

Focused Phase II Environmental Site Assessment

Lampson Property
131 North Front Street
Central Point, Oregon 97502

Cooperative Agreement Number: BF-01J40701

March 18, 2020

Prepared for:

Rogue Valley Council of Governments PO Box 3275 Central Point, OR 97502

Prepared by:

Stantec Consulting Services Inc. 601 SW 2nd Avenue, Suite 1400 Portland, Oregon 97204

Project No. 185750581

Sign-off Sheet

This document entitled *Focused Phase II Environmental Site Assessment Report, Lampson Property – 131 North Front Street, Central Point, Oregon 97502* was prepared by Stantec Consulting Services Inc. ("Stantec") for the accounts of Rogue Valley Council of Governments and Debbie and Eldon Lampson. Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

This document was prepared under the supervision and direction of the key staff identified below.

Report Author:	Dana Hukhins	
	Dana Hutchins, RG Project Specialist, Geology	
Reviewer:	Graeme Taylor Associate	
Reviewer:	Leonard Farr Jr., RG	

Principal

Table of Contents

1.0	INTRODU	JCTION	1.1
2.0	PROPER	TY DESCRIPTION AND HISTORY	2.1
3.0	PRIOR E	NVIRONMENTAL REPORTS	3.1
4.0	JUNE 20	19 GEOPHYSICAL SURVEY	4.1
5.0	FIELD SA	AMPLING ACTIVITIES	5.1
5.1	PRE-FIEI	_D ACTIVITIES	5.1
	5.1.1	Utility Clearance	5.1
	5.1.2	Health and Safety	
5.2	SAMPLIN	IG ACTIVITIES AND SUBSURFACE CONDITIONS	5.1
	5.2.1	Direct-Push Sampling Methodologies	
	5.2.2	Backhoe UST Assessment Sampling Methodologies	
	5.2.3	Soil Sampling	
	5.2.4	Groundwater Sampling	
	5.2.5	Subsurface Conditions	
	5.2.6	Borehole Abandonment and Investigative-Derived Waste	5.3
6.0	CONCEP	TUAL SITE MODEL	
	6.1.1	Land Use Determination	
	6.1.2	Beneficial Water Use Determination	
	6.1.3	Potentially Complete Exposure Pathways	6.1
7.0		TORY TESTING RESULTS	
7.1	SOIL TES	STING RESULTS	
	7.1.1	Petroleum Hydrocarbons – Soil	
	7.1.2	Volatile Organic Compounds – Soil	7.2
	7.1.3	Metals - Soil	
	7.1.4	Polycyclic Aromatic Hydrocarbons - Soil	7.2
7.2	GROUNE	DWATER TESTING RESULTS	
	7.2.1	Petroleum Hydrocarbons - Groundwater	
	7.2.2	Volatile Organic Compounds - Groundwater	
	7.2.3	Metals – Groundwater	7.3
	7.2.4	Polynuclear Aromatic Hydrocarbons – Groundwater	7.3
3.0	DATA VA	ALIDATION	8.1
9.0	CONCLU	SIONS	9.1
10.0	LIMITATI	ONS	10.1
11 0	DEEEDE	NCES	11 1

LIST OF TABLES

- Soil Sample Analytical Results Petroleum Hydrocarbons and VOCs
- 2 Soil Sample Analytical Results Volatile and Extractable Petroleum Hydrocarbons
- 3 Soil Sample Analytical Results Metals
- 4 Soil Sample Analytical Results Polycyclic Aromatic Hydrocarbons
- 5 Groundwater Sample Analytical Results Petroleum Hydrocarbons and VOCs
- 6 Groundwater Sample Analytical Results Metals
- 7 Groundwater Sample Analytical Results Polycyclic Aromatic Hydrocarbons

LIST OF FIGURES

- 1 Property Location Map
- 2 Property Area Map with Boring Locations
- 3 Property UST Sampling Locations
- 4 Conceptual Site Model

LIST OF APPENDICES

Appendix A Geopotential Geophysical Survey Report

Appendix B UST Decommissioning Checklist and Site Assessment Report

Appendix C Boring Logs

Appendix D Laboratory Reports and Chain-of-Custody Documentation

Appendix E Site-Specific Risk-Based Concentration Calculations

Appendix F Data Validation Reports

Introduction March 18, 2020

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has completed a Focused Phase II Environmental Site Assessment (ESA) of the property located at 131 North Front Street in Central Point, Oregon (Property), on behalf of the Property Owners (Debbie and Eldon Lampson) and the Rogue Valley Council of Governments (RVCOG). The purpose of this Phase II ESA was to explore for evidence of significant and widespread releases associated with recognized environmental conditions (RECs) identified during the completion of a Phase I ESA completed at the Property in March 2019 (Stantec 2019a).

The Phase II ESA was performed in general accordance with the following Site-Specific Sampling and Analysis Plans (SSSAPs).

- A Geophysical Survey SSSAP dated June 6, 2019 (Stantec 2019b). This SSSAP was approved by the United States Environmental Protection Agency (EPA) on June 13, 2019.
- A Phase II ESA SSSAP dated September 11, 2019 (Stantec 2019c). This SSSAP was approved by the EPA on September 16, 2019 and by the Oregon Department of Environmental Quality (DEQ) on September 12, 2019.

All work described herein was completed in accordance with the Master Quality Assurance Project Plan (QAPP) (Stantec, 2018) prepared for the RVCOG Brownfield Community-Wide Assessment Project (Cooperative Agreement Number BF-01J40701). The EPA approved the QAPP for the project in an email message dated August 27, 2018.

Property Description and History March 18, 2020

2.0 PROPERTY DESCRIPTION AND HISTORY

The 0.46-acre Property is located at the western end of downtown Central Point and is owned by Debbie and Eldon Lampson. The Property is identified by Jackson County as tax lot 372W03DC-2300 and zoned Commercial Industrial class 231. The Property contains one 760-square-foot building used as a restaurant (El Poblano Mexican Restaurant). The building is surrounded by paved driveways and parking areas. The area of the Property west of the building is unpaved. According to the Property owner the building was constructed in the 1960s.

Railroad tracks border the western Property boundary and surrounding properties are a mix of commercial and residential land use. A Property Location Map is provided as **Figure 1**. A Property Area Map illustrating the main Property features and Phase II ESA direct-push exploration locations is provided as **Figure 2**.

First use of the Property, as indicated by 1890, 1899 and 1911 Sanborn maps, was "rail road grounds" (Stantec 2019a). The 1911 map also indicated that lumber was stored on the Property. Historical city directories indicated that the Property was occupied by a retail service station in 1968. During the Phase I ESA interview, Property owner Eldon Lampson confirmed that the Property was formerly occupied by a retail service station operated by Time Oil. This information was confirmed in a warranty deed that documents the sale of the Property by Time Oil to David and Sylvia Rowell in February 1989. Mr. Lampson stated that fuel for the facility was stored in aboveground storage tanks (ASTs). He stated that two underground storage tanks (USTs) were still in place at the Property. Reportedly, one UST was used to store used oil. Mr. Lampson stated that the second UST may have been used to store hydraulic fluid for an in-ground lift associated with the former service station. Mr. Lampson suspected that there may be a hydraulic lift still in place that was covered with concrete during past building renovations.

Prior Environmental Reports March 18, 2020

3.0 PRIOR ENVIRONMENTAL REPORTS

Stantec conducted a Phase I ESA of the Property in March 2019 (Stantec, 2019a). The Phase I ESA identified the following RECs for the Property:

- 1. The potential for releases associated with the Property's past use as a retail service station including historical ASTs, USTs, and hydraulic lift(s) represents a REC and a vapor encroachment condition (VEC).
- 2. A 2015 environmental assessment of a release of petroleum hydrocarbons and chlorinated solvents at the facility located at 16 North Front Street (approximately 250 feet southeast of the Property, across North Front Street) included collecting a groundwater sample from the eastern edge of the Property (BB&A 2015). 1,2-Dichloroethene (identified as "EDC" in assessment and DEQ records) was detected in the groundwater sample collected from the Property. 1,2-Dichloroethene was not detected in groundwater samples collected from 16 North Front Street. The constituents of concern detected at 16 North Front Street (methyl tert-butyl ether [MTBE], tetrachloroethene, trichloroethene) were not detected in the groundwater sample from the Property. DEQ issued a No Further Action (NFA) letter for the releases at 16 North Front Street in 2016. It does not appear that the releases at 16 North Front Street have impacted the Property; however, the detection of 1,2-dichloroethene in Property groundwater indicates an impact potentially from an on-site or other source and represents a REC and a VEC for the Property.
- 3. Historical city directories document that the adjoining site to the south was occupied by a lumber yard, and a 1911 historical map indicates that the Property was used for lumber storage. The adjoining site to the east (132 Front Street) has been occupied by an automotive repair business from at least 1968 to the present. The potential for releases of petroleum or hazardous substances from past uses on adjoining properties to impact the Property represents a REC and a VEC.

Based on these findings, Stantec recommended additional Property environmental assessment in the Phase I ESA.

June 2019 Geophysical Survey March 18, 2020

4.0 JUNE 2019 GEOPHYSICAL SURVEY

A geophysical subsurface mapping survey (SMS) to explore for indications of current or past USTs on the Property was conducted on June 26, 2019 by GeoPotential of Fairview, Oregon. The geophysical survey was conducted in accordance with the EPA-approved SSSAP for a geophysical survey dated June 6, 2019 (Stantec 2019b). Two approximately 675-gallon nested USTs and connecting product/vent lines were identified by GeoPotential near the southeastern end of the Property building. A hydraulic lift was identified beneath the Property building. Planned Phase II ESA borehole locations were scanned for subsurface utilities. The SMS Report prepared by Geopotential is provided as **Appendix A**.

Field Sampling Activities March 18, 2020

5.0 FIELD SAMPLING ACTIVITIES

5.1 PRE-FIELD ACTIVITIES

5.1.1 Utility Clearance

Prior to any intrusive work at the Property, Stantec called the Utility Notification Center and requested a public underground utility locate. Stantec additionally subcontracted with GeoPotential and Applied Professional Services of North Bend, Washington to provide utility clearance of each borehole location.

5.1.2 Health and Safety

A Site-Specific Health and Safety Plan (HASP), as required by Oregon Occupational Safety and Health Division (OR-OSHA) Safety and Health Act and 40 Code of Federal Regulations 1910.120, was prepared to describe field sampling activity safety protocols for Stantec employees engaged in the project. At the start of each day of field sampling activities a "tailgate" meeting was held and safety protocols reviewed.

5.2 SAMPLING ACTIVITIES AND SUBSURFACE CONDITIONS

The purpose of the Phase II ESA described herein was to explore for evidence of significant and widespread releases associated with the RECs identified in the Phase I ESA prepared for the Property. These RECs are listed in Section 3.0 of this report. The scope of Phase II ESA sampling activities is described in the subsections that follow.

5.2.1 Direct-Push Sampling Methodologies

Under the direction of a Stantec registered geologist, 10 total direct-push borings were completed on the Property. Stantec subcontracted with Stratus Corporation of Gaston, Oregon for direct-push drilling services for the project. Direct-push drilling methods were conducted in accordance with the SSSAP and standard operating procedure (SOP) 02 in the QAPP. Six direct-push borings were advanced on the Property on September 17-20, 2019 (GP-01 through GP-06) for the purpose of soil and groundwater sampling. Four direct-push borings were advanced on the Property on September 19, 2019 (FS-01 through FS-04) for the purpose of soil screening. However, evidence of a release was noted at the soil-groundwater interface in each boring, and as a result, soil samples were collected in each of these borings. Boring locations are shown on **Figure 2**.

5.2.2 Backhoe UST Assessment Sampling Methodologies

Under the direction of a Stantec registered geologist a backhoe UST assessment was completed on the Property. Stantec subcontracted with Stratus Corporation of Gaston, Oregon for backhoe exploration services for the project. All backhoe exploration methods were conducted in accordance with the SSSAP and SOP 02 in the QAPP. Backhoe assessment activities were limited to the area where the geophysical SMS had identified two USTs (**Figures 2 and 3**).

UST assessment activities were initiated on September 17 and concluded on September 20, 2019. UST assessment activities included the following.

Field Sampling Activities March 18, 2020

- Surface asphalt and concrete from above Tank 1 and Tank 2 was sawcut and removed. This material was transported off the Property for recycling.
- Overburden soil overlying Tank 1 and Tank 2 beneath the asphalt and concrete surface exhibited evidence of contamination (odor, staining and elevated photoionization detector [PID] readings). This petroleum-containing soil (PCS) was placed into two 10-yard roll-off boxes pending waste profiling and disposal.
- After exposing the tops of the tanks, approximately 1,000 gallons of a hydrocarbon-water mixture was removed from Tank 1 and 500 gallons of a hydrocarbon-water mixture was removed from Tank 2.
- Using appropriate UST decommissioning methods, Tank 1 and Tank 2 were removed. Tank 1 measured 4 feet in diameter and 12 feet in length (estimated 1,000-gallon capacity). Tank 1 appeared in good conditions with no holes. Tank 2 measured 3 feet in diameter and 8 feet in length (estimated 675-gallon capacity). Tank 2 appeared in poor condition with an approximately 3-inch diameter hole noted on its bottom near its north end.
- A third UST was discovered northwest of Tank 1. This UST was not removed due to its proximity to the Property building, and concerns that removing it might destabilize the building foundation.
- Following tank removal, loose soils were removed from the excavation to facilitate soil sampling.
 These soils were classified in the field as PCS and placed into the two 10-yard roll-off boxes pending waste profiling and disposal.
- Six soil samples were collected from the base and sidewalls of the excavation.
- On September 20, 2019, the excavation was backfilled with imported granular fill material to grade.
- On October 3, 2019, a soil sample was collected for laboratory analysis from each drop box. Test
 methods utilized were stipulated by the Dry Creek Landfill. Select soil sample testing results are
 summarized in Tables 1 and 4. A lab report providing all testing results is included in Appendix D.
- An approved waste profile for disposal of soils in the drop boxes was received from the Dry Creek Landfill on October 22, 2019.
- On October 24, 2019, the roll-off boxes containing contaminated soil were transported to the Dry Creek Landfill in Medford, Oregon where soils where disposed.

A completed UST Decommissioning Checklist and Site Assessment Report prepared by the project UST Service Provider for the two USTs that were removed are provided in **Appendix B**.

5.2.3 Soil Sampling

All soil sampling and analysis was completed in accordance with the SSSAP with the following exceptions:

- 1. Evidence of soil contamination was observed in each of borings FS-01 through FS-04 beginning at a depth of between 8 and 9 feet below ground surface (bgs). Because no evidence of contamination was observed at a shallower depth in any of these borings, or in nearby boring GP-02, it is inferred that observed contamination was within the zone of seasonal groundwater fluctuations.
- 2. The SSSAP specified that up to six soil samples would be collected from the base of the exploration excavation, and that one soil sample would be collected from each excavation sidewall. Four soil samples were collected from the base of the excavation, one each from beneath the two ends of each UST. Sidewall samples were collected from the southwest and southeast sidewalls of the excavation.

During drilling and sample collection, soil from each boring was observed for visual and olfactory evidence of hazardous substance/petroleum impacts. PID readings were collected approximately every 5

Field Sampling Activities March 18, 2020

vertical feet from soil in each boring. No staining/odors and/or elevated PID readings were observed in boring unsaturated zone soils (inferred to seasonally be as shallow as 8 feet bgs) with the following exceptions:

- 1. Hydrocarbon odors and staining were observed in the unsaturated zone in boring GP-01. PID readings of 172 parts per million (ppm), 62 ppm and 50 ppm were measured at depths of 2.5, 4 and 6 feet bgs, respectively.
- 2. Hydrocarbon odors and staining were observed in the unsaturated zone in boring GP-02. A PID reading of 20 ppm was measured at a depth of 1.5 feet bgs.
- 3. Hydrocarbon odors and staining were observed in the unsaturated zone in boring GP-03. A PID reading of 19 ppm was measured at a depth of 6 feet bgs.
- 4. Hydrocarbon odors and staining were observed in the unsaturated zone in boring GP-06. A PID reading of 66 ppm was measured at a depth of 6.5 feet bgs.

5.2.4 Groundwater Sampling

All groundwater sampling and analysis was completed in accordance with the SSSAP with the following exception:

1. A pipe was encountered at a depth of 7.5 feet bgs in boring GP-01, and as a result, the boring was terminated. Groundwater was not encountered or sampled in this boring.

5.2.5 Subsurface Conditions

During boring advancement at the Property, soils were logged by a Stantec registered geologist. Subsurface materials encountered at the Property generally consisted of clay with variable quantities of gravel and sand. Boring logs containing a soil conditions log, PID screening results, temporary well information and depth intervals for soil samples collected for laboratory analysis are provided in **Appendix C**. Groundwater levels measured in temporary Property monitoring wells ranged between 8 feet bgs in boring GP-04 and 21.5 feet bgs in boring GP-06. However, the distribution of contamination in soil indicates seasonal high groundwater is approximately 8 feet bgs at the Property.

5.2.6 Borehole Abandonment and Investigative-Derived Waste

Following environmental sampling, each borehole was abandoned in accordance with Oregon Water Resources Department (OWRD) standards by filling the borehole with granular bentonite to approximately one foot below surface grade hydrated in-place. Surface restoration at each location was accomplished with either cold-patch asphalt or native soil in unpaved areas. Soil cuttings generated during drilling operations were placed in the roll-off boxes also used for contaminated soils encountered during the UST assessment. As indicated in Section 5.2.2, soil cuttings were disposed of at the Dry Creek Landfill.

Conceptual Site Model March 18, 2020

6.0 CONCEPTUAL SITE MODEL

The Conceptual Site Model (CSM) for the Property is based on the limited land use and beneficial water use determinations described below. The CSM is illustrated in **Figure 4**.

6.1.1 Land Use Determination

The Property is zoned Commercial Industrial class 231. The Property is currently developed for commercial use. The Property owner plans to continue and potentially expand commercial use of the Property. Based on these current and reasonably likely future uses, potential receptors for the Property include occupational users, and construction and excavation workers.

6.1.2 Beneficial Water Use Determination

A search of Oregon Water Resources Department records indicated only one well log that could be confirmed to be located within 1,000 feet of the Property. The well log indicated abandonment of a former domestic well 34 feet in depth in March 2004.

Potable water is provided to the Property and vicinity by the City of Central Point. There are no private water supply wells on the Property. Groundwater is not anticipated to be accessed in the future for beneficial uses of any kind on the Property or within 1,000 feet of the Property.

6.1.3 Potentially Complete Exposure Pathways

Based on the current and anticipated continued commercial use of the Property, and the fact that there is no current or reasonably likely future groundwater use within 1,000 feet of the Property, the following exposure pathways are considered potentially complete or reasonably likely to be complete in the future at the Property:

- 1. Direct contact with soil within 3 feet of the ground surface (occupational workers and construction/excavation workers);
- 2. Direct contact with soil greater than 3 feet bgs (construction and excavation workers);
- 3. Inhalation of indoor and outdoor vapors from volatile contaminants in soil and groundwater (occupational workers); and.
- 4. Groundwater in an excavation (construction and excavation workers).

Analytical data collected during the Phase II ESA was evaluated against the DEQ Risk-Based Concentrations (RBCs) for these potentially complete exposure pathways to assess potential risks to human health.

Laboratory Testing Results March 18, 2020

7.0 LABORATORY TESTING RESULTS

In the subsections that follow, laboratory testing results are summarized for each environmental media sampled. All samples were analyzed in accordance with the SSSAP except where noted. Comparison of testing results to potentially applicable DEQ RBCs and to DEQ clean fill screening values for soil also are discussed.

7.1 SOIL TESTING RESULTS

A total of 23 soil samples (including one duplicate soil samples) were collected during Phase II ESA completion and submitted to Apex Labs for laboratory testing. The field duplicate soil sample was labeled as GP-X (duplicate to soil sample GP-03-8). Soil analytical results are described by analyte group in the subsections that follow. Detected soil concentrations were compared to DEQ RBCs (DEQ, 2018) and DEQ clean fill screening values (DEQ, 2019). Soil testing data are summarized for detected concentrations only in **Tables 1 - 4**. The Apex Labs laboratory reports are provided in **Appendix D**.

7.1.1 Petroleum Hydrocarbons – Soil

7.1.1.1 Volatile and Extractible Petroleum Hydrocarbons - Soil

For the purpose of calculating site-specific gasoline range organic (GRO) and non-gasoline fraction organic RBCs, two soil samples collected during the UST assessment that were located at opposite ends of the UST assessment exploration pit were analyzed for volatile petroleum hydrocarbons (VPH) by method NWVPH and extractible petroleum hydrocarbons (EPH) by method NWEPH. VPH/EPH data for each sample were input into a Microsoft Excel® spreadsheet developed by the DEQ following Method 2 guidelines provided in section 3.1.5.2 Compare TPH Levels to Site-Specific TPH RBCs of the DEQ guidance document Risk-Based Decision Making for the Remediation of Contaminated Sites (DEQ 2017). The most conservative site-specific RBCs calculated for the two samples using VPH/EPH data are included in Table 1. Detected VPH and EPH concentrations are summarized in Table 2. Site-specific RBC calculation documentation is provided in Appendix E.

7.1.1.2 Gasoline-Range Organics - Soil

All 23 soil samples (includes one field duplicate sample) were analyzed for gasoline-range organics (GRO) by method NWTPH-Gx. GRO was detected in 16 samples. In direct-push boring soil samples, a maximum GRO concentration of 655 milligrams per kilogram (mg/kg) was detected in boring FS-03. In UST assessment soil samples, GRO concentrations ranged from 1,560 mg/kg to 8,020 mg/kg (**Table 1**).

Only one soil sample (UST-01-T2-NB), collected at a depth of 6 feet bgs in the UST assessment excavation, yielded a GRO concentration (8,020 mg/kg) exceeding the site-specific gasoline fraction RBC (construction worker direct contact RBC of 6,900 mg/kg) calculated for the Property. Of the six direct-push boring soil samples collected in the depth interval 1-2 feet bgs, none yielded GRO concentrations exceeding DEQ clean fill screening values. Of the six direct-push boring soil samples collected below a depth of 5 feet bgs, five yielded GRO concentrations exceeding DEQ clean fill screening values. All six UST assessment soil samples yielded GRO concentrations exceeding DEQ clean fill screening values.

Laboratory Testing Results March 18, 2020

7.1.1.3 Diesel- and Oil-Range Organics - Soil

All 23 soil samples (includes one field duplicate sample) were analyzed for diesel- (DRO) and oil-range organics (ORO) by method NWTPH-Dx. DRO and/or ORO was detected in nine samples. DRO and ORO sample results were summed to compare to calculated non-gasoline fraction site-specific RBCs. DRO and ORO concentrations below the reporting limit were considered zero for this summation. In direct-push boring soil samples, DRO/ORO were detected in three soil samples (and the duplicate) at a maximum summed concentration of 600 mg/kg in sample GP04-1. DRO and/or ORO were detected in all UST assessment soil samples at summed concentrations ranging from 129 mg/kg to 1,057 mg/kg (**Table 1**).

Comparison of summed DRO/ORO concentrations to the site-specific non-gasoline fraction RBCs calculated for the Property indicates no exceedances. Comparison of summed DRO/ORO concentrations to the DEQ DRO clean fill screening value (no DEQ screening value has been published for ORO) also indicates no exceedances.

7.1.2 Volatile Organic Compounds - Soil

All 23 soil samples (includes one field duplicate sample) were analyzed for VOCs by EPA Method 8260C. One or more VOCs were detected in 17 of these 23 samples. Only ethylbenzene in all six UST assessment soil samples was detected at a concentration exceeding potentially applicable RBCs (vapor intrusion into building RBC of 17 mg/kg). Only benzene in one (GP-01-2) of six shallow direct-push soil samples was detected at a concentration exceeding DEQ clean fill screening values. In soil samples collected at a depth of 5 feet or more bgs, one or more VOC exceeding clean fill screening values were detected in 11 of 17 soil samples collected, including all six UST assessment soil samples (**Table 1**).

7.1.3 Metals - Soil

All 17 (including the duplicate sample) direct-push boring soil samples were analyzed for eight Resource Conservation and Recovery Act (RCRA) metals. Concentrations of each analyzed metal except selenium and silver were detected in one or more soil samples. None of the reported metal detections exceeded potentially applicable RBCs and published background levels. Cadmium, lead, and/or mercury were detected at concentrations exceeding DEQ clean fill screening values in six of the 17 direct-push boring soil samples. Detected concentrations of metals in direct-push soil samples are summarized in **Table 3**.

All six UST assessment soil samples were analyzed for cadmium, chromium and lead. Neither lead nor cadmium were detected in the soil samples. Chromium concentrations ranging between 25.2 mg/kg to 37.0 mg/kg were detected in UST assessment soil samples. The chromium concentrations detected did not exceed applicable DEQ RBCs or clean fill screening values. Detected concentrations of metals in UST assessment soil samples are summarized in **Table 3.**

7.1.4 Polycyclic Aromatic Hydrocarbons - Soil

All soil samples in which DRO and/or ORO were detected were analyzed for PAHs. This included three direct-push boring samples (including the duplicate soil sample) and all six UST assessment soil samples. No PAHs were detected above potentially applicable DEQ RBCs. Two noncarcinogenic PAHs (1-methylnaphthalene in all six UST assessment samples and naphthalene in all samples except GP04-1) were detected at concentrations above DEQ clean fill values. Detected concentrations of PAHs in soil samples are summarized in **Table 4.**

Laboratory Testing Results March 18, 2020

7.2 GROUNDWATER TESTING RESULTS

Groundwater samples were collected from five temporary groundwater wells installed in direct-push borings GP-02 through GP-06. Groundwater testing results are described by analyte group in the subsections that follow. Groundwater testing data is summarized for detected concentrations only in **Table 5** (petroleum hydrocarbons and VOCs), **Table 6** (metals) and **Table 7** (PAHs). Apex Labs laboratory reports are provided in **Appendix D**.

7.2.1 Petroleum Hydrocarbons - Groundwater

All five groundwater samples, a duplicate sample, and an equipment rinsate blank sample were analyzed for petroleum hydrocarbons (GRO, DRO and ORO). GRO was detected in all samples except the rinsate blank sample at a maximum concentration of 2.46 milligrams per liter (mg/L). All detected GRO concentrations were below potentially applicable RBCs.

DRO was detected only in groundwater samples collected from direct-push borings GP-02 and GP-03 at a maximum concentration of 0.322 mg/L. All detected DRO concentrations were below potentially applicable RBCs. ORO was not detected in the seven groundwater samples (including the duplicate and rinsate blank samples). Results of hydrocarbon analysis for groundwater are summarized in **Table 5**.

7.2.2 Volatile Organic Compounds - Groundwater

All five groundwater samples, the duplicate sample, the equipment rinsate blank sample, and two trip blank samples, were analyzed for VOCs. VOCs were detected in all analyzed groundwater samples and the rinsate blank sample but not in the two trip blank samples. Chloroform was detected in the rinsate blank sample but not in collected groundwater samples. All detected VOC concentrations were below potentially applicable RBCs. Results of VOC analysis for groundwater are summarized in **Table 5**.

7.2.3 Metals - Groundwater

All five temporary well samples, the duplicate sample and a rinsate blank sample were analyzed for total and dissolved RCRA-eight metals. Total metals were detected in most groundwater samples, but all at concentrations below potentially applicable RBCs. The prevalence of dissolved metals detections was lower and all at concentrations below potentially applicable RBCs. Results of metals analysis for groundwater are presented in **Table 6**.

7.2.4 Polynuclear Aromatic Hydrocarbons - Groundwater

The two groundwater samples (GP-02 and GP-03) in which DRO was detected were analyzed for PAHs. Up to five noncarcinogenic PAHs were detected in both groundwater samples, but at concentrations below potentially applicable RBCs. Results of PAH analysis for groundwater are summarized in **Table 7**.

Data Validation March 18, 2020

8.0 DATA VALIDATION

The laboratory reports received from Apex Labs were validated by Stantec to verify compliance with the project QAPP, and to confirm the usability of the laboratory data. No data was rejected as a result of data validation completion. All data qualified as a result of data validation is indicated in the data validation reports in **Appendix F** and in **Tables 1-7**.

Conclusions March 18, 2020

9.0 CONCLUSIONS

A Phase II ESA was completed at the Lampson Property in Central Point, Oregon in order to evaluate the nature, extent and concentration of contaminants in soil and groundwater associated with potential on-site (former service station) and off-site (multiple former service station and auto repair facilities) releases. The Phase II ESA included the collection of 16 soil samples and five groundwater samples in direct-push borings, and the collection of six soil samples in a UST assessment exploration pit. During UST assessment activities, one 1,000-gallon UST and one 675-gallon UST were decommissioned by removal. A third UST was observed northwest of the two decommissioned tanks. This third UST remains at the Property.

Based upon laboratory analysis, the following assessment findings have been made:

- A petroleum release has been documented at the Property. A release report for the Property was made to the DEQ on September 20, 2019.
- Soil sampling completed for the project indicates that the highest petroleum concentrations (up to 8,020 mg/kg GRO and 1,057 mg/kg DRO/ORO) are in the UST area. GRO was not detected in unsaturated zone soils outside the UST area with one exception: a GRO concentration of 30.7 mg/kg was detected at a depth of 1-foot bgs in boring GP-02. It can be inferred based upon this data that the single source of petroleum detected in soil and groundwater at the Property is the UST area.
- Groundwater sampling completed for the project indicates that the highest petroleum and VOC concentrations, detected in borings GP-02, GP03 and GP-06, also are located in the UST area.
- Comparison of detected soil contaminant concentrations indicates only two exceedances of applicable DEQ RBCs:
 - GRO was detected at a concentration exceeding the DEQ RBC for construction worker direct contact in a single soil sample collected in the UST area at a depth of 6 feet bgs; and
 - Ethylbenzene was detected at concentrations exceeding the DEQ RBC for occupational vapor intrusion in five soil samples collected in the UST area.
- Comparison of detected groundwater contaminant concentrations to applicable DEQ RBCs indicates no exceedances.

Limitations March 18, 2020

10.0 LIMITATIONS

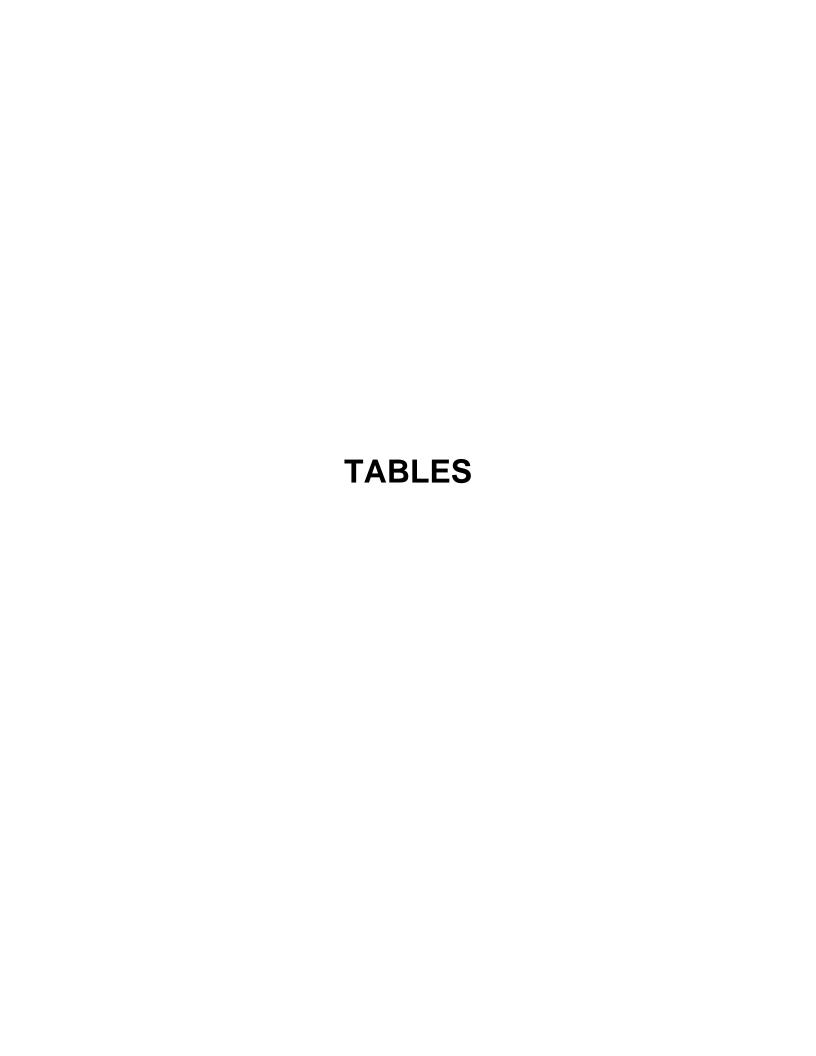
This report documents work that was performed in accordance with generally accepted professional standards at the time and location in which the services were provided. No other representations, warranties or guarantees are made concerning the accuracy or completeness of the data or conclusions contained within this report, including no assurance that this work has uncovered all potential liabilities associated with the identified property.

This report provides an evaluation of selected environmental conditions associated with the identified portion of the property that was assessed at the time the work was conducted and is based on information obtained by and/or provided to Stantec at that time. There are no assurances regarding the accuracy and completeness of this information. All information received from the client or third parties in the preparation of this report has been assumed by Stantec to be correct. Stantec assumes no responsibility for any deficiency or inaccuracy in information received from others.

The conclusions are based on the site conditions encountered by Stantec at the time the work was performed at the specific testing and/or sampling locations, and conditions may vary among sampling locations. Factors such as areas of potential concern identified in previous studies, site conditions (e.g., utilities) and cost may have constrained the sampling locations used in this assessment. In addition, analysis has been carried out for only a limited number of chemical parameters, and it should not be inferred that other chemical species are not present. Due to the nature of the investigation and the limited data available, Stantec does not warrant against undiscovered environmental liabilities nor that the sampling results are indicative of the condition of the entire site. As the purpose of this report is to identify site conditions which may pose an environmental risk; the identification of non-environmental risks to structures or people on the site is beyond the scope of this assessment.

The opinions in this report can only be relied upon as they relate to the condition of the portion of the identified property that was assessed at the time the work was conducted. Activities at the property subsequent to Stantec's assessment may have significantly altered the property's condition. Stantec cannot comment on other areas of the property that were not assessed.

Conclusions made within this report consist of Stantec's professional opinion as of the time of the writing of this report and are based solely on the scope of work described in the report, the limited data available and the results of the work. They are not a certification of the property's environmental condition. This report should not be construed as legal advice.



References March 18, 2020

11.0 REFERENCES

- DEQ 2013. Development of Oregon Background Metals Concentrations in Soil, Technical Report. March 2013.
- DEQ 2017. Guidance for Risk-Based Decision Making for the Remediation of Contaminated Sites. Updated October 2, 2017.
- DEQ 2018. Guidance for Risk-Based Decision Making for the Remediation of Contaminated Sites. Table of Risk-based Concentrations for Individual Chemicals. Updated May 2018.
- DEQ 2019. Clean Fill Determinations. February 19, 2019.
- Stantec 2018. Master Quality Assurance Project Plan, Rogue Valley Coalition of Governments. Cooperative Agreement No. BF-01J40701. August 23, 2018.
- Stantec 2019a. Phase I Environmental Site Assessment, Lampson Property, 131 North Front Street, Central Point, Oregon. March 20, 2019.
- Stantec 2019b. Site-Specific Sampling and Analysis Plan, Geophysical Survey, Lampson Property, 131 North Front Street, Central Point, Oregon. June 6, 2019.
- Stantec 2019c. Site-Specific Sampling and Analysis Plan, Revision 2, Lampson Property, 131 North Front Street, Central Point, Oregon. September 11, 2019.

TABLE 1 Soil Sample Analytical Results - Petroleum Hydrocarbons and Volatile Organic Compounds Lampson Property

131 North Front Street Central Point, Oregon

Sample ID	Date Sampled	NWTPH-Gx (GRO)	NWTPH-Dx (DRO)	NWTPH-Dx (ORO)	Non-Gasoline Fraction	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	4-Isopropyl- toluene	Benzene	Ethylbenzene	Isopropyl- benzene	m,p-Xylene	Naphthalene	n-Butyl- benzene	n-Propyl- benzene	o-Xylene	sec-Butyl- benzene	Toluene	Xylenes, Total
FS-01-8	9/20/2019	112	25.0 U	50.0 U	ND	0.0714 U	0.0714 U	0.0828	0.0143 U	0.192	0.246	0.0714 U	0.143 U	0.224	0.770	0.0357 U	0.103	0.0714 U	0.0714 U
FS-02-8	9/20/2019	222	25.0 U	50.0 U	ND	0.0667 U	0.0667 U	0.116	0.0133 U	0.0540	0.0973	0.0667 U	0.133 U	0.356	0.415	0.0333 U	0.161	0.0667 U	0.0667 U
FS-04-9	9/18/2019	6.11 U	25.0 U	50.0 U	ND	0.0611 U	0.0611 U	0.0611 U	0.0122 U	0.0305 U	0.0611 U	0.0611 U	0.122 U	0.0611 U	0.0305 U	0.0305 U	0.0611 U	0.0611 U	0.0611 U
FS-03-9	9/18/2019	366	28.2 J+	50.0 U	28	0.125 U	2.40	0.259 J	0.111	3.03	0.906	0.125 U	0.392	0.773 J	3.02	0.0626 U	0.367	0.125 U	0.125 U
GP-01-2	9/19/2019	5.06 U	25.0 U	50.0 U	ND	0.117	0.0506 U	0.0506 U	0.0294	0.0474	0.0506 U	0.156	0.101 U	0.0506 U	0.0303	0.0567	0.0506 U	0.129	0.213
GP-01-5	9/19/2019	62.2	25.0 U	50.0 U	ND	0.0606 U	0.0606 U	0.0606 U	0.0132	0.0303 U	0.0606 U	0.0874	0.121 U	0.0606 U	0.0303 U	0.0327	0.0606 U	0.0627	0.120
GP-02-1	9/19/2019	30.7	25.0 U	50.0 U	ND	0.177	0.0546 U	0.0546 U	0.0109 U	0.0273 U	0.0546 U	0.140	0.109 U	0.0546 U	0.0273 U	0.0273 U	0.0546 U	0.0546 U	0.140
GP-02-12	9/19/2019	99.4	25.0 U	50.0 U	ND	2.00	0.593	0.0460 U	0.0432	1.33	0.175	4.62	0.0942	0.0694 J	0.438	1.07	0.0473	0.413	5.69
GP-05-1	9/20/2019	4.91 U	25.0 U	50.0 U	ND	0.0491 U	0.0491 U	0.0491 U	0.00982 U	0.0246 U	0.0491 U	0.0491 U	0.0982 U	0.0491 U	0.0246 U	0.0246 U	0.0491 U	0.0491 U	0.0491 U
GP-05-8	9/20/2019	249	25.0 U	50.0 U	ND	0.343	2.99	0.114 J	0.0224 U	2.25	0.509	2.47	0.647	0.328 J	1.67	0.0560 U	0.158	0.112 U	2.47
GP04-1	9/20/2019	5.72 U	25.0 U	600	600	0.0572 U	0.0572 U	0.0572 U	0.0114 U	0.0286 U	0.0572 U	0.0572 U	0.114 U	0.0572 U	0.0286 U	0.0286 U	0.0572 U	0.0572 U	0.0572 U
GP04-12	9/20/2019	67.6	25.0 U	50.0 U	ND	0.0549 U	0.0549 U	0.0549 U	0.0110 U	0.0275 U	0.0890	0.0549 U	0.110 U	0.148	0.245	0.0275 U	0.0692	0.0549 U	0.0549 U
GP03-2	9/20/2019	5.73 U	25.0 U	50.0 U	ND	0.0573 U	0.0573 U	0.0573 U	0.0115 U	0.0286 U	0.0573 U	0.0573 U	0.115 U	0.0573 U	0.0286 U	0.0286 U	0.0573 U	0.0573 U	0.0573 U
GP03-8	9/20/2019	324 J	58.3	170	228	1.36 J	2.84 J	0.131 J	0.0774	1.60 J	0.446	0.720 J	1.33 J	0.391 J	1.38 J	0.0647 U	0.162	0.129 U	0.720 J
GP-X (FD of GP-03-8)	9/17/2019	655 J	31.0	63.6	95	2.87 J	5.03 J	0.228 J	0.203	3.06 J	0.819	1.61 J	2.25 J	0.646 J	2.41 J	0.0647 U	0.263	0.129 U	1.61 J
GP06-2	9/17/2019	5.56 U	25.0 U	50.0 U	ND	0.0556 U	0.0556 U	0.0556 U	0.0111 U	0.0278 U	0.0556 U	0.0556 U	0.111 U	0.0556 U	0.0278 U	0.0278 U	0.0556 U	0.0556 U	0.0556 U
GP06-6	9/18/2019	4.74 U	25.0 U	50.0 U	ND	0.0474 U	0.0474 U	0.0474 U	0.00947 U	0.0237 U	0.0474 U	0.0474 U	0.0947 U	0.0474 U	0.0237 U	0.0237 U	0.0474 U	0.0474 U	0.0474 U
UST-01-T2-NB	9/18/2019	8020 J	339	50.0 U	339	219 J	11.8 J	3.74 J	0.724	87.3 J	13.0 J	137 J	20.8 J	11.2 J	52.9 J	1.40	4.93	1.04 U	138 J
UST-02-T2-SB	9/18/2019	4900	574	483	1,057	101	31.4	1.30 J	0.849	38.5	4.46	182	12.3	3.16 J	13.2	0.976	1.59	1.06 U	183
UST-03-T2-SE	9/18/2019	2360	238	257	495	55.4	4.37	1.08 U	0.216 U	13.0	2.33	29.3	8.16	2.51	6.98	3.08	1.18	1.08 U	32.4
UST-04-T1-NB	9/18/2019	3280	376	50.0 U	376	118	4.46	1.60 J	0.619	33.5	5.48	63.3	10.8	3.92	18.6	0.519 U	2.03	1.04 U	63.3
UST-05-T1-SB	9/20/2019	1560	129	50.0 U	129	58.0	1.06 U	1.69	0.212 U	3.60	2.10	4.63	2.12 U	4.68	10.0	0.531 U	2.36	1.06 U	4.63
UST-06-T1-SW	9/19/2019	3240	746	117	863	122	14.9	1.32 J	0.219 U	36.6	5.30	96.0	13.3	4.16	18.5	0.547 U	2.09	1.09 U	96.0
A43-Stockpile	10/3/2019	1350							0.0165 U	0.667			3.13					0.0824 U	0.0824 U
A44-Stockpile	10/3/2019	1760				**			0.0210 U	0.780			1.38					0.105 U	0.105 U
Clean Fill Screening Values		31	1,100	NA	NA	10	11	NA	0.023	0.22	96	11	0.077	190	72	1	350	23	1.4
Occupational Direct Contract	RBC	15,000	16	,000,	16,000	6,900	6,900	NA	37	150	57,000	NA	23	NA	NA	NA	NA	88,000	25,000
Construction Worker Direct Co	ntact RBC	5,800	5,	800	5,800	2,900	2,900	NA	380	1,700	27,000	NA	580	NA	NA	NA	NA	28,000	20,000
Excavation Worker Direct Conf	tact RBC	>Max	1<	Лах	>Max	81,000	81,000	NA	11,000	49,000	750,000	NA	16,000	NA	NA	NA	NA	770,000	560,000
Occupational Volatilization to RBC	Outdoor Air	69,000	1<	Мах	>Max	>Csat	>Csat	NA	50	160	>Csat	NA	83	NA	NA	NA	NA	>Csat	>Csat
Occupational Vapor Intrusion i RBC	into Buildings	>Max	1<	Лах	>Max	>Csat	>Csat	NA	2.1	17	>Csat	NA	83	NA	NA	NA	NA	>Csat	>Csat

Notes:

All results expressed as milligrams per kilogram $\,$

Volatile organic compound results not included in this table were non-detect for all samples analyzed

bold = indicates concentrations detected above method reporting limits

shaded gray = indicates concentration exceeds clean fill screening value

highlighted yellow = indicates concentration exceeds one or more potentially applicable RBCs

>Csat = The soil RBC exceeds the limit of three-phase partioning

>Max = Substance is deemed not to pose a risk at any concentration

-- = sample not analyzed FD = field duplicate

ND = not detected

ND = not detected

NA = Not Available, no screening value is listed for this analyte

Non-gasoline fraction = Sum of DRO and ORO

RBCs listed for m,p-xylene and o-xylene are for total xylenes

- J = The result is an estimated value; "-" indicates a potential low bias, "+" indicates a potential high bias
- U = Not detected, the associated value is the method reporting limit

Clean Fill Screening Values, Oregon DEQ April 2019 revision

RBCs = Oregon DEQ Risk-Based Concentrations, May 2018 revision

RBCs for GRO and DRO/ORO based on site-specific calculations using volatile and extractible petroleum hydrocarbon testing results

TABLE 2 Soil Sample Analytical Results - Volatile and Extractable Petroleum Hydrocarbons Lampson Property 131 North Front Street Central Point, Oregon

								NWVPH - Volatil	le Petroleum Hy	drocarbons										NWEPH	 Extractable Pe 	troleum Hydroc	arbons			
Sample I	ID Sa	Date ampled	Aliphatic Hydrocarbon (C5-C6)	Aliphatic Hydrocarbon (C6-C8)	Aliphatic Hydrocarbon (C8-C10)	Aliphatic Hydrocarbon (C10-C12)	Aromatic Hydrocarbon (C8-C10)	Aromatic Hydrocarbon (C10-C12)	Aromatic Hydrocarbon (C12-C13)	Benzene	Ethyl- benzene	m,p-Xylene	Methyl tert- butyl ether	Naphthalene	o-Xylene	Toluene	Aliphatic Hydrocarbon (C8- C10)	Aliphatic Hydrocarbon (C10-C12)	Aliphatic Hydrocarbon (C12-C16)	Aliphatic Hydrocarbon (C16-C21)	Aliphatic Hydrocarbon (C21-C34)	Aromatic Hydrocarbon (C8-C10)	Aromatic Hydrocarbon (C10-C12)	Aromatic Hydrocarbon (C12-C16)	Aromatic Hydrocarbon (C16-C21)	Aromatic Hydrocarbon (C21-C34)
UST-02-T2-	SB 9,	9/18/2019	175 J	327 J	96.5 J	71.6 J	199 J	200 J	163 J	1.22 J	38.5 J	76.0 J	0.0756 UJ	21.4 J	8.49 J	10.6 J	342	192	69.7	16.2	33.3 J+	184 J-	163 J-	74.6 J	26.7 J	1.68 UJ
UST-06-T1-5	SW 9,	9/19/2019	127 J	387 J	163 J	109 J	394 J	373 J	181 J	1.02 J	40.9 J	122 J	0.0815 UJ	22.4 J	5.00 J	9.93 J	104	73.1	163	134	2.38 U	93.5 J-	99.7	71.9 J+	78.1 J+	1.67 U

Notes:
All results expressed as milligrams per kilogram
bold - indicates concentrations detected above method reporting limits

 $\label{eq:J-The result is an estimated value: ``indicates a potential low bias, ``indicates a potential high bias $U - Not detected, the associated value is the method reporting limit $U - Not detected; the associated method reporting limit is approximate.$

TABLE 3 Soil Sample Analytical Results - Metals Lampson Property 131 North Front Street Central Point, Oregon

Sample ID	Date Sampled	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
FS-01-8	9/20/2019	9.49	146	0.269 U	70.3	8.59	0.137	1.34 U	0.269 U
FS-02-8	9/20/2019	1.73	110	0.281 U	49.5	3.25	0.377	1.41 U	0.281 U
FS-04-9	9/18/2019	3.80	80.8	0.233 U	36.1	3.16	0.174	1.17 U	0.233 U
FS-03-9	9/18/2019	16.3	152	0.258 U	64.7	7.39	0.139	1.29 U	0.258 U
GP-01-2	9/19/2019	3.00	140	0.582	28.0	24.8	0.101 U	1.27 U	0.253 U
GP-01-5	9/19/2019	1.23 U	99.9	0.245 U	46.9	2.38	0.117	1.23 U	0.245 U
GP-02-1	9/19/2019	5.66	126	0.262 U	38.4	3.84	0.105 U	1.31 U	0.262 U
GP-02-12	9/19/2019	1.82	108	0.244 U	35.4	3.57	0.649	1.22 U	0.244 U
GP-05-1	9/20/2019	2.94	97.4	0.208 U	33.7	2.93	0.0830 U	1.04 U	0.208 U
GP-05-8	9/20/2019	13.0	146	0.238 U	56.6	7.35	0.164	1.19 U	0.238 U
GP04-1	9/20/2019	3.49	119	0.224 U	41.3	322	1.58	1.12 U	0.224 U
GP04-12	9/20/2019	11.0	171	0.254 U	60.6	38.0	0.155	1.27 U	0.254 U
GP03-2	9/20/2019	4.19	97.3	0.219 U	52.5	2.30	0.0876 U	1.10 U	0.219 U
GP03-8	9/20/2019	7.77	130	0.256 U	64.2	5.57	0.147	1.28 U	0.256 U
GP-X (FD of GP-03-8)	9/17/2019	5.34	142	0.240 U	63.6	5.09	0.146	1.20 U	0.240 U
GP06-2	9/17/2019	3.30	126	0.253 U	29.7	28.2	0.101 U	1.27 U	0.253 U
GP06-6	9/18/2019	5.52	95.3	0.242 U	30.9	1.87	0.0969 U	1.21 U	0.242 U
UST-01-T2-NB	9/18/2019			0.241 U	37.0	0.0500 U			
UST-02-T2-SB	9/18/2019			0.263 U	27.2	0.0500 U			
UST-03-T2-SE	9/18/2019			0.247 U	25.2	0.0500 U			
UST-04-T1-NB	9/18/2019			0.237 U	36.3	0.0500 U			
UST-05-T1-SB	9/20/2019			0.238 U	29.8	0.0500 U			
UST-06-T1-SW	9/19/2019			0.251 U	28.9	0.0500 U			1
Clean Fill/Background Screening Valu	es	12	630	0.52	890	36	0.17	0.8	0.16
Occupational Direct Contract RBC		1.9	220,000	1,100	>Max	800	350	NA	5,800
Construction Worker Direct Contact RB	C	15	69,000	350	530,000	800	110	NA	1,800
Excavation Worker Direct Contact RBC		420	>Max	9,700	>Max	800	2,900	NA	49,000
Occupational Volatilization to Outdoo	r Air RBC	NV	NV	NV	NV	NV	NV	NA	NV
Occupational Vapor Intrusion into Build	dings RBC	NV	NV	NV	NV	NV	NV	NA	NV

Notes:

All results expressed as milligrams per kilogram

bold = indicates concentrations detected above method reporting limits

shaded gray = indicates concentration exceeds clean fill screening value

highlighted yellow = indicates concentration exceeds background and one or more potentially applicable RBCs

>Max = Substance is deemed not to pose a risk at any concentration

-- = sample not analyzed

FD = field duplicate

NV = Undicates chemcial is non-volatile

NA = Not Available, no screening value is listed for this analyte

U = Not detected, the associated value is the method reporting limit

Clean Fill/Background Screening Values (Klamath Mountains), Oregon DEQ April 2019 revision

TABLE 4

Soil Sample Analytical Results - Polycyclic Aromatic Hydrocarbons Lampson Property 131 North Front Street Central Point, Oregon

Sample ID	Date Sampled	1-Methyl- naphthalene	2-Methyl- naphthalene	Benz(a)- anthracene	Benzo(a)- pyrene	Benzo[b]- fluoranthene	Benzo[g,h,i]- perylene	Benzo(k)- fluoranthene	Chrysene	Dibenzo- furan	Fluoranthene	Fluorene	Indeno(1,2,3-cd)- pyrene	Naphthalene	Phenanthrene	Pyrene	Benzo[a]- pyrene TEQ
FS-01-8	9/20/2019																
FS-02-8	9/20/2019		-						-								
FS-04-9	9/18/2019		-													-	
FS-03-9	9/18/2019																
GP-01-2	9/19/2019																
GP-01-5	9/19/2019																
GP-02-1	9/19/2019																
GP-02-12	9/19/2019																
GP-05-1	9/20/2019																
GP-05-8	9/20/2019																
GP04-1	9/20/2019	0.0102 U	0.0102 U	0.0102 U	0.0102 U	0.0102 U	0.0229	0.0102 U	0.0102 U		0.0102 U	0.0102 U	0.0102 U	0.0102 U	0.0102 U	0.0102 U	0.000229
GP04-12	9/20/2019																
GP03-2	9/20/2019																
GP03-8	9/20/2019	0.136 J	0.343 J	0.0122 U	0.0122 U	0.0122 U	0.0122 U	0.0122 U	0.0122 U		0.0122 U	0.0122 U	0.0122 U	0.314 J	0.0126	0.0122 U	ND
GP-X (FD of GP-03-8)	9/17/2019	0.197 J	0.453 J	0.0119 U	0.0119 U	0.0119 U	0.0119 U	0.0119 U	0.0119 U		0.0119 U	0.0119 U	0.0119 U	0.432 J	0.0123	0.0119 U	ND
GP06-2	9/17/2019																
GP06-6	9/18/2019																
UST-01-T2-NB	9/18/2019	3.11	5.76	0.0108 U	0.0108 U	0.0108 U	0.0108 U	0.0108 U	0.0108 U		0.0119	0.169	0.0108 U	6.66	0.239	0.0185	ND
UST-02-T2-SB	9/18/2019	3.78	7.40	0.0117 U	0.0117 U	0.0117 U	0.0117 U	0.0117 U	0.0117 U		0.0118	0.153	0.0117 U	7.68	0.248	0.0192	ND
UST-03-T2-SE	9/18/2019	3.23	5.97	0.0117 U	0.0117 U	0.0117 U	0.0117 U	0.0117 U	0.0117 U		0.0158	0.146	0.0117 U	5.24	0.258	0.0232	ND
UST-04-T1-NB	9/18/2019	5.03	9.15	0.0120 U	0.0120 U	0.0120 U	0.0120 U	0.0120 U	0.0120 U		0.0207	0.292	0.0120 U	10.3	0.426	0.0315	ND
UST-05-T1-SB	9/20/2019	0.874	1.72	0.0111 U	0.0111 U	0.0111 U	0.0111 U	0.0111 U	0.0111 U		0.0111 U	0.0781	0.0111 U	0.276	0.108	0.0111 U	ND
UST-04-T1-NB	9/18/2019	5.03	9.15	0.0120 U	0.0120 U	0.0120 U	0.0120 U	0.0120 U	0.0120 U		0.0207	0.292	0.0120 U	10.3	0.426	0.0315	ND
A43-Stockpile	10/3/2019	0.540	0.890	0.0504	0.0561	0.0986	0.0606	0.0331	0.0750	0.0497	0.0969	0.139	0.0522	0.0288	0.312	0.129	0.077
A44-Stockpile	10/3/2019	1.55	2.45	0.0326	0.0304	0.0523	0.0296	0.0174	0.0434	0.0107 U	0.0625	0.323	0.0273	1.22	0.751	0.0806	0.042
Clean Fill Screening Values		0.36	11	0.73	0.11	1.1	25	11	3.1	0.002	10	3.7	1.1	0.077	NA	10	0.11
Occupational Direct Contr	act RBC	NA	NA	21	2.1	21	NA	210	2,100	NA	30,000	47,000	21	23	NA	23,000	2.1
Construction Worker Direct	Contact RBC	NA	NA	170	17	170	NA	1,700	17,000	NA	10,000	14,000	170	580	NA	7,500	17
Excavation Worker Direct C	ontact RBC	NA	NA	4,800	490	4,900	NA	49,000	490,000	NA	280,000	390,000	4,900	16,000	NA	210,000	490
Occupational Volatilization Air RBC	to Outdoor	NA	NA	>Csat	NV	NV	NA	NV	NV	NA	NV	>Csat	NA	83	NA	>Max	NV
Occupational Vapor Intrusi Buildings RBC	on into	NA	NA	>Csat	NV	NV	NA	NV	NV	NA	NV	>Csat	NA	83	NA	>Max	NV

Notes:

All results expressed as milligrams per kilogram

bold = indicates concentrations detected above method reporting limits shaded gray = indicates concentration exceeds clean fill screening value

>Csat = The soil RBC exceeds the limit of three-phase partioning

>Max = Substance is deemed not to pose a risk at any concentration

-- = sample not analyzed

FD = field duplicate

NA = Not Available, no screening value is listed for this analyte.

ND = No carcinogenic PAHs were detected in this sample

TEQ = Toxic Equivalence Quotient

J = The result is an estimated value.

U = Not detected, the associated value is the method reporting limit

Clean Fill Screening Values, Oregon DEQ April 2019 revision

TABLE 5 Groundwater Sample Analytical Results - Petroleum Hydrocarbons and Volatile Organic Compounds Lampson Property 131 North Front Street Central Point, Oregon

Sample ID	Date Sampled	NWTPH-Gx (GRO)	NWTPH-Dx (DRO	NWTPH-Dx (ORO)	1,2,4-Trimethyl- benzene	1,2-Dichloro- ethane	1,3,5-Trimethyl- benzene	4-Isopropyl- toluene	Acetone	Benzene	Chloroform	Ethyl- benzene	Isopropyl- benzene	m,p-Xylene	Methyl tert- butyl ether	Naphthalene	n-Butyl- benzene	n-Propyl- benzene	o-Xylene	sec-Butyl- benzene	Toluene
GP02	9/18/2019	2,460 J	322 J	556 U	82.5 J+	159 J	22.0	1.89 J+	40.0 U	6.25 J+	1.00 U	41.3	5.83	143 J+	5.73	10.1 J+	2.86 J+	13	45.3	1.81	16.4
GP-03	9/20/2019	1,110	241	426 U	14.3	2.58	8.72	1.00 U	56.5	35.8	1.00 U	19.9	2.23	19.3	1.00 U	10.1	1.00 U	3.75	0.982	1.00 U	1.00 U
GP-04	9/19/2019	613	282 U	563 U	6.04	0.400 U	3.04	1.00 U	25.1	1.43	1.00 U	24.5	3.66	20.1	1.00 U	4.26	1.15 J	8.81	0.842	1.00 U	3.29
GP05	9/19/2019	232	233 U	465 U	1.00 U	0.400 U	5.49	1.00 U	20 U	0.200 U	1.00 U	8.53	1.44	7.68	1.00 U	0.200 U	1.00 U	4.23	0.500 U	1.00 U	1.00 U
GP-06	9/19/2019	925	211 U	421 U	1.00 U	0.860	1.00 U	1.00 U	34.3	20.6	1.00 U	2.84	2.55	4.00	1.00 U	2.00 U	1.00 U	1.56	0.500 U	2.60	1.38
GP-Y (FD of GP-06)	9/19/2019	1,040	270 U	541 U	1.00 U	0.784	1.00 U	1.00 U	32.6	20.0	1.00 U	2.91	2.67	4.24	1.00 U	2.00 U	1.00 U	1.61	0.500 U	2.90	1.35
EQ-092019	9/19/2019	100 U	202 U	404 U	1.00 U	0.400 U	1.00 U	1.00 U	20.0 U	0.200 U	5.68	0.500 U	1.00 U	1.00 U	1.00 U	0.200 U	1.00 U	0.500 U	0.500 U	1.00 U	1.00 U
TB-091919	9/19/2019				1.00 U	0.400 U	1.00 U	1.00 U	20.0 U	0.200 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U	2.00 U	1.00 U	0.500 U	0.500 U	1.00 U	1.00 U
TB-092319-1	9/19/2019				1.00 U	0.400 U	1.00 U	1.00 U	20.0 U	0.200 U	1.00 U	0.500 U	1.00 U	1.00 U	1.00 U	0.200 U	1.00 U	0.500 U	0.500 U	1.00 U	1.00 U
Occupational Volatiliza Air RBC	ation to Outdoor	>S	>S	>S	>S	9,000	>S	NA	NA	14,000	6,300	43,000	>S	>S	1,500,000	16,000	NA	NA	>S	NA	>S
Occupational Vapor Ir Buildings RBC	ntrusion into	>S	>S	>S	>S	3,900	>S	NA	NA	2,800	1,600	8,200	>S	>S	870,000	11,000	NA	NA	>S	NA	>S
Construction and Exca Groundwater in Excav		22,000	22,000	22,000	6,300	630	7,500	NA	NA	1,800	720	4,500	51,000	23,000	63,000	500	NA	NA	23,000	NA	220,000

Notes:

All results expressed as micrograms per liter

Volatile organic compound results not included in this table were non-detect for all samples analyzed

bold = indicates concentrations detected above method reporting limits

>S = This RBC exceeds the solubility limit, and does not pose an unacceptable risk provided free product is not present

.. - sample not analyzed

FD = field duplicate

NA = Not Available, no RBC screening value is listed for this analyte

RBCs listed for m,p-xylene and o-xylene are for total xylenes

J = The result is an estimated value; "+" indicates a potential high bias

U = Not detected, the associated value is the method reporting limit

TABLE 6 Groundwater Sample Analytical Results - Metals Lampson Property 131 North Front Street Central Point, Oregon

Sample ID	Date Sampled	Arse	enic	Bar	ium	Cad	mium	Chro	mium	Le	ad	Mer	cury	Sele	nium	Silv	ver
Sample ID	Date Sampled	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved
GP02	9/18/2019	17.7	2.15	826	110	0.38	0.200 U	320	1.00 U	26.9	0.24	1.29	0.0800 U	1.00 U	1.00 U	0.22	0.200 U
GP-03	9/20/2019	45.6	1.97	1040	185	1.00 U	0.200 U	327	4.99	23.8	0.646	0.730	0.0800 U	5.00 U	1.00 U	1.00 U	0.200 U
GP-04	9/19/2019	40.2	3.08	858	111	1.00 U	0.200 U	314	1.00 U	462	1.69	1.08	0.0800 U	5.00 U	1.00 U	1.00 U	0.200 U
GP05	9/19/2019	106	36.6	4620	549	1.66	2.00 U	1590	277	144	19.2	11.0	1.33	1.66	10 U	1.58	2.00 U
GP-06	9/19/2019	17.1	1.75	404 J	126	1.00 U	0.200 U	73.3 J	1.00 U	9.96 J	0.200 U	0.400 U	0.0800 U	5.00 U	1.00 U	1.00 U	0.200 U
GP-Y (FD of GP-06)	9/19/2019	25.7	1.79	566 J	131	1.00 U	0.200 U	123 J	1.00 U	15.1 J	0.200 U	0.419	0.0800 U	5.00 U	1.00 U	1.00 U	0.200 U
EQ-092019	9/19/2019	1.00 U	1.00 U	1.00 U	1.00 U	0.2 U	0.200 U	1.00 U	1.00 U	0.2 U	0.200 U	U 0080.0	0.0800 U	1.00 U	1.00 U	0.200 U	0.200 U
Occupational Volatilizati RBC	on to Outdoor Air	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NA	NA	NV	NV
Occupational Vapor Intr RBC	usion into Buildings	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NV	NA	NA	NV	NV
Construction and Excava Groundwater in Excavati		6,300	6,300	>S	>\$	130,000	130,000	>S	>S	>S	>S	>S	>\$	NA	NA	1,100,000	1,100,000

Notes:

All results expressed as micrograms per liter

bold = indicates concentrations detected above method reporting limits

FD = field duplicate

NV = Indicates chemcial is non-volatile

NA = Not Available, no RBC screening value is listed for this analyte.

J = The result is an estimated value; "+" indicates a potential high bias

U = Not detected, the associated value is the method reporting limit

TABLE 7

Groundwater Sample Analytical Results - Polycyclic Aromatic Hydrocarbons Lampson Property 131 North Front Street Central Point, Oregon

Sample ID	Date Sampled	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Naphthalene	Phenanthrene	Benzo[a]- pyrene TEQ
GP02	9/18/2019	3.41	5.17	0.0444 U	9.89	0.0444 U	0
GP-03	9/20/2019	1.53	2.69	0.0492	9.19	0.0860	0
GP-04	9/19/2019						
GP05	9/19/2019						
GP-06	9/19/2019						
GP-Y (FD of GP-06)	9/19/2019						
EQ-092019	9/19/2019						
Occupational Volatilizati RBC	on to Outdoor Air	NA	NA	>\$	16,000	NA	NV
Occupational Vapor Intro RBC	usion into Buildings	NA	NA	>S	11,000	NA	NV
Construction and Excavati		NA	NA	>S	500	NA	>\$

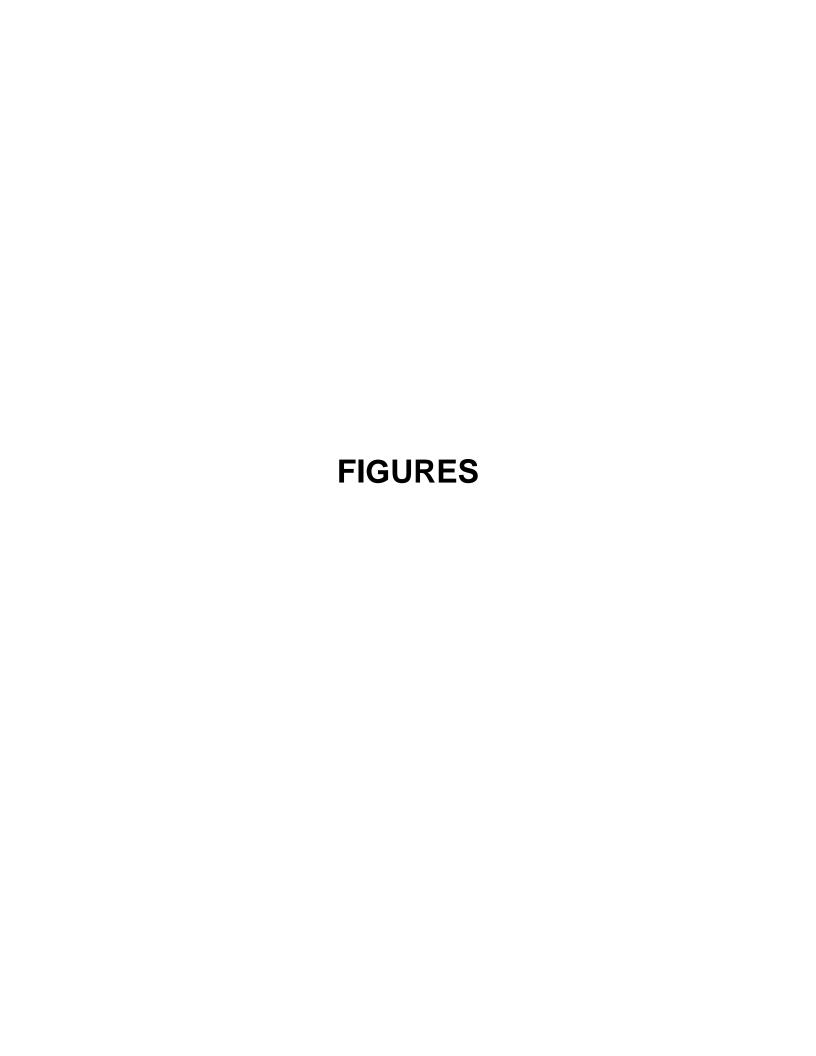
Notes:

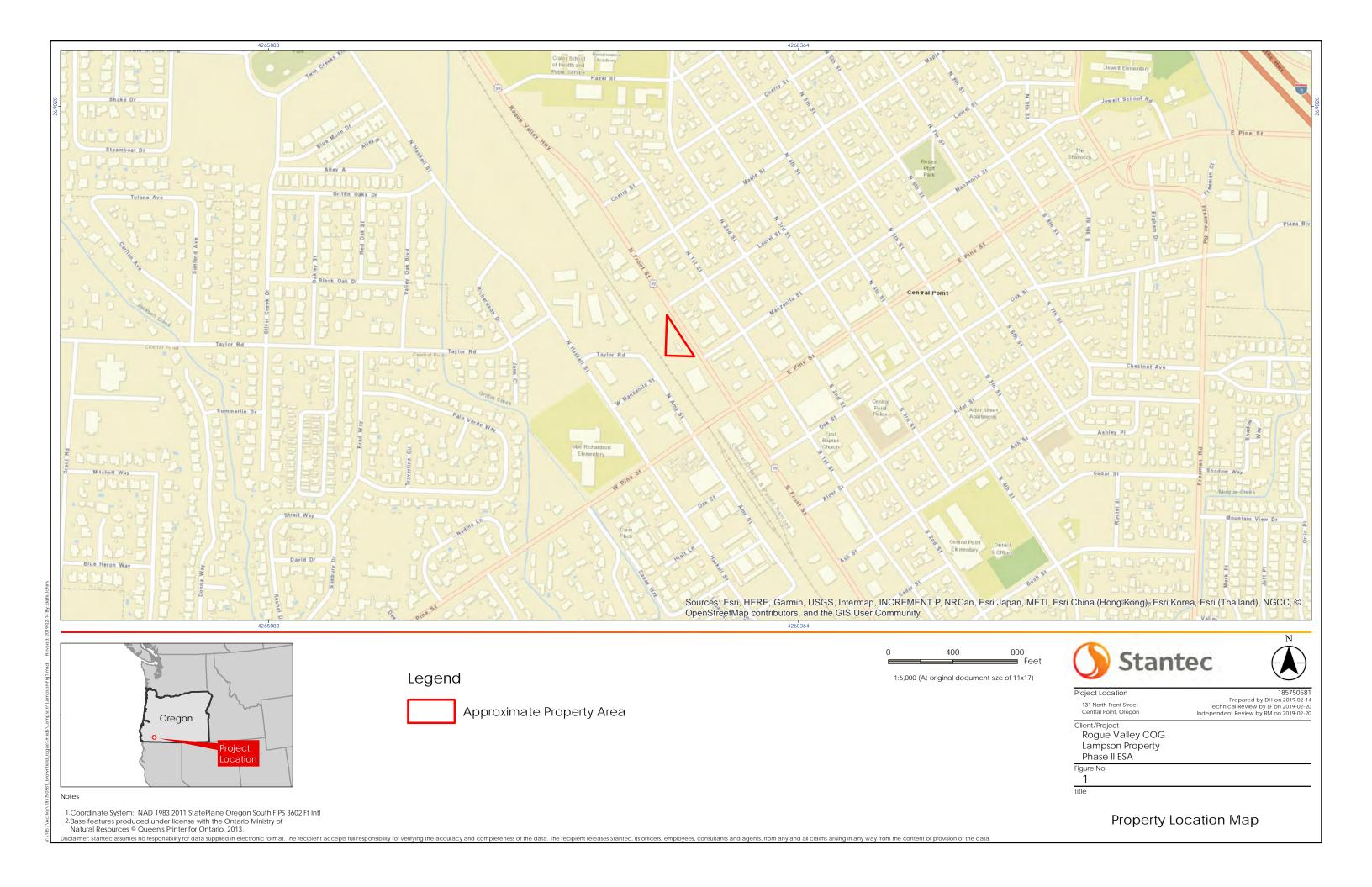
All results expressed as micrograms per liter

bold = indicates concentrations detected above method reporting limits

-- = sample not analyzed

FD = field duplicate


NA = Not Available, no screening value is listed for this analyte.


NV = Indicates chemcial is non-volatile

>S = This RBC exceeds the solubility limit. Groundwater concentrations in excess of S indicate that free product may be present.

TEQ = Toxic Equivalence Quotient

U = Not detected, the associated value is the method reporting limit

1. Coordinate System: NAD 1983 2011 StatePlane Oregon South FIPS 3602 Ft Intl 2. Base features produced under license with the Ontario Ministry of Natural Resources © Queen's Printer for Ontario, 2013.

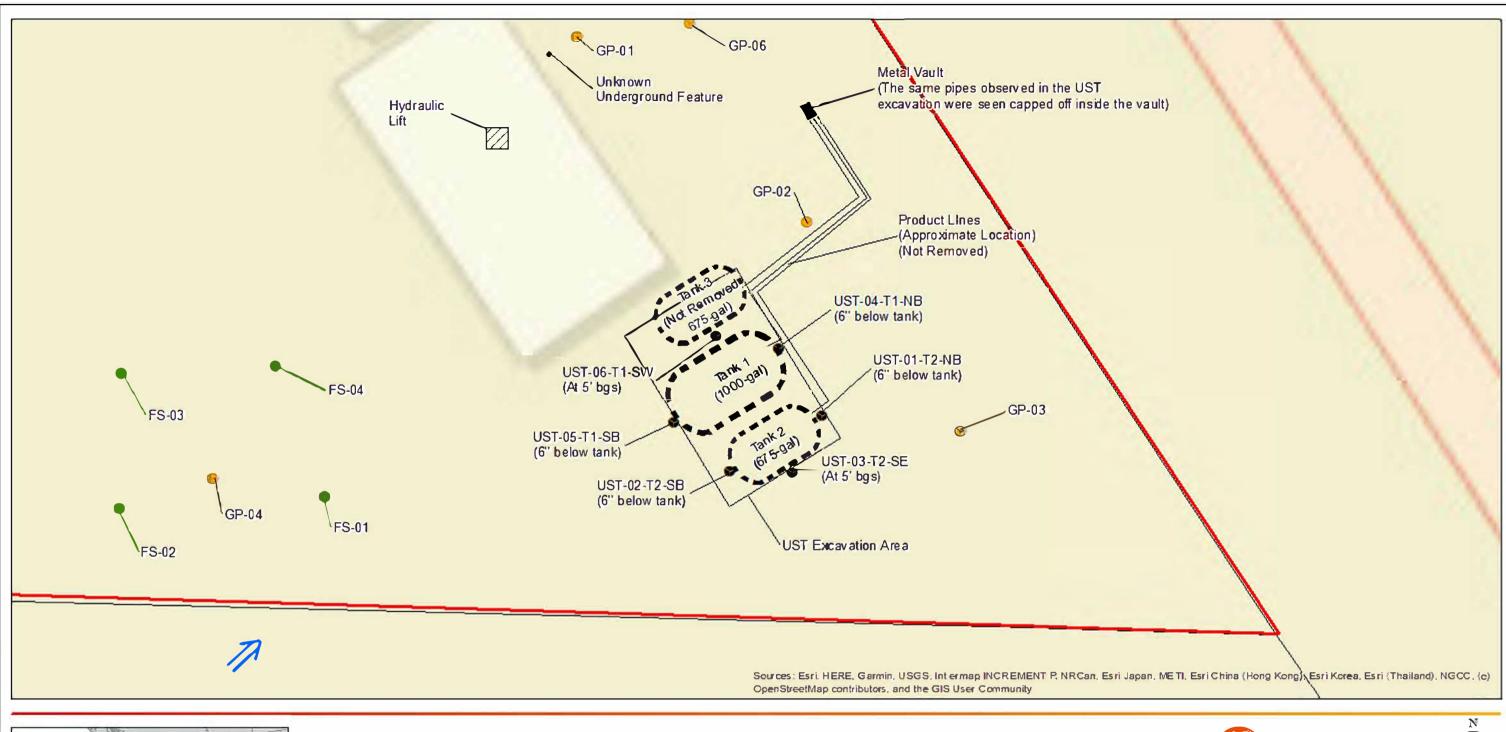
Legend



Tax Lots

Geoprobe Sampling Boring Location

Geoprobe Field Screening Boring Location



Project Location Prepared by DH on 2019-02-14 Technical Review by LF on 2019-02-20 Independent Review by RM on 2019-02-20 Client/Project
Rogue Valley COG
Lampson Property
Phase II ESA

Property Area Map With Sampling Locations

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

1. Coerdinate System: NAD 1983 2011 StatePlane Oregon South FIPS 3502 Fillntl

2,50se features produced under license with the Ontario Ministry of Notural Resource: @ Queen : Rinter for Ontario, 2013.

Tax Lots

Geoprobe Sampling Boring Location

UST Grab Sample Location

Geoprobe Field Screening Boring Location

Groundwater Flow Direction

185750581 Properties by the print 10:74234

25.23 7:32 no 43 ye waxe \$1 made of 35.23 7:32 no 48\$ ye waxe \$5.00 no 25.23 7:32 no 48\$ ye waxe \$5.00 no 50.00 no 50.00

Rojeci Location 13162m han 3-rar Control 2200 Gilligh


Centificient Rogue Valley COG Lampson Property Fhase II ESA

. බ්ලූµre No.

Property Area Map With UST Sampling Locations

Distribution in Processing the processing of the processing for the analogy and the characteristic for the analogy and the characteristic processing for the character

FIGURE 4
Lampson Property
131 North Front Street, Central Point, Oregon

Notes:

- + This route is a primary source of exposure.
- There is no exposure by this route.

APPENDIX A

Geopotential Geophysical Survey Report

ENVIRONMENTAL & EXPLORATION GEOPHYSICS

330 Creekside Terrace, Fairview, OR 97024 Phone: (503) 912-6441 Fax: (603) 912-6448 WEB http://www.geopotential.biz/ E-MAIL GeoPotential@geopotential.biz

SUMMARY REPORT

SUBSURFACE MAPPING SURVEY TO DETECT UNDERGROUND STORAGE TANKS

> Taylor Lampson Site 431 North Front Street Central Point, Oregon

CLIENT

Stantec 225 NE Hillcrest Drive Suite 5 Grants Pass, OR 97526

DATE OF SURVEY

June 26, 2019

GeoPotential Project Number: 1050

CONTENTS

Summary	3
Summary Introduction	3
Survey Objectives	3
Survey Site	
Survey Equipment	4
Procedure	4
Results	4
Limitations	5
Figure 1. Location Map	6
Figure 3. Interpretation Map	7
APPENDICES	
Appendix A – Ground Penetrating Radar Surveys	8

SUMMARY

A Subsurface Mapping Survey (SMS) was conducted over the portions of the Taylor Lampson Property located at 1313 North Front Street in Central Point, Oregon to search for possible Underground Storage Tanks (USTS). In addition a Subsurface Clearance Survey was conducted over proposed boring locations.

A Ground Penetrating Radar (GPR) Survey and hand held magnetic and electromagnetic scanners were used for the project.

Two USTS were detected in the area covered by the SMS. One former hydraulic lift was also detected.

INTRODUCTION

Ralph Soule & Tarek Zaher of GeoPotential conducted the Subsurface Mapping Survey. Dana Hutchins was the representative for Stantec. Fieldwork was conducted on June 26, 2019. The report was completed and e-mailed to Stantec on July 1, 2019.

Subsurface mapping surveys are geophysical surveys utilizing geophysical methods and data to detect and locate natural and manmade subsurface features. Magnetic Surveys are used to detect and map the locations of buried **ferrous** (iron-bearing) objects . Ground Penetrating Radar (GPR) Surveys are used to map both natural and manmade subsurface features such as USTs, utilities, backfilled pits, etc. (see Appendix A.). Pipe and cable locators are used to map the locations of buried utilities and piping.

Once subsurface ferrous objects are detected from a magnetic survey then hand held scanners and GPR surveys are used to map the locations, depths, sizes and shapes of the objects.

SURVEY OBJECTIVES

The objectives of this subsurface mapping survey were:

- 1. Search for USTS.
- 2. Search for a buried hydraulic lift.
- 3. Conduct a Subsurface Clearance Survey over proposed boring locations.

SURVEY SITE

The survey Site consisted of an asphalt and gravel covered parking lot and surrounding landscaped areas (see Figures). Surface feature include two apparent UST fill ports and a former pump island.

SURVEY EQUIPMENT

The following geophysical instruments were used to conduct the survey:

- Mala RAMAC Ground Penetrating Radar System with a 450 MHz antenna (GPR Survey).
- Schonstedt GA52 Magnetic Gradiometer.
- Aqua-Tronics A6 Pipe & Cable locator.
- Heath Sure Lock pipe & Cable locator.

This equipment and the procedures used to meet the survey objectives of this project have been proven effective in detecting metallic objects and mapping non-metallic features such as disturbed soil from backfilled pits.

Geophysical techniques are excellent at detecting changes in the subsurface caused by natural and manmade objects; however, they are poor at actually identifying subsurface features. Complementary methods may be used to assist in the interpretation; however, the only sure way of identifying a buried feature is by excavation.

Brief descriptions of the magnetic method and the radar method are included in the Appendices.

PROCEDURE

Ground Penetrating Radar Surveys

Over areas that contained suspect USTs GPR Profiles were acquired using a 450 MHz antenna. The data were processed and interpreted to locate USTS as discussed below. An area on the interior of the building was surveyed for a buried hydraulic lift.

Pipe and Cable Survey

Hand held magnetic and electromagnetic scanners were used to help identify USTs and map piping.

Subsurface Clearance Survey

Proposed boring locations were surveyed with GPR and pipe and cable locating instruments. When subsurface obstructions were encountered the borings were relocated to a nearby cleared area.

RESULTS

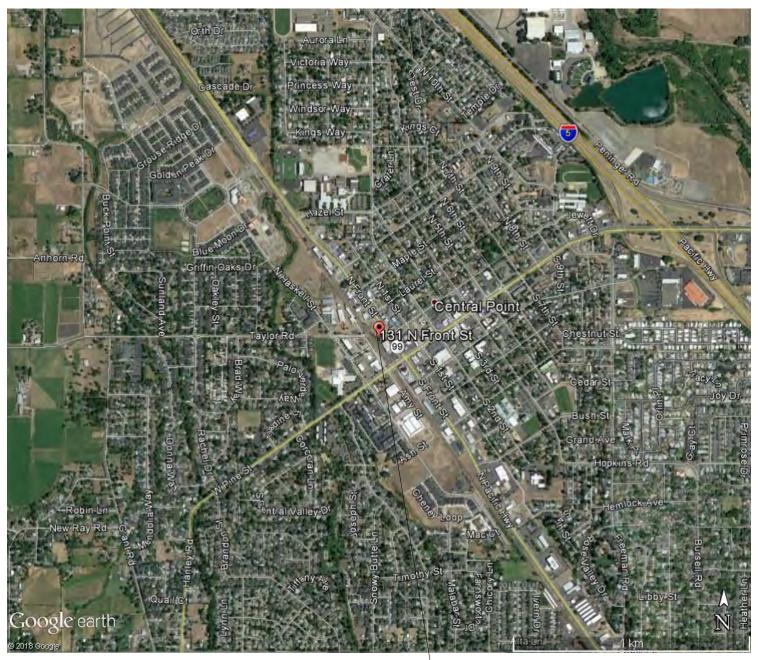
Results were marked on the Site with marking paint and are shown on Figures 2.

Two 4X8 feet (675 gallon USTS) were mapped. Piping running from the USTS were also mapped and may be product, vent or electrical cables.

The location of a former hydraulic lift inside of the building was mapped.

Proposed bore hole locations were cleared for boring.

LIMITATIONS

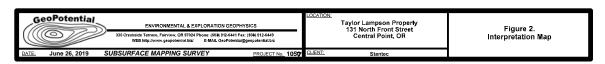

Limitations of magnetometer and GPR surveys can be seen in the Appendices.

Geophysical surveys consist of interpreting geophysical responses from subsurface features. Since a variety of subsurface features can produce identical geophysical responses, it is necessary to confirm the geophysical interpretation with intrusive investigations such as excavating or drilling. In addition, many subsurface features may produce no geophysical response.

Ralph Soule GeoPotential

Rolph Soule

July 1, 2019



GeoPotential	ENVIRONMENTAL & EXPLORATION GEOPHYSICS 330 Credition Terrice, Parview, OR 97064 Phone: (SW) 912-4441 Par. (SM) 912-4449 WEB http://www.geopotential.biz/	Taylor Lampson Property 131 North Front Street Central Point, OR	Figure 1. Location Map
DATE: June 26, 2019	SUBSURFACE MAPPING SURVEY PROJECT No. 1050	CLIENT: Stantec	

ENVIRONMENTAL & EXPLORATION GEOPHYSICS

330 Creekside Terrace, Fairview, OR 97024 Phone: (\$03) 912-6441 Fax: (603) 912-6448
WEB http://www.geopotential.biz/ E-MAIL GeoPotential@geopotential.biz

APPENDIX A GROUND PENETRATING RADAR SURVEYS

Ground Penetrating Radar (GPR) can be a valuable tool to accurately locate both metallic and non-metallic UST's and utilities, buried drums and hazardous material at some sites. It may detect objects below reinforced concrete floors and slabs. GPR may delineate trenches and excavations and, under some conditions, it may be used to locate contaminant plumes. It has been used as an archaeological tool to look for buried artifacts. It may accurately profile fresh water lake bottoms either from a boat or from a frozen lake surface. GPR may be used to locate voids below roads and runways. GPR has numerous engineering applications. It can be used in non-destructive testing of engineering material, for example, locating rebar in concrete structures and determining the thickness of concrete and other structural material.

GPR uses short impulses of high frequency radio waves directed into the ground to acquire information about the subsurface. The energy radiated into the ground is reflected back to the antenna by features having different electrical properties to that of the surrounding material. The greater the contrast, the stronger the reflection. Typical reflectors include water table, bedrock, bedding, fractures, voids, contaminant plumes and man-made objects such as UST's and metal and plastic utilities. Materials having little electrical contrast like clay and concrete pipes may not produce strong reflections and may not be seen. Data are digitally recorded or downloaded to a laptop computer for filtering and processing.

The frequency of the radar signal used for a survey is a trade off. Low frequencies ($250 \, \text{MHz} - 50 \, \text{MHz}$) give better penetration but low resolution so that pipes and utilities may not be seen. Pipes and utilities may be seen using higher frequencies ($500 \, \text{MHz}$) but the depth of penetration may be limited to only a few feet especially in the wet, clayey soils found in many areas of the NW USA. The GPR frequency is dependent upon the antenna. Once an antenna is selected, nothing the operator can do can increase the depth of penetration.

Radar data is ambiguous. Many buried objects produce echoes that may be similar to the echo expected from the target object. Boulders and debris produce reflections that are similar to pipes and tanks. Subtle changes in the electrical properties along a traverse caused by changes in soil type, mineralogy, grain size, and moisture content all produce "noise" that can make interpretation difficult. Interpreting radargrams is an art as much as a science.

Under some conditions, although a UST itself may not be clearly visible in a GPR record, the excavation or trench in which the UST is buried is evident. Usually GPR data is used to compliment data from other "tools". For example, a trench-like reflection but no clear UST reflection, combined with a "tank" shaped magnetic anomaly suggests the presence of a UST. Although the UST itself could not be seen using GPR, the radar showed a trench-like reflection. The magnetic data showed a large ferrous object. We would report a possible UST at that location.

GPR is often used in conjunction with magnetometer surveys. Magnetometer Surveys are very fast and large areas can be covered cost effectively. Magnetic anomalies are marked in the field, and then may be further investigated using radar.

GPR, like other geophysical tools, is excellent at detecting changes across a site, but it is poor at actually identifying the cause of the change. The only definite way to identify buried objects is through excavation.

ADVANTAGES - General

- When GPR data is properly interpreted subsurface objects can usually be confidently identified. This often requires the GPR data be combined with other geophysical data, surface features and historical information.
- GPR provides continuous records along traverses which, depending on the goal of the survey, may be interpreted in the field.
- At flat, open sites, for reconnaissance purposes, the antenna can be towed behind a vehicle at several mph.
- Many GPR antennas are shielded and are unaffected by surface and overhead objects and power lines
- GPR can be used in conjunction with magnetic or EM surveys to accurately locate buried objects.

<u>ADVANTAGES – Site specific</u>

- With a low frequency antenna, in clean, dry, sandy soil, reflections from targets as deep as 100 feet are possible. Geologic features such as bedrock and cross bedding may be seen at some sites.
- The resolution of data is very high particularly for high frequency antennas.
- Shallow, man-made objects generally can be detected.
- Fiberglass UST's and plastic pipes can be detected using GPR.

LIMITATIONS - General

- To acquire the highest quality data, proper coupling between the antenna and the ground surface is necessary. Poor data may be obtained at sites covered with debris, an uneven surface, tall grass and brush. Objects located at curbs are difficult to see.
- Acquiring GPR data is slow. The antenna must be over the target. The signal from the antenna is
 cone-shaped. Reflections from objects to the side of the antenna may be seen, but their actual
 location relative to the antenna is not obvious.
- Penetration of the GPR signal is "site specific" and its depth of penetration at a particular site
 cannot be predicted ahead of time. Near surface conductive material, such as salty or
 contaminated ground water and wet, clay-rich soil, may attenuate the radar signal, limiting the

effective depth of the survey to several feet. Reinforced concrete also can attenuate the signal. Rebar may produce reflections that look like pipes.

 GPR may not be cost-effective for some projects. For a detailed survey mapping underground storage tanks and utilities, it may be necessary to collect data in orthogonal directions at 5-foot line spacing.

LIMITATIONS – Interpretation

- Interpretation can be difficult. Radar data are ambiguous. Subsurface objects can be detected but, in general, they cannot be identified. USTs and utilities have a characteristic reflection, however, large rocks and boulders have a similar reflection.
- The reflection visible in a GPR record is very complex and may be caused by small changes in the electrical properties of the soil. The target in mind may not produce the reflection. Due to "noise", the target may be missed. USTs and deep utilities may be missed if they are under debris and/or other pipes.
- Other methods may be necessary to aid in the interpretation of the data (use a magnetometer to detect a large metallic mass, then GPR to determine if the object is tank-like, or a utility locator to determine if there are feed lines and fill pipes leading to the object).
- Adequate contrast between the ground and the target is required to obtain reflections. UST's may
 be missed if they are badly corroded. Utilities made of "earth" materials like clay and concrete
 may not be detected since their electrical properties are similar to the surrounding soil.
- To determine the depth to an object without "ground truth", assumptions must be made regarding soil properties. Even with ground truth at several locations on the same site, changes in material across a site (therefore changes in signal velocity) can cause errors in depth measurements at other locations.

APPENDIX B

UST Decommissioning Checklist and Site Assessment Report

OREGON DEPARTMENT OF ENVIRONMENTAL QUALITY UNDERGROUND STORAGE TANK PROGRAM

UNDERGROUND STORAGE TANK DECOMMISSIONING CHECKLIST AND SITE ASSESSMENT REPORT

A. FACILITY INFORMATION:

This report <u>MUST</u> be submitted by the underground storage tank permittee or tank owner, or the licensed DEQ Service Provider on their behalf, within 30 days following completion of the tank decommissioning or change-in-service regardless of ongoing cleanup work.

DEQ FACILITY NUMBER:
FACILITY NAME: Lampson Property
FACILITY ADDRESS: 131 N. Front Street, Central Point, OR 97502
PERMITTEE PHONE: Eldon Lampson 503-250-4971 DATE: 9/17/19

B. WORK PERFORMED BY:

The checklist and site assessment report should be completed and signed by the DEQ licensed supervisor and signed by an executive officer of the DEQ licensed Service Provider on page 6. The tank owner or permittee must review and sign the report on page 6. NOTE: AN OWNER OR PERMITTEE MAY PERFORM UST SERVICES ONLY IF THEY HAVE TAKEN AND PASSED THE APPROPRIATE UST SUPERVISOR EXAMINATION OFFERED BY A NATIONAL TESTING SERVICE (SEE OAR 340-150-0156 for requirements).

DEQ Service Provider's License #: 22	Construction Contractors Board License	e#: <u>90350</u>
Name:	Stratus Corp - Scott Flaher	rty
Telephone:	503.807-8611 or 503.985.	-7912
DEQ Decommissioning Supervisor's License #:	26624	
Name:	Brent Bergeron	
Telephone:	503.913-7840	
DEQ Soil Matrix Service Provider's License #:	NA(II	applicable)
Name:		
Telephone:		
DEQ Soil Matrix Supervisor's License #:	(I	f applicable)
Name:		
Telephone:	*	

C. DATES:

Decommissioning/Change-in-Service Notice - Date Submitted: \(\frac{9}{21/9}\) (30 days before work starts).
Work Start Telephone Notice - Number issued by DEQ: 913/19 (3 working days before work starts).
DEQ Person Notified: 5 teve Piko / Andrea García
Date Work Started: 9/17/19 Date Work Completed: 9/20/19
Note: Provide the following information if any soil or water contamination is found during the decommissioning or change-inservice. Contamination must be reported by the UST permittee within 24 hours. The licensed service provider must report contamination within 72 hours after discovery unless previously reported.
Date Contamination Reported: 9/20/19 By: Brent Bergeron
DEQ Person Notified: Andrea Garcia & Jennifer Clausen (9/23/19)

D. OTHER DEQ PERMITS MAY BE NEEDED WHERE SOIL OR WATER CLEANUP IS REQUIRED.

DEQ Water Discharge Permit #:	NA	_ Date:	NA	
Water Disposed to (Location):		NA		
DEQ Solid Waste Disposal Permit #:	NA	Date: _	NA	
Soil Disposal or Treatment Location:			NA	

E. TANK INFORMATION:

			PRODUCT: G DIESEL, US OTHE	ED OIL,	CLOSURE (TANK TO BE REPLACED?			
TANK DEQ-UST ID# PERMIT#	TANK SIZE IN GALLONS	PRESENT	NEW	TANK REMOVAL	CLOSURE IN PLACE♦	CHANGE IN SERVICE+	YES	NO	
1		t, 8001,100	gas/water						1
2		675	011/water		1				V

NOTE 1: Where decommissioned tank(s) are replaced by new underground storage tanks the UST permittee must submit a *General Permit Registration Form to Install and Operate USTs* containing information on the new tanks 30 days before installing them.

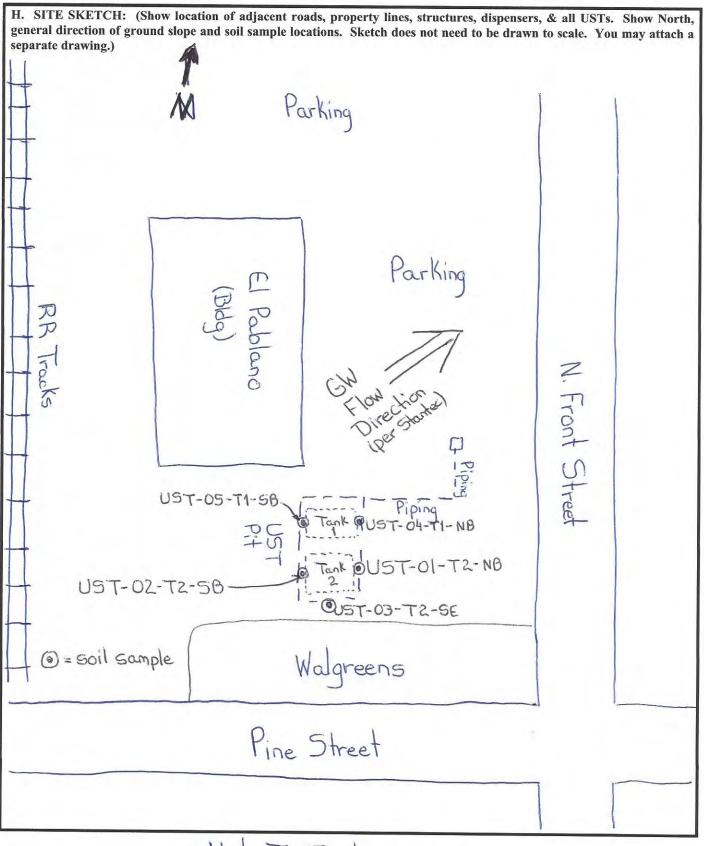
NOTE 2: Submit a soil sampling plan to the DEQ regional office and receive plan approval prior to starting work if 1) tank is to be decommissioned in-place, 2) tank contents are changed to a non-regulated substance, 3) tank contains a regulated substance other than petroleum, or 4) tank changed to non-regulated use.

F. DISPOSAL INFORMATION:

	Т	ANK AN	D PIPING	DISPOSAL METHOD	DISPOSAL LOCATION OF TANK CONTENTS				
TANK ID#	SCRAP	LAND- FILL	OTHER	IDENTIFY LOCATION & PROPERTY OWNER	LIQUIDS	SLUDGES			
2				Hillsborg, OR (PENDING)	ORRCO Klamath Falls, OR	ORRCO Klamoth Falls, O			

NOTE 1: The tank contents, the tank and the piping may be subject to the requirements of Hazardous Waste regulations. If you have questions, contact the DEQ regional office for your area.

NOTE 2: Attach copies of the disposal receipts for the tanks and piping. If the tanks are shipped off-site for reuse provide the name, address and phone number of the person or business receiving the tanks for reuse.


NOTE 3: Attach copies of the disposal receipts for the disposal or treatment of liquid or sludge removed from the tanks

G. CONTAMINATION INFORMATION:

TANK ID#	GROUND WATER IN PIT ?	PRODUCT ODOR IN SOIL ?	PRODUCT STAINS IN SOIL ?	NUMBER OF SAMPLES	LABORATORY (NAME, CITY, STATE, PHONE)
1		V	J	2	Apex Labs
					ligard, UK
2		1		3	
					*

NOTE 1: Attach a copy of the laboratory report showing the results of all tests on all soil and water samples. The laboratory report must identify sample collection methods, sample location, sample depth, sample type (soil or water), type of sample container, sample temperature during transportation, types of tests, and copies of analytical laboratory reports, including QA/QC information. Include laboratory name, address and copies of chain-of-custody forms.

NOTE 2: If contamination is detected and a Level 2 or Level 3 soil matrix cleanup standard is applied to the site, attach a copy of the soil matrix analysis including methods of determining soil type, depth to groundwater, and sensitivity of uppermost aquifer.

