RISK-BASED CORRECTIVE ACTION DETERMINATION

FORMER 12TH AVENUE MOTOR SERVICE LUST FACILITY #26-23-0131 2436 SE 12TH AVENUE PORTLAND, MULTNOMAH COUNTY, OREGON

Report Prepared for and Reliance Provided to:

SKYHOOK FITNESS, INC. 2436 SE 12TH AVENUE PORTLAND, OREGON 97214

Point Source Solutions Project No: OR230123-3B Revised April 14, 2025 Field Work Conducted and Report Prepared in General Accordance with the following:

ASTM Standard Practice E1903

Oregon State Board of Geologist Examiners Professional Practices Guideline (May 2014)

Table of Contents

1.0	PURPOSE1									
2.0	BACKGROUND	1								
3.0	SOIL, GEOLOGY and GROUNDWATER CHARACTERISTICS	2								
4.0	SCOPE of WORK	3								
	 4.1 Subsurface Investigation Area of Potential Concern, Borings and Analysis 4.2 Utility Locating 4.3 Health & Safety Plan 									
5.0	SAMPLING METHODOLOGY	4								
	 5.1 Soil Samples 5.2 Groundwater Samples 5.3 Soil Gas Samples 5.4 Sub-slab Soil Vapor Samples 									
6.0	SUBSURFACE INVESTIGATION	6								
	 6.1 Soil Sampling 6.2 Soil Gas Sampling 6.3 Laboratory Analytical Results 6.4 Quality Assurance/Quality Control Review 									
7.0	NATURE and EXTENT of CONTAMINATION	9								
	7.1 Primary Sources of Contamination7.2 Contaminants of Interest/Contaminants of Potential Concern									
8.0	BENEFICIAL LAND and WATER USE DETERMINATION	11								
	8.1 Locality of Facility8.2 Summary of Water Use8.3 Summary of Land Use									
9.0	CONCEPTUAL SITE MODEL	12								
	9.1 Potential Human Receptors9.2 Potential Ecological Receptors									
10.0	RISK SCREENING	14								
	10.1 Soil 10.2 Soil Gas									
11.0	FINDINGS	15								
13.0	CONCLUSIONS 15									

Figure 1: Site Location Map Figure 2: Topographic Map

Figure 3: Site Plan

Figure 4: Soil Sample Location Diagram

Figure 5: Soil Vapor Sample Location Diagram

Table 1: Soil Sample Analytical Results

Table 2: Soil Vapor Sample Analytical Results

Appendix A: Point Source Phase II ESA

Appendix B: ODEQ UST Decommissioning Forms, Disposal Transaction History

Appendix C: Laboratory Analytical Reports

Appendix D: Photo Log

Appendix E: Ecological Risk Assessment Radius Map

Appendix F: Permits

Appendix G: Conceptual Site Model

Appendix H: Boring Logs

Point Source Solutions LLC (Point Source) is pleased to provide the results from the Risk-Based Corrective Action Determination Investigation prepared for the Former Twelfth Avenue Motor Service Site, LUST #26-23-0131, located at 2436 SE 12th Avenue, Portland, Oregon, 97214 ("Site").

1.0 PURPOSE

The purpose of this investigation is to:

- Assess onsite subsurface conditions to evaluate if there has been a release of hazardous substances; determine the nature and extent of the impacts to soil, soil vapor and groundwater, if any; and evaluate potential threats from these releases to the beneficial use of the Site.
- Develop a Conceptual Site Model (CSM).
- Complete a Beneficial Land and Water Use Determination (BLWUD).
- Develop a list of Contaminants of Interest (COI) based upon the characteristics of the identified release.
- Compare Contaminants of Potential Concern (COPC) concentrations to the ODEQ's Risk Based Concentrations (RBCs) for potentially complete exposure pathways.

This investigation was completed in general accordance with ASTM E1903-11, Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process. These methodologies are described as representing good commercial and customary practice for conducting a Phase II ESA of a property for the purpose of evaluating recognized environmental conditions.

The information provided in this report describes the work performed and provides documentation of the data and evaluation that constitutes the factual findings of the investigation.

2.0 BACKGROUND INFORMATION

Point Source performed a Phase I Environmental Site Assessment (ESA) of the Site (Project Number OR231023-3 dated February 6, 2023). Below is an excerpt from the Phase I report:

Based on a review of city directories, Sanborn Fire Insurance Maps and City of Portland building permit files it was disclosed that the subject property operated as a service station from 1927 through 1972. The dispenser island for the former service station is still present and according to the long-time owner of the subject property, USTs related to past use of the service station are located beneath a concrete pad fronting the subject property.

Additional features related to past use of the subject property building as a service station such as grease pits or in-ground hydraulic lifts were not observed or depicted on plan sheets.

UST Permits from Portland Fire and Rescue indicating tank contents were not available for the tanks located at this site. Typically permits are not available for tanks installed in the 1920s.

Point Source provided a proposal for an environmental investigation to address the recognized environmental conditions outlined in the Phase I ESA.

On February 7, 2023, Pacific Geophysics conducted a geophysical survey of the Site in an attempt to locate the USTs referenced in the Phase I ESA, as well as any subsurface infrastructure relating to former

auto repair operations in the interior of the Site building. Two USTs were identified in the south corner of the Site at the intersection of SE 12th and SE Elliott Avenues. Both USTs were found to be buried approximately 2.5 feet below ground surface, each measuring 4.0 feet in diameter and 12 feet in length. No other USTs were found onsite. No hoists or "grease pits," as referenced in the Phase I ESA, were identified in the Site building interior. Four boring locations were cleared at the ends of the USTs, and two were cleared in the interior near a former bay of the original auto repair shop and a floor drain.

Following the geophysical survey, Point Source filed sidewalk and parking closure permits with the Portland Bureau of Transportation before starting the investigation. Once the permits were approved, Point Source mobilized to the Site on February 22 and 28, 2023 to complete the investigation.

Soil contamination was observed in the two borings advanced on the south ends of the USTs. A sample of the highest observed impact using a handheld photoionization detector was collected from each of the south end borings. Impact was not observed in any of the borings advanced on the north side of the USTs or in the Site building's interior. The highest level of contamination returned in the laboratory analytical results (B2-S1-11), amounted to 2,200 mg/kg of gasoline-range petroleum hydrocarbons (TPH-Gx), and 2,000 mg/kg of diesel-range petroleum hydrocarbons (TPH-Dx). The TPH-Dx result was qualified on the analytical report as not conforming to the chromatographic standard, most likely indicating that the TPH-Dx result was largely driven by weathered gasoline.

Groundwater was not encountered to 16 feet below ground surface (bgs) which was the maximum depth explored in these borings.

Within 72 hours of receipt of these results, Point Source reported the release to the Oregon Department of Environmental Quality (ODEQ) on March 3, 2023. The Site was assigned LUST file number #26-23-0131. An Initial 20-Day Report Form was filed by Point Source with ODEQ on March 15, 2023.

Point Source' Phase II Subsurface Investigation is included in Appendix A.

Based on these results, Skyhook Fitness requested that Point Source provide a scope of work to decommission USTs, clean up accessible contaminated soil encountered, delineate remaining contamination subsequent to the decommissioning, and evaluate the vapor intrusion exposure pathway. Point Source provided Skyhook with a work proposal that addressed the listed tasks. Skyhook authorized Point Source's UST decommissioning and cleanup scope of work in May 2023.

After having received authorization, Point Source filed a 30 day notice to decommission the two USTs with ODEQ on May 15, 2023, notifying ODEQ that the decommissioning of the USTs was to begin on June 12. During this time, the proper permits for sidewalk closure with PBOT and UST decommissioning with Portland Fire and Rescue were applied for and received. Point Source gave notification to Mark Drouin of ODEQ three working days prior to the scheduled work start date.

3.0 SOILS, GEOLOGY & GROUNDWATER CHARACTERISTICS

The Site is situated in the Willamette Valley (Orr, Orr, Baldwin, 1992). Sediments collected in this area record multiple Ice Age floods that originated in Montana, poured through the Cascades via the Columbia River, and backed up in the valley before eventually draining to the Pacific Ocean. No bedrock was observed in the vicinity of the Site. The estimated depth to bedrock at the *subject property* is greater than 200 feet below the ground surface.

According to the USDA Soil Conservation Service Soil Survey of Multnomah County (NRCS Web Soil

Survey), the Site is mapped predominantly as Urban Land-Latourelle Complex. This component is found on terraces. The parent material consists of medium textured alluvium. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high.

According to a well log search conducted on the Oregon Water Resources Department (OWRD) website, shallow groundwater has been encountered in borings and wells advanced in the vicinity of the Site at depths of approximately 20 feet below ground surface. No on-site water wells or springs were observed during the Site reconnaissance. Domestic water is supplied to the Site by the City of Portland and is reportedly obtained primarily from surface water.

The United States Geological Survey (USGS) Portland, Oregon Quadrangle 7.5 minute series topographic map was reviewed for this ESA. This map was published by the USGS in 1990. According to the contour lines on the topographic map, the Site elevation is approximately 55 feet above mean sea level. The contour lines in the area of the Site indicate groundwater flow beneath the Site is likely to the west southwest toward the Willamette River. The Site is shaded in grey on this map indicating an urban setting. No production wells or other significant surface features are depicted on the Site on the USGS map.

A copy of the topographic map is included as **Figure 2**.

4.0 SCOPE OF WORK

In June 2023, two petroleum underground storage tanks (USTs) were decommissioned by removal at the Site by Soil Solutions Environmental Services (SSES).

A total of 12.03 tons of PCS were removed from an approximately 200 square foot excavation and hauled under non-hazardous waste profile #140298OR to the Waste Management – Hillsboro Landfill. A copy of the transaction history of the waste profile used for the excavation is included as **Appendix B**.

As evidenced by the laboratory analytical results of select post-excavation confirmation samples, pockets of TPH-Gx contaminated soil remain in one area adjacent to the excavation where accessibility and feasibility concerns prohibited the crew from continuing its removal.

A site location map (Figure 1), site plan (Figure 2), topographic map (Figure 3), soil sample location diagram (Figure 4), and soil gas sample location diagram (Figure 5) with Site setting, soil and soil gas sample locations, and remaining pockets of contamination are attached. Soil analytical results (Table 1) and soil gas analytical (Table 2) are attached. Laboratory analytical reports for the soil samples described above are included in Appendix C. A photo log documenting project activities is included as Appendix D.

The scope of work is intended to determine the nature and extent of impacts to soil and soil vapor, if any, that may remain subsequent to remedial activities, evaluate potential threats from these releases to the beneficial use of the Site, and support closure of the leaking underground storage tank release with the ODEQ.

4.1 Subsurface Investigation Area of Potential Concern, Borings and Analysis

Based upon the data obtained during Point Source' initial Phase II Investigation which resulted in LUST file #26-23-0131 as well as observations made during decommissioning activities, the following area was identified for investigation.

Area of Potential Concern	Borings/Confirmation Samples
Impacted soil associated with the release of TPH-Gx from where two 1,000-gallon gasoline USTs were formerly buried.	NPW-S1-8, EPW-S1-8, NPB-S1-8, NPB-S2-11, WPW-S1-11, SWPW-S1-10, SPB-S1-11, SPW-S1-11, SEPW-S1-11.5, CPB-S1-11.5, NPW2-S1-9, NWPW-S1-10, NPB2-S1-11.5, SB7-S1-12, SB8-S1-12, SB9-S1-12, SB10-S1-12

Samples	Media	Analytical Methods	Detection Limit
NPW-S1-8, EPW-S1-8, NPB-S1-8, NPB-S2-11, SWPW-S1-10, SPB-S1- 11, SPW-S1-11, SEPW-S1-10, NWPW-S1-10, NPB2-S1-11.5, SB7- S1-12, SB8-S1-12, SB9-S1-12, SB10- S1-12	Soil	NWTPH-Gx and NWTPH-Dx	RBCs for Leaching to Groundwater in an occupational/commercial setting.
NPW2-S1-9	Soil	NWTPH-Gx and NWTPH-Dx, EPA 8260 (VOCs), EPA 6020 (Lead)	RBCs for Leaching to Groundwater in an occupational/commercial setting.
SS1, SS2, SG1, SG2	Soil Gas and Sub slab	TO-15 VOCs (Gx, BTEX and Naphthalene)	RBCsv soil vapor intrusion for commercial and residential receptors.
SG3, SG4	Soil Gas	TO-15 VOCs (full list)	RBCsv soil vapor intrusion for commercial and residential receptors.

Note: Samples SG3 and SG4 were collected for the purpose of evaluating exposure risk for residential receptors. As such, the full TO-15 VOC list was chosen as a conservative approach.

4.2 Utility Locating

Prior to initiating the field activities, Oregon law requires that, at least 48 hours prior to the initiation of any subsurface work (drilling, backhoe operation, etc.), a utility inspection be performed at the Site. This inspection consists of the marking of underground utility locations by authorized utility locating personnel. The utility inspection was performed prior to the drilling and excavation activities.

4.3 Health and Safety Plan

A written site specific Safety Plan was read by field personnel. A safety meeting was conducted at the site prior to the commencement of the fieldwork. Topics included potential exposure to contaminants of interest, personal protective equipment (drilling and media contact), location of first aid kit, and location/directions to closest emergency medical facility.

5.0 SAMPLING METHODOLOGY and QA/QC

5.1 Soil Samples

Soil Solutions Environmental Services was contracted to perform limited access delineation soil sampling surrounding the impacted soils that were left in place after UST decommissioning and soil removal. Borings SB7 through SB10 were advanced using a Geoprobe LB sampler with a PVC liner, which was

advanced using limited access direct push drilling equipment using 2 foot long by 1.6 inch diameter drill rods. Boring logs are presented in Appendix H. The sampler was driven into the subsurface to allow undisturbed soil to enter the open sampler barrel and retrieved in 2-foot intervals to recover the soil-filled liners.

All excavation confirmation samples were collected from the inside of an excavator bucket. The bucket was decontaminated with phosphate-free detergent and water between confirmation samples.

Soils were field-screened using visual, sheen, and olfactory observations, and for the presence of volatile organic compounds (VOCs) using a photoionization detector (PID). Headspace vapor screening was conducted on representative samples placed in a sealed plastic bag. The tip of a PID was inserted into a hole in the bag, and the presence of VOCs was measured. Readings are collected in parts per million (ppm).

Soil samples were collected in 4-ounce glassware with Teflon-lined lids and 40-ml VOA vials containing methanol as a preservative. Each sample was labeled for identification and stored in an iced cooler.

5.2 Groundwater Samples

Groundwater was not encountered during site assessment of tank decommissioning activities. Therefore, groundwater samples were not collected.

5.3 Soil Gas Samples

Soil gas samples were collected at 5 feet bgs using Geoprobe PRT tooling, driven by an electric jackhammer. After reaching the target depth, the sample tooling was pulled up 6 inches, and the expendable tip was ejected. Hydrated bentonite was placed around the surface penetration and at the point that the tubing exited the drill rod. Teflon tubing fitted with the PRT adapter connecting to the bottom of the tooling string was then secured. Paper towels saturated with 2-Propanol were placed over the equipment fittings and at the surface penetration during sample collection as a leak check compound. A minimum of three tubing volumes was purged from the system prior to sample collection. The sample was collected in a laboratory-provided Summa canister (EPA Method TO-15). The sampling train also included approximately 8 feet of Teflon tubing and brass swage fittings which were fastened directly to the Summa canister.

5.4 Sub-Slab Vapor Samples

Sub-slab vapor samples were collected via prefabricated stainless steel sampling points (VaporPinTM) which were inserted into 5/8-inch holes drilled through the building floor. Samples were collected in a laboratory-provided Summa vacuum canister (EPA Method TO-15). The sampling train included 12 inches of Teflon tubing, brass swage fittings, and a laboratory-provided Summa vacuum canister. After approximately 20-minutes of equilibration time the air volume within the collection apparatus and Teflon tubing was purged for a minimum of three volumes. A silicon sleeve, hydrated bentonite seal, and a water dam was placed around the vapor pin. Paper towels saturated with 2-Propanol were placed over the equipment fittings and at the surface penetration during sample collection as a leak check compound.

For all sampling, sampling equipment was thoroughly cleaned and decontaminated before, between, and after use with LiquinoxTM or an equivalent phosphate-free detergent solution to reduce the risk of cross-contamination. Nitrile gloves were worn whenever handling samples, equipment, or any other potentially contaminated items. Dedicated tubing was disposed of and new materials were utilized for

each sampling location.

6.0 SUBSURFACE INVESTIGATION/EXCAVATION

6.1 Soil Sampling

Please refer to Point Source' Phase II Subsurface Environmental Investigation report (attached as **Appendix A**) for analytical results of soil samples collected previous to excavation and delineation efforts that are outlined here.

A total of 12.03 tons of PCS was removed from an approximately 200 square foot excavation and transported under non-hazardous waste profile #140298OR to Waste Management – Hillsboro landfill. A copy of the transaction history of the waste profile used for the excavation is included as **Appendix B**.

Confirmatory samples were collected from the excavation and are described as follows:

- NPW-S1-8 was collected from the north pit wall of the excavation at a depth of 8 feet below ground surface (bgs). Staining and odor were not noted to a depth of 8 feet bgs in this area.
- EPW-S1-8 was collected from the east pit wall of the excavation at a depth of 8 feet bgs. Staining and odor were not noted.
- NPB-S1-8 was collected from the north pit bottom of the excavation at a depth of 8 feet bgs. Staining and odor were not noted.
- NPW2-S1-9 was collected from the north pit wall of the excavation at a depth of 9 feet bgs.
 Staining and odor were noted below 8 feet bgs in this area. Gx contamination was confirmed analytically.
- NPB-S2-11 was collected from the north pit bottom of the excavation at a depth of 11 feet bgs.
 Staining and odor were not noted. This appears to be the vertical extent of remaining PCS at the Site.
- SWPW-S1-10 was collected from the southwest pit wall of the excavation at a depth of 10 feet bgs. Staining and odor were not noted.
- SPB-S1-11 was collected from the south pit bottom of the excavation at a depth of 11 feet bgs. Staining and odor were not noted.
- SPW-S1-11 was collected from the south pit wall of the excavation at a depth of 11 feet bgs. Staining and odor were not noted.
- SEPW-S1-10 was collected from the southeast pit wall of the excavation at a depth of 10 feet bgs. Staining and odor were not noted.
- NWPW-S1-10 was collected from the northwest pit wall of the excavation at a depth of 10 feet bgs. Staining and odor were not noted.
- NPB2-S1-11.5 was collected from the north pit bottom of the excavation at a depth of 11.5 feet bgs. Staining and odor were not noted.

Observations of petroleum impact in the excavation were limited to depths greater than 8 feet bgs and less than 11 feet bgs in the north wall and floor of the excavation.

The subsequent subsurface investigation was conducted on October 08, 2024. During this phase, soil

borings were advanced by Soil Solutions Environmental Services.

- Boring SB7 was advanced to a maximum explored depth of 12.0 feet bgs approximately 5 feet north of antecedent excavation soil sample NPW2-S1-9. The intention of this boring was to delineate remaining soil impacts to the north of the presumed remaining soil plume. A soil sample was collected from this boring at 12.0 feet. Petroleum staining and odor was not observed in screened soils extracted from this boring. VOCs were noted in this boring at 8.1 ppm at depths greater than 5 feet and at 0.1 ppm at depths less than 5 feet via PID.
- Boring SB8 was advanced to a maximum explored depth of 12.0 feet bgs approximately 10 feet east of antecedent excavation soil sample NPW2-S1-9. The intention of this boring was to delineate remining soil impacts to the east of the presumed remaining soil plume. A soil sample was collected from this boring at 12.0 feet. Petroleum staining and odor was not observed in screened soils extracted from this boring. VOCs were noted in this boring at 1.7 ppm at depths greater than 5 feet and at 0.2 ppm at depths less than 5 feet via PID.
- Boring SB9 was advanced to a maximum explored depth of 12.0 feet bgs approximately 10 feet north of antecedent excavation soil sample NPW2-S1-9. The intention of this boring was to delineate remining soil impacts to the north of the presumed remaining soil plume. A soil sample was collected from this boring at 12.0 feet. Petroleum staining and odor was not observed in screened soils extracted from this boring. VOCs were noted in this boring at 0.1 ppm via PID at all depths.
- Boring SB10 was advanced to a maximum explored depth of 12.0 feet bgs approximately 10 feet
 west of antecedent excavation soil sample NPW2-S1-9. The intention of this boring was to delineate
 remining soil impacts to the west of the presumed remaining soil plume. A soil sample was
 collected from this boring at 12.0 feet. Petroleum staining and odor was not observed in screened
 soils extracted from this boring. VOCs were noted in this boring at 4.0 ppm at depths greater than
 5 feet and at 0.2 at depths less than 5 feet via PID.

Boring locations are illustrated on Figure 4. Boring logs are presented in Appendix H.

6.2 Soil Gas Sampling

Soil gas sampling was conducted to evaluate the potential risk of exposure scenarios for onsite and offsite receptors. Two sub-slab samples were collected from the interior of the Site building in locations that were near the remaining soil plume. Four soil gas samples were collected onsite and offsite to address structures that were within 100 feet of the remaining soil plume.

The subsequent subsurface soil gas investigations were conducted on October 08, 2024, November 14, 2024, and January 23, 2025.

- Sub-slab sample SS1 was advanced immediately beneath the concrete slab of the Site building in the
 northeast portion of the building. The intention of this boring was to evaluate volatilization to
 indoor air from contaminated soil.
- Sub-slab sample SS2 was advanced immediately beneath the concrete slab of the Site building in the
 northwest portion of the building. The intention of this boring was to evaluate volatilization to
 indoor air from contaminated soil.
- Soil gas sample SG1 was advanced to 5 feet bgs beneath the concrete slab of the exterior portion of the Site approximately 8 feet east of the contaminated soil plume. The intention of this boring was

to evaluate soil gas conditions in effort to demonstrate no offsite migration of vapors.

- Soil gas sample SG2 was advanced to 5 feet bgs beneath the concrete slab of the exterior portion of
 the Site approximately 8 feet west of contaminated soil plume. The intention of this boring was to
 evaluate soil gas conditions in effort to demonstrate no offsite migration of vapors.
- Soil gas sample SG3 was advanced to 5 feet bgs beneath the sidewalk west of SE 12th Avenue approximately 50 feet west of the contaminated soil plume. The intention of this boring was to evaluate soil gas conditions for offsite receptors to the west of the Site.
- Soil gas sample SG4 was advanced to 5 feet bgs beneath a landscaped area east of SE Elliot Avenue approximately 50 feet east of the contaminated soil plume. The intention of this boring was to evaluate soil gas conditions for offsite receptors to the east of the Site.

Soil gas sampling locations are illustrated on Figure 5.

6.3 Laboratory Analytical Results

Soil and soil gas samples collected during project activities were transported under chain of custody to Friedman and Bruya Environmental Chemists, Inc of Seattle, Washington for analysis.

Soils

- 17 soil samples (13 excavation confirmatory and 4 subsequent delineation samples) were analyzed by Method NWTPH-GX and NWTPG-Dx and for gasoline and diesel range hydrocarbons. Of the seventeen samples, only one soil sample (NPW2-S1-9) demonstrated petroleum impacts and therefore was further analyzed for VOC constituents via EPA Method 8260 and lead via EPA Method 6020B. The remaining 16 samples were below method reporting limits for NWTPH-GX and NWTPG-Dx and therefore further constituent analysis was not performed.
- Concentrations of gasoline range hydrocarbons in soil sample NPW2-S1-9 was 9,700 mg/kg exceeding the leaching to groundwater RBC of 130 mg/kg. Diesel range hydrocarbons was 310 mg/kg, although this concentration was flagged by the laboratory with an "x" indicating it was outside the chromatographic expected range and thus most likely is attributable to the gasoline detection.
- Various VOCs including ethylbenzene, xylenes, 1,3,5 TMB, 1,2,4 TMB, and naphthalene exceeded
 their respective screening levels for the Leaching to Groundwater RBC. Please refer to Table 1 in the
 attached figures of this report for concentrations and comparison to screening values.
- Lead was detected in soil at a concentration of 35.4 mg/kg which exceeds the leaching to groundwater RBC of 30 mg/kg. It is unknown whether this concentration is attributable to leaded gasoline or to naturally occurring lead in the soil.

Please refer to **Table 1** in the attachments of this report for concentrations and comparative screening values.

Soil Gas

- Sub-slab samples SS1 and SS2 reported analytical results below all of their respective screening levels (RBCsv) for gasoline range hydrocarbons and select VOCs for commercial and residential receptors.
- Soil gas samples SG1 and SG2 exceeded their respective screening levels (RBCsv) for gasoline range

hydrocarbons, ethylbenzene, naphthalene, and xylenes. As a result of this analysis, subsequent sampling was performed to address offsite receptors.

- Soil gas samples SG3 and SG4 exceeded their respective screening levels (RBCsv) for two constituents. Full list 8260 was analyzed in these samples with only acrolein and 1,3 butadiene exceeding their respective screening levels (RBCsv) for residential receptors.
- 2-Proponol was used as a leak detection compound and was not detected in any of the sub-slab or soil gas samples, indicating that the samples are valid.

Please refer to **Table 2** in the attachments of this report for concentrations and comparative screening values.

Laboratory analytical reports and chain-of-custody forms are included as Appendix C.

6.4 Quality Assurance/Quality Control Review

Laboratory QA/QC measures were performed through data validation of available analytical data generated as part of these sampling events. Data validation considered the following:

- Method Detection and/or Reporting Limits
- Laboratory Matrix Blanks
- Sample Holding Times
- Surrogate and Matrix Spike Recoveries, and
- Laboratory Duplicate Analysis Results

Select VOCs results from delineation soil gas samples were noted to be qualified by a "ve" qualifier by Friedman & Bruya. According to the glossary of the lab report, a "ve" qualifier denotes that the analyte response exceeded the valid instrument calibration range, and that the reported value is an estimate.

Diesel range organics were qualified with an "x" in all detections. An "x" denotes results outside of the expected chromatographic range which is interpreted to be from gasoline range hydrocarbons.

Other than these qualified results, the labs did not report any other qualifiers which would indicate problems with the sample results. According to the lab reports, all analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. In cases where there is insufficient sample material provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

7.0 NATURE AND EXTENT OF CONTAMINATION

7.1 Primary Source(s) of Contamination

The primary source of contamination includes the following:

A release of gasoline and associated VOCs to soil. The source of the release was a leaking gasoline UST(s) that was associated with the historical use of the Site as a service station. These impacted soils are a secondary source for exposure via soil-gas.

7.1.1 Soil

Gasoline-range petroleum hydrocarbons as well as various VOCs were detected in subsurface investigations and excavation confirmation soil samples (8.0 to 11.5 feet bgs on north excavation wall-corresponding to soil sample NPW2-S1-9). PCS has been left in place in one area abutting the excavation along the north excavation wall due to access restrictions.

Based on field screening (visual observation and PID) conducted during the investigation, confirmation soil samples collected following excavation of impacted soils, and shallow soil samples collected during the initial Subsurface Environmental Investigation (March 2023); contamination is not present in shallow (0-3 feet bgs) soils in the vicinity of this remaining PCS.

Point Source estimates the quantity of petroleum hydrocarbon impacted soil present on the Site to be approximately 10-20 cubic yards, based on the calculated yardage of the layer of PCS from 8.0 to 11.5 feet bgs (maximum vertical extent) in the north wall of the excavation and lateral observations and soil delineation data. The plume size is depicted on sample location diagrams included as **Figures 4 and 5**.

7.1.2 Soil Gas

Gasoline, ethylbenzene, naphthalene and xylene were detected at concentrations above applicable RBCs for residential and occupational receptors in soil gas samples collected at the Site. Concentrations of these COCs were not detected above residential or occupational RBCs in soil gas samples collected off-site. The extent of soil-gas contamination with concentrations above RBCs for occupational and residential receptors does not appear to extend to the residential properties located to the east and west of the site. North and south adjoining properties are in commercial use. Based on the results of the on-site sub slab soil vapor sampling, concentrations of COCs in soil vapor to the east and south are anticipated to be protective of human health.

7.2 Contaminants of Interest/Contaminants of Potential Concern

To identify compounds detected in site soils that are most likely to be of concern to human health, detected concentrations of these contaminants were compared to a series of risk-based screening criteria that cover the range of potential human activities that may be practiced on the Site currently or in the future.

Compounds with detected concentrations were identified as being COIs. It should be noted that the identification of COIs does not indicate that an unacceptable risk or that a threat exists. Also, COI identification does not necessarily indicate that remediation of a specific environmental media is required. Screening criteria are purposely conservative so chemicals that may contribute to site risk can be further evaluated.

The COIs for the Site include gasoline-range petroleum hydrocarbons and associated VOCs detected in soil samples. These are the highest concentrations of soil remaining at the Site.

