximum contaminant level of the TCLP regulatory limit.

## **CHAIN OF CUSTODY RECORD**

Contact Person/Project Manager David Weatherby

| Page 1 of 1 |  |
|-------------|--|
|-------------|--|



## Specialty Analytical

|                                       |                    | 1711 SE Capps Road<br>Clackamas, OR 9701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |               |                  |              |                      |                       | er & /                    |                  |        | •       |                                                                                     |                    |              |
|---------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|---------------|------------------|--------------|----------------------|-----------------------|---------------------------|------------------|--------|---------|-------------------------------------------------------------------------------------|--------------------|--------------|
|                                       | · I                | Phone: 503-607-1331<br>Fax: 503-607-1336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |               |                  | <u>.</u>     |                      |                       |                           |                  |        |         | Portland OR 9720  Fax                                                               |                    |              |
| Collected E                           | 3v:                | and the control of th | and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |               |                  |              |                      |                       |                           |                  |        |         | ct Name Dolan SC                                                                    |                    |              |
|                                       | - x                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |              |               |                  |              |                      |                       |                           |                  |        |         | Other                                                                               |                    |              |
| Printed                               | a                  | sizj Clas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marine Control of the |                   |              |               |                  |              |                      |                       |                           |                  |        |         | P.                                                                                  |                    |              |
| Signature                             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |               |                  |              | Anal                 | vses                  |                           |                  |        |         | For Lai                                                                             | oratory Use        |              |
| Printed                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |               |                  |              |                      |                       | im)                       |                  |        | -       | Lab Job No                                                                          | 11081              |              |
|                                       | Normal 5-7<br>Rush | Business Days Specify Se Scheduled With The L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ab In Advance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No. of Containers | TOC (SM5310) | TSS (SM2320B) | Dissolved Metals | Total metals | PCB Araclors (8082A) | PAH (8270D/8270D sim) | Phthalates(8270D8270Dsim) |                  |        |         | Shipped ViaAir Bill No Temperature On Rec Specialty Analytical Specialty Analytical | ceiptContainers? [ |              |
| Date                                  | Time               | Sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>          | ***          | +             | <del></del>      |              |                      | +                     |                           |                  |        |         | Commen                                                                              |                    | Lab I.D.     |
| 11/08/17                              | 11:37              | CB-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                 | X_           | X             | Х                | X            | X                    | X                     | Х                         |                  |        |         | Metals: As, Cd, C                                                                   |                    |              |
| 1/08/17                               | 12:45              | MHSW-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                 | X            | X             | X                | X            | X                    | X                     | X                         |                  |        |         | Hg, Ni, Se, Ag, Zı                                                                  | ו                  | ļ            |
| 11/08/17                              | 13:40              | CB-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                 | X            | Х             | X                | Х            | X                    | X                     | Х                         |                  |        |         |                                                                                     | ····               |              |
| 1/08/17                               | 14:15              | CB-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                 | X            | Х             | X                | Х            | X                    | X                     | Х                         |                  | -      |         |                                                                                     |                    | ļ            |
| 11/08/17                              | 14:55              | CSWTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                 | X            | X_            | Х                | Х            | X                    | <u>X</u>              | Х                         |                  |        |         | Composite CB-14                                                                     | & CB_15            |              |
|                                       | <u> </u>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>-</b>          | Ĺ            | —             | ļ                | ļ            |                      | ļ                     | ↓                         | <u> </u>         |        |         | ·                                                                                   |                    |              |
|                                       | <u> </u>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>_</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                 | <u> </u>     | ऻ             | <u> </u>         | <u> </u>     | <u> </u>             | ļ                     | <u> </u>                  |                  |        |         |                                                                                     |                    |              |
| ·                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del> </del>      | _            | _             | <u> </u>         | <del> </del> |                      | <u> </u>              |                           |                  |        |         |                                                                                     |                    | <u> </u>     |
|                                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                 | ╁            | ╄             | <u> </u>         |              |                      | <u> </u>              | <u> </u>                  |                  |        |         |                                                                                     |                    |              |
|                                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                 | <u> </u>     | _             |                  |              | <u> </u>             | <u> </u>              | <b></b>                   |                  |        |         |                                                                                     |                    |              |
|                                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |               | <b> </b>         |              | <u> </u>             |                       |                           |                  |        |         |                                                                                     |                    |              |
| · · · · · · · · · · · · · · · · · · · |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | L            | <u> </u>      | <u> </u>         | <u> </u>     |                      |                       |                           |                  |        |         |                                                                                     | ·                  |              |
| Relinquished<br>Company:              | , .                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Time (1/9/14 72:43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Received<br>Compan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                 | 0            | U             | 5                | H            |                      | ·                     | 1                         | nquist<br>npany: | •      | r.<br>/ | AL RA                                                                               | Date 11-9-1        | Time<br>1433 |
|                                       | -                  | nples Will Be Disposed of<br>days subject to storage fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |               |                  |              |                      |                       | Red                       | eived            | For Li | ab By   |                                                                                     | Date               | Time 1423    |

Copies: White-Original

Yellow-Project File

Pink-Customer Copy

## Appendix B

**Stormwater Solid and Surface Soil Field Sampling Data Sheets** 



## Maul Foster & Alongi, Inc.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-

### Soil Field Sampling Data Sheet

| Client Name    | Dolan LLC | Sample Location | When Property         |
|----------------|-----------|-----------------|-----------------------|
| Project Number | 381.01,01 | Sampler         | R. PAUL               |
| Project Name   | Dolan SCE | Sampling Date   | 3/24/21               |
| Sampling Event |           | Sample Name     | CB14 CB15-55-20200324 |
| Sub Area       |           | Sample Depth    | NA                    |
| FSDS QA:       |           | Easting         | Northing TOC TOC      |

Sample Information

| Sampling Method | Sample Type | Sample Category | PID/FID | Sampling Time | Container Code   | # |
|-----------------|-------------|-----------------|---------|---------------|------------------|---|
| Greb            | Soil        |                 | _       | 1020          | 2 oz. soil       |   |
|                 |             | •               |         |               | 4 oz. soil       |   |
|                 |             |                 |         |               | 8 oz. soil       |   |
|                 |             |                 |         |               | Other            | 1 |
|                 |             |                 |         |               | Total Containers | 0 |

Sample Description:

Pourly sorted fines w/ gravel. Stight oil sheen.

**General Sampling Comment** 

Catch busin sumple from CB14 = CB15 Filled gollon sumple jar 1/2 Fill.

Sampling Method Code:

## Maul Foster & Alongi, Inc.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-

## Soil Field Sampling Data Sheet-

| Client Name    | Dolan UC   | Sample Location | NW Partland - Doien Prop |
|----------------|------------|-----------------|--------------------------|
| Project Number | 1381.01.01 | Sampler         | R. PAVL                  |
| Project Name   | Dolan SCE  | Sampling Date   | 32421                    |
| Sampling Event |            | Sample Name     | CB16/LB17-SS-20200324    |
| Sub Area       |            | Sample Depth    | NA                       |
| FSDS QA:       |            | Easting         | Northing TOC             |

### Sample Information

| Sampling Method | Sample Type | Sample Category | PID/FID | Sampling Time | Container Code   | # |
|-----------------|-------------|-----------------|---------|---------------|------------------|---|
| GRAB            | Soil        |                 |         | 0940          | 2 oz. soil       |   |
|                 |             |                 |         |               | 4 oz. soil       |   |
|                 |             |                 |         |               | 8 oz. soil       |   |
|                 |             | * .             |         |               | Other            | 1 |
|                 |             |                 |         |               | Total Containers | 0 |

Sample Description:

Catch Basin Sample from CB16 & CB17.
Poorly Surted fines w/ gravel.

**General Sampling Comment** 

Filled gellon serve jer 1/2 Fill.

#### Sampling Method Code:

final.

# Maul Foster & Alongi, Inc.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-

## Soil Field Sampling Data Sheet

| Client Name    | Dolan icc | Sample Location | Dotan Property        |
|----------------|-----------|-----------------|-----------------------|
| Project Number | 1381.00   | Sampler         | R. Perl               |
| Project Name   | Dolan SCE | Sampling Date   | 3/24/21               |
| Sampling Event |           | Sample Name     | Basin F-S-20200324-CS |
| Sub Area       |           | Sample Depth    | MA                    |
| FSDS QA:       |           | Easting         | Northing TOC TOC      |

Sample Information

| Sampling Method | Sample Type | Sample Category | PID/FID | Sampling Time | Container Code   | #   |
|-----------------|-------------|-----------------|---------|---------------|------------------|-----|
| Greb            | Soil        | _               | _       | 1000          | 2 oz. soil       |     |
|                 |             |                 |         |               | 4 oz. soil       |     |
|                 |             |                 |         |               | 8 oz. soil       |     |
|                 |             |                 |         |               | Other            | - 1 |
|                 |             |                 |         |               | Total Containers | Ö   |

Sample Description:

Foorly sorted fines w/ grower.

**General Sampling Comment** 

Composite (10) sample, Filled 1/2 3202 jour

Sampling Method Code:

## Maul Foster & Alongi, Inc.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-

### Soil Field Sampling Data Sheet

| Client Name    | Dotan uc   | Sample Location | Dolan Growty          |
|----------------|------------|-----------------|-----------------------|
| Project Number | 1391.01.01 | Sampler         | P. Paul               |
| Project Name   | Dolan SCE  | Sampling Date   | 3/24/21               |
| Sampling Event |            | Sample Name     | Basin E-8-20200324-CS |
| Sub Area       |            | Sample Depth    | M                     |
| FSDS QA:       |            | Easting         | Northing TOC TOC      |

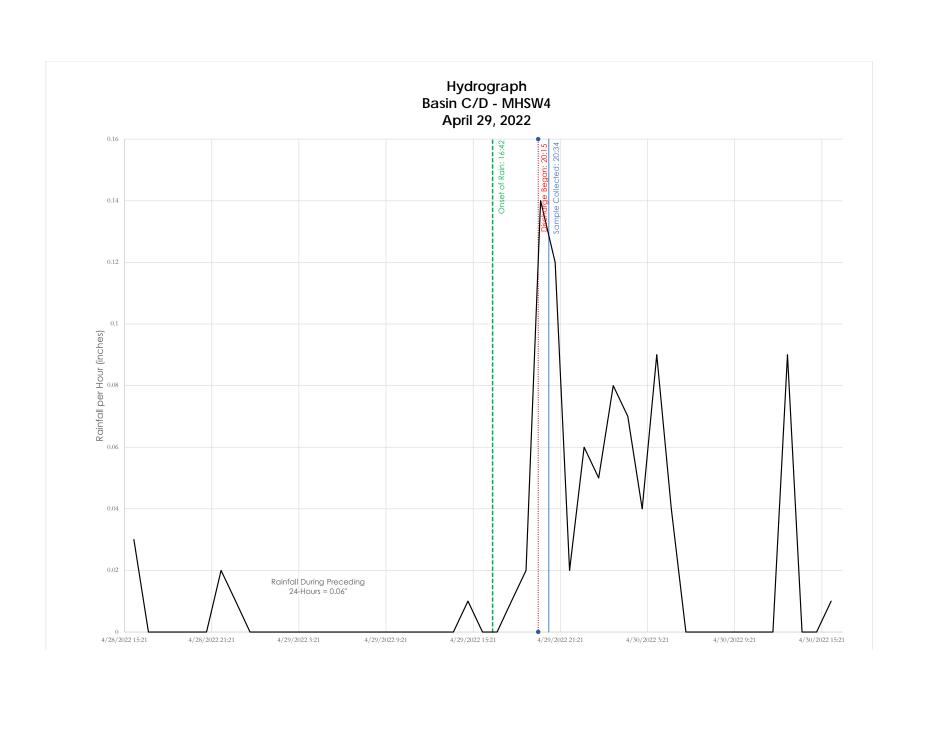
Sample Information

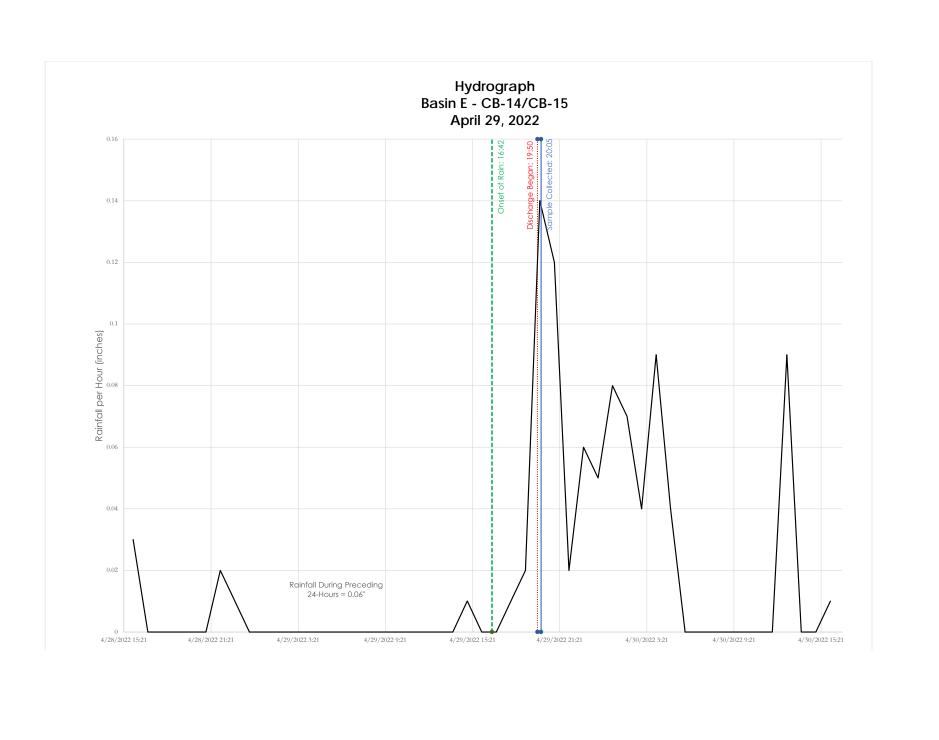
| Sampling Method | Sample Type | Sample Category | PID/FID | Sampling Time | Container Code   | # |
|-----------------|-------------|-----------------|---------|---------------|------------------|---|
| (ires           | Soil        |                 |         | 1040          | 2 oz. soil       |   |
| (100            |             |                 |         |               | 4 oz. soil       |   |
|                 |             |                 |         |               | 8 oz. soil       |   |
|                 |             |                 |         |               | Other            | 1 |
|                 |             |                 |         |               | Total Containers | 0 |

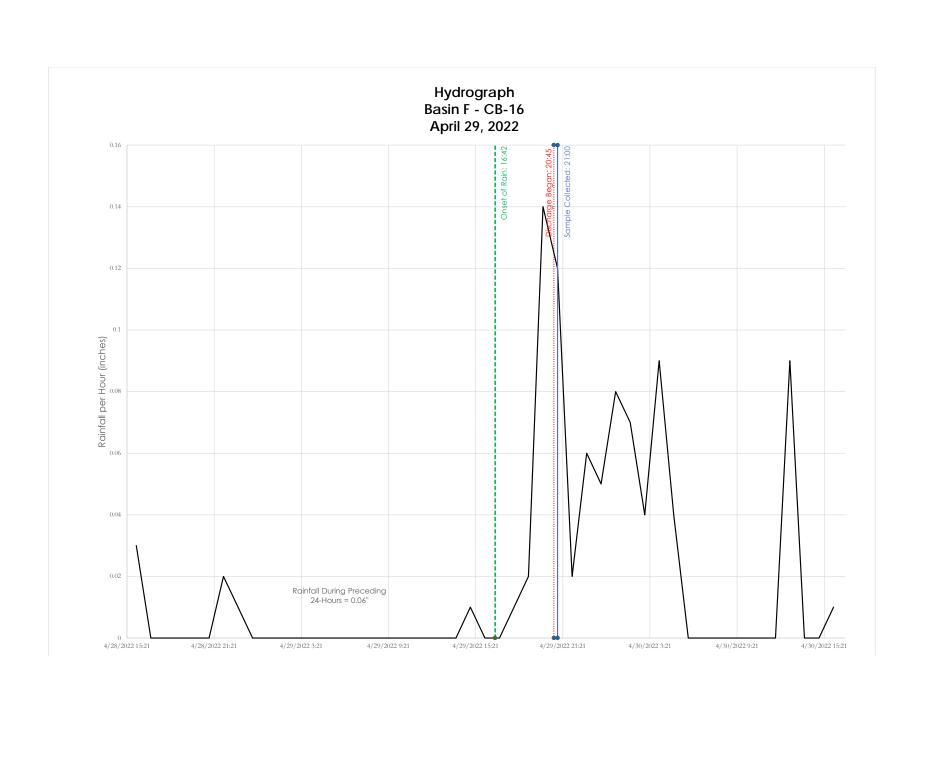
Sample Description:

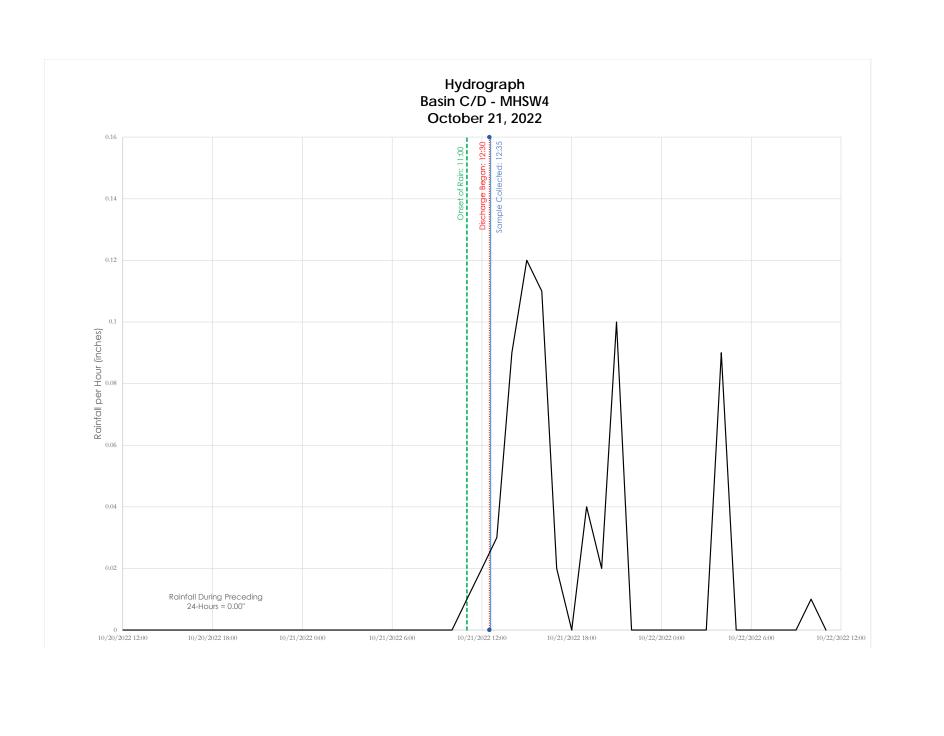
Parry Sorted Fines w/ growel.

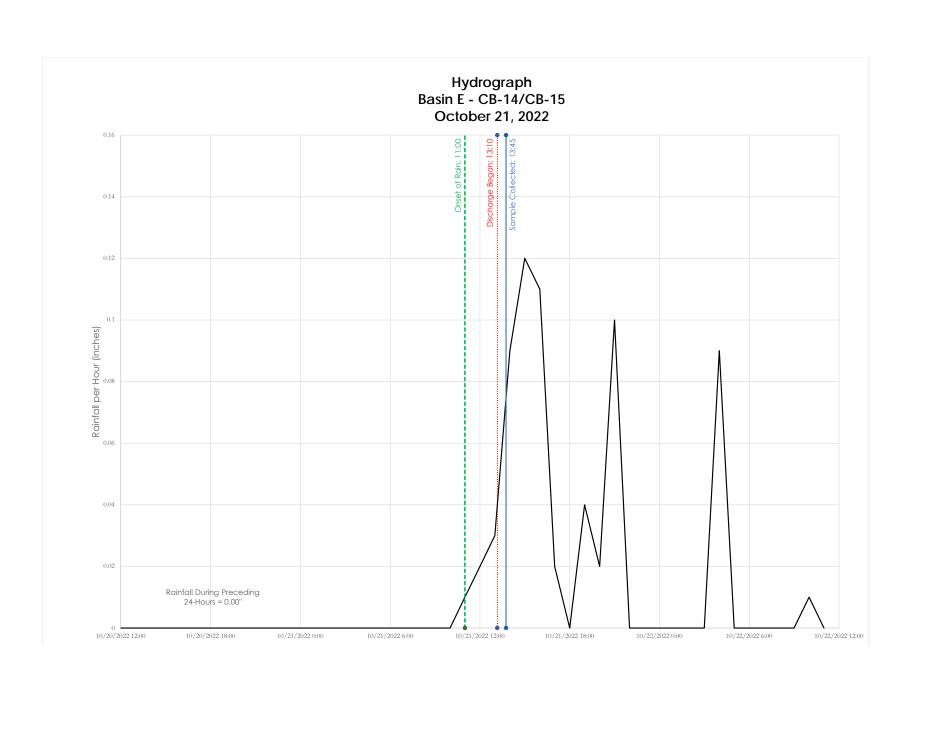
General Sampling Comment

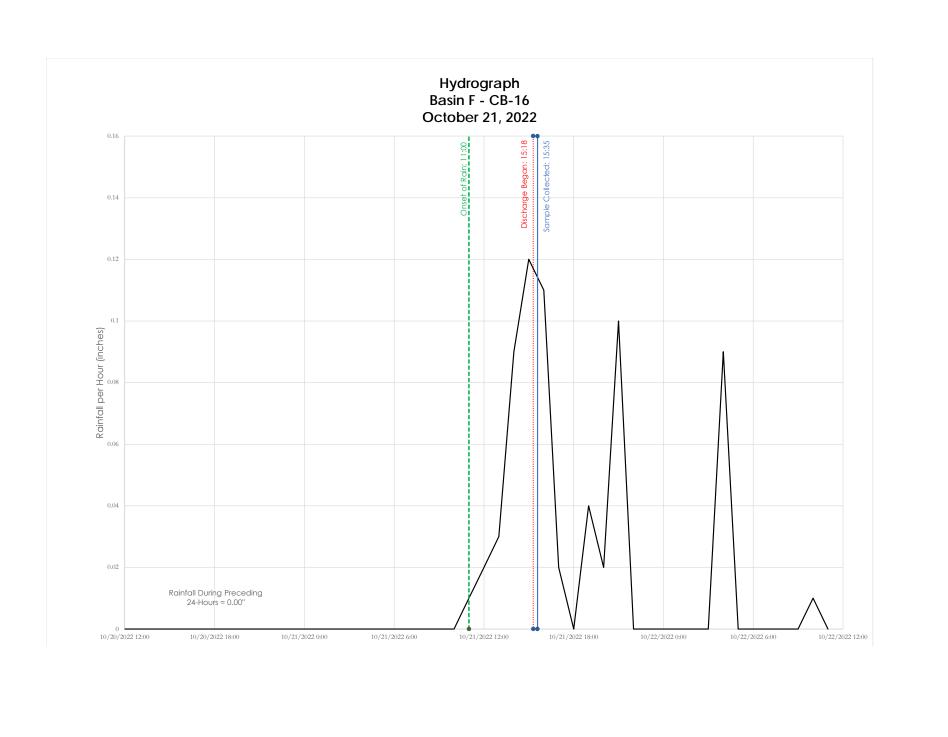

Composte (10) sample, 1/2 3202 jer.

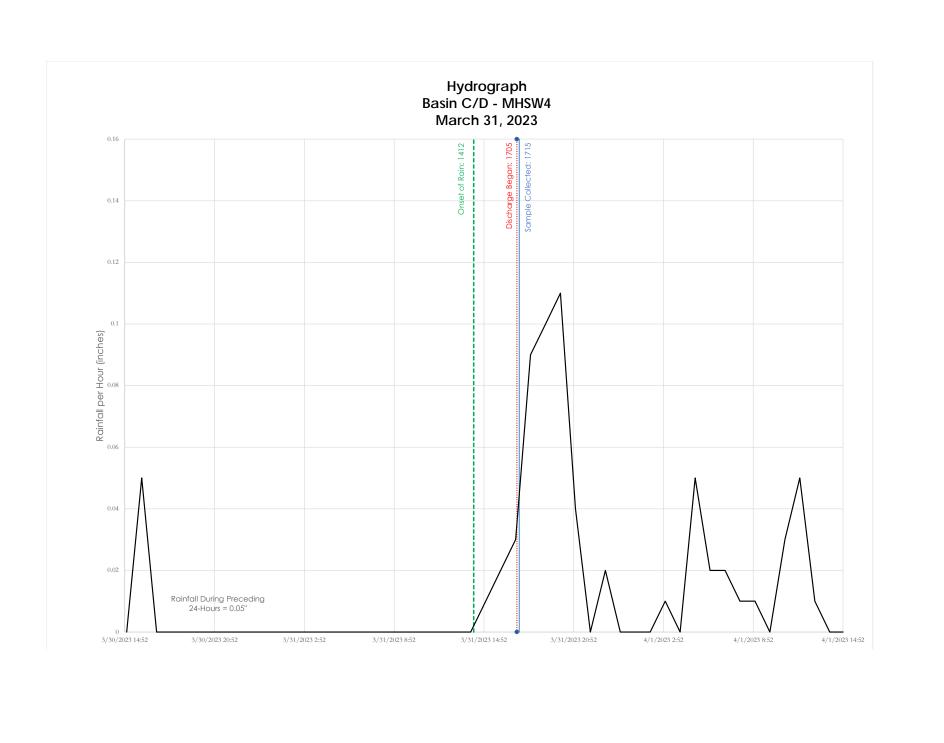

Sampling Method Code:

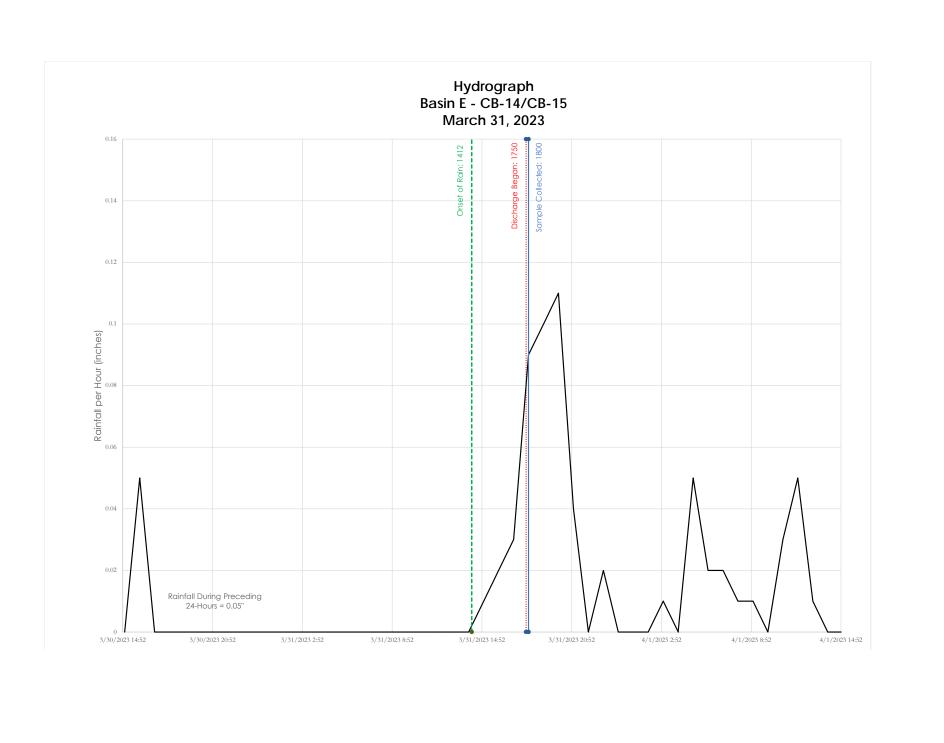

## Appendix C

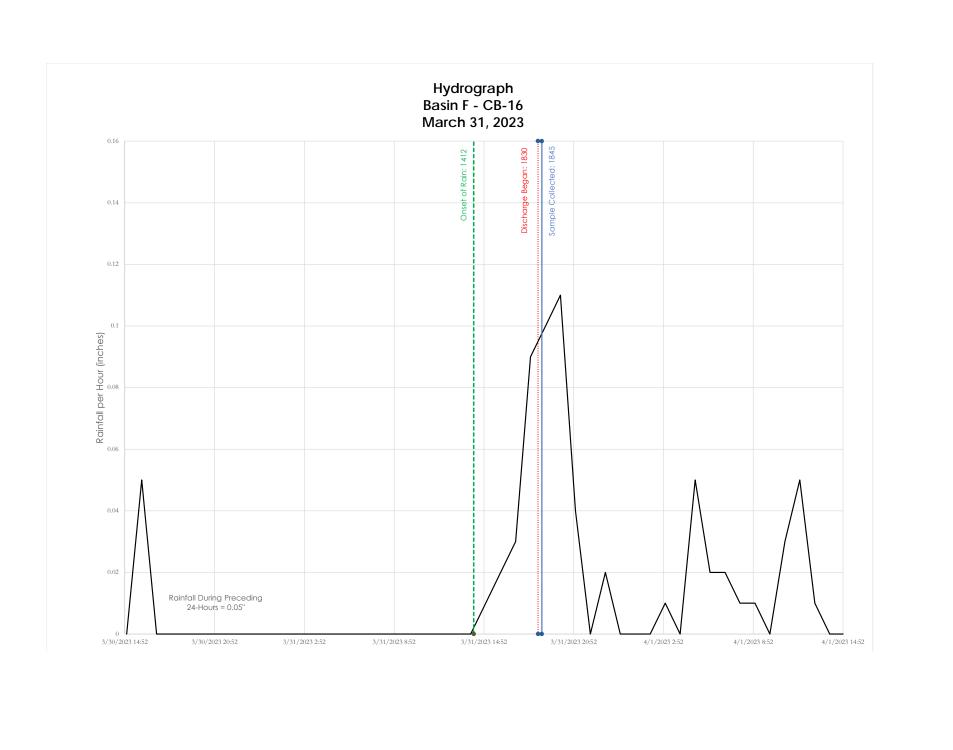

2022 and 2023 Stormwater Event Hydrographs














# Appendix D

**Analytical Laboratory Reports** 





# Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, June 10, 2022 Jessica Glenn Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

RE: A2E0026 - Dolan SCE - M1381.01.001.003

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2E0026, which was received by the laboratory on 5/2/2022 at 12:44:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <a href="mailto:pnerenberg@apex-labs.com">pnerenberg@apex-labs.com</a>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

0.9 degC

Cooler #1

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.





Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Dolan SCE

 3140 NE Broadway Street
 Project Number:
 M1381.01.001.003
 Report ID:

 Portland, OR 97232
 Project Manager:
 Jessica Glenn
 A2E0026 - 06 10 22 0832

# ANALYTICAL REPORT FOR SAMPLES

| SAMPLE INFORMATION |               |        |                |                |  |  |  |  |  |  |  |
|--------------------|---------------|--------|----------------|----------------|--|--|--|--|--|--|--|
| Client Sample ID   | Laboratory ID | Matrix | Date Sampled   | Date Received  |  |  |  |  |  |  |  |
| OUTFALL E          | A2E0026-01    | Water  | 04/29/22 20:05 | 05/02/22 12:44 |  |  |  |  |  |  |  |
| OUTFALL C/D        | A2E0026-02    | Water  | 04/29/22 20:34 | 05/02/22 12:44 |  |  |  |  |  |  |  |
| CB-16              | A2E0026-03    | Water  | 04/29/22 21:00 | 05/02/22 12:44 |  |  |  |  |  |  |  |
| DUP                | A2E0026-04    | Water  | 04/29/22 00:00 | 05/02/22 12:44 |  |  |  |  |  |  |  |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Dolan SCE
Project Number: M1381.01.001.003
Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected         | Selected Semivolatile Organic Compounds by EPA 8270E |                    |                      |          |                                  |             |       |  |  |  |  |
|-----------------------------------|------------------|------------------------------------------------------|--------------------|----------------------|----------|----------------------------------|-------------|-------|--|--|--|--|
| Analyte                           | Sample<br>Result | Detection<br>Limit                                   | Reporting<br>Limit | Units                | Dilution | Date<br>Analyzed                 | Method Ref. | Notes |  |  |  |  |
| OUTFALL E (A2E0026-01RE1)         |                  |                                                      |                    | Matrix: Wate         | er       | Batch:                           | 22E0112     | R-04  |  |  |  |  |
| Acenaphthene                      | ND               | 0.0404                                               | 0.0808             | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Acenaphthylene                    | ND               | 0.0404                                               | 0.0808             | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Anthracene                        | ND               | 0.0404                                               | 0.0808             | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Benz(a)anthracene                 | ND               | 0.0404                                               | 0.0808             | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Benzo(a)pyrene                    | ND               | 0.0606                                               | 0.121              | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Benzo(b)fluoranthene              | ND               | 0.0606                                               | 0.121              | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Benzo(k)fluoranthene              | ND               | 0.0606                                               | 0.121              | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Benzo(g,h,i)perylene              | ND               | 0.0404                                               | 0.0808             | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Chrysene                          | ND               | 0.0404                                               | 0.0808             | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Dibenz(a,h)anthracene             | ND               | 0.0404                                               | 0.0808             | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Fluoranthene                      | ND               | 0.0404                                               | 0.0808             | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Fluorene                          | ND               | 0.0404                                               | 0.0808             | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Indeno(1,2,3-cd)pyrene            | ND               | 0.0404                                               | 0.0808             | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| 1-Methylnaphthalene               | ND               | 0.0808                                               | 0.162              | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| 2-Methylnaphthalene               | ND               | 0.0808                                               | 0.162              | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Naphthalene                       | ND               | 0.0808                                               | 0.162              | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Phenanthrene                      | 0.0408           | 0.0404                                               | 0.0808             | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   | J     |  |  |  |  |
| Pyrene                            | ND               | 0.0404                                               | 0.0808             | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Carbazole                         | ND               | 0.0606                                               | 0.121              | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Dibenzofuran                      | ND               | 0.0404                                               | 0.0808             | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Bis(2-ethylhexyl)phthalate        | 1.10             | 0.808                                                | 1.62               | ug/L                 | 4        | 05/10/22 18:18                   | EPA 8270E   | J     |  |  |  |  |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery                                             | : 77%              | Limits: 44-120 %     | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| 2-Fluorobiphenyl (Surr)           |                  |                                                      | 67 %               | 44-120 %             | 4        | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| Phenol-d6 (Surr)                  |                  |                                                      | 21 %               | 10-133 %             |          | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| p-Terphenyl-d14 (Surr)            |                  |                                                      | 55 %               | 50-134 %             |          | 05/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| 2-Fluorophenol (Surr)             |                  |                                                      | 32 %<br>85 %       | 19-120 %<br>43-140 % |          | 05/10/22 18:18<br>05/10/22 18:18 | EPA 8270E   |       |  |  |  |  |
| 2,4,6-Tribromophenol (Surr)       |                  |                                                      | 83 %               | 43-140 %             | 4        | 03/10/22 18:18                   | EPA 8270E   |       |  |  |  |  |
| OUTFALL C/D (A2E0026-02RE1)       |                  |                                                      |                    | Matrix: Wate         | er       | Batch:                           | 22E0112     | R-04  |  |  |  |  |
| Acenaphthene                      | ND               | 0.0440                                               | 0.0879             | ug/L                 | 4        | 05/10/22 18:53                   | EPA 8270E   |       |  |  |  |  |
| Acenaphthylene                    | ND               | 0.0440                                               | 0.0879             | ug/L                 | 4        | 05/10/22 18:53                   | EPA 8270E   |       |  |  |  |  |
| Anthracene                        | ND               | 0.0440                                               | 0.0879             | ug/L                 | 4        | 05/10/22 18:53                   | EPA 8270E   |       |  |  |  |  |
| Benz(a)anthracene                 | ND               | 0.0440                                               | 0.0879             | ug/L                 | 4        | 05/10/22 18:53                   | EPA 8270E   |       |  |  |  |  |
| Benzo(a)pyrene                    | ND               | 0.0659                                               | 0.132              | ug/L                 | 4        | 05/10/22 18:53                   | EPA 8270E   |       |  |  |  |  |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Dolan SCE
Project Number: M1381.01.001.003
Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# ANALYTICAL SAMPLE RESULTS

|                                   |                  | Semivolatile O       |                    | pounds by L      |          |                  |             |      |
|-----------------------------------|------------------|----------------------|--------------------|------------------|----------|------------------|-------------|------|
| Analyte                           | Sample<br>Result | Detection l<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Note |
| OUTFALL C/D (A2E0026-02RE1)       |                  |                      |                    | Matrix: Wate     |          |                  | 22E0112     | R-04 |
| Benzo(b)fluoranthene              | ND               | 0.0659               | 0.132              | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| Benzo(k)fluoranthene              | ND               | 0.0659               | 0.132              | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| Benzo(g,h,i)perylene              | ND               | 0.0440               | 0.0879             | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| Chrysene                          | ND               | 0.0440               | 0.0879             | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| Dibenz(a,h)anthracene             | ND               | 0.0440               | 0.0879             | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| Fluoranthene                      | ND               | 0.0440               | 0.0879             | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| Fluorene                          | ND               | 0.0440               | 0.0879             | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| ndeno(1,2,3-cd)pyrene             | ND               | 0.0440               | 0.0879             | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| -Methylnaphthalene                | ND               | 0.0879               | 0.176              | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| 2-Methylnaphthalene               | ND               | 0.0879               | 0.176              | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| Naphthalene                       | ND               | 0.0879               | 0.176              | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| Phenanthrene                      | ND               | 0.0440               | 0.0879             | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| Pyrene                            | ND               | 0.0440               | 0.0879             | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| Carbazole                         | ND               | 0.0659               | 0.132              | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| Dibenzofuran                      | ND               | 0.0440               | 0.0879             | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| Bis(2-ethylhexyl)phthalate        | ND               | 0.879                | 1.76               | ug/L             | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery.            | : 90 %             | Limits: 44-120 % | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| 2-Fluorobiphenyl (Surr)           |                  |                      | 75 %               | 44-120 %         | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| Phenol-d6 (Surr)                  |                  |                      | 27 %               | 10-133 %         |          | 05/10/22 18:53   | EPA 8270E   |      |
| p-Terphenyl-d14 (Surr)            |                  |                      | 70 %               | 50-134 %         |          | 05/10/22 18:53   | EPA 8270E   |      |
| 2-Fluorophenol (Surr)             |                  |                      | 43 %               | 19-120 %         |          | 05/10/22 18:53   | EPA 8270E   |      |
| 2,4,6-Tribromophenol (Surr)       |                  |                      | 90 %               | 43-140 %         | 4        | 05/10/22 18:53   | EPA 8270E   |      |
| CB-16 (A2E0026-03RE1)             |                  |                      |                    | Matrix: Wate     | r        | Batch:           | 22E0112     | R-04 |
| Acenaphthene                      | ND               | 0.0377               | 0.0755             | ug/L             | 4        | 05/10/22 19:29   | EPA 8270E   |      |
| Acenaphthylene                    | ND               | 0.0377               | 0.0755             | ug/L             | 4        | 05/10/22 19:29   | EPA 8270E   |      |
| Anthracene                        | ND               | 0.0377               | 0.0755             | ug/L             | 4        | 05/10/22 19:29   | EPA 8270E   |      |
| Benz(a)anthracene                 | ND               | 0.0377               | 0.0755             | ug/L             | 4        | 05/10/22 19:29   | EPA 8270E   |      |
| Benzo(a)pyrene                    | 0.0575           | 0.0566               | 0.113              | ug/L             | 4        | 05/10/22 19:29   | EPA 8270E   | J    |
| Benzo(b)fluoranthene              | ND               | 0.0566               | 0.113              | ug/L             | 4        | 05/10/22 19:29   | EPA 8270E   |      |
| Benzo(k)fluoranthene              | ND               | 0.0566               | 0.113              | ug/L             | 4        | 05/10/22 19:29   | EPA 8270E   |      |
| Benzo(g,h,i)perylene              | ND               | 0.0377               | 0.0755             | ug/L             | 4        | 05/10/22 19:29   | EPA 8270E   |      |
| Chrysene                          | ND               | 0.0377               | 0.0755             | ug/L             | 4        | 05/10/22 19:29   | EPA 8270E   |      |
| Dibenz(a,h)anthracene             | ND               | 0.0377               | 0.0755             | ug/L             | 4        | 05/10/22 19:29   | EPA 8270E   |      |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 4 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001.003
Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# ANALYTICAL SAMPLE RESULTS

|                                                           | Selected Semivolatile Organic Compounds by EPA 8270E |                            |                 |                  |          |                                  |                        |      |  |  |  |
|-----------------------------------------------------------|------------------------------------------------------|----------------------------|-----------------|------------------|----------|----------------------------------|------------------------|------|--|--|--|
|                                                           | Sample                                               | Detection                  | Reporting       |                  |          | Date                             |                        |      |  |  |  |
| Analyte                                                   | Result                                               | Limit                      | Limit           | Units            | Dilution | Analyzed                         | Method Ref.            | Note |  |  |  |
| CB-16 (A2E0026-03RE1)                                     |                                                      |                            |                 | Matrix: Wate     | r        | Batch: 2                         | 22E0112                | R-04 |  |  |  |
| Fluoranthene                                              | ND                                                   | 0.0377                     | 0.0755          | ug/L             | 4        | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| Fluorene                                                  | ND                                                   | 0.0377                     | 0.0755          | ug/L             | 4        | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| ndeno(1,2,3-cd)pyrene                                     | ND                                                   | 0.0377                     | 0.0755          | ug/L             | 4        | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| l-Methylnaphthalene                                       | ND                                                   | 0.0755                     | 0.151           | ug/L             | 4        | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| 2-Methylnaphthalene                                       | ND                                                   | 0.0755                     | 0.151           | ug/L             | 4        | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| Naphthalene                                               | ND                                                   | 0.0755                     | 0.151           | ug/L             | 4        | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| Phenanthrene                                              | ND                                                   | 0.0377                     | 0.0755          | ug/L             | 4        | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| Pyrene                                                    | ND                                                   | 0.0377                     | 0.0755          | ug/L             | 4        | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| Carbazole                                                 | ND                                                   | 0.0566                     | 0.113           | ug/L             | 4        | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| Dibenzofuran                                              | ND                                                   | 0.0377                     | 0.0755          | ug/L             | 4        | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| Bis(2-ethylhexyl)phthalate                                | ND                                                   | 0.755                      | 1.51            | ug/L             | 4        | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| Surrogate: Nitrobenzene-d5 (Surr)                         |                                                      | Reco                       | very: 81 %      | Limits: 44-120 % | 4        | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| 2-Fluorobiphenyl (Surr)                                   |                                                      |                            | 67 %            | 44-120 %         | 4        | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| Phenol-d6 (Surr)                                          |                                                      |                            | 20 %            | 10-133 %         | 4        | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| p-Terphenyl-d14 (Surr)                                    |                                                      |                            | 56 %            | 50-134 %         |          | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| 2-Fluorophenol (Surr)                                     |                                                      |                            | 33 %            | 19-120 %         |          | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| 2,4,6-Tribromophenol (Surr)                               |                                                      |                            | 82 %            | 43-140 %         | 4        | 05/10/22 19:29                   | EPA 8270E              |      |  |  |  |
| DUP (A2E0026-04RE1)                                       |                                                      |                            |                 | Matrix: Wate     | r        | Batch: 2                         | 22E0112                | R-04 |  |  |  |
| Acenaphthene                                              | ND                                                   | 0.0404                     | 0.0808          | ug/L             | 4        | 05/10/22 20:04                   | EPA 8270E              |      |  |  |  |
| Acenaphthylene                                            | ND                                                   | 0.0404                     | 0.0808          | ug/L             | 4        | 05/10/22 20:04                   | EPA 8270E              |      |  |  |  |
| Anthracene                                                | ND                                                   | 0.0404                     | 0.0808          | ug/L             | 4        | 05/10/22 20:04                   | EPA 8270E              |      |  |  |  |
| Benz(a)anthracene                                         | 0.0409                                               | 0.0404                     | 0.0808          | ug/L             | 4        | 05/10/22 20:04                   | EPA 8270E              | J    |  |  |  |
| Benzo(a)pyrene                                            | 0.0634                                               | 0.0606                     | 0.121           | ug/L             | 4        | 05/10/22 20:04                   | EPA 8270E              | J    |  |  |  |
| Benzo(b)fluoranthene                                      | ND                                                   | 0.0606                     | 0.121           | ug/L             | 4        | 05/10/22 20:04                   | EPA 8270E              |      |  |  |  |
| Benzo(k)fluoranthene                                      | ND                                                   | 0.0606                     | 0.121           | ug/L             | 4        | 05/10/22 20:04                   | EPA 8270E              |      |  |  |  |
| Benzo(g,h,i)perylene                                      | ND                                                   | 0.0404                     | 0.0808          | ug/L             | 4        | 05/10/22 20:04                   | EPA 8270E              |      |  |  |  |
| Chrysene                                                  | ND                                                   | 0.0404                     | 0.0808          | ug/L             | 4        | 05/10/22 20:04                   | EPA 8270E              |      |  |  |  |
| Dibenz(a,h)anthracene                                     | ND                                                   | 0.0404                     | 0.0808          | ug/L             | 4        | 05/10/22 20:04                   | EPA 8270E              |      |  |  |  |
| Fluoranthene                                              | ND                                                   | 0.0404                     | 0.0808          | ug/L             | 4        | 05/10/22 20:04                   | EPA 8270E              |      |  |  |  |
|                                                           |                                                      | 0.0404                     | 0.0808          | ug/L             | 4        | 05/10/22 20:04                   | EPA 8270E              |      |  |  |  |
| Fluorene                                                  | NII                                                  |                            |                 |                  |          |                                  |                        |      |  |  |  |
| Fluorene                                                  | ND<br>ND                                             |                            |                 |                  | 4        | 05/10/22 20:04                   | EPA 8270E              |      |  |  |  |
| Fluorene<br>Indeno(1,2,3-cd)pyrene<br>I-Methylnaphthalene | ND<br>ND<br>ND                                       | 0.0404<br>0.0404<br>0.0808 | 0.0808<br>0.162 | ug/L<br>ug/L     | 4<br>4   | 05/10/22 20:04<br>05/10/22 20:04 | EPA 8270E<br>EPA 8270E |      |  |  |  |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M1381.01.001.003
Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected         | Semivolatile O     | rganic C           | ompounds by E                       | PA 8270   | E                |             |       |  |  |  |
|-----------------------------------|------------------|--------------------|--------------------|-------------------------------------|-----------|------------------|-------------|-------|--|--|--|
| Analyte                           | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units                               | Dilution  | Date<br>Analyzed | Method Ref. | Notes |  |  |  |
| DUP (A2E0026-04RE1)               |                  |                    |                    | Matrix: Wate                        | er        | Batch:           | 22E0112     | R-04  |  |  |  |
| Naphthalene                       | ND               | 0.0808             | 0.162              | ug/L                                | EPA 8270E |                  |             |       |  |  |  |
| Phenanthrene                      | ND               | 0.0404             | 0.0808             | ug/L                                | EPA 8270E |                  |             |       |  |  |  |
| Pyrene                            | ND               | 0.0404             | 0.0808             | ug/L                                | 4         | 05/10/22 20:04   | EPA 8270E   |       |  |  |  |
| Carbazole                         | ND               | 0.0606             | 0.121              | ug/L 4                              |           | 05/10/22 20:04   | EPA 8270E   |       |  |  |  |
| Dibenzofuran                      | ND               | 0.0404             | 0.0808             | ug/L                                | 4         | 05/10/22 20:04   | EPA 8270E   |       |  |  |  |
| Bis(2-ethylhexyl)phthalate        | ND               | 0.808              | 1.62               | ug/L 4                              |           | 05/10/22 20:04   | EPA 8270E   |       |  |  |  |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | : 54 %             | Limits: 44-120 %                    | 4         | 05/10/22 20:04   | EPA 8270E   |       |  |  |  |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 52 %               | 44-120 %                            | 4         | 05/10/22 20:04   | EPA 8270E   |       |  |  |  |
| Phenol-d6 (Surr)                  |                  |                    | 17 %               | 10-133 %                            | 4         | 05/10/22 20:04   | EPA 8270E   |       |  |  |  |
| p-Terphenyl-d14 (Surr)            |                  |                    | 59 %               | 50-134 %                            | 4         | 05/10/22 20:04   | EPA 8270E   |       |  |  |  |
| 2-Fluorophenol (Surr)             |                  |                    | 24 %               | 19-120 % 4 05/10/22 20:04 EPA 8270E |           |                  |             |       |  |  |  |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 83 %               | 43-140 % 4 05/10/22 20:04 EPA 8270E |           |                  |             |       |  |  |  |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001.003
Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# ANALYTICAL SAMPLE RESULTS

| Total Metals by EPA 200.8 (ICPMS) |                  |                    |                    |           |          |                  |             |       |  |  |  |  |
|-----------------------------------|------------------|--------------------|--------------------|-----------|----------|------------------|-------------|-------|--|--|--|--|
| Analyte                           | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units     | Dilution | Date<br>Analyzed | Method Ref. | Notes |  |  |  |  |
| OUTFALL E (A2E0026-01)            |                  |                    |                    | Matrix: W | ater     |                  |             |       |  |  |  |  |
| Batch: 22E0683                    |                  |                    |                    |           |          |                  |             |       |  |  |  |  |
| Cadmium                           | 0.608            | 0.100              | 0.200              | ug/L      | 1        | 05/18/22 21:46   | EPA 200.8   |       |  |  |  |  |
| Zinc                              | 463              | 2.00               | 4.00               | ug/L      | 1        | 05/18/22 21:46   | EPA 200.8   |       |  |  |  |  |
| OUTFALL C/D (A2E0026-02)          | Matrix: Water    |                    |                    |           |          |                  |             |       |  |  |  |  |
| Batch: 22E0683                    |                  |                    |                    |           |          |                  |             |       |  |  |  |  |
| Copper                            | 27.8             | 1.00               | 2.00               | ug/L      | 1        | 05/18/22 21:50   | EPA 200.8   |       |  |  |  |  |
| CB-16 (A2E0026-03)                |                  |                    |                    | Matrix: W | ater     |                  |             |       |  |  |  |  |
| Batch: 22E0683                    |                  |                    |                    |           |          |                  |             |       |  |  |  |  |
| Zinc                              | 101              | 2.00               | 4.00               | ug/L      | 1        | 05/18/22 21:55   | EPA 200.8   |       |  |  |  |  |
| DUP (A2E0026-04)                  |                  |                    |                    | Matrix: W | ater     |                  |             |       |  |  |  |  |
| Batch: 22E0683                    |                  |                    |                    | •         | •        |                  |             |       |  |  |  |  |
| Copper                            | 30.7             | 1.00               | 2.00               | ug/L      | 1        | 05/18/22 22:00   | EPA 200.8   |       |  |  |  |  |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 7 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: Dolan SCE
Project Number: M1381.01.001.003
Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# ANALYTICAL SAMPLE RESULTS

| Total Metals by EPA 200.8 (ICPMS) - Low Level |                  |                    |                    |           |          |                  |              |       |  |  |  |  |
|-----------------------------------------------|------------------|--------------------|--------------------|-----------|----------|------------------|--------------|-------|--|--|--|--|
| Analyte                                       | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units     | Dilution | Date<br>Analyzed | Method Ref.  | Notes |  |  |  |  |
| OUTFALL C/D (A2E0026-02)                      | Matrix: Water    |                    |                    |           |          |                  |              |       |  |  |  |  |
| Batch: 22F0114                                |                  |                    |                    |           |          |                  |              |       |  |  |  |  |
| Arsenic                                       | 0.864            | 0.0200             | 0.0400             | ug/L      | 1        | 06/07/22 00:04   | EPA 200.8-LL |       |  |  |  |  |
| CB-16 (A2E0026-03)                            |                  |                    |                    | Matrix: W | ater     |                  |              |       |  |  |  |  |
| Batch: 22F0114                                |                  |                    |                    |           |          |                  |              |       |  |  |  |  |
| Cadmium                                       | 0.148            | 0.0200             | 0.0400             | ug/L      | 1        | 06/07/22 00:12   | EPA 200.8-LL |       |  |  |  |  |
| DUP (A2E0026-04)                              |                  |                    |                    | Matrix: W | ater     |                  |              |       |  |  |  |  |
| Batch: 22F0114                                |                  |                    |                    | •         | •        |                  |              |       |  |  |  |  |
| Arsenic                                       | 0.920            | 0.0200             | 0.0400             | ug/L      | 1        | 06/07/22 00:19   | EPA 200.8-LL |       |  |  |  |  |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M1381.01.001.003
Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# ANALYTICAL SAMPLE RESULTS

| Solid and Moisture Determinations     |                  |                    |                    |            |          |                  |             |       |  |  |  |  |
|---------------------------------------|------------------|--------------------|--------------------|------------|----------|------------------|-------------|-------|--|--|--|--|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution | Date<br>Analyzed | Method Ref. | Notes |  |  |  |  |
| OUTFALL E (A2E0026-01)                |                  |                    |                    |            |          |                  |             |       |  |  |  |  |
| Batch: 22E0099 Total Suspended Solids | 90.9             | 7.14               | 7.14               | mg/L       | 1        | 05/03/22 18:29   | SM 2540 D   |       |  |  |  |  |
| OUTFALL C/D (A2E0026-02)              | Matrix: Water    |                    |                    |            |          |                  |             |       |  |  |  |  |
| Batch: 22E0099                        |                  |                    |                    |            |          |                  |             |       |  |  |  |  |
| Total Suspended Solids                | 16.8             | 10.0               | 10.0               | mg/L       | 1        | 05/03/22 18:29   | SM 2540 D   |       |  |  |  |  |
| CB-16 (A2E0026-03)                    |                  |                    |                    | Matrix: Wa | ater     |                  |             |       |  |  |  |  |
| Batch: 22E0099                        |                  |                    |                    |            |          |                  |             |       |  |  |  |  |
| Total Suspended Solids                | 63.0             | 12.5               | 12.5               | mg/L       | 1        | 05/03/22 18:29   | SM 2540 D   |       |  |  |  |  |
| DUP (A2E0026-04)                      | Matrix: Water    |                    |                    |            |          |                  |             |       |  |  |  |  |
| Batch: 22E0099                        |                  |                    |                    |            |          |                  |             |       |  |  |  |  |
| Total Suspended Solids                | 14.0             | 10.0               | 10.0               | mg/L       | 1        | 05/03/22 18:29   | SM 2540 D   |       |  |  |  |  |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001.003Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# QUALITY CONTROL (QC) SAMPLE RESULTS

#### Selected Semivolatile Organic Compounds by EPA 8270E Detection Reporting % REC RPD Spike Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Batch 22E0112 - EPA 3510C (Acid Extraction) Water Blank (22E0112-BLK2) Prepared: 05/04/22 06:58 Analyzed: 05/05/22 16:12 EPA 8270E Acenaphthene ND 0.00909 0.0182 ug/L ND 0.00909 0.0182 ug/L 1 Acenaphthylene Anthracene ND 0.00909 0.0182 ug/L 1 ND 0.00909 0.01821 Benz(a)anthracene ug/L ND 0.0136 0.0273 ug/L 1 Benzo(a)pyrene ND 0.0136 0.0273 Benzo(b)fluoranthene ug/L 1 ------Benzo(k)fluoranthene ND 0.0136 0.0273 ug/L 1 0.00909 0.0182 ND Benzo(g,h,i)perylene ug/L 1 Chrysene ND 0.00909 0.0182 ug/L 1 Dibenz(a,h)anthracene ND 0.00909 0.0182 ug/L 1 Fluoranthene ND 0.009090.0182 ug/L 1 ND 0.00909 0.0182 Fluorene ug/L 1 ---Indeno(1,2,3-cd)pyrene ND 0.00909 0.0182 ug/L 1 ND 0.0182 0.0364 1-Methylnaphthalene ug/L 1 2-Methylnaphthalene ND 0.01820.0364 ug/L 1 Naphthalene ND 0.0182 0.0364 ug/L 1 ---------Phenanthrene ND 0.00909 0.0182 ug/L 1 ND 0.00909 0.0182 Pyrene ug/L 1 ---------Carbazole ND 0.0136 0.0273 ug/L 1 Dibenzofuran ND 0.00909 0.0182 ug/L 1 2-Chlorophenol ND 0.04550.0909 ug/L 1 4-Chloro-3-methylphenol ND 0.0909 0.182 ug/L 1 0.0455 0.0909 2,4-Dichlorophenol ND ug/L 1 2,4-Dimethylphenol ND 0.0455 0.0909 ug/L 1 0.227 0.455 2,4-Dinitrophenol ND ug/L 1 4,6-Dinitro-2-methylphenol ND 0.227 0.455 ug/L 1 2-Methylphenol ND 0.0227 0.0455 ug/L 1 0.0227 3+4-Methylphenol(s) ND 0.0455 ug/L 1 ------2-Nitrophenol ND 0.0909 0.182ug/L 1 0.0909 4-Nitrophenol ND 0.182 ug/L 1 Pentachlorophenol (PCP) ND 0.0909 0.182 ug/L 1 Phenol ND 0.182 0.364 ug/L 1 ND 0.0455 0.0909 2,3,4,6-Tetrachlorophenol ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 10 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001.003

Portland, OR 97232 Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# QUALITY CONTROL (QC) SAMPLE RESULTS

| Selected Semivolatile Organic Compounds by EPA 8270E |            |                    |                    |            |            |                 |                  |       |                 |     |              |       |
|------------------------------------------------------|------------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                              | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 22E0112 - EPA 3510C (A                         | Acid Extra | ction)             |                    |            |            |                 | Wa               | ter   |                 |     |              |       |
| Blank (22E0112-BLK2)                                 |            |                    | Prepared           | : 05/04/22 | 06:58 Anal | yzed: 05/05     | /22 16:12        |       |                 |     |              |       |
| 2,3,5,6-Tetrachlorophenol                            | ND         | 0.0455             | 0.0909             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| 2,4,5-Trichlorophenol                                | ND         | 0.0455             | 0.0909             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| 2,4,6-Trichlorophenol                                | ND         | 0.0455             | 0.0909             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Bis(2-ethylhexyl)phthalate                           | ND         | 0.182              | 0.364              | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| urr: Nitrobenzene-d5 (Surr)                          |            | Reco               | very: 93 %         | Limits: 44 | 4-120 %    | Dilt            | ution: 1x        |       |                 |     |              | Q-41  |
| 2-Fluorobiphenyl (Surr)                              |            |                    | 74 %               | 44         | !-120 %    |                 | "                |       |                 |     |              |       |
| Phenol-d6 (Surr)                                     |            |                    | 26 %               | 10         | 0-133 %    |                 | "                |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)                               |            |                    | 80 %               | 50         | 0-134 %    |                 | "                |       |                 |     |              |       |
| 2-Fluorophenol (Surr)                                |            |                    | 40 %               | 19         | 0-120 %    |                 | "                |       |                 |     |              |       |
| 2,4,6-Tribromophenol (Surr)                          |            |                    | 65 %               | 43         | R-140 %    |                 | "                |       |                 |     |              |       |
| EPA 8270E                                            | 2 12       | 0.0100             | 0.0200             | 110/I      | 1          | 4.00            |                  | 79    | 47 1220/        |     |              |       |
| EPA 8270E                                            |            |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| Acenaphthene                                         | 3.13       | 0.0100             | 0.0200             | ug/L       | 1          | 4.00            |                  | 78    | 47-122%         |     |              |       |
| Acenaphthylene                                       | 3.50       | 0.0100             | 0.0200             | ug/L       | 1          | 4.00            |                  | 88    | 41-130%         |     |              |       |
| Anthracene                                           | 3.55       | 0.0100             | 0.0200             | ug/L       | 1          | 4.00            |                  | 89    | 57-123%         |     |              |       |
| Benz(a)anthracene                                    | 3.66       | 0.0100             | 0.0200             | ug/L       | 1          | 4.00            |                  | 92    | 58-125%         |     |              |       |
| Benzo(a)pyrene                                       | 4.07       | 0.0150             | 0.0300             | ug/L       | 1          | 4.00            |                  | 102   | 54-128%         |     |              |       |
| Benzo(b)fluoranthene                                 | 3.66       | 0.0150             | 0.0300             | ug/L       | 1          | 4.00            |                  | 91    | 53-131%         |     |              |       |
| Benzo(k)fluoranthene                                 | 3.80       | 0.0150             | 0.0300             | ug/L       | 1          | 4.00            |                  | 95    | 57-129%         |     |              |       |
| Benzo(g,h,i)perylene                                 | 3.87       | 0.0100             | 0.0200             | ug/L       | 1          | 4.00            |                  | 97    | 50-134%         |     |              |       |
| Chrysene                                             | 3.52       | 0.0100             | 0.0200             | ug/L       | 1          | 4.00            |                  | 88    | 59-123%         |     |              |       |
| Dibenz(a,h)anthracene                                | 3.67       | 0.0100             | 0.0200             | ug/L       | 1          | 4.00            |                  | 92    | 51-134%         |     |              |       |
| luoranthene                                          | 3.77       | 0.0100             | 0.0200             | ug/L       | 1          | 4.00            |                  | 94    | 57-128%         |     |              |       |
| luorene                                              | 3.26       | 0.0100             | 0.0200             | ug/L       | 1          | 4.00            |                  | 81    | 52-124%         |     |              |       |
| ndeno(1,2,3-cd)pyrene                                | 3.62       | 0.0100             | 0.0200             | ug/L       | 1          | 4.00            |                  | 90    | 52-134%         |     |              |       |
| -Methylnaphthalene                                   | 2.82       | 0.0200             | 0.0400             | ug/L       | 1          | 4.00            |                  | 70    | 41-120%         |     |              |       |
| -Methylnaphthalene                                   | 2.79       | 0.0200             | 0.0400             | ug/L       | 1          | 4.00            |                  | 70    | 40-121%         |     |              |       |
| Japhthalene                                          | 2.82       | 0.0200             | 0.0400             | ug/L       | 1          | 4.00            |                  | 71    | 40-121%         |     |              |       |
| henanthrene                                          | 3.30       | 0.0100             | 0.0200             | ug/L       | 1          | 4.00            |                  | 83    | 59-120%         |     |              |       |
| yrene                                                | 3.70       | 0.0100             | 0.0200             | ug/L       | 1          | 4.00            |                  | 93    | 57-126%         |     |              |       |
| Carbazole                                            | 3.92       | 0.0150             | 0.0300             | ug/L       | 1          | 4.00            |                  | 98    | 60-122%         |     |              |       |
| Dibenzofuran                                         | 3.12       | 0.0100             | 0.0200             | ug/L       | 1          | 4.00            |                  | 78    | 53-120%         |     |              |       |
| -Chlorophenol                                        | 2.98       | 0.0500             | 0.100              | ug/L       | 1          | 4.00            |                  | 74    | 38-120%         |     |              |       |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

Project: Dolan SCE

3140 NE Broadway Street Project Number: M1381.01.001.003
Portland, OR 97232 Project Manager: Jessica Glenn

0.00990

3.81

0.0198

ug/L

Report ID: A2E0026 - 06 10 22 0832

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                               |             | Selecte            | d Semivol          | atile Orga  | ailic Com       | pounas D        | y EPA 82         | 41 UE |                 |     |              |       |
|-------------------------------|-------------|--------------------|--------------------|-------------|-----------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                       | Result      | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution        | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 22E0112 - EPA 3510C (A  | Acid Extra  | ction)             |                    |             |                 |                 | Wa               | ter   |                 |     |              |       |
| LCS (22E0112-BS2)             |             |                    | Prepared           | 1: 05/04/22 | 06:58 Ana       | lyzed: 05/05    | /22 16:47        |       |                 |     |              |       |
| 4-Chloro-3-methylphenol       | 3.35        | 0.100              | 0.200              | ug/L        | 1               | 4.00            |                  | 84    | 52-120%         |     |              |       |
| 2,4-Dichlorophenol            | 3.05        | 0.0500             | 0.100              | ug/L        | 1               | 4.00            |                  | 76    | 47-121%         |     |              |       |
| 2,4-Dimethylphenol            | 2.75        | 0.0500             | 0.100              | ug/L        | 1               | 4.00            |                  | 69    | 31-124%         |     |              |       |
| 2,4-Dinitrophenol             | 3.63        | 0.250              | 0.500              | ug/L        | 1               | 4.00            |                  | 91    | 23-143%         |     |              |       |
| 4,6-Dinitro-2-methylphenol    | 3.73        | 0.250              | 0.500              | ug/L        | 1               | 4.00            |                  | 93    | 44-137%         |     |              |       |
| 2-Methylphenol                | 2.74        | 0.0250             | 0.0500             | ug/L        | 1               | 4.00            |                  | 68    | 30-120%         |     |              |       |
| 3+4-Methylphenol(s)           | 2.48        | 0.0250             | 0.0500             | ug/L        | 1               | 4.00            |                  | 62    | 29-120%         |     |              |       |
| 2-Nitrophenol                 | 3.06        | 0.100              | 0.200              | ug/L        | 1               | 4.00            |                  | 76    | 47-123%         |     |              |       |
| 4-Nitrophenol                 | 1.14        | 0.100              | 0.200              | ug/L        | 1               | 4.00            |                  | 29    | 10-120%         |     |              |       |
| Pentachlorophenol (PCP)       | 3.05        | 0.100              | 0.200              | ug/L        | 1               | 4.00            |                  | 76    | 35-138%         |     |              |       |
| Phenol                        | 1.14        | 0.200              | 0.400              | ug/L        | 1               | 4.00            |                  | 28    | 10-120%         |     |              |       |
| 2,3,4,6-Tetrachlorophenol     | 3.15        | 0.0500             | 0.100              | ug/L        | 1               | 4.00            |                  | 79    | 50-128%         |     |              |       |
| 2,3,5,6-Tetrachlorophenol     | 3.06        | 0.0500             | 0.100              | ug/L        | 1               | 4.00            |                  | 76    | 50-121%         |     |              |       |
| 2,4,5-Trichlorophenol         | 3.13        | 0.0500             | 0.100              | ug/L        | 1               | 4.00            |                  | 78    | 53-123%         |     |              |       |
| 2,4,6-Trichlorophenol         | 3.23        | 0.0500             | 0.100              | ug/L        | 1               | 4.00            |                  | 81    | 50-125%         |     |              |       |
| Bis(2-ethylhexyl)phthalate    | 3.80        | 0.200              | 0.400              | ug/L        | 1               | 4.00            |                  | 95    | 55-135%         |     |              |       |
| Surr: Nitrobenzene-d5 (Surr)  |             | Reco               | very: 98 %         | Limits: 44  | 4-120 %         | Dili            | ution: 1x        |       |                 |     |              | Q-41  |
| 2-Fluorobiphenyl (Surr)       |             |                    | 80 %               | 44          | 4-120 %         |                 | "                |       |                 |     |              |       |
| Phenol-d6 (Surr)              |             |                    | 29 %               | 10          | 0-133 %         |                 | "                |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)        |             |                    | 83 %               | 50          | 0-134 %         |                 | "                |       |                 |     |              |       |
| 2-Fluorophenol (Surr)         |             |                    | 44 %               | 19          | 0-120 %         |                 | "                |       |                 |     |              |       |
| 2,4,6-Tribromophenol (Surr)   |             |                    | 81 %               | 43          | 8-140 %         |                 | "                |       |                 |     |              |       |
| Matrix Spike (22E0112-MS2)    |             |                    | Prenared           | 1. 05/04/22 | 06·58 Ana       | lyzed: 05/05    | /22 18:34        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A2 | 2E0006-02RI | E1)                | Toparec            | 00.0 1/22   | - J.D.O 7 111tu | -,              |                  |       |                 |     |              |       |
| EPA 8270E                     |             |                    |                    |             |                 |                 |                  |       |                 |     |              |       |
| Acenaphthene                  | 3.18        | 0.00990            | 0.0198             | ug/L        | 1               | 3.96            | ND               | 80    | 47-122%         |     |              |       |
| Acenaphthylene                | 3.43        | 0.00990            |                    | ug/L        | 1               | 3.96            | ND               | 87    | 41-130%         |     |              |       |
| Anthracene                    | 3.56        | 0.00990            |                    | ug/L        | 1               | 3.96            | ND               | 90    | 57-123%         |     |              |       |
| Benz(a)anthracene             | 3.87        | 0.00990            |                    | ug/L        | 1               | 3.96            | ND               | 98    | 58-125%         |     |              |       |
| Benzo(a)pyrene                | 4.32        | 0.0149             | 0.0297             | ug/L        | 1               | 3.96            | 0.0158           | 109   | 54-128%         |     |              |       |
| Benzo(b)fluoranthene          | 4.44        | 0.0149             | 0.0297             | ug/L        | 1               | 3.96            | 0.0153           | 112   | 53-131%         |     |              |       |
| Benzo(k)fluoranthene          | 4.27        | 0.0149             | 0.0297             | ug/L        | 1               | 3.96            | ND               | 108   | 57-129%         |     |              |       |
| ` '                           | •           |                    |                    | <i>5</i> –  |                 |                 |                  |       |                 |     |              |       |

Apex Laboratories

Philip Nevenberg

Chrysene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

96

ND

59-123%

Philip Nerenberg, Lab Director

1

3.96



# Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001.003Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# QUALITY CONTROL (QC) SAMPLE RESULTS