The same of the Array of the same and the

Project Manager: LE/	ing Hetchis	Project Number: 185756581 Date: 9-17-19 - 9-20-19 Weather: CVERCAST
Health and Safety: Site: Topic North Arrow North Arrow North Arrow	#\$S concerns documented (3) H&S concerns documented (3) Sample UST-0S-T3-85 G 1105 Sample UST-0S-T2-86 G 1105 Fig. 13-85 PTO-1006 PTO-1006 Tank 1 Tank 1 Tank 2 Tank 1 Sample UST-0 -T2-NB Sample UST-04-T1-N G 1100 6" Below Tank env G 1245 PTO-1133 PTO-1134 PTO-1134	Removal quo-las gal Griding Removal quo-las gal Of gasslin unter mix from Tanh I. Tanh was Fall prior Removal 450-5005al Of orl tunter mix from Tanh 2 feel Line under Presure with sassline, naust Litaly anot an oil Tanh, Bottom or the rend of the tenh Wo Hole's seen in Tanh To proposed Removal qwo-lass gal Grand I tanh was Fall prior Tanh I tanh was Fall prior Tanh I tanh is also /8"s I tunh is I x 3 Tanh I is also /8"s I xy Tanh 2 feel Line under Presure with sassline, naust Litaly anot an oil Tanh, Bottom or the rend of the tenh Serie frain Tanh I seen in Tanh Ta
For verification s 1. Divide side w 2. A soil sample 3. Collect "worst 4. Make sure at 5. If collecting se	THE EXCAVATION UNLESS SIDEWALL RATIO IS 1:1 OR GREATER 7. The a sampling, use the following protocol: all into a 5 square metre grid pattern, and the floor into a 10 square metre grid should be collected for TOV measurement from each grid squarecase" samples from areas where staining or odours are noted. least one soil sample is collected from each lithological unitcase work is samples from a sidewall, stagger the depths from which the samples are collectedcase NOT meant for excavations greater than 4 metres deep or with floor areas greater than 1000m ² .	product the signatures: Product the signatures Signatures Signatures

-Tan HZ	Tank 1	- 17
TOT = 3 4"	TOT = 2 10"	Tanh3
BOT = 6 4"	BOT = 6 10"	BOT=
2 2/	PL = 1 8"	PL= 2

- Tank 3 was not removed during Inicial sampling on 9-17-19- 9-20-19, and removed and sampled the wark of oct ISTA.
- on oct 15th we will also excavate the area around 6P-01 determine what the metal obtect is that was encouncilled alternate GP-01 Location that was properly hit in the

I. SAFETY EQUIPMENT ON JOB SITE: Fire Extinguisher: Type/Size: Recharge Date: 4 gas meter PD Calibration Date: 9/17/19 Combustible Gas Detector: Model: Oxygen Analyzer: Model: Calibration Date: J. DECOMMISSIONING: All Tanks: N/A = Not Applicable (Check ($\sqrt{\ }$) Appropriate Box) UNKNOWN YES NO N/A 1. All electrical equipment grounded and explosion proof? 2. Safety equipment on job site? 3. Overhead electrical lines located? 4. Subsurface electrical lines off or disconnected? 5. Natural gas lines off or disconnected? 6. No open fires or smoking material in area? 7. Vehicle and pedestrian traffic controlled? 8. Excavation material area cleared? 9. Rainwater runoff directed to treatment area? 10. Drained and collected product from lines? 11. Removed product and residual from tank? 12. Cleaned tank? 13. Excavated to top of tank? 14. Removed tank fixtures? (pumps, leak detection equipment) 15. Removed product, fill and vent lines? K. TANK ABANDONMENT IN-PLACE: All Tanks: N/A = Not Applicable (Check ($\sqrt{}$) Appropriate Box) YES NO UNKNOWN N/A 16. Sampling plan approved by DEQ? NA DEQ Staff: Date:

18. Fill Material?

17. Contamination concerns fully resolved?

Type:

NA

All Tanks: N/A = Not Applicable (Check (√) Appropriate Box)	YES/	NO	UNKNOWN	N/A
19. Tank placement area cleared, chocks placed?				
20. Purged or ventilated tank to prevent explosion?	1			
Method used: Dry Ice				
Meter reading:	اركا	Ш		
21. Were chains or steel cables wrapped around tank for removal?				
22. Tank removed, set on ground, blocked to prevent movement?				
23. Tank set on truck and secured with straps(s)?				
24. Tank labeled before leaving site?				
SITE ASSESSMENT:				
All Tanks: N/A = Not Applicable (Check (√) Appropriate Box)	YES	NO	UNKNOWN	N/A
25. Site assessed for contamination? See OAR 340-122-0340	11			
26. Soil samples taken and analyzed?				-
27. Was contamination found? Date/Time:	L			
28. Was hazardous waste determination made for tank contents (Liquids/sludges)?		V		
ave personally reviewed this decommissioning checklist and site a em to be true and complete. rmittee or Tank Owner: (Please Print)				
rmittee or Tank Owner: (Signature)	_	1	Not 12/2	6/19
ave personally reviewed this decommissioning checklist and site a em to be true and complete.		eport and th	ne attachments	and find
censed Supervisor: Drent N. Dergeron (Please Print))		,	1
censed Supervisor: Dlend Barallo (Signature)	1	Date: _	10/17	/19
ave personally reviewed this decommissioning checklist and site as an to be true and complete.	ssessment r	eport and th	ne attachments	and find
ecutive Officer: (Please Print)				
censed Service Provider (Please Print)				
(X sende 2 / Web)				
ecutive Officer: Scott Flaherty censed Service Provider (Signature)		Date:	09Jan20	

APPENDIX C

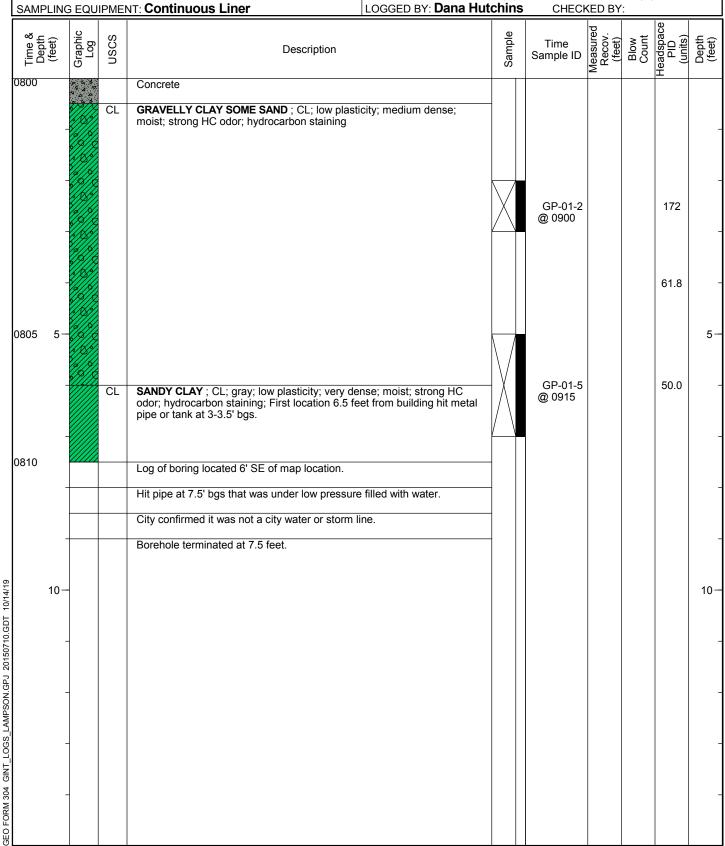
Boring Logs

PROJECT: Lampson Property BORING NO: Stantec LOCATION: 131 North Front Street, Central Point, OR **FS-01** PAGE 1 OF 1 PROJECT NUMBER: 185750581 NORTHING (ft): EASTING (ft): INSTALLATION: LAT: LONG: STARTED **9/19/19** COMPLETED: 9/19/19 GROUND ELEV (ft): TOC ELEV (ft): DRILLING COMPANY: Stratus INITIAL DTW (ft): Not Encountered TEMP. WELL DEPTH (ft): ---**EQUIPMENT:** Geoprobe STATIC DTW (ft): Not Encountered DEPTH (ft): 10.0 METHOD: Direct Push TEMP. WELL CASING DIA. (in): --- BOREHOLE DIA. (in): 2

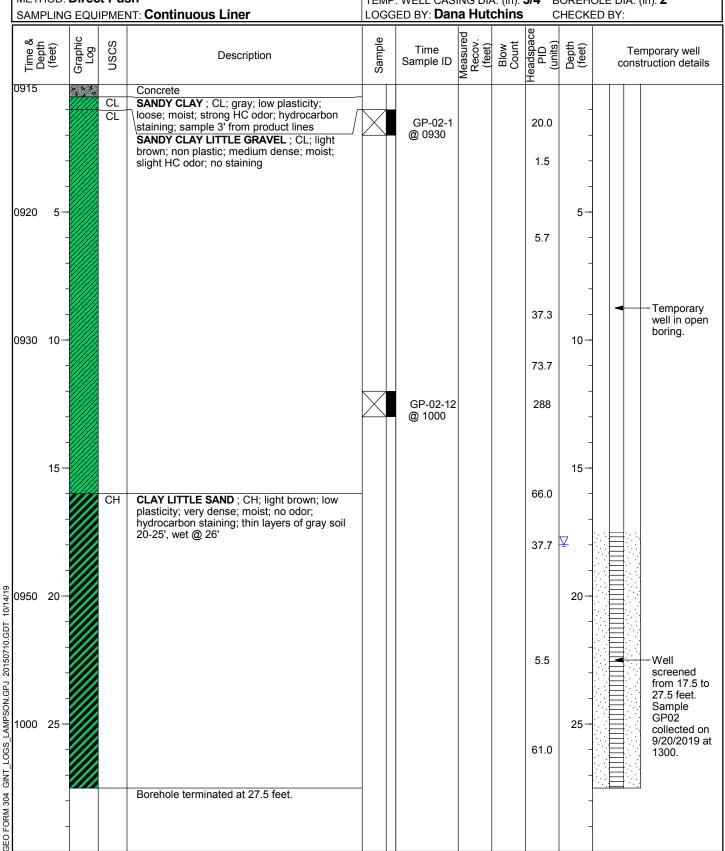
SAMPLING				EMP. WELL CASING DIA OGGED BY: Dana Hutc			(ED D)/			
Time & Depth (feet)	Graphic Log	nscs	Description		Sample	Time Sample ID	Measured Recov. (feet)	Blow Count	Headspace PID (units)	Depth (feet)
1510		OL CL	SILT SOME ORGANICS; OL; topsoil GRAVELLY CLAY LITTLE SAND; CL; light brown dry; no odor; no staining	; non plastic; loose;			100%		0.2	-
1515 5-									0.3	5 —
		CL	SANDY CLAY; CL; green; non plastic; medium de odor; hydrocarbon staining	ense; dry; slight HC		FS.01.8	100%		0.1	-
. 10-			Rorehole terminated at 10 feet			FS-01-8 @ 1530	100 /0		000	- 10 <i>-</i> -
10 -			Borehole terminated at 10 feet.							-
	_									-

PROJECT: Lampson Property BORING NO: Stantec LOCATION: 131 North Front Street, Central Point, OR **FS-02** PAGE 1 OF 1 PROJECT NUMBER: **185750581** NORTHING (ft): EASTING (ft): INSTALLATION: LAT: LONG: STARTED **9/19/19** COMPLETED: 9/19/19 TOC ELEV (ft): GROUND ELEV (ft): DRILLING COMPANY: Stratus INITIAL DTW (ft): Not Encountered TEMP. WELL DEPTH (ft): ---**EQUIPMENT:** Geoprobe STATIC DTW (ft): Not Encountered DEPTH (ft): 10.0 METHOD: Direct Push TEMP. WELL CASING DIA. (in): --- BOREHOLE DIA. (in): 2

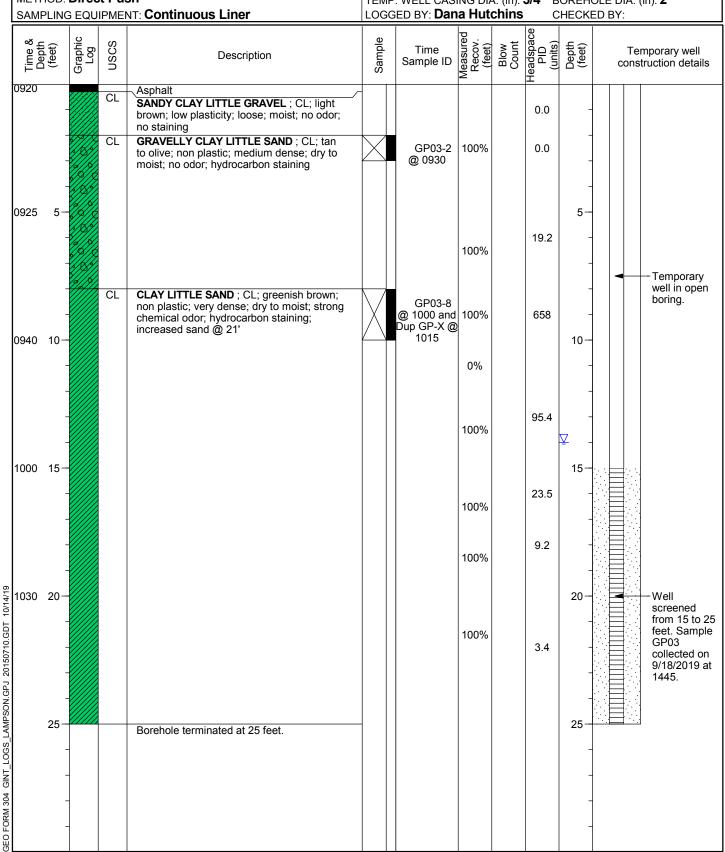
~X	ပ	,,			ω		eq		ace	_
Time & Depth (feet)	Graphic Log	nscs	Description		Sample	Time Sample ID	Measure Recov (feet)	Blow	Headspace PID (units)	Depth
535	71 1/2	OL	SILT SOME ORGANICS ; OL; topsoil							
-		CL	GRAVELLY CLAY LITTLE SAND ; CL; light brown; non plastic; loose dry; no odor; no staining	9;					0.0	
-							100%		0.1	
									0.1	
540 5-										
- 545							90%		0.0	
-		CL	SANDY CLAY ; CL; green; low plasticity; medium dense; dry; slight HC odor; hydrocarbon staining			FS-02-8 @ 1600	90%		233	
550 10-										1
-	-		Borehole terminated at 10 feet.							
-	-									
-	_									
-										

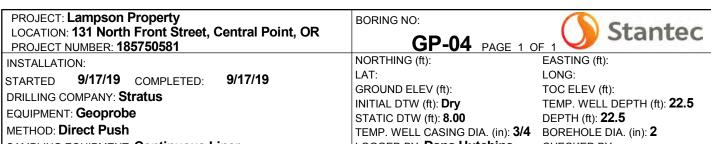

PROJECT: Lampson Property BORING NO: Stantec LOCATION: 131 North Front Street, Central Point, OR **FS-03** PAGE 1 OF 1 PROJECT NUMBER: **185750581** NORTHING (ft): EASTING (ft): INSTALLATION: LAT: LONG: STARTED **9/19/19** COMPLETED: 9/19/19 TOC ELEV (ft): GROUND ELEV (ft): DRILLING COMPANY: Stratus INITIAL DTW (ft): Not Encountered TEMP. WELL DEPTH (ft): ---**EQUIPMENT:** Geoprobe STATIC DTW (ft): Not Encountered DEPTH (ft): 10.0 METHOD: Direct Push TEMP. WELL CASING DIA. (in): --- BOREHOLE DIA. (in): 2

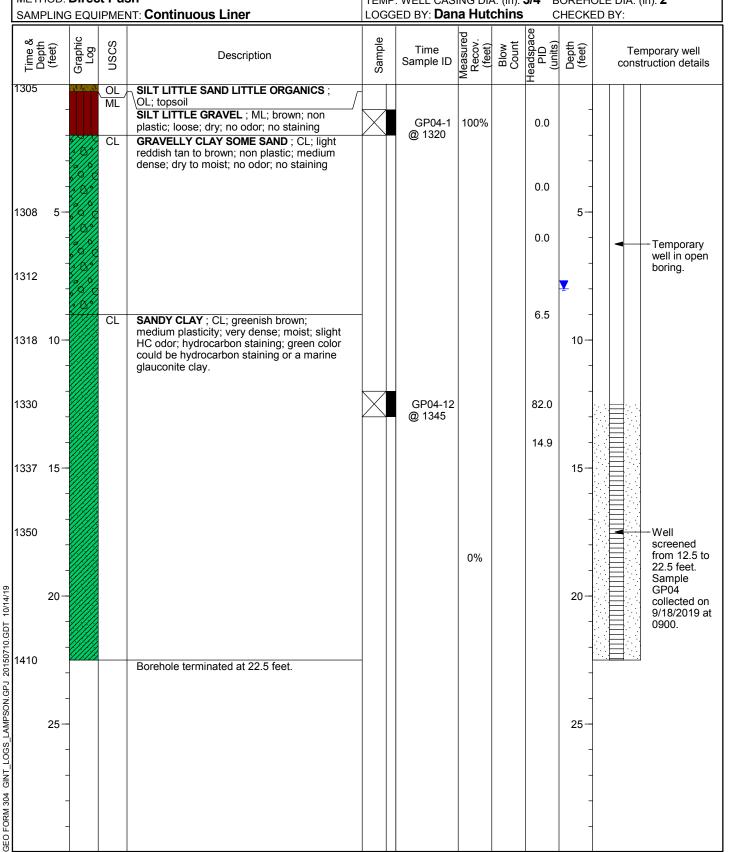
	MPLING EQUIPMENT: Continuous Liner LOGO			LOGGED BY: Dana Hutc	Dana Hutchins CHECKED BY:						
Time & Depth (feet)	Graphic Log	nscs	Description		Sample	Time Sample ID	Measured Recov. (feet)	Blow Count	Headspace PID (units)	Depth (feet)	
1635		OL CL	SILT SOME ORGANICS; OL; topsoil SANDY CLAY LITTLE GRAVEL; CL; light brown medium dense; dry; no odor; no staining	to tan; non plastic;			90%		0.0	-	
1638 5-		CL	SANDY CLAY: CL: green: low plasticity: mediun	n dense: moist: slight			100%		0.1	5	
1645 10-			SANDY CLAY; CL; green; low plasticity; medium HC odor; hydrocarbon staining Borehole terminated at 10 feet.			FS-03-9 @ 1700	100%		366	10-	
1645 10-										- - -	

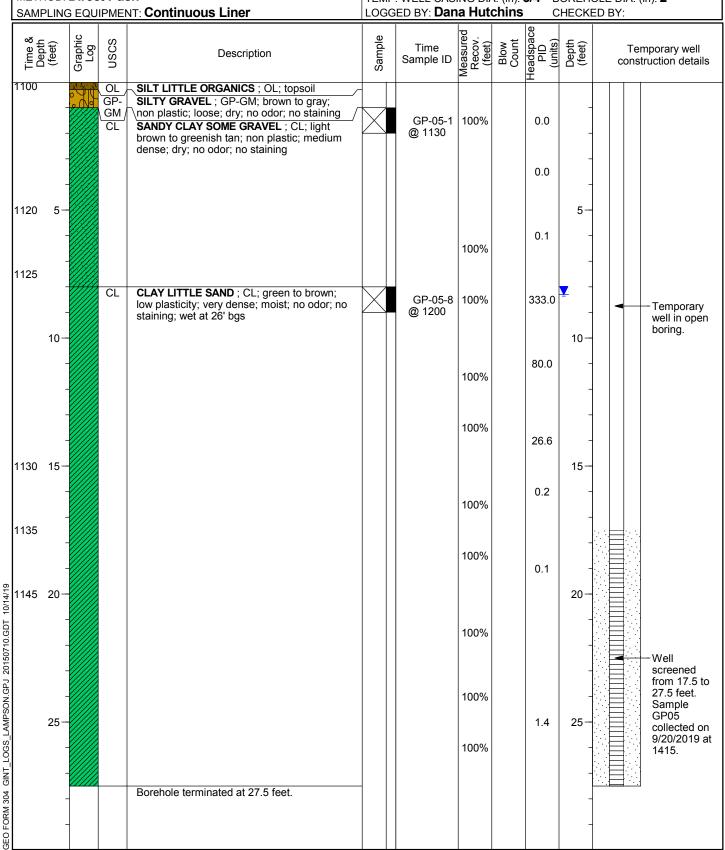

PROJECT: Lampson Property BORING NO: Stantec LOCATION: 131 North Front Street, Central Point, OR **FS-04** PAGE 1 OF 1 PROJECT NUMBER: 185750581 NORTHING (ft): EASTING (ft): INSTALLATION: LAT: LONG: STARTED **9/19/19** COMPLETED: 9/19/19 GROUND ELEV (ft): TOC ELEV (ft): DRILLING COMPANY: Stratus INITIAL DTW (ft): Not Encountered TEMP. WELL DEPTH (ft): ---**EQUIPMENT:** Geoprobe STATIC DTW (ft): Not Encountered DEPTH (ft): 10.0 METHOD: Direct Push TEMP. WELL CASING DIA. (in): --- BOREHOLE DIA. (in): 2

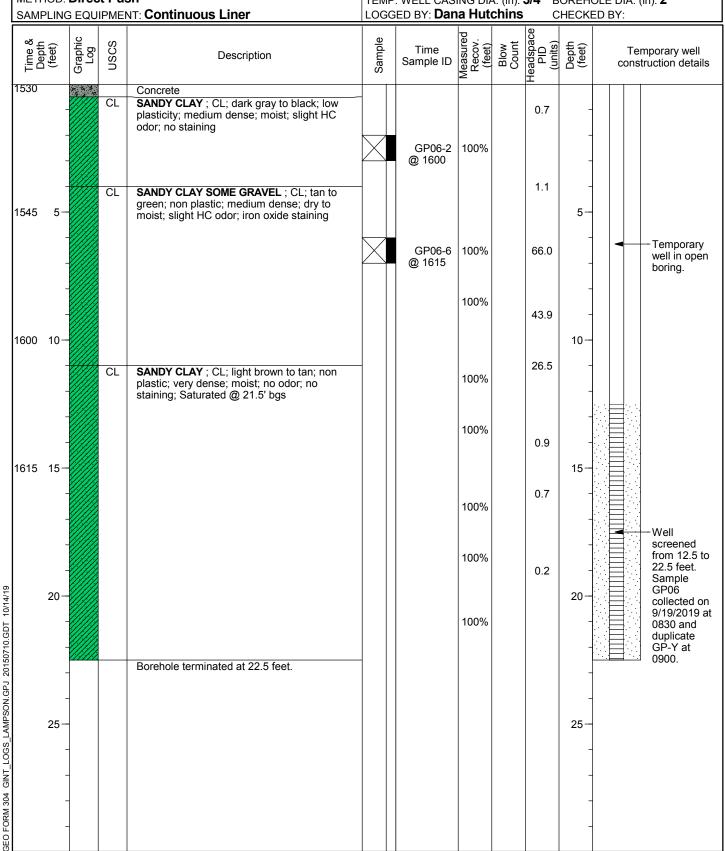
	ING EQL			TEMP. WELL CASING DIA LOGGED BY: Dana Hutc	hins:	CHECK	KED BY	·. ` ´		
Time & Depth	(reet) Graphic Log	nscs	Description		Sample	Time Sample ID	Measured Recov. (feet)	Blow Count	Headspace PID (units)	Depth (feet)
1610		OL CL	SILT SOME ORGANICS; OL; topsoil SANDY CLAY LITTLE GRAVEL; CL; light brown loose to medium dense; dry; no odor; no stainin	n to tan; non plastic;			90%		0.0	-
1615	5-						100%		0.0	5-
1620 1	10	CL	SANDY CLAY; CL; green; non plastic; medium HC odor; hydrocarbon staining Borehole terminated at 10 feet.	dense; moist; strong		FS-04-9 @ 1630	100%		553	10-
1620 1	-									-


PROJECT: Lampson Property BORING NO: Stantec LOCATION: 131 North Front Street, Central Point, OR **GP-01** PAGE 1 OF 1 PROJECT NUMBER: 185750581 NORTHING (ft): EASTING (ft): INSTALLATION: LAT: LONG: **9/20/19** COMPLETED: 9/20/19 STARTED GROUND ELEV (ft): TOC ELEV (ft): **DRILLING COMPANY: Stratus** INITIAL DTW (ft): Not Encountered TEMP. WELL DEPTH (ft): ---**EQUIPMENT:** Geoprobe STATIC DTW (ft): Not Encountered DEPTH (ft): 7.5 METHOD: Direct Push TEMP. WELL CASING DIA. (in): ---BOREHOLE DIA. (in): 2




PROJECT: Lampson Property BORING NO: Stantec LOCATION: 131 North Front Street, Central Point, OR **GP-02** PAGE 1 OF 1 PROJECT NUMBER: 185750581 NORTHING (ft): EASTING (ft): INSTALLATION: LAT: LONG: **9/20/19** COMPLETED: 9/20/19 STARTED GROUND ELEV (ft): TOC ELEV (ft): DRILLING COMPANY: Stratus INITIAL DTW (ft): 18.0 TEMP. WELL DEPTH (ft): 27.5 **EQUIPMENT:** Geoprobe STATIC DTW (ft): Not Encountered DEPTH (ft): 27.5 METHOD: Direct Push TEMP. WELL CASING DIA. (in): 3/4 BOREHOLE DIA. (in): 2


PROJECT: Lampson Property BORING NO: Stantec LOCATION: 131 North Front Street, Central Point, OR **GP-03** PAGE 1 OF 1 PROJECT NUMBER: 185750581 NORTHING (ft): EASTING (ft): INSTALLATION: LAT: LONG: **9/18/19** COMPLETED: 9/18/19 STARTED GROUND ELEV (ft): TOC ELEV (ft): DRILLING COMPANY: Stratus INITIAL DTW (ft): 14.0 TEMP. WELL DEPTH (ft): 25.0 **EQUIPMENT:** Geoprobe STATIC DTW (ft): Not Encountered DEPTH (ft): 25.0 METHOD: Direct Push TEMP. WELL CASING DIA. (in): 3/4 BOREHOLE DIA. (in): 2



PROJECT: Lampson Property BORING NO: Stantec LOCATION: 131 North Front Street, Central Point, OR **GP-05** PAGE 1 OF 1 PROJECT NUMBER: 185750581 NORTHING (ft): EASTING (ft): INSTALLATION: LAT: LONG: **9/20/19** COMPLETED: 9/20/19 STARTED GROUND ELEV (ft): TOC ELEV (ft): DRILLING COMPANY: Stratus INITIAL DTW (ft): Not Encountered TEMP. WELL DEPTH (ft): 27.5 **EQUIPMENT:** Geoprobe STATIC DTW (ft): 8.30 DEPTH (ft): 27.5 METHOD: Direct Push TEMP. WELL CASING DIA. (in): 3/4 BOREHOLE DIA. (in): 2

PROJECT: Lampson Property BORING NO: Stantec LOCATION: 131 North Front Street, Central Point, OR **GP-06** PAGE 1 OF 1 PROJECT NUMBER: 185750581 NORTHING (ft): EASTING (ft): INSTALLATION: LAT: LONG: **9/18/19** COMPLETED: 9/18/19 STARTED GROUND ELEV (ft): TOC ELEV (ft): DRILLING COMPANY: Stratus INITIAL DTW (ft): Not Encountered TEMP. WELL DEPTH (ft): 22.5 **EQUIPMENT:** Geoprobe STATIC DTW (ft): 6.20, Rain?? DEPTH (ft): 22.5 METHOD: Direct Push TEMP. WELL CASING DIA. (in): 3/4 BOREHOLE DIA. (in): 2

APPENDIX D Laboratory Reports and Chain-of-Custody Documentation

Friday, October 4, 2019 Len Farr Stantec Portland 9400 SW Barnes Rd Ste 200 Portland, OR 97225

RE: A9I0633 - Lampson - 185750581

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9I0633, which was received by the laboratory on 9/20/2019 at 10:29:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: Idomenighini@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 0.9 degC Cooler #2 5.3 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmenyhini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0633 - 10 04 19 1456

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORM	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GP-04	A9I0633-01	Water	09/18/19 09:00	09/20/19 10:29
GP-03	A9I0633-02	Water	09/18/19 14:45	09/20/19 10:29
GP-06	A9I0633-03	Water	09/19/19 08:30	09/20/19 10:29
GP-Y	A9I0633-04	Water	09/19/19 09:00	09/20/19 10:29
TB-091919	A9I0633-05	Water	09/18/19 00:00	09/20/19 10:29

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

ANALYTICAL SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
GP-04 (A9I0633-01)				Matrix: Wate	er	Batch:	9091175					
Diesel	ND		0.282	mg/L	1	09/24/19 03:27	NWTPH-Dx					
Oil	ND		0.563	mg/L	1	09/24/19 03:27	NWTPH-Dx					
Surrogate: o-Terphenyl (Surr)		Recove	ry: 107 %	Limits: 50-150 %	1	09/24/19 03:27	NWTPH-Dx					
GP-03 (A9I0633-02)			Matrix: Water Batch: 9091175				9091175					
Diesel	0.241		0.213	mg/L	1	09/24/19 03:48	NWTPH-Dx	F-18				
Oil	ND		0.426	mg/L	1	09/24/19 03:48	NWTPH-Dx					
Surrogate: o-Terphenyl (Surr)		Recove	ry: 107 %	Limits: 50-150 %	1	09/24/19 03:48	NWTPH-Dx					
GP-06 (A910633-03)				Matrix: Wate	er	Batch:	9091175					
Diesel	ND		0.211	mg/L	1	09/24/19 04:08	NWTPH-Dx					
Oil	ND		0.421	mg/L	1	09/24/19 04:08	NWTPH-Dx					
Surrogate: o-Terphenyl (Surr)		Recove	ry: 103 %	Limits: 50-150 %	1	09/24/19 04:08	NWTPH-Dx					
GP-Y (A910633-04)			Matrix: Water Batch: 90911'		9091175							
Diesel	ND		0.270	mg/L	1	09/24/19 04:29	NWTPH-Dx					
Oil	ND		0.541	mg/L	1	09/24/19 04:29	NWTPH-Dx					
Surrogate: o-Terphenyl (Surr)		Recove	ry: 102 %	Limits: 50-150 %	5 1	09/24/19 04:29	NWTPH-Dx					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

ANALYTICAL SAMPLE RESULTS

Gasol	line Range Hy	drocarbons	(Benzene tl	hrough Naphtha	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP-04 (A9I0633-01)				Matrix: Water		Batch	: 9091146	
Gasoline Range Organics	0.613		0.100	mg/L	1	09/23/19 13:31	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 88 % 103 %	Limits: 50-150 % 50-150 %		09/23/19 13:31 09/23/19 13:31	NWTPH-Gx (MS) NWTPH-Gx (MS)	
GP-03 (A9I0633-02)				Matrix: Wate	Matrix: Water Batch: 9091146			
Gasoline Range Organics	1.11		0.100	mg/L	1	09/23/19 13:58	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 91 % 103 %	Limits: 50-150 % 50-150 %		09/23/19 13:58 09/23/19 13:58	NWTPH-Gx (MS) NWTPH-Gx (MS)	
GP-06 (A9I0633-03)				Matrix: Wate	er	Batch	: 9091146	
Gasoline Range Organics	0.925		0.100	mg/L	1	09/23/19 14:52	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 92 % 103 %	Limits: 50-150 % 50-150 %		09/23/19 14:52 09/23/19 14:52	NWTPH-Gx (MS) NWTPH-Gx (MS)	
GP-Y (A9I0633-04)				Matrix: Water		Batch: 9091146		
Gasoline Range Organics	1.04		0.100	mg/L	1	09/23/19 14:25	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 91 % 104 %	Limits: 50-150 % 50-150 %		09/23/19 14:25 09/23/19 14:25	NWTPH-Gx (MS) NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0633 - 10 04 19 1456

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 8	260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-04 (A9I0633-01)				Matrix: Water		Batch: 9091146		
Acetone	25.1		20.0	ug/L	1	09/23/19 13:31	EPA 8260C	
Acrylonitrile	ND		13.0	ug/L	1	09/23/19 13:31	EPA 8260C	R-02
Benzene	1.43		0.200	ug/L	1	09/23/19 13:31	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	09/23/19 13:31	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
Bromoform	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
Bromomethane	ND		5.00	ug/L	1	09/23/19 13:31	EPA 8260C	
2-Butanone (MEK)	ND		11.0	ug/L	1	09/23/19 13:31	EPA 8260C	R-02
n-Butylbenzene	1.15		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	M-02
sec-Butylbenzene	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
tert-Butylbenzene	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
Carbon disulfide	ND		10.0	ug/L	1	09/23/19 13:31	EPA 8260C	
Carbon tetrachloride	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
Chlorobenzene	ND		0.500	ug/L	1	09/23/19 13:31	EPA 8260C	
Chloroethane	ND		5.00	ug/L	1	09/23/19 13:31	EPA 8260C	
Chloroform	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
Chloromethane	ND		5.00	ug/L	1	09/23/19 13:31	EPA 8260C	
2-Chlorotoluene	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
4-Chlorotoluene	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
Dibromochloromethane	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	09/23/19 13:31	EPA 8260C	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	09/23/19 13:31	EPA 8260C	
Dibromomethane	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	09/23/19 13:31	EPA 8260C	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	09/23/19 13:31	EPA 8260C	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	09/23/19 13:31	EPA 8260C	
Dichlorodifluoromethane	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
1,1-Dichloroethane	ND		0.400	ug/L	1	09/23/19 13:31	EPA 8260C	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	09/23/19 13:31	EPA 8260C	
1,1-Dichloroethene	ND		0.400	ug/L	1	09/23/19 13:31	EPA 8260C	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	09/23/19 13:31	EPA 8260C	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	09/23/19 13:31	EPA 8260C	
1,2-Dichloropropane	ND		0.500	ug/L	1	09/23/19 13:31	EPA 8260C	
1,3-Dichloropropane	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
2,2-Dichloropropane	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
1,1-Dichloropropene	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smeinghini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compour	nds by EPA 826	0C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
SP-04 (A9I0633-01)				Matrix: Wate	er	Batch: 9091146		
Ethylbenzene	24.5		0.500	ug/L	1	09/23/19 13:31	EPA 8260C	
Hexachlorobutadiene	ND		5.00	ug/L	1	09/23/19 13:31	EPA 8260C	
2-Hexanone	ND		10.0	ug/L	1	09/23/19 13:31	EPA 8260C	
Isopropylbenzene	3.66		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
4-Isopropyltoluene	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
Methylene chloride	ND		5.00	ug/L	1	09/23/19 13:31	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	09/23/19 13:31	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
Naphthalene	4.26		2.00	ug/L	1	09/23/19 13:31	EPA 8260C	
n-Propylbenzene	8.81		0.500	ug/L	1	09/23/19 13:31	EPA 8260C	
Styrene	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	09/23/19 13:31	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	09/23/19 13:31	EPA 8260C	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	09/23/19 13:31	EPA 8260C	
Toluene	3.29		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	09/23/19 13:31	EPA 8260C	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	09/23/19 13:31	EPA 8260C	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	09/23/19 13:31	EPA 8260C	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	09/23/19 13:31	EPA 8260C	
Trichloroethene (TCE)	ND		0.400	ug/L	1	09/23/19 13:31	EPA 8260C	
Trichlorofluoromethane	ND		2.00	ug/L	1	09/23/19 13:31	EPA 8260C	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
1,2,4-Trimethylbenzene	6.04		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
1,3,5-Trimethylbenzene	3.04		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
Vinyl chloride	ND		0.400	ug/L	1	09/23/19 13:31	EPA 8260C	
m,p-Xylene	20.1		1.00	ug/L	1	09/23/19 13:31	EPA 8260C	
o-Xylene	0.842		0.500	ug/L	1	09/23/19 13:31	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 104%	Limits: 80-120 %	1	09/23/19 13:31	EPA 8260C	
Toluene-d8 (Surr)			104 %	80-120 %	1	09/23/19 13:31	EPA 8260C	
4-Bromofluorobenzene (Surr)			97 %	80-120 %	1	09/23/19 13:31	EPA 8260C	
GP-03 (A9I0633-02)				Matrix: Wate	er	Batch: 9091146		
Acetone	56.5		20.0	ug/L	1	09/23/19 13:58	EPA 8260C	
Acrylonitrile	ND		15.0	ug/L	1	09/23/19 13:58	EPA 8260C	R-02
Benzene	35.8		0.200	ug/L	1	09/23/19 13:58	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	09/23/19 13:58	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	

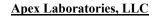
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0633 - 10 04 19 1456


ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 8	260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-03 (A9I0633-02)				Matrix: W	ater	Batch: 9091146		
Bromoform	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
Bromomethane	ND		5.00	ug/L	1	09/23/19 13:58	EPA 8260C	
2-Butanone (MEK)	ND		34.0	ug/L	1	09/23/19 13:58	EPA 8260C	R-02
n-Butylbenzene	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
sec-Butylbenzene	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
tert-Butylbenzene	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
Carbon disulfide	ND		10.0	ug/L	1	09/23/19 13:58	EPA 8260C	
Carbon tetrachloride	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
Chlorobenzene	ND		0.500	ug/L	1	09/23/19 13:58	EPA 8260C	
Chloroethane	ND		5.00	ug/L	1	09/23/19 13:58	EPA 8260C	
Chloroform	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
Chloromethane	ND		5.00	ug/L	1	09/23/19 13:58	EPA 8260C	
2-Chlorotoluene	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
4-Chlorotoluene	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
Dibromochloromethane	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	09/23/19 13:58	EPA 8260C	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	09/23/19 13:58	EPA 8260C	
Dibromomethane	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	09/23/19 13:58	EPA 8260C	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	09/23/19 13:58	EPA 8260C	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	09/23/19 13:58	EPA 8260C	
Dichlorodifluoromethane	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
1,1-Dichloroethane	ND		0.400	ug/L	1	09/23/19 13:58	EPA 8260C	
1,2-Dichloroethane (EDC)	2.58		0.400	ug/L	1	09/23/19 13:58	EPA 8260C	
1,1-Dichloroethene	ND		0.400	ug/L	1	09/23/19 13:58	EPA 8260C	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	09/23/19 13:58	EPA 8260C	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	09/23/19 13:58	EPA 8260C	
1,2-Dichloropropane	ND		0.500	ug/L	1	09/23/19 13:58	EPA 8260C	
1,3-Dichloropropane	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
2,2-Dichloropropane	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
1,1-Dichloropropene	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
Ethylbenzene	19.9		0.500	ug/L	1	09/23/19 13:58	EPA 8260C	
Hexachlorobutadiene	ND		5.00	ug/L	1	09/23/19 13:58	EPA 8260C	
2-Hexanone	ND		10.0	ug/L	1	09/23/19 13:58	EPA 8260C	
Isopropylbenzene	2.23		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
4-Isopropyltoluene	ND		1.00	ug/L ug/L	1	09/23/19 13:58	EPA 8260C	
Methylene chloride	ND		5.00	ug/L ug/L	1	09/23/19 13:58	EPA 8260C	
wiching terre cilibrate	ND		5.00	ug/L	1	0,725,17 15.50	2111 02000	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doand Smeinghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0633 - 10 04 19 1456

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-03 (A9I0633-02)				Matrix: Wate	er	Batch: 9091146		
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	09/23/19 13:58	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
Naphthalene	10.1		2.00	ug/L	1	09/23/19 13:58	EPA 8260C	
n-Propylbenzene	3.75		0.500	ug/L	1	09/23/19 13:58	EPA 8260C	
Styrene	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	09/23/19 13:58	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	09/23/19 13:58	EPA 8260C	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	09/23/19 13:58	EPA 8260C	
Toluene	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	09/23/19 13:58	EPA 8260C	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	09/23/19 13:58	EPA 8260C	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	09/23/19 13:58	EPA 8260C	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	09/23/19 13:58	EPA 8260C	
Trichloroethene (TCE)	ND		0.400	ug/L	1	09/23/19 13:58	EPA 8260C	
Trichlorofluoromethane	ND		2.00	ug/L	1	09/23/19 13:58	EPA 8260C	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
1,2,4-Trimethylbenzene	14.3		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
1,3,5-Trimethylbenzene	8.72		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
Vinyl chloride	ND		0.400	ug/L	1	09/23/19 13:58	EPA 8260C	
m,p-Xylene	19.3		1.00	ug/L	1	09/23/19 13:58	EPA 8260C	
o-Xylene	0.982		0.500	ug/L	1	09/23/19 13:58	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 102 %	Limits: 80-120 %	1	09/23/19 13:58	EPA 8260C	
Toluene-d8 (Surr)			104 %	80-120 %	1	09/23/19 13:58	EPA 8260C	
4-Bromofluorobenzene (Surr)			96 %	80-120 %	1	09/23/19 13:58	EPA 8260C	
GP-06 (A9I0633-03)				Matrix: Wate	er	Batch:	9091146	
Acetone	34.3		20.0	ug/L	1	09/23/19 14:52	EPA 8260C	
Acrylonitrile	ND		6.00	ug/L	1	09/23/19 14:52	EPA 8260C	R-02
Benzene	20.6		0.200	ug/L	1	09/23/19 14:52	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	09/23/19 14:52	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	09/23/19 14:52	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	09/23/19 14:52	EPA 8260C	
Bromoform	ND		1.00	ug/L	1	09/23/19 14:52	EPA 8260C	
Bromomethane	ND		5.00	ug/L	1	09/23/19 14:52	EPA 8260C	
2-Butanone (MEK)	ND		20.0	ug/L	1	09/23/19 14:52	EPA 8260C	R-02
n-Butylbenzene	ND		1.00	ug/L	1	09/23/19 14:52	EPA 8260C	Q-42
sec-Butylbenzene	2.60		1.00	ug/L	1	09/23/19 14:52	EPA 8260C	`
tert-Butylbenzene	ND		1.00	ug/L	1	09/23/19 14:52	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0633 - 10 04 19 1456

ANALYTICAL SAMPLE RESULTS

Matrix: Water Matrix: Wate	Volatile Organic Compounds by EPA 8260C											
Matrix: Water Matrix: Wate		Sample	Detection	Reporting			Date					
Carbon disulfide	Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
Carbon tetrachloride ND	GP-06 (A9I0633-03)				Matrix: W	ater	Batch:	9091146				
Chlorochane	Carbon disulfide	ND		10.0	ug/L	1	09/23/19 14:52	EPA 8260C				
Chlorochane	Carbon tetrachloride	ND		1.00		1	09/23/19 14:52	EPA 8260C				
Chlorochane ND	Chlorobenzene	ND		0.500		1	09/23/19 14:52	EPA 8260C				
Chloromethane ND ND ND ND ND ND ND ND ND N	Chloroethane	ND		5.00		1	09/23/19 14:52	EPA 8260C				
Chlorotoluene ND 5.00 ug/L 1 0923/19 1452 EPA 8260C 1.00 ug/L 1 0923/19 1452 EPA 8260C 4.Chlorotoluene ND 1.00 ug/L 1 0923/19 1452 EPA 8260C 4.Chlorotoluene ND 1.00 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochloromethane ND 5.00 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochloromethane ND 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDB) ND 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDB) ND 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDB) ND 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane ND 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane ND 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane ND 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane ND 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane ND 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane ND 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane ND 0.400 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDC) 0.860 0.400 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDC) 0.860 0.400 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDC) 0.860 0.400 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDC) 0.860 0.400 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDC) 0.860 0.400 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDC) 0.860 0.400 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDC) 0.860 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDC) 0.860 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDC) 0.860 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDC) 0.860 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDC) 0.860 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDC) 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDC) 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Dibromochlane (EDC) 0.500 ug/L 1 0923/19 1452 EPA 8260C 1.2-Di	Chloroform	ND		1.00		1	09/23/19 14:52	EPA 8260C				
2-Chlorotoluene	Chloromethane	ND		5.00		1	09/23/19 14:52	EPA 8260C				
4-Chlorotoluene ND 1.00 ug/L 1 0923/19 14:52 EPA 8260C	2-Chlorotoluene	ND		1.00		1	09/23/19 14:52	EPA 8260C				
Dibromechloromethane ND	4-Chlorotoluene	ND		1.00		1	09/23/19 14:52	EPA 8260C				
1,2-Dibromo-3-chloropropane ND	Dibromochloromethane	ND		1.00		1	09/23/19 14:52	EPA 8260C				
1,2-Dibromoethane (EDB) ND	1,2-Dibromo-3-chloropropane	ND		5.00	•	1	09/23/19 14:52	EPA 8260C				
1,2-Dichlorobenzene ND	1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	09/23/19 14:52	EPA 8260C				
1,2-Dichlorobenzene ND 0.500 ug/L 1 09/23/19 14:52 EPA 8260C 1,3-Dichlorobenzene ND 0.500 ug/L 1 09/23/19 14:52 EPA 8260C 1,4-Dichlorobenzene ND 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Dichlorodifluoromethane ND 0.400 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloroethane (EDC) 0.860 0.400 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloroethene ND 0.400 ug/L 1 09/23/19 14:52 EPA 8260C cis-1,2-Dichloroethene ND 0.400 ug/L 1 09/23/19 14:52 EPA 8260C cis-1,2-Dichloroethene ND 0.400 ug/L 1 09/23/19 14:52 EPA 8260C 1,2-Dichloropropane ND 0.500 ug/L 1 09/23/19 14:52 EPA 8260C 1,3-Dichloropropane	Dibromomethane	ND		1.00	_	1	09/23/19 14:52	EPA 8260C				
1,3-Dichlorobenzene ND 0,500 ug/L 1 0923/19 14:52 EPA 826C 1,4-Dichlorobenzene ND 0,500 ug/L 1 0923/19 14:52 EPA 826C Dichlorodifluromethane ND 0,400 ug/L 1 0923/19 14:52 EPA 826C 1,1-Dichloroethane ND 0,400 ug/L 1 0923/19 14:52 EPA 826C 1,1-Dichloroethane ND 0,400 ug/L 1 0923/19 14:52 EPA 826C 1,1-Dichloroethene ND 0,400 ug/L 1 0923/19 14:52 EPA 826C 1,2-Dichloroethene ND 0,400 ug/L 1 0923/19 14:52 EPA 826C 1,2-Dichloropropane ND 0,400 ug/L 1 0923/19 14:52 EPA 826C 1,3-Dichloropropane ND 0,500 ug/L 1 0923/19 14:52 EPA 826C 2,2-Dichloropropane ND 1,00 ug/L 1 0923/19 14:52 EPA 826C <	1,2-Dichlorobenzene	ND		0.500		1	09/23/19 14:52	EPA 8260C				
1,4-Dichlorobenzene ND 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Dichlorodifluoromethane ND 0.400 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloroethane ND 0.400 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloroethane (EDC) 0.860 0.400 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloroethane ND 0.400 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloroethane ND 0.400 ug/L 1 09/23/19 14:52 EPA 8260C 1,2-Dichloropropane ND 0.500 ug/L 1 09/23/19 14:52 EPA 8260C 1,3-Dichloropropane ND 0.500 ug/L 1 09/23/19 14:52 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C <td>1,3-Dichlorobenzene</td> <td>ND</td> <td></td> <td>0.500</td> <td></td> <td>1</td> <td>09/23/19 14:52</td> <td>EPA 8260C</td> <td></td>	1,3-Dichlorobenzene	ND		0.500		1	09/23/19 14:52	EPA 8260C				
Dichlorodifluoromethane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C	1,4-Dichlorobenzene	ND				1	09/23/19 14:52	EPA 8260C				
1,1-Dichloroethane ND 0,400 ug/L 1 09/23/19 14:52 EPA 8260C 1,2-Dichloroethane (EDC) 0,860 0,400 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloroethene ND 0,400 ug/L 1 09/23/19 14:52 EPA 8260C cis-1,2-Dichloroethene ND 0,400 ug/L 1 09/23/19 14:52 EPA 8260C trans-1,2-Dichloroethene ND 0,400 ug/L 1 09/23/19 14:52 EPA 8260C 1,2-Dichloropropane ND 0,500 ug/L 1 09/23/19 14:52 EPA 8260C 1,3-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloropropane	Dichlorodifluoromethane	ND		1.00		1	09/23/19 14:52	EPA 8260C				
1,2-Dichloroethane (EDC) 0.860 0.400 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloroethene ND 0.400 ug/L 1 09/23/19 14:52 EPA 8260C cis-1,2-Dichloroethene ND 0.400 ug/L 1 09/23/19 14:52 EPA 8260C 1,2-Dichloroptopane ND 0.500 ug/L 1 09/23/19 14:52 EPA 8260C 1,2-Dichloroptopane ND 0.500 ug/L 1 09/23/19 14:52 EPA 8260C 1,3-Dichloroptopane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 2,2-Dichloroptopane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloroptopene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Ethylbenzene 2.84 0.500 ug/L 1 09/23/19 14:52 EPA 8260C E-Hexanone ND	1,1-Dichloroethane	ND		0.400		1	09/23/19 14:52	EPA 8260C				
cis-1,2-Dichloroethene ND 0.400 ug/L 1 09/23/19 14:52 EPA 8260C trans-1,2-Dichloroethene ND 0.400 ug/L 1 09/23/19 14:52 EPA 8260C 1,2-Dichloropropane ND 0.500 ug/L 1 09/23/19 14:52 EPA 8260C 1,3-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Ethylbenzene 2.84 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Hexachlorobutadiene ND	1,2-Dichloroethane (EDC)	0.860		0.400		1	09/23/19 14:52	EPA 8260C				
cis-1,2-Dichloroethene ND 0.400 ug/L 1 09/23/19 14:52 EPA 8260C trans-1,2-Dichloroethene ND 0.400 ug/L 1 09/23/19 14:52 EPA 8260C 1,2-Dichloropropane ND 0.500 ug/L 1 09/23/19 14:52 EPA 8260C 1,3-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Ethylbenzene 2.84 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Hexachlorobutadiene ND	1,1-Dichloroethene	ND		0.400	ug/L	1	09/23/19 14:52	EPA 8260C				
1,2-Dichloropropane ND 0.500 ug/L 1 09/23/19 14:52 EPA 8260C 1,3-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C cis-1,3-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Ethylbenzene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Hexachlorobutadiene ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 2-Hexanone ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Isopropylbenzene 2.55 1.00 ug/L 1 09/23/19 14:52 EPA 8260C	cis-1,2-Dichloroethene	ND		0.400		1	09/23/19 14:52	EPA 8260C				
1,3-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C cis-1,3-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Ethylbenzene 2.84 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Hexachlorobutadiene ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C 1.5opropylbenzene 2.55 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Isopropylbenzene ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C	trans-1,2-Dichloroethene	ND		0.400	•	1	09/23/19 14:52	EPA 8260C				
1,3-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C cis-1,3-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Ethylbenzene 2.84 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Hexachlorobutadiene ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C 1.5opropylbenzene 2.55 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Isopropylbenzene ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C	1,2-Dichloropropane	ND		0.500	ug/L	1	09/23/19 14:52	EPA 8260C				
2,2-Dichloropropane ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C cis-1,3-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Ethylbenzene 2.84 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Hexachlorobutadiene ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C 2-Hexanone ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 2-Hexanone ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Isopropylbenzene ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Methy	1,3-Dichloropropane	ND		1.00	_	1	09/23/19 14:52	EPA 8260C				
1,1-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C cis-1,3-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Ethylbenzene 2.84 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Hexachlorobutadiene ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C 1 sopropylbenzene 2.55 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Isopropyltoluene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Methylene chloride ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Methyl-2-pentanone (MiBK) ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C	2,2-Dichloropropane	ND		1.00	_	1	09/23/19 14:52	EPA 8260C				
cis-1,3-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Ethylbenzene 2.84 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Hexachlorobutadiene ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C Isopropylbenzene 2.55 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Isopropylbenzene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Methylene chloride ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Methyl-2-pentanone (MiBK) ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C ND 1.00	1,1-Dichloropropene	ND		1.00	_	1	09/23/19 14:52	EPA 8260C				
trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Ethylbenzene 2.84 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Hexachlorobutadiene ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C Isopropylbenzene 2.55 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Isopropylbenzene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Methylene chloride ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Methyl-2-pentanone (MiBK) ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Q-42 n-Propylbenzene	cis-1,3-Dichloropropene	ND		1.00		1	09/23/19 14:52	EPA 8260C				
Ethylbenzene 2.84 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Hexachlorobutadiene ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C Isopropylbenzene 2.55 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Isopropyltoluene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Methylene chloride ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Methyl-2-pentanone (MiBK) ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C ND 2.00 ug/L 1 09/23/19 14:52 EPA 8260C Propylbenzene 1.56 0.500	trans-1,3-Dichloropropene	ND		1.00		1	09/23/19 14:52	EPA 8260C				
Hexachlorobutadiene ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C Isopropylbenzene 2.55 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Isopropylbeluene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Methylene chloride ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Methyl-2-pentanone (MiBK) ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Naphthalene ND 2.00 ug/L 1 09/23/19 14:52 EPA 8260C Styrene ND 0.500 ug/L 1 09/23/19 14:52 EPA 8260C	Ethylbenzene	2.84		0.500		1	09/23/19 14:52	EPA 8260C				
2-Hexanone ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C Isopropylbenzene 2.55 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Isopropylboluene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Methylene chloride ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Methyl-2-pentanone (MiBK) ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Naphthalene ND 2.00 ug/L 1 09/23/19 14:52 EPA 8260C Styrene ND 0.500 ug/L 1 09/23/19 14:52 EPA 8260C	·	ND		5.00		1	09/23/19 14:52	EPA 8260C				
Isopropylbenzene 2.55 1.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Isopropyltoluene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Methylene chloride ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Methyl-2-pentanone (MiBK) ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Naphthalene ND 2.00 ug/L 1 09/23/19 14:52 EPA 8260C Q-42 n-Propylbenzene 1.56 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Styrene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C	2-Hexanone	ND			_	1	09/23/19 14:52	EPA 8260C				
4-Isopropyltoluene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Methylene chloride ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Methyl-2-pentanone (MiBK) ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Naphthalene ND 2.00 ug/L 1 09/23/19 14:52 EPA 8260C Q-42 n-Propylbenzene 1.56 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Styrene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C	Isopropylbenzene	2.55		1.00		1	09/23/19 14:52	EPA 8260C				
Methylene chloride ND 5.00 ug/L 1 09/23/19 14:52 EPA 8260C 4-Methyl-2-pentanone (MiBK) ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Naphthalene ND 2.00 ug/L 1 09/23/19 14:52 EPA 8260C Q-42 n-Propylbenzene 1.56 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Styrene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C				1.00		1	09/23/19 14:52	EPA 8260C				
4-Methyl-2-pentanone (MiBK) ND 10.0 ug/L 1 09/23/19 14:52 EPA 8260C Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Naphthalene ND 2.00 ug/L 1 09/23/19 14:52 EPA 8260C Q-42 n-Propylbenzene 1.56 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Styrene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C	1 17	ND			_	1	09/23/19 14:52	EPA 8260C				
Methyl tert-butyl ether (MTBE) ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C Naphthalene ND 2.00 ug/L 1 09/23/19 14:52 EPA 8260C Q-42 n-Propylbenzene 1.56 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Styrene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C	•				-	1	09/23/19 14:52	EPA 8260C				
Naphthalene ND 2.00 ug/L 1 09/23/19 14:52 EPA 8260C Q-42 n-Propylbenzene 1.56 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Styrene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C	• •	ND		1.00		1	09/23/19 14:52	EPA 8260C				
n-Propylbenzene 1.56 0.500 ug/L 1 09/23/19 14:52 EPA 8260C Styrene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C	• • • • •					1	09/23/19 14:52	EPA 8260C	Q-42			
Styrene ND 1.00 ug/L 1 09/23/19 14:52 EPA 8260C	•	1.56			_	1	09/23/19 14:52	EPA 8260C	-			
	1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	09/23/19 14:52	EPA 8260C				

Apex Laboratories

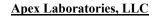
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smeinghini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456


ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-06 (A910633-03)				Matrix: Wate	Matrix: Water		Batch: 9091146	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	09/23/19 14:52	EPA 8260C	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	09/23/19 14:52	EPA 8260C	
Toluene	1.38		1.00	ug/L	1	09/23/19 14:52	EPA 8260C	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	09/23/19 14:52	EPA 8260C	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	09/23/19 14:52	EPA 8260C	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	09/23/19 14:52	EPA 8260C	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	09/23/19 14:52	EPA 8260C	
Trichloroethene (TCE)	ND		0.400	ug/L	1	09/23/19 14:52	EPA 8260C	
Trichlorofluoromethane	ND		2.00	ug/L	1	09/23/19 14:52	EPA 8260C	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	09/23/19 14:52	EPA 8260C	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	09/23/19 14:52	EPA 8260C	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	09/23/19 14:52	EPA 8260C	
Vinyl chloride	ND		0.400	ug/L	1	09/23/19 14:52	EPA 8260C	
m,p-Xylene	4.00		1.00	ug/L	1	09/23/19 14:52	EPA 8260C	
o-Xylene	ND		0.500	ug/L	1	09/23/19 14:52	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 106 %	Limits: 80-120 %	1	09/23/19 14:52	EPA 8260C	
Toluene-d8 (Surr)			101 %	80-120 %	1	09/23/19 14:52	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	09/23/19 14:52	EPA 8260C	
GP-Y (A910633-04)				Matrix: Wate	r	Batch: 9091146		
Acetone	32.6		20.0	ug/L	1	09/23/19 14:25	EPA 8260C	
Acrylonitrile	ND		6.00	ug/L	1	09/23/19 14:25	EPA 8260C	R-02
Benzene	20.0		0.200	ug/L	1	09/23/19 14:25	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	09/23/19 14:25	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
Bromoform	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
Bromomethane	ND		5.00	ug/L	1	09/23/19 14:25	EPA 8260C	
2-Butanone (MEK)	ND		19.0	ug/L	1	09/23/19 14:25	EPA 8260C	R-02
n-Butylbenzene	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
sec-Butylbenzene	2.90		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
tert-Butylbenzene	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
Carbon disulfide	ND		10.0	ug/L	1	09/23/19 14:25	EPA 8260C	
Carbon tetrachloride	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
	ND		0.500	ug/L	1	09/23/19 14:25	EPA 8260C	
Chlorobenzene	ND							
Chloroethane	ND ND		5.00	-	1	09/23/19 14:25	EPA 8260C	
				ug/L ug/L	1 1	09/23/19 14:25 09/23/19 14:25	EPA 8260C EPA 8260C	

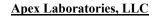
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0633 - 10 04 19 1456


ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	nic Compound	ds by EPA 8	260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-Y (A9I0633-04)				Matrix: Wa	ater	Batch:	9091146	
2-Chlorotoluene	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
4-Chlorotoluene	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
Dibromochloromethane	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	09/23/19 14:25	EPA 8260C	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	09/23/19 14:25	EPA 8260C	
Dibromomethane	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	09/23/19 14:25	EPA 8260C	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	09/23/19 14:25	EPA 8260C	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	09/23/19 14:25	EPA 8260C	
Dichlorodifluoromethane	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
1,1-Dichloroethane	ND		0.400	ug/L	1	09/23/19 14:25	EPA 8260C	
1,2-Dichloroethane (EDC)	0.784		0.400	ug/L	1	09/23/19 14:25	EPA 8260C	
1,1-Dichloroethene	ND		0.400	ug/L	1	09/23/19 14:25	EPA 8260C	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	09/23/19 14:25	EPA 8260C	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	09/23/19 14:25	EPA 8260C	
1,2-Dichloropropane	ND		0.500	ug/L	1	09/23/19 14:25	EPA 8260C	
1,3-Dichloropropane	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
2,2-Dichloropropane	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
1,1-Dichloropropene	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
Ethylbenzene	2.91		0.500	ug/L	1	09/23/19 14:25	EPA 8260C	
Hexachlorobutadiene	ND		5.00	ug/L	1	09/23/19 14:25	EPA 8260C	
2-Hexanone	ND		10.0	ug/L	1	09/23/19 14:25	EPA 8260C	
Isopropylbenzene	2.67		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
4-Isopropyltoluene	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
Methylene chloride	ND		5.00	ug/L	1	09/23/19 14:25	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	09/23/19 14:25	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	09/23/19 14:25	EPA 8260C	
n-Propylbenzene	1.61		0.500	ug/L	1	09/23/19 14:25	EPA 8260C	
Styrene	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	09/23/19 14:25	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	09/23/19 14:25	EPA 8260C	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	09/23/19 14:25	EPA 8260C	
Toluene	1.35		1.00	ug/L ug/L	1	09/23/19 14:25	EPA 8260C	
1,2,3-Trichlorobenzene	ND		2.00	ug/L ug/L	1	09/23/19 14:25	EPA 8260C	
1,2,4-Trichlorobenzene	ND		2.00	ug/L ug/L	1	09/23/19 14:25	EPA 8260C	
1,1,1-Trichloroethane	ND ND		0.400	ug/L ug/L	1	09/23/19 14:25	EPA 8260C	
1,1,1-111011010ethane	ND		0.400	ug/L	1	01/23/17 14.23	LIA 0200C	

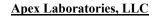
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0633 - 10 04 19 1456


ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Compou	nds by EPA 826	0C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-Y (A910633-04)				Matrix: Wate	er	Batch: 9091146		
1,1,2-Trichloroethane	ND		0.500	ug/L	1	09/23/19 14:25	EPA 8260C	
Trichloroethene (TCE)	ND		0.400	ug/L	1	09/23/19 14:25	EPA 8260C	
Trichlorofluoromethane	ND		2.00	ug/L	1	09/23/19 14:25	EPA 8260C	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
Vinyl chloride	ND		0.400	ug/L	1	09/23/19 14:25	EPA 8260C	
m,p-Xylene	4.24		1.00	ug/L	1	09/23/19 14:25	EPA 8260C	
o-Xylene	ND		0.500	ug/L	1	09/23/19 14:25	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 104%	Limits: 80-120 %	1	09/23/19 14:25	EPA 8260C	
Toluene-d8 (Surr)			103 %	80-120 %	1	09/23/19 14:25	EPA 8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	09/23/19 14:25	EPA 8260C	
TB-091919 (A9I0633-05)				Matrix: Wate	er	Batch:	9091146	
Acetone	ND		20.0	ug/L	1	09/23/19 09:56	EPA 8260C	
Acrylonitrile	ND		2.00	ug/L	1	09/23/19 09:56	EPA 8260C	
Benzene	ND		0.200	ug/L	1	09/23/19 09:56	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	09/23/19 09:56	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C	
Bromoform	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C	
Bromomethane	ND		5.00	ug/L	1	09/23/19 09:56	EPA 8260C	
2-Butanone (MEK)	ND		10.0	ug/L	1	09/23/19 09:56	EPA 8260C	
n-Butylbenzene	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C	
sec-Butylbenzene	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C	
tert-Butylbenzene	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C	
Carbon disulfide	ND		10.0	ug/L	1	09/23/19 09:56	EPA 8260C	
Carbon tetrachloride	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C	
Chlorobenzene	ND		0.500	ug/L	1	09/23/19 09:56	EPA 8260C	
Chloroethane	ND		5.00	ug/L	1	09/23/19 09:56	EPA 8260C	
Chloroform	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C	
Chloromethane	ND		5.00	ug/L	1	09/23/19 09:56	EPA 8260C	
2-Chlorotoluene	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C	
4-Chlorotoluene	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C	
Dibromochloromethane	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	09/23/19 09:56	EPA 8260C	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	09/23/19 09:56	EPA 8260C	
Dibromomethane	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0633 - 10 04 19 1456

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
TB-091919 (A9I0633-05)				Matrix: W	ater	Batch:	9091146				
1,2-Dichlorobenzene	ND		0.500	ug/L	1	09/23/19 09:56	EPA 8260C				
1,3-Dichlorobenzene	ND		0.500	ug/L	1	09/23/19 09:56	EPA 8260C				
1,4-Dichlorobenzene	ND		0.500	ug/L	1	09/23/19 09:56	EPA 8260C				
Dichlorodifluoromethane	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C				
1,1-Dichloroethane	ND		0.400	ug/L	1	09/23/19 09:56	EPA 8260C				
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	09/23/19 09:56	EPA 8260C				
1,1-Dichloroethene	ND		0.400	ug/L	1	09/23/19 09:56	EPA 8260C				
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	09/23/19 09:56	EPA 8260C				
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	09/23/19 09:56	EPA 8260C				
1,2-Dichloropropane	ND		0.500	ug/L	1	09/23/19 09:56	EPA 8260C				
1,3-Dichloropropane	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C				
2,2-Dichloropropane	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C				
1,1-Dichloropropene	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C				
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C				
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C				
Ethylbenzene	ND		0.500	ug/L	1	09/23/19 09:56	EPA 8260C				
Hexachlorobutadiene	ND		5.00	ug/L	1	09/23/19 09:56	EPA 8260C				
2-Hexanone	ND		10.0	ug/L	1	09/23/19 09:56	EPA 8260C				
Isopropylbenzene	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C				
4-Isopropyltoluene	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C				
Methylene chloride	ND		5.00	ug/L	1	09/23/19 09:56	EPA 8260C				
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	09/23/19 09:56	EPA 8260C				
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C				
Naphthalene	ND		2.00	ug/L	1	09/23/19 09:56	EPA 8260C				
n-Propylbenzene	ND		0.500	ug/L	1	09/23/19 09:56	EPA 8260C				
Styrene	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C				
1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	09/23/19 09:56	EPA 8260C				
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	09/23/19 09:56	EPA 8260C				
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	09/23/19 09:56	EPA 8260C				
Toluene	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C				
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	09/23/19 09:56	EPA 8260C				
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	09/23/19 09:56	EPA 8260C				
1,1,1-Trichloroethane	ND		0.400	ug/L	1	09/23/19 09:56	EPA 8260C				
1,1,2-Trichloroethane	ND		0.500	ug/L	1	09/23/19 09:56	EPA 8260C				
Trichloroethene (TCE)	ND		0.400	ug/L	1	09/23/19 09:56	EPA 8260C				
Trichlorofluoromethane	ND		2.00	ug/L	1	09/23/19 09:56	EPA 8260C				
1,2,3-Trichloropropane	ND		1.00	ug/L ug/L	1	09/23/19 09:56	EPA 8260C				
1,2,4-Trimethylbenzene	ND		1.00	ug/L ug/L	1	09/23/19 09:56	EPA 8260C				
1,3,5-Trimethylbenzene	ND		1.00		1	09/23/19 09:56	EPA 8260C				
1,5,5-11imeunyibenzene	ND		1.00	ug/L	I	09/23/19 09:30	EFA 6200C				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0633 - 10 04 19 1456

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref	Notes				
TB-091919 (A9I0633-05)	1100011			Matrix: Water		Batch: 9091146						
Vinyl chloride	ND		0.400	ug/L	1	09/23/19 09:56	EPA 8260C					
m,p-Xylene	ND		1.00	ug/L	1	09/23/19 09:56	EPA 8260C					
o-Xylene	ND		0.500	ug/L	1	09/23/19 09:56	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 105 %	Limits: 80-120 %	6 I	09/23/19 09:56	EPA 8260C					
Toluene-d8 (Surr)			107 %	80-120 %	6 1	09/23/19 09:56	EPA 8260C					
4-Bromofluorobenzene (Surr)			97 %	80-120 %	6 1	09/23/19 09:56	EPA 8260C					

Apex Laboratories

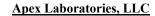
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456


ANALYTICAL SAMPLE RESULTS

	Polyard	matic Hydro	carbons (P	AHs) by EPA 82	? <u>70D SIM</u>			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-03 (A9I0633-02)				Matrix: Wate	er	Batch	ո։ 9091165	
Acenaphthene	0.0492		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Acenaphthylene	ND		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Anthracene	ND		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Benz(a)anthracene	ND		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Benzo(a)pyrene	ND		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Benzo(g,h,i)perylene	ND		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Chrysene	ND		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Dibenzofuran	ND		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Fluoranthene	ND		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Fluorene	ND		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
1-Methylnaphthalene	1.53		0.0833	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
2-Methylnaphthalene	2.69		0.0833	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Naphthalene	9.19		0.0833	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Phenanthrene	0.0860		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Pyrene	ND		0.0417	ug/L	1	10/02/19 16:24	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Recov	very: 69 %	Limits: 44-120 %	6 1	10/02/19 16:24	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			72 %	50-133 %	6 1	10/02/19 16:24	EPA 8270D (SIM)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

ANALYTICAL SAMPLE RESULTS

		Total Met	als by EPA 20	0.8 (ICPMS)			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-04 (A9I0633-01)				Matrix: W	ater			
Batch: 9091131								
Arsenic	40.2		5.00	ug/L	5	09/23/19 19:32	EPA 200.8	
Barium	858		5.00	ug/L	5	09/23/19 19:32	EPA 200.8	
Cadmium	ND		1.00	ug/L	5	09/23/19 19:32	EPA 200.8	R-04
Chromium	314		5.00	ug/L	5	09/23/19 19:32	EPA 200.8	
Lead	462		1.00	ug/L	5	09/23/19 19:32	EPA 200.8	
Mercury	1.08		0.400	ug/L	5	09/23/19 19:32	EPA 200.8 (Hg)	
Selenium	ND		5.00	ug/L	5	09/23/19 19:32	EPA 200.8	R-04
Silver	ND		1.00	ug/L	5	09/23/19 19:32	EPA 200.8	R-04
GP-03 (A9I0633-02)				Matrix: W	ater			
Batch: 9091131								
Arsenic	45.6		5.00	ug/L	5	09/23/19 19:37	EPA 200.8	
Barium	1040		5.00	ug/L	5	09/23/19 19:37	EPA 200.8	Q-42
Cadmium	ND		1.00	ug/L	5	09/23/19 19:37	EPA 200.8	R-04
Chromium	327		5.00	ug/L	5	09/23/19 19:37	EPA 200.8	Q-42
Lead	23.8		1.00	ug/L	5	09/23/19 19:37	EPA 200.8	
Mercury	0.730		0.400	ug/L	5	09/23/19 19:37	EPA 200.8 (Hg)	
Selenium	ND		5.00	ug/L	5	09/23/19 19:37	EPA 200.8	R-04
Silver	ND		1.00	ug/L	5	09/23/19 19:37	EPA 200.8	R-04
GP-06 (A9I0633-03)				Matrix: W	ater			
Batch: 9091131								
Arsenic	17.1		5.00	ug/L	5	09/23/19 19:51	EPA 200.8	
Barium	404		5.00	ug/L	5	09/23/19 19:51	EPA 200.8	
Cadmium	ND		1.00	ug/L	5	09/23/19 19:51	EPA 200.8	R-04
Chromium	73.3		5.00	ug/L	5	09/23/19 19:51	EPA 200.8	
Lead	9.96		1.00	ug/L	5	09/23/19 19:51	EPA 200.8	
Mercury	ND		0.400	ug/L	5	09/23/19 19:51	EPA 200.8 (Hg)	R-04
Selenium	ND		5.00	ug/L	5	09/23/19 19:51	EPA 200.8	R-04
Silver	ND		1.00	ug/L	5	09/23/19 19:51	EPA 200.8	R-04
GP-Y (A9I0633-04)				Matrix: W	ater			
Batch: 9091131								
Arsenic	25.7		5.00	ug/L	5	09/23/19 19:55	EPA 200.8	
Barium	566		5.00	ug/L	5	09/23/19 19:55	EPA 200.8	
Cadmium	ND		1.00	ug/L	5	09/23/19 19:55	EPA 200.8	R-04

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 200.8 (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
GP-Y (A910633-04)	Matrix: Water									
Chromium	123		5.00	ug/L	5	09/23/19 19:55	EPA 200.8			
Lead	15.1		1.00	ug/L	5	09/23/19 19:55	EPA 200.8			
Mercury	0.419		0.400	ug/L	5	09/23/19 19:55	EPA 200.8 (Hg)			
Selenium	ND		5.00	ug/L	5	09/23/19 19:55	EPA 200.8	R-04		
Silver	ND		1.00	ug/L	5	09/23/19 19:55	EPA 200.8	R-04		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

ANALYTICAL SAMPLE RESULTS

Dissolved Metals by EPA 200.8 (ICPMS)											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
GP-04 (A9I0633-01RE1)				Matrix: W	ater						
Batch: 9091133											
Arsenic	3.08		1.00	ug/L	1	09/25/19 17:49	EPA 200.8 (Diss)				
Barium	111		1.00	ug/L	1	09/25/19 17:49	EPA 200.8 (Diss)				
Cadmium	ND		0.200	ug/L	1	09/25/19 17:49	EPA 200.8 (Diss)				
Chromium	ND		1.00	ug/L	1	09/25/19 17:49	EPA 200.8 (Diss)				
Lead	1.69		0.200	ug/L	1	09/25/19 17:49	EPA 200.8 (Diss)				
Mercury	ND		0.0800	ug/L	1	09/25/19 17:49	EPA 200.8 (Hg)				
Selenium	ND		1.00	ug/L	1	09/25/19 17:49	EPA 200.8 (Diss)				
GP-04 (A9I0633-01RE2)				Matrix: W	ater						
Batch: 9091133											
Silver	ND		0.200	ug/L	1	09/25/19 18:30	EPA 200.8 (Diss)				
GP-03 (A9I0633-02RE1)				Matrix: W	ater ater						
Batch: 9091133											
Arsenic	1.97		1.00	ug/L	1	09/25/19 17:53	EPA 200.8 (Diss)				
Barium	185		1.00	ug/L	1	09/25/19 17:53	EPA 200.8 (Diss)				
Cadmium	ND		0.200	ug/L	1	09/25/19 17:53	EPA 200.8 (Diss)				
Chromium	4.99		1.00	ug/L	1	09/25/19 17:53	EPA 200.8 (Diss)				
Lead	0.646		0.200	ug/L	1	09/25/19 17:53	EPA 200.8 (Diss)				
Mercury	ND		0.0800	ug/L	1	09/25/19 17:53	EPA 200.8 (Hg)				
Selenium	ND		1.00	ug/L	1	09/25/19 17:53	EPA 200.8 (Diss)				
Silver	ND		0.200	ug/L	1	09/25/19 17:53	EPA 200.8 (Diss)				
GP-06 (A9I0633-03RE1)				Matrix: W	ater						
Batch: 9091133											
Arsenic	1.75		1.00	ug/L	1	09/25/19 17:58	EPA 200.8 (Diss)				
Barium	126		1.00	ug/L	1	09/25/19 17:58	EPA 200.8 (Diss)				
Cadmium	ND		0.200	ug/L	1	09/25/19 17:58	EPA 200.8 (Diss)				
Chromium	ND		1.00	ug/L	1	09/25/19 17:58	EPA 200.8 (Diss)				
Lead	ND		0.200	ug/L	1	09/25/19 17:58	EPA 200.8 (Diss)				
Mercury	ND		0.0800	ug/L	1	09/25/19 17:58	EPA 200.8 (Hg)				
Selenium	ND		1.00	ug/L	1	09/25/19 17:58	EPA 200.8 (Diss)				
Silver	ND		0.200	ug/L	1	09/25/19 17:58	EPA 200.8 (Diss)				
GP-Y (A9I0633-04RE1)				Matrix: W	ater						

GP-Y (A9I0633-04RE1)

Batch: 9091133

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa A Zmeinghini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Stantec Portland Project: 9400 SW Barnes Rd Ste 200 Project Number: 185750581 Portland, OR 97225 Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

ANALYTICAL SAMPLE RESULTS


Lampson

		Dissolved N	letals by EPA	200.8 (ICPI	VIS)			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-Y (A9I0633-04RE1)				Matrix: W	ater			
Arsenic	1.79		1.00	ug/L	1	09/25/19 18:02	EPA 200.8 (Diss)	
Barium	131		1.00	ug/L	1	09/25/19 18:02	EPA 200.8 (Diss)	
Cadmium	ND		0.200	ug/L	1	09/25/19 18:02	EPA 200.8 (Diss)	
Chromium	ND		1.00	ug/L	1	09/25/19 18:02	EPA 200.8 (Diss)	
Lead	ND		0.200	ug/L	1	09/25/19 18:02	EPA 200.8 (Diss)	Q-42
Mercury	ND		0.0800	ug/L	1	09/25/19 18:02	EPA 200.8 (Hg)	
Selenium	ND		1.00	ug/L	1	09/25/19 18:02	EPA 200.8 (Diss)	
Silver	ND		0.200	ug/L	1	09/25/19 18:02	EPA 200.8 (Diss)	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: <u>Lampson</u>
Project Number: **185750581**Project Manager: **Len Farr**

Report ID: A9I0633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	r Oil Hyd	rocarbon	s by NW1	PH-Dx								
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes			
Batch 9091175 - EPA 35100	lank (9091175 - EPA 3510C (Fuels/Acid Ext.) Water Prepared: 09/23/19 12:49 Analyzed: 09/23/19 20:55														
Blank (9091175-BLK1)		Prepared	: 09/23/19 12:	49 Analyz	ed: 09/23/19	9 20:55									
NWTPH-Dx															
Diesel	ND		0.182	mg/L	1										
Oil	ND		0.364	mg/L	1										
Surr: o-Terphenyl (Surr)		Reco	very: 104 %	Limits: 50	-150 %	Dilt	ıtion: 1x								
LCS (9091175-BS1)		Prepared	: 09/23/19 12:	49 Analyz	ed: 09/23/19	9 21:16									
NWTPH-Dx															
Diesel	1.06		0.200	mg/L	1	1.25		85	58 - 115%						
Surr: o-Terphenyl (Surr)		Reco	very: 104 %	Limits: 50	-150 %	Dilı	ıtion: 1x								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range H	lydrocarbo	ns (Benz	ene throu	ıgh Naph	thalene) l	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091146 - EPA 5030B							Wat	er				
Blank (9091146-BLK1)		Prepared	: 09/23/19 07:	00 Analyz	ed: 09/23/19	09:29						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 85 %	Limits: 50	0-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			107 %	50	-150 %		"					
LCS (9091146-BS2)		Prepared	: 09/23/19 07:	00 Analyz	ed: 09/23/19	9 09:02						
NWTPH-Gx (MS)												
Gasoline Range Organics	0.420		0.100	mg/L	1	0.500		84 8	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 85 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			101 %	50	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec PortlandPr9400 SW Barnes Rd Ste 200ProjectPortland, OR 97225Project

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Orç	ganic Co	mpounds	by EPA 8	260C					
		Detection	Reporting			Spike	Source		% REC		RPD	
Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC		RPD	Limit	Notes
Batch 9091146 - EPA 5030B							Wat	er				
Blank (9091146-BLK1)		Prepared	1: 09/23/19 07:0	00 Analyz	zed: 09/23/19	9 09:29						
EPA 8260C												
Acetone	ND		20.0	ug/L	1							
Acrylonitrile	ND		2.00	ug/L	1							
Benzene	ND		0.200	ug/L	1							
Bromobenzene	ND		0.500	ug/L	1							
Bromochloromethane	ND		1.00	ug/L	1							
Bromodichloromethane	ND		1.00	ug/L	1							
Bromoform	ND		1.00	ug/L	1							
Bromomethane	ND		5.00	ug/L	1							
2-Butanone (MEK)	ND		10.0	ug/L	1							
n-Butylbenzene	ND		1.00	ug/L	1							
sec-Butylbenzene	ND		1.00	ug/L	1							
tert-Butylbenzene	ND		1.00	ug/L	1							
Carbon disulfide	ND		10.0	ug/L	1							
Carbon tetrachloride	ND		1.00	ug/L	1							
Chlorobenzene	ND		0.500	ug/L	1							
Chloroethane	ND		5.00	ug/L	1							
Chloroform	ND		1.00	ug/L	1							
Chloromethane	ND		5.00	ug/L	1							
2-Chlorotoluene	ND		1.00	ug/L	1							
4-Chlorotoluene	ND		1.00	ug/L	1							
Dibromochloromethane	ND		1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L ug/L	1							
Dibromomethane	ND		1.00	ug/L	1							
1,2-Dichlorobenzene	ND		0.500	ug/L ug/L	1							
1,3-Dichlorobenzene	ND		0.500	ug/L ug/L	1							
1,4-Dichlorobenzene	ND		0.500	ug/L ug/L	1							
Dichlorodifluoromethane	ND		1.00	ug/L ug/L	1							
1,1-Dichloroethane	ND		0.400	ug/L ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.400	ug/L ug/L	1							
1,1-Dichloroethene	ND ND		0.400	ug/L ug/L	1							
cis-1,2-Dichloroethene	ND ND		0.400		1							
	ND ND		0.400	ug/L								
trans-1,2-Dichloroethene	ND		0.400	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Orç	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091146 - EPA 5030B							Wat	er				
Blank (9091146-BLK1)		Prepared	: 09/23/19 07:0	00 Analyz	ed: 09/23/19	9 09:29						
1,2-Dichloropropane	ND		0.500	ug/L	1							
1,3-Dichloropropane	ND		1.00	ug/L	1							
2,2-Dichloropropane	ND		1.00	ug/L	1							
1,1-Dichloropropene	ND		1.00	ug/L	1							
cis-1,3-Dichloropropene	ND		1.00	ug/L	1							
trans-1,3-Dichloropropene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Hexachlorobutadiene	ND		5.00	ug/L	1							
2-Hexanone	ND		10.0	ug/L	1							
Isopropylbenzene	ND		1.00	ug/L	1							
4-Isopropyltoluene	ND		1.00	ug/L	1							
Methylene chloride	ND		5.00	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		2.00	ug/L	1							
n-Propylbenzene	ND		0.500	ug/L	1							
Styrene	ND		1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1							
Tetrachloroethene (PCE)	ND		0.400	ug/L	1							
Toluene	ND		1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND		2.00	ug/L ug/L	1							
1,2,4-Trichlorobenzene	ND		2.00	ug/L ug/L	1							
1,1,1-Trichloroethane	ND		0.400	ug/L ug/L	1							
1,1,2-Trichloroethane	ND		0.500	ug/L ug/L	1							
Trichloroethene (TCE)	ND		0.400	ug/L ug/L	1							
Trichlorofluoromethane	ND		2.00	ug/L	1							
1,2,3-Trichloropropane	ND		1.00	ug/L ug/L	1							
1,1,2-Trichloro-1,2,2-trifluoroet	ND		2.00	ug/L ug/L	1							
hane (Freon-113)	1112		2.00	ug/L	1					=		
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1							
Vinyl chloride	ND		0.400	ug/L	1							
n,p-Xylene	ND		1.00	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REG	% REC Limits	RPD	RPD Limit	Notes
Batch 9091146 - EPA 5030B							Wat	er				
Blank (9091146-BLK1)		Prepared	: 09/23/19 07:	00 Analyz	ed: 09/23/1	9 09:29						
o-Xylene	ND		0.500	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 107 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			105 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					
LCS (9091146-BS1)		Prepared	: 09/23/19 07:	00 Analyz	red: 09/23/1	9 08:35						
EPA 8260C												
Acetone	37.3		20.0	ug/L	1	40.0		93	80 - 120%			
Acrylonitrile	19.5		2.00	ug/L	1	20.0		98	80 - 120%			
Benzene	19.7		0.200	ug/L	1	20.0		98	80 - 120%			
Bromobenzene	21.0		0.500	ug/L	1	20.0		105	80 - 120%			
Bromochloromethane	20.3		1.00	ug/L	1	20.0		102	80 - 120%			
Bromodichloromethane	19.6		1.00	ug/L	1	20.0		98	80 - 120%			
Bromoform	22.1		1.00	ug/L	1	20.0		111	80 - 120%			
Bromomethane	21.8		5.00	ug/L	1	20.0		109	80 - 120%			
2-Butanone (MEK)	38.4		10.0	ug/L	1	40.0		96	80 - 120%			
n-Butylbenzene	21.0		1.00	ug/L	1	20.0		105	80 - 120%			
sec-Butylbenzene	20.1		1.00	ug/L	1	20.0		101	80 - 120%			
ert-Butylbenzene	20.0		1.00	ug/L	1	20.0		100	80 - 120%			
Carbon disulfide	18.9		10.0	ug/L	1	20.0		94	80 - 120%			
Carbon tetrachloride	19.1		1.00	ug/L	1	20.0		95	80 - 120%			
Chlorobenzene	21.1		0.500	ug/L	1	20.0		106	80 - 120%			
Chloroethane	16.1		5.00	ug/L	1	20.0		81	80 - 120%			
Chloroform	19.1		1.00	ug/L	1	20.0		96	80 - 120%			
Chloromethane	16.7		5.00	ug/L	1	20.0		83	80 - 120%			
2-Chlorotoluene	20.5		1.00	ug/L	1	20.0		103	80 - 120%			
1-Chlorotoluene	21.5		1.00	ug/L	1	20.0		107	80 - 120%			
Dibromochloromethane	21.4		1.00	ug/L	1	20.0		107	80 - 120%			
,2-Dibromo-3-chloropropane	21.3		5.00	ug/L	1	20.0		106	80 - 120%			
1,2-Dibromoethane (EDB)	21.4		0.500	ug/L	1	20.0		107	80 - 120%			
Dibromomethane	20.5		1.00	ug/L	1	20.0		102	80 - 120%			
1,2-Dichlorobenzene	21.5		0.500	ug/L	1	20.0		107	80 - 120%			
,3-Dichlorobenzene	21.2		0.500	ug/L	1	20.0		106	80 - 120%			
1,4-Dichlorobenzene	20.0		0.500	ug/L	1	20.0		100	80 - 120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091146 - EPA 5030B							Wat	er				
LCS (9091146-BS1)		Prepared	1: 09/23/19 07:0	00 Analyz	ed: 09/23/1	9 08:35						
Dichlorodifluoromethane	17.0		1.00	ug/L	1	20.0		85	80 - 120%			
1,1-Dichloroethane	18.9		0.400	ug/L	1	20.0		95	80 - 120%			
1,2-Dichloroethane (EDC)	18.9		0.400	ug/L	1	20.0		94	80 - 120%			
1,1-Dichloroethene	19.0		0.400	ug/L	1	20.0		95	80 - 120%			
cis-1,2-Dichloroethene	17.9		0.400	ug/L	1	20.0		90	80 - 120%			
rans-1,2-Dichloroethene	18.7		0.400	ug/L	1	20.0		94	80 - 120%			
1,2-Dichloropropane	18.9		0.500	ug/L	1	20.0		95	80 - 120%			
1,3-Dichloropropane	20.5		1.00	ug/L	1	20.0		103	80 - 120%			
2,2-Dichloropropane	19.9		1.00	ug/L	1	20.0		99	80 - 120%			
1,1-Dichloropropene	18.9		1.00	ug/L	1	20.0		95	80 - 120%			
cis-1,3-Dichloropropene	20.9		1.00	ug/L	1	20.0		104	80 - 120%			
rans-1,3-Dichloropropene	21.5		1.00	ug/L	1	20.0		108	80 - 120%			
Ethylbenzene	20.9		0.500	ug/L	1	20.0		105	80 - 120%			
Hexachlorobutadiene	18.0		5.00	ug/L	1	20.0		90	80 - 120%			
2-Hexanone	40.6		10.0	ug/L	1	40.0		102	80 - 120%			
sopropylbenzene	20.6		1.00	ug/L	1	20.0		103	80 - 120%			
4-Isopropyltoluene	21.3		1.00	ug/L	1	20.0		106	80 - 120%			
Methylene chloride	18.3		5.00	ug/L	1	20.0		92	80 - 120%			
4-Methyl-2-pentanone (MiBK)	42.4		10.0	ug/L	1	40.0		106	80 - 120%			
Methyl tert-butyl ether (MTBE)	19.1		1.00	ug/L	1	20.0		95	80 - 120%			
Naphthalene	18.6		2.00	ug/L	1	20.0		93	80 - 120%			
n-Propylbenzene	20.0		0.500	ug/L ug/L	1	20.0		100	80 - 120%			
Styrene	21.4		1.00	ug/L ug/L	1	20.0		107	80 - 120%			
1,1,1,2-Tetrachloroethane	22.2		0.400	ug/L	1	20.0		111	80 - 120%			
1,1,2,2-Tetrachloroethane	22.0		0.500	ug/L ug/L	1	20.0		110	80 - 120%			
Tetrachloroethene (PCE)	20.3		0.400	ug/L ug/L	1	20.0		101	80 - 120%			
Foluene	20.2		1.00	ug/L ug/L	1	20.0		101	80 - 120%			
,2,3-Trichlorobenzene	21.5		2.00	ug/L ug/L	1	20.0		107	80 - 120%			
,2,4-Trichlorobenzene	19.5		2.00	ug/L ug/L	1	20.0		98	80 - 120%			
1,1,1-Trichloroethane	18.5		0.400	ug/L ug/L	1	20.0		93	80 - 120%			
1,1,2-Trichloroethane	21.0		0.500	ug/L	1	20.0		105	80 - 120%			
Frichloroethene (TCE)	18.6		0.300	ug/L ug/L	1	20.0		93	80 - 120%			
Trichlorofluoromethane	19.7		2.00	ug/L ug/L	1	20.0		93 98	80 - 120%			
,2,3-Trichloropropane	21.8		1.00	ug/L ug/L	1	20.0		98 109	80 - 120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smeinghini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% RE	% REC C Limits	RPD	RPD Limit	Notes
Batch 9091146 - EPA 5030B							Wate	er				
LCS (9091146-BS1)		Prepared	: 09/23/19 07:	00 Analyz	ed: 09/23/1	9 08:35						
,1,2-Trichloro-1,2,2-trifluoroet nane (Freon-113)	18.9		2.00	ug/L	1	20.0		94	80 - 120%			
,2,4-Trimethylbenzene	22.0		1.00	ug/L	1	20.0		110	80 - 120%			
,3,5-Trimethylbenzene	21.0		1.00	ug/L	1	20.0		105	80 - 120%			
/inyl chloride	17.8		0.400	ug/L	1	20.0		89	80 - 120%			
n,p-Xylene	43.1		1.00	ug/L	1	40.0		108	80 - 120%			
-Xylene	19.4		0.500	ug/L	1	20.0		97	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	80	-120 %		"					
Matrix Spike (9091146-MS1)		Prepared	: 09/23/19 09:	32 Analyz	ed: 09/23/1	9 15:19						
QC Source Sample: GP-06 (A9106	33-03)											
EPA 8260C												
Acetone	73.2		20.0	ug/L	1	40.0	34.3	97	39 - 160%			
Acrylonitrile	27.0		2.00	ug/L	1	20.0	ND	110	63 - 135%			
Benzene	44.0		0.200	ug/L	1	20.0	20.6	117	79 - 120%			
Bromobenzene	22.9		0.500	ug/L	1	20.0	ND	115	80 - 120%			
Bromochloromethane	21.9		1.00	ug/L	1	20.0	ND	109	78 - 123%			
Bromodichloromethane	21.1		1.00	ug/L	1	20.0	ND	105	79 - 125%			
Bromoform	21.4		1.00	ug/L	1	20.0	ND	107	66 - 130%			
Bromomethane	22.5		5.00	ug/L	1	20.0	ND	112	53 - 141%			
-Butanone (MEK)	62.4		10.0	ug/L	1	40.0	ND	106	56 - 143%			
-Butylbenzene	26.4		1.00	ug/L	1	20.0	0.543	130	75 - 128%			Q-01
ec-Butylbenzene	26.5		1.00	ug/L	1	20.0	2.60	119	77 - 126%			
ert-Butylbenzene	23.0		1.00	ug/L	1	20.0	ND	115	78 - 124%			
Carbon disulfide	21.2		10.0	ug/L	1	20.0	ND	106	64 - 133%			
Carbon tetrachloride	21.5		1.00	ug/L	1	20.0	ND	107	72 - 136%			
Chlorobenzene	22.3		0.500	ug/L	1	20.0	ND	111	80 - 120%			
Chloroethane	16.7		5.00	ug/L	1	20.0	ND	83	60 - 138%			
hloroform	21.0		1.00	ug/L	1	20.0	ND	105	79 - 124%			
Chloromethane	19.4		5.00	ug/L	1	20.0	ND	97	50 - 139%			
-Chlorotoluene	23.1		1.00	ug/L	1	20.0	ND	115	79 - 122%			
-Chlorotoluene	23.5		1.00	ug/L	1	20.0	ND	117	78 - 122%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghine

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091146 - EPA 5030B							Wat	er				
Matrix Spike (9091146-MS1)		Prepared	: 09/23/19 09:	32 Analyz	zed: 09/23/1	9 15:19						
QC Source Sample: GP-06 (A9106	633-03)											
Dibromochloromethane	21.2		1.00	ug/L	1	20.0	ND	106	74 - 126%			
1,2-Dibromo-3-chloropropane	24.5		5.00	ug/L	1	20.0	ND	122	62 - 128%			
1,2-Dibromoethane (EDB)	22.3		0.500	ug/L	1	20.0	ND	111	77 - 121%			
Dibromomethane	22.8		1.00	ug/L	1	20.0	ND	114	79 - 123%			
1,2-Dichlorobenzene	23.6		0.500	ug/L	1	20.0	ND	118	80 - 120%			
1,3-Dichlorobenzene	23.0		0.500	ug/L	1	20.0	ND	115	80 - 120%			
1,4-Dichlorobenzene	21.4		0.500	ug/L	1	20.0	ND	107	79 - 120%			
Dichlorodifluoromethane	19.2		1.00	ug/L	1	20.0	ND	96	32 - 152%			
1,1-Dichloroethane	20.9		0.400	ug/L	1	20.0	ND	105	77 - 125%			
1,2-Dichloroethane (EDC)	19.9		0.400	ug/L	1	20.0	0.860	95	73 - 128%			
1,1-Dichloroethene	21.5		0.400	ug/L	1	20.0	ND	107	71 - 131%			
cis-1,2-Dichloroethene	20.4		0.400	ug/L	1	20.0	ND	102	78 - 123%			
rans-1,2-Dichloroethene	21.5		0.400	ug/L	1	20.0	ND	108	75 - 124%			
1,2-Dichloropropane	22.1		0.500	ug/L	1	20.0	ND	111	78 - 122%			
1,3-Dichloropropane	21.1		1.00	ug/L	1	20.0	ND	106	80 - 120%			
2,2-Dichloropropane	20.2		1.00	ug/L	1	20.0	ND	101	60 - 139%			
1,1-Dichloropropene	23.2		1.00	ug/L	1	20.0	ND	116	79 - 125%			
cis-1,3-Dichloropropene	21.4		1.00	ug/L	1	20.0	ND	107	75 - 124%			
trans-1,3-Dichloropropene	20.6		1.00	ug/L	1	20.0	ND	103	73 - 127%			
Ethylbenzene	25.5		0.500	ug/L	1	20.0	2.84	113	79 - 121%			
Hexachlorobutadiene	22.9		5.00	ug/L	1	20.0	ND	114	66 - 134%			
2-Hexanone	45.8		10.0	ug/L	1	40.0	ND	115	57 - 139%			
sopropylbenzene	26.7		1.00	ug/L	1	20.0	2.55	121	72 - 131%			
4-Isopropyltoluene	25.4		1.00	ug/L	1	20.0	0.770	123	77 - 127%			
Methylene chloride	19.9		5.00	ug/L	1	20.0	ND	100	74 - 124%			
4-Methyl-2-pentanone (MiBK)	45.5		10.0	ug/L	1	40.0	ND	114	67 - 130%			
Methyl tert-butyl ether (MTBE)	20.4		1.00	ug/L	1	20.0	ND	102	71 - 124%			
Naphthalene	27.2		2.00	ug/L	1	20.0	1.30	129	61 - 128%			Q-01
-Propylbenzene	24.1		0.500	ug/L	1	20.0	1.56	113	76 - 126%			
Styrene	21.2		1.00	ug/L	1	20.0	ND	106	78 - 123%			
,1,1,2-Tetrachloroethane	21.9		0.400	ug/L	1	20.0	ND	109	78 - 124%			
,1,2,2-Tetrachloroethane	23.3		0.500	ug/L	1	20.0	ND		71 - 121%			
Tetrachloroethene (PCE)	22.5		0.400	ug/L	1	20.0	ND		74 - 129%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smeinghini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	anic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091146 - EPA 5030B							Wat	er				
Matrix Spike (9091146-MS1)		Prepared	: 09/23/19 09:3	2 Analyz	ed: 09/23/19	9 15:19						
QC Source Sample: GP-06 (A9106	633-03)											
Toluene	22.7		1.00	ug/L	1	20.0	1.38	107	80 - 121%			
1,2,3-Trichlorobenzene	26.3		2.00	ug/L	1	20.0	ND	131	69 - 129%			Q-01
1,2,4-Trichlorobenzene	28.5		2.00	ug/L	1	20.0	ND	142	69 - 130%			Q-01
1,1,1-Trichloroethane	20.4		0.400	ug/L	1	20.0	ND	102	74 - 131%			
1,1,2-Trichloroethane	23.3		0.500	ug/L	1	20.0	ND	114	80 - 120%			
Trichloroethene (TCE)	22.8		0.400	ug/L	1	20.0	ND	114	79 - 123%			
Trichlorofluoromethane	20.3		2.00	ug/L	1	20.0	ND	102	65 - 141%			
1,2,3-Trichloropropane	22.2		1.00	ug/L	1	20.0	ND	111	73 - 122%			
1,1,2-Trichloro-1,2,2-trifluoroet hane (Freon-113)	22.3		2.00	ug/L	1	20.0	ND	111	70 - 136%			
1,2,4-Trimethylbenzene	23.9		1.00	ug/L	1	20.0	0.811	116	76 - 124%			
1,3,5-Trimethylbenzene	23.0		1.00	ug/L	1	20.0	ND	115	75 - 124%			
Vinyl chloride	21.6		0.400	ug/L	1	20.0	ND	108	58 - 137%			
m,p-Xylene	50.7		1.00	ug/L	1	40.0	4.00	117	80 - 121%			
o-Xylene	23.7		0.500	ug/L	1	20.0	0.476	116	78 - 122%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

F

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ons (PAHs	by EPA	8270D SI	M				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091165 - EPA 3510C (Acid Extra	ction)					Wate	er				
Blank (9091165-BLK1)		Prepared	: 09/23/19 10:2	9 Analyz	ed: 10/02/19	15:08						
EPA 8270D (SIM)												
Acenaphthene	ND		0.0400	ug/L	1							
Acenaphthylene	ND		0.0400	ug/L	1							
Anthracene	ND		0.0400	ug/L	1							
Benz(a)anthracene	ND		0.0400	ug/L	1							
Benzo(a)pyrene	ND		0.0400	ug/L	1							
Benzo(b)fluoranthene	ND		0.0400	ug/L	1							
Benzo(k)fluoranthene	ND		0.0400	ug/L	1							
Benzo(g,h,i)perylene	ND		0.0400	ug/L	1							
Chrysene	ND		0.0400	ug/L	1							
Dibenz(a,h)anthracene	ND		0.0400	ug/L	1							
Dibenzofuran	ND		0.0400	ug/L	1							
Fluoranthene	ND		0.0400	ug/L	1							
Fluorene	ND		0.0400	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND		0.0400	ug/L	1							
I-Methylnaphthalene	ND		0.0800	ug/L	1							
2-Methylnaphthalene	ND		0.0800	ug/L ug/L	1							
Naphthalene	ND		0.0800	ug/L ug/L	1							
Phenanthrene	ND		0.0400	ug/L ug/L	1							
Pyrene	ND ND		0.0400	ug/L ug/L	1							
<u>* </u>	ND											
Surr: 2-Fluorobiphenyl (Surr) p-Terphenyl-d14 (Surr)		Kece	overy: 69 % 77 %	Limits: 44	-120 % -133 %	Dili	ution: 1x					
			.,,,									
LCS (9091165-BS1)		Prepared	: 09/23/19 10:2	9 Analyz	ed: 10/02/19	15:33						
EPA 8270D (SIM)												
Acenaphthene	5.73		0.0400	ug/L	1	8.00		72	47 - 122%			
Acenaphthylene	5.54		0.0400	ug/L	1	8.00		69	41 - 130%			
Anthracene	5.98		0.0400	ug/L	1	8.00		75	57 - 123%			
Benz(a)anthracene	6.24		0.0400	ug/L	1	8.00		78	58 - 125%			
Benzo(a)pyrene	6.29		0.0400	ug/L	1	8.00		79	54 - 128%			
Benzo(b)fluoranthene	6.39		0.0400	ug/L	1	8.00		80	53 - 131%			
Benzo(k)fluoranthene	6.27		0.0400	ug/L	1	8.00			57 - 129%			
Benzo(g,h,i)perylene	6.36		0.0400	ug/L	1	8.00			50 - 134%			
Chrysene	6.22		0.0400	ug/L	1	8.00			59 - 123%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa A Zmeinghini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ons (PAH	s) by EPA	8270D SI	М				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091165 - EPA 3510C	(Acid Extra	ction)					Wat	er				
LCS (9091165-BS1)		Prepared	: 09/23/19 10:2	29 Analyz	ed: 10/02/1	9 15:33						
Dibenz(a,h)anthracene	6.56		0.0400	ug/L	1	8.00		82	51 - 134%			
Dibenzofuran	5.76		0.0400	ug/L	1	8.00		72	53 - 120%			
Fluoranthene	6.18		0.0400	ug/L	1	8.00		77	57 - 128%			
Fluorene	5.93		0.0400	ug/L	1	8.00		74	52 - 124%			
Indeno(1,2,3-cd)pyrene	6.32		0.0400	ug/L	1	8.00		79	52 - 133%			
1-Methylnaphthalene	5.27		0.0800	ug/L	1	8.00		66	41 - 120%			
2-Methylnaphthalene	5.25		0.0800	ug/L	1	8.00		66	40 - 121%			
Naphthalene	5.17		0.0800	ug/L	1	8.00		65	40 - 121%			
Phenanthrene	6.00		0.0400	ug/L	1	8.00		75	59 - 120%			
Pyrene	6.28		0.0400	ug/L	1	8.00		78	57 - 126%			
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 70 %	Limits: 44			ution: 1x					
p-Terphenyl-d14 (Surr)			77 %		-133 %		"					
LCS Dup (9091165-BSD1) EPA 8270D (SIM)		Prepared	: 09/23/19 10:2	29 Analyz	ed: 10/02/1	9 15:59						Ç
	5.07		0.0400	/T	1	0.00		72	47 1220/	2	30%	
Acenaphthene	5.87		0.0400	ug/L	1	8.00			47 - 122%			
Acenaphthylene	5.68		0.0400	ug/L	1	8.00			41 - 130%	3	30%	
Anthracene	6.01		0.0400	ug/L	1	8.00			57 - 123%	0.5	30%	
Benz(a)anthracene	6.24		0.0400	ug/L	1	8.00			58 - 125%	0.01	30%	
Benzo(a)pyrene	6.38		0.0400	ug/L	1	8.00			54 - 128%	1	30%	
Benzo(b)fluoranthene	6.46		0.0400	ug/L	1	8.00			53 - 131%	1	30%	
Benzo(k)fluoranthene	6.45		0.0400	ug/L	1	8.00			57 - 129%	3	30%	
Benzo(g,h,i)perylene	6.45		0.0400	ug/L	1	8.00			50 - 134%	1	30%	
Chrysene	6.51		0.0400	ug/L	1	8.00			59 - 123%	5	30%	
Dibenz(a,h)anthracene	6.65		0.0400	ug/L	1	8.00			51 - 134%	1	30%	
Dibenzofuran	5.89		0.0400	ug/L	1	8.00			53 - 120%	2	30%	
Fluoranthene	6.25		0.0400	ug/L	1	8.00		78	57 - 128%	1	30%	
Fluorene	6.05		0.0400	ug/L	1	8.00		76	52 - 124%	2	30%	
Indeno(1,2,3-cd)pyrene	6.36		0.0400	ug/L	1	8.00		80	52 - 133%	0.7	30%	
l-Methylnaphthalene	5.41		0.0800	ug/L	1	8.00		68	41 - 120%	3	30%	
2-Methylnaphthalene	5.44		0.0800	ug/L	1	8.00		68	40 - 121%	3	30%	
Naphthalene	5.44		0.0800	ug/L	1	8.00		68	40 - 121%	5	30%	
Phenanthrene	6.16		0.0400	ug/L	1	8.00		77	59 - 120%	3	30%	
Pyrene	6.39		0.0400	ug/L	1	8.00		80	57 - 126%	2	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

 Stantec Portland
 Project:
 Lampson

 9400 SW Barnes Rd Ste 200
 Project Number:
 185750581
 Report ID:

 Portland, OR 97225
 Project Manager:
 Len Farr
 A910633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM														
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes			
Batch 9091165 - EPA 3510C	(Acid Extra	ction)					Wat	er							
LCS Dup (9091165-BSD1)		Prepared	1: 09/23/19 10:	29 Analy	zed: 10/02/1	9 15:59						Q-19			
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 70 %	Limits: 4	14-120 %	Dili	ution: 1x								
p-Terphenyl-d14 (Surr)			77 %	5	0-133 %		"								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec Portland 9400 SW Barnes Rd Ste 200 Portland, OR 97225

Project: Lampson Project Number: 185750581 Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 200	.8 (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091131 - EPA 3015A							Wate	er				
Blank (9091131-BLK1)		Prepared	: 09/20/19 14:1	19 Analyz	red: 09/23/19	9 19:14						
EPA 200.8		•										
Arsenic	ND		1.00	ug/L	1							
Barium	ND		1.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		1.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
EPA 200.8 (Hg)				-								
Mercury	ND		0.0800	ug/L	1							
LCS (9091131-BS1)		Prepared	: 09/20/19 14:1	19 Analyz	ed: 09/23/19	9 19:19						
EPA 200.8		- I		·,								
Arsenic	51.6		1.00	ug/L	1	55.6		93	85 - 115%			
Barium	53.5		1.00	ug/L	1	55.6		96	85 - 115%			
Cadmium	51.1		0.200	ug/L	1	55.6		92	85 - 115%			
Chromium	53.5		1.00	ug/L	1	55.6		96	85 - 115%			
Lead	53.8		0.200	ug/L	1	55.6		97	85 - 115%			
Selenium	25.9		1.00	ug/L	1	27.8		93	85 - 115%			
Silver	28.1		0.200	ug/L	1	27.8		101	85 - 115%			
EPA 200.8 (Hg)				J								
Mercury	1.02		0.0800	ug/L	1	1.11		92	85 - 115%			
Duplicate (9091131-DUP1)		Prepared	: 09/20/19 14:1	19 Analyz	sed: 09/23/19	9 19:41						
QC Source Sample: GP-03 (A910	633-02)											
EPA 200.8												
Arsenic	39.4		5.00	ug/L	5		45.6			15	20%	
Barium	1000		5.00	ug/L	5		1040			4	20%	
Cadmium	ND		1.00	ug/L	5		0.336			***	20%	R-04
Chromium	293		5.00	ug/L	5		327			11	20%	
Lead	23.2		1.00	ug/L	5		23.8			2	20%	
Selenium	ND		5.00	ug/L	5		2.82			***	20%	R-04
Silver	ND		1.00	ug/L	5		ND				20%	R-04
EPA 200.8 (Hg)				J								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 200	.8 (ICPMS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REO	% REC Limits	RPD	RPD Limit	Notes
Batch 9091131 - EPA 3015A							Wat	er				
Duplicate (9091131-DUP1)		Prepared	: 09/20/19 14:1	19 Analyz	zed: 09/23/1	9 19:41						
QC Source Sample: GP-03 (A9100	633-02)											
Mercury	0.726		0.400	ug/L	5		0.730			0.6	20%	
Matrix Spike (9091131-MS1)		Prepared	: 09/20/19 14:1	19 Analyz	zed: 09/23/1	9 19:46						
OC Source Sample: GP-03 (A910	633-02)											
<u>EPA 200.8</u>												
Arsenic	94.7		5.00	ug/L	5	55.6	45.6	88	70 - 130%			
Barium	1080		5.00	ug/L	5	55.6	1040	61	70 - 130%			Q-03, Q-04
Cadmium	52.2		1.00	ug/L	5	55.6	0.336	93	70 - 130%			
Chromium	407		5.00	ug/L	5	55.6	327	145	70 - 130%			Q-03, Q-04
Lead	74.8		1.00	ug/L	5	55.6	23.8	92	70 - 130%			
Selenium	23.0		5.00	ug/L	5	27.8	2.82	73	70 - 130%			
Silver	27.8		1.00	ug/L	5	27.8	ND	100	70 - 130%			
EPA 200.8 (Hg)				C								
Mercury	1.76		0.400	ug/L	5	1.11	0.730	92	70 - 130%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland 9400 SW Barnes Rd Ste 200 Portland, OR 97225 Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolve	d Metals	by EPA 2	00.8 (ICPI	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091133 - Matrix Matc	hed Direct I	nject					Wat	er				
Blank (9091133-BLK2)		Prepared	: 09/20/19 14:2	29 Analyz	ed: 09/25/19	9 17:40						
EPA 200.8 (Diss)												
Arsenic	ND		1.00	ug/L	1							Q-16
Barium	ND		1.00	ug/L	1							Q-16
Cadmium	ND		0.200	ug/L	1							Q-16
Chromium	ND		1.00	ug/L	1							Q-16
Lead	ND		0.200	ug/L	1							Q-16
Selenium	ND		1.00	ug/L	1							Q-16
Silver	ND		0.200	ug/L	1							Q-16
EPA 200.8 (Hg)												
Mercury	ND		0.0800	ug/L	1							Q-16
LCS (9091133-BS2)		Prepared	: 09/20/19 14:2	29 Analyz	zed: 09/25/19	9 17:44						
EPA 200.8 (Diss)		<u> </u>										
Arsenic	51.5		1.00	ug/L	1	55.6		93	85 - 115%			Q-16
Barium	50.3		1.00	ug/L	1	55.6		91	85 - 115%			Q-16
Cadmium	51.0		0.200	ug/L	1	55.6		92	85 - 115%			Q-16
Chromium	51.6		1.00	ug/L	1	55.6		93	85 - 115%			Q-16
Lead	57.4		0.200	ug/L	1	55.6		103	85 - 115%			Q-16
Selenium	25.7		1.00	ug/L	1	27.8		93	85 - 115%			Q-16
Silver	29.4		0.200	ug/L	1	27.8		106	85 - 115%			Q-16
EPA 200.8 (Hg)				-								
Mercury	1.11		0.0800	ug/L	1	1.11		100	85 - 115%			Q-16
Duplicate (9091133-DUP2)		Prepared	: 09/20/19 14:2	29 Analyz	zed: 09/25/19	9 18:07						
QC Source Sample: GP-Y (A91	0633-04RE1)											
EPA 200.8 (Diss)												
Arsenic	1.80		1.00	ug/L	1		1.79			0.8	20%	Q-16
Barium	132		1.00	ug/L	1		131			0.7	20%	Q-16
Cadmium	ND		0.200	ug/L	1		ND				20%	Q-16
Chromium	ND		1.00	ug/L	1		ND				20%	Q-16
Lead	ND		0.200	ug/L	1		ND				20%	Q-05, Q-1
Selenium	ND		1.00	ug/L	1		ND				20%	Q-16
Silver	ND		0.200	ug/L	1		ND				20%	Q-16
EPA 200.8 (Hg)				-								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Jamenyhini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	Metals	by EPA 2	00.8 (ICPI	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091133 - Matrix Match	ed Direct I	nject					Wat	er				
Duplicate (9091133-DUP2)		Prepared	: 09/20/19 14:2	9 Analyz	zed: 09/25/1	9 18:07						
QC Source Sample: GP-Y (A9106	33-04RE1)											
Mercury	ND		0.0800	ug/L	1		ND				20%	Q-16
Matrix Spike (9091133-MS2)		Prepared	: 09/20/19 14:2	9 Analyz	zed: 09/25/1	9 18:16						
OC Source Sample: GP-Y (A9106 EPA 200.8 (Diss)	33-04RE1)											
Arsenic	56.3		1.00	ug/L	1	55.6	1.79	98	70 - 130%			Q-16
Barium	190		1.00	ug/L		55.6	131	106	70 - 130%			Q-16
Cadmium	53.4		0.200	ug/L	1	55.6	ND	96	70 - 130%			Q-16
Chromium	53.0		1.00	ug/L	1	55.6	ND	95	70 - 130%			Q-16
Lead	54.9		0.200	ug/L	1	55.6	ND	99	70 - 130%			Q-16
Selenium	28.0		1.00	ug/L	1	27.8	ND	101	70 - 130%			Q-16
Silver	28.9		0.200	ug/L	1	27.8	ND	104	70 - 130%			Q-16
EPA 200.8 (Hg)												
Mercury	1.09		0.0800	ug/L	1	1.11	ND	99	70 - 130%			Q-16

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0633 - 10 04 19 1456

SAMPLE PREPARATION INFORMATION

		Diesel and	l/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3510C (F	uels/Acid Ext.)			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091175							
A9I0633-01	Water	NWTPH-Dx	09/18/19 09:00	09/23/19 15:04	710mL/5mL	1000 mL/5 mL	1.41
A9I0633-02	Water	NWTPH-Dx	09/18/19 14:45	09/23/19 15:04	940mL/5mL	1000 mL/5 mL	1.06
A9I0633-03	Water	NWTPH-Dx	09/19/19 08:30	09/23/19 15:04	950mL/5mL	1000 mL/5 mL	1.05
A9I0633-04	Water	NWTPH-Dx	09/19/19 09:00	09/23/19 15:04	740mL/5mL	1000mL/5mL	1.35
	Gas	oline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091146			-	•			
A9I0633-01	Water	NWTPH-Gx (MS)	09/18/19 09:00	09/23/19 09:32	5mL/5mL	5mL/5mL	1.00
A9I0633-02	Water	NWTPH-Gx (MS)	09/18/19 14:45	09/23/19 09:32	5mL/5mL	5mL/5mL	1.00
A9I0633-03	Water	NWTPH-Gx (MS)	09/19/19 08:30	09/23/19 09:32	5mL/5mL	5mL/5mL	1.00
A9I0633-04	Water	NWTPH-Gx (MS)	09/19/19 09:00	09/23/19 09:32	5mL/5mL	5mL/5mL	1.00
		Volatile C	Organic Compounds	by EPA 8260C			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091146							
A9I0633-01	Water	EPA 8260C	09/18/19 09:00	09/23/19 09:32	5mL/5mL	5mL/5mL	1.00
A9I0633-02	Water	EPA 8260C	09/18/19 14:45	09/23/19 09:32	5mL/5mL	5mL/5mL	1.00
A9I0633-03	Water	EPA 8260C	09/19/19 08:30	09/23/19 09:32	5mL/5mL	5mL/5mL	1.00
A9I0633-04	Water	EPA 8260C	09/19/19 09:00	09/23/19 09:32	5mL/5mL	5mL/5mL	1.00
A9I0633-05	Water	EPA 8260C	09/18/19 00:00	09/23/19 09:32	5mL/5mL	5mL/5mL	1.00
		Polyaromatic F	lydrocarbons (PAHs	s) by EPA 8270D SII	M		
Prep: EPA 3510C (A	cid Extraction)			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091165 A9I0633-02	Water	EPA 8270D (SIM)	09/18/19 14:45	09/23/19 10:29	960mL/2mL	1000mL/2mL	1.04
		Total	Metals by EPA 200	.8 (ICPMS)			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goad Smerighini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0633 - 10 04 19 1456

SAMPLE PREPARATION INFORMATION

		Tota	l Metals by EPA 200	.8 (ICPMS)			
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091131							
A9I0633-01	Water	EPA 200.8	09/18/19 09:00	09/20/19 14:19	45mL/50mL	45mL/50mL	1.00
A9I0633-01	Water	EPA 200.8 (Hg)	09/18/19 09:00	09/20/19 14:19	45mL/50mL	45mL/50mL	1.00
A9I0633-02	Water	EPA 200.8	09/18/19 14:45	09/20/19 14:19	45mL/50mL	45mL/50mL	1.00
A9I0633-02	Water	EPA 200.8 (Hg)	09/18/19 14:45	09/20/19 14:19	45mL/50mL	45mL/50mL	1.00
A9I0633-03	Water	EPA 200.8	09/19/19 08:30	09/20/19 14:19	45mL/50mL	45mL/50mL	1.00
A9I0633-03	Water	EPA 200.8 (Hg)	09/19/19 08:30	09/20/19 14:19	45mL/50mL	45 mL/50 mL	1.00
A9I0633-04	Water	EPA 200.8	09/19/19 09:00	09/20/19 14:19	45mL/50mL	45mL/50mL	1.00
A9I0633-04	Water	EPA 200.8 (Hg)	09/19/19 09:00	09/20/19 14:19	45mL/50mL	45mL/50mL	1.00

		Dissolv	ed Metals by EPA 2	200.8 (ICPMS)			
Prep: Matrix Match	ed Direct Inject				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091133							
A9I0633-01RE1	Water	EPA 200.8 (Diss)	09/18/19 09:00	09/20/19 14:29	45mL/50mL	45mL/50mL	1.00
A9I0633-01RE1	Water	EPA 200.8 (Hg)	09/18/19 09:00	09/20/19 14:29	45mL/50mL	45mL/50mL	1.00
A9I0633-01RE2	Water	EPA 200.8 (Diss)	09/18/19 09:00	09/20/19 14:29	45mL/50mL	45mL/50mL	1.00
A9I0633-02RE1	Water	EPA 200.8 (Diss)	09/18/19 14:45	09/20/19 14:29	45mL/50mL	45mL/50mL	1.00
A9I0633-02RE1	Water	EPA 200.8 (Hg)	09/18/19 14:45	09/20/19 14:29	45mL/50mL	45mL/50mL	1.00
A9I0633-03RE1	Water	EPA 200.8 (Diss)	09/19/19 08:30	09/20/19 14:29	45mL/50mL	45mL/50mL	1.00
A9I0633-03RE1	Water	EPA 200.8 (Hg)	09/19/19 08:30	09/20/19 14:29	45mL/50mL	45mL/50mL	1.00
A9I0633-04RE1	Water	EPA 200.8 (Diss)	09/19/19 09:00	09/20/19 14:29	45mL/50mL	45 mL/50 mL	1.00
A9I0633-04RE1	Water	EPA 200.8 (Hg)	09/19/19 09:00	09/20/19 14:29	45mL/50mL	45mL/50mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

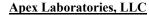
Awa & Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Stantec Portland Project: Lampson 9400 SW Barnes Rd Ste 200 Project Number: 185750581 Report ID: Portland, OR 97225 Project Manager: Len Farr A9I0633 - 10 04 19 1456

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:


Labora	

F-18	Result for Diesel (Diesel Range Organics, C12-C24) is due to overlap from Gasoline or a Gasoline Range product.
M-02	Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-03	Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
Q-04	Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-16	Reanalysis of an original Batch QC sample.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
R-02	The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
R-04	Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghine

 Stantec Portland
 Project:
 Lampson

 9400 SW Barnes Rd Ste 200
 Project Number:
 185750581
 Report ID:

 Portland, OR 97225
 Project Manager:
 Len Farr
 A910633 - 10 04 19 1456

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"__" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gesa A Zmenighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

 Stantec Portland
 Project:
 Lampson

 9400 SW Barnes Rd Ste 200
 Project Number:
 185750581
 Report ID:

 Portland, OR 97225
 Project Manager:
 Len Farr
 A910633 - 10 04 19 1456

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwast Jamenighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

 Stantec Portland
 Project:
 Lampson

 9400 SW Barnes Rd Ste 200
 Project Number:
 185750581
 Report ID:

 Portland, OR 97225
 Project Manager:
 Len Farr
 A910633 - 10 04 19 1456

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

7 Jo 7 OC	18505		улсијае									Date:	Time.	1700
H(10027 coc 1 of	Project #: 1857.5058	סשו	TCLP Medals (8)	×	>.	メ	×			Dx is detected,		RECEIVED BY: Signature:	Printed Name:	Company:
Lab#	9 stante.	QUEST	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Hg, Mg, V, Zn TOTAL DISS, TCLP TOTAL	2						0% is 0		Date:	Time:	
	Name: LAMPSON Projes	ANALYSIS REQUEST	Priority Metals (8) TBR/ 8081 Pest RCRA Metals (8) TBR/	×	% .	×	×			ν		N;		
STODY	Project Name: LAMPSON 93 Email: dana hytch.		8270 SIM PAHs 8270 SIM PAHs 8083 PCFs	X	エメ	#X	メ			Ru PHH T		RELINQUISHED BY: Signature:	Printed Name;	Company:
CHAIN OF CUSTODY	1 7 1	10000	8700 H ⁴ IO AOC ⁸ 8700 BBDW AOC ⁸ 8700 BLEX									9/20/19	671	
CHAIN	Far Phone: -499		AWTPH-Gx WWTPH-Dx WWTPH-HCID	X	X	X	X			Day Other:		Date:	E 	
8-2323	Len	97526	# OF CONTAINERS	b 1 0	5 M S	3	8 4	7	Morrori Trus Assumed Times (PAT) - 10 Decision D.	ay (3 Day)		RECEIVED BY:	Printed Name (Speck
23 Ph: 503-71	Project Mgr.	125	DATE TIME	4.8-19 090 W	M SHH HAS	9-19-19 0830 W	9-19-19 0900		Sund Time (TA)	1 Day 2 Day 4 DAY 5 DAY	Ē			Company
5.) Tigard, OR 972	Tec E Hillory	HUTChins	Q					5	Normal Turn A	(circle) 4 D	SAMPLE	ISHED BY: Tava Hatta Alfriga	Achins in	ne
AFEX LABS 5700 SW Sandburg St., Tigard, OR 97223 Ph: 503-718-2323	Company: STANTEC Project Mgr. Len FAN Project Address: PRS NE Hilk POCT IN GRAND PAUL Phone: -494-3793	Sampled by: Dana	Site Location: OR WA CA AK ID	HOD S	66-03	60-06	(アーツ	TB-09/919		TAT Requested (circle)		Signature: Signature: Fam T	Perinted Name: Time: Time:	Company: STanTue

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0633 - 10 04 19 1456

Client: Stantec	APEX LABS COOLER RECEIPT FORM
Project/Project #: Lan	Element WO#: A9 0633
	upson / 185750581
Delivery Info:	
Date/time received: 4	10/19 @ 10/29 By: &
	Client ESS FedEx UPS Swift Senvoy SDS Other
Choir of C	te/time inspected: 4 (10) 4 @ 1010 P
Chain of Custody include	- Start Star
Signed/dated by client?	Yes X No arr 9/20/9
Signed/dated by Apex?	ies_No
Temperature (°C)	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Received on ice? (Y/N)	1 1
Temp. blanks? (Y/N)	4 4
Ice type: (Gel/Real/Other)	Real Real
Condition: Cooler out of temp? (YAN)	Melty Melty
Samples Inspection: Date/	and some out, were green dots applied to out of temperature samples? Yes/No/NA time inspected: ### By: No Comments:
	29/19/19
Bottle labels/COCs agree? Y	ES No Comments: TB-091919 lists 1 court.
COC/container discrepancies	form initiated? Yes No NA 😾
Containers/volumes received	appropriate for analysis? Yes No Comments:
Do VOA vials have visible he	adspace? Yes No NA
Comments	in all unga except +Q-naigia
Water samples: pH checked: Y	/es/ No_NA_ pH appropriate? Yes/ No_NA
Comments:	
	# 210 < 110
Additional :c	# 211 No into on to Time
Additional information: 16	H LIS NO 11170 ON 12 Trip Hanks
	Tracking #: 7899 2984 8300
Additional information: The Labeled by: Witness	Tracking #: 1899 2991 8200

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Monday, October 14, 2019 Len Farr Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204