CONTAMINANTS OF INTEREST							
Contaminant	Soil Max Concentration mg/kg	Soil Gas Max Concentration ug/m3					
TPH-GX	9,700 (Depth=9')	110,000 (Depth=5')					
Ethylbenzene	56.0 (Depth=9')	3,800 (Depth=5')					
1,3,5 – TMB	110 (Depth=9')	<24 (not detected)					

CONTAMINANTS OF INTEREST								
Contaminant	Soil Max Concentration mg/kg	Soil Gas Max Concentration ug/m3						
1,2,4 - TMB	350 (Depth=9')	<24 (not detected)						
Naphthalene	33.0 (Depth=9')	88 (Depth=5')						
Xylenes	335.0 (Depth=9')	23,000 (Depth=5')						
Isopropylbenzene	0.58 (Depth = 11')	<48 (not detected)						
Fluorene	0.074 (Depth = 11')	Not Applicable						
Fluoranthene	0.011 (Depth = 11')	Not Applicable						
Pyrene	0.013 (Depth = 11')	Not Applicable						
Lead	8.07 (Depth = 11')	Not Applicable						
1,3 Butadiene	Not analyzed	18 (Depth=5')						
Acrolein	Not analyzed	4.8 (Depth=5')						
Tetrahydrofuran	Not analyzed	81 (Depth=5')						
Chloroform	<0.5 (not detected)	1.2 (Depth=5')						
MEK	<10.0 (not detected)	51 (Depth=5')						

COIs that have concentrations less than their RBCs can be screened out. Constituents that remain after the screening are COPCs. Lead concentrations are below regional background for the Portland Basin and are not considered a COPC.

The COPCs have been carried forward for the risk screening discussed below.

8.0 BENEFICIAL LAND AND WATER USE DETERMINATION

The purpose of the BLWUD is to collect and document information regarding the current and reasonably likely future beneficial uses of land and water in the locality of the facility (LOF). Beneficial use determinations provide the basis for the development of exposure scenarios discussed later in this report. The BLWUD was completed in accordance with the ODEQ's Guidance for Conducting Beneficial Water Use Determinations at Environmental Cleanup Sites (ODEQ, 1998) and Guidance for Consideration of Land Use (ODEQ, 1998).

8.1 Locality of Facility

The LOF is defined by ODEQ as any point where human or ecological receptors may reasonably come into contact with site-related contaminants. Point Source assumes that the LOF extends to an area bound by the Site boundaries.

8.2 Summary of Water Use

Groundwater is not currently used at the Site and future use of groundwater at the Site is not anticipated. The Site is provided drinking water by the City of Portland's Municipal Water System. According to the City of Portland, the primary source of drinking water to In-town customers is sourced from surface water obtained from the Bull Run Watershed.

The Site is identified as Multnomah County tax lot 1S1E02CD07800. All well log records available from the Oregon Water Resources Department (OWRD) for ¼ ¼ sections of Section 02 T.1S, R.1E within 1,000 feet of the Site were reviewed.

Research of well logs filed with the OWRD revealed no drinking water supply wells within 1,000 feet of the Site.

8.3 Summary of Land Use

The Site is currently occupied by a climbing gym. The Site is anticipated to remain in commercial use for the foreseeable future. The current zoning of 2436 SE 12th Avenue is CM2-Commercial Mixed Use 2 by the City of Portland – The CM2 zone is a medium-scale, commercial mixed-use zone intended for sites in a variety of centers and corridors, in other mixed use areas that are well served by frequent transit, or within larger areas zoned for multi-dwelling development. Buildings in this zone are generally expected to be up to four stories, except in locations where bonuses allow up to five stories.

Adjoining properties are zoned as EX – Central Employment, RM2 – Residential Multi Dwelling, and R5-Residential 5,000.

9.0 CONCEPTUAL SITE MODEL

A CSM defines the potentially complete exposure pathways through which human or ecological receptors may be exposed to site contaminants under current or anticipated future land use conditions. A discussion of Site geology and hydrogeology, potential contaminant sources, and the nature and extent of contamination are presented above. An evaluation of current and reasonably likely future receptor-exposure pathway analysis is presented below.

A Conceptual Site Model Summary, which includes the reasoning for accepting or rejecting exposure scenarios, is included below:

SUMMARY OF CSM							
Pathway	Receptor	Applicable RBC?	Basis for selection/exclusion				
			SOIL				
Ingestion, Dermal Contact, and	Residential (Future)	No	Impacted soils were not observed above 3.0 feet bgs				
Inhalation	Occupational (Current and Future)	No					
	Construction worker (Current and Future)	Yes	Impacted subsurface soils may become accessible during future construction as				
	Excavation Worker (Current and Future)	Yes	a result of redevelopment of the Site				
Leaching to Groundwater	Residential (Future)	No	Based on the Beneficial Land and Water Use Determination (section 8.0) there				
	Commercial (Current and Future)	No	are no beneficial uses of groundwater in the Site vicinity.				
			SOIL GAS				
Volatilization to Outdoor Air	Residential (Future)	Yes	Contraction to deal in a second within 400% of communical above the second				
	Commercial (Current and Future)	Yes	Contaminated soil is present within 100' of commercial structures				
Vapor Intrusion into Buildings	Residential (Future)	Yes	Contaminated soil is present within 100' of residential structures				

SUMMARY OF CSM						
Pathway Receptor Applicable RBC? Basis for selection/exclusion						
Commercial (Current and Future)		Yes				
			GROUNDWATER			
All Groundwater was not encountered and no groundwater impact was identified No Based on the Beneficial Land and Water Use Determination (section 8.0) ther are no beneficial uses of groundwater in the Site vicinity.						

A copy of the CSM is attached as **Appendix G.**

9.1 Potential Human Receptors

Potential receptors are those individuals who might be likely exposed to the COIs under current and reasonably likely future land-use conditions. Current land use at the site and surrounding areas is zoned CM2-Commercial Mixed Use 2, which allows for commercial use and/or multi story residential buildings. Based on vapor intrusion conditions that currently exist on the Site, it is unlikely future development would pose an increased risk. The Site is currently occupied by a rock climbing gym and there are no current plans for Site redevelopment. Current and potential human receptors that have been identified in the risk-based screening include the following:

- Adults in the occupational scenario (current Site use);
- Adults and children in the residential scenario (possible future on-site use and current off-site use)
- Adults in the construction/excavation worker scenario (should redevelopment occur).

9.1.1 Exposure Pathways for Soil and Soil Gas

The following summarizes the potential and/or complete exposure pathways for soil.

- Soil Ingestion, Dermal Contact, and Inhalation This exposure pathway is considered incomplete for
 occupational and residential receptors. This exposure pathway is considered potentially complete
 for construction and excavation workers, however, contaminated soil is at least 8 feet bgs, greater
 than the typical 5 foot depth worker zone.
- Volatilization to Outdoor Air This exposure pathway is considered potentially complete for on-site
 occupational and residential receptors.
- Vapor Intrusion into Buildings This exposure pathway is considered potentially complete for occupational and residential receptors.
- Leaching to Groundwater This exposure pathway is considered incomplete based on the Beneficial Land and Water Use Determination (section 8.0). There are no beneficial uses of groundwater in the Site vicinity.

9.2 Potential Ecological Receptors

Ecological risk was assessed according to guidance outlined in "Conducting Ecological Risk Assessments" (ODEQ, September 2020). A Basic Site Information Checklist with supporting documentation is included as **Appendix E**.

No ecological zones at risk of impact from the Site release were identified.

10.0 RISK SCREENING

The COPCs for the Site include gasoline-range petroleum hydrocarbons and VOCs. Analytical results were compared to ODEQ RBCs (May 2018 and March 2024) for the applicable exposure pathways discussed above.

A summary of COPCs that exceed applicable RBCs is presented below.

10.1 Soil

COPCs detected in soil exceed the following RBCs.

- TPH-Gx levels in soil (highest 9,700 mg/kg) exceed the Soil Volatilization to Outdoor Air RBC for residential receptors, but do not exceed the RBC for occupational receptors (Sample NPW2-S1-9).
- Ethylbenzene levels in soil (highest 56.0 mg/kg) exceed the Soil Volatilization to Outdoor Air RBC for residential receptors, but do not exceed the RBC for occupational receptors (Sample NPW2-S1-9).

Soil sample NPB-S2-11.0 taken along the north tank pit wall was non-detect for Gx and Dx. This appears to be the vertical extent of remaining PCS at the Site.

10.2 Soil Gas

- Gasoline levels in soil gas (highest 110,000 ug/m³) exceed volatilization to indoor air RBCsv for occupational and residential receptors (Sample SG2).
- Ethylbenzene levels in soil gas (highest 3,800 ug/m³) exceed volatilization to indoor air RBCsv for occupational and residential receptors (Sample SG2).
- Xylene levels in soil gas (highest 23,500 ug/m³) exceed volatilization to indoor air RBCsv for occupational and residential receptors (Sample SG2).
- Naphthalene levels in soil gas (highest 88 ug/m³) exceed volatilization to indoor air RBCsv for occupational and residential receptors (Sample SG2).
- Acrolein levels in soil gas (highest 4.8 ug/m³) exceed volatilization to indoor air RBCsv for occupational and residential receptors (Sample SG3).
- 1,3 Butadiene levels in soil gas (highest 18.0 ug/m³) exceed volatilization to indoor air RBCsv for occupational and residential receptors (Sample SG4).

Site building sub-slab sample concentrations were all below applicable RBCs for vapor intrusion into buildings, indicating that there is not a human health risk to current occupational or future residential receptors at the Site.

Acrolein and 1,3 butadiene which exceeded residential VI RBCs in west and east delineating samples are not considered to be from a Site source. Based on information provided by ODEQ, these constituents are commonly detected during sampling using the post-run tubing (PRT) equipment due to chemical interference from the butyl rubber o-rings (1,3-butadiene) and chemical interactions onside the Summa canister (acrolein).

All other COIs that were established for the Site, do not appear in west and east delineating samples

(SG3 and SG4) at concentrations above applicable RBCs.

11.0 FINDINGS

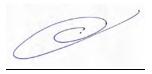
The investigation, field observations, and laboratory analytical results indicated the following:

- Soils impacted by TPH-Gx and associated VOCs identified during Point Source' Phase II Subsurface
 Investigation have been mostly removed. A total of 12.03 tons of petroleum contaminated soils
 were removed and hauled to Wast Management's Hillsboro Subtitle D Landfill.
- Seventeen confirmation and/or delineation samples were collected from the pit bottom and walls surrounding the excavation and surrounding the remaining PCS. Of these seventeen, one confirmation sample returned results showing TPH-Gx and/or VOC concentrations exceeding any applicable RBCs. The soils represented by this sample, NPW2-S1-9, was successfully delineated near the north portion of the excavation.
- While concentrations of gasoline, ethylbenzene, naphthalene, VOCs in soil gas exceed their
 respective RBCs for the VI pathways for on-site current occupational and possible future residential
 receptors, the concentrations of these COCs detected in sub-slab soil vapor samples at the Site are
 all below applicable RBCs for vapor intrusion into buildings, indicating that there is not a human
 health risk to current occupational or future residential receptors at the Site.
- Concentrations of COCs detected in off-site soil gas samples are all below their respective RBCs for
 residential and occupational receptors. Acrolein and 1,3 butadiene which exceeded residential VI
 RBCs in west and east delineating samples are not considered to be from a Site source. Based on
 information provided by ODEQ, these constituents are commonly detected during sampling using
 the post-run tubing (PRT) equipment due to chemical interference from the butyl rubber o-rings
 (1,3-butadiene) and chemical interactions onside the Summa canister (acrolein).
- 2-Proponol was used as a leak detection compound and was not detected in any of the sub-slab or soil gas samples, indicating that the samples are valid.

Point Source estimates the quantity of PCS remaining on the Site to be approximately 10-20 cubic yards, based on the calculated yardage of the layer of PCS from 8.0 to 11.5 feet bgs in the north wall of the excavation.

12.0 CONCLUSIONS

Based on the CSM and upon the soil and soil gas sampling results, none of the COPCs exceed the RBCs for applicable exposure scenarios. No further corrective action is recommended at this time.


Future development of the Site may result in open exposure pathways. Point Source recommends that a CMMP be developed prior to future construction or excavation work on the Site that may disturb the pockets of PCS that remain along north end of the excavation.

Point Source recommends no further cleanup action concerning gasoline impacted soils in this area. It is Point Source's understanding that the intended future use of the Site is for commercial purposes. Residential properties within a 100 foot radius have been addressed for the vapor intrusion pathway.

As a result of this cleanup and further investigation presented is this Risk Based Corrective Action Report, Point Source recommends that an NFA for LUST #26-23-0131 be issued.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Prepared by:

Conor McGeehan, Project Manager

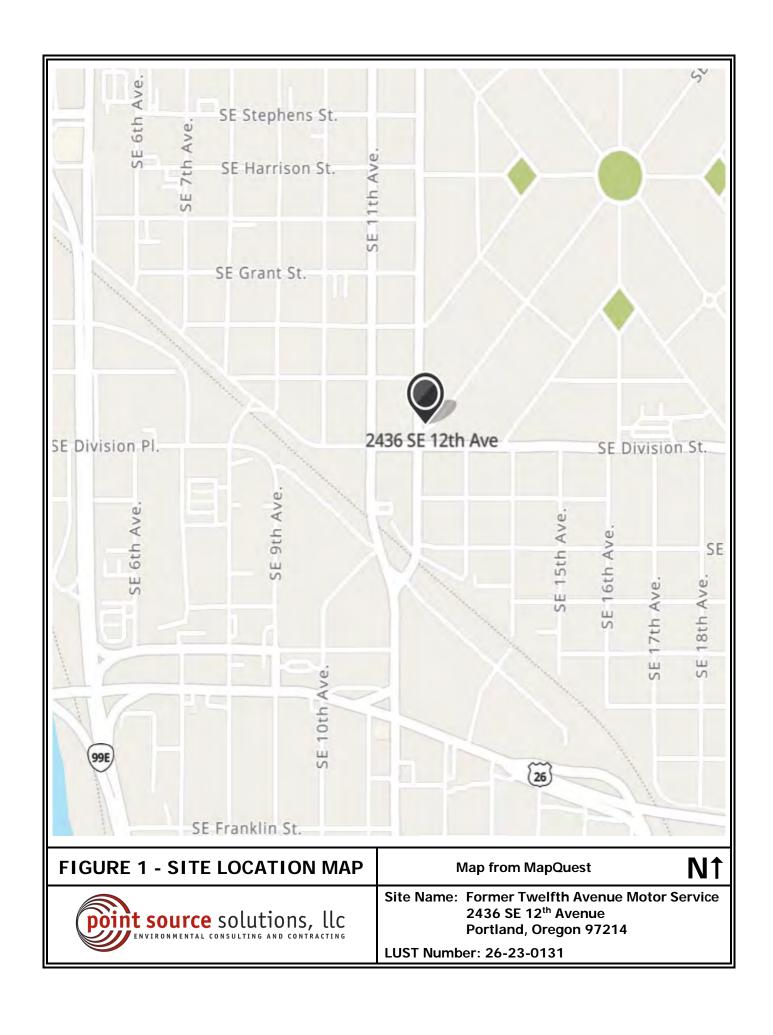
Point Source Solutions, LLC 5317 NE St Johns Rd, Suite D Vancouver, WA 98661

Phone: 503.236.5885 Fax: 503.224.0449

www.pointsourcesolutions.com

Cir Coss

Reviewed By:


Gil Cobb, Registered Geologist (Oregon #G1440)

Expires 12/31/2025

FIGURES

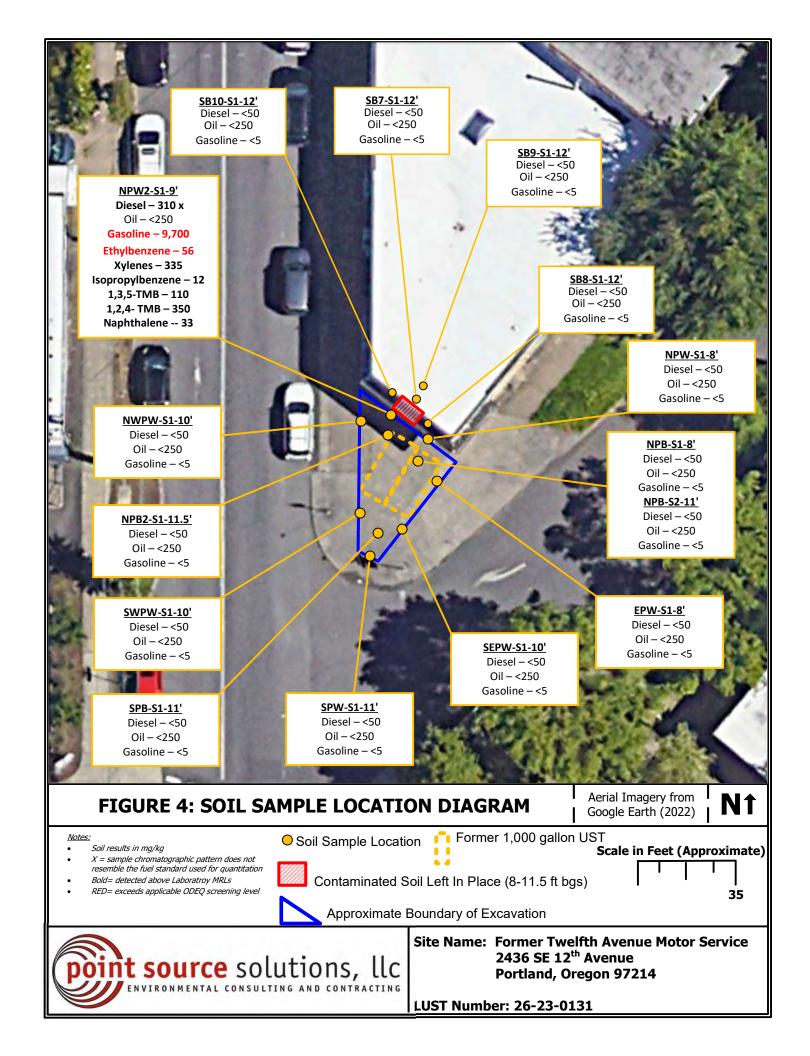
FIGURE 2 - TOPOGRAPHIC MAP

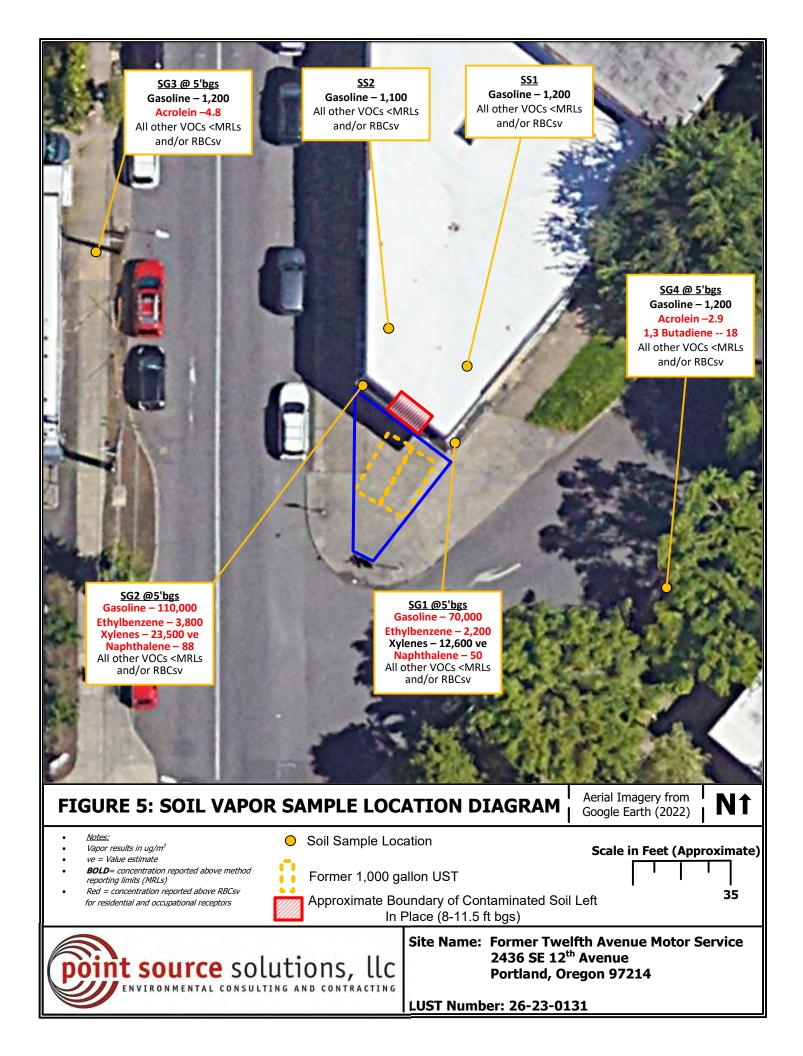
Source: USGS 7.5 Minute Topographic Map Portland, OR Quadrangle 1990 **N**↑

Site Name: Commercial Property

2436 SE 12th Avenue Portland, Oregon 97214

LUST Number: 26-23-0131





Site Name: Former Twelfth Avenue Motor Service

2436 SE 12th Avenue Portland, OR 97214

LUST Number: 26-23-0131

TABLES

TABLE 1 – SOIL SAMPLES LABORATORY ANALYTICAL RESULTS – (MG/KG)							
Sample #	Depth (ft.)	Date	DX (Diesel)	GX	EPA 8260 VOCS	EPA 8270 PAHS	EPA 6020 LEAD
B1-S1-10**	10	2/22/23	< MDL	<mark>230</mark>	NA	NA	NA
B2-S1-11**	11	2/22/23	DX-2,000*	2,200	Ethylbenzene – 0.085 Xylenes – 0.23 Isopropylbenzene – 0.58 1,3,5-TMB – 1.8 1,2,4-TMB – 1.6	Fluorene – 0.074 Phenanthrene – 0.061 Fluoranthene – 0.011 Pyrene – 0.013	8.07
B2-S2-16	16	2/22/23	<50	7.8	NA	NA	NA
B3-S1-4**	4	2/22/23	<50	<5	NA NA	NA	NA
B3-S2-10**	10	2/22/23	<50	<5	NA	NA	NA
B4-S1-4**	4	2/22/23	<50	<5	NA	NA	NA
B4-S2-11**	11	2/22/23	<50	<5	NA	NA	NA
B5-S1-4**	4	2/28/23	<50	<5	NA	NA	NA
B6-S1-4**	4	2/28/23	<50	<5	NA	NA	NA
NPW-S1-8	8	6/13/23	<50	<5	NA	NA	NA
EPW-S1-8	8	6/13/23	<50	<5	NA	NA	NA
NPB-S1-8	8	6/13/23	<50	<5	NA	NA	NA
NPB-S2-11	11	6/14/23	<50	<5	NA	NA	NA
WPW-S1-11	11	6/14/23	<50	<5	NA	NA	NA
SWPW-S1-10	10	6/14/23	<50	<5	NA	NA	NA
SPB-S1-11	11	6/14/23	<50	<5	NA	NA	NA
SPW-S1-11	11	6/14/23	<50	<5	NA	NA	NA
SEPW-S1-10	10	6/15/23	<50	<5	NA	NA	NA
CPB-S1-11.5	11.5	6/15/23	<50	<5	NA	NA	NA
NPW2-S1-9			310x	9,700	Ethylbenzene – 56 Xylenes – 335 Isopropylbenzene – 12 1,3,5-TMB – 110 1,2,4- TMB – 350 Naphthalene 33	NA	35.4
NWPW-S1-10	10	6/15/23	<50	<5	NA	NA	NA
NPB2-S1-11.5	11.5	6/15/23	<50	<5	NA	NA	NA
SB7-S1-12	12	10/8/24	<50	<5	NA	NA	NA
SB8-S1-12	12	10/8/24	<50	<5	NA	NA	NA
SB9-S1-12	12	10/8/24	<50	<5	NA	NA	NA
SB10-S1-12	12	10/8/24	<50	<5	NA	NA	NA
ODEQ Soil Ingestion-Excavation Worker			>Max	>Max	Ethylbenzene – 49,000 Xylenes – 560,000 Isopropylbenzene – 750,000 1,3,5- TMB – 81,000 1,2,4- TMB – 81,000 Naphthalene – 16,000	Fluorene – 390,000 Phenanthrene – nv Fluoranthene – 280,000 Pyrene – 210,000	800
	ODEQ -Soil Volatilization to Outdoor Air -Residential			5,900	Ethylbenzene – 36 Xylenes – nv	NV	NV

TABLE 1 – SOIL SAMPLES LABORATORY ANALYTICAL RESULTS – (MG/KG)								
Sample # Depth (ft.) Date			DX (Diesel)	GX	EPA 8260 VOCS	EPA 8270 PAHS	EPA 6020 LEAD	
					Isopropylbenzene – nv 1,3,5- TMB – nv 1,2,4- TMB – nv Naphthalene – 6.4			
•	ODEQ -Soil Volatilization to Outdoor Air -Occupational			69,000	Ethylbenzene – 160 Xylenes – nv Isopropylbenzene – nv 1,3,5- TMB – nv 1,2,4- TMB – nv Naphthalene – 83	NV	NV	
ODEQ Soil Va Building	apor Intrus s - Resider		NA	NA	NA	NA	NA	
	ODEQ Soil Vapor Intrusion into Buildings - Occupational			NA	NA	NA	NA	
ODEQ Soil Ingestion – Construction Worker			4,000	9,700	Ethylbenzene – 1700 Xylenes – 20000 Isopropylbenz – 2700 1,3,5- TMB – 2900 1,2,4- TMB – 2900 Naphthalene – 580	Fluorene – 14,000 Phenanthrene – nv Fluoranthene – 10,000 Pyrene – 7,500	800	

Table 1 Notes:

Concentrations are only presented for regulated VOCs. Various VOCs were detected without corresponding RBCs.

NA = Not Analyzed.

NV = No Value.

- = Not Applicable

< MRLs = Concentrations of ODEQ regulated substances were not detected above method reporting limits.

Bold: Indicates compounds exceeding 1 or more regulatory screening levels.

x= Result flagged with "x" qualifier indicating that the sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ve= valued estimate

- * = Result flagged with "x" qualifier indicating that the sample chromatographic pattern does not resemble the fuel standard used for quantitation.
- ** = Soils have been removed.

TABLE 2 – SOIL VAPOR SAMPLES LABORATORY ANALYTICAL RESULTS – (UG/M³)								
Sample #	Depth (ft.)	Date	GX	EPA 8260 VOCS	2-Propanol			
SS1	Sub-slab	10/8/24	1,200	Ethylbenzene – <2.4 Xylenes – 10.2 Naphthalene – <1 Toluene – <42 Benzene – <1.8	<48			
SS2	Sub-slab	10/8/24	1,100	Ethylbenzene – <2.4 Xylenes – 8.8 Naphthalene – <1.4 Toluene – <41 Benzene – <1.8	<47			
SG1 On site	5	11/14/24	<mark>70,000</mark>	Ethylbenzene – 2,200 Xylenes – 12,600 ve Naphthalene – 50 Toluene – <830 Benzene – <35	<950			
SG2 On site	5	11/14/24	110,000	Ethylbenzene – 3,800 Xylenes – 23,500 ve Naphthalene – 88 Toluene – <900 Benzene – <38	<1000			
SG3 Off site	5	1/23/25	1,200	Ethylbenzene – 16 Xylenes – 87 Naphthalene – <1.3 Toluene – 95 Benzene – 7.6 1,3 Butadiene – 8.9 Acrolein – 4.8 Tetrahydrofuran – 81 MEK51	<42			
SG4 Off site	5	1/23/25	1,100	Ethylbenzene – 14 Xylenes – 72 Naphthalene – <0.26 Toluene – 75 Benzene – 6 1,3 Butadiene – 18 Acrolein – 2.9 Chloroform – 1.2 Tetrahydrofuran – 62 MEK43	<42			
	Soil Vapor Scree mmercial Recept		Gx - 40,000	MEK – 730,000 Tetrahydrofuran – 8,800 Chlorobenzene – 7,300 Tert-Butylbenzene – NITI Styrene – 150,000 1,2,4 TMB – 8,800 Benzene – 52 Ethylbenzene – 160 Naphthalene – 12 Toluene – 730,000 1,3 Butadiene – 14				

TABLE 2 – SOIL VAPOR SAMPLES LABORATORY ANALYTICAL RESULTS – (UG/M³)							
Sample #	Depth (ft.)	Date	GX	EPA 8260 VOCS	2-Propanol		
				Acrolein – 2.9 Chloroform – 18 Total Xylenes – 15,000			
	Soil Vapor Screer sidential Recepto	-	Gx - 10,000	MEK – 170,000 Tetrahydrofuran – 70,000 Chlorobenzene – 1,700 Tert-Butylbenzene – NITI Styrene – 35,000 1,2,4 TMB – 2,100 Benzene – 12 Ethylbenzene – 37 Naphthalene – 2.8 Toluene – 170,000 1,3 Butadiene – 3.1 Acrolein – 0.70 Chloroform – 4.1 Total Xylenes – 3,500			

Table 2 Notes:

Concentrations are only presented for regulated VOCs. Various VOCs were detected without corresponding RBCs. NA = Not Analyzed.

NV = No Value.

- = Not Applicable
- < MDLs = Concentrations of ODEQ regulated substances were not detected above method detection limits.

Bold: Indicates compounds exceeding 1 or more regulatory screening levels.

x = Result flagged with "x" qualifier indicating that the sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ve= valued estimate

APPENDICES

APPENDIX A POINT SOURCE PHASE II REPORT

Mr. Cody Knope-Jenkins Skyhook Fitness, Inc.

March 10, 2023

RE: Subsurface Environmental Investigation Former Service Station 2436 SE 12th Avenue Portland, Oregon 97214

Point Source Solutions Project No.: OR230123-3A

Dear Mr. Knope-Jenkins,

Point Source Solutions, LLC (Point Source) is pleased to provide the results from the Subsurface Environmental Investigation performed at 2436 SE 12th Avenue, Portland, Oregon ("Site").

The Site is identified on **Figure 1** (Site Location Map), **Figure 2** (Topographic Map), and **Figure 3** (Sample Location Diagram) attached to this report.

PURPOSE

The purpose of this investigation is to assess potential impacts to the subsurface at the above referenced Property, relative to the former use of the Site as a service station.