#### Selected Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 22E0112 - EPA 3510C (Acid Extraction) Water Matrix Spike (22E0112-MS2) Prepared: 05/04/22 06:58 Analyzed: 05/05/22 18:34 QC Source Sample: Non-SDG (A2E0006-02RE1) Fluoranthene 3.84 0.00990 0.0198 ug/L 1 3.96 0.0140 97 57-128% 0.00990 0.0198 3.96 Fluorene 3.38 ug/L 1 ND 85 52-124% ug/L 1-Methylnaphthalene 2.66 0.0198 0.0396 1 3.96 ND 67 41-120% 2-Methylnaphthalene 2.61 0.01980.0396 ug/L 1 3.96 ND 66 40-121% Naphthalene 2.43 0.0198 0.0396 1 3.96 ND 61 40-121% ug/L 0.00990 0.0198 3.96 0.0176 92 Phenanthrene 3.66 ug/L 1 59-120% ug/L Pyrene 3.72 0.00990 0.01981 3.96 0.0109 94 57-126% Carbazole 0.0297 104 60-122% 4.14 0.0149 ug/L 1 3.96 ND Dibenzofuran 3.23 0.00990 0.0198 ug/L 1 3.96 ND 82 53-120% 2-Chlorophenol 2.73 0.0495 0.0990 ug/L 1 3.96 ND 69 38-120% 4-Chloro-3-methylphenol 3.81 0.0990 0.198 ug/L 1 3.96 ND 96 52-120% 0.0990 3.33 0.0495 3.96 ND 47-121% 2,4-Dichlorophenol ug/L 1 84 0.0495 3.96 2,4-Dimethylphenol 2.62 0.0990 ug/L 1 ND 66 31-124% 2,4-Dinitrophenol 4.50 0.248 0.495 3.96 ND 114 23-143% ug/L 1 0.248 0.495 4,6-Dinitro-2-methylphenol 3.65 ug/L 1 3.96 ND 92 44-137% 2-Methylphenol 2.64 0.0248 0.0495 ug/L 1 3.96 ND 67 30-120% \_\_\_ 3+4-Methylphenol(s) 2.42 0.0248 0.0495 ug/L 1 3.96 ND 61 29-120% 2.90 3.96 73 2-Nitrophenol 0.09900.198ND 47-123% ug/L 1 4-Nitrophenol ND 3.96 10-120% Q-01 0.0990 0.198ug/L 1 ND 0.0990 0.198 Pentachlorophenol (PCP) 4.18 3.96 ND 106 35-138% ug/L 1 1.09 0.198 0.396 3.96 ND 27 10-120% Phenol ug/L 1 0.0495 2,3,4,6-Tetrachlorophenol 3.84 0.0990 ug/L 1 3.96 ND 97 50-128% 2,3,5,6-Tetrachlorophenol 3.82 0.0495 0.0990 ug/L 1 3.96 ND 97 50-121% 3.72 0.0495 0.0990 3.96 94 2,4,5-Trichlorophenol ug/L 1 ND 53-123% 3.65 0.0495 0.0990 3.96 92 50-125% 2,4,6-Trichlorophenol ug/L 1 ND Bis(2-ethylhexyl)phthalate 4.63 0.198 0.396 3.96 ND 108 55-135% ug/L 1 4.31 0.00990 0.0198 3.96 ND 109 67-120% Benzo(e)pyrene ug/L 1 0.00990 0.0198 Perylene 4.43 ug/L 1 3.96 ND 112 62-130% 1,1'-Biphenyl 3.01 0.00990 0.0198 ug/L 1 3.96 0.0123 76 49-120% 2,3,5-Trimethylnaphthalene 3.36 0.00990 0.0198 3.96 ND 85 ug/L 1 47-120% ---2,6-Dimethylnaphthalene 3.07 0.00990 0.0198 ug/L 3.96 ND 78 35-120% 1 Surr: Nitrobenzene-d5 (Surr) Recovery: 79 % Limits: 44-120 % Dilution: 1x O-41 2-Fluorobiphenyl (Surr) 73 % 44-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 13 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001.003Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                                              |             |                    |                    |              |           |                 | _                |       |                 |     |              |       |
|--------------------------------------------------------------|-------------|--------------------|--------------------|--------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                                      | Result      | Detection<br>Limit | Reporting<br>Limit | Units        | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 22E0112 - EPA 3510C (                                  | Acid Extra  | ction)             |                    |              |           |                 | Wa               | ter   |                 |     |              |       |
| Matrix Spike (22E0112-MS2)                                   |             |                    | Prepared           | : 05/04/22 0 | 6:58 Anal | yzed: 05/05     | /22 18:34        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A2                                | 2E0006-02RI | E1)                |                    |              |           |                 |                  |       |                 |     |              |       |
| Surr: Phenol-d6 (Surr)                                       |             | Reco               | very: 26 %         | Limits: 10-  | -133 %    | Dilı            | tion: 1x         |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)                                       |             |                    | 54 %               | 50-          | 134 %     |                 | "                |       |                 |     |              |       |
| 2-Fluorophenol (Surr)                                        |             |                    | 38 %               | 19-          | 120 %     |                 | "                |       |                 |     |              |       |
| 2,4,6-Tribromophenol (Surr)                                  |             |                    | 95 %               | 43-          | 140 %     |                 | "                |       |                 |     |              |       |
| Matrix Spike (22E0112-MS3)                                   |             |                    | Prepared           | : 05/04/22 0 | 6:58 Anal | yzed: 05/09     | /22 12:10        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A2                                | 2E0006-02RI | E1)                |                    |              |           |                 |                  |       |                 |     |              |       |
| EPA 8270E                                                    |             |                    |                    |              |           |                 |                  |       |                 |     |              |       |
| Benzo(g,h,i)perylene                                         | 3.63        | 0.0396             | 0.0792             | ug/L         | 4         | 3.96            | ND               | 92    | 50-134%         |     |              |       |
| Dibenz(a,h)anthracene                                        | 3.69        | 0.0396             | 0.0792             | ug/L         | 4         | 3.96            | ND               | 93    | 51-134%         |     |              |       |
| Indeno(1,2,3-cd)pyrene                                       | 3.31        | 0.0396             | 0.0792             | ug/L         | 4         | 3.96            | ND               | 83    | 52-134%         |     |              |       |
| Matrix Spike Dup (22E0112-M<br>QC Source Sample: Non-SDG (A2 |             | E <u>1)</u>        | 1                  |              |           | lyzed: 05/05    |                  |       |                 |     |              |       |
| Acenaphthene                                                 | 3.43        | 0.0103             | 0.0206             | ug/L         | 1         | 4.12            | ND               | 83    | 47-122%         | 8   | 30%          |       |
| Acenaphthylene                                               | 3.74        | 0.0103             | 0.0206             | ug/L         | 1         | 4.12            | ND               | 91    | 41-130%         | 9   | 30%          |       |
| Anthracene                                                   | 3.85        | 0.0103             | 0.0206             | ug/L         | 1         | 4.12            | ND               | 93    | 57-123%         | 8   | 30%          |       |
| Benz(a)anthracene                                            | 3.97        | 0.0103             | 0.0206             | ug/L         | 1         | 4.12            | ND               | 96    | 58-125%         | 3   | 30%          |       |
| Benzo(a)pyrene                                               | 4.47        | 0.0155             | 0.0309             | ug/L         | 1         | 4.12            | 0.0158           | 108   | 54-128%         | 3   | 30%          |       |
| Benzo(b)fluoranthene                                         | 4.27        | 0.0155             | 0.0309             | ug/L         | 1         | 4.12            | ND               | 104   | 53-131%         | 4   | 30%          |       |
| Benzo(k)fluoranthene                                         | 4.22        | 0.0155             | 0.0309             | ug/L         | 1         | 4.12            | ND               | 102   | 57-129%         | 1   | 30%          |       |
| Chrysene                                                     | 3.95        | 0.0103             | 0.0206             | ug/L         | 1         | 4.12            | ND               | 96    | 59-123%         | 4   | 30%          |       |
| Fluoranthene                                                 | 4.06        | 0.0103             | 0.0206             | ug/L         | 1         | 4.12            | 0.0140           | 98    | 57-128%         | 6   | 30%          |       |
| Fluorene                                                     | 3.59        | 0.0103             | 0.0206             | ug/L         | 1         | 4.12            | ND               | 87    | 52-124%         | 6   | 30%          |       |
| I-Methylnaphthalene                                          | 3.16        | 0.0206             | 0.0412             | ug/L         | 1         | 4.12            | ND               | 77    | 41-120%         | 17  | 30%          |       |
| 2-Methylnaphthalene                                          | 3.11        | 0.0206             | 0.0412             | ug/L         | 1         | 4.12            | ND               | 75    | 40-121%         | 17  | 30%          |       |
| Naphthalene                                                  | 3.04        | 0.0206             | 0.0412             | ug/L         | 1         | 4.12            | ND               | 74    | 40-121%         | 23  | 30%          |       |
| Phenanthrene                                                 | 3.75        | 0.0103             | 0.0206             | ug/L         | 1         | 4.12            | 0.0176           | 91    | 59-120%         | 2   | 30%          |       |
| Pyrene                                                       | 3.95        | 0.0103             | 0.0206             | ug/L         | 1         | 4.12            | 0.0109           | 95    | 57-126%         | 6   | 30%          |       |
| Carbazole                                                    | 4.39        | 0.0155             | 0.0309             | ug/L         | 1         | 4.12            | ND               | 106   | 60-122%         | 6   | 30%          |       |
|                                                              |             | 0.0102             | 0.0006             | - 0*         |           | 4.10            | ND               | 0.2   | 52 1200/        | -   | 200/         |       |
| Dibenzofuran                                                 | 3.41        | 0.0103             | 0.0206             | ug/L         | 1         | 4.12            | ND               | 83    | 53-120%         | 5   | 30%          |       |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001.003

Portland, OR 97232 Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                               |             | Selecte            | d Semivol          | atile Orga  | anic Com  | pounds b        | y EPA 82         | 270E  |                 |     |              |       |     |
|-------------------------------|-------------|--------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|-----|
| Analyte                       | Result      | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes | ;   |
| Batch 22E0112 - EPA 3510C (A  | Acid Extrac | tion)              |                    |             |           |                 | Wa               | ter   |                 |     |              |       |     |
| Matrix Spike Dup (22E0112-M   | ISD2)       |                    | Prepared           | 1: 05/04/22 | 06:58 Ana | lyzed: 05/05    | /22 19:09        |       |                 |     |              |       |     |
| QC Source Sample: Non-SDG (A2 | E0006-02RE  | 1)                 |                    |             |           |                 |                  |       |                 |     |              |       |     |
| 4-Chloro-3-methylphenol       | 4.06        | 0.103              | 0.206              | ug/L        | 1         | 4.12            | ND               | 99    | 52-120%         | 6   | 30%          |       |     |
| 2,4-Dichlorophenol            | 3.70        | 0.0515             | 0.103              | ug/L        | 1         | 4.12            | ND               | 90    | 47-121%         | 10  | 30%          |       |     |
| 2,4-Dimethylphenol            | 3.42        | 0.0515             | 0.103              | ug/L        | 1         | 4.12            | ND               | 83    | 31-124%         | 27  | 30%          |       |     |
| 2,4-Dinitrophenol             | 4.31        | 0.258              | 0.515              | ug/L        | 1         | 4.12            | ND               | 104   | 23-143%         | 4   | 30%          |       |     |
| 4,6-Dinitro-2-methylphenol    | 3.78        | 0.258              | 0.515              | ug/L        | 1         | 4.12            | ND               | 92    | 44-137%         | 4   | 30%          |       |     |
| 2-Methylphenol                | 3.26        | 0.0258             | 0.0515             | ug/L        | 1         | 4.12            | ND               | 79    | 30-120%         | 21  | 30%          |       |     |
| 3+4-Methylphenol(s)           | 3.00        | 0.0258             | 0.0515             | ug/L        | 1         | 4.12            | ND               | 73    | 29-120%         | 21  | 30%          |       |     |
| 2-Nitrophenol                 | 3.58        | 0.103              | 0.206              | ug/L        | 1         | 4.12            | ND               | 87    | 47-123%         | 21  | 30%          |       |     |
| 4-Nitrophenol                 | 1.66        | 0.103              | 0.206              | ug/L        | 1         | 4.12            | ND               | 40    | 10-120%         | 200 | 30%          |       | Q-0 |
| Pentachlorophenol (PCP)       | 4.04        | 0.103              | 0.206              | ug/L        | 1         | 4.12            | ND               | 98    | 35-138%         | 3   | 30%          |       |     |
| Phenol                        | 1.38        | 0.206              | 0.412              | ug/L        | 1         | 4.12            | ND               | 33    | 10-120%         | 24  | 30%          |       |     |
| 2,3,4,6-Tetrachlorophenol     | 3.86        | 0.0515             | 0.103              | ug/L        | 1         | 4.12            | ND               | 94    | 50-128%         | 0.6 | 30%          |       |     |
| 2,3,5,6-Tetrachlorophenol     | 3.83        | 0.0515             | 0.103              | ug/L        | 1         | 4.12            | ND               | 93    | 50-121%         | 0.2 | 30%          |       |     |
| 2,4,5-Trichlorophenol         | 3.81        | 0.0515             | 0.103              | ug/L        | 1         | 4.12            | ND               | 92    | 53-123%         | 2   | 30%          |       |     |
| 2,4,6-Trichlorophenol         | 3.80        | 0.0515             | 0.103              | ug/L        | 1         | 4.12            | ND               | 92    | 50-125%         | 4   | 30%          |       |     |
| Bis(2-ethylhexyl)phthalate    | 4.62        | 0.206              | 0.412              | ug/L        | 1         | 4.12            | ND               | 104   | 55-135%         | 0.1 | 30%          |       |     |
| Surr: Nitrobenzene-d5 (Surr)  |             | Reco               | very: 99 %         | Limits: 44  | 4-120 %   | Dilı            | ution: 1x        |       |                 |     |              | Q-41  |     |
| 2-Fluorobiphenyl (Surr)       |             |                    | 78 %               | 44          | 1-120 %   |                 | "                |       |                 |     |              |       |     |
| Phenol-d6 (Surr)              |             |                    | 31 %               | 10          | 0-133 %   |                 | "                |       |                 |     |              |       |     |
| p-Terphenyl-d14 (Surr)        |             |                    | 57 %               | 50          | )-134 %   |                 | "                |       |                 |     |              |       |     |
| 2-Fluorophenol (Surr)         |             |                    | 48 %               | 19          | 0-120 %   |                 | "                |       |                 |     |              |       |     |
| 2,4,6-Tribromophenol (Surr)   |             |                    | 93 %               | 43          | 3-140 %   |                 | "                |       |                 |     |              |       |     |
| Matrix Spike Dup (22E0112-M   | ISD3)       |                    | Prepared           | 1: 05/04/22 | 06:58 Ana | lyzed: 05/09/   | /22 12:44        |       |                 |     |              |       |     |
| QC Source Sample: Non-SDG (A2 | E0006-02RE  | 1)                 |                    |             |           |                 |                  |       |                 |     |              |       |     |
| Benzo(g,h,i)perylene          | 4.05        | 0.0412             | 0.0825             | ug/L        | 4         | 4.12            | ND               | 98    | 50-134%         | 11  | 30%          |       |     |
| Dibenz(a,h)anthracene         | 4.12        | 0.0412             | 0.0825             | ug/L        | 4         | 4.12            | ND               | 100   | 51-134%         | 11  | 30%          |       |     |
| Indeno(1,2,3-cd)pyrene        | 3.75        | 0.0412             | 0.0825             | ug/L        | 4         | 4.12            | ND               | 91    | 52-134%         | 12  | 30%          |       |     |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001.003
Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                |           |                    | Total N            | letals by  | EPA 200   | .8 (ICPMS       | )                |       |                 |     |              |       |
|--------------------------------|-----------|--------------------|--------------------|------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                        | Result    | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 22E0683 - EPA 3015A      |           |                    |                    |            |           |                 | Wa               | ter   |                 |     |              |       |
| Blank (22E0683-BLK1)           |           |                    | Prepared           | : 05/18/22 | 10:01 Ana | yzed: 05/18/    | /22 20:42        |       |                 |     |              |       |
| EPA 200.8                      |           |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| Cadmium                        | ND        | 0.100              | 0.200              | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Copper                         | ND        | 1.00               | 2.00               | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Zinc                           | ND        | 2.00               | 4.00               | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| LCS (22E0683-BS1)              |           |                    | Prepared           | : 05/18/22 | 10:01 Ana | lyzed: 05/18/   | /22 20:47        |       |                 |     |              |       |
| EPA 200.8                      |           |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| Cadmium                        | 53.0      | 0.100              | 0.200              | ug/L       | 1         | 55.6            |                  | 95    | 85-115%         |     |              |       |
| Copper                         | 53.8      | 1.00               | 2.00               | ug/L       | 1         | 55.6            |                  | 97    | 85-115%         |     |              |       |
| Zinc                           | 57.1      | 2.00               | 4.00               | ug/L       | 1         | 55.6            |                  | 103   | 85-115%         |     |              |       |
| Duplicate (22E0683-DUP1)       |           |                    | Prepared           | : 05/18/22 | 10:01 Ana | yzed: 05/18/    | /22 21:07        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A2) | E0010-01) |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| Cadmium                        | ND        | 0.100              | 0.200              | ug/L       | 1         |                 | ND               |       |                 |     | 20%          |       |
| Copper                         | 2.23      | 1.00               | 2.00               | ug/L       | 1         |                 | 2.36             |       |                 | 5   | 20%          |       |
| Zinc                           | 116       | 2.00               | 4.00               | ug/L       | 1         |                 | 118              |       |                 | 2   | 20%          |       |
| Matrix Spike (22E0683-MS1)     |           |                    | Prepared           | : 05/18/22 | 10:01 Ana | lyzed: 05/18    | /22 21:11        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A2) | E0010-01) |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| EPA 200.8                      |           |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| Cadmium                        | 54.6      | 0.100              | 0.200              | ug/L       | 1         | 55.6            | ND               | 98    | 70-130%         |     |              |       |
| Copper                         | 58.1      | 1.00               | 2.00               | ug/L       | 1         | 55.6            | 2.36             | 100   | 70-130%         |     |              |       |
| Zinc                           | 175       | 2.00               | 4.00               | ug/L       | 1         | 55.6            | 118              | 102   | 70-130%         |     |              |       |
| Matrix Spike (22E0683-MS2)     |           |                    | Prepared           | : 05/18/22 | 10:01 Ana | lyzed: 05/18/   | /22 22:29        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A2) | E0027-03) |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| EPA 200.8                      | <u></u>   |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| Cadmium                        | 51.0      | 0.100              | 0.200              | ug/L       | 1         | 55.6            | ND               | 92    | 70-130%         |     |              |       |
| Copper                         | 53.6      | 1.00               | 2.00               | ug/L       | 1         | 55.6            | 1.07             | 94    | 70-130%         |     |              |       |
| Zinc                           | 68.6      | 2.00               | 4.00               | ug/L       | 1         | 55.6            | 15.3             | 96    | 70-130%         |     |              |       |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001.003
Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                               |           | To                 | tal Metals         | by EPA       | 200.8 (ICP | MS) - Lov       | v Level          |           |                 |     |              |       |
|-------------------------------|-----------|--------------------|--------------------|--------------|------------|-----------------|------------------|-----------|-----------------|-----|--------------|-------|
| Analyte                       | Result    | Detection<br>Limit | Reporting<br>Limit | Units        | Dilution   | Spike<br>Amount | Source<br>Result | % REC     | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 22F0114 - EPA 3015A     |           |                    |                    |              |            |                 | Wa               | ter       |                 |     |              |       |
| Blank (22F0114-BLK1)          |           |                    | Prepared           | 06/03/22     | 16:37 Anal | yzed: 06/06     | /22 23:35        |           |                 |     |              |       |
| EPA 200.8-LL<br>Cadmium       | ND        | 0.0200             | 0.0400             | ug/L         | 1          |                 |                  |           |                 |     |              |       |
| Blank (22F0114-BLK2)          |           |                    | Prepared           | : 06/03/22   | 16:37 Anal | yzed: 06/07     | /22 22:27        |           |                 |     |              |       |
| EPA 200.8-LL<br>Arsenic       | ND        | 0.0200             | 0.0400             | ug/L         | 1          |                 |                  |           |                 |     |              | Q-1   |
| LCS (22F0114-BS1)             |           |                    | Prepared           | : 06/03/22   | 16:37 Anal | yzed: 06/06     | /22 23:57        |           |                 |     |              |       |
| EPA 200.8-LL                  |           |                    |                    |              |            |                 |                  |           |                 |     |              |       |
| Arsenic                       | 5.73      | 0.0200<br>0.0200   | 0.0400<br>0.0400   | ug/L         | 1          | 5.56<br>5.56    |                  | 103<br>97 | 85-115%         |     |              |       |
| Cadmium                       | 5.36      | 0.0200             | 0.0400             | ug/L         | 1          | 3.30            |                  | 97        | 85-115%         |     |              |       |
| Duplicate (22F0114-DUP1)      |           |                    | Prepared           | 06/03/22     | 16:37 Anal | yzed: 06/07     | /22 00:41        |           |                 |     |              |       |
| QC Source Sample: Non-SDG (A2 | E0356-02) |                    |                    |              |            |                 |                  |           |                 |     |              |       |
| Cadmium                       | ND        | 0.0200             | 0.0400             | ug/L         | 1          |                 | ND               |           |                 |     | 20%          |       |
| Duplicate (22F0114-DUP2)      |           |                    | Prepared           | : 06/03/22   | 16:37 Anal | yzed: 06/07     | /22 22:41        |           |                 |     |              |       |
| QC Source Sample: Non-SDG (A2 | E0356-02R | <u>E1)</u>         |                    |              |            |                 |                  |           |                 |     |              |       |
| Arsenic                       | 0.210     | 0.0200             | 0.0400             | ug/L         | 1          |                 | 0.221            |           |                 | 5   | 20%          | Q-1   |
| Matrix Spike (22F0114-MS1)    |           |                    | Prepared           | : 06/03/22   | 16:37 Anal | yzed: 06/07     | /22 00:56        |           |                 |     |              |       |
| QC Source Sample: Non-SDG (A2 | E0356-03) |                    |                    |              |            |                 |                  |           |                 |     |              |       |
| EPA 200.8-LL<br>Arsenic       | 6.61      | 0.0200             | 0.0400             | по/Т         | 1          | 5.56            | 0.866            | 103       | 70-130%         |     |              |       |
| Cadmium                       | 5.64      | 0.0200             | 0.0400             | ug/L<br>ug/L | 1          | 5.56            | 0.866            | 103       | 70-130%         |     |              |       |

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001.003
Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                        |            |                    | Solid a            | nd Moist   | ure Dete   | rmination       | s                |       |                 |                |              |       |
|----------------------------------------|------------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|----------------|--------------|-------|
| Analyte                                | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD            | RPD<br>Limit | Notes |
| Batch 22E0099 - Total Suspen           | ded Solid  | s                  |                    |            |            |                 | Wat              | ter   |                 |                |              |       |
| Blank (22E0099-BLK1)                   |            |                    | Prepared           | : 05/03/22 | 18:29 Anal | lyzed: 05/03    | /22 18:29        |       |                 |                |              |       |
| SM 2540 D Total Suspended Solids       | ND         | 5.00               | 5.00               | mg/L       | 1          |                 |                  |       |                 |                |              |       |
| Duplicate (22E0099-DUP1)               |            |                    | Prepared           | : 05/03/22 | 18:29 Anal | lyzed: 05/03    | /22 18:29        |       |                 |                |              |       |
| OC Source Sample: OUTFALL C. SM 2540 D | /D (A2E002 | 6-02)              |                    |            |            |                 |                  |       |                 |                |              |       |
| Total Suspended Solids                 | 15.6       | 10.0               | 10.0               | mg/L       | 1          |                 | 16.8             |       |                 | 7.41           | 10%          |       |
| Duplicate (22E0099-DUP2)               |            |                    | Prepared           | : 05/03/22 | 18:29 Anal | lyzed: 05/03    | /22 18:29        |       |                 |                |              |       |
| QC Source Sample: Non-SDG (A2          | 2E0051-02) |                    |                    |            |            |                 |                  |       |                 |                |              |       |
| Total Suspended Solids                 | 74.8       | 6.25               | 6.25               | mg/L       | 1          |                 | 70.5             |       |                 | 5.85           | 10%          |       |
| Reference (22E0099-SRM1)               |            |                    | Prepared           | : 05/03/22 | 18:29 Anal | lyzed: 05/03    | /22 18:29        |       |                 |                |              |       |
| SM 2540 D                              |            |                    | ·                  |            |            |                 |                  |       |                 |                |              |       |
| Total Suspended Solids                 | 796        |                    |                    | mg/L       | 1          | 781             |                  | 102   | 34.9-115.19     | ⁄ <sub>0</sub> |              |       |

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001.003
Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# SAMPLE PREPARATION INFORMATION

|                     |             | Selected Semi | volatile Organic Com | pounds by EPA 827 | '0E                  |                          |         |
|---------------------|-------------|---------------|----------------------|-------------------|----------------------|--------------------------|---------|
| Prep: EPA 3510C (Ac | <del></del> |               |                      |                   | Sample Initial/Final | Default<br>Initial/Final | RL Prep |
| Lab Number          | Matrix      | Method        | Sampled              | Prepared          | IIIIIai/Filiai       | Initial/Final            | ractor  |
| Batch: 22E0112      |             |               |                      |                   |                      |                          |         |
| A2E0026-01RE1       | Water       | EPA 8270E     | 04/29/22 20:05       | 05/04/22 06:58    | 990mL/1mL            | 1000 mL/1 mL             | 1.01    |
| A2E0026-02RE1       | Water       | EPA 8270E     | 04/29/22 20:34       | 05/04/22 06:58    | 910mL/1mL            | 1000 mL/1 mL             | 1.10    |
| A2E0026-03RE1       | Water       | EPA 8270E     | 04/29/22 21:00       | 05/04/22 06:58    | 1060 mL/1 mL         | 1000 mL/1 mL             | 0.94    |
| A2E0026-04RE1       | Water       | EPA 8270E     | 04/29/22 00:00       | 05/04/22 06:58    | 990mL/1mL            | 1000mL/1mL               | 1.01    |

|                 |        | Tota      | al Metals by EPA 200 | .8 (ICPMS)     |               |               |         |
|-----------------|--------|-----------|----------------------|----------------|---------------|---------------|---------|
| Prep: EPA 3015A |        |           |                      |                | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method    | Sampled              | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 22E0683  |        |           |                      |                |               |               |         |
| A2E0026-01      | Water  | EPA 200.8 | 04/29/22 20:05       | 05/18/22 10:01 | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A2E0026-02      | Water  | EPA 200.8 | 04/29/22 20:34       | 05/18/22 10:01 | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A2E0026-03      | Water  | EPA 200.8 | 04/29/22 21:00       | 05/18/22 10:01 | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A2E0026-04      | Water  | EPA 200.8 | 04/29/22 00:00       | 05/18/22 10:01 | 45mL/50mL     | 45mL/50mL     | 1.00    |

|                 |        | Total Meta   | als by EPA 200.8 (IC | PMS) - Low Level |               |               |         |
|-----------------|--------|--------------|----------------------|------------------|---------------|---------------|---------|
| Prep: EPA 3015A |        |              |                      |                  | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method       | Sampled              | Prepared         | Initial/Final | Initial/Final | Factor  |
| Batch: 22F0114  |        |              |                      |                  |               |               |         |
| A2E0026-02      | Water  | EPA 200.8-LL | 04/29/22 20:34       | 06/03/22 16:37   | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A2E0026-03      | Water  | EPA 200.8-LL | 04/29/22 21:00       | 06/03/22 16:37   | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A2E0026-04      | Water  | EPA 200.8-LL | 04/29/22 00:00       | 06/03/22 16:37   | 45mL/50mL     | 45mL/50mL     | 1.00    |

|                     |            | So        | lid and Moisture Dete | erminations    |               |               |         |
|---------------------|------------|-----------|-----------------------|----------------|---------------|---------------|---------|
| Prep: Total Suspend | ded Solids |           |                       |                | Sample        | Default       | RL Prep |
| Lab Number          | Matrix     | Method    | Sampled               | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 22E0099      |            |           |                       |                |               |               |         |
| A2E0026-01          | Water      | SM 2540 D | 04/29/22 20:05        | 05/03/22 18:29 |               |               | NA      |
| A2E0026-02          | Water      | SM 2540 D | 04/29/22 20:34        | 05/03/22 18:29 |               |               | NA      |
| A2E0026-03          | Water      | SM 2540 D | 04/29/22 21:00        | 05/03/22 18:29 |               |               | NA      |
| A2E0026-04          | Water      | SM 2540 D | 04/29/22 00:00        | 05/03/22 18:29 |               |               | NA      |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: Dolan SCE
Project Number: M1381.01.001.003

Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# **QUALIFIER DEFINITIONS**

# Client Sample and Quality Control (QC) Sample Qualifier Definitions:

# **Apex Laboratories**

J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.

Q-01 Spike recovery and/or RPD is outside acceptance limits.

Q-16 Reanalysis of an original Batch QC sample.

Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.

R-04 Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 20 of 25



# Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001.003Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

#### REPORTING NOTES AND CONVENTIONS:

#### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

# **Detection Limits:** Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

#### Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

#### **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"\_\_\_" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

# **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

#### Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"\*\*\*" Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

#### Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 21 of 25



# Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001.003Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

# **REPORTING NOTES AND CONVENTIONS (Cont.):**

#### Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

#### **Preparation Notes:**

#### Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

# **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 22 of 25



# Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001.003Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

#### LABORATORY ACCREDITATION INFORMATION

# ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

# **Apex Laboratories**

Matrix Analysis TNI\_ID Analyte TNI\_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

# **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

# **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

# **Field Testing Parameters**

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 23 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: <u>Dolan SCE</u>
Project Number: M1381.01.001.003

Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

| 6700 SW Sandburg St., Tigard, OR 97223 Ph. 503-718-2323 | 223 Ph.                      | 503-718   | 8-2323            |                      | ر               | CHAIN OF CUSTODY    | =         | 5                                       | <u> </u>            | 7             | 3                        | _         |                                 |                      |                                                                                                           | Lab#            | A2           | 8                          | Lab# AZEOG26 COC Of           | _           |                |
|---------------------------------------------------------|------------------------------|-----------|-------------------|----------------------|-----------------|---------------------|-----------|-----------------------------------------|---------------------|---------------|--------------------------|-----------|---------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------|-----------------|--------------|----------------------------|-------------------------------|-------------|----------------|
| Company: MAUL FOSTER & ALONK                            | ) Sylv                       | Project 1 | Mgr. J            | Project Mgr. JESS1CA | 1 1             | GLE NN              | 3         | - 4                                     | roject ]            | Project Name: | DOLAN                    | 3         | 8                               | ZML1                 | STORMWATER                                                                                                | F               | oject #      | 2                          | Project #: M 1381, 01,001.003 | 500         |                |
| Address: 3140 NE BROADWAY ST, POLITUAND,                | AV ST                        | रेश्य     | 25                | 00                   | £               | Phone: 971-254-8085 | 1-25      | 908-1                                   | 52                  | Emai          | 57 :                     | lend      | a d                             | Hom                  | Email: jglenn@maulfoster.com                                                                              | ¥               | # Od         |                            |                               |             |                |
| Sampled by: C#PLS CLOUGH                                | 7                            |           |                   |                      |                 |                     |           |                                         |                     |               |                          |           |                                 | NAL.                 | ANALYSIS REQUEST                                                                                          |                 |              | 18                         |                               |             |                |
| Site Location:  (QB) WA CA  AK ID  SAMPLE ID            | DATE                         | TIMIT     | XISTAM            | # OF CONTAINERS      | NWTPH-HCID      | x9-HJTWN            | 8790 BLEX | 8760 H <sup>8</sup> 10 VOC <sub>8</sub> | 8700 AOCs Lail List | 8HA9 MIS 0718 | s270 Semi-Vols Full List | 8087 LCBs | 8081 Pesticides RCRA Metals (8) | Priority Metals (13) | At, Sb, As, Bs, Be, Cd, Cr, Co, Cu, Fe, Pb, Hg, Mg, Mn, Mo, Ni, K, Cd, Cd, Cd, Cd, Cd, Cd, Cd, Cd, Cd, Cd | TCLP Metals (8) | SST          | BEHP (B230E) JUTAL ALSENIC | TOTAL COPER                   | Hold Sample | Frozen Archive |
| OUTFALL E                                               | 4/24/22                      | 2005      | 3-                |                      |                 |                     |           |                                         |                     | Х             |                          |           |                                 |                      | $\times$                                                                                                  |                 | ×            | ./                         |                               |             |                |
| ONTALL C/D                                              |                              | ५६०७      |                   | 7                    |                 |                     |           |                                         |                     | ×             |                          |           | -                               |                      |                                                                                                           | <u> </u> ^      | ×            | ×                          | ×                             |             |                |
| CB-16                                                   |                              | 2100      |                   | 5                    |                 |                     |           |                                         |                     | ×             |                          |           |                                 | ļ                    | ×                                                                                                         | <u> </u>        | X            |                            |                               |             |                |
| ひひを                                                     | <b>&gt;</b>                  | ١         | ^                 | <u>ь</u>             |                 |                     |           |                                         |                     | 乂             |                          |           |                                 |                      |                                                                                                           |                 | Ź            | X                          | ×                             |             | <u> </u>       |
| TOTO CONTRACTOR AND A LABOR CO.                         |                              |           |                   |                      | -               |                     |           |                                         | -                   |               |                          |           |                                 |                      |                                                                                                           |                 |              |                            |                               |             |                |
|                                                         |                              |           |                   |                      | -               |                     |           | +-                                      | -                   |               | $\top$                   | +         | -                               |                      |                                                                                                           | <del>   </del>  |              |                            |                               | -           |                |
|                                                         |                              |           |                   |                      |                 |                     |           |                                         |                     |               |                          | $\vdash$  | -                               |                      |                                                                                                           |                 |              |                            |                               |             |                |
|                                                         |                              |           |                   |                      |                 |                     |           |                                         |                     |               |                          | _         |                                 | -                    |                                                                                                           | _               |              |                            |                               |             |                |
| Standard Turn Around Time (TAT) = 10 Business Days      | Around Tir                   | ne (TAT)  | = 10 B            | siness D             | ays             |                     |           | -                                       | -                   | SPEC          | SPECIAL INSTRUCTIONS     | STRI      |                                 | Si                   |                                                                                                           | 1               | +            | -                          |                               |             | -              |
| TAT Requested (circle)                                  | 1 Day<br>5 Day               | <u>.</u>  | 2 Day<br>Standard |                      | 3 Day<br>Other: |                     |           |                                         |                     |               |                          |           |                                 |                      |                                                                                                           |                 |              |                            |                               |             |                |
| SAMPLES<br>RELINQUISHED BY:                             | SAMPLES ARE HELD FOR 30 DAYS | D FOR 30  | DAYS              | DAYS<br>RECEIVED BY: |                 |                     |           |                                         |                     | RELI          | Nouis                    | HED B     | نذ                              |                      |                                                                                                           | 2               | CEIV         | ED BY                      |                               |             |                |
| Ì                                                       | Date: 5/12/2012              | ,         | Signature:        | 1/1                  | his             |                     | 夏<br>死    | 5-7-3                                   | بہ                  | Signatu       | Signature:               |           | ;                               |                      | Date:                                                                                                     | .g              | nature:      | Signature:                 | Date:                         |             |                |
| Printed Name:<br>CHPUS CLOUGH                           | Time: 1344                   | 7         | Printed Name      | lame:                | Kre             | ~<                  | Time:     | ph2/                                    |                     | Printec       | Printed Name             |           |                                 |                      | Тиме:                                                                                                     | E               | Printed Name | ine:                       | Time:                         |             |                |
| MADU FOSTER & ALONAI                                    | 14NO                         |           | Company           | ٠                    | -               |                     |           |                                         |                     | Company:      | any:                     |           |                                 |                      |                                                                                                           | 3               | Company      |                            |                               |             |                |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 24 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001.003
Project Manager: Jessica Glenn

Report ID: A2E0026 - 06 10 22 0832

|                                                                                                                                                                                                                                             | APEX LABS COOLER RECEIPT FORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client: MFA                                                                                                                                                                                                                                 | Element WO#: A2 E0 6 2 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Project/Project #: Dc                                                                                                                                                                                                                       | lan Stormenter/M1381.01.001.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Delivery Info:                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date/time received: 5                                                                                                                                                                                                                       | -7-72 @ 1244 By: MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                             | Client ESS FedEx UPS Swift Senvoy SDS Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cooler Inspection                                                                                                                                                                                                                           | Date/time inspected: 5-2-22 @ 1355 By: MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chain of Custody inclu                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Signed/dated by client?                                                                                                                                                                                                                     | Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Signed/dated by Apex?                                                                                                                                                                                                                       | Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Temperature (°C) Received on ice? (d)/N) Temp. blanks? (v)/N) Ice type: (Gel Real)Othe Condition:                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Green dots applied to or Out of temperature sam Sample Inspection:  All samples intact? Yes                                                                                                                                                 | N) Possible reason why:  ut of temperature samples? Yes No ples form initiated? Yes No Date/time inspected: 5-2-22 @ 15-17 By: 0.55  s  No Comments:  ee? Yes  No Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Green dots applied to or Out of temperature sam Sample Inspection: I All samples intact? Yes Bottle labels/COCs agree COC/container discrepa                                                                                                | N) Possible reason why:  ut of temperature samples? Yes No ples form initiated? Yes No Date/time inspected: 5-2-12 @ 15-17 By: 0.55  s \sum No _ Comments:  ce? Yes \sum No _ Comments:  uncies form initiated? Yes _ No \sum  |
| Green dots applied to or Out of temperature sam Sample Inspection: I All samples intact? Yes Bottle labels/COCs agree COC/container discrepa                                                                                                | N) Possible reason why:  ut of temperature samples? Yes No ples form initiated? Yes No Date/time inspected: 5-2-12 @ 15-17 By: 0.55  s \sum No Comments:  ce? Yes \sum No Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Green dots applied to or Out of temperature sam Sample Inspection: I All samples intact? Yes Bottle labels/COCs agre COC/container discrepa Containers/volumes rec Do VOA vials have visi                                                   | N) Possible reason why:  ut of temperature samples? Yes No ples form initiated? Yes No Date/time inspected: 5-2-12 @ 15-17 By: 0.55  s \sum No _ Comments:  ce? Yes \sum No _ Comments:  uncies form initiated? Yes _ No \sum  |
| Green dots applied to or Out of temperature sam Sample Inspection: I All samples intact? Yes Bottle labels/COCs agree COC/container discrepa Containers/volumes rec Do VOA vials have visi Comments Water samples: pH check                 | N) Possible reason why:  ut of temperature samples? Yes No ples form initiated? Yes No Date/time inspected: 5-2-12 @ 15-17 By: 0.55  s \sum No _ Comments:  ee? Yes \sum No _ Comments:  uncies form initiated? Yes _ No \sum eived appropriate for analysis? Yes \sum No _ Comments:  sble headspace? Yes _ No _ NA \sum eived NO _ NA \sum eiv |
| Green dots applied to or Out of temperature sam Sample Inspection: I All samples intact? Yes Bottle labels/COCs agree COC/container discrepa Containers/volumes recurred Do VOA vials have visit Comments Water samples: pH check Comments: | N) Possible reason why:  ut of temperature samples? Yes No ples form initiated? Yes No Date/time inspected: 5-2-22 @ 15-17 By: 0-55  s No Comments:  ee? Yes No Comments:  uncies form initiated? Yes No No Comments:  eived appropriate for analysis? Yes No Comments:  ible headspace? Yes No NA PH appropriate? Yes No NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Green dots applied to or Out of temperature sam Sample Inspection: I All samples intact? Yes Bottle labels/COCs agree COC/container discrepa Containers/volumes recurred Do VOA vials have visit Comments Water samples: pH check Comments: | N) Possible reason why:  ut of temperature samples? Yes No ples form initiated? Yes No Date/time inspected: 5-2-22 @ 15-17 By; D35  s No Comments:  ee? Yes No Comments:  uncies form initiated? Yes No No Comments:  eived appropriate for analysis? Yes No Comments:  ible headspace? Yes No NA PH appropriate? Yes No NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Maenberg



Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Wednesday, November 16, 2022 Jessica Glenn Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

RE: A2J0749 - Dolan SCE - M1381.01.001

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A2J0749, which was received by the laboratory on 10/24/2022 at 10:40:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <a href="mailto:pnerenberg@apex-labs.com">pnerenberg@apex-labs.com</a>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler#1 0.8 degC

Cooler#2

1.1 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.





Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# ANALYTICAL REPORT FOR SAMPLES

|                  | SAMPLE INFO   | ORMATION |                |                |
|------------------|---------------|----------|----------------|----------------|
| Client Sample ID | Laboratory ID | Matrix   | Date Sampled   | Date Received  |
| Outfall C/D      | A2J0749-01    | Water    | 10/21/22 12:35 | 10/24/22 10:40 |
| Outfall E        | A2J0749-02    | Water    | 10/21/22 13:45 | 10/24/22 10:40 |
| CB-16            | A2J0749-03    | Water    | 10/21/22 15:35 | 10/24/22 10:40 |
| DUP              | A2J0749-04    | Water    | 10/21/22 00:00 | 10/24/22 10:40 |

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected | l Semivolatile | Organic C  | ompounds by E    | PA 8270  | E              |             |       |
|-----------------------------------|----------|----------------|------------|------------------|----------|----------------|-------------|-------|
|                                   | Sample   | Detection      | Reporting  |                  |          | Date           |             |       |
| Analyte                           | Result   | Limit          | Limit      | Units            | Dilution | Analyzed       | Method Ref. | Notes |
| Outfall C/D (A2J0749-01)          |          |                |            | Matrix: Wate     | r        | Batch:         | 22J1132     | R-04  |
| Acenaphthene                      | ND       | 0.0952         | 0.190      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Acenaphthylene                    | ND       | 0.0952         | 0.190      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Anthracene                        | ND       | 0.0952         | 0.190      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Benz(a)anthracene                 | 0.0959   | 0.0952         | 0.190      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   | J     |
| Benzo(a)pyrene                    | ND       | 0.143          | 0.286      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Benzo(b)fluoranthene              | ND       | 0.143          | 0.286      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Benzo(k)fluoranthene              | ND       | 0.143          | 0.286      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Benzo(g,h,i)perylene              | ND       | 0.0952         | 0.190      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Chrysene                          | ND       | 0.0952         | 0.190      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Dibenz(a,h)anthracene             | ND       | 0.0952         | 0.190      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Fluoranthene                      | ND       | 0.0952         | 0.190      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Fluorene                          | ND       | 0.0952         | 0.190      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Indeno(1,2,3-cd)pyrene            | ND       | 0.0952         | 0.190      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| 1-Methylnaphthalene               | ND       | 0.190          | 0.381      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND       | 0.190          | 0.381      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Naphthalene                       | ND       | 0.190          | 0.381      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Phenanthrene                      | ND       | 0.190          | 0.190      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Pyrene                            | ND       | 0.0952         | 0.190      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Carbazole                         | ND       | 0.143          | 0.286      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Dibenzofuran                      | ND       | 0.0952         | 0.190      | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Bis(2-ethylhexyl)phthalate        | ND       | 1.90           | 3.81       | ug/L             | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |          | Reco           | very: 72 % | Limits: 44-120 % | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |          |                | 71 %       | 44-120 %         | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |          |                | 24 %       | 10-133 %         | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |          |                | 53 %       | 50-134 %         |          | 10/28/22 21:41 | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |          |                | 38 %       | 19-120 %         |          | 10/28/22 21:41 | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |          |                | 113 %      | 43-140 %         | 10       | 10/28/22 21:41 | EPA 8270E   |       |
| Outfall E (A2J0749-02)            |          |                |            | Matrix: Wate     | r        | Batch:         | 22J1132     | R-04  |
| Acenaphthene                      | ND       | 0.102          | 0.204      | ug/L             | 10       | 10/28/22 22:15 | EPA 8270E   |       |
| Acenaphthylene                    | ND       | 0.102          | 0.204      | ug/L             | 10       | 10/28/22 22:15 | EPA 8270E   |       |
| Anthracene                        | ND       | 0.102          | 0.204      | ug/L             | 10       | 10/28/22 22:15 | EPA 8270E   |       |
| Benz(a)anthracene                 | ND       | 0.102          | 0.204      | ug/L             | 10       | 10/28/22 22:15 | EPA 8270E   |       |
| Benzo(a)pyrene                    | 0.163    | 0.153          | 0.306      | ug/L             | 10       | 10/28/22 22:15 | EPA 8270E   | J     |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# ANALYTICAL SAMPLE RESULTS

|                                       | Selected         | Semivolatile       | Organic C          | ompounds by E    | PA 8270  | E                |                        |       |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|------------------------|-------|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.            | Notes |
| Outfall E (A2J0749-02)                |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 22J1132                | R-04  |
| Benzo(b)fluoranthene                  | ND               | 0.153              | 0.306              | ug/L             | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| Benzo(k)fluoranthene                  | ND               | 0.153              | 0.306              | ug/L             | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| Benzo(g,h,i)perylene                  | ND               | 0.102              | 0.204              | ug/L             | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| Chrysene                              | ND               | 0.102              | 0.204              | ug/L             | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| Dibenz(a,h)anthracene                 | ND               | 0.102              | 0.204              | ug/L             | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| Fluoranthene                          | ND               | 0.102              | 0.204              | ug/L             | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| Fluorene                              | ND               | 0.102              | 0.204              | ug/L             | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| Indeno(1,2,3-cd)pyrene                | ND               | 0.102              | 0.204              | ug/L             | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| 1-Methylnaphthalene                   | ND               | 0.204              | 0.408              | ug/L             | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| 2-Methylnaphthalene                   | ND               | 0.204              | 0.408              | ug/L             | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| Naphthalene                           | ND               | 0.204              | 0.408              | ug/L             | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| Phenanthrene                          | 0.188            | 0.102              | 0.204              | ug/L             | 10       | 10/28/22 22:15   | EPA 8270E              | J     |
| Pyrene                                | ND               | 0.102              | 0.204              | ug/L             | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| Bis(2-ethylhexyl)phthalate            | 3.10             | 2.04               | 4.08               | ug/L             | 10       | 10/28/22 22:15   | EPA 8270E              | J     |
| Surrogate: Nitrobenzene-d5 (Surr)     |                  | Reco               | very: 51 %         | Limits: 44-120 % | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| 2-Fluorobiphenyl (Surr)               |                  |                    | 45 %               | 44-120 %         | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| Phenol-d6 (Surr)                      |                  |                    | 19 %               | 10-133 %         | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| p-Terphenyl-d14 (Surr)                |                  |                    | 53 %               | 50-134 %         | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| 2-Fluorophenol (Surr)                 |                  |                    | 30 %               | 19-120 %         | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| 2,4,6-Tribromophenol (Surr)           |                  |                    | 102 %              | 43-140 %         | 10       | 10/28/22 22:15   | EPA 8270E              |       |
| CB-16 (A2J0749-03)                    |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 22J1132                |       |
| Acenaphthene                          | ND               | 0.0455             | 0.0909             | ug/L             | 4        | 10/28/22 22:49   | EPA 8270E              |       |
| Acenaphthylene                        | ND               | 0.0455             | 0.0909             | ug/L             | 4        | 10/28/22 22:49   | EPA 8270E              |       |
| Anthracene                            | ND               | 0.0455             | 0.0909             | ug/L             | 4        | 10/28/22 22:49   | EPA 8270E              |       |
| Benz(a)anthracene                     | 0.0535           | 0.0455             | 0.0909             | ug/L             | 4        | 10/28/22 22:49   | EPA 8270E              | J     |
| Benzo(a)pyrene                        | 0.128            | 0.0682             | 0.136              | ug/L             | 4        | 10/28/22 22:49   | EPA 8270E              | J     |
| Benzo(b)fluoranthene                  | 0.118            | 0.0682             | 0.136              | ug/L             | 4        | 10/28/22 22:49   | EPA 8270E              | J     |
| Benzo(k)fluoranthene                  | 0.0698           | 0.0682             | 0.136              | ug/L             | 4        | 10/28/22 22:49   | EPA 8270E              | J     |
| Benzo(g,h,i)perylene                  | 0.0654           | 0.0455             | 0.0909             | ug/L<br>ug/L     | 4        | 10/28/22 22:49   | EPA 8270E              | J     |
| Chrysene                              | 0.0491           | 0.0455             | 0.0909             | ug/L             | 4        | 10/28/22 22:49   | EPA 8270E              | J     |
| CIII 13CIIC                           | 0.07/1           |                    |                    | -                |          | 10/28/22 22:49   |                        | · ·   |
| ·                                     | ND               | 0.0455             | U UOUU             | 110r/I           | ZI       |                  | EPA X / /UE            |       |
| Dibenz(a,h)anthracene<br>Fluoranthene | ND<br>ND         | 0.0455<br>0.0455   | 0.0909<br>0.0909   | ug/L<br>ug/L     | 4<br>4   | 10/28/22 22:49   | EPA 8270E<br>EPA 8270E |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 4 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# ANALYTICAL SAMPLE RESULTS

|                                                                                                                                                                | Selected                            | Selected Semivolatile Organic Compounds by EPA 8270E                                |                                                                               |                                                              |                                              |                                                                                                                                              |                                                                                                     |       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------|--|
| Analyte                                                                                                                                                        | Sample<br>Result                    | Detection<br>Limit                                                                  | Reporting<br>Limit                                                            | Units                                                        | Dilution                                     | Date<br>Analyzed                                                                                                                             | Method Ref.                                                                                         | Notes |  |
| CB-16 (A2J0749-03)                                                                                                                                             |                                     |                                                                                     |                                                                               | Matrix: Water                                                |                                              | Batch: 22J1132                                                                                                                               |                                                                                                     |       |  |
| Indeno(1,2,3-cd)pyrene                                                                                                                                         | 0.0618                              | 0.0455                                                                              | 0.0909                                                                        | ug/L                                                         | 4                                            | 10/28/22 22:49                                                                                                                               | EPA 8270E                                                                                           | J     |  |
| 1-Methylnaphthalene                                                                                                                                            | ND                                  | 0.0909                                                                              | 0.182                                                                         | ug/L                                                         | 4                                            | 10/28/22 22:49                                                                                                                               | EPA 8270E                                                                                           |       |  |
| 2-Methylnaphthalene                                                                                                                                            | ND                                  | 0.0909                                                                              | 0.182                                                                         | ug/L                                                         | 4                                            | 10/28/22 22:49                                                                                                                               | EPA 8270E                                                                                           |       |  |
| Naphthalene                                                                                                                                                    | ND                                  | 0.0909                                                                              | 0.182                                                                         | ug/L                                                         | 4                                            | 10/28/22 22:49                                                                                                                               | EPA 8270E                                                                                           |       |  |
| Phenanthrene                                                                                                                                                   | 0.0583                              | 0.0455                                                                              | 0.0909                                                                        | ug/L                                                         | 4                                            | 10/28/22 22:49                                                                                                                               | EPA 8270E                                                                                           | J     |  |
| Pyrene                                                                                                                                                         | ND                                  | 0.0455                                                                              | 0.0909                                                                        | ug/L                                                         | 4                                            | 10/28/22 22:49                                                                                                                               | EPA 8270E                                                                                           |       |  |
| Carbazole                                                                                                                                                      | ND                                  | 0.0682                                                                              | 0.136                                                                         | ug/L                                                         | 4                                            | 10/28/22 22:49                                                                                                                               | EPA 8270E                                                                                           |       |  |
| Dibenzofuran                                                                                                                                                   | ND                                  | 0.0455                                                                              | 0.0909                                                                        | ug/L                                                         | 4                                            | 10/28/22 22:49                                                                                                                               | EPA 8270E                                                                                           |       |  |
| Bis(2-ethylhexyl)phthalate                                                                                                                                     | ND                                  | 0.909                                                                               | 1.82                                                                          | ug/L                                                         | 4                                            | 10/28/22 22:49                                                                                                                               | EPA 8270E                                                                                           |       |  |
| Surrogate: Nitrobenzene-d5 (Surr)                                                                                                                              |                                     | Reco                                                                                | verv: 95 %                                                                    | Limits: 44-120 %                                             | 4                                            | 10/28/22 22:49                                                                                                                               | EPA 8270E                                                                                           |       |  |
| 2-Fluorobiphenyl (Surr)                                                                                                                                        |                                     |                                                                                     | 82 %                                                                          | 44-120 %                                                     | 4                                            | 10/28/22 22:49                                                                                                                               | EPA 8270E                                                                                           |       |  |
| Phenol-d6 (Surr)                                                                                                                                               |                                     |                                                                                     | 35 %                                                                          | 10-133 %                                                     | 4                                            | 10/28/22 22:49                                                                                                                               | EPA 8270E                                                                                           |       |  |
| p-Terphenyl-d14 (Surr)                                                                                                                                         |                                     |                                                                                     | 83 %                                                                          | 50-134 %                                                     | 4                                            | 10/28/22 22:49                                                                                                                               | EPA 8270E                                                                                           |       |  |
| 2-Fluorophenol (Surr)                                                                                                                                          |                                     |                                                                                     | 56 %                                                                          | 19-120 %                                                     | 4                                            | 10/28/22 22:49                                                                                                                               | EPA 8270E                                                                                           |       |  |
| 2,4,6-Tribromophenol (Surr)                                                                                                                                    |                                     |                                                                                     | 112 %                                                                         | 43-140 %                                                     | 4                                            | 10/28/22 22:49                                                                                                                               | EPA 8270E                                                                                           |       |  |
| DUP (A2J0749-04)                                                                                                                                               |                                     |                                                                                     |                                                                               | Matrix: Water                                                |                                              | Batch: 22J1132                                                                                                                               |                                                                                                     | R-04  |  |
| Acenaphthene                                                                                                                                                   | ND                                  | 0.0952                                                                              | 0.190                                                                         | ug/L                                                         | 10                                           | 10/28/22 23:23                                                                                                                               | EPA 8270E                                                                                           |       |  |
| Acenaphthylene                                                                                                                                                 | ND                                  | 0.0952                                                                              | 0.190                                                                         | ug/L                                                         | 10                                           | 10/28/22 23:23                                                                                                                               | EPA 8270E                                                                                           |       |  |
| Anthracene                                                                                                                                                     | ND                                  | 0.0952                                                                              | 0.190                                                                         | ug/L                                                         | 10                                           | 10/28/22 23:23                                                                                                                               | EPA 8270E                                                                                           |       |  |
| Benz(a)anthracene                                                                                                                                              | ND                                  | 0.0952                                                                              | 0.190                                                                         | ug/L                                                         | 10                                           | 10/28/22 23:23                                                                                                                               | EPA 8270E                                                                                           |       |  |
|                                                                                                                                                                |                                     |                                                                                     |                                                                               | _                                                            |                                              |                                                                                                                                              |                                                                                                     |       |  |
| Benzo(a)pyrene                                                                                                                                                 | ND                                  | 0.143                                                                               | 0.286                                                                         | ug/L                                                         | 10                                           | 10/28/22 23:23                                                                                                                               | EPA 8270E                                                                                           |       |  |
| · /**                                                                                                                                                          | ND<br>ND                            | 0.143<br>0.143                                                                      | 0.286<br>0.286                                                                | •                                                            | 10<br>10                                     | 10/28/22 23:23<br>10/28/22 23:23                                                                                                             | EPA 8270E<br>EPA 8270E                                                                              |       |  |
| Benzo(b)fluoranthene                                                                                                                                           |                                     |                                                                                     |                                                                               | ug/L                                                         |                                              |                                                                                                                                              |                                                                                                     |       |  |
| Benzo(b)fluoranthene<br>Benzo(k)fluoranthene                                                                                                                   | ND                                  | 0.143                                                                               | 0.286                                                                         | •                                                            | 10                                           | 10/28/22 23:23                                                                                                                               | EPA 8270E                                                                                           |       |  |
| Benzo(b)fluoranthene<br>Benzo(k)fluoranthene<br>Benzo(g,h,i)perylene                                                                                           | ND<br>ND                            | 0.143<br>0.143                                                                      | 0.286<br>0.286                                                                | ug/L<br>ug/L<br>ug/L                                         | 10<br>10                                     | 10/28/22 23:23<br>10/28/22 23:23                                                                                                             | EPA 8270E<br>EPA 8270E                                                                              |       |  |
| Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene                                                                                        | ND<br>ND<br>ND                      | 0.143<br>0.143<br>0.0952                                                            | 0.286<br>0.286<br>0.190                                                       | ug/L<br>ug/L<br>ug/L<br>ug/L                                 | 10<br>10<br>10                               | 10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23                                                                                           | EPA 8270E<br>EPA 8270E<br>EPA 8270E                                                                 |       |  |
| Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene                                      | ND<br>ND<br>ND                      | 0.143<br>0.143<br>0.0952<br>0.0952                                                  | 0.286<br>0.286<br>0.190<br>0.190                                              | ug/L<br>ug/L<br>ug/L                                         | 10<br>10<br>10<br>10                         | 10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23                                                                         | EPA 8270E<br>EPA 8270E<br>EPA 8270E<br>EPA 8270E                                                    |       |  |
| Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene                                                     | ND<br>ND<br>ND<br>ND                | 0.143<br>0.143<br>0.0952<br>0.0952<br>0.0952                                        | 0.286<br>0.286<br>0.190<br>0.190<br>0.190<br>0.190                            | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                 | 10<br>10<br>10<br>10<br>10                   | 10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23                                                       | EPA 8270E<br>EPA 8270E<br>EPA 8270E<br>EPA 8270E<br>EPA 8270E                                       |       |  |
| Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene                                                     | ND<br>ND<br>ND<br>ND<br>ND          | 0.143<br>0.143<br>0.0952<br>0.0952<br>0.0952<br>0.0952                              | 0.286<br>0.286<br>0.190<br>0.190<br>0.190                                     | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         | 10<br>10<br>10<br>10<br>10<br>10             | 10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23                                     | EPA 8270E EPA 8270E EPA 8270E EPA 8270E EPA 8270E EPA 8270E                                         |       |  |
| Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene                     | ND       | 0.143<br>0.143<br>0.0952<br>0.0952<br>0.0952<br>0.0952<br>0.0952<br>0.0952          | 0.286<br>0.286<br>0.190<br>0.190<br>0.190<br>0.190<br>0.190<br>0.190          | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 10<br>10<br>10<br>10<br>10<br>10<br>10       | 10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23                   | EPA 8270E                     |       |  |
| Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene | ND | 0.143<br>0.143<br>0.0952<br>0.0952<br>0.0952<br>0.0952<br>0.0952<br>0.0952<br>0.190 | 0.286<br>0.286<br>0.190<br>0.190<br>0.190<br>0.190<br>0.190<br>0.190<br>0.381 | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L                      | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23 | EPA 8270E                     |       |  |
| Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene                     | ND       | 0.143<br>0.143<br>0.0952<br>0.0952<br>0.0952<br>0.0952<br>0.0952<br>0.0952          | 0.286<br>0.286<br>0.190<br>0.190<br>0.190<br>0.190<br>0.190<br>0.190          | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 10<br>10<br>10<br>10<br>10<br>10<br>10       | 10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23<br>10/28/22 23:23 | EPA 8270E |       |  |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 5 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected Semivolatile Organic Compounds by EPA 8270E |                    |                    |                  |          |                  |             |       |
|-----------------------------------|------------------------------------------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                           | Sample<br>Result                                     | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| DUP (A2J0749-04)                  |                                                      |                    |                    | Matrix: Water    |          | Batch: 22J1132   |             | R-04  |
| Pyrene                            | ND                                                   | 0.0952             | 0.190              | ug/L             | 10       | 10/28/22 23:23   | EPA 8270E   |       |
| Carbazole                         | ND                                                   | 0.143              | 0.286              | ug/L             | 10       | 10/28/22 23:23   | EPA 8270E   |       |
| Dibenzofuran                      | ND                                                   | 0.0952             | 0.190              | ug/L             | 10       | 10/28/22 23:23   | EPA 8270E   |       |
| Bis(2-ethylhexyl)phthalate        | ND                                                   | 1.90               | 3.81               | ug/L             | 10       | 10/28/22 23:23   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                                                      | Recover            | ry: 72 %           | Limits: 44-120 % | 6 10     | 10/28/22 23:23   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                                                      |                    | 64 %               | 44-120 %         | 6 10     | 10/28/22 23:23   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                                                      |                    | 24 %               | 10-133 %         | 6 10     | 10/28/22 23:23   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                                                      |                    | 58 %               | 50-134 %         | 6 10     | 10/28/22 23:23   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                                                      |                    | 40 %               | 19-120 %         | 6 10     | 10/28/22 23:23   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                                                      |                    | 113 %              | 43-140 %         | 6 10     | 10/28/22 23:23   | EPA 8270E   |       |

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# ANALYTICAL SAMPLE RESULTS

| Total Metals by EPA 200.8 (ICPMS) |                  |                    |                    |           |          |                  |             |       |  |
|-----------------------------------|------------------|--------------------|--------------------|-----------|----------|------------------|-------------|-------|--|
| Analyte                           | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units     | Dilution | Date<br>Analyzed | Method Ref. | Notes |  |
| Outfall C/D (A2J0749-01)          | Matrix: Water    |                    |                    |           |          |                  |             |       |  |
| Batch: 22J1222                    |                  |                    |                    |           |          |                  |             |       |  |
| Arsenic                           | 1.39             | 0.500              | 1.00               | ug/L      | 1        | 11/01/22 12:49   | EPA 200.8   |       |  |
| Copper                            | 44.7             | 1.00               | 2.00               | ug/L      | 1        | 11/01/22 12:49   | EPA 200.8   |       |  |
| Outfall E (A2J0749-02)            | Matrix: Water    |                    |                    |           |          |                  |             |       |  |
| Batch: 22J1222                    |                  |                    |                    |           |          |                  |             |       |  |
| Cadmium                           | 1.11             | 0.100              | 0.200              | ug/L      | 1        | 11/01/22 12:54   | EPA 200.8   |       |  |
| Zinc                              | 666              | 2.00               | 4.00               | ug/L      | 1        | 11/01/22 12:54   | EPA 200.8   |       |  |
| CB-16 (A2J0749-03)                | Matrix: Water    |                    |                    |           |          |                  |             |       |  |
| Batch: 22J1222                    |                  |                    |                    |           |          |                  |             |       |  |
| Zinc                              | 105              | 2.00               | 4.00               | ug/L      | 1        | 11/01/22 12:59   | EPA 200.8   |       |  |
| DUP (A2J0749-04)                  |                  |                    |                    | Matrix: W | ater     |                  |             |       |  |
| Batch: 22J1222                    |                  |                    |                    |           |          |                  |             |       |  |
| Arsenic                           | 1.49             | 0.500              | 1.00               | ug/L      | 1        | 11/01/22 13:05   | EPA 200.8   |       |  |
| Copper                            | 45.3             | 1.00               | 2.00               | ug/L      | 1        | 11/01/22 13:05   | EPA 200.8   |       |  |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 7 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# ANALYTICAL SAMPLE RESULTS

|                         | Tot              | al Metals by       | EPA 200.8 (IC      | PMS) - Lov | v Level  |                  |              |       |
|-------------------------|------------------|--------------------|--------------------|------------|----------|------------------|--------------|-------|
| Analyte                 | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution | Date<br>Analyzed | Method Ref.  | Notes |
| CB-16 (A2J0749-03)      |                  |                    |                    | Matrix: W  | ater     |                  |              |       |
| Batch: 22K0146  Cadmium | 0.173            | 0.0200             | 0.0400             | ug/L       | 1        | 11/14/22 18:05   | EPA 200.8-LL |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# ANALYTICAL SAMPLE RESULTS