RE: A9I0687 - Lampson - 185750581

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9I0687, which was received by the laboratory on 9/20/2019 at 11:10:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: Idomenighini@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 1.2 degC Cooler #2 3.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmenyhini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORM	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GP04-1	A9I0687-01	Soil	09/17/19 13:20	09/20/19 11:10
GP04-12	A9I0687-02	Soil	09/17/19 13:45	09/20/19 11:10
GP03-2	A9I0687-03	Soil	09/18/19 09:30	09/20/19 11:10
GP03-8	A9I0687-04	Soil	09/18/19 10:00	09/20/19 11:10
GP-X	A9I0687-05	Soil	09/18/19 10:15	09/20/19 11:10
GP06-2	A910687-06	Soil	09/18/19 16:00	09/20/19 11:10
GP06-6	A9I0687-07	Soil	09/18/19 16:15	09/20/19 11:10
UST-01-T2-NB	A9I0687-08	Soil	09/19/19 11:00	09/20/19 11:10
UST-02-T2-SB	A9I0687-09	Soil	09/19/19 11:05	09/20/19 11:10
UST-03-T2-SE	A9I0687-10	Soil	09/19/19 12:30	09/20/19 11:10
UST-04-T1-NB	A9I0687-11	Soil	09/19/19 12:45	09/20/19 11:10
UST-05-T1-SB	A9I0687-12	Soil	09/19/19 13:00	09/20/19 11:10
UST-06-T1-SW	A9I0687-13	Soil	09/19/19 13:15	09/20/19 11:10

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL CASE NARRATIVE

Work Order: A9I0687

Subcontract

This report is not complete without the attached subcontract laboratory report for NWTPH EPH and NWTPH VPH from Fremont Analytical.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
GP04-1 (A9I0687-01RE1)				Matrix: Soil	l	Batch:	9091259	
Diesel	ND		25.0	mg/kg dry	1	09/25/19 10:05	NWTPH-Dx	
Oil	600		50.0	mg/kg dry	1	09/25/19 10:05	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 104 %	Limits: 50-150 %	% 1	09/25/19 10:05	NWTPH-Dx	
GP04-12 (A9I0687-02)					ļ	Batch:	9091236	
Diesel	ND		25.0	mg/kg dry	1	09/24/19 23:44	NWTPH-Dx	
Oil	ND		50.0	mg/kg dry	1	09/24/19 23:44	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 102 %	Limits: 50-150 %	% I	09/24/19 23:44	NWTPH-Dx	
GP03-2 (A9I0687-03)				Matrix: Soil	I	Batch:	9091236	
Diesel	ND		25.0	mg/kg dry	1	09/25/19 00:07	NWTPH-Dx	
Oil	ND		50.0	mg/kg dry	1	09/25/19 00:07	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	very: 110 %	Limits: 50-150 %	% I	09/25/19 00:07	NWTPH-Dx	
GP03-8 (A9I0687-04)				Matrix: Soil]	Batch:	9091236	
Diesel	58.3		25.0	mg/kg dry	1	09/25/19 00:29	NWTPH-Dx	F-19
Oil	170		50.0	mg/kg dry	1	09/25/19 00:29	NWTPH-Dx	F-16
Surrogate: o-Terphenyl (Surr)		Recov	ery: 109 %	Limits: 50-150 %	% 1	09/25/19 00:29	NWTPH-Dx	
GP-X (A9I0687-05)				Matrix: Soil	İ	Batch:	9091236	
Diesel	31.0		25.0	mg/kg dry	1	09/24/19 23:12	NWTPH-Dx	F-19
Oil	63.6		50.0	mg/kg dry	1	09/24/19 23:12	NWTPH-Dx	F-16
Surrogate: o-Terphenyl (Surr)		Reco	very: 93 %	Limits: 50-150 %	% 1	09/24/19 23:12	NWTPH-Dx	
GP06-2 (A9I0687-06)				Matrix: Soil	Ì	Batch:	9091236	
Diesel	ND		25.0	mg/kg dry	1	09/24/19 20:48	NWTPH-Dx	
Oil	ND		50.0	mg/kg dry	1	09/24/19 20:48	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 102 %	Limits: 50-150 %	% 1	09/24/19 20:48	NWTPH-Dx	
GP06-6 (A9I0687-07)				Matrix: Soil	I	Batch:	9091236	
Diesel	ND		25.0	mg/kg dry	1	09/24/19 21:07	NWTPH-Dx	
Oil	ND		50.0	mg/kg dry	1	09/24/19 21:07	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	very: 115 %	Limits: 50-150 %	% 1	09/24/19 21:07	NWTPH-Dx	
UST-01-T2-NB (A9I0687-08)				Matrix: Soil	Matrix: Soil Batch: 9091236		9091236	
Diesel	339		25.0	mg/kg dry	1	09/24/19 21:27	NWTPH-Dx	F-20

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTPI	H-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
UST-01-T2-NB (A910687-08)				Matrix: Soil		Batch:	9091236	
Oil	ND		50.0	mg/kg dry	1	09/24/19 21:27	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 115 %	Limits: 50-150 %	5 I	09/24/19 21:27	NWTPH-Dx	
UST-02-T2-SB (A910687-09)				Matrix: Soil		Batch:	9091236	
Diesel	574		25.0	mg/kg dry	1	09/24/19 21:47	NWTPH-Dx	F-19
Oil	483		50.0	mg/kg dry	1	09/24/19 21:47	NWTPH-Dx	F-16
Surrogate: o-Terphenyl (Surr)		Recov	ery: 118 %	Limits: 50-150 %	<i>I</i>	09/24/19 21:47	NWTPH-Dx	
UST-03-T2-SE (A910687-10)				Matrix: Soil		Batch:	9091236	
Diesel	238		25.0	mg/kg dry	1	09/24/19 22:07	NWTPH-Dx	F-19
Oil	257		50.0	mg/kg dry	1	09/24/19 22:07	NWTPH-Dx	F-16
Surrogate: o-Terphenyl (Surr)		Recov	ery: 110 %	Limits: 50-150 %	5 1	09/24/19 22:07	NWTPH-Dx	
UST-04-T1-NB (A9I0687-11)				Matrix: Soil		Batch:	9091236	
Diesel	376		25.0	mg/kg dry	1	09/24/19 22:27	NWTPH-Dx	F-20
Oil	ND		50.0	mg/kg dry	1	09/24/19 22:27	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 110 %	Limits: 50-150 %	1	09/24/19 22:27	NWTPH-Dx	
UST-05-T1-SB (A9I0687-12)				Matrix: Soil		Batch:	9091236	
Diesel	129		25.0	mg/kg dry	1	09/24/19 20:48	NWTPH-Dx	F-20
Oil	ND		50.0	mg/kg dry	1	09/24/19 20:48	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 103 %	Limits: 50-150 %	1	09/24/19 20:48	NWTPH-Dx	
UST-06-T1-SW (A9I0687-13)				Matrix: Soil		Batch:	9091236	
Diesel	746		25.0	mg/kg dry	1	09/24/19 21:07	NWTPH-Dx	F-19
Oil	117		50.0	mg/kg dry	1	09/24/19 21:07	NWTPH-Dx	F-16
Surrogate: o-Terphenyl (Surr)		Recove	ery: 107%	Limits: 50-150 %	1	09/24/19 21:07	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons (Benzene tl	hrough Na	phtha	lene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	<u> </u>	Dilution	Date Analyzed	Method Ref.	Notes
GP04-1 (A9I0687-01)				Matrix:	Soil		Batch	: 9091047	
Gasoline Range Organics	ND		5.72	mg/kg	dry	50	09/23/19 16:48	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 106 %	Limits: 50	-150 %	1	09/23/19 16:48	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			102 %	50-	-150 %	1	09/23/19 16:48	NWTPH-Gx (MS)	
GP04-12 (A9I0687-02)				Matrix:	Soil		Batch	: 9091047	
Gasoline Range Organics	67.6		5.49	mg/kg	dry	50	09/23/19 17:42	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 116 %	Limits: 50	-150 %	1	09/23/19 17:42	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			111 %	50-	-150 %	1	09/23/19 17:42	NWTPH-Gx (MS)	
GP03-2 (A9I0687-03)				Matrix:	Soil		Batch	: 9091047	
Gasoline Range Organics	ND		5.73	mg/kg	dry	50	09/23/19 18:09	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 107 %	Limits: 50	-150 %	1	09/23/19 18:09	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			102 %	50-	-150 %	1	09/23/19 18:09	NWTPH-Gx (MS)	
GP03-8 (A9I0687-04RE1)				Matrix:	Soil		Batch	: 9091213	
Gasoline Range Organics	324		12.9	mg/kg	dry	100	09/24/19 12:14	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 115 %	Limits: 50	-150 %	1	09/24/19 12:14	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-	-150 %	1	09/24/19 12:14	NWTPH-Gx (MS)	
GP-X (A9I0687-05RE1)				Matrix:	Soil		Batch	: 9091213	
Gasoline Range Organics	655		12.9	mg/kg	dry	100	09/24/19 12:41	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 121 %	Limits: 50	-150 %	1	09/24/19 12:41	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			107 %	50-	-150 %	1	09/24/19 12:41	NWTPH-Gx (MS)	
GP06-2 (A9I0687-06)				Matrix:	Soil		Batch	: 9091160	
Gasoline Range Organics	ND		5.56	mg/kg	dry	50	09/23/19 18:50	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 115 %	Limits: 50	-150 %	1	09/23/19 18:50	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %	50	-150 %	1	09/23/19 18:50	NWTPH-Gx (MS)	
GP06-6 (A9I0687-07)				Matrix:	Soil		Batch	: 9091108	
Gasoline Range Organics	ND		4.74	mg/kg	dry	50	09/23/19 21:45	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 104 %	Limits: 50	-150 %	1	09/23/19 21:45	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			109 %	50-	-150 %	1	09/23/19 21:45	NWTPH-Gx (MS)	
UST-01-T2-NB (A9I0687-08)			Matrix: Soil Batch: 9091108		: 9091108				
Gasoline Range Organics	8020		104	mg/kg	dry	1000	09/23/19 22:12	NWTPH-Gx (MS)	Q-42

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghine

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons (B	enzene th	rough Naphth	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
UST-01-T2-NB (A910687-08)				Matrix: Soil		Batch	: 9091108	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery:	109 % 111 %	Limits: 50-150 % 50-150 %		09/23/19 22:12 09/23/19 22:12	NWTPH-Gx (MS) NWTPH-Gx (MS)	
UST-02-T2-SB (A910687-09RE1)			111 70	Matrix: Soil	-		: 9091213	
Gasoline Range Organics	4900		106	mg/kg dry	1000	09/24/19 13:35	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery:		Limits: 50-150 % 50-150 %	6 I	09/24/19 13:35 09/24/19 13:35	NWTPH-Gx (MS) NWTPH-Gx (MS)	
UST-03-T2-SE (A9I0687-10)				Matrix: Soil		Batch	: 9091160	
Gasoline Range Organics	2360		108	mg/kg dry	1000	09/23/19 20:38	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery:	115 % 99 %	Limits: 50-150 % 50-150 %		09/23/19 20:38 09/23/19 20:38	NWTPH-Gx (MS) NWTPH-Gx (MS)	
UST-04-T1-NB (A9I0687-11)				Matrix: Soil		Batch	: 9091160	
Gasoline Range Organics	3280		104	mg/kg dry	1000	09/23/19 21:05	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery:	116 % 105 %	Limits: 50-150 % 50-150 %		09/23/19 21:05 09/23/19 21:05	NWTPH-Gx (MS) NWTPH-Gx (MS)	
UST-05-T1-SB (A9I0687-12)				Matrix: Soil		Batch	: 9091160	
Gasoline Range Organics	1560		106	mg/kg dry	1000	09/23/19 21:32	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery:	107 % 101 %	Limits: 50-150 % 50-150 %		09/23/19 21:32 09/23/19 21:32	NWTPH-Gx (MS) NWTPH-Gx (MS)	
UST-06-T1-SW (A9I0687-13)				Matrix: Soil	_	Batch: 9091160		
Gasoline Range Organics	3240		109	mg/kg dry	1000	09/23/19 22:00	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recovery:	107 % 102 %	Limits: 50-150 % 50-150 %		09/23/19 22:00 09/23/19 22:00	NWTPH-Gx (MS) NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Volati	<u>ile Organic C</u>	ompounds t	oy EPA 5035A	\/8260C			======
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP04-1 (A9I0687-01)				Matrix: Soil	ı	Batch:	: 9091047	
Acetone	ND		1.14	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Acrylonitrile	ND		0.114	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Benzene	ND		0.0114	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Bromobenzene	ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Bromochloromethane	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Bromodichloromethane	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Bromoform	ND		0.114	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Bromomethane	ND		0.572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
2-Butanone (MEK)	ND		0.572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
n-Butylbenzene	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
sec-Butylbenzene	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
tert-Butylbenzene	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Carbon disulfide	ND		0.572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Carbon tetrachloride	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Chlorobenzene	ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Chloroethane	ND		0.572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Chloroform	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Chloromethane	ND		0.286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
2-Chlorotoluene	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
4-Chlorotoluene	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Dibromochloromethane	ND		0.114	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		0.286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Dibromomethane	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,2-Dichlorobenzene	ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,3-Dichlorobenzene	ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,4-Dichlorobenzene	ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Dichlorodifluoromethane	ND		0.0280	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,1-Dichloroethane	ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,2-Dichloroethane (EDC)	ND ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,1-Dichloroethene	ND ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
cis-1,2-Dichloroethene	ND ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
trans-1,2-Dichloroethene	ND ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C 5035A/8260C	
1,2-Dichloropropane	ND ND		0.0286	mg/kg dry mg/kg dry	50 50	09/23/19 16:48	5035A/8260C	
	ND ND		0.0286		50 50	09/23/19 16:48	5035A/8260C 5035A/8260C	
1,3-Dichloropropane				mg/kg dry		09/23/19 16:48	5035A/8260C 5035A/8260C	
2,2-Dichloropropane	ND ND		0.0572	mg/kg dry	50 50			
1,1-Dichloropropene	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
cis-1,3-Dichloropropene	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Gwa & Smeinghini

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Vola	tile Organic C	ompounds	by EPA 5035A/	8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
GP04-1 (A9l0687-01)				Matrix: Soil		Batch:	9091047	
Ethylbenzene	ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Hexachlorobutadiene	ND		0.114	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
2-Hexanone	ND		0.572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Isopropylbenzene	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
4-Isopropyltoluene	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Methylene chloride	ND		0.286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		0.572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Naphthalene	ND		0.114	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
n-Propylbenzene	ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Styrene	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Toluene	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,2,3-Trichlorobenzene	ND		0.286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,2,4-Trichlorobenzene	ND		0.286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,1,1-Trichloroethane	ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,1,2-Trichloroethane	ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Trichloroethene (TCE)	ND		0.0286	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Trichlorofluoromethane	ND		0.114	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,2,3-Trichloropropane	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,2,4-Trimethylbenzene	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
1,3,5-Trimethylbenzene	ND		0.0572	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
Vinyl chloride	ND		0.0372	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
•	ND ND		0.0280		50	09/23/19 16:48	5035A/8260C	
m,p-Xylene	ND ND		0.0372	mg/kg dry	50	09/23/19 16:48	5035A/8260C	
o-Xylene	ND			mg/kg dry				
Surrogate: 1,4-Difluorobenzene (Surr)		Recove		Limits: 80-120 %		09/23/19 16:48	5035A/8260C	
Toluene-d8 (Surr)			99 %	80-120 %		09/23/19 16:48	5035A/8260C	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	09/23/19 16:48	5035A/8260C	
GP04-12 (A9I0687-02)				Matrix: Soil		Batch:	9091047	
Acetone	ND		1.10	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Acrylonitrile	ND		0.330	mg/kg dry	50	09/23/19 17:42	5035A/8260C	R-02
Benzene	ND		0.0110	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Bromobenzene	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Bromochloromethane	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Bromodichloromethane	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Volat	tile Organic (Compounds I	oy EPA 5035 <i>A</i>	\/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP04-12 (A9I0687-02)				Matrix: Soi	ı	Batch:	: 9091047	
Bromoform	ND		0.110	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Bromomethane	ND		0.549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
2-Butanone (MEK)	ND		0.824	mg/kg dry	50	09/23/19 17:42	5035A/8260C	R-02
n-Butylbenzene	0.148		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
sec-Butylbenzene	0.0692		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
tert-Butylbenzene	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Carbon disulfide	ND		0.549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Carbon tetrachloride	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Chlorobenzene	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Chloroethane	ND		0.549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Chloroform	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Chloromethane	ND		0.275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
2-Chlorotoluene	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
4-Chlorotoluene	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Dibromochloromethane	ND		0.110	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		0.275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Dibromomethane	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,2-Dichlorobenzene	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,3-Dichlorobenzene	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,4-Dichlorobenzene	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Dichlorodifluoromethane	ND		0.110	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,1-Dichloroethane	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,1-Dichloroethene	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,2-Dichloropropane	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,3-Dichloropropane	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
2,2-Dichloropropane	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,1-Dichloropropene	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
cis-1,3-Dichloropropene	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Ethylbenzene	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Hexachlorobutadiene	ND		0.110	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
2-Hexanone	ND		0.549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Isopropylbenzene	0.0890		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
4-Isopropyltoluene	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Methylene chloride	ND		0.275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
·· J	1,2		J.= , J					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

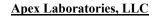
Gwas Smerighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS


	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
GP04-12 (A9I0687-02)				Matrix: Soil		Batch:	9091047	
4-Methyl-2-pentanone (MiBK)	ND		0.549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Naphthalene	ND		0.110	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
n-Propylbenzene	0.245		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Styrene	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Toluene	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,2,3-Trichlorobenzene	ND		0.275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,2,4-Trichlorobenzene	ND		0.275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,1,1-Trichloroethane	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,1,2-Trichloroethane	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Trichloroethene (TCE)	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Trichlorofluoromethane	ND		0.110	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,2,3-Trichloropropane	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,2,4-Trimethylbenzene	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
1,3,5-Trimethylbenzene	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Vinyl chloride	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
m,p-Xylene	ND		0.0549	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
o-Xylene	ND		0.0275	mg/kg dry	50	09/23/19 17:42	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 94%	Limits: 80-120 %	1	09/23/19 17:42	5035A/8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	09/23/19 17:42	5035A/8260C	
4-Bromofluorobenzene (Surr)			105 %	80-120 %	1	09/23/19 17:42	5035A/8260C	
GP03-2 (A9I0687-03)				Matrix: Soil		Batch:	9091047	
Acetone	ND		1.15	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
Acrylonitrile	ND		0.115	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
Benzene	ND		0.0115	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
Bromobenzene	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
Bromochloromethane	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
Bromodichloromethane	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
Bromoform	ND		0.115	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
Bromomethane	ND		0.573	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
2-Butanone (MEK)	ND		0.573	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
n-Butylbenzene	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
sec-Butylbenzene	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
Det Dary to on Lone	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Awa & Smerighini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS


	Volatile Organic Compounds by EPA 5035A/8260C										
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
GP03-2 (A9I0687-03)				Matrix: Soi	I	Batch	: 9091047				
Carbon disulfide	ND		0.573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
Carbon tetrachloride	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
Chlorobenzene	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
Chloroethane	ND		0.573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
Chloroform	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
Chloromethane	ND		0.286	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
2-Chlorotoluene	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
4-Chlorotoluene	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
Dibromochloromethane	ND		0.115	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
1,2-Dibromo-3-chloropropane	ND		0.286	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
1,2-Dibromoethane (EDB)	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
Dibromomethane	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
1,2-Dichlorobenzene	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
1,3-Dichlorobenzene	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
1,4-Dichlorobenzene	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
Dichlorodifluoromethane	ND		0.115	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
1,1-Dichloroethane	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
1,2-Dichloroethane (EDC)	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
1,1-Dichloroethene	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
cis-1,2-Dichloroethene	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
trans-1,2-Dichloroethene	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
1,2-Dichloropropane	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
1,3-Dichloropropane	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
2,2-Dichloropropane	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
1,1-Dichloropropene	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
cis-1,3-Dichloropropene	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
trans-1,3-Dichloropropene	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
Ethylbenzene	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
Hexachlorobutadiene	ND		0.115	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
2-Hexanone	ND		0.573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
Isopropylbenzene	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
4-Isopropyltoluene	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
Methylene chloride	ND		0.286	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
4-Methyl-2-pentanone (MiBK)	ND		0.573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
Methyl tert-butyl ether (MTBE)	ND		0.573	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
Naphthalene	ND ND		0.0373	mg/kg dry	50	09/23/19 18:09	5035A/8260C				
n-Propylbenzene	ND ND		0.115	mg/kg ary mg/kg dry	50 50	09/23/19 18:09	5035A/8260C 5035A/8260C				
= :						09/23/19 18:09	5035A/8260C 5035A/8260C				
Styrene	ND ND		0.0573	mg/kg dry	50						
1,1,1,2-Tetrachloroethane	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Awa & Smeinghini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Vola	tile Organic C	compounds	by EPA 5035A/8	8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP03-2 (A9I0687-03)				Matrix: Soil		Batch:	9091047	
1,1,2,2-Tetrachloroethane	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
Toluene	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
1,2,3-Trichlorobenzene	ND		0.286	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
1,2,4-Trichlorobenzene	ND		0.286	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
1,1,1-Trichloroethane	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
1,1,2-Trichloroethane	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
Trichloroethene (TCE)	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
Trichlorofluoromethane	ND		0.115	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
1,2,3-Trichloropropane	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
1,2,4-Trimethylbenzene	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
1,3,5-Trimethylbenzene	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
Vinyl chloride	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
m,p-Xylene	ND		0.0573	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
o-Xylene	ND		0.0286	mg/kg dry	50	09/23/19 18:09	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 95 %	Limits: 80-120 %	1	09/23/19 18:09	5035A/8260C	
Toluene-d8 (Surr)			101 %	80-120 %	1	09/23/19 18:09	5035A/8260C	
4-Bromofluorobenzene (Surr)			105 %	80-120 %	1	09/23/19 18:09	5035A/8260C	
GP03-8 (A9I0687-04RE1)				Matrix: Soil		Batch:	9091213	
Acetone	ND		2.59	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Acrylonitrile	ND		0.906	mg/kg dry	100	09/24/19 12:14	5035A/8260C	R-02
Benzene	0.0774		0.0259	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Bromobenzene	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Bromochloromethane	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Bromodichloromethane	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Bromoform	ND		0.259	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Bromomethane	ND		1.29	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
2-Butanone (MEK)	ND		1.94	mg/kg dry	100	09/24/19 12:14	5035A/8260C	R-02
n-Butylbenzene	0.391		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	M-02
sec-Butylbenzene	0.162		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
tert-Butylbenzene	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Carbon disulfide	ND		1.29	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Carbon tetrachloride	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Chlorobenzene	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Chloroethane	ND		1.29	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
	- 1							
Chloroform	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 13 of 104

Awa & Smerighini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Vola	tile Organic (Compounds I	by EPA 5035 <i>A</i>	A/8260C			
	Sample	Detection	Reporting	_		Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP03-8 (A9I0687-04RE1)				Matrix: Soi	ı	Batch	9091213	
2-Chlorotoluene	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
4-Chlorotoluene	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Dibromochloromethane	ND		0.259	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		0.647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Dibromomethane	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,2-Dichlorobenzene	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,3-Dichlorobenzene	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,4-Dichlorobenzene	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Dichlorodifluoromethane	ND		0.259	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,1-Dichloroethane	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,1-Dichloroethene	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,2-Dichloropropane	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,3-Dichloropropane	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
2,2-Dichloropropane	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,1-Dichloropropene	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
cis-1,3-Dichloropropene	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Ethylbenzene	1.60		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Hexachlorobutadiene	ND		0.259	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
2-Hexanone	ND		1.29	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Isopropylbenzene	0.446		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
4-Isopropyltoluene	0.131		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	M-02
Methylene chloride	ND		0.647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		1.29	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Naphthalene	1.33		0.259	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
n-Propylbenzene	1.38		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Styrene	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Toluene	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,2,3-Trichlorobenzene	ND		0.647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,2,4-Trichlorobenzene	ND		0.647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,1,1-Trichloroethane	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,1,1-111011010001111110	ND		0.0047	mg/kg ury	100	07/21/17 12:11	20321202000	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gisa A Zomenighini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Vola	tile Organic Co	npounds	by EPA 5035A/	8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP03-8 (A9I0687-04RE1)				Matrix: Soil		Batch:	9091213	
1,1,2-Trichloroethane	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Trichloroethene (TCE)	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Trichlorofluoromethane	ND		0.259	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,2,3-Trichloropropane	ND		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,2,4-Trimethylbenzene	1.36		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
1,3,5-Trimethylbenzene	2.84		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Vinyl chloride	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
m,p-Xylene	0.720		0.129	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
o-Xylene	ND		0.0647	mg/kg dry	100	09/24/19 12:14	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	111 %	Limits: 80-120 %	1	09/24/19 12:14	5035A/8260C	
Toluene-d8 (Surr)			95 %	80-120 %	1	09/24/19 12:14	5035A/8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	09/24/19 12:14	5035A/8260C	
GP-X (A9I0687-05RE1)				Matrix: Soil		Batch:	9091213	
Acetone	ND		2.59	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Acrylonitrile	ND		3.24	mg/kg dry	100	09/24/19 12:41	5035A/8260C	R-02
Benzene	0.203		0.0259	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Bromobenzene	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Bromochloromethane	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Bromodichloromethane	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Bromoform	ND		0.259	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Bromomethane	ND		1.29	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
2-Butanone (MEK)	ND		4.53	mg/kg dry	100	09/24/19 12:41	5035A/8260C	R-02
n-Butylbenzene	0.646		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	M-02
sec-Butylbenzene	0.263		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
tert-Butylbenzene	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Carbon disulfide	ND		1.29	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Carbon tetrachloride	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Chlorobenzene	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Chloroethane	ND		1.29	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Chloroform	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Chloromethane	ND		0.647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
2-Chlorotoluene	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
4-Chlorotoluene	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Dibromochloromethane	ND		0.259	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		0.647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Dibromomethane	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa't Emerighini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Volat	tile Organic (Compounds I	oy EPA 5035 <i>A</i>	A/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-X (A9I0687-05RE1)				Matrix: Soi	I	Batch:		
1,2-Dichlorobenzene	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,3-Dichlorobenzene	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,4-Dichlorobenzene	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Dichlorodifluoromethane	ND		0.259	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,1-Dichloroethane	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,1-Dichloroethene	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,2-Dichloropropane	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,3-Dichloropropane	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
2,2-Dichloropropane	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,1-Dichloropropene	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
cis-1,3-Dichloropropene	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Ethylbenzene	3.06		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Hexachlorobutadiene	ND		0.259	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
2-Hexanone	ND		1.29	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Isopropylbenzene	0.819		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
4-Isopropyltoluene	0.228		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	M-02
Methylene chloride	ND		0.647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		1.29	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Naphthalene	2.25		0.259	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
n-Propylbenzene	2.41		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Styrene	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Toluene	ND		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,2,3-Trichlorobenzene	ND		0.647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,2,4-Trichlorobenzene	ND		0.647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,1,1-Trichloroethane	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,1,2-Trichloroethane	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Trichloroethene (TCE)	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Trichlorofluoromethane	ND		0.259	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
1,2,3-Trichloropropane	ND		0.259	mg/kg dry	100	09/24/19 12:41	5035A/8260C	R-02
1,2,4-Trimethylbenzene	2.87		0.239	mg/kg dry	100	09/24/19 12:41	5035A/8260C	1. 02
1,3,5-Trimethylbenzene	5.03		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gusa & Zmenighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Vola	tile Organic Co	mpounds	by EPA 5035A/	8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-X (A9I0687-05RE1)				Matrix: Soil		Batch:	9091213	
Vinyl chloride	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
m,p-Xylene	1.61		0.129	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
o-Xylene	ND		0.0647	mg/kg dry	100	09/24/19 12:41	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 113 %	Limits: 80-120 %	1	09/24/19 12:41	5035A/8260C	
Toluene-d8 (Surr)			95 %	80-120 %	1	09/24/19 12:41	5035A/8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	09/24/19 12:41	5035A/8260C	
GP06-2 (A9I0687-06)				Matrix: Soil		Batch:	9091160	
Acetone	ND		1.11	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Acrylonitrile	ND		0.111	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Benzene	ND		0.0111	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Bromobenzene	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Bromochloromethane	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Bromodichloromethane	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Bromoform	ND		0.111	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Bromomethane	ND		0.556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
2-Butanone (MEK)	ND		0.556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
n-Butylbenzene	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
sec-Butylbenzene	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
tert-Butylbenzene	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Carbon disulfide	ND		0.556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Carbon tetrachloride	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Chlorobenzene	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Chloroethane	ND		0.556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Chloroform	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Chloromethane	ND		0.278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
2-Chlorotoluene	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
4-Chlorotoluene	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Dibromochloromethane	ND		0.111	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		0.278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Dibromomethane	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,2-Dichlorobenzene	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,3-Dichlorobenzene	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,4-Dichlorobenzene	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Dichlorodifluoromethane	ND		0.111	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,1-Dichloroethane	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 17 of 104

Awa & Smeinghine

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP06-2 (A9I0687-06)				Matrix: Soil		Batch:	9091160	
1,1-Dichloroethene	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,2-Dichloropropane	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,3-Dichloropropane	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
2,2-Dichloropropane	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,1-Dichloropropene	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
cis-1,3-Dichloropropene	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Ethylbenzene	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Hexachlorobutadiene	ND		0.111	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
2-Hexanone	ND		0.556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Isopropylbenzene	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
4-Isopropyltoluene	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Methylene chloride	ND		0.278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		0.556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Naphthalene	ND		0.111	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
n-Propylbenzene	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Styrene	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Toluene	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,2,3-Trichlorobenzene	ND		0.278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,2,4-Trichlorobenzene	ND		0.278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,1,1-Trichloroethane	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,1,2-Trichloroethane	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Trichloroethene (TCE)	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Trichlorofluoromethane	ND		0.111	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,2,3-Trichloropropane	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,2,4-Trimethylbenzene	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
1,3,5-Trimethylbenzene	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Vinyl chloride	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
m,p-Xylene	ND		0.0556	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
o-Xylene	ND		0.0278	mg/kg dry	50	09/23/19 18:50	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 110 %	Limits: 80-120 %	6 <i>1</i>	09/23/19 18:50	5035A/8260C	
Toluene-d8 (Surr)			93 %	80-120 %		09/23/19 18:50	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Gwa & Smeinghini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Volat	tile Organic Co	mpounds	by EPA 5035A/8	8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP06-2 (A9I0687-06)				Matrix: Soil		Batch: 9091160		
Surrogate: 4-Bromofluorobenzene (Surr)		Recover	ry: 97%	Limits: 80-120 %	1	09/23/19 18:50	5035A/8260C	
GP06-6 (A9I0687-07)				Matrix: Soil		Batch:	9091108	
Acetone	ND		0.947	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Acrylonitrile	ND		0.0947	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Benzene	ND		0.00947	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Bromobenzene	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Bromochloromethane	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Bromodichloromethane	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Bromoform	ND		0.0947	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Bromomethane	ND		0.474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
2-Butanone (MEK)	ND		0.474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
n-Butylbenzene	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
sec-Butylbenzene	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
tert-Butylbenzene	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Carbon disulfide	ND		0.474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Carbon tetrachloride	ND		0.0947	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Chlorobenzene	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Chloroethane	ND		0.474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Chloroform	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Chloromethane	ND		0.237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
2-Chlorotoluene	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
4-Chlorotoluene	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Dibromochloromethane	ND		0.0947	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		0.237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Dibromomethane	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,2-Dichlorobenzene	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,3-Dichlorobenzene	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,4-Dichlorobenzene	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Dichlorodifluoromethane	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,1-Dichloroethane	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,1-Dichloroethene	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,2-Dichloropropane	ND ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,3-Dichloropropane	ND ND		0.0947	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
2,2-Dichloropropane	ND ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C 5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 19 of 104

Grand Jamenghini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
GP06-6 (A9I0687-07)				Matrix: Soil		Batch:	9091108	
1,1-Dichloropropene	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
cis-1,3-Dichloropropene	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Ethylbenzene	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Hexachlorobutadiene	ND		0.0947	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
2-Hexanone	ND		0.474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Isopropylbenzene	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
4-Isopropyltoluene	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Methylene chloride	ND		0.237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		0.474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Naphthalene	ND		0.0947	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
n-Propylbenzene	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Styrene	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Toluene	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,2,3-Trichlorobenzene	ND		0.237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,2,4-Trichlorobenzene	ND		0.237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,1,1-Trichloroethane	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,1,2-Trichloroethane	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Trichloroethene (TCE)	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Trichlorofluoromethane	ND		0.0947	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,2,3-Trichloropropane	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,2,4-Trimethylbenzene	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
1,3,5-Trimethylbenzene	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Vinyl chloride	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
m,p-Xylene	ND		0.0474	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
o-Xylene	ND		0.0237	mg/kg dry	50	09/23/19 21:45	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 99 %	Limits: 80-120 %	1	09/23/19 21:45	5035A/8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	09/23/19 21:45	5035A/8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %		09/23/19 21:45	5035A/8260C	
				Matrix: Soil		Batch: 9091108		
Acetone	ND		20.7	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Acrylonitrile	ND		10.4	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	R-02
Benzene	0.724		0.207	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	Q-42

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghine

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Vola	tile Organic (Compounds b	oy EPA 5035A	/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
UST-01-T2-NB (A9I0687-08)				Matrix: Soi	<u> </u>	Batch	9091108	
Bromobenzene	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Bromochloromethane	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Bromodichloromethane	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Bromoform	ND		2.07	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Bromomethane	ND		10.4	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
2-Butanone (MEK)	ND		20.7	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	R-02
n-Butylbenzene	11.2		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	Q-42
sec-Butylbenzene	4.93		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	Q-42
tert-Butylbenzene	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Carbon disulfide	ND		10.4	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Carbon tetrachloride	ND		2.07	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Chlorobenzene	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Chloroethane	ND		10.4	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Chloroform	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Chloromethane	ND		5.18	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
2-Chlorotoluene	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
4-Chlorotoluene	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Dibromochloromethane	ND		2.07	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		5.18	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Dibromomethane	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,2-Dichlorobenzene	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,3-Dichlorobenzene	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,4-Dichlorobenzene	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Dichlorodifluoromethane	ND		2.07	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,1-Dichloroethane	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,1-Dichloroethene	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,2-Dichloropropane	ND		2.07	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,3-Dichloropropane	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
2,2-Dichloropropane	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,1-Dichloropropene	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
cis-1,3-Dichloropropene	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
trans-1,3-Dichloropropene	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Ethylbenzene	87.3		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	Q-42
Hexachlorobutadiene	ND		2.07	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	~ ·2
2-Hexanone	ND ND		10.4	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmenghini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008


ANALYTICAL SAMPLE RESULTS

	Vola	tile Organic C	ompounds	by EPA 5035A/	826UC			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
UST-01-T2-NB (A9I0687-08)				Matrix: Soil		Batch:	9091108	
Isopropylbenzene	13.0		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	Q-42
4-Isopropyltoluene	3.74		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	M-02, Q-4
Methylene chloride	ND		5.18	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		31.1	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	R-02
Methyl tert-butyl ether (MTBE)	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Naphthalene	20.8		2.07	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	Q-42
n-Propylbenzene	52.9		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	Q-42
Styrene	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		2.07	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	R-02
Tetrachloroethene (PCE)	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Toluene	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	Q-42
1,2,3-Trichlorobenzene	ND		5.18	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,2,4-Trichlorobenzene	ND		5.18	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,1,1-Trichloroethane	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,1,2-Trichloroethane	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Trichloroethene (TCE)	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
Trichlorofluoromethane	ND		2.07	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,2,3-Trichloropropane	ND		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
1,3,5-Trimethylbenzene	11.8		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	Q-42
Vinyl chloride	ND		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	
m,p-Xylene	137		1.04	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	Q-42
o-Xylene	1.40		0.518	mg/kg dry	1000	09/23/19 22:12	5035A/8260C	Q-42
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 102 %	Limits: 80-120 %	1	09/23/19 22:12	5035A/8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	09/23/19 22:12	5035A/8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	09/23/19 22:12	5035A/8260C	
UST-01-T2-NB (A9I0687-08RE1)				Matrix: Soil		Batch:	9091213	
1,2,4-Trimethylbenzene	219		10.4	mg/kg dry	10000	09/24/19 15:23	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 112 %	Limits: 80-120 %	1	09/24/19 15:23	5035A/8260C	
Toluene-d8 (Surr)			94 %	80-120 %	1	09/24/19 15:23	5035A/8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	09/24/19 15:23	5035A/8260C	
UST-02-T2-SB (A9I0687-09RE1)				Matrix: Soil		Batch:	9091213	
Acetone	ND		21.2	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Acrylonitrile	ND		15.9	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	R-02
Benzene	0.849		0.212	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Bromobenzene	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assart Zmenighini

Stantec Portland Project: 601 SW 2nd Ave Suite 1400 Project Number: 185750581 Portland, OR 97204 Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

Lampson

	Vola	tile Organic (Compounds I	oy EPA 5035 <i>A</i>	\/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
UST-02-T2-SB (A9I0687-09RE1)				Matrix: Soi	I	Batch:	9091213	
Bromochloromethane	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Bromodichloromethane	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Bromoform	ND		2.12	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Bromomethane	ND		10.6	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
2-Butanone (MEK)	ND		26.5	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	R-02
n-Butylbenzene	3.16		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	M-02
sec-Butylbenzene	1.59		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
tert-Butylbenzene	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Carbon disulfide	ND		10.6	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Carbon tetrachloride	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Chlorobenzene	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Chloroethane	ND		10.6	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Chloroform	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Chloromethane	ND		5.29	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
2-Chlorotoluene	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
4-Chlorotoluene	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Dibromochloromethane	ND		2.12	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		5.29	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Dibromomethane	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,2-Dichlorobenzene	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,3-Dichlorobenzene	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,4-Dichlorobenzene	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Dichlorodifluoromethane	ND		2.12	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,1-Dichloroethane	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,1-Dichloroethene	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,2-Dichloropropane	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,3-Dichloropropane	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
2,2-Dichloropropane	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,1-Dichloropropene	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
cis-1,3-Dichloropropene	ND ND		1.06		1000	09/24/19 13:35	5035A/8260C 5035A/8260C	
trans-1,3-Dichloropropene	ND ND		1.06	mg/kg dry mg/kg dry	1000	09/24/19 13:35	5035A/8260C 5035A/8260C	
Ethylbenzene	38.5		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C 5035A/8260C	
Hexachlorobutadiene						09/24/19 13:35	5035A/8260C 5035A/8260C	
	ND ND		2.12 10.6	mg/kg dry	1000 1000	09/24/19 13:35	5035A/8260C 5035A/8260C	
2-Hexanone				mg/kg dry			5035A/8260C 5035A/8260C	
Isopropylbenzene	4.46		1.06	mg/kg dry	1000	09/24/19 13:35	3033A/8200C	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini Lisa Domenighini, Client Services Manager

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204
Projection

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Vola	tile Organic C	ompounds	by EPA 5035A/8	3260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
UST-02-T2-SB (A9I0687-09RE1)				Matrix: Soil		Batch:	9091213	
4-Isopropyltoluene	1.30		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	M-02
Methylene chloride	ND		5.29	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		10.6	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Naphthalene	12.3		2.12	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
n-Propylbenzene	13.2		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Styrene	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Toluene	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,2,3-Trichlorobenzene	ND		5.29	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,2,4-Trichlorobenzene	ND		5.29	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,1,1-Trichloroethane	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,1,2-Trichloroethane	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Trichloroethene (TCE)	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Trichlorofluoromethane	ND		2.12	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,2,3-Trichloropropane	ND		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,2,4-Trimethylbenzene	101		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
1,3,5-Trimethylbenzene	31.4		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Vinyl chloride	ND		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
m,p-Xylene	182		1.06	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
o-Xylene	0.976		0.529	mg/kg dry	1000	09/24/19 13:35	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 111 %	Limits: 80-120 %	1	09/24/19 13:35	5035A/8260C	
Toluene-d8 (Surr)			94 %	80-120 %	1	09/24/19 13:35	5035A/8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	09/24/19 13:35	5035A/8260C	
JST-03-T2-SE (A9I0687-10)				Matrix: Soil		Batch:	Batch: 9091160	
Acetone	ND		21.6	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Acrylonitrile	ND		3.25	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	R-02
Benzene	ND		0.216	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Bromobenzene	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Bromochloromethane	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Bromodichloromethane	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Bromoform	ND		2.16	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Bromomethane	ND		10.8	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
2-Butanone (MEK)	ND		10.8	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
n-Butylbenzene	2.51		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Grand Jamenghini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Volat	tile Organic (Compounds b	oy EPA 5035A	\/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
UST-03-T2-SE (A9I0687-10)				Matrix: Soi	1	Batch:	9091160	
sec-Butylbenzene	1.18		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
tert-Butylbenzene	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Carbon disulfide	ND		10.8	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Carbon tetrachloride	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Chlorobenzene	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Chloroethane	ND		10.8	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Chloroform	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Chloromethane	ND		5.41	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
2-Chlorotoluene	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
4-Chlorotoluene	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Dibromochloromethane	ND		2.16	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		5.41	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Dibromomethane	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,2-Dichlorobenzene	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,3-Dichlorobenzene	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,4-Dichlorobenzene	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Dichlorodifluoromethane	ND		2.16	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,1-Dichloroethane	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,1-Dichloroethene	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,2-Dichloropropane	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,3-Dichloropropane	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
2,2-Dichloropropane	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,1-Dichloropropene	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
cis-1,3-Dichloropropene	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
trans-1,3-Dichloropropene	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Ethylbenzene	13.0		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Hexachlorobutadiene	ND		2.16	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
2-Hexanone	ND		10.8	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Isopropylbenzene	2.33		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
4-Isopropyltoluene	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Methylene chloride	ND		5.41	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		10.8	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Naphthalene	8.16		2.16	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
n-Propylbenzene	6.98		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwas Smerighini

Stantec Portland Project:
601 SW 2nd Ave Suite 1400 Project Nur
Portland, OR 97204 Project Man

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
IST-03-T2-SE (A9I0687-10)				Matrix: Soil		Batch:		
Styrene	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Toluene	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,2,3-Trichlorobenzene	ND		5.41	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,2,4-Trichlorobenzene	ND		5.41	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,1,1-Trichloroethane	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,1,2-Trichloroethane	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Trichloroethene (TCE)	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Trichlorofluoromethane	ND		2.16	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,2,3-Trichloropropane	ND		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,2,4-Trimethylbenzene	55.4		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
1,3,5-Trimethylbenzene	4.37		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Vinyl chloride	ND		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
m,p-Xylene	29.3		1.08	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
o-Xylene	3.08		0.541	mg/kg dry	1000	09/23/19 20:38	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 111 %	Limits: 80-120 %	1	09/23/19 20:38	5035A/8260C	
Toluene-d8 (Surr)			94 %	80-120 %	1	09/23/19 20:38	5035A/8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	09/23/19 20:38	5035A/8260C	
JST-04-T1-NB (A9I0687-11)				Matrix: Soil		Batch:	9091160	
Acetone	ND		20.8	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
Acrylonitrile	ND		4.15	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	R-02
Benzene	0.619		0.208	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
Bromobenzene	ND		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
Bromochloromethane	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
Bromodichloromethane	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
Bromoform	ND		2.08	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
Bromomethane	ND		10.4	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
2-Butanone (MEK)	ND		15.6	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	R-02
n-Butylbenzene	3.92		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
sec-Butylbenzene	2.03		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
tert-Butylbenzene	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
Carbon disulfide	ND		10.4	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
						09/23/19 21:05		
	ND		1 04	mg/kg dry	1 ()()()		3033A/8200C	
Carbon disumde Carbon tetrachloride Chlorobenzene	ND ND		1.04 0.519	mg/kg dry mg/kg dry	1000 1000	09/23/19 21:05	5035A/8260C 5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Awa & Smerighini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Vola	tile Organic (ompounds I	oy EPA 5035 <i>A</i>	4/826UC				
	Sample	Detection	Reporting			Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
UST-04-T1-NB (A9I0687-11)				Matrix: Soi	I	Batch:	Batch: 9091160		
Chloroform	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
Chloromethane	ND		5.19	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
2-Chlorotoluene	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
4-Chlorotoluene	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
Dibromochloromethane	ND		2.08	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
1,2-Dibromo-3-chloropropane	ND		5.19	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
1,2-Dibromoethane (EDB)	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
Dibromomethane	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
1,2-Dichlorobenzene	ND		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
1,3-Dichlorobenzene	ND		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
1,4-Dichlorobenzene	ND		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
Dichlorodifluoromethane	ND		2.08	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
1,1-Dichloroethane	ND		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
1,2-Dichloroethane (EDC)	ND		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
1,1-Dichloroethene	ND		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
cis-1,2-Dichloroethene	ND		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
trans-1,2-Dichloroethene	ND		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
1,2-Dichloropropane	ND		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
1,3-Dichloropropane	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
2,2-Dichloropropane	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
1,1-Dichloropropene	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
cis-1,3-Dichloropropene	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
trans-1,3-Dichloropropene	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
Ethylbenzene	33.5		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
Hexachlorobutadiene	ND		2.08	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
2-Hexanone	ND		10.4	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
Isopropylbenzene	5.48		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
4-Isopropyltoluene	1.60		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	M-02	
Methylene chloride	ND		5.19	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	02	
4-Methyl-2-pentanone (MiBK)	ND		10.4	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
Methyl tert-butyl ether (MTBE)	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
Naphthalene	10.8		2.08		1000	09/23/19 21:05	5035A/8260C		
•	18.6		0.519	mg/kg dry mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
n-Propylbenzene Styrene	18.6 ND		1.04		1000	09/23/19 21:05	5035A/8260C		
3	ND ND			mg/kg dry		09/23/19 21:05	5035A/8260C 5035A/8260C		
1,1,1,2-Tetrachloroethane	ND ND		0.519 1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C 5035A/8260C		
1,1,2,2-Tetrachloroethane				mg/kg dry	1000		5035A/8260C 5035A/8260C		
Tetrachloroethene (PCE)	ND		0.519	mg/kg dry	1000	09/23/19 21:05			
Toluene	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		
1,2,3-Trichlorobenzene	ND		5.19	mg/kg dry	1000	09/23/19 21:05	5035A/8260C		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

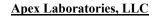
Awa & Zmenighini

Stantec Portland Project: 601 SW 2nd Ave Suite 1400 Project Number: 185750581 Portland, OR 97204 Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

Lampson


	Vola	tile Organic Co	npounds	by EPA 5035A/	8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
UST-04-T1-NB (A9I0687-11)				Matrix: Soil		Batch:	9091160	
1,2,4-Trichlorobenzene	ND		5.19	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
1,1,1-Trichloroethane	ND		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
1,1,2-Trichloroethane	ND		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
Trichloroethene (TCE)	ND		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
Trichlorofluoromethane	ND		2.08	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
1,2,3-Trichloropropane	ND		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
1,2,4-Trimethylbenzene	118		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
1,3,5-Trimethylbenzene	4.46		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
Vinyl chloride	ND		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
m,p-Xylene	63.3		1.04	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
o-Xylene	ND		0.519	mg/kg dry	1000	09/23/19 21:05	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	110 %	Limits: 80-120 %	1	09/23/19 21:05	5035A/8260C	
Toluene-d8 (Surr)			94 %	80-120 %	1	09/23/19 21:05	5035A/8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	09/23/19 21:05	5035A/8260C	
UST-05-T1-SB (A9I0687-12)				Matrix: Soil		Batch:	9091160	
Acetone	ND		21.2	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Acrylonitrile	ND		2.12	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Benzene	ND		0.212	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Bromobenzene	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Bromochloromethane	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Bromodichloromethane	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Bromoform	ND		2.12	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Bromomethane	ND		10.6	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
2-Butanone (MEK)	ND		10.6	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
n-Butylbenzene	4.68		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
sec-Butylbenzene	2.36		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
tert-Butylbenzene	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Carbon disulfide	ND		10.6	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Carbon tetrachloride	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Chlorobenzene	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Chloroethane	ND		10.6	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Chloroform	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Chloromethane	ND		5.31	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
2-Chlorotoluene	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
4-Chlorotoluene	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Dibromochloromethane	ND		2.12	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
	ND			2 2 3	1000	09/23/19 21:32	5035A/8260C	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Page 28 of 104

Awa & Smerighini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Volat	tile Organic (Compounds b	y EPA 5035A	\/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
UST-05-T1-SB (A9I0687-12)				Matrix: Soi	I	Batch:	9091160	
1,2-Dibromoethane (EDB)	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Dibromomethane	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,2-Dichlorobenzene	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,3-Dichlorobenzene	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,4-Dichlorobenzene	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Dichlorodifluoromethane	ND		2.12	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,1-Dichloroethane	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,1-Dichloroethene	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,2-Dichloropropane	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,3-Dichloropropane	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
2,2-Dichloropropane	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,1-Dichloropropene	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
cis-1,3-Dichloropropene	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
trans-1,3-Dichloropropene	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Ethylbenzene	3.60		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Hexachlorobutadiene	ND		2.12	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
2-Hexanone	ND		10.6	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Isopropylbenzene	2.10		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
4-Isopropyltoluene	1.69		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Methylene chloride	ND		5.31	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		10.6	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Naphthalene	ND		2.12	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
n-Propylbenzene	10.0		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Styrene	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Toluene	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,2,3-Trichlorobenzene	ND		5.31	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,2,4-Trichlorobenzene	ND		5.31	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,1,1-Trichloroethane	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,1,2-Trichloroethane	ND ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Trichloroethene (TCE)	ND ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Trichlorofluoromethane	ND ND		2.12	mg/kg dry	1000	09/23/19 21:32	5035A/8260C 5035A/8260C	
	ND ND		1.06		1000	09/23/19 21:32	5035A/8260C 5035A/8260C	
1,2,3-Trichloropropane	ND		1.06	mg/kg dry	1000	09/23/19 21:32	3033A/8200C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwast Zmenighini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Vola	tile Organic C	Compounds	by EPA 5035A/	8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
UST-05-T1-SB (A9I0687-12)				Matrix: Soil		Batch:	9091160	
1,2,4-Trimethylbenzene	58.0		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
1,3,5-Trimethylbenzene	ND		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Vinyl chloride	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
m,p-Xylene	4.63		1.06	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
o-Xylene	ND		0.531	mg/kg dry	1000	09/23/19 21:32	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 110 %	Limits: 80-120 %	1	09/23/19 21:32	5035A/8260C	
Toluene-d8 (Surr)			95 %	80-120 %	1	09/23/19 21:32	5035A/8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	09/23/19 21:32	5035A/8260C	
UST-06-T1-SW (A9I0687-13)				Matrix: Soil		Batch:	9091160	
Acetone	ND		21.9	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Acrylonitrile	ND		5.47	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	R-02
Benzene	ND		0.219	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Bromobenzene	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Bromochloromethane	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Bromodichloromethane	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Bromoform	ND		2.19	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Bromomethane	ND		10.9	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
2-Butanone (MEK)	ND		16.4	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	R-02
n-Butylbenzene	4.16		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
sec-Butylbenzene	2.09		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
tert-Butylbenzene	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Carbon disulfide	ND		10.9	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Carbon tetrachloride	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Chlorobenzene	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Chloroethane	ND		10.9	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Chloroform	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Chloromethane	ND		5.47	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
2-Chlorotoluene	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
4-Chlorotoluene	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Dibromochloromethane	ND		2.19	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		5.47	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Dibromomethane	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,2-Dichlorobenzene	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,3-Dichlorobenzene	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,4-Dichlorobenzene	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Dichlorodifluoromethane	ND		2.19	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 30 of 104

Gwa A Zmeinghini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Volat	tile Organic (Compounds I	oy EPA 5035 <i>A</i>	A/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
UST-06-T1-SW (A9I0687-13)				Matrix: Soi	ı	Batch	: 9091160	
1,1-Dichloroethane	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,1-Dichloroethene	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,2-Dichloropropane	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,3-Dichloropropane	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
2,2-Dichloropropane	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,1-Dichloropropene	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
cis-1,3-Dichloropropene	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
trans-1,3-Dichloropropene	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Ethylbenzene	36.6		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Hexachlorobutadiene	ND		2.19	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
2-Hexanone	ND		10.9	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Isopropylbenzene	5.30		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
4-Isopropyltoluene	1.32		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	M-02
Methylene chloride	ND		5.47	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		10.9	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Naphthalene	13.3		2.19	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
n-Propylbenzene	18.5		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Styrene	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,1,2-Tetrachloroethane	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		2.19	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	R-02
Tetrachloroethene (PCE)	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Toluene	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,2,3-Trichlorobenzene	ND		5.47	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,2,4-Trichlorobenzene	ND		5.47	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,1,1-Trichloroethane	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,1,2-Trichloroethane	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Trichloroethene (TCE)	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Trichlorofluoromethane	ND		2.19	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,2,3-Trichloropropane	ND		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,2,4-Trimethylbenzene	122		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
1,3,5-Trimethylbenzene	14.9		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
Vinyl chloride	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
m,p-Xylene	96.0		1.09	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	
o-Xylene	ND		0.547	mg/kg dry	1000	09/23/19 22:00	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smenighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A910687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C										
Analyte	Sample Result	Detection Limit	Reporting Limit	U	nits	Dilution	Date Analyzed	Method Ref.	Notes	
UST-06-T1-SW (A910687-13)				Matrix: Soil Batch: 9091160						
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 110 %	Limits:	80-120 %	6 I	09/23/19 22:00	5035A/8260C		
Toluene-d8 (Surr)			95 %		80-120 %	<i>i</i> 1	09/23/19 22:00	5035A/8260C		
4-Bromofluorobenzene (Surr)			101 %		80-120 %	6 1	09/23/19 22:00	5035A/8260C		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

		Polychlorinate	d Bipheny	ls by EPA 8082	:A			
	Sample	Detection	Reporting			Date	·	
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Not
UST-01-T2-NB (A9I0687-08)				Matrix: Soil		Batch:	9091156	C-07
Aroclor 1016	ND		0.0106	mg/kg dry	1	09/25/19 11:37	EPA 8082A	
Aroclor 1221	ND		0.0106	mg/kg dry	1	09/25/19 11:37	EPA 8082A	
Aroclor 1232	ND		0.0106	mg/kg dry	1	09/25/19 11:37	EPA 8082A	
Aroclor 1242	ND		0.0106	mg/kg dry	1	09/25/19 11:37	EPA 8082A	
Aroclor 1248	ND		0.0106	mg/kg dry	1	09/25/19 11:37	EPA 8082A	
Aroclor 1254	ND		0.0106	mg/kg dry	1	09/25/19 11:37	EPA 8082A	
Aroclor 1260	ND		0.0106	mg/kg dry	1	09/25/19 11:37	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recover	y: 97%	Limits: 60-125 %	1	09/25/19 11:37	EPA 8082A	
UST-02-T2-SB (A910687-09)			Matrix: Soil Batch: 9091156		9091156	C-07		
Aroclor 1016	ND		0.0116	mg/kg dry	1	09/24/19 11:14	EPA 8082A	
Aroclor 1221	ND		0.0116	mg/kg dry	1	09/24/19 11:14	EPA 8082A	
Aroclor 1232	ND		0.0116	mg/kg dry	1	09/24/19 11:14	EPA 8082A	
Aroclor 1242	ND		0.0116	mg/kg dry	1	09/24/19 11:14	EPA 8082A	
Aroclor 1248	ND		0.0116	mg/kg dry	1	09/24/19 11:14	EPA 8082A	
Aroclor 1254	ND		0.0116	mg/kg dry	1	09/24/19 11:14	EPA 8082A	
Aroclor 1260	ND		0.0116	mg/kg dry	1	09/24/19 11:14	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recover	y: 95 %	Limits: 60-125 %	1	09/24/19 11:14	EPA 8082A	
UST-03-T2-SE (A910687-10)				Matrix: Soil		Batch:	9091156	C-07
Aroclor 1016	ND		0.0113	mg/kg dry	1	09/24/19 11:49	EPA 8082A	
Aroclor 1221	ND		0.0113	mg/kg dry	1	09/24/19 11:49	EPA 8082A	
Aroclor 1232	ND		0.0113	mg/kg dry	1	09/24/19 11:49	EPA 8082A	
Aroclor 1242	ND		0.0113	mg/kg dry	1	09/24/19 11:49	EPA 8082A	
Aroclor 1248	ND		0.0113	mg/kg dry	1	09/24/19 11:49	EPA 8082A	
Aroclor 1254	ND		0.0113	mg/kg dry	1	09/24/19 11:49	EPA 8082A	
Aroclor 1260	ND		0.0113	mg/kg dry	1	09/24/19 11:49	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recover	y: 98 %	Limits: 60-125 %	1	09/24/19 11:49	EPA 8082A	
UST-04-T1-NB (A910687-11)				Matrix: Soil		Batch:	9091156	C-07
Aroclor 1016	ND		0.0114	mg/kg dry	1	09/24/19 12:25	EPA 8082A	
Aroclor 1221	ND		0.0114	mg/kg dry	1	09/24/19 12:25	EPA 8082A	
Aroclor 1232	ND		0.0114	mg/kg dry	1	09/24/19 12:25	EPA 8082A	
Aroclor 1242	ND		0.0114	mg/kg dry	1	09/24/19 12:25	EPA 8082A	
Aroclor 1248	ND		0.0114	mg/kg dry	1	09/24/19 12:25	EPA 8082A	
Aroclor 1254	ND		0.0114	mg/kg dry	1	09/24/19 12:25	EPA 8082A	
Aroclor 1260	ND		0.0114	mg/kg dry	1	09/24/19 12:25	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zomenighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

		Polychlorinat	ted Bipheny	ls by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
UST-04-T1-NB (A9I0687-11)				Matrix: Soil		Batch:	9091156	C-07
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 107%	Limits: 60-125 %	5 1	09/24/19 12:25	EPA 8082A	
UST-05-T1-SB (A9I0687-12)		Matrix: Soil		Batch:	9091156	C-07		
Aroclor 1016	ND		0.0108	mg/kg dry	1	09/24/19 13:00	EPA 8082A	
Aroclor 1221	ND		0.0108	mg/kg dry	1	09/24/19 13:00	EPA 8082A	
Aroclor 1232	ND		0.0108	mg/kg dry	1	09/24/19 13:00	EPA 8082A	
Aroclor 1242	ND		0.0108	mg/kg dry	1	09/24/19 13:00	EPA 8082A	
Aroclor 1248	ND		0.0108	mg/kg dry	1	09/24/19 13:00	EPA 8082A	
Aroclor 1254	ND		0.0108	mg/kg dry	1	09/24/19 13:00	EPA 8082A	
Aroclor 1260	ND		0.0108	mg/kg dry	1	09/24/19 13:00	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 106 %	Limits: 60-125 %	5 1	09/24/19 13:00	EPA 8082A	
UST-06-T1-SW (A9I0687-13)				Matrix: Soil		Batch: 9091156		C-07
Aroclor 1016	ND		0.0110	mg/kg dry	1	09/24/19 13:36	EPA 8082A	
Aroclor 1221	ND		0.0110	mg/kg dry	1	09/24/19 13:36	EPA 8082A	
Aroclor 1232	ND		0.0110	mg/kg dry	1	09/24/19 13:36	EPA 8082A	
Aroclor 1242	ND		0.0110	mg/kg dry	1	09/24/19 13:36	EPA 8082A	
Aroclor 1248	ND		0.0110	mg/kg dry	1	09/24/19 13:36	EPA 8082A	
Aroclor 1254	ND		0.0110	mg/kg dry	1	09/24/19 13:36	EPA 8082A	
Aroclor 1260	ND		0.0110	mg/kg dry	1	09/24/19 13:36	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recor	very: 98 %	Limits: 60-125 %	<i>l</i>	09/24/19 13:36	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

				AHs) by EPA 82				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP04-1 (A9I0687-01)				Matrix: Soil			: 9091322	
Acenaphthene	ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
Acenaphthylene	ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
Anthracene	ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
Benz(a)anthracene	ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
Benzo(a)pyrene	ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
Benzo(g,h,i)perylene	0.0229		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
	ND		0.0102		1	09/27/19 11:32	EPA 8270D (SIM)	
Chrysene	ND ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
Dibenz(a,h)anthracene Dibenzofuran	ND ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
				mg/kg dry				
Fluoranthene	ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
Fluorene	ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
1-Methylnaphthalene	ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
2-Methylnaphthalene	ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
Naphthalene	ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
Phenanthrene	ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
Pyrene	ND		0.0102	mg/kg dry	1	09/27/19 11:32	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Recovery	v: 72 %	Limits: 44-120 %	1	09/27/19 11:32	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			82 %	54-127 %	1	09/27/19 11:32	EPA 8270D (SIM)	
GP03-8 (A9I0687-04RE1)				Matrix: Soil		Batch	: 9091438	
Acenaphthene	ND		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
Acenaphthylene	ND		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
Anthracene	ND		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
Benz(a)anthracene	ND		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
Benzo(a)pyrene	ND		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
Benzo(g,h,i)perylene	ND		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
Chrysene	ND		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
Dibenzofuran	ND		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
Fluoranthene	ND ND		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
Fluorene	ND ND		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
	ND ND		0.0122	mg/kg dry mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene	0.136		0.0122	mg/kg dry mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	Q-42

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Doas Smerighini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

				AHs) by EPA 82	J			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP03-8 (A9I0687-04RE1)				Matrix: Soil		Batch	: 9091438	
2-Methylnaphthalene	0.343		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	Q-42
Naphthalene	0.314		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	Q-42
Phenanthrene	0.0126		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
Pyrene	ND		0.0122	mg/kg dry	1	10/02/19 18:05	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Recon	very: 69 %	Limits: 44-120 %	1	10/02/19 18:05	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			74 %	54-127 %	1	10/02/19 18:05	EPA 8270D (SIM)	
GP-X (A910687-05)				Matrix: Soil	Soil Batch: 9091322			
Acenaphthene	ND		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Acenaphthylene	ND		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Anthracene	ND		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Benz(a)anthracene	ND		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Benzo(a)pyrene	ND		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Benzo(g,h,i)perylene	ND		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Chrysene	ND		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Dibenzofuran	ND		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Fluoranthene	ND		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Fluorene	ND		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
1-Methylnaphthalene	0.197		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
2-Methylnaphthalene	0.453		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Naphthalene	0.432		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Phenanthrene	0.0123		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Pyrene	ND		0.0119	mg/kg dry	1	09/27/19 12:22	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Recon	very: 60 %	Limits: 44-120 %	5 1	09/27/19 12:22	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			62 %	54-127 %	5 1	09/27/19 12:22	EPA 8270D (SIM)	
UST-01-T2-NB (A9I0687-08)				Matrix: Soil		Batch	: 9091201	
Acenaphthene	ND		0.0553	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	R-02
Acenaphthylene	ND		0.0184	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	R-02
Anthracene	ND		0.0141	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	R-02
Benz(a)anthracene	ND		0.0108	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	
Benzo(a)pyrene	ND		0.0108	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND		0.0108	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND		0.0108	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Zmenighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Polyar	omatic Hydroc	arbons (P	AHs) by EPA 82	70D SIM			
	Sample	Detection	Reporting		· · ·	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
UST-01-T2-NB (A9I0687-08)				Matrix: Soil Batch: 9091201			: 9091201	
Benzo(g,h,i)perylene	ND		0.0108	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	
Chrysene	ND		0.0108	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND		0.0108	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	
Dibenzofuran	ND		0.0412	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	R-02
Fluoranthene	0.0119		0.0108	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	
Fluorene	0.169		0.0108	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND		0.0108	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	
1-Methylnaphthalene	3.11		0.0108	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	
Phenanthrene	0.239		0.0108	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	
Pyrene	0.0185		0.0108	mg/kg dry	1	09/24/19 17:37	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Recover	y: 75 %	Limits: 44-120 %	1	09/24/19 17:37	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			90 %	54-127 %		09/24/19 17:37	EPA 8270D (SIM)	
UST-01-T2-NB (A9I0687-08RE1)				Matrix: Soil		Batch: 9091201		
2-Methylnaphthalene	5.76		0.217	mg/kg dry	20	09/25/19 11:27	EPA 8270D (SIM)	
Naphthalene	6.66		0.217	mg/kg dry	20	09/25/19 11:27	EPA 8270D (SIM)	
UST-02-T2-SB (A910687-09)				Matrix: Soil		Batch	: 9091201	
Acenaphthene	ND		0.0586	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	R-02
Acenaphthylene	ND		0.0176	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	R-02
Anthracene	ND		0.0164	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	R-02
Benz(a)anthracene	ND		0.0117	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	
Benzo(a)pyrene	ND		0.0117	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND		0.0117	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND		0.0117	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	
Benzo(g,h,i)perylene	ND		0.0117	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	
Chrysene	ND		0.0117	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND		0.0117	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	
Dibenzofuran	ND		0.0387	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	R-02
Fluoranthene	0.0118		0.0117	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	
Fluorene	0.153		0.0117	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND		0.0117	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	
1-Methylnaphthalene	3.78		0.0117	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	
Phenanthrene	0.248		0.0117	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	
Pyrene	0.0192		0.0117	mg/kg dry	1	09/24/19 18:03	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Recover	y: 77 %	Limits: 44-120 %	1	09/24/19 18:03	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			89 %	54-127 %	1	09/24/19 18:03	EPA 8270D (SIM)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Awa & Smerighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Polyar	omatic Hydroc	arbons (P	AHs) by EPA 82	70D SIM			
	Sample	Detection	Reporting	** *	5 0.00	Date		3 Y .
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
UST-02-T2-SB (A910687-09RE1)				Matrix: Soil		Batch	: 9091201	
2-Methylnaphthalene	7.40		0.234	mg/kg dry	20	09/25/19 11:53	EPA 8270D (SIM)	
Naphthalene	7.68		0.234	mg/kg dry	20	09/25/19 11:53	EPA 8270D (SIM)	
UST-03-T2-SE (A910687-10)				Matrix: Soil		Batch	: 9091201	
Acenaphthene	ND		0.0587	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	R-02
Acenaphthylene	ND		0.0188	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	R-02
Anthracene	ND		0.0223	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	R-02
Benz(a)anthracene	ND		0.0117	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	
Benzo(a)pyrene	ND		0.0117	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND		0.0117	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND		0.0117	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	
Benzo(g,h,i)perylene	ND		0.0117	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	
Chrysene	ND		0.0117	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND		0.0117	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	
Dibenzofuran	ND		0.0387	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	R-02
Fluoranthene	0.0158		0.0117	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	
Fluorene	0.146		0.0117	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND		0.0117	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	
1-Methylnaphthalene	3.23		0.0117	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	
Phenanthrene	0.258		0.0117	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	
Pyrene	0.0232		0.0117	mg/kg dry	1	09/24/19 18:28	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Recove	ry: 79 %	Limits: 44-120 %	1	09/24/19 18:28	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			92 %	54-127 %	1	09/24/19 18:28	EPA 8270D (SIM)	
UST-03-T2-SE (A9I0687-10RE1)				Matrix: Soil		Batch	: 9091201	
2-Methylnaphthalene	5.97		0.235	mg/kg dry	20	09/25/19 12:18	EPA 8270D (SIM)	
Naphthalene	5.24		0.235	mg/kg dry	20	09/25/19 12:18	EPA 8270D (SIM)	
UST-04-T1-NB (A9I0687-11)				Matrix: Soil		Batch	: 9091201	
Acenaphthene	ND		0.0981	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	R-02
Acenaphthylene	ND		0.0287	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	R-02
Anthracene	ND		0.0239	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	R-02
Benz(a)anthracene	ND		0.0120	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	
Benzo(a)pyrene	ND		0.0120	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND		0.0120	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND		0.0120	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	
Benzo(g,h,i)perylene	ND		0.0120	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	
Chrysene	ND		0.0120	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Doas Smerighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

[L				AHs) by EPA 82	32 0/101			
Analyta	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Analyte	Resuit	Lillit	Lillill		Dilution			notes
UST-04-T1-NB (A9I0687-11)				Matrix: Soil		Batch		
Dibenz(a,h)anthracene	ND		0.0120	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	
Dibenzofuran	ND		0.0610	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	R-02
Fluoranthene	0.0207		0.0120	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	
Fluorene	0.292		0.0120	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND		0.0120	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	
Phenanthrene	0.426		0.0120	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	
Pyrene	0.0315		0.0120	mg/kg dry	1	09/24/19 18:54	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Recove	ery: 74 %	Limits: 44-120 %	1	09/24/19 18:54	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			87 %	54-127 %	1	09/24/19 18:54	EPA 8270D (SIM)	
UST-04-T1-NB (A9I0687-11RE1)				Matrix: Soil		Batch	: 9091201	
1-Methylnaphthalene	5.03		0.239	mg/kg dry	20	09/25/19 12:44	EPA 8270D (SIM)	
2-Methylnaphthalene	9.15		0.239	mg/kg dry	20	09/25/19 12:44	EPA 8270D (SIM)	
Naphthalene	10.3		0.239	mg/kg dry	20	09/25/19 12:44	EPA 8270D (SIM)	
UST-05-T1-SB (A9I0687-12)		Matrix: Soil				Batch	: 9091201	
Acenaphthene	ND		0.0200	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	R-02
Acenaphthylene	ND		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Anthracene	ND		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Benz(a)anthracene	ND		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Benzo(a)pyrene	ND		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Benzo(g,h,i)perylene	ND		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Chrysene	ND		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Dibenzofuran	ND		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Fluoranthene	ND		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Fluorene	0.0781		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
1-Methylnaphthalene	0.874		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
2-Methylnaphthalene	1.72		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Naphthalene	0.276		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Phenanthrene	0.108		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Pyrene	ND		0.0111	mg/kg dry	1	09/24/19 19:19	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Recove	ery: 71 %	Limits: 44-120 %	1	09/24/19 19:19	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			83 %	54-127 %	1	09/24/19 19:19	EPA 8270D (SIM)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goad Zmenghini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Polyard	matic Hydroc	arbons (P	AHs) by EPA 827	70D SIM			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
UST-06-T1-SW (A9I0687-13)				Matrix: Soil		Batch	ո։ 9091201	
Acenaphthene	ND		0.159	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	R-02
Acenaphthylene	ND		0.0464	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	R-02
Anthracene	ND		0.0464	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	R-02
Benz(a)anthracene	ND		0.0116	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	
Benzo(a)pyrene	ND		0.0116	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND		0.0116	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND		0.0116	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	
Benzo(g,h,i)perylene	ND		0.0116	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	
Chrysene	ND		0.0116	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND		0.0116	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	
Dibenzofuran	ND		0.109	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	R-02
Fluoranthene	0.0253		0.0116	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	
Fluorene	0.448		0.0116	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND		0.0116	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	
Phenanthrene	0.750		0.0116	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	
Pyrene	0.0401		0.0116	mg/kg dry	1	09/24/19 19:45	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Recove	ery: 76 %	Limits: 44-120 %	1	09/24/19 19:45	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			91 %	54-127 %	1	09/24/19 19:45	EPA 8270D (SIM)	
UST-06-T1-SW (A9I0687-13RE1)				Matrix: Soil		Batch	n: 9091201	
1-Methylnaphthalene	5.48		0.232	mg/kg dry	20	09/25/19 13:09	EPA 8270D (SIM)	
2-Methylnaphthalene	9.53		0.232	mg/kg dry	20	09/25/19 13:09	EPA 8270D (SIM)	
Naphthalene	9.89		0.232	mg/kg dry	20	09/25/19 13:09	EPA 8270D (SIM)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Total Metals by EPA 6020A (ICPMS)											
	Sample	Detection	Reporting			Date						
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes				
GP04-1 (A9I0687-01)				Matrix: Soi	I							
Batch: 9091186												
Arsenic	3.49		1.12	mg/kg dry	10	09/23/19 20:49	EPA 6020A					
Barium	119		1.12	mg/kg dry	10	09/23/19 20:49	EPA 6020A	В				
Cadmium	ND		0.224	mg/kg dry	10	09/23/19 20:49	EPA 6020A					
Chromium	41.3		1.12	mg/kg dry	10	09/23/19 20:49	EPA 6020A					
Lead	322		0.224	mg/kg dry	10	09/23/19 20:49	EPA 6020A					
Selenium	ND		1.12	mg/kg dry	10	09/23/19 20:49	EPA 6020A					
Silver	ND		0.224	mg/kg dry	10	09/23/19 20:49	EPA 6020A					
GP04-1 (A9I0687-01RE1)		Matrix: Soil										
Batch: 9091186												
Mercury	1.58		0.0897	mg/kg dry	10	09/24/19 11:11	EPA 6020A					
GP04-12 (A9I0687-02)				Matrix: Soi	I							
Batch: 9091186												
Arsenic	11.0		1.27	mg/kg dry	10	09/23/19 20:54	EPA 6020A					
Barium	171		1.27	mg/kg dry	10	09/23/19 20:54	EPA 6020A	В				
Cadmium	ND		0.254	mg/kg dry	10	09/23/19 20:54	EPA 6020A					
Chromium	60.6		1.27	mg/kg dry	10	09/23/19 20:54	EPA 6020A					
Lead	38.0		0.254	mg/kg dry	10	09/23/19 20:54	EPA 6020A					
Selenium	ND		1.27	mg/kg dry	10	09/23/19 20:54	EPA 6020A					
Silver	ND		0.254	mg/kg dry	10	09/23/19 20:54	EPA 6020A					
GP04-12 (A9I0687-02RE1)				Matrix: Soi	I							
Batch: 9091186												
Mercury	0.155		0.102	mg/kg dry	10	09/24/19 11:16	EPA 6020A					
GP03-2 (A9I0687-03)				Matrix: Soi	I							
Batch: 9091186												
Arsenic	4.19		1.10	mg/kg dry	10	09/23/19 20:58	EPA 6020A					
Barium	97.3		1.10	mg/kg dry	10	09/23/19 20:58	EPA 6020A	В				
Cadmium	ND		0.219	mg/kg dry	10	09/23/19 20:58	EPA 6020A					
Chromium	52.5		1.10	mg/kg dry	10	09/23/19 20:58	EPA 6020A					
Lead	2.30		0.219	mg/kg dry	10	09/23/19 20:58	EPA 6020A					
Selenium	ND		1.10	mg/kg dry	10	09/23/19 20:58	EPA 6020A					
Silver	ND		0.219	mg/kg dry	10	09/23/19 20:58	EPA 6020A					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20A (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP03-2 (A9I0687-03RE1)				Matrix: Soi	I			
Batch: 9091186								
Mercury	ND		0.0876	mg/kg dry	10	09/24/19 11:20	EPA 6020A	
GP03-8 (A9I0687-04)				Matrix: Soi	I			
Batch: 9091186								
Arsenic	7.77		1.28	mg/kg dry	10	09/23/19 21:17	EPA 6020A	
Barium	130		1.28	mg/kg dry	10	09/23/19 21:17	EPA 6020A	В
Cadmium	ND		0.256	mg/kg dry	10	09/23/19 21:17	EPA 6020A	
Chromium	64.2		1.28	mg/kg dry	10	09/23/19 21:17	EPA 6020A	
Selenium	ND		1.28	mg/kg dry	10	09/23/19 21:17	EPA 6020A	
Silver	ND		0.256	mg/kg dry	10	09/23/19 21:17	EPA 6020A	
GP03-8 (A9I0687-04RE1)				Matrix: Soi	I			
Batch: 9091186								
Lead	5.57		0.256	mg/kg dry	10	09/24/19 11:25	EPA 6020A	
Mercury	0.147		0.102	mg/kg dry	10	09/24/19 11:25	EPA 6020A	
GP-X (A910687-05)				Matrix: Soi	I			
Batch: 9091186								
Arsenic	5.34		1.20	mg/kg dry	10	09/23/19 21:22	EPA 6020A	
Barium	142		1.20	mg/kg dry	10	09/23/19 21:22	EPA 6020A	В
Cadmium	ND		0.240	mg/kg dry	10	09/23/19 21:22	EPA 6020A	
Chromium	63.6		1.20	mg/kg dry	10	09/23/19 21:22	EPA 6020A	
Selenium	ND		1.20	mg/kg dry	10	09/23/19 21:22	EPA 6020A	
Silver	ND		0.240	mg/kg dry	10	09/23/19 21:22	EPA 6020A	
GP-X (A9I0687-05RE1)				Matrix: Soi	l			
Batch: 9091186								
Lead	5.09		0.240	mg/kg dry	10	09/24/19 11:33	EPA 6020A	
Mercury	0.146		0.0959	mg/kg dry	10	09/24/19 11:33	EPA 6020A	
GP06-2 (A9I0687-06)				Matrix: Soi	l			
Batch: 9091186								
Arsenic	3.30		1.27	mg/kg dry	10	09/23/19 21:26	EPA 6020A	
Barium	126		1.27	mg/kg dry	10	09/23/19 21:26	EPA 6020A	В
Cadmium	ND		0.253	mg/kg dry	10	09/23/19 21:26	EPA 6020A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goad Jomenyhini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20A (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP06-2 (A9I0687-06)				Matrix: Soi	I			
Chromium	29.7		1.27	mg/kg dry	10	09/23/19 21:26	EPA 6020A	
Selenium	ND		1.27	mg/kg dry	10	09/23/19 21:26	EPA 6020A	
Silver	ND		0.253	mg/kg dry	10	09/23/19 21:26	EPA 6020A	
GP06-2 (A9I0687-06RE1)				Matrix: Soi	Ì			
Batch: 9091186								
Lead	28.2		0.253	mg/kg dry	10	09/24/19 11:38	EPA 6020A	
Mercury	ND		0.101	mg/kg dry	10	09/24/19 11:38	EPA 6020A	
GP06-6 (A9I0687-07)				Matrix: Soi	I			
Batch: 9091186								
Arsenic	5.52		1.21	mg/kg dry	10	09/23/19 21:31	EPA 6020A	
Barium	95.3		1.21	mg/kg dry	10	09/23/19 21:31	EPA 6020A	В
Cadmium	ND		0.242	mg/kg dry	10	09/23/19 21:31	EPA 6020A	
Chromium	30.9		1.21	mg/kg dry	10	09/23/19 21:31	EPA 6020A	
Selenium	ND		1.21	mg/kg dry	10	09/23/19 21:31	EPA 6020A	
Silver	ND		0.242	mg/kg dry	10	09/23/19 21:31	EPA 6020A	
GP06-6 (A9I0687-07RE1)				Matrix: Soi	1			
Batch: 9091186								
Lead	1.87		0.242	mg/kg dry	10	09/24/19 11:42	EPA 6020A	
Mercury	ND		0.0969	mg/kg dry	10	09/24/19 11:42	EPA 6020A	
UST-01-T2-NB (A9I0687-08)				Matrix: Soi	I			
Batch: 9091186								
Cadmium	ND		0.241	mg/kg dry	10	09/23/19 21:35	EPA 6020A	
Chromium	37.0		1.20	mg/kg dry	10	09/23/19 21:35	EPA 6020A	
UST-01-T2-NB (A9I0687-08RE1)				Matrix: Soi	1			
Batch: 9091186								
Lead	5.79		0.241	mg/kg dry	10	09/24/19 11:47	EPA 6020A	
UST-02-T2-SB (A910687-09)				Matrix: Soi	l			
Batch: 9091186								
Cadmium	ND		0.263	mg/kg dry	10	09/23/19 21:40	EPA 6020A	
Chromium	27.2		1.31	mg/kg dry	10	09/23/19 21:40	EPA 6020A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020A (ICPMS)											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
UST-02-T2-SB (A910687-09RE1)				Matrix: Soil	l						
Batch: 9091186											
Lead	16.8		0.263	mg/kg dry	10	09/24/19 12:01	EPA 6020A				
UST-03-T2-SE (A910687-10)				Matrix: Soil	l						
Batch: 9091186											
Cadmium	ND		0.247	mg/kg dry	10	09/23/19 21:45	EPA 6020A				
Chromium	25.2		1.23	mg/kg dry	10	09/23/19 21:45	EPA 6020A				
UST-03-T2-SE (A9I0687-10RE1)				Matrix: Soil							
Batch: 9091186											
Lead	9.80		0.247	mg/kg dry	10	09/24/19 12:05	EPA 6020A				
UST-04-T1-NB (A910687-11)				Matrix: Soil							
Batch: 9091186											
Cadmium	ND		0.237	mg/kg dry	10	09/23/19 21:49	EPA 6020A				
Chromium	36.3		1.19	mg/kg dry	10	09/23/19 21:49	EPA 6020A				
UST-04-T1-NB (A910687-11RE1)				Matrix: Soil	l						
Batch: 9091186											
Lead	12.1		0.237	mg/kg dry	10	09/24/19 12:10	EPA 6020A				
UST-05-T1-SB (A910687-12)				Matrix: Soil	l						
Batch: 9091186											
Cadmium	ND		0.238	mg/kg dry	10	09/23/19 21:54	EPA 6020A				
Chromium	29.8		1.19	mg/kg dry	10	09/23/19 21:54	EPA 6020A				
UST-05-T1-SB (A910687-12RE1)				Matrix: Soil	l						
Batch: 9091186											
Lead	4.38		0.238	mg/kg dry	10	09/24/19 12:15	EPA 6020A				
UST-06-T1-SW (A9I0687-13)				Matrix: Soil							
Batch: 9091186											
Cadmium	ND		0.251	mg/kg dry	10	09/23/19 21:59	EPA 6020A				
Chromium	28.9		1.26	mg/kg dry	10	09/23/19 21:59	EPA 6020A				
UST-06-T1-SW (A9I0687-13RE1)				Matrix: Soil							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020A (ICPMS)										
	Sample Detection Reporting Date									
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
UST-06-T1-SW (A9I0687-13RE1)				Matrix: So	il					
Batch: 9091186										
Lead	12.9		0.251	mg/kg dry	10	09/24/19 12:19	EPA 6020A	Q-42		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

TCLP Metals by EPA 6020A (ICPMS)										
	Sample	Detection	Reporting			Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
UST-01-T2-NB (A9I0687-08)				Matrix: So	oil					
Batch: 9091266										
Cadmium	ND		0.100	mg/L	10	09/25/19 12:10	1311/6020A			
Chromium	ND		0.100	mg/L	10	09/25/19 12:10	1311/6020A			
Lead	ND		0.0500	mg/L	10	09/25/19 12:10	1311/6020A			
UST-02-T2-SB (A9I0687-09)				Matrix: So	oil					
Batch: 9091266										
Cadmium	ND		0.100	mg/L	10	09/25/19 12:15	1311/6020A			
Chromium	ND		0.100	mg/L	10	09/25/19 12:15	1311/6020A			
Lead	ND		0.0500	mg/L	10	09/25/19 12:15	1311/6020A			
UST-03-T2-SE (A9I0687-10)				Matrix: So	oil					
Batch: 9091266										
Cadmium	ND		0.100	mg/L	10	09/25/19 12:20	1311/6020A			
Chromium	ND		0.100	mg/L	10	09/25/19 12:20	1311/6020A			
Lead	ND		0.0500	mg/L	10	09/25/19 12:20	1311/6020A			
UST-04-T1-NB (A9I0687-11)				Matrix: So	oil					
Batch: 9091266										
Cadmium	ND		0.100	mg/L	10	09/25/19 12:24	1311/6020A			
Chromium	ND		0.100	mg/L	10	09/25/19 12:24	1311/6020A			
Lead	ND		0.0500	mg/L	10	09/25/19 12:24	1311/6020A			
UST-05-T1-SB (A9I0687-12)				Matrix: So	oil					
Batch: 9091266										
Cadmium	ND		0.100	mg/L	10	09/25/19 12:29	1311/6020A			
Chromium	ND		0.100	mg/L	10	09/25/19 12:29	1311/6020A			
Lead	ND		0.0500	mg/L	10	09/25/19 12:29	1311/6020A			
UST-06-T1-SW (A9I0687-13)				Matrix: So	— — oil					
Batch: 9091266										
Cadmium	ND		0.100	mg/L	10	09/25/19 12:34	1311/6020A			
Chromium	ND		0.100	mg/L	10	09/25/19 12:34	1311/6020A			
Lead	ND		0.0500	mg/L	10	09/25/19 12:34	1311/6020A			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

		P	ercent Dry W	eight				
	Sample	Detection	Reporting	**	57	Date	V 4 12 2	
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP04-1 (A9I0687-01)				Matrix: Soil			9091154	
% Solids	93.7		1.00	% by Weight	1	09/24/19 08:11	EPA 8000C	
GP04-12 (A9I0687-02)				Matrix: Soil		Batch:	9091204	
% Solids	81.9		1.00	% by Weight	1	09/25/19 07:46	EPA 8000C	
GP03-2 (A9I0687-03)				Matrix: Soil		Batch:	9091204	
% Solids	88.8		1.00	% by Weight	1	09/25/19 07:46	EPA 8000C	
GP03-8 (A9I0687-04)				Matrix: Soil		Batch:	9091204	
% Solids	81.0		1.00	% by Weight	1	09/25/19 07:46	EPA 8000C	
GP-X (A9I0687-05)				Matrix: Soil		Batch:	Batch: 9091204	
% Solids	81.5		1.00	% by Weight	1	09/25/19 07:46	EPA 8000C	
GP06-2 (A9I0687-06)				Matrix: Soil		Batch: 9091204		
% Solids	82.8		1.00	% by Weight	1	09/25/19 07:46	EPA 8000C	
GP06-6 (A9I0687-07)				Matrix: Soil		Batch: 9091204		
% Solids	89.7		1.00	% by Weight	1	09/25/19 07:46	EPA 8000C	
UST-01-T2-NB (A9I0687-08)				Matrix: Soil		Batch:	9091204	
% Solids	87.9		1.00	% by Weight	1	09/25/19 07:46	EPA 8000C	
UST-02-T2-SB (A9I0687-09)				Matrix: Soil		Batch:	9091204	
% Solids	82.2		1.00	% by Weight	1	09/25/19 07:46	EPA 8000C	
UST-03-T2-SE (A9I0687-10)				Matrix: Soil		Batch:	9091204	
% Solids	84.5		1.00	% by Weight	1	09/25/19 07:46	EPA 8000C	
UST-04-T1-NB (A9I0687-11)				Matrix: Soil		Batch: 9091204		
% Solids	83.1		1.00	% by Weight	1	09/25/19 07:46	EPA 8000C	
UST-05-T1-SB (A9I0687-12)				Matrix: Soil		Batch: 9091204		
% Solids	88.3		1.00	% by Weight	1	09/25/19 07:46	EPA 8000C	
UST-06-T1-SW (A9I0687-13)				Matrix: Soil		Batch:	9091154	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

ANALYTICAL SAMPLE RESULTS

	Percent Dry Weight									
	Sample	Detection	Reporting			Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
UST-06-T1-SW (A9I0687-13)				Matrix: Soi	ļ	Batch:	9091154			
% Solids	84.1		1.00	% by Weight	1	09/24/19 08:11	EPA 8000C			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

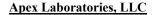
Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: <u>Lampson</u>
Project Number: **185750581**Project Manager: **Len Farr**

Report ID: A9I0687 - 10 14 19 1008


ANALYTICAL SAMPLE RESULTS

		TCLP E	xtraction by	EPA 1311				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
UST-01-T2-NB (A9I0687-08)				Matrix: So	oil	Batch:	9091234	
TCLP Extraction	PREP			N/A	1	09/24/19 16:30	EPA 1311	
UST-02-T2-SB (A9I0687-09)				Matrix: So	oil	Batch:	9091234	
TCLP Extraction	PREP			N/A	1	09/24/19 16:30	EPA 1311	
UST-03-T2-SE (A9I0687-10)				Matrix: So	oil	Batch:	9091234	
TCLP Extraction	PREP			N/A	1	09/24/19 16:30	EPA 1311	
UST-04-T1-NB (A9I0687-11)				Matrix: So	oil	Batch:	9091234	
TCLP Extraction	PREP			N/A	1	09/24/19 16:30	EPA 1311	
UST-05-T1-SB (A9I0687-12)				Matrix: So	oil	Batch:	9091234	
TCLP Extraction	PREP			N/A	1	09/24/19 16:30	EPA 1311	
UST-06-T1-SW (A9I0687-13)		Matrix: Soil Batch: 9091234						
TCLP Extraction	PREP			N/A	1	09/24/19 16:30	EPA 1311	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/d	r Oil Hydi	ocarbor	s by NW	ГРН-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091236 - EPA 3546 (F	uels)						Soil					
Blank (9091236-BLK1)		Prepared	: 09/24/19 12:	57 Analyze	d: 09/24/1	9 20:43						
NWTPH-Dx		•										
Diesel	ND		25.0	mg/kg we	t 1							
Oil	ND		50.0	mg/kg we	t 1							
Mineral Oil	ND		36.4	mg/kg we	t 1							
Surr: o-Terphenyl (Surr)		Reco	very: 102 %	Limits: 50-	150 %	Dill	ution: 1x					
LCS (9091236-BS1)		Prepared	: 09/24/19 12:	57 Analyze	d: 09/24/1	9 21:05						
NWTPH-Dx		•										
Diesel	117		25.0	mg/kg we	t 1	125		93	76 - 115%			
Surr: o-Terphenyl (Surr)		Reco	very: 111 %	Limits: 50-	150 %	Dili	ution: 1x					
Blank (9091259-BLK1)		Prepared	: 09/25/19 07:	08 Analyze	d: 09/25/1	9 09:25						
NWTPH-Dx												
Diesel	ND		25.0	mg/kg we	t 1							
Oil	ND		50.0	mg/kg we	t 1							
Surr: o-Terphenyl (Surr)		Reco	very: 110 %	Limits: 50-	150 %	Dill	ution: 1x					
LCS (9091259-BS1)		Prepared	: 09/25/19 07:	08 Analyze	d: 09/25/1	9 09:45						
NWTPH-Dx												
Diesel	122		25.0	mg/kg we	t 1	125		98	76 - 115%			
Surr: o-Terphenyl (Surr)		Reco	very: 111 %	Limits: 50-	150 %	Dill	ution: Ix					
Duplicate (9091259-DUP1)		Prepared	: 09/25/19 07:	08 Analyze	d: 09/25/1	9 10:45						
QC Source Sample: GP04-1 (A9	10687-01RE1)											
NWTPH-Dx												
Diesel	ND		25.0	mg/kg dr	/ 1		ND				30%	
Oil	506		50.0	mg/kg dr	/ 1		600			17	30%	
OII				00.	'		000					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: Lampson
Project Number: 185750581
Project Manager: Len Farr


Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range F	lydrocarbo	ns (Ben	zene thro	ugh Naph	thalene) l	by NWTI	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091047 - EPA 5035A							Soil					
Blank (9091047-BLK1)		Prepared	: 09/23/19 10:	:00 Analy	zed: 09/23/1	9 12:08						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg v	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 100 %	Limits: 5	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	5	0-150 %		"					
LCS (9091047-BS2)		Prepared	: 09/23/19 10:	:00 Analy	zed: 09/23/1	9 11:41						
NWTPH-Gx (MS)												
Gasoline Range Organics	25.6		5.00	mg/kg v	vet 50	25.0		102	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 101 %	Limits: 5	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	5	0-150 %		"					
Duplicate (9091047-DUP2)		Prepared	: 09/17/19 13:	20 Analy	zed: 09/23/1	9 17:15						
QC Source Sample: GP04-1 (A910	0687-01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.44	mg/kg o	lry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 104 %	Limits: 5	0-150 %	Dili	ution: 1x				<u> </u>	
1,4-Difluorobenzene (Sur)			102 %	5	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range F	lydrocarbo	ons (Ben	zene thro	ugh Naph	thalene)	by NWTI	PH-Gx				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	No	tes
Batch 9091108 - EPA 5035A							Soil						
Blank (9091108-BLK1)		Prepared	: 09/23/19 10:	:13 Analy	zed: 09/23/1	9 11:34							
NWTPH-Gx (MS)													
Gasoline Range Organics	ND		3.33	mg/kg v	vet 50								
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 100 %	Limits: 5	0-150 %	Dil	ution: 1x						
1,4-Difluorobenzene (Sur)			109 %	5	0-150 %		"						
LCS (9091108-BS2)		Prepared	: 09/23/19 10:	:13 Analy	zed: 09/23/1	9 11:07							
NWTPH-Gx (MS)													
Gasoline Range Organics	23.9		5.00	mg/kg v	vet 50	25.0		96	80 - 120%				
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 98 %	Limits: 5	0-150 %	Dil	ution: 1x						
1,4-Difluorobenzene (Sur)			107 %	5	0-150 %		"						
Duplicate (9091108-DUP1)		Prepared	: 09/19/19 11:	00 Analy	zed: 09/23/1	9 22:39							T-02
QC Source Sample: UST-01-T2-N	B (A9I0687	-08)											
NWTPH-Gx (MS)													
Gasoline Range Organics	1550		117	mg/kg	dry 1000		8020			135	30%	Q-04	
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 100 %	Limits: 5	0-150 %	Dil	ution: 1x	<u> </u>					
1,4-Difluorobenzene (Sur)			107 %	5	0-150 %		"						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range H	ydrocarbo	ns (Benz	ene thro	ıgh Naph	thalene) l	by NWTF	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091160 - EPA 5035A							Soil					
Blank (9091160-BLK1)		Prepared:	09/23/19 12:	00 Analyz	zed: 09/23/1	9 14:18						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg w	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 108 %	Limits: 50	0-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			95 %	50	0-150 %		"					
LCS (9091160-BS2)		Prepared:	09/23/19 12:	00 Analyz	zed: 09/23/1	9 13:51						
NWTPH-Gx (MS)												
Gasoline Range Organics	25.0		5.00	mg/kg w	vet 50	25.0		100	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	ery: 119 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			99 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range F	lydrocarbo	ns (Benz	ene throu	igh Naphi	thalene) l	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091213 - EPA 5035A							Soil					
Blank (9091213-BLK1)		Prepared	09/24/19 10:	25 Analyz	ed: 09/24/19	9 11:46						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg w	et 50							
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 109 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			93 %	50	-150 %		"					
LCS (9091213-BS2)		Prepared	: 09/24/19 10:	25 Analyz	ed: 09/24/19	11:19						
NWTPH-Gx (MS)												
Gasoline Range Organics	25.2		5.00	mg/kg w	et 50	25.0		101	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 114 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			98 %	50	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		VOI	atile Organi	c compo	unus by	LPA 3035						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091047 - EPA 5035A							Soil					
Blank (9091047-BLK1)		Prepared	: 09/23/19 10:0	00 Analyze	ed: 09/23/1	9 12:08						
5035A/8260C												
Acetone	ND		0.667	mg/kg we	et 50							
Acrylonitrile	ND		0.0667	mg/kg we	et 50							
Benzene	ND		0.00667	mg/kg we	et 50							
Bromobenzene	ND		0.0167	mg/kg we	et 50							
Bromochloromethane	ND		0.0333	mg/kg we	et 50							
Bromodichloromethane	ND		0.0333	mg/kg we	et 50							
Bromoform	ND		0.0667	mg/kg we	et 50							
Bromomethane	ND		0.333	mg/kg we	et 50							
2-Butanone (MEK)	ND		0.333	mg/kg we	et 50							
n-Butylbenzene	ND		0.0333	mg/kg we	et 50							
sec-Butylbenzene	ND		0.0333	mg/kg we	et 50							
tert-Butylbenzene	ND		0.0333	mg/kg we	et 50							
Carbon disulfide	ND		0.333	mg/kg we	et 50							
Carbon tetrachloride	ND		0.0333	mg/kg we	et 50							
Chlorobenzene	ND		0.0167	mg/kg we	et 50							
Chloroethane	ND		0.333	mg/kg we	et 50							
Chloroform	ND		0.0333	mg/kg we	et 50							
Chloromethane	ND		0.167	mg/kg we	et 50							
2-Chlorotoluene	ND		0.0333	mg/kg we	et 50							
4-Chlorotoluene	ND		0.0333	mg/kg we								
Dibromochloromethane	ND		0.0667	mg/kg we								
1,2-Dibromo-3-chloropropane	ND		0.167	mg/kg we								
1,2-Dibromoethane (EDB)	ND		0.0333	mg/kg we								
Dibromomethane	ND		0.0333	mg/kg we								
1,2-Dichlorobenzene	ND		0.0167	mg/kg we								
1,3-Dichlorobenzene	ND		0.0167	mg/kg we								
1,4-Dichlorobenzene	ND		0.0167	mg/kg we								
Dichlorodifluoromethane	ND		0.0667	mg/kg we								
,1-Dichloroethane	ND		0.0167	mg/kg we								
1,2-Dichloroethane (EDC)	ND		0.0167	mg/kg we								
1,1-Dichloroethene	ND		0.0167	mg/kg we								
cis-1,2-Dichloroethene	ND		0.0167	mg/kg we								
trans-1,2-Dichloroethene	ND		0.0167	mg/kg we								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: **Lampson**Project Number: **185750581**Project Manager: **Len Farr**

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091047 - EPA 5035A							Soil					
Blank (9091047-BLK1)		Prepared	: 09/23/19 10:0	00 Analyze	d: 09/23/19	9 12:08						
1,2-Dichloropropane	ND		0.0167	mg/kg we	t 50							
1,3-Dichloropropane	ND		0.0333	mg/kg we	t 50							
2,2-Dichloropropane	ND		0.0333	mg/kg we	t 50							
1,1-Dichloropropene	ND		0.0333	mg/kg we	t 50							
cis-1,3-Dichloropropene	ND		0.0333	mg/kg we	t 50							
trans-1,3-Dichloropropene	ND		0.0333	mg/kg we	t 50							
Ethylbenzene	ND		0.0167	mg/kg we	t 50							
Hexachlorobutadiene	ND		0.0667	mg/kg we	t 50							
2-Hexanone	ND		0.333	mg/kg we	t 50							
Isopropylbenzene	ND		0.0333	mg/kg we	t 50							
4-Isopropyltoluene	ND		0.0333	mg/kg we								
Methylene chloride	ND		0.167	mg/kg we	t 50							
4-Methyl-2-pentanone (MiBK)	ND		0.333	mg/kg we								
Methyl tert-butyl ether (MTBE)	ND		0.0333	mg/kg we								
Naphthalene	ND		0.0667	mg/kg we								
n-Propylbenzene	ND		0.0167	mg/kg we								
Styrene	ND		0.0333	mg/kg we								
1,1,1,2-Tetrachloroethane	ND		0.0167	mg/kg we								
1,1,2,2-Tetrachloroethane	ND		0.0333	mg/kg we								
Tetrachloroethene (PCE)	ND		0.0167	mg/kg we								
Toluene	ND		0.0333	mg/kg we								
1,2,3-Trichlorobenzene	ND		0.167	mg/kg we								
1,2,4-Trichlorobenzene	ND		0.167	mg/kg we								
1,1,1-Trichloroethane	ND		0.107	mg/kg we								
1,1,2-Trichloroethane	ND		0.0167	mg/kg we								
Trichloroethene (TCE)	ND		0.0167	mg/kg we								
Trichlorofluoromethane	ND ND		0.0167	mg/kg we								
1,2,3-Trichloropropane	ND ND		0.0007	mg/kg we								
* *			0.0333									
1,2,4-Trimethylbenzene	ND			mg/kg we								
1,3,5-Trimethylbenzene	ND		0.0333	mg/kg we								
Vinyl chloride	ND		0.0167	mg/kg we								
m,p-Xylene	ND		0.0333	mg/kg we								
o-Xylene	ND		0.0167	mg/kg we	t 50							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jusa A Zmeinghini

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

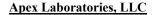
		Vol	atile Organ	ic Compou	ınds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091047 - EPA 5035A							Soil					
Blank (9091047-BLK1)		Prepared	: 09/23/19 10:	00 Analyzed	1: 09/23/1	9 12:08						
Surr: Toluene-d8 (Surr)		Reco	very: 102 %	Limits: 80-1	20 %	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			104 %	80-1	20 %		"					
LCS (9091047-BS1)		Prepared	: 09/23/19 10:	00 Analyzed	1: 09/23/1	9 11:13						
5035A/8260C												
Acetone	2.02		1.00	mg/kg wet	50	2.00		101	80 - 120%			
Acrylonitrile	0.924		0.100	mg/kg wet	50	1.00		92	80 - 120%			
Benzene	0.894		0.0100	mg/kg wet	50	1.00		89	80 - 120%			
Bromobenzene	1.06		0.0250	mg/kg wet	50	1.00		106	80 - 120%			
Bromochloromethane	0.938		0.0500	mg/kg wet	50	1.00		94	80 - 120%			
Bromodichloromethane	1.10		0.0500	mg/kg wet	50	1.00		110	80 - 120%			
Bromoform	0.991		0.100	mg/kg wet	50	1.00		99	80 - 120%			
Bromomethane	0.859		0.500	mg/kg wet	50	1.00		86	80 - 120%			
2-Butanone (MEK)	1.83		0.500	mg/kg wet	50	2.00		92	80 - 120%			
n-Butylbenzene	1.10		0.0500	mg/kg wet	50	1.00		110	80 - 120%			
sec-Butylbenzene	1.11		0.0500	mg/kg wet	50	1.00		111	80 - 120%			
ert-Butylbenzene	1.14		0.0500	mg/kg wet	50	1.00		114	80 - 120%			
Carbon disulfide	0.894		0.500	mg/kg wet	50	1.00		89	80 - 120%			
Carbon tetrachloride	1.00		0.0500	mg/kg wet	50	1.00		100	80 - 120%			
Chlorobenzene	0.982		0.0250	mg/kg wet	50	1.00		98	80 - 120%			
Chloroethane	1.11		0.500	mg/kg wet	50	1.00		111	80 - 120%			
Chloroform	1.02		0.0500	mg/kg wet	50	1.00		102	80 - 120%			
Chloromethane	0.902		0.250	mg/kg wet	50	1.00		90	80 - 120%			
2-Chlorotoluene	1.03		0.0500	mg/kg wet	50	1.00		103	80 - 120%			
4-Chlorotoluene	1.11		0.0500	mg/kg wet	50	1.00		111	80 - 120%			
Dibromochloromethane	1.03		0.100	mg/kg wet	50	1.00		103	80 - 120%			
1,2-Dibromo-3-chloropropane	0.854		0.250	mg/kg wet	50	1.00		85	80 - 120%			
1,2-Dibromoethane (EDB)	1.09		0.0500	mg/kg wet	50	1.00		109	80 - 120%			
Dibromomethane	0.988		0.0500	mg/kg wet	50	1.00		99	80 - 120%			
1,2-Dichlorobenzene	1.03		0.0250	mg/kg wet	50	1.00		103	80 - 120%			
1,3-Dichlorobenzene	1.08		0.0250	mg/kg wet	50	1.00		108	80 - 120%			
1,4-Dichlorobenzene	1.02		0.0250	mg/kg wet	50	1.00		102	80 - 120%			
Dichlorodifluoromethane	1.10		0.100	mg/kg wet		1.00		110	80 - 120%			
1,1-Dichloroethane	0.906		0.0250	mg/kg wet		1.00		91	80 - 120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland Project: 601 SW 2nd Ave Suite 1400 Project Number: 185750581 Portland, OR 97204 Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008


QUALITY CONTROL (QC) SAMPLE RESULTS

Lampson

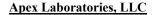
		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091047 - EPA 5035A							Soil					
LCS (9091047-BS1)		Prepared	: 09/23/19 10:0	00 Analyze	ed: 09/23/19	9 11:13						
1,2-Dichloroethane (EDC)	1.09		0.0250	mg/kg we	et 50	1.00		109	80 - 120%			
1,1-Dichloroethene	1.03		0.0250	mg/kg we	et 50	1.00		103	80 - 120%			
cis-1,2-Dichloroethene	0.932		0.0250	mg/kg we	et 50	1.00		93	80 - 120%			
trans-1,2-Dichloroethene	0.918		0.0250	mg/kg we	et 50	1.00		92	80 - 120%			
1,2-Dichloropropane	0.870		0.0250	mg/kg we	et 50	1.00		87	80 - 120%			
1,3-Dichloropropane	1.03		0.0500	mg/kg we	et 50	1.00		103	80 - 120%			
2,2-Dichloropropane	1.00		0.0500	mg/kg we	et 50	1.00		100	80 - 120%			
1,1-Dichloropropene	0.932		0.0500	mg/kg we	et 50	1.00		93	80 - 120%			
cis-1,3-Dichloropropene	0.956		0.0500	mg/kg we	et 50	1.00		96	80 - 120%			
trans-1,3-Dichloropropene	1.01		0.0500	mg/kg we	et 50	1.00		101	80 - 120%			
Ethylbenzene	0.997		0.0250	mg/kg we	et 50	1.00		100	80 - 120%			
Hexachlorobutadiene	1.11		0.100	mg/kg we	et 50	1.00		111	80 - 120%			
2-Hexanone	2.04		0.500	mg/kg we	et 50	2.00		102	80 - 120%			
Isopropylbenzene	1.05		0.0500	mg/kg we	et 50	1.00		105	80 - 120%			
4-Isopropyltoluene	1.08		0.0500	mg/kg we	et 50	1.00		108	80 - 120%			
Methylene chloride	0.780		0.250	mg/kg we	et 50	1.00		78	80 - 120%			Q-55
4-Methyl-2-pentanone (MiBK)	2.01		0.500	mg/kg we	et 50	2.00		101	80 - 120%			
Methyl tert-butyl ether (MTBE)	0.950		0.0500	mg/kg we	et 50	1.00		95	80 - 120%			
Naphthalene	0.874		0.100	mg/kg we	et 50	1.00		87	80 - 120%			
n-Propylbenzene	1.07		0.0250	mg/kg we	et 50	1.00		107	80 - 120%			
Styrene	1.02		0.0500	mg/kg we	et 50	1.00		102	80 - 120%			
1,1,1,2-Tetrachloroethane	1.05		0.0250	mg/kg we	et 50	1.00		105	80 - 120%			
1,1,2,2-Tetrachloroethane	0.973		0.0500	mg/kg we	et 50	1.00		97	80 - 120%			
Tetrachloroethene (PCE)	1.05		0.0250	mg/kg we	et 50	1.00		105	80 - 120%			
Toluene	0.957		0.0500	mg/kg we	et 50	1.00		96	80 - 120%			
1,2,3-Trichlorobenzene	1.06		0.250	mg/kg we	et 50	1.00		106	80 - 120%			
1,2,4-Trichlorobenzene	1.04		0.250	mg/kg we	et 50	1.00		104	80 - 120%			
1,1,1-Trichloroethane	0.994		0.0250	mg/kg we	et 50	1.00		99	80 - 120%			
1,1,2-Trichloroethane	1.04		0.0250	mg/kg we	et 50	1.00		104	80 - 120%			
Trichloroethene (TCE)	0.919		0.0250	mg/kg we	et 50	1.00		92	80 - 120%			
Trichlorofluoromethane	1.17		0.100	mg/kg we	et 50	1.00		117	80 - 120%			
1,2,3-Trichloropropane	1.14		0.0500	mg/kg we	et 50	1.00		114	80 - 120%			
1,2,4-Trimethylbenzene	1.08		0.0500	mg/kg we		1.00		108	80 - 120%			
1,3,5-Trimethylbenzene	1.08		0.0500	mg/kg we		1.00		108	80 - 120%			

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008


QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 503	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REO	% REC Limits	RPD	RPD Limit	Notes
Batch 9091047 - EPA 5035A							Soil					
LCS (9091047-BS1)		Prepared	: 09/23/19 10:0	00 Analyze	d: 09/23/1	9 11:13						
Vinyl chloride	0.866		0.0250	mg/kg we	50	1.00		87	80 - 120%			
m,p-Xylene	2.04		0.0500	mg/kg we	50	2.00		102	80 - 120%			
o-Xylene	0.977		0.0250	mg/kg we	50	1.00		98	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 91 %	Limits: 80-	120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			100 %	80-1	20 %		"					
4-Bromofluorobenzene (Surr)			101 %	80-1	20 %		"					
Duplicate (9091047-DUP2)		Prepared	: 09/17/19 13:2	20 Analyze	d: 09/23/1	9 17:15						
QC Source Sample: GP04-1 (A910	0687-01)											
5035A/8260C												
Acetone	ND		1.09	mg/kg dry	50		ND				30%	
Acrylonitrile	ND		0.109	mg/kg dry	50		ND				30%	
Benzene	ND		0.0109	mg/kg dry	50		0.00743			***	30%	Q-05
Bromobenzene	ND		0.0272	mg/kg dry	50		ND				30%	
Bromochloromethane	ND		0.0544	mg/kg dry	50		ND				30%	
Bromodichloromethane	ND		0.0544	mg/kg dry	50		ND				30%	
Bromoform	ND		0.109	mg/kg dry	50		ND				30%	
Bromomethane	ND		0.544	mg/kg dry	50		ND				30%	
2-Butanone (MEK)	ND		0.544	mg/kg dry	50		ND				30%	
n-Butylbenzene	ND		0.0544	mg/kg dry	50		ND				30%	
sec-Butylbenzene	ND		0.0544	mg/kg dry	50		ND				30%	
ert-Butylbenzene	ND		0.0544	mg/kg dry			ND				30%	
Carbon disulfide	ND		0.544	mg/kg dry	50		ND				30%	
Carbon tetrachloride	ND		0.0544	mg/kg dry			ND				30%	
Chlorobenzene	ND		0.0272	mg/kg dry	50		ND				30%	
Chloroethane	ND		0.544	mg/kg dry			ND				30%	
Chloroform	ND		0.0544	mg/kg dry	50		ND				30%	
Chloromethane	ND		0.272	mg/kg dry	50		ND				30%	
2-Chlorotoluene	ND		0.0544	mg/kg dry	50		ND				30%	
I-Chlorotoluene	ND		0.0544	mg/kg dry			ND				30%	
Dibromochloromethane	ND		0.109	mg/kg dry			ND				30%	
1,2-Dibromo-3-chloropropane	ND		0.272	mg/kg dry			ND				30%	
,2-Dibromoethane (EDB)	ND		0.0544	mg/kg dry			ND				30%	
Dibromomethane	ND		0.0544	mg/kg dry			ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goa A Jamenghini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091047 - EPA 5035A							Soil					
Duplicate (9091047-DUP2)		Prepared	: 09/17/19 13:2	20 Analyze	ed: 09/23/19	9 17:15						
QC Source Sample: GP04-1 (A910)687-01 <u>)</u>											
1,2-Dichlorobenzene	ND		0.0272	mg/kg dr	y 50		ND				30%	
1,3-Dichlorobenzene	ND		0.0272	mg/kg dr			ND				30%	
1,4-Dichlorobenzene	ND		0.0272	mg/kg dr	y 50		ND				30%	
Dichlorodifluoromethane	ND		0.109	mg/kg dr	y 50		ND				30%	
1,1-Dichloroethane	ND		0.0272	mg/kg dr	y 50		ND				30%	
1,2-Dichloroethane (EDC)	ND		0.0272	mg/kg dr			ND				30%	
1,1-Dichloroethene	ND		0.0272	mg/kg dr	y 50		ND				30%	
cis-1,2-Dichloroethene	ND		0.0272	mg/kg dr	y 50		ND				30%	
trans-1,2-Dichloroethene	ND		0.0272	mg/kg dr	y 50		ND				30%	
1,2-Dichloropropane	ND		0.0272	mg/kg dr	y 50		ND				30%	
1,3-Dichloropropane	ND		0.0544	mg/kg dr	y 50		ND				30%	
2,2-Dichloropropane	ND		0.0544	mg/kg dr	y 50		ND				30%	
1,1-Dichloropropene	ND		0.0544	mg/kg dr	y 50		ND				30%	
eis-1,3-Dichloropropene	ND		0.0544	mg/kg dr			ND				30%	
rans-1,3-Dichloropropene	ND		0.0544	mg/kg dr			ND				30%	
Ethylbenzene	ND		0.0272	mg/kg dr	y 50		ND				30%	
Hexachlorobutadiene	ND		0.109	mg/kg dr	y 50		ND				30%	
2-Hexanone	ND		0.544	mg/kg dr	y 50		ND				30%	
Isopropylbenzene	ND		0.0544	mg/kg dr	y 50		ND				30%	
4-Isopropyltoluene	ND		0.0544	mg/kg dr			ND				30%	
Methylene chloride	ND		0.272	mg/kg dr	y 50		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		0.544	mg/kg dr	•		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		0.0544	mg/kg dr	•		ND				30%	
Naphthalene	ND		0.109	mg/kg dr			ND				30%	
n-Propylbenzene	ND		0.0272	mg/kg dr			ND				30%	
Styrene	ND		0.0544	mg/kg dr	y 50		ND				30%	
,1,1,2-Tetrachloroethane	ND		0.0272	mg/kg dr			ND				30%	
,1,2,2-Tetrachloroethane	ND		0.0544	mg/kg dr	•		ND				30%	
Tetrachloroethene (PCE)	ND		0.0272	mg/kg dr	•		ND				30%	
Coluene	ND		0.0544	mg/kg dr			ND				30%	
,2,3-Trichlorobenzene	ND		0.272	mg/kg dr			ND				30%	
,2,4-Trichlorobenzene	ND		0.272	mg/kg dr			ND				30%	
,1,1-Trichloroethane	ND		0.0272	mg/kg dr			ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gisa A Jamenghini