BACKGROUND INFORMATION

Point Source Solutions, LLC (Point Source) performed a Phase I Environmental Site Assessment (ESA) of the Site (Project Number OR231023-3 dated February 6, 2023). Below is an excerpt from the Phase I report:

Based on a review of city directories, Sanborn Fire Insurance Maps and City of Portland building permit files it was disclosed that the subject property operated as a service station from 1927 through 1972. The dispenser island for the former service station is still present and according to the long-time owner of the subject property, USTs related to past use of the service station are located beneath a concrete pad fronting the subject property.

Additional features related to past use of the subject property building as a service station such as grease pits or in-ground hydraulic lifts were not observed or depicted on plan sheets.

Point Source provided a proposal for an environmental investigation to address the recognized environmental conditions outlined in the Phase I ESA. Point Source was then authorized by Skyhook Fitness Inc. to execute the scope of work described in the sections below.

SUBSURFACE INVESTIGATION

On February 7, 2023, Pacific Geophysics conducted a geophysical survey of the Site in an attempt to locate the USTs referenced in the Phase I ESA, as well as any subsurface infrastructure relating to former auto repair operations in the interior of the Site building.

Two USTs were identified in the south corner of the Site at the intersection of SE 12th and SE Elliott Avenues. Both USTs were found to be buried approximately 2.5 feet below ground surface, each measuring 4.0 feet in diameter and 12 feet in length. No other USTs were found onsite. No hoists or "grease pits," as referenced in the Phase I ESA, were identified in the Site building interior. Four boring locations were cleared on the ends

of the USTs, and two were cleared in the interior near a former bay of the original auto repair shop and a floor drain.

Following the geophysical survey, Point Source filed sidewalk and parking closure permits with the Portland Bureau of Transportation before starting the investigation. Once the permits were approved, Point Source mobilized to the Site on February 22 and 28, 2023 to complete the investigation.

- Boring B1 was advanced to 13.0 feet below ground surface (bgs) adjacent to the south tank end of the
 UST on the east side of the corner, labelled T1. Progress refusal was met at 13.0 feet bgs. Soil
 contamination in the form of staining, odor, and volatile organic compound (VOC) detections with a
 hand-held photo-ionization detector (PID) was noted in this boring. A soil sample was collected from
 below the tank bottom at the highest observed impact, 11.0 feet deep bgs.
- Boring B2 was advanced to 16.0 feet bgs adjacent to the south tank end of the UST on the west side of
 the corner, labelled T2. Progress refusal was met at 16.0 feet bgs. Soil contamination in the form of
 staining, odor, or VOC detections with a PID was noted in this boring. A soil sample was collected from
 below the tank bottom at the highest observed impact, 11.0 feet bgs, and at terminal depth, 16.0 feet
 bgs.
- Boring B3 was advanced to 10.0 feet bgs adjacent to the north tank end of T2 and the west side of the
 dispenser island. Progress refusal was met at 10.0 feet bgs. Soil contamination in the form of staining,
 odor, or VOC detections with a PID was not noted in this boring. A soil sample was collected from below
 the dispenser island at 4.0 feet bgs, and at terminal depth, 10.0 feet bgs.
- Boring B4 was advanced to 11.0 feet bgs adjacent to the north tank end of T1 and the east side of the
 dispenser island. Soil contamination in the form of staining, odor, or VOC detections with a PID was not
 noted in this boring. A soil sample was collected from below the dispenser island at 4.0 feet bgs, and at
 terminal depth, 11.0 feet bgs.
- Boring B5 was advanced to 4.0 feet bgs adjacent to a subsurface sewer line plumbed into the floor drain
 in the Site building interior. Soil contamination in the form of staining, odor, or VOC detections with a
 PID was not noted in this boring. A soil sample was collected from below the sewer line at terminal
 depth, 4.0 feet bgs.
- Boring B6 was advanced to 4.0 feet bgs adjacent to a former garage bay in the original auto repair shop area of the Site building interior. Soil contamination in the form of staining, odor, or VOC detections with a PID was not noted in this boring. A soil sample was collected from below the terminal depth of the boring at 4.0 feet bgs.

Borings B1 through B4 were advanced using Geoprobe DT22 dual-tube tooling driven by a truck-mounted probe. Soils were collected continuously from the surface using 4-foot-long, 2.25-inch diameter sample tooling lined with PVC sleeves. The sampling tooling was driven in 4-foot intervals until the target depth was achieved.

Borings B5 and B6 were advanced using Geoprobe LB tooling with a PVC liner driven by an electric jackhammer. Soil samples were obtained continuously from the surface using 2-foot-long, 1.5-inch diameter sample tooling lined with PVC sleeves. The sampling tooling was driven in 2-foot intervals until the target depth was achieved.

Soils observed during the subsurface investigation consisted predominantly of silty clay and well graded gravel.

Notes on visual appearance, odor and PID readings were recorded on boring logs included as Appendix A.

All drilling and sampling equipment were thoroughly cleaned and decontaminated before, between, and after use with LiquinoxTM or an equivalent phosphate-free detergent solution to reduce the risk of cross-contamination. Nitrile gloves were worn whenever handling samples, equipment, or any other potentially contaminated items.

Laboratory Analytical Results

Samples were transported to Friedman and Bruya, Inc. of Seattle, Washington, an Oregon-accredited laboratory. Soil samples were analyzed by Method NWTPH-Dx (diesel-range petroleum hydrocarbons), Method NWTPH-Gx (gasoline-range petroleum hydrocarbons), EPA Method 8260 (volatile organic compounds), EPA Method 8270 (semi-volatile organic compounds), and EPA Method 6020 (Lead).

Sample analytical results are summarized in the tables below:

TABLE 1 – SOIL SAMPLES LABORATORY ANALYTICAL RESULTS – (MG/KG)								
Sample #	Depth (ft.)	Date	DX	GX	EPA 8260 (VOCS)	EPA 8270 (PAHS)	EPA 6020 (LEAD)	
B1-S1	10	2/22/23	< MDL	<mark>230</mark>	NA	NA	NA	
B2-S1	11	2/22/23	DX-2,000*	<mark>2,200</mark>	Ethylbenzene – 0.085 Xylenes – 0.23 Isopropylbenzene – 0.58 1,3,5-TMB – 1.8 1,2,4-TMB – 1.6	Fluorene – 0.074 Phenanthrene – 0.061 Fluoranthene – 0.011 Pyrene – 0.013	8.07	
B2-S2	16	2/22/23	< MDL	7.8	NA	NA	NA	
B3-S1	4	2/22/23	< MDL	<5	NA	NA	NA	
B3-S2	10	2/22/23	< MDL	<5	NA	NA	NA	
B4-S1	4	2/22/23	< MDL	<5	NA	NA	NA	
B4-S2	11	2/22/23	< MDL	<5	NA	NA	NA	
B5-S1	4	2/28/23	< MDL	<5	NA	NA	NA	
B6-S1	4	2/28/23	< MDL	<5	NA	NA	NA	
ODEQ Soil Leaching to Groundwater – Occupational			>Max	130	Ethylbenzene – 0.9 Xylene – 100 Isopropylbenzene – NV 1,3,5- TMB – 53 1,2,4- TMB – 48	NV	30	
ODEQ Soil Vapor Intrusion into Buildings – Residential**			>Max	94	Ethylbenzene – 17 Xylene – NV Isopropylbenzene – NV 1,3,5- TMB – NV 1,2,4- TMB – NV	NV	NV	

Table 1 Notes:

Concentrations are only presented for regulated VOCs. Various VOCs were detected without corresponding RBCs.

NA = Not Analyzed.

NV = No Value.

< MDLs = Concentrations of ODEQ regulated substances were not detected above method detection limits.

Bold: Indicates compounds exceeding 1 or more regulatory screening levels.

- * = Result flagged with "x" qualifier indicating that the sample chromatographic pattern does not resemble the fuel standard used for quantitation.
- ** = Residential receptor noted as multi-family residential development is present across SE Elliott Street to the east.

Laboratory analytical report and chain-of-custody form is included as Appendix B.

Quality Assurance/Quality Control Review

Laboratory QA/QC measures were performed through data validation of available analytical data generated as part of these sampling events. Data validation considered the following:

- Method Detection and/or Reporting Limits
- Laboratory Matrix Blanks
- Sample Holding Times
- Surrogate and Matrix Spike Recoveries, and
- Laboratory Duplicate Analysis Results

Friedman and Bruya reported an "x" qualifier for one sample. According to the qualifier glossary in the analytical report, an "x" qualifier indicates that "the sample chromatographic pattern does not resemble the fuel standard used for quantitation." This qualifier does not indicate a problem with the sample results. According to the lab report, all analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Exceptions are qualified in the analytical report. In cases where there is insufficient sample material provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

SUMMARY AND CONCLUSIONS

Based on the results of this sampling event, the following conclusions have been developed:

- Diesel and gasoline-range petroleum hydrocarbons were detected in borings B1 and B2, adjacent to the south tank ends of T1 and T2. A maximum concentration of 2,200 mg/kg of gasoline was detected at 11 foot below ground surface in boring B2.
- Follow up analysis of sample B2-S1-11 showed a range of VOCs and PAHs at trace levels; however none were detected above the most stringent ODEQ risk-based concentrations (RBCs).
- Petroleum hydrocarbons were not detected in the borings advanced adjacent to the dispenser island and north tank ends.
- Petroleum hydrocarbons were not detected in the borings advanced in the Site building interior.

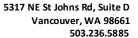
RECOMMENDATIONS

- A release of gasoline and diesel to soil has been identified at the Site. As required by statute, Point Source has informed ODEQ of the release. The Site has been logged as Leaking Underground Storage Tank (LUST) Site Number 26-23-0131.
- Point Source recommends delineation samples to be collected in three cardinal directions from the confirmed release area in order to define the lateral extent of soil contamination. As the right-of-way is immediately adjacent to the USTs, a test bore permit, along with a permit for sidewalk and parking closure would be required to be filed with Portland Bureau of Transportation (PBOT) prior to the advancement of borings. Both soil and soil vapor samples should be collected.
- Following soil plume delineation, Point Source recommends that the USTs be decommissioned by removal by an Oregon-certified UST service provider in order to close the Site's LUST file. During the decommissioning, any observed soils contaminated with petroleum hydrocarbons above regulatory action limits will need to be removed and hauled under a waste profile to a Subtitle D landfill, e.g. Hillsboro Landfill. As the USTs were reported to have been filled with sand, it will be necessary to sample and analyze any solid contents they may contain for hazardous constituents prior to their disposal.

This investigation was completed in general accordance with ASTM E1903-11, Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process. These methodologies are described as representing good commercial and customary practice for conducting a Phase II ESA of a property for the purpose of evaluating recognized environmental conditions.

Point Source appreciates the opportunity to provide these services. If you have any questions concerning this report, or if we can assist you in any other matter, please contact Gil Cobb or Jeff Jackman at 503.236.5885.

Prepared by:


Kyle Fisher, Project Manager

Reviewed By:

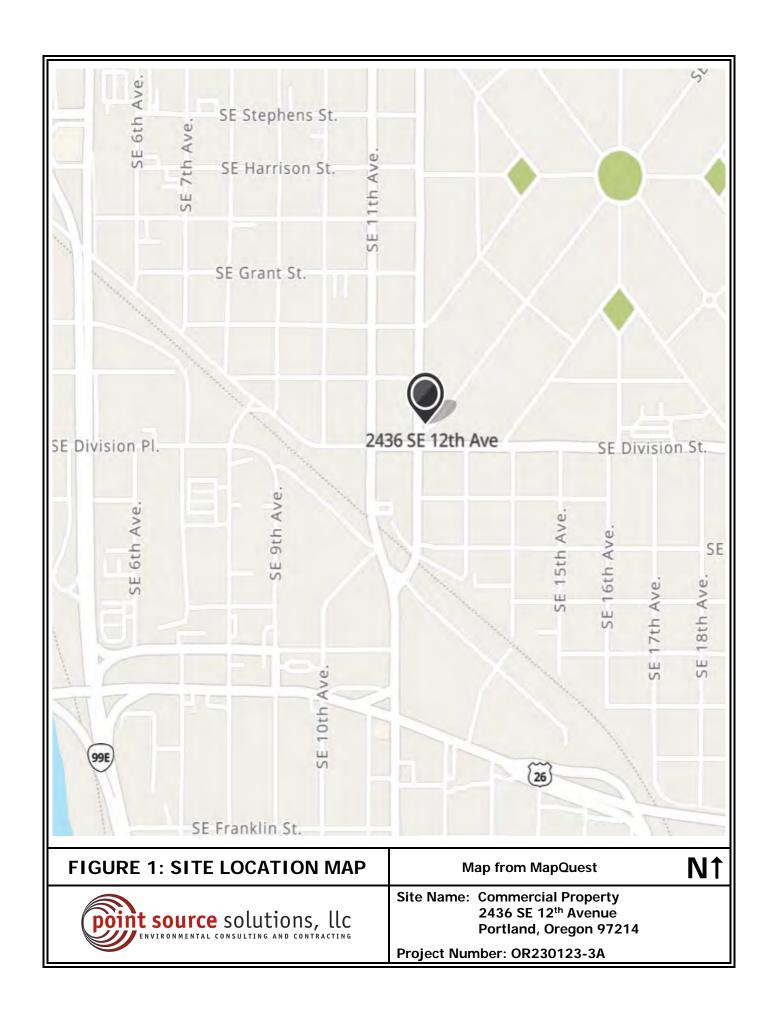
Gil Cobb, Registered Geologist (Oregon #G1440)

Expires 12/31/2023

Attachments:

Figure 1 – Site Location Map

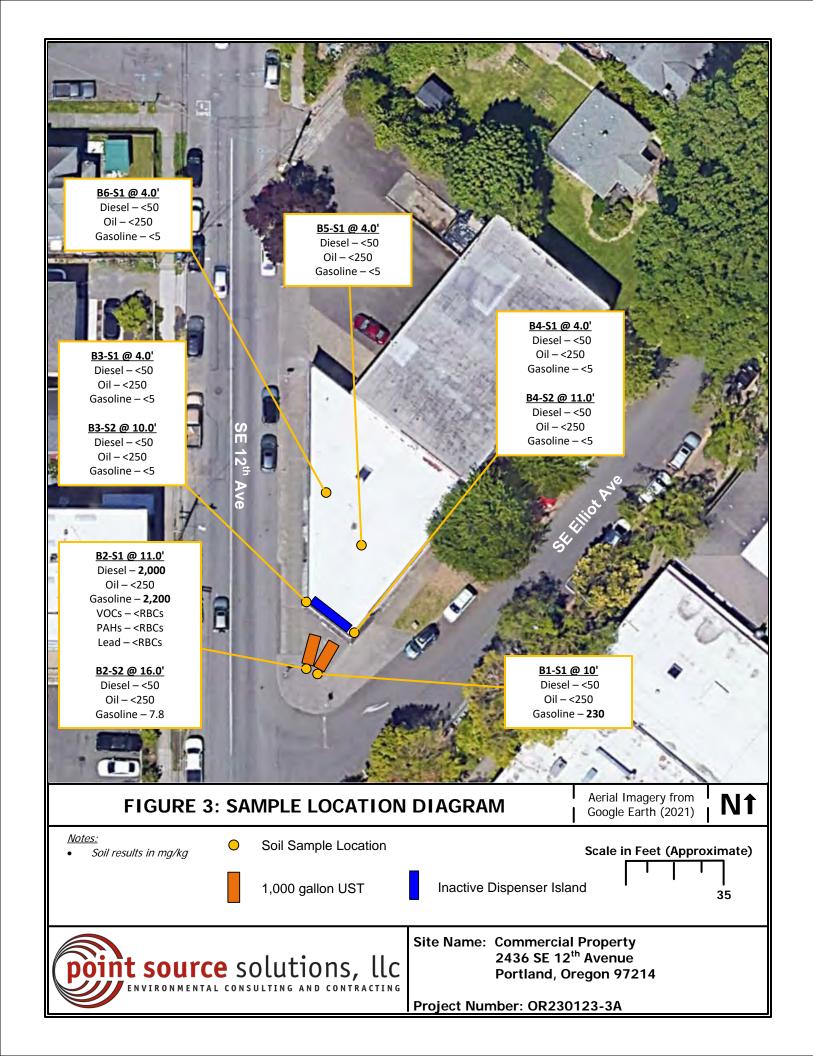
Figure 2 – Topographic Map


Figure 3 – Sample Location Diagram

Appendix A – Field Boring Logs

Appendix B – Laboratory Analytical Report

FIGURES



Site Name: Commercial Property 2436 SE 12th Avenue Portland, Oregon 97214

Project Number: OR230123-3A

APPENDICES

APPENDIX A FIELD BORING LOGS

Client: Skyhook Fitness

Project: 2436 SE 12th Ave

Address: 2436 SE 12th Ave, Portland, OR

BORING LOG

1 of 1

Boring No. B1

Page:

Drilling Start Date: 2/22/23

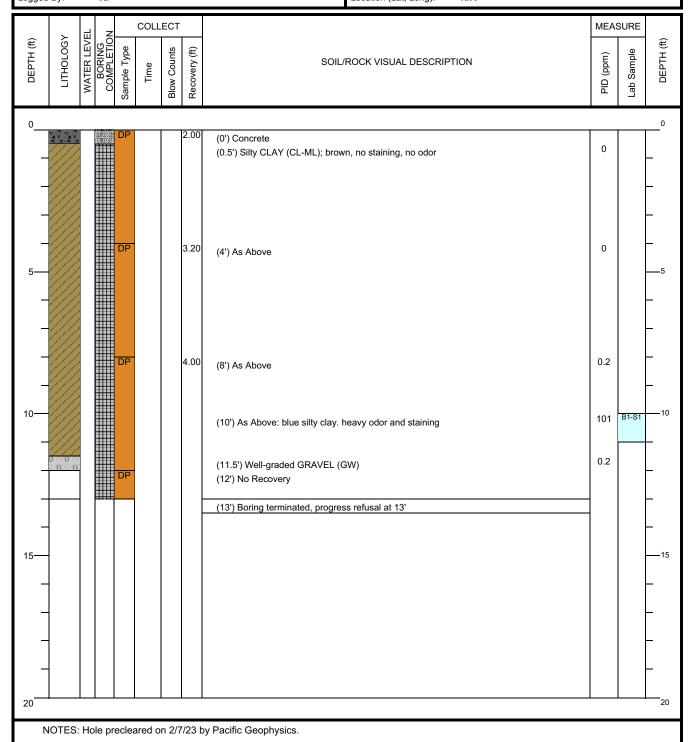
Drilling End Date: 2/22/23

Drilling Company: Point Source Solutions

Drilling Method: Direct Push
Drilling Equipment: Geoprobe DT22

Driller: JR
Logged By: KF

Boring Depth (ft): 13


Boring Diameter (in): 2.25

Sampling Method(s): Direct Push

DTW During Drilling (ft): N/A

DTW After Drilling (ft): N/A
Ground Surface Elev. (ft): N/A

Location (Lat, Long): N/A

Client: Skyhook Fitness

Project: 2436 SE 12th Ave

Address: 2436 SE 12th Ave, Portland, OR

BORING LOG

Boring No. B2 Page: 1 of 1

Drilling Start Date: 2/22/23

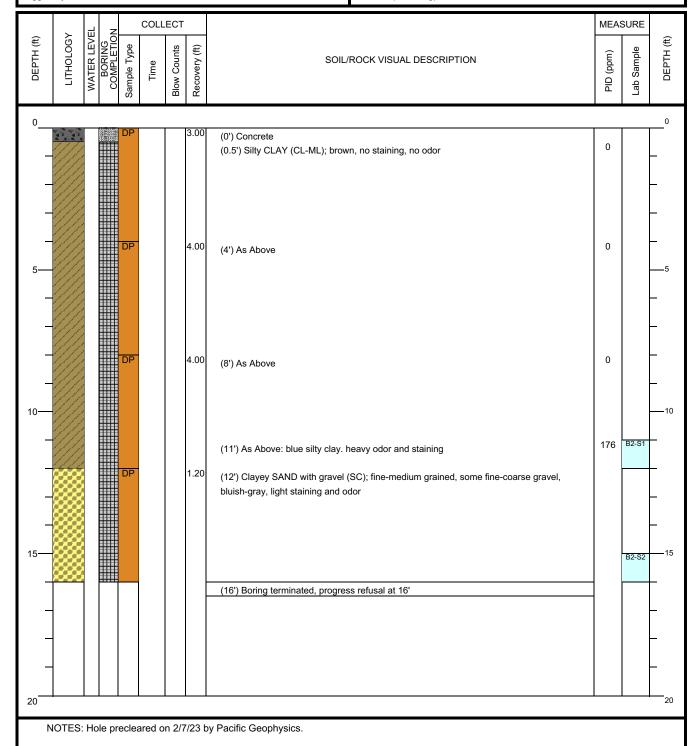
Drilling End Date: 2/22/23

Drilling Company: Point Source Solutions

Drilling Method: Direct Push
Drilling Equipment: Geoprobe DT22

Driller: KF
Logged By: JR

Boring Depth (ft): 16


Boring Diameter (in): 2.25

Sampling Method(s): Direct Push

DTW During Drilling (ft): N/A

DTW After Drilling (ft): N/A
Ground Surface Elev. (ft): N/A

Location (Lat, Long): N/A

Client: Skyhook Fitness

Project: 2436 SE 12th Ave

Address: 2436 SE 12th Ave, Portland, OR

BORING LOG

Boring No. B3
Page: 1 of 1

Drilling Start Date: 2/22/23

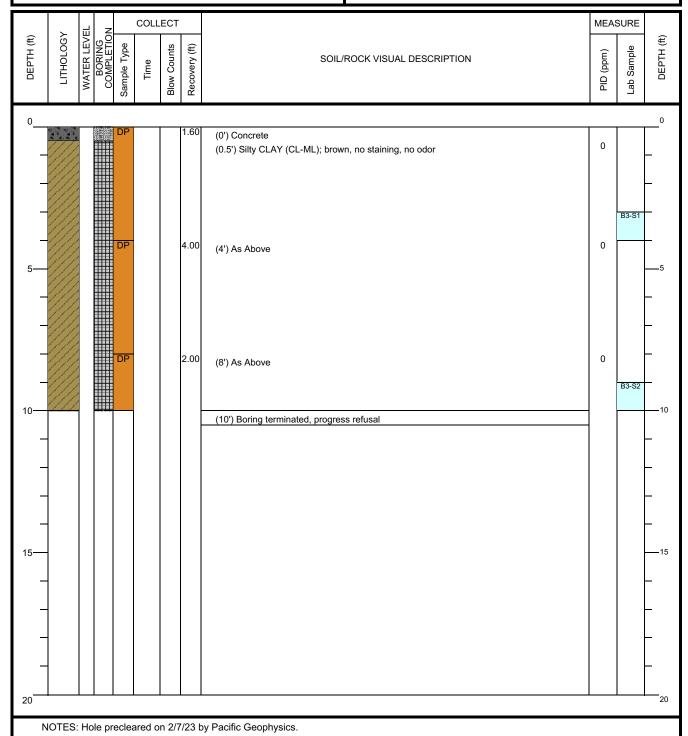
Drilling End Date: 2/22/23

Drilling Company: Point Source Solutions

Drilling Method: Direct Push
Drilling Equipment: Geoprobe DT22

Driller: KF Logged By: JR Boring Depth (ft): 10

Boring Diameter (in): 2.25


Sampling Method(s): Direct Push

DTW During Drilling (ft): N/A

DTW After Drilling (ft): N/A

Ground Surface Elev. (ft): N/A

Location (Lat, Long): N/A

Client: **Skyhook Fitness**

Project: 2436 SE 12th Ave

Address: 2436 SE 12th Ave, Portland, OR **BORING LOG**

Boring No. В4

Page: 1 of 1

Drilling Start Date: 2/22/23

Drilling End Date: 2/22/23

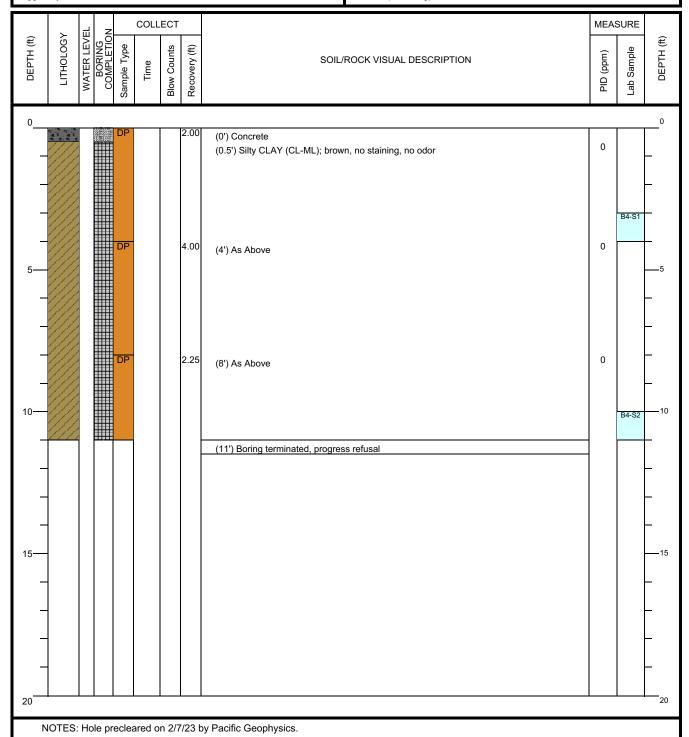
Drilling Company: Point Source Solutions

Drilling Method: **Direct Push** Drilling Equipment: Geoprobe DT22

Driller: KF JR Logged By:

Boring Diameter (in): 2.25

Boring Depth (ft):


Sampling Method(s): **Direct Push**

11

DTW During Drilling (ft):

DTW After Drilling (ft): N/A Ground Surface Elev. (ft): N/A

Location (Lat, Long): N/A

Client: **Skyhook Fitness**

Project: 2436 SE 12th Ave

Address: 2436 SE 12th Ave, Portland, OR **BORING LOG**

Boring No. **B5** Page: 1 of 1

Drilling Start Date: 2/28/23 Boring Depth (ft):

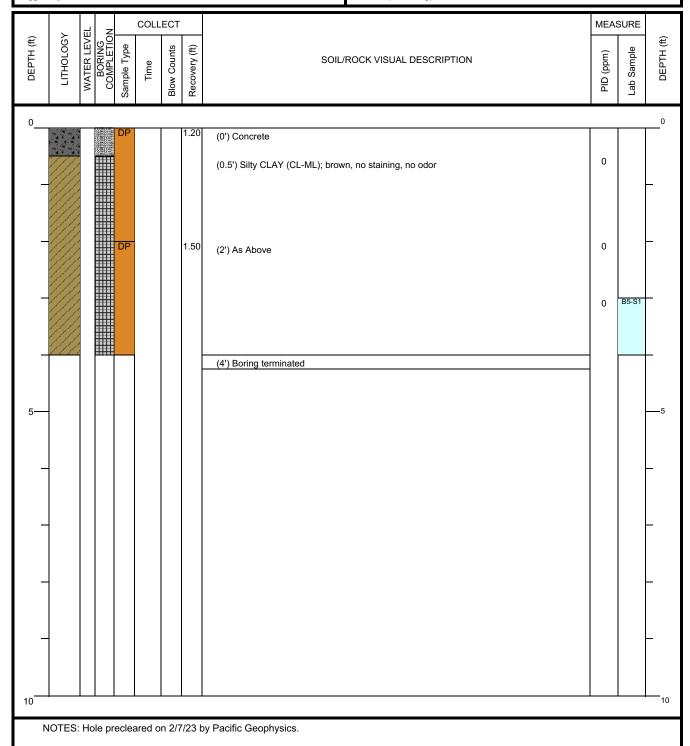
Drilling End Date: 2/28/23

Drilling Company: Point Source Solutions

Drilling Method: **Direct Push** Drilling Equipment: Geoprobe LB

Driller: KF KF Logged By:

4


Boring Diameter (in): 1.25

Direct Push Sampling Method(s):

DTW During Drilling (ft):

DTW After Drilling (ft): N/A Ground Surface Elev. (ft): N/A

Location (Lat, Long): N/A

Client: **Skyhook Fitness**

Project: 2436 SE 12th Ave

Address: 2436 SE 12th Ave, Portland, OR **BORING LOG**

1 of 1

Boring No. **B6**

Page:

Drilling Start Date: 2/28/23

Drilling End Date: 2/28/23

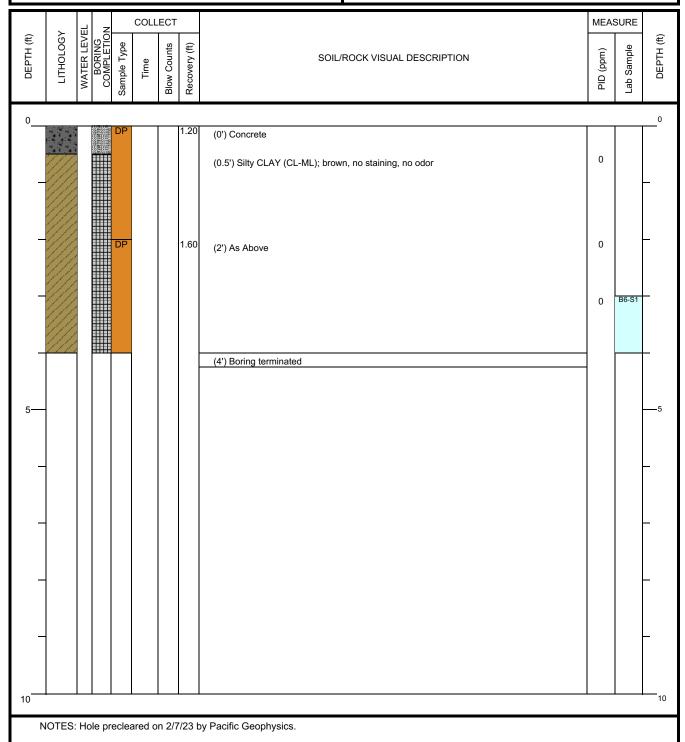
Drilling Company: Point Source Solutions

