MARTIN S. BURCK ASSOCIATES, INC.

200 North Wasco Court, Hood River, OR 97031 Phone 541.387.4422 855.387.4422 Fax 541.387.4813 MSBA@MSBAenvironmental.com

July 25, 2025

Geologic and Environmental Consulting Services

Jim Orr, RG
Oregon Department of Environmental Quality
NW Region Cleanup Program
700 NE Multnomah Street, Suite 600
Portland, Oregon, 97232

Transmitted via email

Subject: Wetland Sampling Plan

Lawrence Oil Company Bulk Plant (AKA St. Helens Pacific Pride) 845 N. Columbia River Hwy, Saint Helens, Oregon ECSI # 6720 OERS # 2024-2684

Mr. Orr:

Martin S. Burck Associates, Inc. (MSBA) has prepared this work plan for wetland sampling activities at the property referenced above. The wetland sampling is intended to evaluate the magnitude and extent of soil and sediment impacted by petroleum hydrocarbons (PHCs) released from the oil water separator (OWS). The site features and a preliminary outline of the wetland are shown on the attached Wetland Delineation Map, Figure 1 (Attachment A).

Purpose:

A Jurisdictional Wetland Delineation Report prepared by Schott and Associates was submitted to the Oregon Department of State Lands (DSL) on March 10, 2025. A copy of the Wetland Delineation Map is presented as Figure 1 (Attachment A), and the report is available for download from the following hyperlink. Wetland Delineation Report DSL approved the Wetland Delineation Report on June 5, 2025. MSBA will prepare and submit a Joint Permit Application (JPA) to the Oregon Department of Environmental Quality (DEQ), Oregon Department of State Lands (DSL), and US Army Corps of Engineers (USACE). Based on discussions with USACE,

the JPA will need to include a fairly detailed outline of the proposed excavation areas, depths, and volume of soil from within the wetland. The proposed sampling presented in this work plan is intended to provide sufficient delineation for the JPA.

Previous Sampling and Interim Excavation Cleanup:

The following presents a brief summary of sampling and interim excavation cleanup activities conducted at the site. A preliminary evaluation of the results is presented at the end of this summary.

MSBA Soil Sample "Composite of S1 and S2":

On October 23rd, 2024, MSBA conducted an initial site visit and collected samples *S1-0.5* and *S2-0.5* from near-surface soil located at an area to the southeast where free product was most prevalent on shallow perched groundwater and the OWS discharge point, respectively. The samples were collected to determine the primary constituents of potential concern (COPCs) and for soil disposal authorization. Field screening using a photoionization detector (PID) identified these areas as the highest concentrations of PHCs in the soil exposed at the time. The two samples were composited by the laboratory and analyzed for the following COPCs.

- Diesel using method NWTPH-Dx
- Gasoline using method NWTPH-Gx
- Volatile organic compounds (VOCs), including chlorinated solvents, using method 8260D
- RCRA 8 Metals using method 6010D

Diesel and oil were detected at a combined concentration of 27,000 ppm. Gasoline was detected at a concentration of 2,900 ppm, but was attributed to overlap from diesel-range hydrocarbons. VOCs, barium, and chromium were detected in the composite sample. A copy of the laboratory analytical report is presented in Attachment B, and selected results are shown on Figure 2.

Republic Services Free Product Sample "Creek Water":

MSBA also obtained lab results for a free product sample that Republic Services collected from the wetland on October 17, 2024. MSBA requested the addition of RCRA 8 metals to the lab report in addition to previous analyses for diesel, oil, VOCs, and PCBs. Diesel was detected at a concentration of 1,080,000 ppm, and the remaining constituents were not detected. However, the reporting limits for the remaining constituents were elevated due to the high diesel concentration. A copy of the laboratory report is presented in Attachment B.

MSBA Interim Excavation Cleanup and Confirmation Soil Sampling (S3-1 through S9-1):

On November 7th and 8th, 2024, MSBA directed excavation cleanup activities from the gravel area north of the wetland in general accordance with the DEQ-approved work plan titled Work Plan for Interim Excavation Cleanup and Storm Drain Repair, dated November 5th, 2024. The cleanup targeted shallow soil containing the highest concentrations of PHCs in the gravel area near the OWS discharge. An estimated 200 cubic yards of soil containing diesel was excavated to an approximate depth of 1 foot below surface grade (bsg), as shown on Figure 2. The soil was stockpiled near the northeast property boundary pending disposal at the Wasco County Landfill.

Following the excavation, PHCs remained in the soil. Confirmation soil samples *S3-1*, *S4-1*, *S5-1*, *S6-1*, *S7-1*, *S8-1*, and *S9-1* were collected from the south and east sidewalls at a depth of 1 foot bsg and analyzed for diesel and oil. Diesel and oil were detected in all samples at concentrations ranging from 22.9 ppm (*S8-1*) to 6,630 ppm (*S9-1*). A copy of the laboratory analytical report is presented in Attachment B, and selected results are shown on Figure 2.

MSBA Ponded Water Sampling (Baker Tank H2O):

Water ponded within the interim excavation cleanup area and was pumped into a Baker tank to stop runoff from entering the wetland area. On November 26, 2024, MSBA collected a water sample from a 21,000-gallon Baker tank. The water sample was submitted for analysis of diesel, oil, VOCs, PAHs, and RCRA 8 metals. Diesel was detected at a concentration of 1,400 ppb, and several VOCs, PAHs, and barium were detected. A copy of the laboratory report is presented in Attachment B.

Sample Results and Primary Constituents of Potential Concern:

MSBA completed a preliminary evaluation of the soil, water, and product sample results and determined that the primary COPCs are:

- Diesel and Oil
- VOCs: Benzene; toluene; ethylbenzene; xylenes; naphthalene; 1,2,4-trimethylbenzene; 1,3,5-trimethylbenzene

Due to elevated reporting limits and a limited number of samples analyzed, the remaining COPCs, gasoline, chlorinated VOCs, PAHs, and metals arsenic, chromium, copper, and lead, will be retained for further evaluation. Although gasoline was detected and will be further evaluated, at

this time, it appears that the detections are due to overlap from diesel and oil. Chlorinated VOCs such as PCE and TCE also do not appear to be present, but additional samples will be analyzed to confirm.

Proposed Wetland Sampling Strategy and Anticipated Locations:

MSBA anticipates that nine to fifteen soil samples and two sediment samples will be collected from the area designated as a stream or wetland. The proposed approximate sample locations are presented on the attached Proposed Wetland Sample Locations Map (Figure 2). The sample locations will be documented in the field using a handheld Trimble Global Positioning System (GPS) unit. The sampling activities will be performed in general accordance with the MSBA Field Methods and Procedures (FM&P) presented in Attachment C. Quality control samples such as field duplicates, equipment blanks, trip blanks, etc., will be collected in accordance with the Quality Control Plan presented in Attachment D.

The sample locations are primarily situated on the embankment above the water level. The highest observed concentrations, if present, are expected to be near the water level at the time of the release. Note that sample locations WS3 and WS6 are associated explicitly with previously observed product/water seeps or flows into the wetland area (Figure 2). These areas are not currently contributing product or water to the wetland. In addition, samples will be collected for analysis from the identified "Palustrine Forested Wetland" and the "Overland Stormwater Drainage" areas, as shown on Figure 2. The remaining sample locations are distributed along the bank of the wetland area for requisite coverage and may be adjusted based on field screening. The bank of the wetland will be thoroughly field screened using observations and PID readings from the high-water line to the water level at the time of the sampling event. Any discrete areas identified with high levels of PHCs based on field screening will be sampled for analysis. Vertical delineation samples may also be collected, as warranted, at locations where high PHC concentrations are observed. If bank samples WS3 and WS6 are not significantly impacted, the bank samples to the west of sample WS3 and east of sample WS6 may be excluded.

If no discrete areas of high or elevated PHC concentrations are observed, the wetland samples will be collected at the approximate locations illustrated on Figure 2. The soil conditions between and around the sample locations will be thoroughly field screened and documented based on observations and PID readings.

If PHCs are observed beyond the current network of proposed samples, the investigation/sampling area will be extended, as warranted, until PHCs are no longer observed. Two sediment sample locations (Sed 1 and Sed 2) are currently proposed adjacent to the two areas where water/product

incursion (WS3 and WS6) was observed at the time of the release. The sediment samples will be collected from the bottom of the channel using a hand auger. Two surface water samples (SW1 and SW2) will also be collected at the approximate locations of sediment samples Sed 1 and Sed 2.

Laboratory Analytical Strategy:

- All soil, sediment, and surface water samples will be submitted for analysis of diesel and oil using method NWTPH-Dx. A minimum of two of the most likely impacted bank samples will be analyzed with and without a silica gel cleanup to evaluate potential non-petroleum polar organics. The silica gel cleanup will not be completed using a sulfuric acid step.
- All proposed soil samples will be submitted for additional analyses, such as:
 - o Gasoline using method NWTPH-Gx
 - Volatile organic compounds (VOCs) using method 8260D (soil and sediment samples will be collected in EPA Method 5035 Closed-System Purge and Trap Extraction VOAs)
 - Polycyclic aromatic hydrocarbons (PAHs) using method 8270E-SIM
 - Total metals arsenic, chromium, copper, and lead using method 6010D (TCLP follow-ups, as warranted)
 - o Total organic carbon using method SW-846 9060 or standard method 5310B

If additional samples are collected and analyzed for further delineation, the analyses may be limited based on the initial sample results.

Reporting and Schedule:

MSBA will prepare a report summarizing the sample results, including figures, tables, and a comparison of the results to occupational risk-based concentrations (RBCs) and ecological screening levels. The most stringent RBCs and ecological screening levels are presented in Attachment D (Quality Control Tables -2 through 4). The report will be submitted to DEQ and included in the Joint Permit Application. MSBA will also complete an ecological risk assessment and compare the sample results to the ecological screening levels.

The proposed sampling will be scheduled as soon as this work plan is approved. Please let us know if you have any questions or need additional information.

Remarks and Signature:

The information/conclusions contained in this plan were arrived at in accordance with currently accepted professional geologic and environmental practices at this time and location. No warranties are intended or implied. This plan was prepared solely for the Lawrence Oil Company. Martin S. Burck Associates, Inc. is not responsible for the independent interpretations, conclusions, or actions of others derived from or based on the information presented herein.

Information and opinions presented in this plan are based on the collection and review of data from limited portions of the site, subsurface, and surroundings. Martin S. Burck Associates, Inc. is not responsible for conditions or specific portions of the site that are not investigated, for conditions that are not reported or properly presented, and for future activities or investigations that may alter the current condition or understanding of the site.

Please contact me at (541) 387-4422 if you have any questions regarding this report.

Sincerely,

Martin S. Burck Associates, Inc.

Martin S. Burck, LG/RG

Licensed/Registered Geologist OR, WA, CA

Attachment A Figure 1 - Wetland Delineation Map

Figure 2 – Proposed Wetland Sample Locations

Attachment B Laboratory Analytical Reports

Attachment C MSBA Field Methods and Procedures

Attachment D Quality Control Plan

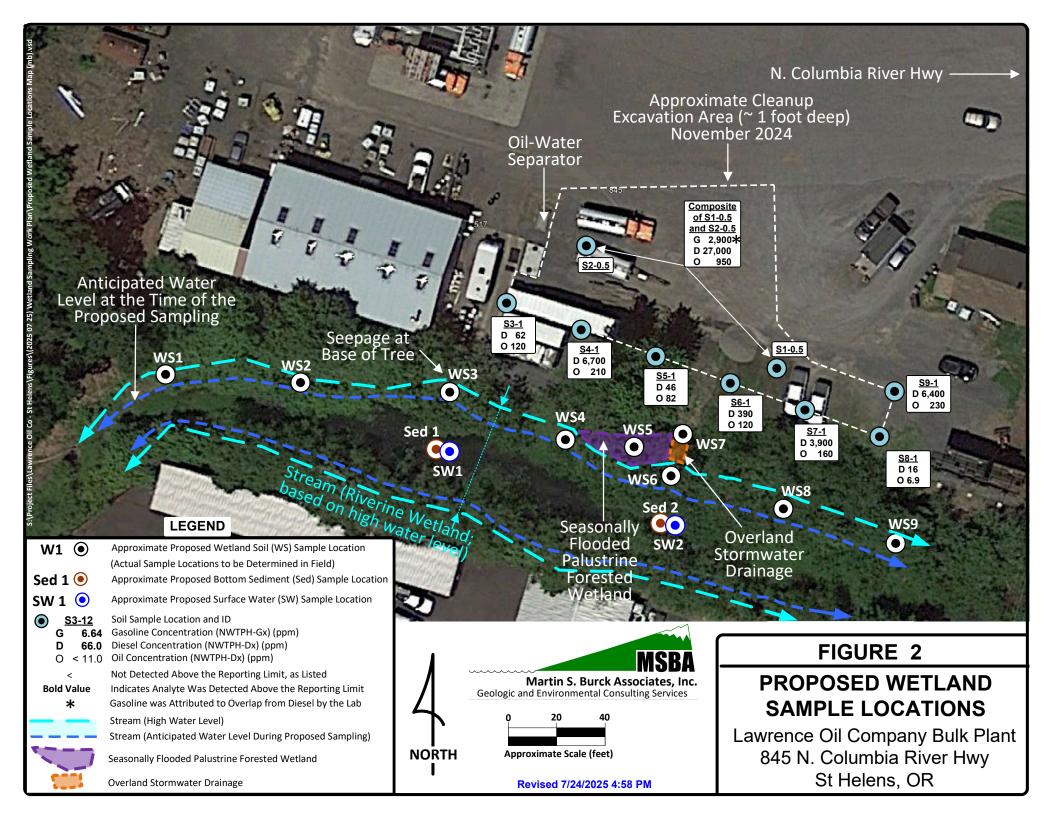
July 25, 2025

Attachment A

Figure 1 Wetland Delineation Map

Figure 2 Proposed Wetland Sample Locations

NOTICE: REPORTS ARE CONSIDERED DRAFT DOCUMENTS UNTIL REVIEW IS COMPLETED BY DSL. WETLAND MAPS MAY CHANGE AS A RESULT OF DSL REVIEW Legend Study Site Boundary: 1.27 acres Tax Lot Boundaries Approx. CWM Site Boundary Stream OHWM (RFT R2UBH): 367 LF; 56' Max Width Slope PEMC Wetland: 0.01 acre TL# 51W33CD-600 Overland Stormwater Drainage Oil-water separator Contours: 2-ft. Intervals stormwater outlet Sample Plots ODF mapped drainage. Water Photo Points observed flowing overland into stream Source assumed to be failing oil-water separator to the NW **Culvert Outlet** Continues Offsite [30] TL# 51W33CD-TL# 51W33CD-1000 10001 Figure 6b Mapping Method and Precision Statement: The sample plots and mapped features were recorded utilizing a Trimble DA2 hand-held unit which achieved a horizontal accuracy of 0.6m on the day of fieldwork. The GPS data were then imported into ArcGIS software to produce maps. The tax lot boundaries were based on tax lot data from the Columbia County GIS Dept.and is assumed to have an accuracy of <= 3ft.


Date: 3/6/2025

Data Source: ESRI, 2025; Columbia County

GIS Dept., DOGAMI, 2005

Figure 1 Wetland Delineation Map - Overview

Attachment B

Laboratory Analytical Reports

PREPARED FOR

Attn: Josh Owen Martin S Burck Associates 200 North Wasco Ct Hood River, Oregon 97031

Generated 11/6/2024 3:38:17 PM Revision 1

JOB DESCRIPTION

855 Columbia R Hwy

JOB NUMBER

590-27836-1

Eurofins Spokane 11922 East 1st Ave Spokane WA 99206

Eurofins Spokane

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Generated 11/6/2024 3:38:17 PM Revision 1

Authorized for release by Randee Arrington, Business Unit Manager Randee.Arrington@et.eurofinsus.com (509)924-9200 2

4

5

7

10

11

Client: Martin S Burck Associates Project/Site: 855 Columbia R Hwy Laboratory Job ID: 590-27836-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Definitions	6
Client Sample Results	7
QC Sample Results	9
Chronicle	16
Certification Summary	17
Method Summary	18
Chain of Custody	19
Receint Checklists	20

q

4

5

0

8

9

10

Case Narrative

Client: Martin S Burck Associates Project: 855 Columbia R Hwy

Job ID: 590-27836-1 **Eurofins Spokane**

Job Narrative 590-27836-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Revision

The report being provided is a revision of the original report sent on 11/5/2024. The report (revision 1) is being revised due to: added 8260 full list analytes to final report per the clients request.

Receipt

The sample was received on 10/31/2024 10:59 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.5°C.

Gasoline Range Organics

Method NWTPH Gx MS: For the following samples, detected hydrocarbons in the gasoline range appear to be due to diesel overlap. Composite of S1 and S2 (590-27836-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Hydrocarbons

Method NWTPH Dx: Surrogate recovery for the following samples were outside control limits: Composite of S1 and S2 (590-27836-1). Evidence of matrix interference due to high target analytes is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 6010D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 590-50644 and analytical batch 590-50658 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Spokane

Job ID: 590-27836-1

Sample Summary

Client: Martin S Burck Associates Project/Site: 855 Columbia R Hwy Job ID: 590-27836-1

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 590-27836-1
 Composite of S1 and S2
 Solid
 10/23/24 15:17
 10/31/24 10:59

4

5

O

8

9

10

11

Definitions/Glossary

Client: Martin S Burck Associates Job ID: 590-27836-1

Project/Site: 855 Columbia R Hwy

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier **Qualifier Description**

F3 Duplicate RPD exceeds the control limit

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1+ Surrogate recovery exceeds control limits, high biased.

Metals

Qualifier **Qualifier Description**

MS and/or MSD recovery exceeds control limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CFU** Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Client Sample Results

Client: Martin S Burck Associates Project/Site: 855 Columbia R Hwy

Client Sample ID: Composite of S1 and S2 Lab Sample ID: 590-27836-1

Date Collected: 10/23/24 15:17

Date Received: 10/31/24 10:59

Matrix: Solid
Percent Solids: 88.4

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND -	1.2		mg/Kg	— <u></u>		10/31/24 18:55	1
1,1,1-Trichloroethane	ND	1.2		mg/Kg	₩		10/31/24 18:55	10
1,1,2,2-Tetrachloroethane	ND	1.2		mg/Kg	☆	10/31/24 13:13	10/31/24 18:55	10
1,1,2-Trichloroethane	ND	1.2		mg/Kg	∴	10/31/24 13:13	10/31/24 18:55	10
1,1-Dichloroethane	ND	1.2		mg/Kg	₩		10/31/24 18:55	10
1,1-Dichloroethene	ND	1.2		mg/Kg	₩		10/31/24 18:55	10
1,1-Dichloropropene	ND	1.2		mg/Kg	∴		10/31/24 18:55	10
1,2,3-Trichlorobenzene	ND	1.2		mg/Kg	₩		10/31/24 18:55	10
1,2,3-Trichloropropane	ND	2.4		mg/Kg			10/31/24 18:55	1(
1,2,4-Trichlorobenzene	ND	1.2		mg/Kg			10/31/24 18:55	10
1,2,4-Trimethylbenzene	35	1.2		mg/Kg	~ ☆		10/31/24 18:55	10
1,2-Dibromo-3-Chloropropane	ND	6.1		mg/Kg	₩		10/31/24 18:55	10
1,2-Dichlorobenzene		1.2		mg/Kg			10/31/24 18:55	10
1,2-Dichloropenzene 1.2-Dichloroethane	ND ND	1.2			₽		10/31/24 18:55	10
1,2-Dichloroethane 1,2-Dichloropropane	ND ND	1.2		mg/Kg mg/Kg	₽		10/31/24 18:55	10
		1.2		mg/Kg			10/31/24 18:55	10
1,3,5-Trimethylbenzene	14 ND	1.2		mg/Kg mg/Kg	☆		10/31/24 18:55	10
1,3-Dichlorobenzene		1.2			ψ.		10/31/24 18:55	
1,3-Dichlershanne	ND			mg/Kg				10
1,4-Dichlorobenzene	ND	1.2		mg/Kg			10/31/24 18:55	1(
2,2-Dichloropropane	ND	1.2		mg/Kg	*		10/31/24 18:55	1(
2-Chlorotoluene	ND	1.2		mg/Kg			10/31/24 18:55	1(
4-Chlorotoluene	ND	1.2		mg/Kg	₩		10/31/24 18:55	10
Benzene	ND	0.24		mg/Kg	₩		10/31/24 18:55	10
Bromobenzene	ND	1.2		mg/Kg			10/31/24 18:55	10
Bromoform	ND	2.4		mg/Kg	₩		10/31/24 18:55	10
Bromomethane	ND	6.1		mg/Kg	₩		10/31/24 18:55	10
Carbon tetrachloride	ND	1.2		mg/Kg			10/31/24 18:55	10
Chlorobenzene	ND	1.2		mg/Kg	₩	10/31/24 13:13	10/31/24 18:55	10
Chlorobromomethane	ND	1.2	0.49	mg/Kg	₩	10/31/24 13:13	10/31/24 18:55	10
Chlorodibromomethane	ND	2.4		mg/Kg		10/31/24 13:13	10/31/24 18:55	10
Chloroethane	ND	2.4		mg/Kg	₩		10/31/24 18:55	10
Chloroform	ND	1.2	0.29	mg/Kg	₩	10/31/24 13:13	10/31/24 18:55	10
Chloromethane	ND	6.1	0.51	mg/Kg	₩	10/31/24 13:13	10/31/24 18:55	10
cis-1,2-Dichloroethene	ND	1.2		mg/Kg	₩	10/31/24 13:13	10/31/24 18:55	10
cis-1,3-Dichloropropene	ND	1.2	0.25	mg/Kg	☼	10/31/24 13:13	10/31/24 18:55	10
Dibromomethane	ND	1.2	0.27	mg/Kg	☼	10/31/24 13:13	10/31/24 18:55	10
Dichlorobromomethane	ND	1.2	0.76	mg/Kg	₩	10/31/24 13:13	10/31/24 18:55	10
Dichlorodifluoromethane	ND	1.2	0.34	mg/Kg	₩	10/31/24 13:13	10/31/24 18:55	10
Ethylbenzene	2.1	1.2	0.20	mg/Kg	₩	10/31/24 13:13	10/31/24 18:55	10
Ethylene Dibromide	ND	1.2	0.41	mg/Kg	₽	10/31/24 13:13	10/31/24 18:55	10
Hexachlorobutadiene	ND	1.2	0.20	mg/Kg	₩	10/31/24 13:13	10/31/24 18:55	10
Isopropylbenzene	1.3	1.2	0.38	mg/Kg	₩	10/31/24 13:13	10/31/24 18:55	10
m,p-Xylene	19	4.9		mg/Kg	₩	10/31/24 13:13	10/31/24 18:55	10
Methyl tert-butyl ether	ND	0.61		mg/Kg	₩	10/31/24 13:13	10/31/24 18:55	10
Methylene Chloride	ND	4.3		mg/Kg	☼		10/31/24 18:55	10
Naphthalene	4.3	2.4		mg/Kg			10/31/24 18:55	10
n-Butylbenzene	5.3	1.2		mg/Kg	☼		10/31/24 18:55	10
N-Propylbenzene	4.0	1.2		mg/Kg	₩		10/31/24 18:55	10
o-Xylene	11	2.4		mg/Kg			10/31/24 18:55	· · · · · · · · · · · · · · · · · · ·

Eurofins Spokane

2

Job ID: 590-27836-1

3

6

8

10

Client Sample Results

Client: Martin S Burck Associates Project/Site: 855 Columbia R Hwy

Analyte

Mercury

Client Sample ID: Composite of S1 and S2 Lab Sample ID: 590-27836-1

Date Collected: 10/23/24 15:17 **Matrix: Solid** Date Received: 10/31/24 10:59 Percent Solids: 88.4

Method: SW846 8260D - Volat Analyte	_	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
sec-Butylbenzene	1.9	Qualifier	1.2		mg/Kg	— -	10/31/24 13:13	10/31/24 18:55	1
Styrene	ND		1.2		mg/Kg	₩	10/31/24 13:13	10/31/24 18:55	1
	0.26		1.2		mg/Kg	¥ ₩		10/31/24 18:55	
rert-Butylbenzene		J							
Tetrachloroethene	ND		0.49		mg/Kg	₩		10/31/24 18:55	1
Toluene	0.72	J	1.2		mg/Kg			10/31/24 18:55	1
rans-1,2-Dichloroethene	ND		1.2		mg/Kg	*		10/31/24 18:55	1
trans-1,3-Dichloropropene	ND		1.2		mg/Kg	*		10/31/24 18:55	1
Frichloroethene	ND		0.30		mg/Kg	.		10/31/24 18:55	1
Vinyl chloride	ND		0.73		mg/Kg	₩		10/31/24 18:55	1
Xylenes, Total	30		7.3	0.63	mg/Kg	☼	10/31/24 13:13	10/31/24 18:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
,2-Dichloroethane-d4 (Surr)	90		79 - 124				10/31/24 13:13	10/31/24 18:55	1
4-Bromofluorobenzene (Surr)	113		66 - 129				10/31/24 13:13	10/31/24 18:55	1
Dibromofluoromethane (Surr)	101		80 - 120				10/31/24 13:13	10/31/24 18:55	1
Toluene-d8 (Surr)	100		80 - 120				10/31/24 13:13	10/31/24 18:55	1
Method: NWTPH-Gx - Northw	est - Volatile	Petroleu	m Products ((GC/MS)					
Analyte		Qualifier	RL	•	Unit	D	Prepared	Analyzed	Dil Fa
Basoline	2900		61	22	mg/Kg	₽	10/31/24 13:13	10/31/24 18:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Bromofluorobenzene (Surr)	113		41.5 - 162					10/31/24 18:55	1
Method: NWTPH-Dx - Northwe				•	•	_	_		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (DRO) C10-C25)	27000		560	230	mg/Kg	₩	10/31/24 12:03	11/01/24 11:46	5
Residual Range Organics (RRO) (C25-C36)	950	J	1400	280	mg/Kg	☼	10/31/24 12:03	11/01/24 11:46	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
p-Terphenyl	647	S1+	50 - 150				10/31/24 12:03	11/01/24 11:46	- 5
n-Triacontane-d62	161	S1+	50 - 150				10/31/24 12:03	11/01/24 11:46	5
Method: SW846 6010D - Meta	ls (ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	ND			4.2	mg/Kg	— <u></u>	11/04/24 10:59	-	1
Barium	48		11		mg/Kg	₩	11/04/24 10:59		1
Cadmium	ND		8.4		mg/Kg		11/04/24 10:59		1
Chromium	4.9		11		mg/Kg		11/04/24 10:59		'
_ead	ND		25		mg/Kg	₩	11/04/24 10:59		,
							11/04/24 10:59		
Selenium	ND		42		mg/Kg	<u>.</u> .			
Silver	ND		11	2.4	mg/Kg	₽	11/04/24 10:59	11/04/24 15:26	1
Method: SW846 7471B - Merc	ury (CVAA)								

Analyzed

RL

47

MDL Unit

12 ug/Kg

Prepared

Result Qualifier

ND

Job ID: 590-27836-1

Dil Fac

QC Sample Results

Client: Martin S Burck Associates

Job ID: 590-27836-1

Project/Site: 855 Columbia R Hwy

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 590-50602/1-A

Matrix: Solid

Analysis Batch: 50609

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 50602

Analysis Batch: 50609	MD	MD						Prep Batch	: 50602
Analyte	MB Result	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.10	0.019	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,1,1-Trichloroethane	ND		0.10	0.017	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,1,2,2-Tetrachloroethane	ND		0.10	0.029	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,1,2-Trichloroethane	ND		0.10	0.035	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,1-Dichloroethane	ND		0.10	0.026	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,1-Dichloroethene	ND		0.10	0.034	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,1-Dichloropropene	ND		0.10	0.017	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,2,3-Trichlorobenzene	ND		0.10	0.033	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,2,3-Trichloropropane	ND		0.20	0.037	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,2,4-Trichlorobenzene	ND		0.10	0.019	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,2,4-Trimethylbenzene	ND		0.10	0.023	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,2-Dibromo-3-Chloropropane	ND		0.50	0.060	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,2-Dichlorobenzene	ND		0.10	0.023	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,2-Dichloroethane	ND		0.10	0.022	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,2-Dichloropropane	ND		0.12	0.030	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,3,5-Trimethylbenzene	ND		0.10	0.032	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,3-Dichlorobenzene	ND		0.10	0.013	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,3-Dichloropropane	ND		0.10	0.030	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
1,4-Dichlorobenzene	ND		0.10	0.021	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
2,2-Dichloropropane	ND		0.10	0.024	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
2-Chlorotoluene	ND		0.10	0.016	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
4-Chlorotoluene	ND		0.10	0.023	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Benzene	ND		0.020	0.010	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Bromobenzene	ND		0.10	0.022	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Bromoform	ND		0.20	0.019	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Bromomethane	ND		0.50	0.033	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Carbon tetrachloride	ND		0.10	0.011	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Chlorobenzene	ND		0.10	0.021	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Chlorobromomethane	ND		0.10	0.040	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Chlorodibromomethane	ND		0.20	0.016	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Chloroethane	ND		0.20	0.056	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Chloroform	ND		0.10	0.024	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Chloromethane	ND		0.50	0.042	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
cis-1,2-Dichloroethene	ND		0.10	0.021	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
cis-1,3-Dichloropropene	ND		0.10	0.020	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Dibromomethane	ND		0.10	0.022	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Dichlorobromomethane	ND		0.10	0.062	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Dichlorodifluoromethane	ND		0.10	0.028	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Ethylbenzene	ND		0.10	0.016	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Ethylene Dibromide	ND		0.10	0.034	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Hexachlorobutadiene	ND		0.10	0.016	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Isopropylbenzene	ND		0.10	0.031	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
m,p-Xylene	ND		0.40	0.029	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Methyl tert-butyl ether	ND		0.050	0.030	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Methylene Chloride	ND		0.35	0.20	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
Naphthalene	ND		0.20		mg/Kg		10/31/24 13:13	10/31/24 15:45	1
n-Butylbenzene	ND		0.10		mg/Kg		10/31/24 13:13	10/31/24 15:45	1
N-Propylbenzene	ND		0.10		mg/Kg			10/31/24 15:45	1

Job ID: 590-27836-1

Client: Martin S Burck Associates Project/Site: 855 Columbia R Hwy

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 590-50602/1-A

Matrix: Solid

Analysis Batch: 50609

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 50602

B MB							
t Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
)	0.20	0.023	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
)	0.10	0.019	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
)	0.10	0.024	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
)	0.10	0.020	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
)	0.040	0.018	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
)	0.10	0.045	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
)	0.10	0.023	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
)	0.10	0.026	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
)	0.025	0.0076	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
)	0.060	0.020	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
)	0.60	0.052	mg/Kg		10/31/24 13:13	10/31/24 15:45	1
	MB t Qualifier)))))))))))))))	t Qualifier RL 0.20 0.10 0.10 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	t Qualifier RL MDL 0 0.20 0.023 0 0.10 0.019 0 0.10 0.024 0 0.10 0.020 0 0.040 0.018 0 0.10 0.045 0 0.10 0.023 0 0.025 0.0076 0 0.060 0.020	t Qualifier RL MDL Unit 0 0.20 0.023 mg/Kg 0 0.10 0.019 mg/Kg 0 0.10 0.024 mg/Kg 0 0.10 0.020 mg/Kg 0 0.040 0.018 mg/Kg 0 0.10 0.045 mg/Kg 0 0.10 0.023 mg/Kg 0 0.10 0.026 mg/Kg 0 0.025 0.0076 mg/Kg 0 0.060 0.020 mg/Kg	t Qualifier RL MDL mg/Kg Unit mg/Kg D 0 0.20 0.023 mg/Kg mg/Kg 0 0.10 0.019 mg/Kg mg/Kg 0 0.10 0.020 mg/Kg mg/Kg 0 0.040 0.018 mg/Kg mg/Kg 0 0.10 0.045 mg/Kg mg/Kg 0 0.10 0.023 mg/Kg 0 0.025 0.0076 mg/Kg 0 0.060 0.020 mg/Kg	t Qualifier RL MDL Unit D 10/31/24 13:13 0 0.20 0.023 mg/Kg 10/31/24 13:13 0 0.10 0.019 mg/Kg 10/31/24 13:13 0 0.10 0.024 mg/Kg 10/31/24 13:13 0 0.10 0.020 mg/Kg 10/31/24 13:13 0 0.040 0.018 mg/Kg 10/31/24 13:13 0 0.10 0.045 mg/Kg 10/31/24 13:13 0 0.10 0.023 mg/Kg 10/31/24 13:13 0 0.10 0.026 mg/Kg 10/31/24 13:13 0 0.025 0.0076 mg/Kg 10/31/24 13:13 0 0.060 0.020 mg/Kg 10/31/24 13:13	t Qualifier RL MDL Unit D 10/31/24 13:13 Prepared 10/31/24 13:13 Analyzed 15:45 0 0.20 0.023 mg/Kg 10/31/24 13:13 10/31/24 15:45 0 0.10 0.019 mg/Kg 10/31/24 13:13 10/31/24 15:45 0 0.10 0.024 mg/Kg 10/31/24 13:13 10/31/24 15:45 0 0.040 0.018 mg/Kg 10/31/24 13:13 10/31/24 15:45 0 0.040 0.045 mg/Kg 10/31/24 13:13 10/31/24 15:45 0 0.10 0.045 mg/Kg 10/31/24 13:13 10/31/24 15:45 0 0.10 0.023 mg/Kg 10/31/24 13:13 10/31/24 15:45 0 0.10 0.026 mg/Kg 10/31/24 13:13 10/31/24 15:45 0 0.025 0.0076 mg/Kg 10/31/24 13:13 10/31/24 15:45 0 0.060 0.020 mg/Kg 10/31/24 13:13 10/31/24 15:45

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89	79 - 124	10/31/24 13:13	10/31/24 15:45	1
4-Bromofluorobenzene (Surr)	103	66 - 129	10/31/24 13:13	10/31/24 15:45	1
Dibromofluoromethane (Surr)	97	80 - 120	10/31/24 13:13	10/31/24 15:45	1
Toluene-d8 (Surr)	104	80 - 120	10/31/24 13:13	10/31/24 15:45	1