| Batch: 22J0984  Total Suspended Solids  10.0 5.00 5.00 mg/L 1 10/25/22 18:09 SM 2540 D  Outfall E (A2J0749-02) Matrix: Water  Batch: 22J0968  Total Suspended Solids  35.0 5.00 5.00 mg/L 1 10/25/22 11:30 SM 2540 D  CB-16 (A2J0749-03) Matrix: Water  Batch: 22J0968 |      |      |      |           |          |                |             |       |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-----------|----------|----------------|-------------|-------|--|--|--|--|--|
| Analyte                                                                                                                                                                                                                                                                | •    |      |      | Units     | Dilution |                | Method Ref. | Notes |  |  |  |  |  |
| Outfall C/D (A2J0749-01)                                                                                                                                                                                                                                               |      |      |      | Matrix: W | ater     |                |             |       |  |  |  |  |  |
| Batch: 22J0984  Total Suspended Solids                                                                                                                                                                                                                                 | 10.0 | 5.00 | 5.00 | mg/L      | 1        | 10/25/22 18:09 | SM 2540 D   |       |  |  |  |  |  |
| Outfall E (A2J0749-02)                                                                                                                                                                                                                                                 |      |      |      | Matrix: W | ater     |                |             |       |  |  |  |  |  |
| Batch: 22J0968                                                                                                                                                                                                                                                         |      |      |      | ·         |          |                |             | ·     |  |  |  |  |  |
| Total Suspended Solids                                                                                                                                                                                                                                                 | 35.0 | 5.00 | 5.00 | mg/L      | 1        | 10/25/22 11:30 | SM 2540 D   |       |  |  |  |  |  |
| CB-16 (A2J0749-03)                                                                                                                                                                                                                                                     |      |      |      | Matrix: W | ater     |                |             |       |  |  |  |  |  |
| Batch: 22J0968                                                                                                                                                                                                                                                         |      |      |      |           |          |                |             |       |  |  |  |  |  |
| Total Suspended Solids                                                                                                                                                                                                                                                 | 95.0 | 5.00 | 5.00 | mg/L      | 1        | 10/25/22 11:30 | SM 2540 D   |       |  |  |  |  |  |
| DUP (A2J0749-04)                                                                                                                                                                                                                                                       |      |      |      | Matrix: W | ater     |                |             |       |  |  |  |  |  |
| Batch: 22J0968                                                                                                                                                                                                                                                         |      |      |      |           |          |                |             |       |  |  |  |  |  |
| <b>Total Suspended Solids</b>                                                                                                                                                                                                                                          | 11.0 | 5.00 | 5.00 | mg/L      | 1        | 10/25/22 11:30 | SM 2540 D   | SL-1  |  |  |  |  |  |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                              |           | Selected           | d Semivola         | atile Orga   | nic Com    | pounds by       | y EPA 82         | 70E   |                 |     |              |       |
|------------------------------|-----------|--------------------|--------------------|--------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                      | Result    | Detection<br>Limit | Reporting<br>Limit | Units        | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 22J1132 - EPA 3510C (A | cid Extra | ction)             |                    |              |            |                 | Wat              | er    |                 |     |              |       |
| Blank (22J1132-BLK1)         |           |                    | Prepared           | : 10/28/22 ( | 06:48 Anal | yzed: 10/28/    | 22 19:55         |       |                 |     |              |       |
| EPA 8270E                    |           |                    |                    |              |            |                 |                  |       |                 |     |              |       |
| Acenaphthene                 | ND        | 0.00909            | 0.0182             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Acenaphthylene               | ND        | 0.00909            | 0.0182             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Anthracene                   | ND        | 0.00909            | 0.0182             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Benz(a)anthracene            | ND        | 0.00909            | 0.0182             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Benzo(a)pyrene               | ND        | 0.0136             | 0.0273             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Benzo(b)fluoranthene         | ND        | 0.0136             | 0.0273             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Benzo(k)fluoranthene         | ND        | 0.0136             | 0.0273             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Benzo(g,h,i)perylene         | ND        | 0.00909            | 0.0182             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Chrysene                     | ND        | 0.00909            | 0.0182             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Dibenz(a,h)anthracene        | ND        | 0.00909            | 0.0182             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Fluoranthene                 | ND        | 0.00909            | 0.0182             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Fluorene                     | ND        | 0.00909            | 0.0182             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Indeno(1,2,3-cd)pyrene       | ND        | 0.00909            | 0.0182             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| l-Methylnaphthalene          | ND        | 0.0182             | 0.0364             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| 2-Methylnaphthalene          | ND        | 0.0182             | 0.0364             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Naphthalene                  | ND        | 0.0182             | 0.0364             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Phenanthrene                 | ND        | 0.00909            | 0.0182             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Pyrene                       | ND        | 0.00909            | 0.0182             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Carbazole                    | ND        | 0.0136             | 0.0273             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Dibenzofuran                 | ND        | 0.00909            | 0.0182             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Bis(2-ethylhexyl)phthalate   | ND        | 0.182              | 0.364              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Butyl benzyl phthalate       | ND        | 0.182              | 0.364              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Diethylphthalate             | ND        | 0.182              | 0.364              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Dimethylphthalate            | ND        | 0.182              | 0.364              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Di-n-butylphthalate          | ND        | 0.182              | 0.364              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Di-n-octyl phthalate         | ND        | 0.182              | 0.364              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Surr: Nitrobenzene-d5 (Surr) |           | Reco               | very: 87 %         | Limits: 44   | -120 %     | Dilu            | tion: 1x         |       |                 |     |              |       |
| 2-Fluorobiphenyl (Surr)      |           |                    | 76 %               |              | -120 %     |                 | "                |       |                 |     |              |       |
| Phenol-d6 (Surr)             |           |                    | 31 %               | 10-          | -133 %     |                 | "                |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)       |           |                    | 95 %               | 50-          | -134 %     |                 | "                |       |                 |     |              |       |
| 2-Fluorophenol (Surr)        |           |                    | 50 %               | 19           | -120 %     |                 | "                |       |                 |     |              |       |
| 2,4,6-Tribromophenol (Surr)  |           |                    | 85 %               | 43.          | -140 %     |                 | "                |       |                 |     |              |       |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                                   |           | Selecte            | d Semivola         | atile Orga | anic Com           | pounds b        | y EPA 82         | 2/UE  |                 |     |              |       |
|---------------------------------------------------|-----------|--------------------|--------------------|------------|--------------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                           | Result    | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution           | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 22J1132 - EPA 3510C (A                      | cid Extra | ction)             |                    |            |                    |                 | Wa               | ter   |                 |     |              |       |
| LCS (22J1132-BS1)                                 |           |                    | Prepared           | : 10/28/22 | 06:48 Ana          | lyzed: 10/28    | /22 20:31        |       |                 |     |              |       |
| EPA 8270E                                         |           |                    |                    |            |                    | <del></del>     |                  |       |                 |     |              |       |
| Acenaphthene                                      | 3.42      | 0.0200             | 0.0400             | ug/L       | 2                  | 4.00            |                  | 85    | 47-122%         |     |              |       |
| Acenaphthylene                                    | 3.57      | 0.0200             | 0.0400             | ug/L       | 2                  | 4.00            |                  | 89    | 41-130%         |     |              |       |
| Anthracene                                        | 3.94      | 0.0200             | 0.0400             | ug/L       | 2                  | 4.00            |                  | 99    | 57-123%         |     |              |       |
| Benz(a)anthracene                                 | 4.12      | 0.0200             | 0.0400             | ug/L       | 2                  | 4.00            |                  | 103   | 58-125%         |     |              |       |
| Benzo(a)pyrene                                    | 4.18      | 0.0300             | 0.0600             | ug/L       | 2                  | 4.00            |                  | 104   | 54-128%         |     |              |       |
| Benzo(b)fluoranthene                              | 4.32      | 0.0300             | 0.0600             | ug/L       | 2                  | 4.00            |                  | 108   | 53-131%         |     |              |       |
| Benzo(k)fluoranthene                              | 4.12      | 0.0300             | 0.0600             | ug/L       | 2                  | 4.00            |                  | 103   | 57-129%         |     |              |       |
| Benzo(g,h,i)perylene                              | 4.29      | 0.0200             | 0.0400             | ug/L       | 2                  | 4.00            |                  | 107   | 50-134%         |     |              |       |
| Chrysene                                          | 4.03      | 0.0200             | 0.0400             | ug/L       | 2                  | 4.00            |                  | 101   | 59-123%         |     |              |       |
| Dibenz(a,h)anthracene                             | 4.23      | 0.0200             | 0.0400             | ug/L       | 2                  | 4.00            |                  | 106   | 51-134%         |     |              |       |
| Fluoranthene                                      | 4.13      | 0.0200             | 0.0400             | ug/L       | 2                  | 4.00            |                  | 103   | 57-128%         |     |              |       |
| Fluorene                                          | 3.65      | 0.0200             | 0.0400             | ug/L       | 2                  | 4.00            |                  | 91    | 52-124%         |     |              |       |
| Indeno(1,2,3-cd)pyrene                            | 4.18      | 0.0200             | 0.0400             | ug/L       | 2                  | 4.00            |                  | 105   | 52-134%         |     |              |       |
| l-Methylnaphthalene                               | 3.16      | 0.0400             | 0.0800             | ug/L       | 2                  | 4.00            |                  | 79    | 41-120%         |     |              |       |
| 2-Methylnaphthalene                               | 3.13      | 0.0400             | 0.0800             | ug/L       | 2                  | 4.00            |                  | 78    | 40-121%         |     |              |       |
| Naphthalene                                       | 3.04      | 0.0400             | 0.0800             | ug/L       | 2                  | 4.00            |                  | 76    | 40-121%         |     |              |       |
| Phenanthrene                                      | 3.64      | 0.0200             | 0.0400             | ug/L       | 2                  | 4.00            |                  | 91    | 59-120%         |     |              |       |
| Pyrene                                            | 4.07      | 0.0200             | 0.0400             | ug/L       | 2                  | 4.00            |                  | 102   | 57-126%         |     |              |       |
| Carbazole                                         | 4.42      | 0.0300             | 0.0600             | ug/L       | 2                  | 4.00            |                  | 110   | 60-122%         |     |              |       |
| Dibenzofuran                                      | 3.45      | 0.0200             | 0.0400             | ug/L       | 2                  | 4.00            |                  | 86    | 53-120%         |     |              |       |
| Bis(2-ethylhexyl)phthalate                        | 4.61      | 0.400              | 0.800              | ug/L       | 2                  | 4.00            |                  | 115   | 55-135%         |     |              |       |
| Butyl benzyl phthalate                            | 4.77      | 0.400              | 0.800              | ug/L       | 2                  | 4.00            |                  | 119   | 53-134%         |     |              |       |
| Diethylphthalate                                  | 4.08      | 0.400              | 0.800              | ug/L       | 2                  | 4.00            |                  | 102   | 56-125%         |     |              |       |
| Dimethylphthalate                                 | 3.91      | 0.400              | 0.800              | ug/L       | 2                  | 4.00            |                  | 98    | 45-127%         |     |              |       |
| Di-n-butylphthalate                               | 4.70      | 0.400              | 0.800              | ug/L       | 2                  | 4.00            |                  | 118   | 59-127%         |     |              |       |
| Di-n-octyl phthalate                              | 5.01      | 0.400              | 0.800              | ug/L       | 2                  | 4.00            |                  | 125   | 51-140%         |     |              |       |
| Surr: Nitrobenzene-d5 (Surr)                      |           |                    | very: 91%          | Limits: 44 |                    |                 | ution: 2x        |       |                 |     |              |       |
| 2-Fluorobiphenyl (Surr)                           |           | neco               | 79 %               |            | 1-120 %<br>1-120 % | Ditt            | 111011. 2x       |       |                 |     |              |       |
| Phenol-d6 (Surr)                                  |           |                    | 30 %               |            | 0-133 %            |                 | ,,               |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)                            |           |                    | 30 %<br>94 %       |            | )-133 %<br>)-134 % |                 | ,,               |       |                 |     |              |       |
|                                                   |           |                    |                    |            |                    |                 | ,,               |       |                 |     |              |       |
| • • • • • • • • • • • • • • • • • • • •           |           |                    |                    |            |                    |                 | ,,               |       |                 |     |              |       |
| 2-Fluorophenol (Surr) 2,4,6-Tribromophenol (Surr) |           |                    | 47 %<br>95 %       |            | 9-120 %<br>8-140 % |                 |                  |       |                 |     |              |       |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                              |            | Selecte            | d Semivola         | atile Orga | anic Com   | pounds b        | y EPA 82         | 270E  |                 |     |              |       |
|------------------------------|------------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                      | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 22J1132 - EPA 3510C (A | Acid Extra | ction)             |                    |            |            |                 | Wa               | ter   |                 |     |              |       |
| LCS Dup (22J1132-BSD1)       |            |                    | Prepared           | : 10/28/22 | 06:48 Anal | yzed: 10/28/    | /22 21:06        |       |                 |     |              | Q-    |
| EPA 8270E                    |            |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| Acenaphthene                 | 3.39       | 0.0200             | 0.0400             | ug/L       | 2          | 4.00            |                  | 85    | 47-122%         | 0.8 | 30%          |       |
| Acenaphthylene               | 3.53       | 0.0200             | 0.0400             | ug/L       | 2          | 4.00            |                  | 88    | 41-130%         | 1   | 30%          |       |
| Anthracene                   | 3.95       | 0.0200             | 0.0400             | ug/L       | 2          | 4.00            |                  | 99    | 57-123%         | 0.3 | 30%          |       |
| Benz(a)anthracene            | 4.08       | 0.0200             | 0.0400             | ug/L       | 2          | 4.00            |                  | 102   | 58-125%         | 1   | 30%          |       |
| Benzo(a)pyrene               | 4.14       | 0.0300             | 0.0600             | ug/L       | 2          | 4.00            |                  | 104   | 54-128%         | 0.9 | 30%          |       |
| Benzo(b)fluoranthene         | 4.18       | 0.0300             | 0.0600             | ug/L       | 2          | 4.00            |                  | 104   | 53-131%         | 3   | 30%          |       |
| Benzo(k)fluoranthene         | 4.16       | 0.0300             | 0.0600             | ug/L       | 2          | 4.00            |                  | 104   | 57-129%         | 1   | 30%          |       |
| Benzo(g,h,i)perylene         | 4.25       | 0.0200             | 0.0400             | ug/L       | 2          | 4.00            |                  | 106   | 50-134%         | 1   | 30%          |       |
| Chrysene                     | 4.01       | 0.0200             | 0.0400             | ug/L       | 2          | 4.00            |                  | 100   | 59-123%         | 0.4 | 30%          |       |
| Dibenz(a,h)anthracene        | 4.17       | 0.0200             | 0.0400             | ug/L       | 2          | 4.00            |                  | 104   | 51-134%         | 1   | 30%          |       |
| Fluoranthene                 | 4.18       | 0.0200             | 0.0400             | ug/L       | 2          | 4.00            |                  | 104   | 57-128%         | 1   | 30%          |       |
| Fluorene                     | 3.60       | 0.0200             | 0.0400             | ug/L       | 2          | 4.00            |                  | 90    | 52-124%         | 1   | 30%          |       |
| Indeno(1,2,3-cd)pyrene       | 4.17       | 0.0200             | 0.0400             | ug/L       | 2          | 4.00            |                  | 104   | 52-134%         | 0.2 | 30%          |       |
| l-Methylnaphthalene          | 3.07       | 0.0400             | 0.0800             | ug/L       | 2          | 4.00            |                  | 77    | 41-120%         | 3   | 30%          |       |
| 2-Methylnaphthalene          | 3.06       | 0.0400             | 0.0800             | ug/L       | 2          | 4.00            |                  | 77    | 40-121%         | 2   | 30%          |       |
| Naphthalene                  | 2.97       | 0.0400             | 0.0800             | ug/L       | 2          | 4.00            |                  | 74    | 40-121%         | 2   | 30%          |       |
| Phenanthrene                 | 3.71       | 0.0200             | 0.0400             | ug/L       | 2          | 4.00            |                  | 93    | 59-120%         | 2   | 30%          |       |
| Pyrene                       | 4.10       | 0.0200             | 0.0400             | ug/L       | 2          | 4.00            |                  | 102   | 57-126%         | 0.6 | 30%          |       |
| Bis(2-ethylhexyl)phthalate   | 4.58       | 0.400              | 0.800              | ug/L       | 2          | 4.00            |                  | 114   | 55-135%         | 0.7 | 30%          |       |
| Butyl benzyl phthalate       | 4.67       | 0.400              | 0.800              | ug/L       | 2          | 4.00            |                  | 117   | 53-134%         | 2   | 30%          |       |
| Diethylphthalate             | 4.07       | 0.400              | 0.800              | ug/L       | 2          | 4.00            |                  | 102   | 56-125%         | 0.1 | 30%          |       |
| Dimethylphthalate            | 3.87       | 0.400              | 0.800              | ug/L       | 2          | 4.00            |                  | 97    | 45-127%         | 1   | 30%          |       |
| Di-n-butylphthalate          | 4.68       | 0.400              | 0.800              | ug/L       | 2          | 4.00            |                  | 117   | 59-127%         | 0.6 | 30%          |       |
| Di-n-octyl phthalate         | 4.99       | 0.400              | 0.800              | ug/L       | 2          | 4.00            |                  | 125   | 51-140%         | 0.5 | 30%          |       |
| Surr: Nitrobenzene-d5 (Surr) |            | Reco               | very: 90 %         | Limits: 44 | 4-120 %    | Dilı            | tion: 2x         |       |                 |     |              |       |
| 2-Fluorobiphenyl (Surr)      |            |                    | 80 %               | 44         | 1-120 %    |                 | "                |       |                 |     |              |       |
| Phenol-d6 (Surr)             |            |                    | 30 %               | 10         | 0-133 %    |                 | "                |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)       |            |                    | 96 %               | 50         | 0-134 %    |                 | "                |       |                 |     |              |       |
| 2-Fluorophenol (Surr)        |            |                    | 48 %               | 19         | 0-120 %    |                 | "                |       |                 |     |              |       |
| 2,4,6-Tribromophenol (Surr)  |            |                    | 98 %               | 4.3        | 3-140 %    |                 | "                |       |                 |     |              |       |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                             |           |                    | Total N            | letals by  | EPA 200   | .8 (ICPMS       | )                |       |                 |     |              |       |
|---------------------------------------------|-----------|--------------------|--------------------|------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                     | Result    | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 22J1222 - EPA 3015A                   |           |                    |                    |            |           |                 | Wa               | ter   |                 |     |              |       |
| Blank (22J1222-BLK1)                        |           |                    | Prepared           | : 10/31/22 | 12:44 Ana | lyzed: 11/01/   | /22 11:09        |       |                 |     |              |       |
| EPA 200.8                                   |           |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| Arsenic                                     | ND        | 0.500              | 1.00               | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Cadmium                                     | ND        | 0.100              | 0.200              | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Copper                                      | ND        | 1.00               | 2.00               | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Zinc                                        | ND        | 2.00               | 4.00               | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| LCS (22J1222-BS1)                           |           |                    | Prepared           | : 10/31/22 | 12:44 Ana | lyzed: 11/01/   | /22 11:14        |       |                 |     |              |       |
| EPA 200.8                                   |           |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| Arsenic                                     | 56.8      | 0.500              | 1.00               | ug/L       | 1         | 55.6            |                  | 102   | 85-115%         |     |              |       |
| Cadmium                                     | 55.4      | 0.100              | 0.200              | ug/L       | 1         | 55.6            |                  | 100   | 85-115%         |     |              |       |
| Copper                                      | 58.1      | 1.00               | 2.00               | ug/L       | 1         | 55.6            |                  | 105   | 85-115%         |     |              |       |
| Zinc                                        | 58.7      | 2.00               | 4.00               | ug/L       | 1         | 55.6            |                  | 106   | 85-115%         |     |              |       |
| Duplicate (22J1222-DUP1)                    |           |                    | Prepared           | : 10/31/22 | 12:44 Ana | lyzed: 11/01/   | /22 11:35        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A2               | J0743-01) |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| Arsenic                                     | ND        | 0.500              | 1.00               | ug/L       | 1         |                 | ND               |       |                 |     | 20%          |       |
| Cadmium                                     | ND        | 0.100              | 0.200              | ug/L       | 1         |                 | ND               |       |                 |     | 20%          |       |
| Copper                                      | 11.6      | 1.00               | 2.00               | ug/L       | 1         |                 | 11.2             |       |                 | 3   | 20%          |       |
| Zinc                                        | 57.1      | 2.00               | 4.00               | ug/L       | 1         |                 | 55.9             |       |                 | 2   | 20%          |       |
| Matrix Spike (22J1222-MS1)                  |           |                    | Prepared           | : 10/31/22 | 12:44 Ana | lyzed: 11/01/   | /22 11:40        |       |                 |     |              |       |
| OC Source Sample: Non-SDG (A2-              | J0743-01) |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| EPA 200.8                                   |           |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| Arsenic                                     | 54.4      | 0.500              | 1.00               | ug/L       | 1         | 55.6            | ND               | 98    | 70-130%         |     |              |       |
| Cadmium                                     | 51.7      | 0.100              | 0.200              | ug/L       | 1         | 55.6            | ND               | 93    | 70-130%         |     |              |       |
| Copper                                      | 66.8      | 1.00               | 2.00               | ug/L       | 1         | 55.6            | 11.2             | 100   | 70-130%         |     |              |       |
| Zinc                                        | 116       | 2.00               | 4.00               | ug/L       | 1         | 55.6            | 55.9             | 109   | 70-130%         |     |              |       |
| Matrix Spike (22J1222-MS2)                  |           |                    | Prepared           | : 10/31/22 | 12:44 Ana | lyzed: 11/01/   | /22 11:51        |       |                 |     |              |       |
| OC Source Sample: Non-SDG (A2.<br>EPA 200.8 | J0743-02) |                    |                    |            |           |                 |                  |       |                 |     |              |       |
| Arsenic                                     | 53.8      | 0.500              | 1.00               | ug/L       | 1         | 55.6            | 0.564            | 96    | 70-130%         |     |              |       |
| Cadmium                                     | 52.9      | 0.100              | 0.200              | ug/L       | 1         | 55.6            | 0.404            | 94    | 70-130%         |     |              |       |
| Cuamum                                      | 34.9      | 0.100              | 0.200              | ug/L       | 1         | 55.0            | 0.707            | 74    | / 0-150/0       |     |              |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                |           |                    | Total N            | letals by  | y EPA 200. | .8 (ICPMS       | <u>;)</u>        |       |                 |     |              |       |
|--------------------------------|-----------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                        | Result    | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 22J1222 - EPA 3015A      |           |                    |                    |            |            |                 | Wat              | er    |                 |     |              |       |
| Matrix Spike (22J1222-MS2)     |           |                    | Prepared           | : 10/31/22 | 12:44 Anal | lyzed: 11/01/   | /22 11:51        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A2. | 10743-02) |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| Copper                         | 75.1      | 1.00               | 2.00               | ug/L       | 1          | 55.6            | 20.1             | 99    | 70-130%         |     |              |       |
| Zinc                           | 261       | 2.00               | 4.00               | ug/L       | 1          | 55.6            | 207              | 98    | 70-130%         |     |              |       |

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                                |          | То                 | tal Metals         | by EPA     | 200.8 (ICF | MS) - Lov       | v Level          |       |                 |     |              |       |
|------------------------------------------------|----------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                        | Result   | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 22K0146 - EPA 3015A                      |          |                    |                    |            |            |                 | Wat              | ter   |                 |     |              |       |
| Blank (22K0146-BLK1)                           |          |                    | Prepared           | : 11/03/22 | 16:17 Ana  | lyzed: 11/14/   | /22 17:49        |       |                 |     |              |       |
| EPA 200.8-LL<br>Cadmium                        | ND       | 0.0200             | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| LCS (22K0146-BS1)                              |          |                    | Prepared           | : 11/03/22 | 16:17 Ana  | lyzed: 11/14/   | /22 17:57        |       |                 |     |              |       |
| <u>EPA 200.8-LL</u><br>Cadmium                 | 5.37     | 0.0200             | 0.0400             | ug/L       | 1          | 5.56            |                  | 97    | 85-115%         |     |              |       |
| Duplicate (22K0146-DUP1)                       |          |                    | Prepared           | : 11/03/22 | 16:17 Ana  | lyzed: 11/14/   | /22 18:35        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A2J                 | 1004-01) |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| Cadmium                                        | ND       | 0.0200             | 0.0400             | ug/L       | 1          |                 | ND               |       |                 |     | 20%          |       |
| Matrix Spike (22K0146-MS1)                     |          |                    | Prepared           | : 11/03/22 | 16:17 Ana  | lyzed: 11/14/   | /22 18:43        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A2J<br>EPA 200.8-LL | 1004-01) |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| Cadmium                                        | 5.55     | 0.0200             | 0.0400             | ug/L       | 1          | 5.56            | ND               | 100   | 70-130%         |     |              |       |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: <u>Dolan SCE</u>
Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |            |                    | Solid a            | nd Moist   | ture Dete  | rmination       | s                |       |                 |      |              |           |
|----------------------------------|------------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|------|--------------|-----------|
| Analyte                          | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD  | RPD<br>Limit | Notes     |
| Batch 22J0968 - Total Suspen     | ded Solid  | s                  |                    |            |            |                 | Wa               | ter   |                 |      |              |           |
| Blank (22J0968-BLK1)             |            |                    | Prepared           | : 10/25/22 | 11:30 Anal | lyzed: 10/25    | /22 11:30        |       |                 |      |              |           |
| SM 2540 D Total Suspended Solids | ND         | 5.00               | 5.00               | mg/L       | 1          |                 |                  |       |                 |      |              |           |
| Duplicate (22J0968-DUP1)         |            |                    | Prepared           | : 10/25/22 | 11:30 Anal | lyzed: 10/25    | /22 11:30        |       |                 |      |              |           |
| QC Source Sample: Non-SDG (A2    | 2J0655-04) |                    |                    |            |            |                 |                  |       |                 |      |              |           |
| Total Suspended Solids           | 8.00       | 5.00               | 5.00               | mg/L       | 1          |                 | 9.00             |       |                 | 11.8 | 10%          | Q-05, SL- |
| Duplicate (22J0968-DUP2)         |            |                    | Prepared           | : 10/25/22 | 11:30 Anal | lyzed: 10/25    | /22 11:30        |       |                 |      |              |           |
| QC Source Sample: Non-SDG (A2    | 2J0630-01) |                    |                    |            |            |                 |                  |       |                 |      |              |           |
| Total Suspended Solids           | 22.0       | 5.00               | 5.00               | mg/L       | 1          |                 | 27.0             |       |                 | 20.4 | 10%          | Q-01, SL- |
| Reference (22J0968-SRM1)         |            |                    | Prepared           | : 10/25/22 | 11:30 Anal | lyzed: 10/25    | /22 11:30        |       |                 |      |              |           |
| SM 2540 D                        |            |                    |                    |            |            |                 |                  |       |                 |      |              |           |
| Total Suspended Solids           | 809        |                    |                    | mg/L       | 1          | 828             |                  | 97.7  | 85-115%         |      |              |           |

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Dolan SCE
Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |            |                    | Solid a            | ind Mois   | ture Dete | rmination       | s                |       |                 |      |              |       |
|----------------------------------|------------|--------------------|--------------------|------------|-----------|-----------------|------------------|-------|-----------------|------|--------------|-------|
| Analyte                          | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD  | RPD<br>Limit | Notes |
| Batch 22J0984 - Total Suspen     | ded Solid  | s                  |                    |            |           |                 | Wat              | ter   |                 |      |              |       |
| Blank (22J0984-BLK1)             |            |                    | Prepared           | : 10/25/22 | 18:09 Ana | lyzed: 10/25    | /22 18:09        |       |                 |      |              |       |
| SM 2540 D Total Suspended Solids | ND         | 5.00               | 5.00               | mg/L       | 1         |                 |                  |       |                 |      |              |       |
| Duplicate (22J0984-DUP1)         |            |                    | Prepared           | : 10/25/22 | 18:09 Ana | lyzed: 10/25    | /22 18:09        |       |                 |      |              |       |
| QC Source Sample: Non-SDG (A2    | 2J0689-01) |                    |                    |            |           |                 |                  |       |                 |      |              |       |
| Total Suspended Solids           | 280        | 25.0               | 25.0               | mg/L       | 1         |                 | 285              |       |                 | 1.77 | 10%          |       |
| Duplicate (22J0984-DUP2)         |            |                    | Prepared           | : 10/25/22 | 18:09 Ana | lyzed: 10/25    | /22 18:09        |       |                 |      |              |       |
| QC Source Sample: Non-SDG (A2    | 2J0754-01) |                    |                    |            |           |                 |                  |       |                 |      |              |       |
| Total Suspended Solids           | 12.0       | 5.00               | 5.00               | mg/L       | 1         |                 | 10.0             |       |                 | 18.2 | 10%          | Q-0   |
| Reference (22J0984-SRM1)         |            |                    | Prepared           | : 10/25/22 | 18:09 Ana | lyzed: 10/25    | /22 18:09        |       |                 |      |              |       |
| SM 2540 D                        |            |                    |                    | _          |           |                 |                  |       |                 |      |              |       |
| Total Suspended Solids           | 821        |                    |                    | mg/L       | 1         | 828             |                  | 99.2  | 85-115%         |      |              |       |

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

## SAMPLE PREPARATION INFORMATION

|                      |                 | Selected Semiv | olatile Organic Com  | pounds by EPA 827 | 0E            |               |         |
|----------------------|-----------------|----------------|----------------------|-------------------|---------------|---------------|---------|
| Prep: EPA 3510C (A   | cid Extraction) |                |                      |                   | Sample        | Default       | RL Prep |
| Lab Number           | Matrix          | Method         | Sampled              | Prepared          | Initial/Final | Initial/Final | Factor  |
| Batch: 22J1132       |                 |                |                      |                   |               |               |         |
| A2J0749-01           | Water           | EPA 8270E      | 10/21/22 12:35       | 10/28/22 06:48    | 1050 mL/1 mL  | 1000 mL/1 mL  | 0.95    |
| A2J0749-02           | Water           | EPA 8270E      | 10/21/22 13:45       | 10/28/22 06:48    | 980mL/1mL     | 1000 mL/1 mL  | 1.02    |
| A2J0749-03           | Water           | EPA 8270E      | 10/21/22 15:35       | 10/28/22 06:48    | 880 mL/1 mL   | 1000 mL/1 mL  | 1.14    |
| A2J0749-04           | Water           | EPA 8270E      | 10/21/22 00:00       | 10/28/22 06:48    | 1050mL/1mL    | 1000mL/1mL    | 0.95    |
|                      |                 | Tota           | al Metals by EPA 200 | 0.8 (ICPMS)       |               |               |         |
| Prep: EPA 3015A      |                 |                |                      |                   | Sample        | Default       | RL Prep |
| Lab Number           | Matrix          | Method         | Sampled              | Prepared          | Initial/Final | Initial/Final | Factor  |
| Batch: 22J1222       |                 |                |                      |                   |               |               |         |
| A2J0749-01           | Water           | EPA 200.8      | 10/21/22 12:35       | 10/31/22 12:44    | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A2J0749-02           | Water           | EPA 200.8      | 10/21/22 13:45       | 10/31/22 12:44    | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A2J0749-03           | Water           | EPA 200.8      | 10/21/22 15:35       | 10/31/22 12:44    | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A2J0749-04           | Water           | EPA 200.8      | 10/21/22 00:00       | 10/31/22 12:44    | 45mL/50mL     | 45mL/50mL     | 1.00    |
|                      |                 | Total Meta     | als by EPA 200.8 (IC | PMS) - Low Level  |               |               |         |
| Prep: EPA 3015A      |                 |                |                      |                   | Sample        | Default       | RL Prep |
| Lab Number           | Matrix          | Method         | Sampled              | Prepared          | Initial/Final | Initial/Final | Factor  |
| Batch: 22K0146       |                 |                |                      |                   |               |               |         |
| A2J0749-03           | Water           | EPA 200.8-LL   | 10/21/22 15:35       | 11/03/22 16:17    | 45mL/50mL     | 45mL/50mL     | 1.00    |
|                      |                 | Sol            | id and Moisture Dete | erminations       |               |               |         |
| Prep: Total Suspende | ed Solids       |                |                      |                   | Sample        | Default       | RL Prep |

|                     |           | So        | lid and Moisture Dete | erminations    |               |               |         |
|---------------------|-----------|-----------|-----------------------|----------------|---------------|---------------|---------|
| Prep: Total Suspend | ed Solids |           |                       |                | Sample        | Default       | RL Prep |
| Lab Number          | Matrix    | Method    | Sampled               | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 22J0968      |           |           |                       |                |               |               |         |
| A2J0749-02          | Water     | SM 2540 D | 10/21/22 13:45        | 10/25/22 11:30 |               |               | NA      |
| A2J0749-03          | Water     | SM 2540 D | 10/21/22 15:35        | 10/25/22 11:30 |               |               | NA      |
| A2J0749-04          | Water     | SM 2540 D | 10/21/22 00:00        | 10/25/22 11:30 |               |               | NA      |
| Batch: 22J0984      |           |           |                       |                |               |               |         |
| A2J0749-01          | Water     | SM 2540 D | 10/21/22 12:35        | 10/25/22 18:09 |               |               | NA      |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherg

Page 18 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# **QUALIFIER DEFINITIONS**

# Client Sample and Quality Control (QC) Sample Qualifier Definitions:

## **Apex Laboratories**

- J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- Q-01 Spike recovery and/or RPD is outside acceptance limits.
- Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- R-04 Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.
- SL-1 Result is considered an estimated value. Less than 1 liter of sample was used in analysis and the method minimum residue of 2.5 mg was not met. The reporting level has been adjusted accordingly to reflect the increased uncertainty of the result.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 19 of 25



## Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Report ID:Portland, OR 97232Project Manager:Jessica GlennA2J0749 - 11 16 22 1502

## REPORTING NOTES AND CONVENTIONS:

### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

## **Detection Limits:** Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

### Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

## **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"\_\_\_" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

## **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

## **Miscellaneous Notes:**

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

## Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 20 of 25



## Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

# REPORTING NOTES AND CONVENTIONS (Cont.):

## Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

## **Preparation Notes:**

## Mixed Matrix Samples:

### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

## Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

## **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 21 of 25



## Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

## LABORATORY ACCREDITATION INFORMATION

# ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

## **Apex Laboratories**

Matrix Analysis TNI\_ID Analyte TNI\_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

# **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

# **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

## **Field Testing Parameters**

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 22 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | _        |              |                            |         |          |           |                                          | 1             |                      |          |           |                                |           |         |            |                                                        | 1         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                  | Y        | اح                     |                  |        |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------|--------------|----------------------------|---------|----------|-----------|------------------------------------------|---------------|----------------------|----------|-----------|--------------------------------|-----------|---------|------------|--------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------|------------------------|------------------|--------|------|
| Company Bratel Too Let & ALONGLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NG. INC                                          | _        | ct Mgr.      | Project Mgr. Jessica Glenn | Glenn   | -        |           |                                          |               | Project              | Name     | Dol       | Project Name. Dolan Stormwater | rmwate    | 15      |            |                                                        |           | Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project # M1381.01.000                             | 1381     | 11.044                 |                  |        |      |
| Address, 3140 NF Broadway St., Portland, OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ortland, O <sub>l</sub>                          | ~        |              |                            |         | Phor     | Te 47     | Phone 471-254-8085                       |               |                      | Email:   | asi. Is   | glennæmnad foster com          | èmaul     | oster c | mo         |                                                        |           | G G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Σ                                                  | 188      | 1001                   | ME381.001 Task 3 |        |      |
| Sampled by: Chris Clough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |          |              |                            |         |          |           | 10 h 10<br>10 h 10<br>10 h 10<br>10 h 10 |               |                      |          |           |                                |           |         |            |                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                |          |                        |                  |        |      |
| Site Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del> </del>                                     |          | L            | H                          | H       | _        | L         |                                          | H             | -                    | $\vdash$ | L         |                                |           | 3       | <u> </u>   | ANALYSIS REQUEST                                       | Ī,        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | -        | F                      | -                |        | - [  |
| OR WA CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |          |              |                            | RS      |          |           |                                          |               | ~~                   |          |           | ısi.1 Hu                       |           |         |            |                                                        | d].)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |                        |                  |        |      |
| AK ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |          |              |                            | VINE    |          | <b>X</b>  |                                          |               |                      |          |           | 4 sto                          |           |         |            |                                                        | 1         | (8) s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3                                                |          |                        |                  |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # 01 87                                          | 91.8     | AIR          | XBUA                       | JE CONT | н-палм   | a-114.17A | D-Halle                                  | VUAA 09       | CO BRD 60 7 018 10 7 | SOOA 09  | a IXIS 04 | 7-ima8 07                      | 8B.)d 78  | 1894 18 | RISIL V.H. | ority Met<br>ib. As, Ba.<br>Co. Cur. Ed<br>Co. Sur. Ed | ssio O    | lsiolé ¶.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    | 0458) dH | ial Arseni<br>al Coppe |                  |        | 9.41 |
| SAMPLEID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                                |          |              | -                          | +       | -+       | N.        |                                          | $\rightarrow$ |                      |          |           | .78                            |           |         |            | 8 18<br>8 18                                           | 10.1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SA.                                                |          |                        |                  |        | укср |
| Oudalt CrD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | 10/21/22 | 22 1235      | 3                          | 7       |          |           |                                          |               |                      |          | ×         |                                |           | -       |            |                                                        | >         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | ×        | ×                      |                  | 1      | 4    |
| Outfall E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  | 10/21/22 | 22 1345      | 3                          | 7       |          |           |                                          | -             |                      | _        | 1         |                                |           | -       | -          | ×                                                      |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                                                  | +        |                        |                  |        |      |
| CB-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | 10/21/22 | 22 1535      | 3                          | 4       | <u> </u> |           |                                          | -             | -                    | _        | ×         |                                | 1         | +       | +          | ×                                                      | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | +-       | +-                     | -                | 1      |      |
| ()(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                         | 10/21/22 | - 22         | =                          | 7       | _        |           | T                                        | +             | +                    | -        | ×         |                                | T         | +       | +          |                                                        |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                  |          | 2                      |                  | 1      |      |
| The state of the s | -                                                | ļ.,      |              | -                          | 1       | _        |           | 1                                        | +             | +                    | _        | 1         |                                | T         | +       | +          | -                                                      | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |          |                        | 1                | $\top$ | T    |
| The state of the s |                                                  | _        |              | -                          | +       |          |           | $\vdash$                                 | +             | +                    | 1        |           |                                |           | +       | +          | -                                                      | +         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                  | +        | +                      | 1                | 1      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                |          | -            | -                          | 1       |          |           | $\dagger$                                | +             | +                    | 4        | $\prod$   |                                | $\dagger$ | +       | +          | -                                                      |           | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                                                  | +        | -                      | 1                | 1      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          | -            | +-                         | -       |          |           | $\dagger$                                | +-            | +                    | $\perp$  | I         |                                | $\top$    | +       | +          | -                                                      | 1         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                                                  | -        | $\perp$                |                  | 1      |      |
| ANNEL LA VILLE DE CONTRACTOR D |                                                  |          |              | -                          | ļ.,     |          |           | $\dagger$                                | +-            | +                    | 4        |           | T                              | +         | +       | +          | -                                                      | $\dagger$ | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                                                  | +        | - -                    |                  | 1      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                                | _        |              | -                          |         |          |           | +                                        | +             | +-                   | 4        | I         |                                | +         | +       | +          | -                                                      | $\top$    | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                  | +        | +                      |                  |        |      |
| Northa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Normal Turn Around Time (TAT) = 10 Business Days | ound Tin | ne (TAT      | 10 B                       | usiness | , Days   |           |                                          | -             | -                    | Spi      | 15        | SPI-CLAL INSTRUCTIONS          | RECT      | Sign    | -          |                                                        |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                  | $\dashv$ | $\dashv$               |                  |        | T    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I Day                                            | ÷.       | 2 Day        |                            | 3 Day   | ۲.       |           |                                          |               |                      |          |           |                                |           |         |            |                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |                        |                  |        |      |
| TAT Requested (circle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )                                                |          |              |                            |         |          |           |                                          |               |                      |          |           |                                |           |         |            |                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |                        |                  |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 DAY                                            |          | Standard     | E)                         | 0       | Other: , |           |                                          |               |                      |          |           |                                |           |         |            |                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |                        |                  |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLES ARE HELD FOR 30 DAYS                     | ARE HEL  | D FOR 3      | S DAYS                     | 4       |          |           |                                          |               |                      | ,        |           |                                |           |         |            |                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |                        |                  |        |      |
| RECINQUINIED BY:<br>signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date:                                            |          | RECE         | RECEIVED BY                |         |          | -         | l) and                                   |               |                      | ₩.       | NOL       | RELINQUISHIND BY:              | 83:       |         |            |                                                        | =         | ECEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RECEIVED BY                                        |          |                        | V                |        | T    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/24/2022                                       | 22       | S            | ない                         |         |          | <u>s</u>  | 1 2 4 V                                  | 1.7           | c                    | t,       | L.        | 1                              |           |         | 2          | Date Signatur                                          | <i>3</i>  | Sharton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                                                  | . 1      |                        | 24/12/ ped       | 荒      | 2    |
| Prated Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time                                             |          | Ponted Nauge | Annu.                      |         |          | 2         | J Jii                                    | 3             | 4                    | <b>1</b> | Printed N | 1                              |           |         | 2          | 3                                                      | 27        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                  |          |                        |                  |        | T    |
| Chris Clough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0860                                             |          | 3            | Che Charles of 084)        | 2       | 3        | >         | 8                                        | 5             |                      | 7        | 7         | DIG                            | 3         | 78      |            | 270                                                    |           | Ţ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12, 12, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15 | 7        | _                      | <u> </u>         | ₹<br>2 |      |
| Compare.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |          | ( ompany     | Æ                          |         |          |           |                                          |               |                      | Com      | (company) | 3                              |           |         |            | 3                                                      | +         | Ž,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                  | 3        |                        |                  |        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |          |              |                            |         |          |           |                                          |               |                      |          |           |                                |           |         |            |                                                        | -         | A DOMESTICAL PROPERTY AND A PROPERTY |                                                    |          |                        |                  |        |      |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 23 of 25