Drilling Method: **Direct Push** Drilling Equipment: Geoprobe LB

KF Logged By:

Driller: KF Boring Depth (ft): 4

Boring Diameter (in): 1.25


Direct Push Sampling Method(s):

DTW During Drilling (ft):

DTW After Drilling (ft): N/A

Ground Surface Elev. (ft): N/A

Location (Lat, Long): N/A

APPENDIX B LABORATORY ANALYTICAL REPORT

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 3, 2023

Gil Cobb, Project Manager Point Source Solutions 5317 NE St Johns Rd. Suite D Vancouver, WA 98661

Dear Mr Cobb:

Included are the results from the testing of material submitted on February 27, 2023 from the 2436 SE 12th Ave, F&BI 302353 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Johnny Ramus, Jeff Jackman, Kyle Fisher

PSS0303R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 27, 2023 by Friedman & Bruya, Inc. from the Point Source Solutions 2436 SE 12th Ave, F&BI 302353 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Point Source Solutions
302353 -01	B1-S1-10
302353 -02	B2-S1-11
302353 -03	B2-S2-16
302353 -04	B3-S1-4
302353 -05	B3-S2-10
302353 -06	B4-S1-4
302353 -07	B4-S2-11

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

Date Extracted: 02/28/23 Date Analyzed: 03/01/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 58-139)
B1-S1-10 302353-01	230	ip
B2-S1-11 302353-02 1/20	2,200	ip
B2-S2-16 302353-03	7.8	105
B3-S1-4 302353-04	<5	94
B3-S2-10 302353-05	<5	102
B4-S1-4 302353-06	<5	100
B4-S2-11 302353-07	<5	100
Method Blank ⁰³⁻⁴⁶⁷ MB	<5	109

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

Date Extracted: 02/27/23 Date Analyzed: 02/27/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 50-150)
B1-S1-10 302353-01	<50	<250	107
B2-S1-11 302353-02	2,000 x	<250	112
B2-S2-16 302353-03	<50	<250	107
B3-S1-4 302353-04	<50	<250	110
B3-S2-10 302353-05	<50	<250	108
B4-S1-4 302353-06	<50	<250	107
B4-S2-11 302353-07	<50	<250	104
Method Blank 03-492 MB	<50	<250	107

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 302344-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			1 ercent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	100	70-130	•

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 302229-04 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (nnm)	5,000	3 400	124	110	70-130	12

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	102	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAIN OF CUSTODY

2

SAMPLERS (signature)

Company Point Source Salutions

Address 5317 NE St Johns Rd, StED

City, State, ZIP Vancouver, WA

Project Specific RLs - Yes / No

REMARKS PROJECT NAME 2436 SE 12th Aug Hour Rem INVOICE TO P0#

X Standard Turnaround Rush charges authorized by: Other_ Archive Samples Dispose after 30 days TURNAROUND TIME Page# SAMPLE DISPOSAL

		 					,			,		_
Friedman & Bruya, Inc.				B4-52-11	B4-51-4	B3-52-10	B3-Si-4	B2-52-16	B2-Si-11	B1-S1-10	Sample ID	
Relinqu			. (40	06	0	0ч	03	Q.	0	_	
Relinquished by:	8			_	0	05	4	ه و	×.	01 A-C	Lab ID	
John Rom	SIGNATURE			11 11	12 11	r.	z	E E	z	2/22/23	Date Sampled	
ev		-		14:52	14:44	13:58	13:43	12316	11:58	1cm37	Time Sampled	
				1308	Soil	\$1.1	Sail	50:1	Soil	Soil	Sample Type	
John Ramus	PRI			w	w	w	w	w	w	W	# of Jars	
R				*	×	×	×	×	×	×	NWTPH-Dx	
3	PRINT NAME			×	×	×	*	×	×	×	NWTPH-Gx	
3	E										BTEX EPA 8021	
		ర్టు									VOCs EPA 8260	A
		 3								<u> </u>	PAHs EPA 8270	IN NA
		 es		<u> </u>		ļ	ļ		-		PCBs EPA 8082	YSE
ರ		5	ļ		ļ				<u> </u>	 	`	SRE
3	ÖM)	Samples received				<u> </u>	<u> </u>		<u> </u>			QUE
Soc	COMPANY	ed										ANALYSES REQUESTED
Point Source	Y	at]
		00										
2/27/23	DATE	ဂိ									Notes	
1693	TIME										es S	

Seattle, WA 98119-2029 3012 16th Avenue West Ph. (206) 285-8282

Received by:

ANH PHAN

02/27/23

11:23

Relinquished by:

Received by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 10, 2023

Gil Cobb, Project Manager Point Source Solutions 5317 NE St Johns Rd, Suite D Vancouver, WA 98661

Dear Mr Cobb:

Included are the additional results from the testing of material submitted on February 27, 2023 from the 2436 SE 12th Ave, F&BI 302353 project. There are 13 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Johnny Ramus, Jeff Jackman, Kyle Fisher

PSS0310R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 27, 2023 by Friedman & Bruya, Inc. from the Point Source Solutions 2436 SE 12th Ave, F&BI 302353 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Point Source Solutions
302353 -01	B1-S1-10
302353 -02	B2-S1-11
302353 -03	B2-S2-16
302353 -04	B3-S1-4
302353 -05	B3-S2-10
302353 -06	B4-S1-4
302353 -07	B4-S2-11

The 8260D matrix spike and matrix spike duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

The 8260D laboratory control sample exceeded the acceptance criteria for bromomethane. The compound was not detected, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: B2-S1-11 Client: Point Source Solutions

Date Received: 02/27/23 Project: 2436 SE 12th Ave, F&BI 302353

 Date Extracted:
 03/07/23
 Lab ID:
 302353-02

 Date Analyzed:
 03/07/23
 Data File:
 302353-02.105

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead 8.07

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Point Source Solutions

Date Received: Not Applicable Project: 2436 SE 12th Ave, F&BI 302353

Date Extracted: 03/07/23 Lab ID: I3-165 mb
Date Analyzed: 03/07/23 Data File: I3-165 mb.078
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: B2-S1-11 Client: Point Source Solutions

Date Received: 02/27/23 Project: 2436 SE 12th Ave, F&BI 302353

03/07/23 Lab ID: Date Extracted: 302353-02 Date Analyzed: 03/07/23 Data File: 030712.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: lm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	90	109
Toluene-d8	103	89	112
4-Bromofluorobenzene	102	84	115

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	0.085
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	0.23
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	0.58
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	0.48
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	1.8
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	0.12
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	1.6
Benzene	< 0.03	sec-Butylbenzene	2.0
Trichloroethene	< 0.02	p-Isopropyltoluene	3.6
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Point Source Solutions

Date Received: Not Applicable Project: 2436 SE 12th Ave, F&BI 302353

03/06/23 Lab ID: Date Extracted: 03-0372 mbDate Analyzed: 03/06/23 Data File: 030605.DSoil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: lm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	90	109
Toluene-d8	103	89	112
4-Bromofluorobenzene	96	84	115

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: B2-S1-11 Client: Point Source Solutions

Date Received: 02/27/23 Project: 2436 SE 12th Ave, F&BI 302353

50

124

Date Extracted: 03/06/23 Lab ID: 302353-02 1/5 Date Analyzed: 03/06/23 Data File: 030616.DSoil Matrix: Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight VMOperator:

Upper Lower Surrogates: % Recovery: Limit: Limit: Nitrobenzene-d5 130 198 10 2-Fluorobiphenyl 85 117 45 2,4,6-Tribromophenol 81 11 158

Terphenyl-d14 100 Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 2-Methylnaphthalene 0.151-Methylnaphthalene 0.17 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene 0.074 Phenanthrene 0.061 Anthracene < 0.01 Fluoranthene 0.011 Pyrene 0.013 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Method Blank Client: Point Source Solutions

Date Received: Not Applicable Project: 2436 SE 12th Ave, F&BI 302353

Date Extracted: 03/06/23 Lab ID: 03-527 mb 1/5 Date Analyzed: 03/06/23 Data File: 030615.DGCMS12 Soil Matrix: Instrument: Units: mg/kg (ppm) Dry Weight VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Nitrobenzene-d5	102	16	137
2-Fluorobiphenyl	95	46	122
2,4,6-Tribromophenol	105	17	154
Terphenyl-d14	98	31	167

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 2-Methylnaphthalene < 0.01 1-Methylnaphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 303073-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	<5	90	96	75-125	6

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	96	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 303040-01 (Matrix Spike)

· ·	1 /		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2	< 0.5	27	19	10-142	35 vo
Chloromethane	mg/kg (ppm)	2	< 0.5	56	43	10-126	26 vo
Vinyl chloride	mg/kg (ppm)	2 2	< 0.05	52	43 99	10-138	19
Bromomethane Chloroethane	mg/kg (ppm) mg/kg (ppm)	2	<0.5 <0.5	74 70	99 62	10-163 10-176	29 vo 12
Trichlorofluoromethane	mg/kg (ppm)	2	< 0.5	69	60	10-176	14
Acetone	mg/kg (ppm)	10	<5	65	51	10-163	24 vo
1,1-Dichloroethene	mg/kg (ppm)	2	< 0.05	78	68	10-160	14
Hexane	mg/kg (ppm)	2	< 0.25	63	54	10-137	15
Methylene chloride	mg/kg (ppm)	2	< 0.5	80	67	10-156	18
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	< 0.05	90	81	21-145	11
trans-1,2-Dichloroethene	mg/kg (ppm)	2 2	< 0.05	82	73	14-137	12
1,1-Dichloroethane 2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2	<0.05 <0.05	81 88	71 81	19-140 10-158	13 8
cis-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	84	77	25-135	9
Chloroform	mg/kg (ppm)	2	< 0.05	89	80	21-145	11
2-Butanone (MEK)	mg/kg (ppm)	10	<1	88	76	19-147	15
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	< 0.05	88	79	12-160	11
1,1,1-Trichloroethane	mg/kg (ppm)	2	< 0.05	94	83	10-156	12
1,1-Dichloropropene	mg/kg (ppm)	2	< 0.05	82	74	17-140	10
Carbon tetrachloride	mg/kg (ppm)	2	< 0.05	90	81	9-164	11
Benzene	mg/kg (ppm)	2 2	< 0.03	87	77	29-129	12
Trichloroethene 1,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2	<0.02 <0.05	86 80	77 70	21-139 30-135	11 13
Bromodichloromethane	mg/kg (ppm)	2	< 0.05	92	82	23-155	11
Dibromomethane	mg/kg (ppm)	2	< 0.05	90	79	23-145	13
4-Methyl-2-pentanone	mg/kg (ppm)	10	<1	96	84	24-155	13
cis-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	88	77	28-144	13
Toluene	mg/kg (ppm)	2	< 0.05	84	74	35-130	13
trans-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	86	76	26-149	12
1,1,2-Trichloroethane	mg/kg (ppm)	2 10	< 0.05	82	72	10-205	13
2-Hexanone 1,3-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2	<0.5 <0.05	95 86	84 76	15-166 31-137	12 12
Tetrachloroethene	mg/kg (ppm)	2	< 0.025	96	85	20-133	12
Dibromochloromethane	mg/kg (ppm)	2	< 0.05	86	78	28-150	10
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	< 0.05	84	74	28-142	13
Chlorobenzene	mg/kg (ppm)	2	< 0.05	89	79	32-129	12
Ethylbenzene	mg/kg (ppm)	2	< 0.05	89	79	32-137	12
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	89	80	31-143	11
m,p-Xylene	mg/kg (ppm)	4 2	<0.1	89	78	34-136	13
o-Xylene Styrene	mg/kg (ppm) mg/kg (ppm)	2	<0.05 <0.05	86 88	78 79	33-134 35-137	10 11
Isopropylbenzene	mg/kg (ppm)	2	< 0.05	93	83	31-142	11
Bromoform	mg/kg (ppm)	2	< 0.05	89	82	21-156	8
n-Propylbenzene	mg/kg (ppm)	2	< 0.05	87	81	23-146	7
Bromobenzene	mg/kg (ppm)	2	< 0.05	91	84	34-130	8
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	89	82	18-149	8
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2 2	< 0.05	92	87	28-140	6
1,2,3-Trichloropropane	mg/kg (ppm)	2	< 0.05	83 73 b	77 60 b	25-144	7 20 b
2-Chlorotoluene 4-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	2	0.65 <0.05	73 B 85	60 в 79	31-134 31-136	20 b 7
tert-Butylbenzene	mg/kg (ppm)	2	< 0.05	92	85	30-137	8
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	87	81	10-182	7
sec-Butylbenzene	mg/kg (ppm)	2	0.087	90	82	23-145	9
p-Isopropyltoluene	mg/kg (ppm)	2	< 0.05	91	84	21-149	8
1,3-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	89	83	30-131	7
1,4-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	91	84	29-129	8
1,2-Dichlorobenzene	mg/kg (ppm)	2 2	< 0.05	90	84	31-132	7
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	$\frac{2}{2}$	<0.5 <0.25	80 93	75 83	11-161 22-142	6 11
Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	2	< 0.25	120	105	10-142	13
Naphthalene	mg/kg (ppm)	2	< 0.05	88	80	14-157	10
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	< 0.25	94	83	20-144	12

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Dichlorodifluoromethane	mg/kg (ppm)	2	53	10-146		
Chloromethane	mg/kg (ppm)	2	69	27-133		
Vinyl chloride	mg/kg (ppm)	2	72	22-139		
Bromomethane	mg/kg (ppm)	$\frac{2}{2}$	143 vo	38-114		
Chloroethane Trichlorofluoromethane	mg/kg (ppm)	2	91 92	9-163 10-196		
Acetone	mg/kg (ppm) mg/kg (ppm)	10	92 72	52-141		
1.1-Dichloroethene	mg/kg (ppm)	2	92	47-128		
Hexane	mg/kg (ppm)	2	86	43-142		
Methylene chloride	mg/kg (ppm)	2	92	10-184		
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	99	60-123		
trans-1,2-Dichloroethene	mg/kg (ppm)	2	92	67-129		
1,1-Dichloroethane	mg/kg (ppm)	2	91	68-115		
2,2-Dichloropropane	mg/kg (ppm)	2 2	98	52-170		
cis-1,2-Dichloroethene Chloroform	mg/kg (ppm) mg/kg (ppm)	2	95 98	72-127 66-120		
2-Butanone (MEK)	mg/kg (ppm)	10	95	30-120		
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	95	56-135		
1,1,1-Trichloroethane	mg/kg (ppm)	2	106	62-131		
1,1-Dichloropropene	mg/kg (ppm)	2	92	69-128		
Carbon tetrachloride	mg/kg (ppm)	2	103	60-139		
Benzene	mg/kg (ppm)	2	94	71-118		
Trichloroethene	mg/kg (ppm)	2	99	63-121		
1,2-Dichloropropane	mg/kg (ppm)	$\frac{2}{2}$	86	72-127		
Bromodichloromethane Dibromomethane	mg/kg (ppm) mg/kg (ppm)	2	100 99	57-126 62-123		
4-Methyl-2-pentanone	mg/kg (ppm)	10	99	45-145		
cis-1,3-Dichloropropene	mg/kg (ppm)	2	93	67-122		
Toluene	mg/kg (ppm)	2	89	66-126		
trans-1,3-Dichloropropene	mg/kg (ppm)	2	88	72-132		
1,1,2-Trichloroethane	mg/kg (ppm)	2	84	64-115		
2-Hexanone	mg/kg (ppm)	10	99	33-152		
1,3-Dichloropropane	mg/kg (ppm)	2 2	89	72-130		
Tetrachloroethene Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	2	102 93	72-114 55-121		
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	95 88	74-132		
Chlorobenzene	mg/kg (ppm)	2	92	76-111		
Ethylbenzene	mg/kg (ppm)	2	92	64-123		
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	94	64-121		
m,p-Xylene	mg/kg (ppm)	4	92	78-122		
o-Xylene	mg/kg (ppm)	2	93	77-124		
Styrene	mg/kg (ppm)	2	92	74-126		
Isopropylbenzene Bromoform	mg/kg (ppm)	2 2	98 97	76-127 56-132		
n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	2	93	74-124		
Bromobenzene	mg/kg (ppm)	2	99	72-122		
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	98	76-126		
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	88	56-143		
1,2,3-Trichloropropane	mg/kg (ppm)	2	88	61-137		
2-Chlorotoluene	mg/kg (ppm)	2	94	74-121		
4-Chlorotoluene	mg/kg (ppm)	$\frac{2}{2}$	92	75-122		
tert-Butylbenzene	mg/kg (ppm)	$\frac{2}{2}$	99 96	73-130		
1,2,4-Trimethylbenzene sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2	96 97	76-125 71-130		
p-Isopropyltoluene	mg/kg (ppm)	$\frac{2}{2}$	97	70-132		
1,3-Dichlorobenzene	mg/kg (ppm)	2	98	75-121		
1,4-Dichlorobenzene	mg/kg (ppm)	2	99	74-117		
1,2-Dichlorobenzene	mg/kg (ppm)	2	100	76-121		
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	89	58-138		
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	96	64-135		
Hexachlorobutadiene	mg/kg (ppm)	2 2	107	50-153		
Naphthalene 1.2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2 2	92 95	63-140 63-138		
1,2,0-11ICHIOTODEHZEHE	mg/kg (ppm)	4	ฮย	09-190		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 303077-11 1/5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result		Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	$^{ m MS}$	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	84	81	50-150	4
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	92	87	50-150	6
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	94	89	50-150	5
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	98	94	50-150	4
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	89	85	50-150	5
Fluorene	mg/kg (ppm)	0.83	< 0.01	97	93	50-150	4
Phenanthrene	mg/kg (ppm)	0.83	< 0.01	90	89	10-170	1
Anthracene	mg/kg (ppm)	0.83	< 0.01	90	89	50-150	1
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	96	94	10-203	2
Pyrene	mg/kg (ppm)	0.83	< 0.01	89	86	10-208	3
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.01	95	93	37-146	2
Chrysene	mg/kg (ppm)	0.83	< 0.01	93	90	36-144	3
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	91	90	40-150	1
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	94	91	45-157	3
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.01	89	88	50-150	1
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.01	82	81	24-145	1
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	79	76	31-137	4
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	< 0.01	75	71	14-141	5

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample 1/5

			$\operatorname{Percent}$	
Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	89	58-108
2-Methylnaphthalene	mg/kg (ppm)	0.83	96	67-109
1-Methylnaphthalene	mg/kg (ppm)	0.83	98	66-107
Acenaphthylene	mg/kg (ppm)	0.83	105	70-130
Acenaphthene	mg/kg (ppm)	0.83	97	66-112
Fluorene	mg/kg (ppm)	0.83	103	67-117
Phenanthrene	mg/kg (ppm)	0.83	98	70-130
Anthracene	mg/kg (ppm)	0.83	98	70-130
Fluoranthene	mg/kg (ppm)	0.83	103	70-130
Pyrene	mg/kg (ppm)	0.83	97	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	101	70-130
Chrysene	mg/kg (ppm)	0.83	100	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	95	68-120
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	95	69-125
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	92	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	92	67-129
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	87	67-128
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	85	67-127

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. B4-52-11 City, State, ZIP Vancouver, NA B4-51-4 302353 Report To Address 5317 NEST Johns Rd, StED B3-82-16 B3-81-4 Company Point Source Solutions B2-52-16 B2-51-11 Bi-Si-10 Sample ID Gil C065 Received by: Relinquished by: Received by: Relinquished by: _Email_ P 8 2 b3 04 S S 01 A-C Lab ID tow Year SIGNATURE ۲ ۲. 2/22/23 ~ 2 E ٤. Date Sampled 7 ť 3 44:41 14:52 13:43 12:16 Time Sampled 13:58 i en 3:7 11:58 SAMPLE CHAIN OF CLISTODY Project Specific RLs - Yes SAMPLERS (signature) REMARKS PROJECT NAME 2436 SE 12+ Au 7.105 8011 <u>.</u> 8. Soil Sil Soi/ 5 Sample Type John Rowanie ANHROTALS PRINT ZAVE w w تى w # of Jars W w W メ X X X X X NWTPH-Dx Z the Mein X X X × X NWTPH-Gx BTEX EPA 8021 Sample \$ received VOCs EPA 8260 AN ALYSES REQUESTED PAHs EPA 8270 INVOICE TO PCBs EPA 8082 **P**0# Point Source L end COMPANY X Standard Turnaround 23 Rush charges authorized by at **Archive Samples** Dispose after 30 days TURNAROUND TIME Page # SAMPLE DISPOSAL % ကိ 02/27/23 11 2 27 23 16 DATE 2/3/23 1 Der KF Notes of

-

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 8, 2023

Gil Cobb, Project Manager Point Source Solutions 5317 NE St Johns Rd, Suite D Vancouver, WA 98661

Dear Mr Cobb:

Included are the results from the testing of material submitted on March 2, 2023 from the 2436 SE 12th Ave, F&BI 303042 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Johnny Ramus, Jeff Jackman, Kyle Fisher

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 2, 2023 by Friedman & Bruya, Inc. from the Point Source Solutions 2436 SE 12th Ave, F&BI 303042 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Point Source Solutions
303042 -01	B5-S1-4
303042 -02	B6-S1-4

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/23 Date Received: 03/02/23

Project: 2436 SE 12th Ave, F&BI 303042

Date Extracted: 03/03/23

Date Analyzed: 03/06/23 and 3/07/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 58-139)
B5-S1-4 303042-01	<5	133
B6-S1-4 303042-02	<5	129
Method Blank	<5	91

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/23 Date Received: 03/02/23

Project: 2436 SE 12th Ave, F&BI 303042

Date Extracted: 03/03/23 Date Analyzed: 03/03/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C25-C36)	Surrogate (% Recovery) (Limit 50-150)
B5-S1-4 303042-01	<50	<250	98
B6-S1-4 303042-02	<50	<250	99
Method Blank 03-514 MB	<50	<250	103

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/23 Date Received: 03/02/23

Project: 2436 SE 12th Ave, F&BI 303042

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 303015-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			rercent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	mg/kg (ppm)	20	95	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/08/23 Date Received: 03/02/23

Project: 2436 SE 12th Ave, F&BI 303042

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 303043-01 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (nnm)	5,000	<50	106	104	70-130	9

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	104	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

City, State, ZIP Vanconver, WA 98661 Address____ Company___ Report To___ 303042 Seattle, WA 98119-2029 Friedman & Bruya, Inc. Ph. (206) 285-8282 3012 16th Avenue West B6-51-4 BS-51-4 Sample ID 5317 NE ST Point Some Solutions 61 666 Email_ Relinquished by: Relinquished by: Received by: Received by: 01 01 A-C|2/18/13 Lab ID Johns Rd Ste. 0 SIGNATURE 2/28/23 Sampled SAMPLE CHAIN OF CUSTODY 03/02/83 NI Sampled 12.1 4:10 Time PROJECT NAME SAMPLERS (signature) REMARKS Project Specific RLs - Yes / No 2436 SE 112th Ave Sample Type Jars # of PRINT NAME NWTPH-Dx NWTPH-Gx BTEX EPA 8021 VOCs EPA 8260 ANALYSES REQUESTED PAHs EPA 8270 INVOICE TO PCBs EPA 8082 P0# COMPANY SS9 Samples received at 2 °C XStandard Turnaround RUSH Rush charges authorized by: Other_ Archive Samples Dispose after 30 days TURNAROUND TIME Page#__ SAMPLE DISPOSAL 2000 DATE Notes TIME

APPENDIX B ODEQ UST DECOMMISIONING FORMS DISPOSAL TRANSACTION HISTORY

Issued By:

STATE OF OREGON **DEPARTMENT OF ENVIRONMENTAL QUALITY** Receipt

184595

State of Oregon Department of Environmental Quality	Issuing Office: DE O	int Sou	0	Date: 6/48/4/1.
	Address:			ZIP Code:
Reason for On-Site Sewag On-Site Surch	ge Permit \$	000	Payment Type Cash Check # Check # MO # Total	Fees Received \$ 1000 \$ 5 000

OREGON DEPARTMENT OF ENVIRONMENTAL QUALITY UNDERGROUND STORAGE TANK PROGRAM

30-DAY NOTICE OF INTENT TO DECOMMISSION USTS OR COMPLETE A CHANGE-IN-SERVICE

1. FACI	1. FACILITY (Location of Tanks) (Please Print) 2. PERMITTEE (Please Print)								
Name:	Former Twel	fth Avenue Mo	tor Service	Name:	Wanda Os	sgood			
Address:	2436 SE 12th		Address:	PO Box 2	2				
	Portland, Ore	gon 97214			West Lin	n, Oregon 97	7068		
Phone:	503-901-961	0		Phone:	503-901-9	9610			
DEQ Gene	ral Permit Opera	ting Certificate Nu	ımber:						
Work To Be Performed By: Point Source Solutions License # 27085									
(Permittee, Tank Owner, Property Owner or Licensed Service Provider) (Service Provider)									
Phone: 50	Phone: 503-236-5885 Mobile Phone: 503-860-8811								
Will tank re	YOU MUST CONTACT YOUR LOCAL DEQ REGIONAL OFFICE 3-DAYS BEFORE STARTING ANY DECOMMISSIONING WORK. (Phone numbers are listed on Page 2) Will tank removal or potential cleanup affect adjacent property or Right-of-Way property? Yes No Date decommissioning is scheduled to begin: 6/12/23								
				GASOLINE, USED OIL, IER?	CLOSURE	OR CHANGE-IN	- SERVICE?		TO BE ACED?
TANK ID#	DEQ-UST PERMIT #	TANK SIZE IN GALLONS	PRESENT	NEW	TANK REMOVAL	CLOSURE IN PLACE♦	CHANGE IN SERVICE◆	YES*	NO
4		1,000	unknown		✓				✓
T1		1,000	unknown						
		1,000	unknown		√				✓
T1		, , , , , , , , , , , , , , , , , , ,			√				✓
T1		, , , , , , , , , , , , , , , , , , ,			✓ 				
T1		, , , , , , , , , , , , , , , , , , ,							

- * If decommissioned tank(s) are to be replaced by new underground storage tanks you must submit a *General Permit Registration Form to Install and Operate USTs* for the new tanks **30 days** before installing them.
- Submit a soil sampling plan to the DEQ regional office and receive plan approval prior to starting work if (1) tank is to be decommissioned in-place, (2) tank contents are changed to an unregulated substance or (3) tank contains a regulated substance other than petroleum.

Permittee:	Kyle Fisher (authorized representative)		
	(Please Print)	_	
Permittee:	(Signature)	_ Date:	5/15/23
	(Signature)		

OREGON DEPARTMENT OF ENVIRONMENTAL QUALITY UNDERGROUND STORAGE TANK PROGRAM

Initial (Twenty Day) Report Form for UST Cleanup Projects

	This report is due twenty (20) days from the date of the release.				
DEQ USTC File No.					
DEQ Facility ID No.	26-23-0131				
Site Name:	Former Twelfth Avenue Motor Service				
Site Address: 2436 SE 12th Avenue					
INITIAL CLEAN	<u>IUP INFORMATION</u>				
Gasolin	nation (check √ all that apply): e				
(2) Estimate quantit <100 gal.	y of release (based on information known to date - ● select only one): 100-499 gal. 500-999 gal. 1,000-5,000 gal. >5,000 gal.				
SITE INFORMA	$\underline{\text{TION}}$ (check $\underline{}$ yes or $\underline{}$ no)				
(3) Y V	Did any water enter the excavation? If yes, please describe and identify the depth to groundwater in feet below ground surface:				
(4) Y V	Was a sheen or odor observed on any water in the excavation?				
	ter is encountered, soil samples from the soil/water interface must be collected and analyzed e appropriate TPH method.				
	sel or other non-gasoline products have been released, the water may also have to be for polynuclear aromatic hydrocarbons (PAHs). <i>Please refer to OAR 340-122-0218.</i>				
(5) Y V	Was water pumped from the excavation?				
Y <u></u>	If yes, did groundwater recharge within 24 hours after pumping?				
Please describe	the pumping procedure and disposal option selected for the purged excavation water:				
(6) Y V	Were any water samples collected from the excavation? If yes, please describe:				
(7) Y N	Have any soil and/or water sample results been received at this time?				
	If so, please attach any lab reports.				