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091047 - EPA 5035A							Soil					
Duplicate (9091047-DUP2)		Prepared	: 09/17/19 13:	20 Analyze	d: 09/23/1	9 17:15						
QC Source Sample: GP04-1 (A9I0	<u>687-01)</u>											
1,1,2-Trichloroethane	ND		0.0272	mg/kg dr	y 50		ND				30%	
Trichloroethene (TCE)	ND		0.0272	mg/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND		0.109	mg/kg dr	y 50		ND				30%	
1,2,3-Trichloropropane	ND		0.0544	mg/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND		0.0544	mg/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND		0.0544	mg/kg dr	y 50		ND				30%	
Vinyl chloride	ND		0.0272	mg/kg dr	y 50		ND				30%	
m,p-Xylene	ND		0.0544	mg/kg dr	y 50		ND				30%	
o-Xylene	ND		0.0272	mg/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 95 %	Limits: 80-	120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			100 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			103 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204

Project: Lampson Project Number: 185750581 Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organi	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091108 - EPA 5035A							Soil					
Blank (9091108-BLK1)		Prepared	: 09/23/19 10:1	13 Analyze	ed: 09/23/19	9 11:34						
5035A/8260C												
Acetone	ND		0.667	mg/kg we	et 50							
Acrylonitrile	ND		0.0667	mg/kg we	et 50							
Benzene	ND		0.00667	mg/kg we	et 50							
Bromobenzene	ND		0.0167	mg/kg we	et 50							
Bromochloromethane	ND		0.0333	mg/kg we	et 50							
Bromodichloromethane	ND		0.0333	mg/kg we	et 50							
Bromoform	ND		0.0667	mg/kg we	et 50							
Bromomethane	ND		0.333	mg/kg we	et 50							
2-Butanone (MEK)	ND		0.333	mg/kg we	et 50							
n-Butylbenzene	ND		0.0333	mg/kg we	et 50							
sec-Butylbenzene	ND		0.0333	mg/kg we	et 50							
tert-Butylbenzene	ND		0.0333	mg/kg we	et 50							
Carbon disulfide	ND		0.333	mg/kg we	et 50							
Carbon tetrachloride	ND		0.0667	mg/kg we	et 50							
Chlorobenzene	ND		0.0167	mg/kg we	et 50							
Chloroethane	ND		0.333	mg/kg we	et 50							
Chloroform	ND		0.0333	mg/kg we	et 50							
Chloromethane	ND		0.167	mg/kg we	et 50							
2-Chlorotoluene	ND		0.0333	mg/kg we								
4-Chlorotoluene	ND		0.0333	mg/kg we	et 50							
Dibromochloromethane	ND		0.0667	mg/kg we								
1,2-Dibromo-3-chloropropane	ND		0.167	mg/kg we								
1,2-Dibromoethane (EDB)	ND		0.0333	mg/kg we								
Dibromomethane	ND		0.0333	mg/kg we								
1,2-Dichlorobenzene	ND		0.0167	mg/kg we								
1,3-Dichlorobenzene	ND		0.0167	mg/kg we								
1,4-Dichlorobenzene	ND		0.0167	mg/kg we								
Dichlorodifluoromethane	ND		0.0667	mg/kg we								
1,1-Dichloroethane	ND		0.0167	mg/kg we								
1,2-Dichloroethane (EDC)	ND		0.0167	mg/kg we								
1,1-Dichloroethene	ND		0.0167	mg/kg we								
cis-1,2-Dichloroethene	ND		0.0167	mg/kg we								
trans-1,2-Dichloroethene	ND		0.0167	mg/kg we								

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008


QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091108 - EPA 5035A							Soil					
Blank (9091108-BLK1)		Prepared	: 09/23/19 10:	13 Analyze	ed: 09/23/19	9 11:34						
1,2-Dichloropropane	ND		0.0667	mg/kg we	et 50							
1,3-Dichloropropane	ND		0.0333	mg/kg we	et 50							
2,2-Dichloropropane	ND		0.0333	mg/kg we	et 50							
1,1-Dichloropropene	ND		0.0333	mg/kg we	et 50							
cis-1,3-Dichloropropene	ND		0.0333	mg/kg we	et 50							
trans-1,3-Dichloropropene	ND		0.0333	mg/kg we	et 50							
Ethylbenzene	ND		0.0167	mg/kg we	et 50							
Hexachlorobutadiene	ND		0.0667	mg/kg we	et 50							
2-Hexanone	ND		0.333	mg/kg we	et 50							
Isopropylbenzene	ND		0.0333	mg/kg we	et 50							
4-Isopropyltoluene	ND		0.0333	mg/kg we	t 50							
Methylene chloride	ND		0.167	mg/kg we	et 50							
4-Methyl-2-pentanone (MiBK)	ND		0.333	mg/kg we	et 50							
Methyl tert-butyl ether (MTBE)	ND		0.0333	mg/kg we	et 50							
Naphthalene	ND		0.0667	mg/kg we	et 50							
n-Propylbenzene	ND		0.0167	mg/kg we	et 50							
Styrene	ND		0.0333	mg/kg we	et 50							
1,1,1,2-Tetrachloroethane	ND		0.0167	mg/kg we								
1,1,2,2-Tetrachloroethane	ND		0.0333	mg/kg we								
Tetrachloroethene (PCE)	ND		0.0167	mg/kg we								
Toluene	ND		0.0333	mg/kg we								
1,2,3-Trichlorobenzene	ND		0.167	mg/kg we								
1,2,4-Trichlorobenzene	ND		0.167	mg/kg we								
1,1,1-Trichloroethane	ND		0.0167	mg/kg we								
1,1,2-Trichloroethane	ND		0.0167	mg/kg we								
Trichloroethene (TCE)	ND		0.0167	mg/kg we								
Trichlorofluoromethane	ND		0.0667	mg/kg we								
1,2,3-Trichloropropane	ND		0.0333	mg/kg we								
1,2,4-Trimethylbenzene	ND		0.0333	mg/kg we								
1,3,5-Trimethylbenzene	ND		0.0333	mg/kg we								
Vinyl chloride	ND		0.0167	mg/kg we								
m,p-Xylene	ND		0.0333	mg/kg we								
o-Xylene	ND		0.0167	mg/kg we								
Surr: 1,4-Difluorobenzene (Surr)			overy: 99 %	Limits: 80-		Dilı	ution: 1x					

Apex Laboratories

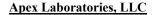
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gosa A Zmenighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008


QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compou	nds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units I	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091108 - EPA 5035A							Soil					
Blank (9091108-BLK1)		Prepared	: 09/23/19 10:	13 Analyzed	: 09/23/1	9 11:34						
Surr: Toluene-d8 (Surr)		Reco	very: 100 %	Limits: 80-1.	20 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			99 %	80-12	20 %		"					
LCS (9091108-BS1)		Prepared	: 09/23/19 10:	13 Analyzed	: 09/23/1	9 10:40						
5035A/8260C												
Acetone	2.02		1.00	mg/kg wet	50	2.00		101	80 - 120%			
Acrylonitrile	1.09		0.100	mg/kg wet	50	1.00		109	80 - 120%			
Benzene	1.03		0.0100	mg/kg wet	50	1.00		103	80 - 120%			
Bromobenzene	1.03		0.0250	mg/kg wet	50	1.00		103	80 - 120%			
Bromochloromethane	1.17		0.0500	mg/kg wet	50	1.00		117	80 - 120%			
Bromodichloromethane	1.20		0.0500	mg/kg wet	50	1.00		120	80 - 120%			
Bromoform	0.981		0.100	mg/kg wet		1.00		98	80 - 120%			
Bromomethane	1.03		0.500	mg/kg wet	50	1.00		103	80 - 120%			
2-Butanone (MEK)	2.18		0.500	mg/kg wet	50	2.00		109	80 - 120%			
n-Butylbenzene	1.07		0.0500	mg/kg wet	50	1.00		107	80 - 120%			
sec-Butylbenzene	1.04		0.0500	mg/kg wet	50	1.00		104	80 - 120%			
ert-Butylbenzene	1.04		0.0500	mg/kg wet	50	1.00		104	80 - 120%			
Carbon disulfide	1.07		0.500	mg/kg wet	50	1.00		107	80 - 120%			
Carbon tetrachloride	1.11		0.100	mg/kg wet		1.00		111	80 - 120%			
Chlorobenzene	1.02		0.0250	mg/kg wet	50	1.00		102	80 - 120%			
Chloroethane	0.848		0.500	mg/kg wet	50	1.00		85	80 - 120%			
Chloroform	1.06		0.0500	mg/kg wet	50	1.00		106	80 - 120%			
Chloromethane	1.11		0.250	mg/kg wet	50	1.00		111	80 - 120%			
2-Chlorotoluene	1.04		0.0500	mg/kg wet		1.00		104	80 - 120%			
4-Chlorotoluene	1.07		0.0500	mg/kg wet		1.00		107	80 - 120%			
Dibromochloromethane	1.08		0.100	mg/kg wet		1.00		108	80 - 120%			
1,2-Dibromo-3-chloropropane	0.853		0.250	mg/kg wet	50	1.00		85	80 - 120%			
1,2-Dibromoethane (EDB)	0.999		0.0500	mg/kg wet	50	1.00		100	80 - 120%			
Dibromomethane	1.07		0.0500	mg/kg wet	50	1.00		107	80 - 120%			
,2-Dichlorobenzene	0.958		0.0250	mg/kg wet		1.00		96	80 - 120%			
1,3-Dichlorobenzene	1.04		0.0250	mg/kg wet		1.00		104	80 - 120%			
1,4-Dichlorobenzene	1.00		0.0250	mg/kg wet	50	1.00		100	80 - 120%			
Dichlorodifluoromethane	0.919		0.100	mg/kg wet	50	1.00			80 - 120%			
1,1-Dichloroethane	1.12		0.0250	mg/kg wet		1.00			80 - 120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008


QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091108 - EPA 5035A							Soil					
LCS (9091108-BS1)		Prepared	: 09/23/19 10:	13 Analyze	ed: 09/23/19	9 10:40						
,2-Dichloroethane (EDC)	1.09		0.0250	mg/kg we	et 50	1.00		109	80 - 120%			
,1-Dichloroethene	1.15		0.0250	mg/kg we	et 50	1.00		115	80 - 120%			
is-1,2-Dichloroethene	1.05		0.0250	mg/kg we	et 50	1.00		105	80 - 120%			
rans-1,2-Dichloroethene	1.11		0.0250	mg/kg we	et 50	1.00		111	80 - 120%			
,2-Dichloropropane	1.14		0.100	mg/kg we	et 50	1.00		114	80 - 120%			
,3-Dichloropropane	1.08		0.0500	mg/kg we	et 50	1.00		108	80 - 120%			
,2-Dichloropropane	1.19		0.0500	mg/kg we	et 50	1.00		119	80 - 120%			
,1-Dichloropropene	1.02		0.0500	mg/kg we	et 50	1.00		102	80 - 120%			
is-1,3-Dichloropropene	1.00		0.0500	mg/kg we	et 50	1.00		100	80 - 120%			
rans-1,3-Dichloropropene	1.20		0.0500	mg/kg we	et 50	1.00		120	80 - 120%			
Ethylbenzene	1.02		0.0250	mg/kg we	et 50	1.00		102	80 - 120%			
Iexachlorobutadiene	0.834		0.100	mg/kg we	et 50	1.00		83	80 - 120%			
-Hexanone	1.98		0.500	mg/kg we		2.00		99	80 - 120%			
sopropylbenzene	0.951		0.0500	mg/kg we		1.00		95	80 - 120%			
-Isopropyltoluene	0.981		0.0500	mg/kg we		1.00		98	80 - 120%			
Methylene chloride	0.968		0.250	mg/kg we	et 50	1.00		97	80 - 120%			
-Methyl-2-pentanone (MiBK)	2.06		0.500	mg/kg we		2.00		103	80 - 120%			
Methyl tert-butyl ether (MTBE)	0.897		0.0500	mg/kg we		1.00		90	80 - 120%			
Vaphthalene	0.847		0.100	mg/kg we		1.00		85	80 - 120%			
a-Propylbenzene	1.10		0.0250	mg/kg we		1.00		110	80 - 120%			
Styrene	1.04		0.0500	mg/kg we		1.00		104	80 - 120%			
,1,1,2-Tetrachloroethane	1.06		0.0250	mg/kg we		1.00		106	80 - 120%			
,1,2,2-Tetrachloroethane	1.20		0.0500	mg/kg we		1.00		120	80 - 120%			
Tetrachloroethene (PCE)	0.980		0.0250	mg/kg we		1.00		98	80 - 120%			
Coluene	1.01		0.0500	mg/kg we		1.00		101	80 - 120%			
,2,3-Trichlorobenzene	0.868		0.250	mg/kg we		1.00		87	80 - 120%			
,2,4-Trichlorobenzene	0.803		0.250	mg/kg we		1.00		80	80 - 120%			
,1,1-Trichloroethane	1.01		0.0250	mg/kg we		1.00		101	80 - 120%			
,1,2-Trichloroethane	1.07		0.0250	mg/kg we		1.00		107	80 - 120%			
Trichloroethene (TCE)	0.903		0.0250	mg/kg we		1.00		90	80 - 120%			
richlorofluoromethane	1.07		0.100	mg/kg we		1.00		107	80 - 120%			
,2,3-Trichloropropane	1.09		0.0500	mg/kg we		1.00		109	80 - 120%			
,2,4-Trimethylbenzene	1.07		0.0500	mg/kg we		1.00		107	80 - 120%			
	1.07		0.0500									

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmenighini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 503	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091108 - EPA 5035A							Soil					
LCS (9091108-BS1)		Prepared	: 09/23/19 10:	13 Analyze	ed: 09/23/1	9 10:40						
Vinyl chloride	1.09		0.0250	mg/kg we	et 50	1.00		109	80 - 120%			
m,p-Xylene	2.01		0.0500	mg/kg we	et 50	2.00		101	80 - 120%			
o-Xylene	0.886		0.0250	mg/kg we	et 50	1.00		89	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 99 %	Limits: 80-	120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			98 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			95 %	80-	120 %		"					
Duplicate (9091108-DUP1)		Prepared	: 09/19/19 11:0	00 Analyze	ed: 09/23/1	9 22:39						
QC Source Sample: UST-01-T2-N	B (A910687-	<u>-08)</u>										
5035A/8260C												
Acetone	ND		23.4	mg/kg dr	y 1000		ND				30%	
Acrylonitrile	ND		12.9	mg/kg dr	y 1000		ND				30%	
Benzene	ND		0.234	mg/kg dr	y 1000		0.724			***	30%	Q-04
Bromobenzene	ND		0.586	mg/kg dr	y 1000		ND				30%	
Bromochloromethane	ND		1.17	mg/kg dr	y 1000		ND				30%	
Bromodichloromethane	ND		1.17	mg/kg dr	y 1000		ND				30%	
Bromoform	ND		2.34	mg/kg dr	y 1000		ND				30%	
Bromomethane	ND		11.7	mg/kg dr	y 1000		ND				30%	
2-Butanone (MEK)	ND		11.7	mg/kg dr	y 1000		ND				30%	
n-Butylbenzene	2.76		1.17	mg/kg dr	y 1000		11.2			121	30%	Q-04
sec-Butylbenzene	ND		1.17	mg/kg dr	y 1000		4.93			***	30%	Q-04
tert-Butylbenzene	ND		1.17	mg/kg dr	y 1000		ND				30%	
Carbon disulfide	ND		11.7	mg/kg dr	y 1000		ND				30%	
Carbon tetrachloride	ND		2.34	mg/kg dr	y 1000		ND				30%	
Chlorobenzene	ND		0.586	mg/kg dr	y 1000		ND				30%	
Chloroethane	ND		11.7	mg/kg dr	y 1000		ND				30%	
Chloroform	ND		1.17	mg/kg dr	y 1000		ND				30%	
Chloromethane	ND		5.86	mg/kg dr			ND				30%	
2-Chlorotoluene	ND		1.17	mg/kg dr			ND				30%	
4-Chlorotoluene	ND		1.17	mg/kg dr	•		ND				30%	
Dibromochloromethane	ND		2.34	mg/kg dr			ND				30%	
1,2-Dibromo-3-chloropropane	ND		5.86	mg/kg dr	,		ND				30%	
1,2-Dibromoethane (EDB)	ND		1.17	mg/kg dr			ND				30%	
Dibromomethane	ND		1.17	mg/kg dr	,		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa A Zmenyhini

Page 66 of 104

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091108 - EPA 5035A							Soil					
Duplicate (9091108-DUP1)		Prepared	: 09/19/19 11:0	00 Analyze	ed: 09/23/19	22:39						T-02
QC Source Sample: UST-01-T2-NI	B (A9I0687	<u>-08)</u>										
1,2-Dichlorobenzene	ND		0.586	mg/kg dr	y 1000		ND				30%	
1,3-Dichlorobenzene	ND		0.586	mg/kg dr	y 1000		ND				30%	
1,4-Dichlorobenzene	ND		0.586	mg/kg dr			ND				30%	
Dichlorodifluoromethane	ND		2.34	mg/kg dr	y 1000		ND				30%	
1,1-Dichloroethane	ND		0.586	mg/kg dr	y 1000		ND				30%	
1,2-Dichloroethane (EDC)	ND		0.586	mg/kg dr			ND				30%	
1,1-Dichloroethene	ND		0.586	mg/kg dr	y 1000		ND				30%	
cis-1,2-Dichloroethene	ND		0.586	mg/kg dr			ND				30%	
trans-1,2-Dichloroethene	ND		0.586	mg/kg dr			ND				30%	
1,2-Dichloropropane	ND		2.34	mg/kg dr	•		ND				30%	
1,3-Dichloropropane	ND		1.17	mg/kg dr			ND				30%	
2,2-Dichloropropane	ND		1.17	mg/kg dr			ND				30%	
1,1-Dichloropropene	ND		1.17	mg/kg dr			ND				30%	
cis-1,3-Dichloropropene	ND		1.17	mg/kg dr			ND				30%	
trans-1,3-Dichloropropene	ND		1.17	mg/kg dr			ND				30%	
Ethylbenzene	17.0		0.586	mg/kg dr			87.3			135	30%	Q-04
Hexachlorobutadiene	ND		2.34	mg/kg dr			ND				30%	
2-Hexanone	ND		11.7	mg/kg dr			ND				30%	
Isopropylbenzene	2.44		1.17	mg/kg dr			13.0			137	30%	Q-04
4-Isopropyltoluene	ND		1.17	mg/kg dr	•		3.74			***	30%	Q-04
Methylene chloride	ND		5.98	mg/kg dr			ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		11.7	mg/kg dr			ND				30%	
Methyl tert-butyl ether (MTBE)	ND		1.17	mg/kg dr	•		ND				30%	
Naphthalene	4.83		2.34	mg/kg dr			20.8			125	30%	O-04
n-Propylbenzene	10.6		0.586	mg/kg dr			52.9			133	30%	Q-04
Styrene	ND		1.17	mg/kg dr			ND				30%	
1,1,1,2-Tetrachloroethane	ND		0.586	mg/kg dr	,		ND				30%	
1,1,2,2-Tetrachloroethane	ND		1.17	mg/kg dr	•		ND				30%	
Tetrachloroethene (PCE)	ND		0.586	mg/kg dr			ND				30%	
Toluene	ND		1.17	mg/kg dr			0.987			***	30%	Q-04
1,2,3-Trichlorobenzene	ND		5.86	mg/kg dr			ND				30%	
1,2,4-Trichlorobenzene	ND		5.86	mg/kg dr			ND				30%	
1,1,1-Trichloroethane	ND		0.586	mg/kg dr			ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goa A Jamenghini

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091108 - EPA 5035A							Soil					
Duplicate (9091108-DUP1)		Prepared	: 09/19/19 11:	00 Analyze	ed: 09/23/1	9 22:39						T-
QC Source Sample: UST-01-T2-N	B (A9I0687	<u>-08)</u>										
1,1,2-Trichloroethane	ND		0.586	mg/kg dr	y 1000		ND				30%	
Trichloroethene (TCE)	ND		0.586	mg/kg dr	y 1000		ND				30%	
Trichlorofluoromethane	ND		2.34	mg/kg dr	y 1000		ND				30%	
1,2,3-Trichloropropane	ND		1.17	mg/kg dr	y 1000		ND				30%	
1,2,4-Trimethylbenzene	66.9		1.17	mg/kg dr	y 1000		321			131	30%	Q-04
1,3,5-Trimethylbenzene	3.85		1.17	mg/kg dr	y 1000		11.8			101	30%	Q-04
Vinyl chloride	ND		0.586	mg/kg dr	y 1000		ND				30%	
m,p-Xylene	26.8		1.17	mg/kg dr	y 1000		137			134	30%	Q-04
o-Xylene	ND		0.586	mg/kg dr	y 1000		1.40			***	30%	Q-04
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 98 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organi	c Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091160 - EPA 5035A							Soil					
Blank (9091160-BLK1)		Prepared	: 09/23/19 12:0	00 Analyze	d: 09/23/19	9 14:18						
5035A/8260C												
Acetone	ND		0.667	mg/kg we	t 50							
Acrylonitrile	ND		0.0667	mg/kg we	t 50							
Benzene	ND		0.00667	mg/kg we	t 50							
Bromobenzene	ND		0.0167	mg/kg we	t 50							
Bromochloromethane	ND		0.0333	mg/kg we	t 50							
Bromodichloromethane	ND		0.0333	mg/kg we	t 50							
Bromoform	ND		0.0667	mg/kg we	t 50							
Bromomethane	ND		0.333	mg/kg we	t 50							
2-Butanone (MEK)	ND		0.333	mg/kg we	t 50							
n-Butylbenzene	ND		0.0333	mg/kg we	t 50							
sec-Butylbenzene	ND		0.0333	mg/kg we	t 50							
tert-Butylbenzene	ND		0.0333	mg/kg we	t 50							
Carbon disulfide	ND		0.333	mg/kg we	t 50							
Carbon tetrachloride	ND		0.0333	mg/kg we	t 50							
Chlorobenzene	ND		0.0167	mg/kg we	t 50							
Chloroethane	ND		0.333	mg/kg we	t 50							
Chloroform	ND		0.0333	mg/kg we	t 50							
Chloromethane	ND		0.167	mg/kg we	t 50							
2-Chlorotoluene	ND		0.0333	mg/kg we	t 50							
4-Chlorotoluene	ND		0.0333	mg/kg we	t 50							
Dibromochloromethane	ND		0.0667	mg/kg we								
1,2-Dibromo-3-chloropropane	ND		0.167	mg/kg we								
1,2-Dibromoethane (EDB)	ND		0.0333	mg/kg we								
Dibromomethane	ND		0.0333	mg/kg we								
1,2-Dichlorobenzene	ND		0.0167	mg/kg we								
1,3-Dichlorobenzene	ND		0.0167	mg/kg we								
1,4-Dichlorobenzene	ND		0.0167	mg/kg we								
Dichlorodifluoromethane	ND		0.0667	mg/kg we								
1,1-Dichloroethane	ND		0.0167	mg/kg we								
1,2-Dichloroethane (EDC)	ND		0.0167	mg/kg we								
1,1-Dichloroethene	ND		0.0167	mg/kg we								
cis-1,2-Dichloroethene	ND		0.0167	mg/kg we								
trans-1,2-Dichloroethene	ND		0.0167	mg/kg we								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmenighinie

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091160 - EPA 5035A							Soil					
Blank (9091160-BLK1)		Prepared	: 09/23/19 12:0	00 Analyze	ed: 09/23/1	9 14:18						
1,2-Dichloropropane	ND		0.0167	mg/kg we	et 50							
1,3-Dichloropropane	ND		0.0333	mg/kg we	et 50							
2,2-Dichloropropane	ND		0.0333	mg/kg we	et 50							
1,1-Dichloropropene	ND		0.0333	mg/kg we	et 50							
cis-1,3-Dichloropropene	ND		0.0333	mg/kg we	et 50							
trans-1,3-Dichloropropene	ND		0.0333	mg/kg we	et 50							
Ethylbenzene	ND		0.0167	mg/kg we	et 50							
Hexachlorobutadiene	ND		0.0667	mg/kg we	et 50							
2-Hexanone	ND		0.333	mg/kg we	et 50							
Isopropylbenzene	ND		0.0333	mg/kg we	et 50							
4-Isopropyltoluene	ND		0.0333	mg/kg we	et 50							
Methylene chloride	ND		0.167	mg/kg we	et 50							
4-Methyl-2-pentanone (MiBK)	ND		0.333	mg/kg we	et 50							
Methyl tert-butyl ether (MTBE)	ND		0.0333	mg/kg we	et 50							
Naphthalene	ND		0.0667	mg/kg we	et 50							
n-Propylbenzene	ND		0.0167	mg/kg we	et 50							
Styrene	ND		0.0333	mg/kg we	et 50							
1,1,1,2-Tetrachloroethane	ND		0.0167	mg/kg we								
1,1,2,2-Tetrachloroethane	ND		0.0333	mg/kg we								
Tetrachloroethene (PCE)	ND		0.0167	mg/kg we								
Toluene	ND		0.0333	mg/kg we								
1,2,3-Trichlorobenzene	ND		0.167	mg/kg we								
1,2,4-Trichlorobenzene	ND		0.167	mg/kg we								
1,1,1-Trichloroethane	ND		0.0167	mg/kg we								
1,1,2-Trichloroethane	ND		0.0167	mg/kg we								
Trichloroethene (TCE)	ND		0.0167	mg/kg we								
Trichlorofluoromethane	ND		0.0667	mg/kg we								
1,2,3-Trichloropropane	ND		0.0333	mg/kg we								
1,2,4-Trimethylbenzene	ND		0.0333	mg/kg we								
1,3,5-Trimethylbenzene	ND		0.0333	mg/kg we								
Vinyl chloride	ND		0.0167	mg/kg we								
m,p-Xylene	ND		0.0333	mg/kg we								
o-Xylene	ND		0.0167	mg/kg we								
Surr: 1,4-Difluorobenzene (Surr)	1,10		very: 111 %	Limits: 80-			ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa A Zmenghini

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compou	ınds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units 1	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091160 - EPA 5035A							Soil					
Blank (9091160-BLK1)		Prepared	: 09/23/19 12:	00 Analyzed	1: 09/23/1	9 14:18						
Surr: Toluene-d8 (Surr)		Rec	overy: 95 %	Limits: 80-1	20 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			100 %	80-1	20 %		"					
LCS (9091160-BS1)		Prepared	: 09/23/19 12:	00 Analyzed	1: 09/23/1	9 13:24						
5035A/8260C				<u> </u>								
Acetone	2.16		1.00	mg/kg wet	50	2.00		108	80 - 120%			
Acrylonitrile	1.02		0.100	mg/kg wet	50	1.00		102	80 - 120%			
Benzene	1.03		0.0100	mg/kg wet	50	1.00		103	80 - 120%			
Bromobenzene	0.977		0.0250	mg/kg wet	50	1.00		98	80 - 120%			
Bromochloromethane	1.06		0.0500	mg/kg wet	50	1.00		106	80 - 120%			
Bromodichloromethane	1.03		0.0500	mg/kg wet	50	1.00		103	80 - 120%			
Bromoform	1.08		0.100	mg/kg wet	50	1.00		108	80 - 120%			
Bromomethane	1.38		0.500	mg/kg wet		1.00		138	80 - 120%			Q-56
2-Butanone (MEK)	2.21		0.500	mg/kg wet	50	2.00		111	80 - 120%			
n-Butylbenzene	0.889		0.0500	mg/kg wet	50	1.00		89	80 - 120%			
sec-Butylbenzene	0.854		0.0500	mg/kg wet	50	1.00		85	80 - 120%			
ert-Butylbenzene	0.850		0.0500	mg/kg wet	50	1.00		85	80 - 120%			
Carbon disulfide	0.841		0.500	mg/kg wet	50	1.00		84	80 - 120%			
Carbon tetrachloride	1.02		0.0500	mg/kg wet	50	1.00		102	80 - 120%			
Chlorobenzene	0.957		0.0250	mg/kg wet	50	1.00		96	80 - 120%			
Chloroethane	1.70		0.500	mg/kg wet	50	1.00		170	80 - 120%			Q-56
Chloroform	1.01		0.0500	mg/kg wet	50	1.00		101	80 - 120%			
Chloromethane	1.03		0.250	mg/kg wet	50	1.00		103	80 - 120%			
2-Chlorotoluene	0.943		0.0500	mg/kg wet	50	1.00		94	80 - 120%			
1-Chlorotoluene	0.902		0.0500	mg/kg wet		1.00		90	80 - 120%			
Dibromochloromethane	1.06		0.100	mg/kg wet		1.00			80 - 120%			
1,2-Dibromo-3-chloropropane	0.914		0.250	mg/kg wet		1.00		91	80 - 120%			
1,2-Dibromoethane (EDB)	0.993		0.0500	mg/kg wet		1.00		99	80 - 120%			
Dibromomethane	1.08		0.0500	mg/kg wet		1.00		108	80 - 120%			
,2-Dichlorobenzene	1.01		0.0250	mg/kg wet		1.00		101	80 - 120%			
1,3-Dichlorobenzene	0.993		0.0250	mg/kg wet		1.00		99	80 - 120%			
1,4-Dichlorobenzene	0.973		0.0250	mg/kg wet		1.00		97	80 - 120%			
Dichlorodifluoromethane	1.25		0.100	mg/kg wet		1.00			80 - 120%			E-05, Q-5
1,1-Dichloroethane	1.02		0.0250	mg/kg wet		1.00			80 - 120%			,

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	ounds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091160 - EPA 5035A							Soil					
LCS (9091160-BS1)		Prepared	: 09/23/19 12:0	00 Analyz	ed: 09/23/1	9 13:24						
1,2-Dichloroethane (EDC)	1.08		0.0250	mg/kg we	et 50	1.00		108	80 - 120%			
1,1-Dichloroethene	1.01		0.0250	mg/kg we	et 50	1.00		101	80 - 120%			
eis-1,2-Dichloroethene	1.07		0.0250	mg/kg we	et 50	1.00		107	80 - 120%			
rans-1,2-Dichloroethene	1.06		0.0250	mg/kg we	et 50	1.00		106	80 - 120%			
1,2-Dichloropropane	1.01		0.0250	mg/kg we	et 50	1.00		101	80 - 120%			
1,3-Dichloropropane	0.991		0.0500	mg/kg we	et 50	1.00		99	80 - 120%			
2,2-Dichloropropane	0.980		0.0500	mg/kg we	et 50	1.00		98	80 - 120%			
1,1-Dichloropropene	1.02		0.0500	mg/kg we	et 50	1.00		102	80 - 120%			
cis-1,3-Dichloropropene	0.896		0.0500	mg/kg we	et 50	1.00		90	80 - 120%			
rans-1,3-Dichloropropene	0.904		0.0500	mg/kg we	et 50	1.00		90	80 - 120%			
Ethylbenzene	0.912		0.0250	mg/kg we	et 50	1.00		91	80 - 120%			
Hexachlorobutadiene	0.928		0.100	mg/kg we	et 50	1.00		93	80 - 120%			
2-Hexanone	1.92		0.500	mg/kg we	et 50	2.00		96	80 - 120%			
sopropylbenzene	0.927		0.0500	mg/kg we	et 50	1.00		93	80 - 120%			
1-Isopropyltoluene	0.870		0.0500	mg/kg we	et 50	1.00		87	80 - 120%			
Methylene chloride	1.01		0.250	mg/kg we	et 50	1.00		101	80 - 120%			
1-Methyl-2-pentanone (MiBK)	1.95		0.500	mg/kg we	et 50	2.00		97	80 - 120%			
Methyl tert-butyl ether (MTBE)	0.992		0.0500	mg/kg we	et 50	1.00		99	80 - 120%			
Naphthalene	0.944		0.100	mg/kg we	et 50	1.00		94	80 - 120%			
n-Propylbenzene	0.892		0.0250	mg/kg we	et 50	1.00		89	80 - 120%			
Styrene	0.946		0.0500	mg/kg we	et 50	1.00		95	80 - 120%			
1,1,1,2-Tetrachloroethane	0.982		0.0250	mg/kg we	et 50	1.00		98	80 - 120%			
1,1,2,2-Tetrachloroethane	0.951		0.0500	mg/kg we	et 50	1.00		95	80 - 120%			
Tetrachloroethene (PCE)	1.01		0.0250	mg/kg we		1.00		101	80 - 120%			
Toluene	0.915		0.0500	mg/kg we		1.00		91	80 - 120%			
1,2,3-Trichlorobenzene	0.949		0.250	mg/kg we	et 50	1.00		95	80 - 120%			
1,2,4-Trichlorobenzene	0.961		0.250	mg/kg we		1.00			80 - 120%			
1,1,1-Trichloroethane	0.985		0.0250	mg/kg we	et 50	1.00		99	80 - 120%			
,1,2-Trichloroethane	0.968		0.0250	mg/kg we		1.00		97	80 - 120%			
Trichloroethene (TCE)	1.05		0.0250	mg/kg we		1.00		105	80 - 120%			
Γrichlorofluoromethane	1.62		0.100	mg/kg we		1.00		162	80 - 120%			Q-56
,2,3-Trichloropropane	1.02		0.0500	mg/kg we		1.00			80 - 120%			~
,2,4-Trimethylbenzene	0.860		0.0500	mg/kg we		1.00			80 - 120%			
,3,5-Trimethylbenzene	0.832		0.0500	mg/kg we		1.00			80 - 120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

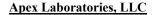
Grad Jomenyhini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS


		Vola	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091160 - EPA 5035A							Soil					
LCS (9091160-BS1)		Prepared:	09/23/19 12:	00 Analyz	ed: 09/23/1	9 13:24						
Vinyl chloride	1.18		0.0250	mg/kg we	et 50	1.00		118	80 - 120%			
m,p-Xylene	1.90		0.0500	mg/kg we	et 50	2.00		95	80 - 120%			
o-Xylene	0.913		0.0250	mg/kg we	et 50	1.00		91	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 108 %	Limits: 80-	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			95 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80-	120 %		"					

Apex Laboratories

Grand Jamenghini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 73 of 104

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008


QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organi	c Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091213 - EPA 5035A							Soil					
Blank (9091213-BLK1)		Prepared	: 09/24/19 10:2	25 Analyze	ed: 09/24/19	9 11:46						
5035A/8260C												
Acetone	ND		0.667	mg/kg we	et 50							
Acrylonitrile	ND		0.0667	mg/kg we	et 50							
Benzene	ND		0.00667	mg/kg we	et 50							
Bromobenzene	ND		0.0167	mg/kg we	et 50							
Bromochloromethane	ND		0.0333	mg/kg we	et 50							
Bromodichloromethane	ND		0.0333	mg/kg we	et 50							
Bromoform	ND		0.0667	mg/kg we	et 50							
Bromomethane	ND		0.333	mg/kg we	et 50							
2-Butanone (MEK)	ND		0.333	mg/kg we	et 50							
n-Butylbenzene	ND		0.0333	mg/kg we	et 50							
sec-Butylbenzene	ND		0.0333	mg/kg we	et 50							
tert-Butylbenzene	ND		0.0333	mg/kg we	et 50							
Carbon disulfide	ND		0.333	mg/kg we	et 50							
Carbon tetrachloride	ND		0.0333	mg/kg we	et 50							
Chlorobenzene	ND		0.0167	mg/kg we	et 50							
Chloroethane	ND		0.333	mg/kg we	et 50							
Chloroform	ND		0.0333	mg/kg we	et 50							
Chloromethane	ND		0.167	mg/kg we	et 50							
2-Chlorotoluene	ND		0.0333	mg/kg we	et 50							
4-Chlorotoluene	ND		0.0333	mg/kg we								
Dibromochloromethane	ND		0.0667	mg/kg we								
1,2-Dibromo-3-chloropropane	ND		0.167	mg/kg we								
1,2-Dibromoethane (EDB)	ND		0.0333	mg/kg we								
Dibromomethane	ND		0.0333	mg/kg we								
1,2-Dichlorobenzene	ND		0.0167	mg/kg we								
1,3-Dichlorobenzene	ND		0.0167	mg/kg we								
1,4-Dichlorobenzene	ND		0.0167	mg/kg we								
Dichlorodifluoromethane	ND		0.0667	mg/kg we								
1,1-Dichloroethane	ND		0.0167	mg/kg we								
1,2-Dichloroethane (EDC)	ND		0.0167	mg/kg we								
1,1-Dichloroethene	ND		0.0167	mg/kg we								
cis-1,2-Dichloroethene	ND		0.0167	mg/kg we								
trans-1,2-Dichloroethene	ND		0.0167	mg/kg we								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zomenighini

Stantec Portland Project: 601 SW 2nd Ave Suite 1400 Project Number: 185750581 Portland, OR 97204 Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

Lampson

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091213 - EPA 5035A							Soil					
Blank (9091213-BLK1)		Prepared	: 09/24/19 10::	25 Analyze	d: 09/24/19	9 11:46						
1,2-Dichloropropane	ND		0.0167	mg/kg we	t 50							
1,3-Dichloropropane	ND		0.0333	mg/kg we	t 50							
2,2-Dichloropropane	ND		0.0333	mg/kg we	t 50							
1,1-Dichloropropene	ND		0.0333	mg/kg we	t 50							
cis-1,3-Dichloropropene	ND		0.0333	mg/kg we	t 50							
trans-1,3-Dichloropropene	ND		0.0333	mg/kg we	t 50							
Ethylbenzene	ND		0.0167	mg/kg we								
Hexachlorobutadiene	ND		0.0667	mg/kg we	t 50							
2-Hexanone	ND		0.333	mg/kg we	t 50							
Isopropylbenzene	ND		0.0333	mg/kg we								
4-Isopropyltoluene	ND		0.0333	mg/kg we	t 50							
Methylene chloride	ND		0.167	mg/kg we	t 50							
4-Methyl-2-pentanone (MiBK)	ND		0.333	mg/kg we	t 50							
Methyl tert-butyl ether (MTBE)	ND		0.0333	mg/kg we	t 50							
Naphthalene	ND		0.0667	mg/kg we								
n-Propylbenzene	ND		0.0167	mg/kg we								
Styrene	ND		0.0333	mg/kg we								
1,1,2-Tetrachloroethane	ND		0.0167	mg/kg we								
1,1,2,2-Tetrachloroethane	ND		0.0333	mg/kg we								
Tetrachloroethene (PCE)	ND		0.0167	mg/kg we								
Toluene	ND		0.0333	mg/kg we								
1,2,3-Trichlorobenzene	ND		0.167	mg/kg we								
1,2,4-Trichlorobenzene	ND		0.167	mg/kg we								
1,1,1-Trichloroethane	ND		0.0167	mg/kg we								
1,1,2-Trichloroethane	ND		0.0167	mg/kg we								
Trichloroethene (TCE)	ND		0.0167	mg/kg we								
Trichlorofluoromethane	ND		0.0667	mg/kg we								
1,2,3-Trichloropropane	ND		0.0333	mg/kg we								
1,2,4-Trimethylbenzene	ND		0.0333	mg/kg we								
1,3,5-Trimethylbenzene	ND		0.0333	mg/kg we								
Vinyl chloride	ND		0.0333	mg/kg we								
m,p-Xylene	ND ND		0.0107	mg/kg we								
n,p-Aylene o-Xylene	ND ND		0.0333	mg/kg we								
Surr: 1,4-Difluorobenzene (Surr)	ND		very: 110 %	Limits: 80-			ution: 1x					

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compou	nds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units I	Dilution	Spike Amount	Source Result	% REG	% REC Limits	RPD	RPD Limit	Notes
Batch 9091213 - EPA 5035A							Soil					
Blank (9091213-BLK1)		Prepared	: 09/24/19 10:	25 Analyzed	: 09/24/1	9 11:46						
Surr: Toluene-d8 (Surr)		Rec	overy: 95 %	Limits: 80-1.	20 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			99 %	80-12	20 %		"					
LCS (9091213-BS1)		Prepared	: 09/24/19 10::	25 Analyzed	: 09/24/1	9 10:52						
5035A/8260C												
Acetone	1.64		1.00	mg/kg wet	50	2.00		82	80 - 120%			
Acrylonitrile	0.855		0.100	mg/kg wet	50	1.00		86	80 - 120%			
Benzene	1.05		0.0100	mg/kg wet	50	1.00		105	80 - 120%			
Bromobenzene	1.02		0.0250	mg/kg wet	50	1.00		102	80 - 120%			
Bromochloromethane	0.981		0.0500	mg/kg wet	50	1.00		98	80 - 120%			
Bromodichloromethane	1.10		0.0500	mg/kg wet	50	1.00		110	80 - 120%			
Bromoform	1.09		0.100	mg/kg wet	50	1.00		109	80 - 120%			
Bromomethane	1.17		0.500	mg/kg wet	50	1.00		117	80 - 120%			
2-Butanone (MEK)	1.83		0.500	mg/kg wet	50	2.00		92	80 - 120%			
n-Butylbenzene	0.971		0.0500	mg/kg wet	50	1.00		97	80 - 120%			
sec-Butylbenzene	0.901		0.0500	mg/kg wet	50	1.00		90	80 - 120%			
ert-Butylbenzene	0.882		0.0500	mg/kg wet	50	1.00		88	80 - 120%			
Carbon disulfide	0.807		0.500	mg/kg wet	50	1.00		81	80 - 120%			
Carbon tetrachloride	1.09		0.0500	mg/kg wet	50	1.00		109	80 - 120%			
Chlorobenzene	0.966		0.0250	mg/kg wet	50	1.00		97	80 - 120%			
Chloroethane	2.83		0.500	mg/kg wet	50	1.00		283	80 - 120%			Q-56
Chloroform	1.03		0.0500	mg/kg wet	50	1.00		103	80 - 120%			
Chloromethane	1.02		0.250	mg/kg wet	50	1.00		102	80 - 120%			
2-Chlorotoluene	0.977		0.0500	mg/kg wet	50	1.00		98	80 - 120%			
4-Chlorotoluene	0.942		0.0500	mg/kg wet	50	1.00		94	80 - 120%			
Dibromochloromethane	1.10		0.100	mg/kg wet	50	1.00		110	80 - 120%			
1,2-Dibromo-3-chloropropane	0.797		0.250	mg/kg wet	50	1.00		80	80 - 120%			
1,2-Dibromoethane (EDB)	0.982		0.0500	mg/kg wet	50	1.00		98	80 - 120%			
Dibromomethane	1.11		0.0500	mg/kg wet	50	1.00		111	80 - 120%			
,2-Dichlorobenzene	1.02		0.0250	mg/kg wet	50	1.00		102	80 - 120%			
1,3-Dichlorobenzene	1.01		0.0250	mg/kg wet	50	1.00		101	80 - 120%			
1,4-Dichlorobenzene	0.991		0.0250	mg/kg wet	50	1.00		99	80 - 120%			
Dichlorodifluoromethane	1.26		0.100	mg/kg wet	50	1.00		126	80 - 120%			E-05, Q-5
1,1-Dichloroethane	1.03		0.0250	mg/kg wet		1.00		103	80 - 120%			,

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204

Project: Lampson Project Number: 185750581 Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C Detection Reporting Spike Source % REC RPD													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 9091213 - EPA 5035A							Soil						
LCS (9091213-BS1)		Prepared	: 09/24/19 10:2	25 Analyz	ed: 09/24/1	9 10:52							
,2-Dichloroethane (EDC)	1.08		0.0250	mg/kg we	et 50	1.00		108	80 - 120%				
,1-Dichloroethene	0.996		0.0250	mg/kg we	et 50	1.00		100	80 - 120%				
eis-1,2-Dichloroethene	1.09		0.0250	mg/kg we	et 50	1.00		109	80 - 120%				
rans-1,2-Dichloroethene	1.07		0.0250	mg/kg we	et 50	1.00		107	80 - 120%				
,2-Dichloropropane	1.07		0.0250	mg/kg we	et 50	1.00		107	80 - 120%				
,3-Dichloropropane	0.988		0.0500	mg/kg we	et 50	1.00		99	80 - 120%				
2,2-Dichloropropane	1.14		0.0500	mg/kg we	et 50	1.00		114	80 - 120%				
,1-Dichloropropene	1.06		0.0500	mg/kg w		1.00		106	80 - 120%				
eis-1,3-Dichloropropene	0.944		0.0500	mg/kg w		1.00		94	80 - 120%				
rans-1,3-Dichloropropene	0.942		0.0500	mg/kg w		1.00		94	80 - 120%				
Ethylbenzene	0.908		0.0250	mg/kg w	et 50	1.00		91	80 - 120%				
Hexachlorobutadiene	0.970		0.100	mg/kg w	et 50	1.00		97	80 - 120%				
2-Hexanone	1.60		0.500	mg/kg w	et 50	2.00		80	80 - 120%				
sopropylbenzene	0.933		0.0500	mg/kg w	et 50	1.00		93	80 - 120%				
l-Isopropyltoluene	0.939		0.0500	mg/kg w		1.00		94	80 - 120%				
Methylene chloride	0.973		0.250	mg/kg w		1.00		97	80 - 120%				
l-Methyl-2-pentanone (MiBK)	1.73		0.500	mg/kg w	et 50	2.00		87	80 - 120%				
Methyl tert-butyl ether (MTBE)	1.04		0.0500	mg/kg w		1.00		104	80 - 120%				
Naphthalene	0.859		0.100	mg/kg we	et 50	1.00		86	80 - 120%				
n-Propylbenzene	0.929		0.0250	mg/kg w	et 50	1.00		93	80 - 120%				
Styrene	0.951		0.0500	mg/kg w		1.00		95	80 - 120%				
,1,1,2-Tetrachloroethane	1.05		0.0250	mg/kg w		1.00		105	80 - 120%				
,1,2,2-Tetrachloroethane	0.921		0.0500	mg/kg w		1.00		92	80 - 120%				
Tetrachloroethene (PCE)	0.997		0.0250	mg/kg w		1.00		100	80 - 120%				
Toluene	0.905		0.0500	mg/kg w		1.00		90	80 - 120%				
,2,3-Trichlorobenzene	0.884		0.250	mg/kg w		1.00			80 - 120%				
,2,4-Trichlorobenzene	0.944		0.250	mg/kg w		1.00			80 - 120%				
,1,1-Trichloroethane	1.01		0.0250	mg/kg w		1.00		101	80 - 120%				
,1,2-Trichloroethane	0.962		0.0250	mg/kg w		1.00		96	80 - 120%				
Trichloroethene (TCE)	1.10		0.0250	mg/kg w		1.00			80 - 120%				
Trichlorofluoromethane	2.45		0.100	mg/kg w		1.00			80 - 120%			Q-56	
,2,3-Trichloropropane	0.951		0.0500	mg/kg we		1.00			80 - 120%				
,2,4-Trimethylbenzene	0.930		0.0500	mg/kg w		1.00			80 - 120%				
, ,	0.880		0.0500	mg/kg we		1.00			80 - 120%				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091213 - EPA 5035A							Soil					
LCS (9091213-BS1)		Prepared	09/24/19 10:	25 Analyze	ed: 09/24/1	9 10:52						
Vinyl chloride	1.10		0.0250	mg/kg we	et 50	1.00		110	80 - 120%			
m,p-Xylene	1.87		0.0500	mg/kg we	et 50	2.00		94	80 - 120%			
o-Xylene	0.906		0.0250	mg/kg we	et 50	1.00		91	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 111 %	Limits: 80-	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			93 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		·	Polychlor	inated Bi	phenyls	by EPA 80)82A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091156 - EPA 3546							Soil					
Blank (9091156-BLK1)		Prepared	: 09/23/19 08:	53 Analyz	ed: 09/24/1	9 08:37						C-07
EPA 8082A												
Aroclor 1016	ND		0.00909	mg/kg we	et 1							
Aroclor 1221	ND		0.00909	mg/kg we	et 1							
Aroclor 1232	ND		0.00909	mg/kg we	et 1							
Aroclor 1242	ND		0.00909	mg/kg we	et 1							
Aroclor 1248	ND		0.00909	mg/kg we	et 1							
Aroclor 1254	ND		0.00909	mg/kg we	et 1							
Aroclor 1260	ND		0.00909	mg/kg we	et 1							
Surr: Decachlorobiphenyl (Surr)		Rece	overy: 97 %	Limits: 60-	-125 %	Dilı	ution: 1x					
LCS (9091156-BS1)		Prepared	: 09/23/19 08:	53 Analyze	ed: 09/24/1	9 08:55						C-07
EPA 8082A												
Aroclor 1016	0.184		0.0100	mg/kg we	et 1	0.250		73	47 - 134%			
Aroclor 1260	0.219		0.0100	mg/kg we	et 1	0.250		88	53 - 140%			
Surr: Decachlorobiphenyl (Surr)		Reco	very: 103 %	Limits: 60-	-125 %	Dilı	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008


QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ns (PAH	s) by EPA	8270D S	M				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091201 - EPA 3546							Soil					
Blank (9091201-BLK1)		Prepared	: 09/24/19 06:5	55 Analyze	ed: 09/24/1	9 10:49						
EPA 8270D (SIM)												
Acenaphthene	ND		0.00909	mg/kg we	et 1							
Acenaphthylene	ND		0.00909	mg/kg we	et 1							
Anthracene	ND		0.00909	mg/kg we	et 1							
Benz(a)anthracene	ND		0.00909	mg/kg we	et 1							
Benzo(a)pyrene	ND		0.00909	mg/kg we	et 1							
Benzo(b)fluoranthene	ND		0.00909	mg/kg we	et 1							
Benzo(k)fluoranthene	ND		0.00909	mg/kg we	et 1							
Benzo(g,h,i)perylene	ND		0.00909	mg/kg we	et 1							
Chrysene	ND		0.00909	mg/kg we	et 1							
Dibenz(a,h)anthracene	ND		0.00909	mg/kg we	et 1							
Dibenzofuran	ND		0.00909	mg/kg we	et 1							
Fluoranthene	ND		0.00909	mg/kg we	et 1							
Fluorene	ND		0.00909	mg/kg we	et 1							
Indeno(1,2,3-cd)pyrene	ND		0.00909	mg/kg we	et 1							
l-Methylnaphthalene	ND		0.00909	mg/kg we	et 1							
2-Methylnaphthalene	ND		0.00909	mg/kg we	et 1							
Naphthalene	ND		0.00909	mg/kg we	et 1							
Phenanthrene	ND		0.00909	mg/kg we	et 1							
Pyrene	ND		0.00909	mg/kg we	et 1							
Surr: 2-Fluorobiphenyl (Surr)		Rece	overy: 78 %	Limits: 44-	120 %	Dilt	ution: 1x					
p-Terphenyl-d14 (Surr)			95 %	54-	127 %		"					
LCS (9091201-BS1)		Prepared	: 09/24/19 06:5	55 Analyze	ed: 09/24/1	9 11:15						<u> </u>
EPA 8270D (SIM)		*										
Acenaphthene	0.630		0.0100	mg/kg we	et 1	0.800		79	40 - 122%			
Acenaphthylene	0.616		0.0100	mg/kg we	et 1	0.800		77	32 - 132%			
Anthracene	0.644		0.0100	mg/kg we		0.800		81 4	47 - 123%			
Benz(a)anthracene	0.584		0.0100	mg/kg we		0.800		73	19 - 126%			
Benzo(a)pyrene	0.651		0.0100	mg/kg we		0.800		81 4	45 - 129%			
Benzo(b)fluoranthene	0.641		0.0100	mg/kg we		0.800		80	45 - 132%			
Benzo(k)fluoranthene	0.682		0.0100	mg/kg we		0.800			17 - 132%			
Benzo(g,h,i)perylene	0.583		0.0100	mg/kg we		0.800		73	13 - 134%			
Chrysene	0.640		0.0100	mg/kg we		0.800			50 - 124%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmenghini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ns (PAH	s) by EPA	8270D SI	М				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091201 - EPA 3546							Soil					
LCS (9091201-BS1)		Prepared	: 09/24/19 06:	55 Analyze	ed: 09/24/19	9 11:15						
Dibenz(a,h)anthracene	0.603		0.0100	mg/kg we	t 1	0.800		75	45 - 134%			
Dibenzofuran	0.633		0.0100	mg/kg we	t 1	0.800		79	44 - 120%			
Fluoranthene	0.622		0.0100	mg/kg we	t 1	0.800		78	50 - 127%			
Fluorene	0.641		0.0100	mg/kg we	et 1	0.800		80	43 - 125%			
ndeno(1,2,3-cd)pyrene	0.586		0.0100	mg/kg we	et 1	0.800		73	45 - 133%			
-Methylnaphthalene	0.671		0.0100	mg/kg we	et 1	0.800		84	40 - 120%			
2-Methylnaphthalene	0.646		0.0100	mg/kg we	et 1	0.800		81	38 - 122%			
Naphthalene	0.619		0.0100	mg/kg we	et 1	0.800		77	35 - 123%			
Phenanthrene	0.596		0.0100	mg/kg we	t 1	0.800		74	50 - 121%			
Pyrene	0.610		0.0100	mg/kg we	et 1	0.800		76	47 - 127%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 81 %	Limits: 44-	120 %	Dili	ution: 1x					
p-Terphenyl-d14 (Surr)			87 %	54-	127 %		"					
QC Source Sample: UST-06-T1-S EPA 8270D (SIM)	W (A910687	-13)										
Acenaphthene	0.768		0.0116	mg/kg dr	v 1	0.927	ND	66	40 - 122%			
Acenaphthylene	0.671		0.0116	mg/kg dr		0.927	ND	67	32 - 132%			
Anthracene	0.747		0.0116	mg/kg dr		0.927	ND	76	47 - 123%			
Benz(a)anthracene	0.640		0.0116	mg/kg dr		0.927	ND	68	49 - 126%			
Benzo(a)pyrene	0.716		0.0116	mg/kg dr		0.927	ND	77	45 - 129%			
Benzo(b)fluoranthene	0.676		0.0116	mg/kg dr		0.927	ND	73	45 - 132%			
Benzo(k)fluoranthene	0.741		0.0116	mg/kg dr		0.927	ND	80	47 - 132%			
Benzo(g,h,i)perylene	0.600		0.0116	mg/kg dr		0.927	ND	65	43 - 134%			
Chrysene	0.712		0.0116	mg/kg dr		0.927	ND	76	50 - 124%			
Dibenz(a,h)anthracene	0.623		0.0116	mg/kg dr		0.927	ND	67	45 - 134%			
Dibenzofuran	0.760		0.0116	mg/kg dr		0.927	ND	70	44 - 120%			
Fluoranthene	0.794		0.0116	mg/kg dr		0.927	0.0253	83	50 - 127%			
Fluorene	1.04		0.0116	mg/kg dr		0.927	0.448	63	43 - 125%			
ndeno(1,2,3-cd)pyrene	0.600		0.0116	mg/kg dr		0.927	ND	65	45 - 133%			
-Methylnaphthalene	4.89		0.0116	mg/kg dr		0.927	5.68	-85	40 - 120%			E, Q-03
2-Methylnaphthalene	8.35		0.0116	mg/kg dr		0.927	10.7	-252	38 - 122%			Q-03, E
2-ivicuiyinapiimaiciic												
Naphthalene	8.27		0.0116	mg/kg dr	y 1	0.927	10.6	-247	35 - 123%			Q-03, E

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goad Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarb	ons (PAH	s) by EPA	8270D S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091201 - EPA 3546							Soil					
Matrix Spike (9091201-MS1)		Prepared	: 09/24/19 06:	55 Analyz	zed: 09/24/1	9 20:10						
QC Source Sample: UST-06-T1-S	W (A9I0687	-13)										
Pyrene	0.815		0.0116	mg/kg d	ry 1	0.927	0.0401	84	47 - 127%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 72 %	Limits: 4	4-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			86 %	54	4-127 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008


QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ns (PAH	s) by EPA	8270D S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091322 - EPA 3546							Soil					
Blank (9091322-BLK1)		Prepared	: 09/26/19 10:0)1 Analyze	ed: 09/26/1	9 14:11						
EPA 8270D (SIM)												
Acenaphthene	ND		0.00909	mg/kg we	et 1							
Acenaphthylene	ND		0.00909	mg/kg we	et 1							
Anthracene	ND		0.00909	mg/kg we	et 1							
Benz(a)anthracene	ND		0.00909	mg/kg we	et 1							
Benzo(a)pyrene	ND		0.00909	mg/kg we	et 1							
Benzo(b)fluoranthene	ND		0.00909	mg/kg we	et 1							
Benzo(k)fluoranthene	ND		0.00909	mg/kg we	et 1							
Benzo(g,h,i)perylene	ND		0.00909	mg/kg we	et 1							
Chrysene	ND		0.00909	mg/kg we	et 1							
Dibenz(a,h)anthracene	ND		0.00909	mg/kg we	et 1							
Dibenzofuran	ND		0.00909	mg/kg we	et 1							
Fluoranthene	ND		0.00909	mg/kg we	et 1							
Fluorene	ND		0.00909	mg/kg we	et 1							
Indeno(1,2,3-cd)pyrene	ND		0.00909	mg/kg we	et 1							
1-Methylnaphthalene	ND		0.00909	mg/kg we	et 1							
2-Methylnaphthalene	ND		0.00909	mg/kg we	et 1							
Naphthalene	ND		0.00909	mg/kg we	et 1							
Phenanthrene	ND		0.00909	mg/kg we	et 1							
Pyrene	ND		0.00909	mg/kg we	et 1							
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 80 %	Limits: 44-	120 %	Dili	ution: 1x					
p-Terphenyl-d14 (Surr)			96 %	54-	127 %		"					
LCS (9091322-BS1)		Prepared	: 09/26/19 10:0)1 Analyze	ed: 09/26/1	9 14:36						
EPA 8270D (SIM)				-								
Acenaphthene	0.652		0.0100	mg/kg we	et 1	0.800		82	40 - 122%			
Acenaphthylene	0.650		0.0100	mg/kg we	et 1	0.800		81	32 - 132%			
Anthracene	0.678		0.0100	mg/kg we		0.800		85	47 - 123%			
Benz(a)anthracene	0.595		0.0100	mg/kg we	et 1	0.800		74	19 - 126%			
Benzo(a)pyrene	0.649		0.0100	mg/kg we	et 1	0.800		81	45 - 129%			
Benzo(b)fluoranthene	0.631		0.0100	mg/kg we		0.800		79	45 - 132%			
Benzo(k)fluoranthene	0.703		0.0100	mg/kg we		0.800		88	47 - 132%			
Benzo(g,h,i)perylene	0.625		0.0100	mg/kg we		0.800		78	43 - 134%			
Chrysene	0.671		0.0100	mg/kg we		0.800			50 - 124%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Smerighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ns (PAH	s) by EPA	8270D S	M				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091322 - EPA 3546							Soil					
LCS (9091322-BS1)		Prepared	: 09/26/19 10:	01 Analyze	ed: 09/26/1	9 14:36						
Dibenz(a,h)anthracene	0.668		0.0100	mg/kg we	et 1	0.800		83	45 - 134%			
Dibenzofuran	0.671		0.0100	mg/kg we	et 1	0.800		84	44 - 120%			
Fluoranthene	0.628		0.0100	mg/kg we	et 1	0.800		78	50 - 127%			
Fluorene	0.662		0.0100	mg/kg we	et 1	0.800		83	43 - 125%			
Indeno(1,2,3-cd)pyrene	0.610		0.0100	mg/kg we	et 1	0.800		76	45 - 133%			
l-Methylnaphthalene	0.669		0.0100	mg/kg we	et 1	0.800		84	40 - 120%			
2-Methylnaphthalene	0.648		0.0100	mg/kg we	et 1	0.800		81	38 - 122%			
Naphthalene	0.668		0.0100	mg/kg we	et 1	0.800		83	35 - 123%			
Phenanthrene	0.631		0.0100	mg/kg we	et 1	0.800		79	50 - 121%			
Pyrene	0.614		0.0100	mg/kg we	et 1	0.800		77	47 - 127%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 97 %	Limits: 44-	-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			102 %	54-	127 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: <u>Lampson</u>
Project Number: **185750581**Project Manager: **Len Farr**

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ns (PAH	s) by EPA	8270D S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091438 - EPA 3546							Soil					
Blank (9091438-BLK1)		Prepared	: 09/30/19 10:0	02 Analyz	ed: 10/02/1	9 16:49						
EPA 8270D (SIM)												
Acenaphthene	ND		0.00909	mg/kg we	et 1							
Acenaphthylene	ND		0.00909	mg/kg we	et 1							
Anthracene	ND		0.00909	mg/kg we	et 1							
Benz(a)anthracene	ND		0.00909	mg/kg we	et 1							
Benzo(a)pyrene	ND		0.00909	mg/kg we	et 1							
Benzo(b)fluoranthene	ND		0.00909	mg/kg we	et 1							
Benzo(k)fluoranthene	ND		0.00909	mg/kg we	et 1							
Benzo(g,h,i)perylene	ND		0.00909	mg/kg we	et 1							
Chrysene	ND		0.00909	mg/kg we	et 1							
Dibenz(a,h)anthracene	ND		0.00909	mg/kg we	et 1							
Dibenzofuran	ND		0.00909	mg/kg we	et 1							
Fluoranthene	ND		0.00909	mg/kg we	et 1							
Fluorene	ND		0.00909	mg/kg w	et 1							
Indeno(1,2,3-cd)pyrene	ND		0.00909	mg/kg we	et 1							
1-Methylnaphthalene	ND		0.00909	mg/kg we	et 1							
2-Methylnaphthalene	ND		0.00909	mg/kg we	et 1							
Naphthalene	ND		0.00909	mg/kg we	et 1							
Phenanthrene	ND		0.00909	mg/kg w	et 1							
Pyrene	ND		0.00909	mg/kg we	et 1							
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 81 %	Limits: 44	-120 %	Dil	ution: 1x					
p-Terphenyl-d14 (Surr)			87 %	54-	.127 %		"					
LCS (9091438-BS1)	·	Prepared	: 09/30/19 10:0	02 Analyz	ed: 10/02/1	9 17:14		·				
EPA 8270D (SIM)												
Acenaphthene	0.639		0.0100	mg/kg we	et 1	0.800		80	40 - 122%			
Acenaphthylene	0.635		0.0100	mg/kg w	et 1	0.800		79	32 - 132%			
Anthracene	0.646		0.0100	mg/kg we	et 1	0.800		81	47 - 123%			
Benz(a)anthracene	0.667		0.0100	mg/kg w	et 1	0.800		83	49 - 126%			
Benzo(a)pyrene	0.670		0.0100	mg/kg w		0.800		84	45 - 129%			
Benzo(b)fluoranthene	0.669		0.0100	mg/kg w		0.800		84	45 - 132%			
Benzo(k)fluoranthene	0.671		0.0100	mg/kg w		0.800		84	47 - 132%			
Benzo(g,h,i)perylene	0.675		0.0100	mg/kg w		0.800		84	43 - 134%			
Chrysene	0.680		0.0100	mg/kg w		0.800		85	50 - 124%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gra A Zmenyhini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ns (PAH	s) by EPA	8270D SI	М				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091438 - EPA 3546							Soil					
LCS (9091438-BS1)		Prepared	09/30/19 10:0	02 Analyze	ed: 10/02/1	9 17:14						
Dibenz(a,h)anthracene	0.672		0.0100	mg/kg we	et 1	0.800		84	45 - 134%			
Dibenzofuran	0.639		0.0100	mg/kg we	et 1	0.800		80	44 - 120%			
Fluoranthene	0.650		0.0100	mg/kg we	et 1	0.800		81	50 - 127%			
Fluorene	0.652		0.0100	mg/kg we	et 1	0.800		81	43 - 125%			
Indeno(1,2,3-cd)pyrene	0.668		0.0100	mg/kg we	et 1	0.800		84	45 - 133%			
l-Methylnaphthalene	0.598		0.0100	mg/kg we	et 1	0.800		75	40 - 120%			
2-Methylnaphthalene	0.603		0.0100	mg/kg we	et 1	0.800		75	38 - 122%			
Naphthalene	0.586		0.0100	mg/kg we	et 1	0.800		73	35 - 123%			
Phenanthrene	0.649		0.0100	mg/kg we	et 1	0.800		81	50 - 121%			
Pyrene	0.664		0.0100	mg/kg we	et 1	0.800		83	47 - 127%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 75 %	Limits: 44-	-120 %	Dil	ution: 1x					
p-Terphenyl-d14 (Surr)			84 %	54-	127 %		"					
QC Source Sample: GP03-8 (A9 EPA 8270D (SIM)	10687-04RE1)	<u>.</u>										
Acenaphthene	ND		0.0122	mg/kg dr	v 1		ND				30%	
Acenaphthylene	ND		0.0122	mg/kg dr	•		ND				30%	
Anthracene	ND		0.0122	mg/kg dr	-		ND				30%	
Benz(a)anthracene	ND		0.0122	mg/kg dr			ND				30%	
Benzo(a)pyrene	ND		0.0122	mg/kg dr	-		ND				30%	
Benzo(b)fluoranthene	ND		0.0122	mg/kg dr			ND				30%	
Benzo(k)fluoranthene	ND		0.0122	mg/kg dr			ND				30%	
Benzo(g,h,i)perylene	ND		0.0122	mg/kg dr	-		0.00730			***	30%	Q-05
Chrysene	ND		0.0122	mg/kg dr			ND				30%	
Dibenz(a,h)anthracene	ND		0.0122	mg/kg dr	•		ND				30%	
Dibenzofuran	ND		0.0122	mg/kg dr	-		ND				30%	
Fluoranthene	ND		0.0122	mg/kg dr			ND				30%	
Fluorene	ND		0.0122	mg/kg dr			ND				30%	Q-05
Indeno(1,2,3-cd)pyrene	ND		0.0122	mg/kg dr	y 1		ND				30%	
I-Methylnaphthalene	0.268		0.0122	mg/kg dr			0.136			65	30%	Q-17
2-Methylnaphthalene	0.679		0.0122	mg/kg dr			0.343			66	30%	Q-17
Naphthalene	0.491		0.0122	mg/kg dr			0.314			44	30%	Q-17
				- '								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Awa & Smeinghine

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Stantec Portland Project: **601 SW 2nd Ave Suite 1400** Project Number: 185750581 Portland, OR 97204 Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

Lampson

	·	Polya	romatic Hy	drocarb	ons (PAH	s) by EPA	8270D S	M	·		-	-
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091438 - EPA 3546							Soil					
Duplicate (9091438-DUP1)		Prepared	: 09/30/19 10:	02 Analyz	zed: 10/02/1	9 18:30						
QC Source Sample: GP03-8 (A91	0687-04RE1)	<u>1</u>										
Pyrene	ND		0.0122	mg/kg d	ry 1		ND				30%	
Surr: 2-Fluorobiphenyl (Surr)		Rece	overy: 70 %	Limits: 4	4-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			73 %	54	4-127 %		"					

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008


QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by E	PA 6020	A (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091186 - EPA 3051A							Soil					
Blank (9091186-BLK1)		Prepared	: 09/23/19 14:3	33 Analyze	d: 09/23/19	9 20:40						
EPA 6020A												
Arsenic	ND		0.962	mg/kg we	t 10							
Barium	2.34		0.962	mg/kg we	t 10							В
Cadmium	ND		0.192	mg/kg we	t 10							
Chromium	ND		0.962	mg/kg we	t 10							
Lead	ND		0.192	mg/kg we	t 10							
Selenium	ND		0.962	mg/kg we	t 10							
Silver	ND		0.192	mg/kg we	t 10							
Blank (9091186-BLK2)		Prepared	: 09/23/19 14:3	33 Analyze	d: 09/24/19	9 11:02						
EPA 6020A												
Mercury	ND		0.0769	mg/kg we	t 10							Q-16
LCS (9091186-BS1)		Prepared	: 09/23/19 14:3	33 Analyze	d: 09/23/19	9 20:44						
EPA 6020A												
Arsenic	47.5		1.00	mg/kg we	t 10	50.0		95	80 - 120%			
Barium	48.2		1.00	mg/kg we	t 10	50.0		96	80 - 120%			В
Cadmium	47.0		0.200	mg/kg we	t 10	50.0		94	80 - 120%			
Chromium	52.3		1.00	mg/kg we	t 10	50.0		105	80 - 120%			
Lead	46.9		0.200	mg/kg we	t 10	50.0		94	80 - 120%			
Selenium	23.8		1.00	mg/kg we	t 10	25.0		95	80 - 120%			
Silver	25.4		0.200	mg/kg we	t 10	25.0		102	80 - 120%			
LCS (9091186-BS2)		Prepared	: 09/23/19 14:3	33 Analyze	d: 09/24/19	9 11:06						
EPA 6020A				-								
Mercury	0.891		0.0800	mg/kg we	t 10	1.00		89	80 - 120%			Q-16
Duplicate (9091186-DUP1)		Prepared	: 09/23/19 14:3	33 Analyze	d: 09/23/19	9 22:13						
QC Source Sample: UST-06-T1-SV	W (A910687	<u>'-13)</u>										
EPA 6020A												
Arsenic	2.09		1.29	mg/kg dry	10		2.78			28	40%	
Barium	82.5		1.29	mg/kg dry	10		82.0			0.7	40%	В
Cadmium	ND		0.257	mg/kg dry			ND				40%	
Chromium	27.4		1.29	mg/kg dry	10		28.9			5	40%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goad Zmenghini

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008


QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by E	PA 602	A (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091186 - EPA 3051A							Soil					
Duplicate (9091186-DUP1)		Prepared	: 09/23/19 14::	33 Analyze	d: 09/23/1	9 22:13						
QC Source Sample: UST-06-T1-S	W (A910687	<u>'-13)</u>										
Selenium	ND		1.29	mg/kg dry	10		ND				40%	
Silver	ND		0.257	mg/kg dry	10		ND				40%	
Duplicate (9091186-DUP2)		Prepared	: 09/23/19 14:	33 Analyzeo	d: 09/24/1	9 12:25						
QC Source Sample: UST-06-T1-S	W (A910687	'-13RE1)										
EPA 6020A												
Lead	7.34		0.257	mg/kg dry	10		12.9			55	40%	Q-04, Q-16
Mercury	ND		0.103	mg/kg dry	10		ND				40%	Q-16
Matrix Spike (9091186-MS1)		Prepared	: 09/23/19 14::	33 Analyze	d: 09/23/1	9 22:17						
QC Source Sample: UST-06-T1-S EPA 6020A	W (A910687	<u>'-13)</u>										
Arsenic	56.4		1.15	mg/kg dry	10	57.4	2.78	94	75 - 125%			
Barium	142		1.15	mg/kg dry		57.4	82.0	105	75 - 125%			В
Cadmium	53.0		0.229	mg/kg dry		57.4	ND	92	75 - 125%			
Chromium	90.8		1.15	mg/kg dry		57.4	28.9	108	75 - 125%			
Selenium	27.0		1.15	mg/kg dry		28.7	ND	94	75 - 125%			
Silver	29.3		0.229	mg/kg dry	10	28.7	ND	102	75 - 125%			
Matrix Spike (9091186-MS2)		Prepared	: 09/23/19 14:	33 Analyze	d: 09/24/1	9 12:30						
QC Source Sample: UST-06-T1-S	W (A910687	'-13RE1)				·						
EPA 6020A												
Lead	59.8		0.229	mg/kg dry		57.4	12.9	82	75 - 125%			Q-16
Mercury	1.07		0.0918	mg/kg dry	10	1.15	ND	93	75 - 125%			Q-16

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

<u>Report ID:</u> A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP Me	etals by	EPA 602	DA (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091266 - EPA 1311/301	5						Soli	d				
Blank (9091266-BLK1)		Prepared	: 09/25/19 09:26	6 Analyz	ed: 09/25/19	9 12:01						
1311/6020A												
Cadmium	ND		0.100	mg/L	10							TCLP
Chromium	ND		0.100	mg/L	10							TCLP
Lead	ND		0.0500	mg/L	10							TCLP
LCS (9091266-BS1)		Prepared	: 09/25/19 09:26	6 Analyz	ed: 09/25/19	9 12:06						
1311/6020A												
Cadmium	0.996		0.100	mg/L	10	1.00		100	30 - 120%			TCLP
Chromium	4.86		0.100	mg/L	10	5.00		97	30 - 120%			TCLP
Lead	4.81		0.0500	mg/L	10	5.00		96	80 - 120%			TCLP
Matrix Spike (9091266-MS1)		Prepared	: 09/25/19 09:26	6 Analyz	ed: 09/25/19	9 12:52						
QC Source Sample: UST-06-T1-S	W (A910687	-13)										
<u>1311/6020A</u>												
Cadmium	0.997		0.100	mg/L	10	1.00	ND	100	50 - 150%			
Chromium	4.90		0.100	mg/L	10	5.00	ND	98	50 - 150%			
Lead	4.79		0.0500	mg/L	10	5.00	ND	96	50 - 150%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits RPD	RPD Limit	Notes
Batch 9091154 - Tota	al Solids (Dry Weigh	nt)					Soil				

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091204 - Total Solids	(Dry Weigh	nt)					Soil					
Duplicate (9091204-DUP2)		Prepared	: 09/24/19 08:	14 Analy	zed: 09/25/1	9 07:46						
QC Source Sample: GP-X (A910 EPA 8000C	<u>687-05)</u>											
% Solids	81.7		1.00	% by We	ight 1		81.5			0.3	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A910687 - 10 14 19 1008

SAMPLE PREPARATION INFORMATION

		Diesel an	d/or Oil Hydrocarbor	ns by NWTPH-Dx			
Prep: EPA 3546 (F	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091236							
A9I0687-02	Soil	NWTPH-Dx	09/17/19 13:45	09/24/19 12:57	10.61g/5mL	10g/5mL	0.94
A9I0687-03	Soil	NWTPH-Dx	09/18/19 09:30	09/24/19 12:57	10.37g/5mL	10g/5mL	0.96
A9I0687-04	Soil	NWTPH-Dx	09/18/19 10:00	09/24/19 12:57	10.8g/5mL	10g/5mL	0.93
A9I0687-05	Soil	NWTPH-Dx	09/18/19 10:15	09/24/19 12:57	10.09g/5mL	10g/5mL	0.99
A9I0687-06	Soil	NWTPH-Dx	09/18/19 16:00	09/24/19 12:57	10.36g/5mL	10g/5mL	0.97
A9I0687-07	Soil	NWTPH-Dx	09/18/19 16:15	09/24/19 12:57	10.5g/5mL	10g/5mL	0.95
A9I0687-08	Soil	NWTPH-Dx	09/19/19 11:00	09/24/19 12:57	10.19g/5mL	10g/5mL	0.98
A9I0687-09	Soil	NWTPH-Dx	09/19/19 11:05	09/24/19 12:57	10.35g/5mL	10g/5mL	0.97
A9I0687-10	Soil	NWTPH-Dx	09/19/19 12:30	09/24/19 12:57	10.67g/5mL	10g/5mL	0.94
A9I0687-11	Soil	NWTPH-Dx	09/19/19 12:45	09/24/19 12:57	10.58g/5mL	10g/5mL	0.95
A9I0687-12	Soil	NWTPH-Dx	09/19/19 13:00	09/24/19 12:57	10.48g/5mL	10g/5mL	0.95
A9I0687-13	Soil	NWTPH-Dx	09/19/19 13:15	09/24/19 12:57	10.91g/5mL	10g/5mL	0.92
Batch: 9091259							
A9I0687-01RE1	Soil	NWTPH-Dx	09/17/19 13:20	09/25/19 07:08	10.24g/5mL	10g/5mL	0.98

	Gas	soline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) by	y NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091047							
A9I0687-01	Soil	NWTPH-Gx (MS)	09/17/19 13:20	09/17/19 13:20	4.96g/5mL	5g/5mL	1.01
A9I0687-02	Soil	NWTPH-Gx (MS)	09/17/19 13:45	09/17/19 13:45	6.95g/5mL	5g/5mL	0.72
A9I0687-03	Soil	NWTPH-Gx (MS)	09/18/19 09:30	09/18/19 09:30	5.52g/5mL	5g/5mL	0.91
Batch: 9091108							
A9I0687-07	Soil	NWTPH-Gx (MS)	09/18/19 16:15	09/18/19 16:15	6.69g/5mL	5g/5mL	0.75
A9I0687-08	Soil	NWTPH-Gx (MS)	09/19/19 11:00	09/19/19 11:00	6.33g/5mL	5g/5mL	0.79
Batch: 9091160							
A9I0687-06	Soil	NWTPH-Gx (MS)	09/18/19 16:00	09/18/19 16:00	6.68g/5mL	5g/5mL	0.75
A9I0687-10	Soil	NWTPH-Gx (MS)	09/19/19 12:30	09/19/19 12:30	6.58g/5mL	5g/5mL	0.76
A9I0687-11	Soil	NWTPH-Gx (MS)	09/19/19 12:45	09/19/19 12:45	7.21g/5mL	5g/5mL	0.69
A9I0687-12	Soil	NWTPH-Gx (MS)	09/19/19 13:00	09/19/19 13:00	6.09g/5mL	5g/5mL	0.82
A9I0687-13	Soil	NWTPH-Gx (MS)	09/19/19 13:15	09/19/19 13:15	6.56g/5mL	5g/5mL	0.76
Batch: 9091213							
A9I0687-04RE1	Soil	NWTPH-Gx (MS)	09/18/19 10:00	09/18/19 10:00	5.82g/5mL	5g/5mL	0.86
A9I0687-05RE1	Soil	NWTPH-Gx (MS)	09/18/19 10:15	09/18/19 10:15	5.75g/5mL	5g/5mL	0.87

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Jamenghini

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

SAMPLE PREPARATION INFORMATION

Prep: EPA 5035A				Sample	Default	RL Prep
Lab Number Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A9I0687-09RE1 Soil	NWTPH-Gx (MS)	09/19/19 11:05	09/19/19 11:05	7.21g/5mL	5g/5mL	0.69

Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091047							
A9I0687-01	Soil	5035A/8260C	09/17/19 13:20	09/17/19 13:20	4.96g/5mL	5g/5mL	1.01
A9I0687-02	Soil	5035A/8260C	09/17/19 13:45	09/17/19 13:45	6.95g/5mL	5g/5mL	0.72
A9I0687-03	Soil	5035A/8260C	09/18/19 09:30	09/18/19 09:30	5.52g/5mL	5g/5mL	0.91
Batch: 9091108							
A9I0687-07	Soil	5035A/8260C	09/18/19 16:15	09/18/19 16:15	6.69g/5mL	5g/5mL	0.75
A9I0687-08	Soil	5035A/8260C	09/19/19 11:00	09/19/19 11:00	6.33g/5mL	5g/5mL	0.79
Batch: 9091160							
A9I0687-06	Soil	5035A/8260C	09/18/19 16:00	09/18/19 16:00	6.68g/5mL	5g/5mL	0.75
A9I0687-10	Soil	5035A/8260C	09/19/19 12:30	09/19/19 12:30	6.58g/5mL	5g/5mL	0.76
A9I0687-11	Soil	5035A/8260C	09/19/19 12:45	09/19/19 12:45	7.21g/5mL	5g/5mL	0.69
A9I0687-12	Soil	5035A/8260C	09/19/19 13:00	09/19/19 13:00	6.09g/5mL	5g/5mL	0.82
A9I0687-13	Soil	5035A/8260C	09/19/19 13:15	09/19/19 13:15	6.56g/5mL	5g/5mL	0.76
Batch: 9091213							
A9I0687-04RE1	Soil	5035A/8260C	09/18/19 10:00	09/18/19 10:00	5.82g/5mL	5g/5mL	0.86
A9I0687-05RE1	Soil	5035A/8260C	09/18/19 10:15	09/18/19 10:15	5.75g/5mL	5g/5mL	0.87
A9I0687-08RE1	Soil	5035A/8260C	09/19/19 11:00	09/19/19 11:00	6.33g/5mL	5g/5mL	0.79
A9I0687-09RE1	Soil	5035A/8260C	09/19/19 11:05	09/19/19 11:05	7.21g/5mL	5g/5mL	0.69

		Polycl	hlorinated Biphenyls	by EPA 8082A			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091156							
A9I0687-08	Soil	EPA 8082A	09/19/19 11:00	09/23/19 15:18	10.76g/5mL	10g/5mL	0.93
A9I0687-09	Soil	EPA 8082A	09/19/19 11:05	09/23/19 15:18	10.49g/5mL	10g/5mL	0.95
A9I0687-10	Soil	EPA 8082A	09/19/19 12:30	09/23/19 15:18	10.45g/5mL	10g/5mL	0.96
A9I0687-11	Soil	EPA 8082A	09/19/19 12:45	09/23/19 15:18	10.53g/5mL	10g/5mL	0.95
A9I0687-12	Soil	EPA 8082A	09/19/19 13:00	09/23/19 15:18	10.49g/5mL	10g/5mL	0.95
A9I0687-13	Soil	EPA 8082A	09/19/19 13:15	09/23/19 15:18	10.83g/5mL	10g/5mL	0.92

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: <u>Lampson</u>
Project Number: **185750581**Project Manager: **Len Farr**

Report ID: A9I0687 - 10 14 19 1008

SAMPLE PREPARATION INFORMATION

Polychlorinated Biphenyls by EPA 8082A

		Polyaromatic H	Hydrocarbons (PAHs	s) by EPA 8270D SII	И		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091201							
A9I0687-08	Soil	EPA 8270D (SIM)	09/19/19 11:00	09/24/19 06:55	10.5g/5mL	10g/5mL	0.95
A9I0687-08RE1	Soil	EPA 8270D (SIM)	09/19/19 11:00	09/24/19 06:55	10.5g/5mL	10g/5mL	0.95
A9I0687-09	Soil	EPA 8270D (SIM)	09/19/19 11:05	09/24/19 06:55	10.37g/5mL	10g/5mL	0.96
A9I0687-09RE1	Soil	EPA 8270D (SIM)	09/19/19 11:05	09/24/19 06:55	10.37g/5mL	10g/5mL	0.96
A9I0687-10	Soil	EPA 8270D (SIM)	09/19/19 12:30	09/24/19 06:55	10.08g/5mL	10g/5mL	0.99
A9I0687-10RE1	Soil	EPA 8270D (SIM)	09/19/19 12:30	09/24/19 06:55	10.08g/5mL	10g/5mL	0.99
A9I0687-11	Soil	EPA 8270D (SIM)	09/19/19 12:45	09/24/19 06:55	10.06g/5mL	10g/5mL	0.99
A9I0687-11RE1	Soil	EPA 8270D (SIM)	09/19/19 12:45	09/24/19 06:55	10.06g/5mL	10g/5mL	0.99
A9I0687-12	Soil	EPA 8270D (SIM)	09/19/19 13:00	09/24/19 06:55	10.17g/5mL	10g/5mL	0.98
A9I0687-13	Soil	EPA 8270D (SIM)	09/19/19 13:15	09/24/19 06:55	10.25g/5mL	10g/5mL	0.98
A9I0687-13RE1	Soil	EPA 8270D (SIM)	09/19/19 13:15	09/24/19 06:55	10.25g/5mL	10g/5mL	0.98
Batch: 9091322							
A9I0687-01	Soil	EPA 8270D (SIM)	09/17/19 13:20	09/26/19 15:43	10.44g/5mL	10g/5mL	0.96
A9I0687-05	Soil	EPA 8270D (SIM)	09/18/19 10:15	09/26/19 15:43	10.34g/5mL	10g/5mL	0.97
Batch: 9091438							
A9I0687-04RE1	Soil	EPA 8270D (SIM)	09/18/19 10:00	09/30/19 10:02	10.13g/5mL	10g/5mL	0.99

		Tota	al Metals by EPA 602	0A (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091186							
A9I0687-01	Soil	EPA 6020A	09/17/19 13:20	09/23/19 14:33	0.476g/50mL	0.5g/50mL	1.05
A9I0687-01RE1	Soil	EPA 6020A	09/17/19 13:20	09/23/19 14:33	0.476g/50mL	0.5g/50mL	1.05
A9I0687-02	Soil	EPA 6020A	09/17/19 13:45	09/23/19 14:33	0.48g/50mL	0.5g/50mL	1.04
A9I0687-02RE1	Soil	EPA 6020A	09/17/19 13:45	09/23/19 14:33	0.48g/50mL	0.5g/50mL	1.04
A9I0687-03	Soil	EPA 6020A	09/18/19 09:30	09/23/19 14:33	0.514g/50mL	0.5g/50mL	0.97
A9I0687-03RE1	Soil	EPA 6020A	09/18/19 09:30	09/23/19 14:33	0.514g/50mL	0.5g/50mL	0.97
A9I0687-04	Soil	EPA 6020A	09/18/19 10:00	09/23/19 14:33	0.482g/50mL	0.5g/50mL	1.04
A9I0687-04RE1	Soil	EPA 6020A	09/18/19 10:00	09/23/19 14:33	0.482g/50mL	0.5g/50mL	1.04
A9I0687-05	Soil	EPA 6020A	09/18/19 10:15	09/23/19 14:33	0.512g/50mL	0.5g/50mL	0.98
A9I0687-05RE1	Soil	EPA 6020A	09/18/19 10:15	09/23/19 14:33	0.512g/50mL	0.5g/50mL	0.98
A9I0687-06	Soil	EPA 6020A	09/18/19 16:00	09/23/19 14:33	0.477 g/50 mL	0.5g/50mL	1.05

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 95 of 104

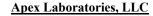
Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

SAMPLE PREPARATION INFORMATION

		Tota	al Metals by EPA 602	0A (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A9I0687-06RE1	Soil	EPA 6020A	09/18/19 16:00	09/23/19 14:33	0.477g/50mL	0.5g/50mL	1.05
A9I0687-07	Soil	EPA 6020A	09/18/19 16:15	09/23/19 14:33	0.46g/50mL	0.5g/50mL	1.09
A9I0687-07RE1	Soil	EPA 6020A	09/18/19 16:15	09/23/19 14:33	0.46g/50mL	0.5g/50mL	1.09
A9I0687-08	Soil	EPA 6020A	09/19/19 11:00	09/23/19 14:33	0.473g/50mL	0.5g/50mL	1.06
A9I0687-08RE1	Soil	EPA 6020A	09/19/19 11:00	09/23/19 14:33	0.473g/50mL	0.5g/50mL	1.06
A9I0687-09	Soil	EPA 6020A	09/19/19 11:05	09/23/19 14:33	0.463g/50mL	0.5g/50mL	1.08
A9I0687-09RE1	Soil	EPA 6020A	09/19/19 11:05	09/23/19 14:33	0.463g/50mL	0.5g/50mL	1.08
A9I0687-10	Soil	EPA 6020A	09/19/19 12:30	09/23/19 14:33	0.479g/50mL	0.5g/50mL	1.04
A9I0687-10RE1	Soil	EPA 6020A	09/19/19 12:30	09/23/19 14:33	0.479g/50mL	0.5g/50mL	1.04
A9I0687-11	Soil	EPA 6020A	09/19/19 12:45	09/23/19 14:33	0.507g/50mL	0.5g/50mL	0.99
A9I0687-11RE1	Soil	EPA 6020A	09/19/19 12:45	09/23/19 14:33	0.507g/50mL	0.5g/50mL	0.99
A9I0687-12	Soil	EPA 6020A	09/19/19 13:00	09/23/19 14:33	0.475g/50mL	0.5g/50mL	1.05
A9I0687-12RE1	Soil	EPA 6020A	09/19/19 13:00	09/23/19 14:33	0.475g/50mL	0.5g/50mL	1.05
A9I0687-13	Soil	EPA 6020A	09/19/19 13:15	09/23/19 14:33	0.473g/50mL	0.5g/50mL	1.06
A9I0687-13RE1	Soil	EPA 6020A	09/19/19 13:15	09/23/19 14:33	0.473g/50mL	0.5g/50mL	1.06


		TCL	P Metals by EPA 602	20A (ICPMS)			
Prep: EPA 1311/3	<u>015</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091266							
A9I0687-08	Soil	1311/6020A	09/19/19 11:00	09/25/19 09:26	10mL/50mL	10 mL / 50 mL	1.00
A9I0687-09	Soil	1311/6020A	09/19/19 11:05	09/25/19 09:26	10mL/50mL	10 mL / 50 mL	1.00
A9I0687-10	Soil	1311/6020A	09/19/19 12:30	09/25/19 09:26	10mL/50mL	10 mL / 50 mL	1.00
A9I0687-11	Soil	1311/6020A	09/19/19 12:45	09/25/19 09:26	10 mL / 50 mL	10 mL / 50 mL	1.00
A9I0687-12	Soil	1311/6020A	09/19/19 13:00	09/25/19 09:26	10mL/50mL	10 mL / 50 mL	1.00
A9I0687-13	Soil	1311/6020A	09/19/19 13:15	09/25/19 09:26	10 mL/50 mL	10mL/50mL	1.00
A910687-08 A910687-09 A910687-10 A910687-11 A910687-12	Soil Soil Soil Soil	1311/6020A 1311/6020A 1311/6020A 1311/6020A 1311/6020A	09/19/19 11:00 09/19/19 11:05 09/19/19 12:30 09/19/19 12:45 09/19/19 13:00	09/25/19 09:26 09/25/19 09:26 09/25/19 09:26 09/25/19 09:26 09/25/19 09:26	10mL/50mL 10mL/50mL 10mL/50mL 10mL/50mL	10mL/50mL 10mL/50mL 10mL/50mL 10mL/50mL	1.00 1.00 1.00 1.00

			Percent Dry We	ight			
Prep: Total Solids	(Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091154							
A9I0687-01	Soil	EPA 8000C	09/17/19 13:20	09/23/19 19:37			NA
A9I0687-13	Soil	EPA 8000C	09/19/19 13:15	09/23/19 19:37			NA
Batch: 9091204							
A9I0687-02	Soil	EPA 8000C	09/17/19 13:45	09/24/19 08:14			NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 96 of 104

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

SAMPLE PREPARATION INFORMATION


			Percent Dry We	ight			
Prep: Total Solids	s (Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A9I0687-03	Soil	EPA 8000C	09/18/19 09:30	09/24/19 08:14			NA
A9I0687-04	Soil	EPA 8000C	09/18/19 10:00	09/24/19 08:14			NA
A9I0687-05	Soil	EPA 8000C	09/18/19 10:15	09/24/19 08:14			NA
A9I0687-06	Soil	EPA 8000C	09/18/19 16:00	09/24/19 08:14			NA
A9I0687-07	Soil	EPA 8000C	09/18/19 16:15	09/24/19 08:14			NA
A9I0687-08	Soil	EPA 8000C	09/19/19 11:00	09/24/19 08:14			NA
A9I0687-09	Soil	EPA 8000C	09/19/19 11:05	09/24/19 08:14			NA
A9I0687-10	Soil	EPA 8000C	09/19/19 12:30	09/24/19 08:14			NA
A9I0687-11	Soil	EPA 8000C	09/19/19 12:45	09/24/19 08:14			NA
A9I0687-12	Soil	EPA 8000C	09/19/19 13:00	09/24/19 08:14			NA

			TCLP Extraction by E	PA 1311			
Prep: EPA 1311 (TCLP)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091234							
A9I0687-08	Soil	EPA 1311	09/19/19 11:00	09/24/19 16:30	100g/2000mL	100g/2000mL	NA
A9I0687-09	Soil	EPA 1311	09/19/19 11:05	09/24/19 16:30	100g/2000mL	100g/2000mL	NA
A9I0687-10	Soil	EPA 1311	09/19/19 12:30	09/24/19 16:30	100.1g/2002mL	100g/2000mL	NA
A9I0687-11	Soil	EPA 1311	09/19/19 12:45	09/24/19 16:30	100.1g/2002mL	100g/2000mL	NA
A9I0687-12	Soil	EPA 1311	09/19/19 13:00	09/24/19 16:30	100g/2000mL	100g/2000mL	NA
A9I0687-13	Soil	EPA 1311	09/19/19 13:15	09/24/19 16:30	100g/2000mL	100g/2000mL	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

Stantec Portland Project: Lampson 601 SW 2nd Ave Suite 1400 Project Number: 185750581 Portland, OR 97204 Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Labora	atories_
В	Analyte detected in an associated blank at a level above the MRL. (See Notes and Conventions below.)
C-07	Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
E	Estimated Value. The result is above the calibration range of the instrument.
E-05	Estimated Result. Initial Calibration Verification (ICV) failed high. No affect on non-detect results.
F-16	Results for oil are estimated due to overlap from the reported diesel result.
F-19	Results are Estimated due to the presence of multiple fuel products.
F-20	Result for Diesel is Estimated due to overlap from Gasoline Range Organics or other VOCs.
M-02	Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.
Q-03	Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
Q-04	Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-16	Reanalysis of an original Batch QC sample.
Q-17	RPD between original and duplicate sample is outside of established control limits.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260C, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260C
R-02	The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
T-02	This Batch QC sample was analyzed outside of the method specified 12 hour tune window. Results are estimated.
TCLP	This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 9091234.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland Project: Lampson 601 SW 2nd Ave Suite 1400 Project Number: 185750581 Report ID: Portland, OR 97204 Project Manager: Len Farr A9I0687 - 10 14 19 1008

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " "(blank) designation.

" dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

" wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Gesa A Zmenighini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Page 99 of 104

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

 Stantec Portland
 Project:
 Lampson

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750581
 Report ID:

 Portland, OR 97204
 Project Manager:
 Len Farr
 A910687 - 10 14 19 1008

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 100 of 104

Gwast Jamenighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

 Stantec Portland
 Project:
 Lampson

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750581
 Report ID:

 Portland, OR 97204
 Project Manager:
 Len Farr
 A910687 - 10 14 19 1008

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters


Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 101 of 104

Awa & Somerighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0687 - 10 14 19 1008

6700 SW Sandburg St., Tigard, OR 97223 Ph; 503-718-2323	R 97223 Ph.: 503-718-2323	CHAIN OF COSTOD	CSLODI	Lab# 1 - 1 - 00 COC of C	000 to of 6
Company: STantec	Project Mgr. Len	Farr Projec	Project Name: Lampson	Project#:	1857505H
Address: 225 NE HILLEST DC, CranTS Pass GR Phone: 499-8793	est De, Grants Pass	56/8-499-8793	7	PO#	
Sampled by: Dana HC	4ctchins 4752		ANALYSIS REQUEST	<i>Com.</i> Equest	
Site Location:			tsi		
OR WA CA)C?	List Full L	Cd, Ng, N	
AK ID		M AC	lluT s 8HAq sloV-	18, Bd Fe, Pi K, Se, SS.	
	3	ВН- В.Н-Г Б.Б.Н-Г СОИ.	V We best	As, B. Cu,	
SAMPLETD	BAJ TAG TMT	0978 0978 LMN LMN	ВСВ 8087 8082 8270 8270 8260	1, Sb,	rebiv
1-4080	9474 130. 5	XX	×	T W	
Chad-12	9-1745 (345 S	メメト	X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
CP63-2	9-18-19 citize 5	XX	× # >	3 3	
6-600	Q-149 1000 S	/ XX	\times \tau \tau \tau \tau \tau \tau \tau \tau	**	
6P-X	ANH WIS S	XX		1	
6,006-7	9-184 1600 S	л Х	X		
GP06-6	4-18-4 1615 5	7 X X	X	4	
UST-0-17-113	9-14-14 160 S	ン X X X	X	×	
UST-02-T2-SB	9-14-19 Nor S	XXX	×	メメ	
UST-03-TZ-SE	9-19-49 1226 5	ンメン	X	X	
Normal T	Normal Turn Around Time (TA1) = 10 Business Days	iness Days	SPECIAL INSTRUCTIONS:		
	1 Day 2 Day	(3 Day)			
IAI Kequested (circle)	4 DAY 5 DAY	Other:			
SAN	SAMPLES ARE HELD FOR 30 DAYS				
MISHED BY:	RECEIVED BY:		RELINQUISHED BY:	RECEIVED BY:	
From Mett	9-19-19 Signature:	Date:	Signature:	Date: Signature:	Date:
Name:	Time: Printed Name.	Time:	Printed Name	Time: Devoted Nices	- 10
David Hothins					Times
Company:	Company:	7	Company:	Сотраву:	
1000	2 474	643			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Grand Zmeinghinie

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A910687 - 10 14 19 1008

Company: STan Tel	Projec	Project Mgr:	LES .		far	1		F.	Project Name:	iame:		Lamosan	3	13	_				Project #:	_	678	7800	1
Address: 218 WE HillyCost Or Grant	1/10 30		Pass OR Phone 444-8793	_ A	hone.	3	12	1.8		Emai		4.4	-1	3	12	147	-hothis Ostanto	To the same	# 00		500000000000000000000000000000000000000		
Sampled by: DAM It	HITCHIS		47526		-	-	-	-						Ž	S	REC	ANALYSIS REQUEST	. ξ	2				L
Site Location:)si,J					Ca, Mg, IT, sN			4			
WA CA AK ID									\$OC\$	Full List	sHV	Vols Full I			(8) sls	(£1) slat	6, 18, 69, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18	S. TCLP		PAN			
	AB ID #	IME	ATRIX	OE COM	н-натм	WTPH-G	790 BLEX	260 RBDN	oleH 097	\$20A 097	4 WIS 047	-ims8 072	087 PCBs	189 I Pest	CRA Met	riority Me	SP, As, B: Co, Cu, T , Mo, Ni, K	SIG TOI	CLP Mets	Hd=	1 .		əvidə
STAT-T-MB		444 17 VC	+-		-F-	~			8	8 >	8 🔀	8	8 >	8	я	d	()>	\mathfrak{P}		! = ! ×			-
UST-00-1-5R	9,00	944 1300	V	1	7	\mathbb{X}		-		\diamondsuit	\Rightarrow						</td <td>Τ.</td> <td></td> <td># = # ' ></td> <td>-</td> <td></td> <td></td>	Τ.		# = # ' >	-		
なる。	9.48.4	9.67 W. P. P.	1	1	7	\times				\diamondsuit	*		×	1	1		2,5		1	± ±			-
20-11-00				1		<u> </u>	<u></u>	-		<	<						₹	1		2			
THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM					-	_																	-
				-																			_
					\vdash		-														\parallel		-
Norma	Normal Turn Around Time (TAT) = 10 Business Days	ne (TAT)	10 Busi	- 2	- ×		_			Spr	SPECIAL INCIDITIONS	- 52 2	JI.B.		ن								
	1 Day	2 Day	3	E	2					1	2	2		2	ó.								
TAT Requested (circle)	4 DAY	5 DAY)	Other:	į.																		
SA	SAMPLES ARE HELD FOR 30 DAYS	D FOR 30	DAYS																				
Signature: Signature: Start for the first	Pate:	Signature.				Dat	9 26 9	2		RELINQI Signature:	RELINQUISHED BY: Signature:	SHE) BY:				Date:		RECE	RECEIVED BY: Signature:		Date:	
DUM HTChiles	Time: [460	Printed Name	Ani Sea Lepo	R. Apr		Till T	Time:			Print	Printed Name:	ne.	-				Time:	1	Printed Name	Name:		Time:	
Company STan II		Company:	mpany: Drov x (a,b,c)	- 2° -						Com	Company:								Company:	.Xu			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

<u>Report ID:</u> A9I0687 - 10 14 19 1008

APEX LABS COOLER RECEIPT FORM
Client: Stantee Element WO#: A9 IOU87
Project/Project #: Lampson # 185750581
Delivery Info: Date/time received: 9 20 9 110 By: #WW Delivered by: Apex Client ESS FedEx V UPS Swift Senvoy SDS Other
Cooler out of temp? (Y/N) Possible reason why: If some coolers are in temp and some out, were green dots applied to out of temperature samples? Yes/No/NA Out of temperature samples form initiated? Yes/No/NA Samples Inspection: Date/time inspected: 412614 @ 1455 By: AUX All samples intact? Yes No X Comments: 412014 12 12 804 Javs received bioven, Sub sampled into another 807 Jav in lab. Bottle labels/COCs agree? Yes No X Comments: 412014 12 12 ave apong
COC/container discrepancies form initiated? Yes \(\sum \) No NA \(\times \) acceptance (Q) Containers/volumes received appropriate for analysis? Yes \(\times \) No Comments: \(\left(\text{QPO4-1} \) \(\frac{14}{4} \) VOAS received \(\text{VOAS} \) received \(\text{VOAS}
Water samples: pH checked: YesNoNA/ pH appropriate? YesNoNA/ Comments:
Additional information: GPOVE-le 1/4 VOAs received 40 MeOH. UST-03-T2-SE 2/4 VOAs received empty.
Labeled by: Witness: Cooler Inspected by: See Project Contact Form: Y WX

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Apex Laboratories Lisa Domenighini 6700 SW Sandburg St Tigard, OR 97223

RE: A910687

Work Order Number: 1909460

October 11, 2019

Attention Lisa Domenighini:

Fremont Analytical, Inc. received 2 sample(s) on 9/27/2019 for the analyses presented in the following report.

Extractable Petroleum Hydrocarbons by NWEPH Sample Moisture (Percent Moisture) Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 10/11/2019

CLIENT: Apex Laboratories Work Order Sample Summary

Project: A910687 **Work Order:** 1909460

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1909460-001
 UST-02-T2-SB
 09/19/2019 11:05 AM
 09/27/2019 9:25 AM

 1909460-002
 UST-06-T1-SW
 09/19/2019 1:15 PM
 09/27/2019 9:25 AM

Case Narrative

WO#: **1909460**Date: **10/11/2019**

CLIENT: Apex Laboratories

Project: A910687

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Original

Qualifiers & Acronyms

WO#: **1909460**

Date Reported: 10/11/2019

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Original

Analytical Report

Work Order: **1909460**Date Reported: **10/11/2019**

Client: Apex Laboratories Collection Date: 9/19/2019 11:05:00 AM

Project: A9I0687

Lab ID: 1909460-001 **Matrix:** Soil

Client Sample ID: UST-02-T2-SB

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydrocar	bons by NWE	PH		Batch	1D: 26	6004 Analyst: DW
Aliphatic Hydrocarbon (C8-C10)	342	22.3		mg/Kg-dry	1	10/10/2019 11:08:00 PM
Aliphatic Hydrocarbon (C10-C12)	192	11.1		mg/Kg-dry	1	10/10/2019 11:08:00 PM
Aliphatic Hydrocarbon (C12-C16)	69.7	11.1		mg/Kg-dry	1	10/10/2019 11:08:00 PM
Aliphatic Hydrocarbon (C16-C21)	16.2	11.1		mg/Kg-dry	1	10/10/2019 11:08:00 PM
Aliphatic Hydrocarbon (C21-C34)	33.3	11.1	*	mg/Kg-dry	1	10/10/2019 11:08:00 PM
Aromatic Hydrocarbon (C8-C10)	184	11.1	*	mg/Kg-dry	1	10/11/2019 8:31:00 AM
Aromatic Hydrocarbon (C10-C12)	163	11.1		mg/Kg-dry	1	10/11/2019 8:31:00 AM
Aromatic Hydrocarbon (C12-C16)	74.6	11.1	*	mg/Kg-dry	1	10/11/2019 8:31:00 AM
Aromatic Hydrocarbon (C16-C21)	26.7	11.1	*	mg/Kg-dry	1	10/11/2019 8:31:00 AM
Aromatic Hydrocarbon (C21-C34)	ND	11.1		mg/Kg-dry	1	10/11/2019 8:31:00 AM
Surr: 1-Chlorooctadecane	58.3	60 - 140	S	%Rec	1	10/10/2019 11:08:00 PM
Surr: o-Terphenyl	91.2	60 - 140		%Rec	1	10/11/2019 8:31:00 AM
NOTES						

NOTES:

S - Outlying surrogate recovery(ies) observed.

Volatile Petroleum Hydrocarbons k	y NWVPH			Batch	ID: 26	072 Analyst: CR
Aliphatic Hydrocarbon (C5-C6)	175	71.5	DH	mg/Kg-dry	50	10/7/2019 8:58:55 PM
Aliphatic Hydrocarbon (C6-C8)	327	102	DH	mg/Kg-dry	50	10/7/2019 8:58:55 PM
Aliphatic Hydrocarbon (C8-C10)	96.5	57.2	DH	mg/Kg-dry	50	10/7/2019 8:58:55 PM
Aliphatic Hydrocarbon (C10-C12)	71.6	61.3	DH	mg/Kg-dry	50	10/7/2019 8:58:55 PM
Aromatic Hydrocarbon (C8-C10)	199	123	DH	mg/Kg-dry	50	10/7/2019 8:58:55 PM
Aromatic Hydrocarbon (C10-C12)	200	24.5	DH	mg/Kg-dry	50	10/7/2019 8:58:55 PM
Aromatic Hydrocarbon (C12-C13)	163	286	JDH	mg/Kg-dry	50	10/7/2019 8:58:55 PM
Benzene	1.22	0.490	Н	mg/Kg-dry	1	10/7/2019 11:01:40 PM
Toluene	10.6	0.572	Н	mg/Kg-dry	1	10/7/2019 11:01:40 PM
Ethylbenzene	38.5	0.572	Н	mg/Kg-dry	1	10/7/2019 11:01:40 PM
m,p-Xylene	76.0	53.1	DH	mg/Kg-dry	50	10/7/2019 8:58:55 PM
o-Xylene	8.49	0.490	Н	mg/Kg-dry	1	10/7/2019 11:01:40 PM
Naphthalene	21.4	0.409	Н	mg/Kg-dry	1	10/7/2019 11:01:40 PM
Methyl tert-butyl ether (MTBE)	ND	0.409	QH	mg/Kg-dry	1	10/7/2019 11:01:40 PM
Surr: 1,4-Difluorobenzene	113	65 - 140	Н	%Rec	1	10/7/2019 11:01:40 PM
Surr: Bromofluorobenzene	127	65 - 140	Н	%Rec	1	10/7/2019 11:01:40 PM

NOTES:

^{* -} Flagged value is not within established control limits.

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Analytical Report

Work Order: 1909460
Date Reported: 10/11/2019

Client: Apex Laboratories Collection Date: 9/19/2019 11:05:00 AM

Project: A9I0687

Lab ID: 1909460-001 **Matrix:** Soil

Client Sample ID: UST-02-T2-SB

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed

 Sample Moisture (Percent Moisture)
 Batch ID: R54300
 Analyst: ZR

 Percent Moisture
 14.0
 0.500
 wt%
 1
 10/2/2019 9:47:58 AM

Original

Analytical Report

Work Order: **1909460**Date Reported: **10/11/2019**

Client: Apex Laboratories Collection Date: 9/19/2019 1:15:00 PM

Project: A9I0687

Lab ID: 1909460-002 **Matrix:** Soil

Client Sample ID: UST-06-T1-SW

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydrocar	bons by NWE	PH		Batch	ID: 26	6004 Analyst: DW
Aliphatic Hydrocarbon (C8-C10)	104	22.3		mg/Kg-dry	1	10/10/2019 11:51:00 PM
Aliphatic Hydrocarbon (C10-C12)	73.1	11.1		mg/Kg-dry	1	10/10/2019 11:51:00 PM
Aliphatic Hydrocarbon (C12-C16)	163	11.1		mg/Kg-dry	1	10/10/2019 11:51:00 PM
Aliphatic Hydrocarbon (C16-C21)	134	11.1		mg/Kg-dry	1	10/10/2019 11:51:00 PM
Aliphatic Hydrocarbon (C21-C34)	ND	11.1		mg/Kg-dry	1	10/10/2019 11:51:00 PM
Aromatic Hydrocarbon (C8-C10)	93.5	11.1	*	mg/Kg-dry	1	10/11/2019 9:14:00 AM
Aromatic Hydrocarbon (C10-C12)	99.7	11.1		mg/Kg-dry	1	10/11/2019 9:14:00 AM
Aromatic Hydrocarbon (C12-C16)	71.9	11.1	*	mg/Kg-dry	1	10/11/2019 9:14:00 AM
Aromatic Hydrocarbon (C16-C21)	78.1	11.1	*	mg/Kg-dry	1	10/11/2019 9:14:00 AM
Aromatic Hydrocarbon (C21-C34)	ND	11.1		mg/Kg-dry	1	10/11/2019 9:14:00 AM
Surr: 1-Chlorooctadecane	95.9	60 - 140		%Rec	1	10/10/2019 11:51:00 PM
Surr: o-Terphenyl	95.3	60 - 140		%Rec	1	10/11/2019 9:14:00 AM
NOTES:						
* - Flagged value is not within established	ed control limits.					