Lab Sample ID: LCS 590-50602/2-A

Matrix: Solid

Analysis Batch: 50609

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 50602

Analyte Added Result Qualifier Unit D %Rec Limits 1,1,1,2-Tetrachloroethane 0.500 0.540 mg/Kg 108 76-139 1,1,1-Trichloroethane 0.500 0.501 mg/Kg 100 59-150 1,1,2-Tetrachloroethane 0.500 0.456 mg/Kg 106 74-131 1,1-Dichloroethane 0.500 0.531 mg/Kg 97 79-133 1,1-Dichloroethane 0.500 0.372 mg/Kg 74 50-150 1,1-Dichloroptene 0.500 0.372 mg/Kg 74 50-150 1,1-Dichloroptene 0.500 0.372 mg/Kg 74 50-150 1,2-Tichloroptene 0.500 0.472 mg/Kg 106 80-131 1,2-Tichloroptene 0.500 0.472 mg/Kg 88 61-138 1,2-Tichloroptene 0.500 0.492 mg/Kg 98 73-129 1,2-Tichloroptene 0.500 0.551 mg/Kg 110 <td< th=""><th>Analysis Batch. 00005</th><th>Spike</th><th>LCS</th><th>LCS</th><th></th><th></th><th></th><th>%Rec</th></td<>	Analysis Batch. 00005	Spike	LCS	LCS				%Rec
1,1,1-Trichloroethane 0.500 0.501 mg/Kg 100 59 - 150 1,1,2,2-Tetrachloroethane 0.500 0.456 mg/Kg 91 66 - 130 1,1,2-Trichloroethane 0.500 0.531 mg/Kg 106 74 - 131 1,1-Dichloroethane 0.500 0.483 mg/Kg 97 79 - 133 1,1-Dichloropthene 0.500 0.372 mg/Kg 106 80 - 131 1,2,3-Trichloroptopene 0.500 0.530 mg/Kg 94 72 - 130 1,2,3-Trichloroptopane 0.500 0.472 mg/Kg 94 72 - 130 1,2,3-Trichloroptopane 0.500 0.440 mg/Kg 88 61 - 138 1,2,4-Trichlorobenzene 0.500 0.492 mg/Kg 98 73 - 129 1,2,4-Trimethylbenzene 0.500 0.522 mg/Kg 10 78 - 128 1,2-Dichlorobenzene 0.500 0.522 mg/Kg 90 77 - 126 1,2-Dichlorobenzene 0.500 0.432 mg/Kg 90 77 - 126 1,2-Dichlorobenzene 0.500 0.538 mg/K	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,2,2-Tetrachloroethane 0.500 0.456 mg/kg 91 66.130 1,1,2-Trichloroethane 0.500 0.531 mg/kg 106 74.131 1,1-Dichloroethane 0.500 0.483 mg/kg 97 79.133 1,1-Dichloroethene 0.500 0.530 mg/kg 74 50.150 1,1-Dichloroptopene 0.500 0.530 mg/kg 94 72.130 1,2,3-Trichlorobenzene 0.500 0.472 mg/kg 94 72.130 1,2,3-Trichlorobenzene 0.500 0.440 mg/kg 88 61.138 1,2,4-Trichlorobenzene 0.500 0.440 mg/kg 88 61.138 1,2,4-Trimethylbenzene 0.500 0.492 mg/kg 98 73.129 1,2-Dichlorobenzene 0.500 0.551 mg/kg 10 78.128 1,2-Dichlorobenzene 0.500 0.522 mg/kg 104 80.121 1,2-Dichloroethane 0.500 0.452 mg/kg 90 77.126 1,2-Dichloropropane 0.500 0.500 0.537 mg/kg	1,1,1,2-Tetrachloroethane	0.500	0.540		mg/Kg		108	76 - 139
1,1,2-Trichloroethane 0.500 0.531 mg/Kg 106 74 - 131 1,1-Dichloroethane 0.500 0.483 mg/Kg 97 79 - 133 1,1-Dichloroethane 0.500 0.372 mg/Kg 74 50 - 150 1,1-Dichloropropene 0.500 0.530 mg/Kg 106 80 - 131 1,2,3-Trichlorobenzene 0.500 0.472 mg/Kg 94 72 - 130 1,2,3-Trichloropropane 0.500 0.440 mg/Kg 88 61 - 138 1,2,4-Trichlorobenzene 0.500 0.492 mg/Kg 98 73 - 129 1,2,4-Trimethylbenzene 0.500 0.492 mg/Kg 98 73 - 129 1,2,4-Trimethylbenzene 0.500 0.551 mg/Kg 110 78 - 128 1,2-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 121 1,2-Dichlorobenzene 0.500 0.472 mg/Kg 90 77 - 126 1,2-Dichloropropane 0.500 0.479 mg/Kg 96 71 - 136 1,3-Dichlorobenzene 0.500 0.538 mg/Kg	1,1,1-Trichloroethane	0.500	0.501		mg/Kg		100	59 - 150
1,1-Dichloroethane 0.500 0.483 mg/Kg 97 79 - 133 1,1-Dichloroethene 0.500 0.372 mg/Kg 74 50 - 150 1,1-Dichloropropene 0.500 0.530 mg/Kg 106 80 - 131 1,2,3-Trichlorobenzene 0.500 0.472 mg/Kg 94 72 - 130 1,2,3-Trichloropropane 0.500 0.440 mg/Kg 88 61 - 138 1,2,4-Trichlorobenzene 0.500 0.492 mg/Kg 98 73 - 129 1,2,4-Trimethylbenzene 0.500 0.551 mg/Kg 110 78 - 128 1,2-Dibromo-3-Chloropropane 0.500 0.551 mg/Kg 86 49 - 143 1,2-Dibrohorobenzene 0.500 0.522 mg/Kg 86 49 - 143 1,2-Dichlorobenzene 0.500 0.452 mg/Kg 90 77 - 126 1,2-Dichloropropane 0.500 0.479 mg/Kg 96 71 - 136 1,3-Dichlorobenzene 0.500 0.538 mg/Kg 108 76 - 130 1,3-Dichloropropane 0.500 0.537 mg/Kg <td>1,1,2,2-Tetrachloroethane</td> <td>0.500</td> <td>0.456</td> <td></td> <td>mg/Kg</td> <td></td> <td>91</td> <td>66 - 130</td>	1,1,2,2-Tetrachloroethane	0.500	0.456		mg/Kg		91	66 - 130
1,1-Dichloroethene 0.500 0.372 mg/Kg 74 50-150 1,1-Dichloropropene 0.500 0.530 mg/Kg 106 80-131 1,2,3-Trichlorobenzene 0.500 0.472 mg/Kg 94 72-130 1,2,3-Trichlorobenzene 0.500 0.440 mg/Kg 88 61-138 1,2,4-Trichlorobenzene 0.500 0.492 mg/Kg 98 73-129 1,2,4-Trimethylbenzene 0.500 0.551 mg/Kg 110 78-128 1,2-Dichloropropane 0.500 0.432 J mg/Kg 86 49-143 1,2-Dichlorobenzene 0.500 0.522 mg/Kg 86 49-143 1,2-Dichloropenzene 0.500 0.522 mg/Kg 90 77-126 1,2-Dichloropropane 0.500 0.479 mg/Kg 96 71-136 1,3-Dichloropropane 0.500 0.537 mg/Kg 108 76-130 1,3-Dichloropropane 0.500 0.512 mg/Kg 107 80-121 1,4-Dichlorobenzene 0.500 0.502 mg/Kg 1	1,1,2-Trichloroethane	0.500	0.531		mg/Kg		106	74 - 131
1,1-Dichloropropene 0.500 0.530 mg/Kg 106 80 - 131 1,2,3-Trichlorobenzene 0.500 0.472 mg/Kg 94 72 - 130 1,2,3-Trichloropropane 0.500 0.440 mg/Kg 88 61 - 138 1,2,4-Trichlorobenzene 0.500 0.492 mg/Kg 98 73 - 129 1,2,4-Trimethylbenzene 0.500 0.551 mg/Kg 110 78 - 128 1,2-Dichloropropane 0.500 0.432 J mg/Kg 86 49 - 143 1,2-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 121 1,2-Dichloroptopane 0.500 0.452 mg/Kg 90 77 - 126 1,2-Dichloroptopane 0.500 0.452 mg/Kg 96 71 - 136 1,3-Dichlorobenzene 0.500 0.538 mg/Kg 108 76 - 130 1,3-Dichloroptopane 0.500 0.537 mg/Kg 107 80 - 121 1,4-Dichloroptopane 0.500 0.512 mg/Kg 102 73 - 125 1,4-Dichlorobenzene 0.500 0.502	1,1-Dichloroethane	0.500	0.483		mg/Kg		97	79 - 133
1,2,3-Trichlorobenzene 0.500 0.472 mg/Kg 94 72 - 130 1,2,3-Trichloropropane 0.500 0.440 mg/Kg 88 61 - 138 1,2,4-Trichlorobenzene 0.500 0.492 mg/Kg 98 73 - 129 1,2,4-Trimethylbenzene 0.500 0.551 mg/Kg 110 78 - 128 1,2-Dibromo-3-Chloropropane 0.500 0.432 J mg/Kg 86 49 - 143 1,2-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 121 1,2-Dichloropropane 0.500 0.452 mg/Kg 90 77 - 126 1,2-Dichloropropane 0.500 0.479 mg/Kg 96 71 - 136 1,3-Dichlorobenzene 0.500 0.538 mg/Kg 108 76 - 130 1,3-Dichlorobenzene 0.500 0.537 mg/Kg 107 80 - 121 1,3-Dichloropropane 0.500 0.512 mg/Kg 102 73 - 125 1,4-Dichlorobenzene 0.500 0.502 mg/Kg 104 80 - 122 2,-Dichloropropane 0.500 0.500 <td>1,1-Dichloroethene</td> <td>0.500</td> <td>0.372</td> <td></td> <td>mg/Kg</td> <td></td> <td>74</td> <td>50 - 150</td>	1,1-Dichloroethene	0.500	0.372		mg/Kg		74	50 - 150
1,2,3-Trichloropropane 0.500 0.440 mg/Kg 88 61 - 138 1,2,4-Trichlorobenzene 0.500 0.492 mg/Kg 98 73 - 129 1,2,4-Trimethylbenzene 0.500 0.551 mg/Kg 110 78 - 128 1,2-Dibromo-3-Chloropropane 0.500 0.432 J mg/Kg 86 49 - 143 1,2-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 121 1,2-Dichloropropane 0.500 0.452 mg/Kg 90 77 - 126 1,2-Dichloropropane 0.500 0.479 mg/Kg 96 71 - 136 1,3,5-Trimethylbenzene 0.500 0.538 mg/Kg 108 76 - 130 1,3-Dichlorobenzene 0.500 0.537 mg/Kg 107 80 - 121 1,3-Dichloropropane 0.500 0.512 mg/Kg 102 73 - 125 1,4-Dichlorobenzene 0.500 0.502 mg/Kg 104 80 - 122 2,2-Dichloropropane 0.500 0.502 mg/Kg 101 50 - 150 2-Chlorotoluene 0.500 0.487	1,1-Dichloropropene	0.500	0.530		mg/Kg		106	80 - 131
1,2,4-Trichlorobenzene 0.500 0.492 mg/Kg 98 73 - 129 1,2,4-Trimethylbenzene 0.500 0.551 mg/Kg 110 78 - 128 1,2-Dibromo-3-Chloropropane 0.500 0.432 J mg/Kg 86 49 - 143 1,2-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 121 1,2-Dichloropropane 0.500 0.452 mg/Kg 90 77 - 126 1,2-Dichloropropane 0.500 0.479 mg/Kg 96 71 - 136 1,3-Dichlorobenzene 0.500 0.538 mg/Kg 108 76 - 130 1,3-Dichloropropane 0.500 0.537 mg/Kg 107 80 - 121 1,3-Dichloropropane 0.500 0.512 mg/Kg 102 73 - 125 1,4-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 122 2,2-Dichloropropane 0.500 0.506 mg/Kg 101 50 - 150 2-Chlorotoluene 0.500 0.500 mg/Kg 100 73 - 131 4-Chlorotoluene 0.500 0.502 <td< td=""><td>1,2,3-Trichlorobenzene</td><td>0.500</td><td>0.472</td><td></td><td>mg/Kg</td><td></td><td>94</td><td>72 - 130</td></td<>	1,2,3-Trichlorobenzene	0.500	0.472		mg/Kg		94	72 - 130
1,2,4-Trimethylbenzene 0.500 0.551 mg/Kg 110 78 - 128 1,2-Dibromo-3-Chloropropane 0.500 0.432 J mg/Kg 86 49 - 143 1,2-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 121 1,2-Dichloropethane 0.500 0.452 mg/Kg 90 77 - 126 1,2-Dichloropropane 0.500 0.479 mg/Kg 96 71 - 136 1,3-Dichlorobenzene 0.500 0.538 mg/Kg 108 76 - 130 1,3-Dichloropropane 0.500 0.537 mg/Kg 107 80 - 121 1,3-Dichloropropane 0.500 0.512 mg/Kg 102 73 - 125 1,4-Dichlorobenzene 0.500 0.512 mg/Kg 104 80 - 122 2,2-Dichloropropane 0.500 0.502 mg/Kg 101 50 - 150 2-Chlorotoluene 0.500 0.500 mg/Kg 101 50 - 150 2-Chlorotoluene 0.500 0.487 mg/Kg 97 76 - 128 Benzene 0.500 0.532 mg/Kg 106	1,2,3-Trichloropropane	0.500	0.440		mg/Kg		88	61 - 138
1,2-Dibromo-3-Chloropropane 0.500 0.432 J mg/Kg 86 49 - 143 1,2-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 121 1,2-Dichloroethane 0.500 0.452 mg/Kg 90 77 - 126 1,2-Dichloropropane 0.500 0.479 mg/Kg 96 71 - 136 1,3-Dichloropropane 0.500 0.538 mg/Kg 108 76 - 130 1,3-Dichlorobenzene 0.500 0.537 mg/Kg 107 80 - 121 1,3-Dichloropropane 0.500 0.512 mg/Kg 102 73 - 125 1,4-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 122 2,2-Dichloropropane 0.500 0.506 mg/Kg 101 50 - 150 2-Chlorotoluene 0.500 0.502 mg/Kg 100 73 - 131 4-Chlorotoluene 0.500 0.487 mg/Kg 97 76 - 128 Benzene 0.500 0.532 mg/Kg 106 80 - 128 Bromobenzene 0.500 0.481 mg/Kg 96 7	1,2,4-Trichlorobenzene	0.500	0.492		mg/Kg		98	73 - 129
1,2-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 121 1,2-Dichloroethane 0.500 0.452 mg/Kg 90 77 - 126 1,2-Dichloropropane 0.500 0.479 mg/Kg 96 71 - 136 1,3,5-Trimethylbenzene 0.500 0.538 mg/Kg 108 76 - 130 1,3-Dichlorobenzene 0.500 0.537 mg/Kg 107 80 - 121 1,3-Dichloropropane 0.500 0.512 mg/Kg 102 73 - 125 1,4-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 122 2,2-Dichloropropane 0.500 0.506 mg/Kg 101 50 - 150 2-Chlorotoluene 0.500 0.506 mg/Kg 100 73 - 131 4-Chlorotoluene 0.500 0.487 mg/Kg 97 76 - 128 Benzene 0.500 0.532 mg/Kg 106 80 - 128 Bromobenzene 0.500 0.481 mg/Kg 96 70 - 129	1,2,4-Trimethylbenzene	0.500	0.551		mg/Kg		110	78 - 128
1,2-Dichloroethane 0.500 0.452 mg/Kg 90 77 - 126 1,2-Dichloropropane 0.500 0.479 mg/Kg 96 71 - 136 1,3,5-Trimethylbenzene 0.500 0.538 mg/Kg 108 76 - 130 1,3-Dichlorobenzene 0.500 0.537 mg/Kg 107 80 - 121 1,3-Dichloropropane 0.500 0.512 mg/Kg 102 73 - 125 1,4-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 122 2,2-Dichloropropane 0.500 0.506 mg/Kg 101 50 - 150 2-Chlorotoluene 0.500 0.502 mg/Kg 100 73 - 131 4-Chlorotoluene 0.500 0.487 mg/Kg 97 76 - 128 Benzene 0.500 0.532 mg/Kg 106 80 - 128 Bromobenzene 0.500 0.481 mg/Kg 96 70 - 129	1,2-Dibromo-3-Chloropropane	0.500	0.432	J	mg/Kg		86	49 - 143
1,2-Dichloropropane 0.500 0.479 mg/Kg 96 71 - 136 1,3,5-Trimethylbenzene 0.500 0.538 mg/Kg 108 76 - 130 1,3-Dichlorobenzene 0.500 0.537 mg/Kg 107 80 - 121 1,3-Dichloropropane 0.500 0.512 mg/Kg 102 73 - 125 1,4-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 122 2,2-Dichloropropane 0.500 0.506 mg/Kg 101 50 - 150 2-Chlorotoluene 0.500 0.502 mg/Kg 100 73 - 131 4-Chlorotoluene 0.500 0.487 mg/Kg 97 76 - 128 Benzene 0.500 0.532 mg/Kg 106 80 - 128 Bromobenzene 0.500 0.481 mg/Kg 96 70 - 129	1,2-Dichlorobenzene	0.500	0.522		mg/Kg		104	80 - 121
1,3,5-Trimethylbenzene 0.500 0.538 mg/Kg 108 76 - 130 1,3-Dichlorobenzene 0.500 0.537 mg/Kg 107 80 - 121 1,3-Dichloropropane 0.500 0.512 mg/Kg 102 73 - 125 1,4-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 122 2,2-Dichloropropane 0.500 0.506 mg/Kg 101 50 - 150 2-Chlorotoluene 0.500 0.502 mg/Kg 100 73 - 131 4-Chlorotoluene 0.500 0.487 mg/Kg 97 76 - 128 Benzene 0.500 0.532 mg/Kg 106 80 - 128 Bromobenzene 0.500 0.481 mg/Kg 96 70 - 129	1,2-Dichloroethane	0.500	0.452		mg/Kg		90	77 - 126
1,3-Dichlorobenzene 0.500 0.537 mg/Kg 107 80 - 121 1,3-Dichloropropane 0.500 0.512 mg/Kg 102 73 - 125 1,4-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 122 2,2-Dichloropropane 0.500 0.506 mg/Kg 101 50 - 150 2-Chlorotoluene 0.500 0.502 mg/Kg 100 73 - 131 4-Chlorotoluene 0.500 0.487 mg/Kg 97 76 - 128 Benzene 0.500 0.532 mg/Kg 106 80 - 128 Bromobenzene 0.500 0.481 mg/Kg 96 70 - 129	1,2-Dichloropropane	0.500	0.479		mg/Kg		96	71 - 136
1,3-Dichloropropane 0.500 0.512 mg/Kg 102 73 - 125 1,4-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 122 2,2-Dichloropropane 0.500 0.506 mg/Kg 101 50 - 150 2-Chlorotoluene 0.500 0.502 mg/Kg 100 73 - 131 4-Chlorotoluene 0.500 0.487 mg/Kg 97 76 - 128 Benzene 0.500 0.532 mg/Kg 106 80 - 128 Bromobenzene 0.500 0.481 mg/Kg 96 70 - 129	1,3,5-Trimethylbenzene	0.500	0.538		mg/Kg		108	76 - 130
1,4-Dichlorobenzene 0.500 0.522 mg/Kg 104 80 - 122 2,2-Dichloropropane 0.500 0.506 mg/Kg 101 50 - 150 2-Chlorotoluene 0.500 0.502 mg/Kg 100 73 - 131 4-Chlorotoluene 0.500 0.487 mg/Kg 97 76 - 128 Benzene 0.500 0.532 mg/Kg 106 80 - 128 Bromobenzene 0.500 0.481 mg/Kg 96 70 - 129	1,3-Dichlorobenzene	0.500	0.537		mg/Kg		107	80 - 121
2,2-Dichloropropane 0.500 0.506 mg/Kg 101 50 - 150 2-Chlorotoluene 0.500 0.502 mg/Kg 100 73 - 131 4-Chlorotoluene 0.500 0.487 mg/Kg 97 76 - 128 Benzene 0.500 0.532 mg/Kg 106 80 - 128 Bromobenzene 0.500 0.481 mg/Kg 96 70 - 129	1,3-Dichloropropane	0.500	0.512		mg/Kg		102	73 - 125
2-Chlorotoluene 0.500 0.502 mg/Kg 100 73 - 131 4-Chlorotoluene 0.500 0.487 mg/Kg 97 76 - 128 Benzene 0.500 0.532 mg/Kg 106 80 - 128 Bromobenzene 0.500 0.481 mg/Kg 96 70 - 129	1,4-Dichlorobenzene	0.500	0.522		mg/Kg		104	80 - 122
4-Chlorotoluene 0.500 0.487 mg/Kg 97 76 - 128 Benzene 0.500 0.532 mg/Kg 106 80 - 128 Bromobenzene 0.500 0.481 mg/Kg 96 70 - 129	2,2-Dichloropropane	0.500	0.506		mg/Kg		101	50 - 150
Benzene 0.500 0.532 mg/Kg 106 80 - 128 Bromobenzene 0.500 0.481 mg/Kg 96 70 - 129	2-Chlorotoluene	0.500	0.502		mg/Kg		100	73 - 131
Bromobenzene 0.500 0.481 mg/Kg 96 70 - 129	4-Chlorotoluene	0.500	0.487		mg/Kg		97	76 - 128
	Benzene	0.500	0.532		mg/Kg		106	80 - 128
Bromoform 0.500 0.515 mg/Kg 103 49 - 150	Bromobenzene	0.500	0.481		mg/Kg		96	70 - 129
	Bromoform	0.500	0.515		mg/Kg		103	49 - 150

Eurofins Spokane

4

6

8

10

11

Spike

LCS LCS

Job ID: 590-27836-1

Client: Martin S Burck Associates Project/Site: 855 Columbia R Hwy

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 590-50602/2-A

Matrix: Solid

Analysis Batch: 50609

Client Sample ID: Lab Control Sample

%Rec

Prep Type: Total/NA

Prep Batch: 50602

	- P				,	
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits	
Bromomethane	0.500	0.396 J	mg/Kg	79	39 - 150	
Carbon tetrachloride	0.500	0.500	mg/Kg	100	61 - 150	
Chlorobenzene	0.500	0.558	mg/Kg	112	80 - 124	
Chlorobromomethane	0.500	0.426	mg/Kg	85	67 - 138	
Chlorodibromomethane	0.500	0.508	mg/Kg	102	70 - 132	
Chloroethane	0.500	0.499	mg/Kg	100	38 - 150	
Chloroform	0.500	0.491	mg/Kg	98	80 - 131	
Chloromethane	0.500	0.412 J	mg/Kg	82	29 - 150	
cis-1,2-Dichloroethene	0.500	0.469	mg/Kg	94	78 - 132	
cis-1,3-Dichloropropene	0.500	0.489	mg/Kg	98	71 - 123	
Dibromomethane	0.500	0.481	mg/Kg	96	76 - 121	
Dichlorobromomethane	0.500	0.480	mg/Kg	96	79 - 122	
Dichlorodifluoromethane	0.500	0.419	mg/Kg	84	14 - 120	
Ethylbenzene	0.500	0.546	mg/Kg	109	80 - 127	
Ethylene Dibromide	0.500	0.533	mg/Kg	107	76 - 126	
Hexachlorobutadiene	0.500	0.545	mg/Kg	109	75 - 136	
Isopropylbenzene	0.500	0.553	mg/Kg	111	79 - 134	
m,p-Xylene	0.500	0.538	mg/Kg	108	80 - 131	
Methyl tert-butyl ether	0.500	0.408	mg/Kg	82	69 - 132	
Methylene Chloride	0.500	0.340 J	mg/Kg	68	42 - 150	
Naphthalene	0.500	0.449	mg/Kg	90	57 - 131	
n-Butylbenzene	0.500	0.502	mg/Kg	100	75 - 128	
N-Propylbenzene	0.500	0.513	mg/Kg	103	71 - 136	
o-Xylene	0.500	0.531	mg/Kg	106	78 - 128	
sec-Butylbenzene	0.500	0.513	mg/Kg	103	78 - 132	
Styrene	0.500	0.549	mg/Kg	110	76 - 128	
tert-Butylbenzene	0.500	0.507	mg/Kg	101	74 - 129	
Tetrachloroethene	0.500	0.589	mg/Kg	118	76 - 142	
Toluene	0.500	0.539	mg/Kg	108	79 - 130	
trans-1,2-Dichloroethene	0.500	0.385	mg/Kg	77	75 - 140	

0.500

0.500

0.500

0.499

0.570

0.372

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	85		79 - 124
4-Bromofluorobenzene (Surr)	96		66 - 129
Dibromofluoromethane (Surr)	93		80 - 120
Toluene-d8 (Surr)	101		80 - 120

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

мв мв

Lab Sample ID: MB 590-50602/1-A

Matrix: Solid

Analysis Batch: 50610

trans-1,3-Dichloropropene

Trichloroethene

Vinyl chloride

Client Sample ID: Method Blank Prep Type: Total/NA

100

114

mg/Kg

mg/Kg

mg/Kg

68 - 133

80 - 129

38 - 150

Prep Batch: 50602

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND ND	5.0	1.8	mg/Kg		10/31/24 13:13	10/31/24 15:45	1

Client: Martin S Burck Associates Job ID: 590-27836-1 Project/Site: 855 Columbia R Hwy

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) (Continued)

Lab Sample ID: MB 590-50602/1-A

Matrix: Solid

Analysis Batch: 50610

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 50602

MB MB

%Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 10/31/24 13:13 10/31/24 15:45 4-Bromofluorobenzene (Surr) 103 41.5 - 162

Lab Sample ID: LCS 590-50602/3-A

Matrix: Solid

Analyte

Gasoline

Analyte

Gasoline

Analysis Batch: 50610

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 50602

%Rec Limits D %Rec

90

74.4 - 124

LCS LCS

Surrogate 4-Bromofluorobenzene (Surr) %Recovery Qualifier 99

Limits 41.5 - 162

Spike

Added

50.0

Lab Sample ID: 590-27783-B-2-A DU

Matrix: Solid

Analysis Batch: 50610

Client Sample ID: Duplicate

Prep Type: Total/NA

Prep Batch: 50602

RPD

RPD Limit NC 32.3

ND mg/Kg

DU DU

Result Qualifier

LCS LCS

45.2

Result Qualifier

Unit

Unit

D

mg/Kg

4.2 J DU DU

Sample Sample

Result Qualifier

%Recovery Qualifier

Surrogate

Limits

4-Bromofluorobenzene (Surr)

100 41.5 - 162

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-50599/1-A

Matrix: Solid

Analysis Batch: 50600

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 50599

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Diesel Range Organics (DRO) ND 10 4.2 mg/Kg 10/31/24 12:03 10/31/24 22:20 (C10-C25) 10/31/24 12:03 10/31/24 22:20 Residual Range Organics (RRO) ND 25 5.0 mg/Kg

(C25-C36)

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 82 50 - 150 10/31/24 12:03 10/31/24 22:20 n-Triacontane-d62 95 50 - 150 10/31/24 12:03 10/31/24 22:20

Lab Sample ID: LCS 590-50599/2-A

Matrix: Solid

Analysis Batch: 50600

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 50599

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Organics (DRO) (C10-C25)	66.7	57.1		mg/Kg		86	50 - 150	
Residual Range Organics (RRO) (C25-C36)	66.7	66.6		mg/Kg		100	50 - 150	

Job ID: 590-27836-1

Client: Martin S Burck Associates Project/Site: 855 Columbia R Hwy

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCS 590-50599/2-A

Matrix: Solid

Analysis Batch: 50600

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 50599

LCS LCS

%Recovery Qualifier Limits Surrogate o-Terphenyl 88 50 - 150 n-Triacontane-d62 98 50 - 150

Lab Sample ID: 590-27831-A-2-B DU **Client Sample ID: Duplicate**

Matrix: Solid

Analysis Batch: 50600

Prep Type: Total/NA Prep Batch: 50599

	Sample	Sample	DU	DU			•		RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Diesel Range Organics (DRO)	5.6	J	 ND		mg/Kg	— -		NC	40
(C10-C25)									
Residual Range Organics (RRO)	58		28.4	F3	mg/Kg	☼		68	40
(C25-C36)									

DU DU

Surrogate	%Recovery Q	ualifier	Limits
o-Terphenyl	81		50 - 150
n-Triacontane-d62	91		50 - 150

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-50644/2-A

Matrix: Solid

Analysis Batch: 50658

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 50644

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.3	0.50	mg/Kg		11/04/24 10:58	11/04/24 15:21	1
Barium	ND		1.3	0.34	mg/Kg		11/04/24 10:58	11/04/24 15:21	1
Cadmium	ND		1.0	0.059	mg/Kg		11/04/24 10:58	11/04/24 15:21	1
Chromium	ND		1.3	0.18	mg/Kg		11/04/24 10:58	11/04/24 15:21	1
Lead	ND		3.0	1.5	mg/Kg		11/04/24 10:58	11/04/24 15:21	1
Selenium	ND		5.0	3.0	mg/Kg		11/04/24 10:58	11/04/24 15:21	1
Silver	ND		1.3	0.29	mg/Kg		11/04/24 10:58	11/04/24 15:21	1

Lab Sample ID: LCS 590-50644/1-A

Matrix: Solid

Analysis Batch: 50658

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 50644

7 maryolo Batom cocco							op Batt	,,,, ooo,,,
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	100	87.4		mg/Kg		87	80 - 120	
Barium	100	99.6		mg/Kg		100	80 - 120	
Cadmium	50.0	43.4		mg/Kg		87	80 - 120	
Chromium	50.0	51.4		mg/Kg		103	80 - 120	
Lead	50.0	47.6		mg/Kg		95	80 - 120	
Selenium	100	89.9		mg/Kg		90	80 - 120	
Silver	5.00	5.11		mg/Kg		102	80 - 120	

Job ID: 590-27836-1

Client: Martin S Burck Associates Project/Site: 855 Columbia R Hwy

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 590-27836-1 MS

Matrix: Solid

Analysis Batch: 50658

Client Sample ID: Composite of S1 and S2

Prep Type: Total/NA Prep Batch: 50644

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	ND		110	113		mg/Kg	— <u>—</u>	103	75 - 125	
Barium	48		110	186		mg/Kg	₩	125	75 - 125	
Cadmium	ND		54.9	57.5		mg/Kg	₩	105	75 - 125	
Chromium	4.9	J	54.9	66.2		mg/Kg	₩	112	75 - 125	
Lead	ND	F1	54.9	71.4	F1	mg/Kg	₩	130	75 - 125	
Selenium	ND		110	124		mg/Kg	₩	112	75 - 125	
Silver	ND		5.49	6.67	J	mg/Kg	₩	121	75 - 125	

Client Sample ID: Composite of S1 and S2

Matrix: Solid

Matrix. John

Analysis Batch: 50658

Lab Sample ID: 590-27836-1 MSD

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 50644

i many one manerin occor											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	ND		112	107		mg/Kg	<u></u>	95	75 - 125	6	20
Barium	48		112	174		mg/Kg	≎	112	75 - 125	6	20
Cadmium	ND		56.0	53.9		mg/Kg	≎	96	75 - 125	7	20
Chromium	4.9	J	56.0	63.3		mg/Kg	☆	104	75 - 125	4	20
Lead	ND	F1	56.0	69.1		mg/Kg	≎	123	75 - 125	3	20
Selenium	ND		112	114		mg/Kg	≎	102	75 - 125	8	20
Silver	ND		5.60	5.90	J	mg/Kg	☆	105	75 - 125	12	20

Client Sample ID: Composite of S1 and S2

Matrix: Solid

Analysis Batch: 50658

Lab Sample ID: 590-27836-1 DU

Prep Type: Total/NA Prep Batch: 50644

Analysis Batch: 50658							Prep Batch: 5	00644
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	ND		ND		mg/Kg	— <u></u>	NC	20
Barium	48		46.3		mg/Kg	₩	4	20
Cadmium	ND		ND		mg/Kg	₩	NC	20
Chromium	4.9	J	4.34	J	mg/Kg	₩	12	20
Lead	ND	F1	ND		mg/Kg	₩	NC	20
Selenium	ND		ND		mg/Kg	₩	NC	20
Silver	ND		ND		mg/Kg	₽	NC	20

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 590-50643/2-A

Matrix: Solid

Analysis Batch: 50657

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 50643

Analyte	Result	Qualifier	RI	MDL	Unit	n	Prenared	Analyzed	Dil Fac
Mercury	ND		50	12	ug/Kg	_ =	11/04/24 10:51	11/04/24 16:42	1

Lab Sample ID: LCS 590-50643/1-A

Matrix: Solid

Analysis Batch: 50657

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 50643

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	 200	200		ug/Kg		100	80 - 120	

MB MB

Eurofins Spokane

_

3

4

6

Ω

11

QC Sample Results

Client: Martin S Burck Associates Job ID: 590-27836-1

Project/Site: 855 Columbia R Hwy

Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: 580-144796	6-A-15-D M	S					CI	ient Sa	mple ID:	Matrix Spike
Matrix: Solid									Prep Ty	pe: Total/NA
Analysis Batch: 50657									Prep I	Batch: 50643
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	51		220	260		ug/Kg	<u></u>	95	80 - 120	

Lab Sample ID: 580-144796-A-15-E MSD Matrix: Solid Analysis Batch: 50657								le ID: N	latrix Spik Prep Ty _l Prep B	pe: Tot	al/NA
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	51		237	274		ug/Kg	-	94	80 - 120	5	20

Lab Sample ID: 580-144796- Matrix: Solid	A-15-C D	IJ					Client San	•	D: Dup pe: Tot	
									•	
Analysis Batch: 50657								reb 🖻	atch:	00043
	Sample	Sample	DU	DU						RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D			RPD	Limit
Mercury	51		48.1		ug/Kg	☼			5	20

Lab Chronicle

Client: Martin S Burck Associates Job ID: 590-27836-1

Project/Site: 855 Columbia R Hwy

Client Sample ID: Composite of S1 and S2

Lab Sample ID: 590-27836-1 Date Collected: 10/23/24 15:17 **Matrix: Solid**

Date Received: 10/31/24 10:59

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			50603	10/31/24 13:46	MRV	EET SPK

Client Sample ID: Composite of S1 and S2

Lab Sample ID: 590-27836-1 Date Collected: 10/23/24 15:17 **Matrix: Solid** Date Received: 10/31/24 10:59 Percent Solids: 88.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			10.432 g	10 mL	50602	10/31/24 13:13	JSP	EET SPK
Total/NA	Analysis	8260D		10	0.86 mL	43 mL	50609	10/31/24 18:55	JSP	EET SPK
Total/NA	Prep	5035			10.432 g	10 mL	50602	10/31/24 13:13	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		10	0.86 mL	43 mL	50610	10/31/24 18:55	JSP	EET SPK
Total/NA	Prep	3550C			15.19 g	5 mL	50599	10/31/24 12:03	MRV	EET SPK
Total/NA	Analysis	NWTPH-Dx		50	1 mL	1 mL	50600	11/01/24 11:46	NMI	EET SPK
Total/NA	Prep	3050B			1.34 g	50 mL	50644	11/04/24 10:59	AMB	EET SPK
Total/NA	Analysis	6010D		10			50658	11/04/24 15:26	AMB	EET SPK
Total/NA	Prep	7471B			0.60 g	50 mL	50643	11/04/24 10:51	AMB	EET SPK
Total/NA	Analysis	7471B		1			50657	11/04/24 17:00	AMB	EET SPK