IF GROUNDWATER HAS BEEN ENCOUNTERED, PLEASE ANSWER QUESTIONS #8-13, BELOW. IF NO WATER HAS BEEN ENCOUNTERED, PLEASE SKIP TO QUESTION #14

(8)	What a	are t	he known uses of groundwater within a 500-foot radius of the release site (check $$ all that apply)?
[√no	n-u	se industrial agricultural drinking supply
			rater in this area is being used as a drinking water supply, please check $\sqrt{\ }$ the type and size of served by the supply:
	C	omr	munity (community well used for drinking water year round - • select only one)
_	siz	e:	<1,000 people 1,000 - 5,000 people >5,000 people
Į	In	terr	nittent use (public water used for drinking water only on a part-time basis - ● select only one)
_	siz	e:	<50 people 50 - 300 people > 300 people
[P	riva	te wells (individual private well or wells used for drinking water - • select only one)
	siz	e:	<10 people 10 - 25 people >25 people
(10)		Y	N Is there any evidence this water supply has been or is likely to be impacted from the petroleum product release? If yes, estimate how difficult it would be to replace the existing supply: bottled water is the only alternative
			on-site water treatment; bulk water delivery; new wells are available
			able to connect to existing water supply
			do not know what alternatives would be available
(11)		Υ	N Are/were vapors present in on-site or nearby buildings? If yes:
			A. Are you monitoring and/or mitigating any potential fire and safety hazards posed by vapors
			and free product? Explain:
			B. Estimate the number of people potentially affected by vapors − • select only one:
			1-2 people 3-10 people >10 people
(12)		Υ	N Are vapors or is petroleum contamination present in the utility corridors?
,			If yes, please explain:
(13)		Υ	N Are natural areas located within 1/4 mile of the site? If so, please describe types (parks,
` ,			rivers, wetlands, sensitive habitats, <i>etc.</i>) and proximity:
(14)		Y	N If groundwater was not encountered in the excavation, do you believe that this cleanup project can be conducted under the requirements for an UST Cleanup Matrix site? If yes, then refer to OAR 340-122-0305 through 0360.

AREA	A/SITE CONDITIONS:
(15)	Mean annual rainfall: <a> <20 inches <a> 20-45 inches <a> >45 inches
(16)	Soil type(s) of the naturally occurring soils, not the backfill around the tank - ● select only one:
	clays, compact tills, shales, and unfractured metamorphic and igneous rocks
	sandy loams, loamy sands, silty clays, clay loams, moderately permeable limestone, dolomite, sandstones, moderately fractured igneous and metamorphic rock
	fine and silty sands, sands and gravels, highly fractured igneous and metamorphic rock, permeable basalts and lavas, karst limestones and dolomites
SOIL	<u>MANAGEMENT</u>
(17)	If soil sample results have been received:
	Y Will the level of contamination detected require removal of contaminated soil for treatment or disposal?
(18)	All contaminated soil temporarily stockpiled on-site prior to treatment or disposal must be contained within a bermed area, kept covered, and the entire area secured to prevent unauthorized access by the public. I you haven't done this, please explain why:
Note: witho	It is a violation to stockpile petroleum contaminated soil (PCS) on-site for greater than 30 days out a DEQ Solid Waste Letter Authorization (SWLA) Permit.
(19)	If contaminated soil is currently stockpiled on-site, please indicate when disposal will occur or when treatment will begin:
(20)	Estimated volume of contaminated soil (specify tons or cubic yards):
(21)	Intended disposition of soils (please • select only one):
	On-site/off-site treatment, Solid Waste Letter Authorization Permit Application attached.
	Thermal treatment off-site at an authorized facility.
	Facility name:
	Landfill disposal. Name of Landfill: Hillsboro Landfill
Note:	Please attach additional information as necessary to explain any unusual circumstances

January 2008 Page 3 of 4 05-LQ-089A

associated with this project.

This initial report is intended to provide the Department with the basic initial information about activities associated with the release. Future reports should provide a more detailed and complete picture of the cleanup project.

Please be aware that a DEQ permit/authorization is required for the following activities:

- 1) Soil aeration, bioremediation (on-site or off-site), or on-site thermal treatment.
- 2) Water discharges to a stream/storm drain from the excavation or treatment tank.

If these activities will be included in your cleanup project, contact the regional DEQ office for the appropriate application forms, information on permit fees and guidance documents.

THIS REPORT WAS PREPARED BY:

Individual:	Kyle Fisher	Date: 3/15/23
Company:	Point Source Solutions	Phone: 5038608811
Address:	5317 NE St Johns Rd	
	Suite D	
City:	Vancouver	State WA Zip 98661

- 1. Please return this form to the regional office in which the site is located. If you have questions, call the contact person in your regional office.
- 2. For all tanks, except heating oil tanks, you must submit an UST Decommissioning

 Checklist and Site Assessment Report to the appropriate regional office

 within 30 days of the UST decommissioning.

 Failure to do so can result in delays to your project and
 may result in continued billing for the annual tank permit fees.
 - 3. Addresses and phone numbers for the regional offices can be found in the *UST Cleanup Manual* or viewed and downloaded from this DEQ Webpage: http://www.deq.state.or.us/about/locations.htm
- 4. Copies of the *UST Cleanup Manual* and other UST program forms and checklists can be viewed and downloaded from DEQ's Website:

 http://www.deq.state.or.us/lq/tanks/ust/index.htm

or in the Portland area by calling Steve Paiko at 503-229-6652

or outside the Portland area leaving a message on the UST Help Line (toll-free in Oregon) at 1-800-742-7878

KEEP A COPY OF THIS REPORT FOR YOUR FACILITY RECORDS

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 3, 2023

Gil Cobb, Project Manager Point Source Solutions 5317 NE St Johns Rd. Suite D Vancouver, WA 98661

Dear Mr Cobb:

Included are the results from the testing of material submitted on February 27, 2023 from the 2436 SE 12th Ave, F&BI 302353 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Johnny Ramus, Jeff Jackman, Kyle Fisher

PSS0303R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 27, 2023 by Friedman & Bruya, Inc. from the Point Source Solutions 2436 SE 12th Ave, F&BI 302353 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Point Source Solutions
302353 -01	B1-S1-10
302353 -02	B2-S1-11
302353 -03	B2-S2-16
302353 -04	B3-S1-4
302353 -05	B3-S2-10
302353 -06	B4-S1-4
302353 -07	B4-S2-11

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

Date Extracted: 02/28/23 Date Analyzed: 03/01/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 58-139)
B1-S1-10 302353-01	230	ip
B2-S1-11 302353-02 1/20	2,200	ip
B2-S2-16 302353-03	7.8	105
B3-S1-4 302353-04	<5	94
B3-S2-10 302353-05	<5	102
B4-S1-4 302353-06	<5	100
B4-S2-11 302353-07	<5	100
Method Blank ⁰³⁻⁴⁶⁷ MB	<5	109

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

Date Extracted: 02/27/23 Date Analyzed: 02/27/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 50-150)
B1-S1-10 302353-01	<50	<250	107
B2-S1-11 302353-02	2,000 x	<250	112
B2-S2-16 302353-03	<50	<250	107
B3-S1-4 302353-04	<50	<250	110
B3-S2-10 302353-05	<50	<250	108
B4-S1-4 302353-06	<50	<250	107
B4-S2-11 302353-07	<50	<250	104
Method Blank 03-492 MB	<50	<250	107

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 302344-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			1 ercent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	100	70-130	•

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 302229-04 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (nnm)	5,000	3 400	124	110	70-130	12

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	102	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAIN OF CUSTODY

2

SAMPLERS (signature)

Company Point Source Solutions

Address 5317 NE St Johns Rd, StED

City, State, ZIP Vancouver, WA

Project Specific RLs - Yes / No

REMARKS PROJECT NAME 2436 SE 12th Aug Hour Rem INVOICE TO P0#

X Standard Turnaround Rush charges authorized by: Other_ Archive Samples Dispose after 30 days TURNAROUND TIME Page# SAMPLE DISPOSAL

		 					,			,		_
Friedman & Bruya, Inc.				B4-52-11	B4-51-4	B3-52-10	B3-Si-4	B2-52-16	B2-Si-11	B1-S1-10	Sample ID	
Relinqu			. (40	06	0	0ч	03	Q.	0	_	
Relinquished by:	8			_	0	05	4	ه و	×-	01 A-C	Lab ID	
John Rom	SIGNATURE			11 11	12 11	r.	z	E E	z	2/22/23	Date Sampled	
ev		-		14:52	14:44	13:58	13:43	12316	11:58	1cm37	Time Sampled	
				1308	Soil	\$1.1	Sail	50:1	Soil	Soil	Sample Type	
John Ramus	PRI			w	w	w	w	w	w	W	# of Jars	
R				*	×	×	×	×	×	×	NWTPH-Dx	
3	PRINT NAME			×	×	×	*	×	×	×	NWTPH-Gx	
3	E										BTEX EPA 8021	
		ర్టు									VOCs EPA 8260	A
		 3								<u> </u>	PAHs EPA 8270	IN NA
		 es		<u> </u>		ļ	ļ		-		PCBs EPA 8082	YSE
ರ		5	ļ		ļ				<u> </u>	 	`	SRE
3	ÖM)	Samples received				<u> </u>	<u> </u>		<u> </u>			QUE
Soc	COMPANY	ed										ANALYSES REQUESTED
Point Source	Y	at]
		00										
2/27/23	DATE	ဂိ									Notes	
1693	TIME										es S	

Seattle, WA 98119-2029 3012 16th Avenue West Ph. (206) 285-8282

Received by:

ANH PHAN

02/27/23

11:23

Relinquished by:

Received by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 10, 2023

Gil Cobb, Project Manager Point Source Solutions 5317 NE St Johns Rd, Suite D Vancouver, WA 98661

Dear Mr Cobb:

Included are the additional results from the testing of material submitted on February 27, 2023 from the 2436 SE 12th Ave, F&BI 302353 project. There are 13 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Johnny Ramus, Jeff Jackman, Kyle Fisher

PSS0310R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 27, 2023 by Friedman & Bruya, Inc. from the Point Source Solutions 2436 SE 12th Ave, F&BI 302353 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Point Source Solutions
302353 -01	B1-S1-10
302353 -02	B2-S1-11
302353 -03	B2-S2-16
302353 -04	B3-S1-4
302353 -05	B3-S2-10
302353 -06	B4-S1-4
302353 -07	B4-S2-11

The 8260D matrix spike and matrix spike duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

The 8260D laboratory control sample exceeded the acceptance criteria for bromomethane. The compound was not detected, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: B2-S1-11 Client: Point Source Solutions

Date Received: 02/27/23 Project: 2436 SE 12th Ave, F&BI 302353

 Date Extracted:
 03/07/23
 Lab ID:
 302353-02

 Date Analyzed:
 03/07/23
 Data File:
 302353-02.105

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead 8.07

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Point Source Solutions

Date Received: Not Applicable Project: 2436 SE 12th Ave, F&BI 302353

Date Extracted: 03/07/23 Lab ID: I3-165 mb
Date Analyzed: 03/07/23 Data File: I3-165 mb.078
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: B2-S1-11 Client: Point Source Solutions

Date Received: 02/27/23 Project: 2436 SE 12th Ave, F&BI 302353

03/07/23 Lab ID: Date Extracted: 302353-02 Date Analyzed: 03/07/23 Data File: 030712.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: lm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	90	109
Toluene-d8	103	89	112
4-Bromofluorobenzene	102	84	115

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	0.085
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	0.23
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	0.58
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	0.48
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	1.8
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	0.12
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	1.6
Benzene	< 0.03	sec-Butylbenzene	2.0
Trichloroethene	< 0.02	p-Isopropyltoluene	3.6
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Point Source Solutions

Date Received: Not Applicable Project: 2436 SE 12th Ave, F&BI 302353

03/06/23 Lab ID: Date Extracted: 03-0372 mbDate Analyzed: 03/06/23 Data File: 030605.DSoil Matrix: Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: lm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	90	109
Toluene-d8	103	89	112
4-Bromofluorobenzene	96	84	115

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: B2-S1-11 Client: Point Source Solutions

Date Received: 02/27/23 Project: 2436 SE 12th Ave, F&BI 302353

50

124

Date Extracted: 03/06/23 Lab ID: 302353-02 1/5 Date Analyzed: 03/06/23 Data File: 030616.DSoil Matrix: Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight VMOperator:

Upper Lower Surrogates: % Recovery: Limit: Limit: Nitrobenzene-d5 130 198 10 2-Fluorobiphenyl 85 117 45 2,4,6-Tribromophenol 81 11 158

Terphenyl-d14 100 Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 2-Methylnaphthalene 0.151-Methylnaphthalene 0.17 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene 0.074 Phenanthrene 0.061 Anthracene < 0.01 Fluoranthene 0.011 Pyrene 0.013 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Method Blank Client: Point Source Solutions

Date Received: Not Applicable Project: 2436 SE 12th Ave, F&BI 302353

Date Extracted: 03/06/23 Lab ID: 03-527 mb 1/5 Date Analyzed: 03/06/23 Data File: 030615.DGCMS12 Soil Matrix: Instrument: Units: mg/kg (ppm) Dry Weight VMOperator:

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Nitrobenzene-d5	102	16	137
2-Fluorobiphenyl	95	46	122
2,4,6-Tribromophenol	105	17	154
Terphenyl-d14	98	31	167

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 2-Methylnaphthalene < 0.01 1-Methylnaphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 303073-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	<5	90	96	75-125	6

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	96	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 303040-01 (Matrix Spike)

· ·	1 /		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2	< 0.5	27	19	10-142	35 vo
Chloromethane	mg/kg (ppm)	2	< 0.5	56	43	10-126	26 vo
Vinyl chloride	mg/kg (ppm)	2 2	< 0.05	52	43 99	10-138	19
Bromomethane Chloroethane	mg/kg (ppm) mg/kg (ppm)	2	<0.5 <0.5	74 70	99 62	10-163 10-176	29 vo 12
Trichlorofluoromethane	mg/kg (ppm)	2	< 0.5	69	60	10-176	14
Acetone	mg/kg (ppm)	10	<5	65	51	10-163	24 vo
1,1-Dichloroethene	mg/kg (ppm)	2	< 0.05	78	68	10-160	14
Hexane	mg/kg (ppm)	2	< 0.25	63	54	10-137	15
Methylene chloride	mg/kg (ppm)	2	< 0.5	80	67	10-156	18
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	< 0.05	90	81	21-145	11
trans-1,2-Dichloroethene	mg/kg (ppm)	2 2	< 0.05	82	73	14-137	12
1,1-Dichloroethane 2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2	<0.05 <0.05	81 88	71 81	19-140 10-158	13 8
cis-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	84	77	25-135	9
Chloroform	mg/kg (ppm)	2	< 0.05	89	80	21-145	11
2-Butanone (MEK)	mg/kg (ppm)	10	<1	88	76	19-147	15
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	< 0.05	88	79	12-160	11
1,1,1-Trichloroethane	mg/kg (ppm)	2	< 0.05	94	83	10-156	12
1,1-Dichloropropene	mg/kg (ppm)	2	< 0.05	82	74	17-140	10
Carbon tetrachloride	mg/kg (ppm)	2	< 0.05	90	81	9-164	11
Benzene	mg/kg (ppm)	2 2	< 0.03	87	77	29-129	12
Trichloroethene 1,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2	<0.02 <0.05	86 80	77 70	21-139 30-135	11 13
Bromodichloromethane	mg/kg (ppm)	2	< 0.05	92	82	23-155	11
Dibromomethane	mg/kg (ppm)	2	< 0.05	90	79	23-145	13
4-Methyl-2-pentanone	mg/kg (ppm)	10	<1	96	84	24-155	13
cis-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	88	77	28-144	13
Toluene	mg/kg (ppm)	2	< 0.05	84	74	35-130	13
trans-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	86	76	26-149	12
1,1,2-Trichloroethane	mg/kg (ppm)	2 10	< 0.05	82	72	10-205	13
2-Hexanone 1,3-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2	<0.5 <0.05	95 86	84 76	15-166 31-137	12 12
Tetrachloroethene	mg/kg (ppm)	2	< 0.025	96	85	20-133	12
Dibromochloromethane	mg/kg (ppm)	2	< 0.05	86	78	28-150	10
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	< 0.05	84	74	28-142	13
Chlorobenzene	mg/kg (ppm)	2	< 0.05	89	79	32-129	12
Ethylbenzene	mg/kg (ppm)	2	< 0.05	89	79	32-137	12
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	89	80	31-143	11
m,p-Xylene	mg/kg (ppm)	4 2	<0.1	89	78	34-136	13
o-Xylene Styrene	mg/kg (ppm) mg/kg (ppm)	2	<0.05 <0.05	86 88	78 79	33-134 35-137	10 11
Isopropylbenzene	mg/kg (ppm)	2	< 0.05	93	83	31-142	11
Bromoform	mg/kg (ppm)	2	< 0.05	89	82	21-156	8
n-Propylbenzene	mg/kg (ppm)	2	< 0.05	87	81	23-146	7
Bromobenzene	mg/kg (ppm)	2	< 0.05	91	84	34-130	8
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	89	82	18-149	8
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2 2	< 0.05	92	87	28-140	6
1,2,3-Trichloropropane	mg/kg (ppm)	2	< 0.05	83 73 b	77 60 b	25-144	7 20 b
2-Chlorotoluene 4-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	2	0.65 <0.05	73 B 85	60 в 79	31-134 31-136	20 b 7
tert-Butylbenzene	mg/kg (ppm)	2	< 0.05	92	85	30-137	8
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	87	81	10-182	7
sec-Butylbenzene	mg/kg (ppm)	2	0.087	90	82	23-145	9
p-Isopropyltoluene	mg/kg (ppm)	2	< 0.05	91	84	21-149	8
1,3-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	89	83	30-131	7
1,4-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	91	84	29-129	8
1,2-Dichlorobenzene	mg/kg (ppm)	2 2	< 0.05	90	84	31-132	7
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	$\frac{2}{2}$	<0.5 <0.25	80 93	75 83	11-161 22-142	6 11
Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	2	< 0.25	120	105	10-142	13
Naphthalene	mg/kg (ppm)	2	< 0.05	88	80	14-157	10
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	< 0.25	94	83	20-144	12

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Dichlorodifluoromethane	mg/kg (ppm)	2	53	10-146		
Chloromethane	mg/kg (ppm)	2	69	27-133		
Vinyl chloride	mg/kg (ppm)	2	72	22-139		
Bromomethane	mg/kg (ppm)	$\frac{2}{2}$	143 vo	38-114		
Chloroethane Trichlorofluoromethane	mg/kg (ppm)	2	91 92	9-163 10-196		
Acetone	mg/kg (ppm) mg/kg (ppm)	10	92 72	52-141		
1.1-Dichloroethene	mg/kg (ppm)	2	92	47-128		
Hexane	mg/kg (ppm)	2	86	43-142		
Methylene chloride	mg/kg (ppm)	2	92	10-184		
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	99	60-123		
trans-1,2-Dichloroethene	mg/kg (ppm)	2	92	67-129		
1,1-Dichloroethane	mg/kg (ppm)	2	91	68-115		
2,2-Dichloropropane	mg/kg (ppm)	2 2	98	52-170		
cis-1,2-Dichloroethene Chloroform	mg/kg (ppm) mg/kg (ppm)	2	95 98	72-127 66-120		
2-Butanone (MEK)	mg/kg (ppm)	10	95	30-120		
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	95	56-135		
1,1,1-Trichloroethane	mg/kg (ppm)	2	106	62-131		
1,1-Dichloropropene	mg/kg (ppm)	2	92	69-128		
Carbon tetrachloride	mg/kg (ppm)	2	103	60-139		
Benzene	mg/kg (ppm)	2	94	71-118		
Trichloroethene	mg/kg (ppm)	2	99	63-121		
1,2-Dichloropropane	mg/kg (ppm)	$\frac{2}{2}$	86	72-127		
Bromodichloromethane Dibromomethane	mg/kg (ppm) mg/kg (ppm)	2	100 99	57-126 62-123		
4-Methyl-2-pentanone	mg/kg (ppm)	10	99	45-145		
cis-1,3-Dichloropropene	mg/kg (ppm)	2	93	67-122		
Toluene	mg/kg (ppm)	2	89	66-126		
trans-1,3-Dichloropropene	mg/kg (ppm)	2	88	72-132		
1,1,2-Trichloroethane	mg/kg (ppm)	2	84	64-115		
2-Hexanone	mg/kg (ppm)	10	99	33-152		
1,3-Dichloropropane	mg/kg (ppm)	2 2	89	72-130		
Tetrachloroethene Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	2	102 93	72-114 55-121		
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	95 88	74-132		
Chlorobenzene	mg/kg (ppm)	2	92	76-111		
Ethylbenzene	mg/kg (ppm)	2	92	64-123		
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	94	64-121		
m,p-Xylene	mg/kg (ppm)	4	92	78-122		
o-Xylene	mg/kg (ppm)	2	93	77-124		
Styrene	mg/kg (ppm)	2	92	74-126		
Isopropylbenzene Bromoform	mg/kg (ppm)	2 2	98 97	76-127 56-132		
n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	2	93	74-124		
Bromobenzene	mg/kg (ppm)	2	99	72-122		
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	98	76-126		
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	88	56-143		
1,2,3-Trichloropropane	mg/kg (ppm)	2	88	61-137		
2-Chlorotoluene	mg/kg (ppm)	2	94	74-121		
4-Chlorotoluene	mg/kg (ppm)	$\frac{2}{2}$	92	75-122		
tert-Butylbenzene	mg/kg (ppm)	$\frac{2}{2}$	99 96	73-130		
1,2,4-Trimethylbenzene sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2	96 97	76-125 71-130		
p-Isopropyltoluene	mg/kg (ppm)	$\frac{2}{2}$	97	70-132		
1,3-Dichlorobenzene	mg/kg (ppm)	2	98	75-121		
1,4-Dichlorobenzene	mg/kg (ppm)	2	99	74-117		
1,2-Dichlorobenzene	mg/kg (ppm)	2	100	76-121		
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	89	58-138		
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	96	64-135		
Hexachlorobutadiene	mg/kg (ppm)	2 2	107	50-153		
Naphthalene 1.2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2 2	92 95	63-140 63-138		
1,2,0-11ICHIOTODEHZEHE	mg/kg (ppm)	4	ฮย	09-190		

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 303077-11 1/5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	84	81	50-150	4
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	92	87	50-150	6
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	94	89	50-150	5
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	98	94	50-150	4
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	89	85	50-150	5
Fluorene	mg/kg (ppm)	0.83	< 0.01	97	93	50-150	4
Phenanthrene	mg/kg (ppm)	0.83	< 0.01	90	89	10-170	1
Anthracene	mg/kg (ppm)	0.83	< 0.01	90	89	50-150	1
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	96	94	10-203	2
Pyrene	mg/kg (ppm)	0.83	< 0.01	89	86	10-208	3
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.01	95	93	37-146	2
Chrysene	mg/kg (ppm)	0.83	< 0.01	93	90	36-144	3
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	91	90	40-150	1
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	94	91	45-157	3
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.01	89	88	50-150	1
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.01	82	81	24-145	1
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	79	76	31-137	4
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	< 0.01	75	71	14-141	5

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

			$\operatorname{Percent}$	
Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	89	58-108
2-Methylnaphthalene	mg/kg (ppm)	0.83	96	67-109
1-Methylnaphthalene	mg/kg (ppm)	0.83	98	66-107
Acenaphthylene	mg/kg (ppm)	0.83	105	70-130
Acenaphthene	mg/kg (ppm)	0.83	97	66-112
Fluorene	mg/kg (ppm)	0.83	103	67-117
Phenanthrene	mg/kg (ppm)	0.83	98	70-130
Anthracene	mg/kg (ppm)	0.83	98	70-130
Fluoranthene	mg/kg (ppm)	0.83	103	70-130
Pyrene	mg/kg (ppm)	0.83	97	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	101	70-130
Chrysene	mg/kg (ppm)	0.83	100	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	95	68-120
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	95	69-125
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	92	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	92	67-129
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	87	67-128
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	85	67-127

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. B4-52-11 City, State, ZIP Vancouver, NA B4-51-4 302353 Report To Address 5317 NEST Johns Rd, StED B3-82-16 B3-81-4 Company Point Source Solutions B2-52-16 B2-51-11 Bi-Si-10 Sample ID Gil C065 Received by: Relinquished by: Received by: Relinquished by: _Email_ P 8 2 b3 04 S S 01 A-C Lab ID tow Year SIGNATURE ۲ ۲. 2/22/23 ~ 2 E ٤. Date Sampled 7 ť 3 44:41 14:52 13:43 12:16 Time Sampled 13:58 i en 3:7 11:58 SAMPLE CHAIN OF CLISTODY Project Specific RLs - Yes SAMPLERS (signature) REMARKS PROJECT NAME 2436 SE 12+ Au 7.105 8011 <u>.</u> 8. Soil Sil Soi/ 5 Sample Type John Rowanie ANHROTALS PRINT ZAVE w w تى w # of Jars W w W メ X X X X X NWTPH-Dx Z the Mein X X X × X NWTPH-Gx BTEX EPA 8021 Sample \$ received VOCs EPA 8260 AN ALYSES REQUESTED PAHs EPA 8270 INVOICE TO PCBs EPA 8082 **P**0# Point Source L end COMPANY X Standard Turnaround 23 Rush charges authorized by at **Archive Samples** Dispose after 30 days TURNAROUND TIME Page # SAMPLE DISPOSAL % ကိ 02/27/23 11 2 27 23 16 DATE 2/3/23 1 Der KF Notes of

-

OREGON DEPARTMENT OF ENVIRONMENTAL QUALITY UNDERGROUND STORAGE TANK PROGRAM

UNDERGROUND STORAGE TANK DECOMMISSIONING CHECKLIST AND SITE ASSESSMENT REPORT

A. FACILITY INFORMATION:

This report <u>MUST</u> be submitted by the underground storage tank permittee or tank owner, or the licensed DEQ Service Provider on their behalf, within 30 days following completion of the tank decommissioning or change-in-service regardless of ongoing cleanup work.

DEQ FACILITY NUI	MBER:					
FACILITY NAME:	Former	Trelfth	Avenue	Moter	Service	
FACILITY ADDRES	is: 2436	, SE	12+4	Avenue		,
PERMITTEE PHONE	E: 503 -	327-12	78	D	DATE: 6/14	123

B. WORK PERFORMED BY:

The checklist and site assessment report should be completed and signed by the DEQ licensed supervisor and signed by an executive officer of the DEQ licensed Service Provider on page 6. The tank owner or permittee must review and sign the report on page 6. NOTE: AN OWNER OR PERMITTEE MAY PERFORM UST SERVICES ONLY IF THEY HAVE TAKEN AND PASSED THE APPROPRIATE UST SUPERVISOR EXAMINATION OFFERED BY A NATIONAL TESTING SERVICE (SEE OAR 340-150-0156 for requirements).

DEQ Service Provider's License #: 2708.	5	Construction	Contractors Board Lic	ense #: 184586
Name:	Point	Source	Solutions	
Telephone:	(503)) 236 -	- 5885	
DEQ Decommissioning Supervisor's License #:	2:	7447		
Name:	Ky	e Fishe	· ·	
Telephone:	(503) 860 -	- 8811	_
DEQ Soil Matrix Service Provider's License #:				(If applicable)
Name:				
Telephone:				
DEQ Soil Matrix Supervisor's License #:				(If applicable)
Name:				
Telephone:				

C.	T	A 7		C1.
		ΔR I	I H	

Decommissioning/Change-in-Service Notice - Date Submitted: 5/15/23 (30 days before work starts).
Work Start Telephone Notice - Number issued by DEQ: N/A (3 working days before work starts).
DEQ Person Notified: Mark Drogin
DEQ Person Notified: Mark Drog: n Date Work Started: 6/12/23 Date Work Completed: 6/14/23
Note: Provide the following information if any soil or water contamination is found during the decommissioning or change-inservice. Contamination must be reported by the UST permittee within 24 hours. The licensed service provider must report contamination within 72 hours after discovery unless previously reported.
Date Contamination Reported: 3/3/23 By: Point Source Solutions
DEQ Person Notified: Goral & Ganolo

D. OTHER DEQ PERMITS MAY BE NEEDED WHERE SOIL OR WATER CLEANUP IS REQUIRED.

DEQ Water Discharge Permit #:	Date:	
Water Disposed to (Location):		
DEQ Solid Waste Disposal Permit #:	Date:	
Soil Disposal or Treatment Location:		

E. TANK INFORMATION:

			PRODUCT: O DIESEL, U OTHI	SED OIL,	CLOSURE (OR CHANGE-IN	- SERVICE?		TO BE ACED?
TANK ID#	DEQ-UST PERMIT #	TANK SIZE IN GALLONS	PRESENT	NEW	TANK REMOVAL	CLOSURE IN PLACE•	CHANGE IN SERVICE+	YES	NO
1		1,000	None						X
2		1,000	None		X				X

NOTE 1: Where decommissioned tank(s) are replaced by new underground storage tanks the UST permittee must submit a *General Permit Registration Form to Install and Operate USTs* containing information on the new tanks 30 days before installing them.

NOTE 2: Submit a soil sampling plan to the DEQ regional office and receive plan approval prior to starting work if 1) tank is to be decommissioned in-place, 2) tank contents are changed to a non-regulated substance, 3) tank contains a regulated substance other than petroleum, or 4) tank changed to non-regulated use.

F. DISPOSAL INFORMATION:

	Т	ANK AN	D PIPING	DISPOSAL METHOD	DISPOSAL LOCATION OF TANK CONTENTS		
TANK ID#			OTHER	IDENTIFY LOCATION & PROPERTY OWNER	LIQUIDS	SLUDGES	
1	X			Metro Metals	ORRLO	None	
2	X			Metro Mutsly	ORRCO	None	

NOTE 1: The tank contents, the tank and the piping may be subject to the requirements of Hazardous Waste regulations. If you have questions, contact the DEQ regional office for your area.

NOTE 2: Attach copies of the disposal receipts for the tanks and piping. If the tanks are shipped off-site for reuse provide the name, address and phone number of the person or business receiving the tanks for reuse.