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

| 17   17   17   17   17   17   17   17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Company: MAUL FOSTER & ALONGI, INC. | LONGI, INC.      | Proje   | ct Mgr.     | Project Mgr. Jessica Glenn             | Glenn    |          |          |                  |         | Proje    | ct Na    | me: L                                            | Project Name: Dolan Stormwater | tormw      | ater     |         | ,          |                                       | Proje  | Project#: M1381.01.001 | M138     | 1.01.00   |           |          | 1      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------|---------|-------------|----------------------------------------|----------|----------|----------|------------------|---------|----------|----------|--------------------------------------------------|--------------------------------|------------|----------|---------|------------|---------------------------------------|--------|------------------------|----------|-----------|-----------|----------|--------|
| Proceedings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Address: 3140 NE Broadway St.       | Portland, OR     |         |             |                                        |          | 운        | one: 9   | 71-25            | 1-8085  | 1        | 143      | mail                                             | iglen                          | n@ma       | ulfoste  | т.сот   |            |                                       | # Od   |                        | M138     | 1.01.00   | d Task 3  |          |        |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sampled by: Chris Clough            |                  |         |             |                                        |          |          |          |                  |         |          |          |                                                  |                                |            | Ž        | 188     | SREC       | HEST                                  |        |                        |          |           |           |          |        |
| Normal Time (CAA)   10 Bastess Days   10 Baste   | Site Location:                      |                  |         | <u> </u>    | <del> </del>                           | -        |          |          | <u> </u>         |         |          |          |                                                  | 1si                            | <u> </u>   | <u> </u> |         |            | .s.<br>RB,<br>IT,                     |        |                        |          |           |           |          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OR) WA CA                           |                  |         |             |                                        | 58:      | est      |          |                  |         | s)       |          |                                                  |                                | 7 11 11 11 |          | (8      | (£1)       |                                       |        |                        |          |           |           |          |        |
| 11   12   12   13   13   14   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AK ID                               |                  |         |             |                                        | TMI AT   |          |          |                  | Х       | OA W     |          |                                                  |                                |            |          | 3) efst | etals      |                                       |        |                        | (304     | ojua      | ber.      | 11 20100 |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | VB ID#           | 3TA     | INE         |                                        |          |          |          |                  | 790 BLE | 1769 RBD |          |                                                  |                                |            | -        |         | Vitority N | וכיסוד                                |        |                        | 8ЕНЬ (85 | rotal Ars | Total Cop |          | evider |
| 1121/22   1255 W 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Outfall C/D                         | 1                | 11/21/1 |             | -                                      | -        |          | -        | _                | 3       |          |          |                                                  | +                              | +          | +        | +       |            | N N N N N N N N N N N N N N N N N N N |        |                        | ×        | ×         | ×         |          | Y      |
| 11/21/22   1235   W   4   N   N   N   N   N   N   N   N   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Outfail E                           |                  | 11/21/2 | 1           |                                        |          |          |          |                  |         |          |          | <del>                                     </del> | ×                              |            | ļ        |         |            | ×                                     |        | ×                      | ×        |           |           |          |        |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CB-16                               |                  | 11/21/  |             |                                        | +        |          |          |                  |         |          |          | t                                                | ×                              | -          | -        |         |            | ×                                     |        | ×                      | ×        |           |           |          |        |
| Normal Turn Around Time (TAT) = 10 Business Days  1 Day 2 Day 3 Day  Samples Are Held FOR 20 Days  Time  Time  Princed Name  Time  T | DUP                                 |                  | 11/21/  |             | -                                      | +        |          |          |                  |         |          |          |                                                  | ×                              |            |          |         |            |                                       | ļ      | ×                      | ×        | ×         | ×         |          |        |
| 1 Day   2 Day   3 Day   2 Day   3 Day   3 Day   4 T Requested (circle   5 DAY   Standard   Other:   5 DAY   Stan   |                                     |                  |         |             |                                        |          |          | -        | $\vdash$         |         |          |          |                                                  | $\vdash$                       |            |          |         |            |                                       |        |                        |          |           |           |          |        |
| Normal Turn Around Time (TAT) = 10 Business Days   SPECIAL INSTRUCTIONS:   1 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                  |         | -           |                                        |          | -        | -        |                  |         |          | $\dashv$ | $\dashv$                                         | $\dashv$                       | -          | 4        |         |            |                                       |        |                        |          |           | $\exists$ |          | ļ      |
| Day   2 Day   3 Day   2 Day   3 Day   Standard   Other:   S DAY   Standard   Other:   Samples ARE HELD FOR 30 DAYS   RELINQUISH & BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                  |         | -           |                                        | $\dashv$ | $\dashv$ | $\dashv$ |                  |         |          |          |                                                  | +                              |            |          |         |            |                                       |        |                        |          |           |           | $\perp$  | - 1    |
| Normal Turn Around Turne (TAT) = 10 Business Days   SPECIAL INSTRUCTIONS:     1 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |                  |         |             |                                        | +        | +        | -        | _                | $\perp$ |          |          | +                                                | $\dashv$                       |            |          |         |            |                                       |        |                        |          |           | -         |          |        |
| Day 2 Day 3 Day   Standard   Other:   S.DAY   Standard   Other:   S.DAY   Standard   Other:   S.DAY   Standard   Other:   S.DAY   Standard   Other:   O   |                                     |                  |         |             | +                                      | +        | +        | +        | _                | I       |          |          | +                                                | +                              |            | _        | _       |            |                                       |        |                        |          |           | -         |          |        |
| 1 Day 2 Day 3 Day 3 Day   1 Date   1    | Š                                   | rmal Turn Arc    | und Tü  | I<br>me (TA | (T)=10                                 | Busine   | ss Day   | - s,     | _                |         | 225      | 9.1      | SPECI                                            | AL IN                          | STRL       | -CT10    | NS.     |            |                                       |        |                        |          |           | -         |          |        |
| SDAY Standard Other:   SDAY Standard Other:   SAMPLES ARE HELD FOR 30 DAYS   RECEIVED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                  | ,       | 2.0         | bay                                    | 3.0      | ay       |          |                  |         |          |          |                                                  |                                |            |          |         |            |                                       |        |                        |          |           |           |          |        |
| RECEIVED BY:   Stamples ARE HELD FOR 3D DAYS   RELINQUISHIP BY:   Stample    | TAT Requested (circl                |                  | >       | Stanc       | dard                                   | _        | Other    |          |                  |         | ı        |          |                                                  |                                |            |          |         |            |                                       |        |                        |          |           |           |          |        |
| Date   Signature   |                                     | SAMPLES          | H 48    |             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 8        |          |          |                  |         |          | Т        |                                                  |                                |            |          |         |            |                                       |        |                        |          |           |           |          |        |
| Time. Printed Name.  Time. Printed Name.  Time. Printed Name.  Time. Printed Name.  Company.  Co | RELINQUISHED BY: Signature:         | Date<br>10/24/20 | 22      | Signa       | SEIVED I                               | Tack     |          |          | Date:            | 1       | 7 2,     | ,        | RELIN<br>ignatur                                 | on State                       | 8 Q        | L.       |         | ,<br>9.    | Date:                                 | Sign A | EINEL<br>fure          | 1        |           | Date: ,   | ant Jan  | 12     |
| Company.  Company.  Company.  Company.  Company.  Company.  Company.  Company.  Company.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Printed Name:<br>Chris Clough       | OP40             |         | Prin.       | fred Natile                            | 201      | 1 3      | 73.62    | l <sub>E</sub> o | 2       | ()       |          | Printed /                                        | No.                            | 7/0        | 3        | 1       |            | Time                                  | 事业     | ed Nam                 | 3        | . 3       | Time      | 3        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Company:<br>Mont Foster & Alonoi    |                  |         | S S         | ıpany:                                 | 3        | 8        |          | `                | 3       |          |          | Compar                                           | } =                            | 1          | 3        | -       | 1          | (7)                                   | Comj   | pany:                  | 1,1      | ,         | 400       |          | 1      |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 24 of 25  $\,$ 



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Dolan SCE
Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A2J0749 - 11 16 22 1502

| APEX LABS COOLER RECEIPT FORM                                                           |
|-----------------------------------------------------------------------------------------|
| Client: Man Foster + Alongi Fuc. Element WO#: A2 JU749                                  |
| Project/Project#: Polan Stammater M1381.01.00/                                          |
| Delivery Info:                                                                          |
| Date/time received: 10/24/22 @ 1040 By: EST                                             |
| Delivered by: Apex Client ESS FedEx, UPS Swift Senvoy SDS Other                         |
| Cooler Inspection Date/time inspected: 10/24/22 @ 1121 By: EST                          |
| Chain of Custody included? Yes No Custody seals? Yes No No                              |
| Signed/dated by client? Yes No                                                          |
| Signed/dated by Apex? Yes No                                                            |
| Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7  Temperature (°C) |
| Container discrepancies form initiated? Yes No                                          |
| Containers/volumes received appropriate for analysis? Yes No Comments:                  |
| Do VOA vials have visible headspace? Yes No NA                                          |
| Comments                                                                                |
| Water samples: pH checked: Yes No_NA_ pH appropriate? Yes No_NA_                        |
| Comments:                                                                               |
| Additional information: Date on COC for all Samples Veads                               |
| Labeled by: Witness: Cooler Inspected by:                                               |
| (Form Y-003 R-00 -                                                                      |
|                                                                                         |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



## Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Wednesday, May 3, 2023 Jessica Glenn Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

RE: A3D0715 - Dolan SCE - M1381.01.001

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3D0715, which was received by the laboratory on 4/3/2023 at 7:38:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <a href="mailto:pnerenberg@apex-labs.com">pnerenberg@apex-labs.com</a>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 1.8 degC

Cooler #2

0.8 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.





Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 28



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# ANALYTICAL REPORT FOR SAMPLES

|                  | SAMPLE INFO   | ORMATION |                |                |
|------------------|---------------|----------|----------------|----------------|
| Client Sample ID | Laboratory ID | Matrix   | Date Sampled   | Date Received  |
| Outfall C/D      | A3D0715-01    | Water    | 03/31/23 17:15 | 04/03/23 07:38 |
| Outfall E        | A3D0715-02    | Water    | 03/31/23 18:00 | 04/03/23 07:38 |
| CB-16            | A3D0715-03    | Water    | 03/31/23 18:45 | 04/03/23 07:38 |
| DUP              | A3D0715-04    | Water    | 03/31/23 00:00 | 04/03/23 07:38 |

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected | Semivolatile | Organic C  | ompounds by E    | PA 8270  | E              |             |       |
|-----------------------------------|----------|--------------|------------|------------------|----------|----------------|-------------|-------|
|                                   | Sample   | Detection    | Reporting  |                  |          | Date           |             |       |
| Analyte                           | Result   | Limit        | Limit      | Units            | Dilution | Analyzed       | Method Ref. | Notes |
| Outfall C/D (A3D0715-01RE1)       |          |              |            | Matrix: Wate     | er       | Batch:         | 23D0203     | R-04  |
| Acenaphthene                      | ND       | 0.0377       | 0.0755     | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Acenaphthylene                    | ND       | 0.0377       | 0.0755     | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Anthracene                        | ND       | 0.0377       | 0.0755     | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Benz(a)anthracene                 | ND       | 0.0377       | 0.0755     | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Benzo(a)pyrene                    | ND       | 0.0566       | 0.113      | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Benzo(b)fluoranthene              | ND       | 0.0566       | 0.113      | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Benzo(k)fluoranthene              | ND       | 0.0566       | 0.113      | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Benzo(g,h,i)perylene              | ND       | 0.0377       | 0.0755     | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Chrysene                          | ND       | 0.0377       | 0.0755     | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Dibenz(a,h)anthracene             | ND       | 0.0377       | 0.0755     | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Fluoranthene                      | ND       | 0.0377       | 0.0755     | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Fluorene                          | ND       | 0.0377       | 0.0755     | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Indeno(1,2,3-cd)pyrene            | ND       | 0.0377       | 0.0755     | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| 1-Methylnaphthalene               | ND       | 0.0755       | 0.151      | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND       | 0.0755       | 0.151      | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Naphthalene                       | ND       | 0.0755       | 0.151      | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Phenanthrene                      | ND       | 0.0377       | 0.0755     | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Pyrene                            | ND       | 0.0377       | 0.0755     | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Carbazole                         | ND       | 0.0566       | 0.113      | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Dibenzofuran                      | ND       | 0.0377       | 0.0755     | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Bis(2-ethylhexyl)phthalate        | ND       | 0.755        | 1.51       | ug/L             | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |          | Reco         | very: 68 % | Limits: 44-120 % | 4        | 04/10/23 12:30 | EPA 8270E   | Q-41  |
| 2-Fluorobiphenyl (Surr)           |          |              | 67 %       | 44-120 %         | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |          |              | 20 %       | 10-133 %         |          | 04/10/23 12:30 | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |          |              | 67 %       | 50-134 %         |          | 04/10/23 12:30 | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |          |              | 27 %       | 19-120 %         |          | 04/10/23 12:30 | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |          |              | 112 %      | 43-140 %         | 4        | 04/10/23 12:30 | EPA 8270E   |       |
| Outfall E (A3D0715-02RE2)         |          |              |            | Matrix: Wate     | er       | Batch:         | 23D0237     | R-04  |
| Acenaphthene                      | ND       | 0.0385       | 0.0769     | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Acenaphthylene                    | ND       | 0.0385       | 0.0769     | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Anthracene                        | ND       | 0.0385       | 0.0769     | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Benz(a)anthracene                 | ND       | 0.0385       | 0.0769     | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Benzo(a)pyrene                    | ND       | 0.0577       | 0.115      | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 28



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected | Semivolatile | Organic C | ompounds by E    | PA 8270  | E              |             |       |
|-----------------------------------|----------|--------------|-----------|------------------|----------|----------------|-------------|-------|
|                                   | Sample   | Detection    | Reporting |                  |          | Date           |             |       |
| Analyte                           | Result   | Limit        | Limit     | Units            | Dilution | Analyzed       | Method Ref. | Notes |
| Outfall E (A3D0715-02RE2)         |          |              |           | Matrix: Wate     | er       | Batch:         | 23D0237     | R-04  |
| Benzo(b)fluoranthene              | ND       | 0.0577       | 0.115     | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Benzo(k)fluoranthene              | ND       | 0.0577       | 0.115     | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Benzo(g,h,i)perylene              | ND       | 0.0385       | 0.0769    | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Chrysene                          | ND       | 0.0385       | 0.0769    | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Dibenz(a,h)anthracene             | ND       | 0.0385       | 0.0769    | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Fluoranthene                      | ND       | 0.0385       | 0.0769    | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Fluorene                          | ND       | 0.0385       | 0.0769    | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Indeno(1,2,3-cd)pyrene            | ND       | 0.0385       | 0.0769    | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| 1-Methylnaphthalene               | ND       | 0.0769       | 0.154     | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND       | 0.0769       | 0.154     | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Naphthalene                       | ND       | 0.0769       | 0.154     | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Phenanthrene                      | ND       | 0.0385       | 0.0769    | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Pyrene                            | ND       | 0.0385       | 0.0769    | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Carbazole                         | ND       | 0.0577       | 0.115     | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Dibenzofuran                      | ND       | 0.0385       | 0.0769    | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Bis(2-ethylhexyl)phthalate        | ND       | 0.769        | 1.54      | ug/L             | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |          | Recove       | ery: 66 % | Limits: 44-120 % | 4        | 04/11/23 13:13 | EPA 8270E   | Q-41  |
| 2-Fluorobiphenyl (Surr)           |          |              | 66 %      | 44-120 %         |          | 04/11/23 13:13 | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |          |              | 18 %      | 10-133 %         |          | 04/11/23 13:13 | EPA 8270E   | Q-41  |
| p-Terphenyl-d14 (Surr)            |          |              | 77 %      | 50-134 %         |          | 04/11/23 13:13 | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |          |              | 26 %      | 19-120 %         |          | 04/11/23 13:13 | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |          |              | 113 %     | 43-140 %         | 4        | 04/11/23 13:13 | EPA 8270E   |       |
| CB-16 (A3D0715-03RE1)             |          |              |           | Matrix: Wate     | r        | Batch:         | 23D0203     |       |
| Acenaphthene                      | 0.0113   | 0.0102       | 0.0204    | ug/L             | 1        | 04/10/23 11:56 | EPA 8270E   | J     |
| Acenaphthylene                    | ND       | 0.0102       | 0.0204    | ug/L             | 1        | 04/10/23 11:56 | EPA 8270E   |       |
| Anthracene                        | ND       | 0.0102       | 0.0204    | ug/L             | 1        | 04/10/23 11:56 | EPA 8270E   |       |
| Benz(a)anthracene                 | ND       | 0.0102       | 0.0204    | ug/L             | 1        | 04/10/23 11:56 | EPA 8270E   |       |
| Benzo(a)pyrene                    | ND       | 0.0153       | 0.0306    | ug/L             | 1        | 04/10/23 11:56 | EPA 8270E   |       |
| Benzo(b)fluoranthene              | ND       | 0.0153       | 0.0306    | ug/L             | 1        | 04/10/23 11:56 | EPA 8270E   |       |
| Benzo(k)fluoranthene              | ND       | 0.0153       | 0.0306    | ug/L             | 1        | 04/10/23 11:56 | EPA 8270E   |       |
| Benzo(g,h,i)perylene              | ND       | 0.0102       | 0.0204    | ug/L             | 1        | 04/10/23 11:56 | EPA 8270E   |       |
| Chrysene                          | ND       | 0.0102       | 0.0204    | ug/L             | 1        | 04/10/23 11:56 | EPA 8270E   |       |
| Dibenz(a,h)anthracene             | ND       | 0.0102       | 0.0204    | ug/L             | 1        | 04/10/23 11:56 | EPA 8270E   |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 4 of 28



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# ANALYTICAL SAMPLE RESULTS

|                                                                                                | Selected                   | l Semivolatile                                           | Organic C                                     | ompounds by E                                | PA 8270               | E                                                                                      |                                                               |       |
|------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------|-------|
| Analyte                                                                                        | Sample<br>Result           | Detection<br>Limit                                       | Reporting<br>Limit                            | Units                                        | Dilution              | Date<br>Analyzed                                                                       | Method Ref.                                                   | Notes |
| CB-16 (A3D0715-03RE1)                                                                          |                            |                                                          |                                               | Matrix: Wate                                 | r                     | Batch: 2                                                                               | 23D0203                                                       |       |
| Fluoranthene                                                                                   | ND                         | 0.0102                                                   | 0.0204                                        | ug/L                                         | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     |       |
| Fluorene                                                                                       | ND                         | 0.0102                                                   | 0.0204                                        | ug/L                                         | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     |       |
| Indeno(1,2,3-cd)pyrene                                                                         | ND                         | 0.0102                                                   | 0.0204                                        | ug/L                                         | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     |       |
| 1-Methylnaphthalene                                                                            | ND                         | 0.0204                                                   | 0.0408                                        | ug/L                                         | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     |       |
| 2-Methylnaphthalene                                                                            | ND                         | 0.0204                                                   | 0.0408                                        | ug/L                                         | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     |       |
| Naphthalene                                                                                    | ND                         | 0.0204                                                   | 0.0408                                        | ug/L                                         | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     |       |
| Phenanthrene                                                                                   | 0.0137                     | 0.0102                                                   | 0.0204                                        | ug/L                                         | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     | J     |
| Pyrene                                                                                         | ND                         | 0.0102                                                   | 0.0204                                        | ug/L                                         | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     |       |
| Carbazole                                                                                      | ND                         | 0.0153                                                   | 0.0306                                        | ug/L                                         | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     |       |
| Dibenzofuran                                                                                   | ND                         | 0.0102                                                   | 0.0204                                        | ug/L                                         | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     |       |
| Bis(2-ethylhexyl)phthalate                                                                     | ND                         | 0.204                                                    | 0.408                                         | ug/L                                         | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     |       |
| Surrogate: Nitrobenzene-d5 (Surr)                                                              |                            | Recor                                                    | very: 79 %                                    | Limits: 44-120 %                             | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     | Q-41  |
| 2-Fluorobiphenyl (Surr)                                                                        |                            |                                                          | 58 %                                          | 44-120 %                                     | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     | ~     |
| Phenol-d6 (Surr)                                                                               |                            |                                                          | 23 %                                          | 10-133 %                                     | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     |       |
| p-Terphenyl-d14 (Surr)                                                                         |                            |                                                          | 54 %                                          | 50-134 %                                     | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     |       |
| 2-Fluorophenol (Surr)                                                                          |                            |                                                          | 37 %                                          | 19-120 %                                     | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     |       |
| 2,4,6-Tribromophenol (Surr)                                                                    |                            |                                                          | 93 %                                          | 43-140 %                                     | 1                     | 04/10/23 11:56                                                                         | EPA 8270E                                                     |       |
| DUP (A3D0715-04RE1)                                                                            |                            |                                                          |                                               | Matrix: Wate                                 | r                     | Batch: 2                                                                               | 23D0203                                                       | R-04  |
| Acenaphthene                                                                                   | ND                         | 0.0385                                                   | 0.0769                                        | ug/L                                         | 4                     | 04/10/23 13:04                                                                         | EPA 8270E                                                     |       |
| Acenaphthylene                                                                                 | ND                         | 0.0385                                                   | 0.0769                                        | ug/L                                         | 4                     | 04/10/23 13:04                                                                         | EPA 8270E                                                     |       |
| Anthracene                                                                                     | ND                         | 0.0385                                                   | 0.0769                                        | ug/L                                         | 4                     | 04/10/23 13:04                                                                         | EPA 8270E                                                     |       |
| Benz(a)anthracene                                                                              | ND                         | 0.0385                                                   | 0.0769                                        | ug/L                                         | 4                     | 04/10/23 13:04                                                                         | EPA 8270E                                                     |       |
| Benzo(a)pyrene                                                                                 | ND                         | 0.0577                                                   | 0.115                                         | ug/L                                         | 4                     | 04/10/23 13:04                                                                         | EPA 8270E                                                     |       |
| Benzo(b)fluoranthene                                                                           | ND                         | 0.0577                                                   | 0.115                                         | ug/L                                         | 4                     | 04/10/23 13:04                                                                         | EPA 8270E                                                     |       |
| Delizo(b)Huorantinene                                                                          | ND                         | 0.0377                                                   | 0.113                                         |                                              |                       |                                                                                        |                                                               |       |
| Benzo(k)fluoranthene                                                                           | ND<br>ND                   | 0.0577                                                   | 0.115                                         | ug/L                                         | 4                     | 04/10/23 13:04                                                                         | EPA 8270E                                                     |       |
| Benzo(k)fluoranthene                                                                           |                            |                                                          |                                               | ug/L                                         | 4                     | 04/10/23 13:04<br>04/10/23 13:04                                                       | EPA 8270E<br>EPA 8270E                                        |       |
|                                                                                                | ND                         | 0.0577                                                   | 0.115                                         |                                              | •                     |                                                                                        |                                                               |       |
| Benzo(k)fluoranthene<br>Benzo(g,h,i)perylene                                                   | ND<br>ND                   | 0.0577<br>0.0385                                         | 0.115<br>0.0769                               | ug/L<br>ug/L<br>ug/L                         | 4                     | 04/10/23 13:04                                                                         | EPA 8270E                                                     |       |
| Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene                                             | ND<br>ND<br>ND             | 0.0577<br>0.0385<br>0.0385                               | 0.115<br>0.0769<br>0.0769                     | ug/L<br>ug/L<br>ug/L<br>ug/L                 | 4                     | 04/10/23 13:04<br>04/10/23 13:04                                                       | EPA 8270E<br>EPA 8270E                                        |       |
| Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene                       | ND<br>ND<br>ND<br>ND       | 0.0577<br>0.0385<br>0.0385<br>0.0385<br>0.0385           | 0.115<br>0.0769<br>0.0769<br>0.0769           | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         | 4 4 4                 | 04/10/23 13:04<br>04/10/23 13:04<br>04/10/23 13:04                                     | EPA 8270E<br>EPA 8270E<br>EPA 8270E                           |       |
| Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene | ND<br>ND<br>ND<br>ND<br>ND | 0.0577<br>0.0385<br>0.0385<br>0.0385<br>0.0385<br>0.0385 | 0.115<br>0.0769<br>0.0769<br>0.0769<br>0.0769 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 4<br>4<br>4<br>4<br>4 | 04/10/23 13:04<br>04/10/23 13:04<br>04/10/23 13:04<br>04/10/23 13:04<br>04/10/23 13:04 | EPA 8270E<br>EPA 8270E<br>EPA 8270E<br>EPA 8270E<br>EPA 8270E |       |
| Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene          | ND<br>ND<br>ND<br>ND       | 0.0577<br>0.0385<br>0.0385<br>0.0385<br>0.0385           | 0.115<br>0.0769<br>0.0769<br>0.0769           | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         | 4<br>4<br>4<br>4      | 04/10/23 13:04<br>04/10/23 13:04<br>04/10/23 13:04<br>04/10/23 13:04                   | EPA 8270E<br>EPA 8270E<br>EPA 8270E<br>EPA 8270E              |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 28



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected         | Semivolatile       | Organic C          | ompounds by E    | EPA 8270 | <u>E</u>         |             |       |
|-----------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                           | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| DUP (A3D0715-04RE1)               |                  |                    |                    | Matrix: Wate     | er .     | Batch:           | 23D0203     | R-04  |
| Naphthalene                       | ND               | 0.0769             | 0.154              | ug/L             | 4        | 04/10/23 13:04   | EPA 8270E   |       |
| Phenanthrene                      | ND               | 0.0385             | 0.0769             | ug/L             | 4        | 04/10/23 13:04   | EPA 8270E   |       |
| Pyrene                            | ND               | 0.0385             | 0.0769             | ug/L             | 4        | 04/10/23 13:04   | EPA 8270E   |       |
| Carbazole                         | ND               | 0.0577             | 0.115              | ug/L             | 4        | 04/10/23 13:04   | EPA 8270E   |       |
| Dibenzofuran                      | ND               | 0.0385             | 0.0769             | ug/L             | 4        | 04/10/23 13:04   | EPA 8270E   |       |
| Bis(2-ethylhexyl)phthalate        | ND               | 0.769              | 1.54               | ug/L             | 4        | 04/10/23 13:04   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recor              | very: 67 %         | Limits: 44-120 % | 6 4      | 04/10/23 13:04   | EPA 8270E   | Q-41  |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 64 %               | 44-120 %         | 6 4      | 04/10/23 13:04   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 20 %               | 10-133 %         | 6 4      | 04/10/23 13:04   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 60 %               | 50-134 %         | 6 4      | 04/10/23 13:04   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 28 %               | 19-120 %         | 6 4      | 04/10/23 13:04   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 102 %              | 43-140 %         | 6 4      | 04/10/23 13:04   | EPA 8270E   |       |

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# ANALYTICAL SAMPLE RESULTS

|                          |                  | Total Met          | als by EPA 20      | 0.8 (ICPMS | )        |                  |             |       |
|--------------------------|------------------|--------------------|--------------------|------------|----------|------------------|-------------|-------|
| Analyte                  | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| Outfall C/D (A3D0715-01) |                  |                    |                    | Matrix: W  | ater     |                  |             |       |
| Batch: 23D0362           |                  |                    |                    |            |          |                  |             |       |
| Copper                   | 11.1             | 1.00               | 2.00               | ug/L       | 1        | 04/11/23 13:45   | EPA 200.8   |       |
| Outfall E (A3D0715-02)   |                  |                    |                    | Matrix: W  | ater     |                  |             |       |
| Batch: 23D0362           |                  |                    |                    |            |          |                  |             |       |
| Cadmium                  | 0.498            | 0.100              | 0.200              | ug/L       | 1        | 04/11/23 13:50   | EPA 200.8   |       |
| Zinc                     | 751              | 2.00               | 4.00               | ug/L       | 1        | 04/11/23 13:50   | EPA 200.8   | B-02  |
| CB-16 (A3D0715-03)       |                  |                    |                    | Matrix: W  | ater     |                  |             |       |
| Batch: 23D0362           |                  |                    |                    |            |          |                  |             |       |
| Cadmium                  | 0.116            | 0.100              | 0.200              | ug/L       | 1        | 04/11/23 13:55   | EPA 200.8   | J     |
| Zinc                     | 82.1             | 2.00               | 4.00               | ug/L       | 1        | 04/11/23 13:55   | EPA 200.8   | B-02  |
| DUP (A3D0715-04)         |                  |                    |                    | Matrix: W  | ater     |                  |             |       |
| Batch: 23D0362           |                  |                    |                    |            |          |                  |             |       |
| Copper                   | 11.3             | 1.00               | 2.00               | ug/L       | 1        | 04/11/23 14:10   | EPA 200.8   |       |

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: Dolan SCE
Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# ANALYTICAL SAMPLE RESULTS

|                          | Tot              | al Metals by       | EPA 200.8 (IC      | CPMS) - Lov | v Level  |                  |               | ·     |
|--------------------------|------------------|--------------------|--------------------|-------------|----------|------------------|---------------|-------|
| Analyte                  | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution | Date<br>Analyzed | Method Ref.   | Notes |
| Outfall C/D (A3D0715-01) |                  |                    |                    | Matrix: W   | ater     |                  |               |       |
| Batch: 23D0970           |                  |                    |                    |             |          |                  |               |       |
| Arsenic                  | 0.297            | 0.0250             | 0.0500             | ug/L        | 1        | 05/01/23 18:03   | EPA 200.8-Low |       |
| DUP (A3D0715-04)         |                  |                    |                    | Matrix: W   | ater     |                  |               |       |
| Batch: 23D0970           |                  |                    |                    | •           | •        |                  |               |       |
| Arsenic                  | 0.300            | 0.0250             | 0.0500             | ug/L        | 1        | 05/01/23 18:20   | EPA 200.8-Low |       |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 8 of 28



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# ANALYTICAL SAMPLE RESULTS

|                          |                  | Solid and          | Moisture Det       | erminations | 3        |                  |             |       |
|--------------------------|------------------|--------------------|--------------------|-------------|----------|------------------|-------------|-------|
| Analyte                  | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| Outfall C/D (A3D0715-01) |                  |                    |                    | Matrix: Wa  | ater     |                  |             |       |
| Batch: 23D0068           | NID              | 5.00               | 5.00               | ~           |          | 04/03/22 17:22   | CM 2540 D   | ECT - |
| Total Suspended Solids   | ND               | 5.00               | 5.00               | mg/L        | I        | 04/03/23 17:22   | SM 2540 D   | EST_s |
| Outfall E (A3D0715-02)   |                  |                    |                    | Matrix: Wa  | ater     |                  |             |       |
| Batch: 23D0068           | <del></del>      | <del></del>        | <del></del>        | <del></del> |          | <del></del>      |             |       |
| Total Suspended Solids   | 5.00             | 5.00               | 5.00               | mg/L        | 1        | 04/03/23 17:22   | SM 2540 D   | EST_s |
| CB-16 (A3D0715-03)       |                  |                    |                    | Matrix: Wa  | ater     |                  |             |       |
| Batch: 23D0068           |                  |                    |                    |             |          |                  |             |       |
| Total Suspended Solids   | 236              | 5.00               | 5.00               | mg/L        | 1        | 04/03/23 17:22   | SM 2540 D   |       |
| DUP (A3D0715-04)         |                  |                    |                    | Matrix: Wa  | ater     |                  |             |       |
| Batch: 23D0068           |                  |                    |                    |             |          |                  |             |       |
| Total Suspended Solids   | ND               | 5.00               | 5.00               | mg/L        | 1        | 04/03/23 17:22   | SM 2540 D   | EST_s |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 9 of 28