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: Martin S Burck Associates

Project/Site: 855 Columbia R Hwy

Job ID: 590-27836-1

Laboratory: Eurofins Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Oregon	NELAI	P	4137	12-08-24
Tt . f. II	s are included in this report, but the laboratory does not offer certification.			
,	•	,	not certified by the governing authori	ty. This list may include analyte
,	•	,	not certified by the governing authori Analyte	ty. This list may include analyte
for which the agency	does not offer certification		, , ,	ty. I his list may include analyte

2

4

5

6

8

9

44

Method Summary

Client: Martin S Burck Associates Project/Site: 855 Columbia R Hwy Job ID: 590-27836-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	EET SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	EET SPK
6010D	Metals (ICP)	SW846	EET SPK
7471B	Mercury (CVAA)	SW846	EET SPK
Moisture	Percent Moisture	EPA	EET SPK
3050B	Preparation, Metals	SW846	EET SPK
3550C	Ultrasonic Extraction	SW846	EET SPK
5035	Closed System Purge and Trap	SW846	EET SPK
7471B	Preparation, Mercury	SW846	EET SPK

Protocol References:

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

4

5

7

8

9

10

1

Eurofins TestAmerica, Spokane

Chain of Custody Record

43	eurofins
----	----------

Environan t Teutung TestAm-rica

11922 E 1st Avenue

Spokane WA 99206-5302

Spokane WA 99206-5302 ohone 509.924 9200 fax 509.924.9290	Damid	atami Dua		1 5	J		٠	_									•	1 1		•_	t18	. J P		T. 45.	
DIDUIG 509.924 9200 TBX 509.924.9290			gram [ן איט [_I NPDES	1 -	I RCR	A	☐ Othe	er.						1051	Amer	ica Lac	oorat	ories,	inc. d/b	//a Eu	roiins	1 estan	nerica
Client Contact	Project M			I		0744	0	66					Dat	la.					10	COC	No:				
Your Company Name here Martin S. Burck Assoc	Tel/Fax:	CHIZ	baenviro	42	<u>=4.∠4^</u>	Lab							-	rrier'						1	of		co	Ce	\dashv
Address 200 N Wasco Ct			urnaround			Lab	T	1		Т	1 1	1	Cal	HIEL		T	т	Т Т	- 	Samp			00	03	\dashv
City/State/Zip Hood River, OB 97031	☐ CALEND			KING DAY	5	11			工 文 で が	<u>^</u>											ab Use	Only			—
541-387.4422 Phone		if different fi				2		×		\$						1 1		1 1			in Client	-	1		
541 387 4813 FAX	'^'		. weeks			(N/	Š	Â	~ 4		1 1		İ								ampling		┢		-
Project Name 855 Colombia R. Hwy			week			ۃا≼ا	17	1															_		\dashv
Site: 855 Columbia B. Hwin			days			e S	1	I	20	•				1						Job /	SDG No)			
Sile: 855 Columbia R. Hwy 0# 855 Columbia R. Hwy			day			E S	1	3	74	ב															
			Sample		T	S	5	5	Y &	4	1 1					1 1									$\neg \neg$
	Sample	Sample	Type		# of	ě 5	13	3	17	<u>}</u>	1 1														
Sample Identification	Date	Time	(C≃Comp, G=Grab)	Matrix	Cont.	i a			8260D- BT	4	11				-						Sample	e Spe	cific N	otes	
	ı əla ələə	15 17		T LECTOR DATE	3					†	+									e e e e e e e e e e e e e e e e e e e					
Composite of SI and SZ	10/28/24	15:17	Comp	50:1	2	Ш	1	14	1	1	1		<u> </u>	Ш.		$\perp \perp$									
•				1			1																		- 1
				<u> </u>		${\sf H}$	†	\vdash		T	11	\neg	+			1-1									\dashv
						Ц.	┺	\perp	\perp	\perp	$\perp \downarrow$	\perp	1		_										
						1																			
				 			T	一		╅	1						1								
			ļ			_ _	_	\sqcup		\bot	4			-		+	\dashv		\sqcup						
						\sqcap	十	П		十	+-1					1 1					***************************************				
,			 	<u> </u>		₩	╀	\sqcup		4-	+		-	\sqcup	+	+	_	+	$\vdash \vdash$						
					-								ĺ												
		·				П	T			7	77		T								A1101				
NAME OF THE PARTY					<u> </u>	 -	╄-			-	+	-+	4												-
The second secon						ſΤ	1			T	\Box		7												
			ļ	<u> </u>		₩	╀			+	+		┨.	590-	2783	6 Ch	ain o	Custo	ody						
							1						ļ		1	L	J								
Preservation Used. 1= Ice, 2= HCl, 3= H2SO4, 4=HNO3	5=NaOH,	6= Other		·····																					
Possible Hazard Identification						s	amp	le D	ispos	al (A fee	may	be as	ssess	ed if	sam	ples	are ret	taine	ed lor	iger tha	ın 1 n	ionth)		
Are any samples from a listed EPA Hazardous Waste? Plea he Comments Section if the lab is to dispose of the sample	se List any	EPA Was	ite Codes to	or the sa	imple ir	١ ١																			
□ Non-Hazard □ Flammable □ Skin Irritant	Poison	0	Unkno			\dashv) ob see	n to Clie				N	al by La	. L.		Пак	chive for			Months				
							الا	KELUIT	10 (11)	TEL		<u> L</u>	JISDOS	al DV La	5O		L. A.	UNIVE FOR			_ Pionuis				-
	4	ay T	TAT	1																					
		_		•																					
									Coolo	. To	man (⁰ 0\ 0	Shald	,	\sim	0	-1 a - 1	_		Tho	ID M	. (12.	/5-5-Y	~	
Custody Seals Intact:	Custody S	eai No.	-	Data	imo	10	^^-			: 10	anp ((°C) O	os d.		*****		ı ü/	<u>د ، ·</u>			m ID No	J. (. # 1	ادر	<u> </u>	
Relinquished by Units	Company.	MSF	SA	Date/T (0 30	24 13	:•વે ^{rર}	ecei	vea i	D y					10	Comp	any				Date/	ıme				
Relinquished by	Company		· · ·	Date/T	ime			ved l						- 10	Comp	anv.			_	Date/	Time				
House	,,				····	ļ			•							,									
Relinquished by:	Company:			Date/T	ime	R	egei	vedi	in Lab	orat	ory by	٠. و		C	9000	any:	ومرد			Date/	T72./		In.	32	

Form No. CA-C-WI-002, Rev. 4.23, dated 4/16/2019

Client: Martin S Burck Associates

Job Number: 590-27836-1

Login Number: 27836 List Source: Eurofins Spokane

List Number: 1

Creator: Morris, Mackenzie 1

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>30</td>	N/A	30
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Tuesday, October 29, 2024
Daniel Ogno
NRC
6211 N Ensign St
Portland, OR 97217

RE: A4J1459 - DEQ Sampling - P216.16354

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4J1459, which was received by the laboratory on 10/17/2024 at 12:00:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 1.2 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRC Project: DEQ Sampling

 6211 N Ensign St
 Project Number: P216.16354
 Report ID:

 Portland, OR 97217
 Project Manager: Daniel Ogno
 A4J1459 - 10 29 24 1703

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Creek Water	A4J1459-01	Oil	10/17/24 10:00	10/17/24 12:00

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRCProject:DEQ Sampling6211 N Ensign StProject Number:P216.16354Portland, OR 97217Project Manager:Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

ANALYTICAL SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx												
Analyte	Sample Result	Detection Limit	n Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
Creek Water (A4J1459-01)				Matrix: Oil	il Batch: 24J0996								
Diesel	1080000		182000	mg/kg	100	10/25/24 13:11	NWTPH-Dx						
Oil	ND		364000	mg/kg	100	10/25/24 13:11	NWTPH-Dx						
Surrogate: o-Terphenyl (Surr)			Recovery: %	Limits: 50-150 %	100	10/25/24 13:11	NWTPH-Dx	S-01					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRCProject:DEQ Sampling6211 N Ensign StProject Number:P216.16354Portland, OR 97217Project Manager:Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Creek Water (A4J1459-01RE1)				Matrix: Oil		Batch:	24J0748	V-13, V-15
Acetone	ND		46.7	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Acrylonitrile	ND		4.67	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Benzene	ND		0.467	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Bromobenzene	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Bromochloromethane	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Bromodichloromethane	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Bromoform	ND		4.67	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Bromomethane	ND		23.4	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
2-Butanone (MEK)	ND		23.4	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
n-Butylbenzene	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
sec-Butylbenzene	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
tert-Butylbenzene	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Carbon disulfide	ND		23.4	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Carbon tetrachloride	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Chlorobenzene	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Chloroethane	ND		23.4	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Chloroform	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Chloromethane	ND		11.7	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
2-Chlorotoluene	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
4-Chlorotoluene	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Dibromochloromethane	ND		4.67	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		11.7	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Dibromomethane	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,2-Dichlorobenzene	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,3-Dichlorobenzene	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,4-Dichlorobenzene	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Dichlorodifluoromethane	ND		4.67	mg/kg wet	500	10/18/24 12:30	5035A/8260D	ICV-02
1,1-Dichloroethane	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,1-Dichloroethene	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
cis-1,2-Dichloroethene	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
trans-1,2-Dichloroethene	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRCProject:DEQ Sampling6211 N Ensign StProject Number:P216.16354Portland, OR 97217Project Manager:Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Creek Water (A4J1459-01RE1)				Matrix: Oil		Batch:	24J0748	V-13, V-15
1,2-Dichloropropane	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,3-Dichloropropane	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
2,2-Dichloropropane	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,1-Dichloropropene	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
cis-1,3-Dichloropropene	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
trans-1,3-Dichloropropene	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Ethylbenzene	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Hexachlorobutadiene	ND		4.67	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
2-Hexanone	ND		23.4	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Isopropylbenzene	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
4-Isopropyltoluene	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Methylene chloride	ND		23.4	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		23.4	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Naphthalene	ND		4.67	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
n-Propylbenzene	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Styrene	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Tetrachloroethene (PCE)	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Toluene	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,2,3-Trichlorobenzene	ND		11.7	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,2,4-Trichlorobenzene	ND		11.7	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,1,1-Trichloroethane	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,1,2-Trichloroethane	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Trichloroethene (TCE)	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Trichlorofluoromethane	ND		11.7	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,2,3-Trichloropropane	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,2,4-Trimethylbenzene	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
1,3,5-Trimethylbenzene	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
Vinyl chloride	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
m,p-Xylene	ND		2.34	mg/kg wet	500	10/18/24 12:30	5035A/8260D	
o-Xylene	ND		1.17	mg/kg wet	500	10/18/24 12:30	5035A/8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRCProject:DEQ Sampling6211 N Ensign StProject Number:P216.16354Portland, OR 97217Project Manager:Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

ANALYTICAL SAMPLE RESULTS

	Volatile Organic Compounds by EPA 8260D												
Analyte	Sample Result	Detection Limit	Reporting Limit	Uı	nits	Dilution	Date Analyzed	Method Ref.	Notes				
Creek Water (A4J1459-01RE1)				Matr	Matrix: Oil Batch: 24J0748				V-13, V-15				
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 93 %	Limits:	80-120 %	1	10/18/24 12:30	5035A/8260D					
Toluene-d8 (Surr)			100 %		80-120 %	1	10/18/24 12:30	5035A/8260D					
4-Bromofluorobenzene (Surr)			104 %		79-120 %	1	10/18/24 12:30	5035A/8260D					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRCProject:DEQ Sampling6211 N Ensign StProject Number:P216.16354Portland, OR 97217Project Manager:Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	ls by EPA 8082	2A			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Creek Water (A4J1459-01)				Matrix: Oil		Batch:	24J0713	C-07
Aroclor 1016	ND		1.55	mg/kg	2	10/17/24 14:16	EPA 8082A	
Aroclor 1221	ND		1.55	mg/kg	2	10/17/24 14:16	EPA 8082A	
Aroclor 1232	ND		1.55	mg/kg	2	10/17/24 14:16	EPA 8082A	
Aroclor 1242	ND		1.55	mg/kg	2	10/17/24 14:16	EPA 8082A	
Aroclor 1248	ND		1.55	mg/kg	2	10/17/24 14:16	EPA 8082A	
Aroclor 1254	ND		1.55	mg/kg	2	10/17/24 14:16	EPA 8082A	
Aroclor 1260	ND		1.55	mg/kg	2	10/17/24 14:16	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 91 %	Limits: 60-125 %	5 2	10/17/24 14:16	EPA 8082A	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRCProject:DEQ Sampling6211 N Ensign StProject Number:P216.16354Portland, OR 97217Project Manager:Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

ANALYTICAL SAMPLE RESULTS

		Total Meta	ils by EPA 60	20B (ICPMS)			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Creek Water (A4J1459-01)				Matrix: Oil				
Batch: 24J1072								
Arsenic	ND		2.81	mg/kg	5	10/28/24 21:17	EPA 6020B	
Barium	ND		2.81	mg/kg	5	10/28/24 21:17	EPA 6020B	
Cadmium	ND		0.562	mg/kg	5	10/28/24 21:17	EPA 6020B	
Chromium	ND		2.81	mg/kg	5	10/28/24 21:17	EPA 6020B	
Lead	ND		0.562	mg/kg	5	10/28/24 21:17	EPA 6020B	
Mercury	ND		0.225	mg/kg	5	10/28/24 21:17	EPA 6020B	
Selenium	ND		2.81	mg/kg	5	10/28/24 21:17	EPA 6020B	
Silver	ND		0.562	mg/kg	5	10/28/24 21:17	EPA 6020B	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRCProject:DEQ Sampling6211 N Ensign StProject Number:P216.16354Portland, OR 97217Project Manager:Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	r Oil Hyd	rocarbon	s by NW7	ГРН-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0996 - EPA 3580A							Oil					
Blank (24J0996-BLK1)			Prepared	l: 10/25/24 ()7:44 Anal	lyzed: 10/25	/24 12:24					
NWTPH-Dx												
Diesel	ND		2000	mg/kg	1							
Oil	ND		4000	mg/kg	1							
Surr: o-Terphenyl (Surr)		Rece	overy: 95 %	Limits: 50	-150 %	Dilı	ution: 1x					
LCS (24J0996-BS1) NWTPH-Dx			Prepared	1: 10/25/24 ()7:44 Ana	lyzed: 10/25.	/24 12:47					
Diesel	12200		2000	mg/kg	1	12500		98	38-132%			
Surr: o-Terphenyl (Surr)		Reco	very: 104 %	Limits: 50	-150 %		ution: 1x					
Duplicate (24J0996-DUP1)			Prepared	l: 10/25/24 ()7:44 Anal	lyzed: 10/25	/24 13:35					
QC Source Sample: Creek Water	(A4J1459-01	<u>1)</u>	·	·	·	·		·				
NWTPH-Dx												
Diesel	832000		143000	mg/kg	100		1080000			26	30%	
	ND		286000	mg/kg	100		ND				30%	
Oil	ND			0 0								

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRC Project: DEQ Sampling
6211 N Ensign St Project Number: P216.16354
Portland, OR 97217 Project Manager: Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24J0706 - EPA 5035A Soil Blank (24J0706-BLK1) Prepared: 10/17/24 10:00 Analyzed: 10/17/24 16:29 5035A/8260D ND 1.00 mg/kg wet Acetone 50 ND 0.100 50 Acrylonitrile mg/kg wet ---Benzene ND 0.0100 mg/kg wet 50 ND 0.0250 Bromobenzene mg/kg wet 50 Bromochloromethane ND 0.0500 mg/kg wet 50 0.0500 Bromodichloromethane ND mg/kg wet 50 ---Bromoform ND 0.100 mg/kg wet 50 0.500 Bromomethane ND mg/kg wet 50 ---2-Butanone (MEK) ND 0.500 mg/kg wet 50 n-Butylbenzene ND 0.0500 mg/kg wet 50 sec-Butylbenzene ND 0.0500mg/kg wet 50 ND 0.0500 tert-Butylbenzene 50 mg/kg wet ---Carbon disulfide ND 0.500 mg/kg wet 50 Carbon tetrachloride ND 0.0500 50 mg/kg wet Chlorobenzene ND 0.0250mg/kg wet 50 Chloroethane ND 0.500 mg/kg wet 50 ------Chloroform ND 0.0500mg/kg wet 50 Chloromethane ND 0.250 mg/kg wet 50 ---------2-Chlorotoluene ND 0.0500 mg/kg wet 50 50 4-Chlorotoluene ND 0.0500 mg/kg wet Dibromochloromethane ND 0.100 mg/kg wet 50 1,2-Dibromo-3-chloropropane ND 0.250 mg/kg wet 50 1,2-Dibromoethane (EDB) ND 0.0500mg/kg wet 50 Dibromomethane ND 0.0500 mg/kg wet 50 0.0250 1,2-Dichlorobenzene ND mg/kg wet 50 1,3-Dichlorobenzene ND 0.0250 mg/kg wet 50 1,4-Dichlorobenzene ND 0.0250mg/kg wet 50 ICV-02 Dichlorodifluoromethane ND 0.100 mg/kg wet 50 ------ND 0.02501,1-Dichloroethane mg/kg wet 50 0.0250 1,2-Dichloroethane (EDC) ND mg/kg wet 50 1,1-Dichloroethene ND 0.0250mg/kg wet 50 cis-1,2-Dichloroethene ND 0.0250 mg/kg wet 50 trans-1,2-Dichloroethene ND 0.0250 mg/kg wet 50

Apex Laboratories

Quand la fraid

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 10 of 40

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRC Project: DEQ Sampling
6211 N Ensign St Project Number: P216.16354
Portland, OR 97217 Project Manager: Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24J0706 - EPA 5035A Soil Blank (24J0706-BLK1) Prepared: 10/17/24 10:00 Analyzed: 10/17/24 16:29 ND 0.0250 mg/kg wet 50 1,2-Dichloropropane 0.0500 1,3-Dichloropropane ND mg/kg wet 50 -----mg/kg wet 2,2-Dichloropropane ND 0.0500 50 1,1-Dichloropropene ND 0.0500 mg/kg wet 50 cis-1,3-Dichloropropene ND 0.0500 mg/kg wet 50 trans-1,3-Dichloropropene ND 0.0500 mg/kg wet 50 Ethylbenzene 0.0250 ND mg/kg wet 50 Hexachlorobutadiene ND 0.100 mg/kg wet 50 0.500 2-Hexanone ND mg/kg wet 50 Isopropylbenzene ND 0.0500 mg/kg wet 50 4-Isopropyltoluene ND 0.0500mg/kg wet 50 Methylene chloride 0.500 ND mg/kg wet 50 0.500 4-Methyl-2-pentanone (MiBK) ND mg/kg wet 50 ---Methyl tert-butyl ether (MTBE) ND 0.0500mg/kg wet 50 Naphthalene ND 0.100 50 mg/kg wet n-Propylbenzene ND 0.0250 mg/kg wet 50 ND 0.0500 Stvrene mg/kg wet 50 1,1,1,2-Tetrachloroethane ND 0.0250 mg/kg wet 50 1,1,2,2-Tetrachloroethane ND 0.0500 mg/kg wet 50 ------Tetrachloroethene (PCE) ND 0.0250mg/kg wet 50 0.0500 Toluene ND mg/kg wet 50 ---1,2,3-Trichlorobenzene ND 0.250 mg/kg wet 50 1.2.4-Trichlorobenzene ND 0.250 mg/kg wet 50 1,1,1-Trichloroethane ND 0.0250mg/kg wet 50 ND 0.0250 1,1,2-Trichloroethane mg/kg wet 50 ---------Trichloroethene (TCE) ND 0.0250mg/kg wet 50 50 Trichlorofluoromethane ND 0.250 mg/kg wet ------1,2,3-Trichloropropane ND 0.0500 mg/kg wet 50 1,2,4-Trimethylbenzene ND 0.0500 50 mg/kg wet 1,3,5-Trimethylbenzene ND 0.0500mg/kg wet 50 50 Vinyl chloride ND 0.0250 mg/kg wet m,p-Xylene ND 0.0500 mg/kg wet 50 o-Xylene ND 0.0250 mg/kg wet 50

Limits: 80-120 %

Apex Laboratories

Surr: 1,4-Difluorobenzene (Surr)

Dund la fruit

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Dilution: 1x

Recovery: 101 %

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Page 12 of 40

 NRC
 Project:
 DEQ Sampling

 6211 N Ensign St
 Project Number:
 P216.16354
 Report ID:

 Portland, OR 97217
 Project Manager:
 Daniel Ogno
 A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0706 - EPA 5035A							Soi	I				
Blank (24J0706-BLK1)			Prepared	l: 10/17/24 1	0:00 Ana	lyzed: 10/17	7/24 16:29					
Surr: Toluene-d8 (Surr)		Reco	overy: 97 %	Limits: 80-	120 %	Dil	ution: 1x					
4-Bromofluorobenzene (Surr)			106 %	79-	120 %		"					
LCS (24J0706-BS1)			Prepared	l: 10/17/24 1	0:00 Anal	lyzed: 10/17	7/24 15:34					
5035A/8260D												
Acetone	2.09		1.00	mg/kg we	t 50	2.00		105	80-120%			
Acrylonitrile	1.07		0.100	mg/kg we	t 50	1.00		107	80-120%			
Benzene	1.11		0.0100	mg/kg we	t 50	1.00		111	80-120%			
Bromobenzene	1.06		0.0250	mg/kg we	t 50	1.00		106	80-120%			
Bromochloromethane	1.09		0.0500	mg/kg we	t 50	1.00		109	80-120%			
Bromodichloromethane	1.22		0.0500	mg/kg we	t 50	1.00		122	80-120%			Q-5
Bromoform	1.47		0.100	mg/kg we	t 50	1.00		147	80-120%			Q-5
Bromomethane	1.42		0.500	mg/kg we	t 50	1.00		142	80-120%			Q-5
2-Butanone (MEK)	2.25		0.500	mg/kg we	t 50	2.00		113	80-120%			
n-Butylbenzene	1.17		0.0500	mg/kg we	t 50	1.00		117	80-120%			
sec-Butylbenzene	1.17		0.0500	mg/kg we	t 50	1.00		117	80-120%			
tert-Butylbenzene	1.14		0.0500	mg/kg we	t 50	1.00		114	80-120%			
Carbon disulfide	1.14		0.500	mg/kg we	t 50	1.00		114	80-120%			
Carbon tetrachloride	1.22		0.0500	mg/kg we	t 50	1.00		122	80-120%			Q-5
Chlorobenzene	1.10		0.0250	mg/kg we	t 50	1.00		110	80-120%			
Chloroethane	1.08		0.500	mg/kg we	t 50	1.00		108	80-120%			
Chloroform	1.12		0.0500	mg/kg we	t 50	1.00		112	80-120%			
Chloromethane	0.849		0.250	mg/kg we	t 50	1.00		85	80-120%			
2-Chlorotoluene	1.13		0.0500	mg/kg we	t 50	1.00		113	80-120%			
4-Chlorotoluene	1.18		0.0500	mg/kg we	t 50	1.00		118	80-120%			
Dibromochloromethane	1.37		0.100	mg/kg we	t 50	1.00		137	80-120%			Q-5
1,2-Dibromo-3-chloropropane	1.15		0.250	mg/kg we	t 50	1.00		115	80-120%			
1,2-Dibromoethane (EDB)	1.14		0.0500	mg/kg we	t 50	1.00		114	80-120%			
Dibromomethane	1.15		0.0500	mg/kg we	t 50	1.00		115	80-120%			
1,2-Dichlorobenzene	1.13		0.0250	mg/kg we	t 50	1.00		113	80-120%			
1,3-Dichlorobenzene	1.12		0.0250	mg/kg we	t 50	1.00		112	80-120%			
1,4-Dichlorobenzene	1.09		0.0250	mg/kg we		1.00		109	80-120%			
Dichlorodifluoromethane	0.924		0.100	mg/kg we	t 50	1.00		92	80-120%			ICV-0
1,1-Dichloroethane	1.09		0.0250	mg/kg we	t 50	1.00		109	80-120%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRCProject:DEQ Sampling6211 N Ensign StProject Number:P216.16354Portland, OR 97217Project Manager:Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Cor	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0706 - EPA 5035A							Soi	il .				
LCS (24J0706-BS1)			Prepared	: 10/17/24 1	0:00 Ana	lyzed: 10/17/	/24 15:34					
1,2-Dichloroethane (EDC)	1.15		0.0250	mg/kg we	t 50	1.00		115	80-120%			
1,1-Dichloroethene	1.13		0.0250	mg/kg we	t 50	1.00		113	80-120%			
cis-1,2-Dichloroethene	1.14		0.0250	mg/kg we	et 50	1.00		114	80-120%			
trans-1,2-Dichloroethene	1.13		0.0250	mg/kg we	t 50	1.00		113	80-120%			
1,2-Dichloropropane	1.13		0.0250	mg/kg we	et 50	1.00		113	80-120%			
1,3-Dichloropropane	1.16		0.0500	mg/kg we	t 50	1.00		116	80-120%			
2,2-Dichloropropane	1.48		0.0500	mg/kg we	et 50	1.00		148	80-120%			Q-
1,1-Dichloropropene	1.14		0.0500	mg/kg we	et 50	1.00		114	80-120%			
cis-1,3-Dichloropropene	1.27		0.0500	mg/kg we	et 50	1.00		127	80-120%			Q-
trans-1,3-Dichloropropene	1.36		0.0500	mg/kg we		1.00		136	80-120%			Q-
Ethylbenzene	1.13		0.0250	mg/kg we	et 50	1.00		113	80-120%			
Hexachlorobutadiene	1.14		0.100	mg/kg we	et 50	1.00		114	80-120%			
2-Hexanone	2.09		0.500	mg/kg we		2.00		105	80-120%			
Isopropylbenzene	1.07		0.0500	mg/kg we		1.00		107	80-120%			
4-Isopropyltoluene	1.13		0.0500	mg/kg we	et 50	1.00		113	80-120%			
Methylene chloride	1.05		0.500	mg/kg we		1.00		105	80-120%			
4-Methyl-2-pentanone (MiBK)	2.35		0.500	mg/kg we		2.00		118	80-120%			
Methyl tert-butyl ether (MTBE)	1.05		0.0500	mg/kg we		1.00		105	80-120%			
Naphthalene	0.918		0.100	mg/kg we		1.00		92	80-120%			
n-Propylbenzene	1.15		0.0250	mg/kg we		1.00		115	80-120%			
Styrene	1.02		0.0500	mg/kg we		1.00		102	80-120%			
1,1,2-Tetrachloroethane	1.23		0.0250	mg/kg we		1.00		123	80-120%			Q-
1,1,2,2-Tetrachloroethane	1.33		0.0500	mg/kg we		1.00		133	80-120%			Q-
Tetrachloroethene (PCE)	1.08		0.0250	mg/kg we		1.00		108	80-120%			
Toluene	1.03		0.0500	mg/kg we		1.00		103	80-120%			
1,2,3-Trichlorobenzene	1.01		0.250	mg/kg we		1.00		101	80-120%			
1,2,4-Trichlorobenzene	1.00		0.250	mg/kg we		1.00		100	80-120%			
1,1,1-Trichloroethane	1.19		0.0250	mg/kg we		1.00		119	80-120%			
1,1,2-Trichloroethane	1.15		0.0250	mg/kg we		1.00		115	80-120%			
Trichloroethene (TCE)	1.01		0.0250	mg/kg we		1.00		101	80-120%			
Trichlorofluoromethane	1.05		0.250	mg/kg we		1.00		105	80-120%			
1,2,3-Trichloropropane	1.13		0.0500	mg/kg we		1.00		113	80-120%			
1,2,4-Trimethylbenzene	1.19		0.0500	mg/kg we		1.00		119	80-120%			
1,3,5-Trimethylbenzene	1.21		0.0500	mg/kg we		1.00		121	80-120%			Q-

Apex Laboratories

11 la famil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 NRC
 Project:
 DEQ Sampling

 6211 N Ensign St
 Project Number:
 P216.16354
 Report ID:

 Portland, OR 97217
 Project Manager:
 Daniel Ogno
 A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0706 - EPA 5035A							So	il				
LCS (24J0706-BS1)			Prepared	1: 10/17/24 1	0:00 Ana	lyzed: 10/17	/24 15:34					
Vinyl chloride	1.03		0.0250	mg/kg we	t 50	1.00		103	80-120%			
m,p-Xylene	2.30		0.0500	mg/kg we	t 50	2.00		115	80-120%			
o-Xylene	1.08		0.0250	mg/kg we	t 50	1.00		108	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			97 %	79-	120 %		"					
Duplicate (24J0706-DUP1)			Prepared	1: 10/16/24 1	0:30 Ana	lyzed: 10/17	/24 17:51					
OC Source Sample: Non-SDG (A4	J1398-01)											
Acetone	ND		1.40	mg/kg dr	y 50		ND				30%	
Acrylonitrile	ND		0.140	mg/kg dr	y 50		ND				30%	
Benzene	ND		0.0140	mg/kg dr	y 50		ND				30%	
Bromobenzene	ND		0.0351	mg/kg dr	y 50		ND				30%	
Bromochloromethane	ND		0.0701	mg/kg dr	y 50		ND				30%	
Bromodichloromethane	ND		0.0701	mg/kg dr	y 50		ND				30%	
Bromoform	ND		0.140	mg/kg dr	y 50		ND				30%	
Bromomethane	ND		0.701	mg/kg dr	y 50		ND				30%	
2-Butanone (MEK)	ND		0.701	mg/kg dr	y 50		ND				30%	
n-Butylbenzene	ND		0.0701	mg/kg dr	y 50		ND				30%	
sec-Butylbenzene	ND		0.0701	mg/kg dr	y 50		ND				30%	
tert-Butylbenzene	ND		0.0701	mg/kg dr	y 50		ND				30%	
Carbon disulfide	ND		0.701	mg/kg dr	y 50		ND				30%	
Carbon tetrachloride	ND		0.0701	mg/kg dr	y 50		ND				30%	
Chlorobenzene	ND		0.0351	mg/kg dr	y 50		ND				30%	
Chloroethane	ND		0.701	mg/kg dr			ND				30%	
Chloroform	ND		0.0701	mg/kg dr	y 50		ND				30%	
Chloromethane	ND		0.351	mg/kg dr	y 50		ND				30%	
2-Chlorotoluene	ND		0.0701	mg/kg dr	y 50		ND				30%	
4-Chlorotoluene	ND		0.0701	mg/kg dr	y 50		ND				30%	
Dibromochloromethane	ND		0.140	mg/kg dr			ND				30%	
1,2-Dibromo-3-chloropropane	ND		0.351	mg/kg dr			ND				30%	
1,2-Dibromoethane (EDB)	ND		0.0701	mg/kg dr			ND				30%	
Dibromomethane	ND		0.0701	mg/kg dr			ND				30%	
1,2-Dichlorobenzene	ND		0.0351	mg/kg dr			ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRC Project: DEQ Sampling
6211 N Ensign St Project Number: P216.16354
Portland, OR 97217 Project Manager: Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24J0706 - EPA 5035A Soil Duplicate (24J0706-DUP1) Prepared: 10/16/24 10:30 Analyzed: 10/17/24 17:51 QC Source Sample: Non-SDG (A4J1398-01) 1,3-Dichlorobenzene ND 0.0351 mg/kg dry 50 ND 30% ND 0.0351 30% 1,4-Dichlorobenzene mg/kg dry 50 ND ICV-02 Dichlorodifluoromethane ND 0.140 mg/kg dry 50 ND 30% 1,1-Dichloroethane ND 0.0351 mg/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 0.0351 mg/kg dry 50 ND 30% ---ND 0.0351 30% 1,1-Dichloroethene mg/kg dry 50 ND cis-1,2-Dichloroethene ND 0.0351 mg/kg dry 50 ND 30% ND 0.0351 30% trans-1,2-Dichloroethene mg/kg dry 50 ND 1,2-Dichloropropane ND 0.0351 mg/kg dry 50 ND 30% 1,3-Dichloropropane ND 0.0701 mg/kg dry 50 ND 30% 2,2-Dichloropropane ND 0.0701 mg/kg dry 50 ND 30% 0.0701 mg/kg dry 1,1-Dichloropropene ND 30% 50 ND 0.0701 cis-1,3-Dichloropropene ND mg/kg dry 50 ND 30% trans-1,3-Dichloropropene ND 0.0701 ND 30% mg/kg dry 50 0.0351 Ethylbenzene ND mg/kg dry 50 ND 30% Hexachlorobutadiene ND 0.140 mg/kg dry 50 ND ___ ___ 30% 2-Hexanone ND 0.701 mg/kg dry 50 ND 30% ND 0.0701 ND 30% Isopropylbenzene mg/kg dry 50 ---4-Isopropyltoluene 0.0701 50 30% ND mg/kg dry ND Methylene chloride 0.701 30% ND mg/kg dry 50 ND 4-Methyl-2-pentanone (MiBK) ND 0.701 50 ND 30% mg/kg dry 0.0701 Methyl tert-butyl ether (MTBE) ND --mg/kg dry 50 ND ------30% Naphthalene ND 0.140 mg/kg dry 50 ND 30% ND 0.0351 30% n-Propylbenzene mg/kg dry 50 ND ---ND 0.0701 ND 30% Stvrene mg/kg dry 50 0.0351 50 ND 30% 1,1,1,2-Tetrachloroethane ND mg/kg dry 1,1,2,2-Tetrachloroethane ND 0.0701 50 ND 30% mg/kg dry Tetrachloroethene (PCE) 0.0351 30% ND mg/kg dry 50 ND ---Toluene ND 0.0701 mg/kg dry 50 ND 30% 1.2.3-Trichlorobenzene ND 0.351 50 ND 30% mg/kg dry ------1,2,4-Trichlorobenzene ND 0.351 mg/kg dry 50 ND 30% 1,1,1-Trichloroethane ND 0.0351 30% 50 ND mg/kg dry ---1,1,2-Trichloroethane ND 0.0351 mg/kg dry 50 ND 30%

Apex Laboratories

Quant la fruit

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 NRC
 Project:
 DEQ Sampling