Volatile Petroleum Hydrocarbons	by NWVPH			Batch	ID: 26	072 Analyst: CR
Aliphatic Hydrocarbon (C5-C6)	127	77.0	DH	mg/Kg-dry	50	10/7/2019 9:39:47 PM
Aliphatic Hydrocarbon (C6-C8)	387	110	DH	mg/Kg-dry	50	10/7/2019 9:39:47 PM
Aliphatic Hydrocarbon (C8-C10)	163	61.6	DH	mg/Kg-dry	50	10/7/2019 9:39:47 PM
Aliphatic Hydrocarbon (C10-C12)	109	66.0	DH	mg/Kg-dry	50	10/7/2019 9:39:47 PM
Aromatic Hydrocarbon (C8-C10)	394	132	DH	mg/Kg-dry	50	10/7/2019 9:39:47 PM
Aromatic Hydrocarbon (C10-C12)	373	26.4	DH	mg/Kg-dry	50	10/7/2019 9:39:47 PM
Aromatic Hydrocarbon (C12-C13)	181	308	JDH	mg/Kg-dry	50	10/7/2019 9:39:47 PM
Benzene	1.02	0.528	Н	mg/Kg-dry	1	10/8/2019 12:23:21 AM
Toluene	9.93	0.616	Н	mg/Kg-dry	1	10/8/2019 12:23:21 AM
Ethylbenzene	40.9	30.8	DH	mg/Kg-dry	50	10/7/2019 9:39:47 PM
m,p-Xylene	122	57.2	DH	mg/Kg-dry	50	10/7/2019 9:39:47 PM
o-Xylene	5.00	0.528	Н	mg/Kg-dry	1	10/8/2019 12:23:21 AM
Naphthalene	22.4	0.440	Н	mg/Kg-dry	1	10/8/2019 12:23:21 AM
Methyl tert-butyl ether (MTBE)	ND	0.440	QH	mg/Kg-dry	1	10/8/2019 12:23:21 AM
Surr: 1,4-Difluorobenzene	116	65 - 140	Н	%Rec	1	10/8/2019 12:23:21 AM
Surr: Bromofluorobenzene	128	65 - 140	Н	%Rec	1	10/8/2019 12:23:21 AM
NOTES:						

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Sample Moisture (Percent Moisture)	Batch ID: R54300	Analyst: ZR
------------------------------------	------------------	-------------

Percent Moisture 15.2 0.500 wt% 1 10/2/2019 9:47:58 AM

Work Order: 1909460

Project:

QC SUMMARY REPORT

CLIENT: Apex Laboratories

A9I0687

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID MB-26004	SampType: MBLK			Units: mg/Kg		Prep Da	te: 10/1/2 0)19	RunNo: 54	510	
Client ID: MBLKS	Batch ID: 26004					Analysis Da	te: 10/10/2	2019	SeqNo: 10	80586	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	ND	20.0									

Aliphatic Hydrocarbon (C10-C12) ND 10.0
Aliphatic Hydrocarbon (C12-C16) ND 10.0
Aliphatic Hydrocarbon (C16-C21) ND 10.0
Aliphatic Hydrocarbon (C21-C34) ND 10.0

Surr: 1-Chlorooctadecane 110 100.0 110 60 140

Sample ID LCS-26004	SampType: LCS			Units: mg/Kg		Prep Da	te: 10/1/20	19	RunNo: 54	510	
Client ID: LCSS	Batch ID: 26004					Analysis Da	te: 10/10/2	019	SeqNo: 108	80585	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	175	20.0	250.0	0	70.0	70	130				
Aliphatic Hydrocarbon (C10-C12)	125	10.0	125.0	0	99.7	70	130				
Aliphatic Hydrocarbon (C12-C16)	161	10.0	125.0	0	129	70	130				
Aliphatic Hydrocarbon (C16-C21)	161	10.0	125.0	0	129	70	130				
Aliphatic Hydrocarbon (C21-C34)	203	10.0	125.0	0	162	70	130				S
Surr: 1-Chlorooctadecane	105		100.0		105	60	140				
NOTES:											

NOTES:

S - Outlying spike recovery observed (high bias). Detections will be qualified with a *.

Sample ID 1909327-001ADUP	SampType: DUP			Units: mg/	Kg-dry	Prep Dat	e: 10/1/2 0)19	RunNo: 54	510	
Client ID: BATCH	Batch ID: 26004					Analysis Dat	e: 10/10/2	2019	SeqNo: 108	80584	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	ND	22.3						0		25	
Aliphatic Hydrocarbon (C10-C12)	15.0	11.2						15.39	2.60	25	
Aliphatic Hydrocarbon (C12-C16)	38.1	11.2						44.07	14.6	25	
Aliphatic Hydrocarbon (C16-C21)	36.7	11.2						38.56	5.03	25	
Aliphatic Hydrocarbon (C21-C34)	13.7	11.2						10.82	23.9	25	*
Surr: 1-Chlorooctadecane	107		111.6		95.8	60	140		0		

Original Page 8 of 17

Work Order: 1909460

QC SUMMARY REPORT

CLIENT: Apex Laboratories

Extractable Petroleum Hydrocarbons by NWEPH

Project: A9I0687

Sample ID 1909327-001ADUP SampType: DUP Units: mg/Kg-dry Prep Date: 10/1/2019 RunNo: 54510

Client ID: **BATCH** Batch ID: **26004** Analysis Date: **10/10/2019** SeqNo: **1080584**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

^{* -} Flagged value is not within established control limits.

Sample ID 1909327-001AMS	SampType: MS		Units: mg/Kg-dry			Prep Date: 10/1/2019			RunNo: 54		
Client ID: BATCH	Batch ID: 26004					Analysis Da	te: 10/10/2	019	SeqNo: 108	80587	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	136	22.9	286.4	8.739	44.5	70	130				S
Aliphatic Hydrocarbon (C10-C12)	133	11.5	143.2	15.39	82.5	70	130				
Aliphatic Hydrocarbon (C12-C16)	211	11.5	143.2	44.07	116	70	130				
Aliphatic Hydrocarbon (C16-C21)	210	11.5	143.2	38.56	120	70	130				
Aliphatic Hydrocarbon (C21-C34)	183	11.5	143.2	10.82	120	70	130				
Surr: 1-Chlorooctadecane	95.3		114.6		83.1	60	140				

NOTES:

S - Outlying spike recovery(ies) observed.

Sample ID 1909327-001AMSD	SampType: MSD		Units: mg/Kg-dry			Prep Date: 10/1/2019			RunNo: 54		
Client ID: BATCH	Batch ID: 26004					Analysis Da	te: 10/10/2	2019	SeqNo: 108	80640	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	127	21.5	269.2	8.739	44.1	70	130	136.3	6.71	30	S
Aliphatic Hydrocarbon (C10-C12)	157	10.8	134.6	15.39	105	70	130	133.5	16.1	30	
Aliphatic Hydrocarbon (C12-C16)	217	10.8	134.6	44.07	129	70	130	210.6	3.18	30	
Aliphatic Hydrocarbon (C16-C21)	199	10.8	134.6	38.56	119	70	130	210.4	5.57	30	
Aliphatic Hydrocarbon (C21-C34)	49.1	10.8	134.6	10.82	28.5	70	130	183.4	115	30	RS
Surr: 1-Chlorooctadecane	122		107.7		113	60	140		0		

NOTES:

Original Page 9 of 17

S - Outlying spike recovery(ies) observed.

A9I0687

Work Order: 1909460

Project:

QC SUMMARY REPORT

CLIENT: Apex Laboratories

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID MB-26004	SampType: MBLK			Units: mg/Kg	(g Prep Date:			10/1/2019 R		RunNo: 54510	
Client ID: MBLKS	Batch ID: 26004					Analysis Da	te: 10/11/ 2	2019	SeqNo: 108	80650	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	ND	10.0									*
Aromatic Hydrocarbon (C10-C12)	ND	10.0									
Aromatic Hydrocarbon (C12-C16)	ND	10.0									
Aromatic Hydrocarbon (C16-C21)	ND	10.0									
Aromatic Hydrocarbon (C21-C34)	ND	10.0									
Surr: o-Terphenyl	106		100.0		106	60	140				
NOTES:											

^{* -} Flagged value is not within established control limits.

Sample ID LCS-26004	SampType: LCS			Units: mg/Kg		Prep Dat	te: 10/1/20	19	RunNo: 54	510	
Client ID: LCSS	Batch ID: 26004					Analysis Dat	te: 10/11/2	019	SeqNo: 108	80649	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	153	10.0	250.0	0	61.4	70	130				S
Aromatic Hydrocarbon (C10-C12)	135	10.0	125.0	0	108	70	130				
Aromatic Hydrocarbon (C12-C16)	172	10.0	125.0	0	137	70	130				S
Aromatic Hydrocarbon (C16-C21)	194	10.0	125.0	0	156	70	130				S
Aromatic Hydrocarbon (C21-C34)	105	10.0	125.0	0	84.0	70	130				
Surr: o-Terphenyl	152		100.0		152	60	140				S

NOTES:

- S Outlying spike recovery observed (high bias). Detections will be qualified with a *.
- S Outlying spike recovery observed (low bias). Samples will be qualified with a *.
- S Outlying surrogate recovery(ies) observed.

Sample ID 1909327-001ADUP	SampType: DUP			Units: mg/h	(g-dry	Prep Dat	e: 10/1/2 0	119	RunNo: 54	510	
Client ID: BATCH	Batch ID: 26004					Analysis Dat	e: 10/11/2	2019	SeqNo: 108	30648	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	ND	11.2						0		25	*
Aromatic Hydrocarbon (C10-C12)	15.8	11.2						14.25	10.5	25	
Aromatic Hydrocarbon (C12-C16)	32.6	11.2						23.88	30.7	25	*
Aromatic Hydrocarbon (C16-C21)	44.4	11.2						34.58	25.0	25	*

Original Page 10 of 17

A9I0687

Work Order: 1909460

QC SUMMARY REPORT

CLIENT: **Apex Laboratories**

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID 1909327-001ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	e: 10/1/2 0	119	RunNo: 54	510	
Client ID: BATCH	Batch ID: 26004					Analysis Dat	e: 10/11/2	2019	SeqNo: 10	80648	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C21-C34)	ND	11.2						0		25	
Surr: o-Terphenyl	108		111.6		96.7	60	140		0		

NOTES:

Project:

^{* -} Flagged value is not within established control limits.

Sample ID 1909327-001AMS	SampType: MS			Units: mg/l	(g-dry	Prep Da	e: 10/1/2 0)19	RunNo: 54	510	
Client ID: BATCH	Batch ID: 26004					Analysis Da	te: 10/11/2	2019	SeqNo: 10	80651	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	79.4	11.5	286.4	0	27.7	70	130				S
Aromatic Hydrocarbon (C10-C12)	101	11.5	143.2	14.25	60.8	70	130				S
Aromatic Hydrocarbon (C12-C16)	152	11.5	143.2	23.88	89.8	70	130				
Aromatic Hydrocarbon (C16-C21)	178	11.5	143.2	34.58	100	70	130				
Aromatic Hydrocarbon (C21-C34)	135	11.5	143.2	5.832	90.2	70	130				
Surr: o-Terphenyl NOTES:	108		114.6		93.9	60	140				

S - Outlying spike recovery(ies) observed.

Sample ID 1909327-001AMSD	SampType: MSD			Units: mg/l	Kg-dry	Prep Da	te: 10/1/2 0)19	RunNo: 54	510	
Client ID: BATCH	Batch ID: 26004					Analysis Da	te: 10/11/2	2019	SeqNo: 10	80652	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	71.1	10.8	269.2	0	26.4	70	130	79.38	11.0	30	S
Aromatic Hydrocarbon (C10-C12)	108	10.8	134.6	14.25	69.6	70	130	101.3	6.31	30	S
Aromatic Hydrocarbon (C12-C16)	147	10.8	134.6	23.88	91.8	70	130	152.5	3.33	30	
Aromatic Hydrocarbon (C16-C21)	163	10.8	134.6	34.58	95.3	70	130	178.5	9.15	30	
Aromatic Hydrocarbon (C21-C34)	137	10.8	134.6	5.832	97.4	70	130	135.0	1.46	30	
Surr: o-Terphenyl	105		107.7		97.2	60	140		0		

NOTES:

Page 11 of 17 Original

S - Outlying spike recovery(ies) observed.

A9I0687

Work Order: 1909460

Project:

QC SUMMARY REPORT

CLIENT: Apex Laboratories

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID LCS-26072	SampType: LCS			Units: mg/Kg		Prep Date:	10/7/20	19	RunNo: 54	437	
Client ID: LCSS	Batch ID: 26072					Analysis Date:	10/7/20	19	SeqNo: 10	78974	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	32.8	1.75	30.00	0	109	70	130				
Aliphatic Hydrocarbon (C6-C8)	10.5	2.50	10.00	0	105	70	130				
Aliphatic Hydrocarbon (C8-C10)	11.2	1.40	10.00	0	112	70	130				
Aliphatic Hydrocarbon (C10-C12)	11.0	1.50	10.00	0	110	70	130				
Aromatic Hydrocarbon (C8-C10)	43.9	3.00	40.00	0	110	70	130				
Aromatic Hydrocarbon (C10-C12)	11.8	0.600	10.00	0	118	70	130				
Aromatic Hydrocarbon (C12-C13)	11.3	7.00	10.00	0	113	70	130				
Benzene	10.8	0.600	10.00	0	108	70	130				
Toluene	10.8	0.700	10.00	0	108	70	130				
Ethylbenzene	11.0	0.700	10.00	0	110	70	130				
m,p-Xylene	22.1	1.30	20.00	0	111	70	130				
o-Xylene	10.9	0.600	10.00	0	109	70	130				
Naphthalene	10.2	0.500	10.00	0	102	70	130				
Methyl tert-butyl ether (MTBE)	21.5	0.500	10.00	0	215	70	130				S
Surr: 1,4-Difluorobenzene	2.39		2.500		95.7	65	140				
Surr: Bromofluorobenzene	2.51		2.500		100	65	140				
NOTES:											

NOTES:

S - Outlying spike recovery observed (high bias).

Sample ID LCSD-26072	SampType: LCSD			Units: mg/Kg		Prep Dat	e: 10/7/2 0	119	RunNo: 544	137	
Client ID: LCSS02	Batch ID: 26072					Analysis Dat	te: 10/7/2 0	119	SeqNo: 107	78976	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	31.0	1.75	30.00	0	103	70	130	32.83	5.74	20	
Aliphatic Hydrocarbon (C6-C8)	10.2	2.50	10.00	0	102	70	130	10.48	2.86	20	
Aliphatic Hydrocarbon (C8-C10)	11.0	1.40	10.00	0	110	70	130	11.18	1.55	20	
Aliphatic Hydrocarbon (C10-C12)	11.0	1.50	10.00	0	110	70	130	11.00	0.219	20	
Aromatic Hydrocarbon (C8-C10)	43.8	3.00	40.00	0	109	70	130	43.89	0.269	20	
Aromatic Hydrocarbon (C10-C12)	11.0	0.600	10.00	0	110	70	130	11.82	7.32	20	
Aromatic Hydrocarbon (C12-C13)	11.1	7.00	10.00	0	111	70	130	11.34	2.16	20	
Benzene	10.7	0.600	10.00	0	107	70	130	10.80	0.887	20	

Original Page 12 of 17

Work Order: 1909460

Project:

QC SUMMARY REPORT

CLIENT: Apex Laboratories

A9I0687

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID LCSD-26072	SampType: LCSD			Units: mg/Kg		Prep Dat	e: 10/7/2 0)19	RunNo: 544	437	
Client ID: LCSS02	Batch ID: 26072					Analysis Da	te: 10/7/2 0)19	SeqNo: 10	78976	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	10.8	0.700	10.00	0	108	70	130	10.84	0.640	20	
Ethylbenzene	10.8	0.700	10.00	0	108	70	130	10.95	1.01	20	
m,p-Xylene	21.9	1.30	20.00	0	110	70	130	22.12	0.860	20	
o-Xylene	10.9	0.600	10.00	0	109	70	130	10.95	0.513	20	
Naphthalene	9.42	0.500	10.00	0	94.2	70	130	10.24	8.28	20	
Methyl tert-butyl ether (MTBE)	21.8	0.500	10.00	0	218	70	130	21.48	1.60	20	S
Surr: 1,4-Difluorobenzene	2.44		2.500		97.8	65	140		0		
Surr: Bromofluorobenzene	2.52		2.500		101	65	140		0		
NOTES:											

S - Outlying spike recovery observed (high bias).

Sample ID MB-26072	SampType: MBLK		Units: m	g/Kg	Prep Date: 10	0/7/2019	RunNo: 54437	
Client ID: MBLKS	Batch ID: 26072				Analysis Date: 10	0/7/2019	SeqNo: 1078978	
Analyte	Result	RL	SPK value SPK Ref Val	%REC	LowLimit Highl	_imit RPD Ref Val	%RPD RPD	Limit Qual
Aliphatic Hydrocarbon (C5-C6)	ND	1.75	0	0				
Aliphatic Hydrocarbon (C6-C8)	ND	2.50	0	0				
Aliphatic Hydrocarbon (C8-C10)	ND	1.40	0	0				
Aliphatic Hydrocarbon (C10-C12)	ND	1.50	0	0				
Aromatic Hydrocarbon (C8-C10)	ND	3.00	0	0				
Aromatic Hydrocarbon (C10-C12)	ND	0.600	0	0				
Aromatic Hydrocarbon (C12-C13)	ND	7.00	0	0				
Benzene	ND	0.600	0	0				
Toluene	ND	0.700	0	0				
Ethylbenzene	ND	0.700	0	0				
m,p-Xylene	ND	1.30	0	0				
o-Xylene	ND	0.600	0	0				
Naphthalene	ND	0.500	0	0				
Methyl tert-butyl ether (MTBE)	ND	0.500	0	0				Q
Surr: 1,4-Difluorobenzene	2.37		2.500	95.0	65	140		
Surr: Bromofluorobenzene	2.50		2.500	99.8	65	140		

Original Page 13 of 17

Work Order: 1909460

QC SUMMARY REPORT

CLIENT: **Apex Laboratories**

Volatile Petroleum Hydrocarbons by NWVPH

A9I0687 Project:

SampType: MBLK

Units: mg/Kg

Prep Date: 10/7/2019

RunNo: 54437

Sample ID MB-26072

Analysis Date: 10/7/2019

SeqNo: 1078978

Client ID: MBLKS

Batch ID: 26072

SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

NOTES:

Analyte

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

RL

Result

Sample ID 1909460-002BDUP	SampType	DUP			Units: mg/	Kg-dry	Prep Da	te: 10/7/2	019	RunNo: 544	437	
Client ID: UST-06-T1-SW	Batch ID:	26072					Analysis Da	te: 10/7/2 0	019	SeqNo: 107	78969	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)		144	77.0		0	0			136.6	5.35	25	DH
Aliphatic Hydrocarbon (C6-C8)		366	110		0	0			380.0	3.87	25	DH
Aliphatic Hydrocarbon (C8-C10)		174	61.6		0	0			157.6	10.1	25	DH
Aliphatic Hydrocarbon (C10-C12)		117	66.0		0	0			194.5	49.8	25	DRH
Aromatic Hydrocarbon (C8-C10)		430	132		0	0			427.4	0.554	25	DH
Aromatic Hydrocarbon (C10-C12)		384	26.4		0	0			398.0	3.69	25	DH
Aromatic Hydrocarbon (C12-C13)		204	308		0	0			0		25	JDH
Benzene		ND	26.4		0	0			0		25	DH
Toluene		ND	30.8		0	0			0		25	DH
Ethylbenzene		45.8	30.8		0	0			51.58	11.8	25	DH
m,p-Xylene		134	57.2		0	0			117.2	13.6	25	DH
o-Xylene		ND	26.4		0	0			0		25	DH
Naphthalene		24.9	22.0		0	0			22.41	10.5	25	DH
Methyl tert-butyl ether (MTBE)		ND	22.0		0	0			0		25	DQH
Surr: 1,4-Difluorobenzene		113		110.0		103	65	140		0		DH
Surr: Bromofluorobenzene		115		110.0		105	65	140		0		DH

NOTES:

R - High RPD observed. The method is in control as indicated by the LCS.

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria

Page 14 of 17 Original

Work Order: 1909460

Project:

QC SUMMARY REPORT

Qual

CLIENT: Apex Laboratories

A9I0687

Sample Moisture (Percent Moisture)

Sample ID 1909369-020ADUP SampType: DUP Units: wt% Prep Date: 10/2/2019 RunNo: 54300

Client ID: **BATCH** Batch ID: **R54300** Analysis Date: **10/2/2019** SeqNo: **1075540**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit

Percent Moisture 10.6 0.500 11.20 5.55 20

Sample ID 1909466-013ADUP SampType: DUP Units: wt% Prep Date: 10/2/2019 RunNo: 54300

Client ID: **BATCH** Batch ID: **R54300** Analysis Date: **10/2/2019** SeqNo: **1075560**

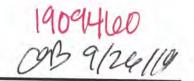
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Percent Moisture 11.7 0.500 11.79 1.16 20

Original Page 15 of 17

Sample Log-In Check List

С	lient Name:	APEX		Work O				
L	ogged by:	Clare Griggs		Date Re	eceived:	9/27/2019	9:25:00 AM	
<u>Ch</u> a	ain of Custo	od <u>y</u>						
		ustody complete?		Yes	✓	No 🗌	Not Present	
2.	How was the	sample delivered?		<u>UPS</u>	<u>i</u>			
1 00	ı İn							
Log						No 🗆	NA 🗆	
3.	Coolers are p	resent?		Yes	V	No 🗀	NA 🗌	
4.	Shipping conf	tainer/cooler in good condition	?	Yes	✓	No 🗌		
5.	Custody Seal	s present on shipping contain	er/cooler?	Yes		No \square	Not Required 🗹	
	(Refer to com	nments for Custody Seals not	intact)					
6.	Was an atten	npt made to cool the samples	?	Yes	✓	No 🗀	NA 📙	
-	Mara all itam	a received at a temperature of	f - 0°C to 10 0°C *	Yes		No 🗌	NA 🗌	
7.	were all item	s received at a temperature o	1 >0 C 10 10.0 C	res	V	NO 🗀	NA L	
8.	Sample(s) in	proper container(s)?		Yes	✓	No 🗌		
-		nple volume for indicated test	(s)?	Yes		No 🗌		
_		properly preserved?		Yes	✓	No 🗌		
11.	Was preserva	ative added to bottles?		Yes		No 🗸	NA \square	
		space in the VOA vials?		Yes		No 🗌	NA 🗸	
_		es containers arrive in good co	ondition(unbroken)?	Yes		No 📙		
14.	Does paperw	ork match bottle labels?		Yes	✓	No 📙		
15	Are matrices	correctly identified on Chain of	of Custody?	Yes	✓	No 🗌		
		at analyses were requested?	,	Yes		No 🗌		
		ing times able to be met?		Yes	✓	No 🗌		
<u>Spe</u>	ecial Handli	ing (if applicable)			_	_	_	
18.	Was client no	tified of all discrepancies with	this order?	Yes		No 🗆	NA 🗹	
	Person	Notified:	Dat	е				
	By Who	m:	Via	eMa	ail 🗌 Ph	none Fax [In Person	
	Regardi	ng:						
	Client In	estructions:						
19.	Additional rer	marks:						
ltem	<u>Information</u>							
	oiiiiatioii	Item #	Temp ⁰C					
	Cooler		2.7					


* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

3.4

Sample

SUBCONTRACT ORDER

Apex Laboratories A910687

SENDING LABORATORY:

Apex Laboratories

6700 S.W. Sandburg Street

Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 336-0745

Project Manager:

Lisa Domenighini

RECEIVING LABORATORY:

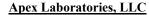
Fremont Analytical 3600 Fremont Avenue N. Seattle, WA 98103

Phone :(206) 352-3790 Fax: (206) 352-7178

ID on Conts. read UST-02-T2-NB.

Sample Name: UST-02-T2-SB		Soil Sam	pled: 09/19/19 11:05	(A9I0687-09)
Analysis	Due	Expires	Comments	
NWTPH-EPH (Sub) NWTPH-VPH (Sub) Containers Supplied: (C)4 oz Glass Jar (F)40 mL VOA - 5035 (MeOH) (G)40 mL VOA - 5035 (MeOH)	10/10/19 17:00 10/10/19 17:00	10/03/19 11:05 10/03/19 11:05	Added 9/26, Std TAT Added 9/26, Std TAT	

Sample Name: UST-06-T1-SW		Soil Samp	pled: 09/19/19 13:15	(A9I0687-13)
Analysis	Due	Expires	Comments	
NWTPH-EPH (Sub) NWTPH-VPH (Sub)	10/10/19 17:00 10/10/19 17:00	10/03/19 13:15 10/03/19 13:15	Added 9/26, Std TAT Added 9/26, Std TAT	
Containers Supplied: (C)4 oz Glass Jar			7.20, 5.4 171	
(F)40 mL VOA - 5035 (MeOH) (G)40 mL VOA - 5035 (MeOH)				


SHOTAT

Released By

Date

Received By

Date

Wednesday, October 2, 2019 Len Farr Stantec Portland 9400 SW Barnes Rd Ste 200 Portland, OR 97225

RE: A910735 - Lampson - 185750581

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9I0735, which was received by the laboratory on 9/24/2019 at 10:15:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: Idomenighini@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 1.0 degC Cooler #2 2.3 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmenyhini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORM	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
FS-01-8	A9I0735-01	Soil	09/19/19 15:30	09/24/19 10:15
FS-02-8	A9I0735-02	Soil	09/19/19 16:00	09/24/19 10:15
FS-04-9	A9I0735-03	Soil	09/19/19 16:30	09/24/19 10:15
FS-03-9	A9I0735-04	Soil	09/19/19 17:00	09/24/19 10:15
GP-01-2	A9I0735-05	Soil	09/20/19 09:00	09/24/19 10:15
GP-01-5	A9I0735-06	Soil	09/20/19 09:15	09/24/19 10:15
GP-02-1	A9I0735-07	Soil	09/20/19 09:30	09/24/19 10:15
GP-02-12	A9I0735-08	Soil	09/20/19 10:00	09/24/19 10:15
GP-05-1	A9I0735-09	Soil	09/20/19 11:30	09/24/19 10:15
GP-05-8	A9I0735-10	Soil	09/20/19 12:00	09/24/19 10:15
Trip Blank	A9I0735-11	Water	09/19/19 00:00	09/24/19 10:15

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

	Die	esei and/or O	ıı Hyarocar	bons by NWTP	H-DX			
A 1.	Sample	Detection	Reporting	TT '4	D'L 4	Date	M d ID C	NI.
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
FS-01-8 (A9I0735-01)				Matrix: Soil		Batch:	9091331	
Diesel	ND		25.0	mg/kg dry	1	09/26/19 20:47	NWTPH-Dx	
Oil	ND		50.0	mg/kg dry	1	09/26/19 20:47	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 79 %	Limits: 50-150 %	6 1	09/26/19 20:47	NWTPH-Dx	
FS-02-8 (A9I0735-02)				Matrix: Soil		Batch:	9091331	
Diesel	ND		25.0	mg/kg dry	1	09/26/19 21:07	NWTPH-Dx	
Oil	ND		50.0	mg/kg dry	1	09/26/19 21:07	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 74 %	Limits: 50-150 %	5 1	09/26/19 21:07	NWTPH-Dx	
FS-04-9 (A9I0735-03)				Matrix: Soil		Batch:	9091331	
Diesel	ND		25.0	mg/kg dry	1	09/26/19 21:27	NWTPH-Dx	
Oil	ND		50.0	mg/kg dry	1	09/26/19 21:27	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 88 %	Limits: 50-150 %	6 1	09/26/19 21:27	NWTPH-Dx	
FS-03-9 (A9I0735-04)				Matrix: Soil		Batch:	9091331	
Diesel	28.2		25.0	mg/kg dry	1	09/26/19 21:47	NWTPH-Dx	F-20
Oil	ND		50.0	mg/kg dry	1	09/26/19 21:47	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 84 %	Limits: 50-150 %	6 I	09/26/19 21:47	NWTPH-Dx	
GP-01-2 (A9I0735-05)				Matrix: Soil		Batch:	9091331	
Diesel	ND		25.0	mg/kg dry	1	09/26/19 22:07	NWTPH-Dx	
Oil	ND		50.0	mg/kg dry	1	09/26/19 22:07	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 90 %	Limits: 50-150 %	5 I	09/26/19 22:07	NWTPH-Dx	
GP-01-5 (A9I0735-06)				Matrix: Soil		Batch:	9091331	
Diesel	ND		25.0	mg/kg dry	1	09/26/19 22:27	NWTPH-Dx	
Oil	ND		50.0	mg/kg dry	1	09/26/19 22:27	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 85 %	Limits: 50-150 %	6 1	09/26/19 22:27	NWTPH-Dx	
GP-02-1 (A9I0735-07)				Matrix: Soil		Batch:	9091331	
Diesel	ND		25.0	mg/kg dry	1	09/26/19 18:27	NWTPH-Dx	
Oil	ND		50.0	mg/kg dry	1	09/26/19 18:27	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 93 %	Limits: 50-150 %	6 I	09/26/19 18:27	NWTPH-Dx	
GP-02-12 (A9I0735-08)				Matrix: Soil		Batch:	9091331	
Diesel	ND		25.0	mg/kg dry	1	09/26/19 18:47	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
GP-02-12 (A9I0735-08)				Matrix: Soil		Batch:	9091331					
Oil	ND		50.0	mg/kg dry	1	09/26/19 18:47	NWTPH-Dx					
Surrogate: o-Terphenyl (Surr)		Reco	very: 77 %	Limits: 50-150 %	5 1	09/26/19 18:47	NWTPH-Dx					
GP-05-1 (A9I0735-09)				Matrix: Soil		Batch:	9091331					
Diesel	ND		25.0	mg/kg dry	1	09/26/19 19:07	NWTPH-Dx					
Oil	ND		50.0	mg/kg dry	1	09/26/19 19:07	NWTPH-Dx					
Surrogate: o-Terphenyl (Surr)		Reco	very: 92 %	Limits: 50-150 %	5 1	09/26/19 19:07	NWTPH-Dx					
GP-05-8 (A9I0735-10)				Matrix: Soil		Batch:	9091331					
Diesel	ND		25.0	mg/kg dry	1	09/26/19 19:27	NWTPH-Dx					
Oil	ND		50.0	mg/kg dry	1	09/26/19 19:27	NWTPH-Dx					
Surrogate: o-Terphenyl (Surr)		Reco	very: 85 %	Limits: 50-150 %	5 1	09/26/19 19:27	NWTPH-Dx					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons (E	Benzene tl	rough Naphth	nalene) by	NWTPH-Gx		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
FS-01-8 (A9I0735-01RE1)				Matrix: Soi	iI	Batch	: 9091211	
Gasoline Range Organics	112		7.14	mg/kg dry	50	09/25/19 18:19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	y: 123 %	Limits: 50-150	% 1	09/25/19 18:19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			115 %	50-150	% 1	09/25/19 18:19	NWTPH-Gx (MS)	
FS-02-8 (A9I0735-02RE1)				Matrix: Soi	il	Batch	: 9091211	
Gasoline Range Organics	222		6.67	mg/kg dry	50	09/25/19 20:07	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 114 %	Limits: 50-150	% 1	09/25/19 20:07	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			124 %	50-150	% 1	09/25/19 20:07	NWTPH-Gx (MS)	
FS-04-9 (A9I0735-03)				Matrix: Soi	il	Batch	: 9091209	
Gasoline Range Organics	ND		6.11	mg/kg dry	50	09/24/19 18:10	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 100 %	Limits: 50-150	% 1	09/24/19 18:10	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			111 %	50-150	% 1	09/24/19 18:10	NWTPH-Gx (MS)	
FS-03-9 (A9I0735-04RE1)				Matrix: Soi	il	Batch	: 9091211	
Gasoline Range Organics	366		12.5	mg/kg dry	100	09/25/19 19:40	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 117 %	Limits: 50-150	% 1	09/25/19 19:40	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			112 %	50-150	% 1	09/25/19 19:40	NWTPH-Gx (MS)	
GP-01-2 (A9I0735-05)				Matrix: Soi	iI	Batch	: 9091209	
Gasoline Range Organics	ND		5.06	mg/kg dry	50	09/24/19 18:37	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 101 %	Limits: 50-150	% 1	09/24/19 18:37	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			111 %	50-150	% 1	09/24/19 18:37	NWTPH-Gx (MS)	
GP-01-5 (A9I0735-06RE1)				Matrix: Soi	iI	Batch	: 9091269	
Gasoline Range Organics	62.2		6.06	mg/kg dry	50	09/25/19 18:19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 110 %	Limits: 50-150	% 1	09/25/19 18:19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150	% 1	09/25/19 18:19	NWTPH-Gx (MS)	
GP-02-1 (A9I0735-07RE1)				Matrix: Soi	iI	Batch	: 9091269	
Gasoline Range Organics	30.7		5.46	mg/kg dry	50	09/25/19 17:52	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	v: 111 %	Limits: 50-150	% 1	09/25/19 17:52	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150	% 1	09/25/19 17:52	NWTPH-Gx (MS)	
GP-02-12 (A9I0735-08RE1)				Matrix: Soi	il	Batch	: 9091211	
Gasoline Range Organics	99.4		4.60	mg/kg dry	50	09/25/19 18:46	NWTPH-Gx (MS)	

Apex Laboratories

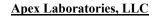
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625


ANALYTICAL SAMPLE RESULTS

Gasol	ine Kange Hy	drocarbons (E	senzene ti	hrough Naphtha	alene) by	NW I PH-GX		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP-02-12 (A9I0735-08RE1)				Matrix: Soil		Batch	: 9091211	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 123 %	Limits: 50-150 %	5 1	09/25/19 18:46	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			110 %	50-150 %	5 1	09/25/19 18:46	NWTPH-Gx (MS)	
GP-05-1 (A9I0735-09)				Matrix: Soil		Batch	: 9091209	
Gasoline Range Organics	ND		4.91	mg/kg dry	50	09/24/19 19:30	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 104 %	Limits: 50-150 %	5 1	09/24/19 19:30	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			112 %	50-150 %	1	09/24/19 19:30	NWTPH-Gx (MS)	
GP-05-8 (A9I0735-10RE1)				Matrix: Soil		Batch	: 9091211	
Gasoline Range Organics	249		11.2	mg/kg dry	100	09/25/19 19:13	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 121 %	Limits: 50-150 %	1	09/25/19 19:13	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			113 %	50-150 %	1	09/25/19 19:13	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

	Vola	tile Organic (Compounds I	oy EPA 5035A	A/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
FS-01-8 (A9I0735-01RE1)				Matrix: Soi	I	Batch:	9091211	
Acetone	ND		1.43	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Acrylonitrile	ND		0.571	mg/kg dry	50	09/25/19 18:19	5035A/8260C	R-02
Benzene	ND		0.0143	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Bromobenzene	ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Bromochloromethane	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Bromodichloromethane	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Bromoform	ND		0.143	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Bromomethane	ND		0.714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
2-Butanone (MEK)	ND		0.714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
n-Butylbenzene	0.224		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
sec-Butylbenzene	0.103		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
tert-Butylbenzene	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Carbon disulfide	ND		0.714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Carbon tetrachloride	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Chlorobenzene	ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Chloroethane	ND		0.714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Chloroform	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Chloromethane	ND		0.357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
2-Chlorotoluene	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
4-Chlorotoluene	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Dibromochloromethane	ND		0.143	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		0.357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Dibromomethane	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,2-Dichlorobenzene	ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,3-Dichlorobenzene	ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,4-Dichlorobenzene	ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Dichlorodifluoromethane	ND		0.0337	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,1-Dichloroethane	ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,1-Dichloroethene	ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
cis-1,2-Dichloroethene	ND ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C 5035A/8260C	
trans-1,2-Dichloroethene	ND ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C 5035A/8260C	
1,2-Dichloropropane	ND ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C 5035A/8260C	
	ND ND		0.0337		50 50	09/25/19 18:19	5035A/8260C 5035A/8260C	
1,3-Dichloropropane	ND ND		0.0714	mg/kg dry	50 50	09/25/19 18:19	5035A/8260C 5035A/8260C	
2,2-Dichloropropane				mg/kg dry			5035A/8260C 5035A/8260C	
1,1-Dichloropropene	ND		0.0714	mg/kg dry	50	09/25/19 18:19		
cis-1,3-Dichloropropene	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

	Sample	Detection F	Reporting			Date		
	Result	Limit F	Ceporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
)1RE1)				Matrix: Soil			9091211	
····=·/	0.102		0.0257					
	0.192		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
e	ND		0.143	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
	ND		0.714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
	0.246		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
	0.0828		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
	ND		0.357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
ne (MiBK)	ND		0.714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
er (MTBE)	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
	ND		0.143	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
	0.770		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
thane	ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
thane	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
PCE)	ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
ene	ND		0.357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
ene	ND		0.357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
e	ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
e	ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
E)	ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
ane	ND		0.143	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
ine	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
ene	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
ene	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
	ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
	ND		0.0714	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
	ND		0.0357	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
uorobenzene (Surr)		Recovery:	93 %	Limits: 80-120 %	1	09/25/19 18:19	5035A/8260C	
d8 (Surr)			97 %	80-120 %	1	09/25/19 18:19	5035A/8260C	
fluorobenzene (Surr)			104 %	80-120 %	1	09/25/19 18:19	5035A/8260C	
)2RE1)				Matrix: Soil		Batch:	9091211	
	ND		1.33	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
	ND		0.400	mg/kg dry	50	09/25/19 20:07	5035A/8260C	R-02
								10.
e ane	ND ND ND ND	 	0.0133 0.0333 0.0667 0.0667	mg/kg dry mg/kg dry mg/kg dry mg/kg dry	50 50 50 50	09/25/19 20:07 09/25/19 20:07 09/25/19 20:07 09/25/19 20:07		5035A/8260C 5035A/8260C 5035A/8260C 5035A/8260C

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa A Zmeinghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

	Volat	tile Organic (Compounds I	oy EPA 5035A	A/8260C			
	Sample	Detection	Reporting	<u> </u>		Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
FS-02-8 (A9I0735-02RE1)				Matrix: Soi	I	Batch:	9091211	
Bromoform	ND		0.133	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Bromomethane	ND		0.667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
2-Butanone (MEK)	ND		1.33	mg/kg dry	50	09/25/19 20:07	5035A/8260C	R-02
n-Butylbenzene	0.356		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
sec-Butylbenzene	0.161		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
tert-Butylbenzene	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Carbon disulfide	ND		0.667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Carbon tetrachloride	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Chlorobenzene	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Chloroethane	ND		0.667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Chloroform	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Chloromethane	ND		0.333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
2-Chlorotoluene	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
4-Chlorotoluene	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Dibromochloromethane	ND		0.133	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		0.333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Dibromomethane	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,2-Dichlorobenzene	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,3-Dichlorobenzene	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,4-Dichlorobenzene	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Dichlorodifluoromethane	ND		0.133	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,1-Dichloroethane	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,1-Dichloroethene	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,2-Dichloropropane	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,3-Dichloropropane	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
2,2-Dichloropropane	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,1-Dichloropropene	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
cis-1,3-Dichloropropene	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Ethylbenzene	0.0540		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Hexachlorobutadiene	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
2-Hexanone	ND ND		0.133	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Isopropylbenzene	0.0973		0.067	mg/kg dry	50	09/25/19 20:07	5035A/8260C 5035A/8260C	
	0.0373		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C 5035A/8260C	
4-Isopropyltoluene						09/25/19 20:07	5035A/8260C 5035A/8260C	
Methylene chloride	ND		0.333	mg/kg dry	50	07/43/19 40.0/	3033A/8200C	

Apex Laboratories

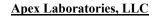
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec Portland Project: 9400 SW Barnes Rd Ste 200 Project Number: 185750581 Portland, OR 97225 Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS


Lampson

	Vola	tile Organic C	Compounds	by EPA 5035A/	8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
FS-02-8 (A9I0735-02RE1)				Matrix: Soil		Batch:	9091211	
4-Methyl-2-pentanone (MiBK)	ND		1.00	mg/kg dry	50	09/25/19 20:07	5035A/8260C	R-02
Methyl tert-butyl ether (MTBE)	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Naphthalene	ND		0.133	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
n-Propylbenzene	0.415		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Styrene	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Toluene	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,2,3-Trichlorobenzene	ND		0.333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,2,4-Trichlorobenzene	ND		0.333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,1,1-Trichloroethane	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,1,2-Trichloroethane	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Trichloroethene (TCE)	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Trichlorofluoromethane	ND		0.133	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,2,3-Trichloropropane	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,2,4-Trimethylbenzene	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
1,3,5-Trimethylbenzene	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Vinyl chloride	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
m,p-Xylene	ND		0.0667	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
o-Xylene	ND		0.0333	mg/kg dry	50	09/25/19 20:07	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 110 %	Limits: 80-120 %	1	09/25/19 20:07	5035A/8260C	
Toluene-d8 (Surr)			99 %	80-120 %	1	09/25/19 20:07	5035A/8260C	
4-Bromofluorobenzene (Surr)			104 %	80-120 %		09/25/19 20:07	5035A/8260C	
FS-04-9 (A9I0735-03)				Matrix: Soil		Batch:	9091209	
Acetone	ND		1.22	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Acrylonitrile	ND		0.122	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Benzene	ND		0.0122	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Bromobenzene	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Bromochloromethane	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Bromodichloromethane	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Bromoform	ND		0.122	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Bromomethane	ND		0.611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
2-Butanone (MEK)	ND		0.611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
	ND ND		0.0611		50	09/24/19 18:10	5035A/8260C 5035A/8260C	
n-Butylbenzene				mg/kg dry		09/24/19 18:10	5035A/8260C 5035A/8260C	
sec-Butylbenzene	ND ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C 5035A/8260C	
tert-Butylbenzene	ND		0.0611	mg/kg dry	50	U7/44/17 18.1U	3033A/6200C	

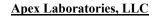
Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Doa A Zmeinghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625


ANALYTICAL SAMPLE RESULTS

	Vola	tile Organic (Compounds I	oy EPA 5035A	A/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
FS-04-9 (A9I0735-03)				Matrix: Soi	il	Batch:	9091209	
Carbon disulfide	ND		0.611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Carbon tetrachloride	ND		0.122	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Chlorobenzene	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Chloroethane	ND		0.611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Chloroform	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Chloromethane	ND		0.305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
2-Chlorotoluene	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
4-Chlorotoluene	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Dibromochloromethane	ND		0.122	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		0.305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Dibromomethane	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,2-Dichlorobenzene	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,3-Dichlorobenzene	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,4-Dichlorobenzene	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Dichlorodifluoromethane	ND		0.122	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,1-Dichloroethane	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,1-Dichloroethene	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,2-Dichloropropane	ND		0.122	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,3-Dichloropropane	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
2,2-Dichloropropane	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,1-Dichloropropene	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
cis-1,3-Dichloropropene	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Ethylbenzene	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Hexachlorobutadiene	ND		0.122	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
2-Hexanone	ND		0.611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Isopropylbenzene	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
4-Isopropyltoluene	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Methylene chloride	ND		0.305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		0.611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Naphthalene	ND		0.122	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
n-Propylbenzene	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Styrene	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
.,.,.,2 1000000000000000000000000000000000000	1112		0.0303	mg/kg ury	50	=, 10.10		

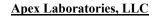
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625


ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
FS-04-9 (A9I0735-03)				Matrix: Soil		Batch:	9091209	
1,1,2,2-Tetrachloroethane	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Toluene	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,2,3-Trichlorobenzene	ND		0.305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,2,4-Trichlorobenzene	ND		0.305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,1,1-Trichloroethane	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,1,2-Trichloroethane	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Trichloroethene (TCE)	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Trichlorofluoromethane	ND		0.122	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,2,3-Trichloropropane	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,2,4-Trimethylbenzene	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
1,3,5-Trimethylbenzene	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Vinyl chloride	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
m,p-Xylene	ND		0.0611	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
o-Xylene	ND		0.0305	mg/kg dry	50	09/24/19 18:10	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	100 %	Limits: 80-120 %	1	09/24/19 18:10	5035A/8260C	
Toluene-d8 (Surr)			100 %	80-120 %	1	09/24/19 18:10	5035A/8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	09/24/19 18:10	5035A/8260C	
				Matrix: Soil		Batch:	9091211	
Acetone	ND		2.50	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Acrylonitrile	ND		0.751	mg/kg dry	100	09/25/19 19:40	5035A/8260C	R-02
Benzene	0.111		0.0250	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Bromobenzene	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Bromochloromethane	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Bromodichloromethane	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Bromoform	ND		0.250	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Bromomethane	ND		1.25	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
2-Butanone (MEK)	ND		1.25	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
n-Butylbenzene	0.773		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	M-02
sec-Butylbenzene	0.367		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
*	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
tert-Butylbenzene			1.25	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
tert-Butylbenzene Carbon disulfide	ND					09/25/19 19:40	5025 A /0260C	
Carbon disulfide	ND ND		0.125	mg/kg dry	100	09/23/19 19.40	5035A/8260C	
Carbon disulfide Carbon tetrachloride	ND			mg/kg dry mg/kg dry		09/25/19 19:40	5035A/8260C 5035A/8260C	
Carbon disulfide Carbon tetrachloride Chlorobenzene	ND ND		0.0626	mg/kg dry	100			
Carbon disulfide Carbon tetrachloride	ND					09/25/19 19:40	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
FS-03-9 (A9I0735-04RE1)				Matrix: Soi	I	Batch	9091211	
2-Chlorotoluene	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
4-Chlorotoluene	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Dibromochloromethane	ND		0.250	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		0.626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Dibromomethane	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,2-Dichlorobenzene	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,3-Dichlorobenzene	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,4-Dichlorobenzene	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Dichlorodifluoromethane	ND		0.250	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,1-Dichloroethane	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,1-Dichloroethene	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,2-Dichloropropane	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,3-Dichloropropane	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
2,2-Dichloropropane	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,1-Dichloropropene	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
cis-1,3-Dichloropropene	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Ethylbenzene	3.03		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Hexachlorobutadiene	ND		0.250	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
2-Hexanone	ND		1.25	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Isopropylbenzene	0.906		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
4-Isopropyltoluene	0.259		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	M-02
Methylene chloride	ND		0.626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		1.25	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Naphthalene	0.392		0.250	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
n-Propylbenzene	3.02		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Styrene	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Toluene	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,2,3-Trichlorobenzene	ND		0.626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,2,4-Trichlorobenzene	ND		0.626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,1,1-Trichloroethane	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smeinghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

	vola	ille Organic Col	npounds	by EPA 5035A/	826UC			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
FS-03-9 (A9I0735-04RE1)				Matrix: Soil		Batch:	9091211	
1,1,2-Trichloroethane	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Trichloroethene (TCE)	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Trichlorofluoromethane	ND		0.250	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,2,3-Trichloropropane	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,2,4-Trimethylbenzene	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
1,3,5-Trimethylbenzene	2.40		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Vinyl chloride	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
m,p-Xylene	ND		0.125	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
o-Xylene	ND		0.0626	mg/kg dry	100	09/25/19 19:40	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	101 %	Limits: 80-120 %	1	09/25/19 19:40	5035A/8260C	
Toluene-d8 (Surr)			97 %	80-120 %		09/25/19 19:40	5035A/8260C	
4-Bromofluorobenzene (Surr)			103 %	80-120 %	1	09/25/19 19:40	5035A/8260C	
GP-01-2 (A9I0735-05)				Matrix: Soil		Batch:		
Acetone	ND		1.01	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Acrylonitrile	ND		0.101	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Benzene	0.0294		0.0101	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Bromobenzene	ND		0.0253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Bromochloromethane	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Bromodichloromethane	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Bromoform	ND		0.101	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Bromomethane	ND		0.506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
2-Butanone (MEK)	ND		0.506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
n-Butylbenzene	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
sec-Butylbenzene	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
tert-Butylbenzene	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Carbon disulfide	ND		0.506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Carbon tetrachloride	ND		0.101	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Chlorobenzene	ND		0.0253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Chloroethane	ND		0.506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Chloroform	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Chloromethane	ND		0.253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
2-Chlorotoluene	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
4-Chlorotoluene	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Dibromochloromethane	ND		0.101	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		0.253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Dibromomethane	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	

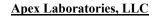
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625


ANALYTICAL SAMPLE RESULTS

	Volat	ile Organic C	ompounds t	by EPA 5035A	\/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-01-2 (A9I0735-05)				Matrix: Soil	ı	Batch:	: 9091209	
1,2-Dichlorobenzene	ND		0.0253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,3-Dichlorobenzene	ND		0.0253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,4-Dichlorobenzene	ND		0.0253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Dichlorodifluoromethane	ND		0.101	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,1-Dichloroethane	ND		0.0253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,1-Dichloroethene	ND		0.0253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.0253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.0253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,2-Dichloropropane	ND		0.101	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,3-Dichloropropane	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
2,2-Dichloropropane	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,1-Dichloropropene	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
cis-1,3-Dichloropropene	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Ethylbenzene	0.0474		0.0253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Hexachlorobutadiene	ND		0.101	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
2-Hexanone	ND		0.506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Isopropylbenzene	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
4-Isopropyltoluene	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Methylene chloride	ND		0.253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		0.506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Naphthalene	ND		0.101	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
n-Propylbenzene	0.0303		0.0253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Styrene	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0350	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,1,2-Tetrachloroethane	ND ND		0.0233	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Tetrachloroethene (PCE)	ND ND		0.0300	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Toluene	0.129		0.0233	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,2,3-Trichlorobenzene	0.129 ND		0.0300	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,2,4-Trichlorobenzene	ND ND		0.253	mg/kg dry mg/kg dry	50	09/24/19 18:37	5035A/8260C 5035A/8260C	
1,1,1-Trichloroethane	ND ND		0.253	mg/kg dry mg/kg dry	50 50	09/24/19 18:37	5035A/8260C 5035A/8260C	
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ND ND		0.0253	mg/kg dry mg/kg dry	50 50	09/24/19 18:37	5035A/8260C 5035A/8260C	
	ND ND					09/24/19 18:37	5035A/8260C 5035A/8260C	
Trichloroethene (TCE)			0.0253	mg/kg dry	50 50			
Trichlorofluoromethane	ND ND		0.101	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,2,3-Trichloropropane	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,2,4-Trimethylbenzene	0.117		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
1,3,5-Trimethylbenzene	ND		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	

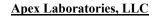
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmeinghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625


ANALYTICAL SAMPLE RESULTS

	Volat	ile Organic C	Compounds	by EPA 5035A/	8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-01-2 (A9I0735-05)				Matrix: Soil		Batch:	9091209	
Vinyl chloride	ND		0.0253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
m,p-Xylene	0.156		0.0506	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
o-Xylene	0.0567		0.0253	mg/kg dry	50	09/24/19 18:37	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 80-120 %	1	09/24/19 18:37	5035A/8260C	
Toluene-d8 (Surr)			101 %	80-120 %	1	09/24/19 18:37	5035A/8260C	
4-Bromofluorobenzene (Surr)			96 %	80-120 %	1	09/24/19 18:37	5035A/8260C	
GP-01-5 (A9I0735-06RE1)				Matrix: Soil		Batch:	9091269	
Acetone	ND		1.21	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Acrylonitrile	ND		0.121	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Benzene	0.0132		0.0121	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Bromobenzene	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Bromochloromethane	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Bromodichloromethane	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Bromoform	ND		0.121	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Bromomethane	ND		0.606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
2-Butanone (MEK)	ND		0.606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
n-Butylbenzene	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
sec-Butylbenzene	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
tert-Butylbenzene	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Carbon disulfide	ND		0.606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Carbon tetrachloride	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Chlorobenzene	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Chloroethane	ND		0.606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Chloroform	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Chloromethane	ND		0.303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
2-Chlorotoluene	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
4-Chlorotoluene	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Dibromochloromethane	ND		0.121	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		0.303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Dibromomethane	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,2-Dichlorobenzene	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,3-Dichlorobenzene	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,4-Dichlorobenzene	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Dichlorodifluoromethane	ND		0.121	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,1-Dichloroethane	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghine

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

	Volat	ile Organic C	ompounds	by EPA 5035A/	/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-01-5 (A9I0735-06RE1)				Matrix: Soil		Batch:	: 9091269	
1,1-Dichloroethene	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,2-Dichloropropane	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,3-Dichloropropane	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
2,2-Dichloropropane	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,1-Dichloropropene	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
cis-1,3-Dichloropropene	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Ethylbenzene	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Hexachlorobutadiene	ND		0.121	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
2-Hexanone	ND		0.606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Isopropylbenzene	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
4-Isopropyltoluene	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Methylene chloride	ND		0.303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		0.606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Naphthalene	ND		0.121	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
n-Propylbenzene	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Styrene	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Toluene	0.0627		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,2,3-Trichlorobenzene	ND		0.303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,2,4-Trichlorobenzene	ND		0.303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,1,1-Trichloroethane	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,1,2-Trichloroethane	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Trichloroethene (TCE)	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Trichlorofluoromethane	ND		0.121	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,2,3-Trichloropropane	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,2,4-Trimethylbenzene	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
1,3,5-Trimethylbenzene	ND		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Vinyl chloride	ND		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
m,p-Xylene	0.0874		0.0606	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
o-Xylene	0.0327		0.0303	mg/kg dry	50	09/25/19 18:19	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 112 %	Limits: 80-120 %		09/25/19 18:19	5035A/8260C	
Toluene-d8 (Surr)			96%	80-120 %		09/25/19 18:19	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa A Zmenyhini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

	Volatile Organic Compounds by EPA 5035A/8260C								
	Sample	Detection	Reporting			Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
GP-01-5 (A9I0735-06RE1)				Matrix: Soil		Batch:	9091269		
Surrogate: 4-Bromofluorobenzene (Surr)		Recover	y: 101 %	Limits: 80-120 %	1	09/25/19 18:19	5035A/8260C		
GP-02-1 (A9I0735-07RE1)				Matrix: Soil		Batch: 9091269			
Acetone	ND		1.09	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Acrylonitrile	ND		0.109	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Benzene	ND		0.0109	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Bromobenzene	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Bromochloromethane	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Bromodichloromethane	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Bromoform	ND		0.109	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Bromomethane	ND		0.546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
2-Butanone (MEK)	ND		0.546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
n-Butylbenzene	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
sec-Butylbenzene	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
tert-Butylbenzene	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Carbon disulfide	ND		0.546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Carbon tetrachloride	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Chlorobenzene	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Chloroethane	ND		0.546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Chloroform	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Chloromethane	ND		0.273	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
2-Chlorotoluene	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
4-Chlorotoluene	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Dibromochloromethane	ND		0.109	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
1,2-Dibromo-3-chloropropane	ND		0.273	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
1,2-Dibromoethane (EDB)	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Dibromomethane	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
1,2-Dichlorobenzene	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
1,3-Dichlorobenzene	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
1,4-Dichlorobenzene	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
Dichlorodifluoromethane	ND		0.109	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
1,1-Dichloroethane	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
1,2-Dichloroethane (EDC)	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
1,1-Dichloroethene	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
cis-1,2-Dichloroethene	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
trans-1,2-Dichloroethene	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
1,2-Dichloropropane	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
1,3-Dichloropropane	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C		
2,2-Dichloropropane	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec Portland Project: 9400 SW Barnes Rd Ste 200 Project Number: 185750581 Portland, OR 97225 Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

Lampson

	Volat	ile Organic C	ompounds	by EPA 5035A/	8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-02-1 (A9I0735-07RE1)				Matrix: Soil		Batch:	9091269	
1,1-Dichloropropene	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
cis-1,3-Dichloropropene	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
Ethylbenzene	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
Hexachlorobutadiene	ND		0.109	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
2-Hexanone	ND		0.546	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
Isopropylbenzene	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
4-Isopropyltoluene	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
Methylene chloride	ND		0.273	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		0.546	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
Naphthalene	ND		0.109	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
n-Propylbenzene	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
Styrene	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
Toluene	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
1,2,3-Trichlorobenzene	ND		0.273	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
1,2,4-Trichlorobenzene	ND		0.273	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
1,1,1-Trichloroethane	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
1,1,2-Trichloroethane	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
Trichloroethene (TCE)	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
Trichlorofluoromethane	ND		0.109	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
1,2,3-Trichloropropane	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
1,2,4-Trimethylbenzene	0.177		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
1,3,5-Trimethylbenzene	ND		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
Vinyl chloride	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
m,p-Xylene	0.140		0.0546	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
o-Xylene	ND		0.0273	mg/kg dry	50	09/25/19 17:52	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 112 %	Limits: 80-120 %	1	09/25/19 17:52	5035A/8260C	
Toluene-d8 (Surr)			94 %	80-120 %	1	09/25/19 17:52	5035A/8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %	1	09/25/19 17:52	5035A/8260C	
GP-02-12 (A9I0735-08RE1)				Matrix: Soil		Batch:	9091211	
Acetone	ND		0.919	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Acrylonitrile	ND		0.230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	R-02
Benzene	0.0432		0.00919	mg/kg dry	50	09/25/19 18:46	5035A/8260C	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

	Volat	ile Organic (Compounds I	oy EPA 5035 <i>A</i>	A/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-02-12 (A9I0735-08RE1)				Matrix: Soi	I	Batch:	9091211	
Bromobenzene	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Bromochloromethane	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Bromodichloromethane	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Bromoform	ND		0.0919	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Bromomethane	ND		0.460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
2-Butanone (MEK)	ND		0.460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
n-Butylbenzene	0.0694		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	M-02
sec-Butylbenzene	0.0473		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
tert-Butylbenzene	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Carbon disulfide	ND		0.460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Carbon tetrachloride	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Chlorobenzene	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Chloroethane	ND		0.460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Chloroform	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Chloromethane	ND		0.230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
2-Chlorotoluene	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
4-Chlorotoluene	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Dibromochloromethane	ND		0.0919	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		0.230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Dibromomethane	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,2-Dichlorobenzene	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,3-Dichlorobenzene	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,4-Dichlorobenzene	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Dichlorodifluoromethane	ND		0.0919	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,1-Dichloroethane	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,1-Dichloroethene	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,2-Dichloropropane	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,3-Dichloropropane	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
2,2-Dichloropropane	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,1-Dichloropropene	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
cis-1,3-Dichloropropene	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Ethylbenzene	1.33		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Hexachlorobutadiene	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
					50	09/25/19 18:46	5035A/8260C	
2-Hexanone	ND		0.460	mg/kg dry	50	09/23/19 18:40	3033A/8200C	

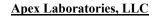
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghine

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625


ANALYTICAL SAMPLE RESULTS

	volai	ile Organic Cor	iipoulius	Dy EFA 3033A/	02000			
	Sample		Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
SP-02-12 (A9I0735-08RE1)				Matrix: Soil		Batch:	9091211	
Isopropylbenzene	0.175		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
4-Isopropyltoluene	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Methylene chloride	ND		0.230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		0.460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Naphthalene	0.0942		0.0919	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
n-Propylbenzene	0.438		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Styrene	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Toluene	0.413		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,2,3-Trichlorobenzene	ND		0.230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,2,4-Trichlorobenzene	ND		0.230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,1,1-Trichloroethane	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,1,2-Trichloroethane	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Trichloroethene (TCE)	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Trichlorofluoromethane	ND		0.0919	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,2,3-Trichloropropane	ND		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,2,4-Trimethylbenzene	2.00		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
1,3,5-Trimethylbenzene	0.593		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Vinyl chloride	ND		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
m,p-Xylene	4.62		0.0460	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
o-Xylene	1.07		0.0230	mg/kg dry	50	09/25/19 18:46	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	: 94 %	Limits: 80-120 %	1	09/25/19 18:46	5035A/8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	09/25/19 18:46	5035A/8260C	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	09/25/19 18:46	5035A/8260C	
GP-05-1 (A9I0735-09)				Matrix: Soil		Batch:	9091209	
Acetone	ND		0.982	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Acrylonitrile	ND		0.0982	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Benzene	ND		0.00982	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Bromobenzene	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Bromochloromethane	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Bromodichloromethane	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Bromoform	ND		0.0982	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Bromomethane	ND		0.491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
2-Butanone (MEK)	ND		0.491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Zomenyhini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

	Volat	<u>ile Organic C</u>	Compounds t	by EPA 5035A	\/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-05-1 (A9I0735-09)				Matrix: Soil	I	Batch	: 9091209	
n-Butylbenzene	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
sec-Butylbenzene	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
tert-Butylbenzene	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Carbon disulfide	ND		0.491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Carbon tetrachloride	ND		0.0982	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Chlorobenzene	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Chloroethane	ND		0.491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Chloroform	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Chloromethane	ND		0.246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
2-Chlorotoluene	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
4-Chlorotoluene	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Dibromochloromethane	ND		0.0982	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		0.246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Dibromomethane	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,2-Dichlorobenzene	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,3-Dichlorobenzene	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,4-Dichlorobenzene	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Dichlorodifluoromethane	ND		0.0982	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,1-Dichloroethane	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,1-Dichloroethene	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,2-Dichloropropane	ND		0.0982	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,3-Dichloropropane	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
2,2-Dichloropropane	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,1-Dichloropropene	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
cis-1,3-Dichloropropene	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Ethylbenzene	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Hexachlorobutadiene	ND		0.0982	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
2-Hexanone	ND		0.491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Isopropylbenzene	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
4-Isopropyltoluene	ND ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C 5035A/8260C	
Methylene chloride	ND ND		0.0491	mg/kg dry mg/kg dry	50 50	09/24/19 19:30	5035A/8260C 5035A/8260C	
•	ND ND					09/24/19 19:30	5035A/8260C 5035A/8260C	
4-Methyl-2-pentanone (MiBK)			0.491	mg/kg dry	50			
Methyl tert-butyl ether (MTBE)	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Naphthalene	ND		0.0982	mg/kg dry	50	09/24/19 19:30	5035A/8260C	

Apex Laboratories

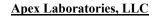
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec Portland Project: 9400 SW Barnes Rd Ste 200 Project Number: 185750581 Portland, OR 97225 Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS


Lampson

	Vola	tile Organic C	compounds	by EPA 5035A/	8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-05-1 (A9I0735-09)				Matrix: Soil		Batch:	9091209	
n-Propylbenzene	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Styrene	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Tetrachloroethene (PCE)	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Toluene	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,2,3-Trichlorobenzene	ND		0.246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,2,4-Trichlorobenzene	ND		0.246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,1,1-Trichloroethane	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,1,2-Trichloroethane	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Trichloroethene (TCE)	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Trichlorofluoromethane	ND		0.0982	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,2,3-Trichloropropane	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,2,4-Trimethylbenzene	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
1,3,5-Trimethylbenzene	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Vinyl chloride	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
m,p-Xylene	ND		0.0491	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
o-Xylene	ND		0.0246	mg/kg dry	50	09/24/19 19:30	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 80-120 %	1	09/24/19 19:30	5035A/8260C	
Toluene-d8 (Surr)			103 %	80-120 %	1	09/24/19 19:30	5035A/8260C	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	1	09/24/19 19:30	5035A/8260C	
GP-05-8 (A9I0735-10RE1)				Matrix: Soil		Batch:	9091211	
Acetone	ND		2.24	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Acrylonitrile	ND		1.68	mg/kg dry	100	09/25/19 19:13	5035A/8260C	R-02
Benzene	ND		0.0224	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Bromobenzene	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Bromochloromethane	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Bromodichloromethane	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Bromoform	ND		0.224	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Bromomethane	ND		1.12	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
2-Butanone (MEK)	ND		1.68	mg/kg dry	100	09/25/19 19:13	5035A/8260C	R-02
n-Butylbenzene	0.328		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	M-02
sec-Butylbenzene	0.158		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
tert-Butylbenzene	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Carbon disulfide	ND		1.12	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Carbon tetrachloride	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Chlorobenzene	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
CHIOLOGUIZCHC	ND		0.0500	mg/kg ury	100		2 3 3 2 1 2 0 2 0 0 0	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len FarrAg

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

	Vola	tile Organic (Compounds I	oy EPA 5035A	A/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP-05-8 (A9I0735-10RE1)				Matrix: Soi	I	Batch:	9091211	
Chloroethane	ND		1.12	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Chloroform	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Chloromethane	ND		0.560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
2-Chlorotoluene	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
4-Chlorotoluene	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Dibromochloromethane	ND		0.224	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
1,2-Dibromo-3-chloropropane	ND		0.560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Dibromomethane	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
1,2-Dichlorobenzene	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
1,3-Dichlorobenzene	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
1,4-Dichlorobenzene	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Dichlorodifluoromethane	ND		0.224	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
1,1-Dichloroethane	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
1,1-Dichloroethene	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
cis-1,2-Dichloroethene	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
trans-1,2-Dichloroethene	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
1,2-Dichloropropane	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
1,3-Dichloropropane	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
2,2-Dichloropropane	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
1,1-Dichloropropene	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
cis-1,3-Dichloropropene	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
trans-1,3-Dichloropropene	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Ethylbenzene	2.25		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Hexachlorobutadiene	ND		0.224	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
2-Hexanone	ND		1.12	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Isopropylbenzene	0.509		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
4-Isopropyltoluene	0.114		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	M-02
Methylene chloride	ND		0.560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
4-Methyl-2-pentanone (MiBK)	ND		1.12	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Naphthalene	0.647		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
n-Propylbenzene	1.67		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Styrene	ND		0.0300	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
1,1,1,2-Tetrachloroethane	ND ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
1,1,2,2-Tetrachloroethane	ND ND		0.0300	mg/kg dry	100	09/25/19 19:13	5035A/8260C	
Tetrachloroethene (PCE)	ND ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C 5035A/8260C	
Toluene	ND ND		0.0360	mg/kg dry	100	09/25/19 19:13	5035A/8260C 5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland Project: 9400 SW Barnes Rd Ste 200 Project Number: 185750581 Portland, OR 97225 Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

Lampson

Volatile Organic Compounds by EPA 5035A/8260C													
	Sample	Detection	Reporting			Date							
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes					
GP-05-8 (A9I0735-10RE1)				Matrix: Soil		Batch:	9091211						
1,2,3-Trichlorobenzene	ND		0.560	mg/kg dry	100	09/25/19 19:13	5035A/8260C						
1,2,4-Trichlorobenzene	ND		0.560	mg/kg dry	100	09/25/19 19:13	5035A/8260C						
1,1,1-Trichloroethane	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C						
1,1,2-Trichloroethane	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C						
Trichloroethene (TCE)	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C						
Trichlorofluoromethane	ND		0.224	mg/kg dry	100	09/25/19 19:13	5035A/8260C						
1,2,3-Trichloropropane	ND		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C						
1,2,4-Trimethylbenzene	0.343		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C						
1,3,5-Trimethylbenzene	2.99		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C						
Vinyl chloride	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C						
m,p-Xylene	2.47		0.112	mg/kg dry	100	09/25/19 19:13	5035A/8260C						
o-Xylene	ND		0.0560	mg/kg dry	100	09/25/19 19:13	5035A/8260C						
Surrogate: 1,4-Difluorobenzene (Surr)		Recon	very: 98 %	Limits: 80-120 %	1	09/25/19 19:13	5035A/8260C						
Toluene-d8 (Surr)			98 %	80-120 %	1	09/25/19 19:13	5035A/8260C						
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	09/25/19 19:13	5035A/8260C						

Apex Laboratories

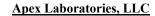
 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland Project: 9400 SW Barnes Rd Ste 200 Project Number: 185750581 Portland, OR 97225 Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS


Lampson

		Polychlorina	ted Bipheny	ls by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
GP-01-2 (A9I0735-05)				Matrix: Soil		Batch:	9091258	C-07
Aroclor 1016	ND		0.0118	mg/kg dry	1	09/26/19 09:13	EPA 8082A	
Aroclor 1221	ND		0.0118	mg/kg dry	1	09/26/19 09:13	EPA 8082A	
Aroclor 1232	ND		0.0118	mg/kg dry	1	09/26/19 09:13	EPA 8082A	
Aroclor 1242	ND		0.0118	mg/kg dry	1	09/26/19 09:13	EPA 8082A	
Aroclor 1248	ND		0.0118	mg/kg dry	1	09/26/19 09:13	EPA 8082A	
Aroclor 1254	ND		0.0118	mg/kg dry	1	09/26/19 09:13	EPA 8082A	
Aroclor 1260	ND		0.0118	mg/kg dry	1	09/26/19 09:13	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 92 %	Limits: 60-125 %	6 I	09/26/19 09:13	EPA 8082A	
GP-01-5 (A9I0735-06)				Matrix: Soil		Batch:	9091258	C-07
Aroclor 1016	ND		0.0118	mg/kg dry	1	09/26/19 09:48	EPA 8082A	
Aroclor 1221	ND		0.0118	mg/kg dry	1	09/26/19 09:48	EPA 8082A	
Aroclor 1232	ND		0.0118	mg/kg dry	1	09/26/19 09:48	EPA 8082A	
Aroclor 1242	ND		0.0118	mg/kg dry	1	09/26/19 09:48	EPA 8082A	
Aroclor 1248	ND		0.0118	mg/kg dry	1	09/26/19 09:48	EPA 8082A	
Aroclor 1254	ND		0.0118	mg/kg dry	1	09/26/19 09:48	EPA 8082A	
Aroclor 1260	ND		0.0118	mg/kg dry	1	09/26/19 09:48	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 97 %	Limits: 60-125 %	<i>5 1</i>	09/26/19 09:48	EPA 8082A	

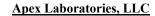
Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr


Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20A (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
FS-01-8 (A9I0735-01)				Matrix: Soi	I			
Batch: 9091243								
Arsenic	9.49		1.34	mg/kg dry	10	09/24/19 20:06	EPA 6020A	
Barium	146		1.34	mg/kg dry	10	09/24/19 20:06	EPA 6020A	
Cadmium	ND		0.269	mg/kg dry	10	09/24/19 20:06	EPA 6020A	
Chromium	70.3		1.34	mg/kg dry	10	09/24/19 20:06	EPA 6020A	
Lead	8.59		0.269	mg/kg dry	10	09/24/19 20:06	EPA 6020A	
Mercury	0.137		0.108	mg/kg dry	10	09/24/19 20:06	EPA 6020A	
Selenium	ND		1.34	mg/kg dry	10	09/24/19 20:06	EPA 6020A	
Silver	ND		0.269	mg/kg dry	10	09/24/19 20:06	EPA 6020A	
FS-02-8 (A9I0735-02)				Matrix: Soi	I			
Batch: 9091243								
Arsenic	1.73		1.41	mg/kg dry	10	09/24/19 20:10	EPA 6020A	
Barium	110		1.41	mg/kg dry	10	09/24/19 20:10	EPA 6020A	
Cadmium	ND		0.281	mg/kg dry	10	09/24/19 20:10	EPA 6020A	
Chromium	49.5		1.41	mg/kg dry	10	09/24/19 20:10	EPA 6020A	
Lead	3.25		0.281	mg/kg dry	10	09/24/19 20:10	EPA 6020A	
Mercury	0.377		0.112	mg/kg dry	10	09/24/19 20:10	EPA 6020A	
Selenium	ND		1.41	mg/kg dry	10	09/24/19 20:10	EPA 6020A	
Silver	ND		0.281	mg/kg dry	10	09/24/19 20:10	EPA 6020A	
FS-04-9 (A9I0735-03)				Matrix: Soi	ĺ			
Batch: 9091243								
Arsenic	3.80		1.17	mg/kg dry	10	09/24/19 20:15	EPA 6020A	
Barium	80.8		1.17	mg/kg dry	10	09/24/19 20:15	EPA 6020A	
Cadmium	ND		0.233	mg/kg dry	10	09/24/19 20:15	EPA 6020A	
Chromium	36.1		1.17	mg/kg dry	10	09/24/19 20:15	EPA 6020A	
Lead	3.16		0.233	mg/kg dry	10	09/24/19 20:15	EPA 6020A	
Mercury	0.174		0.0933	mg/kg dry	10	09/24/19 20:15	EPA 6020A	
Selenium	ND		1.17	mg/kg dry	10	09/24/19 20:15	EPA 6020A	
Silver	ND		0.233	mg/kg dry	10	09/24/19 20:15	EPA 6020A	
FS-03-9 (A9I0735-04)				Matrix: Soi	I			
Batch: 9091243								
Arsenic	16.3		1.29	mg/kg dry	10	09/24/19 20:20	EPA 6020A	
Barium	152		1.29	mg/kg dry	10	09/24/19 20:20	EPA 6020A	
Cadmium	ND		0.258	mg/kg dry	10	09/24/19 20:20	EPA 6020A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

Sample Detection Reporting Date												
	•											
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes				
FS-03-9 (A9I0735-04)				Matrix: Soi	l							
Chromium	64.7		1.29	mg/kg dry	10	09/24/19 20:20	EPA 6020A					
Lead	7.39		0.258	mg/kg dry	10	09/24/19 20:20	EPA 6020A					
Mercury	0.139		0.103	mg/kg dry	10	09/24/19 20:20	EPA 6020A					
Selenium	ND		1.29	mg/kg dry	10	09/24/19 20:20	EPA 6020A					
Silver	ND		0.258	mg/kg dry	10	09/24/19 20:20	EPA 6020A					
GP-01-2 (A9I0735-05)				Matrix: Soi	I							
Batch: 9091243												
Arsenic	3.00		1.27	mg/kg dry	10	09/24/19 20:25	EPA 6020A					
Barium	140		1.27	mg/kg dry	10	09/24/19 20:25	EPA 6020A					
Cadmium	0.582		0.253	mg/kg dry	10	09/24/19 20:25	EPA 6020A					
Chromium	28.0		1.27	mg/kg dry	10	09/24/19 20:25	EPA 6020A					
Lead	24.8		0.253	mg/kg dry	10	09/24/19 20:25	EPA 6020A					
Mercury	ND		0.101	mg/kg dry	10	09/24/19 20:25	EPA 6020A					
Selenium	ND		1.27	mg/kg dry	10	09/24/19 20:25	EPA 6020A					
Silver	ND		0.253	mg/kg dry	10	09/24/19 20:25	EPA 6020A					
GP-01-5 (A9I0735-06)				Matrix: Soi	I							
Batch: 9091243												
Arsenic	ND		1.23	mg/kg dry	10	09/24/19 20:43	EPA 6020A					
Barium	99.9		1.23	mg/kg dry	10	09/24/19 20:43	EPA 6020A					
Cadmium	ND		0.245	mg/kg dry	10	09/24/19 20:43	EPA 6020A					
Chromium	46.9		1.23	mg/kg dry	10	09/24/19 20:43	EPA 6020A					
Lead	2.38		0.245	mg/kg dry	10	09/24/19 20:43	EPA 6020A					
Mercury	0.117		0.0981	mg/kg dry	10	09/24/19 20:43	EPA 6020A					
Selenium	ND		1.23	mg/kg dry	10	09/24/19 20:43	EPA 6020A					
Silver	ND		0.245	mg/kg dry	10	09/24/19 20:43	EPA 6020A					
GP-02-1 (A9I0735-07)				Matrix: Soi	I							
Batch: 9091243												
Arsenic	5.66		1.31	mg/kg dry	10	09/24/19 20:57	EPA 6020A					
Barium	126		1.31	mg/kg dry	10	09/24/19 20:57	EPA 6020A					
Cadmium	ND		0.262	mg/kg dry	10	09/24/19 20:57	EPA 6020A					
Chromium	38.4		1.31	mg/kg dry	10	09/24/19 20:57	EPA 6020A					
Lead	3.84		0.262	mg/kg dry	10	09/24/19 20:57	EPA 6020A					
Mercury	ND		0.105	mg/kg dry	10	09/24/19 20:57	EPA 6020A					
Selenium	ND		1.31	mg/kg dry	10	09/24/19 20:57	EPA 6020A					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20A (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP-02-1 (A9I0735-07)				Matrix: Soi	I			
Silver	ND		0.262	mg/kg dry	10	09/24/19 20:57	EPA 6020A	
GP-02-12 (A9I0735-08)				Matrix: Soi	I			
Batch: 9091243								
Arsenic	1.82		1.22	mg/kg dry	10	09/24/19 21:02	EPA 6020A	
Barium	108		1.22	mg/kg dry	10	09/24/19 21:02	EPA 6020A	
Cadmium	ND		0.244	mg/kg dry	10	09/24/19 21:02	EPA 6020A	
Chromium	35.4		1.22	mg/kg dry	10	09/24/19 21:02	EPA 6020A	
Lead	3.57		0.244	mg/kg dry	10	09/24/19 21:02	EPA 6020A	
Mercury	0.649		0.0976	mg/kg dry	10	09/24/19 21:02	EPA 6020A	
Selenium	ND		1.22	mg/kg dry	10	09/24/19 21:02	EPA 6020A	
Silver	ND		0.244	mg/kg dry	10	09/24/19 21:02	EPA 6020A	
GP-05-1 (A9I0735-09)				Matrix: Soi	I			
Batch: 9091243								
Arsenic	2.94		1.04	mg/kg dry	10	09/24/19 21:06	EPA 6020A	
Barium	97.4		1.04	mg/kg dry	10	09/24/19 21:06	EPA 6020A	
Cadmium	ND		0.208	mg/kg dry	10	09/24/19 21:06	EPA 6020A	
Chromium	33.7		1.04	mg/kg dry	10	09/24/19 21:06	EPA 6020A	
Lead	2.93		0.208	mg/kg dry	10	09/24/19 21:06	EPA 6020A	
Mercury	ND		0.0830	mg/kg dry	10	09/24/19 21:06	EPA 6020A	
Selenium	ND		1.04	mg/kg dry	10	09/24/19 21:06	EPA 6020A	
Silver	ND		0.208	mg/kg dry	10	09/24/19 21:06	EPA 6020A	
GP-05-8 (A9I0735-10)				Matrix: Soi	I			
Batch: 9091243								
Arsenic	13.0		1.19	mg/kg dry	10	09/24/19 21:11	EPA 6020A	
Barium	146		1.19	mg/kg dry	10	09/24/19 21:11	EPA 6020A	
Cadmium	ND		0.238	mg/kg dry	10	09/24/19 21:11	EPA 6020A	
Chromium	56.6		1.19	mg/kg dry	10	09/24/19 21:11	EPA 6020A	
Lead	7.35		0.238	mg/kg dry	10	09/24/19 21:11	EPA 6020A	
Mercury	0.164		0.0950	mg/kg dry	10	09/24/19 21:11	EPA 6020A	
Selenium	ND		1.19	mg/kg dry	10	09/24/19 21:11	EPA 6020A	
Silver	ND		0.238	mg/kg dry	10	09/24/19 21:11	EPA 6020A	

Apex Laboratories

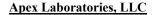
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625


ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
FS-01-8 (A9I0735-01)				Matrix: Soil		Batch:	9091260	
% Solids	76.4		1.00	% by Weight	1	09/26/19 08:07	EPA 8000C	
FS-02-8 (A9I0735-02)				Matrix: Soil		Batch:	9091260	
% Solids	77.6		1.00	% by Weight	1	09/26/19 08:07	EPA 8000C	
FS-04-9 (A9I0735-03)				Matrix: Soil		Batch:	9091260	
% Solids	88.0		1.00	% by Weight	1	09/26/19 08:07	EPA 8000C	
FS-03-9 (A9I0735-04)				Matrix: Soil		Batch:	9091260	
% Solids	79.7		1.00	% by Weight	1	09/26/19 08:07	EPA 8000C	
GP-01-2 (A9I0735-05)				Matrix: Soil		Batch:	9091260	
% Solids	84.5		1.00	% by Weight	1	09/26/19 08:07	EPA 8000C	
GP-01-5 (A9I0735-06)				Matrix: Soil		Batch:	9091204	
% Solids	80.9		1.00	% by Weight	1	09/25/19 07:46	EPA 8000C	
GP-02-1 (A9I0735-07)				Matrix: Soil		Batch:	9091260	
% Solids	82.5		1.00	% by Weight	1	09/26/19 08:07	EPA 8000C	
GP-02-12 (A9I0735-08)				Matrix: Soil		Batch:	9091260	
% Solids	87.4		1.00	% by Weight	1	09/26/19 08:07	EPA 8000C	
GP-05-1 (A9I0735-09)				Matrix: Soil Batch: 9091260				
% Solids	94.3		1.00	% by Weight	1	09/26/19 08:07	EPA 8000C	
GP-05-8 (A9I0735-10)				Matrix: Soil Batch: 9091260				
% Solids	83.2		1.00	% by Weight	1	09/26/19 08:07	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: <u>Lampson</u>
Project Number: **185750581**Project Manager: **Len Farr**


Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	or Oil Hydi	ocarbor	ns by NW	ГРН-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091331 - EPA 3546 (F	uels)						Soil	Ī				
Blank (9091331-BLK1)		Prepared	: 09/26/19 11:	47 Analyze	d: 09/26/1	9 18:27						
NWTPH-Dx												
Diesel	ND		25.0	mg/kg we	et 1							
Oil	ND		50.0	mg/kg we	et 1							
Surr: o-Terphenyl (Surr)		Reco	overy: 93 %	Limits: 50-	150 %	Dill	ution: 1x					
LCS (9091331-BS1)		Prepared	: 09/26/19 11:	47 Analyze	ed: 09/26/1	9 18:47						
NWTPH-Dx												
Diesel	125		25.0	mg/kg we	t 1	125		100	76 - 115%			
Surr: o-Terphenyl (Surr)		Rece	overy: 98 %	Limits: 50-	150 %	Dill	ution: 1x					
Duplicate (9091331-DUP1)		Prepared	: 09/26/19 11:	47 Analyze	ed: 09/26/1	9 22:47						
QC Source Sample: GP-01-5 (A9	010735-06)											
NWTPH-Dx												
Diesel	ND		25.0	mg/kg dr	y 1		14.1			***	30%	
Oil	ND		50.0	mg/kg dr	y 1		ND				30%	
Surr: o-Terphenyl (Surr)		Rece	overy: 77 %	Limits: 50-	150 %	Dili	ution: 1x					
Matrix Spike (9091331-MS1)		Prepared	: 09/26/19 11:	55 Analyze	ed: 09/26/1	9 23:07						
QC Source Sample: GP-01-5 (A9	010735-06)											
NWTPH-Dx	146		25.0	<i>a</i> 1		1.40	141	00	50 1500/			
Diesel	146		25.0	mg/kg dr		149	14.1	89	50 - 150%			
Surr: o-Terphenyl (Surr)		Reco	overy: 90 %	Limits: 50-	150 %	Dili	ution: 1x					
Matrix Spike Dup (9091331-MS	SD1)	Prepared	: 09/26/19 11:	55 Analyze	ed: 09/26/1	9 23:27						
QC Source Sample: GP-01-5 (A9 NWTPH-Dx	<u>010735-06)</u>											
Diesel	157		25.0	ma/ka dr	v 1	148	14.1	96	50 - 150%	7	50%	
Diesei	13/		23.0	mg/kg dr	y I	140	14.1	90	50 - 15070	/	30/0	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: <u>Lampson</u>
Project Number: **185750581**Project Manager: **Len Farr**

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range H	lydrocarbo	ns (Benz	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091209 - EPA 5035A							Soil					
Blank (9091209-BLK1)		Prepared	: 09/24/19 15:	39 Analyz	zed: 09/24/1	9 16:59						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg w	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 96 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			110 %	50	0-150 %		"					
LCS (9091209-BS2)		Prepared	: 09/24/19 15:	39 Analyz	zed: 09/24/1	9 16:32						
NWTPH-Gx (MS)												
Gasoline Range Organics	24.6		5.00	mg/kg w	vet 50	25.0		98 8	30 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 97 %	Limits: 5	0-150 %	Dila	ution: 1x					
1,4-Difluorobenzene (Sur)			107 %	5(0-150 %		"					
Duplicate (9091209-DUP1)		Prepared	: 09/20/19 09:	00 Analyz	zed: 09/24/1	9 19:03						
QC Source Sample: GP-01-2 (A9)	10735-05)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		6.74	mg/kg d	ry 50		4.57			***	30%	Q-05
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 99 %	Limits: 5	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			112 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: <u>Lampson</u>
Project Number: **185750581**Project Manager: **Len Farr**

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range F	lydrocarbo	ns (Benz	ene thro	ugh Naph	thalene) l	by NWTI	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091211 - EPA 5035A							Soil					
Blank (9091211-BLK1)		Prepared	09/25/19 16:	31 Analyz	ed: 09/25/1	9 17:52						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg w	et 50							
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 104 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			106 %	50	-150 %		"					
LCS (9091211-BS2)		Prepared	09/25/19 16:	31 Analyz	ed: 09/25/1	9 17:25						
NWTPH-Gx (MS)												
Gasoline Range Organics	25.5		5.00	mg/kg w	et 50	25.0		102	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 106 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			108 %	50	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

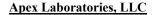
	Gasoli	ne Range H	ydrocarbo	ns (Benz	ene thro	ıgh Naph	thalene) l	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091269 - EPA 5035A							Soil					
Blank (9091269-BLK1)		Prepared:	09/25/19 10:	40 Analyz	ed: 09/25/1	9 12:01						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg w	ret 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 97 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			91 %	50)-150 %		"					
LCS (9091269-BS2)		Prepared:	09/25/19 10:	40 Analyz	zed: 09/25/1	9 11:34						
NWTPH-Gx (MS)												
Gasoline Range Organics	23.5		5.00	mg/kg w	ret 50	25.0		94 8	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	ery: 103 %	Limits: 50	0-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			94 %	50	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr


Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

Soil Statch 9091209 - EPA 5035A Soil Statch 9091209 - BLK1) Prepared: 09/24/19 15:39 Analyzed: 09/24/19 16:59 Soil Statch 9091209 - BLK1) Prepared: 09/24/19 16:39 Analyzed: 09/24/19 16:59 Soil Statch 9091209 - BLK1) Prepared: 09/24/19 16:39 Analyzed: 09/24/19 16:59 Soil Soil Statch 9091209 - BLK1) Soil Soi			Vol	atile Organi	ic Compo	unds by	EPA 5035	A/8260C			
Prepared: 09/24/19 15:39 Analyzed: 09/24/19 16:59	Analyte	Result			Units	Dilution			% REC	RPD	Notes
No. No.	Batch 9091209 - EPA 5035A							Soil			
No. No.	Blank (9091209-BLK1)		Prepared	: 09/24/19 15:3	39 Analyze	ed: 09/24/1	9 16:59				
No. No.	5035A/8260C										
Renzene ND	Acetone	ND		0.667	mg/kg we	et 50				 	
Stromobenzene ND	Acrylonitrile	ND		0.0667	mg/kg we	et 50				 	
Stromochloromethane ND	Benzene	ND		0.00667	mg/kg we	et 50				 	
Stromodichloromethane ND	Bromobenzene	ND		0.0167	mg/kg we	et 50				 	
Stromoform ND	Bromochloromethane	ND		0.0333	mg/kg we	et 50				 	
Second S	Bromodichloromethane	ND		0.0333	mg/kg we	et 50				 	
-Butlanone (MEK) ND 0.333 mg/kg wet 50	Bromoform	ND		0.0667	mg/kg we	et 50				 	
-Butylbenzene ND 0.0333 mg/kg wet 50	Bromomethane	ND		0.333	mg/kg we	et 50				 	
ND	2-Butanone (MEK)	ND		0.333	mg/kg we	et 50				 	
Carbon disulfide	n-Butylbenzene	ND		0.0333	mg/kg we	et 50				 	
Carbon disulfide	sec-Butylbenzene	ND		0.0333	mg/kg we	et 50				 	
Carbon tetrachloride ND 0.0667 mg/kg wet 50 <	ert-Butylbenzene	ND		0.0333	mg/kg we	et 50				 	
Chlorobenzene ND 0.0167 mg/kg wet 50	Carbon disulfide	ND		0.333	mg/kg we	et 50				 	
Chlorotchane ND 0.333 mg/kg wet 50	Carbon tetrachloride	ND		0.0667	mg/kg we	et 50				 	
Chloroform ND 0.0333 mg/kg wet 50	Chlorobenzene	ND		0.0167	mg/kg we	et 50				 	
Chloromethane ND 0.167 mg/kg wet 50	Chloroethane	ND		0.333	mg/kg we	et 50				 	
-Chlorotoluene ND 0.0333 mg/kg wet 50	Chloroform	ND		0.0333	mg/kg we	et 50				 	
-Chlorotoluene ND 0.0333 mg/kg wet 50	Chloromethane	ND		0.167	mg/kg we	et 50				 	
-Chlorotoluene ND 0.0333 mg/kg wet 50	2-Chlorotoluene	ND		0.0333	mg/kg we	et 50				 	
,2-Dibromo-3-chloropropane ND 0.167 mg/kg wet 50 <th< td=""><td>1-Chlorotoluene</td><td>ND</td><td></td><td>0.0333</td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td></th<>	1-Chlorotoluene	ND		0.0333						 	
,2-Dibromo-3-chloropropane ND 0.167 mg/kg wet 50 <th< td=""><td>Dibromochloromethane</td><td>ND</td><td></td><td>0.0667</td><td>mg/kg we</td><td>et 50</td><td></td><td></td><td></td><td> </td><td></td></th<>	Dibromochloromethane	ND		0.0667	mg/kg we	et 50				 	
,2-Dibromoethane (EDB) ND 0.0333 mg/kg wet 50	1,2-Dibromo-3-chloropropane	ND		0.167						 	
Dibromomethane ND 0.0333 mg/kg wet 50	1,2-Dibromoethane (EDB)	ND		0.0333						 	
,2-Dichlorobenzene ND 0.0167 mg/kg wet 50 <t< td=""><td>Dibromomethane</td><td>ND</td><td></td><td>0.0333</td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td></t<>	Dibromomethane	ND		0.0333						 	
,4-Dichlorobenzene ND 0.0167 mg/kg wet 50	1,2-Dichlorobenzene	ND		0.0167						 	
,4-Dichlorobenzene ND 0.0167 mg/kg wet 50	1,3-Dichlorobenzene	ND		0.0167	mg/kg we	et 50				 	
Dichlorodifluoromethane ND 0.0667 mg/kg wet 50	,4-Dichlorobenzene	ND		0.0167	mg/kg we	et 50				 	
,1-Dichloroethane ND 0.0167 mg/kg wet 50 ,2-Dichloroethane (EDC) ND 0.0167 mg/kg wet 50	Dichlorodifluoromethane	ND		0.0667						 	
,2-Dichloroethane (EDC) ND 0.0167 mg/kg wet 50 ,1-Dichloroethene ND 0.0167 mg/kg wet 50	1,1-Dichloroethane	ND		0.0167						 	
,1-Dichloroethene ND 0.0167 mg/kg wet 50 is-1,2-Dichloroethene ND 0.0167 mg/kg wet 50	1,2-Dichloroethane (EDC)	ND		0.0167						 	
is-1,2-Dichloroethene ND 0.0167 mg/kg wet 50	,1-Dichloroethene	ND		0.0167						 	
	eis-1,2-Dichloroethene									 	
	rans-1,2-Dichloroethene	ND		0.0167						 	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091209 - EPA 5035A							Soil					
Blank (9091209-BLK1)		Prepared	: 09/24/19 15:3	39 Analyze	d: 09/24/19	16:59						
1,2-Dichloropropane	ND		0.0667	mg/kg we	t 50							
1,3-Dichloropropane	ND		0.0333	mg/kg we	t 50							
2,2-Dichloropropane	ND		0.0333	mg/kg we	t 50							
1,1-Dichloropropene	ND		0.0333	mg/kg we	t 50							
cis-1,3-Dichloropropene	ND		0.0333	mg/kg we	t 50							
trans-1,3-Dichloropropene	ND		0.0333	mg/kg we	t 50							
Ethylbenzene	ND		0.0167	mg/kg we	t 50							
Hexachlorobutadiene	ND		0.0667	mg/kg we	t 50							
2-Hexanone	ND		0.333	mg/kg we	t 50							
Isopropylbenzene	ND		0.0333	mg/kg we	t 50							
4-Isopropyltoluene	ND		0.0333	mg/kg we	t 50							
Methylene chloride	ND		0.167	mg/kg we	t 50							B-02
4-Methyl-2-pentanone (MiBK)	ND		0.333	mg/kg we	t 50							
Methyl tert-butyl ether (MTBE)	ND		0.0333	mg/kg we	t 50							
Naphthalene	ND		0.0667	mg/kg we								
n-Propylbenzene	ND		0.0167	mg/kg we	t 50							
Styrene	ND		0.0333	mg/kg we								
1,1,2-Tetrachloroethane	ND		0.0167	mg/kg we								
1,1,2,2-Tetrachloroethane	ND		0.0333	mg/kg we								
Tetrachloroethene (PCE)	ND		0.0167	mg/kg we								
Toluene	ND		0.0333	mg/kg we								
1,2,3-Trichlorobenzene	ND		0.167	mg/kg we								
1,2,4-Trichlorobenzene	ND		0.167	mg/kg we								
1,1,1-Trichloroethane	ND		0.0167	mg/kg we								
1,1,2-Trichloroethane	ND		0.0167	mg/kg we								
Trichloroethene (TCE)	ND		0.0167	mg/kg we								
Trichlorofluoromethane	ND		0.0667	mg/kg we								
1,2,3-Trichloropropane	ND		0.0333	mg/kg we								
1,2,4-Trimethylbenzene	ND		0.0333	mg/kg we								
1,3,5-Trimethylbenzene	ND		0.0333	mg/kg we								
Vinyl chloride	ND		0.0333	mg/kg we								
m,p-Xylene	ND ND		0.0107	mg/kg we								
n,p-Aylene o-Xylene	ND ND		0.0333	mg/kg we								
Surr: 1,4-Difluorobenzene (Surr)	ND		overy: 98 %	Limits: 80-			ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gosa A Zomenighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Stantec Portland Project: Lampson 9400 SW Barnes Rd Ste 200 Project Number: 185750581 Portland, OR 97225 Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compou	ınds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REO	% REC Limits	RPD	RPD Limit	Notes
Batch 9091209 - EPA 5035A							Soil					
Blank (9091209-BLK1)		Prepared	: 09/24/19 15:	39 Analyzed	1: 09/24/1	9 16:59						
Surr: Toluene-d8 (Surr)		Reco	very: 102 %	Limits: 80-1	20 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			96 %	80-1	20 %		"					
LCS (9091209-BS1)		Prepared	: 09/24/19 15:	39 Analyzed	l: 09/24/1	9 16:05						
5035A/8260C		<u> </u>										
Acetone	2.12		1.00	mg/kg wet	50	2.00		106	80 - 120%			
Acrylonitrile	1.14		0.100	mg/kg wet	50	1.00		114	80 - 120%			
Benzene	1.02		0.0100	mg/kg wet	50	1.00		102	80 - 120%			
Bromobenzene	0.981		0.0250	mg/kg wet	50	1.00		98	80 - 120%			
Bromochloromethane	1.22		0.0500	mg/kg wet	50	1.00		122	80 - 120%			Q-56
Bromodichloromethane	1.18		0.0500	mg/kg wet	50	1.00		118	80 - 120%			
Bromoform	0.977		0.100	mg/kg wet	50	1.00		98	80 - 120%			
Bromomethane	1.07		0.500	mg/kg wet	50	1.00		107	80 - 120%			
2-Butanone (MEK)	2.27		0.500	mg/kg wet	50	2.00		114	80 - 120%			
n-Butylbenzene	0.998		0.0500	mg/kg wet	50	1.00		100	80 - 120%			
sec-Butylbenzene	0.995		0.0500	mg/kg wet	50	1.00		99	80 - 120%			
tert-Butylbenzene	0.988		0.0500	mg/kg wet	50	1.00		99	80 - 120%			
Carbon disulfide	1.06		0.500	mg/kg wet	50	1.00		106	80 - 120%			
Carbon tetrachloride	1.10		0.100	mg/kg wet	50	1.00		110	80 - 120%			
Chlorobenzene	1.02		0.0250	mg/kg wet	50	1.00		102	80 - 120%			
Chloroethane	1.02		0.500	mg/kg wet	50	1.00		102	80 - 120%			
Chloroform	1.08		0.0500	mg/kg wet	50	1.00		108	80 - 120%			
Chloromethane	1.11		0.250	mg/kg wet	50	1.00		111	80 - 120%			
2-Chlorotoluene	1.01		0.0500	mg/kg wet	50	1.00		101	80 - 120%			
4-Chlorotoluene	1.06		0.0500	mg/kg wet	50	1.00		106	80 - 120%			
Dibromochloromethane	1.07		0.100	mg/kg wet	50	1.00		107	80 - 120%			
1,2-Dibromo-3-chloropropane	0.859		0.250	mg/kg wet	50	1.00		86	80 - 120%			
1,2-Dibromoethane (EDB)	1.01		0.0500	mg/kg wet	50	1.00		101	80 - 120%			
Dibromomethane	1.09		0.0500	mg/kg wet		1.00		109	80 - 120%			
1,2-Dichlorobenzene	0.956		0.0250	mg/kg wet	50	1.00		96	80 - 120%			
1,3-Dichlorobenzene	1.02		0.0250	mg/kg wet	50	1.00		102	80 - 120%			
1,4-Dichlorobenzene	0.998		0.0250	mg/kg wet	50	1.00		100	80 - 120%			
Dichlorodifluoromethane	0.982		0.100	mg/kg wet		1.00		98	80 - 120%			
1,1-Dichloroethane	1.15		0.0250	mg/kg wet		1.00		115	80 - 120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa A Zmeinghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091209 - EPA 5035A							Soil					
LCS (9091209-BS1)		Prepared	: 09/24/19 15:3	39 Analyz	ed: 09/24/19	9 16:05						
1,2-Dichloroethane (EDC)	1.12		0.0250	mg/kg we	et 50	1.00		112	80 - 120%			
1,1-Dichloroethene	1.15		0.0250	mg/kg we	et 50	1.00		115	80 - 120%			
cis-1,2-Dichloroethene	1.03		0.0250	mg/kg we	et 50	1.00		103	80 - 120%			
trans-1,2-Dichloroethene	1.13		0.0250	mg/kg we	et 50	1.00		113	80 - 120%			
1,2-Dichloropropane	1.13		0.100	mg/kg we	et 50	1.00		113	80 - 120%			
1,3-Dichloropropane	1.08		0.0500	mg/kg we	et 50	1.00		108	80 - 120%			
2,2-Dichloropropane	1.17		0.0500	mg/kg we	et 50	1.00		117	80 - 120%			
1,1-Dichloropropene	0.998		0.0500	mg/kg we	et 50	1.00		100	80 - 120%			
cis-1,3-Dichloropropene	0.963		0.0500	mg/kg we	et 50	1.00		96	80 - 120%			
trans-1,3-Dichloropropene	1.19		0.0500	mg/kg we	et 50	1.00		119	80 - 120%			
Ethylbenzene	1.01		0.0250	mg/kg we	et 50	1.00		101	80 - 120%			
Hexachlorobutadiene	0.817		0.100	mg/kg we	et 50	1.00		82	80 - 120%			
2-Hexanone	2.15		0.500	mg/kg we	et 50	2.00		107	80 - 120%			
Isopropylbenzene	0.916		0.0500	mg/kg we	et 50	1.00		92	80 - 120%			
4-Isopropyltoluene	0.933		0.0500	mg/kg we	et 50	1.00		93	80 - 120%			
Methylene chloride	1.10		0.250	mg/kg we	et 50	1.00		110	80 - 120%			
4-Methyl-2-pentanone (MiBK)	2.18		0.500	mg/kg we	et 50	2.00		109	80 - 120%			
Methyl tert-butyl ether (MTBE)	0.894		0.0500	mg/kg we	et 50	1.00		89	80 - 120%			
Naphthalene	0.858		0.100	mg/kg we	et 50	1.00		86	80 - 120%			
n-Propylbenzene	1.08		0.0250	mg/kg we	et 50	1.00		108	80 - 120%			
Styrene	1.02		0.0500	mg/kg we	et 50	1.00		102	80 - 120%			
1,1,1,2-Tetrachloroethane	1.04		0.0250	mg/kg we	et 50	1.00		104	80 - 120%			
1,1,2,2-Tetrachloroethane	1.27		0.0500	mg/kg we	et 50	1.00		127	80 - 120%			Q-56
Tetrachloroethene (PCE)	0.979		0.0250	mg/kg we	et 50	1.00		98	80 - 120%			
Toluene	1.03		0.0500	mg/kg we	et 50	1.00		103	80 - 120%			
1,2,3-Trichlorobenzene	0.864		0.250	mg/kg we	et 50	1.00		86	80 - 120%			
1,2,4-Trichlorobenzene	0.778		0.250	mg/kg we	et 50	1.00		78	80 - 120%			Q-55
1,1,1-Trichloroethane	0.998		0.0250	mg/kg we	et 50	1.00		100	80 - 120%			
1,1,2-Trichloroethane	1.09		0.0250	mg/kg we	et 50	1.00		109	80 - 120%			
Trichloroethene (TCE)	0.863		0.0250	mg/kg we	et 50	1.00		86	80 - 120%			
Γrichlorofluoromethane	1.14		0.100	mg/kg we	et 50	1.00		114	80 - 120%			
1,2,3-Trichloropropane	1.11		0.0500	mg/kg we	et 50	1.00		111	80 - 120%			
1,2,4-Trimethylbenzene	1.02		0.0500	mg/kg we	et 50	1.00		102	80 - 120%			
1,3,5-Trimethylbenzene	1.03		0.0500	mg/kg we	et 50	1.00		103	80 - 120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

 Stantec Portland
 Project:
 Lampson

 9400 SW Barnes Rd Ste 200
 Project Number:
 185750581
 Report ID:

 Portland, OR 97225
 Project Manager:
 Len Farr
 A910735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091209 - EPA 5035A							Soil					
LCS (9091209-BS1)		Prepared	: 09/24/19 15:	39 Analyze	ed: 09/24/1	9 16:05						
Vinyl chloride	1.13		0.0250	mg/kg we	et 50	1.00		113	80 - 120%			
n,p-Xylene	2.02		0.0500	mg/kg we	et 50	2.00		101	80 - 120%			
o-Xylene	0.859		0.0250	mg/kg we	et 50	1.00		86	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 97 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			91 %	80-	120 %		"					
Duplicate (9091209-DUP1)		Prepared	: 09/20/19 09:	00 Analyze	ed: 09/24/1	9 19:03						
QC Source Sample: GP-01-2 (A9I	0735-05)											
5035A/8260C												
Acetone	ND		1.35	mg/kg dr	y 50		ND				30%	
Acrylonitrile	ND		0.135	mg/kg dr	•		ND				30%	
Benzene	ND		0.0135	mg/kg dr	y 50		0.0294			***	30%	Q-05
Bromobenzene	ND		0.0337	mg/kg dr	y 50		ND				30%	
Bromochloromethane	ND		0.0674	mg/kg dr	y 50		ND				30%	
Bromodichloromethane	ND		0.0674	mg/kg dr	y 50		ND				30%	
Bromoform	ND		0.135	mg/kg dr	y 50		ND				30%	
Bromomethane	ND		0.674	mg/kg dr	y 50		ND				30%	
2-Butanone (MEK)	ND		0.674	mg/kg dr	y 50		ND				30%	
-Butylbenzene	ND		0.0674	mg/kg dr	y 50		ND				30%	
ec-Butylbenzene	ND		0.0674	mg/kg dr	y 50		ND				30%	
ert-Butylbenzene	ND		0.0674	mg/kg dr	y 50		ND				30%	
Carbon disulfide	ND		0.674	mg/kg dr	y 50		ND				30%	
Carbon tetrachloride	ND		0.135	mg/kg dr	y 50		ND				30%	
Chlorobenzene	ND		0.0337	mg/kg dr	y 50		ND				30%	
Chloroethane	ND		0.674	mg/kg dr	y 50		ND				30%	
Chloroform	ND		0.0674	mg/kg dr	y 50		ND				30%	
Chloromethane	ND		0.337	mg/kg dr	y 50		ND				30%	
-Chlorotoluene	ND		0.0674	mg/kg dr	y 50		ND				30%	
l-Chlorotoluene	ND		0.0674	mg/kg dr	y 50		ND				30%	
Dibromochloromethane	ND		0.135	mg/kg dr	y 50		ND				30%	
,2-Dibromo-3-chloropropane	ND		0.337	mg/kg dr	y 50		ND				30%	
,2-Dibromoethane (EDB)	ND		0.0674	mg/kg dr	y 50		ND				30%	
Dibromomethane	ND		0.0674	mg/kg dr	y 50		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organi	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091209 - EPA 5035A							Soil					
Duplicate (9091209-DUP1)		Prepared	: 09/20/19 09:0	00 Analyze	ed: 09/24/19	9 19:03						
QC Source Sample: GP-01-2 (A9I	0735-05)											
1,2-Dichlorobenzene	ND		0.0337	mg/kg dr	y 50		ND				30%	
1,3-Dichlorobenzene	ND		0.0337	mg/kg dr	y 50		ND				30%	
1,4-Dichlorobenzene	ND		0.0337	mg/kg dr	y 50		ND				30%	
Dichlorodifluoromethane	ND		0.135	mg/kg dr	y 50		ND				30%	
1,1-Dichloroethane	ND		0.0337	mg/kg dr	y 50		ND				30%	
1,2-Dichloroethane (EDC)	ND		0.0337	mg/kg dr			ND				30%	
1,1-Dichloroethene	ND		0.0337	mg/kg dr	y 50		ND				30%	
cis-1,2-Dichloroethene	ND		0.0337	mg/kg dr	y 50		ND				30%	
trans-1,2-Dichloroethene	ND		0.0337	mg/kg dr	y 50		ND				30%	
1,2-Dichloropropane	ND		0.135	mg/kg dr	y 50		ND				30%	
1,3-Dichloropropane	ND		0.0674	mg/kg dr	y 50		ND				30%	
2,2-Dichloropropane	ND		0.0674	mg/kg dr	y 50		ND				30%	
,1-Dichloropropene	ND		0.0674	mg/kg dr	y 50		ND				30%	
eis-1,3-Dichloropropene	ND		0.0674	mg/kg dr	y 50		ND				30%	
rans-1,3-Dichloropropene	ND		0.0674	mg/kg dr			ND				30%	
Ethylbenzene	ND		0.0337	mg/kg dr	y 50		0.0474			***	30%	Q-05
Hexachlorobutadiene	ND		0.135	mg/kg dr	y 50		ND				30%	
2-Hexanone	ND		0.674	mg/kg dr	y 50		ND				30%	
sopropylbenzene	ND		0.0674	mg/kg dr	y 50		ND				30%	
4-Isopropyltoluene	ND		0.0674	mg/kg dr			ND				30%	
Methylene chloride	ND		0.337	mg/kg dr			ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		0.674	mg/kg dr	•		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		0.0674	mg/kg dr	•		ND				30%	
Naphthalene	ND		0.135	mg/kg dr			ND				30%	
n-Propylbenzene	ND		0.0337	mg/kg dr			0.0303			***	30%	Q-05
Styrene	ND		0.0674	mg/kg dr	y 50		ND				30%	
,1,1,2-Tetrachloroethane	ND		0.0337	mg/kg dr			ND				30%	
,1,2,2-Tetrachloroethane	ND		0.0674	mg/kg dr	•		ND				30%	
Tetrachloroethene (PCE)	ND		0.0337	mg/kg dr	•		ND				30%	
Toluene	ND		0.0674	mg/kg dr			0.129			***	30%	Q-05
1,2,3-Trichlorobenzene	ND		0.337	mg/kg dr			ND				30%	-
,2,4-Trichlorobenzene	ND		0.337	mg/kg dr	-		ND				30%	
,1,1-Trichloroethane	ND		0.0337	mg/kg dr			ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 503	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091209 - EPA 5035A							Soil					
Duplicate (9091209-DUP1)		Prepared	: 09/20/19 09:	00 Analyze	ed: 09/24/1	9 19:03						
QC Source Sample: GP-01-2 (A9I	(0735-05)											
1,1,2-Trichloroethane	ND		0.0337	mg/kg dr	y 50		ND				30%	
Trichloroethene (TCE)	ND		0.0337	mg/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND		0.135	mg/kg dr	y 50		ND				30%	
,2,3-Trichloropropane	ND		0.0674	mg/kg dr	y 50		ND				30%	
,2,4-Trimethylbenzene	ND		0.0674	mg/kg dr	y 50		0.117			***	30%	Q-05
,3,5-Trimethylbenzene	ND		0.0674	mg/kg dr	y 50		0.0428			***	30%	Q-05
Vinyl chloride	ND		0.0337	mg/kg dr			ND				30%	
n,p-Xylene	ND		0.0674	mg/kg dr	y 50		0.156			***	30%	Q-05
-Xylene	ND		0.0337	mg/kg dr	y 50		0.0567			***	30%	Q-05
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 98 %	Limits: 80-	120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			102 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80-	120 %		"					
Matrix Spike (9091209-MS1)		Prepared	: 09/20/19 09:	15 Analyze	ed: 09/25/1	9 02:37						
QC Source Sample: GP-01-5 (A9I	<u>(0735-06)</u>	-		-								
5035A/8260C												
Acetone	30.6		14.6	mg/kg dr	y 500	29.1	ND	105	36 - 164%			
Acrylonitrile	16.6		1.46	mg/kg dr	y 500	14.6	ND	114	65 - 134%			
Benzene	15.2		0.146	mg/kg dr	y 500	14.6	ND	104	77 - 121%			
Bromobenzene	14.5		0.364	mg/kg dr		14.6	ND	99	78 - 121%			
Bromochloromethane	18.9		0.728	mg/kg dr	y 500	14.6	ND	130	78 - 125%			Q-54
Bromodichloromethane	18.0		0.728	mg/kg dr	y 500	14.6	ND	123	75 - 127%			
Bromoform	14.5		1.46	mg/kg dr	y 500	14.6	ND	100	67 - 132%			
Bromomethane	17.8		7.28	mg/kg dr	y 500	14.6	ND	122	53 - 143%			
2-Butanone (MEK)	33.0		7.28	mg/kg dr	y 500	29.1	ND	113	51 - 148%			
-Butylbenzene	15.2		0.728	mg/kg dr		14.6	ND	104	70 - 128%			
ec-Butylbenzene	15.0		0.728	mg/kg dr		14.6	ND	103	73 - 126%			
ert-Butylbenzene	14.6		0.728	mg/kg dr		14.6	ND	100	73 - 125%			
Carbon disulfide	16.6		7.28	mg/kg dr		14.6	ND	114	63 - 132%			
Carbon tetrachloride	17.0		1.46	mg/kg dr		14.6	ND	117	70 - 135%			
Chlorobenzene	15.2		0.364	mg/kg dr		14.6	ND	105	79 - 120%			
Chloroethane	21.9		7.28	mg/kg dr		14.6	ND	150 5	59 - 139%			Q-01
Chloroform	16.9		0.728	mg/kg dr		14.6	ND		78 - 123%			~