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                              |            |                    | d Semivola         | U.gc       |            |                 | ,                |       |                 |     |              |       |
|------------------------------|------------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                      | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23D0203 - EPA 3510C (  | Acid Extra | ction)             |                    |            |            |                 | Wa               | ter   |                 |     |              |       |
| Blank (23D0203-BLK2)         |            |                    | Prepared           | : 04/06/23 | 11:09 Anal | yzed: 04/06     | /23 15:32        |       |                 |     |              |       |
| EPA 8270E                    |            |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| Acenaphthene                 | ND         | 0.0100             | 0.0200             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Acenaphthylene               | ND         | 0.0100             | 0.0200             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Anthracene                   | ND         | 0.0100             | 0.0200             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Benz(a)anthracene            | ND         | 0.0100             | 0.0200             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Benzo(a)pyrene               | ND         | 0.0150             | 0.0300             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Benzo(b)fluoranthene         | ND         | 0.0150             | 0.0300             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Benzo(k)fluoranthene         | ND         | 0.0150             | 0.0300             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Benzo(g,h,i)perylene         | ND         | 0.0100             | 0.0200             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Chrysene                     | ND         | 0.0100             | 0.0200             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Dibenz(a,h)anthracene        | ND         | 0.0100             | 0.0200             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Fluoranthene                 | ND         | 0.0100             | 0.0200             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Fluorene                     | ND         | 0.0100             | 0.0200             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Indeno(1,2,3-cd)pyrene       | ND         | 0.0100             | 0.0200             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| 1-Methylnaphthalene          | ND         | 0.0200             | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| 2-Methylnaphthalene          | ND         | 0.0200             | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Naphthalene                  | ND         | 0.0200             | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Phenanthrene                 | ND         | 0.0100             | 0.0200             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Pyrene                       | ND         | 0.0100             | 0.0200             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Carbazole                    | ND         | 0.0150             | 0.0300             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Bis(2-ethylhexyl)phthalate   | ND         | 0.200              | 0.400              | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Surr: Nitrobenzene-d5 (Surr) |            | Reco               | very: 86 %         | Limits: 44 | 1-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| 2-Fluorobiphenyl (Surr)      |            |                    | 63 %               |            | -120 %     |                 | "                |       |                 |     |              |       |
| Phenol-d6 (Surr)             |            |                    | 27 %               | 10         | -133 %     |                 | "                |       |                 |     |              | Q-41  |
| p-Terphenyl-d14 (Surr)       |            |                    | 75 %               |            | -134 %     |                 | "                |       |                 |     |              |       |
| 2-Fluorophenol (Surr)        |            |                    | 50 %               |            | -120 %     |                 | "                |       |                 |     |              |       |
| 2,4,6-Tribromophenol (Surr)  |            |                    | 81 %               |            | -140 %     |                 | "                |       |                 |     |              |       |
| , ,                          |            |                    |                    |            | -          |                 |                  |       |                 |     |              |       |
| LCS (23D0203-BS2)            |            |                    | Prepared           | : 04/06/23 | 11:09 Anal | yzed: 04/06     | /23 16:02        |       |                 |     |              |       |
| EPA 8270E                    |            |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| Acenaphthene                 | 3.36       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 84    | 47-122%         |     |              |       |
| Acenaphthylene               | 3.20       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 80    | 41-130%         |     |              |       |
| Anthracene                   | 3.68       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 92    | 57-123%         |     |              |       |
| Benz(a)anthracene            | 3.74       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 94    | 58-125%         |     |              |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

| Selected Semivolatile Organic Compounds by EPA 8270E |            |                    |                    |            |            |                 |                  |       |                 |     |              |       |
|------------------------------------------------------|------------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                              | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23D0203 - EPA 3510C (A                         | Acid Extra | ction)             |                    |            |            |                 | Wa               | ter   |                 |     |              |       |
| LCS (23D0203-BS2)                                    |            |                    | Prepared           | : 04/06/23 | 11:09 Anal | yzed: 04/06/    | /23 16:02        |       |                 |     |              |       |
| Benzo(a)pyrene                                       | 3.42       | 0.0600             | 0.120              | ug/L       | 4          | 4.00            |                  | 85    | 54-128%         |     |              |       |
| Benzo(b)fluoranthene                                 | 3.41       | 0.0600             | 0.120              | ug/L       | 4          | 4.00            |                  | 85    | 53-131%         |     |              |       |
| Benzo(k)fluoranthene                                 | 3.53       | 0.0600             | 0.120              | ug/L       | 4          | 4.00            |                  | 88    | 57-129%         |     |              |       |
| Benzo(g,h,i)perylene                                 | 4.01       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 100   | 50-134%         |     |              |       |
| Chrysene                                             | 3.69       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 92    | 59-123%         |     |              |       |
| Dibenz(a,h)anthracene                                | 3.75       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 94    | 51-134%         |     |              |       |
| Fluoranthene                                         | 3.87       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 97    | 57-128%         |     |              |       |
| Fluorene                                             | 3.32       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 83    | 52-124%         |     |              |       |
| Indeno(1,2,3-cd)pyrene                               | 3.60       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 90    | 52-134%         |     |              |       |
| l-Methylnaphthalene                                  | 3.13       | 0.0800             | 0.160              | ug/L       | 4          | 4.00            |                  | 78    | 41-120%         |     |              |       |
| 2-Methylnaphthalene                                  | 3.32       | 0.0800             | 0.160              | ug/L       | 4          | 4.00            |                  | 83    | 40-121%         |     |              |       |
| Naphthalene                                          | 3.07       | 0.0800             | 0.160              | ug/L       | 4          | 4.00            |                  | 77    | 40-121%         |     |              |       |
| Phenanthrene                                         | 3.49       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 87    | 59-120%         |     |              |       |
| Pyrene                                               | 3.83       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 96    | 57-126%         |     |              |       |
| Carbazole                                            | 4.00       | 0.0600             | 0.120              | ug/L       | 4          | 4.00            |                  | 100   | 60-122%         |     |              |       |
| Dibenzofuran                                         | 3.42       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 86    | 53-120%         |     |              |       |
| Bis(2-ethylhexyl)phthalate                           | 3.66       | 0.800              | 1.60               | ug/L       | 4          | 4.00            |                  | 92    | 55-135%         |     |              |       |
| Surr: Nitrobenzene-d5 (Surr)                         |            | Recove             | ery: 101 %         | Limits: 44 | 1-120 %    | Dilı            | ution: 4x        |       |                 |     |              |       |
| 2-Fluorobiphenyl (Surr)                              |            |                    | 80 %               | 44         | -120 %     |                 | "                |       |                 |     |              |       |
| Phenol-d6 (Surr)                                     |            |                    | 31 %               | 10         | -133 %     |                 | "                |       |                 |     |              | Q-41  |
| p-Terphenyl-d14 (Surr)                               |            |                    | 95 %               | 50         | -134 %     |                 | "                |       |                 |     |              |       |
| 2-Fluorophenol (Surr)                                |            |                    | 48 %               | 19         | -120 %     |                 | "                |       |                 |     |              |       |
| 2,4,6-Tribromophenol (Surr)                          |            |                    | 89 %               | 43         | -140 %     |                 | "                |       |                 |     |              |       |
| LCS Dup (23D0203-BSD2)                               |            |                    | Prepared           | : 04/06/23 | 11:09 Anal | yzed: 04/06/    | /23 16:36        |       |                 |     |              | Q-    |
| EPA 8270E                                            |            |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| Acenaphthene                                         | 3.29       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 82    | 47-122%         | 2   | 30%          |       |
| Acenaphthylene                                       | 3.11       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 78    | 41-130%         | 3   | 30%          |       |
| Anthracene                                           | 3.62       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 90    | 57-123%         | 2   | 30%          |       |
| Benz(a)anthracene                                    | 3.68       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 92    | 58-125%         | 2   | 30%          |       |
| Benzo(a)pyrene                                       | 3.43       | 0.0600             | 0.120              | ug/L       | 4          | 4.00            |                  | 86    | 54-128%         | 0.4 | 30%          |       |
| Benzo(b)fluoranthene                                 | 3.48       | 0.0600             | 0.120              | ug/L       | 4          | 4.00            |                  | 87    | 53-131%         | 2   | 30%          |       |
| Benzo(k)fluoranthene                                 | 3.55       | 0.0600             | 0.120              | ug/L       | 4          | 4.00            |                  | 89    | 57-129%         | 0.5 | 30%          |       |
| Benzo(g,h,i)perylene                                 | 4.06       | 0.0400             | 0.0800             | ug/L       | 4          | 4.00            |                  | 101   | 50-134%         | 1   | 30%          |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 11 of 28



## Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

### Selected Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike % REC RPD Source Dilution Analyte Result Limit Units Result % REC Limits RPD Limit Limit Amount Notes Batch 23D0203 - EPA 3510C (Acid Extraction) Water LCS Dup (23D0203-BSD2) Prepared: 04/06/23 11:09 Analyzed: 04/06/23 16:36 Q-19 Chrysene 3.70 0.0400 0.0800 ug/L 4.00 93 59-123% 0.4 30% 0.0400 0.0800 94 Dibenz(a,h)anthracene 3.75 ug/L 4 4.00 51-134% 0.03 30% 95 2 Fluoranthene 3.80 0.04000.0800 ug/L 4 4.00 57-128% 30% Fluorene 3.23 0.0400 0.0800 ug/L 4 4.00 81 52-124% 3 30% 90 Indeno(1,2,3-cd)pyrene 3.61 0.04000.08004 4.00 52-134% 0.3 30% ug/L 2.99 0.0800 75 41-120% 1-Methylnaphthalene 0.160 ug/L 4 4.00 4 30% 0.0800 40-121% 2-Methylnaphthalene 3.15 0.160 ug/L 4 4.00 79 5 30% 2.94 0.0800 4 4.00 74 40-121% Naphthalene 0.160 ug/L 30% 0.0400 0.0800 4.00 Phenanthrene 3.44 ug/L 4 86 59-120% 1 30% Pyrene 3.75 0.0400 0.0800 ug/L 4 4.00 94 57-126% 2 30% Carbazole 0.0600 4.00 30% 3.83 0.120 4 96 60-122% 4 ug/L Dibenzofuran 3.32 0.0400 0.0800 4.00 83 53-120% 3 30% ug/L 4 91 Bis(2-ethylhexyl)phthalate 3.65 0.800 4 4.00 55-135% 0.4 30% 1.60 ug/L Surr: Nitrobenzene-d5 (Surr) Recovery: 91% Limits: 44-120 % Dilution: 4x 2-Fluorobiphenyl (Surr) 44-120 % 76 % Phenol-d6 (Surr) 27 % 10-133 % Q-41

50-134 %

19-120 %

43-140 %

91%

41 %

84 %

Apex Laboratories

Philip Nevenberg

p-Terphenyl-d14 (Surr)

2-Fluorophenol (Surr)

2,4,6-Tribromophenol (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 12 of 28



## Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

### Selected Semivolatile Organic Compounds by EPA 8270E Detection Reporting % REC RPD Spike Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Batch 23D0237 - EPA 3510C (Acid Extraction) Water Blank (23D0237-BLK1) Prepared: 04/07/23 06:19 Analyzed: 04/07/23 16:27 EPA 8270E Acenaphthene ND 0.0100 0.0200 ug/L 0.0100 ND 0.0200 ug/L 1 Acenaphthylene Anthracene ND 0.0100 0.0200 ug/L 1 ND 0.0100 0.0200 1 Benz(a)anthracene ug/L ND 0.0150 0.0300 ug/L 1 Benzo(a)pyrene 0.0150 ug/L Benzo(b)fluoranthene ND 0.0300 1 ------Benzo(k)fluoranthene ND 0.0150 0.0300 1 ug/L 0.0100 0.0200 ND Benzo(g,h,i)perylene ug/L 1 Chrysene ND 0.0100 0.0200 ug/L 1 Dibenz(a,h)anthracene ND 0.0100 0.0200 ug/L 1 Fluoranthene ND 0.0100 0.0200 ug/L 1 ND 0.0100 0.0200 Fluorene 1 ug/L ---0.0100 Indeno(1,2,3-cd)pyrene ND 0.0200 ug/L 1 ND 0.0200 0.0400 1-Methylnaphthalene ug/L 1 2-Methylnaphthalene ND 0.02000.0400ug/L 1 Naphthalene ND 0.0200 0.0400 ug/L 1 ---------Phenanthrene ND 0.01000.0200ug/L 1 ND 0.0100 0.0200 Pyrene ug/L 1 ---------Carbazole ND 0.0150 0.0300 ug/L 1 Dibenzofuran ND 0.0100 0.0200 ug/L 1 2-Chlorophenol ND 0.05000.100 ug/L 1 4-Chloro-3-methylphenol ND 0.100 0.200 ug/L 1 0.05000.100 2,4-Dichlorophenol ND ug/L 1 2,4-Dimethylphenol ND 0.0500 0.100 ug/L 1 0.250 0.500 2,4-Dinitrophenol ND ug/L 1 4,6-Dinitro-2-methylphenol ND 0.250 0.500 ug/L 1 2-Methylphenol ND 0.02500.0500 ug/L 1 0.0250 3+4-Methylphenol(s) ND 0.0500 ug/L 1 ------2-Nitrophenol ND 0.1000.200 ug/L 1 0.100 4-Nitrophenol ND 0.200 ug/L 1 Pentachlorophenol (PCP) ND 0.100 0.200 ug/L 1 Phenol ND 0.200 0.400 ug/L 1 ND 0.0500 0.100 2,3,4,6-Tetrachlorophenol ug/L 1

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 13 of 28



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                                              | Selected Semivolatile Organic Compounds by EPA 8270E |                    |                    |              |            |                 |                  |          |                    |     |              |       |
|--------------------------------------------------------------|------------------------------------------------------|--------------------|--------------------|--------------|------------|-----------------|------------------|----------|--------------------|-----|--------------|-------|
| Analyte                                                      | Result                                               | Detection<br>Limit | Reporting<br>Limit | Units        | Dilution   | Spike<br>Amount | Source<br>Result | % REC    | % REC<br>Limits    | RPD | RPD<br>Limit | Notes |
| Batch 23D0237 - EPA 3510C (                                  | Acid Extra                                           | ction)             |                    |              |            |                 | Wa               | ter      |                    |     |              |       |
| Blank (23D0237-BLK1)                                         |                                                      |                    | Prepared           | : 04/07/23   | 06:19 Anal | yzed: 04/07/    | /23 16:27        |          |                    |     |              |       |
| 2,3,5,6-Tetrachlorophenol                                    | ND                                                   | 0.0500             | 0.100              | ug/L         | 1          |                 |                  |          |                    |     |              |       |
| 2,4,5-Trichlorophenol                                        | ND                                                   | 0.0500             | 0.100              | ug/L         | 1          |                 |                  |          |                    |     |              |       |
| 2,4,6-Trichlorophenol                                        | ND                                                   | 0.0500             | 0.100              | ug/L         | 1          |                 |                  |          |                    |     |              |       |
| Bis(2-ethylhexyl)phthalate                                   | ND                                                   | 0.200              | 0.400              | ug/L         | 1          |                 |                  |          |                    |     |              |       |
| Butyl benzyl phthalate                                       | ND                                                   | 0.200              | 0.400              | ug/L         | 1          |                 |                  |          |                    |     |              |       |
| Diethylphthalate                                             | ND                                                   | 0.200              | 0.400              | ug/L         | 1          |                 |                  |          |                    |     |              |       |
| Dimethylphthalate                                            | ND                                                   | 0.200              | 0.400              | ug/L         | 1          |                 |                  |          |                    |     |              |       |
| Di-n-butylphthalate                                          | ND                                                   | 0.200              | 0.400              | ug/L         | 1          |                 |                  |          |                    |     |              |       |
| Di-n-octyl phthalate                                         | ND                                                   | 0.200              | 0.400              | ug/L         | 1          |                 |                  |          |                    |     |              |       |
| Surr: Nitrobenzene-d5 (Surr)                                 |                                                      | Reco               | very: 84 %         | Limits: 44   | -120 %     | Dilı            | ution: 1x        |          |                    |     |              | Q-41  |
| 2-Fluorobiphenyl (Surr)                                      |                                                      |                    | 63 %               | 44-120 %     |            |                 | "                |          |                    |     |              |       |
| Phenol-d6 (Surr)                                             |                                                      |                    | 29 %               | 10-133 %     |            |                 | "                |          |                    |     |              | Q-41  |
| p-Terphenyl-d14 (Surr)                                       |                                                      |                    | 75 %               | 50-134 %     |            |                 | "                |          |                    |     |              |       |
| 2-Fluorophenol (Surr)                                        |                                                      |                    | 44 %               | 19-120 %     |            |                 | "                |          |                    |     |              |       |
| 2,4,6-Tribromophenol (Surr)                                  |                                                      |                    | 87 %               | 43           | -140 %     |                 | "                |          |                    |     |              |       |
| LCS (23D0237-BS1)                                            |                                                      |                    | Prepared           | : 04/07/23 ( | 06:19 Anal | yzed: 04/07/    | /23 17:01        |          |                    |     |              |       |
| EPA 8270E                                                    |                                                      |                    |                    |              |            | -               |                  |          |                    |     |              |       |
| Acenaphthene                                                 | 3.05                                                 | 0.0400             | 0.0800             | ug/L         | 4          | 4.00            |                  | 76       | 47-122%            |     |              |       |
| Acenaphthylene                                               | 2.90                                                 | 0.0400             | 0.0800             | ug/L         | 4          | 4.00            |                  | 73       | 41-130%            |     |              |       |
| Anthracene                                                   | 3.58                                                 | 0.0400             | 0.0800             | ug/L         | 4          | 4.00            |                  | 89       | 57-123%            |     |              |       |
| Benz(a)anthracene                                            | 3.73                                                 | 0.0400             | 0.0800             | ug/L         | 4          | 4.00            |                  | 93       | 58-125%            |     |              |       |
| Benzo(a)pyrene                                               | 3.47                                                 | 0.0600             | 0.120              | ug/L         | 4          | 4.00            |                  | 87       | 54-128%            |     |              |       |
| Benzo(b)fluoranthene                                         | 3.48                                                 | 0.0600             | 0.120              | ug/L         | 4          | 4.00            |                  | 87       | 53-131%            |     |              |       |
| Benzo(k)fluoranthene                                         | 3.50                                                 | 0.0600             | 0.120              | ug/L         | 4          | 4.00            |                  | 88       | 57-129%            |     |              |       |
| Benzo(g,h,i)perylene                                         | 3.94                                                 | 0.0400             | 0.0800             | ug/L         | 4          | 4.00            |                  | 99       | 50-134%            |     |              |       |
| Chrysene                                                     | 3.74                                                 | 0.0400             | 0.0800             | ug/L         | 4          | 4.00            |                  | 93       | 59-123%            |     |              |       |
| Dibenz(a,h)anthracene                                        | 3.75                                                 | 0.0400             | 0.0800             | ug/L         | 4          | 4.00            |                  | 94       | 51-134%            |     |              |       |
|                                                              |                                                      |                    |                    | ug/L         | 4          | 4.00            |                  | 96       | 57-128%            |     |              |       |
|                                                              | 3.86                                                 | 0.0400             | 0.0800             | ug/L         |            | 1.00            |                  |          |                    |     |              |       |
| luoranthene                                                  | 3.86<br>3.12                                         | 0.0400<br>0.0400   | 0.0800             | ug/L<br>ug/L | 4          | 4.00            |                  | 78       | 52-124%            |     |              |       |
| luoranthene<br>luorene                                       |                                                      |                    |                    | ug/L         |            |                 |                  | 78<br>88 | 52-124%<br>52-134% |     |              |       |
| Fluoranthene Fluorene ndeno(1,2,3-cd)pyreneMethylnaphthalene | 3.12                                                 | 0.0400             | 0.0800             | _            | 4          | 4.00            |                  |          |                    |     |              |       |
| Fluoranthene<br>Fluorene<br>ndeno(1,2,3-cd)pyrene            | 3.12<br>3.53                                         | 0.0400<br>0.0400   | 0.0800 $0.0800$    | ug/L<br>ug/L | 4<br>4     | 4.00<br>4.00    |                  | 88       | 52-134%            |     |              |       |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

| Analyte                      | Result     | Detection | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC  | % REC<br>Limits | DDD | RPD<br>Limit | Notes |
|------------------------------|------------|-----------|--------------------|-------------|------------|-----------------|------------------|--------|-----------------|-----|--------------|-------|
| Analyte                      | Resuit     | Limit     | Limit              | Units       | Dilution   | Amount          | Resuit           | 70 KEC | LIIIIIIS        | KPD | LIIIII       | Notes |
| Batch 23D0237 - EPA 3510C (  | Acid Extra | ction)    |                    |             |            |                 | Wa               | ter    |                 |     |              |       |
| LCS (23D0237-BS1)            |            |           | Prepared           | 1: 04/07/23 | 06:19 Anal | yzed: 04/07/    | /23 17:01        |        |                 |     |              |       |
| Phenanthrene                 | 3.35       | 0.0400    | 0.0800             | ug/L        | 4          | 4.00            |                  | 84     | 59-120%         |     |              |       |
| Pyrene                       | 3.84       | 0.0400    | 0.0800             | ug/L        | 4          | 4.00            |                  | 96     | 57-126%         |     |              |       |
| Carbazole                    | 4.04       | 0.0600    | 0.120              | ug/L        | 4          | 4.00            |                  | 101    | 60-122%         |     |              |       |
| Dibenzofuran                 | 3.16       | 0.0400    | 0.0800             | ug/L        | 4          | 4.00            |                  | 79     | 53-120%         |     |              |       |
| 2-Chlorophenol               | 2.98       | 0.200     | 0.400              | ug/L        | 4          | 4.00            |                  | 75     | 38-120%         |     |              |       |
| 4-Chloro-3-methylphenol      | 3.42       | 0.400     | 0.800              | ug/L        | 4          | 4.00            |                  | 85     | 52-120%         |     |              |       |
| 2,4-Dichlorophenol           | 3.40       | 0.200     | 0.400              | ug/L        | 4          | 4.00            |                  | 85     | 47-121%         |     |              |       |
| 2,4-Dimethylphenol           | 3.03       | 0.200     | 0.400              | ug/L        | 4          | 4.00            |                  | 76     | 31-124%         |     |              |       |
| 2,4-Dinitrophenol            | 4.23       | 1.00      | 2.00               | ug/L        | 4          | 4.00            |                  | 106    | 23-143%         |     |              |       |
| 4,6-Dinitro-2-methylphenol   | 3.84       | 1.00      | 2.00               | ug/L        | 4          | 4.00            |                  | 96     | 44-137%         |     |              |       |
| 2-Methylphenol               | 3.08       | 0.100     | 0.200              | ug/L        | 4          | 4.00            |                  | 77     | 30-120%         |     |              |       |
| 3+4-Methylphenol(s)          | 3.00       | 0.100     | 0.200              | ug/L        | 4          | 4.00            |                  | 75     | 29-120%         |     |              |       |
| 2-Nitrophenol                | 3.46       | 0.400     | 0.800              | ug/L        | 4          | 4.00            |                  | 86     | 47-123%         |     |              |       |
| 4-Nitrophenol                | 1.52       | 0.400     | 0.800              | ug/L        | 4          | 4.00            |                  | 38     | 10-120%         |     |              |       |
| Pentachlorophenol (PCP)      | 3.69       | 0.400     | 0.800              | ug/L        | 4          | 4.00            |                  | 92     | 35-138%         |     |              |       |
| Phenol                       | 1.40       | 0.800     | 0.800              | ug/L        | 4          | 4.00            |                  | 35     | 10-120%         |     |              |       |
| 2,3,4,6-Tetrachlorophenol    | 3.44       | 0.200     | 0.400              | ug/L        | 4          | 4.00            |                  | 86     | 50-128%         |     |              |       |
| 2,3,5,6-Tetrachlorophenol    | 3.61       | 0.200     | 0.400              | ug/L        | 4          | 4.00            |                  | 90     | 50-121%         |     |              |       |
| 2,4,5-Trichlorophenol        | 3.56       | 0.200     | 0.400              | ug/L        | 4          | 4.00            |                  | 89     | 53-123%         |     |              |       |
| 2,4,6-Trichlorophenol        | 3.34       | 0.200     | 0.400              | ug/L        | 4          | 4.00            |                  | 84     | 50-125%         |     |              |       |
| Bis(2-ethylhexyl)phthalate   | 3.81       | 0.800     | 1.60               | ug/L        | 4          | 4.00            |                  | 95     | 55-135%         |     |              |       |
| Butyl benzyl phthalate       | 4.12       | 0.800     | 1.60               | ug/L        | 4          | 4.00            |                  | 103    | 53-134%         |     |              |       |
| Diethylphthalate             | 3.46       | 0.800     | 1.60               | ug/L        | 4          | 4.00            |                  | 86     | 56-125%         |     |              |       |
| Dimethylphthalate            | 3.60       | 0.800     | 1.60               | ug/L        | 4          | 4.00            |                  | 90     | 45-127%         |     |              |       |
| Di-n-butylphthalate          | 4.27       | 0.800     | 1.60               | ug/L        | 4          | 4.00            |                  | 107    | 59-127%         |     |              |       |
| Di-n-octyl phthalate         | 3.53       | 0.800     | 1.60               | ug/L        | 4          | 4.00            |                  | 88     | 51-140%         |     |              |       |
| Surr: Nitrobenzene-d5 (Surr) |            | Reco      | very: 89 %         | Limits: 44  | 4-120 %    | Dilı            | ution: 4x        |        |                 |     |              | Q-41  |
| 2-Fluorobiphenyl (Surr)      |            |           | 79 %               | 44          | !-120 %    |                 | "                |        |                 |     |              |       |
| Phenol-d6 (Surr)             |            |           | 32 %               | 10          | 0-133 %    |                 | "                |        |                 |     |              | Q-41  |
| p-Terphenyl-d14 (Surr)       |            |           | 98 %               | 50          | -134 %     |                 | "                |        |                 |     |              | -     |
| 2-Fluorophenol (Surr)        |            |           | 43 %               | 19          | -120 %     |                 | "                |        |                 |     |              |       |
| 2,4,6-Tribromophenol (Surr)  |            |           | 93 %               | 12          | -140 %     |                 | ,,               |        |                 |     |              |       |

Prepared: 04/07/23 06:19 Analyzed: 04/07/23 17:36

Apex Laboratories

LCS Dup (23D0237-BSD1)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manhera

Page 15 of 28

Q-19



## Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

### Selected Semivolatile Organic Compounds by EPA 8270E Detection Reporting % REC RPD Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23D0237 - EPA 3510C (Acid Extraction) Water LCS Dup (23D0237-BSD1) Prepared: 04/07/23 06:19 Analyzed: 04/07/23 17:36 Q-19 EPA 8270E Acenaphthene 2.95 0.0400 0.0800 ug/L 4 4.00 74 47-122% 3 30% 4 4.00 72 30% 2.86 0.0400 0.0800 41-130% 1 Acenaphthylene ug/L Anthracene 3.57 0.0400 0.0800 ug/L 4 4.00 89 57-123% 0.3 30% Benz(a)anthracene 3.76 0.0400 0.0800 4 4.00 94 58-125% 0.8 30% ug/L 3.55 0.0600 0.120 4 4.00 89 54-128% 2 30% Benzo(a)pyrene ug/L 4 4.00 53-131% Benzo(b)fluoranthene 3.45 0.0600 0.120 ug/L 86 0.9 30% ---Benzo(k)fluoranthene 3.56 0.0600 0.120 4 4.00 89 57-129% 2 30% ug/L 4.07 0.0400 0.0800 4 4.00 102 50-134% 3 30% Benzo(g,h,i)perylene ug/L ---Chrysene 3.78 0.0400 0.0800 ug/L 4 4.00 95 59-123% 1 30% Dibenz(a,h)anthracene 3.87 0.0400 0.0800 ug/L 4 4.00 97 51-134% 3 30% Fluoranthene 3.85 0.04000.0800 ug/L 4 4.00 96 57-128% 0.09 30% 3.09 0.0400 0.0800 4 4.00 77 52-124% 30% Fluorene 1 ug/L 0.0400 Indeno(1,2,3-cd)pyrene 3.59 0.0800 ug/L 4 4.00 90 52-134% 2 30% 2.51 0.0800 0.160 4 4.00 63 41-120% 30% 1-Methylnaphthalene ug/L 6 2-Methylnaphthalene 2.64 0.08000.160 ug/L 4 4.00 66 40-121% 6 30% Naphthalene 2.34 0.0800 0.160 ug/L 4 4.00 59 40-121% 6 30% ---Phenanthrene 3.37 0.04000.0800 ug/L 4 4.00 84 59-120% 0.8 30% 0.0400 0.0800 4 4.00 96 57-126% 0.1 30% Pyrene 3.83 ug/L ---Carbazole 4.05 0.06000.120 ug/L 4 4.00 101 60-122% 0.1 30% Dibenzofuran 3.13 0.0400 0.0800 ug/L 4 4.00 78 53-120% 0.7 30% 3.01 75 2-Chlorophenol 0.200 0.400 ug/L 4 4.00 38-120% 0.9 30% 4-Chloro-3-methylphenol 3.42 0.400 0.800 ug/L 4 4.00 86 52-120% 0.09 30% Q-41 0.200 Q-41 2,4-Dichlorophenol 3.38 0.400 ug/L 4 4.00 85 47-121% 0.3 30% ug/L 2,4-Dimethylphenol 3.06 0.200 0.400 4 4.00 77 31-124% 1 30% 1.00 2.00 O-41 2,4-Dinitrophenol 4.17 ug/L 4 4.00 104 23-143% 1 30% ug/L 4,6-Dinitro-2-methylphenol 3.81 1.00 2.00 4 4.00 95 44-137% 0.8 30% 77 30% Q-41 2-Methylphenol 3.08 0.1000.200 ug/L 4 4.00 30-120% 0.1 Q-41 3+4-Methylphenol(s) 2.99 0.100 0.200 ug/L 4 4.00 75 29-120% 0.6 30% 2-Nitrophenol 0.400 0.800 4 4.00 87 47-123% 30% Q-41 3.46 ug/L 0.2 4-Nitrophenol 1.58 0.4000.800ug/L 4 4.00 39 10-120% 4 30% 93 Pentachlorophenol (PCP) 3.74 0.400 0.800 4 4.00 35-138% 1 30% ug/L Phenol 1.41 0.800 0.800 ug/L 4 4.00 35 10-120% 0.6 30% Q-41

Apex Laboratories

Philip Manherz

2,3,4,6-Tetrachlorophenol

3.43

0.200

0.400

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

86

50-128%

0.5

30%

Philip Nerenberg, Lab Director

Page 16 of 28

4

ug/L

4.00



## Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

### Selected Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike % REC RPD Source Dilution Analyte Result Limit Units Result % REC Limits RPD Limit Limit Amount Notes Batch 23D0237 - EPA 3510C (Acid Extraction) Water LCS Dup (23D0237-BSD1) Prepared: 04/07/23 06:19 Analyzed: 04/07/23 17:36 Q-19 2,3,5,6-Tetrachlorophenol 3.66 0.200 0.400 ug/L 4.00 92 50-121% 2 30% 3.54 0.200 0.400 ug/L 89 2,4,5-Trichlorophenol 4 4.00 53-123% 0.4 30% 2,4,6-Trichlorophenol 3.36 0.2000.400 ug/L 4 4.00 84 50-125% 0.6 30% Bis(2-ethylhexyl)phthalate 3.91 0.800 1.60 ug/L 4 4.00 98 55-135% 3 30% 30% Butyl benzyl phthalate 4.17 0.8001.60 4 4.00 104 53-134% 1 ug/L Diethylphthalate 3.45 0.800 4.00 56-125% 1.60 ug/L 4 86 0.3 30% Dimethylphthalate 0.800 3.57 1.60 ug/L 4 4.00 89 45-127% 0.8 30% Di-n-butylphthalate 4.26 0.800 1.60 4 4.00 107 59-127% 0.03 30% ug/L 0.800 3.55 1.60 4 4.00 89 51-140% Di-n-octyl phthalate ug/L 0.4 30% Surr: Nitrobenzene-d5 (Surr) 84 % Recovery: Limits: 44-120 % Dilution: 4x Q-41 2-Fluorobiphenyl (Surr) 75 % 44-120 % Phenol-d6 (Surr) 32 % 10-133 % Q-41 p-Terphenyl-d14 (Surr) 97% 50-134 % 19-120 % 2-Fluorophenol (Surr) 44 %

43-140 %

93 %

Apex Laboratories

Philip Nevenberg

2,4,6-Tribromophenol (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 17 of 28



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                |           |                    | Total N            | letals by  | EPA 200    | .8 (ICPMS       | 5)               |       |                 |     |              |         |
|--------------------------------|-----------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|---------|
| Analyte                        | Result    | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes   |
| Batch 23D0362 - EPA 3015A      |           |                    |                    |            |            |                 | Wa               | ter   |                 |     |              |         |
| Blank (23D0362-BLK1)           |           |                    | Prepared           | : 04/11/23 | 06:49 Anal | yzed: 04/11     | /23 13:10        |       |                 |     |              |         |
| EPA 200.8                      |           |                    |                    |            |            |                 |                  |       |                 |     |              |         |
| Arsenic                        | ND        | 0.500              | 1.00               | ug/L       | 1          |                 |                  |       |                 |     |              |         |
| Cadmium                        | ND        | 0.100              | 0.200              | ug/L       | 1          |                 |                  |       |                 |     |              |         |
| Copper                         | ND        | 1.00               | 2.00               | ug/L       | 1          |                 |                  |       |                 |     |              |         |
| Zinc                           | 2.35      | 2.00               | 4.00               | ug/L       | 1          |                 |                  |       |                 |     |              | J, B-02 |
| LCS (23D0362-BS1)              |           |                    | Prepared           | : 04/11/23 | 06:49 Anal | yzed: 04/11     | /23 13:15        |       |                 |     |              |         |
| EPA 200.8                      |           |                    |                    |            |            |                 |                  |       |                 |     |              |         |
| Arsenic                        | 54.5      | 0.500              | 1.00               | ug/L       | 1          | 55.6            |                  | 98    | 85-115%         |     |              |         |
| Cadmium                        | 54.1      | 0.100              | 0.200              | ug/L       | 1          | 55.6            |                  | 97    | 85-115%         |     |              |         |
| Copper                         | 58.1      | 1.00               | 2.00               | ug/L       | 1          | 55.6            |                  | 105   | 85-115%         |     |              |         |
| Zinc                           | 62.0      | 2.00               | 4.00               | ug/L       | 1          | 55.6            |                  | 112   | 85-115%         |     |              | B-02    |
| Duplicate (23D0362-DUP1)       |           |                    | Prepared           | : 04/11/23 | 06:49 Anal | yzed: 04/11     | /23 13:25        |       |                 |     |              |         |
| QC Source Sample: Non-SDG (A3I | D0714-01) |                    |                    |            |            |                 |                  |       |                 |     |              |         |
| Arsenic                        | ND        | 0.500              | 1.00               | ug/L       | 1          |                 | ND               |       |                 |     | 20%          |         |
| Cadmium                        | ND        | 0.100              | 0.200              | ug/L       | 1          |                 | ND               |       |                 |     | 20%          |         |
| Copper                         | ND        | 1.00               | 2.00               | ug/L       | 1          |                 | ND               |       |                 |     | 20%          |         |
| Zinc                           | 137       | 2.00               | 4.00               | ug/L       | 1          |                 | 135              |       |                 | 2   | 20%          | B-02    |
| Matrix Spike (23D0362-MS1)     |           |                    | Prepared           | : 04/11/23 | 06:49 Anal | yzed: 04/11     | /23 13:30        |       |                 |     |              |         |
| OC Source Sample: Non-SDG (A3I | D0714-01) |                    |                    |            |            |                 |                  |       |                 |     |              |         |
| EPA 200.8                      |           |                    |                    |            |            |                 |                  |       |                 |     |              |         |
| Arsenic                        | 55.0      | 0.500              | 1.00               | ug/L       | 1          | 55.6            | ND               | 99    | 70-130%         |     |              |         |
| Cadmium                        | 54.7      | 0.100              | 0.200              | ug/L       | 1          | 55.6            | ND               | 98    | 70-130%         |     |              |         |
| Copper                         | 58.6      | 1.00               | 2.00               | ug/L       | 1          | 55.6            | ND               | 106   | 70-130%         |     |              |         |
| Zinc                           | 193       | 2.00               | 4.00               | ug/L       | 1          | 55.6            | 135              | 105   | 70-130%         |     |              | B-02    |
| Matrix Spike (23D0362-MS2)     |           |                    | Prepared           | : 04/11/23 | 06:49 Anal | yzed: 04/11     | /23 13:40        |       |                 |     |              |         |
| OC Source Sample: Non-SDG (A31 | 00714-02) |                    |                    |            |            |                 |                  |       |                 |     |              |         |
| EPA 200.8                      |           |                    |                    |            |            |                 |                  |       |                 |     |              |         |
| Arsenic                        | 53.5      | 0.500              | 1.00               | ug/L       | 1          | 55.6            | 0.762            | 95    | 70-130%         |     |              |         |
| Cadmium                        | 54.3      | 0.100              | 0.200              | ug/L       | 1          | 55.6            | ND               | 98    | 70-130%         |     |              |         |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: Dolan SCE
Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

#### Total Metals by EPA 200.8 (ICPMS) Detection Reporting Spike Source % REC **RPD** Dilution % REC Analyte Result Ĺimit Units Amount Result Limits RPD Limit Notes Limit Batch 23D0362 - EPA 3015A Water Matrix Spike (23D0362-MS2) Prepared: 04/11/23 06:49 Analyzed: 04/11/23 13:40 QC Source Sample: Non-SDG (A3D0714-02) 58.7 1.00 2.00 1 55.6 101 70-130% Copper ug/L 2.74 101 4.00 B-02 Zinc 2.00 55.6 40.3 109 70-130% ug/L 1