 6211 N Ensign St
 Project Number:
 P216.16354
 Report ID:

 Portland, OR 97217
 Project Manager:
 Daniel Ogno
 A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0706 - EPA 5035A							Soi	I				
Duplicate (24J0706-DUP1)			Prepared	l: 10/16/24 1	0:30 Ana	lyzed: 10/17	/24 17:51					
QC Source Sample: Non-SDG (A4	J1398-01)											
Trichloroethene (TCE)	ND		0.0351	mg/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND		0.351	mg/kg dr	y 50		ND				30%	
1,2,3-Trichloropropane	ND		0.0701	mg/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND		0.0701	mg/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND		0.0701	mg/kg dr	y 50		ND				30%	
Vinyl chloride	ND		0.0351	mg/kg dr			ND				30%	
m,p-Xylene	ND		0.0701	mg/kg dr	y 50		ND				30%	
o-Xylene	ND		0.0351	mg/kg dr	y 50		ND				30%	
urr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80-	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			104 %	79-	120 %		"					
QC Source Sample: Non-SDG (A4	J1380-07)											
5035A/8260D												
Acetone	3.30		1.45	mg/kg dr	•	2.91	ND	114	36-164%			
Acrylonitrile	1.24		0.145	mg/kg dr	•	1.45	ND	86	65-134%			
Benzene	1.44		0.0145	mg/kg dr	y 50	1.45	ND	99	77-121%			
Bromobenzene	1.51		0.0364	mg/kg dr	y 50	1.45	ND	104	78-121%			
Bromochloromethane	1.42		0.0727	mg/kg dr	•	1.45	ND	98	78-125%			
Bromodichloromethane	1.84		0.0727	mg/kg dr		1.45	ND	127	75-127%			Q-:
Bromoform	2.38		0.145	mg/kg dr	•	1.45	ND	164	67-132%			Q-
Bromomethane	2.37		0.727	mg/kg dr	•	1.45	ND	163	53-143%			Q-:
2-Butanone (MEK)	2.92		0.727	mg/kg dr		2.91	ND	100	51-148%			
n-Butylbenzene	1.59		0.0727	mg/kg dr	-	1.45	ND	110	70-128%			
sec-Butylbenzene	1.66		0.0727	mg/kg dr	-	1.45	ND	114	73-126%			
tert-Butylbenzene	1.71		0.0727	mg/kg dr		1.45	ND	117	73-125%			
Carbon disulfide	1.88		0.727	mg/kg dr	-	1.45	ND	130	63-132%			
Carbon tetrachloride	2.07		0.0727	mg/kg dr	•	1.45	ND	142	70-135%			Q-
Chlorobenzene	1.76		0.0364	mg/kg dr	-	1.45	0.164	110	79-120%			
Chloroethane	2.74		0.727	mg/kg dr	•	1.45	ND	189	59-139%			Q
Chloroform	1.69		0.0727	mg/kg dr	-	1.45	ND	116	78-123%			
Chloromethane	1.10		0.364	mg/kg dr	y 50	1.45	ND	76	50-136%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRCProject:DEQ Sampling6211 N Ensign StProject Number:P216.16354Portland, OR 97217Project Manager:Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24J0706 - EPA 5035A Soil Matrix Spike (24J0706-MS1) Prepared: 10/15/24 13:43 Analyzed: 10/17/24 23:18 QC Source Sample: Non-SDG (A4J1380-07) 2-Chlorotoluene 1.50 0.0727 mg/kg dry 50 1.45 ND 103 75-122% 0.07274-Chlorotoluene 1.64 mg/kg dry 50 1.45 ND 113 72-124% Dibromochloromethane 2.19 0.145 mg/kg dry 50 1.45 ND 150 74-126% Q-54e 1,2-Dibromo-3-chloropropane 1.61 0.364 mg/kg dry 50 1.45 ND 110 61-132% 1,2-Dibromoethane (EDB) 1.66 0.0727 mg/kg dry 50 1.45 ND 114 78-122% 0.0727 78-125% Dibromomethane 1.64 mg/kg dry 50 1.45 ND 113 1,2-Dichlorobenzene 1.59 0.0364mg/kg dry 50 1.45 ND 109 78-121% 0.036477-121% 1,3-Dichlorobenzene 1.55 mg/kg dry 50 1.45 ND 106 1,4-Dichlorobenzene 1.54 0.0364 mg/kg dry 50 1.45 ND 106 75-120% ICV-02 Dichlorodifluoromethane 1.54 0.145 mg/kg dry 50 1.45 ND 106 29-149% 1,1-Dichloroethane 1.50 0.0364 mg/kg dry 50 1.45 ND 103 76-125% 1,2-Dichloroethane (EDC) 0.0364 1.81 mg/kg dry 50 73-128% 1.45 ND 125 1.99 0.0364 Q-01 1,1-Dichloroethene mg/kg dry 50 1.45 ND 137 70-131% cis-1,2-Dichloroethene 1.54 0.0364 50 1.45 ND 77-123% mg/kg dry 106 trans-1,2-Dichloroethene 0.0364 1.51 mg/kg dry 50 1.45 ND 104 74-125% 1,2-Dichloropropane 1.43 0.0364 mg/kg dry 50 1.45 ND 98 76-123% ___ 1,3-Dichloropropane 1.61 0.0727mg/kg dry 50 1.45 ND 111 77-121% 1.95 0.0727 50 ND O-54k 2,2-Dichloropropane mg/kg dry 1.45 67-133% 134 0.072750 76-125% 1,1-Dichloropropene 1.54 mg/kg dry 1.45 ND 106 Q-54r 0.0727 cis-1,3-Dichloropropene 1.70 mg/kg dry 50 ND 117 74-126% 1.45 1.99 0.0727 50 1.45 Q-54q trans-1,3-Dichloropropene mg/kg dry ND 137 71-130% Ethylbenzene 1.68 ---0.0364 mg/kg dry 50 1.45 ND 116 76-122% Hexachlorobutadiene 1.70 0.145 mg/kg dry 50 1.45 ND 117 61-135% 2.75 0.727 2.91 95 2-Hexanone mg/kg dry 50 ND 53-145% ------Isopropylbenzene 0.0727 68-134% 1.56 mg/kg dry 50 1.45 ND 107 0.0727 ND 107 4-Isopropyltoluene 1.56 50 1.45 73-127% mg/kg dry Methylene chloride 1.31 0.727 50 1.45 ND 90 70-128% mg/kg dry 3.21 0.727 4-Methyl-2-pentanone (MiBK) mg/kg dry 50 2.91 ND 110 65-135% ------Methyl tert-butyl ether (MTBE) 1.40 0.0727 mg/kg dry 50 1.45 ND 96 73-125% Naphthalene 1.15 0.145 50 1 45 ND 79 62-129% mg/kg dry n-Propylbenzene 1.66 0.0364 mg/kg dry 50 1.45 ND 114 73-125% 0.0727 Styrene 1.46 50 1.45 ND 101 76-124% mg/kg dry 1,1,1,2-Tetrachloroethane 1.96 0.0364 mg/kg dry 50 1.45 ND 135 78-125% Q-541

Apex Laboratories

Quand la fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRCProject:DEQ Sampling6211 N Ensign StProject Number:P216.16354Portland, OR 97217Project Manager:Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0706 - EPA 5035A							So	il				
Matrix Spike (24J0706-MS1)			Prepared	1: 10/15/24 1	3:43 Ana	lyzed: 10/17	/24 23:18					
QC Source Sample: Non-SDG (A4.	J1380-07)											
1,1,2,2-Tetrachloroethane	1.71		0.0727	mg/kg dr	y 50	1.45	ND	118	70-124%			Q-54
Tetrachloroethene (PCE)	1.65		0.0364	mg/kg dr	y 50	1.45	ND	113	73-128%			
Toluene	1.46		0.0727	mg/kg dr	y 50	1.45	ND	100	77-121%			
1,2,3-Trichlorobenzene	1.43		0.364	mg/kg dr	y 50	1.45	ND	98	66-130%			
1,2,4-Trichlorobenzene	1.34		0.364	mg/kg dr	y 50	1.45	ND	92	67-129%			
1,1,1-Trichloroethane	1.91		0.0364	mg/kg dr	y 50	1.45	ND	131	73-130%			Q-0
1,1,2-Trichloroethane	1.63		0.0364	mg/kg dr	y 50	1.45	ND	112	78-121%			
Trichloroethene (TCE)	1.36		0.0364	mg/kg dr	y 50	1.45	ND	93	77-123%			
Trichlorofluoromethane	5.90		0.364	mg/kg dr	y 50	1.45	ND	406	62-140%			Q-0
1,2,3-Trichloropropane	1.59		0.0727	mg/kg dr	y 50	1.45	ND	109	73-125%			
1,2,4-Trimethylbenzene	1.69		0.0727	mg/kg dr	y 50	1.45	ND	116	75-123%			
1,3,5-Trimethylbenzene	1.71		0.0727	mg/kg dr	y 50	1.45	ND	118	73-124%			Q-5
Vinyl chloride	1.41		0.0364	mg/kg dr	y 50	1.45	ND	97	56-135%			
m,p-Xylene	3.49		0.0727	mg/kg dr	y 50	2.91	ND	120	77-124%			
o-Xylene	1.56		0.0364	mg/kg dr	y 50	1.45	ND	107	77-123%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 89 %	Limits: 80-	120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			97 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			95 %	79-	120 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRC Project: DEQ Sampling
6211 N Ensign St Project Number: P216.16354
Portland, OR 97217 Project Manager: Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24J0748 - EPA 5035A Soil Blank (24J0748-BLK1) Prepared: 10/18/24 08:00 Analyzed: 10/18/24 11:08 5035A/8260D ND 1.00 mg/kg wet Acetone 50 ND 0.100 50 Acrylonitrile mg/kg wet ---Benzene ND 0.0100 mg/kg wet 50 ND 0.0250 Bromobenzene mg/kg wet 50 Bromochloromethane ND 0.0500 mg/kg wet 50 ND 0.0500 Bromodichloromethane mg/kg wet 50 ---Bromoform ND 0.100 mg/kg wet 50 0.500 Bromomethane ND mg/kg wet 50 ---2-Butanone (MEK) ND 0.500 mg/kg wet 50 n-Butylbenzene ND 0.0500 mg/kg wet 50 sec-Butylbenzene ND 0.0500mg/kg wet 50 ND 0.0500 tert-Butylbenzene 50 mg/kg wet ---Carbon disulfide ND 0.500 mg/kg wet 50 Carbon tetrachloride ND 0.0500 50 mg/kg wet Chlorobenzene ND 0.0250mg/kg wet 50 Chloroethane ND 0.500 mg/kg wet 50 ------Chloroform ND 0.0500mg/kg wet 50 Chloromethane ND 0.250 mg/kg wet 50 ---------2-Chlorotoluene ND 0.0500 mg/kg wet 50 50 4-Chlorotoluene ND 0.0500 mg/kg wet Dibromochloromethane ND 0.100 mg/kg wet 50 1,2-Dibromo-3-chloropropane ND 0.250 mg/kg wet 50 1,2-Dibromoethane (EDB) ND 0.0500mg/kg wet 50 Dibromomethane ND 0.0500 mg/kg wet 50 0.0250 1,2-Dichlorobenzene ND mg/kg wet 50 1,3-Dichlorobenzene ND 0.0250 mg/kg wet 50 1,4-Dichlorobenzene ND 0.0250mg/kg wet 50 ICV-02 Dichlorodifluoromethane ND 0.100 mg/kg wet 50 ------ND 0.02501,1-Dichloroethane mg/kg wet 50 0.0250 1,2-Dichloroethane (EDC) ND mg/kg wet 50 1,1-Dichloroethene ND 0.0250mg/kg wet 50 cis-1,2-Dichloroethene ND 0.0250 mg/kg wet 50 trans-1,2-Dichloroethene ND 0.0250 mg/kg wet 50

Apex Laboratories

Quand la fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRC Project: DEQ Sampling
6211 N Ensign St Project Number: P216.16354
Portland, OR 97217 Project Manager: Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24J0748 - EPA 5035A Soil Blank (24J0748-BLK1) Prepared: 10/18/24 08:00 Analyzed: 10/18/24 11:08 ND 0.0250 mg/kg wet 50 1,2-Dichloropropane 0.0500 1,3-Dichloropropane ND mg/kg wet 50 -----mg/kg wet 2,2-Dichloropropane ND 0.0500 50 1,1-Dichloropropene ND 0.0500 mg/kg wet 50 cis-1,3-Dichloropropene ND 0.0500 mg/kg wet 50 trans-1,3-Dichloropropene ND 0.0500 mg/kg wet 50 Ethylbenzene 0.0250 ND mg/kg wet 50 Hexachlorobutadiene ND 0.100 mg/kg wet 50 0.500 2-Hexanone ND mg/kg wet 50 Isopropylbenzene ND 0.0500 mg/kg wet 50 4-Isopropyltoluene ND 0.0500mg/kg wet 50 Methylene chloride 0.500 ND mg/kg wet 50 0.500 4-Methyl-2-pentanone (MiBK) ND mg/kg wet 50 ---Methyl tert-butyl ether (MTBE) ND 0.0500mg/kg wet 50 ND Naphthalene 0.100 50 mg/kg wet n-Propylbenzene ND 0.0250 mg/kg wet 50 ND 0.0500 Stvrene mg/kg wet 50 1,1,1,2-Tetrachloroethane ND 0.0250 mg/kg wet 50 1,1,2,2-Tetrachloroethane ND 0.0500 mg/kg wet 50 ------Tetrachloroethene (PCE) ND 0.0250mg/kg wet 50 Toluene ND 0.0500 mg/kg wet 50 ---1,2,3-Trichlorobenzene ND 0.250 mg/kg wet 50 1.2.4-Trichlorobenzene ND 0.250 mg/kg wet 50 1,1,1-Trichloroethane ND 0.0250mg/kg wet 50 ND 0.0250 1,1,2-Trichloroethane mg/kg wet 50 ------Trichloroethene (TCE) ND 0.0250mg/kg wet 50 50 Trichlorofluoromethane ND 0.250 mg/kg wet ------1,2,3-Trichloropropane ND 0.0500 mg/kg wet 50 1,2,4-Trimethylbenzene ND 0.0500 50 mg/kg wet 1,3,5-Trimethylbenzene ND 0.0500mg/kg wet 50 50 Vinyl chloride ND 0.0250 mg/kg wet m,p-Xylene ND 0.0500 mg/kg wet 50 o-Xylene ND 0.0250 mg/kg wet 50

Limits: 80-120 %

Apex Laboratories

Surr: 1,4-Difluorobenzene (Surr)

Dund la fruit

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Dilution: 1x

Recovery: 95 %

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 NRC
 Project:
 DEQ Sampling

 6211 N Ensign St
 Project Number:
 P216.16354
 Report ID:

 Portland, OR 97217
 Project Manager:
 Daniel Ogno
 A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Com	pounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0748 - EPA 5035A							Soi	il				
Blank (24J0748-BLK1)			Prepared	1: 10/18/24 08	3:00 Ana	lyzed: 10/18	/24 11:08					
Surr: Toluene-d8 (Surr)		Rec	overy: 99 %	Limits: 80-1	20 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			103 %	79-1	20 %		"					
LCS (24J0748-BS1)			Prepared	1: 10/18/24 08	:00 Ana	lyzed: 10/18/	/24 10:13					
5035A/8260D												
Acetone	1.83		1.00	mg/kg wet	50	2.00		91	80-120%			
Acrylonitrile	0.927		0.100	mg/kg wet	50	1.00		93	80-120%			
Benzene	1.06		0.0100	mg/kg wet	50	1.00		106	80-120%			
Bromobenzene	1.06		0.0250	mg/kg wet	50	1.00		106	80-120%			
Bromochloromethane	0.987		0.0500	mg/kg wet	50	1.00		99	80-120%			
Bromodichloromethane	1.23		0.0500	mg/kg wet	50	1.00		123	80-120%			Q-5
Bromoform	1.56		0.100	mg/kg wet	50	1.00		156	80-120%			Q-5
Bromomethane	1.47		0.500	mg/kg wet	50	1.00		147	80-120%			Q-5
2-Butanone (MEK)	2.00		0.500	mg/kg wet	50	2.00		100	80-120%			
n-Butylbenzene	1.11		0.0500	mg/kg wet	50	1.00		111	80-120%			
sec-Butylbenzene	1.12		0.0500	mg/kg wet	50	1.00		112	80-120%			
tert-Butylbenzene	1.14		0.0500	mg/kg wet	50	1.00		114	80-120%			
Carbon disulfide	1.30		0.500	mg/kg wet	50	1.00		130	80-120%			Q-5
Carbon tetrachloride	1.31		0.0500	mg/kg wet	50	1.00		131	80-120%			Q-5
Chlorobenzene	1.11		0.0250	mg/kg wet	50	1.00		111	80-120%			
Chloroethane	1.35		0.500	mg/kg wet	50	1.00		135	80-120%			Q-5
Chloroform	1.15		0.0500	mg/kg wet	50	1.00		115	80-120%			
Chloromethane	0.736		0.250	mg/kg wet	50	1.00		74	80-120%			Q-5
2-Chlorotoluene	1.12		0.0500	mg/kg wet	50	1.00		112	80-120%			
4-Chlorotoluene	1.17		0.0500	mg/kg wet	50	1.00		117	80-120%			
Dibromochloromethane	1.44		0.100	mg/kg wet	50	1.00		144	80-120%			Q-5
1,2-Dibromo-3-chloropropane	1.16		0.250	mg/kg wet	50	1.00		116	80-120%			
1,2-Dibromoethane (EDB)	1.15		0.0500	mg/kg wet		1.00		115	80-120%			
Dibromomethane	1.12		0.0500	mg/kg wet		1.00		112	80-120%			
1,2-Dichlorobenzene	1.12		0.0250	mg/kg wet		1.00		112	80-120%			
1,3-Dichlorobenzene	1.10		0.0250	mg/kg wet		1.00		110	80-120%			
1,4-Dichlorobenzene	1.07		0.0250	mg/kg wet		1.00		107	80-120%			
Dichlorodifluoromethane	0.902		0.100	mg/kg wet		1.00		90	80-120%			ICV-0
1,1-Dichloroethane	1.05		0.0250	mg/kg wet		1.00		105	80-120%			

Apex Laboratories

ai

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRC Project: DEQ Sampling
6211 N Ensign St Project Number: P216.16354
Portland, OR 97217 Project Manager: Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24J0748 - EPA 5035A Soil LCS (24J0748-BS1) Prepared: 10/18/24 08:00 Analyzed: 10/18/24 10:13 1,2-Dichloroethane (EDC) 1.16 0.0250 mg/kg wet 50 1.00 116 80-120% 0.0250 Q-56 1,1-Dichloroethene 1.26 mg/kg wet 50 1.00 126 80-120% -----cis-1.2-Dichloroethene 1.11 0.0250 mg/kg wet 50 1.00 111 80-120% trans-1,2-Dichloroethene 1.10 0.0250 mg/kg wet 50 1.00 110 80-120% 103 1,2-Dichloropropane 1.03 0.0250mg/kg wet 50 1.00 80-120% 1,3-Dichloropropane 1.13 0.0500 mg/kg wet 50 1.00 113 80-120% Q-56 2,2-Dichloropropane 1.52 0.0500 mg/kg wet 50 1.00 152 80-120% 1,1-Dichloropropene 1.10 0.0500 mg/kg wet 50 1.00 110 80-120% Q-56 0.0500 cis-1,3-Dichloropropene 1.25 --mg/kg wet 50 1.00 125 80-120% trans-1,3-Dichloropropene 1.39 0.0500mg/kg wet 50 1.00 139 80-120% Q-56 Ethylbenzene 1.14 0.0250mg/kg wet 50 1.00 80-120% 114 Hexachlorobutadiene 0.100 1.15 mg/kg wet 50 1.00 115 80-120% 80-120% 1.93 0.500 97 2-Hexanone --mg/kg wet 50 2.00 Isopropylbenzene 1.05 0.0500 mg/kg wet 50 1.00 105 80-120% 50 4-Isopropyltoluene 0.0500 80-120% 1.11 mg/kg wet 1.00 111 Methylene chloride 0.943 0.500 mg/kg wet 50 1.00 94 80-120% 4-Methyl-2-pentanone (MiBK) 0.500 108 2.16 mg/kg wet 50 2.00 80-120% Methyl tert-butyl ether (MTBE) 1.04 0.0500 mg/kg wet 50 104 80-120% 1.00 Naphthalene 87 0.874 0.100 1.00 mg/kg wet 50 80-120% --n-Propylbenzene 1.11 0.0250 mg/kg wet 50 1.00 111 80-120% 50 1.01 0.0500 1.00 101 80-120% Styrene mg/kg wet 1,1,1,2-Tetrachloroethane 1.31 0.0250 mg/kg wet 50 1.00 131 80-120% O-56 1,1,2,2-Tetrachloroethane 1.24 0.0500 mg/kg wet 50 1.00 Q-56 124 80-120% Tetrachloroethene (PCE) 1.14 0.0250mg/kg wet 50 1.00 80-120% 114 Toluene 1.02 0.0500 1.00 102 mg/kg wet 50 80-120% ---------1,2,3-Trichlorobenzene 1.03 0.250 mg/kg wet 50 1.00 103 80-120% 1.2.4-Trichlorobenzene 0.994 0.250 50 1.00 99 80-120% mg/kg wet ------1,1,1-Trichloroethane 1.26 0.0250 mg/kg wet 50 1.00 126 80-120% Q-56 1,1,2-Trichloroethane 1.13 0.0250 50 1.00 113 80-120% mg/kg wet Trichloroethene (TCE) 0.981 0.0250mg/kg wet 50 1.00 98 80-120% Trichlorofluoromethane 1.24 0.250 50 124 80-120% Q-56 mg/kg wet 1.00 1,2,3-Trichloropropane 1.15 0.0500 mg/kg wet 50 1.00 115 80-120% 1,2,4-Trimethylbenzene 1.18 0.0500 mg/kg wet 50 1.00 118 80-120% 1,3,5-Trimethylbenzene 1.19 0.0500mg/kg wet 50 1.00 119 80-120%

Apex Laboratories

Quant la fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 NRC
 Project:
 DEQ Sampling

 6211 N Ensign St
 Project Number:
 P216.16354
 Report ID:

 Portland, OR 97217
 Project Manager:
 Daniel Ogno
 A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	341110 OOIII	Pouride							
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0748 - EPA 5035A							Soi	il				
LCS (24J0748-BS1)			Prepared	1: 10/18/24 08	:00 Ana	lyzed: 10/18	/24 10:13					
Vinyl chloride	0.905		0.0250	mg/kg wet	50	1.00		91	80-120%			
m,p-Xylene	2.32		0.0500	mg/kg wet	50	2.00		116	80-120%			
o-Xylene	1.07		0.0250	mg/kg wet	50	1.00		107	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 96 %	Limits: 80-1	20 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80-1	20 %		"					
4-Bromofluorobenzene (Surr)			96 %	79-1	20 %		"					
Duplicate (24J0748-DUP1)			Prepared	l: 10/17/24 16	:45 Ana	lyzed: 10/18	/24 13:24				H-0	1, V-16, V-21
OC Source Sample: Non-SDG (A4)	[1524-01]											
Acetone	ND		4.82	mg/kg dry	200		ND				30%	
Acrylonitrile	ND		0.482	mg/kg dry	200		ND				30%	
Benzene	ND		0.0482	mg/kg dry	200		ND				30%	
Bromobenzene	ND		0.120	mg/kg dry	200		ND				30%	
Bromochloromethane	ND		0.241	mg/kg dry	200		ND				30%	
Bromodichloromethane	ND		0.241	mg/kg dry	200		ND				30%	
Bromoform	ND		0.482	mg/kg dry	200		ND				30%	
Bromomethane	ND		2.41	mg/kg dry	200		ND				30%	
2-Butanone (MEK)	ND		2.41	mg/kg dry	200		ND				30%	
n-Butylbenzene	5.21		0.241	mg/kg dry	200		5.36			3	30%	M-
sec-Butylbenzene	2.47		0.241	mg/kg dry	200		2.39			3	30%	
tert-Butylbenzene	ND		6.02	mg/kg dry	200		ND				30%	R-
Carbon disulfide	ND		2.41	mg/kg dry	200		ND				30%	
Carbon tetrachloride	ND		0.241	mg/kg dry	200		ND				30%	
Chlorobenzene	ND		0.120	mg/kg dry	200		ND				30%	
Chloroethane	ND		2.41	mg/kg dry	200		ND				30%	
Chloroform	ND		0.241	mg/kg dry	200		ND				30%	
Chloromethane	ND		1.20	mg/kg dry	200		ND				30%	
2-Chlorotoluene	ND		0.241	mg/kg dry	200		ND				30%	
4-Chlorotoluene	ND		0.241	mg/kg dry	200		ND				30%	
Dibromochloromethane	ND		0.482	mg/kg dry			ND				30%	
1,2-Dibromo-3-chloropropane	ND		1.20	mg/kg dry			ND				30%	
1,2-Dibromoethane (EDB)	ND		0.241	mg/kg dry			ND				30%	
Dibromomethane	ND		0.241	mg/kg dry			ND				30%	
1,2-Dichlorobenzene	ND		0.120	mg/kg dry			ND				30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRCProject:DEQ Sampling6211 N Ensign StProject Number:P216.16354Portland, OR 97217Project Manager:Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24J0748 - EPA 5035A Soil Duplicate (24J0748-DUP1) Prepared: 10/17/24 16:45 Analyzed: 10/18/24 13:24 H-01, V-16, V-21 QC Source Sample: Non-SDG (A4I1524-01) 1,3-Dichlorobenzene ND 0.120 mg/kg dry 200 ND 30% ND 0.120 30% 1,4-Dichlorobenzene mg/kg dry 200 ND ICV-02 Dichlorodifluoromethane ND 0.482 mg/kg dry 200 ND 30% 1,1-Dichloroethane ND 0.120mg/kg dry 200 ND 30% 1,2-Dichloroethane (EDC) ND 0.120 mg/kg dry 200 ND 30% ------ND 30% 1,1-Dichloroethene 0.120 mg/kg dry 200 ND cis-1,2-Dichloroethene ND 0.120 mg/kg dry 200 ND 30% ND 30% trans-1,2-Dichloroethene 0.120 mg/kg dry 200 ND 1,2-Dichloropropane ND 0.120 mg/kg dry 200 ND 30% 1,3-Dichloropropane ND 0.241 mg/kg dry 200 ND 30% 2,2-Dichloropropane ND 0.241 mg/kg dry 200 ND 30% 0.241 1,1-Dichloropropene ND 30% mg/kg dry 200 ND ND 0.241 cis-1,3-Dichloropropene mg/kg dry 200 ND 30% 200 trans-1,3-Dichloropropene ND 0.241 ND 30% mg/kg dry 0.120 Ethylbenzene 0.323 mg/kg dry 200 0.320 0.7 30% Hexachlorobutadiene ND 0.482 mg/kg dry 200 ND ___ ---30% 2-Hexanone ND 2.41 mg/kg dry 200 ND 30% 0.778 0.241 0.768 1 30% Isopropylbenzene 200 mg/kg dry 0.241 0.4 30% M-02 4-Isopropyltoluene 1.71 mg/kg dry 200 1.72 Methylene chloride 2.41 30% ND mg/kg dry 200 ND ---4-Methyl-2-pentanone (MiBK) ND 2.41 30% mg/kg dry 200 ND 0.241 Methyl tert-butyl ether (MTBE) ND --mg/kg dry 200 ND ------30% Naphthalene 3.00 0.482 mg/kg dry 200 3.41 13 30% M-02 0.120 7 30% n-Propylbenzene 2.53 mg/kg dry 200 2.37 ---ND 0.241 30% Stvrene mg/kg dry 200 ND 0.120 ND 30% 1,1,1,2-Tetrachloroethane ND 200 mg/kg dry 1,1,2,2-Tetrachloroethane ND 3.61 ND 30% R-02 mg/kg dry 200 Tetrachloroethene (PCE) 0.120 30% ND mg/kg dry 200 ND ---Toluene ND 0.241 mg/kg dry 200 ND 30% 1.2.3-Trichlorobenzene ND 1.20 200 ND 30% mg/kg dry ------1,2,4-Trichlorobenzene ND 1.20 200 ND 30% mg/kg dry 1,1,1-Trichloroethane 0.120 30% ND 200 ND mg/kg dry ---1,1,2-Trichloroethane ND 1.20 mg/kg dry 200 ND 30% R-02

Apex Laboratories

Quand la fruit

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 NRC
 Project:
 DEQ Sampling

 6211 N Ensign St
 Project Number:
 P216.16354
 Report ID:

 Portland, OR 97217
 Project Manager:
 Daniel Ogno
 A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	8260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0748 - EPA 5035A							Soi	ı				
Duplicate (24J0748-DUP1)			Prepared	1: 10/17/24 1	6:45 Anal	lyzed: 10/18	3/24 13:24				H-0	1, V-16, V-21
QC Source Sample: Non-SDG (A4	I1524-01)											
Trichloroethene (TCE)	ND		0.120	mg/kg dr	y 200		ND				30%	
Trichlorofluoromethane	ND		1.20	mg/kg dr	y 200		ND				30%	
1,2,3-Trichloropropane	ND		2.41	mg/kg dr	y 200		ND				30%	R-0
1,2,4-Trimethylbenzene	26.6		0.241	mg/kg dr	y 200		26.6			0.05	30%	
1,3,5-Trimethylbenzene	8.48		0.241	mg/kg dr	y 200		8.21			3	30%	
Vinyl chloride	ND		0.120	mg/kg dr	y 200		ND				30%	
m,p-Xylene	7.35		0.241	mg/kg dr	y 200		7.43			1	30%	
o-Xylene	5.06		0.120	mg/kg dr	y 200		5.28			4	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 112 %	Limits: 80-	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			93 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			103 %	79-	120 %		"					
QC Source Sample: Non-SDG (A4 5035A/8260D	J1375-05)											
	2.76		1 41	/1 4	50	2.02	ND	98	26 1640/			
Acetone Acrylonitrile	2.76 1.55		1.41 0.141	mg/kg dr		2.82 1.41	ND ND	98 110	36-164% 65-134%			
Benzene	1.55			mg/kg dr		1.41	ND ND					Q-0
Bromobenzene	1.78		0.0141 0.0353	mg/kg dr		1.41	ND ND	126 113	77-121% 78-121%			Q-0
Bromochloromethane			0.0333	mg/kg dr		1.41	ND ND	108	78-121% 78-125%			
Bromodichloromethane	1.52 1.71		0.0705	mg/kg dr		1.41	ND ND	108	75-125% 75-127%			Q-54
Bromoform	1.71		0.0703	mg/kg dr		1.41	ND ND	121 134	67-132%			Q-54i
Bromomethane	1.89		0.705	mg/kg dr		1.41	ND ND	134	53-143%			Q-54
2-Butanone (MEK)	3.24		0.705	mg/kg dr mg/kg dr		2.82	ND ND	115	51-148%			Q-5-
n-Butylbenzene	1.73		0.703			1.41	ND ND	122	70-128%			
sec-Butylbenzene	1.73		0.0705	mg/kg dr mg/kg dr		1.41	ND ND	122	73-126%			
SCC-DUIVIDCHZCHC				1119/K9 (II	y 50	1.41	MD	141	13-120/0			
•						1.41	ND	112	73 1250/			
tert-Butylbenzene	1.58		0.0705	mg/kg dr	y 50	1.41	ND ND	112 126	73-125% 63-132%			0-54
tert-Butylbenzene Carbon disulfide	1.58 1.78		0.0705 0.705	mg/kg dr mg/kg dr	y 50 y 50	1.41	ND	126	63-132%			•
tert-Butylbenzene Carbon disulfide Carbon tetrachloride	1.58 1.78 1.75		0.0705 0.705 0.0705	mg/kg dr mg/kg dr mg/kg dr	y 50 y 50 y 50	1.41 1.41	ND ND	126 124	63-132% 70-135%			Q-54 Q-54
tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene	1.58 1.78 1.75 1.56	 	0.0705 0.705 0.0705 0.0353	mg/kg dr mg/kg dr mg/kg dr mg/kg dr	y 50 y 50 y 50 y 50	1.41 1.41 1.41	ND ND ND	126 124 111	63-132% 70-135% 79-120%			Q-54l
tert-Butylbenzene Carbon disulfide Carbon tetrachloride	1.58 1.78 1.75		0.0705 0.705 0.0705	mg/kg dr mg/kg dr mg/kg dr	y 50 y 50 y 50 y 50 y 50 y 50	1.41 1.41	ND ND	126 124	63-132% 70-135%			•

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRC Project: DEQ Sampling
6211 N Ensign St Project Number: P216.16354
Portland, OR 97217 Project Manager: Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24J0748 - EPA 5035A Soil Matrix Spike (24J0748-MS1) Prepared: 10/15/24 16:00 Analyzed: 10/18/24 13:52 CONT QC Source Sample: Non-SDG (A4J1375-05) 2-Chlorotoluene 1.69 0.0705 mg/kg dry 50 1.41 ND 120 75-122% 0.0705 4-Chlorotoluene 1.60 mg/kg dry 50 1.41 ND 114 72-124% Q-54i Dibromochloromethane 1.79 0.141 mg/kg dry 50 1.41 ND 127 74-126% 1,2-Dibromo-3-chloropropane 1.72 0.353 mg/kg dry 50 1.41 ND 122 61-132% 1,2-Dibromoethane (EDB) 1.57 0.0705 mg/kg dry 50 1.41 ND 112 78-122% 0.070578-125% Dibromomethane 1.71 mg/kg dry 50 1.41 ND 121 1,2-Dichlorobenzene 1.62 0.0353mg/kg dry 50 1.41 ND 115 78-121% 0.0353 77-121% 1,3-Dichlorobenzene 1.57 mg/kg dry 50 1.41 ND 111 1,4-Dichlorobenzene 1.50 0.0353 mg/kg dry 50 1.41 ND 106 75-120% ICV-02 Dichlorodifluoromethane 1.45 0.141 mg/kg dry 50 1.41 ND 103 29-149% 1,1-Dichloroethane 1.60 0.0353 mg/kg dry 50 1.41 ND 114 76-125% 1,2-Dichloroethane (EDC) 0.0353mg/kg dry 50 102 73-128% 1.44 1.41 ND 0.0353Q-54q 1,1-Dichloroethene 1.50 mg/kg dry 50 1.41 ND 107 70-131% cis-1,2-Dichloroethene 1.68 0.0353 50 1.41 ND 77-123% mg/kg dry 119 trans-1,2-Dichloroethene 0.0353 1.66 mg/kg dry 50 1.41 ND 118 74-125% 1,2-Dichloropropane 1.74 0.0353 mg/kg dry 50 1.41 ND 124 76-123% ___ O - 0.11,3-Dichloropropane 1.48 0.0705mg/kg dry 50 1.41 ND 105 77-121% 1 97 0.070550 ND O-54m 2,2-Dichloropropane mg/kg dry 1.41 67-133% 140 1.77 0.070550 76-125% Q-01 1,1-Dichloropropene mg/kg dry 1.41 ND 126 0.0705 Q-54p cis-1,3-Dichloropropene 1.62 mg/kg dry 50 ND 74-126% 1.41 115 0.0705 50 1.41 71-130% Q-54f trans-1,3-Dichloropropene 1.64 mg/kg dry ND 117 Ethylbenzene 76-122% 1.53 ---0.0353mg/kg dry 50 1.41 ND 109 Hexachlorobutadiene 1.66 0.141 mg/kg dry 50 1.41 ND 118 61-135% 0.705 2.82 92 2-Hexanone 2.60 mg/kg dry 50 ND 53-145% ------Isopropylbenzene 0.0705 68-134% 1.53 mg/kg dry 50 1.41 ND 109 0.0705 ND 4-Isopropyltoluene 1.71 50 1.41 121 73-127% mg/kg dry Methylene chloride 1.65 0.705 50 1.41 ND 117 70-128% mg/kg dry 2.84 0.705 4-Methyl-2-pentanone (MiBK) mg/kg dry 50 2.82 ND 101 65-135% ------Methyl tert-butyl ether (MTBE) 1.54 0.0705 mg/kg dry 50 1.41 ND 109 73-125% Naphthalene 1.53 0.141 50 1 41 ND 108 62-129% mg/kg dry n-Propylbenzene 1.66 0.0353 50 1.41 ND 118 73-125% mg/kg dry 1.42 0.0705 Styrene 50 1.41 ND 101 76-124% mg/kg dry 1,1,1,2-Tetrachloroethane 1.66 0.0353 mg/kg dry 50 1.41 ND 118 78-125% Q-54b