NOTE 3: Attach copies of the disposal receipts for the disposal or treatment of liquid or sludge removed from the tanks

G. CONTAMINATION INFORMATION:

TANK ID#	GROUND WATER IN PIT ?	PRODUCT ODOR IN SOIL ?	PRODUCT STAINS IN SOIL ?	NUMBER OF SAMPLES	LABORATORY (NAME, CITY, STATE, PHONE)
1		X	X	12	Friedman and Bayer Seattle, WA
2		×	X	15	(206) 285-8282
					0)

NOTE 1: Attach a copy of the laboratory report showing the results of all tests on all soil and water samples. The laboratory report must identify sample collection methods, sample location, sample depth, sample type (soil or water), type of sample container, sample temperature during transportation, types of tests, and copies of analytical laboratory reports, including QA/QC information. Include laboratory name, address and copies of chain-of-custody forms.

NOTE 2: If contamination is detected and a Level 2 or Level 3 soil matrix cleanup standard is applied to the site, attach a copy of the soil matrix analysis including methods of determining soil type, depth to groundwater, and sensitivity of uppermost aquifer.

e Extinguisher:	Type/Size: First	Alert	F	Recharge Date	: 7/1/	21
embustible Gas Detector:	Model: Ve-Lis	MXY		libration Date	1	
ygen Analyzer:	Model: Ventis	MXH	Ca	libration Date):	
DECOMMISSIONING:						
All Tanks: N/A = No	t Applicable (Check (√) App	propriate Box)	YES	NO	UNKNOWN	N/A
1. All electrical equipm	nent grounded and explosion p	roof?	×			
2. Safety equipment on	job site?		X			
3. Overhead electrical li	ines located?		X			
4. Subsurface electrical	lines off or disconnected?		×			
5. Natural gas lines off	or disconnected?			×		
6. No open fires or smo	king material in area?		X			
7. Vehicle and pedestria	an traffic controlled?		X			
8. Excavation material a	area cleared?		×			
9. Rainwater runoff dire	ected to treatment area?					×
10. Drained and collecte	ed product from lines?					×
11. Removed product ar	nd residual from tank?		X			
12. Cleaned tank?			X			
13. Excavated to top of	tank?		X			
14. Removed tank fixtu	res? (pumps, leak detection eq	quipment)	X			
15. Removed product, f	ill and vent lines?		X			
TANK ABANDONMEN	VT IN-PLACE:					
	t Applicable (Check (√) App	propriate Box)	YES	NO	UNKNOWN	N/A
16. Sampling plan appro	oved by DEQ? DEQ Staff:					
17 Contamination cone						

18. Fill Material?

Type:

L. TANK REMOVAL:

All Tanks: N/A = Not Applicable (Check (√) Appropriate Box)	YES	NO	UNKNOWN	N/A
19. Tank placement area cleared, chocks placed?	\times			
20. Purged or ventilated tank to prevent explosion?				
Method used: Vertilation	X			
Meter reading: LEL: 0.0				
21. Were chains or steel cables wrapped around tank for removal?		X		
22. Tank removed, set on ground, blocked to prevent movement?	X			
23. Tank set on truck and secured with straps(s)?	X			
24. Tank labeled before leaving site?	X			

M. SITE ASSESSMENT:

All Tanks: N/A = Not Applicable (Check (√) Appropriate Box)	YES	NO	UNKNOWN	N/A
25. Site assessed for contamination? See OAR 340-122-0340	X			
26. Soil samples taken and analyzed?	X			
27. Was contamination found? Date/Time: 6/13/23	X			
28. Was hazardous waste determination made for tank contents (Liquids/sludges)?				X

N. REQUIRED SIGNATURES:
I have personally reviewed this decommissioning checklist and site assessment report and the attachments and find them to be true and complete.
Permittee or Tank Owner: Cock knope - Jenkins (Please Print)
Permittee or Tank Owner: Signature) Date: 6/17/23
I have personally reviewed this decommissioning checklist and site assessment report and the attachments and find them to be true and complete.
Licensed Supervisor: Kyle Fisher (Please Print)
Licensed Supervisor: Date: 6/14/23 (Signature)
I have personally reviewed this decommissioning checklist and site assessment report and the attachments and find them to be true and complete.
Executive Officer:
Licensed Service Provider (Please Print)
Executive Officer: Date: 6/22/23
Licensed Service Provider (Signature)

Reprint Ticket# 1685981

Volume

SOIL SOLUTIONS ENVIR

Customer Name POINT SOURCE SOLUTIONS POINT Carrier

Ticket Date 06/15/2023
Payment Type Credit Account

Manual Ticket# Hauling Ticket#

Route

State Waste Code Manifest NA

Destination

PΟ

Profile 1402980R (Diesel Fuel/Fuel Oil Contaminated Soil)
Generator 133-SKYHOOK HOLDINGS 2436 SKYHOOK HOLDINGS LLC 2436 SE 12TH AVE PORTLAND OR

Operator Scale Inbound Gross 54520 lb In 06/15/2023 07:58:02 Inbound 2 tlong5 Out 06/15/2023 08:11:46 Outbound MLAWREN4 Tare 30460 lb 24060 lb Net 12.03 Tons

Vehicle# 28

DAN

Billing # 0003349 Gen EPA ID

Container

Driver

Check#

Grid

Comments

Consumer Comments? We want to know. Please call.

Prod	luct	LD%	Qty	UOM	Rate	Tax	Amount	Origin
1 2	Cont Soil Pet-RGC- ENERGY-Energy Surc		12.03	Tons				MULT-IN

Total Tax Total Ticket

Reprint Ticket# 1686055

Volume

Customer Name POINT SOURCE SOLUTIONS POINT Carrier

Ticket Date 06/15/2023
Payment Type Credit Account

Manual Ticket# Hauling Ticket#

Route State Waste Code

Manifest NA Destination

PΟ

Profile 1402980R (Diesel Fuel/Fuel Oil Contaminated Soil)
Generator 133-SKYHOOK HOLDINGS 2436 SKYHOOK HOLDINGS LLC 2436 SE 12TH AVE PORTLAND OR

Grid

Container

Driver

Check#

Carrier SOIL SOLUTIONS ENVIR Vehicle# 28 Vo

DAN

Billing # 0003349 Gen EPA ID

Scale Operator Inbound Gross 54180 lb 30400 lb 23780 lb In 06/15/2023 11:11:46 Inbound 2 mramos14 Out 06/15/2023 11:28:36 Outbound MLAWREN4 Tare Net 11.89 Tons

Comments

Consumer Comments? We want to know. Please call.

Prod	luct	LD%	Qty	UOM	Rate	Tax	Amount	Origin
1 2	Cont Soil Pet-RGC- ENERGY-Energy Surc		11.89	Tons				MULT-IN

Total Tax Total Ticket

Reprint Ticket# 1686125

Volume

Customer Name POINT SOURCE SOLUTIONS POINT Carrier

Ticket Date 06/16/2023
Payment Type Credit Account

Manual Ticket# Hauling Ticket#

Route

State Waste Code Manifest NA Destination

Carrier SOIL SOLUTIONS ENVIR Vehicle# 28 Vo Container Driver DAN Check# Billing # 0003349 Gen EPA ID

Grid

PΟ

Profile 1402980R (Diesel Fuel/Fuel Oil Contaminated Soil)
Generator 133-SKYHOOK HOLDINGS 2436 SKYHOOK HOLDINGS LLC 2436 SE 12TH AVE PORTLAND OR

Operator Scale Inbound Gross 55280 lb In 06/16/2023 06:37:04 Inbound 1 ecobb
Out 06/16/2023 06:50:34 Outbound tlong5 Tare 30380 lb 24900 lb Net 12.45 Tons

Comments

Consumer Comments? We want to know. Please call.

Prod	luct	LD%	Qty	MOU	Rate	Tax	Amount	Origin
1 2	Cont Soil Pet-RGC- ENERGY-Energy Surc		12.45	Tons				MULT-IN MULT-IN

Total Tax Total Ticket

Reprint Ticket# 1686620

Volume

Customer Name POINT SOURCE SOLUTIONS POINT Carrier

Ticket Date 06/21/2023
Payment Type Credit Account

Manual Ticket# Hauling Ticket#

Route

State Waste Code Manifest NA

Destination

PΟ

Profile 1402980R (Diesel Fuel/Fuel Oil Contaminated Soil)
Generator 133-SKYHOOK HOLDINGS 2436 SKYHOOK HOLDINGS LLC 2436 SE 12TH AVE PORTLAND OR

Scale Operator Inbound Gross 55580 lb 06/21/2023 08:31:55 Inbound 1 Igillila 06/21/2023 08:46:04 Outbound tlong5 Tare 31300 lb Tn Out 06/21/2023 08:46:04 Outbound Net 24280 lb 12.14 Tons

Container

Driver

Check#

Grid

Carrier SOIL SOLUTIONS ENVIR Vehicle# 28 Vo

DAN

Billing # 0003349 Gen EPA ID

Comments

Consumer Comments? We want to know. Please call.

Prod	luct	LD%	Qty	UOM	Rate	Tax	Amount	Origin
1 2	Cont Soil Pet-RGC- ENERGY-Energy Surc		12.14	Tons				MULT-IN

Total Tax Total Ticket

APPENDIX C LABORATORY ANALYTICAL REPORTS

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

June 27, 2023

Gil Cobb, Project Manager Point Source Solutions 5317 NE St Johns Rd, Suite D Vancouver, WA 98661

Dear Mr Cobb:

Included are the results from the testing of material submitted on June 20, 2023 from the 2436 SE 12th Ave, F&BI 306309 project. There are 13 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Point Source Reports, Kyle Fisher PSS0627R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 20, 2023 by Friedman & Bruya, Inc. from the Point Source Solutions 2436 SE 12th Ave, F&BI 306309 project. Samples were logged in under the laboratory ID's listed below.

Point Source Solutions
NPW-S1-8
EPW-S1-8
NPB-S1-8
NPB-S2-11
WPW-S1-11
SWPW-S1-10
SPB-S1-11
SPW-S1-11
SEPW-S1-10
CPB-S1-11.5
NPW2-S1-9
NWPW-S1-10
NPB2-S1-11.5

The 8260D calibration standard exceeded the acceptance criteria for several compounds. They were not detected, therefore the results do not represent an out of control condition.

The 8260D calibration standard failed the acceptance criteria for 2-butanone and 2-hexanone. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/20/23

Project: 2436 SE 12th Ave, F&BI 306309

Date Extracted: 06/21/23 Date Analyzed: 06/21/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
NPW-S1-8 306309-01	<5	118
EPW-S1-8 306309-02	<5	110
NPB-S1-8 306309-03	<5	116
SWPW-S1-10 306309-06	<5	116
SPB-S1-11 306309-07	<5	120
SPW-S1-11 306309-08	<5	111
SEPW-S1-10 306309-09	<5	106
NPW2-S1-9 306309-11 1/20	9,700	ip
NWPW-S1-10 306309-12	<5	112
NPB2-S1-11.5 306309-13	<5	109
Method Blank 03-1392 MB	<5	111

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/20/23

Project: 2436 SE 12th Ave, F&BI 306309

Date Extracted: 06/21/23 Date Analyzed: 06/21/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25} ext{)}}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 50-150)
NPW-S1-8 306309-01	<50	<250	97
EPW-S1-8 306309-02	<50	<250	94
NPB-S1-8 306309-03	<50	<250	92
SWPW-S1-10 306309-06	<50	<250	94
SPB-S1-11 306309-07	<50	<250	93
SPW-S1-11 306309-08	<50	<250	92
SEPW-S1-10 306309-09	<50	<250	92
NPW2-S1-9 306309-11	310 x	<250	91
NWPW-S1-10 306309-12	<50	<250	92
NPB2-S1-11.5 306309-13	<50	<250	92
Method Blank 03-1495 MB2	<50	<250	91

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: NPW2-S1-9 Client: Point Source Solutions

Date Received: 06/20/23 Project: 2436 SE 12th Ave, F&BI 306309

 Date Extracted:
 06/22/23
 Lab ID:
 306309-11

 Date Analyzed:
 06/23/23
 Data File:
 306309-11.038

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead 35.4

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Point Source Solutions

Date Received: NA Project: 2436 SE 12th Ave, F&BI 306309

Date Extracted: 06/22/23 Lab ID: I3-507 mb
Date Analyzed: 06/23/23 Data File: I3-507 mb.036
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: NPW2-S1-9 Client: Point Source Solutions

Date Received: 06/20/23 Project: 2436 SE 12th Ave, F&BI 306309

06/21/23 Lab ID: Date Extracted: 306309-11 1/10 Date Analyzed: 06/21/23 Data File: 062113.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	90	109
Toluene-d8	103	86	115
4-Bromofluorobenzene	100	84	115

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	<5	1,3-Dichloropropane	< 0.5
Chloromethane	<5	Tetrachloroethene	< 0.25
Vinyl chloride	< 0.5	Dibromochloromethane	< 0.5
Bromomethane	<5 k	1,2-Dibromoethane (EDB)	< 0.5
Chloroethane	<5 k	Chlorobenzene	< 0.5
Trichlorofluoromethane	<5 k	Ethylbenzene	56
Acetone	< 50	1,1,2-Tetrachloroethane	< 0.5
1,1-Dichloroethene	< 0.5	m,p-Xylene	240
Hexane	< 2.5	o-Xylene	95
Methylene chloride	<5	Styrene	< 0.5
Methyl t-butyl ether (MTBE)	< 0.5	Isopropylbenzene	12
trans-1,2-Dichloroethene	< 0.5	Bromoform	< 0.5
1,1-Dichloroethane	< 0.5	n-Propylbenzene	45
2,2-Dichloropropane	< 0.5	Bromobenzene	< 0.5
cis-1,2-Dichloroethene	< 0.5	1,3,5-Trimethylbenzene	110
Chloroform	< 0.5	1,1,2,2-Tetrachloroethane	< 0.5
2-Butanone (MEK)	<10 ca	1,2,3-Trichloropropane	< 0.5
1,2-Dichloroethane (EDC)	< 0.5	2-Chlorotoluene	< 0.5
1,1,1-Trichloroethane	< 0.5	4-Chlorotoluene	< 0.5
1,1-Dichloropropene	< 0.5	tert-Butylbenzene	< 0.5
Carbon tetrachloride	< 0.5	1,2,4-Trimethylbenzene	350
Benzene	< 0.3	sec-Butylbenzene	5.1
Trichloroethene	< 0.2	p-Isopropyltoluene	2.5
1,2-Dichloropropane	< 0.5	1,3-Dichlorobenzene	< 0.5
Bromodichloromethane	< 0.5	1,4-Dichlorobenzene	< 0.5
Dibromomethane	< 0.5	1,2-Dichlorobenzene	< 0.5
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<5
cis-1,3-Dichloropropene	< 0.5	1,2,4-Trichlorobenzene	< 2.5
Toluene	< 0.5	Hexachlorobutadiene	< 2.5
trans-1,3-Dichloropropene	< 0.5	Naphthalene	33
1,1,2-Trichloroethane	< 0.5	1,2,3-Trichlorobenzene	< 2.5
2-Hexanone	<5 ca		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Point Source Solutions

Date Received: Not Applicable Project: 2436 SE 12th Ave, F&BI 306309

06/21/23 Lab ID: Date Extracted: 03-1452 mbDate Analyzed: 06/21/23 Data File: 062106.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: MD

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	90	109
Toluene-d8	97	86	115
4-Bromofluorobenzene	94	84	115

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	<0.5 k	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	<0.5 k	Chlorobenzene	< 0.05
Trichlorofluoromethane	<0.5 k	Ethylbenzene	< 0.05
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1 ca	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	<0.5 ca		

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/20/23

Project: 2436 SE 12th Ave, F&BI 306309

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 306309-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	mg/kg (ppm)	40	97	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/20/23

Project: 2436 SE 12th Ave, F&BI 306309

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 306312-01 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	5.500	64	82	64-136	25

		Percent							
	Reporting	Spike	Recovery	Acceptance					
Analyte	Units	Level	LCS	Criteria					
Diesel Extended	mg/kg (ppm)	5,000	94	78-121					

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/20/23

Project: 2436 SE 12th Ave, F&BI 306309

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 306309-11 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	28.6	86 b	95 b	75-125	10 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	95	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/20/23

Project: 2436 SE 12th Ave, F&BI 306309

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 306325-03 (Matrix Spike)

· ·	1 /		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2	< 0.5	37	34	10-142	8
Chloromethane	mg/kg (ppm)	2	< 0.5	54	54	10-126	0
Vinyl chloride	mg/kg (ppm)	$\frac{2}{2}$	< 0.05	60	59	10-138	2 3
Bromomethane Chloroethane	mg/kg (ppm) mg/kg (ppm)	2	<0.5 <0.5	69 69	67 68	10-163 10-176	3 1
Trichlorofluoromethane	mg/kg (ppm)	2	< 0.5	82	83	10-176	1
Acetone	mg/kg (ppm)	10	<5	82 82	80	10-176	2
1.1-Dichloroethene	mg/kg (ppm)	2	< 0.05	81	82	10-160	1
Hexane	mg/kg (ppm)	2	< 0.25	68	70	10-137	3
Methylene chloride	mg/kg (ppm)	2	< 0.5	79	79	10-156	0
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	< 0.05	82	83	21-145	1
trans-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	84	83	14-137	1
1,1-Dichloroethane	mg/kg (ppm)	2	< 0.05	77	76	19-140	1
2,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	77	76	10-158	1
cis-1,2-Dichloroethene Chloroform	mg/kg (ppm) mg/kg (ppm)	$\frac{2}{2}$	<0.05 <0.05	80 76	81 76	25-135 $21-145$	1 0
2-Butanone (MEK)	mg/kg (ppm)	10	<1	68	67	19-147	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	< 0.05	72	71	12-160	1
1,1,1-Trichloroethane	mg/kg (ppm)	2	< 0.05	76	74	10-156	3
1,1-Dichloropropene	mg/kg (ppm)	2	< 0.05	76	76	17-140	0
Carbon tetrachloride	mg/kg (ppm)	2	< 0.05	75	75	9-164	0
Benzene	mg/kg (ppm)	2	< 0.03	78	78	29-129	0
Trichloroethene	mg/kg (ppm)	2	< 0.02	80	80	21-139	0
1,2-Dichloropropane	mg/kg (ppm)	2	< 0.05	77	78	30-135	1
Bromodichloromethane	mg/kg (ppm)	2	< 0.05	75 70	75 70	23-155	0
Dibromomethane	mg/kg (ppm)	2 10	<0.05 <1	79	79 79	23-145 $24-155$	0
4-Methyl-2-pentanone cis-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2	< 0.05	78 77	79 76	28-144	1
Toluene	mg/kg (ppm)	2	< 0.05	83	84	35-130	1
trans-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	73	75	26-149	3
1,1,2-Trichloroethane	mg/kg (ppm)	2	< 0.05	79	80	10-205	1
2-Hexanone	mg/kg (ppm)	10	< 0.5	67	69	15-166	3
1,3-Dichloropropane	mg/kg (ppm)	2	< 0.05	78	79	31-137	1
Tetrachloroethene	mg/kg (ppm)	2	< 0.025	86	88	20-133	2
Dibromochloromethane	mg/kg (ppm)	2	< 0.05	78	82	28-150	5
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2 2	< 0.05	80	81	28-142	1
Chlorobenzene Ethylbenzene	mg/kg (ppm) mg/kg (ppm)	2	<0.05 <0.05	82 78	83 80	32-129 32-137	1 3
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	80	83	31-143	3 4
m,p-Xylene	mg/kg (ppm)	4	< 0.1	81	84	34-136	4
o-Xylene	mg/kg (ppm)	2	< 0.05	80	81	33-134	1
Styrene	mg/kg (ppm)	2	< 0.05	81	83	35-137	2
Isopropylbenzene	mg/kg (ppm)	2	< 0.05	81	82	31-142	1
Bromoform	mg/kg (ppm)	2	< 0.05	79	82	21-156	4
n-Propylbenzene	mg/kg (ppm)	2	< 0.05	78	79	23-146	1
Bromobenzene	mg/kg (ppm)	2	< 0.05	81	83	34-130	2
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	mg/kg (ppm)	$\frac{2}{2}$	<0.05 <0.05	81 78	81 79	18-149 28-140	0 1
1,1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	2	< 0.05	78 74	75	28-140 25-144	1
2-Chlorotoluene	mg/kg (ppm)	2	< 0.05	77	78	31-134	1
4-Chlorotoluene	mg/kg (ppm)	2	< 0.05	77	77	31-136	0
tert-Butylbenzene	mg/kg (ppm)	2	< 0.05	81	82	30-137	1
1,2,4-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	79	80	10-182	1
sec-Butylbenzene	mg/kg (ppm)	2	< 0.05	81	82	23-145	1
p-Isopropyltoluene	mg/kg (ppm)	2	< 0.05	83	84	21-149	1
1,3-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	83	83	30-131	0
1,4-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	83	83	29-129	0
1,2-Dichlorobenzene	mg/kg (ppm)	2 2	<0.05	82 69	83 71	31-132 11-161	1 3
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2	<0.5 <0.25	69 87	71 88	11-161 22-142	3 1
Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	2	< 0.25	85	87	10-142	2
Naphthalene	mg/kg (ppm)	2	< 0.05	84	86	14-157	2
1,2,3-Trichlorobenzene	mg/kg (ppm)	2	< 0.25	95	102	20-144	7
	0 0 4 4 7						

ENVIRONMENTAL CHEMISTS

Date of Report: 06/27/23 Date Received: 06/20/23

Project: 2436 SE 12th Ave, F&BI 306309

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2	59	10-146
Chloromethane	mg/kg (ppm)	2	65	27-133
Vinyl chloride	mg/kg (ppm)	2	77	22-139
Bromomethane	mg/kg (ppm)	$\frac{2}{2}$	81	10-201
Chloroethane Trichlorofluoromethane	mg/kg (ppm)	2	76 106	10-163 10-196
Acetone	mg/kg (ppm) mg/kg (ppm)	10	83	52-141
1.1-Dichloroethene	mg/kg (ppm)	2	98	47-128
Hexane	mg/kg (ppm)	2	90	43-142
Methylene chloride	mg/kg (ppm)	2	92	10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	95	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2	99	64-132
1,1-Dichloroethane	mg/kg (ppm)	2	90	64-135
2,2-Dichloropropane	mg/kg (ppm)	2 2	84	52-170
cis-1,2-Dichloroethene Chloroform	mg/kg (ppm) mg/kg (ppm)	2	93 90	64-135 61-139
2-Butanone (MEK)	mg/kg (ppm)	10	74	30-197
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	86	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2	88	62-131
1,1-Dichloropropene	mg/kg (ppm)	2	90	64-136
Carbon tetrachloride	mg/kg (ppm)	2	88	60-139
Benzene	mg/kg (ppm)	2	93	65-136
Trichloroethene	mg/kg (ppm)	2	95	63-139
1,2-Dichloropropane	mg/kg (ppm)	$\frac{2}{2}$	90 89	61-145
Bromodichloromethane Dibromomethane	mg/kg (ppm) mg/kg (ppm)	2	92	57-126 62-123
4-Methyl-2-pentanone	mg/kg (ppm)	10	92 92	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2	88	65-143
Toluene	mg/kg (ppm)	2	96	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	2	83	65-131
1,1,2-Trichloroethane	mg/kg (ppm)	2	92	62-131
2-Hexanone	mg/kg (ppm)	10	77	33-152
1,3-Dichloropropane	mg/kg (ppm)	2 2	90	67-128
Tetrachloroethene Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	2	99 92	68-128 55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	92 92	66-129
Chlorobenzene	mg/kg (ppm)	2	94	67-128
Ethylbenzene	mg/kg (ppm)	2	90	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	93	64-121
m,p-Xylene	mg/kg (ppm)	4	93	68-128
o-Xylene	mg/kg (ppm)	2	94	67-129
Styrene	mg/kg (ppm)	2	95	67-129
Isopropylbenzene Bromoform	mg/kg (ppm)	2 2	92 95	68-128 56-132
n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	2	99 88	68-129
Bromobenzene	mg/kg (ppm)	2	93	69-128
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	91	69-129
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	86	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	2	84	61-137
2-Chlorotoluene	mg/kg (ppm)	2	88	69-128
4-Chlorotoluene	mg/kg (ppm)	$\frac{2}{2}$	87	67-127
tert-Butylbenzene	mg/kg (ppm)	$\frac{2}{2}$	91 89	69-129
1,2,4-Trimethylbenzene sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2	91	69-128 69-130
p-Isopropyltoluene	mg/kg (ppm)	2	92	69-130
1,3-Dichlorobenzene	mg/kg (ppm)	2	93	69-127
1,4-Dichlorobenzene	mg/kg (ppm)	2	93	68-126
1,2-Dichlorobenzene	mg/kg (ppm)	2	93	69-127
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	82	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	93	64-135
Hexachlorobutadiene	mg/kg (ppm)	2 2	95	50-153
Naphthalene 1,2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2 2	89 94	62-128 61-126
1,2,0-111CHIOTODEHZEHE	mg/kg (ppm)	4	54	01-120

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

3063 Report T Phone_ City, St Address Compar SMPM-51-10 SPB-51 -11 MPM-51-11 SPW-51-11 NPW-51-8 CPB-51-11.5 NPB-52-11 EPW-51-8 NPB-51-Sample ID 0 08 8 10 8 2 8 E 0 Lab ID AC 6/14/23 6/13/23 Date Sampled Time Sampled 14:32 13:47 13:43 14:30 9:45 12:05 11:30 13:45 Sh:11 Sample Type # of Jars W $\frac{\overline{\times}}{\times}$ X NWTPH-Dx NWTPH-Gx

Sample ID		Email	tate, ZIP Vancone	is 5317 NE St Johns Rd Ste.	inv Point Source	To (Sil	309
Lab ID				Johns		Cobb	
Date Sampled			NA 98661	Rd Ste. D	Solutions		
Time Sampled		Project S	REMARKS	2436	PROJEC	SAMPA	SAMPLE CHAIN OF CUSTODY
Sample Type		Project Specific RLs - Yes / No	KS	2436 SE 12th Ave	PROJECT NAME	SAMPAERS (signature)	CHAIN
# of Jars		s - Ye		24		Zure)	OF (
NWTPH-Dx		s /]		Þ),	cus
NWTPH-Gx		Vo		6			STC
BTEX EPA 8021							D¥
VOCs EPA 8260	<i>F</i>						,
PAHs EPA 8270	ANALY		ANI				_
PCBs EPA 8082	SAT		IVO]		PO#	8.	6
	ZES REQUESTED		OICE TO		#	- 11	06/20/23
	QUE		0			H	زو
	STE			×	×		
	ם	Other	SAN Dispose Archive	ush charg	Standard RUSH_	TURNA	(d)
Notes			SAMPLE DISPOSAL Dispose after 30 days Archive Samples	Rush charges authorized by:	XStandard Turnaround RUSH	TURNAROUND TIME	- 3

				<	_	
	Ph. (206) 285-8282	Seattle, WA 98119-2029	3012 I 6 th Avenue West	Friedman & Bruya, Inc.		
	Received by:	Relinquished by:	Received by: Com and form	Relinquished by: R. 2.	SIGNATURE	
			Whan Phan	Kyle Fisher	PRINT NAME	
Samples recaived at			TEBI	855	COMPANY	
at 1	+ u		6/20/23 1030	6/19/23	DATE	
	4		ل ال (ل	19/23 9:47	TIME	

Hold on KF 6/20/23 NE

Hold per GEKF WARN

HOLD

Report To 306309 (066

Phone_

City, State, ZIP

Address

Company_

(0:24

)ourse

Sol of ions

SAMPLE CHAIN OF CUSTODY

SAMPLERS (signature)

PROJECT NAME

REMARKS 2436

SE 12th

Ave

06/20/23

P0#

C5/ N1

Page # ____ of ____
TURNAROUND TIME

Rush charges authorized by: KUSH_____ SAMPLE DISPOSAL
Dispose after 30 days
Archive Samples

INVOICE TO

-			<u> </u>	T	T	Γ	-	Τ	T	Τ	T		
Friedman & Bruya, Inc.								N9B2-51-11.5	NWPW-SI-10	NPW2-51-9	Sample ID		PhoneEn
Reling v													Email
ushed by:	SI							[] 	تو	100	Lab ID		
Relinquished by:	SIGNATURE									6/15/23 11:31	Date Sampled		
								14:32	12:12	11:31	Time Sampled		- Project S
Kale C								<u></u>		5	Sample Type		Project Specific RLs - Yes / No
- P	PRINT NAME							\leftarrow		3	# of Jars		s-Ye
~~	NT I			-				×	X	×	NWTPH-Dx		s /
Tich.	MAN							X	Х	Х	NWTPH-Gx		No
'	Œ									/	BTEX EPA 8021		
								-		X	VOCs EPA 8260		
											PAHs EPA 8270	ANA	
											PCBs EPA 8082	SAT	
										X	Total Lead	ANALYSES REQUESTED	
-6	COMPANY											QU	
55,	PAN											HIS	
	Y											B	Other
													er
6/19/23 9:47	DATE TIN								ME	X- Per GC 06/22/23	Notes		-
 4	TIME	·								5/22/2			
										23			

Seattle, WA 98119-2029 3012 16th Avenue West

Relinquished by:

Received by:

Ph an

なるで

6/20/23

1030

6/19/23

かがっ

Samples received at

æ

Ph. (206) 285-8282

Received by:

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

October 18, 2024

Conor McGeehan, Project Manager Point Source Solutions 5317 NE St Johns Rd, Suite D Vancouver, WA 98661

Dear Mr McGeehan:

Included are the results from the testing of material submitted on October 10, 2024 from the Skyhook Fitness, F&BI 410220 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Point Source Reports

PSS1018R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 10, 2024 by Friedman & Bruya, Inc. from the Point Source Solutions Skyhook Fitness, F&BI 410220 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Point Source Solutions		
410220 -01	SB7-S1-12		
410220 -02	SB8-S1-12		
410220 -03	SB9-S1-12		
410220 -04	SB10-S1-12		

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/18/24 Date Received: 10/10/24

Project: Skyhook Fitness, F&BI 410220

Date Extracted: 10/15/24 Date Analyzed: 10/16/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
SB7-S1-12 410220-01	<5	86
SB8-S1-12 410220-02	<5	88
SB9-S1-12 410220-03	<5	90
SB10-S1-12 410220-04	<5	92
Method Blank 04-2413 MB	<5	90

ENVIRONMENTAL CHEMISTS

Date of Report: 10/18/24 Date Received: 10/10/24

Project: Skyhook Fitness, F&BI 410220

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 410191-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

		Percent			
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	40	80	70-130	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- $\ensuremath{\mathsf{nm}}$ The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

5310-51-12 539-81-12 538-51-12 Phone Syl. 390. 8 WK Email (Swee Point Source 5 Project Specific RLs - Yes / No City, State, ZIP Vancover, Address 5377 Company_ Report To Uma N Huhas Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. \$137-51-12 Orgoin Sample ID P85 ME ST Relinquished by: Relinquished by: Received by: Received by: 9 Q 2 01 A-E Lab ID Johns. SIGNATURE Sampled 10/8/24 22 SAMPLE CHAIN OF CUSTODY 1032 Sampled 4101 250 PROJECT NAME SAMPLERS (signature) REMARKS Skylook Homes Sample Type K S Jars 3 PRINT NAME Hhah NWTPH-Dx 6 X NWTPH-Gx BTEX EPA 8021 Samp VOCs EPA 8260 ANALYSES REQUESTED PAHs EPA 8270 INVOICE TO (C) PCBs EPA 8082 PO# 10/10/24 VSAI/ N2 FBI 289 COMPANY 1400 Rush charges authorized by: Standard Turnaround Other_ **Archive Samples** Dispose after 30 days S TURNAROUND TIME SAMPLE DISPOSAL 10/10/24 10/9/24 DATE Notes 06:00 TIME 2

SAMPLE CONDITION UPON RECEIPT CHECKLIST

PROJECT # 410220 CLIENT Point	Source	INITIALS _ DATE:	S/ AP 10/1	0/24
If custody seals are present on cooler, are t	hey intact?	✓ NA	□ YES	□ NO
Cooler/Sample temperature		Thern	nometer ID: F	2 °C
Were samples received on ice/cold packs?				□ NO
How did samples arrive? ☐ Over the Counter ☐ Picked	up by F&BI	FedEx	/UP\$/GS	9)
Is there a Chain-of-Custody* (COC)? *or other representative documents, letters, and/or shipping.	ZYES DNC) Initi Date	als/ AP : /0/	10/24
Number of days samples have been sitting p	prior to receipt a	t laborato	ry <u>2</u>	days
Are the samples clearly identified? (explain "n	o" answer below)		X YES	□ NO
Were all sample containers received intact leaking etc.)? (explain "no" answer below)	(i.e. not broken,		Z YES	□ NO
Were appropriate sample containers used?	⊅ YE	S 🗆 NO) [1	Unknown
If custody seals are present on samples, are	they intact?	Ø NA	□ YES	□ NO
Are samples requiring no headspace, heads	pace free?	Ø NA	□ YES	□ NO
Is the following information provided on the (explain "no" answer below)	e COC, and does	it match t	the samp	ole label?
Sample ID's		П	Not on C	OC/label
Date Sampled				
Time Sampled Yes D No				
# of Containers				
Relinquished				
Requested analysis Yes On Hold				
Other comments (use a separate page if needed	l)	,		
Air Samples: Were any additional canisters/ Number of unused TO15 canisters** **Fill out Green manifolds billing sheet		NA Na	□ YES 7 tubes	□ NO

about:bla

GLS.