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Asa A Zmenghini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Stantec Portland Project: Lampson 9400 SW Barnes Rd Ste 200 Project Number: 185750581 Portland, OR 97225 Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% RE	% REC C Limits	RPD	RPD Limit	Notes
Batch 9091209 - EPA 5035A							Soil					
Matrix Spike (9091209-MS1)		Prepared	: 09/20/19 09:	15 Analyze	ed: 09/25/1	9 02:37						
QC Source Sample: GP-01-5 (A91	[0735-06]											
Chloromethane	17.8		3.64	mg/kg dr	y 500	14.6	ND	122	50 - 136%			
2-Chlorotoluene	14.6		0.728	mg/kg dr	y 500	14.6	ND	100	75 - 122%			
4-Chlorotoluene	15.8		0.728	mg/kg dr	y 500	14.6	ND	109	72 - 124%			
Dibromochloromethane	16.1		1.46	mg/kg dr	y 500	14.6	ND	110	74 - 126%			
1,2-Dibromo-3-chloropropane	12.2		3.64	mg/kg dr	y 500	14.6	ND	84	61 - 132%			
1,2-Dibromoethane (EDB)	14.9		0.728	mg/kg dr	y 500	14.6	ND	102	78 - 122%			
Dibromomethane	16.6		0.728	mg/kg dr	y 500	14.6	ND	114	78 - 125%			
1,2-Dichlorobenzene	14.0		0.364	mg/kg dr	y 500	14.6	ND	96	78 - 121%			
1,3-Dichlorobenzene	15.1		0.364	mg/kg dr	y 500	14.6	ND	104	77 - 121%			
,4-Dichlorobenzene	14.7		0.364	mg/kg dr	y 500	14.6	ND	101	75 - 120%			
Dichlorodifluoromethane	15.8		1.46	mg/kg dr		14.6	ND	109	29 - 149%			
,1-Dichloroethane	18.2		0.364	mg/kg dr		14.6	ND	125	76 - 125%			
1,2-Dichloroethane (EDC)	17.2		0.364	mg/kg dr	y 500	14.6	ND	118	73 - 128%			
,1-Dichloroethene	18.0		0.364	mg/kg dr	y 500	14.6	ND	124	70 - 131%			
eis-1,2-Dichloroethene	15.4		0.364	mg/kg dr	y 500	14.6	ND	106	77 - 123%			
rans-1,2-Dichloroethene	17.0		0.364	mg/kg dr	y 500	14.6	ND	117	74 - 125%			
1,2-Dichloropropane	17.2		1.46	mg/kg dr	y 500	14.6	ND	118	76 - 123%			
,3-Dichloropropane	16.1		0.728	mg/kg dr	•	14.6	ND	111	77 - 121%			
2,2-Dichloropropane	14.3		0.728	mg/kg dr	y 500	14.6	ND	98	67 - 133%			
1,1-Dichloropropene	14.6		0.728	mg/kg dr		14.6	ND	100	76 - 125%			
cis-1,3-Dichloropropene	13.2		0.728	mg/kg dr		14.6	ND	91	74 - 126%			
rans-1,3-Dichloropropene	17.2		0.728	mg/kg dr	y 500	14.6	ND	118	71 - 130%			
Ethylbenzene	15.2		0.364	mg/kg dr	•	14.6	ND	104	76 - 122%			
Hexachlorobutadiene	11.8		1.46	mg/kg dr	•	14.6	ND	81	61 - 135%			
2-Hexanone	31.3		7.28	mg/kg dr	•	29.1	ND	108	53 - 145%			
sopropylbenzene	13.6		0.728	mg/kg dr		14.6	ND	94	68 - 134%			
l-Isopropyltoluene	13.7		0.728	mg/kg dr		14.6	ND	94	73 - 127%			
Methylene chloride	17.6		3.64	mg/kg dr	-	14.6	ND	103	70 - 128%			B-02
l-Methyl-2-pentanone (MiBK)	32.6		7.28	mg/kg dr		29.1	ND	112	65 - 135%			
Methyl tert-butyl ether (MTBE)	12.7		0.728	mg/kg dr	•	14.6	ND	87	73 - 125%			
Naphthalene	11.8		1.46	mg/kg dr	•	14.6	ND	81	62 - 129%			
-Propylbenzene	16.1		0.364	mg/kg dr	•	14.6	ND	110	73 - 125%			
Styrene	15.4		0.728	mg/kg dr	•	14.6	ND	106	76 - 124%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland Project: 9400 SW Barnes Rd Ste 200 Project Number: 185750581 Portland, OR 97225 Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

Lampson

		Vol	atile Organ	ic Compo	unds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091209 - EPA 5035A							Soil					
Matrix Spike (9091209-MS1)		Prepared	: 09/20/19 09:	15 Analyze	ed: 09/25/1	9 02:37						
QC Source Sample: GP-01-5 (A9I	(0735-06)											
1,1,1,2-Tetrachloroethane	15.5		0.364	mg/kg dr	y 500	14.6	ND	107	78 - 125%			
1,1,2,2-Tetrachloroethane	19.0		0.728	mg/kg dr	y 500	14.6	ND	130	70 - 124%			Q-54e
Tetrachloroethene (PCE)	13.9		0.364	mg/kg dr	y 500	14.6	ND	95	73 - 128%			
Toluene	15.0		0.728	mg/kg dr	y 500	14.6	ND	103	77 - 121%			
1,2,3-Trichlorobenzene	12.1		3.64	mg/kg dr	y 500	14.6	ND	83	66 - 130%			
1,2,4-Trichlorobenzene	10.8		3.64	mg/kg dr	y 500	14.6	ND	74	67 - 129%			Q-54h
1,1,1-Trichloroethane	15.0		0.364	mg/kg dr		14.6	ND	103	73 - 130%			
1,1,2-Trichloroethane	15.8		0.364	mg/kg dr	y 500	14.6	ND	109	78 - 121%			
Trichloroethene (TCE)	12.5		0.364	mg/kg dr	y 500	14.6	ND	86	77 - 123%			
Trichlorofluoromethane	22.3		1.46	mg/kg dr	y 500	14.6	ND	153	62 - 140%			Q-01
1,2,3-Trichloropropane	16.5		0.728	mg/kg dr	y 500	14.6	ND	113	73 - 125%			
1,2,4-Trimethylbenzene	15.3		0.728	mg/kg dr	y 500	14.6	ND	105	75 - 123%			
1,3,5-Trimethylbenzene	15.4		0.728	mg/kg dr	y 500	14.6	ND	106	73 - 124%			
Vinyl chloride	18.1		0.364	mg/kg dr	y 500	14.6	ND	124	56 - 135%			
m,p-Xylene	30.7		0.728	mg/kg dr	y 500	29.1	ND	105	77 - 124%			
o-Xylene	12.8		0.364	mg/kg dr	y 500	14.6	ND	88	77 - 123%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 94 %	Limits: 80-	120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			98 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			89 %	80-	120 %		"					
Matrix Spike Dup (9091209-MSI	D1)	Prepared	: 09/20/19 09:	15 Analyze	ed: 09/25/1	9 03:04						
QC Source Sample: GP-01-5 (A9I	0735-06)											
<u>5035A/8260C</u>				_						_		
Acetone	31.2		14.6	mg/kg dr	•	29.1	ND		36 - 164%	2	35%	
Acrylonitrile	16.9		1.46	mg/kg dr		14.6	ND		65 - 134%	2	35%	
Benzene	14.9		0.146	mg/kg dr		14.6	ND		77 - 121%	2	35%	
Bromobenzene	14.3		0.364	mg/kg dr		14.6	ND	98	78 - 121%	1	35%	
Bromochloromethane	18.7		0.728	mg/kg dr		14.6	ND		78 - 125%	1	35%	Q-54
Bromodichloromethane	17.7		0.728	mg/kg dr		14.6	ND		75 - 127%	2	35%	
Bromoform	13.9		1.46	mg/kg dr		14.6	ND		67 - 132%	4	35%	
Bromomethane	17.1		7.28	mg/kg dr	y 500	14.6	ND		53 - 143%	4	35%	
2-Butanone (MEK)	33.3		7.28	mg/kg dr		29.1	ND		51 - 148%	0.9	35%	
n-Butylbenzene	14.3		0.728	mg/kg dr	y 500	14.6	ND	98	70 - 128%	6	35%	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Awa A Zomenighini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091209 - EPA 5035A							Soil					
Matrix Spike Dup (9091209-MS	SD1)	Prepared	: 09/20/19 09:	15 Analyze	ed: 09/25/1	9 03:04						
QC Source Sample: GP-01-5 (AS	010735-06)											
sec-Butylbenzene	14.4		0.728	mg/kg dr	y 500	14.6	ND	99	73 - 126%	4	35%	
tert-Butylbenzene	14.5		0.728	mg/kg dr	y 500	14.6	ND	100	73 - 125%	0.6	35%	
Carbon disulfide	16.2		7.28	mg/kg dr	y 500	14.6	ND	111	63 - 132%	3	35%	
Carbon tetrachloride	16.2		1.46	mg/kg dr	y 500	14.6	ND	112	70 - 135%	5	35%	
Chlorobenzene	14.8		0.364	mg/kg dr	y 500	14.6	ND	101	79 - 120%	3	35%	
Chloroethane	21.0		7.28	mg/kg dr	y 500	14.6	ND	145	59 - 139%	4	35%	Q-01
Chloroform	16.7		0.728	mg/kg dr	y 500	14.6	ND	114	78 - 123%	2	35%	
Chloromethane	18.0		3.64	mg/kg dr		14.6	ND	124	50 - 136%	1	35%	
2-Chlorotoluene	14.4		0.728	mg/kg dr	y 500	14.6	ND	99	75 - 122%	1	35%	
4-Chlorotoluene	15.7		0.728	mg/kg dr	y 500	14.6	ND	108	72 - 124%	1	35%	
Dibromochloromethane	16.0		1.46	mg/kg dr	y 500	14.6	ND	110	74 - 126%	0.6	35%	
1,2-Dibromo-3-chloropropane	12.4		3.64	mg/kg dr	y 500	14.6	ND	85	61 - 132%	2	35%	
1,2-Dibromoethane (EDB)	14.2		0.728	mg/kg dr	y 500	14.6	ND	98	78 - 122%	4	35%	
Dibromomethane	16.0		0.728	mg/kg dr	y 500	14.6	ND	110	78 - 125%	3	35%	
1,2-Dichlorobenzene	13.8		0.364	mg/kg dr	y 500	14.6	ND	95	78 - 121%	1	35%	
1,3-Dichlorobenzene	14.8		0.364	mg/kg dr	y 500	14.6	ND	102	77 - 121%	2	35%	
1,4-Dichlorobenzene	14.7		0.364	mg/kg dr	y 500	14.6	ND	101	75 - 120%	0.09	35%	
Dichlorodifluoromethane	15.3		1.46	mg/kg dr		14.6	ND	105	29 - 149%	3	35%	
1,1-Dichloroethane	17.7		0.364	mg/kg dr	y 500	14.6	ND	122	76 - 125%	3	35%	
1,2-Dichloroethane (EDC)	16.8		0.364	mg/kg dr	•	14.6	ND	115	73 - 128%	2	35%	
1,1-Dichloroethene	17.5		0.364	mg/kg dr		14.6	ND	120	70 - 131%	3	35%	
cis-1,2-Dichloroethene	15.6		0.364	mg/kg dr	•	14.6	ND	107	77 - 123%	0.9	35%	
trans-1,2-Dichloroethene	16.7		0.364	mg/kg dr	•	14.6	ND	115	74 - 125%	2	35%	
1,2-Dichloropropane	16.9		1.46	mg/kg dr		14.6	ND	116	76 - 123%	1	35%	
1,3-Dichloropropane	15.6		0.728	mg/kg dr		14.6	ND	107	77 - 121%	3	35%	
2,2-Dichloropropane	13.7		0.728	mg/kg dr	y 500	14.6	ND	94	67 - 133%	4	35%	
,1-Dichloropropene	14.5		0.728	mg/kg dr	y 500	14.6	ND	99	76 - 125%	1	35%	
eis-1,3-Dichloropropene	13.3		0.728	mg/kg dr	y 500	14.6	ND	91	74 - 126%	0.8	35%	
rans-1,3-Dichloropropene	16.7		0.728	mg/kg dr		14.6	ND	114	71 - 130%	3	35%	
Ethylbenzene	14.8		0.364	mg/kg dr	•	14.6	ND	101	76 - 122%	3	35%	
Hexachlorobutadiene	11.2		1.46	mg/kg dr	•	14.6	ND	77	61 - 135%	5	35%	
2-Hexanone	31.5		7.28	mg/kg dr		29.1	ND	108	53 - 145%	0.8	35%	
sopropylbenzene	13.1		0.728	mg/kg dr	,	14.6	ND	90	68 - 134%	4	35%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smeinghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vola	tile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% RE	% REC C Limits	RPD	RPD Limit	Notes
Batch 9091209 - EPA 5035A							Soil					
Matrix Spike Dup (9091209-MSI	D1)	Prepared:	09/20/19 09:	15 Analyze	d: 09/25/1	9 03:04						
QC Source Sample: GP-01-5 (A9I	<u>0735-06)</u>											
4-Isopropyltoluene	13.3		0.728	mg/kg dry	500	14.6	ND	91	73 - 127%	3	35%	
Methylene chloride	17.8		3.64	mg/kg dry	500	14.6	ND	104	70 - 128%	0.8	35%	B-02
4-Methyl-2-pentanone (MiBK)	32.3		7.28	mg/kg dry	500	29.1	ND	111	65 - 135%	1	35%	
Methyl tert-butyl ether (MTBE)	12.7		0.728	mg/kg dry	500	14.6	ND	88	73 - 125%	0.5	35%	
Naphthalene	12.1		1.46	mg/kg dry	500	14.6	ND	83	62 - 129%	2	35%	
n-Propylbenzene	15.8		0.364	mg/kg dry	500	14.6	ND	109	73 - 125%	1	35%	
Styrene	15.0		0.728	mg/kg dry	500	14.6	ND	103	76 - 124%	2	35%	
1,1,1,2-Tetrachloroethane	14.9		0.364	mg/kg dry	500	14.6	ND	102	78 - 125%	4	35%	
1,1,2,2-Tetrachloroethane	18.7		0.728	mg/kg dry	500	14.6	ND	128	70 - 124%	2	35%	Q-54e
Tetrachloroethene (PCE)	13.5		0.364	mg/kg dry	500	14.6	ND	93	73 - 128%	3	35%	
Γoluene	14.7		0.728	mg/kg dry	500	14.6	ND	101	77 - 121%	2	35%	
1,2,3-Trichlorobenzene	12.3		3.64	mg/kg dry	500	14.6	ND	85	66 - 130%	2	35%	
1,2,4-Trichlorobenzene	10.9		3.64	mg/kg dry	500	14.6	ND	75	67 - 129%	0.9	35%	Q-54h
1,1,1-Trichloroethane	14.7		0.364	mg/kg dry	500	14.6	ND	101	73 - 130%	2	35%	
1,1,2-Trichloroethane	15.6		0.364	mg/kg dry	500	14.6	ND	107	78 - 121%	1	35%	
Trichloroethene (TCE)	12.3		0.364	mg/kg dry	500	14.6	ND	84	77 - 123%	2	35%	
Trichlorofluoromethane	20.5		1.46	mg/kg dry	500	14.6	ND	141	62 - 140%	8	35%	Q-01
1,2,3-Trichloropropane	16.0		0.728	mg/kg dry	500	14.6	ND	110	73 - 125%	3	35%	
1,2,4-Trimethylbenzene	14.9		0.728	mg/kg dry	500	14.6	ND	102	75 - 123%	3	35%	
1,3,5-Trimethylbenzene	15.1		0.728	mg/kg dry	500	14.6	ND	104	73 - 124%	2	35%	
Vinyl chloride	17.7		0.364	mg/kg dry	500	14.6	ND	121	56 - 135%	2	35%	
n,p-Xylene	29.8		0.728	mg/kg dry	500	29.1	ND	102	77 - 124%	3	35%	
o-Xylene	12.5		0.364	mg/kg dry		14.6	ND	86	77 - 123%	3	35%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 95 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			89 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

				1/ *	unds by							
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091211 - EPA 5035A							Soil					
Blank (9091211-BLK1)		Prepared	: 09/25/19 16:3	31 Analyze	ed: 09/25/19	9 17:52						
5035A/8260C												
acetone	ND		0.667	mg/kg we	et 50							
crylonitrile	ND		0.0667	mg/kg we	et 50							
Benzene	ND		0.00667	mg/kg we								
Bromobenzene	ND		0.0167	mg/kg we	et 50							
Bromochloromethane	ND		0.0333	mg/kg we	et 50							
Bromodichloromethane	ND		0.0333	mg/kg we	et 50							
Bromoform	ND		0.0667	mg/kg we	et 50							
Bromomethane	ND		0.333	mg/kg we	et 50							
-Butanone (MEK)	ND		0.333	mg/kg we	et 50							
-Butylbenzene	ND		0.0333	mg/kg we	et 50							
ec-Butylbenzene	ND		0.0333	mg/kg we	et 50							
ert-Butylbenzene	ND		0.0333	mg/kg we	et 50							
Carbon disulfide	ND		0.333	mg/kg we	et 50							
Carbon tetrachloride	ND		0.0333	mg/kg we	et 50							
Chlorobenzene	ND		0.0167	mg/kg we	et 50							
Chloroethane	ND		0.333	mg/kg we	et 50							
Chloroform	ND		0.0333	mg/kg we	et 50							
Chloromethane	ND		0.167	mg/kg we	et 50							
-Chlorotoluene	ND		0.0333	mg/kg we	et 50							
-Chlorotoluene	ND		0.0333	mg/kg we								
Dibromochloromethane	ND		0.0667	mg/kg we	et 50							
,2-Dibromo-3-chloropropane	ND		0.167	mg/kg we	et 50							
,2-Dibromoethane (EDB)	ND		0.0333	mg/kg we	et 50							
Dibromomethane	ND		0.0333	mg/kg we	et 50							
,2-Dichlorobenzene	ND		0.0167	mg/kg we	et 50							
,3-Dichlorobenzene	ND		0.0167	mg/kg we	et 50							
,4-Dichlorobenzene	ND		0.0167	mg/kg we	et 50							
Dichlorodifluoromethane	ND		0.0667	mg/kg we	et 50							
,1-Dichloroethane	ND		0.0167	mg/kg we								
,2-Dichloroethane (EDC)	ND		0.0167	mg/kg we	et 50							
,1-Dichloroethene	ND		0.0167	mg/kg we	et 50							
is-1,2-Dichloroethene	ND		0.0167	mg/kg we								
rans-1,2-Dichloroethene	ND		0.0167	mg/kg we								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

ND ND ND ND ND ND ND ND ND	Prepared:	Reporting Limit 09/25/19 16:3 0.0167 0.0333 0.0333 0.0333 0.0333	Units B1 Analyze mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	et 50 et 50		Source Result Soil	% REC	% REC Limits	RPD	RPD Limit	Notes
ND ND ND ND ND ND ND ND ND ND	 	0.0167 0.0333 0.0333 0.0333 0.0333	mg/kg we mg/kg we mg/kg we mg/kg we	et 50 et 50							
ND ND ND ND ND ND ND ND ND ND	 	0.0167 0.0333 0.0333 0.0333 0.0333	mg/kg we mg/kg we mg/kg we mg/kg we	et 50 et 50							
ND ND ND ND ND ND ND ND ND ND	 	0.0333 0.0333 0.0333 0.0333	mg/kg we mg/kg we mg/kg we	et 50							
ND ND ND ND ND ND ND ND	 	0.0333 0.0333 0.0333	mg/kg we								
ND ND ND ND ND	 	0.0333 0.0333	mg/kg we	et 50							
ND ND ND ND		0.0333									
ND ND ND ND			mg/kg we	et 50							
ND ND ND		0.0333		et 50							
ND ND			mg/kg we	et 50							
ND		0.0167	mg/kg we	et 50							
		0.0667	mg/kg we	et 50							
NID		0.333	mg/kg we	et 50							
ND		0.0333	mg/kg we	et 50							
ND		0.0333	mg/kg we	et 50							
ND		0.167	mg/kg we	et 50							
ND		0.333	mg/kg we	et 50							
ND		0.0333	mg/kg we	et 50							
ND		0.0667									
ND		0.0167	mg/kg we	et 50							
ND		0.0333	mg/kg we	et 50							
ND		0.0167	mg/kg we	et 50							
ND		0.0333	mg/kg we	et 50							
ND		0.0167	mg/kg we	et 50							
ND		0.0333									
ND		0.167									
ND		0.167									
ND		0.0167									
ND		0.0167									
ND		0.0167									
ND		0.0667									
ND		0.0333									
ND		0.0333									
ND		0.0333									
ND		0.0167									
		0.0333									
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND	ND 0.167 ND 0.333 ND 0.0667 ND 0.0167 ND 0.0333 ND 0.0167 ND 0.0333 ND 0.0167 ND 0.167 ND 0.0167 ND 0.0167 ND 0.0167 ND 0.0333 ND 0.0333 ND 0.0333 ND 0.0333 ND 0.0333 ND 0.0167 ND 0.0333	ND 0.333 mg/kg we no no no no no no no no no no no no no	ND 0.167 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0667 mg/kg wet 50 ND 0.0667 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50	ND 0.167 mg/kg wet 50 ND 0.0667 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND ND 0.0333 mg/kg wet 50	ND 0.167 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0667 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.167 mg/kg wet 50 ND 0.167 mg/kg wet 50 ND 0.167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0333 mg/kg wet 50	ND 0.167 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0333 mg/kg wet 50	ND 0.167 mg/kg wet 50	ND 0.167 mg/kg wet 50 ND 0.0333 mg/kg wet 50 ND 0.0667 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.0333 mg/kg wet 50	ND 0.167 mg/kg wet 50 ND 0.033 mg/kg wet 50 ND 0.0167 mg/kg wet 50 ND 0.167 mg/kg wet 50

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Stantec Portland Project: Lampson 9400 SW Barnes Rd Ste 200 Project Number: 185750581 Portland, OR 97225 Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compou	nds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units I	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091211 - EPA 5035A							Soil					
Blank (9091211-BLK1)		Prepared	: 09/25/19 16:	31 Analyzed	09/25/1	9 17:52						
Surr: Toluene-d8 (Surr)		Reco	very: 101 %	Limits: 80-12	20 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			106 %	80-12	0 %		"					
LCS (9091211-BS1)		Prepared	: 09/25/19 16::	31 Analyzed	: 09/25/1	9 16:58						
5035A/8260C		<u> </u>		<u> </u>								
Acetone	1.85		1.00	mg/kg wet	50	2.00		92	80 - 120%			
Acrylonitrile	0.855		0.100	mg/kg wet	50	1.00		86	80 - 120%			
Benzene	0.910		0.0100	mg/kg wet	50	1.00		91	80 - 120%			
Bromobenzene	1.03		0.0250	mg/kg wet	50	1.00		103	80 - 120%			
Bromochloromethane	0.942		0.0500	mg/kg wet	50	1.00		94	80 - 120%			
Bromodichloromethane	1.09		0.0500	mg/kg wet	50	1.00		109	80 - 120%			
Bromoform	0.996		0.100	mg/kg wet	50	1.00		100	80 - 120%			
Bromomethane	0.982		0.500	mg/kg wet	50	1.00		98	80 - 120%			
2-Butanone (MEK)	1.68		0.500	mg/kg wet	50	2.00		84	80 - 120%			
n-Butylbenzene	1.08		0.0500	mg/kg wet	50	1.00		108	80 - 120%			
sec-Butylbenzene	1.08		0.0500	mg/kg wet	50	1.00		108	80 - 120%			
ert-Butylbenzene	1.11		0.0500	mg/kg wet	50	1.00		111	80 - 120%			
Carbon disulfide	0.852		0.500	mg/kg wet	50	1.00		85	80 - 120%			
Carbon tetrachloride	1.03		0.0500	mg/kg wet	50	1.00		103	80 - 120%			
Chlorobenzene	0.932		0.0250	mg/kg wet	50	1.00		93	80 - 120%			
Chloroethane	1.12		0.500	mg/kg wet	50	1.00		112	80 - 120%			
Chloroform	1.05		0.0500	mg/kg wet	50	1.00		105	80 - 120%			
Chloromethane	0.929		0.250	mg/kg wet	50	1.00		93	80 - 120%			
2-Chlorotoluene	1.00		0.0500	mg/kg wet	50	1.00		100	80 - 120%			
1-Chlorotoluene	1.09		0.0500	mg/kg wet	50	1.00		109	80 - 120%			
Dibromochloromethane	0.948		0.100	mg/kg wet	50	1.00		95	80 - 120%			
,2-Dibromo-3-chloropropane	0.787		0.250	mg/kg wet	50	1.00		79	80 - 120%			Q-55
,2-Dibromoethane (EDB)	1.04		0.0500	mg/kg wet	50	1.00		104	80 - 120%			-
Dibromomethane	0.990		0.0500	mg/kg wet	50	1.00		99	80 - 120%			
,2-Dichlorobenzene	1.00		0.0250	mg/kg wet	50	1.00		100	80 - 120%			
1,3-Dichlorobenzene	1.03		0.0250	mg/kg wet	50	1.00		103	80 - 120%			
1,4-Dichlorobenzene	0.978		0.0250	mg/kg wet	50	1.00		98	80 - 120%			
Dichlorodifluoromethane	1.18		0.100	mg/kg wet	50	1.00		118	80 - 120%			
,1-Dichloroethane	0.951		0.0250	mg/kg wet	50	1.00		95	80 - 120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	ounds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091211 - EPA 5035A							Soil					
LCS (9091211-BS1)		Prepared	: 09/25/19 16:3	31 Analyz	ed: 09/25/1	9 16:58						
1,2-Dichloroethane (EDC)	1.11		0.0250	mg/kg we	et 50	1.00		111	80 - 120%			
1,1-Dichloroethene	1.01		0.0250	mg/kg we	et 50	1.00		101	80 - 120%			
cis-1,2-Dichloroethene	0.946		0.0250	mg/kg we	et 50	1.00		95	80 - 120%			
rans-1,2-Dichloroethene	0.934		0.0250	mg/kg we	et 50	1.00		93	80 - 120%			
1,2-Dichloropropane	0.852		0.0250	mg/kg we	et 50	1.00		85	80 - 120%			
1,3-Dichloropropane	1.00		0.0500	mg/kg we	et 50	1.00		100	80 - 120%			
2,2-Dichloropropane	1.04		0.0500	mg/kg we	et 50	1.00		104	80 - 120%			
1,1-Dichloropropene	0.962		0.0500	mg/kg we	et 50	1.00		96	80 - 120%			
cis-1,3-Dichloropropene	0.930		0.0500	mg/kg we	et 50	1.00		93	80 - 120%			
rans-1,3-Dichloropropene	0.973		0.0500	mg/kg we	et 50	1.00		97	80 - 120%			
Ethylbenzene	0.966		0.0250	mg/kg we	et 50	1.00		97	80 - 120%			
Hexachlorobutadiene	1.02		0.100	mg/kg we	et 50	1.00		102	80 - 120%			
2-Hexanone	1.94		0.500	mg/kg we	et 50	2.00		97	80 - 120%			
sopropylbenzene	1.03		0.0500	mg/kg we	et 50	1.00		103	80 - 120%			
1-Isopropyltoluene	1.07		0.0500	mg/kg we	et 50	1.00		107	80 - 120%			
Methylene chloride	0.817		0.250	mg/kg we	et 50	1.00		82	80 - 120%			
4-Methyl-2-pentanone (MiBK)	1.93		0.500	mg/kg we	et 50	2.00		96	80 - 120%			
Methyl tert-butyl ether (MTBE)	0.930		0.0500	mg/kg we	et 50	1.00		93	80 - 120%			
Naphthalene	0.858		0.100	mg/kg we	et 50	1.00		86	80 - 120%			
n-Propylbenzene	1.03		0.0250	mg/kg we	et 50	1.00		103	80 - 120%			
Styrene	0.976		0.0500	mg/kg we	et 50	1.00		98	80 - 120%			
1,1,1,2-Tetrachloroethane	1.04		0.0250	mg/kg we	et 50	1.00		104	80 - 120%			
1,1,2,2-Tetrachloroethane	0.932		0.0500	mg/kg we	et 50	1.00		93	80 - 120%			
Tetrachloroethene (PCE)	1.01		0.0250	mg/kg we	et 50	1.00		101	80 - 120%			
Γoluene	0.942		0.0500	mg/kg we	et 50	1.00		94	80 - 120%			
1,2,3-Trichlorobenzene	1.00		0.250	mg/kg we	et 50	1.00		100	80 - 120%			
1,2,4-Trichlorobenzene	0.990		0.250	mg/kg we		1.00		99	80 - 120%			
1,1,1-Trichloroethane	1.03		0.0250	mg/kg we	et 50	1.00		103	80 - 120%			
,1,2-Trichloroethane	1.03		0.0250	mg/kg we	et 50	1.00		103	80 - 120%			
Trichloroethene (TCE)	0.900		0.0250	mg/kg we	et 50	1.00		90	80 - 120%			
Trichlorofluoromethane	1.51		0.100	mg/kg we		1.00		151	80 - 120%			Q-56
1,2,3-Trichloropropane	1.13		0.0500	mg/kg we	et 50	1.00		113	80 - 120%			
,2,4-Trimethylbenzene	1.06		0.0500	mg/kg we		1.00		106	80 - 120%			
,3,5-Trimethylbenzene	1.03		0.0500	mg/kg we		1.00		103	80 - 120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091211 - EPA 5035A							Soil					
LCS (9091211-BS1)		Prepared	: 09/25/19 16:	31 Analyze	d: 09/25/1	9 16:58						
Vinyl chloride	0.899		0.0250	mg/kg we	t 50	1.00		90	80 - 120%			
m,p-Xylene	2.00		0.0500	mg/kg we	t 50	2.00		100	80 - 120%			
o-Xylene	0.956		0.0250	mg/kg we	t 50	1.00		96	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 92 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

Solidaria Soli			Vol	atile Organi	c Compo	unds by	EPA 5035	A/8260C			
Prepared: 09/25/19 10-10 Analyzed: 09/25/19 12-01	Analyte	Result			Units	Dilution			% REC	RPD	Notes
No. No.	Batch 9091269 - EPA 5035A							Soil			
No. No.	Blank (9091269-BLK1)		Prepared	: 09/25/19 10:4	10 Analyze	ed: 09/25/1	9 12:01				
No. No.	5035A/8260C										
No. No.	Acetone	ND		0.667	mg/kg we	et 50				 	
Stromobenzene ND	Acrylonitrile	ND		0.0667	mg/kg we	t 50				 	
Stromochloromethane ND	Benzene	ND		0.00667	mg/kg we	et 50				 	
Stromodichloromethane ND	Bromobenzene	ND		0.0167	mg/kg we	et 50				 	
Stromoform ND	Bromochloromethane	ND		0.0333	mg/kg we	et 50				 	
Second S	Bromodichloromethane	ND		0.0333	mg/kg we	t 50				 	
-Butlanone (MEK) ND	Bromoform	ND		0.0667	mg/kg we	et 50				 	
-Butylbenzene ND 0.0333 mg/kg wet 50	Bromomethane	ND		0.333	mg/kg we	et 50				 	
ND	2-Butanone (MEK)	ND		0.333	mg/kg we	et 50				 	
Carbon disulfide	n-Butylbenzene	ND		0.0333	mg/kg we	et 50				 	
Carbon disulfide	sec-Butylbenzene	ND		0.0333	mg/kg we	et 50				 	
Carbon tetrachloride ND 0.0333 mg/kg wet 50 <	ert-Butylbenzene	ND		0.0333	mg/kg we	et 50				 	
Chlorobenzene ND 0.0167 mg/kg wet 50	Carbon disulfide	ND		0.333	mg/kg we	et 50				 	
Chlorothane ND 0.333 mg/kg wet 50	Carbon tetrachloride	ND		0.0333	mg/kg we	et 50				 	
Chloroform ND 0.0333 mg/kg wet 50	Chlorobenzene	ND		0.0167	mg/kg we	et 50				 	
Chloromethane ND 0.167 mg/kg wet 50	Chloroethane	ND		0.333	mg/kg we	et 50				 	
-Chlorotoluene ND 0.0333 mg/kg wet 50	Chloroform	ND		0.0333	mg/kg we	t 50				 	
-Chlorotoluene ND 0.0333 mg/kg wet 50	Chloromethane	ND		0.167	mg/kg we	et 50				 	
-Chlorotoluene ND 0.0333 mg/kg wet 50	2-Chlorotoluene	ND		0.0333	mg/kg we	t 50				 	
,2-Dibromo-3-chloropropane ND 0.167 mg/kg wet 50 <th< td=""><td>1-Chlorotoluene</td><td>ND</td><td></td><td>0.0333</td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td></th<>	1-Chlorotoluene	ND		0.0333						 	
,2-Dibromo-3-chloropropane ND 0.167 mg/kg wet 50 <th< td=""><td>Dibromochloromethane</td><td>ND</td><td></td><td>0.0667</td><td>mg/kg we</td><td>t 50</td><td></td><td></td><td></td><td> </td><td></td></th<>	Dibromochloromethane	ND		0.0667	mg/kg we	t 50				 	
,2-Dibromoethane (EDB) ND 0.0333 mg/kg wet 50	1,2-Dibromo-3-chloropropane	ND		0.167						 	
Dibromomethane ND 0.0333 mg/kg wet 50	1,2-Dibromoethane (EDB)	ND		0.0333						 	
,2-Dichlorobenzene ND 0.0167 mg/kg wet 50 <t< td=""><td>Dibromomethane</td><td>ND</td><td></td><td>0.0333</td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td></t<>	Dibromomethane	ND		0.0333						 	
,4-Dichlorobenzene ND 0.0167 mg/kg wet 50	1,2-Dichlorobenzene	ND		0.0167						 	
,4-Dichlorobenzene ND 0.0167 mg/kg wet 50	1,3-Dichlorobenzene	ND		0.0167	mg/kg we	et 50				 	
Dichlorodifluoromethane ND 0.0667 mg/kg wet 50	1,4-Dichlorobenzene	ND		0.0167	mg/kg we	et 50				 	
,1-Dichloroethane ND 0.0167 mg/kg wet 50	Dichlorodifluoromethane	ND		0.0667						 	
,2-Dichloroethane (EDC) ND 0.0167 mg/kg wet 50	1,1-Dichloroethane	ND		0.0167						 	
,1-Dichloroethene ND 0.0167 mg/kg wet 50 is-1,2-Dichloroethene ND 0.0167 mg/kg wet 50	1,2-Dichloroethane (EDC)	ND		0.0167						 	
is-1,2-Dichloroethene ND 0.0167 mg/kg wet 50	,1-Dichloroethene	ND		0.0167						 	
	eis-1,2-Dichloroethene									 	
	rans-1,2-Dichloroethene	ND		0.0167						 	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 9091269 - EPA 5035A							Soil					
Blank (9091269-BLK1)		Prepared	: 09/25/19 10:4	40 Analyze	d: 09/25/19	9 12:01						
1,2-Dichloropropane	ND		0.0167	mg/kg we	t 50							
1,3-Dichloropropane	ND		0.0333	mg/kg we	t 50							
2,2-Dichloropropane	ND		0.0333	mg/kg we	t 50							
1,1-Dichloropropene	ND		0.0333	mg/kg we	t 50							
cis-1,3-Dichloropropene	ND		0.0333	mg/kg we	t 50							
trans-1,3-Dichloropropene	ND		0.0333	mg/kg we	t 50							
Ethylbenzene	ND		0.0167	mg/kg we	t 50							
Hexachlorobutadiene	ND		0.0667	mg/kg we	t 50							
2-Hexanone	ND		0.333	mg/kg we	t 50							
Isopropylbenzene	ND		0.0333	mg/kg we								
4-Isopropyltoluene	ND		0.0333	mg/kg we								
Methylene chloride	ND		0.167	mg/kg we	t 50							
4-Methyl-2-pentanone (MiBK)	ND		0.333	mg/kg we								
Methyl tert-butyl ether (MTBE)	ND		0.0333	mg/kg we	t 50							
Naphthalene	ND		0.0667	mg/kg we								
n-Propylbenzene	ND		0.0167	mg/kg we								
Styrene	ND		0.0333	mg/kg we								
1,1,1,2-Tetrachloroethane	ND		0.0167	mg/kg we								
1,1,2,2-Tetrachloroethane	ND		0.0333	mg/kg we								
Tetrachloroethene (PCE)	ND		0.0167	mg/kg we								
Toluene	ND		0.0333	mg/kg we								
1,2,3-Trichlorobenzene	ND		0.167	mg/kg we								
1,2,4-Trichlorobenzene	ND		0.167	mg/kg we								
1,1,1-Trichloroethane	ND		0.107	mg/kg we								
1,1,2-Trichloroethane	ND		0.0167	mg/kg we								
Trichloroethene (TCE)	ND		0.0167	mg/kg we								
Trichlorofluoromethane	ND		0.0167	mg/kg we								
1,2,3-Trichloropropane	ND ND		0.0007	mg/kg we								
,2,4-Trimethylbenzene	ND ND		0.0333	mg/kg we								
1,3,5-Trimethylbenzene	ND ND		0.0333									
•				mg/kg we								
Vinyl chloride	ND		0.0167	mg/kg we								
m,p-Xylene	ND		0.0333	mg/kg we								
o-Xylene Surr: 1,4-Difluorobenzene (Surr)	ND	Reco	0.0167	mg/kg we	t 50							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Stantec Portland Project: Lampson 9400 SW Barnes Rd Ste 200 Project Number: 185750581 Portland, OR 97225 Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compou	ınds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units I	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091269 - EPA 5035A							Soil					
Blank (9091269-BLK1)		Prepared	: 09/25/19 10:	40 Analyzed	1: 09/25/1	9 12:01						
Surr: Toluene-d8 (Surr)		Reco	overy: 99 %	Limits: 80-1	20 %	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			96 %	80-1.	20 %		"					
LCS (9091269-BS1)		Prepared	: 09/25/19 10:	40 Analyzed	l: 09/25/19	9 11:07						
5035A/8260C												
Acetone	2.02		1.00	mg/kg wet	50	2.00		101	80 - 120%			
Acrylonitrile	0.974		0.100	mg/kg wet	50	1.00		97	80 - 120%			
Benzene	1.04		0.0100	mg/kg wet	50	1.00		104	80 - 120%			
Bromobenzene	1.00		0.0250	mg/kg wet	50	1.00		100	80 - 120%			
Bromochloromethane	1.03		0.0500	mg/kg wet	50	1.00		103	80 - 120%			
Bromodichloromethane	0.996		0.0500	mg/kg wet	50	1.00		100	80 - 120%			
Bromoform	1.06		0.100	mg/kg wet	50	1.00		106	80 - 120%			
Bromomethane	1.26		0.500	mg/kg wet	50	1.00		126	80 - 120%			Q-56
2-Butanone (MEK)	2.05		0.500	mg/kg wet	50	2.00		103	80 - 120%			
n-Butylbenzene	0.958		0.0500	mg/kg wet	50	1.00		96	80 - 120%			
sec-Butylbenzene	0.921		0.0500	mg/kg wet	50	1.00		92	80 - 120%			
tert-Butylbenzene	0.902		0.0500	mg/kg wet	50	1.00		90	80 - 120%			
Carbon disulfide	0.853		0.500	mg/kg wet	50	1.00		85	80 - 120%			
Carbon tetrachloride	1.05		0.0500	mg/kg wet	50	1.00		105	80 - 120%			
Chlorobenzene	0.989		0.0250	mg/kg wet		1.00		99	80 - 120%			
Chloroethane	1.49		0.500	mg/kg wet	50	1.00		149	80 - 120%			Q-56
Chloroform	1.01		0.0500	mg/kg wet	50	1.00		101	80 - 120%			-
Chloromethane	1.10		0.250	mg/kg wet		1.00		110	80 - 120%			
2-Chlorotoluene	0.985		0.0500	mg/kg wet	50	1.00		98	80 - 120%			
4-Chlorotoluene	0.951		0.0500	mg/kg wet	50	1.00		95	80 - 120%			
Dibromochloromethane	1.03		0.100	mg/kg wet		1.00		103	80 - 120%			
1,2-Dibromo-3-chloropropane	0.873		0.250	mg/kg wet		1.00		87	80 - 120%			
1,2-Dibromoethane (EDB)	0.981		0.0500	mg/kg wet		1.00		98	80 - 120%			
Dibromomethane	1.04		0.0500	mg/kg wet		1.00		104	80 - 120%			
1,2-Dichlorobenzene	1.02		0.0250	mg/kg wet		1.00		102	80 - 120%			
1,3-Dichlorobenzene	1.02		0.0250	mg/kg wet		1.00		102	80 - 120%			
1,4-Dichlorobenzene	1.00		0.0250	mg/kg wet		1.00		100	80 - 120%			
Dichlorodifluoromethane	1.29		0.100	mg/kg wet	50	1.00		129	80 - 120%			E-05, Q-5
.1-Dichloroethane	0.998		0.0250	mg/kg wet		1.00		100	80 - 120%			,

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa A Zmeinghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091269 - EPA 5035A							Soil					
LCS (9091269-BS1)		Prepared	: 09/25/19 10:4	40 Analyze	ed: 09/25/19	9 11:07						
1,2-Dichloroethane (EDC)	1.05		0.0250	mg/kg we	et 50	1.00		105	80 - 120%			
1,1-Dichloroethene	1.07		0.0250	mg/kg we	et 50	1.00		107	80 - 120%			
cis-1,2-Dichloroethene	1.06		0.0250	mg/kg we	et 50	1.00		106	80 - 120%			
rans-1,2-Dichloroethene	1.10		0.0250	mg/kg we	et 50	1.00		110	80 - 120%			
1,2-Dichloropropane	1.02		0.0250	mg/kg we	et 50	1.00		102	80 - 120%			
1,3-Dichloropropane	0.999		0.0500	mg/kg we	et 50	1.00		100	80 - 120%			
2,2-Dichloropropane	1.13		0.0500	mg/kg we	et 50	1.00		113	80 - 120%			
1,1-Dichloropropene	1.08		0.0500	mg/kg we	et 50	1.00		108	80 - 120%			
cis-1,3-Dichloropropene	0.928		0.0500	mg/kg we	et 50	1.00		93	80 - 120%			
rans-1,3-Dichloropropene	0.936		0.0500	mg/kg we	et 50	1.00		94	80 - 120%			
Ethylbenzene	0.955		0.0250	mg/kg we	et 50	1.00		96	80 - 120%			
Hexachlorobutadiene	0.954		0.100	mg/kg we	et 50	1.00		95	80 - 120%			
2-Hexanone	1.83		0.500	mg/kg we	et 50	2.00		91	80 - 120%			
sopropylbenzene	0.972		0.0500	mg/kg we	et 50	1.00		97	80 - 120%			
1-Isopropyltoluene	0.940		0.0500	mg/kg we	et 50	1.00		94	80 - 120%			
Methylene chloride	1.16		0.250	mg/kg we	et 50	1.00		116	80 - 120%			
4-Methyl-2-pentanone (MiBK)	1.86		0.500	mg/kg we	et 50	2.00		93	80 - 120%			
Methyl tert-butyl ether (MTBE)	0.981		0.0500	mg/kg we	et 50	1.00		98	80 - 120%			
Naphthalene	0.960		0.100	mg/kg we	et 50	1.00		96	80 - 120%			
n-Propylbenzene	0.963		0.0250	mg/kg we	et 50	1.00		96	80 - 120%			
Styrene	0.966		0.0500	mg/kg we	et 50	1.00		97	80 - 120%			
1,1,1,2-Tetrachloroethane	1.02		0.0250	mg/kg we	et 50	1.00		102	80 - 120%			
1,1,2,2-Tetrachloroethane	0.923		0.0500	mg/kg we		1.00		92	80 - 120%			
Tetrachloroethene (PCE)	1.08		0.0250	mg/kg we		1.00		108	80 - 120%			
Toluene	0.958		0.0500	mg/kg we		1.00		96	80 - 120%			
1,2,3-Trichlorobenzene	0.965		0.250	mg/kg we		1.00		96	80 - 120%			
1,2,4-Trichlorobenzene	0.987		0.250	mg/kg we		1.00		99	80 - 120%			
1,1,1-Trichloroethane	1.02		0.0250	mg/kg we		1.00		102	80 - 120%			
1,1,2-Trichloroethane	0.960		0.0250	mg/kg we		1.00		96	80 - 120%			
Trichloroethene (TCE)	1.10		0.0250	mg/kg we		1.00		110	80 - 120%			
Trichlorofluoromethane	1.45		0.100	mg/kg we		1.00		145	80 - 120%			Q-56
1,2,3-Trichloropropane	1.01		0.0500	mg/kg we		1.00		101	80 - 120%			-
1,2,4-Trimethylbenzene	0.906		0.0500	mg/kg we		1.00			80 - 120%			
1,3,5-Trimethylbenzene	0.884		0.0500	mg/kg we		1.00		88	80 - 120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compou	ınds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units 1	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091269 - EPA 5035A							Soil					
LCS (9091269-BS1)		Prepared	: 09/25/19 10:	40 Analyzed	1: 09/25/1	9 11:07						
Vinyl chloride	1.17		0.0250	mg/kg wet	50	1.00		117	80 - 120%			
m,p-Xylene	1.98		0.0500	mg/kg wet	50	2.00		99	80 - 120%			
o-Xylene	0.943		0.0250	mg/kg wet	50	1.00		94	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 107 %	Limits: 80-1	20 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80-1.	20 %		"					
4-Bromofluorobenzene (Surr)			97 %	80-1.	20 %		"					
Matrix Spike (9091269-MS1)		Prepared	: 09/20/19 09:	15 Analyzed	l: 09/25/1	9 18:46						
QC Source Sample: GP-01-5 (A9)	10735-06RE1	<u>1)</u>										
5035A/8260C												
Acetone	ND		1.21	mg/kg dry	50	2.42	ND	49	36 - 164%			
Acrylonitrile	0.875		0.121	mg/kg dry	50	1.21	ND	72	65 - 134%			
Benzene	1.27		0.0121	mg/kg dry	50	1.21	0.0132	104	77 - 121%			
Bromobenzene	1.23		0.0303	mg/kg dry	50	1.21	ND	102	78 - 121%			
Bromochloromethane	1.13		0.0606	mg/kg dry	50	1.21	ND	93	78 - 125%			
Bromodichloromethane	1.27		0.0606	mg/kg dry	50	1.21	ND	105	75 - 127%			
Bromoform	1.23		0.121	mg/kg dry		1.21	ND	102	67 - 132%			
Bromomethane	1.46		0.606	mg/kg dry	50	1.21	ND	120	53 - 143%			Q-54d
2-Butanone (MEK)	1.76		0.606	mg/kg dry	50	2.42	ND	73	51 - 148%			
n-Butylbenzene	1.18		0.0606	mg/kg dry	50	1.21	ND	98	70 - 128%			
sec-Butylbenzene	1.15		0.0606	mg/kg dry		1.21	ND	95	73 - 126%			
tert-Butylbenzene	1.12		0.0606	mg/kg dry	50	1.21	ND	92	73 - 125%			
Carbon disulfide	1.00		0.606	mg/kg dry	50	1.21	ND	83	63 - 132%			
Carbon tetrachloride	1.30		0.0606	mg/kg dry		1.21	ND	107	70 - 135%			
Chlorobenzene	1.16		0.0303	mg/kg dry	50	1.21	ND	96	79 - 120%			
Chloroethane	3.20		0.606	mg/kg dry		1.21	ND	265	59 - 139%			Q-54b
Chloroform	1.22		0.0606	mg/kg dry	50	1.21	ND	100	78 - 123%			
Chloromethane	1.20		0.303	mg/kg dry	50	1.21	ND	99	50 - 136%			
2-Chlorotoluene	1.23		0.0606	mg/kg dry		1.21	ND	102	75 - 122%			
4-Chlorotoluene	1.15		0.0606	mg/kg dry	50	1.21	ND	95	72 - 124%			
Dibromochloromethane	1.28		0.121	mg/kg dry		1.21	ND	106	74 - 126%			
1,2-Dibromo-3-chloropropane	0.932		0.303	mg/kg dry	50	1.21	ND	77	61 - 132%			
1,2-Dibromoethane (EDB)	1.15		0.0606	mg/kg dry	50	1.21	ND	95	78 - 122%			
Dibromomethane	1.28		0.0606	mg/kg dry	50	1.21	ND	106	78 - 125%			

Apex Laboratories

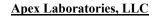
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smeinghini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Stantec Portland Project: Lampson 9400 SW Barnes Rd Ste 200 Project Number: 185750581 Portland, OR 97225 Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625


QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organi	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% RE	% REC C Limits	RPD	RPD Limit	Notes
Batch 9091269 - EPA 5035A							Soil					
Matrix Spike (9091269-MS1)		Prepared	: 09/20/19 09:1	15 Analyze	ed: 09/25/1	9 18:46						
QC Source Sample: GP-01-5 (A9I	0735-06RE1	<u>)</u>										
1,2-Dichlorobenzene	1.18		0.0303	mg/kg dr	y 50	1.21	ND	97	78 - 121%			
1,3-Dichlorobenzene	1.21		0.0303	mg/kg dr	y 50	1.21	ND	100	77 - 121%			
1,4-Dichlorobenzene	1.18		0.0303	mg/kg dr	y 50	1.21	ND	97	75 - 120%			
Dichlorodifluoromethane	1.52		0.121	mg/kg dr	y 50	1.21	ND	125	29 - 149%			E-05, Q-54f
1,1-Dichloroethane	1.29		0.0303	mg/kg dr	y 50	1.21	ND	107	76 - 125%			
1,2-Dichloroethane (EDC)	1.24		0.0303	mg/kg dr	y 50	1.21	ND	103	73 - 128%			
1,1-Dichloroethene	1.25		0.0303	mg/kg dr	y 50	1.21	ND	103	70 - 131%			
cis-1,2-Dichloroethene	1.30		0.0303	mg/kg dr	y 50	1.21	ND	107	77 - 123%			
trans-1,2-Dichloroethene	1.28		0.0303	mg/kg dr	y 50	1.21	ND	106	74 - 125%			
1,2-Dichloropropane	1.27		0.0303	mg/kg dr		1.21	ND	105	76 - 123%			
1,3-Dichloropropane	1.16		0.0606	mg/kg dr	y 50	1.21	ND	96	77 - 121%			
2,2-Dichloropropane	1.29		0.0606	mg/kg dr	y 50	1.21	ND	107	67 - 133%			
1,1-Dichloropropene	1.28		0.0606	mg/kg dr	y 50	1.21	ND	106	76 - 125%			
cis-1,3-Dichloropropene	1.11		0.0606	mg/kg dr	y 50	1.21	ND	92	74 - 126%			
trans-1,3-Dichloropropene	1.08		0.0606	mg/kg dr	y 50	1.21	ND	89	71 - 130%			
Ethylbenzene	1.11		0.0303	mg/kg dr	y 50	1.21	ND	90	76 - 122%			
Hexachlorobutadiene	1.03		0.121	mg/kg dr	y 50	1.21	ND	85	61 - 135%			
2-Hexanone	1.79		0.606	mg/kg dr	y 50	2.42	ND	74	53 - 145%			
Isopropylbenzene	1.14		0.0606	mg/kg dr	y 50	1.21	ND	94	68 - 134%			
4-Isopropyltoluene	1.16		0.0606	mg/kg dr		1.21	ND	96	73 - 127%			
Methylene chloride	1.08		0.303	mg/kg dr	y 50	1.21	ND	90	70 - 128%			
4-Methyl-2-pentanone (MiBK)	2.18		0.606	mg/kg dr		2.42	ND	90	65 - 135%			
Methyl tert-butyl ether (MTBE)	1.20		0.0606	mg/kg dr	y 50	1.21	ND	99	73 - 125%			
Naphthalene	1.06		0.121	mg/kg dr		1.21	ND	87	62 - 129%			
n-Propylbenzene	1.19		0.0303	mg/kg dr	y 50	1.21	0.0229	96	73 - 125%			
Styrene	1.14		0.0606	mg/kg dr	y 50	1.21	ND	94	76 - 124%			
1,1,1,2-Tetrachloroethane	1.25		0.0303	mg/kg dr	y 50	1.21	ND	103	78 - 125%			
1,1,2,2-Tetrachloroethane	1.08		0.0606	mg/kg dr		1.21	ND	86	70 - 124%			
Tetrachloroethene (PCE)	1.21		0.0303	mg/kg dr		1.21	ND	100	73 - 128%			
Toluene	1.16		0.0606	mg/kg dr		1.21	0.0627	90	77 - 121%			
1,2,3-Trichlorobenzene	1.02		0.303	mg/kg dr	-	1.21	ND	84	66 - 130%			
1,2,4-Trichlorobenzene	1.06		0.303	mg/kg dr		1.21	ND	88	67 - 129%			
1,1,1-Trichloroethane	1.21		0.0303	mg/kg dr	•	1.21	ND	100	73 - 130%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa A Zmeinghini

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	5A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091269 - EPA 5035A							Soil					
Matrix Spike (9091269-MS1)		Prepared	: 09/20/19 09:	15 Analyze	d: 09/25/1	9 18:46						
QC Source Sample: GP-01-5 (A9I	0735-06RE1	<u>1)</u>										
1,1,2-Trichloroethane	1.22		0.0303	mg/kg dr	y 50	1.21	ND	101	78 - 121%			
Trichloroethene (TCE)	1.33		0.0303	mg/kg dr	y 50	1.21	ND	110	77 - 123%			
Γrichlorofluoromethane	3.10		0.121	mg/kg dr	y 50	1.21	ND	256	62 - 140%			Q-54a
,2,3-Trichloropropane	1.13		0.0606	mg/kg dr	y 50	1.21	ND	93	73 - 125%			
,2,4-Trimethylbenzene	1.19		0.0606	mg/kg dr	y 50	1.21	0.0452	94	75 - 123%			
1,3,5-Trimethylbenzene	1.13		0.0606	mg/kg dr	y 50	1.21	ND	93	73 - 124%			
Vinyl chloride	1.31		0.0303	mg/kg dr	y 50	1.21	ND	108	56 - 135%			
n,p-Xylene	2.31		0.0606	mg/kg dr	y 50	2.42	0.0874	92	77 - 124%			
-Xylene	1.12		0.0303	mg/kg dr	y 50	1.21	0.0327	90	77 - 123%			
'urr: 1,4-Difluorobenzene (Surr)		Reco	very: 111 %	Limits: 80-	120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			94 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80-	120 %		"					
Matrix Spike Dup (9091269-MSI	D1)	Prepared	: 09/20/19 09:	15 Analyze	d: 09/25/1	9 19:13						
QC Source Sample: GP-01-5 (A9I	0735-06RE1	<u> </u>										
5035A/8260C												
Acetone	2.61		1.46	mg/kg dr	y 50	2.91	ND	90	36 - 164%	75	35%	Q-01
Acrylonitrile	1.34		0.146	mg/kg dr	y 50	1.45	ND	92	65 - 134%	42	35%	Q-01
Benzene	1.58		0.0146	mg/kg dr	y 50	1.45	0.0132	108	77 - 121%	22	35%	
Bromobenzene	1.46		0.0364	mg/kg dr	y 50	1.45	ND	101	78 - 121%	17	35%	
Bromochloromethane	1.54		0.0728	mg/kg dr	y 50	1.45	ND	106	78 - 125%	31	35%	
Bromodichloromethane	1.65		0.0728	mg/kg dr	y 50	1.45	ND	114	75 - 127%	26	35%	
Bromoform	1.78		0.146	mg/kg dr	y 50	1.45	ND	122	67 - 132%	36	35%	Q-01
Bromomethane	1.96		0.728	mg/kg dr	y 50	1.45	ND	135	53 - 143%	30	35%	Q-54d
-Butanone (MEK)	2.88		0.728	mg/kg dr	y 50	2.91	ND	99	51 - 148%	49	35%	Q-01
-Butylbenzene	1.42		0.0728	mg/kg dr	y 50	1.45	ND	98	70 - 128%	18	35%	
ec-Butylbenzene	1.28		0.0728	mg/kg dr		1.45	ND	88	73 - 126%	11	35%	
ert-Butylbenzene	1.28		0.0728	mg/kg dr	y 50	1.45	ND	88	73 - 125%	14	35%	
Carbon disulfide	1.21		0.728	mg/kg dr	y 50	1.45	ND	83	63 - 132%	19	35%	
Carbon tetrachloride	1.63		0.0728	mg/kg dr	y 50	1.45	ND	112	70 - 135%	23	35%	
Chlorobenzene	1.43		0.0364	mg/kg dr		1.45	ND	98	79 - 120%	21	35%	
Chloroethane	7.51		0.728	mg/kg dr		1.45	ND	517	59 - 139%	80	35%	Q-54b

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 Stantec Portland
 Project:
 Lampson

 9400 SW Barnes Rd Ste 200
 Project Number:
 185750581
 Report ID:

 Portland, OR 97225
 Project Manager:
 Len Farr
 A910735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vol	atile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REG	% REC C Limits	RPD	RPD Limit	Notes
Batch 9091269 - EPA 5035A							Soil					
Matrix Spike Dup (9091269-MS	D1)	Prepared	: 09/20/19 09:	15 Analyze	d: 09/25/1	9 19:13						
QC Source Sample: GP-01-5 (A9)	10735-06RE	1)										
Chloromethane	1.59		0.364	mg/kg dr	, 50	1.45	ND	110	50 - 136%	28	35%	
2-Chlorotoluene	1.42		0.0728	mg/kg dr	, 50	1.45	ND	97	75 - 122%	14	35%	
4-Chlorotoluene	1.34		0.0728	mg/kg dr	, 50	1.45	ND	92	72 - 124%	16	35%	
Dibromochloromethane	1.68		0.146	mg/kg dr	, 50	1.45	ND	116	74 - 126%	27	35%	
1,2-Dibromo-3-chloropropane	1.27		0.364	mg/kg dr	, 50	1.45	ND	88	61 - 132%	31	35%	
1,2-Dibromoethane (EDB)	1.49		0.0728	mg/kg dr	, 50	1.45	ND	103	78 - 122%	26	35%	
Dibromomethane	1.66		0.0728	mg/kg dr	50	1.45	ND	115	78 - 125%	26	35%	
1,2-Dichlorobenzene	1.50		0.0364	mg/kg dr	, 50	1.45	ND	103	78 - 121%	25	35%	
1,3-Dichlorobenzene	1.48		0.0364	mg/kg dr	, 50	1.45	ND	102	77 - 121%	20	35%	
1,4-Dichlorobenzene	1.44		0.0364	mg/kg dr	, 50	1.45	ND	99	75 - 120%	20	35%	
Dichlorodifluoromethane	2.01		0.146	mg/kg dr	, 50	1.45	ND	138	29 - 149%	28	35%	E-05, Q-54f
1,1-Dichloroethane	1.63		0.0364	mg/kg dr	, 50	1.45	ND	112	76 - 125%	23	35%	
1,2-Dichloroethane (EDC)	1.61		0.0364	mg/kg dr	, 50	1.45	ND	111	73 - 128%	26	35%	
1,1-Dichloroethene	1.53		0.0364	mg/kg dr	, 50	1.45	ND	105	70 - 131%	20	35%	
cis-1,2-Dichloroethene	1.64		0.0364	mg/kg dr	, 50	1.45	ND	113	77 - 123%	23	35%	
trans-1,2-Dichloroethene	1.58		0.0364	mg/kg dr	, 50	1.45	ND	109	74 - 125%	21	35%	
1,2-Dichloropropane	1.60		0.0364	mg/kg dr		1.45	ND	110	76 - 123%	23	35%	
1,3-Dichloropropane	1.49		0.0728	mg/kg dr		1.45	ND	102	77 - 121%	24	35%	
2,2-Dichloropropane	1.58		0.0728	mg/kg dr	, 50	1.45	ND	108	67 - 133%	20	35%	
1,1-Dichloropropene	1.58		0.0728	mg/kg dr	, 50	1.45	ND	109	76 - 125%	21	35%	
cis-1,3-Dichloropropene	1.40		0.0728	mg/kg dr	, 50	1.45	ND	96	74 - 126%	23	35%	
trans-1,3-Dichloropropene	1.40		0.0728	mg/kg dr	, 50	1.45	ND	97	71 - 130%	26	35%	
Ethylbenzene	1.34		0.0364	mg/kg dr		1.45	ND	90	76 - 122%	18	35%	
Hexachlorobutadiene	1.39		0.146	mg/kg dr	, 50	1.45	ND	96	61 - 135%	30	35%	
2-Hexanone	2.68		0.728	mg/kg dr	, 50	2.91	ND	92	53 - 145%	40	35%	Q-01
Isopropylbenzene	1.37		0.0728	mg/kg dr	, 50	1.45	ND	94	68 - 134%	19	35%	
4-Isopropyltoluene	1.38		0.0728	mg/kg dr	, 50	1.45	ND	95	73 - 127%	17	35%	
Methylene chloride	1.49		0.364	mg/kg dr	50	1.45	ND	103	70 - 128%	32	35%	
4-Methyl-2-pentanone (MiBK)	2.83		0.728	mg/kg dr	, 50	2.91	ND	97	65 - 135%	26	35%	
Methyl tert-butyl ether (MTBE)	1.55		0.0728	mg/kg dr		1.45	ND	107	73 - 125%	26	35%	
Naphthalene	1.35		0.146	mg/kg dr		1.45	ND	93	62 - 129%	24	35%	
n-Propylbenzene	1.35		0.0364	mg/kg dr		1.45	0.0229	91	73 - 125%	13	35%	
Styrene	1.41		0.0728	mg/kg dr		1.45	ND	97	76 - 124%	22	35%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec PortlandProj9400 SW Barnes Rd Ste 200ProjectPortland, OR 97225Project

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vola	tile Organ	ic Compo	unds by	EPA 5035	A/8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091269 - EPA 5035A							Soil					
Matrix Spike Dup (9091269-M	SD1)	Prepared:	09/20/19 09:	15 Analyze	d: 09/25/1	9 19:13						
QC Source Sample: GP-01-5 (A	910735-06RE1	<u>D</u>										
1,1,1,2-Tetrachloroethane	1.59		0.0364	mg/kg dry	, 50	1.45	ND	109	78 - 125%	24	35%	
1,1,2,2-Tetrachloroethane	1.42		0.0728	mg/kg dry	50	1.45	ND	95	70 - 124%	27	35%	
Tetrachloroethene (PCE)	1.48		0.0364	mg/kg dry	, 50	1.45	ND	102	73 - 128%	20	35%	
Toluene	1.35		0.0728	mg/kg dry	50	1.45	0.0627	89	77 - 121%	16	35%	
,2,3-Trichlorobenzene	1.32		0.364	mg/kg dry	50	1.45	ND	91	66 - 130%	26	35%	
,2,4-Trichlorobenzene	1.40		0.364	mg/kg dry	50	1.45	ND	96	67 - 129%	27	35%	
,1,1-Trichloroethane	1.49		0.0364	mg/kg dry	y 50	1.45	ND	102	73 - 130%	21	35%	
,1,2-Trichloroethane	1.46		0.0364	mg/kg dry	50	1.45	ND	101	78 - 121%	18	35%	
Trichloroethene (TCE)	1.65		0.0364	mg/kg dry	y 50	1.45	ND	114	77 - 123%	22	35%	
Trichlorofluoromethane	6.55		0.146	mg/kg dry	50	1.45	ND	451	62 - 140%	72	35%	Q-54a
1,2,3-Trichloropropane	1.51		0.0728	mg/kg dry	y 50	1.45	ND	104	73 - 125%	29	35%	
,2,4-Trimethylbenzene	1.37		0.0728	mg/kg dry	50	1.45	0.0452	91	75 - 123%	14	35%	
,3,5-Trimethylbenzene	1.30		0.0728	mg/kg dry	y 50	1.45	ND	89	73 - 124%	14	35%	
Vinyl chloride	1.86		0.0364	mg/kg dry	50	1.45	ND	128	56 - 135%	35	35%	
n,p-Xylene	2.78		0.0728	mg/kg dry	y 50	2.91	0.0874	93	77 - 124%	19	35%	
o-Xylene	1.36		0.0364	mg/kg dry	y 50	1.45	0.0327	91	77 - 123%	19	35%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 112 %	Limits: 80-	120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			94 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	inated Bi	ohenyls	by EPA 80	082A						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	No	otes
Batch 9091258 - EPA 3546							Soil						
Blank (9091258-BLK1)		Prepared:	09/25/19 07:	04 Analyz	ed: 09/26/1	9 08:38							C-0
EPA 8082A													
Aroclor 1016	ND		0.00909	mg/kg we	et 1								
Aroclor 1221	ND		0.00909	mg/kg we	et 1								
Aroclor 1232	ND		0.00909	mg/kg we	et 1								
Aroclor 1242	ND		0.00909	mg/kg we	et 1								
Aroclor 1248	ND		0.00909	mg/kg we	et 1								
Aroclor 1254	ND		0.00909	mg/kg we	et 1								
Aroclor 1260	ND		0.00909	mg/kg we	et 1								
Surr: Decachlorobiphenyl (Surr)		Recov	very: 114 %	Limits: 60-	125 %	Dill	ution: 1x						
LCS (9091258-BS1)		Prepared:	09/25/19 07:	04 Analyze	ed: 09/26/1	9 08:55							C-0
EPA 8082A													
Aroclor 1016	0.174		0.0100	mg/kg we	et 1	0.250		70	47 - 134%				
Aroclor 1260	0.216		0.0100	mg/kg we	et 1	0.250		86	53 - 140%				
Surr: Decachlorobiphenyl (Surr)		Recov	very: 107 %	Limits: 60-	125 %	Dill	ution: 1x						
Matrix Spike (9091258-MS1)		Prepared:	09/25/19 07:	04 Analyze	ed: 09/26/1	9 10:23							C-0
QC Source Sample: GP-01-5 (A9)	(0735-06)												
EPA 8082A													
Aroclor 1016	0.218		0.0118	mg/kg dr		0.294	ND		47 - 134%				
Aroclor 1260	0.268		0.0118	mg/kg dr		0.294	ND	91	53 - 140%			Q-41	
Surr: Decachlorobiphenyl (Surr)		Recov	very: 104 %	Limits: 60-	125 %	Dili	ution: 1x						
Matrix Spike Dup (9091258-MS	D1)	Prepared:	09/25/19 07:	04 Analyz	ed: 09/26/1	9 10:59							C-0
QC Source Sample: GP-01-5 (A9) EPA 8082A	(0735-06)												
·	0.215		0.0118	ma/l-~ 1	., 1	0.206	MD	72	17 1240/	1	200/		
Aroclor 1016	0.215 0.273			mg/kg dr		0.296	ND		47 - 134% 52 - 140%	1	30%	0.41	
Aroclor 1260	0.2/3		0.0118	mg/kg dr	y 1	0.296	ND	92	53 - 140%	2	30%	Q-41	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland 9400 SW Barnes Rd Ste 200 Portland, OR 97225 Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by l	EPA 6020	A (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091243 - EPA 3051A							Soil					
Blank (9091243-BLK1)		Prepared	: 09/24/19 14::	53 Analyze	d: 09/24/1	9 19:29						
EPA 6020A												
Arsenic	ND		0.962	mg/kg we	t 10							
Barium	ND		0.962	mg/kg we	t 10							
Cadmium	ND		0.192	mg/kg we	t 10							
Chromium	ND		0.962	mg/kg we	t 10							
Lead	ND		0.192	mg/kg we	t 10							
Mercury	ND		0.0769	mg/kg we	t 10							
Selenium	ND		0.962	mg/kg we	t 10							
Silver	ND		0.192	mg/kg we	t 10							
LCS (9091243-BS1)		Prepared	: 09/24/19 14::	53 Analyze	d: 09/24/1	9 19:43						
EPA 6020A		-										
Arsenic	52.8		1.00	mg/kg we	t 10	50.0		106	80 - 120%			
Barium	54.8		1.00	mg/kg we		50.0		110	80 - 120%			
Cadmium	53.4		0.200	mg/kg we	t 10	50.0		107	80 - 120%			
Chromium	54.3		1.00	mg/kg we	t 10	50.0		109	80 - 120%			
Lead	54.6		0.200	mg/kg we	t 10	50.0		109	80 - 120%			
Mercury	1.04		0.0800	mg/kg we		1.00		104	80 - 120%			
Selenium	26.4		1.00	mg/kg we		25.0		106	80 - 120%			
Silver	28.5		0.200	mg/kg we		25.0		114	80 - 120%			
Matrix Spike (9091243-MS1)		Prepared	: 09/24/19 14::	53 Analyze	d: 09/24/1	9 20:48						
QC Source Sample: GP-01-5 (A9	010735-06)											
EPA 6020A												
Arsenic	63.0		1.30	mg/kg dr	y 10	65.2	0.900	95	75 - 125%			
Barium	166		1.30	mg/kg dr		65.2	99.9		75 - 125%			
Cadmium	63.5		0.261	mg/kg dr		65.2	ND		75 - 125%			
Chromium	107		1.30	mg/kg dr		65.2	46.9		75 - 125%			
Lead	66.5		0.261	mg/kg dr		65.2	2.38		75 - 125%			
Mercury	1.29		0.104	mg/kg dr		1.30	0.117		75 - 125%			
Selenium	30.4		1.30	mg/kg dr		32.6	ND		75 - 125% 75 - 125%			
Silver	34.1		0.261	mg/kg dr		32.6	ND		75 - 125% 75 - 125%			
Matrix Spike Dup (9091243-MS			: 09/24/19 14::									

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jose & Zmenighini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: <u>Lampson</u>
Project Number: **185750581**Project Manager: **Len Farr**

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by l	PA 6020	A (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% RE	% REC C Limits	RPD	RPD Limit	Notes
Batch 9091243 - EPA 3051A							Soil					
Matrix Spike Dup (9091243-MSD	1)	Prepared:	09/24/19 14:5	53 Analyze	d: 09/24/19	9 20:53						
QC Source Sample: GP-01-5 (A910	<u>735-06)</u>											
<u>EPA 6020A</u>												
Arsenic	65.6		1.32	mg/kg dry	/ 10	65.9	0.900	98	75 - 125%	4	40%	
Barium	167		1.32	mg/kg dry	/ 10	65.9	99.9	102	75 - 125%	0.8	40%	
Cadmium	66.3		0.264	mg/kg dry	/ 10	65.9	ND	101	75 - 125%	4	40%	
Chromium	108		1.32	mg/kg dry	/ 10	65.9	46.9	92	75 - 125%	0.7	40%	
Lead	69.5		0.264	mg/kg dry	/ 10	65.9	2.38	102	75 - 125%	4	40%	
Mercury	1.37		0.105	mg/kg dry		1.32	0.117	95	75 - 125%	6	40%	
Selenium	31.5		1.32	mg/kg dry		32.9	ND	95	75 - 125%	3	40%	
Silver	35.3		0.264	mg/kg dry		32.9	ND	107	75 - 125%	4	40%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits RPD	RPD Limit	Notes
Batch 9091204 - Tota	al Solids (Dry Weigh	nt)					Soil				

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec PortlandProject:Lampson9400 SW Barnes Rd Ste 200Project Number:185750581Portland, OR 97225Project Manager:Len Farr

Report ID: A9I0735 - 10 02 19 1625

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits RPD	RPD Limit	Notes
3atch 9091260 - Tota	al Solids (Dry Weigh	nt)					Soil				

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland 9400 SW Barnes Rd Ste 200 Project Number: 185750581 Portland, OR 97225 Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

SAMPLE PREPARATION INFORMATION

Lampson

Project:

		Diesel an	d/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3546 (I	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091331							
A9I0735-01	Soil	NWTPH-Dx	09/19/19 15:30	09/26/19 11:47	10.74g/5mL	10g/5mL	0.93
A9I0735-02	Soil	NWTPH-Dx	09/19/19 16:00	09/26/19 11:47	10.5g/5mL	10g/5mL	0.95
A9I0735-03	Soil	NWTPH-Dx	09/19/19 16:30	09/26/19 11:47	11.47g/5mL	10g/5mL	0.87
A9I0735-04	Soil	NWTPH-Dx	09/19/19 17:00	09/26/19 11:47	10.4g/5mL	10g/5mL	0.96
A9I0735-05	Soil	NWTPH-Dx	09/20/19 09:00	09/26/19 11:47	11.11g/5mL	10g/5mL	0.90
A9I0735-06	Soil	NWTPH-Dx	09/20/19 09:15	09/26/19 11:47	10.39g/5mL	10g/5mL	0.96
A9I0735-07	Soil	NWTPH-Dx	09/20/19 09:30	09/26/19 11:47	10.51g/5mL	10g/5mL	0.95
A9I0735-08	Soil	NWTPH-Dx	09/20/19 10:00	09/26/19 11:47	10.64g/5mL	10g/5mL	0.94
A9I0735-09	Soil	NWTPH-Dx	09/20/19 11:30	09/26/19 11:47	10.11g/5mL	10g/5mL	0.99
A9I0735-10	Soil	NWTPH-Dx	09/20/19 12:00	09/26/19 11:47	11.01g/5mL	10g/5mL	0.91

Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091209							
A9I0735-03	Soil	NWTPH-Gx (MS)	09/19/19 16:30	09/19/19 16:30	5.23g/5mL	5g/5mL	0.96
A9I0735-05	Soil	NWTPH-Gx (MS)	09/20/19 09:00	09/20/19 09:00	7.14g/5mL	5g/5mL	0.70
A9I0735-09	Soil	NWTPH-Gx (MS)	09/20/19 11:30	09/20/19 11:30	5.75g/5mL	5g/5mL	0.87
Batch: 9091211							
A9I0735-01RE1	Soil	NWTPH-Gx (MS)	09/19/19 15:30	09/19/19 15:30	5.85g/5mL	5g/5mL	0.86
A9I0735-02RE1	Soil	NWTPH-Gx (MS)	09/19/19 16:00	09/19/19 16:00	6.16g/5mL	5g/5mL	0.81
A9I0735-04RE1	Soil	NWTPH-Gx (MS)	09/19/19 17:00	09/19/19 17:00	6.29g/5mL	5g/5mL	0.80
A9I0735-08RE1	Soil	NWTPH-Gx (MS)	09/20/19 10:00	09/20/19 10:00	7.39g/5mL	5g/5mL	0.68
A9I0735-10RE1	Soil	NWTPH-Gx (MS)	09/20/19 12:00	09/20/19 12:00	6.54g/5mL	5g/5mL	0.77
Batch: 9091269							
A9I0735-06RE1	Soil	NWTPH-Gx (MS)	09/20/19 09:15	09/20/19 09:15	6.33g/5mL	5g/5mL	0.79
A9I0735-07RE1	Soil	NWTPH-Gx (MS)	09/20/19 09:30	09/20/19 09:30	6.89g/5mL	5g/5mL	0.73

		Volatile Org	anic Compounds by	EPA 5035A/8260C			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091209 A9I0735-03	Soil	5035A/8260C	09/19/19 16:30	09/19/19 16:30	5.23g/5mL	5g/5mL	0.96

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

SAMPLE PREPARATION INFORMATION

		SAMPLI	E PREPARATION	INFORMATION			
		Volatile Org	ganic Compounds by	EPA 5035A/8260C			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A9I0735-05	Soil	5035A/8260C	09/20/19 09:00	09/20/19 09:00	7.14g/5mL	5g/5mL	0.70
A9I0735-09	Soil	5035A/8260C	09/20/19 11:30	09/20/19 11:30	5.75g/5mL	5g/5mL	0.87
Batch: 9091211							
A9I0735-01RE1	Soil	5035A/8260C	09/19/19 15:30	09/19/19 15:30	5.85g/5mL	5g/5mL	0.86
A9I0735-02RE1	Soil	5035A/8260C	09/19/19 16:00	09/19/19 16:00	6.16g/5mL	5g/5mL	0.81
A9I0735-04RE1	Soil	5035A/8260C	09/19/19 17:00	09/19/19 17:00	6.29g/5mL	5g/5mL	0.80
A9I0735-08RE1	Soil	5035A/8260C	09/20/19 10:00	09/20/19 10:00	7.39g/5mL	5g/5mL	0.68
A9I0735-10RE1	Soil	5035A/8260C	09/20/19 12:00	09/20/19 12:00	6.54g/5mL	5g/5mL	0.77
					S	S	
Batch: 9091269 A9I0735-06RE1	Soil	5035A/8260C	09/20/19 09:15	09/20/19 09:15	6.22 a/5 mI	5 a /5 m I	0.79
A910735-00RE1 A910735-07RE1	Soil	5035A/8260C 5035A/8260C	09/20/19 09:13	09/20/19 09:13	6.33g/5mL 6.89g/5mL	5g/5mL 5g/5mL	0.79
		Polych	nlorinated Biphenyls	by EPA 8082A			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091258							
A9I0735-05	Soil	EPA 8082A	09/20/19 09:00	09/25/19 07:04	10.02g/5mL	10g/5mL	1.00
A9I0735-06	Soil	EPA 8082A	09/20/19 09:15	09/25/19 07:04	10.47g/5mL	10g/5mL	0.96
		Tota	al Metals by EPA 602	0A (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091243			P	·F			
A9I0735-01	Soil	EPA 6020A	09/19/19 15:30	09/24/19 14:53	0.487g/50mL	0.5g/50mL	1.03
A9I0735-02	Soil	EPA 6020A	09/19/19 16:00	09/24/19 14:53	0.458g/50mL	0.5g/50mL	1.09
A9I0735-03	Soil	EPA 6020A	09/19/19 16:30	09/24/19 14:53	0.487g/50mL	0.5g/50mL	1.03
A9I0735-04	Soil	EPA 6020A	09/19/19 17:00	09/24/19 14:53	0.486g/50mL	0.5g/50mL	1.03
A9I0735-05	Soil	EPA 6020A	09/20/19 09:00	09/24/19 14:53	0.467g/50mL	0.5g/50mL	1.07
A9I0735-06	Soil	EPA 6020A	09/20/19 09:15	09/24/19 14:53	0.504g/50mL	0.5g/50mL	0.99
	a :1	ED4 6020 4	00/00/10 00 00	00/24/10 14 52	0 462 450 Y	- 150 Y	1.00

09/20/19 09:30

09/20/19 10:00

09/20/19 11:30

09/20/19 12:00

Apex Laboratories

A9I0735-07

A9I0735-08

A9I0735-09

A9I0735-10

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

0.463g/50mL

0.469g/50mL

0.511g/50mL

0.506g/50mL

0.5g/50mL

0.5g/50mL

0.5g/50mL

0.5g/50mL

09/24/19 14:53

09/24/19 14:53

09/24/19 14:53

09/24/19 14:53

Awas Smerighini

Soil

Soil

Soil

Soil

EPA 6020A

EPA 6020A

EPA 6020A

EPA 6020A

1.08

1.07

0.98

0.99

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

SAMPLE PREPARATION INFORMATION

			Percent Dry We	ight			
Prep: Total Solids (I	Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091204							
A9I0735-06	Soil	EPA 8000C	09/20/19 09:15	09/24/19 18:36			NA
Batch: 9091260							
A9I0735-01	Soil	EPA 8000C	09/19/19 15:30	09/25/19 07:49			NA
A9I0735-02	Soil	EPA 8000C	09/19/19 16:00	09/25/19 07:49			NA
A9I0735-03	Soil	EPA 8000C	09/19/19 16:30	09/25/19 07:49			NA
A9I0735-04	Soil	EPA 8000C	09/19/19 17:00	09/25/19 07:49			NA
A9I0735-05	Soil	EPA 8000C	09/20/19 09:00	09/25/19 07:49			NA
A9I0735-07	Soil	EPA 8000C	09/20/19 09:30	09/25/19 07:49			NA
A9I0735-08	Soil	EPA 8000C	09/20/19 10:00	09/25/19 07:49			NA
A9I0735-09	Soil	EPA 8000C	09/20/19 11:30	09/25/19 07:49			NA
A9I0735-10	Soil	EPA 8000C	09/20/19 12:00	09/25/19 07:49			NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

 Stantec Portland
 Project:
 Lampson

 9400 SW Barnes Rd Ste 200
 Project Number:
 185750581
 Report ID:

 Portland, OR 97225
 Project Manager:
 Len Farr
 A910735 - 10 02 19 1625

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

Apex Labora	atories
B-02	Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)
C-07	Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
E-05	Estimated Result. Initial Calibration Verification (ICV) failed high. No affect on non-detect results.
F-20	Result for Diesel is Estimated due to overlap from Gasoline Range Organics or other VOCs.
M-02	Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +1.8%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the $\pm -20\%$ criteria listed in EPA method 8260C/8270D by $\pm 25.1\%$. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the $\pm -20\%$ criteria listed in EPA method 8260C/8270D by $\pm 28.6\%$. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +5.9%. The results are reported as Estimated Values.
Q-54e	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +7.0%. The results are reported as Estimated Values.
Q-54f	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +9.4%. The results are reported as Estimated Values.
Q-54h	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -2.2%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260C, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260C

The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.

Apex Laboratories

R-02

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

 Stantec Portland
 Project:
 Lampson

 9400 SW Barnes Rd Ste 200
 Project Number:
 185750581
 Report ID:

 Portland, OR 97225
 Project Manager:
 Len Farr
 A910735 - 10 02 19 1625

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"__" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gesa A Zmenighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

 Stantec Portland
 Project:
 Lampson

 9400 SW Barnes Rd Ste 200
 Project Number:
 185750581
 Report ID:

 Portland, OR 97225
 Project Manager:
 Len Farr
 A910735 - 10 02 19 1625

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwast Jamenighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

 Stantec Portland
 Project:
 Lampson

 9400 SW Barnes Rd Ste 200
 Project Number:
 185750581
 Report ID:

 Portland, OR 97225
 Project Manager:
 Len Farr
 A910735 - 10 02 19 1625

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenighini

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0735 - 10 02 19 1625

Company Comp		6700 SW Sandburg St., Tigard, OR 97223 Ph.: 503-718-2323	3-718-232	33	こ	HA	Z	Ť	ರ	CHAIN OF CUSTODY	2	7				Lab#	#		1110 (2) coc of	3	200	ot	_
10 10 10 10 10 10 10 10		Project		7	W	1		-	roject	Name	1	157	3	1.0	1			F. E.		55	35	1	
10 10 10 10 10 10 10 10	Address: 225 NE HILCHST &	STCs (sin		70.	Pho	1 5	学	763		Emi	alt: C	4. Kill	13	1	3	いない	14.6	04 1:1	.ec		}		
Owner or Charles and Charles a		<u>`</u>	b	90 34									*	NAES	SIS	EOUES] _	}					
Number Disc Company	Site Location:										2	38			_	9'' 9'	ίΙ.		1				
Normal Tank Are Normal Tan	(OR) WA CA			SRS								յղ րոչ							. 17				
S-O1 - S - O2 - S - O3 - C - O3 - C - O4 - C - O5 -	AK ID			LAINE		x(X					i sloV.	-						1/				
SAMPLE DO SAMPLE DO SAMPLE DO SAMPLE DO SAMPLE DO STATE D			-			I-H4T	D-H4T					-iməS (5 bCB						1111				94
5-02-3 1-02-3	SAMPLEID					MN	MN					0728	808										idən
5-02-8 5-04-4 5-04-4 6-02-6 6-03-6 6-04-4 6-02-6 6-03-6	5-01	6.44.19	(53)	7		X	X		-	X	立				×			1		-		+-	1
5-04-04 4-44-16-16-17-18-18-18-18-18-18-18-18-18-18-18-18-18-	70-5	विनायन	(000)	7		X	X	-		X	=======================================			/ `	1			ļ		-		-	ļ
5-03-4 9-01-2 9-20-6 1-02-12 9-20-6 9-20-	S-04	W-14-10	0.69]	1	h.	X	\times			X	=				×			ļ	=	-		-	-
P - O - S	FS-03-9	4-14	12	1		\geq	X	-	-	X	1:1			1	X			-		-		-	
	- 1	9-30/4	0,000	1	-	X	X		-	X	t		X	<u> </u>	X	-		-	7	-		+-	-
P-02-	-	年20周	ह	2		X	X			X	1=		\searrow	Y	×			-	7	25	S	2	-
P - O 2 - 2	<u> </u>	100 P	88	1	-	X	X		-	X,	=======================================			Ý .	X			-	12			-	<u> </u>
P - O S -	7-05	14724)	000	~		X	X			\geq	T.IT				\Rightarrow			-	1:7	-			-
P - O S - S	50-	9204	36	~		X	X			X.					V			-	=	-		-	_
AT Requested (circle) AT Requested (circle) AT Requested (circle) AT Requested (circle) AT Requested (circle) SAMPLES ARE HELD FOR 30 DAYS Other: SAMPLES ARE HELD FOR 30 DAYS Signature AT A A A A A A A A A A A A A A A A A A	8-50-8	4204	(25)	~ !_		X	X		-	\geq	I.T.			(V			-	I	_		-	-
AT Requested (circle) 1 Day 2 Day 3 Day 4 DAY 5 DAY Other: 1 SAMPLES ARE HELD FOR 30 DAYS USHED BY: SAMPLES ARE HELD FOR 30 DAYS SAMPLES ARE HELD FOR 30 DAYS WELLINQUISHED BY: Signature Time: Printed Name: Printed Name: Company: Comp	Normal Turr	1 Around Time	(TAT) = 10	Busines	s Days					SP.	CIAL	INST	RUCI	SNOI	22.	7	1	1	1 7	75.77			
AT Requested (circle) 4 DAY 5 DAY Other: SAMPLES ARE HELD FOR 30 DAYS UNSHED BY: Supporture Supporture Supporture Time Printed Name: Printed Name: ATT 1000 Company.			2 Day	(E						K >>	交交	ર [–] દ ક	74	15%	SH	<u> </u>	हें <u>क</u>	T -		25.00	. Aug	भग्र	_^
SAMPLES ARE HELD FOR 30 DAYS RECEIVED BY: Signature: Signature:			5 DAY) ຶ	ther:						त्द्र	्√ ~ च्ड	- <u>~</u>	4		,			-				
USHED BY: RECEIVED BY: Signature Printed Name: Time: Printed Name: Company: Company: RECEIVED BY: Date: Signature: Printed Name: Time: Printed Name: Company: C	SAMPL	ES ARE HELD	FOR 30 DA	, A																			
DANG HALLAND 277 W. Printed Name. Date: Signature. Time: Printed Name. Time: Printed Name. Time: Printed Name. Time: Outpany: After Company: Comp	UISHED BY:	Date:	RECEIVID	18	1				,	E S	nònr	ISHEE	BY:					REC	CEIVED B	۲;			
ATA HATELY OF Times Printed Name: Time: Printed Name: Time: Printed Name: Time: Printed Name: Company:	Darie Arthur	13.6	orginature	The	M		20	14	19	E C	ature:						Date:	Sign	ature:		<u></u>	ate:	
Company: M. Company:	one. John Hottopins	Time: i†C∂	Printed Nam		77) F	Time	70	10	.ir	red Nar	ne:					Lime:	<u>F</u>	ted Name:			me:	
	67		Company:	1	7	\	†	}		S	pany:							ð	pany:				

Apex Laboratories

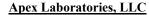
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland
9400 SW Barnes Rd Ste 200
Portland, OR 97225

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr


Report ID: A910735 - 10 02 19 1625

		APEX LA	BS COOLER RECEIPT FORM	
Client:	Stant	ee	Element WO#: A9 10735	
Project/Pr	oject #:	ampson	/185750581	_
Delivery I Date/time Delivered Cooler Ins Chain of C Signed/dat Signed/dat	received: (1) by: Apex Conceived: Date Custody include ted by Client?	1	By: US Senvoy SDS Other By: US By: US Senvoy SDS Other By: US Custody seals? Yes No No No No No No No No No No No No No	
Ice type: (Condition: Cooler out If some co Out of tem Samples In	of temp? (YN) olers are in temperature sample of the objection:	Possible reason who p and some out, wer	re green dots applied to out of temperature samples? Yes/No Yes/No/NX 9/24/19 @ 1330 By:	
L INCO	mplete, i	matched by eies form initiated?	Comments: GP-01-5 MeOH vans smudge process of elimination. GP-02-1 Yes_NoX_NA analysis? YesX_NoComments:	
Comments			S No_X_ NA AXpH appropriate? Yes No NA	_
Comments		110	To In	
			OH vous- (Tb#2118) (2) voas pour ling # 7763 1239 7084,7763 1239 239, 7452 Cooler Inspected by: December See Project Contact Form	676.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

Monday, October 7, 2019 Len Farr Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204

RE: A910744 - Lampson - 185750581

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9I0744, which was received by the laboratory on 9/24/2019 at 10:15:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: Idomenighini@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 1.0 degC Cooler #2 2.3 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmenyhini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0744 - 10 07 19 1649

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMA	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GP02	A9I0744-01	Water	09/20/19 13:00	09/24/19 10:15
GP05	A9I0744-02	Water	09/20/19 14:15	09/24/19 10:15
EQ-092019	A9I0744-03	Water	09/20/19 16:30	09/24/19 10:15
TB-092319-1	A9I0744-04	Water	09/20/19 00:00	09/24/19 10:15

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocar	bons by NWTPI	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
	Result							110103
GP02 (A9I0744-01)				Matrix: Wate	er	Batch:	9091399	
Diesel	0.322		0.278	mg/L	1	09/27/19 22:09	NWTPH-Dx	F-18
Oil	ND		0.556	mg/L	1	09/27/19 22:09	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 124%	Limits: 50-150 %	1	09/27/19 22:09	NWTPH-Dx	Q-41
GP05 (A9I0744-02)				Matrix: Wate	er	Batch:	9091399	
Diesel	ND		0.233	mg/L	1	09/27/19 22:33	NWTPH-Dx	
Oil	ND		0.465	mg/L	1	09/27/19 22:33	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 118%	Limits: 50-150 %	1	09/27/19 22:33	NWTPH-Dx	Q-41
EQ-092019 (A9I0744-03)				Matrix: Wate	er	Batch:	9091399	
Diesel	ND		0.202	mg/L	1	09/27/19 22:57	NWTPH-Dx	
Oil	ND		0.404	mg/L	1	09/27/19 22:57	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 117%	Limits: 50-150 %	1	09/27/19 22:57	NWTPH-Dx	Q-41

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons (E	Benzene tl	hrough Naphtha	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP02 (A9I0744-01RE1)				Matrix: Wate	er	Batch	: 9091347	
Gasoline Range Organics	2.46		0.100	mg/L	1	09/26/19 20:10	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 103 %	Limits: 50-150 %	6 1	09/26/19 20:10	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			182 %	50-150 %	6 1	09/26/19 20:10	NWTPH-Gx (MS)	S-08
GP05 (A9I0744-02RE1)				Matrix: Wate	er	Batch	: 9091347	
Gasoline Range Organics	0.232		0.100	mg/L	1	09/26/19 19:43	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 101 %	Limits: 50-150 %	6 1	09/26/19 19:43	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			100 %	50-150 %	5 1	09/26/19 19:43	NWTPH-Gx (MS)	
EQ-092019 (A9I0744-03)				Matrix: Wate	er	Batch	: 9091264	
Gasoline Range Organics	ND		0.100	mg/L	1	09/25/19 17:27	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 97%	Limits: 50-150 %	6 1	09/25/19 17:27	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			92 %	50-150 %	6 <i>1</i>	09/25/19 17:27	NWTPH-Gx (MS)	

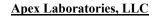
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0744 - 10 07 19 1649


ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	iic Compoun	as by EPA 8	260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP02 (A9I0744-01RE1)				Matrix: W	ater	Batch:	9091347	
Acetone	ND		40.0	ug/L	1	09/26/19 20:10	EPA 8260C	R-02
Acrylonitrile	ND		2.00	ug/L	1	09/26/19 20:10	EPA 8260C	
Benzene	6.25		0.200	ug/L	1	09/26/19 20:10	EPA 8260C	Q-42
Bromobenzene	ND		0.500	ug/L	1	09/26/19 20:10	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
Bromoform	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
Bromomethane	ND		5.00	ug/L	1	09/26/19 20:10	EPA 8260C	
2-Butanone (MEK)	ND		11.0	ug/L	1	09/26/19 20:10	EPA 8260C	
n-Butylbenzene	2.86		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	M-02, Q-42
sec-Butylbenzene	1.81		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
tert-Butylbenzene	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
Carbon disulfide	ND		10.0	ug/L	1	09/26/19 20:10	EPA 8260C	
Carbon tetrachloride	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
Chlorobenzene	ND		0.500	ug/L	1	09/26/19 20:10	EPA 8260C	
Chloroethane	ND		5.00	ug/L	1	09/26/19 20:10	EPA 8260C	
Chloroform	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
Chloromethane	ND		5.00	ug/L	1	09/26/19 20:10	EPA 8260C	
2-Chlorotoluene	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
4-Chlorotoluene	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
Dibromochloromethane	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	09/26/19 20:10	EPA 8260C	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	09/26/19 20:10	EPA 8260C	
Dibromomethane	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	09/26/19 20:10	EPA 8260C	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	09/26/19 20:10	EPA 8260C	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	09/26/19 20:10	EPA 8260C	
Dichlorodifluoromethane	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
1,1-Dichloroethane	ND		0.400	ug/L	1	09/26/19 20:10	EPA 8260C	
1,2-Dichloroethane (EDC)	159		0.400	ug/L	1	09/26/19 20:10	EPA 8260C	Q-42
1,1-Dichloroethene	ND		0.400	ug/L	1	09/26/19 20:10	EPA 8260C	-
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	09/26/19 20:10	EPA 8260C	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	09/26/19 20:10	EPA 8260C	
1,2-Dichloropropane	ND		0.500	ug/L	1	09/26/19 20:10	EPA 8260C	
1,3-Dichloropropane	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
2,2-Dichloropropane	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
1,1-Dichloropropene	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
cis-1,3-Dichloropropene	ND		1.00	ug/L ug/L	1	09/26/19 20:10	EPA 8260C	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	

Apex Laboratories

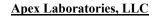
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649


ANALYTICAL SAMPLE RESULTS

	v	olatile Organ	ic Compoun	ds by EPA 826	0C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP02 (A9I0744-01RE1)				Matrix: Wate	r	Batch:	9091347	
Ethylbenzene	41.3		0.500	ug/L	1	09/26/19 20:10	EPA 8260C	
Hexachlorobutadiene	ND		5.00	ug/L	1	09/26/19 20:10	EPA 8260C	
2-Hexanone	ND		10.0	ug/L	1	09/26/19 20:10	EPA 8260C	
Isopropylbenzene	5.83		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
4-Isopropyltoluene	1.89		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	Q-42, M-02
Methylene chloride	ND		5.00	ug/L	1	09/26/19 20:10	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	09/26/19 20:10	EPA 8260C	
Methyl tert-butyl ether (MTBE)	5.73		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
Naphthalene	10.1		2.00	ug/L	1	09/26/19 20:10	EPA 8260C	Q-42
n-Propylbenzene	13.0		0.500	ug/L	1	09/26/19 20:10	EPA 8260C	
Styrene	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	09/26/19 20:10	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	09/26/19 20:10	EPA 8260C	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	09/26/19 20:10	EPA 8260C	
Toluene	16.4		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	09/26/19 20:10	EPA 8260C	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	09/26/19 20:10	EPA 8260C	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	09/26/19 20:10	EPA 8260C	
1,1,2-Trichloroethane	ND		1.50	ug/L	1	09/26/19 20:10	EPA 8260C	R-02
Trichloroethene (TCE)	ND		0.400	ug/L	1	09/26/19 20:10	EPA 8260C	
Trichlorofluoromethane	ND		2.00	ug/L	1	09/26/19 20:10	EPA 8260C	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	
1,2,4-Trimethylbenzene	82.5		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	Q-42
1,3,5-Trimethylbenzene	22.0		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	_
Vinyl chloride	ND		0.400	ug/L	1	09/26/19 20:10	EPA 8260C	
m,p-Xylene	143		1.00	ug/L	1	09/26/19 20:10	EPA 8260C	Q-42
o-Xylene	45.3		0.500	ug/L	1	09/26/19 20:10	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 80-120 %	1	09/26/19 20:10	EPA 8260C	
Toluene-d8 (Surr)			104 %	80-120 %	1	09/26/19 20:10	EPA 8260C	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	1	09/26/19 20:10	EPA 8260C	
GP05 (A9I0744-02RE1)				Matrix: Wate	er	Batch:	9091347	
Acetone	ND		20.0	ug/L	1	09/26/19 19:43	EPA 8260C	
Acrylonitrile	ND		2.00	ug/L	1	09/26/19 19:43	EPA 8260C	
Benzene	ND		0.200	ug/L	1	09/26/19 19:43	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	09/26/19 19:43	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0744 - 10 07 19 1649

ANALYTICAL SAMPLE RESULTS

Property Property		V	olatile Organ	nic Compoun	ds by EPA 8	260C			
Popular Popu		Sample	Detection	Reporting			Date		
Bromoform ND	Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Bromomethane	GP05 (A9I0744-02RE1)				Matrix: W	ater	Batch:	9091347	
2-Butanne (MEK) ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C Sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C Carbon disulfide ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C Carbon disulfide ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C Carbon disulfide ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C Carbon disulfide ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 5.00 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 5.00 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 5.00 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 5.00 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 5.00 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne (EDB) ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 0.400 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 0.400 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 0.400 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 0.400 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 0.400 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND 0.400 ug/L 1 0926/19 19-43 EPA \$260C Chlorochazne ND -	Bromoform	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
Ballylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 1.00 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 0.500 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 0.400 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 0.400 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 0.400 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 0.400 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 0.400 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 0.400 ug/L 1 0926/19 19-43 EPA \$260C sec-Butylbenzene ND 0.400 ug/L 1 0926/19 19-43 EPA	Bromomethane	ND		5.00	ug/L	1	09/26/19 19:43	EPA 8260C	
n-Bulybenzene ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C tert-Bulybenzene ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C tert-Bulybenzene ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C tert-Bulybenzene ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Carbon disulfide ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Carbon disulfide ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 1.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane (EDB) ND 5.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane (EDB) ND 5.00 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane (EDB) ND 0.500 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane (EDB) ND 0.500 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane (EDB) ND 0.500 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 0.500 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 0.500 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 0.500 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 0.500 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 0.400 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 0.400 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 0.400 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 0.400 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 0.400 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 0.400 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 0.400 ug/L 1 0926/19 19-43 EPA 8260C Chlorochane ND 0.400 ug/L 1 0926/19 19-43 EPA	2-Butanone (MEK)	ND		10.0		1	09/26/19 19:43	EPA 8260C	
Letr-Buylhenzene	n-Butylbenzene	ND		1.00		1	09/26/19 19:43	EPA 8260C	
Letr-Buylhenzene	sec-Butylbenzene	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
Carbon disulfide ND 10.0 ug/L 1 09/26/19 19:43 EPA 8260C Carbon tetrachloride ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C Chloroentane ND 5.00 ug/L 1 09/26/19 19:43 EPA 8260C Chloromethane ND 5.00 ug/L 1 09/26/19 19:43 EPA 8260C Chloroform ND 5.00 ug/L 1 09/26/19 19:43 EPA 8260C Chloroform ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 2-Chlorotoluene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 2-Chlorotoluene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 2-Chlorotoluene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 1-2-Dichlorotomethane ND 0.500	tert-Butylbenzene	ND		1.00		1	09/26/19 19:43	EPA 8260C	
Chlorochane	Carbon disulfide	ND		10.0		1	09/26/19 19:43	EPA 8260C	
Chlorochane	Carbon tetrachloride	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
Chloroform	Chlorobenzene	ND		0.500		1	09/26/19 19:43	EPA 8260C	
Chloromethane	Chloroethane	ND		5.00	ug/L	1	09/26/19 19:43	EPA 8260C	
2-Chlorotoluen	Chloroform	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
4-Chlorotoluene ND 1.00 ug/L 1 09/26/19 19-43 EPA 8260C Dibromochloromethane ND 1.00 ug/L 1 09/26/19 19-43 EPA 8260C 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 09/26/19 19-43 EPA 8260C 1,2-Dibromoethane (EDB) ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C 1,2-Dibromoethane ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C 1,2-Dibromoethane ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C 1,2-Dibromoethane ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C 1,3-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C 1,4-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C 1,4-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichlorotethane ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichlorotethane ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichlorotethane ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichlorotethane ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichlorotethene ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichlorotethene ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C 1,2-Dichlorotethene ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C 1,3-Dichlorotethene ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C 1,3-Dichloropropane ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C 1,3-Dichloropropane ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C 1,3-Dichloropropane ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C 1,3-Dichloropropane ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichloropropane ND 0.00 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichloropropane ND 0.00 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichloropropane ND 0.00 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichloropropene ND 0.00 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichloropropene ND 0.00 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichloropropene ND 0.00 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichloropropene ND 0.00 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichloropropene ND 0.00 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichloropropene ND 0.00 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichloropropene ND 0.00 ug/L 1 0	Chloromethane	ND		5.00	ug/L	1	09/26/19 19:43	EPA 8260C	
4-Chlorotoluene ND 1.00 ug/L 1 09/26/19 19-43 EPA 8260C Dibromochloromethane ND 1.00 ug/L 1 09/26/19 19-43 EPA 8260C 1.2-Dibromo-3-chloropropane ND 5.00 ug/L 1 09/26/19 19-43 EPA 8260C 1.2-Dibromochane (EDB) ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C Dibromomethane ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C Dibromomethane ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C 1.2-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C 1.3-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C 1.4-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C 1.4-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C Dichlorodifluoromethane ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C 1.1-Dichlorotethane ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C 1.1-Dichlorotethane (EDC) ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C 1.1-Dichlorotethane ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C cis-1,2-Dichlorotethene ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C cis-1,2-Dichlorotethene ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C cis-1,2-Dichlorotethene ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C cis-1,2-Dichlorotethene ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C cis-1,3-Dichloropropane ND 0.400 ug/L 1 09/26/19 19-43 EPA 8260C cis-1,3-Dichloropropane ND 0.500 ug/L 1 09/26/19 19-43 EPA 8260C 1,3-Dichloropropane ND 1.00 ug/L 1 09/26/19 19-43 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichloropropane ND 1.00 ug/L 1 09/26/19 19-43 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19-43 EPA 8260C 1 1.1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19-43 EPA 8260C 1 1.1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19-43 EPA 8260C 1 1.1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19-43 EPA 8260C 1 1.1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19-43 EPA 8260C 1 1.1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19-43 EPA 8260C 1 1.1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19-43 EPA 8260C 1 1.1-Dichloropropene ND 1.00 ug/L 1 09/26/19	2-Chlorotoluene	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
Dibromochloromethane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dibromoethane (EDB) ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,3-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,4-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,4-Dichloroethane ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethane ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichloroethane (EDC) ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,3-Dichloroethene	4-Chlorotoluene	ND		1.00		1	09/26/19 19:43	EPA 8260C	
1,2-Dibromoethane (EDB) ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C Dibromomethane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,4-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,4-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,4-Dichloroethane ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethane ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichloroethane (EDC) ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethane (EDC) ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C cis-1,2-Dichloroethane ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C<	Dibromochloromethane	ND		1.00		1	09/26/19 19:43	EPA 8260C	
Dibromomethane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,3-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,4-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C Dichlorodifluoromethane ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethane (EDC) ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethane (EDC) ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethane (EDC) ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethane (EDC) ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethane (EDC)<	1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	09/26/19 19:43	EPA 8260C	
1,2-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,3-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,4-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C Dichlorodifluoromethane ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethane ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethane (EDC) ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C cis-1,2-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,2-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichloropropane ND 0.500 ug/L 1 09/26/19 19:43 EPA	1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	09/26/19 19:43	EPA 8260C	
1,3-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,4-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C Dichlorodifluoromethane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethane ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichloroethane ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,2-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichloroethene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichloropropane ND<	Dibromomethane	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
1,4-Dichlorobenzene ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C Dichlorodifluoromethane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethane ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethane (EDC) ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,2-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichloropropane ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,3-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C </td <td>1,2-Dichlorobenzene</td> <td>ND</td> <td></td> <td>0.500</td> <td>ug/L</td> <td>1</td> <td>09/26/19 19:43</td> <td>EPA 8260C</td> <td></td>	1,2-Dichlorobenzene	ND		0.500	ug/L	1	09/26/19 19:43	EPA 8260C	
Dichlorodifluoromethane	1,3-Dichlorobenzene	ND		0.500	ug/L	1	09/26/19 19:43	EPA 8260C	
1,1-Dichloroethane ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichloroethane (EDC) ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C cis-1,2-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,2-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichloropropane ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,3-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 82	1,4-Dichlorobenzene	ND		0.500	ug/L	1	09/26/19 19:43	EPA 8260C	
1,2-Dichloroethane (EDC) ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C cis-1,2-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,2-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichloropropane ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,3-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 2,2-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 82	Dichlorodifluoromethane	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
1,1-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C cis-1,2-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,2-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichloropropane ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,3-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C cis-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C Ethylbenzene 8.53 0.500 ug/L 1 09/26/19 19:43 EPA 8260C Hexachlorobutadiene ND 5.00 ug/L 1 09/26/19 19:43 EPA 8260	1,1-Dichloroethane	ND		0.400	ug/L	1	09/26/19 19:43	EPA 8260C	
cis-1,2-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,2-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichloropropane ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,3-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C cis-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C Ethylbenzene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C Ethylbenzene ND 5.00 ug/L 1 09/26/19 19:43 EPA 8260C 2-Hexanone ND	1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	09/26/19 19:43	EPA 8260C	
trans-1,2-Dichloroethene ND 0.400 ug/L 1 09/26/19 19:43 EPA 8260C 1,2-Dichloropropane ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,3-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C Ethylbenzene 8.53 0.500 ug/L 1 09/26/19 19:43 EPA 8260C Hexachlorobutadiene ND 5.00 ug/L 1 09/26/19 19:43 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/26/19 19:43 EPA 8260C 1.6opropylbenzene ND 10.0 ug/L 1 09/26/19 19:43 EPA 8260C 1.6opropylbenzene ND 10.0 ug/L 1 09/26/19 19:43 EPA 8260C 4-Isopropyltoluene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C	1,1-Dichloroethene	ND		0.400	ug/L	1	09/26/19 19:43	EPA 8260C	
1,2-Dichloropropane ND 0.500 ug/L 1 09/26/19 19:43 EPA 8260C 1,3-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C cis-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C Ethylbenzene 8.53 0.500 ug/L 1 09/26/19 19:43 EPA 8260C Ehexachlorobutadiene ND 5.00 ug/L 1 09/26/19 19:43 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/26/19 19:43 EPA 8260C Isopropylbenzene 1.44 1.00 ug/L 1 09/26/19 19:43 EPA 8260C <t< td=""><td>cis-1,2-Dichloroethene</td><td>ND</td><td></td><td>0.400</td><td>ug/L</td><td>1</td><td>09/26/19 19:43</td><td>EPA 8260C</td><td></td></t<>	cis-1,2-Dichloroethene	ND		0.400	ug/L	1	09/26/19 19:43	EPA 8260C	
1,3-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 2,2-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C cis-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C Ethylbenzene 8.53 0.500 ug/L 1 09/26/19 19:43 EPA 8260C Hexachlorobutadiene ND 5.00 ug/L 1 09/26/19 19:43 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/26/19 19:43 EPA 8260C Isopropylbenzene 1.44 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 4-Isopropyltoluene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C <td>trans-1,2-Dichloroethene</td> <td>ND</td> <td></td> <td>0.400</td> <td>ug/L</td> <td>1</td> <td>09/26/19 19:43</td> <td>EPA 8260C</td> <td></td>	trans-1,2-Dichloroethene	ND		0.400	ug/L	1	09/26/19 19:43	EPA 8260C	
2,2-Dichloropropane ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 1,1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C cis-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C Ethylbenzene 8.53 0.500 ug/L 1 09/26/19 19:43 EPA 8260C Hexachlorobutadiene ND 5.00 ug/L 1 09/26/19 19:43 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/26/19 19:43 EPA 8260C 1sopropylbenzene 1.44 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 4-Isopropyltoluene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C	1,2-Dichloropropane	ND		0.500	ug/L	1	09/26/19 19:43	EPA 8260C	
1,1-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C cis-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C Ethylbenzene 8.53 0.500 ug/L 1 09/26/19 19:43 EPA 8260C Hexachlorobutadiene ND 5.00 ug/L 1 09/26/19 19:43 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/26/19 19:43 EPA 8260C Isopropylbenzene 1.44 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 4-Isopropyltoluene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C	1,3-Dichloropropane	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
cis-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C Ethylbenzene 8.53 0.500 ug/L 1 09/26/19 19:43 EPA 8260C Hexachlorobutadiene ND 5.00 ug/L 1 09/26/19 19:43 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/26/19 19:43 EPA 8260C Isopropylbenzene 1.44 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 4-Isopropyltoluene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C	2,2-Dichloropropane	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
trans-1,3-Dichloropropene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C Ethylbenzene 8.53 0.500 ug/L 1 09/26/19 19:43 EPA 8260C Hexachlorobutadiene ND 5.00 ug/L 1 09/26/19 19:43 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/26/19 19:43 EPA 8260C Isopropylbenzene 1.44 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 4-Isopropyltoluene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C	1,1-Dichloropropene	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
Ethylbenzene 8.53 0.500 ug/L 1 09/26/19 19:43 EPA 8260C Hexachlorobutadiene ND 5.00 ug/L 1 09/26/19 19:43 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/26/19 19:43 EPA 8260C Isopropylbenzene 1.44 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 4-Isopropyltoluene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C	cis-1,3-Dichloropropene	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
Hexachlorobutadiene ND 5.00 ug/L 1 09/26/19 19:43 EPA 8260C 2-Hexanone ND 10.0 ug/L 1 09/26/19 19:43 EPA 8260C Isopropylbenzene 1.44 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 4-Isopropyltoluene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C	trans-1,3-Dichloropropene	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
2-Hexanone ND 10.0 ug/L 1 09/26/19 19:43 EPA 8260C Isopropylbenzene 1.44 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 4-Isopropyltoluene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C	Ethylbenzene	8.53		0.500	ug/L	1	09/26/19 19:43	EPA 8260C	
2-Hexanone ND 10.0 ug/L 1 09/26/19 19:43 EPA 8260C Isopropylbenzene 1.44 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 4-Isopropyltoluene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C	Hexachlorobutadiene	ND		5.00	ug/L	1	09/26/19 19:43	EPA 8260C	
Isopropylbenzene 1.44 1.00 ug/L 1 09/26/19 19:43 EPA 8260C 4-Isopropyltoluene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C	2-Hexanone	ND		10.0	-	1	09/26/19 19:43	EPA 8260C	
4-Isopropyltoluene ND 1.00 ug/L 1 09/26/19 19:43 EPA 8260C	Isopropylbenzene	1.44		1.00		1	09/26/19 19:43	EPA 8260C	
1 17	1 11	ND		1.00	-	1	09/26/19 19:43	EPA 8260C	
	1 17	ND		5.00	ug/L	1	09/26/19 19:43	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmeinghini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP05 (A9I0744-02RE1)				Matrix: Wate	r	Batch:	9091347	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	09/26/19 19:43	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	09/26/19 19:43	EPA 8260C	
n-Propylbenzene	4.23		0.500	ug/L	1	09/26/19 19:43	EPA 8260C	
Styrene	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	09/26/19 19:43	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	09/26/19 19:43	EPA 8260C	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	09/26/19 19:43	EPA 8260C	
Toluene	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	09/26/19 19:43	EPA 8260C	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	09/26/19 19:43	EPA 8260C	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	09/26/19 19:43	EPA 8260C	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	09/26/19 19:43	EPA 8260C	
Trichloroethene (TCE)	ND		0.400	ug/L	1	09/26/19 19:43	EPA 8260C	
Trichlorofluoromethane	ND		2.00	ug/L	1	09/26/19 19:43	EPA 8260C	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
1,3,5-Trimethylbenzene	5.49		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
Vinyl chloride	ND		0.400	ug/L	1	09/26/19 19:43	EPA 8260C	
m,p-Xylene	7.68		1.00	ug/L	1	09/26/19 19:43	EPA 8260C	
o-Xylene	ND		0.500	ug/L	1	09/26/19 19:43	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 95 %	Limits: 80-120 %	1	09/26/19 19:43	EPA 8260C	
Toluene-d8 (Surr)			103 %	80-120 %	1	09/26/19 19:43	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	1	09/26/19 19:43	EPA 8260C	
EQ-092019 (A9I0744-03)				Matrix: Wate	r	Batch:	9091264	
Acetone	ND		20.0	ug/L	1	09/25/19 17:27	EPA 8260C	
Acrylonitrile	ND		2.00	ug/L	1	09/25/19 17:27	EPA 8260C	
Benzene	ND		0.200	ug/L	1	09/25/19 17:27	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	09/25/19 17:27	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
Bromoform	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
Bromomethane	ND		5.00	ug/L	1	09/25/19 17:27	EPA 8260C	
2-Butanone (MEK)	ND		10.0	ug/L	1	09/25/19 17:27	EPA 8260C	
n-Butylbenzene	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
sec-Butylbenzene	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
tert-Butylbenzene	ND		1.00	ug/L ug/L	1	09/25/19 17:27	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmeinghini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0744 - 10 07 19 1649