Apex Laboratories

Quand la fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

NRC **DEQ Sampling** Project: 6211 N Ensign St Project Number: P216.16354 Portland, OR 97217 Project Manager: Daniel Ogno A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection Reporting % REC RPD Spike Source Dilution Analyte Result Units % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24J0748 - EPA 5035A Soil Matrix Spike (24J0748-MS1) Prepared: 10/15/24 16:00 Analyzed: 10/18/24 13:52 CONT QC Source Sample: Non-SDG (A4J1375-05) 1,1,2,2-Tetrachloroethane 1.74 0.0705 mg/kg dry 50 1.41 ND 123 70-124% Q-54o Tetrachloroethene (PCE) 0.0353 1.57 mg/kg dry 50 1.41 ND 111 73-128% 0.0705 77-121% Toluene 1.40 mg/kg dry 50 1.41 ND 99 1,2,3-Trichlorobenzene 1.53 0.353 mg/kg dry 50 1.41 ND 109 66-130% 1,2,4-Trichlorobenzene 1.59 0.353 mg/kg dry 50 1.41 ND 113 67-129% 1,1,1-Trichloroethane 0.035373-130% Q-54o 1.69 mg/kg dry 50 1.41 ND 120 0.03531,1,2-Trichloroethane 1.55 mg/kg dry 50 1.41 ND 110 78-121% mg/kg dry Trichloroethene (TCE) 0.0353 77-123% 1.71 50 1.41 ND 122 Q-54o Trichlorofluoromethane 2.58 0.353 mg/kg dry 50 1.41 ND 183 62-140% 0.0705 1,2,3-Trichloropropane 1.45 mg/kg dry 50 1.41 ND 103 73-125% 1,2,4-Trimethylbenzene 1.81 0.0705 mg/kg dry 50 1.41 ND 128 75-123% Q-01 1,3,5-Trimethylbenzene 0.0705 1.75 mg/kg dry 50 73-124% 1.41 ND 124 Vinyl chloride 1.80 0.035350 1.41 mg/kg dry ND 127 56-135% mg/kg dry 2.82 m,p-Xylene 3.07 0.0705 50 ND 109 77-124% o-Xylene 0.0353 77-123% 1.50 mg/kg dry 50 ND 106 Surr: 1,4-Difluorobenzene (Surr) Recovery: 114 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 95 % 80-120 % 4-Bromofluorobenzene (Surr) 103 % 79-120 %

Apex Laboratories

Dunell by frail

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRC Project: DEQ Sampling
6211 N Ensign St Project Number: P216.16354
Portland, OR 97217 Project Manager: Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	rinated Bi	phenyls	by EPA 80)82A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0713 - EPA 3580A/S	Sulfuric Aci	d and Floris	sil Cleanup				Tra	ansformer (Dil			
Blank (24J0713-BLK1)			Prepared	d: 10/17/24 1	11:31 Ana	lyzed: 10/17	/24 12:30					C-0
EPA 8082A												
Aroclor 1016	ND		1.00	mg/kg	1							
Aroclor 1221	ND		1.00	mg/kg	1							
Aroclor 1232	ND		1.00	mg/kg	1							
Aroclor 1242	ND		1.00	mg/kg	1							
Aroclor 1248	ND		1.00	mg/kg	1							
Aroclor 1254	ND		1.00	mg/kg	1							
Aroclor 1260	ND		1.00	mg/kg	1							
Surr: Decachlorobiphenyl (Surr)		Reco	very: 111 %	Limits: 60	1-125 %	Dill	ution: 1x					
LCS (24J0713-BS1)			Prepared	d: 10/17/24 1	11:31 Anal	lyzed: 10/17	/24 12:48					C-0
EPA 8082A						-						
Aroclor 1016	18.3		1.00	mg/kg	1	25.0		73	47-134%			
Aroclor 1260	22.8		1.00	mg/kg	1	25.0		91	53-140%			
Surr: Decachlorobiphenyl (Surr)		Reco	very: 112 %	Limits: 60	1-125 %	Dili	ution: 1x					
Duplicate (24J0713-DUP1)			Prepared	d: 10/17/24 1	11:31 Anal	lyzed: 10/17	/24 13:41					C-0
QC Source Sample: Non-SDG (A	4J1339-01)											
Aroclor 1016	ND		1.72	mg/kg	2		ND				30%	
Aroclor 1221	ND		1.72	mg/kg	2		ND				30%	
Aroclor 1232	ND		1.72	mg/kg	2		ND				30%	
Aroclor 1242	ND		1.72	mg/kg	2		ND				30%	
Aroclor 1248	ND		1.72	mg/kg	2		ND				30%	
Aroclor 1254	ND		1.72	mg/kg	2		ND				30%	
Aroclor 1260	ND		1.72	mg/kg	2		ND				30%	
Surr: Decachlorobiphenyl (Surr)		Rec	overy: 87 %	Limits: 60		Dill	ution: 2x					
Matrix Spike (24J0713-MS1)			Prepared	1: 10/17/24	11:31 Ana	lyzed: 10/17	//24 14:16					C-0
QC Source Sample: Non-SDG (A	4J1418-01)											
EPA 8082A												
Aroclor 1016	16.7		1.67	mg/kg	2	20.8	ND	80	47-134%			
Aroclor 1260	19.9		1.67	mg/kg	2	20.8	ND	96	53-140%			
Surr: Decachlorobiphenyl (Surr)		Reco	very: 115 %	Limits: 60	1-125 %	Dill	ution: 2x					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRCProject:DEQ Sampling6211 N Ensign StProject Number:P216.16354Portland, OR 97217Project Manager:Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A

Detection Reporting Spike Source % REC RPD Dilution Limits RPD Analyte Result Ĺimit Units Amount Result % REC Limit Notes Limit

Batch 24J0713 - EPA 3580A/Sulfuric Acid and Florisil Cleanup Transformer Oil

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRCProject:DEQ Sampling6211 N Ensign StProject Number:P216.16354Portland, OR 97217Project Manager:Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J1072 - EPA 3051A							Oil					
Blank (24J1072-BLK1)	ank (24J1072-BLK1)				13:02 Anal	yzed: 10/28	/24 20:55					
EPA 6020B												
Arsenic	ND		2.50	mg/kg	5							
Barium	ND		2.50	mg/kg	5							
Cadmium	ND		0.500	mg/kg	5							
Chromium	ND		2.50	mg/kg	5							
Lead	ND		0.500	mg/kg	5							
Mercury	ND		0.200	mg/kg								
Selenium	ND		2.50	mg/kg	5							
Silver	ND		0.500	mg/kg								
LCS (24J1072-BS1)			Prepared	: 10/28/24	13:02 Anal	yzed: 10/28	/24 21:06					
EPA 6020B												
Arsenic	122		2.50	mg/kg	5	125		98	80-120%			
Barium	128		2.50	mg/kg	5	125		103	80-120%			
Cadmium	121		0.500	mg/kg	5	125		97	80-120%			
Chromium	125		2.50	mg/kg	5	125		100	80-120%			
Lead	128		0.500	mg/kg	5	125		102	80-120%			
Mercury	2.41		0.200	mg/kg	5	2.50		96	80-120%			
Selenium	62.7		2.50	mg/kg	5	62.5		100	80-120%			
Silver	65.8		0.500	mg/kg	5	62.5		105	80-120%			
Duplicate (24J1072-DUP1)			Prepared	: 10/28/24	13:02 Anal	yzed: 10/28	/24 21:22					
QC Source Sample: Creek Water	(A4J1459-0	<u>1)</u>										
EPA 6020B												
Arsenic	ND		3.01	mg/kg	5		ND				20%	
Barium	ND		3.01	mg/kg	5		ND				20%	
Cadmium	ND		0.602	mg/kg	5		ND				20%	
Chromium	ND		3.01	mg/kg	5		ND				20%	
Lead	ND		0.602	mg/kg	5		ND				20%	
Mercury	ND		0.241	mg/kg			ND				20%	
Selenium	ND		3.01	mg/kg			ND				20%	
Silver	ND		0.602	mg/kg			ND				20%	

Prepared: 10/28/24 13:02 Analyzed: 10/28/24 21:28

Apex Laboratories

Matrix Spike (24J1072-MS1)

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRC Project: DEQ Sampling
6211 N Ensign St Project Number: P216.16354
Portland, OR 97217 Project Manager: Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS) Detection Reporting Spike Source % REC RPD Analyte Result Limit Units Dilution Result % REC RPD Limit Notes Limit Amount Limits Batch 24J1072 - EPA 3051A Oil Matrix Spike (24J1072-MS1) Prepared: 10/28/24 13:02 Analyzed: 10/28/24 21:28 QC Source Sample: Creek Water (A4J1459-01) EPA 6020B 2.91 98 5 Arsenic 142 145 ND 75-125% mg/kg Barium 146 2.91 mg/kg 5 145 ND 101 75-125% Cadmium 138 0.581 5 95 75-125% mg/kg 145 ND Chromium 143 2.91 mg/kg 5 145 ND 98 75-125% 144 0.581 5 145 99 75-125% Lead mg/kg ND Mercury 2.75 0.233 5 2.91 95 75-125% mg/kg ND 2.91 Selenium 72.4 5 72.7 100 75-125% mg/kg ND ---Silver 74.1 0.581 mg/kg 5 72.7 ND 102 75-125%

Apex Laboratories

Columnal la fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRCProject:DEQ Sampling6211 N Ensign StProject Number:P216.16354Portland, OR 97217Project Manager:Daniel Ogno

Report ID: A4J1459 - 10 29 24 1703

SAMPLE PREPARATION INFORMATION

		Diesel an	d/or Oil Hydrocarbon	s by NWTPH-Dx			
Prep: EPA 3580A Lab Number Batch: 24J0996	Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor
A4J1459-01	Oil	NWTPH-Dx	10/17/24 10:00	10/25/24 07:44	0.11g/5mL	0.1g/5mL	0.91
		Volatile	Organic Compounds	by EPA 8260D			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J0748							
A4J1459-01RE1	Oil	5035A/8260D	10/17/24 10:00	10/17/24 12:56	1.07g/5mL	5g/5mL	4.67
		Polych	nlorinated Biphenyls I	oy EPA 8082A			
Prep: EPA 3580A/Sul	furic Acid and Flo	risil Cleanup			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J0713							
A4J1459-01	Oil	EPA 8082A	10/17/24 10:00	10/17/24 13:04	0.129g/5mL	0.1g/5mL	0.78
		Tota	Il Metals by EPA 6020	OB (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J1072							

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 NRC
 Project:
 DEQ Sampling

 6211 N Ensign St
 Project Number:
 P216.16354
 Report ID:

 Portland, OR 97217
 Project Manager:
 Daniel Ogno
 A4J1459 - 10 29 24 1703

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

ex Laborato	<u>Ories</u>
A-01	Internal Standard recovery passes analytical method criteria.
C-07	Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
CONT	The Sample Container provided for this analysis was not provided by Apex Laboratories, and has not been verified as part of the Apex Quality System.
H-01	Analyzed outside the recommended holding time.
ICV-02	Estimated Result. Initial Calibration Verification (ICV) failed low.
M-02	Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +1%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +10%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +11%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +13%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +15%. The results are reported as Estimated Values.
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +17%. The results are reported as Estimated Values.
Q-54f	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +19%. The results are reported as Estimated Values.
Q-54g	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +2%. The results are reported as Estimated Values.
Q-54h	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +22%. The results are reported as Estimated Values.
Q-54i	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +24%. The results are reported as Estimated Values.
Q-54j	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +27%. The results are reported as Estimated Values.
Q-54k	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +28%. The results are reported as Estimated Values.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 NRC
 Project:
 DEQ Sampling

 6211 N Ensign St
 Project Number:
 P216.16354
 Report ID:

 Portland, OR 97217
 Project Manager:
 Daniel Ogno
 A4J1459 - 10 29 24 1703

Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +3%. The Q-541 results are reported as Estimated Values. Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +32%. The Q-54m results are reported as Estimated Values. Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +36%. The Q-54n results are reported as Estimated Values. Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +4%. The Q-540 results are reported as Estimated Values. Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +5%. The Q-54p results are reported as Estimated Values. Q-54q Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +6%. The results are reported as Estimated Values. Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +7%. The O-54r results are reported as Estimated Values. Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -6%. The O-54s results are reported as Estimated Values. Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level. Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260. Samples that are ND (Non-Detect) are not Q-56 R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample. S-01 Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix V-13 Reporting levels raised due to dilution necessary for analysis due to sample foaming in sparge vessel. V-15 Sample aliquot was subsampled from the sample container in the laboratory. The subsampled aliquot was preserved in the laboratory within 48 hours of sampling. V-16 Sample aliquot was subsampled from the sample container in the laboratory. The subsampled aliquot was not preserved within 48 hours of

Sample aliquot was subsampled from a sample container that had been previously opened and had sample removed for another analysis.

Apex Laboratories

V-21

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

much la famil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 NRC
 Project:
 DEQ Sampling

 6211 N Ensign St
 Project Number:
 P216.16354
 Report ID:

 Portland, OR 97217
 Project Manager:
 Daniel Ogno
 A4J1459 - 10 29 24 1703

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Validated Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

mund la fimile

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 NRC
 Project:
 DEQ Sampling

 6211 N Ensign St
 Project Number:
 P216.16354
 Report ID:

 Portland, OR 97217
 Project Manager:
 Daniel Ogno
 A4J1459 - 10 29 24 1703

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL).

Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level.

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Dunnell la famil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 NRC
 Project:
 DEQ Sampling

 6211 N Ensign St
 Project Number:
 P216.16354
 Report ID:

 Portland, OR 97217
 Project Manager:
 Daniel Ogno
 A4J1459 - 10 29 24 1703

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

James la frail

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRC Project: DEQ Sampling

 6211 N Ensign St
 Project Number:
 P216.16354
 Report ID:

 Portland, OR 97217
 Project Manager:
 Daniel Ogno
 A4J1459 - 10 29 24 1703

C	6700 SW Sandburg St., Tigard, OR 97223 Ph. 503-718-2323	97223 Ph: 50.	3-718-	2323		_	H _O	A	Ž	<u> </u>	ご		CHAIN OF CUSTODY		>					н	ab#	T	7	3	2	12b# 1+(+ 0) + 2cdc 1 of 1	-	4	
Acound Time (TAT) = 10 Business Days 1 Day S Day S Standard O 1 30 ublic 5e	12 / N'A	oject M.	Q is	Sign	1	व	8		-	roject	Nam	IĞ	3	2		13					'roject	# 2	197	17	3	띿			
Average (1998) So Day Standard Other: Less than 1 and	N EAS	45.00 St.	Par	410m	9), Pone:	50	3.3	7	326-	A	nail:	2		ন্ত্ৰ ব	र्घ स	Jana K	527 103	3	8	#78	2	d	9	35	世	82	2
	ocation:755N Calumbia Er Hwy, st Helens State OR County Columbia	?	TIME		# OF CONTAINERS												Priority Metals (13)	At Sb, As, Ba, Be, Cd, Ca, Cr. Co, Cu. Fe. Ph.	Hg, Mg, Mn, Mo, Ni, K,		TCLP Metals (8)							olamo2 blot	Frozen Archive
Standard Turn Around Turn (TAT) = 10 Business Days circle) Shay Standard Other: Le 55 then 1 Day SAMPLES ARE HELD FOR 30 DAYS SAMPLES ARE HELD FOR 30 DAYS Suparary Suparary Suparary Time: Ti	+	10/17 10	000	7	+			\vdash		-	^	V	-	X	-	-		-	. 2					-			_		
1 Turn Around Time (TAT) = 10 Business Days 3 Bay 3 Bay 5 Bay 5 Bay 3 Bay 5 Bay 6 Bay		8		×					-				_															_	
1 Day 2 Day 3 Day 5 Day 6 Day 6 Day 6 Day 7 Da						\Box	$\dagger \dagger$	+	+-	+	+	+-	+	+	+	+	+-			\top	1-1	$\dagger \dagger$	$\dagger \dagger$	+ +				+	
1 Day				+		-	$\neg \vdash$	\dashv			-			-				\perp			\dashv					-	\dashv	-	_
1 Day 2 Day 3 Day 5 Day 6 Day:						-			+	+-		-			-		-	-				1	+				+	+	+
1 Turn Around Time (TAT) = 10 Business Days 3 Day 3 Day 3 Day 5 Day 5 Day 3 Day 5 Days 5 Day 5 Days 6 Days 7 Days							\vdash	\vdash	\vdash	\vdash		\vdash	-	\vdash															
1 Day 2 Day 3 Day 3 Day 5 Day 6 Dayts:								+	\dashv		-				_			-		1		+				+		-	-
1 Day 3 Day 3 Day 3 Day 5 Day 5 Day 3 Day 3 Day 5 Da	Standard To	ın Around Time	(TAT)	= 10 Bus	siness I	Jays						SQ	PECL	L	STR	CII	SN												
5 Day Standard Other: Le 55 4kg 1 Day MAPLES ARE HELD FOR 30 DAYS RECEIVED BY: Q/14/2 Printed Name: P	V 67 77 8 7			2 Day		3.0	ay						ď	Ş		9	0	+	fo (-	9	7	r_2	=	==	54	4	5	
RELINQUISHED BY: RECEIVED BY: Signature: Sig	stea (circie)	5 Day	ž	tandard		Q.	i.	53	75	र्भ	=	R 1	Δ_	C.E.	35	>													
RECEIVED BY: Superhard Superhard Superhard Printed Name: Time: Printed Name: P		LES ARE HELD	FOR 30	DAYS								\dashv			1						1								١
Printed Name: Time: Printed Name: Time: Printed Name:	бірайцу бірайцу	Date:		Signature.	A Part of the Part	"	1		ate:	1/0/	1/2	N N N	ELIN	QUISE:	EO B	;;		Date:				RECE	IVED re:	BY:		Q	ate:		
The state of the s		10:30		Printed N		#3	12	-	, iiii	13		-	inted)	Name:		-		Time.				Printed	Name	45		+	ë		
Company: Company: Company:	grany:	700		Company	. .	K	<	\	-			0	omban	56								Compa	any:						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 38 of 40

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

NRCProject:DEQ Sampling6211 N Ensign StProject Number:P216.16354

 6211 N Ensign St
 Project Number: P216.16354
 Report ID:

 Portland, OR 97217
 Project Manager: Daniel Ogno
 A4J1459 - 10 29 24 1703

7		205	2		9lqms2 bloE 9vid>1A n9x0v?	-			Revised Cox. please add Forensic Fingerprint					
5	4	8	ì]	بركح	<u>ر</u>				
7	35	7					1_	1	المنا ا	Š.		Date:	Time:	
<u> </u>	91	6	3			$oldsymbol{\perp}$		4	Š,	3				
	16.	7	9			ot			<u>،</u> و	100	2			
*	P2	216	2			↓	1_	4	IT	S '	7,	W 60	me:	
* PEVISED *	Project #: P216.16354	70678-12671 7164 # Da 2000 11 11 10 10 10 10 10 10 10 10 10 10	1 1 1		Forensic Fingerpict	×	+	+	PP	Sample 40 to Clear Later	()	RELLNQUISHED BY: Sprakuv: Sprakuv:	Printed Name	Сопрапу:
£ #		-	រី		TCLP Metals (8)	T	+	1	0 4	ο, ,	T	- s		Ť
*		1	ð	EST	LOTAL DISS, TCLP	L		1	35	7	શું	:	1	
				ANALYSIS REQUEST	Ca, Ct, Co, Cu, Fe, Pb, Hg, Mg, Mu, Mo, Ni, K, Se, Ag, Na, Tl, V, Zn		ļ.		ald of	Š.,	ર્			
		Ì	7	SIS	AL, Sb, As, Ba, Be, Cd,	1			ca .	٤	St.	Date:	Time:	
		1	ă	ALY	Priority Metals (13)			is:	8 0	Ň,	, A			
	G	1	ğ.,	4	RCRA Metals (8)			SPECIAL INSTRUCTIONS	V	7.	ž			
	K	Ì	ğ		8081 Pesticides	\perp		IRUC	5 0	- (2	Va o		
	Project Name: OR- DEO	d	钟		8087 LCB2	×		INS	8 2	i ,	٧	RELINQUISHED BY: Signature:	ä	
5	0	15	<u> (</u>		8270 Semi-Vols Full List			CIAL	3/6		5	INOC Inte:	Printed Name	Company.
2	ame:(Fms			8HA4 MIS 0718	丄	ᆚ	SPE	05/8		3	REI	Ĭ.	S
3	ject N	4	<u>\</u>		8260 VOCs Full List	×	_					5	5 3 E	
4	F.	Š	4		8760 Halo VOCs					,		7	M	
2		3	7		8700 KBDW AOC8		1		_ c	7		2	丰	
•		4	3		8760 BTEX	<u> </u>			1 7	Y	,	Date: 10/21/17	Time	
	0	Ų	r L		NWTPH-Gx				}	A		1	>	
3	200		OIL		xQ-HqTWN	$ \times $			3 Day	Other: ASA F			2	
			Τ		MWTPH-HCID			Says	. "	ŏ	8		3	2
	Project Mgr. Dan Se	,			# OŁ CONTAINERS	77		usiness I		p		Signature:	ALUSSA.	Prex
2323		4	3		XIXIAM	-		= 10 B	2 Day	Standard	DAYS	RECEI Signatur All		Compar
93-718-	roject M	7			TIME	15		(TAT)		35	FOR 30	<i>5</i> 6		
Ph: 5	\ \frac{1}{2}	7		0	atad	00,01 21/01		and Tim		5 Day	SAMPLES ARE HELD FOR 30 DAYS	Date:	Time: /	\sim
7223	્ર	7	7	000	<u> </u>	2	-	- AE	1	ν.	ES AF	0 Page	道士	્યું
6700 SW Sandburg St., Tigard, OR 97223 Ph.: 503-718-2323	Company: Rescublic Services	N K C'. Ct Protler	4	Ö,	Site Location: 755 N Columb River Hwy, 5t. He Rasso 970 Sate OR County Columbia			Standard Turn Around Time (TAT) = 10 Business Days	(ale)	s	SAMPL			Service S
Tiga	Ų	7	3	0	control: 755 N Columnia He le	701 11 11010		Sta	TAT Requested (circle)			1	ું	72
35.	19	=	≱	Dan 'e	755 N N,54. 1 OR Colum SAMPLE ID	3			lestec			<u> </u>	Ö	7 J
6700 SW Sandburg St., Tigo	8	- =	١,	_	Site Location: 755 N River Hwy, 54. 970 Size OR County Column	1.			Requ			Signature;	_	Republic
W Say	يّلا	byddpoe 63	ď	Sampled by:	State Coun	1			LAT				An'e	1 T
00 S	mpan	946		mpled	7.56	1					4		Printed Name	100 S

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 NRC
 Project:
 DEQ Sampling

 6211 N Ensign St
 Project Number:
 P216.16354
 Report ID:

 Portland, OR 97217
 Project Manager:
 Daniel Ogno
 A4J1459 - 10 29 24 1703

Client: Kepublic Services	Element WO#: A4 71459
Project/Project #: Oregon DEQ	1216.16354
Delivery Info: Date/time received: 10/11/24 @ 1200 By:	J
Delivered by: Apex_Client XESS_FedEx_UPS_Radio	oMorganSDSEvergreenOther
From USDA Regulated Origin? Yes No	<u>X</u>
Cooler Inspection Date/time inspected: _(() 17 24 @_	1202 By: J5
Chain of Custody included? Yes No	<u>a. </u>
Signed/dated by client? Yes No	w · · ·
Contains USDA Reg. Soils? Yes No	Unsure (email RegSoils)
Cooler #1 Cooler #2 Cooler #	#3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	
Custody seals? (Y/N)	<u> </u>
Received on ice? (Y/N)	
Гетр. blanks? (Y/N)	
ce type: (Gel/Real/Other) Yea	
Condition (In/Out):	
Cooler out of temp? (YN) Possible reason why: Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes No Cample Inspection: Date/time inspected:	1235 By: JS
All samples intact? Yes X No Comments:	<u> </u>
Bottle labels/COCs agree? Yes No Comments:	
COC/container discrepancies form initiated? Yes No _	
Containers/volumes received appropriate for analysis? Yes	No Comments:
Do VOA vials have visible headspace? Yes No	NA
Comments	
Vater samples: pH checked: YesNoNApH appro	opriate? Yes No NA pH ID:
Comments:	

Apex Laboratories

11

10

ANALYTICAL REPORT

PREPARED FOR

Attn: Josh Owen Martin S Burck Associates 200 North Wasco Ct Hood River, Oregon 97031

Generated 11/15/2024 4:24:34 PM

JOB DESCRIPTION

Lawrence Oil - St Helens

JOB NUMBER

590-28033-1

Eurofins Spokane 11922 East 1st Ave Spokane WA 99206

Eurofins Spokane

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Generated 11/15/2024 4:24:34 PM

Authorized for release by Randee Arrington, Business Unit Manager Randee.Arrington@et.eurofinsus.com (509)924-9200

Eurofins Spokane is a laboratory within Eurofins Environment Testing Northwest, LLC, a company within Eurofins Environment Testing Group of Companies

Page 2 of 16

11/15/2024

2

3

4

5

7

ŏ

4 6

10

11

12

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St Helens Laboratory Job ID: 590-28033-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Definitions	6
Client Sample Results	7
QC Sample Results	9
Chronicle	10
Certification Summary	13
Method Summary	14
Chain of Custody	15
Receint Checklists	16

Case Narrative

Client: Martin S Burck Associates Project: Lawrence Oil - St Helens

Job ID: 590-28033-1 **Eurofins Spokane**

Job Narrative 590-28033-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/12/2024 11:10 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.1°C.

Hydrocarbons

Method NWTPH_Dx: The method blank for preparation batch 590-50823 and analytical batch 590-50841 contained Residual Range Organics (RRO) (C25-C36) above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL) in the method blank; therefore, re-extraction and re-analysis of samples was not performed.

Method NWTPH Dx: Detected hydrocarbons in the diesel range appear to be due to heavily weathered diesel and/or a light weight

S3-1 (590-28033-1)

Method NWTPH Dx: Detected hydrocarbons in the diesel range appear to be due to heavily weathered diesel.

S5-1 (590-28033-3) and S6-1 (590-28033-4)

Method NWTPH_Dx: Surrogate recovery for the following samples were outside control limits: S4-1 (590-28033-2), S7-1 (590-28033-5) and S9-1 (590-28033-7). Evidence of matrix interference due to high target analytes is present; therefore, reextraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 4 of 16

Job ID: 590-28033-1

Sample Summary

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St Helens Job ID: 590-28033-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-28033-1	S3-1	Solid	11/07/24 14:34	11/12/24 11:10
590-28033-2	S4-1	Solid	11/07/24 14:42	11/12/24 11:10
590-28033-3	S5-1	Solid	11/07/24 14:48	11/12/24 11:10
590-28033-4	S6-1	Solid	11/08/24 09:08	11/12/24 11:10
590-28033-5	S7-1	Solid	11/08/24 09:20	11/12/24 11:10
590-28033-6	S8-1	Solid	11/08/24 09:32	11/12/24 11:10
590-28033-7	S9-1	Solid	11/08/24 10:48	11/12/24 11:10

4

5

6

0

40

Definitions/Glossary

Client: Martin S Burck Associates Job ID: 590-28033-1

Project/Site: Lawrence Oil - St Helens

Qualifiers

GC Semi VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1+ Surrogate recovery exceeds control limits, high biased.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Spokane

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St Helens

Client Sample ID: S3-1

Lab Sample ID: 590-28033-1

Matrix: Solid

Percent Solids: 93.6

Chome Campion 121 CC
Date Collected: 11/07/24 14:34
Date Received: 11/12/24 11:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	62		11	4.5	mg/Kg		11/13/24 08:52	11/13/24 16:57	1
(C10-C25)									
Residual Range Organics (RRO)	120	В	27	5.3	mg/Kg	₽	11/13/24 08:52	11/13/24 16:57	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	93		50 - 150				11/13/24 08:52	11/13/24 16:57	1
n-Triacontane-d62	97		50 - 150				11/13/24 08:52	11/13/24 16:57	1

Client Sample ID: S4-1 Lab Sample ID: 590-28033-2

 Date Collected: 11/07/24 14:42
 Matrix: Solid

 Date Received: 11/12/24 11:10
 Percent Solids: 90.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	6700		110	45	mg/Kg	*	11/13/24 08:52	11/14/24 09:27	10
Residual Range Organics (RRO) (C25-C36)	210	JB	270	54	mg/Kg	₽	11/13/24 08:52	11/14/24 09:27	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	165	S1+	50 - 150				11/13/24 08:52	11/14/24 09:27	10
n-Triacontane-d62	107		50 - 150				11/13/24 08:52	11/14/24 09:27	10

Client Sample ID: S5-1 Lab Sample ID: 590-28033-3

Date Collected: 11/07/24 14:48 Matrix: Solid
Date Received: 11/12/24 11:10 Percent Solids: 88.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	46		11	4.7	mg/Kg	₽	11/13/24 08:52	11/13/24 18:02	1
(C10-C25)									
Residual Range Organics (RRO)	82	В	28	5.6	mg/Kg	₩	11/13/24 08:52	11/13/24 18:02	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	92		50 - 150				11/13/24 08:52	11/13/24 18:02	1
n-Triacontane-d62	97		50 - 150				11/13/24 08:52	11/13/24 18:02	1

Client Sample ID: S6-1 Lab Sample ID: 590-28033-4

Date Collected: 11/08/24 09:08 Matrix: Solid
Date Received: 11/12/24 11:10 Percent Solids: 81.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	390		12	4.9	mg/Kg	*	11/13/24 08:52	11/13/24 18:23	1
(C10-C25)									
Residual Range Organics (RRO)	120	В	29	5.8	mg/Kg	₩	11/13/24 08:52	11/13/24 18:23	1
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	104		50 - 150				11/13/24 08:52	11/13/24 18:23	1
n-Triacontane-d62	95		50 ₋ 150				11/13/24 08:52	11/13/24 18:23	1

Eurofins Spokane

Client: Martin S Burck Associates

Project/Site: Lawrence Oil - St Helens

Client Sample ID: S7-1 Lab Sample ID: 590-28033-5

Date Collected: 11/08/24 09:20 Matrix: Solid Date Received: 11/12/24 11:10 Percent Solids: 90.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	3900		110	45	mg/Kg	<u></u>	11/13/24 08:52	11/14/24 09:49	10
Residual Range Organics (RRO) (C25-C36)	160	JB	270	53	mg/Kg	₩	11/13/24 08:52	11/14/24 09:49	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	199	S1+	50 - 150				11/13/24 08:52	11/14/24 09:49	10
n-Triacontane-d62	96		50 - 150				11/13/24 08:52	11/14/24 09:49	10

Client Sample ID: S8-1 Lab Sample ID: 590-28033-6 Date Collected: 11/08/24 09:32 **Matrix: Solid**

Date Received: 11/12/24 11:10 Percent Solids: 90.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	16		11	4.4	mg/Kg	*	11/13/24 08:52	11/13/24 19:07	1
Residual Range Organics (RRO) (C25-C36)	6.9	JB	26	5.3	mg/Kg	₩	11/13/24 08:52	11/13/24 19:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	88		50 - 150				11/13/24 08:52	11/13/24 19:07	1
n-Triacontane-d62	92		50 - 150				11/13/24 08:52	11/13/24 19:07	1

Client Sample ID: S9-1 Lab Sample ID: 590-28033-7

Date Collected: 11/08/24 10:48 **Matrix: Solid** Date Received: 11/12/24 11:10 Percent Solids: 89.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	6400		110	46	mg/Kg	*	11/13/24 08:52	11/14/24 10:11	10
(C10-C25)									
Residual Range Organics (RRO)	230	JB	280	55	mg/Kg	₩	11/13/24 08:52	11/14/24 10:11	10
(C25-C36)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	302	S1+	50 - 150				11/13/24 08:52	11/14/24 10:11	10
n-Triacontane-d62	99		50 - 150				11/13/24 08:52	11/14/24 10:11	10

Job ID: 590-28033-1

QC Sample Results

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St Helens Job ID: 590-28033-1

Client Sample ID: Method Blank

11/13/24 13:38

11/13/24 13:38

Client Sample ID: Duplicate

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

11/13/24 08:52

11/13/24 08:52

Prep Type: Total/NA

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

94

94

Lab Sample ID: MB 590-50823/1-A

Matrix: Solid

Analysis Batch: 50841								Prep Batcl	h: 50823
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	ND		10	4.2	mg/Kg		11/13/24 08:52	11/13/24 13:38	1
Residual Range Organics (RRO) (C25-C36)	7.73	J	25	5.0	mg/Kg		11/13/24 08:52	11/13/24 13:38	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

50 - 150

50 - 150

Lab Sample ID: LCS 590-50823/2-A

Matrix: Solid

n-Triacontane-d62

o-Terphenyl

Analysis Batch: 50841							Prep Batch: 508		
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Diesel Range Organics (DRO)	66.7	61.2		mg/Kg		92	50 - 150		
(C10-C25)									
Residual Range Organics (RRO)	66.7	67.6		mg/Kg		101	50 - 150		
(C25-C36)									

LCS LCS Surrogate %Recovery Qualifier Limits o-Terphenyl 90 50 - 150 n-Triacontane-d62 93 50 - 150

Lab Sample ID: 590-28011-A-30-C DU

Matrix: Solid

Matrix: Solid							Prep Type: To	tal/NA
Analysis Batch: 50841							Prep Batch:	50823
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit

	Sample	Sample	50	טט				KFD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Diesel Range Organics (DRO)	ND		ND		mg/Kg	*	 NC	40
(C10-C25)								
Residual Range Organics (RRO)	ND		ND		mg/Kg	₽	NC	40
(C25-C36)								

	DU	DU	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	85		50 - 150
n-Triacontane-d62	83		50 ₋ 150

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St Helens

Lab Sample ID: 590-28033-1

Date Collected: 11/07/24 14:34 Date Received: 11/12/24 11:10

Client Sample ID: S3-1

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Run Factor Amount Amount Number or Analyzed Type **Analyst** Lab Total/NA Analysis Moisture 50824 11/13/24 08:58 MRV EET SPK