Ship From
POINT SOURCE SOLUTIONS
CONOR MCGEHAN
5317 NE ST JOHNS RD, SUITE D
VANCOUVER, WA 98661

FRIEDMAN & BRUYA, INC SAMPLE RECEIVING 5500 4TH AVE S SEATTLE, WA 98108

COD: \$0.00 Weight: 0 lb(s)

Reference:

Delivery Instructions:

Signature Type: NOT REQUIRED

Tracking #: 561676522

PDS

800-322-5555 www.gls-us.com

SEATTLE

S06437C

KNT WA980-7C0

Print Date: 7/9/2024 11:05 AN

DRAFT

Date of Report: 10/22/24 Date Received: 10/10/24

Project: Skyhook Fitness, F&BI 410220

Date Extracted: 10/21/24 Date Analyzed: 10/21/24

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

			Surrogate
Sample ID	Diesel Range	Motor Oil Range	(% Recovery)
Laboratory ID	$(C_{10}-C_{25})$	$(C_{25}-C_{36})$	(Limit 50-150)
SB7-S1-12 410220-01	<50	<250	83
SB8-S1-12 410220-02	<50	<250	86
SB9-S1-12 410220-03	<50	<250	84
SB10-S1-12 410220-04	<50	<250	83
Method Blank 04-2577 MB	<50	<250	91

ENVIRONMENTAL CHEMISTS

Elizabeth Webber-Bruya Ann Webber-Bruya Michael Erdahl Vineta Mills Eric Young 5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

February 5, 2025

Conor McGeehan, Project Manager Point Source Solutions 5317 NE St Johns Rd, Suite D Vancouver, WA 98661

Dear Mr McGeehan:

Included are the results from the testing of material submitted on January 24, 2025 from the Skyhook, F&BI 501333 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Mac Goldman Project Manager

Enclosures

c: Point Source Reports

PSS0205R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on January 24, 2024 by Friedman & Bruya, Inc. from the Point Source Solutions Skyhook, F&BI 501333 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Point Source Solutions
501333 -01	SG3

501333 -01 SG3 501333 -02 SG4

The TO-15 calibration standard did not meet the acceptance criteria for ethanol. The data were flagged accordingly.

The TO-15 calibration standard for 4-methyl-2-pentanone exceeded the acceptance criteria. The compound was not detected, therefore this did not represent an out of control condition, and were qualified with a "k" qualifier.

The TO-15 gasoline range concentrations were quantified using a single point calibration at 80 ppbv.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SG3Client: Point Source Solutions Date Received: Project: Skyhook, F&BI 501333 01/24/25 Lab ID: 501333-01 1/4.9 Date Collected: 01/23/25 012422.DDate Analyzed: 01/25/25Data File:

Date Analyzed: 01/25/25 Data File: 012422.D Matrix: Air Instrument: GCMS8 Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	99	70	130

	Conce	ntration		Conce	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
•	C	11	•	C	11
Propene	63	37	1,2-Dichloropropane	<1.1	< 0.24
Dichlorodifluoromethane	<4.8	< 0.98	1,4-Dioxane	<1.8	< 0.49
Chloromethane	<18	<8.8	2,2,4-Trimethylpentane	<23	<4.9
F-114	<10	<1.5	Methyl methacrylate	<20	<4.9
Vinyl chloride	<1.3	< 0.49	Heptane	<20	<4.9
1,3-Butadiene	8.9	4.0	Bromodichloromethane	< 0.33	< 0.049
Butane	36	15	Trichloroethene	< 0.53	< 0.098
Bromomethane	<19	<4.9	cis-1,3-Dichloropropene	<4.4	< 0.98
Chloroethane	<13	<4.9	4-Methyl-2-pentanone	<40 k	<9.8 k
Vinyl bromide	< 2.1	< 0.49	trans-1,3-Dichloropropene	< 2.2	< 0.49
Ethanol	62 ca	33 ca	Toluene	95	25
Acrolein	4.8	2.1	1,1,2-Trichloroethane	< 0.27	< 0.049
Pentane	<29	<9.8	2-Hexanone	<20	<4.9
Trichlorofluoromethane	<11	<2	Tetrachloroethene	<33	<4.9
Acetone	160	67	Dibromochloromethane	< 0.42	< 0.049
2-Propanol	<42	<17	1,2-Dibromoethane (EDB)	< 0.38	< 0.049
1,1-Dichloroethene	< 1.9	< 0.49	Chlorobenzene	< 2.3	< 0.49
trans-1,2-Dichloroethene	< 1.9	< 0.49	Ethylbenzene	16	3.8
Methylene chloride	<170	<49	1,1,2,2-Tetrachloroethane	< 0.67	< 0.098
t-Butyl alcohol (TBA)	< 59	<20	Nonane	<26	<4.9
3-Chloropropene	<15	<4.9	Isopropylbenzene	<48	<9.8
CFC-113	< 7.5	< 0.98	2-Chlorotoluene	<25	<4.9
Carbon disulfide	<31	<9.8	Propylbenzene	<24	<4.9
Methyl t-butyl ether (MTBE)	<35	<9.8	4-Ethyltoluene	<24	<4.9
Vinyl acetate	<35	<9.8	m,p-Xylene	63	15
1,1-Dichloroethane	<2	< 0.49	o-Xylene	24	5.5
cis-1,2-Dichloroethene	< 1.9	< 0.49	Styrene	<4.2	< 0.98
Hexane	<17	<4.9	Bromoform	<10	< 0.98
Chloroform	< 0.24	< 0.049	Benzyl chloride	< 0.25	< 0.049
Ethyl acetate	<35	<9.8	1,3,5-Trimethylbenzene	<24	<4.9
Tetrahydrofuran	81	27	1,2,4-Trimethylbenzene	<24	<4.9
2-Butanone (MEK)	51	17	1,3-Dichlorobenzene	< 2.9	< 0.49
1,2-Dichloroethane (EDC)	< 0.2	< 0.049	1,4-Dichlorobenzene	<1.1	< 0.19
1,1,1-Trichloroethane	< 2.7	< 0.49	1,2-Dichlorobenzene	< 2.9	< 0.49
Carbon tetrachloride	<1.5	< 0.24	1,2,4-Trichlorobenzene	<3.6	< 0.49
Benzene	7.6	2.4	Naphthalene	<1.3	< 0.24
Cyclohexane	<34	<9.8	Hexachlorobutadiene	<1	< 0.098
Gasoline Range Organics	1,200	290			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SG4 Client: Point Source Solutions Date Received: 01/24/25 Project: Skyhook, F&BI 501333 Lab ID: 501333-02 1/4.9 Date Collected: 01/23/25 012421.DDate Analyzed: 01/25/25Data File:

Matrix: Air Instrument: GCMS8
Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	96	70	130

	Conce	ntration		Conce	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	130 ve	76 ve	1,2-Dichloropropane	<1.1	< 0.24
Dichlorodifluoromethane	<4.8	< 0.98	1,4-Dioxane	<1.8	< 0.49
Chloromethane	<18	<8.8	2,2,4-Trimethylpentane	<23	<4.9
F-114	<10	<1.5	Methyl methacrylate	<20	<4.9
Vinyl chloride	<1.3	< 0.49	Heptane	<20	<4.9
1,3-Butadiene	18	7.9	Bromodichloromethane	< 0.33	< 0.049
Butane	36	15	Trichloroethene	< 0.53	< 0.098
Bromomethane	<19	<4.9	cis-1,3-Dichloropropene	<4.4	< 0.98
Chloroethane	<13	<4.9	4-Methyl-2-pentanone	<40 k	<9.8 k
Vinyl bromide	< 2.1	< 0.49	trans-1,3-Dichloropropene	< 2.2	< 0.49
Ethanol	<37 ca	<20 ca	Toluene	75	20
Acrolein	2.9	1.3	1,1,2-Trichloroethane	< 0.27	< 0.049
Pentane	<29	<9.8	2-Hexanone	<20	<4.9
Trichlorofluoromethane	<11	<2	Tetrachloroethene	<33	<4.9
Acetone	110	47	Dibromochloromethane	< 0.42	< 0.049
2-Propanol	<42	<17	1,2-Dibromoethane (EDB)	< 0.38	< 0.049
1,1-Dichloroethene	<1.9	< 0.49	Chlorobenzene	< 2.3	< 0.49
trans-1,2-Dichloroethene	<1.9	< 0.49	Ethylbenzene	14	3.1
Methylene chloride	<170	<49	1,1,2,2-Tetrachloroethane	< 0.67	< 0.098
t-Butyl alcohol (TBA)	< 59	<20	Nonane	<26	<4.9
3-Chloropropene	<15	<4.9	Isopropylbenzene	<48	<9.8
CFC-113	< 7.5	< 0.98	2-Chlorotoluene	<25	<4.9
Carbon disulfide	<31	< 9.8	Propylbenzene	<24	<4.9
Methyl t-butyl ether (MTBE)	<35	<9.8	4-Ethyltoluene	<24	<4.9
Vinyl acetate	<35	<9.8	m,p-Xylene	52	12
1,1-Dichloroethane	<2	< 0.49	o-Xylene	20	4.6
cis-1,2-Dichloroethene	<1.9	< 0.49	Styrene	<4.2	< 0.98
Hexane	<17	<4.9	Bromoform	<10	< 0.98
Chloroform	1.2	0.24	Benzyl chloride	< 0.25	< 0.049
Ethyl acetate	<35	<9.8	1,3,5-Trimethylbenzene	<24	<4.9
Tetrahydrofuran	62	21	1,2,4-Trimethylbenzene	<24	<4.9
2-Butanone (MEK)	43	15	1,3-Dichlorobenzene	< 2.9	< 0.49
1,2-Dichloroethane (EDC)	< 0.2	< 0.049	1,4-Dichlorobenzene	<1.1	< 0.19
1,1,1-Trichloroethane	< 2.7	< 0.49	1,2-Dichlorobenzene	< 2.9	< 0.49
Carbon tetrachloride	<1.5	< 0.24	1,2,4-Trichlorobenzene	<3.6	< 0.49
Benzene	6.0	1.9	Naphthalene	<1.3	< 0.24
Cyclohexane	<34	<9.8	Hexachlorobutadiene	<1	< 0.098
Gasoline Range Organics	1,100	280			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: Point Source Solutions
Date Received: Not Applicable Project: Skyhook, F&BI 501333

Lab ID: Date Collected: 01/24/25 05-0173 mb 01/24/25 Date Analyzed: Data File: 012411.DMatrix: Air Instrument: GCMS8Units: ug/m3 Operator: bat

	%	Lower	Upper
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	91	70	130

	Conce	ntration		Conce	ntration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Propene	<1.4	< 0.8	1,2-Dichloropropane	< 0.23	< 0.05
Dichlorodifluoromethane	< 0.99	< 0.2	1,4-Dioxane	< 0.36	< 0.1
Chloromethane	<3.7	<1.8	2,2,4-Trimethylpentane	<4.7	<1
F-114	< 2.1	< 0.3	Methyl methacrylate	<4.1	<1
Vinyl chloride	< 0.26	< 0.1	Heptane	<4.1	<1
1,3-Butadiene	< 0.044	< 0.02	Bromodichloromethane	< 0.067	< 0.01
Butane	<4.8	<2	Trichloroethene	< 0.11	< 0.02
Bromomethane	<3.9	<1	cis-1,3-Dichloropropene	< 0.91	< 0.2
Chloroethane	< 2.6	<1	4-Methyl-2-pentanone	<8.2 k	<2 k
Vinyl bromide	< 0.44	< 0.1	trans-1,3-Dichloropropene	< 0.45	< 0.1
Ethanol	<7.5 ca	<4 ca	Toluene	< 7.5	<2
Acrolein	< 0.11	< 0.05	1,1,2-Trichloroethane	< 0.055	< 0.01
Pentane	< 5.9	<2	2-Hexanone	<4.1	<1
Trichlorofluoromethane	< 2.2	< 0.4	Tetrachloroethene	<6.8	<1
Acetone	<4.8	<2	Dibromochloromethane	< 0.085	< 0.01
2-Propanol	<8.6	< 3.5	1,2-Dibromoethane (EDB)	< 0.077	< 0.01
1,1-Dichloroethene	< 0.4	< 0.1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Methylene chloride	<35	<10	1,1,2,2-Tetrachloroethane	< 0.14	< 0.02
t-Butyl alcohol (TBA)	<12	<4	Nonane	< 5.2	<1
3-Chloropropene	< 3.1	<1	Isopropylbenzene	<9.8	<2
CFC-113	<1.5	< 0.2	2-Chlorotoluene	< 5.2	<1
Carbon disulfide	< 6.2	<2	Propylbenzene	<4.9	<1
Methyl t-butyl ether (MTBE)	< 7.2	<2	4-Ethyltoluene	<4.9	<1
Vinyl acetate	<7	<2	m,p-Xylene	< 0.87	< 0.2
1,1-Dichloroethane	< 0.4	< 0.1	o-Xylene	< 0.43	< 0.1
cis-1,2-Dichloroethene	< 0.4	< 0.1	Styrene	< 0.85	< 0.2
Hexane	< 3.5	<1	Bromoform	< 2.1	< 0.2
Chloroform	< 0.049	< 0.01	Benzyl chloride	< 0.052	< 0.01
Ethyl acetate	< 7.2	<2	1,3,5-Trimethylbenzene	<4.9	<1
Tetrahydrofuran	< 0.88	< 0.3	1,2,4-Trimethylbenzene	<4.9	<1
2-Butanone (MEK)	< 5.9	<2	1,3-Dichlorobenzene	< 0.6	< 0.1
1,2-Dichloroethane (EDC)	< 0.04	< 0.01	1,4-Dichlorobenzene	< 0.23	< 0.038
1,1,1-Trichloroethane	< 0.55	< 0.1	1,2-Dichlorobenzene	< 0.6	< 0.1
Carbon tetrachloride	< 0.31	< 0.05	1,2,4-Trichlorobenzene	< 0.74	< 0.1
Benzene	< 0.32	< 0.1	Naphthalene	< 0.26	< 0.05
Cyclohexane	< 6.9	<2	Hexachlorobutadiene	< 0.21	< 0.02
Gasoline Range Organics	<200	< 50			

ENVIRONMENTAL CHEMISTS

Date of Report: 02/05/25 Date Received: 01/24/25

Project: Skyhook, F&BI 501333

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 501326-08 1/5.3 (Duplicate)

Laboratory Code: 501326-08 1/5.3 (Duplicate)							
	Reporting	Sample	Duplicate	RPD			
Analyte	Units	Result	Result	(Limit 25)			
Propene	ug/m3	<7.3	<7.3	nm			
Dichlorodifluoromethane	ug/m3	< 5.2	< 5.2	nm			
Chloromethane	ug/m3	<20	<20	nm			
F-114	ug/m3	<11	<11	nm			
Vinyl chloride	ug/m3	<1.4	<1.4	nm			
1,3-Butadiene	ug/m3	< 0.23	< 0.23	nm			
Butane	ug/m3	<25	<25	nm			
Bromomethane	ug/m3	<21	<21	nm			
Chloroethane	ug/m3	<14	<14	nm			
Vinyl bromide	ug/m3	<2.3	<2.3	nm			
Ethanol	ug/m3	<40	<40	nm			
Acrolein	ug/m3	< 0.61	< 0.61	nm			
Pentane	ug/m3	<31	<31	nm			
Trichlorofluoromethane	ug/m3	<12	<12	nm			
Acetone	ug/m3	<25	<25	nm			
2-Propanol	ug/m3	<46	<46	nm			
1,1-Dichloroethene	ug/m3	< 2.1	<2.1	nm			
trans-1,2-Dichloroethene	ug/m3	< 2.1	<2.1	nm			
Methylene chloride	ug/m3	<180	<180	nm			
t-Butyl alcohol (TBA)	ug/m3	<64	<64	nm			
3-Chloropropene	ug/m3	<17	<17	nm			
CFC-113	ug/m3	<8.1	<8.1	nm			
Carbon disulfide	ug/m3	<33	<33	nm			
Methyl t-butyl ether (MTBE)	ug/m3	<38	<38	nm			
Vinyl acetate	ug/m3	<37	<37	nm			
1,1-Dichloroethane	ug/m3	<2.1	<2.1	nm			
cis-1,2-Dichloroethene	ug/m3	<2.1	<2.1	nm			
Hexane	ug/m3	<19	<19	nm			
Chloroform	ug/m3	23	24	4			
Ethyl acetate	ug/m3	<38	<38	nm			
Tetrahydrofuran	ug/m3	<4.7	<4.7	nm			
2-Butanone (MEK)	ug/m3	<31	<31	nm			
1,2-Dichloroethane (EDC)	ug/m3	< 0.21	< 0.21	nm			
1,1,1-Trichloroethane	ug/m3	< 2.9	< 2.9	nm			
Carbon tetrachloride	ug/m3	<1.7	<1.7	nm			
Benzene	ug/m3	<1.7	<1.7	nm			
Cyclohexane	ug/m3	<36	<36	nm			
1,2-Dichloropropane	ug/m3	<1.2	<1.2	nm			
1,4-Dioxane	ug/m3	<1.9	<1.9	nm			
2,2,4-Trimethylpentane	ug/m3	<25	<25	nm			

ENVIRONMENTAL CHEMISTS

Date of Report: 02/05/25 Date Received: 01/24/25

Project: Skyhook, F&BI 501333

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 501326-08 1/5.3 (Duplicate)

Reporting	Sample	Duplicate	RPD
Units	Result	Result	(Limit 25)
ug/m3	<22	<22	nm
ug/m3	<22	<22	nm
ug/m3	0.39	< 0.36	nm
ug/m3	< 0.57	< 0.57	nm
ug/m3	<4.8	<4.8	nm
ug/m3	<43	<43	nm
ug/m3	< 2.4	< 2.4	nm
ug/m3	<40	<40	nm
ug/m3	< 0.29	< 0.29	nm
ug/m3	<22	<22	nm
ug/m3	<36	<36	nm
ug/m3	< 0.45	< 0.45	nm
ug/m3	< 0.41	< 0.41	nm
ug/m3	< 2.4	< 2.4	nm
ug/m3	< 2.3	< 2.3	nm
ug/m3	< 0.73	< 0.73	nm
ug/m3	<28	<28	nm
ug/m3	< 52	<52	nm
ug/m3	<27	<27	nm
ug/m3	<26	<26	nm
ug/m3			nm
ug/m3	<4.6	<4.6	nm
ug/m3	< 2.3	< 2.3	nm
ug/m3	<4.5	<4.5	nm
ug/m3	<11	<11	nm
ug/m3	< 0.27	< 0.27	nm
ug/m3	<26	<26	nm
ug/m3	<26	<26	nm
ug/m3	< 3.2	< 3.2	nm
ug/m3	<1.2	<1.2	nm
ug/m3			nm
ug/m3	<3.9	<3.9	nm
ug/m3	<1.4	<1.4	nm
ug/m3	<1.1	<1.1	nm
	Reporting Units ug/m3	Reporting Units Sample Result ug/m3 <22	Reporting Units Sample Result Duplicate Result ug/m3 <22

ENVIRONMENTAL CHEMISTS

Date of Report: 02/05/25 Date Received: 01/24/25

Project: Skyhook, F&BI 501333

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

Laboratory Code: Laboratory Co	ntroi Sampie		ъ.	
	TD (*	G :1	Percent	
A 1 .	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Propene	ug/m3	23	87	70-130
Dichlorodifluoromethane	ug/m3	67	97	70-130
Chloromethane	ug/m3	28	74	70-130
F-114	ug/m3	94	88	70-130
Vinyl chloride	ug/m3	35	94	70-130
1,3-Butadiene	ug/m3	30	95	70-130
Butane	ug/m3	32	90	70-130
Bromomethane	ug/m3	52	101	70-130
Chloroethane	ug/m3	36	94	70-130
Vinyl bromide	ug/m3	59	91	70-130
Ethanol	ug/m3	25	64 vo	70-130
Acrolein	ug/m3	31	82	70-130
Pentane	ug/m3	40	83	70-130
Trichlorofluoromethane	ug/m3	76	101	70-130
Acetone	ug/m3	32	89	70-130
2-Propanol	ug/m3	33	77	70-130
1,1-Dichloroethene	ug/m3	54	105	70-130
trans-1,2-Dichloroethene	ug/m3	54	104	70-130
Methylene chloride	ug/m3	94	100	70-130
t-Butyl alcohol (TBA)	ug/m3	41	100	70-130
3-Chloropropene	ug/m3	42	91	70-130
CFC-113	ug/m3	100	102	70-130
Carbon disulfide	ug/m3	42	102	70-130
Methyl t-butyl ether (MTBE)	ug/m3	49	95	70-130
Vinyl acetate	ug/m3	48	88	70-130
1,1-Dichloroethane	ug/m3	55	103	70-130
cis-1,2-Dichloroethene	ug/m3	54	101	70-130
Hexane	ug/m3	48	96	70-130
Chloroform	ug/m3	66	103	70-130
Ethyl acetate	ug/m3	49	92	70-130
Tetrahydrofuran	ug/m3	40	94	70-130
2-Butanone (MEK)	ug/m3	40	86	70-130
1,2-Dichloroethane (EDC)	ug/m3	55	106	70-130
1,1,1-Trichloroethane	ug/m3	74	105	70-130
Carbon tetrachloride	ug/m3	85	97	70-130
Benzene	ug/m3	43	98	70-130
Cyclohexane	ug/m3	46	87	70-130
1,2-Dichloropropane	ug/m3	62	99	70-130
1,4-Dioxane	ug/m3	49	106	70-130
2,2,4-Trimethylpentane	ug/m3	63	99	70-130
, , v r	<i>O</i> -	-	-	

ENVIRONMENTAL CHEMISTS

Date of Report: 02/05/25 Date Received: 01/24/25

Project: Skyhook, F&BI 501333

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

	-		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Methyl methacrylate	ug/m3	55	92	70-130
Heptane	ug/m3	55	91	70-130
Bromodichloromethane	ug/m3	90	100	70-130
Trichloroethene	ug/m3	73	108	70-130
cis-1,3-Dichloropropene	ug/m3	61	104	70-130
4-Methyl-2-pentanone	ug/m3	55	116	70-130
trans-1,3-Dichloropropene	ug/m3	61	99	70-130
Toluene	ug/m3	51	104	70-130
1,1,2-Trichloroethane	ug/m3	74	104	70-130
2-Hexanone	ug/m3	55	95	70-130
Tetrachloroethene	ug/m3	92	113	70-130
Dibromochloromethane	ug/m3	120	101	70-130
1,2-Dibromoethane (EDB)	ug/m3	100	104	70-130
Chlorobenzene	ug/m3	62	108	70-130
Ethylbenzene	ug/m3	59	105	70-130
1,1,2,2-Tetrachloroethane	ug/m3	93	103	70-130
Nonane	ug/m3	71	99	70-130
Isopropylbenzene	ug/m3	66	110	70-130
2-Chlorotoluene	ug/m3	70	112	70-130
Propylbenzene	ug/m3	66	111	70-130
4-Ethyltoluene	ug/m3	66	111	70-130
m,p-Xylene	ug/m3	120	98	70-130
o-Xylene	ug/m3	59	112	70-130
Styrene	ug/m3	58	108	70-130
Bromoform	ug/m3	140	106	70-130
Benzyl chloride	ug/m3	70	101	70-130
1,3,5-Trimethylbenzene	ug/m3	66	117	70-130
1,2,4-Trimethylbenzene	ug/m3	66	113	70-130
1,3-Dichlorobenzene	ug/m3	81	118	70-130
1,4-Dichlorobenzene	ug/m3	81	117	70-130
1,2-Dichlorobenzene	ug/m3	81	118	70-130
1,2,4-Trichlorobenzene	ug/m3	100	108	70-130
Naphthalene	ug/m3	71	105	70-130
Hexachlorobutadiene	ug/m3	140	115	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported between the method detection limit and the lowest calibration point. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

52/333 Report To (1)40 Company_ Phone 54 . 370. 3805 City, State, ZIP Address___

SAMPLE
CHAIN
0F
CUSTODY

01/24/25

	SAMPLERS (signature)	and the second s	Page #of
7	A CONTRACTOR OF THE PARTY OF TH		TURNAROUND TIME
	PROJECT NAME & ADDRESS	P0#	AStandard
			/D RUSH
I NE STOWNE	S T T S T T T T T T T T T T T T T T T T		Rush charges authorized by:
	NOTES: '	INVOICE TO	SAMPLE DISPOSAL
			Default:Clean following
Amoril Charles On the County State of	F 76 45 6 7		final report delivery
Diman Or File Control			Hold (Fee may apply):
ON		ANALYSIS REQUESTED	OUESTED

		IA / SG		è
šamples		IA / SG	*.	
	Santania de la constanta de la	IA / SG		
		IA / SG		
-		IA / SG		
		IA / SG		
4 2 12 x	11 1 1 1 1 T	IA / So	3152 93	S 44 02
2 5 5 5 X		IA // SG	3483 55	Sb3 . 01
Field Final Field Initial Vac. Final TO15 Full Scan TO15 BTEXN APH	Initial Field Date Vac. Initial Sampled ("Hg) Time	Reporting Level: IA=Indoor Air SG=Soil Gas (Circle One)	Canister Cont.	Lab Sample Name ID
ANALYSIS REQUESTED				SAMPLE INFORMATION
ANALYSIS R				

FORMS\COC\COCTO-15.DOC Fax (206) 283-50 Ph. (206) 285-82 Seattle, WA 9810 5500 4th Avenue Friedman & Bru

					DOC
				Received by:	5044
- ge	-		X	Relinquished by:	8282
4001	01/24/24	Fe BI	Whan Phan	Received by: mlayland	108
/0°3	01/2×14	PSJ	one Wilpelas	Relinquished by:	e South
TIME	DATE	COMPANY	A PRINT NAME	SIGNATURE	ruya, Inc.