ANALYTICAL SAMPLE RESULTS

	Vo	olatile Organ	nic Compound	ds by EPA 8	3260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
EQ-092019 (A9I0744-03)				Matrix: W	ater	Batch:	9091264	
Carbon disulfide	ND		10.0	ug/L	1	09/25/19 17:27	EPA 8260C	
Carbon tetrachloride	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
Chlorobenzene	ND		0.500	ug/L	1	09/25/19 17:27	EPA 8260C	
Chloroethane	ND		5.00	ug/L	1	09/25/19 17:27	EPA 8260C	
Chloroform	5.68		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
Chloromethane	ND		5.00	ug/L	1	09/25/19 17:27	EPA 8260C	
2-Chlorotoluene	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
4-Chlorotoluene	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
Dibromochloromethane	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	09/25/19 17:27	EPA 8260C	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	09/25/19 17:27	EPA 8260C	
Dibromomethane	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	09/25/19 17:27	EPA 8260C	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	09/25/19 17:27	EPA 8260C	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	09/25/19 17:27	EPA 8260C	
Dichlorodifluoromethane	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
1,1-Dichloroethane	ND		0.400	ug/L	1	09/25/19 17:27	EPA 8260C	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	09/25/19 17:27	EPA 8260C	
1,1-Dichloroethene	ND		0.400	ug/L	1	09/25/19 17:27	EPA 8260C	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	09/25/19 17:27	EPA 8260C	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	09/25/19 17:27	EPA 8260C	
1,2-Dichloropropane	ND		0.500	ug/L	1	09/25/19 17:27	EPA 8260C	
1,3-Dichloropropane	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
2,2-Dichloropropane	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
1,1-Dichloropropene	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	09/25/19 17:27	EPA 8260C	
Hexachlorobutadiene	ND		5.00	ug/L	1	09/25/19 17:27	EPA 8260C	
2-Hexanone	ND		10.0	ug/L	1	09/25/19 17:27	EPA 8260C	
Isopropylbenzene	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
4-Isopropyltoluene	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
Methylene chloride	ND		5.00	ug/L	1	09/25/19 17:27	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	09/25/19 17:27	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
Naphthalene	ND		2.00	ug/L ug/L	1	09/25/19 17:27	EPA 8260C	
n-Propylbenzene	ND ND		0.500	ug/L ug/L	1	09/25/19 17:27	EPA 8260C	
Styrene	ND ND		1.00	ug/L ug/L	1	09/25/19 17:27	EPA 8260C	
*						09/25/19 17:27	EPA 8260C EPA 8260C	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	09/23/19 17:27	EPA 8200C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
						<u> </u>		1,000
EQ-092019 (A9I0744-03)				Matrix: Wate	er .		9091264	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	09/25/19 17:27	EPA 8260C	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	09/25/19 17:27	EPA 8260C	
Toluene	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	09/25/19 17:27	EPA 8260C	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	09/25/19 17:27	EPA 8260C	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	09/25/19 17:27	EPA 8260C	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	09/25/19 17:27	EPA 8260C	
Trichloroethene (TCE)	ND		0.400	ug/L	1	09/25/19 17:27	EPA 8260C	
Trichlorofluoromethane	ND		2.00	ug/L	1	09/25/19 17:27	EPA 8260C	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
Vinyl chloride	ND		0.400	ug/L	1	09/25/19 17:27	EPA 8260C	
m,p-Xylene	ND		1.00	ug/L	1	09/25/19 17:27	EPA 8260C	
o-Xylene	ND		0.500	ug/L	1	09/25/19 17:27	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 80-120 %	1	09/25/19 17:27	EPA 8260C	
Toluene-d8 (Surr)			103 %	80-120 %	1	09/25/19 17:27	EPA 8260C	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	09/25/19 17:27	EPA 8260C	
				Matrix: Wate	er	Batch:	9091264	
Acetone	ND		20.0	ug/L	1	09/25/19 16:33	EPA 8260C	
Acrylonitrile	ND		2.00	ug/L	1	09/25/19 16:33	EPA 8260C	
Benzene	ND		0.200	ug/L	1	09/25/19 16:33	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	09/25/19 16:33	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
Bromoform	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
Bromomethane	ND		5.00	ug/L	1	09/25/19 16:33	EPA 8260C	
2-Butanone (MEK)	ND		10.0	ug/L	1	09/25/19 16:33	EPA 8260C	
n-Butylbenzene	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
sec-Butylbenzene	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
tert-Butylbenzene	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
Carbon disulfide	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
Carbon tetrachloride	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
Chlorobenzene	ND ND		0.500	ug/L ug/L	1	09/25/19 16:33	EPA 8260C	
Chloroethane	ND ND				1	09/25/19 16:33	EPA 8260C EPA 8260C	
			5.00	ug/L	-			
Chloroform	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
Chloromethane	ND		5.00	ug/L	1	09/25/19 16:33	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0744 - 10 07 19 1649

ANALYTICAL SAMPLE RESULTS

		<u>~</u>	ic Compound	, -	_,,,	Б.:		
Analyta	Sample	Detection Limit	Reporting Limit	I I:4-	D:14:	Date Analyzad	Mothe J.Df	NT-4
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TB-092319-1 (A9I0744-04)				Matrix: Wa	ater	Batch:	9091264	
2-Chlorotoluene	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
4-Chlorotoluene	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
Dibromochloromethane	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	09/25/19 16:33	EPA 8260C	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	09/25/19 16:33	EPA 8260C	
Dibromomethane	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	09/25/19 16:33	EPA 8260C	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	09/25/19 16:33	EPA 8260C	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	09/25/19 16:33	EPA 8260C	
Dichlorodifluoromethane	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
1,1-Dichloroethane	ND		0.400	ug/L	1	09/25/19 16:33	EPA 8260C	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	09/25/19 16:33	EPA 8260C	
1,1-Dichloroethene	ND		0.400	ug/L	1	09/25/19 16:33	EPA 8260C	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	09/25/19 16:33	EPA 8260C	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	09/25/19 16:33	EPA 8260C	
1,2-Dichloropropane	ND		0.500	ug/L	1	09/25/19 16:33	EPA 8260C	
1,3-Dichloropropane	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
2,2-Dichloropropane	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
1,1-Dichloropropene	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	09/25/19 16:33	EPA 8260C	
Hexachlorobutadiene	ND		5.00	ug/L	1	09/25/19 16:33	EPA 8260C	
2-Hexanone	ND		10.0	ug/L	1	09/25/19 16:33	EPA 8260C	
Isopropylbenzene	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
4-Isopropyltoluene	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
Methylene chloride	ND		5.00	ug/L	1	09/25/19 16:33	EPA 8260C	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	09/25/19 16:33	EPA 8260C	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
Naphthalene	ND		2.00	ug/L	1	09/25/19 16:33	EPA 8260C	
n-Propylbenzene	ND		0.500	ug/L	1	09/25/19 16:33	EPA 8260C	
Styrene	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	09/25/19 16:33	EPA 8260C	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	09/25/19 16:33	EPA 8260C	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	09/25/19 16:33	EPA 8260C	
Toluene	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	09/25/19 16:33	EPA 8260C	
1,2,4-Trichlorobenzene	ND		2.00	ug/L ug/L	1	09/25/19 16:33	EPA 8260C	
1,1,1-Trichloroethane	ND		0.400	ug/L ug/L	1	09/25/19 16:33	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smeinghini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	30C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
ГВ-092319-1 (A9I0744-04)				Matrix: Wate	er	Batch:		
1,1,2-Trichloroethane	ND		0.500	ug/L	1	09/25/19 16:33	EPA 8260C	
Trichloroethene (TCE)	ND		0.400	ug/L	1	09/25/19 16:33	EPA 8260C	
Trichlorofluoromethane	ND		2.00	ug/L	1	09/25/19 16:33	EPA 8260C	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
Vinyl chloride	ND		0.400	ug/L	1	09/25/19 16:33	EPA 8260C	
m,p-Xylene	ND		1.00	ug/L	1	09/25/19 16:33	EPA 8260C	
o-Xylene	ND		0.500	ug/L	1	09/25/19 16:33	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 80-120 %	5 1	09/25/19 16:33	EPA 8260C	
Toluene-d8 (Surr)			104 %	80-120 %	5 1	09/25/19 16:33	EPA 8260C	
4-Bromofluorobenzene (Surr)			98 %	80-120 %	5 1	09/25/19 16:33	EPA 8260C	

Apex Laboratories

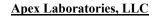
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649


ANALYTICAL SAMPLE RESULTS

	Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM										
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
GP02 (A9I0744-01)				Matrix: Wate	er	Batch	ı: 9091255				
Acenaphthene	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Acenaphthylene	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Anthracene	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Benz(a)anthracene	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Benzo(a)pyrene	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Benzo(b)fluoranthene	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Benzo(k)fluoranthene	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Benzo(g,h,i)perylene	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Chrysene	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Dibenz(a,h)anthracene	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Dibenzofuran	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Fluoranthene	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Fluorene	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Indeno(1,2,3-cd)pyrene	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
1-Methylnaphthalene	3.41		0.0889	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
2-Methylnaphthalene	5.17		0.0889	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Naphthalene	9.89		0.0889	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Phenanthrene	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Pyrene	ND		0.0444	ug/L	1	09/26/19 11:28	EPA 8270D (SIM)				
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 71 %	Limits: 44-120 %	5 I	09/26/19 11:28	EPA 8270D (SIM)				
p-Terphenyl-d14 (Surr)			80 %	50-133 %	5 1	09/26/19 11:28	EPA 8270D (SIM)				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: <u>Lampson</u>
Project Number: **185750581**Project Manager: **Len Farr**

Report ID: A9I0744 - 10 07 19 1649

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 20	0.8 (ICPMS)			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP02 (A9I0744-01)				Matrix: W	ater			
Batch: 9091375								
Barium	826		1.00	ug/L	1	09/30/19 22:44	EPA 200.8	
Cadmium	0.379		0.200	ug/L	1	09/30/19 22:44	EPA 200.8	
Chromium	320		1.00	ug/L	1	09/30/19 22:44	EPA 200.8	
Lead	26.9		0.200	ug/L	1	09/30/19 22:44	EPA 200.8	
Mercury	1.29		0.0800	ug/L	1	09/30/19 22:44	EPA 200.8 (Hg)	
Selenium	ND		1.00	ug/L	1	09/30/19 22:44	EPA 200.8	
Silver	0.216		0.200	ug/L	1	09/30/19 22:44	EPA 200.8	
GP02 (A9I0744-01RE1)				Matrix: W	ater			
Batch: 9091375								
Arsenic	17.7		10.0	ug/L	10	10/01/19 19:11	EPA 200.8	
GP05 (A9I0744-02)				Matrix: W	ater			
Batch: 9091375								
Cadmium	1.66		0.200	ug/L	1	09/30/19 22:48	EPA 200.8	
Lead	144		0.200	ug/L	1	09/30/19 22:48	EPA 200.8	
Selenium	1.66		1.00	ug/L	1	09/30/19 22:48	EPA 200.8	
Silver	1.58		0.200	ug/L	1	09/30/19 22:48	EPA 200.8	
GP05 (A9I0744-02RE1)				Matrix: W	ater			
Batch: 9091375								
Arsenic	106		10.0	ug/L	10	10/01/19 19:15	EPA 200.8	
Barium	4620		10.0	ug/L	10	10/01/19 19:15	EPA 200.8	
Chromium	1590		10.0	ug/L	10	10/01/19 19:15	EPA 200.8	
Mercury	11.0		0.800	ug/L	10	10/01/19 19:15	EPA 200.8 (Hg)	
EQ-092019 (A9I0744-03)				Matrix: W	ater			
Batch: 9091375								
Barium	ND		1.00	ug/L	1	09/30/19 22:53	EPA 200.8	
Cadmium	ND		0.200	ug/L	1	09/30/19 22:53	EPA 200.8	
Chromium	ND		1.00	ug/L	1	09/30/19 22:53	EPA 200.8	
Lead	ND		0.200	ug/L	1	09/30/19 22:53	EPA 200.8	
Mercury	ND		0.0800	ug/L	1	09/30/19 22:53	EPA 200.8 (Hg)	
Selenium	ND		1.00	ug/L	1	09/30/19 22:53	EPA 200.8	
Silver	ND		0.200	ug/L	1	09/30/19 22:53	EPA 200.8	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 20	0.8 (ICPMS	5)			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
EQ-092019 (A9I0744-03RE1)				Matrix: W	ater			
Batch: 9091375								
Arsenic	ND		1.00	ug/L	1	10/01/19 19:20	EPA 200.8	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

ANALYTICAL SAMPLE RESULTS

		Dissolved N	letals by EPA	200.8 (ICPI	VIS)			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
GP02 (A910744-01)				Matrix: W	ater			
Batch: 9091376								
Barium	110		1.00	ug/L	1	10/01/19 00:07	EPA 200.8 (Diss)	
Cadmium	ND		0.200	ug/L	1	10/01/19 00:07	EPA 200.8 (Diss)	
Chromium	ND		1.00	ug/L	1	10/01/19 00:07	EPA 200.8 (Diss)	
Lead	0.238		0.200	ug/L	1	10/01/19 00:07	EPA 200.8 (Diss)	
Mercury	ND		0.0800	ug/L	1	10/01/19 00:07	EPA 200.8 (Hg)	
Selenium	ND		1.00	ug/L	1	10/01/19 00:07	EPA 200.8 (Diss)	
Silver	ND		0.200	ug/L	1	10/01/19 00:07	EPA 200.8 (Diss)	
GP02 (A910744-01RE1)				Matrix: W	ater			
Batch: 9091376								
Arsenic	2.15		1.00	ug/L	1	10/01/19 20:29	EPA 200.8 (Diss)	
GP05 (A9I0744-02)				Matrix: W	ater			
Batch: 9091384								
Arsenic	36.6		10.0	ug/L	10	10/02/19 20:37	EPA 200.8 (Diss)	
Barium	549		10.0	ug/L	10	10/02/19 20:37	EPA 200.8 (Diss)	Q-42
Cadmium	ND		2.00	ug/L	10	10/02/19 20:37	EPA 200.8 (Diss)	R-04
Chromium	277		10.0	ug/L	10	10/02/19 20:37	EPA 200.8 (Diss)	Q-42
Lead	19.2		2.00	ug/L	10	10/02/19 20:37	EPA 200.8 (Diss)	
Mercury	1.33		0.800	ug/L	10	10/02/19 20:37	EPA 200.8 (Hg)	
Selenium	ND		10.0	ug/L	10	10/02/19 20:37	EPA 200.8 (Diss)	R-04
Silver	ND		2.00	ug/L	10	10/02/19 20:37	EPA 200.8 (Diss)	R-04
EQ-092019 (A9I0744-03)				Matrix: W	ater			
Batch: 9091376								
Barium	ND		1.00	ug/L	1	10/01/19 00:12	EPA 200.8 (Diss)	
Cadmium	ND		0.200	ug/L	1	10/01/19 00:12	EPA 200.8 (Diss)	
Chromium	ND		1.00	ug/L	1	10/01/19 00:12	EPA 200.8 (Diss)	
Lead	ND		0.200	ug/L	1	10/01/19 00:12	EPA 200.8 (Diss)	
Mercury	ND		0.0800	ug/L	1	10/01/19 00:12	EPA 200.8 (Hg)	
Selenium	ND		1.00	ug/L	1	10/01/19 00:12	EPA 200.8 (Diss)	
Silver	ND		0.200	ug/L	1	10/01/19 00:12	EPA 200.8 (Diss)	
EQ-092019 (A9I0744-03RE1)				Matrix: W	ater			
Batch: 9091376								
Arsenic	ND		1.00	ug/L	1	10/01/19 20:34	EPA 200.8 (Diss)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0744 - 10 07 19 1649

ANALYTICAL SAMPLE RESULTS

		Dissolved M	letals by EPA	200.8 (ICPI	MS)			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: <u>Lampson</u>
Project Number: **185750581**Project Manager: **Len Farr**

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	r Oil Hyd	rocarbor	s by NW	ГРН-Dx						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	No	tes
Batch 9091399 - EPA 3510C	(Fuels/Acid	l Ext.)					Wat	er					
Blank (9091399-BLK1)		Prepared	: 09/27/19 12:	50 Analyz	ed: 09/27/1	9 20:33							
NWTPH-Dx													
Diesel	ND		0.182	mg/L	1								
Oil	ND		0.364	mg/L	1								
Surr: o-Terphenyl (Surr)		Reco	very: 116 %	Limits: 50)-150 %	Dilı	ution: 1x					Q-41	
LCS (9091399-BS1)		Prepared	: 09/27/19 12:	50 Analyz	ed: 09/27/1	9 20:56							
NWTPH-Dx													
Diesel	1.18		0.200	mg/L	1	1.25		94	58 - 115%				
Surr: o-Terphenyl (Surr)		Reco	very: 120 %	Limits: 50	0-150 %	Dilı	ution: 1x					Q-41	
LCS Dup (9091399-BSD1)		Prepared	: 09/27/19 12:	50 Analyz	ed: 09/27/1	9 21:20							Q-1
NWTPH-Dx		<u> </u>											
Diesel	1.21		0.200	mg/L	1	1.25		97	58 - 115%	3	20%		
Surr: o-Terphenyl (Surr)		Reco	very: 120 %	Limits: 50	0-150 %	Dili	ution: 1x					Q-41	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range F	lydrocarbo	ns (Benz	ene throu	ugh Naph	thalene) l	by NWTF	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091264 - EPA 5030B							Wat	er				
Blank (9091264-BLK1)		Prepared	: 09/25/19 09:	00 Analyz	ed: 09/25/19	9 12:02						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 97 %	Limits: 50	-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			91 %	50	-150 %		"					
LCS (9091264-BS2)		Prepared	: 09/25/19 09:	00 Analyz	ed: 09/25/19	9 11:35						
NWTPH-Gx (MS)												
Gasoline Range Organics	0.500		0.100	mg/L	1	0.500		100	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 94 %	Limits: 50	-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			115 %	50	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range H	lydrocarbo	ns (Benz	ene thro	ıgh Naph	thalene)	by NWTF	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091347 - EPA 5030B							Wat	er				
Blank (9091347-BLK1)		Prepared:	: 09/26/19 15:	50 Analyz	ed: 09/26/19	9 18:22						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 98 %	Limits: 50	-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			95 %	50	-150 %		"					
LCS (9091347-BS2)		Prepared:	: 09/26/19 15:	50 Analyz	ed: 09/26/19	9 17:55						
NWTPH-Gx (MS)												
Gasoline Range Organics	0.513		0.100	mg/L	1	0.500		103	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 100 %	Limits: 50	-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			120 %	50	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
		Detection	Reporting	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Spike	Source		% REC		RPD	
Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC		RPD	Limit	Notes
Batch 9091264 - EPA 5030B							Wat	er				
Blank (9091264-BLK1)		Prepared	1: 09/25/19 09:0	00 Analyz	zed: 09/25/1	9 12:02						
EPA 8260C												
Acetone	ND		20.0	ug/L	1							
Acrylonitrile	ND		2.00	ug/L	1							
Benzene	ND		0.200	ug/L	1							
Bromobenzene	ND		0.500	ug/L	1							
Bromochloromethane	ND		1.00	ug/L	1							
Bromodichloromethane	ND		1.00	ug/L	1							
Bromoform	ND		1.00	ug/L	1							
Bromomethane	ND		5.00	ug/L	1							
2-Butanone (MEK)	ND		10.0	ug/L	1							
n-Butylbenzene	ND		1.00	ug/L	1							
sec-Butylbenzene	ND		1.00	ug/L	1							
tert-Butylbenzene	ND		1.00	ug/L	1							
Carbon disulfide	ND		10.0	ug/L	1							
Carbon tetrachloride	ND		1.00	ug/L	1							
Chlorobenzene	ND		0.500	ug/L	1							
Chloroethane	ND		5.00	ug/L	1							
Chloroform	ND		1.00	ug/L	1							
Chloromethane	ND		5.00	ug/L	1							
2-Chlorotoluene	ND		1.00	ug/L ug/L	1							
4-Chlorotoluene	ND		1.00	ug/L	1							
Dibromochloromethane	ND		1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L ug/L	1							
Dibromomethane	ND ND		1.00	ug/L ug/L	1							
1,2-Dichlorobenzene	ND ND		0.500	ug/L ug/L	1							
1,3-Dichlorobenzene	ND ND		0.500	ug/L ug/L	1							
1,4-Dichlorobenzene	ND ND		0.500	ug/L ug/L	1							
<i>'</i>			1.00	-								
Dichlorodifluoromethane	ND			ug/L	1							
1,1-Dichloroethane	ND		0.400	ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1							
1,1-Dichloroethene	ND		0.400	ug/L	1							
cis-1,2-Dichloroethene	ND		0.400	ug/L	1							
trans-1,2-Dichloroethene	ND		0.400	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Orç	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091264 - EPA 5030B							Wat	er				
Blank (9091264-BLK1)		Prepared	: 09/25/19 09:0	00 Analyz	ed: 09/25/19	9 12:02						
1,2-Dichloropropane	ND		0.500	ug/L	1							
1,3-Dichloropropane	ND		1.00	ug/L	1							
2,2-Dichloropropane	ND		1.00	ug/L	1							
1,1-Dichloropropene	ND		1.00	ug/L	1							
cis-1,3-Dichloropropene	ND		1.00	ug/L	1							
trans-1,3-Dichloropropene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Hexachlorobutadiene	ND		5.00	ug/L	1							
2-Hexanone	ND		10.0	ug/L	1							
Isopropylbenzene	ND		1.00	ug/L	1							
4-Isopropyltoluene	ND		1.00	ug/L	1							
Methylene chloride	ND		5.00	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		2.00	ug/L	1							
n-Propylbenzene	ND		0.500	ug/L	1							
Styrene	ND		1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1							
Tetrachloroethene (PCE)	ND		0.400	ug/L	1							
Toluene	ND		1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND		2.00	ug/L ug/L	1							
1,2,4-Trichlorobenzene	ND		2.00	ug/L ug/L	1							
1,1,1-Trichloroethane	ND		0.400	ug/L	1							
1,1,2-Trichloroethane	ND		0.500	ug/L ug/L	1							
Trichloroethene (TCE)	ND		0.400	ug/L ug/L	1							
Trichlorofluoromethane	ND		2.00	ug/L	1							
1,2,3-Trichloropropane	ND		1.00	ug/L ug/L	1							
1,1,2-Trichloro-1,2,2-trifluoroet	ND		2.00	ug/L ug/L	1					-		
hane (Freon-113)	עאו		2.00	ug/L	1							
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1							
Vinyl chloride	ND		0.400	ug/L	1							
n,p-Xylene	ND		1.00	ug/L ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091264 - EPA 5030B							Wat	er				
Blank (9091264-BLK1)		Prepared	: 09/25/19 09:	00 Analyz	ed: 09/25/1	9 12:02						
o-Xylene	ND		0.500	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 98 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			104 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	1-120 %		"					
LCS (9091264-BS1)		Prepared	: 09/25/19 09:	00 Analyz	red: 09/25/1	9 11:08						
EPA 8260C												
Acetone	39.1		20.0	ug/L	1	40.0		98	80 - 120%			
Acrylonitrile	20.0		2.00	ug/L	1	20.0		100	80 - 120%			
Benzene	19.9		0.200	ug/L	1	20.0		99	80 - 120%			
Bromobenzene	21.1		0.500	ug/L	1	20.0		105	80 - 120%			
Bromochloromethane	22.3		1.00	ug/L	1	20.0		112	80 - 120%			
Bromodichloromethane	20.9		1.00	ug/L	1	20.0		105	80 - 120%			
Bromoform	22.1		1.00	ug/L	1	20.0		111	80 - 120%			
Bromomethane	23.4		5.00	ug/L	1	20.0		117	80 - 120%			
-Butanone (MEK)	42.5		10.0	ug/L	1	40.0		106	80 - 120%			
-Butylbenzene	22.9		1.00	ug/L	1	20.0		115	80 - 120%			
ec-Butylbenzene	21.0		1.00	ug/L	1	20.0		105	80 - 120%			
ert-Butylbenzene	20.6		1.00	ug/L	1	20.0		103	80 - 120%			
Carbon disulfide	21.4		10.0	ug/L	1	20.0		107	80 - 120%			
Carbon tetrachloride	23.8		1.00	ug/L	1	20.0		119	80 - 120%			
Chlorobenzene	20.5		0.500	ug/L	1	20.0		102	80 - 120%			
Chloroethane	20.4		5.00	ug/L	1	20.0		102	80 - 120%			
Chloroform	20.3		1.00	ug/L	1	20.0		101	80 - 120%			
Chloromethane	21.1		5.00	ug/L	1	20.0		105	80 - 120%			
-Chlorotoluene	20.2		1.00	ug/L	1	20.0		101	80 - 120%			
-Chlorotoluene	20.8		1.00	ug/L	1	20.0		104	80 - 120%			
Dibromochloromethane	21.1		1.00	ug/L	1	20.0		105	80 - 120%			
,2-Dibromo-3-chloropropane	21.4		5.00	ug/L	1	20.0		107	80 - 120%			
,2-Dibromoethane (EDB)	21.2		0.500	ug/L	1	20.0		106	80 - 120%			
Dibromomethane	20.9		1.00	ug/L	1	20.0		105	80 - 120%			
,2-Dichlorobenzene	21.0		0.500	ug/L	1	20.0		105	80 - 120%			
,3-Dichlorobenzene	21.5		0.500	ug/L	1	20.0		107	80 - 120%			
,4-Dichlorobenzene	21.0		0.500	ug/L	1	20.0		105	80 - 120%			

Apex Laboratories

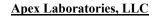
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa A Zmeinghini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649


QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Orç	ganic Co	mpounds	by EPA 8	260C					
		Detection	Reporting			Spike	Source		% REC		RPD	
Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC		RPD	Limit	Notes
Batch 9091264 - EPA 5030B							Wate	er				
LCS (9091264-BS1)		Prepared	1: 09/25/19 09:0	00 Analyz	zed: 09/25/19	9 11:08						
Dichlorodifluoromethane	22.0		1.00	ug/L	1	20.0		110	80 - 120%			
1,1-Dichloroethane	21.5		0.400	ug/L	1	20.0		107	80 - 120%			
1,2-Dichloroethane (EDC)	21.1		0.400	ug/L	1	20.0		106	80 - 120%			
1,1-Dichloroethene	22.1		0.400	ug/L	1	20.0		111	80 - 120%			
cis-1,2-Dichloroethene	21.3		0.400	ug/L	1	20.0		107	80 - 120%			
trans-1,2-Dichloroethene	21.4		0.400	ug/L	1	20.0		107	80 - 120%			
1,2-Dichloropropane	21.1		0.500	ug/L	1	20.0		106	80 - 120%			
1,3-Dichloropropane	20.8		1.00	ug/L	1	20.0		104	80 - 120%			
2,2-Dichloropropane	27.3		1.00	ug/L	1	20.0		137	80 - 120%			Q-56
1,1-Dichloropropene	21.1		1.00	ug/L	1	20.0		106	80 - 120%			-
cis-1,3-Dichloropropene	21.6		1.00	ug/L	1	20.0		108	80 - 120%			
trans-1,3-Dichloropropene	21.8		1.00	ug/L	1	20.0		109	80 - 120%			
Ethylbenzene	20.3		0.500	ug/L	1	20.0		102	80 - 120%			
Hexachlorobutadiene	23.7		5.00	ug/L	1	20.0		119	80 - 120%			
2-Hexanone	43.3		10.0	ug/L	1	40.0		108	80 - 120%			
Isopropylbenzene	20.8		1.00	ug/L	1	20.0		104	80 - 120%			
4-Isopropyltoluene	21.5		1.00	ug/L	1	20.0		108	80 - 120%			
Methylene chloride	21.3		5.00	ug/L	1	20.0			80 - 120%			
4-Methyl-2-pentanone (MiBK)	41.8		10.0	ug/L	1	40.0		105	80 - 120%			
Methyl tert-butyl ether (MTBE)	20.7		1.00	ug/L	1	20.0		104	80 - 120%			
Naphthalene	22.3		2.00	ug/L	1	20.0		111	80 - 120%			
n-Propylbenzene	21.4		0.500	ug/L	1	20.0		107	80 - 120%			
Styrene	20.5		1.00	ug/L	1	20.0			80 - 120%			
1,1,1,2-Tetrachloroethane	20.5		0.400	ug/L	1	20.0			80 - 120%			
1,1,2,2-Tetrachloroethane	23.7		0.500	ug/L ug/L	1	20.0		118	80 - 120%			
Tetrachloroethene (PCE)	21.0		0.400	ug/L	1	20.0		105	80 - 120%			
Toluene	19.6		1.00	ug/L ug/L	1	20.0		98	80 - 120%			
1,2,3-Trichlorobenzene	21.9		2.00	ug/L ug/L	1	20.0			80 - 120%			
1,2,4-Trichlorobenzene	22.3		2.00	ug/L ug/L	1	20.0		112	80 - 120%			
1,1,1-Trichloroethane	20.3		0.400	ug/L ug/L	1	20.0			80 - 120%			
1,1,2-Trichloroethane	20.3		0.500	ug/L ug/L	1	20.0			80 - 120%			
Trichloroethene (TCE)	20.1		0.400	ug/L ug/L	1	20.0		101	80 - 120%			
Trichlorofluoromethane	23.7		2.00	ug/L ug/L	1	20.0		118	80 - 120%			
1,2,3-Trichloropropane	21.8		1.00	ug/L	1	20.0		109	80 - 120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% RE	% REC C Limits	RPD	RPD Limit	Notes
Batch 9091264 - EPA 5030B							Wat	ər				
LCS (9091264-BS1)		Prepared	: 09/25/19 09:	00 Analyz	ed: 09/25/1	9 11:08						
,1,2-Trichloro-1,2,2-trifluoroet nane (Freon-113)	22.2		2.00	ug/L	1	20.0		111	80 - 120%			
,2,4-Trimethylbenzene	22.1		1.00	ug/L	1	20.0		110	80 - 120%			
,3,5-Trimethylbenzene	22.0		1.00	ug/L	1	20.0		110	80 - 120%			
/inyl chloride	23.0		0.400	ug/L	1	20.0		115	80 - 120%			
n,p-Xylene	40.9		1.00	ug/L	1	40.0		102	80 - 120%			
o-Xylene	19.9		0.500	ug/L	1	20.0		100	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 99 %	Limits: 80	120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
Matrix Spike (9091264-MS1)		Prepared	: 09/25/19 12:	01 Analyz	ed: 09/25/1	9 20:36						
QC Source Sample: GP02 (A9107-	<u>44-01)</u>											
EPA 8260C												
Acetone	425		200	ug/L	10	400	ND	106	39 - 160%			
Acrylonitrile	198		20.0	ug/L	10	200	ND	99	63 - 135%			
Benzene	217		2.00	ug/L	10	200	5.70	106	79 - 120%			
Bromobenzene	211		5.00	ug/L	10	200	ND	106	80 - 120%			
Bromochloromethane	236		10.0	ug/L	10	200	ND	118	78 - 123%			
Bromodichloromethane	212		10.0	ug/L	10	200	ND	106	79 - 125%			
Bromoform	219		10.0	ug/L	10	200	ND	110	66 - 130%			
Bromomethane	264		50.0	ug/L	10	200	ND	132	53 - 141%			
2-Butanone (MEK)	428		100	ug/L	10	400	ND	107	56 - 143%			
-Butylbenzene	252		10.0	ug/L	10	200	ND	126	75 - 128%			
ec-Butylbenzene	226		10.0	ug/L	10	200	ND	113	77 - 126%			
ert-Butylbenzene	222		10.0	ug/L	10	200	ND	111	78 - 124%			
Carbon disulfide	238		100	ug/L	10	200	ND	119	64 - 133%			
Carbon tetrachloride	259		10.0	ug/L	10	200	ND	129	72 - 136%			
Chlorobenzene	211		5.00	ug/L	10	200	ND	106	80 - 120%			
Chloroethane	244		50.0	ug/L	10	200	ND	122	60 - 138%			
Chloroform	211		10.0	ug/L	10	200	ND	105	79 - 124%			
Chloromethane	227		50.0	ug/L	10	200	ND	114	50 - 139%			
-Chlorotoluene	211		10.0	ug/L	10	200	ND	105	79 - 122%			
	219		10.0	ug/L	10	200	ND	109	78 - 122%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghine

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Orç	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091264 - EPA 5030B							Wate	er				
Matrix Spike (9091264-MS1)		Prepared	: 09/25/19 12:0	01 Analyz	zed: 09/25/1	9 20:36						
QC Source Sample: GP02 (A9I07	44-01)											
Dibromochloromethane	207		10.0	ug/L	10	200	ND	104	74 - 126%			
1,2-Dibromo-3-chloropropane	206		50.0	ug/L	10	200	ND	103	62 - 128%			
1,2-Dibromoethane (EDB)	216		5.00	ug/L	10	200	ND	108	77 - 121%			
Dibromomethane	211		10.0	ug/L	10	200	ND	106	79 - 123%			
1,2-Dichlorobenzene	211		5.00	ug/L	10	200	ND	105	80 - 120%			
1,3-Dichlorobenzene	226		5.00	ug/L	10	200	ND	113	80 - 120%			
1,4-Dichlorobenzene	215		5.00	ug/L	10	200	ND	107	79 - 120%			
Dichlorodifluoromethane	249		10.0	ug/L	10	200	ND	124	32 - 152%			
1,1-Dichloroethane	225		4.00	ug/L	10	200	ND	113	77 - 125%			
,2-Dichloroethane (EDC)	362		4.00	ug/L	10	200	148	107	73 - 128%			
,1-Dichloroethene	244		4.00	ug/L	10	200	ND	122	71 - 131%			
eis-1,2-Dichloroethene	222		4.00	ug/L	10	200	ND	111	78 - 123%			
rans-1,2-Dichloroethene	231		4.00	ug/L	10	200	ND	116	75 - 124%			
1,2-Dichloropropane	223		5.00	ug/L	10	200	ND	112	78 - 122%			
1,3-Dichloropropane	214		10.0	ug/L	10	200	ND	107	80 - 120%			
2,2-Dichloropropane	255		10.0	ug/L	10	200	ND	127	60 - 139%			Q-54a
1,1-Dichloropropene	229		10.0	ug/L	10	200	ND	114	79 - 125%			
cis-1,3-Dichloropropene	213		10.0	ug/L	10	200	ND	106	75 - 124%			
rans-1,3-Dichloropropene	216		10.0	ug/L	10	200	ND	108	73 - 127%			
Ethylbenzene	256		5.00	ug/L	10	200	34.8	111	79 - 121%			
Hexachlorobutadiene	248		50.0	ug/L	10	200	ND		66 - 134%			
2-Hexanone	430		100	ug/L	10	400	ND	108	57 - 139%			
sopropylbenzene	228		10.0	ug/L	10	200	5.42	111	72 - 131%			
4-Isopropyltoluene	233		10.0	ug/L	10	200	ND	117	77 - 127%			
Methylene chloride	234		50.0	ug/L	10	200	ND	117	74 - 124%			
4-Methyl-2-pentanone (MiBK)	428		100	ug/L	10	400	ND	107	67 - 130%			
Methyl tert-butyl ether (MTBE)	215		10.0	ug/L	10	200	7.26	104	71 - 124%			
Naphthalene	228		20.0	ug/L	10	200	ND	114	61 - 128%			
n-Propylbenzene	239		5.00	ug/L	10	200	11.2	114	76 - 126%			
Styrene	207		10.0	ug/L	10	200	ND	104	78 - 123%			
1,1,1,2-Tetrachloroethane	212		4.00	ug/L	10	200	ND	106	78 - 124%			
,1,2,2-Tetrachloroethane	239		5.00	ug/L	10	200	ND	119	71 - 121%			
Tetrachloroethene (PCE)	224		4.00	ug/L	10	200	ND	112	74 - 129%			

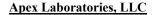
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smeinghini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr


Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REO	% REC Limits	RPD	RPD Limit	Notes
Batch 9091264 - EPA 5030B							Wat	er				
Matrix Spike (9091264-MS1)		Prepared	: 09/25/19 12:	01 Analyz	ed: 09/25/1	9 20:36						
QC Source Sample: GP02 (A9I07	<u>44-01)</u>											
Toluene	222		10.0	ug/L	10	200	14.8	104	80 - 121%			
1,2,3-Trichlorobenzene	218		20.0	ug/L	10	200	ND	109	69 - 129%			
1,2,4-Trichlorobenzene	222		20.0	ug/L	10	200	ND	111	69 - 130%			
1,1,1-Trichloroethane	224		4.00	ug/L	10	200	ND	112	74 - 131%			
1,1,2-Trichloroethane	207		5.00	ug/L	10	200	ND	104	80 - 120%			
Trichloroethene (TCE)	216		4.00	ug/L	10	200	ND	108	79 - 123%			
Trichlorofluoromethane	288		20.0	ug/L	10	200	ND	144	65 - 141%			Q-01
1,2,3-Trichloropropane	217		10.0	ug/L	10	200	ND	109	73 - 122%			
1,1,2-Trichloro-1,2,2-trifluoroet hane (Freon-113)	250		20.0	ug/L	10	200	ND	125	70 - 136%			
1,2,4-Trimethylbenzene	307		10.0	ug/L	10	200	57.0	125	76 - 124%			Q-01
1,3,5-Trimethylbenzene	252		10.0	ug/L	10	200	17.5	117	75 - 124%			
Vinyl chloride	271		4.00	ug/L	10	200	ND	135	58 - 137%			
m,p-Xylene	553		10.0	ug/L	10	400	112	110	80 - 121%			
o-Xylene	248		5.00	ug/L	10	200	37.9	105	78 - 122%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 98 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
Matrix Spike Dup (9091264-MSI	D1)	Prepared	: 09/25/19 12:	01 Analyz	ed: 09/25/1	9 21:03						
OC Source Sample: GP02 (A9I07- EPA 8260C	<u>44-01)</u>											
Acetone	432		200	ug/L	10	400	ND	108	39 - 160%	2	30%	
Acrylonitrile	210		20.0	ug/L ug/L	10	200	ND	105	63 - 135%	6	30%	
Benzene	216		2.00	ug/L ug/L	10	200	5.70	105	79 - 120%	0.7	30%	
Bromobenzene	209		5.00	ug/L ug/L	10	200	ND	105	80 - 120%	0.7	30%	
	234		10.0	ug/L ug/L	10	200	ND	117	78 - 123%	0.7	30%	
Bromochloromethane			10.0	_						0.7		
Bromochloromethane Bromodichloromethane			10.0	11g/I	10	200	ND	106	/9 - 125%		30%	
Bromodichloromethane	213		10.0 10.0	ug/L	10 10	200 200	ND ND	106 105	79 - 125% 66 - 130%		30% 30%	
Bromodichloromethane Bromoform	213 210		10.0	ug/L	10	200	ND	105	66 - 130%	4	30%	
Bromodichloromethane Bromoform Bromomethane	213 210 267		10.0 50.0	ug/L ug/L	10 10	200 200	ND ND	105 134	66 - 130% 53 - 141%	4	30% 30%	
Bromodichloromethane Bromoform	213 210		10.0	ug/L	10	200	ND	105	66 - 130%	4	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	anic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091264 - EPA 5030B							Wate	er				
Matrix Spike Dup (9091264-MS	D1)	Prepared	: 09/25/19 12:0	1 Analyz	ed: 09/25/1	9 21:03						
QC Source Sample: GP02 (A9I07	744-01 <u>)</u>											
ert-Butylbenzene	213		10.0	ug/L	10	200	ND	107	78 - 124%	4	30%	
Carbon disulfide	235		100	ug/L	10	200	ND	117	64 - 133%	1	30%	
Carbon tetrachloride	263		10.0	ug/L	10	200	ND	131	72 - 136%	1	30%	
Chlorobenzene	204		5.00	ug/L	10	200	ND	102	80 - 120%	4	30%	
Chloroethane	245		50.0	ug/L	10	200	ND	123	60 - 138%	0.5	30%	
Chloroform	212		10.0	ug/L	10	200	ND	106	79 - 124%	0.4	30%	
Chloromethane	232		50.0	ug/L	10	200	ND	116	50 - 139%	2	30%	
2-Chlorotoluene	203		10.0	ug/L	10	200	ND	101	79 - 122%	4	30%	
1-Chlorotoluene	209		10.0	ug/L	10	200	ND	105	78 - 122%	4	30%	
Dibromochloromethane	204		10.0	ug/L	10	200	ND	102	74 - 126%	2	30%	
,2-Dibromo-3-chloropropane	198		50.0	ug/L	10	200	ND	99 (62 - 128%	4	30%	
,2-Dibromoethane (EDB)	207		5.00	ug/L	10	200	ND	103	77 - 121%	4	30%	
Dibromomethane	211		10.0	ug/L	10	200	ND	105	79 - 123%	0.08	30%	
1,2-Dichlorobenzene	206		5.00	ug/L	10	200	ND	103	80 - 120%	2	30%	
,3-Dichlorobenzene	214		5.00	ug/L	10	200	ND	107	80 - 120%	5	30%	
,4-Dichlorobenzene	204		5.00	ug/L	10	200	ND	102	79 - 120%	5	30%	
Dichlorodifluoromethane	247		10.0	ug/L	10	200	ND	124	32 - 152%	0.7	30%	
,1-Dichloroethane	224		4.00	ug/L	10	200	ND	112	77 - 125%	0.6	30%	
,2-Dichloroethane (EDC)	364		4.00	ug/L	10	200	148	108	73 - 128%	0.6	30%	
,1-Dichloroethene	245		4.00	ug/L	10	200	ND	123	71 - 131%	0.3	30%	
cis-1,2-Dichloroethene	220		4.00	ug/L	10	200	ND	110	78 - 123%	0.7	30%	
rans-1,2-Dichloroethene	229		4.00	ug/L	10	200	ND	115	75 - 124%	1	30%	
,2-Dichloropropane	214		5.00	ug/L	10	200	ND	107	78 - 122%	4	30%	
1,3-Dichloropropane	208		10.0	ug/L	10	200	ND	104	80 - 120%	3	30%	
2,2-Dichloropropane	246		10.0	ug/L	10	200	ND	123	50 - 139%	4	30%	Q-54a
,1-Dichloropropene	230		10.0	ug/L	10	200	ND	115	79 - 125%	0.3	30%	
is-1,3-Dichloropropene	209		10.0	ug/L	10	200	ND	104	75 - 124%	2	30%	
rans-1,3-Dichloropropene	208		10.0	ug/L	10	200	ND	104	73 - 127%	4	30%	
Ethylbenzene	248		5.00	ug/L	10	200	34.8	107	79 - 121%	3	30%	
Hexachlorobutadiene	219		50.0	ug/L	10	200	ND		66 - 134%	12	30%	
2-Hexanone	416		100	ug/L	10	400	ND	104	57 - 139%	3	30%	
sopropylbenzene	220		10.0	ug/L	10	200	5.42		72 - 131%	4	30%	
l-Isopropyltoluene	222		10.0	ug/L	10	200	ND		77 - 127%	5	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghine

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: <u>Lampson</u>
Project Number: **185750581**Project Manager: **Len Farr**

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 9091264 - EPA 5030B							Wat	er				
Matrix Spike Dup (9091264-MSI	D 1)	Prepared	: 09/25/19 12:0	01 Analyz	ed: 09/25/1	9 21:03						
QC Source Sample: GP02 (A9I074	14-01)											
Methylene chloride	229		50.0	ug/L	10	200	ND	114	74 - 124%	2	30%	
4-Methyl-2-pentanone (MiBK)	412		100	ug/L	10	400	ND	103	67 - 130%	4	30%	
Methyl tert-butyl ether (MTBE)	217		10.0	ug/L	10	200	7.26	105	71 - 124%	1	30%	
Naphthalene	216		20.0	ug/L	10	200	ND	108	61 - 128%	5	30%	
n-Propylbenzene	228		5.00	ug/L	10	200	11.2	108	76 - 126%	5	30%	
Styrene	201		10.0	ug/L	10	200	ND	101	78 - 123%	3	30%	
,1,1,2-Tetrachloroethane	210		4.00	ug/L	10	200	ND	105	78 - 124%	1	30%	
,1,2,2-Tetrachloroethane	227		5.00	ug/L	10	200	ND	114	71 - 121%	5	30%	
Cetrachloroethene (PCE)	221		4.00	ug/L	10	200	ND	110	74 - 129%	1	30%	
Coluene	215		10.0	ug/L	10	200	14.8	100	80 - 121%	3	30%	
,2,3-Trichlorobenzene	211		20.0	ug/L	10	200	ND	106	69 - 129%	3	30%	
,2,4-Trichlorobenzene	212		20.0	ug/L	10	200	ND	106	69 - 130%	5	30%	
,1,1-Trichloroethane	219		4.00	ug/L	10	200	ND	110	74 - 131%	2	30%	
,1,2-Trichloroethane	204		5.00	ug/L	10	200	ND	102	80 - 120%	1	30%	
Γrichloroethene (TCE)	211		4.00	ug/L	10	200	ND	106	79 - 123%	2	30%	
Trichlorofluoromethane	280		20.0	ug/L	10	200	ND	140	65 - 141%	3	30%	
,2,3-Trichloropropane	206		10.0	ug/L	10	200	ND	103	73 - 122%	5	30%	
1,1,2-Trichloro-1,2,2-trifluoroet	242		20.0	ug/L	10	200	ND	121	70 - 136%	3	30%	
nane (Freon-113)				J								
,2,4-Trimethylbenzene	290		10.0	ug/L	10	200	57.0	117	76 - 124%	6	30%	
,3,5-Trimethylbenzene	241		10.0	ug/L	10	200	17.5	112	75 - 124%	4	30%	
/inyl chloride	271		4.00	ug/L	10	200	ND	135	58 - 137%	0.01	30%	
n,p-Xylene	537		10.0	ug/L	10	400	112	106	80 - 121%	3	30%	
-Xylene	241		5.00	ug/L	10	200	37.9	102	78 - 122%	3	30%	
urr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Orç	ganic Co	mpounds	by EPA 8	260C					
		Detection	Reporting			Spike	Source		% REC		RPD	
Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC		RPD	Limit	Notes
Batch 9091347 - EPA 5030B							Wat	er				
Blank (9091347-BLK1)		Prepared	l: 09/26/19 15::	50 Analyz	zed: 09/26/19	9 18:22						
EPA 8260C												
Acetone	ND		20.0	ug/L	1							
Acrylonitrile	ND		2.00	ug/L	1							
Benzene	ND		0.200	ug/L	1							
Bromobenzene	ND		0.500	ug/L	1							
Bromochloromethane	ND		1.00	ug/L	1							
Bromodichloromethane	ND		1.00	ug/L	1							
Bromoform	ND		1.00	ug/L	1							
Bromomethane	ND		5.00	ug/L	1							
2-Butanone (MEK)	ND		10.0	ug/L	1							
n-Butylbenzene	ND		1.00	ug/L	1							
sec-Butylbenzene	ND		1.00	ug/L	1							
tert-Butylbenzene	ND		1.00	ug/L	1							
Carbon disulfide	ND		10.0	ug/L	1							
Carbon tetrachloride	ND		1.00	ug/L	1							
Chlorobenzene	ND		0.500	ug/L	1							
Chloroethane	ND		5.00	ug/L	1							
Chloroform	ND		1.00	ug/L	1							
Chloromethane	ND		5.00	ug/L	1							
2-Chlorotoluene	ND		1.00	ug/L	1							
4-Chlorotoluene	ND		1.00	ug/L	1							
Dibromochloromethane	ND		1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1							
Dibromomethane	ND		1.00	ug/L	1							
1,2-Dichlorobenzene	ND		0.500	ug/L	1							
1,3-Dichlorobenzene	ND		0.500	ug/L	1							
1,4-Dichlorobenzene	ND		0.500	ug/L	1							
Dichlorodifluoromethane	ND		1.00	ug/L	1							
1,1-Dichloroethane	ND		0.400	ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.400	ug/L ug/L	1							
1,1-Dichloroethene	ND		0.400	ug/L	1							
cis-1,2-Dichloroethene	ND		0.400	ug/L	1							
	ND		0.400		1							
rans-1,2-Dichloroethene	ND		0.400	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	anic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091347 - EPA 5030B							Wate	er				
Blank (9091347-BLK1)		Prepared	: 09/26/19 15:5	0 Analyz	ed: 09/26/19	9 18:22						
1,2-Dichloropropane	ND		0.500	ug/L	1							
1,3-Dichloropropane	ND		1.00	ug/L	1							
2,2-Dichloropropane	ND		1.00	ug/L	1							
1,1-Dichloropropene	ND		1.00	ug/L	1							
cis-1,3-Dichloropropene	ND		1.00	ug/L	1							
trans-1,3-Dichloropropene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Hexachlorobutadiene	ND		5.00	ug/L	1							
2-Hexanone	ND		10.0	ug/L	1							
Isopropylbenzene	ND		1.00	ug/L	1							
4-Isopropyltoluene	ND		1.00	ug/L	1							
Methylene chloride	ND		5.00	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		2.00	ug/L	1							
n-Propylbenzene	ND		0.500	ug/L	1							
Styrene	ND		1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1							
Tetrachloroethene (PCE)	ND		0.400	ug/L	1							
Toluene	ND		1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1							
1,1,1-Trichloroethane	ND		0.400	ug/L	1							
1,1,2-Trichloroethane	ND		0.500	ug/L	1							
Trichloroethene (TCE)	ND		0.400	ug/L	1							
Trichlorofluoromethane	ND		2.00	ug/L	1							
1,2,3-Trichloropropane	ND		1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1							
Vinyl chloride	ND		0.400	ug/L	1							
m,p-Xylene	ND		1.00	ug/L	1							
o-Xylene	ND		0.500	ug/L	1							

Limits: 80-120 %

Recovery: 95 %

Apex Laboratories

Surr: 1,4-Difluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dilution: 1x

Doa A Smerighini

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REG	% REC Limits	RPD	RPD Limit	Notes
Batch 9091347 - EPA 5030B							Wat	er				
Blank (9091347-BLK1)		Prepared	: 09/26/19 15::	50 Analyz	zed: 09/26/1	9 18:22						
Surr: Toluene-d8 (Surr)		Reco	very: 106 %	Limits: 80	0-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			97 %	80	0-120 %		"					
LCS (9091347-BS1)		Prepared	: 09/26/19 15::	50 Analyz	zed: 09/26/1	9 17:27						
EPA 8260C		-										
Acetone	39.9		20.0	ug/L	1	40.0		100	80 - 120%			
Acrylonitrile	19.5		2.00	ug/L	1	20.0		98	80 - 120%			
Benzene	20.0		0.200	ug/L	1	20.0		100	80 - 120%			
Bromobenzene	20.5		0.500	ug/L	1	20.0		103	80 - 120%			
Bromochloromethane	22.3		1.00	ug/L	1	20.0		111	80 - 120%			
Bromodichloromethane	20.8		1.00	ug/L	1	20.0		104	80 - 120%			
Bromoform	22.5		1.00	ug/L	1	20.0		112	80 - 120%			
Bromomethane	28.7		5.00	ug/L	1	20.0		144	80 - 120%			Q-56
2-Butanone (MEK)	42.5		10.0	ug/L	1	40.0		106	80 - 120%			
n-Butylbenzene	23.2		1.00	ug/L	1	20.0		116	80 - 120%			
sec-Butylbenzene	21.0		1.00	ug/L	1	20.0		105	80 - 120%			
ert-Butylbenzene	20.7		1.00	ug/L	1	20.0		104	80 - 120%			
Carbon disulfide	21.6		10.0	ug/L	1	20.0		108	80 - 120%			
Carbon tetrachloride	24.6		1.00	ug/L	1	20.0		123	80 - 120%			Q-56
Chlorobenzene	20.6		0.500	ug/L	1	20.0		103	80 - 120%			
Chloroethane	27.1		5.00	ug/L	1	20.0		136	80 - 120%			Q-56
Chloroform	20.3		1.00	ug/L	1	20.0		101	80 - 120%			
Chloromethane	20.8		5.00	ug/L	1	20.0		104	80 - 120%			
2-Chlorotoluene	20.0		1.00	ug/L	1	20.0		100	80 - 120%			
4-Chlorotoluene	21.1		1.00	ug/L	1	20.0		105	80 - 120%			
Dibromochloromethane	21.2		1.00	ug/L	1	20.0		106	80 - 120%			
1,2-Dibromo-3-chloropropane	20.1		5.00	ug/L	1	20.0		100	80 - 120%			
,2-Dibromoethane (EDB)	21.2		0.500	ug/L	1	20.0		106	80 - 120%			
Dibromomethane	20.8		1.00	ug/L	1	20.0		104	80 - 120%			
1,2-Dichlorobenzene	20.7		0.500	ug/L	1	20.0		103	80 - 120%			
1,3-Dichlorobenzene	21.2		0.500	ug/L	1	20.0		106	80 - 120%			
1,4-Dichlorobenzene	20.3		0.500	ug/L	1	20.0		102	80 - 120%			
Dichlorodifluoromethane	21.9		1.00	ug/L	1	20.0		110	80 - 120%			
1,1-Dichloroethane	21.0		0.400	ug/L	1	20.0		105	80 - 120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091347 - EPA 5030B							Wate	er				
LCS (9091347-BS1)		Prepared	: 09/26/19 15::	50 Analyz	ed: 09/26/1	9 17:27						
1,2-Dichloroethane (EDC)	20.6		0.400	ug/L	1	20.0		103	80 - 120%			
1,1-Dichloroethene	22.5		0.400	ug/L	1	20.0		112	80 - 120%			
cis-1,2-Dichloroethene	21.2		0.400	ug/L	1	20.0		106	80 - 120%			
trans-1,2-Dichloroethene	21.5		0.400	ug/L	1	20.0		107	80 - 120%			
1,2-Dichloropropane	21.2		0.500	ug/L	1	20.0		106	80 - 120%			
1,3-Dichloropropane	20.7		1.00	ug/L	1	20.0		104	80 - 120%			
2,2-Dichloropropane	27.3		1.00	ug/L	1	20.0		136	80 - 120%			Q-56
1,1-Dichloropropene	21.0		1.00	ug/L	1	20.0		105	80 - 120%			
cis-1,3-Dichloropropene	22.0		1.00	ug/L	1	20.0		110	80 - 120%			
trans-1,3-Dichloropropene	22.1		1.00	ug/L	1	20.0		110	80 - 120%			
Ethylbenzene	21.0		0.500	ug/L	1	20.0		105	80 - 120%			
Hexachlorobutadiene	22.2		5.00	ug/L	1	20.0		111	80 - 120%			
2-Hexanone	43.1		10.0	ug/L	1	40.0		108	80 - 120%			
Isopropylbenzene	21.1		1.00	ug/L	1	20.0		106	80 - 120%			
4-Isopropyltoluene	21.8		1.00	ug/L	1	20.0		109	80 - 120%			
Methylene chloride	21.5		5.00	ug/L	1	20.0		107	80 - 120%			
4-Methyl-2-pentanone (MiBK)	42.3		10.0	ug/L	1	40.0		106	80 - 120%			
Methyl tert-butyl ether (MTBE)	20.5		1.00	ug/L	1	20.0		102	80 - 120%			
Naphthalene	20.8		2.00	ug/L	1	20.0		104	80 - 120%			
n-Propylbenzene	21.8		0.500	ug/L	1	20.0		109	80 - 120%			
Styrene	20.4		1.00	ug/L	1	20.0		102	80 - 120%			
1,1,1,2-Tetrachloroethane	20.7		0.400	ug/L	1	20.0		104	80 - 120%			
1,1,2,2-Tetrachloroethane	23.1		0.500	ug/L	1	20.0		115	80 - 120%			
Tetrachloroethene (PCE)	21.0		0.400	ug/L	1	20.0		105	80 - 120%			
Toluene	20.0		1.00	ug/L	1	20.0		100	80 - 120%			
1,2,3-Trichlorobenzene	20.5		2.00	ug/L	1	20.0		103	80 - 120%			
1,2,4-Trichlorobenzene	21.3		2.00	ug/L	1	20.0		106	80 - 120%			
1,1,1-Trichloroethane	20.7		0.400	ug/L	1	20.0		103	80 - 120%			
1,1,2-Trichloroethane	20.3		0.500	ug/L	1	20.0		101	80 - 120%			
Trichloroethene (TCE)	19.5		0.400	ug/L	1	20.0		98	80 - 120%			
Trichlorofluoromethane	29.8		2.00	ug/L	1	20.0		149	80 - 120%			Q-56
1,2,3-Trichloropropane	20.6		1.00	ug/L	1	20.0		103	80 - 120%			
1,2,4-Trimethylbenzene	22.2		1.00	ug/L	1	20.0		111	80 - 120%			
1,3,5-Trimethylbenzene	21.9		1.00	ug/L	1	20.0		109	80 - 120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smeinghini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091347 - EPA 5030B							Wat	er				
LCS (9091347-BS1)		Prepared	: 09/26/19 15:	50 Analyz	ed: 09/26/1	9 17:27						
Vinyl chloride	27.2		0.400	ug/L	1	20.0		136	80 - 120%			Q-56
n,p-Xylene	41.3		1.00	ug/L	1	40.0		103	80 - 120%			
-Xylene	20.3		0.500	ug/L	1	20.0		102	80 - 120%			
urr: 1,4-Difluorobenzene (Surr)		Rece	overy: 98 %	Limits: 80	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			103 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	-120 %		"					
Matrix Spike (9091347-MS1)		Prepared	: 09/26/19 18:	02 Analyz	ed: 09/26/1	9 20:37						
QC Source Sample: GP02 (A9I07	44-01RE1)											
EPA 8260C												
Acetone	69.8		20.0	ug/L	1	40.0	ND	97	39 - 160%			
crylonitrile	19.9		2.00	ug/L	1	20.0	ND	100	63 - 135%			
Benzene	32.2		0.200	ug/L	1	20.0	6.25	130	79 - 120%			Q-01
Bromobenzene	21.0		0.500	ug/L	1	20.0	ND	105	80 - 120%			
Bromochloromethane	23.0		1.00	ug/L	1	20.0	ND	115	78 - 123%			
Bromodichloromethane	21.1		1.00	ug/L	1	20.0	ND	105	79 - 125%			
Bromoform	22.1		1.00	ug/L	1	20.0	ND	110	66 - 130%			
Bromomethane	27.0		5.00	ug/L	1	20.0	ND	135	53 - 141%			Q-54b
-Butanone (MEK)	62.3		10.0	ug/L	1	40.0	ND	131	56 - 143%			
-Butylbenzene	27.2		1.00	ug/L	1	20.0	2.86	122	75 - 128%			
ec-Butylbenzene	23.2		1.00	ug/L	1	20.0	1.81	107	77 - 126%			
ert-Butylbenzene	21.6		1.00	ug/L	1	20.0	ND	108	78 - 124%			
Carbon disulfide	23.1		10.0	ug/L	1	20.0	ND	115	64 - 133%			
Carbon tetrachloride	25.3		1.00	ug/L	1	20.0	ND	126	72 - 136%			Q-54d
Chlorobenzene	21.1		0.500	ug/L	1	20.0	ND	105	80 - 120%			
Chloroethane	27.0		5.00	ug/L	1	20.0	ND	135	60 - 138%			Q-54
Chloroform	21.1		1.00	ug/L	1	20.0	ND	106	79 - 124%			
Chloromethane	29.6		5.00	ug/L	1	20.0	ND	148	50 - 139%			Q-01
-Chlorotoluene	21.0		1.00	ug/L	1	20.0	ND	105	79 - 122%			
-Chlorotoluene	21.3		1.00	ug/L	1	20.0	ND	107	78 - 122%			
Dibromochloromethane	20.9		1.00	ug/L	1	20.0	ND	105	74 - 126%			
,2-Dibromo-3-chloropropane	21.6		5.00	ug/L	1	20.0	ND	108	62 - 128%			
,2-Dibromoethane (EDB)	20.9		0.500	ug/L	1	20.0	ND	105	77 - 121%			
Dibromomethane	20.9		1.00	ug/L	1	20.0	ND	104	79 - 123%			

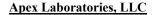
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smeinghini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0744 - 10 07 19 1649


QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Orç	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091347 - EPA 5030B							Wat	er				
Matrix Spike (9091347-MS1)		Prepared	: 09/26/19 18:0	02 Analyz	ed: 09/26/1	9 20:37						
QC Source Sample: GP02 (A9I07	44-01RE1)											
1,2-Dichlorobenzene	20.9		0.500	ug/L	1	20.0	ND	104	80 - 120%			
1,3-Dichlorobenzene	21.4		0.500	ug/L	1	20.0	ND	107	80 - 120%			
1,4-Dichlorobenzene	20.6		0.500	ug/L	1	20.0	ND	103	79 - 120%			
Dichlorodifluoromethane	23.2		1.00	ug/L	1	20.0	ND	116	32 - 152%			
1,1-Dichloroethane	22.3		0.400	ug/L	1	20.0	ND	112	77 - 125%			
1,2-Dichloroethane (EDC)	107		0.400	ug/L	1	20.0	159	-261	73 - 128%			Q-01
1,1-Dichloroethene	23.7		0.400	ug/L	1	20.0	ND	119	71 - 131%			
eis-1,2-Dichloroethene	22.1		0.400	ug/L	1	20.0	ND	110	78 - 123%			
rans-1,2-Dichloroethene	22.4		0.400	ug/L	1	20.0	ND	112	75 - 124%			
,2-Dichloropropane	21.4		0.500	ug/L	1	20.0	ND	107	78 - 122%			
,3-Dichloropropane	21.2		1.00	ug/L	1	20.0	ND	106	80 - 120%			
2,2-Dichloropropane	27.3		1.00	ug/L	1	20.0	ND	136	60 - 139%			Q-54
,1-Dichloropropene	22.4		1.00	ug/L	1	20.0	ND	112	79 - 125%			
eis-1,3-Dichloropropene	21.6		1.00	ug/L	1	20.0	ND	108	75 - 124%			
rans-1,3-Dichloropropene	21.8		1.00	ug/L	1	20.0	ND	109	73 - 127%			
Ethylbenzene	60.0		0.500	ug/L	1	20.0	41.3	94	79 - 121%			
Hexachlorobutadiene	21.9		5.00	ug/L	1	20.0	ND	110	66 - 134%			
2-Hexanone	44.7		10.0	ug/L	1	40.0	ND	112	57 - 139%			
sopropylbenzene	27.2		1.00	ug/L	1	20.0	5.83	107	72 - 131%			
1-Isopropyltoluene	24.9		1.00	ug/L	1	20.0	1.89	115	77 - 127%			
Methylene chloride	20.8		5.00	ug/L	1	20.0	ND	104	74 - 124%			
4-Methyl-2-pentanone (MiBK)	43.9		10.0	ug/L	1	40.0	ND	110	67 - 130%			
Methyl tert-butyl ether (MTBE)	23.5		1.00	ug/L	1	20.0	5.73	89	71 - 124%			
Naphthalene	44.1		2.00	ug/L	1	20.0	10.1	170	61 - 128%			Q-01
n-Propylbenzene	31.6		0.500	ug/L	1	20.0	13.0	93	76 - 126%			
Styrene	21.0		1.00	ug/L	1	20.0	ND	105	78 - 123%			
,1,1,2-Tetrachloroethane	20.9		0.400	ug/L	1	20.0	ND	104	78 - 124%			
,1,2,2-Tetrachloroethane	23.4		0.500	ug/L	1	20.0	ND	117	71 - 121%			
Tetrachloroethene (PCE)	21.4		0.400	ug/L	1	20.0	ND	107	74 - 129%			
Γoluene	36.4		1.00	ug/L	1	20.0	16.4	100	80 - 121%			
,2,3-Trichlorobenzene	20.6		2.00	ug/L	1	20.0	ND	103	69 - 129%			
,2,4-Trichlorobenzene	21.2		2.00	ug/L	1	20.0	ND	106	69 - 130%			
,1,1-Trichloroethane	21.5		0.400	ug/L	1	20.0	ND	107	74 - 131%			

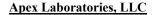
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghine

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: <u>Lampson</u>
Project Number: **185750581**Project Manager: **Len Farr**

Report ID: A9I0744 - 10 07 19 1649


QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091347 - EPA 5030B							Wat	er				
Matrix Spike (9091347-MS1)		Prepared	: 09/26/19 18:0	02 Analyz	ed: 09/26/1	9 20:37						
QC Source Sample: GP02 (A9I07	44-01RE1)											
1,1,2-Trichloroethane	21.2		0.500	ug/L	1	20.0	ND	99	80 - 120%			
Γrichloroethene (TCE)	20.9		0.400	ug/L	1	20.0	ND	105	79 - 123%			
Trichlorofluoromethane	28.8		2.00	ug/L	1	20.0	ND	144	65 - 141%			Q-54c
,2,3-Trichloropropane	21.0		1.00	ug/L	1	20.0	ND	105	73 - 122%			
,2,4-Trimethylbenzene	104		1.00	ug/L	1	20.0	82.5	106	76 - 124%			
1,3,5-Trimethylbenzene	40.5		1.00	ug/L	1	20.0	22.0	92	75 - 124%			
Vinyl chloride	27.3		0.400	ug/L	1	20.0	ND	137	58 - 137%			Q-54
n,p-Xylene	176		1.00	ug/L	1	40.0	143	82	80 - 121%			
-Xylene	67.6		0.500	ug/L	1	20.0	45.3	112	78 - 122%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 97 %	Limits: 80)-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	-120 %		"					
Matrix Spike Dup (9091347-MS)	D1)	Prepared	: 09/26/19 18:0	02 Analyz	ed: 09/26/1	9 21:04						
QC Source Sample: GP02 (A9107	44-01RE1)											
EPA 8260C			• • •									
Acetone	70.4		20.0	ug/L	1	40.0	ND	98	39 - 160%	0.8	30%	
Acrylonitrile	19.8		2.00	ug/L	1	20.0	ND	99	63 - 135%	0.7	30%	
Benzene	28.0		0.200	ug/L	1	20.0	6.25	109	79 - 120%	14	30%	
Bromobenzene	22.0		0.500	ug/L	1	20.0	ND	110	80 - 120%	5	30%	
Bromochloromethane	23.0		1.00	ug/L	1	20.0	ND	115	78 - 123%	0.1	30%	
Bromodichloromethane	21.7		1.00	ug/L	1	20.0	ND	108	79 - 125%	3	30%	
Bromoform	23.1		1.00	ug/L	1	20.0	ND	115	66 - 130%	4	30%	
Bromomethane	27.0		5.00	ug/L	1	20.0	ND	135	53 - 141%	0.08	30%	Q-54b
2-Butanone (MEK)	55.1		10.0	ug/L	1	40.0	ND	113	56 - 143%	12	30%	
n-Butylbenzene	30.7		1.00	ug/L	1	20.0	2.86	139	75 - 128%	12	30%	Q-01
ec-Butylbenzene	24.9		1.00	ug/L	1	20.0	1.81	116	77 - 126%	7	30%	
ert-Butylbenzene	23.4		1.00	ug/L	1	20.0	ND	117	78 - 124%	8	30%	
Carbon disulfide	23.7		10.0	ug/L	1	20.0	ND	118	64 - 133%	3	30%	
Carbon tetrachloride	26.7		1.00	ug/L	1	20.0	ND	134	72 - 136%	6	30%	Q-54d
Chlorobenzene	22.1		0.500	ug/L	1	20.0	ND	111	80 - 120%	5	30%	
Chloroethane	27.2		5.00	ug/L	1	20.0	ND	136	60 - 138%	1	30%	Q-54
Indioculanc	21.2					_0.0	1,12	150	00 13070	2	3070	Q J-

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0744 - 10 07 19 1649


QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091347 - EPA 5030B							Wate	er				
Matrix Spike Dup (9091347-MS	D1)	Prepared	: 09/26/19 18:0	02 Analyz	zed: 09/26/1	9 21:04						
QC Source Sample: GP02 (A9I07	<u>/44-01RE1)</u>											
Chloromethane	23.3		5.00	ug/L	1	20.0	ND	116	50 - 139%	24	30%	
2-Chlorotoluene	22.2		1.00	ug/L	1	20.0	ND	111	79 - 122%	5	30%	
4-Chlorotoluene	22.7		1.00	ug/L	1	20.0	ND	113	78 - 122%	6	30%	
Dibromochloromethane	21.6		1.00	ug/L	1	20.0	ND	108	74 - 126%	3	30%	
1,2-Dibromo-3-chloropropane	22.2		5.00	ug/L	1	20.0	ND	111	62 - 128%	3	30%	
1,2-Dibromoethane (EDB)	21.9		0.500	ug/L	1	20.0	ND	109	77 - 121%	4	30%	
Dibromomethane	21.2		1.00	ug/L	1	20.0	ND	106	79 - 123%	2	30%	
1,2-Dichlorobenzene	22.1		0.500	ug/L	1	20.0	ND	111	80 - 120%	6	30%	
1,3-Dichlorobenzene	23.2		0.500	ug/L	1	20.0	ND	116	80 - 120%	8	30%	
1,4-Dichlorobenzene	22.1		0.500	ug/L	1	20.0	ND	111	79 - 120%	7	30%	
Dichlorodifluoromethane	23.9		1.00	ug/L	1	20.0	ND	119	32 - 152%	3	30%	
1,1-Dichloroethane	22.6		0.400	ug/L	1	20.0	ND	113	77 - 125%	1	30%	
1,2-Dichloroethane (EDC)	177		0.400	ug/L	1	20.0	159	93	73 - 128%	50	30%	Q-01
,1-Dichloroethene	24.1		0.400	ug/L	1	20.0	ND	120	71 - 131%	1	30%	
cis-1,2-Dichloroethene	22.6		0.400	ug/L	1	20.0	ND	113	78 - 123%	2	30%	
rans-1,2-Dichloroethene	23.2		0.400	ug/L	1	20.0	ND	116	75 - 124%	4	30%	
1,2-Dichloropropane	21.5		0.500	ug/L	1	20.0	ND	108	78 - 122%	0.4	30%	
,3-Dichloropropane	22.2		1.00	ug/L	1	20.0	ND	111	80 - 120%	4	30%	
2,2-Dichloropropane	27.4		1.00	ug/L	1	20.0	ND	137	60 - 139%	0.7	30%	Q-54
1,1-Dichloropropene	22.7		1.00	ug/L	1	20.0	ND	114	79 - 125%	1	30%	
cis-1,3-Dichloropropene	22.5		1.00	ug/L	1	20.0	ND	113	75 - 124%	4	30%	
trans-1,3-Dichloropropene	23.1		1.00	ug/L	1	20.0	ND	115	73 - 127%	5	30%	
Ethylbenzene	65.0		0.500	ug/L	1	20.0	41.3	118	79 - 121%	8	30%	
Hexachlorobutadiene	23.9		5.00	ug/L	1	20.0	ND	120	66 - 134%	9	30%	
2-Hexanone	46.4		10.0	ug/L	1	40.0	ND	116	57 - 139%	4	30%	
sopropylbenzene	29.0		1.00	ug/L	1	20.0	5.83	116	72 - 131%	6	30%	
l-Isopropyltoluene	27.7		1.00	ug/L	1	20.0	1.89	129	77 - 127%	11	30%	Q-01
Methylene chloride	21.5		5.00	ug/L	1	20.0	ND	107	74 - 124%	3	30%	-
l-Methyl-2-pentanone (MiBK)	45.3		10.0	ug/L	1	40.0	ND	113	67 - 130%	3	30%	
Methyl tert-butyl ether (MTBE)	26.5		1.00	ug/L	1	20.0	5.73		71 - 124%	12	30%	
Naphthalene	34.5		2.00	ug/L	1	20.0	10.1		61 - 128%	24	30%	
n-Propylbenzene	37.0		0.500	ug/L	1	20.0	13.0		76 - 126%	16	30%	
Styrene	21.2		1.00	ug/L	1	20.0	ND		78 - 123%	0.9	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghine

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: <u>Lampson</u>
Project Number: **185750581**Project Manager: **Len Farr**

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091347 - EPA 5030B							Wat	er				
Matrix Spike Dup (9091347-M	SD1)	Prepared	: 09/26/19 18:	02 Analyz	ed: 09/26/1	9 21:04						
QC Source Sample: GP02 (A910	0744-01RE1)											
1,1,1,2-Tetrachloroethane	22.1		0.400	ug/L	1	20.0	ND	110	78 - 124%	6	30%	
1,1,2,2-Tetrachloroethane	25.1		0.500	ug/L	1	20.0	ND	126	71 - 121%	7	30%	Q-01
Tetrachloroethene (PCE)	22.5		0.400	ug/L	1	20.0	ND	113	74 - 129%	5	30%	
Toluene	38.2		1.00	ug/L	1	20.0	16.4	109	80 - 121%	5	30%	
,2,3-Trichlorobenzene	21.8		2.00	ug/L	1	20.0	ND	109	69 - 129%	6	30%	
,2,4-Trichlorobenzene	22.8		2.00	ug/L	1	20.0	ND	114	69 - 130%	7	30%	
,1,1-Trichloroethane	22.4		0.400	ug/L	1	20.0	ND	112	74 - 131%	4	30%	
,1,2-Trichloroethane	22.6		0.500	ug/L	1	20.0	ND	106	80 - 120%	6	30%	
Trichloroethene (TCE)	21.6		0.400	ug/L	1	20.0	ND	108	79 - 123%	3	30%	
Trichlorofluoromethane	29.0		2.00	ug/L	1	20.0	ND	145	65 - 141%	0.4	30%	Q-54c
,2,3-Trichloropropane	23.1		1.00	ug/L	1	20.0	ND	116	73 - 122%	10	30%	
,2,4-Trimethylbenzene	109		1.00	ug/L	1	20.0	82.5	134	76 - 124%	5	30%	Q-01
,3,5-Trimethylbenzene	46.3		1.00	ug/L	1	20.0	22.0	122	75 - 124%	14	30%	
Vinyl chloride	27.7		0.400	ug/L	1	20.0	ND	138	58 - 137%	1	30%	Q-54
n,p-Xylene	199		1.00	ug/L	1	40.0	143	140	80 - 121%	12	30%	Q-01
o-Xylene	69.2		0.500	ug/L	1	20.0	45.3	120	78 - 122%	2	30%	
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 98 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			104 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204

F

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte												
	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091255 - EPA 3510C (A	cid Extra	ction)					Wat	er				
Blank (9091255-BLK1)		Prepared	: 09/25/19 06:5	55 Analyz	ed: 09/25/19	9 17:49						
EPA 8270D (SIM)												
Acenaphthene	ND		0.0182	ug/L	1							
Acenaphthylene	ND		0.0182	ug/L	1							
Anthracene	ND		0.0182	ug/L	1							
Benz(a)anthracene	ND		0.0182	ug/L	1							
Benzo(a)pyrene	ND		0.0182	ug/L	1							
Benzo(b)fluoranthene	ND		0.0182	ug/L	1							
Benzo(k)fluoranthene	ND		0.0182	ug/L	1							
Benzo(g,h,i)perylene	ND		0.0182	ug/L	1							
Chrysene	ND		0.0182	ug/L	1							
Dibenz(a,h)anthracene	ND		0.0182	ug/L	1							
Dibenzofuran	ND		0.0182	ug/L	1							
Fluoranthene	ND		0.0182	ug/L	1							
Fluorene	ND		0.0182	ug/L	1							
ndeno(1,2,3-cd)pyrene	ND		0.0182	ug/L	1							
-Methylnaphthalene	ND		0.0364	ug/L	1							
2-Methylnaphthalene	ND		0.0364	ug/L	1							
Naphthalene	ND		0.0364	ug/L	1							
Phenanthrene	ND		0.0182	ug/L	1							
Pyrene	ND		0.0182	ug/L	1							
Surr: 2-Fluorobiphenyl (Surr)	- 1,2	Roce	overy: 69 %	Limits: 44		Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)		Reco	87 %		1-133 %	Diii	nion. 1x					
LCS (9091255-BS1)		Prepared	: 09/25/19 06:5	55 Analyz	red: 09/25/19	9 18:15						
EPA 8270D (SIM)		opurou			07/20/1							
Acenaphthene	3.09		0.0200	ug/L	1	4.00		77	47 - 122%			
Acenaphthylene	3.02		0.0200	ug/L ug/L	1	4.00			41 - 130%			
Anthracene	3.25		0.0200	ug/L ug/L	1	4.00			57 - 123%			
Benz(a)anthracene	3.02		0.0200	ug/L	1	4.00			58 - 125%			
Benzo(a)pyrene	3.41		0.0200	ug/L ug/L	1	4.00			54 - 128%			
Benzo(b)fluoranthene	3.34		0.0200	ug/L	1	4.00			53 - 131%			
Benzo(k)fluoranthene	3.54		0.0200	ug/L ug/L	1	4.00			57 - 129%			
Benzo(g,h,i)perylene	2.67		0.0200	_	1	4.00			50 - 134%			
Chrysene	3.26		0.0200	ug/L ug/L	1	4.00			50 - 134% 59 - 123%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gra A Zmenghini

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ons (PAH	s) by EPA	8270D S	M				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091255 - EPA 3510C	(Acid Extra	ction)					Wat	er				
LCS (9091255-BS1)		Prepared	: 09/25/19 06:5	55 Analyz	ed: 09/25/1	9 18:15						
Dibenz(a,h)anthracene	3.14		0.0200	ug/L	1	4.00		78	51 - 134%			
Dibenzofuran	3.18		0.0200	ug/L	1	4.00		79	53 - 120%			
Fluoranthene	3.29		0.0200	ug/L	1	4.00		82	57 - 128%			
Fluorene	3.24		0.0200	ug/L	1	4.00		81	52 - 124%			
Indeno(1,2,3-cd)pyrene	2.92		0.0200	ug/L	1	4.00		73	52 - 133%			
1-Methylnaphthalene	3.13		0.0400	ug/L	1	4.00		78	41 - 120%			
2-Methylnaphthalene	3.10		0.0400	ug/L	1	4.00		77	40 - 121%			
Naphthalene	2.99		0.0400	ug/L	1	4.00		75	40 - 121%			
Phenanthrene	3.09		0.0200	ug/L	1	4.00		77	59 - 120%			
Pyrene	3.20		0.0200	ug/L	1	4.00			57 - 126%			
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 76 %	Limits: 44	1-120 %	Dili	ution: 1x					
p-Terphenyl-d14 (Surr)			83 %		-133 %		"					
LCS Dup (9091255-BSD1)		Prepared	: 09/25/19 06:5	55 Analyz	ed: 09/25/1	9 18:40						o
EPA 8270D (SIM)												
Acenaphthene	2.91		0.0200	ug/L	1	4.00		73	47 - 122%	6	30%	
Acenaphthylene	2.85		0.0200	ug/L	1	4.00		71	41 - 130%	6	30%	
Anthracene	3.05		0.0200	ug/L	1	4.00		76	57 - 123%	7	30%	
Benz(a)anthracene	2.76		0.0200	ug/L	1	4.00		69	58 - 125%	9	30%	
Benzo(a)pyrene	3.04		0.0200	ug/L	1	4.00		76	54 - 128%	11	30%	
Benzo(b)fluoranthene	3.04		0.0200	ug/L	1	4.00			53 - 131%	9	30%	
Benzo(k)fluoranthene	3.27		0.0200	ug/L	1	4.00			57 - 129%	9	30%	
Benzo(g,h,i)perylene	2.44		0.0200	ug/L	1	4.00			50 - 134%	9	30%	
Chrysene	2.99		0.0200	ug/L	1	4.00			59 - 123%	9	30%	
Dibenz(a,h)anthracene	2.87		0.0200	ug/L	1	4.00			51 - 134%	9	30%	
Dibenzofuran	3.00		0.0200	ug/L ug/L	1	4.00			53 - 120%	6	30%	
Fluoranthene	3.01		0.0200	ug/L ug/L	1	4.00			57 - 128%	9	30%	
Fluorene	3.04		0.0200	ug/L ug/L	1	4.00			52 - 124%	6	30%	
Indeno(1,2,3-cd)pyrene	2.58		0.0200	ug/L ug/L	1	4.00			52 - 133%	12	30%	
l-Methylnaphthalene	2.90		0.0400	ug/L ug/L	1	4.00			41 - 120%	8	30%	
2-Methylnaphthalene	2.86		0.0400	ug/L	1	4.00			40 - 121%	8	30%	
Naphthalene	2.75		0.0400	ug/L ug/L	1	4.00			40 - 121%	8	30%	
Phenanthrene	2.73		0.0400	ug/L ug/L	1	4.00			59 - 120%	7	30%	
Pyrene Pyrene	2.88		0.0200	ug/L ug/L	1	4.00			57 - 126%	8	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarb	ons (PAH	s) by EPA	8270D SI	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091255 - EPA 3510C	(Acid Extra	ction)					Wate	er				
LCS Dup (9091255-BSD1)		Prepared	: 09/25/19 06:	55 Analy	zed: 09/25/1	9 18:40						Q-19
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 71 %	Limits: 4	44-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			75 %	5	50-133 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: <u>Lampson</u>
Project Number: **185750581**Project Manager: **Len Farr**

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 200	.8 (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091375 - EPA 3015A							Wate	er				
Blank (9091375-BLK1)		Prepared	: 09/27/19 09:	18 Analyz	ed: 09/30/1	9 22:06						
EPA 200.8												
Arsenic	ND		1.00	ug/L	1							
Barium	ND		1.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		1.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
EPA 200.8 (Hg)												
Mercury	ND		0.0800	ug/L	1							
LCS (9091375-BS1)		Prepared	: 09/27/19 09:	18 Analyz	xed: 09/30/1	9 22:11						
EPA 200.8												
Arsenic	54.5		1.00	ug/L	1	55.6		98	85 - 115%			
Barium	56.5		1.00	ug/L	1	55.6		102	85 - 115%			
Cadmium	54.9		0.200	ug/L	1	55.6		99	85 - 115%			
Chromium	56.8		1.00	ug/L	1	55.6		102	85 - 115%			
Lead	54.5		0.200	ug/L	1	55.6		98	85 - 115%			
Selenium	26.5		1.00	ug/L	1	27.8		96	85 - 115%			
Silver	28.9		0.200	ug/L	1	27.8		104	85 - 115%			
EPA 200.8 (Hg)				-								
Mercury	1.02		0.0800	ug/L	1	1.11		92	85 - 115%			
Duplicate (9091375-DUP1)		Prepared	: 09/27/19 09:	18 Analyz	ed: 09/30/1	9 22:57						
QC Source Sample: EQ-092019	(A9I0744-03)	<u>L</u>		·								
EPA 200.8												
Barium	ND		1.00	ug/L	1		ND				20%	
Cadmium	ND		0.200	ug/L	1		ND				20%	
Chromium	ND		1.00	ug/L	1		ND				20%	
Lead	ND		0.200	ug/L	1		ND				20%	
Selenium	ND		1.00	ug/L	1		ND				20%	
Silver	ND		0.200	ug/L	1		ND				20%	
EPA 200.8 (Hg)												
Mercury	ND		0.0800	ug/L	1		ND				20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: <u>Lampson</u>
Project Number: **185750581**Project Manager: **Len Farr**

Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 200	.8 (ICPMS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091375 - EPA 3015A							Wat	er				
Duplicate (9091375-DUP2)		Prepared	: 09/27/19 09:1	8 Analyz	ed: 10/01/19	9 19:34						
OC Source Sample: EQ-092019 (A	A910744-031	<u>RE1)</u>										
EPA 200.8 Arsenic	ND		1.00	ug/L	1		ND				20%	Q-16
Matrix Spike (9091375-MS1)		Prepared	: 09/27/19 09:1	8 Analyz	ed: 09/30/19	9 23:02						
QC Source Sample: EQ-092019 (A	A910744-03)											
EPA 200.8												
Barium	54.6		1.00	ug/L	1	55.6	ND		70 - 130%			
Cadmium	53.9		0.200	ug/L	1	55.6	ND		70 - 130%			
Chromium	53.4		1.00	ug/L	1	55.6	ND	96	70 - 130%			
Lead	56.2		0.200	ug/L	1	55.6	ND	101	70 - 130%			
Selenium	25.5		1.00	ug/L	1	27.8	ND	92	70 - 130%			
Silver	28.6		0.200	ug/L	1	27.8	ND	103	70 - 130%			
EPA 200.8 (Hg)												
Mercury	1.09		0.0800	ug/L	1	1.11	ND	98	70 - 130%			
Matrix Spike (9091375-MS2)		Prepared	: 09/27/19 09:1	8 Analyz	ed: 10/01/19	9 19:39						
QC Source Sample: EQ-092019 (A	A910744-031	<u>RE1)</u>										
Arsenic	52.2		1.00	ug/L	1	55.6	ND	94	70 - 130%			Q-16

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

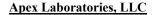
QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	Metals	by EPA 2	00.8 (ICPI	vis)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 9091376 - Matrix Matc	hed Direct I	nject					Wat	er				
Blank (9091376-BLK1)		Prepared	: 09/27/19 09:2	4 Analyz	ed: 09/30/19	9 23:48						
EPA 200.8 (Diss)												
Barium	ND		1.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		1.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
EPA 200.8 (Hg)												
Mercury	ND		0.0800	ug/L	1							
Blank (9091376-BLK2)		Prepared	: 09/27/19 09:2	4 Analyz	red: 10/01/19	9 20:11						
EPA 200.8 (Diss)												
Arsenic	ND		1.00	ug/L	1							Q-16
LCS (9091376-BS1)		Prepared	: 09/27/19 09:2	4 Analyz	ed: 09/30/19	9 23:53						
EPA 200.8 (Diss)												
Barium	55.3		1.00	ug/L	1	55.6		100	85 - 115%			
Cadmium	54.0		0.200	ug/L	1	55.6		97	85 - 115%			
Chromium	54.4		1.00	ug/L	1	55.6		98	85 - 115%			
Lead	53.5		0.200	ug/L	1	55.6		96	85 - 115%			
Selenium	26.5		1.00	ug/L	1	27.8		96	85 - 115%			
Silver	28.5		0.200	ug/L	1	27.8		103	85 - 115%			
EPA 200.8 (Hg)				-								
Mercury	1.00		0.0800	ug/L	1	1.11		90	85 - 115%			
LCS (9091376-BS2)		Prepared	: 09/27/19 09:2	4 Analyz	ed: 10/01/19	9 20:15						
EPA 200.8 (Diss)												
Arsenic	50.8		1.00	ug/L	1	55.6		91	85 - 115%			Q-16
Duplicate (9091376-DUP1)		Prepared	: 09/27/19 09:2	4 Analyz	ed: 10/01/19	9 00:16						
QC Source Sample: EQ-092019 EPA 200.8 (Diss)	(A9I0744-03)	•										
Barium	ND		1.00	ug/L	1		ND				20%	
~ m m111	110		1.00	ug/L ug/L	1		1,10				20/0	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr


Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolve	d Metals	by EPA 2	00.8 (ICPI	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 9091376 - Matrix Match	ed Direct I	nject					Wat	er				
Duplicate (9091376-DUP1)		Prepared	: 09/27/19 09:2	24 Analyz	zed: 10/01/1	9 00:16						
QC Source Sample: EQ-092019 (A9I0744-03)											
Chromium	ND		1.00	ug/L	1		ND				20%	
Lead	ND		0.200	ug/L	1		ND				20%	
Selenium	ND		1.00	ug/L	1		ND				20%	
Silver <u>EPA 200.8 (Hg)</u>	ND		0.200	ug/L	1		ND				20%	
Mercury	ND		0.0800	ug/L	1		ND				20%	
Duplicate (9091376-DUP2)		Prepared	: 09/27/19 09:2	24 Analyz	red: 10/01/1	9 20:39						
QC Source Sample: EQ-092019 (A910744-03F	<u>RE1)</u>										
EPA 200.8 (Diss)												
Arsenic	ND		1.00	ug/L	1		ND				20%	Q-16
Matrix Spike (9091376-MS1)		Prepared	: 09/27/19 09:2	24 Analyz	zed: 10/01/1	9 00:21						
OC Source Sample: EO-092019 (A9I0744-03)											
EPA 200.8 (Diss)												
Barium	52.9		1.00	ug/L	1	55.6	ND	95	70 - 130%			
Cadmium	53.2		0.200	ug/L	1	55.6	ND	96	70 - 130%			
Chromium	52.2		1.00	ug/L	1	55.6	ND	94	70 - 130%			
Lead	58.8		0.200	ug/L	1	55.6	ND	106	70 - 130%			
Selenium	26.7		1.00	ug/L	1	27.8	ND	96	70 - 130%			
Silver	28.1		0.200	ug/L	1	27.8	ND	101	70 - 130%			
EPA 200.8 (Hg)												
Mercury	1.18		0.0800	ug/L	1	1.11	ND	106	70 - 130%			
Matrix Spike (9091376-MS2)		Prepared	: 09/27/19 09:2	24 Analyz	zed: 10/01/1	9 20:43						
QC Source Sample: EQ-092019 (A910744-03F	<u>RE1)</u>										
EPA 200.8 (Diss)												
Arsenic	50.9		1.00	ug/L	1	55.6	ND	92	70 - 130%			Q-16

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

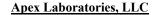
QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	ı wietais	Dy EPA 2	00.8 (ICPI	vio)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091384 - EPA 3015A	- Dissolved						Wat	er				
Blank (9091384-BLK1)		Prepared	: 09/27/19 11:2	2 Analyz	ed: 10/02/1	9 20:28						
EPA 200.8 (Diss)												
Arsenic	ND		1.00	ug/L	1							
Barium	ND		1.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		1.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
EPA 200.8 (Hg)				-								
Mercury	ND		0.0800	ug/L	1							
LCS (9091384-BS1)		Prepared	: 09/27/19 11:2	2 Analyz	red: 10/02/1	9 20:32						
EPA 200.8 (Diss)												
Arsenic	53.1		1.00	ug/L	1	55.6		96	85 - 115%			
Barium	55.9		1.00	ug/L	1	55.6		101	85 - 115%			
Cadmium	53.4		0.200	ug/L	1	55.6		96	85 - 115%			
Chromium	56.1		1.00	ug/L	1	55.6		101	85 - 115%			
Lead	53.2		0.200	ug/L	1	55.6		96	85 - 115%			
Selenium	26.9		1.00	ug/L	1	27.8		97	85 - 115%			
Silver	29.3		0.200	ug/L	1	27.8		105	85 - 115%			
EPA 200.8 (Hg)												
Mercury	1.04		0.0800	ug/L	1	1.11		94	85 - 115%			
Duplicate (9091384-DUP1)		Prepared	: 09/27/19 11:2	.2 Analyz	ed: 10/02/1	9 20:41						
QC Source Sample: GP05 (A91)	0744-02)											
EPA 200.8 (Diss)												
Arsenic	31.1		10.0	ug/L	10		36.6			16	20%	
Barium	489		10.0	ug/L	10		549			12	20%	
Cadmium	ND		2.00	ug/L	10		ND				20%	R-04
Chromium	231		10.0	ug/L	10		277			18	20%	
Lead	17.8		2.00	ug/L	10		19.2			8	20%	
Selenium	ND		10.0	ug/L	10		ND				20%	R-04
Silver	ND		2.00	ug/L	10		ND				20%	R-04
EPA 200.8 (Hg)												

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: Lampson
Project Number: 185750581
Project Manager: Len Farr


Report ID: A9I0744 - 10 07 19 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolve	d Metals	by EPA 2	00.8 (ICPI	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9091384 - EPA 3015A - E	Dissolved						Wat	er				
Duplicate (9091384-DUP1)		Prepared	: 09/27/19 11:2	22 Analyz	ed: 10/02/19	9 20:41						
QC Source Sample: GP05 (A9I074	44-02)											
Mercury	1.29		0.800	ug/L	10		1.33			3	20%	
Matrix Spike (9091384-MS1)		Prepared	: 09/27/19 11:2	22 Analyz	ed: 10/02/19	20:46						
OC Source Sample: GP05 (A9107-	44-02)											
EPA 200.8 (Diss)												
Arsenic	81.4		10.0	ug/L	10	55.6	36.6	81	70 - 130%			
Barium	581		10.0	ug/L	10	55.6	549	58	70 - 130%			Q-03
Cadmium	59.2		2.00	ug/L	10	55.6	ND	106	70 - 130%			
Chromium	297		10.0	ug/L	10	55.6	277	36	70 - 130%			Q-03
Lead	76.8		2.00	ug/L	10	55.6	19.2	104	70 - 130%			
Selenium	23.7		10.0	ug/L	10	27.8	ND	85	70 - 130%			
Silver	31.0		2.00	ug/L	10	27.8	ND	112	70 - 130%			
EPA 200.8 (Hg)												
Mercury	2.62		0.800	ug/L	10	1.11	1.33	116	70 - 130%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec PortlandProject:Lampson601 SW 2nd Ave Suite 1400Project Number:185750581Portland, OR 97204Project Manager:Len Farr

Report ID: A910744 - 10 07 19 1649

SAMPLE PREPARATION INFORMATION

		Diesel and	l/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3510C (Fr	uels/Acid Ext.)			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091399							
A9I0744-01	Water	NWTPH-Dx	09/20/19 13:00	09/27/19 12:50	720mL/5mL	1000 mL/5 mL	1.39
A9I0744-02	Water	NWTPH-Dx	09/20/19 14:15	09/27/19 12:50	860mL/5mL	1000 mL/5 mL	1.16
A9I0744-03	Water	NWTPH-Dx	09/20/19 16:30	09/27/19 12:50	990mL/5mL	1000mL/5mL	1.01
	Gas	soline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091264							
A9I0744-03	Water	NWTPH-Gx (MS)	09/20/19 16:30	09/25/19 12:01	5mL/5mL	5mL/5mL	1.00
Batch: 9091347							
A9I0744-01RE1	Water	NWTPH-Gx (MS)	09/20/19 13:00	09/26/19 18:02	5mL/5mL	5mL/5mL	1.00
A9I0744-02RE1	Water	NWTPH-Gx (MS)	09/20/19 14:15	09/26/19 18:02	5mL/5mL	5mL/5mL	1.00
		Volatile 0	Organic Compounds	by EPA 8260C			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091264							
A9I0744-03	Water	EPA 8260C	09/20/19 16:30	09/25/19 12:01	5mL/5mL	5mL/5mL	1.00
A9I0744-04	Water	EPA 8260C	09/20/19 00:00	09/25/19 12:01	5mL/5mL	5mL/5mL	1.00
Batch: 9091347							
A9I0744-01RE1	Water	EPA 8260C	09/20/19 13:00	09/26/19 18:02	5mL/5mL	5mL/5mL	1.00
A9I0744-02RE1	Water	EPA 8260C	09/20/19 14:15	09/26/19 18:02	5mL/5mL	5mL/5mL	1.00
		Polyaromatic F	Hydrocarbons (PAHs	s) by EPA 8270D SI	M		
Prep: EPA 3510C (A	cid Extraction	<u> </u>	· · · · · ·	<u> </u>	Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091255	112001111	11201100	- Sumpreu	- repureu			
A9I0744-01	Water	EPA 8270D (SIM)	09/20/19 13:00	09/25/19 09:23	900mL/2mL	1000mL/2mL	1.11
		Total	Metals by EPA 200	8 (ICPMS)			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Awa & Smerighini

Stantec Portland Project: Lampson 601 SW 2nd Ave Suite 1400 Project Number: 185750581 Portland, OR 97204 Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

SAMPLE PREPARATION INFORMATION

		Tota	l Metals by EPA 200	.8 (ICPMS)			
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091375							
A9I0744-01	Water	EPA 200.8	09/20/19 13:00	09/27/19 09:18	45mL/50mL	45mL/50mL	1.00
A9I0744-01	Water	EPA 200.8 (Hg)	09/20/19 13:00	09/27/19 09:18	45mL/50mL	45mL/50mL	1.00
A9I0744-01RE1	Water	EPA 200.8	09/20/19 13:00	09/27/19 09:18	45mL/50mL	45mL/50mL	1.00
A9I0744-02	Water	EPA 200.8	09/20/19 14:15	09/27/19 09:18	45mL/50mL	45 mL/50 mL	1.00
A9I0744-02RE1	Water	EPA 200.8	09/20/19 14:15	09/27/19 09:18	45mL/50mL	45mL/50mL	1.00
A9I0744-02RE1	Water	EPA 200.8 (Hg)	09/20/19 14:15	09/27/19 09:18	45mL/50mL	45mL/50mL	1.00
A9I0744-03	Water	EPA 200.8	09/20/19 16:30	09/27/19 09:18	45mL/50mL	45mL/50mL	1.00
A9I0744-03	Water	EPA 200.8 (Hg)	09/20/19 16:30	09/27/19 09:18	45mL/50mL	45 mL/50 mL	1.00
A9I0744-03RE1	Water	EPA 200.8	09/20/19 16:30	09/27/19 09:18	45mL/50mL	45mL/50mL	1.00
		Dissolv	ved Metals by EPA 2	00.8 (ICPMS)			
Prep: EPA 3015A - [<u>Dissolved</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091384							
A9I0744-02	Water	EPA 200.8 (Diss)	09/20/19 14:15	09/27/19 11:22	45mL/50mL	45mL/50mL	1.00
A9I0744-02	Water	EPA 200.8 (Hg)	09/20/19 14:15	09/27/19 11:22	45mL/50mL	45mL/50mL	1.00
Prep: Matrix Matche	d Direct Inject				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9091376							
A9I0744-01	Water	EPA 200.8 (Diss)	09/20/19 13:00	09/27/19 09:24	45mL/50mL	45mL/50mL	1.00
A9I0744-01	Water	EPA 200.8 (Hg)	09/20/19 13:00	09/27/19 09:24	45mL/50mL	45 mL/50 mL	1.00

09/20/19 13:00

09/20/19 16:30

09/20/19 16:30

09/20/19 16:30

09/27/19 09:24

09/27/19 09:24

09/27/19 09:24

09/27/19 09:24

Apex Laboratories

A9I0744-01RE1

A9I0744-03RE1

A9I0744-03

A9I0744-03

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of }$ custody document. This analytical report must be reproduced in its entirety.

45mL/50mL

45mL/50mL

45mL/50mL

45mL/50mL

45mL/50mL

45mL/50mL

45mL/50mL

45mL/50mL

1.00

1.00

1.00

1.00

Doas Somerighini

Water

Water

Water

Water

EPA 200.8 (Diss)

EPA 200.8 (Diss)

EPA 200.8 (Hg)

EPA 200.8 (Diss)

Report ID:

Stantec Portland Project: Lampson **601 SW 2nd Ave Suite 1400** Project Number: 185750581 Portland, OR 97204 Project Manager: Len Farr A9I0744 - 10 07 19 1649

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex 1		

Apex Labor	<u>ratories</u>
F-18	Result for Diesel (Diesel Range Organics, C12-C24) is due to overlap from Gasoline or a Gasoline Range product.
M-02	Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-03	Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
Q-16	Reanalysis of an original Batch QC sample.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +16%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +17%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +24%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +29%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +3%. The results are reported as Estimated Values.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260C
R-02	The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
R-04	Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.
S-08	TPH-Gx Surrogate recovery cannot be accurately quantified due to interference from coeluting organic compounds present in the sample

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

extract. See 8260 results for accurate Surrogate recovery.