Client Sample ID: S3-1 Lab Sample ID: 590-28033-1

Date Collected: 11/07/24 14:34 **Matrix: Solid** Date Received: 11/12/24 11:10 Percent Solids: 93.6

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Туре Run Factor Analyst Lab 3550C 50823 11/13/24 08:52 EET SPK Total/NA Prep 15.09 g 5 mL MRV 11/13/24 16:57 Total/NA Analysis NWTPH-Dx 1 mL 1 mL 50841 NMI **EET SPK** 1

Lab Sample ID: 590-28033-2 Client Sample ID: S4-1

Date Collected: 11/07/24 14:42 **Matrix: Solid**

Date Received: 11/12/24 11:10

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis Moisture 50824 11/13/24 08:58 MRV EET SPK

Client Sample ID: S4-1 Lab Sample ID: 590-28033-2

Date Collected: 11/07/24 14:42 **Matrix: Solid** Date Received: 11/12/24 11:10 Percent Solids: 90.9

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run Factor Amount **Amount** Number or Analyzed Analyst Lab Total/NA Prep 3550C 15.34 g 5 mL 50823 11/13/24 08:52 MRV **EET SPK** Total/NA NWTPH-Dx 50841 11/14/24 09:27 NMI Analysis 10 1 mL 1 mL **EET SPK**

Client Sample ID: S5-1 Lab Sample ID: 590-28033-3

Date Collected: 11/07/24 14:48 **Matrix: Solid**

Date Received: 11/12/24 11:10

Batch Batch Dil Initial Final Batch Prepared Method Type Run Factor Amount Amount Number or Analyzed Prep Type Analyst Lab Total/NA Analysis Moisture 1 50824 11/13/24 08:58 MRV EET SPK

Client Sample ID: S5-1 Lab Sample ID: 590-28033-3

Date Collected: 11/07/24 14:48 **Matrix: Solid**

Date Received: 11/12/24 11:10 Percent Solids: 88.2

Batch Batch Dil Initial Final Batch Prepared Method Prep Type Type Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 50823 MRV Total/NA 3550C 15.24 g 5 mL 11/13/24 08:52 EET SPK Total/NA Analysis NWTPH-Dx 1 1 mL 1 mL 50841 11/13/24 18:02 NMI **EET SPK**

Client Sample ID: S6-1 Lab Sample ID: 590-28033-4

Date Collected: 11/08/24 09:08 **Matrix: Solid**

Date Received: 11/12/24 11:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			50824	11/13/24 08:58	MRV	EET SPK

Eurofins Spokane

Client Sample ID: S6-1

Date Collected: 11/08/24 09:08

Date Received: 11/12/24 11:10

Lab Sample ID: 590-28033-4 Matrix: Solid

Percent Solids: 81.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.83 g	5 mL	50823	11/13/24 08:52	MRV	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	50841	11/13/24 18:23	NMI	EET SPK

Client Sample ID: S7-1 Lab Sample ID: 590-28033-5 **Matrix: Solid**

Date Collected: 11/08/24 09:20 Date Received: 11/12/24 11:10

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab Analysis Total/NA Moisture 50824 11/13/24 08:58 MRV EET SPK

Client Sample ID: S7-1 Lab Sample ID: 590-28033-5

Date Collected: 11/08/24 09:20 **Matrix: Solid** Date Received: 11/12/24 11:10 Percent Solids: 90.4

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep	р Туре	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Tota	I/NA	Prep	3550C			15.52 g	5 mL	50823	11/13/24 08:52	MRV	EET SPK
Tota	I/NA	Analysis	NWTPH-Dx		10	1 mL	1 mL	50841	11/14/24 09:49	NMI	EET SPK

Client Sample ID: S8-1 Lab Sample ID: 590-28033-6 **Matrix: Solid**

Date Collected: 11/08/24 09:32 Date Received: 11/12/24 11:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture					50824	11/13/24 08:58	MRV	FFT SPK	-

Client Sample ID: S8-1 Lab Sample ID: 590-28033-6

Date Collected: 11/08/24 09:32

Matrix: Solid Date Received: 11/12/24 11:10 Percent Solids: 90.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.69 g	5 mL	50823	11/13/24 08:52	MRV	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	50841	11/13/24 19:07	NMI	EET SPK

Client Sample ID: S9-1 Lab Sample ID: 590-28033-7

Date Collected: 11/08/24 10:48 Date Received: 11/12/24 11:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			50824	11/13/24 08:58	MRV	EET SPK

Matrix: Solid

Lab Chronicle

Client: Martin S Burck Associates Job ID: 590-28033-1

Project/Site: Lawrence Oil - St Helens

Client Sample ID: S9-1 Lab Sample ID: 590-28033-7

Date Collected: 11/08/24 10:48

Matrix: Solid

Date Received: 11/12/24 11:10 Percent Solids: 89.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			15.29 g	5 mL	50823	11/13/24 08:52	MRV	EET SPK
Total/NA	Analysis	NWTPH-Dx		10	1 mL	1 mL	50841	11/14/24 10:11	NMI	EET SPK

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

8

11

Accreditation/Certification Summary

Client: Martin S Burck Associates

Job ID: 590-28033-1

Project/Site: Lawrence Oil - St Helens

Laboratory: Eurofins Spokane

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date	
Oregon	NELA	Р	4137	12-08-24	
The following analytes	are included in this report by	ut the laboratory is not cortif	ied by the governing authority. This lis	t may include analyte	
0 ,	• •	it the laboratory is not certifi	led by the governing authority. This is	t may include analyte	
0 ,	oes not offer certification.	it the laboratory is not certifi	led by the governing authority. This is	t may include analyte	
0 ,	• •	Matrix	Analyte	t may include analyte	
for which the agency de	oes not offer certification.	•	, , ,	t may include analyte	

3

4

5

9

Method Summary

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St Helens Job ID: 590-28033-1

Method	Method Description	Protocol	Laboratory
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	EET SPK
Moisture	Percent Moisture	EPA	EET SPK
3550C	Ultrasonic Extraction	SW846	EET SPK

Protocol References:

EPA = US Environmental Protection Agency

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Chain of Custody Record

Eurofins TestAmerica, Spokane

11922 E 1st Avenue

💸 eurofins

Envirous at Teating TestAs vis

Spokane, WA 99206-5302 phone 509.924.9200 fax 509.924.9290	Regula	atory Pro	gram 🗆] bw [] NPDES] rcr	a I	☐ Other					Te	estAm	erica L	abora	atories Inc.	d/b/a Eur	ofins Te	` ∍stAmerica
	Project Ma	nager.					_														
Client Contact	Email 1000	nemel	cenajes	My their	hed. a	Site.	Con	tact.				Date						COC No:			
Martin S. Burek Associates	Tel/Fax.						Con					Carr	ler						of <u>/</u>	_ coc	s
Address 200 N Wasco Cf	А	nalysis Tı				Т	Т				П	\Box		П	-			Sampler			
City/State/Zip Hood Kirm/OR	☐ CALEND		Ø wor			_	.]			İ					l			For Lab l	Jse Only		
Phone 541 387 4427	TAT	if different fro	om Below 🚅	3-day		Z			1 1									Walk-in C	lient.	L.	
FAX		2	weeks 🧻	AT	· [(N/)		1		-								Lab Sam	oling [.]		
Project Name: Lawrence OTI - St Helens		1	week		[<u> </u>	2 I I														
Site: Lawrence 071-5+ Helens		2	days		Į.	죕	1											Job / SDC	3 No		
PO# Lawrence Oil. St Helens		1	day			E S		-0							1						
Sample Identification	Sample Date	Sample Time	Sample Type (C≃Comp, G=Grab)	Matrix	#of Cont.	Filtered S Perform	ナートマス	Hal										Sa	mple Spe	cific No	tes
53-1	11/7/24	1434	G	5.1	3	T	1													***	
54-1	11/7/24	1442	G	Soil	3		V														
55-1	11/7/24	1448	G	Soil	3		_ ✓														
66-1	. 3 - 1		G	Soil	3		V					$\perp \perp$									
57-1	11/8/24	0920	<u>_</u> G	Soil	3	\perp	V														
58-1	11(8(24)			Soil	3		V														
59-1	8 11/24	1048	<u>G</u>	50.1	3		V						_								
Trp Blank					2.			V					_	11111111	1.1111.114111	£ (£(18.56)	1 (2 1 11 11		11783 1801 2811		
													_								
													_								
							L							 590-2	8033	Chair		Custody			
																LL		L			
Preservation Used: 1= ice, 2= HCl, 3= H25O4; 4=HNO3	5=NaOH,	6= Other				$oldsymbol{\mathbb{I}}$															to a comment of the second
Possible Hazard Identification. Are any samples from a listed EPA Hazardous Waste? Pleathe Comments Section if the lab is to dispose of the sample.	se List any	EPA Wasi	e Codes fo	or the sa	ımple in	S	amp	łe Di	sposal	(A fe	e may	be ass	essec	i if sa	mple	s are r	etair	ned longer	than 1 m	onth)	
☐ Non-Hazard ☐ Flammable ☐ Skin Eritant	Poison 8		Unkno	nwo				Return	to Client	***************************************		Disposal	by Lab			Archive	for	M	onths		
Special Instructions/QC Requirements & Comments	-day -	TAT																			
Custody Seals Intagt:	Custody Si	eal No.							Cooler :	Temp.	(°C): (Obs'd	25	c	orr'd:	7		_ Therm I	D No. 12	<i>0</i> 07	
Relinquished by	Company ⁻	MSE	3A	Date/T	me:	0 R	Recei	ved i	oy.		•		Co	mpany	À.	-		Date/Tim	e .		
Relinquished by.	Company ⁻	M		Date/T			Recei	ved b	ру				Co	mpany	À.			Date/Tim	е	****	
Relinquished by	Company ⁻			Date/T	ime:	R	Regei	vod i	n Labor	atory I	by.	>	Co	mpan	¥ 81	20		Date/Tim	24	10	050

Job Number: 590-28033-1

Client: Martin S Burck Associates

List Source: Eurofins Spokane

Login Number: 28033 List Number: 1

Creator: Morris, Mackenzie 1

Creator: Morris, Mackenzie 1		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

12

ANALYTICAL REPORT

PREPARED FOR

Attn: Josh Owen Martin S Burck Associates 200 North Wasco Ct Hood River, Oregon 97031

Generated 12/12/2024 11:23:23 AM

JOB DESCRIPTION

Lawrence Oil - St. Helens

JOB NUMBER

590-28345-1

Eurofins Spokane 11922 East 1st Ave Spokane WA 99206

Eurofins Spokane

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northwest, LLC Project Manager.

Authorization

Generated 12/12/2024 11:23:23 AM

Authorized for release by Randee Arrington, Business Unit Manager Randee.Arrington@et.eurofinsus.com (509)924-9200

4

F

6

9

10

44

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St. Helens Laboratory Job ID: 590-28345-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Definitions	6
Client Sample Results	7
QC Sample Results	10
Chronicle	20
Certification Summary	21
Method Summary	22
Chain of Custody	23
Receipt Checklists	24

Case Narrative

Client: Martin S Burck Associates Project: Lawrence Oil - St. Helens

Job ID: 590-28345-1 **Eurofins Spokane**

Job Narrative 590-28345-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 12/3/2024 10:30 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.4°C.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 8270E SIM: The continuing calibration verification (CCV) associated with batch 590-51352 recovered above the upper control limit for p-Terphenyl-d14. The samples analytes associated with this CCV's failing surrogate were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: Baker Tank H2O (590-28345-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Hvdrocarbons

Method NWTPH Dx: Detected hydrocarbons appear to be due to weathered gasoline overlap as well as heavily weathered diesel.

Baker Tank H2O (590-28345-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Spokane

12/12/2024

Page 4 of 24

Job ID: 590-28345-1

Sample Summary

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St. Helens Job ID: 590-28345-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
590-28345-1	Baker Tank H2O	Water	11/26/24 15:34	12/03/24 10:30

4

Ė

6

8

9

10

11

Definitions/Glossary

Client: Martin S Burck Associates

Job ID: 590-28345-1

Project/Site: Lawrence Oil - St. Helens

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
	=

Listed under the "D" column to designate that the result is reported on a dry weight basis
 %R Percent Recovery

%R Percent Recovery

CFL Contains Free Liquid

CFU Colony Forming Unit

CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Spokane

12/12/2024

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St. Helens

Client Sample ID: Baker Tank H2O

Date Collected: 11/26/24 15:34 Date Received: 12/03/24 10:30

Chlorobenzene

Ethylbenzene

m,p-Xylene

o-Xylene

Bromoform

Isopropylbenzene

N-Propylbenzene

4-Chlorotoluene

tert-Butylbenzene

sec-Butylbenzene

1,2,3-Trichloropropane 2-Chlorotoluene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Bromobenzene

Styrene

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Job ID: 590-28345-1

Lab Sample ID: 590-28345-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		2.0	0.64	ug/L			12/05/24 12:33	1
Chloromethane	ND		3.0	0.50	ug/L			12/05/24 12:33	1
Vinyl chloride	ND		0.40	0.13	ug/L			12/05/24 12:33	1
Bromomethane	ND		5.0	0.76	ug/L			12/05/24 12:33	1
Chloroethane	ND		2.0	0.40	ug/L			12/05/24 12:33	1
Trichlorofluoromethane	ND		1.0	0.20	ug/L			12/05/24 12:33	1
1,1-Dichloroethene	ND		1.0	0.20	ug/L			12/05/24 12:33	1
Methylene Chloride	ND		5.0	2.2	ug/L			12/05/24 12:33	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			12/05/24 12:33	1
1,1-Dichloroethane	ND		1.0	0.29	ug/L			12/05/24 12:33	1
2,2-Dichloropropane	ND		2.0	0.66	ug/L			12/05/24 12:33	1
cis-1,2-Dichloroethene	ND		1.0	0.23	ug/L			12/05/24 12:33	1
Bromochloromethane	ND		2.0	0.44	ug/L			12/05/24 12:33	1
Chloroform	ND		1.0	0.24	ug/L			12/05/24 12:33	1
1,1,1-Trichloroethane	ND		1.0	0.17	ug/L			12/05/24 12:33	1
Carbon tetrachloride	ND		1.0	0.40	ug/L			12/05/24 12:33	1
1,1-Dichloropropene	ND		1.0	0.50	ug/L			12/05/24 12:33	1
Benzene	8.7		0.40	0.093	ug/L			12/05/24 12:33	1
1,2-Dichloroethane (EDC)	ND		1.0	0.31	ug/L			12/05/24 12:33	1
Trichloroethene	ND		1.0	0.20	ug/L			12/05/24 12:33	1
1,2-Dichloropropane	ND		1.0	0.23	ug/L			12/05/24 12:33	1
Dibromomethane	ND		2.0	0.50	ug/L			12/05/24 12:33	1
Bromodichloromethane	ND		1.0	0.29	ug/L			12/05/24 12:33	1
cis-1,3-Dichloropropene	ND		1.0	0.25	ug/L			12/05/24 12:33	1
Toluene	14		1.0	0.31	ug/L			12/05/24 12:33	1
trans-1,3-Dichloropropene	ND		1.0	0.45	ug/L			12/05/24 12:33	1
1,1,2-Trichloroethane	ND		2.0	0.43	ug/L			12/05/24 12:33	1
Tetrachloroethene	ND		1.0	0.22	ug/L			12/05/24 12:33	1
1,3-Dichloropropane	ND		2.0	0.21	ug/L			12/05/24 12:33	1
Dibromochloromethane	ND		2.0	0.33	ug/L			12/05/24 12:33	1
1,2-Dibromoethane (EDB)	ND		1.0	0.20	ug/L			12/05/24 12:33	1

1.0

1.0

1.0

2.0

2.0

1.0

1.0

5.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

0.32 ug/L

0.20 ug/L

0.48 ug/L

0.32 ug/L

0.28 ug/L

0.16 ug/L

0.24 ug/L

0.66 ug/L

0.24 ug/L

0.28 ug/L

0.25 ug/L

0.50 ug/L

0.36 ug/L

0.32 ug/L

0.26 ug/L

0.12 ug/L

0.31 ug/L

0.22 ug/L

ND

0.65

ND

ND

67

70

ND

ND

ND

ND

ND

ND

ND

34

ND

ND

37

ND

Eurofins Spokane

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

12/05/24 12:33

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St. Helens

Client Sample ID: Baker Tank H2O

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Date Collected: 11/26/24 15:34 Date Received: 12/03/24 10:30

Lab Sample ID: 590-28345-1

Matrix: Water

Job ID: 590-28345-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND		1.0	0.14	ug/L			12/05/24 12:33	1
p-lsopropyltoluene	2.4		1.0	0.27	ug/L			12/05/24 12:33	1
1,4-Dichlorobenzene	ND		1.0	0.28	ug/L			12/05/24 12:33	1
n-Butylbenzene	ND		1.0	0.20	ug/L			12/05/24 12:33	1
1,2-Dichlorobenzene	ND		1.0	0.23	ug/L			12/05/24 12:33	1
1,2-Dibromo-3-Chloropropane	ND		10	1.5	ug/L			12/05/24 12:33	1
1,2,4-Trichlorobenzene	ND		1.0	0.50	ug/L			12/05/24 12:33	1
1,2,3-Trichlorobenzene	ND		1.0	0.33	ug/L			12/05/24 12:33	1
Hexachlorobutadiene	ND		2.0	0.21	ug/L			12/05/24 12:33	1
Naphthalene	12		2.0	0.63	ug/L			12/05/24 12:33	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/05/24 12:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120			_		12/05/24 12:33	1
4-Bromofluorobenzene (Surr)	100		76 - 120					12/05/24 12:33	1
Dibromofluoromethane (Surr)	101		80 - 123					12/05/24 12:33	1
1,2-Dichloroethane-d4 (Surr)	102		80 - 120					12/05/24 12:33	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	1900		150	54	ug/L			12/05/24 12:33	1
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery	Qualifier	Limits 68.7 - 141				Prepared	Analyzed 12/05/24 12:33	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.63		0.091	0.053	ug/L		12/03/24 10:49	12/11/24 21:55	1
2-Methylnaphthalene	ND		0.091	0.044	ug/L		12/03/24 10:49	12/11/24 21:55	1
1-Methylnaphthalene	0.11		0.091	0.023	ug/L		12/03/24 10:49	12/11/24 21:55	1
Acenaphthylene	0.017	J	0.091	0.016	ug/L		12/03/24 10:49	12/11/24 21:55	1
Acenaphthene	0.17		0.091	0.022	ug/L		12/03/24 10:49	12/11/24 21:55	1
Fluorene	0.027	J	0.091	0.016	ug/L		12/03/24 10:49	12/11/24 21:55	1
Phenanthrene	0.066	J	0.091	0.057	ug/L		12/03/24 10:49	12/11/24 21:55	1
Anthracene	0.030	J	0.091	0.025	ug/L		12/03/24 10:49	12/11/24 21:55	1
Fluoranthene	ND		0.091	0.017	ug/L		12/03/24 10:49	12/11/24 21:55	1
Pyrene	0.55		0.091	0.026	ug/L		12/03/24 10:49	12/11/24 21:55	1
Benzo[a]anthracene	ND		0.091	0.028	ug/L		12/03/24 10:49	12/11/24 21:55	1
Chrysene	ND		0.091	0.010	ug/L		12/03/24 10:49	12/11/24 21:55	1
Benzo[b]fluoranthene	ND		0.091	0.025	ug/L		12/03/24 10:49	12/11/24 21:55	1
Benzo[k]fluoranthene	ND		0.091	0.015	ug/L		12/03/24 10:49	12/11/24 21:55	1
Benzo[a]pyrene	ND		0.091	0.012	ug/L		12/03/24 10:49	12/11/24 21:55	1
Indeno[1,2,3-cd]pyrene	ND		0.091	0.022	ug/L		12/03/24 10:49	12/11/24 21:55	1
Dibenz(a,h)anthracene	ND		0.091	0.013	ug/L		12/03/24 10:49	12/11/24 21:55	1
Benzo[g,h,i]perylene	ND		0.091	0.021	ug/L		12/03/24 10:49	12/11/24 21:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	71		44 - 120				12/03/24 10:49	12/11/24 21:55	1
2-Fluorobiphenyl (Surr)	82		32 - 120				12/03/24 10:49	12/11/24 21:55	1
p-Terphenyl-d14	79		39 - 120				12/03/24 10:49	12/11/24 21:55	1

Eurofins Spokane

3

6

8

10

11

Client: Martin S Burck Associates

Project/Site: Lawrence Oil - St. Helens

Client Sample ID: Baker Tank H2O

Date Collected: 11/26/24 15:34 Date Received: 12/03/24 10:30

Job ID: 590-28345-1

Lab Sample ID: 590-28345-1 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO) (C10-C25)	1.4		0.21	0.12	mg/L		12/09/24 11:52	12/09/24 19:20	1
Residual Range Organics (RRO) (C25-C36)	ND		0.31	0.13	mg/L		12/09/24 11:52	12/09/24 19:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	79		50 - 150				12/09/24 11:52	12/09/24 19:20	1
n-Triacontane-d62	69		50 - 150				12/09/24 11:52	12/09/24 19:20	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.025	0.010	mg/L		12/09/24 10:16	12/09/24 16:33	1
Barium	0.015	J	0.025	0.0014	mg/L		12/09/24 10:16	12/09/24 16:33	1
Cadmium	ND		0.025	0.0012	mg/L		12/09/24 10:16	12/09/24 16:33	1
Chromium	ND		0.025	0.0017	mg/L		12/09/24 10:16	12/09/24 16:33	1
Lead	ND		0.060	0.0051	mg/L		12/09/24 10:16	12/09/24 16:33	1
Selenium	ND		0.10	0.049	mg/L		12/09/24 10:16	12/09/24 16:33	1
Silver	ND		0.025	0.0025	mg/L		12/09/24 10:16	12/09/24 16:33	1

Method: SW846 7470A - Mercury (CVAA)								
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.20	0.090	ug/L		12/09/24 10:17	12/09/24 16:32	1

12/12/2024

QC Sample Results

Client: Martin S Burck Associates Job ID: 590-28345-1 Project/Site: Lawrence Oil - St. Helens

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 590-51248/10

Matrix: Water

Analysis Batch: 51248

Client Sample ID: Method Blank	
Prep Type: Total/NA	

Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		2.0		ug/L		riepaieu	12/05/24 12:04	1
Chloromethane	ND		3.0	0.50	•			12/05/24 12:04	1
Vinyl chloride	ND		0.40	0.13				12/05/24 12:04	
Bromomethane	ND		5.0		ug/L			12/05/24 12:04	· · · · · · · · · · · · · · · · · · ·
Chloroethane	ND		2.0		ug/L			12/05/24 12:04	1
Trichlorofluoromethane	ND		1.0		ug/L			12/05/24 12:04	1
1,1-Dichloroethene	ND		1.0		ug/L			12/05/24 12:04	
Methylene Chloride	ND		5.0		ug/L			12/05/24 12:04	1
trans-1,2-Dichloroethene	ND		1.0	0.20				12/05/24 12:04	1
1,1-Dichloroethane	ND		1.0		ug/L			12/05/24 12:04	·
2,2-Dichloropropane	ND		2.0	0.66				12/05/24 12:04	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			12/05/24 12:04	1
Bromochloromethane	ND		2.0		ug/L			12/05/24 12:04	
Chloroform	ND		1.0		ug/L			12/05/24 12:04	1
1,1,1-Trichloroethane	ND		1.0		ug/L			12/05/24 12:04	1
Carbon tetrachloride	ND		1.0		ug/L			12/05/24 12:04	·
1,1-Dichloropropene	ND		1.0	0.50				12/05/24 12:04	1
Benzene	ND		0.40	0.093				12/05/24 12:04	1
1,2-Dichloroethane (EDC)	ND		1.0		ug/L			12/05/24 12:04	· · · · · · · · · · · · · · · · · · ·
Trichloroethene	ND		1.0		ug/L			12/05/24 12:04	1
1,2-Dichloropropane	ND		1.0		ug/L			12/05/24 12:04	1
Dibromomethane	ND		2.0		ug/L			12/05/24 12:04	
Bromodichloromethane	ND		1.0	0.29				12/05/24 12:04	. 1
cis-1,3-Dichloropropene	ND		1.0	0.25				12/05/24 12:04	1
Toluene	ND		1.0		ug/L			12/05/24 12:04	
trans-1,3-Dichloropropene	ND		1.0	0.45				12/05/24 12:04	. 1
1,1,2-Trichloroethane	ND		2.0		ug/L			12/05/24 12:04	1
Tetrachloroethene	ND		1.0		ug/L			12/05/24 12:04	
1,3-Dichloropropane	ND		2.0		ug/L			12/05/24 12:04	1
Dibromochloromethane	ND		2.0		ug/L			12/05/24 12:04	
1,2-Dibromoethane (EDB)	ND		1.0		ug/L			12/05/24 12:04	· · · · · · · · · · · · · · · · · · ·
Chlorobenzene	ND		1.0		ug/L			12/05/24 12:04	1
Ethylbenzene	ND		1.0	0.20				12/05/24 12:04	
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			12/05/24 12:04	
1,1,2,2-Tetrachloroethane	ND		2.0		ug/L			12/05/24 12:04	1
m,p-Xylene	ND		2.0		ug/L			12/05/24 12:04	
o-Xylene	ND		1.0		ug/L			12/05/24 12:04	
Styrene	ND		1.0		ug/L			12/05/24 12:04	1
Bromoform	ND		5.0		ug/L			12/05/24 12:04	1
Isopropylbenzene	ND		1.0		ug/L			12/05/24 12:04	
Bromobenzene	ND		1.0		ug/L			12/05/24 12:04	1
N-Propylbenzene	ND ND		1.0		ug/L ug/L			12/05/24 12:04	1
1,2,3-Trichloropropane	ND		2.0		ug/L			12/05/24 12:04	
2-Chlorotoluene	ND ND		1.0		ug/L ug/L			12/05/24 12:04	1
	ND ND		1.0		ug/L ug/L				1
1,3,5-Trimethylbenzene					ug/L ug/L			12/05/24 12:04	'
4-Chlorotoluene tert-Butylbenzene	ND ND		1.0 1.0		ug/L ug/L			12/05/24 12:04	
1,2,4-Trimethylbenzene	ND ND		1.0		ug/L ug/L			12/05/24 12:04	1

Eurofins Spokane

Client: Martin S Burck Associates Job ID: 590-28345-1

Project/Site: Lawrence Oil - St. Helens

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 590-51248/10

Matrix: Water

Analysis Batch: 51248

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND		1.0	0.22	ug/L			12/05/24 12:04	1
1,3-Dichlorobenzene	ND		1.0	0.14	ug/L			12/05/24 12:04	1
p-Isopropyltoluene	ND		1.0	0.27	ug/L			12/05/24 12:04	
1,4-Dichlorobenzene	ND		1.0	0.28	ug/L			12/05/24 12:04	
n-Butylbenzene	ND		1.0	0.20	ug/L			12/05/24 12:04	1
1,2-Dichlorobenzene	ND		1.0	0.23	ug/L			12/05/24 12:04	
1,2-Dibromo-3-Chloropropane	ND		10	1.5	ug/L			12/05/24 12:04	1
1,2,4-Trichlorobenzene	ND		1.0	0.50	ug/L			12/05/24 12:04	1
1,2,3-Trichlorobenzene	ND		1.0	0.33	ug/L			12/05/24 12:04	1
Hexachlorobutadiene	ND		2.0	0.21	ug/L			12/05/24 12:04	1
Naphthalene	ND		2.0	0.63	ug/L			12/05/24 12:04	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/05/24 12:04	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	107	80 - 120		12/05/24 12:04	1
4-Bromofluorobenzene (Surr)	101	76 - 120		12/05/24 12:04	1
Dibromofluoromethane (Surr)	100	80 - 123		12/05/24 12:04	1
1,2-Dichloroethane-d4 (Surr)	102	80 - 120		12/05/24 12:04	1

Lab Sample ID: LCS 590-51248/1006

Matrix: Water

Analysis Batch: 51248

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	10.0	8.77		ug/L		88	30 - 150
Chloromethane	10.0	9.52		ug/L		95	19 - 150
Vinyl chloride	10.0	10.4		ug/L		104	50 - 150
Bromomethane	10.0	10.6		ug/L		106	66 - 149
Chloroethane	10.0	9.10		ug/L		91	64 - 134
Trichlorofluoromethane	10.0	9.31		ug/L		93	71 - 147
1,1-Dichloroethene	10.0	8.89		ug/L		89	65 - 141
Methylene Chloride	10.0	8.07		ug/L		81	30 - 150
trans-1,2-Dichloroethene	10.0	8.52		ug/L		85	73 - 137
1,1-Dichloroethane	10.0	10.0		ug/L		100	80 - 125
2,2-Dichloropropane	10.0	11.2		ug/L		112	73 - 140
cis-1,2-Dichloroethene	10.0	9.91		ug/L		99	80 - 122
Bromochloromethane	10.0	9.75		ug/L		98	71 - 136
Chloroform	10.0	10.5		ug/L		105	80 - 123
1,1,1-Trichloroethane	10.0	10.2		ug/L		102	71 - 138
Carbon tetrachloride	10.0	11.0		ug/L		110	72 - 138
1,1-Dichloropropene	10.0	10.4		ug/L		104	82 - 123
Benzene	10.0	10.2		ug/L		102	80 - 120
1,2-Dichloroethane (EDC)	10.0	10.5		ug/L		105	80 - 120
Trichloroethene	10.0	10.3		ug/L		103	80 - 123
1,2-Dichloropropane	10.0	9.98		ug/L		100	79 - 122
Dibromomethane	10.0	10.1		ug/L		101	80 - 122
Bromodichloromethane	10.0	10.1		ug/L		101	80 - 120
cis-1,3-Dichloropropene	10.0	9.76		ug/L		98	80 - 121

Eurofins Spokane

3

5

7

8

10

11

12

12/12/2024

QC Sample Results

Spike

LCS LCS

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St. Helens Job ID: 590-28345-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 590-51248/1006

Matrix: Water

Analysis Batch: 51248

Client Sample ID: Lab Control Sample

%Rec

Prep Type: Total/NA

	Opino	LOG LOG			/01 1CC	
Analyte	Added	Result Quali	fier Unit	D %Rec	Limits	
Toluene	10.0	9.88	ug/L	99	80 - 129	
trans-1,3-Dichloropropene	10.0	10.2	ug/L	102	73 - 138	
1,1,2-Trichloroethane	10.0	10.1	ug/L	101	80 - 128	
Tetrachloroethene	10.0	10.3	ug/L	103	80 - 139	
1,3-Dichloropropane	10.0	10.0	ug/L	100	78 - 129	
Dibromochloromethane	10.0	10.2	ug/L	102	80 - 130	
1,2-Dibromoethane (EDB)	10.0	10.1	ug/L	101	80 - 124	
Chlorobenzene	10.0	10.1	ug/L	101	80 - 124	
Ethylbenzene	10.0	9.91	ug/L	99	80 - 122	
1,1,1,2-Tetrachloroethane	10.0	10.2	ug/L	102	80 - 131	
1,1,2,2-Tetrachloroethane	10.0	10.4	ug/L	104	60 - 150	
m,p-Xylene	10.0	9.63	ug/L	96	80 - 125	
o-Xylene	10.0	9.28	ug/L	93	80 - 130	
Styrene	10.0	9.42	ug/L	94	79 - 134	
Bromoform	10.0	10.4	ug/L	104	73 - 139	
Isopropylbenzene	10.0	9.33	ug/L	93	80 - 122	
Bromobenzene	10.0	9.83	ug/L	98	73 - 125	
N-Propylbenzene	10.0	9.75	ug/L	97	73 - 136	
1,2,3-Trichloropropane	10.0	10.5	ug/L	105	65 - 142	
2-Chlorotoluene	10.0	10.6	ug/L	106	74 - 129	
1,3,5-Trimethylbenzene	10.0	9.53	ug/L	95	76 - 129	
4-Chlorotoluene	10.0	9.85	ug/L	99	79 - 125	
tert-Butylbenzene	10.0	9.15	ug/L	92	76 - 131	
1,2,4-Trimethylbenzene	10.0	9.16	ug/L	92	78 - 131	
sec-Butylbenzene	10.0	9.80	ug/L	98	73 - 138	
1,3-Dichlorobenzene	10.0	9.87	ug/L	99	80 - 122	
p-Isopropyltoluene	10.0	9.20	ug/L	92	78 - 128	
1,4-Dichlorobenzene	10.0	9.77	ug/L	98	80 - 120	
n-Butylbenzene	10.0	8.83	ug/L	88	75 - 121	
1,2-Dichlorobenzene	10.0	9.84	ug/L	98	80 - 120	
1,2-Dibromo-3-Chloropropane	10.0	10.4	ug/L	104	53 - 142	
1,2,4-Trichlorobenzene	10.0	10.4	ug/L	104	76 - 131	
1,2,3-Trichlorobenzene	10.0	9.92	ug/L	99	70 - 137	
Hexachlorobutadiene	10.0	10.2	ug/L	102	77 - 132	
Naphthalene	10.0	10.2	ug/L	102	61 - 140	
Methyl tert-butyl ether	10.0	9.13	ug/L	91	68 - 134	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
4-Bromofluorobenzene (Surr)	99		76 - 120
Dibromofluoromethane (Surr)	102		80 - 123
1,2-Dichloroethane-d4 (Surr)	103		80 - 120

QC Sample Results

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St. Helens Job ID: 590-28345-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 590-51248/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