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 19 of 28



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                 |               | To                 | tal Metals         | by EPA     | 200.8 (ICF | MS) - Lov       | w Level          |       |                 |     |              |       |
|---------------------------------|---------------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                         | Result        | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23D0970 - EPA 3015A       |               |                    |                    |            |            |                 | Wa               | ter   |                 |     |              |       |
| Blank (23D0970-BLK1)            |               |                    | Prepared           | : 04/25/23 | 07:13 Anal | lyzed: 05/01    | /23 17:47        |       |                 |     |              |       |
| EPA 200.8-Low                   |               |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| Arsenic                         | ND            | 0.0250             | 0.0500             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| LCS (23D0970-BS1)               |               |                    | Prepared           | : 04/25/23 | 07:13 Anal | lyzed: 05/01    | /23 17:55        |       |                 |     |              |       |
| EPA 200.8-Low                   |               |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| Arsenic                         | 5.88          | 0.0250             | 0.0500             | ug/L       | 1          | 5.56            |                  | 106   | 85-115%         |     |              |       |
| Duplicate (23D0970-DUP1)        |               |                    | Prepared           | : 04/25/23 | 07:13 Ana  | lyzed: 05/01    | /23 18:12        |       |                 |     |              |       |
| QC Source Sample: Outfall C/D ( | A3D0715-01    | <u>D</u>           |                    |            |            |                 |                  |       |                 |     |              |       |
| EPA 200.8-Low                   |               |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| Arsenic                         | 0.284         | 0.0250             | 0.0500             | ug/L       | 1          |                 | 0.297            |       |                 | 4   | 20%          |       |
| Matrix Spike (23D0970-MS1)      |               |                    | Prepared           | : 04/25/23 | 07:13 Ana  | lyzed: 05/01    | /23 18:28        |       |                 |     |              |       |
| OC Source Sample: DUP (A3D07)   | <u>15-04)</u> |                    |                    |            |            |                 |                  |       |                 |     |              |       |
| Arsenic                         | 6.20          | 0.0250             | 0.0500             | ug/L       | 1          | 5.56            | 0.300            | 106   | 70-130%         |     |              |       |

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Dolan SCE
Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |            |                    | Solid a            | nd Mois    | ture Dete  | rmination       | s                |       |                 |       |              |       |
|----------------------------------|------------|--------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-------|--------------|-------|
| Analyte                          | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD   | RPD<br>Limit | Notes |
| Batch 23D0068 - Total Suspen     | ded Solid  | s - 2022           |                    |            |            |                 | Wat              | er    |                 |       |              |       |
| Blank (23D0068-BLK1)             |            |                    | Prepared           | : 04/03/23 | 17:22 Anal | lyzed: 04/03    | /23 17:22        |       |                 |       |              |       |
| SM 2540 D Total Suspended Solids | ND         | 5.00               | 5.00               | mg/L       | 1          |                 |                  |       |                 |       |              |       |
| Duplicate (23D0068-DUP1)         |            |                    | Prepared           | : 04/03/23 | 17:22 Ana  | lyzed: 04/03    | /23 17:22        |       |                 |       |              |       |
| QC Source Sample: Outfall C/D (  | A3D0715-01 | <u>)</u>           |                    |            |            |                 |                  |       |                 |       |              |       |
| SM 2540 D Total Suspended Solids | ND         | 5.00               | 5.00               | mg/L       | 1          |                 | ND               |       |                 |       | 10%          | EST_  |
| Duplicate (23D0068-DUP2)         |            |                    | Prepared           | : 04/03/23 | 17:22 Ana  | lyzed: 04/03    | /23 17:22        |       |                 |       |              |       |
| QC Source Sample: CB-16 (A3D0    | 715-03)    |                    |                    |            |            |                 |                  |       |                 |       |              |       |
| SM 2540 D Total Suspended Solids | 237        | 5.00               | 5.00               | mg/L       | 1          |                 | 236              |       |                 | 0.423 | 10%          |       |
| Reference (23D0068-SRM1)         |            |                    | Prepared           | : 04/03/23 | 17:22 Ana  | lyzed: 04/03    | /23 17:22        |       |                 |       |              |       |
| SM 2540 D                        |            |                    |                    |            |            |                 |                  |       |                 |       |              |       |
| Total Suspended Solids           | 963        |                    |                    | mg/L       | 1          | 926             |                  | 104   | 85-116%         |       |              |       |

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: 3140 NE Broadway Street Project Number: M1381.01.001 Portland, OR 97232 Project Manager: Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

## SAMPLE PREPARATION INFORMATION

**Dolan SCE** 

| Prep: EPA 3510C (A | cid Extraction) |           |                |                | Sample        | Default       | RL Prep |
|--------------------|-----------------|-----------|----------------|----------------|---------------|---------------|---------|
| Lab Number         | Matrix          | Method    | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 23D0203     |                 |           |                |                |               |               |         |
| A3D0715-01RE1      | Water           | EPA 8270E | 03/31/23 17:15 | 04/06/23 11:12 | 1060 mL/1 mL  | 1000 mL/1 mL  | 0.94    |
| A3D0715-03RE1      | Water           | EPA 8270E | 03/31/23 18:45 | 04/06/23 11:12 | 980mL/1mL     | 1000 mL/1 mL  | 1.02    |
| A3D0715-04RE1      | Water           | EPA 8270E | 03/31/23 00:00 | 04/06/23 11:12 | 1040 mL/1 mL  | 1000 mL/1 mL  | 0.96    |
| Batch: 23D0237     |                 |           |                |                |               |               |         |
| A3D0715-02RE2      | Water           | EPA 8270E | 03/31/23 18:00 | 04/07/23 13:41 | 1040mL/1mL    | 1000mL/1mL    | 0.96    |

|                 |        | Tot       | al Metals by EPA 200 | ).8 (ICPMS)    |               | 1             |         |
|-----------------|--------|-----------|----------------------|----------------|---------------|---------------|---------|
| Prep: EPA 3015A |        |           |                      |                | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method    | Sampled              | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 23D0362  |        |           |                      |                |               |               |         |
| A3D0715-01      | Water  | EPA 200.8 | 03/31/23 17:15       | 04/11/23 06:49 | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A3D0715-02      | Water  | EPA 200.8 | 03/31/23 18:00       | 04/11/23 06:49 | 45mL/50mL     | 45 mL/50 mL   | 1.00    |
| A3D0715-03      | Water  | EPA 200.8 | 03/31/23 18:45       | 04/11/23 06:49 | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A3D0715-04      | Water  | EPA 200.8 | 03/31/23 00:00       | 04/11/23 06:49 | 45mL/50mL     | 45mL/50mL     | 1.00    |

|                 |        | Total Meta    | ls by EPA 200.8 (IC | PMS) - Low Level |               |               |         |
|-----------------|--------|---------------|---------------------|------------------|---------------|---------------|---------|
| Prep: EPA 3015A |        |               |                     |                  | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method        | Sampled             | Prepared         | Initial/Final | Initial/Final | Factor  |
| Batch: 23D0970  |        |               |                     |                  |               |               |         |
| A3D0715-01      | Water  | EPA 200.8-Low | 03/31/23 17:15      | 04/25/23 07:13   | 45mL/50mL     | 45 mL/50 mL   | 1.00    |
| A3D0715-04      | Water  | EPA 200.8-Low | 03/31/23 00:00      | 04/25/23 07:13   | 45mL/50mL     | 45mL/50mL     | 1.00    |

|                     |                  | So        | lid and Moisture Dete | erminations    |               |               |         |
|---------------------|------------------|-----------|-----------------------|----------------|---------------|---------------|---------|
| Prep: Total Suspend | ed Solids - 2022 |           |                       |                | Sample        | Default       | RL Prep |
| Lab Number          | Matrix           | Method    | Sampled               | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 23D0068      |                  |           |                       |                |               |               |         |
| A3D0715-01          | Water            | SM 2540 D | 03/31/23 17:15        | 04/03/23 17:22 |               |               | NA      |
| A3D0715-02          | Water            | SM 2540 D | 03/31/23 18:00        | 04/03/23 17:22 |               |               | NA      |
| A3D0715-03          | Water            | SM 2540 D | 03/31/23 18:45        | 04/03/23 17:22 |               |               | NA      |
| A3D0715-04          | Water            | SM 2540 D | 03/31/23 00:00        | 04/03/23 17:22 |               |               | NA      |

Apex Laboratories

Philip Nevenberg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Page 22 of 28 Philip Nerenberg, Lab Director



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

## **QUALIFIER DEFINITIONS**

## Client Sample and Quality Control (QC) Sample Qualifier Definitions:

## **Apex Laboratories**

- B-02 Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)
- EST\_s Solids results are reported as estimates when less than 2.5 mg residue is recovered during analysis. All method QC requirements have been met for samples, and reporting levels are adjusted based on volume filtered. Results meet regulatory requirements.
  - J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
- R-04 Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 23 of 28



## Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Report ID:Portland, OR 97232Project Manager:Jessica GlennA3D0715 - 05 03 23 1713

## REPORTING NOTES AND CONVENTIONS:

#### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

## **<u>Detection Limits:</u>** Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

#### Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

## **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"\_\_\_" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

## **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

## **Miscellaneous Notes:**

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"\*\*\*" Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

#### Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 24 of 28



## Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

# REPORTING NOTES AND CONVENTIONS (Cont.):

#### Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

## **Preparation Notes:**

## Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

## **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 25 of 28



## Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Dolan SCE3140 NE Broadway StreetProject Number:M1381.01.001Portland, OR 97232Project Manager:Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

## LABORATORY ACCREDITATION INFORMATION

# ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

# **Apex Laboratories**

Matrix Analysis TNI\_ID Analyte TNI\_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

# **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

# **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

# Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 26 of 28



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID:
A3D0715 - 05 03 23 1713

| COMPANY: MANL FOSTER & ALONDA Project Mgr. JESSICA Address: 3 140 NE 820AFILMAN ST. PRATLAND DC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 10-201-10-201 111: 000-111: 000-110-201 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                      |                               |                                        |            |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                            |              |          |                         |    |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|-------------------------------|----------------------------------------|------------|-----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------|--------------|----------|-------------------------|----|-----------|
| ddress: 3 140 NE BOORDWAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) Projec    | ± Mgr. ∫                                | £551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3      | 133      | GLENN    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Projec    | Project Name: DOLAN  | 6                             | 13                                     | 3          | 122       | ڎۣ         | STOUMWATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2000      | oject #:                   | 1            | 38       | Project #: 141381,01,00 | 8  |           |
| d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15          | Pac.TJ                                  | QNJ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | Phone:   | 山山       | 254.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 808       | 園                    | oail: J                       | glen                                   | હ)         | 200       | fost       | 971-254-8085 Email: jglenn@maulfoster.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | PO #                       |              |          |                         |    |           |
| Sampled by: CHICLS CLOWH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |          | ile de la constante de la cons |           |                      |                               |                                        |            | A.N.      | TYSIS      | ANALYSIS REQUEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                            |              |          |                         |    |           |
| Site Location: State G. L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | -                                       | TAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | нстр   |          |          | W AOC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 's Full List<br>PAHs | -Vols Full List               |                                        | səpiə      | (8) sints |            | 1, B2, Bc, Cd.<br>7, Cu, Fe, Pb,<br>71, V.C.<br>7, Tl, V.C.<br>1, Tl, V.C.<br>7, Tl, V.C.<br>1, | (8) alast | (8570E)                    | ) 1 N 3 97 6 | V.20207  |                         |    | ગ         |
| SAMPLE ID DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TIME        | XISTAM                                  | # OF CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -H4TWN | -H4TWN   | 8260 BTE | 8260 RBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oleH 0528 | MIS 0478             |                               | 8087 FCB                               | 1808 Pesti | BCBV W    | Priority M | Ca, Cr, Co<br>Hg, Mg, I<br>Se, Ag, Na<br>TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TCLP Me   | 22⊤<br>9H38                |              |          |                         |    | qms2 bloH |
| DUTFALL C/D 3/3/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 331/23 1715 | Š.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | ×                    |                               |                                        |            |           |            | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X         | ×                          | ×            | ×        |                         |    |           |
| OUTFALL É                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q081        | 3                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | <u></u>              | ~                             | _                                      |            |           |            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         | ×                          |              |          |                         |    |           |
| CB-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1845        |                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | ×                    |                               |                                        |            |           |            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | ×                          |              |          |                         |    |           |
| → dod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1           | 3                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | $\times$             |                               |                                        |            |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | ×                          | ×            | $\times$ |                         |    |           |
| and the second s |             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | -                    |                               | _                                      |            |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | -                          |              |          |                         |    |           |
| 7.14.14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | +        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         | +                    |                               |                                        |            | 1         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                            |              |          | -                       |    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | $\vdash$ |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | ++                   |                               |                                        |            | 238255 80 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ++        |                            |              |          |                         |    |           |
| The state of the s | -           | _                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | -        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | +                    | -                             | $\perp$                                |            |           | +          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | $\dashv$                   | -            |          |                         |    |           |
| Standard Turn Around Time (TAT) = 10 Business Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 Time (TA  |                                         | Business                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Days   | -        | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | - S                  | SPECIAL INSTRUCTIONS:         | C INST                                 | RUC        |           | ┨          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | -                          | _            |          |                         | _  |           |
| 1 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ay          | 2 Day                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 Day  | ay       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1<br>T               |                               |                                        |            |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                            |              |          |                         |    |           |
| 1A1 Requested (circle) 5 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | Standard                                | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Other: | <br>#    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                      |                               |                                        |            |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                            |              |          |                         |    |           |
| SAMPLES ARE HELD FOR 30 DAYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HELD FOR    | 30 DAY                                  | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                      |                               |                                        |            |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                            |              |          |                         |    |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5201        | Signature:                              | Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | C        | Date:    | Date: 4/3/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ú         | Sign                 | RELINQUISHED BY<br>Signature: | UISHE                                  | D BY:      |           | Date:      | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sig       | RECEIVED BY:<br>Signature: | SD BY:       | ~        | Date:                   | ki |           |
| CHRIS CLOSGH 0738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38          | Printed N                               | The state of the s |        |          | Time     | Time: 738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | E                    | Printed Name                  | iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii |            |           | Time:      | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E .       | Printed Name               | me:          |          | Time:                   |    |           |
| Company:<br>MFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Company:                                | any:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sex    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | ්රී                  | Company.                      |                                        |            |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ರ         | Сотрапу:                   |              |          |                         |    |           |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

Philip Nerenberg, Lab Director

Page 27 of 28



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: Dolan SCE
Project Number: M1381.01.001
Project Manager: Jessica Glenn

Report ID: A3D0715 - 05 03 23 1713

| Chent: JMW L YUSKEN                                                                                                                                              | + Alona                                                                                                       | Element WO#: A3 -                 | 7/5- axx 4/3/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project/Project #:                                                                                                                                               |                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Delivery Info:                                                                                                                                                   |                                                                                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date/time received: 738                                                                                                                                          | @ 4/3/23  By:                                                                                                 | Viv                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                  |                                                                                                               | RadioMorganSDS_Evergre            | en Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                  |                                                                                                               | @ 4/3/23 By: MX                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chain of Custody included?                                                                                                                                       | . /                                                                                                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Signed/dated by client?                                                                                                                                          | Yes No                                                                                                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Daniel Special Sci vict vic Set 5                                                                                                                                |                                                                                                               | oler #3 Cooler #4 Cooler #5 Coole | er #6 Cooler #7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Temperature (°C)                                                                                                                                                 | 1.8 0.8                                                                                                       |                                   | <u>Cooler # 7</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Custody seals? (Y/N)                                                                                                                                             | N ->                                                                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Received on ice? (Y/N)                                                                                                                                           | V>                                                                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Temp. blanks? (Y/N)                                                                                                                                              | V>                                                                                                            |                                   | The state of the s |
| Ice type: (Gel/Real/Other)                                                                                                                                       | Real =>                                                                                                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Condition (In/Out):                                                                                                                                              | m->                                                                                                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Out of temperature samples  Sample Inspection: Date/                                                                                                             | form initiated? Yes No<br>time inspected: 1 4323                                                              | No<br>@                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                  |                                                                                                               | @ 1078 By: W                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                  |                                                                                                               | @                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bottle labels/COCs agree?                                                                                                                                        | ves \( \sum_ \) No Comment                                                                                    | @ 1078 By: W                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bottle labels/COCs agree? Y                                                                                                                                      | Yes \( \sum \) No \( \sum \) Comment                                                                          | @ 1078 By: W                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bottle labels/COCs agree? Y                                                                                                                                      | Yes No Comment s form initiated? Yes 1 d appropriate for analysis?                                            | @ (078 By:                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bottle labels/COCs agree? Your COC/container discrepancies Containers/volumes received Do VOA vials have visible h                                               | Yes No Comment s form initiated? Yes 1 d appropriate for analysis?                                            | @ (078 By:                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bottle labels/COCs agree? Your COC/container discrepancies Containers/volumes received Do VOA vials have visible homments                                        | Yes No Comment s form initiated? Yes 1 l appropriate for analysis? Y eadspace? Yes No                         | @ (078 By:                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bottle labels/COCs agree? Your COC/container discrepancies Containers/volumes received Do VOA vials have visible had Comments Water samples: pH checked:         | Yes No Comment s form initiated? Yes 1 l appropriate for analysis? Y eadspace? Yes No                         | @ (078 By:                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bottle labels/COCs agree? You container discrepancies Containers/volumes received to VOA vials have visible have comments.  Water samples: pH checked: Comments: | Yes No Comment s form initiated? Yes 1 l appropriate for analysis? Yeadspace? Yes No Yes No NA pH appropriate | @ (078 By:                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bottle labels/COCs agree? Y COC/container discrepancies Containers/volumes received Do VOA vials have visible h Comments                                         | Yes No Comment s form initiated? Yes 1 l appropriate for analysis? Yeadspace? Yes No Yes No NA pH appropriate | @ (078 By:                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 28 of 28  $\,$ 

# **Appendix E**

# **Data Validation Memorandums**



# Data Quality Assurance/Quality Control Review

Project No. M1381.01.001 | June 8, 2023 | Dolan and Company, LLC

Maul Foster & Alongi, Inc. (MFA), conducted an independent Stage 2A review of the quality of analytical results for stormwater samples collected on April 29, 2023, October 21, 2022, and March 31, 2023 at the 2700 NW Front Avenue, Portland, Oregon.

Apex Laboratories, LLC (Apex) performed the analyses. MFA reviewed Apex report numbers A2E0026, A2J0749, and A3D0715. The analyses performed and the samples analyzed are listed in the following tables.

| Analysis                       | Reference    |
|--------------------------------|--------------|
| Total metals                   | EPA 200.8    |
| Total arsenic (low level)      | EPA 200.8-LL |
| Total suspended solids         | SM 2540D     |
| Semivolatile organic compounds | EPA 8270E    |

#### **Notes**

EPA = U.S. Environmental Protection Agency.

LL = low level.

SM = Standard Methods for the Examination of Water and Wastewater.

|                | Samples Analyzed |                |
|----------------|------------------|----------------|
| Report A2E0026 | Report A3D0715   | Report A3D0715 |
| OUTFALL E      | Outfall C/D      | Outfall C/D    |
| OUTFALL C/D    | Outfall E        | Outfall E      |
| CB-16          | CB-16            | CB-16          |
| DUP            | DUP              | DUP            |

# **Data Qualification**

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2020a, 2020b) and appropriate laboratory- and method-specific guidelines (Apex 2021/2022, EPA 1986).

Data validation procedures were modified, as appropriate, to accommodate quality control requirements for methods that EPA data review procedures do not specifically address (e.g., Standard Methods for the Examination of Water and Wastewater [SM] 2540D).

Based on the results of the data quality review procedures described below, the data, with the appropriate final data qualifiers assigned, are considered acceptable for their intended use. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, and data qualifiers assigned by the reviewer during validation.

# Final data qualifiers:

- J = result is estimated.
- U = result is non-detect at the laboratory detection limit (LDL).
- UJ = result is non-detect with an estimated LDL.

In report A2J0749, Apex noted that the SM 2540D total suspended solids result for sample DUP is considered an estimated value and that the method reporting limit (MRL) had been adjusted to reflect the uncertainty of the result. Apex noted that less than one liter of sample was used in analysis and the method minimum residue of 2.5 milligrams was not met. The reviewer qualified the associated sample result with J, as shown in the following table. The associated parent sample Outfall C/D did not have a flag from the laboratory and did not require qualification. In report A3D0715, Apex noted that the SM 2540D total suspended solids result for samples Outfall C/D, Outfall E and DUP are considered estimated values and that the method reporting limit (MRL) had been adjusted to reflect the uncertainty of the result. Apex noted that less than one liter of sample was used in analysis and the method minimum residue of 2.5 milligrams was not met. The reviewer qualified the associated detected sample result with J and non-detect sample results with UJ, as shown in the following table.

| Report  | Sample      | Analyte             | Original Result<br>(mg/L) | Qualified Result<br>(mg/L) |
|---------|-------------|---------------------|---------------------------|----------------------------|
| A2J0749 | DUP         |                     | 11.0                      | 11.0 J                     |
|         | Outfall C/D | Total               | 5.00 U                    | 5.00 UJ                    |
| A3D0715 | Outfall E   | suspended<br>solids | 5.00                      | 5.00 J                     |
|         | DUP         | 33.140              | 5.00 U                    | 5.00 UJ                    |

# **Sample Conditions**

# Sample Custody

Sample custody was appropriately documented on the chain-of-custody (COC) form accompanying the report.

# **Holding Times**

Extractions and analyses were performed within the recommended holding times.

# **Preservation and Sample Storage**

The samples were preserved and stored appropriately.

# **Reporting Limits**

The laboratory evaluated results to LDLs. Samples that required dilutions because of high analyte concentrations, matrix interferences, and/or dilutions necessary for preparation and/or analysis were reported with raised LDLs.

The laboratory qualified results between the LDL and the MRL with J, as estimated.

# **Blanks**

# **Method Blanks**

Laboratory method blanks are used to assess whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the laboratory method blanks were associated with all samples prepared in the analytical batch.

According to report A3D0715, the EPA Method 200.8 batch 23D0362 laboratory method blank (23D0362-BLK1) had a total zinc detection between the LDL and MRL, at a concentration of 2.35 micrograms per liter. All associated sample results were greater than ten times the concentration detected in the method blank, thus no qualifications required.

All remaining laboratory method blank results were non-detect to LDLs.

# **Trip Blanks**

Trip blanks are used to evaluate whether volatile organic compound contamination was introduced during sample storage and during shipment between the sampling location and the laboratory.

Trip blank samples were not required for this sampling event because samples were not analyzed for volatile organic compounds.

# **Laboratory Control Sample and Laboratory Control Sample Duplicate Results**

A laboratory control sample (LCS) and a laboratory control sample duplicate (LCSD) are spiked with target analytes to provide information about laboratory precision and accuracy.

Apex did not report LCSD for any methods. Apex did not report LCS or LCSD for SM 2540; the reviewer evaluated laboratory precision and accuracy using laboratory duplicate and standard reference material (SRM) results for this method. The remaining LCS samples were extracted and analyzed at the required frequency.

All LCS results were within acceptance limits for percent recovery.

# **Laboratory Duplicate Results**

Laboratory duplicate results are used to evaluate laboratory precision. All laboratory duplicate samples were prepared and analyzed at the required frequency.

Laboratory duplicate results greater than five times the MRL were evaluated using laboratory RPD control limits. Laboratory duplicate results less than five times the MRL, including non-detects, were evaluated using a control limit of the MRL of the parent sample; the absolute difference of the laboratory duplicate sample result and the parent sample result, or the MRL for non-detects, was compared to the MRL of the parent sample.

Apex did not report laboratory duplicate results for EPA Method 8270E from Report A2J0749; the reviewer evaluated laboratory precision using LCS and LCSD results for this method. All remaining laboratory duplicate samples were extracted and analyzed at the required frequency.

In cases where the laboratory had prepared laboratory duplicates with samples from unrelated projects, laboratory duplicate RPD control limit exceedances did not require qualification because

these sample matrices were not representative of project sample matrices. There were no project-related laboratory duplicates in report A2J0749.

All remaining laboratory duplicate results met the acceptance criteria.

# Matrix Spike and Matrix Spike Duplicate Results

Matrix spike (MS) and matrix spike duplicate (MSD) results are used to evaluate laboratory precision, accuracy, and the effect of the sample matrix on sample preparation and analysis. All MS and MSD samples were prepared and analyzed at the required frequency.

Apex did not report MSD for EPA Method 200.8 or 200.8-LL from report A2E0026. The reviewer evaluated laboratory precision and accuracy using LCS and laboratory duplicate results for this method.

Apex did not report MS or MSD for SM 2540D from report A2E0026. The reviewer evaluated laboratory precision and accuracy using laboratory duplicate and SRM results for this method. All remaining MS and MSD samples were prepared and analyzed at the required frequency.

MS and/or MSD percent recovery and RPD control limit exceedances did not require qualification in cases where the laboratory had prepared the MS and MSD with samples from unrelated projects because these sample matrices were not representative of project sample matrices.

Apex only reported MS for EPA Methods 200.8 and 200.8 (low level) from report A2J0749, which were prepared and analyzed at the required frequency. Apex did not report MSD for any methods; laboratory precision was evaluated using LCS and LCSD or laboratory duplicate results for all methods.

All remaining MS and MSD results were within acceptance limits for percent recovery and RPD.

# **Surrogate Recovery Results**

The samples were spiked with surrogate compounds to evaluate laboratory performance for individual samples for organic analyses.

The laboratory appropriately documented and qualified surrogate outliers. When surrogate percent recoveries were outside of acceptance limits because of dilutions necessary to quantify high concentrations of target analytes, qualification by the reviewer was not required. The reviewer confirmed that batch quality control results for samples with surrogate outliers were within acceptance limits.

All surrogate results were within percent recovery acceptance limits.

# **Continuing Calibration Verification Results**

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. CCV results were not required for validation but were reviewed when provided. Surrogate or batch quality control results flagged by the laboratory based on CCV exceedances but meeting percent recovery and/or RPD acceptance criteria required no action from the reviewer.

# **Field Duplicate Results**

Field duplicate samples measure both field and laboratory precision. The following field duplicate and parent sample pair were submitted for analysis:

| Report  | Parent Sample | Field Duplicate Sample |
|---------|---------------|------------------------|
| A2E0026 | OUTFALL C/D   | DUP                    |
| A2J0749 | Outfall C/D   | DUP                    |
| A3D0715 | Outfall C/D   | DUP                    |

MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL or 50 percent RPD for results that are greater than five times the MRL. RPD was not evaluated when both results in the sample pair were non-detect.

All field duplicate results met the RPD acceptance criteria.

# **Data Package**

According to report Apex, the samples DUP were submitted as a blind field duplicate. There is no sample collection time listed on the chain of custody form for these sample, and Apex reported a default time of 00:00. The reviewer confirmed with the sampler that the field duplicate was collected at the same time as the parent samples, OUTFALL C/D. The reviewer evaluated holding times based on the true sample collection time and found no exceedances.

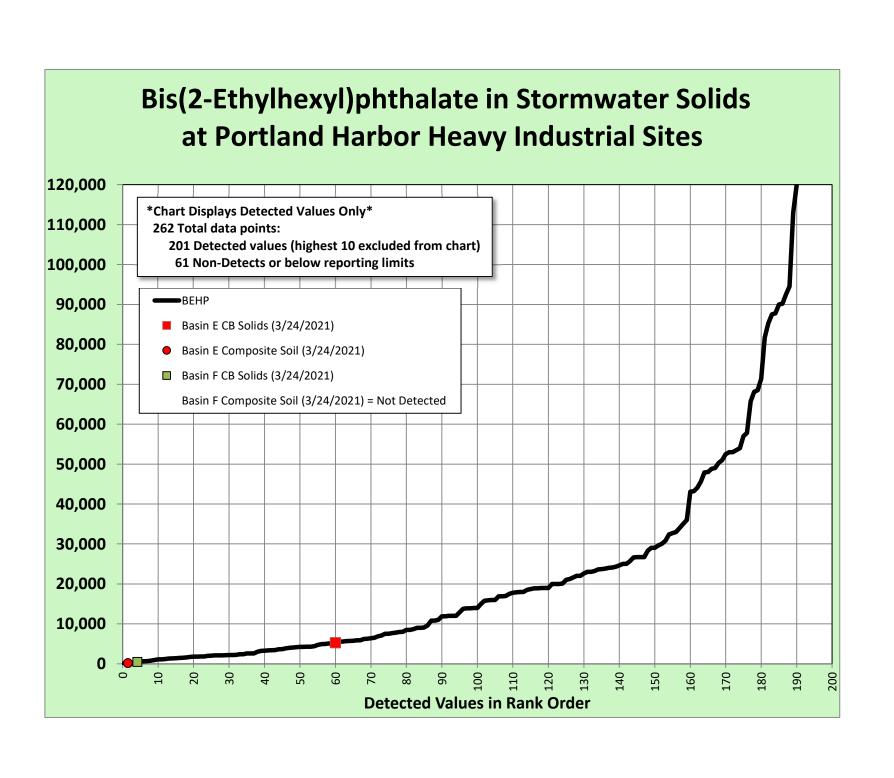
No other issues were found.

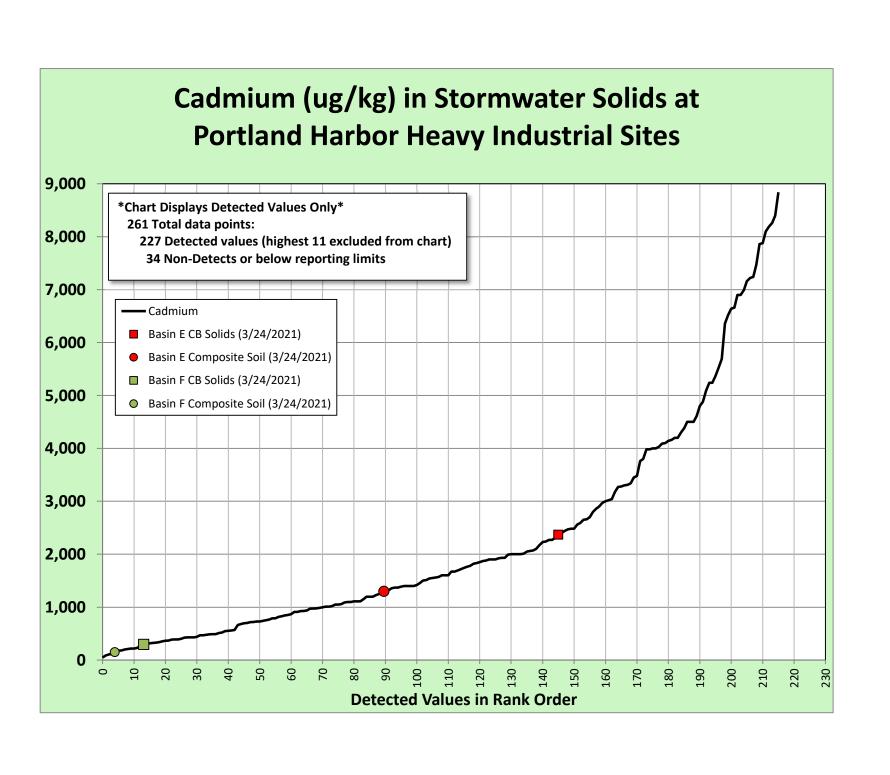
# References

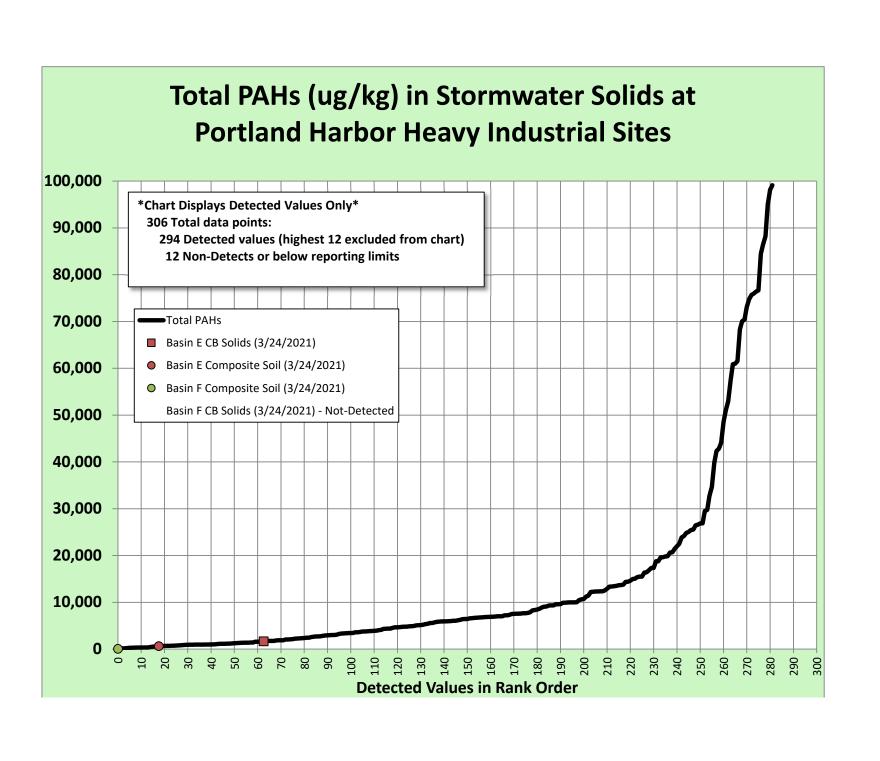
Apex. 2021. Quality Systems Manual. Rev. 9. Apex Laboratories, LLC: Tigard, OR. January 1.

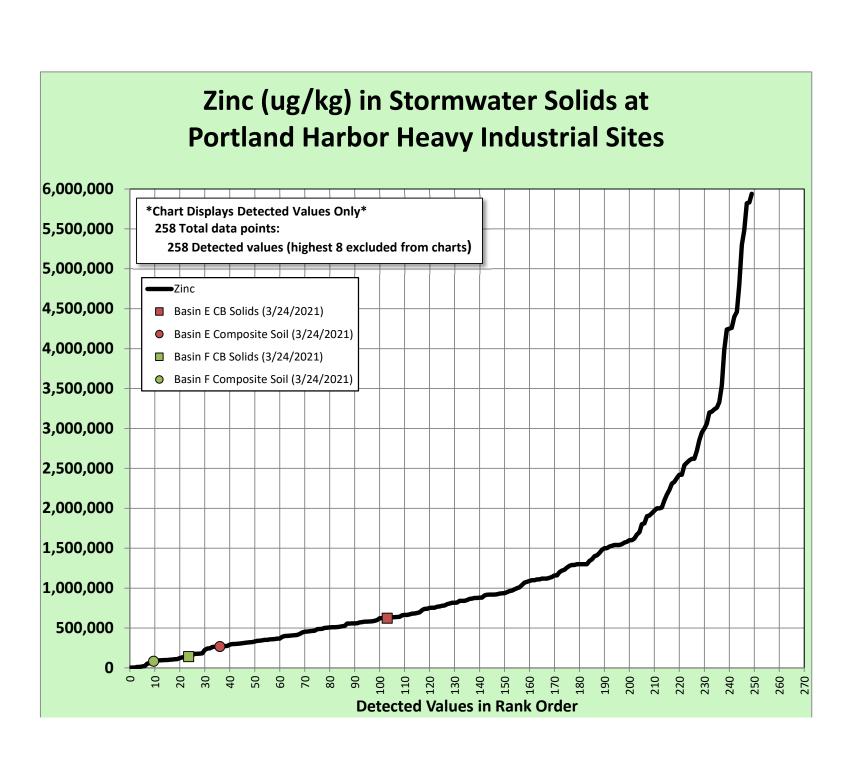
Apex. 2022. Quality Systems Manual. Rev. 10. Apex Laboratories, LLC: Tigard, OR. June 20.

EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase III (2019), VII phase I (2019), and VII phase II (2020).


EPA. 2020a. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA 542-R-20-006. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.


EPA. 2020b. National Functional Guidelines for Organic Superfund Methods Data Review. EPA 540-R-20-005. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.


# Appendix F


# **Rank-Order Charts**