 Stantec Portland
 Project:
 Lampson

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750581
 Report ID:

 Portland, OR 97204
 Project Manager:
 Len Farr
 A910744 - 10 07 19 1649

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gesa A Zmenighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

 Stantec Portland
 Project:
 Lampson

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750581
 Report ID:

 Portland, OR 97204
 Project Manager:
 Len Farr
 A910744 - 10 07 19 1649

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwast Jamenighini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

 Stantec Portland
 Project:
 Lampson

 601 SW 2nd Ave Suite 1400
 Project Number:
 185750581
 Report ID:

 Portland, OR 97204
 Project Manager:
 Len Farr
 A910744 - 10 07 19 1649

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

	1886					θλίι	Утср	() (S) (J)										ROLLAND		Date:	Time:	
	85750							V [11] S	_								3					
	Project #: 1	<u></u>	. ((2015)	·	LP Meta	515	<	$\overline{\times}$	\times							1065			RECEIVED BY: Signature:	Printed Name:	Company:
	Ł,	121 PO#	12	43' ,8N, 41' ,eN q,	101 '6		TOT .													Pate: Sign	Time: Prii	5
	انے	Email: Core; hotelang Osterda	ANALYSIS REQUEST	r.	/ (EL) elsi	ority Me	i-4			-							* MS/MS/D ON CX WAS YOCKS ONLY					
To Contract was	Lamp Con	butch	ANALYS	(42,)(8) str	37 Pest 32 Pest 32 PCBs	808	4	\leq							UCTIONS:	10 05			: X :		
-	101			1si.J		-iməs 04	228	-	1	=						SPECIAL INSTRUCTIONS:	W 5/W			RELINQUISHED BY: Signature:	Name:	ny:
	Project Name:	903		1	Full Lis	60 Halo	78		Ż	X	X					SPEC	*	***	T	RELLIN Signatur	Printed Name:	Company:
	Ĭ,	-194-57.ES				90 BLEX	820	\ \										Man		19 / / /	10	3
	-					О-НЧТУ Э-НЧТУ	$-\kappa$	$\stackrel{\star}{\downarrow}$	$\hat{\mathbf{x}}$	$\widehat{\geq}$										Date:	# K	
5	Fall	Phone:	2			ALBH-H		2/2	7	75						ress Days	3 Day	Other:		1	The state of the s	2
8-2323	V37	SAES				XIRIX			É	3	3) = 10 Busi		X.	30 DAYS	Signature:	1 Martie	ión
эh: 503-71.	Project Mgr:		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			ATE VIE	35	₹ ·	20.4 145	4-20-401/630 UV	1					Normal Turn Around Time (TAT) = 10 Business Days	2 Day	5 DAY	SAMPLES ARE HELD FOR 30 DAYS	RECEI Signary Signary	Te: Printed	Company
1 62223 1	-	H.115/05/	~			B ID #		- 1	3-2	Ċ.			1			ura Around	1 Day	4 DAY	PLES ARE	Date: (1-15)-(1)	Time: [[C	
6700 SW Sandburg St., Tigard, OR 97223 Ph. 503-718-2323	20 Per	225 NE 1	Segret HECKIN	· ·	, A CA		SAMPLE ID	12	50	FQ-092019	TB -042319-1	Torrespond to the second			THE RESIDENCE OF THE PERSON OF	Normal T	TAT Degreested (etacle)	daestea (eareig)		BY:	David Hotching	TOWNYOU
5700 SW Sana	Company: 5	Address: 2	Sampled by: \(\iii)\(\iiii)\(\iii)\(\iii)\(\iiii)\(\iii)\(\iii)\(\iii)\(\iiii)\(\iii)\(\iii)\(\iii)\(\iii)\	Site Location:	AK ID		(1.0 S.	$\int_{-\infty}^{\infty}$	5	\mathcal{R}	78						TAT DA			Signature:	Printed Name: $\int \int \int \int \int$	Company:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland
601 SW 2nd Ave Suite 1400
Portland, OR 97204

Project: Lampson
Project Number: 185750581
Project Manager: Len Farr

Report ID: A9I0744 - 10 07 19 1649

	APEX LABS COOLER RECEIPT FORM
C	nt:)tanteC Element WO#: A9 50744
Pr	ect/Project #: Lampson (85750 58)
Da De	very Info: /time received: 9/14/19@ 10/5 By: 5 /vered by: Apex Client ESS FedEx X UPS Swift Senvoy SDS Other er Inspection Date/time inspected: 7/14/19@ 10/5 By: 55
Cł	n of Custody included? Yes No Custody seals? Yes No
Sig	ed/dated by client? Yes \(\begin{array}{c}\) No \(\text{}\)
Tee Ree Ice Co Co Co Sa All	coldated by Apex? Yes No Comments: 6 POT No By: Wes Apole Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #1 Cooler #6 Cooler #6 Cooler #6 Cooler #7 Detail Cooler #1 Cooler #1 Cooler #1 Cooler #1 Cooler #1 Cooler #1 Cooler #1 Cooler #1
	Nitric TB#2118
	container discrepancies form initiated? Yes No NA
Со	niners/volumes received appropriate for analysis? Yes No Comments:
Co Wa	OA vials have visible headspace? Yes No X NA
024	ional information: $\frac{1}{4}$ $\frac{1}{4$

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Thursday, October 10, 2019 Len Farr Stantec Portland 601 SW 2nd Ave Suite 1400 Portland, OR 97204

RE: A9J0155 - Lampson - 185750581 Tank 3.D.3

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A9J0155, which was received by the laboratory on 10/4/2019 at 11:12:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: ldomenighini@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler#1 5.8 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmenyhini

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

ANALYTICAL REPORT FOR SAMPLES

					_
	SAMPLE INFORMA	ATION			
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	_
A44-Stockpile	A9J0155-01	Soil	10/03/19 10:00	10/04/19 11:12	
A43-Stockpile	A9J0155-02	Soil	10/03/19 10:15	10/04/19 11:12	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons (E	Benzene tl	hrough Naphtha	alene) by	NWTPH-Gx		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
A44-Stockpile (A9J0155-01RE2)				Matrix: Soil		Batch	: 9100727	
Gasoline Range Organics	1760		105	mg/kg dry	500	10/07/19 18:31	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 94 %	Limits: 50-150 %	5 1	10/07/19 18:31	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	5 1	10/07/19 18:31	NWTPH-Gx (MS)	
A43-Stockpile (A9J0155-02RE2)				Matrix: Soil		Batch	: 9100727	
Gasoline Range Organics	1350		82.4	mg/kg dry	500	10/07/19 18:04	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	y: 96 %	Limits: 50-150 %	5 1	10/07/19 18:04	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	5 1	10/07/19 18:04	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

ANALYTICAL SAMPLE RESULTS

	Selected	Volatile Orga	nic Compo	unds by EPA 50	35A/826	0C		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
A44-Stockpile (A9J0155-01)				Matrix: Soil		Batch:	9100661	
Benzene	ND		0.0210	mg/kg dry	50	10/04/19 16:54	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.105	mg/kg dry	50	10/04/19 16:54	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0525	mg/kg dry	50	10/04/19 16:54	5035A/8260C	
Ethylbenzene	0.780		0.0525	mg/kg dry	50	10/04/19 16:54	5035A/8260C	Q-42
Methyl tert-butyl ether (MTBE)	ND		0.105	mg/kg dry	50	10/04/19 16:54	5035A/8260C	
Naphthalene	1.38		0.210	mg/kg dry	50	10/04/19 16:54	5035A/8260C	
Toluene	ND		0.105	mg/kg dry	50	10/04/19 16:54	5035A/8260C	
Xylenes, total	5.02		0.157	mg/kg dry	50	10/04/19 16:54	5035A/8260C	Q-42
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 105 %	Limits: 80-120 %	1	10/04/19 16:54	5035A/8260C	
Toluene-d8 (Surr)			101 %	80-120 %	1	10/04/19 16:54	5035A/8260C	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	1	10/04/19 16:54	5035A/8260C	
A43-Stockpile (A9J0155-02)				Matrix: Soil		Batch:	9100661	
Benzene	ND		0.0165	mg/kg dry	50	10/04/19 17:47	5035A/8260C	
1,2-Dibromoethane (EDB)	ND		0.0824	mg/kg dry	50	10/04/19 17:47	5035A/8260C	
1,2-Dichloroethane (EDC)	ND		0.0412	mg/kg dry	50	10/04/19 17:47	5035A/8260C	
Ethylbenzene	0.667		0.0412	mg/kg dry	50	10/04/19 17:47	5035A/8260C	
Methyl tert-butyl ether (MTBE)	ND		0.0824	mg/kg dry	50	10/04/19 17:47	5035A/8260C	
Naphthalene	3.13		0.165	mg/kg dry	50	10/04/19 17:47	5035A/8260C	
Toluene	ND		0.0824	mg/kg dry	50	10/04/19 17:47	5035A/8260C	
Xylenes, total	4.39		0.124	mg/kg dry	50	10/04/19 17:47	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 106 %	Limits: 80-120 %	1	10/04/19 17:47	5035A/8260C	
Toluene-d8 (Surr)			104 %	80-120 %	1	10/04/19 17:47	5035A/8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	10/04/19 17:47	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

ANALYTICAL SAMPLE RESULTS

	TCLP \	/olatile Orgar	nic Compou	nds by EPA 13	11/8260C			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
A44-Stockpile (A9J0155-01)				Matrix: Soil		Batch:	9100780	
Benzene	ND		0.0125	mg/L	50	10/08/19 14:15	1311/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 92 %	Limits: 80-120 %	1	10/08/19 14:15	1311/8260C	
Toluene-d8 (Surr)			111 %	80-120 %	1	10/08/19 14:15	1311/8260C	
4-Bromofluorobenzene (Surr)			86 %	80-120 %	1	10/08/19 14:15	1311/8260C	
A43-Stockpile (A9J0155-02)				Matrix: Soil		Batch:	9100780	
Benzene	ND		0.0125	mg/L	50	10/08/19 15:10	1311/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 93 %	Limits: 80-120 %	1	10/08/19 15:10	1311/8260C	
Toluene-d8 (Surr)			109 %	80-120 %	1	10/08/19 15:10	1311/8260C	
4-Bromofluorobenzene (Surr)			87 %	80-120 %	1	10/08/19 15:10	1311/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM

				Alis, by LFA 02		Data		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
A44-Stockpile (A9J0155-01)				Matrix: Soil		-	: 9100669	
Acenaphthene	ND		0.0634	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	R-02
Acenaphthylene	ND		0.0264	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	R-02
Anthracene	ND		0.0211	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	R-02
Benz(a)anthracene	0.0504		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	
Benzo(a)pyrene	0.0561		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	
Benzo(b)fluoranthene	0.0986		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	
Benzo(k)fluoranthene	0.0331		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	M-05
Benzo(g,h,i)perylene	0.0606		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	
Chrysene	0.0750		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	
Dibenzofuran	0.0497		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	
Fluoranthene	0.0969		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	
Fluorene	0.139		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	0.0522		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	
1-Methylnaphthalene	0.540		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	
2-Methylnaphthalene	0.890		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	
Naphthalene	0.288		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	
Phenanthrene	0.312		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	
Pyrene	0.129		0.0106	mg/kg dry	1	10/07/19 13:27	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Recov	very: 77 %	Limits: 44-120 %	1	10/07/19 13:27	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			95 %	54-127 %	1	10/07/19 13:27	EPA 8270D (SIM)	
A43-Stockpile (A9J0155-02)				Matrix: Soil		Batch	: 9100669	
Acenaphthene	ND		0.123	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	R-02
Acenaphthylene	ND		0.0353	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	R-02
Anthracene	ND		0.0321	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	R-02
Benz(a)anthracene	0.0326		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	
Benzo(a)pyrene	0.0304		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	
Benzo(b)fluoranthene	0.0523		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	
Benzo(k)fluoranthene	0.0174		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	M-05
Benzo(g,h,i)perylene	0.0296		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	
Chrysene	0.0434		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	
Dibenzofuran	0.0883		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	
Fluoranthene	0.0625		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	
Fluorene	0.323		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	0.0273		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	
1-Methylnaphthalene	1.55		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghine

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

ANALYTICAL SAMPLE RESULTS

	Polyard	omatic Hydro	carbons (P	AHs) by EPA 82	270D SIM			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
A43-Stockpile (A9J0155-02)				Matrix: Soil		Batch	: 9100669	
2-Methylnaphthalene	2.45		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	
Naphthalene	1.22		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	
Phenanthrene	0.751		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	
Pyrene	0.0806		0.0107	mg/kg dry	1	10/07/19 13:53	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 80 %	Limits: 44-120 %	6 1	10/07/19 13:53	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			93 %	54-127 %	<i>5</i> 1	10/07/19 13:53	EPA 8270D (SIM)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

ANALYTICAL SAMPLE RESULTS

		TCLP Meta	als by EPA 602	20A (ICPMS	S)			
	Sample	Detection	Reporting	** *:	5 3.3	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
A44-Stockpile (A9J0155-01)				Matrix: So	oil			
Batch: 9100788								
Arsenic	ND		0.100	mg/L	10	10/08/19 15:08	1311/6020A	
Barium	ND		5.00	mg/L	10	10/08/19 15:08	1311/6020A	
Cadmium	ND		0.100	mg/L	10	10/08/19 15:08	1311/6020A	
Chromium	ND		0.100	mg/L	10	10/08/19 15:08	1311/6020A	
Lead	ND		0.100	mg/L	10	10/08/19 15:08	1311/6020A	
Mercury	ND		0.00700	mg/L	10	10/08/19 15:08	1311/6020A	
Selenium	ND		0.100	mg/L	10	10/08/19 15:08	1311/6020A	
Silver	ND		0.100	mg/L	10	10/08/19 15:08	1311/6020A	
				Matrix: So	oil			
Batch: 9100788								
Arsenic	ND		0.100	mg/L	10	10/08/19 15:13	1311/6020A	
Barium	ND		5.00	mg/L	10	10/08/19 15:13	1311/6020A	
Cadmium	ND		0.100	mg/L	10	10/08/19 15:13	1311/6020A	
Chromium	ND		0.100	mg/L	10	10/08/19 15:13	1311/6020A	
Lead	ND		0.100	mg/L	10	10/08/19 15:13	1311/6020A	
Mercury	ND		0.00700	mg/L	10	10/08/19 15:13	1311/6020A	
Selenium	ND		0.100	mg/L	10	10/08/19 15:13	1311/6020A	
Silver	ND		0.100	mg/L	10	10/08/19 15:13	1311/6020A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
A44-Stockpile (A9J0155-01)				Matrix: Soil		Batch:	9100654	
% Solids	86.9		1.00	% by Weight	1	10/07/19 07:47	EPA 8000C	
A43-Stockpile (A9J0155-02)				Matrix: Soil		Batch:	9100718	
% Solids	86.7		1.00	% by Weight	1	10/08/19 07:22	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

ANALYTICAL SAMPLE RESULTS

		TCLP E	xtraction by	EPA 1311				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
A44-Stockpile (A9J0155-01)				Matrix: So	oil	Batch	: 9100723	
TCLP Extraction	PREP			N/A	1	10/07/19 16:05	EPA 1311	
TCLP ZHE Extraction	PREP			N/A	1	10/07/19 15:50	EPA 1311 ZHE	
A43-Stockpile (A9J0155-02)				Matrix: So	oil	Batch	: 9100723	
TCLP Extraction	PREP			N/A	1	10/07/19 16:05	EPA 1311	
TCLP ZHE Extraction	PREP			N/A	1	10/07/19 15:50	EPA 1311 ZHE	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range F	lydrocarbo	ns (Benz	ene thro	ugh Naph	thalene) l	by NWTI	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9100661 - EPA 5035A							Soil					
Blank (9100661-BLK1)		Prepared	: 10/04/19 09:	44 Analyz	ed: 10/04/1	9 11:31						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg w	et 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 92 %	Limits: 50	-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			101 %	50	-150 %		"					
LCS (9100661-BS2)		Prepared	: 10/04/19 09:	44 Analyz	ed: 10/04/1	9 11:04						
NWTPH-Gx (MS)												
Gasoline Range Organics	24.2		5.00	mg/kg w	et 50	25.0		97	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 90 %	Limits: 50	-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			99 %	50	-150 %		"					
Duplicate (9100661-DUP1)		Prepared	: 10/03/19 10:	00 Analyz	ed: 10/04/1	9 17:21						
QC Source Sample: A44-Stockpile NWTPH-Gx (MS)	e (A9J0155-	<u>01)</u>										
Gasoline Range Organics	583		10.2	mg/kg di	ry 50		1750			100	30%	Q-04
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 95 %	Limits: 50	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			99 %	50	-150 %		"					
Batch 9100727 - EPA 5035A							Soil					
Blank (9100727-BLK1)		Prepared	: 10/07/19 09:	30 Analyz	ed: 10/07/1	9 11:49						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg w	et 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 92 %	Limits: 50	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			99 %	50	-150 %		"					
LCS (9100727-BS2)		Prepared	: 10/07/19 09:	30 Analyz	ed: 10/07/1	9 11:22						
NWTPH-Gx (MS)												
Gasoline Range Organics	23.8		5.00	mg/kg w	et 50	25.0		95	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 94 %	Limits: 50	0-150 %	Dila	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doa A Zmeinghini

F

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602


QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9100661 - EPA 5035A							Soil					
Blank (9100661-BLK1)		Prepared	10/04/19 09:	44 Analyze	d: 10/04/19	9 11:31						
5035A/8260C												
Benzene	ND		0.00667	mg/kg we	t 50							
1,2-Dibromoethane (EDB)	ND		0.0333	mg/kg we	t 50							
1,2-Dichloroethane (EDC)	ND		0.0167	mg/kg we	t 50							
Ethylbenzene	ND		0.0167	mg/kg we	t 50							
Isopropylbenzene	ND		0.0333	mg/kg we	t 50							
Methyl tert-butyl ether (MTBE)	ND		0.0333	mg/kg we	t 50							
Naphthalene	ND		0.0667	mg/kg we	t 50							
Toluene	ND		0.0333	mg/kg we	t 50							
1,2,4-Trimethylbenzene	ND		0.0333	mg/kg we								
1,3,5-Trimethylbenzene	ND		0.0333	mg/kg we	t 50							
Xylenes, total	ND		0.0500	mg/kg we								
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 91 %	Limits: 80-	120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			103 %		20 %		"					
4-Bromofluorobenzene (Surr)			97 %		20 %		"					
LCS (9100661-BS1)		Prepared	10/04/19 09:4	44 Analyze	d: 10/04/19	9 10:37						
5035A/8260C		opurou			10,0 1,1,	. 10.07						
Benzene	0.888		0.0100	mg/kg we	t 50	1.00		89	80 - 120%			
1,2-Dibromoethane (EDB)	1.04		0.0500	mg/kg we		1.00		104	80 - 120%			
1,2-Dichloroethane (EDC)	1.03		0.0250	mg/kg we		1.00		103	80 - 120%			
Ethylbenzene	0.995		0.0250	mg/kg we		1.00		100	80 - 120%			
Isopropylbenzene	1.00		0.0500	mg/kg we		1.00		100	80 - 120%			
Methyl tert-butyl ether (MTBE)	0.916		0.0500	mg/kg we		1.00		92	80 - 120%			
Naphthalene	1.06		0.100	mg/kg we		1.00		106	80 - 120%			
Toluene	0.986		0.0500	mg/kg we		1.00		99	80 - 120%			
1,2,4-Trimethylbenzene	1.03		0.0500	mg/kg we		1.00		103	80 - 120%			
1,3,5-Trimethylbenzene	1.03		0.0500	mg/kg we		1.00		103	80 - 120%			
Xylenes, total	3.01		0.0750	mg/kg we		3.00		100	80 - 120%			
'urr: 1,4-Difluorobenzene (Surr)	5.01		overy: 92 %	Limits: 80-			ution: 1x	100	00 120/0			
		кесс	103 %		120 %	Dill	uion: 1x					
Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)			103 % 97 %		20 % 120 %		,,					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gosa & Zmenighini

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

QUALITY CONTROL (QC) SAMPLE RESULTS

Selected Volatile Organic Compounds by EPA 5035A/8260C												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9100661 - EPA 5035A							Soil					
Duplicate (9100661-DUP1)		Prepared:	10/03/19 10:	00 Analyze	d: 10/04/1	9 17:21						
QC Source Sample: A44-Stockpile	(A9J0155-0	<u>01)</u>										
5035A/8260C												
Benzene	ND		0.0204	mg/kg dr	y 50		ND				30%	Q-05
1,2-Dibromoethane (EDB)	ND		0.102	mg/kg dr	y 50		ND				30%	
1,2-Dichloroethane (EDC)	ND		0.0511	mg/kg dr	y 50		ND				30%	
Ethylbenzene	0.472		0.0511	mg/kg dr	y 50		0.780			49	30%	Q-04
Isopropylbenzene	0.128		0.102	mg/kg dr	y 50		0.481			116	30%	Q-05
Methyl tert-butyl ether (MTBE)	ND		0.102	mg/kg dr	y 50		ND				30%	
Naphthalene	0.429		0.204	mg/kg dr	y 50		1.38			105	30%	Q-04
Toluene	ND		0.102	mg/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	3.22		0.102	mg/kg dr	y 50		19.1			142	30%	Q-04
1,3,5-Trimethylbenzene	1.61		0.102	mg/kg dr	y 50		7.18			127	30%	Q-04
Xylenes, total	2.24		0.153	mg/kg dr	y 50		5.02			77	30%	Q-04
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 105 %	Limits: 80-	120 %	Dilı	ition: 1x					
Toluene-d8 (Surr)			102 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

QUALITY CONTROL (QC) SAMPLE RESULTS

		TCLP Volatile Organic Compounds by EPA 1311/8260C										
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9100780 - EPA 1311/503	0B TCLP	Volatiles					Wat	ter				
Blank (9100780-BLK1)		Prepared	: 10/08/19 10:	00 Analy	zed: 10/08/1	9 13:48						TCLP
1311/8260C												
Benzene	ND		0.0125	mg/L	50							
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 93 %	Limits: 8	0-120 %	Dil	lution: 1x					
Toluene-d8 (Surr)			109 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			91 %	8	0-120 %		"					
LCS (9100780-BS1)		Prepared	: 10/08/19 10:	00 Analy	zed: 10/08/1	9 13:21						TCLP
1311/8260C												
Benzene	0.909		0.0125	mg/L	50	1.00		91	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 92 %	Limits: 8	0-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			107 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			90 %	8	0-120 %		"					
Duplicate (9100780-DUP1)		Prepared	: 10/08/19 13:	09 Analy	zed: 10/08/1	9 14:42						
QC Source Sample: A44-Stockpile	(A9J0155-	01)										
<u>1311/8260C</u>												
Benzene	ND		0.0125	mg/L	50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 91 %	Limits: 8	0-120 %	Dil	lution: 1x					
Toluene-d8 (Surr)			110 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			90 %	8	0-120 %		"					
Matrix Spike (9100780-MS1)		Prepared	: 10/08/19 13:	09 Analy	zed: 10/08/1	9 15:37						
QC Source Sample: A43-Stockpile	(A9J0155-	02)										
1311/8260C												
Benzene	1.00		0.0125	mg/L	50	1.00	ND	100	70 - 130%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 94 %	Limits: 8	0-120 %	Dil	lution: 1x	·				
Toluene-d8 (Surr)			108 %	8	0-120 %		"					
4-Bromofluorobenzene (Surr)			89 %	8	0-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 9100669 - EPA 3546							Soil						
Blank (9100669-BLK1)		Prepared	: 10/04/19 10::	55 Analyze	ed: 10/04/19	9 19:51							
EPA 8270D (SIM)													
Acenaphthene	ND		0.00909	mg/kg we	et 1								
Acenaphthylene	ND		0.00909	mg/kg we	et 1								
Anthracene	ND		0.00909	mg/kg we	et 1								
Benz(a)anthracene	ND		0.00909	mg/kg we	et 1								
Benzo(a)pyrene	ND		0.00909	mg/kg we	et 1								
Benzo(b)fluoranthene	ND		0.00909	mg/kg we	et 1								
Benzo(k)fluoranthene	ND		0.00909	mg/kg we	et 1								
Benzo(g,h,i)perylene	ND		0.00909	mg/kg we	et 1								
Chrysene	ND		0.00909	mg/kg we	et 1								
Dibenz(a,h)anthracene	ND		0.00909	mg/kg we	et 1								
Dibenzofuran	ND		0.00909	mg/kg we	et 1								
Fluoranthene	ND		0.00909	mg/kg we	et 1								
Fluorene	ND		0.00909	mg/kg we	et 1								
Indeno(1,2,3-cd)pyrene	ND		0.00909	mg/kg we	et 1								
1-Methylnaphthalene	ND		0.00909	mg/kg we	et 1								
2-Methylnaphthalene	ND		0.00909	mg/kg we	et 1								
Naphthalene	ND		0.00909	mg/kg we	et 1								
Phenanthrene	ND		0.00909	mg/kg we	et 1								
Pyrene	ND		0.00909	mg/kg we	et 1								
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 80 %	Limits: 44-	120 %	Dili	ution: 1x						
p-Terphenyl-d14 (Surr)			113 %	54-	127 %		"						
LCS (9100669-BS1)		Prepared	: 10/04/19 10::	55 Analyze	ed: 10/04/19	9 20:16							
EPA 8270D (SIM)													
Acenaphthene	0.737		0.0100	mg/kg we	et 1	0.800		92	10 - 122%				
Acenaphthylene	0.728		0.0100	mg/kg we	et 1	0.800		91 3	32 - 132%				
Anthracene	0.727		0.0100	mg/kg we	et 1	0.800		91 4	17 - 123%				
Benz(a)anthracene	0.739		0.0100	mg/kg we	et 1	0.800		92	19 - 126%				
Benzo(a)pyrene	0.738		0.0100	mg/kg we	et 1	0.800		92 4	15 - 129%				
Benzo(b)fluoranthene	0.755		0.0100	mg/kg we	et 1	0.800		94 4	15 - 132%				
Benzo(k)fluoranthene	0.760		0.0100	mg/kg we		0.800		95 4	17 - 132%				
Benzo(g,h,i)perylene	0.682		0.0100	mg/kg we		0.800		85 4	13 - 134%				
Chrysene	0.747		0.0100	mg/kg we		0.800		93 5	50 - 124%				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenyhini

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ns (PAH	s) by EPA	8270D S	M				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9100669 - EPA 3546							Soil					
LCS (9100669-BS1)		Prepared	10/04/19 10:	55 Analyze	ed: 10/04/1	9 20:16						
Dibenz(a,h)anthracene	0.763		0.0100	mg/kg we	et 1	0.800		95	45 - 134%			
Dibenzofuran	0.722		0.0100	mg/kg we	et 1	0.800		90	44 - 120%			
Fluoranthene	0.762		0.0100	mg/kg we	et 1	0.800		95	50 - 127%			
Fluorene	0.724		0.0100	mg/kg we	et 1	0.800		90	43 - 125%			
Indeno(1,2,3-cd)pyrene	0.704		0.0100	mg/kg we	et 1	0.800		88	45 - 133%			
l-Methylnaphthalene	0.704		0.0100	mg/kg we	et 1	0.800		88	40 - 120%			
2-Methylnaphthalene	0.696		0.0100	mg/kg we	et 1	0.800		87	38 - 122%			
Naphthalene	0.697		0.0100	mg/kg we	et 1	0.800		87	35 - 123%			
Phenanthrene	0.725		0.0100	mg/kg we	et 1	0.800		91	50 - 121%			
Pyrene	0.771		0.0100	mg/kg we	et 1	0.800		96	47 - 127%			
Surr: 2-Fluorobiphenyl (Surr)		Rece	overy: 93 %	Limits: 44-	120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			102 %	54-	127 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP M	letals by	EPA 6020	OA (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 9100788 - EPA 1311/301	15						Soil					
Blank (9100788-BLK1)		Prepared	: 10/08/19 09:3	6 Analyz	ed: 10/08/19	9 14:31						
1311/6020A												
Arsenic	ND		0.100	mg/L	10							TCLP
Barium	ND		5.00	mg/L	10							TCLP
Cadmium	ND		0.100	mg/L	10							TCLP
Chromium	ND		0.100	mg/L	10							TCLP
Lead	ND		0.100	mg/L	10							TCLP
Mercury	ND		0.00700	mg/L	10							TCLP
Selenium	ND		0.100	mg/L	10							TCLP
Silver	ND		0.100	mg/L	10							TCLP
LCS (9100788-BS1)		Prepared	: 10/08/19 09:3	36 Analyz	ed: 10/08/19	9 14:36						
1311/6020A												
Arsenic	4.90		0.100	mg/L	10	5.00		98	80 - 120%			TCLP
Barium	10.3		5.00	mg/L	10	10.0		103	80 - 120%			TCLP
Cadmium	1.00		0.100	mg/L	10	1.00		100	80 - 120%			TCLP
Chromium	5.00		0.100	mg/L	10	5.00		100	80 - 120%			TCLP
Lead	4.94		0.100	mg/L	10	5.00		99	80 - 120%			TCLP
Mercury	0.0980		0.00700	mg/L	10	0.100		98	80 - 120%			TCLP
Selenium	0.994		0.100	mg/L	10	1.00		99	80 - 120%			TCLP
Silver	1.04		0.100	mg/L	10	1.00		104	80 - 120%			TCLP
Matrix Spike (9100788-MS1)		Prepared	: 10/08/19 09:3	36 Analyz	ed: 10/08/19	9 15:17						
QC Source Sample: A43-Stockpile	e (A9J0155-0	<u>)2)</u>										
1311/6020A												
Arsenic	5.15		0.100	mg/L	10	5.00	ND	103	50 - 150%			
Barium	11.7		5.00	mg/L	10	10.0	ND	117	50 - 150%			
Cadmium	1.05		0.100	mg/L	10	1.00	ND	105	50 - 150%			
Chromium	5.10		0.100	mg/L	10	5.00	ND	102	50 - 150%			
Lead	5.31		0.100	mg/L	10	5.00	0.0592	105	50 - 150%			
Mercury	0.106		0.00700	mg/L	10	0.100	ND	106	50 - 150%			
Selenium	1.02		0.100	mg/L	10	1.00	ND	102	50 - 150%			
Silver	1.09		0.100	mg/L	10	1.00	ND	109	50 - 150%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits RPD	RPD Limit	Notes
3atch 9100654 - Tota	al Solids (Dry Weigh	nt)					Soil				

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits R	RP D Lin	
Batch 9100718 - Tota	al Solids (Dry Weigh	nt)					Soil				

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

SAMPLE PREPARATION INFORMATION

Drop: EDA 5025 ^					C1-	D-f1	n i n
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9100727	0.7	NINTERNA C. (MC)	10/02/10 10 00	10/02/10 10 00	501 /10 7	5 /5 Y	1.60
A9J0155-01RE2	Soil	NWTPH-Gx (MS)	10/03/19 10:00	10/03/19 10:00	5.91g/10mL	5g/5mL	1.69
A9J0155-02RE2	Soil	NWTPH-Gx (MS)	10/03/19 10:15	10/03/19 10:15	7.71g/10mL	5g/5mL	1.30
		Selected Volatile	Organic Compound	ls by EPA 5035A/82	60C		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9100661				-			
A9J0155-01	Soil	5035A/8260C	10/03/19 10:00	10/03/19 10:00	5.91g/10mL	5g/5mL	1.69
A9J0155-02	Soil	5035A/8260C	10/03/19 10:15	10/03/19 10:15	7.71g/10mL	5g/5mL	1.30
		TCLP Volatile (Organic Compounds	s by EPA 1311/8260	С		
Prep: EPA 1311/503	0B TCLP Vola	atiles			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9100780		17201100	Sumprou	Tropulou			
A9J0155-01	Soil	1311/8260C	10/03/19 10:00	10/08/19 13:09	5mL/5mL	5mL/5mL	1.00
A9J0155-02	Soil	1311/8260C	10/03/19 10:15	10/08/19 13:09	5mL/5mL	5mL/5mL	1.00
		Polyaromatic F	Hydrocarbons (PAHs	s) by EPA 8270D SII	M		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9100669	Wittin	Method	Bumpied	Теригеи			
A9J0155-01	Soil	EPA 8270D (SIM)	10/03/19 10:00	10/04/19 16:19	10.89g/5mL	10g/5mL	0.92
A9J0155-02	Soil	EPA 8270D (SIM)	10/03/19 10:15	10/04/19 16:19	10.78g/5mL	10g/5mL	0.93
		TCLP	Metals by EPA 602	OA (ICPMS)			
Prep: EPA 1311/301	<u> </u>				Sample	Default	RL Pre
Lab Number	— Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9100788				•			
A9J0155-01	Soil	1311/6020A	10/03/19 10:00	10/08/19 09:36	10mL/50mL	10mL/50mL	1.00
A9J0155-02	Soil	1311/6020A	10/03/19 10:15	10/08/19 09:36	10mL/50mL	10mL/50mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

SAMPLE PREPARATION INFORMATION

			Percent Dry Wei	ght			
Prep: Total Solids	(Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9100654							
A9J0155-01	Soil	EPA 8000C	10/03/19 10:00	10/04/19 19:21			NA
Batch: 9100718							
A9J0155-02	Soil	EPA 8000C	10/03/19 10:15	10/07/19 07:57			NA
		T	CLP Extraction by E	PA 1311			
Prep: EPA 1311 (T	CLP)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9100723							
A9J0155-01	Soil	EPA 1311	10/03/19 10:00	10/07/19 16:05	100 g/2000 mL	100g/2000mL	NA
A9J0155-02	Soil	EPA 1311	10/03/19 10:15	10/07/19 16:05	100g/2000mL	100g/2000mL	NA
Prep: EPA 1311 To	CLP/ZHE				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 9100764							
A9J0155-01	Soil	EPA 1311 ZHE	10/03/19 10:00	10/07/19 15:50	25g/500mL	25g/500mL	NA
A9J0155-02	Soil	EPA 1311 ZHE	10/03/19 10:15	10/07/19 15:50	25.1g/500mL	25g/500mL	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

TCLPa

M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
Q-04	Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
R-02	The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
TCLP	This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 9100723.

This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 9100764.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Stantec Portland Project: <u>Lampson</u>

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gesa A Zmenighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwast Jamenighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

HAIN OF COMPANY Page Pag	Lab # PASONSS COC LOF LABORER: 1957 SCS 58/	RCBA Metals (8) THE TOLP Metals (8) ALSO, ALSO	Also Send results to Leonard Farrand Graeme Taylor	RECEIVED BY: Date: Signature: Date: Time: Printed Name: Unite:
	HAIN OF CUSTODY The project Name: Lall Sell 4944 F793 Email Aurel	8087 bCB8 8710 Scmi-Aofe Enji Fist 8710 Scmi-Aofe Enji Fist 8700 AOCe Enji Fist 8700 AOCe 8700 ABDM AOCe 8700 BLEX 8700 BL	Normal Turn Around Time (TAT) = 10 Business Days (1 Day 2 Day 3 Day 4 DAY 5 DAY Other: SAMPLES ARE HELD FOR 30 DAYS SAMPLES ARE HELD FOR 30 DAYS	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Stantec Portland

Project:

Lampson

601 SW 2nd Ave Suite 1400 Portland, OR 97204 Project Number: 185750581 Tank 3.D.3

Project Manager: Len Farr


Report ID: A9J0155 - 10 10 19 1602

61	APEX LABS COOLER RECEIPT FORM
Client:	Element WO#: A930155
Project/Project #: La	mpson / 185750581
Delivery Info :	
	4-19 @ 11:12 By: TAG
Delivered by: ApexC	lientESSFedExUPSSwift_Senvoy_SDS_Other
	time inspected: 10-4-19 @ 11:17 By: TPM
Chain of Custody included	? Yes Mo Custody seals? Yes No
Signed/dated by client?	Yes No
Signed/dated by Apex?	Yes No
Out of temperature samples Samples Inspection: Date All samples intact? Yes Bottle labels/COCs agree?	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
	d appropriate for analysis? Yes X No Comments:
Do VOA vials have visible Comments Water samples: pH checked	headspace? Yes No NA X
Additional information: 🌱	acking # 7769 6813 7155. TB# 2/18
Labeled by: Wit	Cooler Inspected by: See Project Contact Form: Y

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

Stantec Portland Project: Lampson

 601 SW 2nd Ave Suite 1400
 Project Number: 185750581 Tank 3.D.3
 Report ID:

 Portland, OR 97204
 Project Manager: Len Farr
 A9J0155 - 10 10 19 1602

700 SW Sandburg St., Tigard, Ob company: Stated	¥122.		Mgr: 1		-	-	_	_	_	Pro	nect !	Name	Lan	npsin	_		_			Proje	Net ar	18579	user Ta	mt 10	11	-
ddress: 10/1 SW 2nd Avenue State 14	o Portla	od. OR				Phor	ie: 54	0.273.0	071	1		Emai		conard	Farti	/ stantes	com			PO #		0.00		26.70		
ampled by: Dana Huichins			_				_									ANAI	VSI	SREC	UEST							
OR WA CA	LABIDs	DATE	IME.	MATRIX	# OF CONTAINERS	NWTPH-IRCID	AWTPH-Ds	NWTPH-GA	8260 BTEX	8260 RRDM VOCS	8260 Halo VOCs	8260 VOCS Full List	8270 SIM PAIIs	8270 Semi-Vols Full List	8082 PCBs	8081 Pest	RCRA Metals (8)	Priority Metals (13)	M. Sh. As, Ba, Ba, Cd, Ca, Co, Cu, Cu, Fe, Ph, Hg, Mg, Ma, Ma, M, K. Se, Ag, Na, H, N, Zu 101At, 1985. 1Ct P	Metals (8	TCLP Benzene					
SAMPLE ID A44-Stockpile	13	in 3-2015	1000	S	7	Z	Z	X	*	×	*	*	X.	×		8	~	-	25335	×	X				+	+
A43-Stockpile		10.3/2019	1015	5	7			×		N			X							X	X					1
	+						-	-		+	-												+	+	-	+
																										İ
Normal 1	um Ar	sand Tim	e (TAD)	- 10 Bi	siness	Days		L				SPE	CIAI	INS	TRUC	CHOS	VS:			L				-	1	1
TAT Requested (circle)	1 Da	y .Y	2 Day 5 DAY	C	3 Da	_						C	ору	Dana	a Hu	itchin	s@s		c com & Gra							efiat
ELINQUISHED BY:	Date		RECEI Signatur	VED BY	n			Date				REL Signa		ISHE	D BV	T			Date	REC	EIVE	D 6 V :		1	Date:	
Dans Huch		900	Printed	Name:	-		_	Time				Pons	ed Sa	me.	-	_	_	_	Time:	Prost	ed Nan	ne	_	1	l une.	_
Danu Gitchis	0	900	Compar	No.	_	_	_	_	_	_		Com	pany:		_	_	_			Comp	pany:			_	_	_
STAMIL																				1						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

APPENDIX E

Site-Specific Risk-Based Concentration Calculations

TPH Fraction Composition (Weight Fraction)

		Site-Specific Data		Gen	eric Weight Fraction	Data
Fuel Fractions	Raw Data mg/kg (ppm)	Adjusted Data mg/kg (ppm)	Weight Fraction	Gasoline	Diesel	Mineral Oil
Aliphatic C5-C6	175	136	8.31E-02	2.06E-01	0.00E+00	0.00E+00
Aliphatic >C6-C8	327	327	2.00E-01	2.20E-01	0.00E+00	0.00E+00
Aliphatic >C8-C10	342	342	2.09E-01	9.00E-02	2.00E-02	1.00E-03
Aliphatic >C10-C12	192	192	1.18E-01	3.00E-02	7.00E-02	3.00E-03
Aliphatic >C12-C16	70	70	4.27E-02	0.00E+00	3.50E-01	1.60E-01
Aliphatic >C16-C21	16	16	9.91E-03	0.00E+00	3.40E-01	7.00E-01
Aliphatic >C21-C34	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Aromatic >C8-C10	199	76	4.65E-02	9.02E-02	2.52E-03	1.00E-03
Aromatic >C10-C12	200	179	1.09E-01	2.25E-02	7.40E-03	1.00E-03
Aromatic >C12-C16	75	75	4.57E-02	0.00E+00	8.00E-02	7.00E-03
Aromatic >C16-C21	27	27	1.63E-02	0.00E+00	1.20E-01	8.00E-02
Aromatic >C21-C34	0	0	0.00E+00	0.00E+00	0.00E+00	4.60E-02
n-Hexane	39.2	39.2	2.40E-02	2.40E-02	0.00E+00	0.00E+00
Benzene	1.2	1.2	7.47E-04	2.50E-02	2.90E-04	0.00E+00
Toluene	10.6	10.6	6.49E-03	1.20E-01	1.80E-03	0.00E+00
Ethylbenzene	38.5	38.5	2.36E-02	2.00E-02	6.80E-04	0.00E+00
Total Xylenes	84.5	84.5	5.17E-02	1.10E-01	5.00E-03	0.00E+00
1,2,4-trimethylbenzene			0.00E+00	3.00E-02	0.00E+00	0.00E+00
1,3,5-trimethylbenzene			0.00E+00	9.80E-03	1.80E-03	0.00E+00
Naphthalene	21.4	21.4	1.31E-02	2.50E-03	2.60E-03	0.00E+00
Total	1818	1634	1.00	1.00	1.00	1.00

OPTION 1:	(1) Enter TPH data (mg/kg or ppm) into the cell on the right.	<u> </u>
Estimate TPH Fractions	(2) Enter BTEX, TMB, and naphthalene data in the "Raw Data" column above.	Gasoline Estimate
	(3) Use one of the buttons at the right to identify the predominant product.	Diesel Estimate
OR		
OPTION 2:	(1) Enter TPH fraction and constituent data in the "Raw Data" column above.	Gasoline Fractions
Use VPH and EPH Results	(2) Use one of the buttons at the right to identify the predominant product.	Non-Gas Fractions

For references, please refer to Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites (DEQ, 2003).

Risk-Based Concentrations for TPH: Site-Specific Data

			RBCss				RBCso			RBCsi			RBCsw			RBCtw			RBCwo			RBCwi		RBCwe		RBCair			RBCsg	
Fuel Fraction	Residential	Urban Residential	Occupational	Construction Worker	Excavation Worker	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Construction & Excavation Worker	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/m³)	(ug/m ³)	(ug/m ³)	(ug/m ³)	(ug/m ³)	(ug/m³)
Aliphatic C5-C6	7.2E-03	7.6E-03	6.6E-03	2.4E-03	1.8E-03	3.5E-02	3.5E-02	1.0E-01	3.9E-02	3.9E-02	1.5E-01	1.3E-02	1.3E-02	1.2E-02	1.5E+03	1.5E+03	6.1E+03	6.5E+04	6.5E+04	2.7E+05	2.9E+03	2.9E+03	3.7E+04	1.7E+05	7.3E+02	7.3E+02	3.1E+03	1.5E+05	1.5E+05	3.1E+06
Aliphatic >C6-C8	1.7E-02	1.8E-02	1.6E-02	5.9E-03	4.3E-03	8.3E-02	8.3E-02	2.4E-01	9.5E-02	9.5E-02	6.5E-02	9.9E-03	9.9E-03	3.5E-03	1.5E+03	1.5E+03	6.1E+03	4.3E+04	4.3E+04	1.8E+05	1.9E+03	1.9E+03	2.4E+04	1.7E+05	7.3E+02	7.3E+02	3.1E+03	1.5E+05	1.5E+05	3.1E+06
Aliphatic >C8-C10	3.8E-01	4.1E-01	4.3E-01	4.3E-01	3.1E-01	6.1E-01	6.1E-01	1.7E-01	7.0E-01	7.0E-01	4.7E-02	1.6E-02	1.6E-02	2.5E-03	1.3E+02	1.3E+02	5.5E+02	3.8E+03	3.8E+03	1.6E+04	1.7E+02	1.7E+02	2.2E+03	2.0E+03	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aliphatic >C10-C12	2.2E-01	2.2E-01	2.2E-01	2.4E-01	1.7E-01	4.0E-02	4.0E-02	9.3E-03	8.3E-02	8.3E-02	2.5E-03	9.3E-04	9.3E-04	9.1E-05	1.3E+02	1.3E+02	5.5E+02	2.6E+03	2.6E+03	1.1E+04	1.1E+02	1.1E+02	1.4E+03	6.7E+02	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aliphatic >C12-C16	7.2E-02	7.6E-02	9.2E-02	1.1E-01	8.1E-02	1.1E-03	1.1E-03	2.6E-04	6.0E-03	6.0E-03	7.1E-05	3.5E-06	3.5E-06	2.2E-07	3.7E+02	3.7E+02	1.5E+03	5.9E+02	5.9E+02	2.5E+03	2.6E+01	2.6E+01	3.3E+02	1.2E+02	1.0E+02	1.0E+02	4.4E+02	-		
Aliphatic >C16-C21	5.6E-05	5.9E-05	7.1E-05	8.5E-05	6.3E-05	6.0E-23	6.0E-23	1.4E-23	7.9E-22	7.9E-22	3.8E-24	8.7E-12	8.7E-12	4.2E-13	1.1E+05	1.1E+05	4.4E+05	6.3E+18	6.3E+18	2.6E+19	2.8E+17	2.8E+17	3.5E+18	2.4E+03	1.0E+19	1.0E+19	4.4E+19	-		
Aliphatic >C21-C34	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.1E+05	1.1E+05	4.4E+05	3.1E+17	3.1E+17	1.3E+18	1.4E+16	1.4E+16	1.7E+17	9.0E+02	1.0E+19	1.0E+19	4.4E+19	-		
Aromatic >C8-C10	3.4E-19	3.6E-19	3.3E-19	1.8E-19	1.1E-19	1.4E-18	1.4E-18	3.7E-19	2.2E-19	2.2E-19	1.0E-19	6.3E-19	6.3E-19	6.1E-19	2.0E+19	2.0E+19	8.3E+19	5.0E+22	5.0E+22	2.1E+23	2.7E+21	2.7E+21	3.4E+22	2.1E+21	1.0E+19	1.0E+19	4.4E+19	-	-	-
Aromatic >C10-C12	1.1E-01	1.0E-01	9.2E-02	9.0E-02	5.4E-02	3.8E-02	3.8E-02	9.1E-03	9.5E-03	9.5E-03	2.5E-03	1.0E-01	1.0E-01	5.7E-02	1.8E+02	1.8E+02	7.3E+02	1.2E+06	1.2E+06	4.9E+06	8.9E+04	8.9E+04	1.1E+06	1.4E+04	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aromatic >C12-C16	2.8E-02	2.7E-02	2.7E-02	3.1E-02	2.1E-02	1.2E-03	1.2E-03	2.9E-04	7.5E-04	7.5E-04	7.9E-05	2.0E-02	2.0E-02	4.8E-03	1.8E+02	1.8E+02	7.3E+02	1.9E+06	1.9E+06	7.9E+06	2.3E+05	2.3E+05	2.9E+06	1.2E+04	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aromatic >C16-C21	7.2E-03	7.5E-03	8.5E-03	1.0E-02	7.5E-03	9.6E-06	9.6E-06	2.2E-06	2.0E-05	2.0E-05	6.1E-07	1.6E-03	1.6E-03	1.5E-04	1.8E+02	1.8E+02	7.3E+02	3.8E+06	3.8E+06	1.6E+07	8.9E+05	8.9E+05	1.1E+07	9.5E+03	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aromatic >C21-C34	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E+03	1.5E+03	5.8E+03	4.2E+24	4.2E+24	1.8E+25	1.7E+24	1.7E+24	2.1E+25	7.3E+03	1.0E+19	1.0E+19	4.4E+19			
n-Hexane	7.0E-03	7.4E-03	7.9E-03	8.1E-03	6.0E-03	1.0E-02	1.0E-02	2.2E-02	1.1E-02	1.1E-02	6.1E-03	1.0E-02	1.0E-02	2.8E-03	8.8E+02	8.8E+02	3.6E+03	2.1E+05	2.1E+05	9.0E+05	9.5E+03	9.5E+03	1.2E+05	6.5E+04	7.3E+02	7.3E+02	3.1E+03	1.5E+05	1.5E+05	3.1E+06
Benzene	3.8E-03	4.0E-03	4.2E-03	4.0E-03	2.9E-03	7.3E-03	7.3E-03	2.1E-02	8.3E-03	8.3E-03	9.5E-03	9.4E-02	9.4E-02	1.8E-01	4.4E+01	4.4E+01	1.8E+02	2.8E+05	2.8E+05	1.2E+06	1.9E+04	1.9E+04	2.4E+05	5.7E+03	3.1E+01	3.1E+01	1.3E+02	6.3E+03	6.3E+03	1.3E+05
Toluene	1.1E-03	1.1E-03	1.3E-03	1.5E-03	1.1E-03	3.8E-04	3.8E-04	5.5E-04	2.4E-04	2.4E-04	1.5E-04	6.1E-03	6.1E-03	8.0E-03	2.3E+03	2.3E+03	9.2E+03	4.4E+07	4.4E+07	1.8E+08	2.7E+06	2.7E+06	3.4E+07	2.1E+05	5.2E+03	5.2E+03	2.2E+04	1.0E+06	1.0E+06	2.2E+07
Ethylbenzene	4.3E-03	4.6E-03	4.9E-03	4.9E-03	3.5E-03	6.9E-03	6.9E-03	2.8E-03	2.4E-03	2.4E-03	7.8E-04	1.9E-02	1.9E-02	1.4E-02	1.3E+03	1.3E+03	5.5E+03	8.8E+06	8.8E+06	3.7E+07	5.3E+05	5.3E+05	6.6E+06	1.1E+05	1.0E+03	1.0E+03	4.4E+03	2.1E+05	2.1E+05	4.4E+06
Total Xylenes	3.4E-02	3.6E-02	3.2E-02	1.5E-02	1.0E-02	1.5E-01	1.5E-01	5.7E-02	4.4E-02	4.4E-02	1.6E-02	2.7E-01	2.7E-01	2.0E-01	2.0E+02	2.0E+02	8.5E+02	9.2E+05	9.2E+05	3.9E+06	5.9E+04	5.9E+04	7.4E+05	2.3E+04	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
1,2,4-trimethylbenzene	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E+01	1.5E+01	6.1E+01	8.0E+04	8.0E+04	3.3E+05	5.0E+03	5.0E+03	6.4E+04	1.7E+03	7.3E+00	7.3E+00	3.1E+01	1.5E+03	1.5E+03	3.1E+04
1,3,5-trimethylbenzene	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.7E+02	3.7E+02	1.5E+03	9.2E+22	9.2E+22	3.9E+23	5.4E+21	5.4E+21	6.8E+22	2.3E+04	1.0E+19	1.0E+19	4.4E+19			
Naphthalene	1.1E-01	8.3E-02	5.9E-02	4.2E-02	1.4E-02	1.6E-02	1.6E-02	3.9E-03	4.1E-03	4.1E-03	1.1E-03	4.4E-01	4.4E-01	2.4E-01	6.2E+00	6.2E+00	2.6E+01	1.4E+05	1.4E+05	5.7E+05	2.9E+04	2.9E+04	3.7E+05	7.2E+02	3.1E+00	3.1E+00	1.3E+01	6.3E+02	6.3E+02	1.3E+04
TPH RBC* →	960	2,000	15,000	5,800	>MAX	9,700	9,700	>MAX	89	89	>MAX	140	140	>MAX	180	180	770	>S	>S	>S	11,000	11,000	>S	20,000	560	560	2,300	110,000	110,000	2,300,000
Generic Gasoline	1,200	2,500	20,000	9,700	>MAX	5,900	5,900	69,000	94	94	>MAX	31	31	130	110	110	450	>S	>S	>S	22,000	22,000	>S	14,000	390	390	1,700	79,000	79,000	1,700,000
Generic Diesel / Heating Oil	1,100	2,200	14,000	4,600	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	9,500	9,500	>MAX	100	100	430	>S	>S	>S	>S	>S	>S	>S	100	100	440	21,000	21,000	440,000
Generic Mineral Insulating Oil	2,800	5,700	36,000	11,000	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	300	300	1,300	>S	>S	>S	>S	>S	>S	>S	150	150	620	30,000	30,000	620,000

Risk-Based Concentrations for TPH: Site-Specific Data

			RBCss				RBCso			RBCsi			RBCsw			RBCtw			RBCwo			RBCwi		RBCwe		RBCair			RBCsg	
Fuel Fraction	Residential	Urban Residential	Occupational	Construction Worker	Excavation Worker	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Construction & Excavation Worker	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/m³)	(ug/m ³)	(ug/m ³)	(ug/m ³)	(ug/m ³)	(ug/m ³)
Aliphatic C5-C6	9.3E-03	9.8E-03	8.5E-03	3.2E-03	2.4E-03	4.5E-02	4.5E-02	1.3E-01	5.1E-02	5.1E-02	1.9E-01	1.7E-02	1.7E-02	1.5E-02	1.5E+03	1.5E+03	6.1E+03	6.5E+04	6.5E+04	2.7E+05	2.9E+03	2.9E+03	3.7E+04	1.7E+05	7.3E+02	7.3E+02	3.1E+03	1.5E+05	1.5E+05	3.1E+06
Aliphatic >C6-C8	1.7E-02	1.8E-02	1.6E-02	5.9E-03	4.4E-03	8.4E-02	8.4E-02	2.4E-01	9.5E-02	9.5E-02	6.5E-02	1.0E-02	1.0E-02	3.5E-03	1.5E+03	1.5E+03	6.1E+03	4.3E+04	4.3E+04	1.8E+05	1.9E+03	1.9E+03	2.4E+04	1.7E+05	7.3E+02	7.3E+02	3.1E+03	1.5E+05	1.5E+05	3.1E+06
Aliphatic >C8-C10	3.9E-01	4.1E-01	4.3E-01	4.4E-01	3.1E-01	6.1E-01	6.1E-01	1.7E-01	7.0E-01	7.0E-01	4.7E-02	1.6E-02	1.6E-02	2.5E-03	1.3E+02	1.3E+02	5.5E+02	3.8E+03	3.8E+03	1.6E+04	1.7E+02	1.7E+02	2.2E+03	2.0E+03	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aliphatic >C10-C12	2.2E-01	2.2E-01	2.2E-01	2.4E-01	1.7E-01	3.9E-02	3.9E-02	9.2E-03	8.4E-02	8.4E-02	2.5E-03	9.5E-04	9.5E-04	9.1E-05	1.3E+02	1.3E+02	5.5E+02	2.6E+03	2.6E+03	1.1E+04	1.1E+02	1.1E+02	1.4E+03	6.7E+02	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aliphatic >C12-C16	7.2E-02	7.6E-02	9.3E-02	1.1E-01	8.2E-02	1.1E-03	1.1E-03	2.6E-04	6.2E-03	6.2E-03	7.1E-05	3.7E-06	3.7E-06	2.2E-07	3.7E+02	3.7E+02	1.5E+03	5.9E+02	5.9E+02	2.5E+03	2.6E+01	2.6E+01	3.3E+02	1.2E+02	1.0E+02	1.0E+02	4.4E+02			
Aliphatic >C16-C21	5.6E-05	5.9E-05	7.2E-05	8.6E-05	6.4E-05	5.9E-23	5.9E-23	1.4E-23	8.6E-22	8.6E-22	3.8E-24	9.1E-12	9.1E-12	4.2E-13	1.1E+05	1.1E+05	4.4E+05	6.3E+18	6.3E+18	2.6E+19	2.8E+17	2.8E+17	3.5E+18	2.4E+03	1.0E+19	1.0E+19	4.4E+19	-		
Aliphatic >C21-C34	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.1E+05	1.1E+05	4.4E+05	3.1E+17	3.1E+17	1.3E+18	1.4E+16	1.4E+16	1.7E+17	9.0E+02	1.0E+19	1.0E+19	4.4E+19	-		-
Aromatic >C8-C10	3.4E-19	3.6E-19	3.3E-19	1.8E-19	1.1E-19	1.4E-18	1.4E-18	3.7E-19	2.2E-19	2.2E-19	1.0E-19	6.3E-19	6.3E-19	6.1E-19	2.0E+19	2.0E+19	8.3E+19	5.0E+22	5.0E+22	2.1E+23	2.7E+21	2.7E+21	3.4E+22	2.1E+21	1.0E+19	1.0E+19	4.4E+19	-	-	
Aromatic >C10-C12	1.1E-01	1.1E-01	9.3E-02	9.1E-02	5.4E-02	3.8E-02	3.8E-02	9.1E-03	9.5E-03	9.5E-03	2.5E-03	1.0E-01	1.0E-01	5.7E-02	1.8E+02	1.8E+02	7.3E+02	1.2E+06	1.2E+06	4.9E+06	8.9E+04	8.9E+04	1.1E+06	1.4E+04	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aromatic >C12-C16	2.9E-02	2.7E-02	2.7E-02	3.1E-02	2.2E-02	1.2E-03	1.2E-03	2.9E-04	7.5E-04	7.5E-04	7.9E-05	2.0E-02	2.0E-02	4.8E-03	1.8E+02	1.8E+02	7.3E+02	1.9E+06	1.9E+06	7.9E+06	2.3E+05	2.3E+05	2.9E+06	1.2E+04	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aromatic >C16-C21	7.3E-03	7.5E-03	8.5E-03	1.0E-02	7.6E-03	9.5E-06	9.5E-06	2.2E-06	2.0E-05	2.0E-05	6.1E-07	1.6E-03	1.6E-03	1.5E-04	1.8E+02	1.8E+02	7.3E+02	3.8E+06	3.8E+06	1.6E+07	8.9E+05	8.9E+05	1.1E+07	9.5E+03	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aromatic >C21-C34	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E+03	1.5E+03	5.8E+03	4.2E+24	4.2E+24	1.8E+25	1.7E+24	1.7E+24	2.1E+25	7.3E+03	1.0E+19	1.0E+19	4.4E+19			-
n-Hexane	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.8E+02	8.8E+02	3.6E+03	2.1E+05	2.1E+05	9.0E+05	9.5E+03	9.5E+03	1.2E+05	6.5E+04	7.3E+02	7.3E+02	3.1E+03	1.5E+05	1.5E+05	3.1E+06
Benzene	3.8E-03	4.0E-03	4.2E-03	4.0E-03	3.0E-03	7.3E-03	7.3E-03	2.1E-02	8.3E-03	8.3E-03	9.5E-03	9.4E-02	9.4E-02	1.8E-01	4.4E+01	4.4E+01	1.8E+02	2.8E+05	2.8E+05	1.2E+06	1.9E+04	1.9E+04	2.4E+05	5.7E+03	3.1E+01	3.1E+01	1.3E+02	6.3E+03	6.3E+03	1.3E+05
Toluene	1.1E-03	1.1E-03	1.3E-03	1.5E-03	1.1E-03	3.8E-04	3.8E-04	5.5E-04	2.4E-04	2.4E-04	1.5E-04	6.1E-03	6.1E-03	8.0E-03	2.3E+03	2.3E+03	9.2E+03	4.4E+07	4.4E+07	1.8E+08	2.7E+06	2.7E+06	3.4E+07	2.1E+05	5.2E+03	5.2E+03	2.2E+04	1.0E+06	1.0E+06	2.2E+07
Ethylbenzene	4.3E-03	4.6E-03	4.9E-03	4.9E-03	3.6E-03	6.9E-03	6.9E-03	2.8E-03	2.4E-03	2.4E-03	7.8E-04	2.0E-02	2.0E-02	1.4E-02	1.3E+03	1.3E+03	5.5E+03	8.8E+06	8.8E+06	3.7E+07	5.3E+05	5.3E+05	6.6E+06	1.1E+05	1.0E+03	1.0E+03	4.4E+03	2.1E+05	2.1E+05	4.4E+06
Total Xylenes	3.5E-02	3.7E-02	3.3E-02	1.6E-02	1.0E-02	1.5E-01	1.5E-01	5.7E-02	4.4E-02	4.4E-02	1.6E-02	2.7E-01	2.7E-01	2.0E-01	2.0E+02	2.0E+02	8.5E+02	9.2E+05	9.2E+05	3.9E+06	5.9E+04	5.9E+04	7.4E+05	2.3E+04	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
1,2,4-trimethylbenzene	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E+01	1.5E+01	6.1E+01	8.0E+04	8.0E+04	3.3E+05	5.0E+03	5.0E+03	6.4E+04	1.7E+03	7.3E+00	7.3E+00	3.1E+01	1.5E+03	1.5E+03	3.1E+04
1,3,5-trimethylbenzene	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.7E+02	3.7E+02	1.5E+03	9.2E+22	9.2E+22	3.9E+23	5.4E+21	5.4E+21	6.8E+22	2.3E+04	1.0E+19	1.0E+19	4.4E+19			
Naphthalene	1.1E-01	8.3E-02	5.9E-02	4.2E-02	1.4E-02	1.6E-02	1.6E-02	3.9E-03	4.1E-03	4.1E-03	1.1E-03	4.4E-01	4.4E-01	2.4E-01	6.2E+00	6.2E+00	2.6E+01	1.4E+05	1.4E+05	5.7E+05	2.9E+04	2.9E+04	3.7E+05	7.2E+02	3.1E+00	3.1E+00	1.3E+01	6.3E+02	6.3E+02	1.3E+04
TPH RBC* →	970	2,100	16,000	5,800	>MAX	9,700	9,700	>MAX	89	89	>MAX	140	140	>MAX	190	190	780	>S	>S	>S	9,900	9,900	>S	21,000	580	580	2,400	120,000	120,000	2,400,000
Generic Gasoline	1,200	2,500	20,000	9,700	>MAX	5,900	5,900	69,000	94	94	>MAX	31	31	130	110	110	450	>S	>S	>S	22,000	22,000	>S	14,000	390	390	1,700	79,000	79,000	1,700,000
Generic Diesel / Heating Oil	1,100	2,200	14,000	4,600	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	9,500	9,500	>MAX	100	100	430	>S	>S	>S	>S	>S	>S	>S	100	100	440	21,000	21,000	440,000
Generic Mineral Insulating Oil	2,800	5,700	36,000	11,000	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	300	300	1,300	>S	>S	>S	>S	>S	>S	>S	150	150	620	30,000	30,000	620,000

TPH Fraction Composition (Weight Fraction)

		Site-Specific Data		Gen	eric Weight Fraction	Data
Fuel Fractions	Raw Data mg/kg (ppm)	Adjusted Data mg/kg (ppm)	Weight Fraction	Gasoline	Diesel	Mineral Oil
Aliphatic C5-C6	127		0.00E+00	2.06E-01	0.00E+00	0.00E+00
Aliphatic >C6-C8	387		0.00E+00	2.20E-01	0.00E+00	0.00E+00
Aliphatic >C8-C10	163		0.00E+00	9.00E-02	2.00E-02	1.00E-03
Aliphatic >C10-C12	109		0.00E+00	3.00E-02	7.00E-02	3.00E-03
Aliphatic >C12-C16	163		0.00E+00	0.00E+00	3.50E-01	1.60E-01
Aliphatic >C16-C21	134		0.00E+00	0.00E+00	3.40E-01	7.00E-01
Aliphatic >C21-C34	0		0.00E+00	0.00E+00	0.00E+00	0.00E+00
Aromatic >C8-C10	394		0.00E+00	9.02E-02	2.52E-03	1.00E-03
Aromatic >C10-C12	373		0.00E+00	2.25E-02	7.40E-03	1.00E-03
Aromatic >C12-C16	72		0.00E+00	0.00E+00	8.00E-02	7.00E-03
Aromatic >C16-C21	78		0.00E+00	0.00E+00	1.20E-01	8.00E-02
Aromatic >C21-C34	0		0.00E+00	0.00E+00	0.00E+00	4.60E-02
n-Hexane			0.00E+00	2.40E-02	0.00E+00	0.00E+00
Benzene	1.0		0.00E+00	2.50E-02	2.90E-04	0.00E+00
Toluene	9.9		0.00E+00	1.20E-01	1.80E-03	0.00E+00
Ethylbenzene	40.9		0.00E+00	2.00E-02	6.80E-04	0.00E+00
Total Xylenes	127.0		0.00E+00	1.10E-01	5.00E-03	0.00E+00
1,2,4-trimethylbenzene			0.00E+00	3.00E-02	0.00E+00	0.00E+00
1,3,5-trimethylbenzene			0.00E+00	9.80E-03	1.80E-03	0.00E+00
Naphthalene	22.4		0.00E+00	2.50E-03	2.60E-03	0.00E+00
Total	2201	0	0.00	1.00	1.00	1.00

OPTION 1:	(1) Enter TPH data (mg/kg or ppm) into the cell on the right.	•
Estimate TPH Fractions	(2) Enter BTEX, TMB, and naphthalene data in the "Raw Data" column above.	Gasoline Estimate
	(3) Use one of the buttons at the right to identify the predominant product.	Diesel Estimate
OR		
OPTION 2:	(1) Enter TPH fraction and constituent data in the "Raw Data" column above.	Gasoline Fractions
Use VPH and EPH Results	(2) Use one of the buttons at the right to identify the predominant product.	Non-Gas Fractions

For references, please refer to Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites (DEQ, 2003).

Risk-Based Concentrations for TPH: Gasoline

			RBCss				RBCso			RBCsi			RBCsw			RBCtw			RBCwo			RBCwi		RBCwe		RBCair			RBCsg	
Fuel Fraction	Residential	Urban Residential	Occupational	Construction Worker	Excavation Worker	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Construction & Excavation Worker	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/m³)	(ug/m ³)	(ug/m ³)	(ug/m ³)	(ug/m³)	(ug/m³)
Aliphatic C5-C6	2.2E-02	2.3E-02	2.1E-02	1.0E-02	4.7E-03	5.2E-02	5.2E-02	1.5E-01	1.0E-01	1.0E-01	3.1E-01	8.0E-03	8.0E-03	7.9E-03	1.5E+03	1.5E+03	6.1E+03	6.5E+04	6.5E+04	2.7E+05	2.9E+03	2.9E+03	3.7E+04	1.7E+05	7.3E+02	7.3E+02	3.1E+03	1.5E+05	1.5E+05	3.1E+06
Aliphatic >C6-C8	2.4E-02	2.4E-02	2.3E-02	1.1E-02	5.1E-03	5.6E-02	5.6E-02	1.6E-01	1.1E-01	1.1E-01	6.0E-02	2.8E-03	2.8E-03	2.8E-03	1.5E+03	1.5E+03	6.1E+03	4.3E+04	4.3E+04	1.8E+05	1.9E+03	1.9E+03	2.4E+04	1.7E+05	7.3E+02	7.3E+02	3.1E+03	1.5E+05	1.5E+05	3.1E+06
Aliphatic >C8-C10	2.1E-01	2.1E-01	2.4E-01	3.1E-01	1.4E-01	1.6E-01	1.6E-01	6.2E-02	3.2E-01	3.2E-01	1.7E-02	2.0E-03	2.0E-03	2.1E-03	1.3E+02	1.3E+02	5.5E+02	3.8E+03	3.8E+03	1.6E+04	1.7E+02	1.7E+02	2.2E+03	2.0E+03	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aliphatic >C10-C12	6.9E-02	6.4E-02	7.0E-02	1.0E-01	4.5E-02	8.8E-03	8.8E-03	2.0E-03	2.4E-02	2.4E-02	5.4E-04	9.1E-05	9.1E-05	9.2E-05	1.3E+02	1.3E+02	5.5E+02	2.6E+03	2.6E+03	1.1E+04	1.1E+02	1.1E+02	1.4E+03	6.7E+02	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aliphatic >C12-C16	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.7E+02	3.7E+02	1.5E+03	5.9E+02	5.9E+02	2.5E+03	2.6E+01	2.6E+01	3.3E+02	1.2E+02	1.0E+02	1.0E+02	4.4E+02	-	-	
Aliphatic >C16-C21	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.1E+05	1.1E+05	4.4E+05	6.3E+18	6.3E+18	2.6E+19	2.8E+17	2.8E+17	3.5E+18	2.4E+03	1.0E+19	1.0E+19	4.4E+19	-	-	
Aliphatic >C21-C34	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.1E+05	1.1E+05	4.4E+05	3.1E+17	3.1E+17	1.3E+18	1.4E+16	1.4E+16	1.7E+17	9.0E+02	1.0E+19	1.0E+19	4.4E+19	-	-	
Aromatic >C8-C10	8.2E-19	8.3E-19	8.3E-19	5.9E-19	2.2E-19	1.6E-18	1.6E-18	6.0E-19	4.5E-19	4.5E-19	1.7E-19	2.9E-19	2.9E-19	2.9E-19	2.0E+19	2.0E+19	8.3E+19	5.0E+22	5.0E+22	2.1E+23	2.7E+21	2.7E+21	3.4E+22	2.1E+21	1.0E+19	1.0E+19	4.4E+19	-		
Aromatic >C10-C12	2.9E-02	2.4E-02	2.3E-02	2.9E-02	1.2E-02	6.7E-03	6.7E-03	1.6E-03	2.1E-03	2.1E-03	4.3E-04	5.2E-03	5.2E-03	5.2E-03	1.8E+02	1.8E+02	7.3E+02	1.2E+06	1.2E+06	4.9E+06	8.9E+04	8.9E+04	1.1E+06	1.4E+04	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aromatic >C12-C16	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.8E+02	1.8E+02	7.3E+02	1.9E+06	1.9E+06	7.9E+06	2.3E+05	2.3E+05	2.9E+06	1.2E+04	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aromatic >C16-C21	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.8E+02	1.8E+02	7.3E+02	3.8E+06	3.8E+06	1.6E+07	8.9E+05	8.9E+05	1.1E+07	9.5E+03	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aromatic >C21-C34	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E+03	1.5E+03	5.8E+03	4.2E+24	4.2E+24	1.8E+25	1.7E+24	1.7E+24	2.1E+25	7.3E+03	1.0E+19	1.0E+19	4.4E+19	-		
n-Hexane	8.7E-03	8.9E-03	1.0E-02	1.4E-02	6.4E-03	6.1E-03	6.1E-03	1.7E-02	1.2E-02	1.2E-02	5.1E-03	2.7E-03	2.7E-03	2.7E-03	8.8E+02	8.8E+02	3.6E+03	2.1E+05	2.1E+05	9.0E+05	9.5E+03	9.5E+03	1.2E+05	6.5E+04	7.3E+02	7.3E+02	3.1E+03	1.5E+05	1.5E+05	3.1E+06
Benzene	1.6E-01	1.6E-01	1.8E-01	2.2E-01	1.0E-01	1.5E-01	1.5E-01	4.1E-01	2.9E-01	2.9E-01	2.7E-01	7.3E-01	7.3E-01	7.3E-01	4.4E+01	4.4E+01	1.8E+02	2.8E+05	2.8E+05	1.2E+06	1.9E+04	1.9E+04	2.4E+05	5.7E+03	3.1E+01	3.1E+01	1.3E+02	6.3E+03	6.3E+03	1.3E+05
Toluene	2.5E-02	2.5E-02	3.1E-02	4.8E-02	2.2E-02	4.2E-03	4.2E-03	8.5E-03	4.7E-03	4.7E-03	2.3E-03	2.6E-02	2.6E-02	2.7E-02	2.3E+03	2.3E+03	9.2E+03	4.4E+07	4.4E+07	1.8E+08	2.7E+06	2.7E+06	3.4E+07	2.1E+05	5.2E+03	5.2E+03	2.2E+04	1.0E+06	1.0E+06	2.2E+07
Ethylbenzene	4.6E-03	4.7E-03	5.4E-03	6.9E-03	3.2E-03	3.5E-03	3.5E-03	2.0E-03	2.1E-03	2.1E-03	5.6E-04	4.0E-03	4.0E-03	4.0E-03	1.3E+03	1.3E+03	5.5E+03	8.8E+06	8.8E+06	3.7E+07	5.3E+05	5.3E+05	6.6E+06	1.1E+05	1.0E+03	1.0E+03	4.4E+03	2.1E+05	2.1E+05	4.4E+06
Total Xylenes	9.1E-02	9.3E-02	9.0E-02	5.5E-02	2.1E-02	1.9E-01	1.9E-01	1.0E-01	9.8E-02	9.8E-02	2.8E-02	1.4E-01	1.4E-01	1.3E-01	2.0E+02	2.0E+02	8.5E+02	9.2E+05	9.2E+05	3.9E+06	5.9E+04	5.9E+04	7.4E+05	2.3E+04	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
1,2,4-trimethylbenzene	3.2E-01	3.3E-01	2.7E-01	1.5E-01	2.4E-02	3.6E-01	3.6E-01	9.2E-02	3.4E-02	3.4E-02	2.6E-02	5.7E-02	5.7E-02	5.6E-02	1.5E+01	1.5E+01	6.1E+01	8.0E+04	8.0E+04	3.3E+05	5.0E+03	5.0E+03	6.4E+04	1.7E+03	7.3E+00	7.3E+00	3.1E+01	1.5E+03	1.5E+03	3.1E+04
1,3,5-trimethylbenzene	1.5E-02	1.5E-02	1.9E-02	3.1E-02	1.4E-02	1.1E-19	1.1E-19	2.5E-20	4.7E-20	4.7E-20	7.0E-21	3.3E-03	3.3E-03	3.4E-03	3.7E+02	3.7E+02	1.5E+03	9.2E+22	9.2E+22	3.9E+23	5.4E+21	5.4E+21	6.8E+22	2.3E+04	1.0E+19	1.0E+19	4.4E+19	-		
Naphthalene	2.3E-02	1.7E-02	1.2E-02	1.1E-02	2.7E-03	2.6E-03	2.6E-03	6.2E-04	8.2E-04	8.2E-04	1.7E-04	2.1E-02	2.1E-02	2.0E-02	6.2E+00	6.2E+00	2.6E+01	1.4E+05	1.4E+05	5.7E+05	2.9E+04	2.9E+04	3.7E+05	7.2E+02	3.1E+00	3.1E+00	1.3E+01	6.3E+02	6.3E+02	1.3E+04
TPH RBC* →	1,200	2,500	20,000	9,700	>MAX	5,900	5,900	69,000	94	94	>MAX	31	31	130	110	110	450	>S	>S	>S	22,000	22,000	>S	14,000	390	390	1,700	79,000	79,000	1,700,000
Generic Gasoline	1,200	2,500	20,000	9,700	>MAX	5,900	5,900	69,000	94	94	>MAX	31	31	130	110	110	450	>S	>S	>S	22,000	22,000	>S	14,000	390	390	1,700	79,000	79,000	1,700,000
Generic Diesel / Heating Oil	1,100	2,200	14,000	4,600	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	9,500	9,500	>MAX	100	100	430	>S	>S	>S	>S	>S	>S	>S	100	100	440	21,000	21,000	440,000
Generic Mineral Insulating Oil	2,800	5,700	36,000	11,000	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	300	300	1,300	>S	>S	>S	>S	>S	>S	>S	150	150	620	30,000	30,000	620,000

Risk-Based Concentrations for TPH: Site-Specific Data

			RBCss				RBCso			RBCsi			RBCsw			RBCtw			RBCwo			RBCwi		RBCwe		RBCair			RBCsg	
Fuel Fraction	Residential	Urban Residential	Occupational	Construction Worker	Excavation Worker	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational	Construction & Excavation Worker	Residential	Urban Residential	Occupational	Residential	Urban Residential	Occupational
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/m³)	(ug/m ³)	(ug/m ³)	(ug/m ³)	(ug/m ³)	(ug/m³)
Aliphatic C5-C6	7.2E-03	7.9E-03	6.8E-03	2.5E-03	1.4E-03	6.7E-02	6.7E-02	7.6E-02	9.4E-02	9.4E-02	1.2E-01	1.0E-02	1.0E-02	9.7E-03	1.5E+03	1.5E+03	6.1E+03	6.5E+04	6.5E+04	2.7E+05	2.9E+03	2.9E+03	3.7E+04	1.7E+05	7.3E+02	7.3E+02	3.1E+03	1.5E+05	1.5E+05	3.1E+06
Aliphatic >C6-C8	2.2E-02	2.4E-02	2.1E-02	7.6E-03	4.2E-03	2.0E-01	2.0E-01	2.3E-01	2.9E-01	2.9E-01	6.6E-02	9.7E-03	9.7E-03	3.6E-03	1.5E+03	1.5E+03	6.1E+03	4.3E+04	4.3E+04	1.8E+05	1.9E+03	1.9E+03	2.4E+04	1.7E+05	7.3E+02	7.3E+02	3.1E+03	1.5E+05	1.5E+05	3.1E+06
Aliphatic >C8-C10	2.0E-01	2.2E-01	2.3E-01	2.3E-01	1.2E-01	3.0E-01	3.0E-01	7.0E-02	3.8E-01	3.8E-01	1.9E-02	6.2E-03	6.2E-03	1.0E-03	1.3E+02	1.3E+02	5.5E+02	3.8E+03	3.8E+03	1.6E+04	1.7E+02	1.7E+02	2.2E+03	2.0E+03	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aliphatic >C10-C12	1.3E-01	1.3E-01	1.3E-01	1.5E-01	7.6E-02	1.9E-02	1.9E-02	4.5E-03	3.1E-02	3.1E-02	1.2E-03	4.5E-04	4.5E-04	4.5E-05	1.3E+02	1.3E+02	5.5E+02	2.6E+03	2.6E+03	1.1E+04	1.1E+02	1.1E+02	1.4E+03	6.7E+02	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aliphatic >C12-C16	1.8E-01	2.0E-01	2.4E-01	2.8E-01	1.5E-01	2.2E-03	2.2E-03	5.2E-04	4.2E-03	4.2E-03	1.4E-04	7.2E-06	7.2E-06	4.5E-07	3.7E+02	3.7E+02	1.5E+03	5.9E+02	5.9E+02	2.5E+03	2.6E+01	2.6E+01	3.3E+02	1.2E+02	1.0E+02	1.0E+02	4.4E+02	-		
Aliphatic >C16-C21	4.9E-04	5.4E-04	6.5E-04	7.7E-04	4.2E-04	4.2E-22	4.2E-22	9.9E-23	8.6E-22	8.6E-22	2.7E-23	6.4E-11	6.4E-11	3.0E-12	1.1E+05	1.1E+05	4.4E+05	6.3E+18	6.3E+18	2.6E+19	2.8E+17	2.8E+17	3.5E+18	2.4E+03	1.0E+19	1.0E+19	4.4E+19	-		
Aliphatic >C21-C34	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.1E+05	1.1E+05	4.4E+05	3.1E+17	3.1E+17	1.3E+18	1.4E+16	1.4E+16	1.7E+17	9.0E+02	1.0E+19	1.0E+19	4.4E+19	-		
Aromatic >C8-C10	1.1E-18	1.2E-18	1.1E-18	5.9E-19	2.8E-19	4.0E-18	4.0E-18	9.5E-19	1.4E-18	1.4E-18	2.6E-19	1.5E-18	1.5E-18	1.6E-18	2.0E+19	2.0E+19	8.3E+19	5.0E+22	5.0E+22	2.1E+23	2.7E+21	2.7E+21	3.4E+22	2.1E+21	1.0E+19	1.0E+19	4.4E+19	-	-	-
Aromatic >C10-C12	2.3E-01	2.1E-01	1.9E-01	1.9E-01	8.6E-02	6.4E-02	6.4E-02	1.5E-02	3.6E-02	3.6E-02	4.2E-03	1.7E-01	1.7E-01	9.7E-02	1.8E+02	1.8E+02	7.3E+02	1.2E+06	1.2E+06	4.9E+06	8.9E+04	8.9E+04	1.1E+06	1.4E+04	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aromatic >C12-C16	2.8E-02	2.8E-02	2.9E-02	3.2E-02	1.7E-02	1.0E-03	1.0E-03	2.4E-04	1.0E-03	1.0E-03	6.6E-05	1.6E-02	1.6E-02	4.0E-03	1.8E+02	1.8E+02	7.3E+02	1.9E+06	1.9E+06	7.9E+06	2.3E+05	2.3E+05	2.9E+06	1.2E+04	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aromatic >C16-C21	2.3E-02	2.4E-02	2.7E-02	3.3E-02	1.8E-02	2.4E-05	2.4E-05	5.7E-06	3.9E-05	3.9E-05	1.5E-06	3.9E-03	3.9E-03	3.9E-04	1.8E+02	1.8E+02	7.3E+02	3.8E+06	3.8E+06	1.6E+07	8.9E+05	8.9E+05	1.1E+07	9.5E+03	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
Aromatic >C21-C34	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E+03	1.5E+03	5.8E+03	4.2E+24	4.2E+24	1.8E+25	1.7E+24	1.7E+24	2.1E+25	7.3E+03	1.0E+19	1.0E+19	4.4E+19			
n-Hexane	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	8.8E+02	8.8E+02	3.6E+03	2.1E+05	2.1E+05	9.0E+05	9.5E+03	9.5E+03	1.2E+05	6.5E+04	7.3E+02	7.3E+02	3.1E+03	1.5E+05	1.5E+05	3.1E+06
Benzene	3.4E-03	3.7E-03	3.9E-03	3.6E-03	2.0E-03	1.3E-02	1.3E-02	1.4E-02	1.8E-02	1.8E-02	6.8E-03	6.4E-02	6.4E-02	1.3E-01	4.4E+01	4.4E+01	1.8E+02	2.8E+05	2.8E+05	1.2E+06	1.9E+04	1.9E+04	2.4E+05	5.7E+03	3.1E+01	3.1E+01	1.3E+02	6.3E+03	6.3E+03	1.3E+05
Toluene	1.1E-03	1.2E-03	1.3E-03	1.6E-03	8.6E-04	7.3E-04	7.3E-04	4.4E-04	5.1E-04	5.1E-04	1.2E-04	4.6E-03	4.6E-03	6.4E-03	2.3E+03	2.3E+03	9.2E+03	4.4E+07	4.4E+07	1.8E+08	2.7E+06	2.7E+06	3.4E+07	2.1E+05	5.2E+03	5.2E+03	2.2E+04	1.0E+06	1.0E+06	2.2E+07
Ethylbenzene	4.9E-03	5.4E-03	5.7E-03	5.6E-03	3.1E-03	1.1E-02	1.1E-02	2.6E-03	5.1E-03	5.1E-03	7.1E-04	1.7E-02	1.7E-02	1.2E-02	1.3E+03	1.3E+03	5.5E+03	8.8E+06	8.8E+06	3.7E+07	5.3E+05	5.3E+05	6.6E+06	1.1E+05	1.0E+03	1.0E+03	4.4E+03	2.1E+05	2.1E+05	4.4E+06
Total Xylenes	5.6E-02	6.1E-02	5.4E-02	2.5E-02	1.2E-02	3.1E-01	3.1E-01	7.4E-02	1.3E-01	1.3E-01	2.0E-02	3.3E-01	3.3E-01	2.6E-01	2.0E+02	2.0E+02	8.5E+02	9.2E+05	9.2E+05	3.9E+06	5.9E+04	5.9E+04	7.4E+05	2.3E+04	1.0E+02	1.0E+02	4.4E+02	2.1E+04	2.1E+04	4.4E+05
1,2,4-trimethylbenzene	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.5E+01	1.5E+01	6.1E+01	8.0E+04	8.0E+04	3.3E+05	5.0E+03	5.0E+03	6.4E+04	1.7E+03	7.3E+00	7.3E+00	3.1E+01	1.5E+03	1.5E+03	3.1E+04
1,3,5-trimethylbenzene	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.7E+02	3.7E+02	1.5E+03	9.2E+22	9.2E+22	3.9E+23	5.4E+21	5.4E+21	6.8E+22	2.3E+04	1.0E+19	1.0E+19	4.4E+19	-	-	-
Naphthalene	1.1E-01	8.7E-02	6.1E-02	4.4E-02	1.2E-02	1.5E-02	1.5E-02	3.5E-03	8.1E-03	8.1E-03	9.5E-04	3.8E-01	3.8E-01	2.2E-01	6.2E+00	6.2E+00	2.6E+01	1.4E+05	1.4E+05	5.7E+05	2.9E+04	2.9E+04	3.7E+05	7.2E+02	3.1E+00	3.1E+00	1.3E+01	6.3E+02	6.3E+02	1.3E+04
TPH RBC* →	1,300	2,800	21,000	7,700	>MAX	25,000	25,000	>MAX	280	280	>MAX	140	140	>MAX	210	210	890	>S	>S	>S	16,000	16,000	>S	23,000	590	590	2,500	120,000	120,000	2,500,000
Generic Gasoline	1,200	2,500	20,000	9,700	>MAX	5,900	5,900	69,000	94	94	>MAX	31	31	130	110	110	450	>S	>S	>S	22,000	22,000	>S	14,000	390	390	1,700	79,000	79,000	1,700,000
Generic Diesel / Heating Oil	1,100	2,200	14,000	4,600	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	9,500	9,500	>MAX	100	100	430	>S	>S	>S	>S	>S	>S	>S	100	100	440	21,000	21,000	440,000
Generic Mineral Insulating Oil	2,800	5,700	36,000	11,000	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	>MAX	300	300	1,300	>S	>S	>S	>S	>S	>S	>S	150	150	620	30,000	30,000	620,000

APPENDIX F

Data Validation Reports

DATA VALIDATION SUMMARY REPORT

GENERAL INFORMATION:

Lab Name:	APEX Laboratories
Lab SDG/Project/Work Order:	A910633
Project Name:	Lampson Property Phase II ESA
Stantec Project Number:	185750581
Client:	Rogue Valley Council of Governments
Validator Name:	Sarah Von Raesfeld
Date of Validation:	October 25, 2019

SAMPLE INFORMATION:

Number of Samples:		Five	
Matrix:		Water	
Number of Trip Blanks	S:	One	
Number of Equipmen	t Blanks:	None	
Number of Field Dupl	icates:	One	
Date of Sample Colle	ection:	September 18-19, 2019	
Sample Name:	<u>Matrix</u>	Analyses:	Batch:
GP-03	Water	VOCs (SW8260C)	9091146
		TPH GRO (NWTPH Gx)	9091146
		TPH DRO/ORO (NWTPH Dx)	9091175
		PAHs (SW8270D)	9091165
		Dissolved RCRA Metals (EPA 200.8)	9091133
		Total RCRA Metals (EPA 200.8)	9091131
GP-04	Water	VOCs (SW8260C)	9091146
		TPH GRO (NWTPH Gx)	9091146
		TPH DRO/ORO (NWTPH Dx)	9091175
		Dissolved RCRA Metals (EPA 200.8)	9091133
		Total RCRA Metals (EPA 200.8)	9091131
GP-06	Water	VOCs (SW8260C)	9091146
		TPH GRO (NWTPH Gx)	9091146
		TPH DRO/ORO (NWTPH Dx)	9091175
		Dissolved RCRA Metals (EPA 200.8)	9091133
		Total RCRA Metals (EPA 200.8)	9091131
GP-Y	Water	VOCs (SW8260C)	9091146
		TPH GRO (NWTPH Gx)	9091146
		TPH DRO/ORO (NWTPH Dx)	9091175
		Dissolved RCRA Metals (EPA 200.8)	9091133
		Total RCRA Metals (EPA 200.8)	9091131
TB-091919	Water	VOCs (SW8260C)	9091146

GENERAL DATA VALIDATION:

Case Narrative:
The laboratory did not identify any non-conformances in the case narrative.

Chain of Custody:

The COC is complete. All requested analyses were performed.

Sample Receipt:

The samples were received within the acceptable temperature range of 0° - 6° C.

Holding Times:

All samples were analyzed within the recommended holding times.

Trip Blank Review:

There were VOCs detected above the MRL in trip blank samples TB-091919.

Equipment Blank Review:

There were no equipment blanks collected.

Surrogates:

All surrogate recoveries were with within acceptance limits. No qualifiers are needed.

Elevated Reporting Limits:

Metals were analyzed at a 5x dilution factor in samples GP-04, GP-06, and GP-Y. The sample MRLs were raised accordingly but still met project requirements.

Compound Identification:

n-Butylbenzene was qualified as estimated (J) in sample GP-04 because matrix interference prevented accurate quantitation of the compound.

PER ANALYSIS:

Volatile Organic Compounds, Method 8260C (Batch 9091146)

Method Blanks:

No analytes were detected above the MRL in the laboratory method blank. No qualifiers are needed.

Laboratory Control Sample:

The LCS percent recoveries were within acceptance limits. No qualifiers are needed.

Matrix Spike/Matrix Spike Duplicate:

Project sample GP-06 was analyzed the MS/MSD. Spike recoveries exceeded the upper acceptance limit for 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, n-butylbenzene, and naphthalene. All four VOCs were non-detect in the parent sample; no data were qualified,

Total Petroleum Hydrocarbons as Gasoline, Method NWTPH-Gx (Batch 9091146)

Method Blanks:

No analytes were detected above the MRL in the laboratory method blank. No qualifiers are needed.

Laboratory Control Sample:

The LCS percent recovery were within acceptance limits. No qualifiers are needed.

Matrix Spike/Matrix Spike Duplicate:

Project-specific MS/MSD samples were not analyzed. No qualified are needed.

Laboratory Duplicate

A project sample was not analyzed for the laboratory duplicate. No qualified are needed.

Total Petroleum Hydrocarbons as Diesel and Oil, Method NWTPH-Dx (Batch 9091175)

Method Blanks:

No analytes were detected above the MRL in the laboratory method blank. No qualifiers are needed.

Laboratory Control Sample:

The LCS percent recovery was within the acceptance limits. No qualifiers are needed.

10/25/2019 Page 2

Matrix Spike/Matrix Spike Duplicate:

Project-specific MS/MSD samples were not analyzed.

Laboratory Duplicate:

A project sample was not analyzed for the laboratory duplicate. No qualified are needed.

Polycyclic Aromatic Hydrocarbons, Method 8270D (Batch 9091165)

Method Blanks:

No analytes were detected above the MRL in the laboratory method blank. No qualifiers are needed.

Laboratory Control Sample:

The LCS percent recoveries were within the acceptance limits. No qualifiers are needed.

Matrix Spike/Matrix Spike Duplicate:

Project-specific MS/MSD samples were not analyzed.

Laboratory Duplicate:

A project sample was not analyzed for the laboratory duplicate. No qualified are needed.

Total and Dissolved RCRA 8 Metals, Method 200.8 (Batches 9091133 and 9091131)

Method Blanks:

No analytes were detected above the MRL in the laboratory method blanks. No qualifiers are needed.

Laboratory Control Sample:

The LCS percent recoveries were within the acceptance limits. No qualifiers are needed.

Matrix Spike/Matrix Spike Duplicate:

Project sample GP-03 was analyzed as the MS/MSD. The MS percent recovery was less than the lower acceptance limit for barium and greater than the upper acceptance limit for chromium. Both metals were qualified as estimated in the parent sample.

10/25/2019 Page 3

FIELD DUPLICATE REVIEW: One field duplicate sample was collected. Sample GP-Y is a field duplicate of sample GP-06. RPDs are calculated between the results of the duplicate samples for constituents detected in both samples at concentrations exceeding five-times their respective MRLs. Constituents that met the criteria are tabulated below. The calculated RPDs for barium, chromium, and lead exceeded the acceptance criteria of 30%; the results were qualified as estimated (J) in both the parent and field duplicate samples.

Sample Name	Constituent	Result	MRL	Unit	RPD	
GP-06	Total Barium	404	5.00	μg/L	33%	
GP-Y	Total Barium	566	5.00	μg/L		
GP-06	Benzene	20.6	0.200	μg/L	3.0%	
GP-Y	Benzene	20.0	0.200	μg/L	3.0%	
GP-06	Total Chromium	73.3	5.00	μg/L	51%	
GP-Y	Total Chromium	123	5.00	μg/L	31%	
GP-06	Ethylbenzene	2.84	0.500	μg/L	2.4%	
GP-Y	Ethylbenzene	2.91	0.500	μg/L	2.4%	
GP-06	GRO	0.925	0.100	mg/L	12%	
GP-Y	GRO	1.04	0.100	mg/L	12%	
GP-06	Total Lead	9.96	1.00	μg/L	41%	
GP-Y	Total Lead	15.1	1.00	μg/L	4170	

10/25/2019 Page 4

DETERMINATION:

The data in this work order have been validated and are usable as qualified:

Sample ID	<u>Analyte</u>	<u>Original</u> <u>Result</u>	<u>Validated</u> <u>Result</u>	<u>Units</u>	Reason Code
GP-04	n-Butylbenzene	1.15	1.15 J	μg/L	Matrix interference
GP-06	Total Barium	404	404 J	μg/L	FD RPD > CL
GP-06	Total Chromium	73.3	73.3 J	μg/L	FD RPD > CL
GP-06	Total Lead	9.96	9.96 J	μg/L	FD RPD > CL
GP-Y	Total Barium	566	566 J	μg/L	FD RPD > CL; MS %R < LCL
GP-Y	Total Chromium	123	123 J	μg/L	FD RPD > CL; MS %R > UCL
GP-Y	Total Lead	15.1	15.1 J	μg/L	FD RPD > CL

%R - percent recovery

μg/L – micrograms per liter CL – control limit

FD - field duplicate

LCL – lower control limit

MS - matrix spike

RPD – relative percent difference UCL – upper control limit

10/25/2019 Page 5

NOTES:

Data validation assigned qualifiers (U, UJ, J, R). The following qualifiers may be assigned to data in this data set based on the results of the data validation procedure (documented on this form). In general data qualifiers are defined as follows:

- U Indicates the analyte was analyzed for, but was not detected above the reported sample quantitation limit (MRL, or MDL if reported). Results assigned this qualifier are considered undetected at the MRL, or MDL if reported.
- UJ Indicates the analyte was not detected above the quantitation limit or MRL (MDL, if reported); however, the MRL (MDL, if reported) is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. Results assigned this qualifier are considered undetected at the estimated MRL (MDL, if reported).
- J Indicates the analyte was positively indentified; however, the associated numerical value is the approximate concentration of the analyte in the sample.
 Results assigned this qualifier as considered and detected at an estimated value.
 J-qualifiers may be appended with a "+" or "-" to indicate the result has a potential positive or negative bias, respectively.
- R Indicates the presence or absence of the analyte cannot be confirmed due to serious laboratory deficiencies in the ability to analyze the sample and meet quality control criteria. Results assigned this qualifier are rejected and considered unusable.

10/25/2019 Page 6

REFERENCES:

- EPA. 2002. Guidance on Environmental Data Verification and Data Validation, EPA QA/G-8. USEPA. November 2002.
- EPA. 2014a. United States Environmental Protection Agency (*USEPA*) National Functional Guidelines for Inorganic Superfund Data Review, EPA-540-R-013-001. Office of Superfund Remediation and Technology Innovation (*OSRTI*). August.
- EPA. 2014b. USEPA National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-014-002. OSRTI. August.
- Stantec. 2018. Master Quality Assurance Project Plan Rogue Valley COG. Cooperative Agreement No. BF-01J40701. August.

10/25/2019 Page 7

DATA VALIDATION SUMMARY REPORT

GENERAL INFORMATION:

Lab Name:	APEX Laboratories		
Lab SDG/Project/Work Order:	A910687		
Project Name:	Lampson Property Phase II ESA		
Stantec Project Number:	185750581		
Client:	Rogue Valley Council of Governments		
Validator Name:	Sarah Von Raesfeld		
Date of Validation:	October 31, 2019		

SAMPLE INFORMATION:

Number of Samples:		13					
Matrix:		Soil					
Number of Trip Blanks:		None	None				
Number of Equipment Blanks:		None					
Number of Field Duplic	ates:	One					
Date of Sample Collec	tion:	September 17-19, 2019					
Sample Name:	<u>Matrix</u>	Analyses:	Batch:				
GP03-2	Soil	VOCs (SW8260C)	9091047				
		TPH GRO (NWTPH Gx)	9091047				
		TPH DRO/ORO (NWTPH Dx)	9091236				
		RCRA Metals (SW6020A)	9091186				
GP03-8	Soil	VOCs (SW8260C)	9091213				
		TPH GRO (NWTPH Gx)	9091213				
		TPH DRO/ORO (NWTPH Dx)	9091236				
		PAHs (SW8270D)	9091438				
		RCRA Metals (SW6020A)	9091186				
GP04-1 Soil		VOCs (SW8260C)	9091047				
		TPH GRO (NWTPH Gx)	9091047				
		TPH DRO/ORO (NWTPH Dx)	9091259				
		PAHs (SW8270D)	9091322				
		RCRA Metals (SW6020A)	9091186				
GP04-12	Soil	VOCs (SW8260C)	9091047				
		TPH GRO (NWTPH Gx)	9091047				
		TPH DRO/ORO (NWTPH Dx) 9091236					
		RCRA Metals (SW6020A)	9091186				
GP06-2	Soil	VOCs (SW8260C)	9091160				
		TPH GRO (NWTPH Gx)	9091160				
		TPH DRO/ORO (NWTPH Dx) 9091236					
		RCRA Metals (SW6020A)	9091186				
GP06-6	Soil	VOCs (SW8260C)	9091108				
		TPH GRO (NWTPH Gx) 9091108					
		TPH DRO/ORO (NWTPH Dx) 9091236					
		RCRA Metals (SW6020A)	9091186				
GP-X	Soil	VOCs (SW8260C)	9091213				
		TPH GRO (NWTPH Gx)	9091213				
		TPH DRO/ORO (NWTPH Dx)	9091236				
		PAHs (SW8270D) 909132					
		RCRA Metals (SW6020A)	9091186				

Sample Name:	Matrix	Analysasi	Patah:
Sample Name: UST-01-T2-NB	<u>Matrix</u> Soil	<u>Analyses:</u> VOCs (SW8260C)	<u>Batch:</u> 9091108
U31-U1-12-ND	3011	VOCs (SW8260C)	9091106
		TPH GRO (NWTPH Gx)	9091213
		TPH DRO/ORO (NWTPH Dx)	9091108
		PAHs (SW8270D)	9091230
		PCBs (SW8082A)	9091201
		,	9091186
UST-02-T2-SB	Soil	RCRA Metals (SW6020A)	
U31-U2-12-3B	SOII	VOCs (SW8260C) TPH GRO (NWTPH Gx)	9091213
		,	9091213
		TPH DRO/ORO (NWTPH Dx)	9091236
		Extractable TPH (NWEPH)	26004
		Volatile TPH (NWVPH)	26072
		PAHs (SW8270D)	9091201
		PCBs (SW8082A)	9091156
	0 "	RCRA Metals (SW6020A)	9091186
UST-03-T2-SE	Soil	VOCs (SW8260C)	9091160
		TPH GRO (NWTPH Gx)	9091160
		TPH DRO/ORO (NWTPH Dx)	9091236
		PAHs (SW8270D)	9091201
		PCBs (SW8082A)	9091156
	0 11	RCRA Metals (SW6020A)	9091186
UST-04-T1-NB	Soil	VOCs (SW8260C)	9091160
		TPH GRO (NWTPH Gx)	9091160
		TPH DRO/ORO (NWTPH Dx)	9091236
		PAHs (SW8270D)	9091201
		PCBs (SW8082A)	9091156
	0 "	RCRA Metals (SW6020A)	9091186
UST-05-T1-SB	Soil	VOCs (SW8260C)	9091160
		TPH GRO (NWTPH Gx)	9091160
		TPH DRO/ORO (NWTPH Dx)	9091236
		PAHs (SW8270D)	9091201
		PCBs (SW8082A)	9091156
		RCRA Metals (SW6020A)	9091186
UST-06-T1-SW	Soil	VOCs (SW8260C)	9091160
		TPH GRO (NWTPH Gx)	9091160
		TPH DRO/ORO (NWTPH Dx)	9091236
		Extractable TPH (NWEPH)	26004
		Volatile TPH (NWVPH)	26072
		PAHs (SW8270D)	9091201
		PCBs (SW8082A)	9091156
		RCRA Metals (SW6020A)	9091186

GENERAL DATA VALIDATION:

Case Narrative:

The laboratory did not identify any non-conformances in the case narrative.

Chain of Custody:

The COC is complete. All requested analyses were performed.

Sample Receipt:

The samples were received within the acceptable temperature range of 0° - 6° C.

Holding Times:

All samples were analyzed within the required holding time.

Trip Blank Review:

There were no trip blanks submitted.

Equipment Blank Review:

There were no equipment blanks collected.

Surrogates:

All surrogate recoveries were with within acceptance limits. No qualifiers are needed.

Elevated Reporting Limits:

VOCs: All samples were analyzed at dilution factors ranging from 50x to 10,000x due to high concentrations and matrix interference.

GRO: All samples were analyzed at dilution factors ranging from 50x to 10,000x due to high concentrations.

Metals: All samples were analyzed at a 10x dilution factors.

PAHs: Five samples were analyzed at a 20x dilution factor for 1-methylnaphthalene,

2-methylnaphthalene, and naphthalene due to high concentrations.

Sample MRLs were raised accordingly, no data were qualified.

Compound Identification:

Detections of n-butylbenzene and/or 4-isopropyltoluene were qualified as estimated (J) in six samples because the sample matrix interfered with accurate separation and quantitation of the analytes.

PER ANALYSIS:

Volatile Organic Compounds, *Method 8260C* (Batches 9091047, 9091213, 9091160, and 9091108)

Method Blanks:

No analytes were detected above the MRL in the laboratory method blanks. No qualifiers are needed.

Laboratory Control Sample:

The LCS percent recoveries exceeded the upper acceptance limit for bromomethane, chloroethane, dichlorodifluoromethane, and/or trichlorofluoromethane in batches 9091213 and 9091160. The VOCs were not detected in the associated samples; no data were qualified.

The LCS percent recoveries were less than the lower acceptance limit for methylene chloride in batch 9091047; three results were qualified as estimated non-detects (UJ).

Matrix Spike/Matrix Spike Duplicate:

Project-specific MS/MSD samples were not analyzed.

Laboratory Duplicate:

Project sample UST-01-T2-NB was analyzed as the lab duplicate sample. The duplicate RPDs exceeded the acceptance limits for 13 VOCs Eight of the VOCs were detected in the parent samples and were qualified as estimated (J).

Total Petroleum Hydrocarbons as Gasoline, Method NWTPH-Gx (Batches 9091047, 9091213, 9091160, and 9091108)

Method Blanks:

No analytes were detected above the MRL in the laboratory method blanks. No qualifiers are needed.

Laboratory Control Sample:

The LCS percent recovery were within acceptance limits. No qualifiers are needed.

Matrix Spike/Matrix Spike Duplicate:

Project-specific MS/MSD samples were not analyzed.

Laboratory Duplicate:

Project sample UST-01-T2-NB was analyzed as the lab duplicate sample. The GRO duplicate RPD exceeded the acceptance limit; the result was qualified as estimated (J).

Total Petroleum Hydrocarbons as Diesel and Oil, Method NWTPH-Dx (Batches 9091236 and 9091259)

Method Blanks:

No analytes were detected above the MRL in the laboratory method blanks. No qualifiers are needed.

Laboratory Control Sample:

The LCS percent recovery was within the acceptance limits. No qualifiers are needed.

Matrix Spike/Matrix Spike Duplicate:

Project-specific MS/MSD samples were not analyzed.

Laboratory Duplicate:

Project sample GP04-1 was analyzed as the lab duplicate sample. The duplicate RPD was within acceptance limits. No qualifiers are needed.

Extractable Petroleum Hydrocarbons, Method NWEPH (Batch 26004)

Method Blanks:

No analytes were detected above the MRL in the laboratory method blank. No qualifiers are needed.

Laboratory Control Sample:

The LCS percent recoveries were less than the lower acceptance limits for aromatic hydrocarbon range C8-C10 and greater than the upper acceptance limit for aromatic hydrocarbon ranges C12-C16, C16-C21, and C21-C34 and aliphatic hydrocarbon range C21-C34. Detected results for aromatic hydrocarbon ranges C12-C16, C16-C21, and C21-C34 and aliphatic hydrocarbon range C21-C34 were qualified as estimated with a potential high bias (J+) in both samples. Aromatic hydrocarbon range C8-C10 was qualified as estimated with a potential low bias (J-) in both samples.

Matrix Spike/Matrix Spike Duplicate:

Project-specific MS/MSD samples were not analyzed.

Laboratory Duplicate:

A project sample was not analyzed for the laboratory duplicate. No qualified are needed.

Volatile Petroleum Hydrocarbons, Method NWVPH (Batch 26072)

Method Blanks:

No analytes were detected above the MRL in the laboratory method blank. No qualifiers are needed.

Laboratory Control Sample:

The LCS/LCSD percent recoveries exceeded the upper acceptance limit for MTBE. Both associated samples were non-detect for MTBE; no data were qualified.

Matrix Spike/Matrix Spike Duplicate:

Project-specific MS/MSD samples were not analyzed.

Laboratory Duplicate:

Project sample UST-06-T1-SW was analyzed as the lab duplicate sample. The duplicate RPD exceeded the acceptance limit for the aliphatic hydrocarbon range C10-C12.

Polycyclic Aromatic Hydrocarbons, *Method 8270D* (Batches 9091438, 9091322, 9091201, and 9091165)

Method Blanks:

No analytes were detected above the MRL in the laboratory method blank. No qualifiers are needed.

Laboratory Control Sample:

The LCS percent recoveries were within the acceptance limits. No qualifiers are needed.

Matrix Spike/Matrix Spike Duplicate:

Project sample UST-06-T1-SW was analyzed the MS/MSD. Spike recoveries and RPDs were not meaningful for 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene because the concentration in the parent sample was greater than for times the concentration used for the spike. No data were qualified.

Laboratory Duplicate:

Project sample GP03-8 was analyzed as the lab duplicate sample. The duplicate RPDs were greater than acceptance limits for 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene. The results were qualified as estimated (J) in the parent sample as well as its field duplicate, GP-X.

Polychlorinated Biphenyls, Method 8082A (Batch 9091156)

Method Blanks:

No analytes were detected above the MRL in the laboratory method blank. No qualifiers are needed.

Laboratory Control Sample:

The LCS percent recoveries were within the acceptance limits. No qualifiers are needed.

Matrix Spike/Matrix Spike Duplicate:

Project-specific MS/MSD samples were not analyzed.

Laboratory Duplicate:

A project sample was not analyzed for the laboratory duplicate. No qualified are needed.

RCRA 8 Metals, Method 6020A (Batch 9091186)

Method Blanks:

Barium was detected at 2.34 mg/kg in the method blank. Barium was detected in the samples at concentrations exceeding ten-times the method blank; no data were qualified.

Laboratory Control Sample:

The LCS percent recoveries were within the acceptance limits. No qualifiers are needed.

Matrix Spike/Matrix Spike Duplicate:

Project sample UST-06-T1-SW was analyzed as the MS/MSD. The spike recoveries and RPDs were within acceptance limits. No qualifiers are needed.

Laboratory Duplicate:

Project sample UST-06-T1-SW was analyzed as the lab duplicate samples. The duplicate RPD exceeded the acceptance limit for lead. Lead was qualified as estimated (J) in the parent sample.

FIELD DUPLICATE REVIEW: One field duplicate sample was collected. Sample GP-X is a field duplicate of sample GP-03-8. RPDs are calculated between the results of the duplicate samples for constituents detected in both samples at concentrations exceeding five-times their respective MRLs. Constituents that met the criteria are tabulated below. The calculated RPDs for 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, GRO, m,p-xylene, naphthalene, and n-propylbenzene exceeded the acceptance criteria of 50%; the results were qualified as estimated (J) in both the parent and field duplicate samples.

Sample Name	Constituent	Result	MRL	Unit	RPD	
GP03-8	1,2,4-Trimethylbenzene	1.36	0.129	mg/kg 71%		
GP-X	1,2,4-Trimethylbenzene	2.87	0.129	mg/kg		
GP03-8	1,3,5-Trimethylbenzene	2.84	0.129	mg/kg 56%		
GP-X	1,3,5-Trimethylbenzene	5.03	0.129	mg/kg	- 50%	
GP03-8	1-Methylnaphthalene	0.136	0.0122	mg/kg	37%	
GP-X	1-Methylnaphthalene	0.197	0.0119	mg/kg	3770	
GP03-8	2-Methylnaphthalene	0.343	0.0122	mg/kg	28%	
GP-X	2-Methylnaphthalene	0.453	0.0119	mg/kg	2070	
GP03-8	Barium	130	1.28	mg/kg	8.8%	
GP-X	Barium	142	1.2	mg/kg	0.070	
GP03-8	Chromium	64.2	1.28	mg/kg	0.9%	
GP-X	Chromium	63.6	1.2	mg/kg		
GP03-8	Ethylbenzene	1.6	0.0647	mg/kg	kg 63%	
GP-X	Ethylbenzene	3.06	0.0647	mg/kg) 03%	
GP03-8	GRO	324	12.9	mg/kg	68%	
GP-X	GRO	655	12.9	mg/kg	0076	
GP03-8	Lead	5.57	0.256	mg/kg	9.0%	
GP-X	Lead	5.09	0.24	mg/kg	7.070	
GP03-8	m,p-Xylene	0.72	0.129	mg/kg	76%	
GP-X	m,p-Xylene	1.61	0.129	mg/kg	7070	
GP03-8	Naphthalene	1.33	0.259	mg/kg	51%	
GP-X	Naphthalene	2.25	0.259	mg/kg		
GP03-8	Naphthalene	0.314	0.0122	mg/kg	32%	
GP-X	Naphthalene	0.432	0.0119	mg/kg	3270	
GP03-8	n-Propylbenzene	1.38	0.0647	mg/kg	54%	
GP-X	n-Propylbenzene	2.41	0.0647	mg/kg	3470	

DETERMINATION:

The data in this work order have been validated and are usable as qualified:

Sample ID	<u>Analyte</u>	<u>Original</u>	<u>Validated</u>	<u>Units</u>	Reason Code
GP03-2	Methylene chloride	<u>Result</u> 0.286 U	<u>Result</u> 0.286 UJ	<u> </u>	LCS %R < LAL
GP03-8		1.36	1.36 J	mg/kg	FD RPD > CL
GP03-8	1,2,4-Trimethylbenzene	2.84	2.84 J	mg/kg	
	1,3,5-Trimethylbenzene			mg/kg	FD RPD > CL
GP03-8	1-Methylnaphthalene	0.136	0.136 J	mg/kg	LDUP RPD > CL
GP03-8	2-Methylnaphthalene	0.343	0.343 J	mg/kg	LDUP RPD > CL
GP03-8	4-Isopropyltoluene	0.131	0.131 J	mg/kg	Matrix interference
GP03-8	Ethylbenzene	1.60	1.60 J	mg/kg	FD RPD > CL
GP03-8	GRO	324	324 J	mg/kg	FD RPD > CL
GP03-8	m,p-Xylene	0.720	0.720 J	mg/kg	FD RPD > CL
GP03-8	Naphthalene	0.314	0.314 J	mg/kg	LDUP RPD > CL
GP03-8	Naphthalene	1.33	1.33 J	mg/kg	FD RPD > CL
GP03-8	n-Butylbenzene	0.391	0.391 J	mg/kg	Matrix interference
GP03-8	n-Propylbenzene	1.38	1.38 J	mg/kg	FD RPD > CL
GP04-1	Methylene chloride	0.286 U	0.286 UJ	mg/kg	LCS %R < LAL
GP04-12	Methylene chloride	0.275 U	0.275 UJ	mg/kg	LCS %R < LAL
GP-X	1,2,4-Trimethylbenzene	2.87	2.87 J	mg/kg	FD RPD > CL
GP-X	1,3,5-Trimethylbenzene	5.03	5.03 J	mg/kg	FD RPD > CL
GP-X	1-Methylnaphthalene	0.197	0.197 J	mg/kg	LDUP RPD > CL
GP-X	2-Methylnaphthalene	0.453	0.453 J	mg/kg	LDUP RPD > CL
GP-X	4-Isopropyltoluene	0.228	0.228 J	mg/kg	Matrix interference
GP-X	Ethylbenzene	3.06	3.06 J	mg/kg	FD RPD > CL
GP-X	GRO	655	655 J	mg/kg	FD RPD > CL
GP-X	m,p-Xylene	1.61	1.61 J	mg/kg	FD RPD > CL
GP-X	Naphthalene	0.432	0.432 J	mg/kg	LDUP RPD > CL
GP-X	Naphthalene	2.25	2.25 J	mg/kg	FD RPD > CL
GP-X	n-Butylbenzene	0.646	0.646 J	mg/kg	Matrix interference
GP-X	n-Propylbenzene	2.41	2.41 J	mg/kg	FD RPD > CL
UST-01-T2-NB	1,2,4-Trimethylbenzene	219	219 J	mg/kg	LDUP RPD > CL
UST-01-T2-NB	1,3,5-Trimethylbenzene	11.8	11.8 J	mg/kg	LDUP RPD > CL
UST-01-T2-NB	4-Isopropyltoluene	3.74	3.74 J	mg/kg	Matrix interference
UST-01-T2-NB	Ethylbenzene	87.3	87.3 J	mg/kg	LDUP RPD > CL
UST-01-T2-NB	GRO	8020	8020 J	mg/kg	LDUP RPD > CL
UST-01-T2-NB	Isopropylbenzene	13.0	13.0 J	mg/kg	LDUP RPD > CL
UST-01-T2-NB	m,p-Xylene	137	137 J	mg/kg	LDUP RPD > CL
UST-01-T2-NB	Naphthalene	20.8	20.8 J	mg/kg	LDUP RPD > CL
UST-01-T2-NB	n-Butylbenzene	11.2	11.2 J	mg/kg	LDUP RPD > CL
UST-01-T2-NB	n-Propylbenzene	52.9	52.9 J	mg/kg	LDUP RPD > CL
UST-02-T2-SB	4-Isopropyltoluene	1.30	1.30 J	mg/kg	Matrix interference
UST-02-T2-SB	n-Butylbenzene	3.16	3.16 J	mg/kg	Matrix interference
UST-04-T1-NB	4-Isopropyltoluene	1.60	1.60 J	mg/kg	Matrix interference
UST-06-T1-SW	4-Isopropyltoluene	1.32	1.32 J	mg/kg	Matrix interference
UST-06-T1-SW	Lead	12.9	12.9 J	mg/kg	LDUP RPD > CL
UST-02-T2-SB	Aliphatic Hydrocarbon (C21-C34)	33.3 *	33.3 J+	mg/kg	LCS %R > UCL
UST-02-T2-SB	Aromatic Hydrocarbon (C10-C12)	163	163 J-	mg/kg	SURR %R < LAL
UST-02-T2-SB	Aromatic Hydrocarbon (C12-C16)	74.6 *	74.6 J	mg/kg	SURR %R < LAL; LCS %R > UAL
UST-02-T2-SB	Aromatic Hydrocarbon (C16-C21)	26.7 *	26.7 J	mg/kg	SURR %R < LAL; LCS %R > UAL
UST-02-T2-SB	Aromatic Hydrocarbon (C21-C34)	1.68 U	1.68 UJ	mg/kg	SURR %R < LAL
UST-02-T2-SB	Aromatic Hydrocarbon (C8-C10)	184 *	184 J-	mg/kg	SURR %R < LAL; LCS %R < LAL
UST-02-T2-SB	Aliphatic Hydrocarbon (C21-C34)	33.3 *	33.3 J+	mg/kg	LCS %R > UCL
UST-02-T2-SB	Aliphatic Hydrocarbon (C10-C12)	71.6 DH	71.6 J	mg/kg	HT Exceeded
UST-02-T2-SB	Aliphatic Hydrocarbon (C5-C6)	175 DH	175 J	mg/kg	HT Exceeded
UST-02-T2-SB	Aliphatic Hydrocarbon (C6-C8)	327 DH	327 J	mg/kg	HT Exceeded
UST-02-T2-SB	Aliphatic Hydrocarbon (C8-C10)	96.5 DH	96.5 J	mg/kg	HT Exceeded

Sample ID	<u>Analyte</u>	Original Result	Validated Result	<u>Units</u>	Reason Code
UST-02-T2-SB	Aromatic Hydrocarbon (C10-C12)	200 DH	200 J	mg/kg	HT Exceeded
UST-02-T2-SB	Aromatic Hydrocarbon (C12-C13)	163 JDH	163 J	mg/kg	HT Exceeded
UST-02-T2-SB	Aromatic Hydrocarbon (C8-C10)	199 DH	199 J	mg/kg	HT Exceeded
UST-02-T2-SB	m,p-Xylene	76.0 DH	76.0 J	mg/kg	HT Exceeded
UST-02-T2-SB	Ethylbenzene	38.5 H	38.5 J	mg/kg	HT Exceeded
UST-02-T2-SB	Toluene	10.6 H	10.6 J	mg/kg	HT Exceeded
UST-02-T2-SB	MTBE	0.0756 UQH	0.0756 UJ	mg/kg	HT Exceeded
UST-02-T2-SB	Benzene	1.22 H	1.22 J	mg/kg	HT Exceeded
UST-02-T2-SB	Naphthalene	21.4 H	21.4 J	mg/kg	HT Exceeded
UST-02-T2-SB	o-Xylene	8.49 H	8.49 J	mg/kg	HT Exceeded
UST-06-T1-SW	Aromatic Hydrocarbon (C12-C16)	71.9 *	71.9 J+	mg/kg	LCS %R > UAL
UST-06-T1-SW	Aromatic Hydrocarbon (C16-C21)	78.1 *	78.1 J+	mg/kg	LCS %R > UAL
UST-06-T1-SW	Aromatic Hydrocarbon (C8-C10)	93.5 *	93.5 J-	mg/kg	LCS %R < LAL
UST-06-T1-SW	Aliphatic Hydrocarbon (C10-C12)	109 DH	109 J	mg/kg	HT Exceeded; LDUP RPD > CL
UST-06-T1-SW	Aliphatic Hydrocarbon (C5-C6)	127 DH	127 J	mg/kg	HT Exceeded
UST-06-T1-SW	Aliphatic Hydrocarbon (C6-C8)	387 DH	387 J	mg/kg	HT Exceeded
UST-06-T1-SW	Aliphatic Hydrocarbon (C8-C10)	163 DH	163 J	mg/kg	HT Exceeded
UST-06-T1-SW	Aromatic Hydrocarbon (C10-C12)	373 DH	373 J	mg/kg	HT Exceeded
UST-06-T1-SW	Aromatic Hydrocarbon (C12-C13)	181 JDH	181 J	mg/kg	HT Exceeded
UST-06-T1-SW	Aromatic Hydrocarbon (C8-C10)	394 DH	394 J	mg/kg	HT Exceeded
UST-06-T1-SW	Ethylbenzene	40.9 DH	40.9 J	mg/kg	HT Exceeded
UST-06-T1-SW	m,p-Xylene	122 DH	122 J	mg/kg	HT Exceeded
UST-06-T1-SW	Toluene	9.93 H	9.93 J	mg/kg	HT Exceeded
UST-06-T1-SW	MTBE	0.0815 UQH	0.0815 UJ	mg/kg	HT Exceeded
UST-06-T1-SW	Benzene	1.02 H	1.02 J	mg/kg	HT Exceeded
UST-06-T1-SW	Naphthalene	22.4 H	22.4 J	mg/kg	HT Exceeded
UST-06-T1-SW	o-Xylene	5.00 H	5.00 J	mg/kg	HT Exceeded

%R - percent recovery

μg/L - micrograms per liter

CL – control limit

FD - field duplicate

GRO – gasoline range organics HT – holding time

LAL - lower acceptance limit

LCS – laboratory control sample LDUP – lab duplicate

mg/kg -milligrams per kilogram

RPD - relative percent difference

SURR - surrogate
UAL - upper acceptance limit

NOTES:

Data validation assigned qualifiers (U, UJ, J, R). The following qualifiers may be assigned to data in this data set based on the results of the data validation procedure (documented on this form). In general data qualifiers are defined as follows:

- U Indicates the analyte was analyzed for, but was not detected above the reported sample quantitation limit (MRL, or MDL if reported). Results assigned this qualifier are considered undetected at the MRL, or MDL if reported.
- UJ Indicates the analyte was not detected above the quantitation limit or MRL (MDL, if reported); however, the MRL (MDL, if reported) is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. Results assigned this qualifier are considered undetected at the estimated MRL (MDL, if reported).
- J Indicates the analyte was positively identified; however, the associated numerical value is the approximate concentration of the analyte in the sample.
 Results assigned this qualifier as considered and detected at an estimated value.
 J-qualifiers may be appended with a "+" or "-" to indicate the result has a potential positive or negative bias, respectively.
- R Indicates the presence or absence of the analyte cannot be confirmed due to serious laboratory deficiencies in the ability to analyze the sample and meet quality control criteria. Results assigned this qualifier are rejected and considered unusable.

REFERENCES:

- EPA. 2002. Guidance on Environmental Data Verification and Data Validation, EPA QA/G-8. USEPA. November 2002.
- EPA. 2014a. United States Environmental Protection Agency (*USEPA*) National Functional Guidelines for Inorganic Superfund Data Review, EPA-540-R-013-001. Office of Superfund Remediation and Technology Innovation (*OSRTI*). August.
- EPA. 2014b. USEPA National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-014-002. OSRTI. August.
- Stantec. 2018. Master Quality Assurance Project Plan Rogue Valley COG. Cooperative Agreement No. BF-01J40701. August.