	Spike	LCSD	LCSD				%Rec		RPI
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Dichlorodifluoromethane	10.0	8.77		ug/L		88	30 - 150	1	2
Chloromethane	10.0	9.52		ug/L		95	19 - 150	6	3
Vinyl chloride	10.0	10.4		ug/L		104	50 - 150	2	2
Bromomethane	10.0	10.6		ug/L		106	66 - 149	1	2
Chloroethane	10.0	9.10		ug/L		91	64 - 134	15	2
Trichlorofluoromethane	10.0	9.31		ug/L		93	71 - 147	0	2
1,1-Dichloroethene	10.0	8.89		ug/L		89	65 - 141	7	1
Methylene Chloride	10.0	8.07		ug/L		81	30 - 150	3	2
trans-1,2-Dichloroethene	10.0	8.52		ug/L		85	73 - 137	3	1
1,1-Dichloroethane	10.0	10.0		ug/L		100	80 - 125	4	2
2,2-Dichloropropane	10.0	11.2		ug/L		112	73 - 140	1	1
cis-1,2-Dichloroethene	10.0	9.91		ug/L		99	80 - 122	6	1
Bromochloromethane	10.0	9.75		ug/L		98	71 - 136	6	2
Chloroform	10.0	10.5		ug/L		105	80 - 123	6	1
1,1,1-Trichloroethane	10.0	10.2		ug/L		102	71 - 138	0	1
Carbon tetrachloride	10.0	11.0		ug/L		110	72 - 138	6	2
1,1-Dichloropropene	10.0	10.4		ug/L		104	82 - 123	1	2
Benzene	10.0	10.2		ug/L		102	80 - 120	1	1
1,2-Dichloroethane (EDC)	10.0	10.5		ug/L		105	80 - 120	5	1.
Trichloroethene	10.0	10.3		ug/L		103	80 - 123	1	1.
1,2-Dichloropropane	10.0	9.98		ug/L		100	79 - 122	4	1:
/Dibromomethane	10.0	10.1		ug/L		101	80 - 122	1	10
Bromodichloromethane	10.0	10.1		ug/L		101	80 - 120	3	1
cis-1,3-Dichloropropene	10.0	9.76		ug/L		98	80 - 121	2	1
Toluene	10.0	9.88		ug/L		99	80 - 129	2	3
trans-1,3-Dichloropropene	10.0	10.2		ug/L		102	73 - 138	2	1
1,1,2-Trichloroethane	10.0	10.1		ug/L		101	80 - 128	3	1:
Tetrachloroethene	10.0	10.3		ug/L		103	80 - 139	2	2
1,3-Dichloropropane	10.0	10.0		ug/L		100	78 - 129	7	1
Dibromochloromethane	10.0	10.2		ug/L		102	80 - 130	3	1:
1,2-Dibromoethane (EDB)	10.0	10.1		ug/L		101	80 - 124	3	1.
Chlorobenzene	10.0	10.1		ug/L		101	80 - 124	1	1.
Ethylbenzene	10.0	9.91		ug/L		99	80 - 122	1	3
1,1,1,2-Tetrachloroethane	10.0	10.2		ug/L		102	80 - 131	2	1
1,1,2,2-Tetrachloroethane	10.0	10.4		ug/L		104	60 - 150	0	1
m,p-Xylene	10.0	9.63		ug/L		96	80 - 125	1	3
o-Xylene	10.0	9.28		ug/L		93	80 - 130	1	3
Styrene	10.0	9.42		ug/L		94	79 - 134	4	1
Bromoform	10.0	10.4		ug/L		104	73 - 139	5	1
Isopropylbenzene	10.0	9.33		ug/L		93	80 - 122	2	1
Bromobenzene	10.0	9.83		ug/L		98	73 - 125	1	1
N-Propylbenzene	10.0	9.75		ug/L		97	73 - 136	1	1
1,2,3-Trichloropropane	10.0	10.5		ug/L		105	65 - 142	3	3
2-Chlorotoluene	10.0	10.6		ug/L		106	74 - 129	11	1
1,3,5-Trimethylbenzene	10.0	9.53		ug/L		95	76 - 129	1	1
4-Chlorotoluene	10.0	9.85		ug/L		99	79 - 125	0	
tert-Butylbenzene	10.0	9.05		ug/L		92	76 - 131	1	1
1,2,4-Trimethylbenzene	10.0	9.16		ug/L		92	78 - 131	0	1

Eurofins Spokane

Page 13 of 24

12/12/2024

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St. Helens

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 590-51248/6

Matrix: Water

Analysis Batch: 51248

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

80 - 120

Client Sample ID: Lab Control Sample Dup

116

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
sec-Butylbenzene	10.0	9.80		ug/L		98	73 - 138	1	17
1,3-Dichlorobenzene	10.0	9.87		ug/L		99	80 - 122	1	15
p-Isopropyltoluene	10.0	9.20		ug/L		92	78 - 128	2	17
1,4-Dichlorobenzene	10.0	9.77		ug/L		98	80 - 120	0	14
n-Butylbenzene	10.0	8.83		ug/L		88	75 - 121	1	16
1,2-Dichlorobenzene	10.0	9.84		ug/L		98	80 - 120	1	14
1,2-Dibromo-3-Chloropropane	10.0	10.4		ug/L		104	53 - 142	8	29
1,2,4-Trichlorobenzene	10.0	10.4		ug/L		104	76 - 131	5	24
1,2,3-Trichlorobenzene	10.0	9.92		ug/L		99	70 - 137	2	30
Hexachlorobutadiene	10.0	10.2		ug/L		102	77 - 132	4	25
Naphthalene	10.0	10.2		ug/L		102	61 - 140	6	25
Methyl tert-butyl ether	10.0	9.13		ug/L		91	68 - 134	4	18

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
4-Bromofluorobenzene (Surr)	99		76 - 120
Dibromofluoromethane (Surr)	102		80 - 123
1,2-Dichloroethane-d4 (Surr)	103		80 - 120

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS)

Lab Sample ID: MB 590-51247/10 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 51247

MB MB

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND	150	54	ug/L			12/05/24 12:04	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		68.7 - 141		12/05/24 12:04	1

1160

ug/L

Lab Sample ID: LCS 590-51247/1009

Matrix: Water

Gasoline

Analysis Batch: 51247					
	Spike	LCS LCS			%Rec
Analyte	Added	Result Qualifier	Unit D	%Rec	Limits

1000

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		68 7 - 141

Lab Sample ID: LCSD 590-51247/1013

Matrix: Water

Analysis Ratch: 51247

Analysis batch: 51247								
	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	RPD	Limit
Gasoline	1000	1130		ug/L	113	80 - 120	2	20

Eurofins Spokane

Prep Type: Total/NA

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St. Helens

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC/MS) (Continued)

Lab Sample ID: LCSD 590-51247/1013

Matrix: Water

Analysis Batch: 51247

LCSD LCSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 104 68.7 - 141 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 590-51187/1-A **Matrix: Water**

Analysis Batch: 51352

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 51187

Allalysis Datcil. 31332								Fieb Date	11. 31101
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.090	0.053	ug/L		12/03/24 10:49	12/11/24 20:49	1
2-Methylnaphthalene	ND		0.090	0.044	ug/L		12/03/24 10:49	12/11/24 20:49	1
1-Methylnaphthalene	ND		0.090	0.023	ug/L		12/03/24 10:49	12/11/24 20:49	1
Acenaphthylene	ND		0.090	0.016	ug/L		12/03/24 10:49	12/11/24 20:49	1
Acenaphthene	ND		0.090	0.022	ug/L		12/03/24 10:49	12/11/24 20:49	1
Fluorene	ND		0.090	0.016	ug/L		12/03/24 10:49	12/11/24 20:49	1
Phenanthrene	ND		0.090	0.056	ug/L		12/03/24 10:49	12/11/24 20:49	1
Anthracene	ND		0.090	0.025	ug/L		12/03/24 10:49	12/11/24 20:49	1
Fluoranthene	ND		0.090	0.017	ug/L		12/03/24 10:49	12/11/24 20:49	1
Pyrene	ND		0.090	0.026	ug/L		12/03/24 10:49	12/11/24 20:49	1
Benzo[a]anthracene	ND		0.090	0.028	ug/L		12/03/24 10:49	12/11/24 20:49	1
Chrysene	ND		0.090	0.010	ug/L		12/03/24 10:49	12/11/24 20:49	1
Benzo[b]fluoranthene	ND		0.090	0.025	ug/L		12/03/24 10:49	12/11/24 20:49	1
Benzo[k]fluoranthene	ND		0.090	0.015	ug/L		12/03/24 10:49	12/11/24 20:49	1
Benzo[a]pyrene	ND		0.090	0.012	ug/L		12/03/24 10:49	12/11/24 20:49	1
Indeno[1,2,3-cd]pyrene	ND		0.090	0.022	ug/L		12/03/24 10:49	12/11/24 20:49	1
Dibenz(a,h)anthracene	ND		0.090	0.013	ug/L		12/03/24 10:49	12/11/24 20:49	1
Benzo[g,h,i]perylene	ND		0.090	0.021	ug/L		12/03/24 10:49	12/11/24 20:49	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5	74		44 - 120	12/03/24 10:49	12/11/24 20:49	1
2-Fluorobiphenyl (Surr)	77		32 - 120	12/03/24 10:49	12/11/24 20:49	1
n-Ternhenvl-d14	81		39 - 120	12/03/24 10:49	12/11/24 20:49	1

Lab Sample ID: LCS 590-51187/2-A

Matrix: Water

Analysis Batch: 51352

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 51187

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	1.60	1.48		ug/L		92	47 - 120
2-Methylnaphthalene	1.60	1.49		ug/L		93	46 - 120
1-Methylnaphthalene	1.60	1.45		ug/L		91	49 - 120
Acenaphthylene	1.60	1.59		ug/L		99	56 - 120
Acenaphthene	1.60	1.60		ug/L		100	53 - 120
Fluorene	1.60	1.70		ug/L		106	56 - 120
Phenanthrene	1.60	1.74		ug/L		109	59 - 128
Anthracene	1.60	1.67		ug/L		104	56 - 128
Fluoranthene	1.60	1.79		ug/L		112	58 - 129
Pyrene	1.60	1.74		ug/L		109	61 - 135

Eurofins Spokane

Page 15 of 24

12/12/2024

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St. Helens

Method: 8270E SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 590-51187/2-A

Lab Sample ID: LCSD 590-51187/3-A

Matrix: Water

Matrix: Water

Analysis Batch: 51352

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 51187

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[a]anthracene	1.60	1.76		ug/L		110	62 - 130	
Chrysene	1.60	1.67		ug/L		105	57 - 135	
Benzo[b]fluoranthene	1.60	1.74		ug/L		109	47 - 136	
Benzo[k]fluoranthene	1.60	1.70		ug/L		107	55 - 131	
Benzo[a]pyrene	1.60	1.61		ug/L		101	57 - 130	
Indeno[1,2,3-cd]pyrene	1.60	1.69		ug/L		106	61 - 121	
Dibenz(a,h)anthracene	1.60	1.75		ug/L		109	59 - 127	
Benzo[g,h,i]perylene	1.60	1.83		ug/L		114	59 - 129	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	82		44 - 120
2-Fluorobiphenyl (Surr)	85		32 - 120
p-Terphenyl-d14	84		39 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 51187

Analysis Batch: 51352 Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit 1.60 1.48 92 47 - 120 30 Naphthalene ug/L 0 2-Methylnaphthalene 1.60 1.47 ug/L 92 46 - 120 34 1.60 1.45 90 49 - 120 1-Methylnaphthalene ug/L 0 32 Acenaphthylene 1.60 1.57 ug/L 98 56 - 120 24 Acenaphthene 1.60 1.57 98 53 - 120 2 26 ug/L Fluorene 1.60 1.64 ug/L 103 56 - 120 3 24 Phenanthrene 1.60 1.71 ug/L 107 59 - 128 21 Anthracene 1.60 1.67 ug/L 104 56 - 128 25 Fluoranthene 1.60 1.77 ug/L 111 58 - 129 24 Pyrene 1.60 1.77 ug/L 111 61 - 135 24 Benzo[a]anthracene 1.60 1.76 ug/L 110 62 - 130 21 1.60 1.73 108 20 Chrysene ug/L 57 - 135 Benzo[b]fluoranthene 1.60 1.72 107 47 - 136 27 ug/L Benzo[k]fluoranthene 1.60 1.78 ug/L 111 55 - 131 28 Benzo[a]pyrene 1.60 1.64 ug/L 102 57 - 130 19 1.60 108 2 20 Indeno[1,2,3-cd]pyrene 1 72 ug/L 61 - 121 Dibenz(a,h)anthracene 1.60 1.79 ug/L 112 59 - 127 2 20 Benzo[g,h,i]perylene 1.60 1.88 ug/L 118 59 - 129 20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	83		44 - 120
2-Fluorobiphenyl (Surr)	83		32 - 120
p-Terphenyl-d14	81		39 - 120

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St. Helens

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 590-51278/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 51304

Prep Type: Total/NA

Prep Batch: 51278

Prep Type: Total/NA

ı		IVID	IVID							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Diesel Range Organics (DRO)	ND		0.20	0.11	mg/L		12/09/24 11:52	12/09/24 18:17	1
	(C10-C25)									
	Residual Range Organics (RRO)	ND		0.30	0.12	mg/L		12/09/24 11:52	12/09/24 18:17	1
	(C25-C36)									

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
o-Terphenyl	84		50 - 150	12/09/24 11:52	12/09/24 18:17	1
n-Triacontane-d62	85		50 ₋ 150	12/09/24 11:52	12/09/24 18:17	1

Lab Sample ID: LCS 590-51278/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water

Residual Range Organics (RRO)

Analysis Batch: 51304							Prep	Batch:	51278
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Diesel Range Organics (DRO)	1.60	0.871		mg/L		54	50 - 150		

1.15

mg/L

(C10-C25) (C25-C36)

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	80		50 - 150
n-Triacontane-d62	68		50 150

Lab Sample ID: LCSD 590-51278/3-A Client Sample ID: Lab Control Sample Dup

1.60

Matrix: Water

Analysis Batch: 51304

Prep Type: Total/NA Prep Batch: 51278

50 - 150

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO) (C10-C25)	1.60	0.960		mg/L		60	50 - 150	10	25
Residual Range Organics (RRO) (C25-C36)	1.60	1.28		mg/L		80	50 - 150	10	25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
o-Terphenyl	88		50 - 150
n-Triacontane-d62	72		50 ₋ 150

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 590-51289/2-A

Matrix: Water

Analysis Batch: 51311

Client Sample ID: Method Blank **Prep Type: Total Recoverable** Prep Batch: 51289

		MB	MB							
1	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ā	Arsenic	ND		0.025	0.010	mg/L		12/09/24 10:16	12/09/24 16:28	1
E	Barium	ND		0.025	0.0014	mg/L		12/09/24 10:16	12/09/24 16:28	1
	Cadmium	ND		0.025	0.0012	mg/L		12/09/24 10:16	12/09/24 16:28	1
	Chromium	ND		0.025	0.0017	mg/L		12/09/24 10:16	12/09/24 16:28	1
L	ead	ND		0.060	0.0051	mg/L		12/09/24 10:16	12/09/24 16:28	1

Eurofins Spokane

Page 17 of 24

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St. Helens

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: MB 590-51289/2-A

Matrix: Water

Silver

Analysis Batch: 51311

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 51289

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.10	0.049	mg/L		12/09/24 10:16	12/09/24 16:28	1
Silver	ND		0.025	0.0025	mg/L		12/09/24 10:16	12/09/24 16:28	1

Lab Sample ID: LCS 590-51289/1-A **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total Recoverable

Analysis Batch: 51311 Prep Batch: 51289

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	2.00	1.86		mg/L		93	80 - 120	
Barium	2.00	1.70		mg/L		85	80 - 120	
Cadmium	1.00	0.919		mg/L		92	80 - 120	
Chromium	1.00	0.948		mg/L		95	80 - 120	
Lead	1.00	1.01		mg/L		101	80 - 120	
Selenium	2.00	1.86		mg/L		93	80 - 120	
Silver	0.100	0.0859		mg/L		86	80 - 120	

Lab Sample ID: 590-28345-1 MS Client Sample ID: Baker Tank H2O **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 51311 Prep Batch: 51289

_	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	ND		2.00	1.89		mg/L		94	75 - 125	
Barium	0.015	J	2.00	1.74		mg/L		86	75 - 125	
Cadmium	ND		1.00	0.939		mg/L		94	75 - 125	
Chromium	ND		1.00	0.983		mg/L		98	75 - 125	
Lead	ND		1.00	1.03		mg/L		103	75 - 125	
Selenium	ND		2.00	1.90		mg/L		95	80 - 120	
Silver	ND		0.100	0.0893		ma/l		89	75 - 125	

Lab Sample ID: 590-28345-1 MSD Client Sample ID: Baker Tank H2O **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 51311

ND

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit Arsenic ND 2.00 1.86 93 75 - 125 20 mg/L 0.015 2.00 87 Barium 1.76 mg/L 75 - 125 20 Cadmium ND 1.00 0.923 mg/L 92 75 - 125 20 Chromium ND 1.00 0.951 95 75 - 125 20 mg/L Lead ND 1.00 1.00 mg/L 100 75 - 125 20 ND 2.00 Selenium 1.88 mg/L 94 80 - 120 20

Lab Sample ID: 590-28345-1 DU

0.100

Matrix: Water Analysis Batch: 51311 Prep Batch: 51289

0.0866

mg/L

Sample Sample DU DU RPD Result Qualifier Result Qualifier Limit Analyte Unit RPD Arsenic ND ND NC mg/L Barium 0.015 J 0.0154 J mg/L 3 20 Cadmium ND ND mg/L NC 20

Eurofins Spokane

12/12/2024

Page 18 of 24

Prep Batch: 51289

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St. Helens Job ID: 590-28345-1

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: 590-28345-1 DU

Matrix: Water

Analysis Batch: 51311

Client Sample ID: Baker Tank H2O **Prep Type: Total Recoverable**

Prep Batch: 51289

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Chromium	ND		ND		mg/L		NC	20
Lead	ND		ND		mg/L		NC	20
Selenium	ND		ND		mg/L		NC	20
Silver	ND		ND		mg/L		NC	20
_								

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 590-51307/9-A

Matrix: Water

Analyte

Mercury

Analyte

Mercury

Mercury

Analyte

Mercury

Analysis Batch: 51308

мв мв

Result Qualifier

ND

RL 0.20

MDL Unit 0.090 ug/L D

Prepared 12/09/24 10:17

103

%Rec

103

Analyzed 12/09/24 16:30

Client Sample ID: Method Blank

Dil Fac

Prep Type: Total/NA

Prep Batch: 51307

Lab Sample ID: LCS 590-51307/8-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 51308

Spike Added

2.00

Spike

Added

2.00

LCS LCS 2.06

Result Qualifier

%Rec

Limits

Client Sample ID: Baker Tank H2O

80 - 120

Prep Batch: 51307

Prep Type: Total/NA

Prep Batch: 51307

Lab Sample ID: 590-28345-1 MS

Lab Sample ID: 590-28345-1 MSD

Matrix: Water

Analysis Batch: 51308

Analyte

Sample Sample Spike Result Qualifier Added ND 2.00

MS MS Result 2.07

MSD MSD

Qualifier

Result

2.05

Qualifier Unit ug/L

Unit

ug/L

Unit

ug/L

%Rec %Rec Limits 104 80 - 120

%Rec

Limits

80 - 120

Client Sample ID: Baker Tank H2O

Client Sample ID: Baker Tank H2O Prep Type: Total/NA

Prep Batch: 51307

RPD

RPD

Limit

Matrix: Water

Analysis Batch: 51308

Analyte

Mercury Lab Sample ID: 590-28345-1 DU

Matrix: Water

Analysis Batch: 51308

Sample Sample Result Qualifier

Sample Sample

ND

ND

Result Qualifier

DU DU Result Qualifier ND

Unit ug/L

Prep Type: Total/NA Prep Batch: 51307

RPD RPD Limit 20

Eurofins Spokane

Lab Chronicle

Client: Martin S Burck Associates

Project/Site: Lawrence Oil - St. Helens

Client Sample ID: Baker Tank H2O

Date Collected: 11/26/24 15:34 Date Received: 12/03/24 10:30 Lab Sample ID: 590-28345-1

Matrix: Water

Job ID: 590-28345-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	43 mL	43 mL	51248	12/05/24 12:33	JSP	EET SPK
Total/NA	Analysis	NWTPH-Gx		1	43 mL	43 mL	51247	12/05/24 12:33	JSP	EET SPK
Total/NA	Prep	3510C			247.7 mL	2 mL	51187	12/03/24 10:49	MRV	EET SPK
Total/NA	Analysis	8270E SIM		1	1 uL	1 uL	51352	12/11/24 21:55	NMI	EET SPK
Total/NA	Prep	3510C			238.4 mL	2 mL	51278	12/09/24 11:52	MRV	EET SPK
Total/NA	Analysis	NWTPH-Dx		1	1 mL	1 mL	51304	12/09/24 19:20	NMI	EET SPK
Total Recoverable	Prep	3005A			50 mL	50 mL	51289	12/09/24 10:16	AMB	EET SPK
Total Recoverable	Analysis	6010D		1			51311	12/09/24 16:33	AMB	EET SPK
Total/NA	Prep	7470A			50 mL	50 mL	51307	12/09/24 10:17	AMB	EET SPK
Total/NA	Analysis	7470A		1			51308	12/09/24 16:32	AMB	EET SPK

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

Accreditation/Certification Summary

Client: Martin S Burck Associates Job ID: 590-28345-1

Project/Site: Lawrence Oil - St. Helens

Laboratory: Eurofins Spokane

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-025	01-07-25
Washington	State	C569	01-07-25

3

4

0

9

10

11

Method Summary

Client: Martin S Burck Associates Project/Site: Lawrence Oil - St. Helens Job ID: 590-28345-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET SPK
NWTPH-Gx	Northwest - Volatile Petroleum Products (GC/MS)	NWTPH	EET SPK
8270E SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	EET SPK
NWTPH-Dx	Northwest - Semi-Volatile Petroleum Products (GC)	NWTPH	EET SPK
6010D	Metals (ICP)	SW846	EET SPK
7470A	Mercury (CVAA)	SW846	EET SPK
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	EET SPK
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET SPK
5030C	Purge and Trap	SW846	EET SPK
7470A	Preparation, Mercury	SW846	EET SPK

Protocol References:

NWTPH = Northwest Total Petroleum Hydrocarbon

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SPK = Eurofins Spokane, 11922 East 1st Ave, Spokane, WA 99206, TEL (509)924-9200

.

4

C

_

10

44

11

Eurofins Spokane 11922 E 1st Avenue

Chain of Custody Record

0	eurofins	
	COLOTHIS	

Environment Testing America

Spokane, WA 99206-5302 phone 509.924.9200 fax 509.924.9290	Regul	atory Pro	ogram: [] wa [NPDE	s I	Пв	RCRA	П	Other	æ.										Eurofins Environment Testing America
F 1.02.00 1.02.00 1.03. 1.03.00	Project Ma					ĺ		.c.ion	L	Oujei											COC No:
Client Contact			environment			511	Site Contact: Date:				Α.						l of I COCs				
Martin S. Burck Associates	Tel/Fax:	nggmanace	- THOMAS	AUCOILL			ab Contact. Carrier										TALS Project #:				
200 N Wasco Ct	· 6	Analysis Turnaround Time			卌	Ť	Titaci	i	П	31	$\overline{}$		100		T		7		Т_	Sampler:	
Hood River, OR 97031	CALEND			RKING DAY	vs -	11			'	[]	B	.									For Lab Use Only
Phone 541.387,4422				10110	-	1 1:	٦l	ļ	\ \	121	W			1 1		- (ļ	11		Į	Walk-in Client.
FAX. 541.387.4813	1 0"	ril Instellib li T c	zom below 2 weeks				-	İ	U	12	္				1	ļ	1		- [Lab Sampling
Project Name: Lawrence Oil-St Helens	4		2 week			Z >	<u>ا</u> ا	XX		181	8170		ı]]	.	l				1	Las camping
Site.						176	a \`	00	1 1	\ <u> </u>	100		1	1 1	,	1	}	1		1	to concept.
PO#			2 days			[월] :	٤ [-]	1 1					ĺ	1 1	i			1 1	İ		Job / SDG No.
			1 day Sample			LES S	€ 5	تم اتم	ļ	4	3			1	. [-	ļ	Į Į		1	
Sample Identification	Sample Date	Sample Time	Type (C=Comp.	Matrix	# of Cont.	Filtered	Perform MS / MSD	TOLION NETON	8260	RCAR	229										Sample Specific Notes.
Baker Tank H20	11/20/24	15 34		Water				ХX	X	x	x				T	T	T				
DARCO , SALES					<u> </u>	††	十	+	+	H		1	+	+-	1	+	+	H	\top	+	
				1		H	†		+	H	十	_	+	+1	十	+	1	\Box	\top	+	
				1		H	†	+	 	\prod	十	1	+	1-1	十	1	+-	1	+	+	
						#	+	+	-	H	1	+	+	H	\top	+	1	$\dagger \dagger$	+	+	
				1	<u> </u>	<u> </u>	+	+	+-	H	十	_	+	1-1	1	+	+	H	\top	+-	
						#	+	+	+	H	_	+	+		\top	+	+	1	+	+	
			<u> </u>		<u> </u>	H	+	+		H	+			1-4	-+	+	+	++	\dashv	+	
	 			 	<u> </u>	+	+	+		H	十	_	11111	M)		H 11	HH HI	ii iliini	HH 11 11 11	i 8111 (88	<u> </u>
	 			1		H	+	+	+-	+	+	_									
						H	+	+	1	+	+										
	 		 	 		H	+	+	╀┦	+	+		590-	2834	I5 Ch	iain o	of Cus	stody	in ansat t)614 (184	#
			L	ليلل		Ш	\perp		<u> </u>		\perp			Ш							
Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3;	5=NaOH;	6= Other	A STATE OF THE STA		ger en sterr										الأمتدد		1			3	
Possible Hazard identification: Are any samples from a listed EPA Hazardous Waste? Plea the Comments Section if the lab is to dispose of the sample	se List any	EPA Wasi	te Codes fo	or the sar	mple ir	S	iam	iple D	lspc	osal	(Af	fee m	nay b	e as	3055	ed if	sam	ples &	are re	italne	ed longer than 1 month)
☐ Non-Hazard ☐ Flammable ☐ Skin Irritant	Polson	8	Unkno	own		ユ	\bot	Retur	m to	Client	i .		$\prod c$)isoos	al by L	ab		\Box	Archive	for	Months
Special Instructions/QC Requirements & Comments	1											-0			4	oj			<u></u>		- W201 0
Custody Seals Intact: Yes 180	Custody Se			² D-4-00		- 1				oler T	Lewt	ıp (°C)): Or	ວຣ'd.ຼ	1		_ Cor	t,q	<u> </u>	<u></u>	Therm ID No. 1000
Relinquished by	Company	MSB	A	Date/Tir	me: ≥4 <u>-</u> []	100	tece	elved	by.						1	Comp	any.				Date/Time:
Relinquished by	Company ⁻			Date/Tir			₹ece	eived	by						C	Comp	any				Date/Time:
Relinquished by	Company ⁻			Date/Tir	me:	R	3906	eived	in Li	abora	atory	y by:			C	Comp	any (Sa	_		Date/Time: 12/2/2 / 1050

Job Number: 590-28345-1 Client: Martin S Burck Associates

Login Number: 28345 List Source: Eurofins Spokane

List Number: 1

Creator: Morris, Mackenzie 1

Cleator. Morris, Mackerizie		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Attachment C

MSBA Field Methods and Procedures

FIELD METHODS AND PROCEDURES

The following section presents the general methods and procedures that are utilized to complete field activities. These activities include advancing borings and collecting soil and groundwater samples for laboratory analyses. Samples are collected, preserved, and transported for analysis in general accordance with DEQ methodology as presented in OAR 340-122-345 "Sample Collection Methods," and OAR 340-122-218 "Sampling and Analysis." If not specified by current DEQ regulations, sampling and analytical methods are implemented in general accordance with EPA protocol and/or commonly accepted industry standards for this time and place.

Utility Locating

Utilities, including overhead and underground, are identified and located prior to conducting work at the site. For overhead utilities, a safe minimum working distance is maintained with all sampling equipment dependant on the activity. For drilling or direct push equipment, a minimum 15-20 foot buffer is recommended. For other work such as excavation by backhoe, hand augering, hand probing, etc., a minimum distance is maintained such that the sampling equipment cannot come in contact with the utilities.

Underground utilities are located by contacting Utility Notification Center (UNC) for all underground sampling, excavation, and all other activities performed below the surface. The notification is performed at least 48 hours in advance of the work or as required by local laws and regulations to allow sufficient time for marking of the affected utilities. When warranted, MSBA will arrange on-site meetings with the contracted locators for the utilities to resolve any issues of proximity to the planned work.

In addition to contacting the UNC, MSBA may also perform one or more of the following activities intended to help prevent incidental contact with underground utilities during subsurface activities.

- 1) **Field Observation**: MSBA observes the site and surroundings for any signs of overhead and/or underground utilities.
- 2) **Private Utility Locate**: MSBA may contract with private utility locators if warranted to provide additional clarification of potential utilities and their locations.
- 3) **Hand Clearing**: MSBA may clear up to a maximum of the first five feet of subsurface soil for potential underground utilities by hand digging, hand augering, or air knifing.

Grab Soil Sampling

Grab soil samples are collected by hand or using a decontaminated shovel or hand trowel directly from surface/shallow soil or the sidewalls/base of a test pit or excavation area up to a depth of 4 feet below surface grade (bsg). At depths deeper than 4 feet bsg, soil samples are collected from an excavator bucket. The excavator bucket may be decontaminated prior to sampling. Just prior to collecting each sample, approximately 3 inches of soil is scraped away from the sampling surface. Soil samples are collected with a minimum amount of disturbance.

Soil samples are placed into laboratory provided wide-mouth glass jars, leaving as little headspace as possible. Soil samples are also collected in 40 milliliter (ml) volatile organic analysis (VOA) EPA method 5035 vials with a preservative. The jar is immediately sealed firmly with a Teflon-lined screw cap. After the samples are properly sealed, they are placed in an ice chest with ice and maintained at a temperature of 4° C (+/- 2° C) until preparation for analysis by the laboratory. Soil samples are analyzed within the laboratory designated hold times.

Disposable latex gloves are worn by the sampler and discarded after each sample. Sampling equipment is thoroughly cleaned and decontaminated between sampling events to help eliminate the potential for cross-contamination between samples. Each sample is clearly labeled with a unique name. A written record is maintained which includes, but is not limited to, the date, time, and location where the sample is collected, and any conditions which may have affected the sample integrity.

Drilling Method and Soil Sampling

Subsurface explorations are completed using drilling equipment operated by a licensed drilling subcontractor. The drilling method is selected based on the anticipated subsurface conditions. In general, push-probe or hollow-stem methods are utilized for softer silty soils and sonic or air-rotary methods are utilized for harder, rocky conditions. An MSBA representative oversees and directs the explorations and obtains all soil and groundwater samples.

Soil samples are collected by MSBA and placed into laboratory provided wide-mouth glass jars, leaving as little headspace as possible. Soil samples are also collected in 40 ml VOA EPA method 5035 vials with a preservative. The jar is immediately sealed firmly with a Teflon-lined screw cap. After the samples are properly sealed, they are placed in an ice chest with ice and maintained at a temperature of 4° C (+/- 2° C) until preparation for analysis by the laboratory. Soil samples are analyzed within the laboratory designated hold times.

Disposable latex gloves are worn by the sampler and discarded after each sample. Sampling equipment is thoroughly cleaned and decontaminated between sampling events to help eliminate the potential for cross-contamination between samples. Each sample is clearly labeled with a unique name. A written record is maintained which includes, but is not limited to, the date, time, and location where the sample is collected, and any conditions which may have affected the sample integrity. The soil type and other pertinent information is recorded on a field Subsurface Exploration Log.

Hand Auger Soil Boring and Sampling

Auger borings are advanced by hand. Samples of soil are collected directly from the barrel of the auger at the target depth or as warranted based on observed conditions. A written record is maintained which includes, but is not limited to, the date, time, and location where the sample is collected, and any unusual conditions which may affect the sample integrity.

Soil samples are collected by MSBA and placed into laboratory provided wide-mouth glass jars, leaving as little headspace as possible. Soil samples are also collected in 40 ml VOA EPA method 5035 vials with a preservative. The jar is immediately sealed firmly with a Teflon-lined screw cap. After the samples are properly sealed, they are placed in an ice chest with ice and maintained at a temperature of 4° C (+/- 2° C) until preparation for analysis by the laboratory. Soil samples are analyzed within the laboratory designated hold times.

Disposable latex gloves are worn by the sampler and discarded after each sample. Sampling equipment is thoroughly cleaned and decontaminated between sampling events to help eliminate the potential for cross-contamination between samples. Each sample is clearly labeled with a unique name. A written record is maintained which includes, but is not limited to, the date, time, and location where the sample is collected, and any conditions which may have affected the sample integrity. The soil type and other pertinent information is recorded on a field Subsurface Exploration Log.

Soil Field Screening Methods

Field screening methods consist of visual observations, water sheen screening, and/or headspace vapor screening using a MiniRAE photoionization detector (PID). Visual screening methods include observations of staining, discoloration, and other indicators of petroleum. Water sheen screening involves placing a small amount of soil into water and making observations of any sheens. Water sheen classifications are made as follows:

No Sheen: No visible sheen on the water surface.

Slight Sheen: Faint and dull sheen with no color; dissipates quickly. Naturally occurring

organic matter may produce a slight sheen.

Moderate Sheen: May have some color or iridescence; spread of sheen is irregular to flowing; most

of water surface covered with sheen.

Heavy Sheen: Obvious color and iridescence; spread is rapid; entire water surface may be

covered with sheen.

Headspace vapor screening is conducted by creating a small hole in the soil core or placing a small portion of soil into a Zip-Loc bag and sealing it shut. The probe of the PID is inserted into the soil core. The soil sample within the bag is allowed to volatilize and the probe of the PID is inserted into the bag. The reported accuracy of a MiniRAE PID is 10% discrepancy at concentrations between 1 and 2,000 ppm and 20% discrepancy at concentrations greater than 2,000 ppm. The PID is calibrated in accordance with the manufacturer recommended procedures prior to each day of use.

Temporary Well Installation

Following completion of the soil borings, temporary wells may be installed to allow for groundwater level monitoring and sample collection. Following completion of the groundwater level monitoring and sampling, the temporary well is abandoned within 72 hours in accordance with the Oregon Water Resources Department standards.

Well Development

Following installation, the temporary wells are developed to remove fines and to enhance the recharge and representative quality of water if sufficient water column and recharge is present. The development is performed using a bailer or pump (peristaltic or submersible). The well may be surged prior to development. Well development continues until the discharge is relatively sediment free. Well development may be discontinued if there is insufficient recharge.

Monitoring Well Elevation Survey

The top of each well casing is surveyed to within plus or minus (+/-) 0.01-foot relative to a common temporary benchmark. A temporary benchmark is designated with an assumed elevation relative to the approximate surface elevation above mean sea level (msl). The surveyed locations are marked on each casing for future reference and measuring. The purpose of the survey is to allow precise correlation of measured groundwater levels between each of the wells at the site. The survey information is recorded on a survey data sheet.

Groundwater Level Monitoring

The depth to groundwater (water level) is measured with an electronic, hand-held, water level indicator. The probe of the indicator is lowered in the well until contact with groundwater completes a circuit causing a buzzer to activate. The depth to water, measured from the surveyed point at the top of the well casing, is read directly from a graduated cord attached to the probe with marked increments of 0.01-foot. The groundwater level data is recorded on a groundwater level data sheet.

If present, free product thickness in a well is measured with an electronic, hand-held oil/water interface probe. The oil/water interface probe is lowered into the well until contact with fluids initiates a signal tone. An intermittent tone indicates water and a continuous tone indicates product. A measuring tape in increments of 0.01-foot is attached to the probe and is used to measure thickness of product in a well.

Groundwater Sampling

Groundwater samples are collected using a bailer, submersible pump, or peristaltic pump with dedicated tubing, under low flow conditions to minimize the loss of volatile components, if present. The groundwater is transferred into laboratory provided containers. Some containers may contain a preservative. The type of container, and whether or not it is preserved, is determined by the type of laboratory analysis to be performed. Groundwater samples collected in VOAs are transferred with minimal agitation and sealed with Teflon-lined septum lids so that no head space is present. Samples collected in VOA vials are submitted for volatile organic compound (VOC) analysis. The vials may contain 2-5 drops of dilute HCL as a preservative increasing the sample hold time from 7 to 14 days. Groundwater samples are collected in preserved or non-preserved amber glass jars for analysis of non-volatile petroleum constituents. Groundwater samples are collected in 250 ml polyethylene bottles for analysis of metals. Samples collected for analysis of dissolved metals are filtered in the field to remove 0.45 micron size particles or immediately upon receipt by the laboratory. Samples collected for analysis of total metals are not filtered. After the samples are properly sealed, they are placed immediately in an ice chest with ice and maintained at a temperature of 4° C (+/- 2° C) until being prepared by the laboratory for analysis.

Chain-of-Custody and Labeling

The Chain-of-Custody (COC) is a form that documents the custody of a sample from the time of origin to the time of disposal or destruction. A COC is initiated in the field at the time the samples are collected. The sampler documents such information as the time, date, type of sample, and requested analyses. Any individual in custody of the samples, including the laboratory, is required to document the transfer of custody (beginning with the sampler) by signing the COC (including date and time of transfer).

Equipment Decontamination

Equipment used to collect soil and groundwater samples such as: bailers, water level indicators, etc., is decontaminated prior to each use. Strict decontamination procedures are utilized to help eliminate the potential for cross-contamination between samples and sample locations.

The decontamination procedure includes a thorough washing in tap water with Liquinox followed by two rinses in tap water and a third and final spray rinse using distilled water. If time permits, the sampling equipment is allowed to air dry. Disposable latex gloves are worn during sampling to help eliminate the potential for cross-contamination by the sampler. The gloves are discarded after each sample event and a new pair is utilized for each subsequent sampling event.

Investigation Derived Waste

Investigation derived waste (IDW) accumulated during the explorations typically consists of soil, groundwater, or decontamination and rinse waters. Soil and water are collected and placed into suitable containers. A label is affixed to each storage container including the date, contents, and contact information. The containers are stored onsite in a secure location pending disposal at an authorized facility. Disposable items such as sampling gloves, paper towels, and plastic sheeting are placed into plastic garbage bags and disposed in a municipal trash receptacle.

Attachment D

Quality Control Plan

SAMPLING AND ANALYSIS PLAN

Field Quality Assurance

Soil and Groundwater Sampling

All soil and groundwater samples are collected using disposable nitrile gloves, which are discarded after each sample. Sampling equipment is thoroughly cleaned between sampling events to minimize the potential of cross-contamination between samples. Samples are placed in laboratory-provided containers and promptly put into a cooler with ice to maintain the temperature at approximately 4° C (+/- 2° C). Each sample container is labeled with the project name, sample identification, date, and time of collection. Samples collected during the investigation are tracked from the time of collection until received by the laboratory using a chain-of-custody. The chain-of-custody includes sample identification information and serves as an analytical request document.

Eurofins Test America, in Spokane, Washington, is performing the laboratory analysis of the soil and groundwater samples and supplying MSBA with the appropriate containers. Each sample is promptly delivered to the laboratory for analysis of gasoline, diesel, oil, and the subsequent constituents of interest using appropriate methods to achieve reporting limits lower than or as low as is reasonably achievable as compared to the applicable soil and groundwater RBCs. Tables presenting the laboratory sample specifications and the laboratory detection objectives based on the minimum applicable DEQ RBCs for soil and groundwater are included in this Attachment (Tables 1, 4, and 5).

A minimum of 1 soil and groundwater equipment blank is collected during each field event at a rate of 1 per 20 samples for each matrix (i.e. soil and groundwater). Equipment blanks are submitted for laboratory analysis to evaluate potential cross-contamination of the samples. In addition, a minimum of 1 field duplicate soil and groundwater sample is collected during each field event at a rate of 1 per 20 samples for each matrix. Field duplicates are submitted for laboratory analysis of COIs to evaluate precision with respect to sampling and analytical procedures. If samples are collected for the analysis of volatile organic compounds (VOCs), a minimum of 1 laboratory-provided trip blank will accompany the samples at a rate of 1 per cooler. Trip blanks are submitted for analysis of VOCs to evaluate potential contamination of the samples during transport from/to the lab.

Laboratory Quality Control

The analytical laboratory maintains an internal quality assurance program consisting of a combination of the following:

Blanks - Blanks are laboratory-prepared, contaminant-free water samples. The blanks are carried through the analysis procedure along with the field samples to document that contaminants were not introduced to the samples during sample handling and analysis.

Surrogate Recoveries - Surrogates are organic compounds that are similar in nature to the analytes of concern, but are not normally found in nature. The surrogates are added to quality control and field samples prior to analysis. The percent recovery of the surrogate is calculated to demonstrate acceptable method performance.

LCS Recoveries - A Laboratory Control Sample (LCS) is a sample of known analytes and concentration, often a reference material containing certified amounts of target analytes or prepared by the laboratory. The percent recovery of the known concentration of analytes added to the LCS sample is calculated after chemical analyses to demonstrate acceptable method performance and to determine whether the laboratory is capable of making accurate and precise measurements at the required reporting limit.

Duplicates - Duplicates are obtained by splitting a sample into two parts which are then carried through the analyses. The analytical results are then compared by calculating the relative percent difference between the two samples.

MS/MSD Recoveries - A Matrix Spike (MS) sample is a sample that has been split into a second portion. The Matrix Spike Duplicate (MSD) is obtained by further splitting the MS sample. A known concentration of the analyte of interest is added to the MS and MSD samples. The analytical results for both samples are then compared for relative percent difference and percent recovery to demonstrate acceptable method performance.

BS and **BSD** Recoveries - Blank Spike (BS) and Blank Spike Duplicate (BSD) samples are obtained and analyzed in the same procedures as the MS/MSD samples. However, the laboratory blank sample is used to obtain the BS/BSD samples. The percent recovery and relative percent difference of the known concentration of the analyte added to the BS/BSD sample are calculated after chemical analyses to demonstrate acceptable method performance.

Review of Analytical Data

MSBA reviews the laboratory analytical reports for data quality exceptions and deviations from acceptable method performance criteria. Any exceptions and deviations, and the significance thereof, are discussed in the subsequent report.

TABLE 1 LABORATORY SAMPLE SPECIFICATIONS Required Sample Number of Containers * Container Analyte Analytical Method Sample Media Hold Time Volume Size Preservative 120 ml ^a 3 * 40 ml VOA b NWTPH-Gx Water 14 days HCI c pH<2 Gasoline-Range Organics NWTPH-Gx Soil 10 gram 2 * 40 ml VOA MeOH d 14 davs Soil Vapor 1 liter EPA ^e TO-15 1 * summa canister 30 days None 14 days extraction NWTPH-Dx Water 2 liter 2 * 1 liter amber HCI pH<2 40 days analysis 14 days extraction Diesel-Range Organics Cool 4° C NWTPH-Dx Soil 50 gram 1 * 8 oz ^f glass jar 40 days analysis EPA TO-17 Soil Vapor 200 ml 1 * sorbent tube Cool 4° C 30 days 14 days extraction NWTPH-Dx 2 * 1 liter amber 2 liter HCI pH<2 Water 40 days analysis Oil-Range Organics 14 days extraction Cool 4° C NWTPH-Dx Soil 50 gram 1 * 8 oz glass jar 40 days analysis EPA ^f 8260C Water 120 ml 3 * 40 ml VOA HCI pH<2 14 days EPA 8260C Soil 10 gram 2 * 40 ml VOA MeOH 14 days Volatile Organic Compounds 200 ml 1 * sorbent tube Cool 4° C EPA TO-17 Soil Vapor 30 days EPA TO-15 Soil Vapor 1 liter 1 * summa canister None 30 days 7 days extraction EPA 8270D SIM 120 ml 3 * 40 ml VOA Water Cool 4° C Polynuclear Aromatic 40 davs analysis Hydrocarbons 14 days extraction EPA 8270D SIM Soil 30 gram 1 * 8 oz glass jar Cool 4° C 40 days analysis EPA 6020B Water 100 ml 1 * 250 ml HDPE ^g HNO₃ h 180 days and 7470A RCRA 8 Metals EPA 6020B Soil Cool 4° C 0.5 gram 1 * 8 oz glass jar 180 days and 7470A

- a milliliter (ml)
- b Volatile organic analysis (VOA)
- c Hydrochloric Acid (HCI)
- d Methanol (MeOH)
- **Environmental Protection Agency (EPA)**
- High density polyethylene (HDPE) Nitric Acid (HNO₃)

TABLE 2 LABORATORY DETECTION OBJECTIVES - SOIL PHCs, VOCs, PAHs, AND METALS

Analida	Analytical Mathad	CAS ^a Registry	Laboratory Method Detection Limit b	Minimum Applicab	le DEQ RBCs ^d (ppm)
Analyte	Analytical Method	Number	(ppm) c	Human Receptors	Ecological Receptors
Petroleum Hydrocarbons (PHC	Cs)		<u> </u>	7.00007.0.0	
Gasoline-Range Organics	NWTPH-Gx	_ e	2.8	31	120
Diesel-Range Organics	NWTPH-Dx	-	5.0	1,100	260
Oil-Range Organics	NWTPH-Dx	-	5.9	1,100	260
Volatile Organic Compounds (
1,1,1,2-Tetrachloroethane	EPA 8260D	630-20-6	0.030	NA ^f	NA
1,1,1-Trichloroethane	EPA 8260D	71-55-6	0.027	190	260
1,1,2,2-Tetrachloroethane	EPA 8260D	79-34-5	0.045	NA 0.0000	NA NA
1,1,2-Trichloroethane 1,1-Dichloroethane	EPA 8260D	79-00-5	0.055 0.041	0.0063 0.044	NA 210
1,1-Dichloroethane	EPA 8260D EPA 8260D	75-34-3 75-35-4	0.041	6.7	11
1,1-Dichloropropene	EPA 8260D	563-58-6	0.033	NA	NA NA
1,2,3-Trichlorobenzene	EPA 8260D	87-61-6	0.052	NA NA	NA NA
1,2,3-Trichloropropane	EPA 8260D	96-18-4	0.057	NA	NA
1,2,4-Trimethylbenzene	EPA 8260D	95-63-6	0.036	10	NA
1,2-Dibromo-3-Chloropropane	EPA 8260D	96-12-8	0.093	NA	NA
1,2-Dibromoethane (EDB)	EPA 8260D	106-93-4	0.052	0.00012	NA
1,2-Dichlorobenzene	EPA 8260D	95-50-1	0.036	36	0.92
1,2-Dichloroethane (EDC)	EPA 8260D	107-06-2	0.034	0.0028	0.85
1,2-Dichloropropane	EPA 8260D	78-87-5	0.047	NA	NA
1,3,5-Trimethylbenzene	EPA 8260D	108-67-8	0.049	11	NA 0.74
1,3-Dichlorobenzene	EPA 8260D	541-73-1	0.019	NA NA	0.74
1,3-Dichloropropane 1,4-Dichlorobenzene	EPA 8260D EPA 8260D	142-28-9 106-46-7	0.046 0.032	NA 0.057	NA 0.89
2,2-Dichloropropane	EPA 8260D	594-20-7	0.032	NA	NA
2-Chlorotoluene	EPA 8260D	95-49-8	0.035	NA NA	NA NA
4-Chlorotoluene	EPA 8260D	106-43-4	0.036	NA	NA
Benzene	EPA 8260D	71-43-2	0.015	0.23	24
Bromobenzene	EPA 8260D	108-86-1	0.034	NA	NA
Bromochloromethane	EPA 8260D	74-97-5	0.062	NA	NA
Bromodichloromethane	EPA 8260D	75-27-4	0.096	NA	NA
Bromoform	EPA 8260D	75-25-2	0.030	0.20	NA
Bromomethane	EPA 8260D	74-83-9	0.051	0.083	NA .
Carbon tetrachloride	EPA 8260D	56-23-5	0.017	0.013	2
Chlorobenzene	EPA 8260D EPA 8260D	108-90-7	0.032 0.087	5.8 310	2.4 NA
Chloroethane Chloroform	EPA 8260D	75-00-3 67-66-3	0.087	0.0034	8 8
Chloromethane	EPA 8260D	74-87-3	0.064	2.2	NA NA
cis-1,2-Dichloroethene	EPA 8260D	156-59-2	0.032	0.63	NA NA
cis-1,3-Dichloropropene	EPA 8260D	10061-01-5	0.032	NA	NA
Dibromochloromethane	EPA 8260D	124-48-1	0.025	NA	NA
Dibromomethane	EPA 8260D	74-95-3	0.034	NA	NA
Dichlorodifluoromethane	EPA 8260D	75-71-8	0.043	NA	NA
Ethylbenzene	EPA 8260D	100-41-4	0.025	0.22	NA NA
Hexachlorobutadiene	EPA 8260D	87-68-3	0.025	NA oc	NA NA
Isopropylbenzene Mothyl tort butyl other	EPA 8260D EPA 8260D	98-82-8	0.048 0.046	96 0.11	NA NA
Methyl tert-butyl ether Methylene Chloride	EPA 8260D	1634-04-4 75-09-2	0.046	0.11	2.6
Naphthalene	EPA 8260D	91-20-3	0.043	0.077	1
n-Butylbenzene	EPA 8260D	104-51-8	0.043	NA	NA NA
N-Propylbenzene	EPA 8260D	103-65-1	0.041	NA	NA
p-lsopropyltoluene	EPA 8260D	99-87-6	0.032	NA	NA
sec-Butylbenzene	EPA 8260D	135-98-8	0.029	NA	NA
Styrene	EPA 8260D	100-42-5	0.036	170	1.2
tert-Butylbenzene	EPA 8260D	98-06-6	0.030	NA	NA
Tetrachloroethene	EPA 8260D	127-18-4	0.027	0.46	0.18
Toluene	EPA 8260D	108-88-3	0.070	84	23
trans-1,2-Dichloroethene	EPA 8260D	156-60-5	0.035	7	NA NA
trans-1,3-Dichloropropene	EPA 8260D	10061-02-6	0.041	NA 0.013	NA 42
Trichloroethene Trichlorofluoromethane	EPA 8260D EPA 8260D	79-01-6 75-69-4	0.012 0.051	0.013 61	42 52
Total Xylenes	EPA 8260D	1330-20-7	0.080	23	1.4
Vinyl chloride	EPA 8260D	75-01-4	0.031	0.00057	0.12
,			ntinued)		

TABLE 2 (Continued) LABORATORY DETECTION OBJECTIVES - SOIL PHCs, VOCs, PAHs, AND METALS

Analyte	Analytical Method	CAS ^a Registry	Laboratory Method Detection Limit b	Minimum Applicable DEQ RBCs ^d (ppm)		
Analyte	Analytical Method	Number	(ppm) °	Human Receptors	Ecological Receptors	
Polynuclear Aromatic Hydroca	rbons (PAHs)					
Acenaphthene	EPA 8260E-SIM	83-32-9	0.0029	4,700	0.25	
Acenaphthylene	EPA 8260E-SIM	208-96-8	0.0038	NA	NA	
Anthracene	EPA 8260E-SIM	120-12-7	0.0023	23,000	6.8	
Benzo[a]anthracene	EPA 8260E-SIM	56-55-3	0.0025	1.1	18	
Benzo[a]pyrene	EPA 8260E-SIM	50-32-8	0.0049	0.11	NA	
Benzo[b]fluoranthene	EPA 8260E-SIM	205-99-2	0.0040	1.1	18	
Benzo[g,h,i]perylene	EPA 8260E-SIM	191-24-2	0.0027	NA	NA	
Benzo[k]fluoranthene	EPA 8260E-SIM	207-08-9	0.0029	11	NA	
Chrysene	EPA 8260E-SIM	218-01-9	0.0018	110	NA	
Dibenz(a,h)anthracene	EPA 8260E-SIM	53-70-3	0.0033	0.11	NA	
Fluoranthene	EPA 8260E-SIM	206-44-0	0.0029	2,400	NA	
Fluorene	EPA 8260E-SIM	86-73-7	0.0025	3,100	NA	
Indeno[1,2,3-cd]pyrene	EPA 8260E-SIM	193-39-5	0.0034	1.1	NA	
Naphthalene	EPA 8260E-SIM	91-20-3	0.0025	0.077	1	
Phenanthrene	EPA 8260E-SIM	85-01-8	0.0042	NA	NA	
Pyrene	EPA 8260E-SIM	129-00-0	0.0044	0.077	NA	
1-Methylnaphthalene	EPA 8260E-SIM	90-12-0	0.0026	NA	NA	
2-Methylnaphthalene	EPA 8260E-SIM	91-57-6	0.0036	1800	NA	
Total Metals						
Arsenic	6010D	7440-38-2	0.50	0.43	6.8	
Chromium	6010D	-	0.18	0.30 / 120000	23	
Copper	6010D	7440-50-8	0.761	3100	14	
Lead	6010D	7439-92-1	1.5	30	11	

- a Chemical Abstracts Services (CAS)
- b Eurofins Test America laboratory reporting limit, assuming dilution is not required for analysis
- b Eurorins Test America laboratory reporting limit, assuming dilution is not required for analysis
 c parts per million (ppm)
 d Minimum applicable soil risk-based concentrations (RBCs) as presented in Appendix A of the DEQ RBDM guidance document "Risk Based Decision Making for the Remediation of Contaminated Sites" (Revised August 2023)
 e () Not applicable
 f (NA) Not available (Oregon DEQ has not established an RBC value for the respective analyte)

TABLE 3 LABORATORY DETECTION OBJECTIVES - SEDIMENT PHCs, VOCs, PAHs, AND METALS

			Laboratory Method	Minimum Applicable DE RBCs d (ppm)
Analyte	Analytical Method	CAS ^a Registry Number	Detection Limit ^b	
			(ppm) ^c	Freshwater
Petroleum Hydrocarbons (PHCs				T
Gasoline-Range Organics	NWTPH-Gx	_ e	2.8	NA NA
Diesel-Range Organics Oil-Range Organics	NWTPH-Dx NWTPH-Dx	-	5.0 5.9	NA NA
Volatile Organic Compounds (V		-	5.9	INA
1,1,1,2-Tetrachloroethane	EPA 8260D	630-20-6	0.030	l NA
1,1,1-Trichloroethane	EPA 8260D	71-55-6	0.027	NA NA
1,1,2,2-Tetrachloroethane	EPA 8260D	79-34-5	0.045	NA
1,1,2-Trichloroethane	EPA 8260D	79-00-5	0.055	NA
1,1-Dichloroethane	EPA 8260D	75-34-3	0.041	NA
1,1-Dichloroethene	EPA 8260D	75-35-4	0.053	NA
1,1-Dichloropropene	EPA 8260D	563-58-6	0.027	NA
1,2,3-Trichlorobenzene	EPA 8260D	87-61-6	0.052	NA
1,2,3-Trichloropropane	EPA 8260D	96-18-4	0.057	NA NA
1,2,4-Trimethylbenzene	EPA 8260D	95-63-6	0.036	NA NA
1,2-Dibromo-3-Chloropropane	EPA 8260D EPA 8260D	96-12-8	0.093 0.052	NA NA
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	EPA 8260D	106-93-4 95-50-1	0.032	NA NA
1,2-Dichloroethane (EDC)	EPA 8260D	107-06-2	0.034	NA NA
1,2-Dichloropropane	EPA 8260D	78-87-5	0.047	NA NA
1,3,5-Trimethylbenzene	EPA 8260D	108-67-8	0.049	NA
1,3-Dichlorobenzene	EPA 8260D	541-73-1	0.019	NA
1,3-Dichloropropane	EPA 8260D	142-28-9	0.046	NA
1,4-Dichlorobenzene	EPA 8260D	106-46-7	0.032	NA
2,2-Dichloropropane	EPA 8260D	594-20-7	0.038	NA
2-Chlorotoluene	EPA 8260D	95-49-8	0.025	NA NA
4-Chlorotoluene	EPA 8260D	106-43-4	0.036	NA NA
Benzene Bromobenzene	EPA 8260D EPA 8260D	71-43-2 108-86-1	0.015 0.034	NA NA
Bromochloromethane	EPA 8260D	74-97-5	0.062	NA NA
Bromodichloromethane	EPA 8260D	75-27-4	0.096	NA NA
Bromoform	EPA 8260D	75-25-2	0.030	NA
Bromomethane	EPA 8260D	74-83-9	0.051	NA
Carbon tetrachloride	EPA 8260D	56-23-5	0.017	NA
Chlorobenzene	EPA 8260D	108-90-7	0.032	NA
Chloroethane	EPA 8260D	75-00-3	0.087	NA
Chloroform	EPA 8260D	67-66-3	0.036	NA
Chloromethane	EPA 8260D	74-87-3	0.064	NA NA
cis-1,2-Dichloroethene	EPA 8260D EPA 8260D	156-59-2	0.032 0.032	NA NA
cis-1,3-Dichloropropene Dibromochloromethane	EPA 8260D	10061-01-5 124-48-1	0.032	NA NA
Dibromomethane	EPA 8260D	74-95-3	0.023	NA NA
Dichlorodifluoromethane	EPA 8260D	75-71-8	0.043	NA NA
Ethylbenzene	EPA 8260D	100-41-4	0.025	NA NA
Hexachlorobutadiene	EPA 8260D	87-68-3	0.025	NA
Isopropylbenzene	EPA 8260D	98-82-8	0.048	NA
Methyl tert-butyl ether	EPA 8260D	1634-04-4	0.046	NA
Methylene Chloride	EPA 8260D	75-09-2	0.310	NA
Naphthalene	EPA 8260D	91-20-3	0.043	176
n-Butylbenzene	EPA 8260D	104-51-8	0.043	NA NA
N-Propylbenzene	EPA 8260D	103-65-1	0.041	NA NA
p-Isopropyltoluene sec-Butylbenzene	EPA 8260D EPA 8260D	99-87-6 135-98-8	0.032 0.029	NA NA
Styrene	EPA 8260D	100-42-5	0.029	NA NA
tert-Butylbenzene	EPA 8260D	98-06-6	0.030	NA NA
Tetrachloroethene	EPA 8260D	127-18-4	0.027	NA NA
Toluene	EPA 8260D	108-88-3	0.070	NA
trans-1,2-Dichloroethene	EPA 8260D	156-60-5	0.035	NA
trans-1,3-Dichloropropene	EPA 8260D	10061-02-6	0.041	NA
Trichloroethene	EPA 8260D	79-01-6	0.012	NA
Trichlorofluoromethane	EPA 8260D	75-69-4	0.051	NA
Total Xylenes	EPA 8260D	1330-20-7	0.080	NA NA
Vinyl chloride	EPA 8260D	75-01-4	0.031	NA

TABLE 3 (Continued) **LABORATORY DETECTION OBJECTIVES - SEDIMENT** PHCs, VOCs, PAHs, AND METALS

Analyte	Analytical Method	CAS ^a Registry Number	Laboratory Method Detection Limit ^b (ppm) ^c	Minimum Applicable DEQ RBCs ^d (ppm) Ecological Receptors
Polynuclear Aromatic Hydroca	arbons (PAHs)			, , , , , , , , , , , , , , , , , , ,
Acenaphthene	EPA 8260E-SIM	83-32-9	0.0029	290
Acenaphthylene	EPA 8260E-SIM	208-96-8	0.0038	160
Anthracene	EPA 8260E-SIM	120-12-7	0.0023	57
Benzo[a]anthracene	EPA 8260E-SIM	56-55-3	0.0025	32
Benzo[a]pyrene	EPA 8260E-SIM	50-32-8	0.0049	32
Benzo[b]fluoranthene	EPA 8260E-SIM	205-99-2	0.0040	NA
Benzo[g,h,i]perylene	EPA 8260E-SIM	191-24-2	0.0027	300
Benzo[k]fluoranthene	EPA 8260E-SIM	207-08-9	0.0029	27
Chrysene	EPA 8260E-SIM	218-01-9	0.0018	57
Dibenz(a,h)anthracene	EPA 8260E-SIM	53-70-3	0.0033	33
Fluoranthene	EPA 8260E-SIM	206-44-0	0.0029	111
Fluorene	EPA 8260E-SIM	86-73-7	0.0025	77
Indeno[1,2,3-cd]pyrene	EPA 8260E-SIM	193-39-5	0.0034	17
Naphthalene	EPA 8260E-SIM	91-20-3	0.0025	176
Phenanthrene	EPA 8260E-SIM	85-01-8	0.0042	42
Pyrene	EPA 8260E-SIM	129-00-0	0.0044	53
1-Methylnaphthalene	EPA 8260E-SIM	90-12-0	0.0026	NA
2-Methylnaphthalene	EPA 8260E-SIM	91-57-6	0.0036	NA
Total Metals				
Arsenic	6010D	7440-38-2	0.50	6.0
Chromium	6010D	-	0.18	37
Copper	6010D	7440-50-8	0.761	36
Lead	6010D	7439-92-1	1.5	35

- a Chemical Abstracts Services (CAS)
 b Eurofins Test America laboratory reporting limit, assuming dilution is not required for analysis
- c parts per million (ppm)
 d Minimum applicable sediment risk-based concentrations (RBCs) as presented in DEQ Table 3: Risk Based **Concentrations For Sediment**
- e(-) Not applicable f(NA)Not available (Oregon DEQ has not established an RBC value for the respective analyte)

S:\Project Files\Lawrence Oil Co - St Helens\MSBA Docs\(2025 07 25\) Wetland Sampling Plan\Attach B Sampling and Analysis Plan\(Table 3 Sediment.xls\)

TABLE 4 LABORATORY DETECTION OBJECTIVES - WATER PHCs, VOCs, PAHs, AND METALS

Analyte	Analytical Method	CAS ^a Registry	Laboratory Method Detection Limit b	Minimum Applicable DEQ RBCs ^d (ppb		
Allalyte	, trarytical Metricu	Number	(ppb) c	Human Receptors	Ecological Receptor	
Petroleum Hydrocarbons (PHC	s)					
Gasoline-Range Organics	NWTPH-Gx	_ e	54	110	120	
Diesel-Range Organics	NWTPH-Dx	-	0.12	100	260	
Oil-Range Organics	NWTPH-Dx	-	0.13	100	260	
Volatile Organic Compounds (1 0.40 1		1	
1,1,1,2-Tetrachloroethane	EPA 8260D	630-20-6	0.48	NA f	NA 4.400.000	
1,1,1-Trichloroethane	EPA 8260D EPA 8260D	71-55-6 79-34-5	0.17 0.32	8,000 NA	4,400,000 NA	
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	EPA 8260D	79-00-5	0.43	0.28	NA NA	
1,1-Dichloroethane	EPA 8260D	75-34-3	0.29	2.8	1,700,000	
1,1-Dichloroethene	EPA 8260D	75-35-4	0.20	280	130,000	
1,1-Dichloropropene	EPA 8260D	563-58-6	0.50	NA	NA	
1,2,3-Trichlorobenzene	EPA 8260D	87-61-6	0.33	NA	NA	
1,2,3-Trichloropropane	EPA 8260D	96-18-4	0.50	NA	NA	
1,2,4-Trichlorobenzene	EPA 8260D	120-82-1	0.50	NA	6,600	
1,2,4-Trimethylbenzene	EPA 8260D	95-63-6	0.31	54	NA	
1,2-Dibromo-3-Chloropropane	EPA 8260D	96-12-8	1.50	NA 0.0075	NA NA	
1,2-Dibromoethane (EDB)	EPA 8260D	106-93-4	0.20	0.0075	NA NA	
1,2-Dichlorobenzene	EPA 8260D EPA 8260D	95-50-1 107-06-2	0.23 0.31	300 0.17	NA 19,000	
1,2-Dichloroethane (EDC) 1,2-Dichloropropane	EPA 8260D EPA 8260D	78-87-5	0.31	NA	19,000 NA	
1,3,5-Trimethylbenzene	EPA 8260D	108-67-8	0.23	59	NA NA	
1,3-Dichlorobenzene	EPA 8260D	541-73-1	0.14	NA NA	NA NA	
1,3-Dichloropropane	EPA 8260D	142-28-9	0.21	NA	NA	
1,4-Dichlorobenzene	EPA 8260D	106-46-7	0.28	0.48	11,000	
2,2-Dichloropropane	EPA 8260D	594-20-7	0.66	NA	NA	
2-Chlorotoluene	EPA 8260D	95-49-8	0.36	NA	NA	
4-Chlorotoluene	EPA 8260D	106-43-4	0.26	NA	NA	
Benzene	EPA 8260D	71-43-2	0.093	0.46	110,000	
Bromobenzene	EPA 8260D	108-86-1	0.28	NA	NA	
Bromochloromethane	EPA 8260D	74-97-5	0.44	NA	NA NA	
Bromodichloromethane	EPA 8260D	75-27-4	0.29	NA 2.20	NA NA	
Bromoform	EPA 8260D EPA 8260D	75-25-2 74-83-9	0.66 0.76	3.30 7.5	NA NA	
Bromomethane Carbon tetrachloride	EPA 8260D	56-23-5	0.76	0.46	NA NA	
Chlorobenzene	EPA 8260D	108-90-7	0.32	77	260,000	
Chloroethane	EPA 8260D	75-00-3	0.40	21,000	NA	
Chloroform	EPA 8260D	67-66-3	0.24	0.22	67,000	
Chloromethane	EPA 8260D	74-87-3	0.50	190	NA	
cis-1,2-Dichloroethene	EPA 8260D	156-59-2	0.23	36	NA	
cis-1,3-Dichloropropene	EPA 8260D	10061-01-5	0.25	NA	NA	
Dibromochloromethane	EPA 8260D	124-48-1	0.33	NA	NA	
Dibromomethane	EPA 8260D	74-95-3	0.50	NA	NA	
Dichlorodifluoromethane	EPA 8260D	75-71-8	0.64	NA 1.5	NA NA	
Ethylbenzene Hexachlorobutadiene	EPA 8260D EPA 8260D	100-41-4	0.20 0.21	1.5 NA	NA NA	
Isopropylbenzene	EPA 8260D EPA 8260D	87-68-3 98-82-8	0.21	440	NA NA	
Methyl tert-butyl ether	EPA 8260D	1634-04-4	0.16	14	NA NA	
Methylene Chloride	EPA 8260D	75-09-2	2.2	11	26,000	
Naphthalene	EPA 8260D	91-20-3	0.63	0.17	NA NA	
n-Butylbenzene	EPA 8260D	104-51-8	0.2	NA	NA	
N-Propylbenzene	EPA 8260D	103-65-1	0.25	NA	NA	
p-Isopropyltoluene	EPA 8260D	99-87-6	0.27	NA	NA	
sec-Butylbenzene	EPA 8260D	135-98-8	0.22	NA	NA	
Styrene	EPA 8260D	100-42-5	0.24	1,200	NA	
tert-Butylbenzene	EPA 8260D	98-06-6	0.12	NA 10	NA 2.222	
Tetrachloroethene	EPA 8260D	127-18-4	0.22	12	8,900	
Toluene	EPA 8260D	108-88-3	0.31	1,100	110,000	
trans-1,2-Dichloroethene	EPA 8260D EPA 8260D	156-60-5	0.2 0.45	360 NA	NA NA	
trans-1,3-Dichloropropene Trichloroethene	EPA 8260D EPA 8260D	10061-02-6 79-01-6	0.45	0.49	440,000	
Trichlorofluoromethane	EPA 8260D	79-01-6	0.2	1,100	NA	
Total Xylenes	EPA 8260D	1330-20-7	0.13	190	9,400	
Vinyl chloride	EPA 8260D	75-01-4	0.13	0.027	NA	

TABLE 4 (Continued) LABORATORY DETECTION OBJECTIVES - WATER PHCs, VOCs, PAHs, AND METALS

		CAS ^a Registry	Laboratory Method	Minimum Applicable	nimum Applicable DEQ RBCs ^d (ppb)		
Analyte	Analytical Method	Number	Detection Limit ^b (ppb) ^c	Human Receptors	Ecological Receptors		
Polynuclear Aromatic Hydroca	rbons (PAHs)						
Acenaphthene	EPA 8260E-SIM	83-32-9	0.022	510	310,000		
Acenaphthylene	EPA 8260E-SIM	208-96-8	0.016	NA	310,000		
Anthracene	EPA 8260E-SIM	120-12-7	0.025	> S	440,000		
Benzo[a]anthracene	EPA 8260E-SIM	56-55-3	0.028	0.030	760		
Benzo[a]pyrene	EPA 8260E-SIM	50-32-8	0.012	0.025	4,400		
Benzo[b]fluoranthene	EPA 8260E-SIM	205-99-2	0.025	0.25	17,000		
Benzo[g,h,i]perylene	EPA 8260E-SIM	191-24-2	0.021	NA	32,000		
Benzo[k]fluoranthene	EPA 8260E-SIM	207-08-9	0.015	NA	32,000		
Chrysene	EPA 8260E-SIM	218-01-9	0.010	NA	760		
Dibenz(a,h)anthracene	EPA 8260E-SIM	53-70-3	0.013	0.025	5,900		
Fluoranthene	EPA 8260E-SIM	206-44-0	0.017	NA	56,000		
Fluorene	EPA 8260E-SIM	86-73-7	0.016	280	560,000		
Indeno[1,2,3-cd]pyrene	EPA 8260E-SIM	193-39-5	0.022	NA	32,000		
Naphthalene	EPA 8260E-SIM	91-20-3	0.053	0.17	57		
Phenanthrene	EPA 8260E-SIM	85-01-8	0.057	NA	23,000		
Pyrene	EPA 8260E-SIM	129-00-0	0.026	110	33,000		
1-Methylnaphthalene	EPA 8260E-SIM	90-12-0	0.023	NA	NA		
2-Methylnaphthalene	EPA 8260E-SIM	91-57-6	0.044	NA	71,000		
Total Metals							
Arsenic	6010D	7440-38-2	0.010	0.052	560		
Chromium	6010D	-	0.0017	30,000	7,100		
Copper	6010D	7440-50-8	0.014	800	12,000		
Lead	6010D	7439-92-1	0.0051	15	4,300		

a Chemical Abstracts Services (CAS)
b Eurofins Test America laboratory reporting limit, assuming dilution is not required for analysis

b Eurofins Test America laboratory reporting limit, assuming dilution is not required for analysis
 c parts per billion (ppb)
 d Minimum applicable risk-based concentrations (RBCs) as presented in Appendix A of the DEQ RBDM guidance document "Risk Based Decision Making for the Remediation of Contaminated Sites" (Revised August 2023)
 e (-) Not applicable
 f (NA) Not available (Oregon DEQ has not established an RBC value for the respective analyte)