Ship From

5317 NE ST JOHNS RD, SUITE D CONOR MCGEHAN POINT SOURCE SOLUTIONS... VANCOUVER, WA 98661

SAMPLE RECEIVING SEATTLE, WA 98108 FRIEDMAN & BRUYA, INC 5500 4TH AVE S

Reference: COD: \$0.00 Weight: 0 lb(s)

Delivery Instructions:

Signature Type: NOT REQUIRED

Tracking #: 558546437

PDS

www.gls-us.com 800-322-5555

S06437C GP

98108

24492259
KNT WA980 – 7C1
Scan Region:60 1/23/2005 11...

Wgt :LTR

Print Da.e: 1/4/2023 2:07 PM

SAMPLE CONDITION UPON RECEIPT CHECKLIST

PROJECT # 501333 CLIENT PSS	INITIALS/ OP) &	1/24/2
If custody seals are present on cooler, are they intact?	Ø NA □ YES	□ NO
Cooler/Sample temperature	1	<u>ዩ</u> ∘C
	Thermometer ID: Fluk	e 96312917
Were samples received on ice/cold packs?	□ YES	Ø NO
How did samples arrive? ☐ Over the Counter ☐ Picked up by F&BI	▼ FedEx/UPS/GSO	
Is there a Chain-of-Custody* (COC)? ★YES □ Note the representative documents, letters, and/or shipping memos	O Initials/ Date:	1/24
Number of days samples have been sitting prior to receipt	at laboratory	days
Are the samples clearly identified? (explain "no" answer below)	⊄ YES	□ NO
Were all sample containers received intact (i.e. not broken, leaking etc.)? (explain "no" answer below)	YES	□ NO
Were appropriate sample containers used?	ES 🗆 NO 🗆 Un	known
If custody seals are present on samples, are they intact?	Ø NA □ YES	□ NO
Are samples requiring no headspace, headspace free?	√NA □ YES	□ NO
Is the following information provided on the COC, and doe (explain "no" answer below)	s it match the sample	label?
Sample ID's Yes \square No	Not on CO	C/label
Date Sampled Yes D No		
Time Sampled Yes 🗆 No	Not on CO	C/label
# of Containers		
Relinquished Z Yes D No		
Requested analysis Z Yes D On Hold		
Other comments (use a separate page if needed)		
Air Samples: Were any additional canisters/tubes received? Number of unused TO15 canisters Number of unu		NO NO

Transaction Record

TRACKING NO :

771451961559

SHIP DATE:

Jan 15, 2025

ESTIMATED SHIPPING CHARGES:

14.44 USD

From address

Sample Receiving

Friedman & Bruya, Inc. 5500 4th Avenue South

98108 WA Seattle

US

Phone: 2062858282 fbi@isomedia.com To address

CONNOR McGREEHEN

POINT SOURCE 5404 NW HARNEY ST 98663 WA VANCOUVER

US

Phone: 5413908805

Package information

Pieces

Weight

Dimensions (LxWxH)

Carriage value

Package options

1 x

9.00 lb

10 x 10 x 15 in

n/

Packaging type:

Your Packaging

Service:

FedEx Ground

Pickup / drop-off type:

I have already scheduled a pickup at my

location

Billing information

Bill transportation cost to:

*****359

Bill duties, taxes and fees to:

Your reference:

P.O. No.:

Invoice No.:

Department No.:

Please note: This transaction record is neither a statement nor an invoice, and does not confirm shipment tendered to FedEx or payment. FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$1000, e.g., jewelry, precious metals, negotiable instruments and other items listed in our Service Guide. Written claims must be filed within strict imal limits; Consult the applicable FedEx Service Guide for details. The estimated shipping charge may be different than the actual charges for your shipment. Differences may occur based on actual weight, dimensions, and other factors. Consult the applicable FedEx Service Guide or the FedEx Rate Sheets for details on how shipping

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

March 7, 2025

Conor McGeehan, Project Manager Point Source Solutions 5317 NE St Johns Rd, Suite D Vancouver, WA 98661

Dear Mr McGeehan:

Included are the amended results from the testing of material submitted on October 10, 2024 from the Skyhook Fitness, F&BI 410221 project. Per your request, 2-propanol has been added to the results.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl **Project Manager**

Enclosures

c: Point Source Reports

PSS1028R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

October 28, 2024

Conor McGeehan, Project Manager Point Source Solutions 5317 NE St Johns Rd, Suite D Vancouver, WA 98661

Dear Mr McGeehan:

Included are the results from the testing of material submitted on October 10, 2024 from the Skyhook Fitness, F&BI 410221 project. There are 6 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl **Project Manager**

Enclosures

c: Point Source Reports

PSS1028R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on October 10, 2024 by Friedman & Bruya, Inc. from the Point Source Solutions Skyhook Fitness, F&BI 410221 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Point Source Solutions
410221 -01	SS1
410221 -02	SS2

The TO-15 gasoline range concentrations were quantified using a single point calibration at 80 ppbv.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

bat

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	SS1	Client:	Point Source Solutions
-------------------	-----	---------	------------------------

Date Received: 10/10/24 Project: Skyhook Fitness, F&BI 410221

Date Collected: Lab ID: 10/08/24 410221-01 1/5.6 101112.DDate Analyzed: 10/11/24 Data File: GCMS7 Matrix: Instrument: Air Units: ug/m3 Operator:

% Lower Upper Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 89 70 130

Compounds:	Conce ug/m3	entration ppbv
2-Propanol	<48	<20
Benzene	<1.8	< 0.56
Toluene	<42	<11
Ethylbenzene	< 2.4	< 0.56
m,p-Xylene	7.3	1.7
o-Xylene	2.9	0.67
Naphthalene	<1.5	< 0.28
Gasoline Range Organics	1,200	290

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: S	SS2	Client:	Point Source Solutions
---------------------	-----	---------	------------------------

Date Received: 10/10/24 Project: Skyhook Fitness, F&BI 410221

Date Collected: Lab ID: 410221-02 1/5.5 10/08/24 Date Analyzed: Data File: 101113.D 10/11/24 Matrix: GCMS7 Air Instrument: Units: ug/m3 Operator: bat

	%	Lower	$_{ m Upper}$
Surrogates:	Recovery:	Limit:	Limit:
4-Bromofluorobenzene	88	70	130

Compounds:	Concer ug/m3	ntration ppbv
2-Propanol	<47	<19
Benzene	<1.8	< 0.55
Toluene	<41	<11
Ethylbenzene	< 2.4	< 0.55
m,p-Xylene	6.2	1.4
o-Xylene	2.6	0.59
Naphthalene	<1.4	< 0.28
Gasoline Range Organics	1,100	280

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Method Blank	Client:	Point Source Solutions
-------------------	--------------	---------	------------------------

Date Received: Not Applicable Project: Skyhook Fitness, F&BI 410221

Date Collected: Not Applicable Lab ID: 04-2495 MB
Date Analyzed: 10/11/24 Data File: 101111.D
Matrix: Air Instrument: GCMS7
Units: ug/m3 Operator: bat

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Units:	ug/m3		Operator:	
4-Bromofluorobenzene 87 70 130 Concentration ug/m3 ppbv 2-Propanol <8.6 <3.5 Benzene <0.32 <0.1 Toluene <7.5 <2		9/	Lower	Upper	
Concentration ug/m3 ppbv 2-Propanol $<8.6 < 3.5$ Benzene $<0.32 < 0.1$ Toluene $<7.5 < 2$	Surrogates:	Recovery	Limit:	Limit:	
Compounds: ug/m3 ppbv 2-Propanol <8.6	4-Bromofluorobenze	ne 87	70	130	
2-Propanol		Con	centration		
Benzene <0.32 <0.1 Toluene <7.5 <2	Compounds:	ug/m	ppbv		
Toluene <7.5 <2	2-Propanol	<8.6	< 3.5		
	Benzene	< 0.32	< 0.1		
Ethylbenzene <0.43 <0.1	Toluene	<7.5	<2		
	Ethylbenzene	< 0.45	< 0.1		
m,p-Xylene <0.87 <0.2	m,p-Xylene	< 0.87	< 0.2		
o-Xylene <0.43 <0.1	o-Xylene	< 0.48	< 0.1		
Naphthalene <0.26 <0.05	Naphthalene	< 0.26	< 0.05		
Gasoline Range Organics <200 <50	Gasoline Range Org	anics <200	< 50		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/28/24 Date Received: 10/10/24

Project: Skyhook Fitness, F&BI 410221

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 410221-02 1/5.5 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
2-Propanol	ug/m3	<47	<47	nm
Benzene	ug/m3	<1.8	<1.8	nm
Toluene	ug/m3	<41	<41	nm
Ethylbenzene	ug/m3	< 2.4	< 2.4	nm
m,p-Xylene	ug/m3	6.2	6.3	2
o-Xylene	ug/m3	2.6	2.6	0
Naphthalene	ug/m3	<1.4	<1.4	nm

Laboratory Code: Laboratory Control Sample

	Percent					
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
2-Propanol	ug/m3	33	98	70-130		
Benzene	ug/m3	43	107	70-130		
Toluene	ug/m3	51	114	70-130		
Ethylbenzene	ug/m3	59	110	70-130		
m,p-Xylene	ug/m3	120	114	70-130		
o-Xylene	ug/m3	59	119	70-130		
Naphthalene	ug/m3	71	119	70-130		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

March 7, 2025

Conor McGeehan, Project Manager Point Source Solutions 5317 NE St Johns Rd, Suite D Vancouver, WA 98661

Dear Mr McGeehan:

Included are the amended results from the testing of material submitted on November 15, 2024 from the Skyhook Fitness, F&BI 411255 project. Per your request, 2-propanol has been added to the results.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl **Project Manager**

Enclosures

c: Point Source Reports

PSS1205R.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Ave South Seattle, WA 98108-2419 (206) 285-8282 office@friedmanandbruya.com www.friedmanandbruya.com

December 5, 2024

Conor McGeehan, Project Manager Point Source Solutions 5317 NE St Johns Rd, Suite D Vancouver, WA 98661

Dear Mr McGeehan:

Included are the results from the testing of material submitted on November 15, 2024 from the Skyhook Fitness, F&BI 411255 project. There are 6 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl **Project Manager**

Enclosures

c: Point Source Reports

PSS1205R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on November 15, 2024 by Friedman & Bruya, Inc. from the Point Source Solutions Skyhook Fitness, F&BI 411255 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Point Source Solutions
411255 -01	SG1
411255 -02	SG2

The TO-15 gasoline range concentrations were quantified using a single point calibration at 80 ppbv.

The m,p-xylene concentration in the samples exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	SG1	Client:	Point Source Solutions
-------------------	-----	---------	------------------------

Date Received: 11/15/24 Project: Skyhook Fitness, F&BI 411255

Lab ID: Date Collected: 411255-01 1/110 11/24/24

Date Analyzed: Data File: 112029.D11/21/24 GCMS7 Matrix: Air Instrument:

70,000

Gasoline Range Organics

Units:	ug/m3		Ope	erator:	bat
Surrogates: 4-Bromofluorobenz		% overy: 117	Lower Limit: 70	Upper Limit: 130	
Compounds:	,	Conce	entration ppby		
Compounds.	ι	ıg/mə	ppov		
2-Propanol		<950	<380		
Benzene		<35	<11		
Toluene		<830	<220		
Ethylbenzene		2,200	520		
m,p-Xylene	9,8	00 ve	2,300 ve		
o-Xylene		2,800	630		
Naphthalene		50	9.5		

17,000

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	SG2	Client:	Point Source Solutions
-------------------	-----	---------	------------------------

Date Received: 11/15/24 Project: Skyhook Fitness, F&BI 411255

Date Collected: 11/24/24 Lab ID: 411255-02 1/120

Date Analyzed:11/21/24Data File:112030.DMatrix:AirInstrument:GCMS7Units:ug/m3Operator:bat

Surrogates: 4-Bromofluorobenzene	% Recovery: 117	Lower Limit: 70	Upper Limit: 130	
Compounds:	Concerug/m3	ntration ppbv		
2-Propanol	<1,000	<420		

Benzene <38 <12 Toluene <900 <240 Ethylbenzene 3,800 870 m,p-Xylene 18,000 ve 4,100 ve o-Xylene 5,500 1,300 Naphthalene 88 17 Gasoline Range Organics 110,000 26,000

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID:	Method Blank	Client:	Point Source Solutions
-------------------	--------------	---------	------------------------

Date Received: Not Applicable Project: Skyhook Fitness, F&BI 411255

Date Collected: Not Applicable Lab ID: 04-2850 MB
Date Analyzed: 11/20/24 Data File: 112012.D
Matrix: Air Instrument: GCMS7
Units: ug/m3 Operator: bat

Units:	ug/m3			rator:	bat
		%	Lower	Upper	
Surrogates:		Recovery:	Limit:	Limit:	
4-Bromofluorobenze	ene	99	70	130	
		Conce	ntration		
Compounds:		ug/m3	ppbv		
2-Propanol		<8.6	<3.5		
Benzene		< 0.32	< 0.1		
Toluene		< 7.5	<2		
Ethylbenzene		< 0.43	< 0.1		
m,p-Xylene		< 0.87	< 0.2		
o-Xylene		< 0.43	< 0.1		
Naphthalene		< 0.26	< 0.05		
Gasoline Range Org	ganics	<200	< 50		

ENVIRONMENTAL CHEMISTS

Date of Report: 12/05/24 Date Received: 11/15/24

Project: Skyhook Fitness, F&BI 411255

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 411262-04 1/8.0 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
2-Propanol	ug/m3	<69	<69	nm
Benzene	ug/m3	< 2.6	< 2.6	nm
Toluene	ug/m3	<60	<60	nm
Ethylbenzene	ug/m3	< 3.5	< 3.5	nm
m,p-Xylene	ug/m3	< 6.9	< 6.9	nm
o-Xylene	ug/m3	< 3.5	< 3.5	nm
Naphthalene	ug/m3	11	9.6	14

Laboratory Code: Laboratory Control Sample

	Percent				
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
2-Propanol	ug/m3	33	112	70-130	
Benzene	ug/m3	43	109	70-130	
Toluene	ug/m3	51	117	70-130	
Ethylbenzene	ug/m3	59	114	70-130	
m,p-Xylene	ug/m3	120	116	70-130	
o-Xylene	ug/m3	59	117	70-130	
Naphthalene	ug/m3	71	101	70-130	

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported between the method detection limit and the lowest calibration point. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Report To Address Phone 54. 390. 88 Email Come Pop. Nowwe City, State, ZIP Company 3012 16th Avenue West Friedman & Bruya, Inc. Fax (206) 283-5044 Ph. (206) 285-8282 Seattle, WA 98119-2029 411255 2013 193 Sample Name 40 oner M. Greeker 5 Unicosand WA てか Relinquished by: Received by: Received by: Relinquished by 0 E Lab Sd Joins R. 2274 Canister ID 3712 SIGNATURE Contr. Flow K 0 SAMPLE CHAIN OF CUSTODY Sampled = Date □ Indoor Air ▼Sub Slab/Soil Gas SAMPLERS (Signature) PROJECT NAME REPORTING LEVEL Press. nitial Field -26 (Hg) -28 SKyhoik Atmss may Mubjocher 20 Initial Field Time 3 Anh Phan PRINT NAME □ Deep Soil Gas□ SVE/Grab Press. Final Field (Hg) S ئ 256 Final He or Field Time ANALYSIS REQUESTED TO-15 Full Scan X TO-15 BTEXN INVOICE TO = 15 24 Ca F PO# TO-15 cVOCs ples FBT AND COMPANY received at 330 GRO x × □ Other ☐ Archive Samples 753/7 Bispose after 30 days Rush charges authorized by: TPA-Standard O RUSH 0 8 TURNAROUND TIME Page # SAMPLE DISPOSAL Notes 2 11/15/24 11:54 DATE The Hunth ဂိ TIME 四岁

FORMS\COC\COCTO-15.DOC

SAMPLE CONDITION UPON RECEIPT CHECKLIST

PROJECT # 411 255	CLIENT	Point Source	INITIALS DATE:		124
		oler, are they intact?	ø NA	□ YES	□ NO
Cooler/Sample temp	erature		Thermo	ometer ID; Flu	8 °C ke 96312917
Were samples receiv	ved on ice/cold	packs?		□ YES	NO
How did samples are	rive? ne Counter	☐ Picked up by F&BI	□ FedEx/	UPS/GSO	
Is there a Chain-of-C	Custody* (COC	//•	NO Initia Date:	11/15	124
Number of days sam	ples have bee	n sitting prior to recei	pt at laborator	ry <u> </u>	days
Are the samples clea	arly identified	? (explain "no" answer below)		Ø YES	□ NO
Were all sample con leaking etc.)? (explain		ed intact (i.e. not brok	en,	Ø YES	□ NO
Were appropriate sa	ample contain	ers used?	YES ONO	o c	Jnknown
If custody seals are	present on sai	mples, are they intact?	NA	O YES	□ NO
Are samples requiri	ng no headspa	ace, headspace free?	D/NA	□ YES	□ NO
Is the following info (explain "no" answer below	ormation prov	ided on the COC, and	does it match t	he samp	le label
Sample ID's				Not on Co	
Date Sampled	☐ Yes ☐ No		***************************************	Not on Co	
Time Sampled	☐ Yes ☐ No			Not on Co	OC/label
# of Containers	□ Yes □ No				Manuscrate Address of the Control of
Relinquished				***************************************	
Requested analysis	Yes On I	Hold		***************************************	
		ge if needed)			
Air Samples: Were a	any additional	canisters/tubes receives Number of	ved? □ NA	□ YES	Ø NO

Ship From POINT SOURCE SOLUTIONS 5317 NE ST JOHNS RD, SUITE D CONOR MCGEHAN VANCOUVER, WA 98661

SAMPLE RECEIVING FRIEDMAN & BRUYA, INC SEATTLE, WA 98108 5500 4TH AVE S

Reference: Weight: 0 lb(s) COD: \$0.00

Delivery Instructions:

Signature Type: NOT REQUIRED

about:blank

800-322-5555 www.gls-us.com

Tracking #: 561676527

PDS

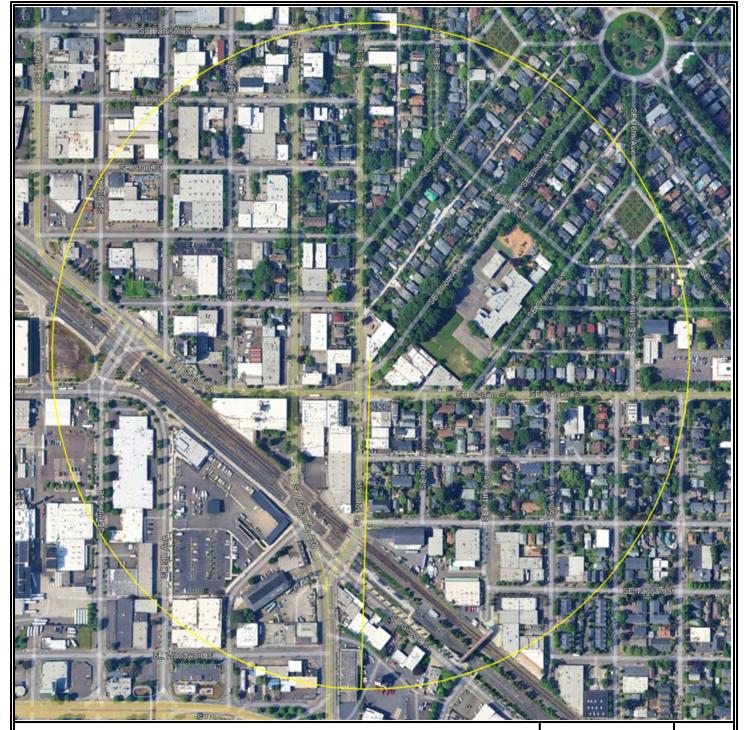
SEATTLE

S06437C

KNT WA980-7C0

Print Date: 7/9/2024 11:05 AM

APPENDIX D PHOTO LOG



APPENDIX E ECOLOGICAL RISK ASSESSMENT RADIUS MAP

ECOLOGICAL RISK ASSESSMENT

Google Earth

Nt

APPROXIMATELY ¼ MI RADIUS

Site Name: Former 12th Avenue Motor Service

2436 SE 12th Avenue Portland, OR 97214

LUST Number: 26-23-0131

APPENDIX F PERMITS

Final approval Partial Approval Approved w/ corrections Not approved Cancelled

Inspector/Date:

Test Bore

CITY OF PORTLAND, OREGON BUREAU OF TRANSPORTATION DEVELOPMENT AND CAPITAL PROGRAM

Revocable Permit to Use Dedicated Street Areas at Various

Permit Number: TR-25-003

Performance Bond:

Issue Date: 1/13/2025 Void After: 1/13/2026 Insurance: 4908897 Street Bond: 4131052

- Permittee shall be responsible for obtaining an approved traffic/pedestrian control plan and permit for proposed traffic/pedestrian control as it impacts the public right-of-way for work under this permit. Work that requires closure of a sidewalk, street, lane or parking shall not commence unless an approved traffic/pedestrian control plan and permit have been obtained. Submit applications at least 10 business days before work. For details go to http://www.portlandoregon.gov/transportation/permitting.
- Permittee must provide notification of proposed work schedule and request inspection for the permitted activity; contact Right-of-Way Inspection at 503.823.7002 opt#1 a minimum of two business days prior to beginning work and before 6am the day of inspection. Inspection not available on weekends and legal or city holidays.

The permittee applies for a revocable permit, in accordance with the attached conditions, provisions of Portland City Code Title 17 and the City Charter, for use of the street area on:

SE 12th Ave, from Caruthers St to Division St

SE Elliot Ave, from BIRCH ST to Division St

To drill 2 test bores, 2 in. in diameter, 5 ft. deep.

Special Notes / Comments

SSM	If tree roots will be disturbed during work, contact the Urban Forester to schedule an inspection at (503) 823-4489. If a parking sign must be relocated, contact Gudrun Utz at (503) 823-6841. If a traffic control sign must be relocated, contact Eileen Dent at (503) 823-7687. For parking permits or traffic control approval, contact the Permit Center at (503) 823-7365. More information can be found at www.portlandoregon.gov/transportation/permitting.
	www.portundoregom.govytransportationypermitting.
PWB	Contractor must locate and maintain a minimum 3' skin to skin horizontal separation from any Portland Water Bureau infrastructure.

Permittee Primary Contact

Point Source Solutions, LLC 10445 SW Canyon Rd. Suite 266 Beaverton, OR 97005 (503) 860-8811 x

conor@pointsourcesolutions.com

Conor McGeehan

(503) 236-5885 x

kyle@pointsourcesolutions.com

Date:	Line Item:	Amount:	Balance:
1/10/2025	1 - FY24/25 Insurance processing fee(s) @ \$55 ea	\$55.00	\$55.00
1/10/2025	1 - FY24/25 Street Light Locate Fee(s) @ \$140.4 ea	\$140.40	\$195.40
1/10/2025	1 - FY24/25 Test Bore(s) @ \$739 ea	\$739.00	\$934.40
1/13/2025	Point Source Solutions, LLC - Receipt: 2664185	(\$934.40)	\$0.00

APPROVED BY JACOB WILSON
CONTINGENT UPON COVERING CITY CODE & FRANCHISES
OF THE CITY OF PORTLAND BUREAU OF TRANSPORTATION

Jan 13 2025

Final approval Partial Approval Approved w/ corrections Not approved Cancelled

Inspector/Date:

Conditions

- 1. This permit is for the use of the street area only, and shall not exempt the permittee from obtaining any license or permit required by the City Code or Ordinances for any act to be performed under this permit, nor shall this permit waive the provisions of any City Code, Ordinance, or the City Charter, except as herein stated.
- 2. This permit is revocable by the Director of Transportation at any time in the event the public's need requires it, or the permittee fails to comply with the conditions of this permit, and no expenditure of money hereunder, lapse of time, or other act or thing shall operate as an estoppel against the City of Portland, or be held to give the permittee any vested or other right. Upon the expiration of this permit, or upon its sooner revocation by the Director of Transportation, the permittee shall, within 30 days, remove said installations from the street area and restore the street area as directed by and to the satisfaction of the Director of Transportation.
- 3. The permittee shall hold the City of Portland, its officers, agents, and employees free and harmless from any claims for damages to persons or property, including legal fees and costs of defending any actions or suits, including any appeals, which may result from the permitted activity.
- 4. This permit is personal to the permittee and may not be transferred, assigned or otherwise conveyed, and will require insurance with limits of coverage that will meet the maximum requirements for liability of a public body as set forth in ORS 30.260 through 30.300, or as it may be required by subsequent amendment and naming the City, its officers, agents and employees as additional insured. Said insurance is to be kept in full force and effect at all times. This permit is automatically revoked without further action by the Director of Transportation if this insurance is permitted to lapse, is canceled, or for any other reason becomes inoperative.
- 5.The permittee shall provide an annual street opening bond in the penal sum of TWO THOUSAND AND NO/100 DOLLARS (\$2000.00) as provided by Section 17.32.040 of the Code of the City.
- 6.The permittee shall initiate construction authorized by this permit within 30 days of the permit issue date. If the permitted work has not begun within 90 days, the permittee shall reapply for a permit before beginning any work within the right-of-way. 7.ATTENTION: Oregon law requires you to follow rules adopted by the Oregon Utility Notification Center. Those rules are set forth in OAR 952-001-0010 through OAR 952-001-0090. You may obtain copies of the rules by calling the center. (Note: the telephone number for the Oregon Utility Notification Center is 1-800-332-2344). Utilities shall be notified and have an opportunity to locate their facilities at least two days prior to commencing work allowed under this permit.
- 8. The permittee will protect public facilities in the right-of-way. The permittee will restore public facilities and guarantees the cost for repairs or replacement of any private or public facilities or private property damaged or destroyed caused in whole or in part as a result of work performed under this permit. The permittee recognizes and agrees the City cannot guarantee the accuracy of location of utilities in the street; and permittee further agrees to be responsible for any and all damage caused by his work under this permit, although such damage or destruction may have resulted in whole or in part because of the City's mislocation or misinformation in relation to the utilities.
- 9.Permittee shall obtain street use permits for areas equipment will be parked and will obtain permits for lane closures and for full street closures in advance.
- 10.Permittee shall maintain a minimum four foot pedestrian way or the sidewalk shall be closed at each end of the block with barricades and with signs "Sidewalk Closed-Use Opposite Side".
- 11.Permittee shall protect the work area by barricading or installing a fence adjacent to the excavation area as directed by the Director of Transportation.
- 12.Permittee shall conform to their approved traffic control plan for this project and shall not block travel lanes unless a traffic control plan for lane closure has been approved by the Traffic Engineer.
- 13.Permittee shall comply with Title 10 of the City Code, including all erosion measures and signs.
- 14.If, during construction allowed under this permit, it becomes necessary or expedient to modify the plan or location of any item authorized by this permit, the permittee shall first obtain the approval of the Director of Transportation.
- 15. After measurements and/or samples are obtained the boreholes will be filled and sealed to match the surrounding surface.
- 16. Permittee shall provide a copy of any test-hole reports to the Director of Transportation upon completion of work. The reports shall show the location of each test-hole and shall include a copy of the boring log if requested by the Director of Transportation or his representative.

FEE ESTIMATE

NOT A PERMIT

Date: 1/13/2025

Permittee Point Source Solutions, LLC

Work Location: Various

PermitNumber: TR-25-003

SAP / Check Number: 2664185

DescriptionSAP Internal Order NumberAmountTest bore permit fee8TR000001100\$934.40

Total: \$934.40

Bureau Rep: Andrew Wightman 503-823-7035

1120 S.W. 5th Avenue, Suite 800 • Portland, Oregon, 97204-1914 • 503-823-5185 FAX 503-823-7576 or 503-823-7371 • TTY 503-823-6868 • www.portlandoregon.gov

CITY OF PORTLAND, OREGON

PORTLAND PERMITTING & DEVELOPMENT 1900 SW 4th Ave, Suite 5000 Portland, OR 97201

Phone: 503-823-7300

\$934.40

\$0.00

RECEIPT #: 2664185

Payment Date:1/13/2025 Site Address: 5115798 **IVR Number:**

Permit Number: 25-002562-000-00-GC **General Receipt: Non-TA Payments**

APPLICANT	NONE				Phone:	
Fee Code	Fee Description	Fee Amount	Paid to Date	Balance	This Transaction	New Balance
3532	TR-Insurance & Bond Processing Fee	\$55.00				
3573	PBOT - Test Bore	\$739.00				
3578	PBOT - Street Light Locate	\$140.40				
	Subtotal for Bill #5394065	\$934.40	\$0.00	\$934.40	\$934.40	\$0.00

^{*} Fees marked with an asterisk are due at application.

TOTAL

PAYOR POINT SOURCE SOLUTIONS LLC *CONOR MCGEEHAN* Payment #: 2664185 Method of Payment: 153911322 Web Conor J McGeehan	Phone: (541) 390-8805 Receipt By:
CITY CONTACT E-Mail:	Phone: Fax: (503) 823-4172

\$934.40

\$0.00

\$934.40

Notice: This document is not a permit. This document may not represent all fees owing for this permit. All fees are subject to change based on new or corrected information. For more information, consult your City of Portland Contact listed above.

Wilson, Jacob

From: Conor McGeehan <conor@pointsourcesolutions.com>

Sent: Tuesday, January 7, 2025 2:52 PM

To: PBOT Utility Permits

Subject: *TR-25-003* borehole permit application

Attachments: PDF borehole permit appl.pdf

Hello,

Please find the attached borehole permit application. This work is being performed by Point Source Solutions LLC. We are a contractor who routinely works with the city and therefore you guys should have our insurance and bond information on file. If there is anything we need to provide please let me know.

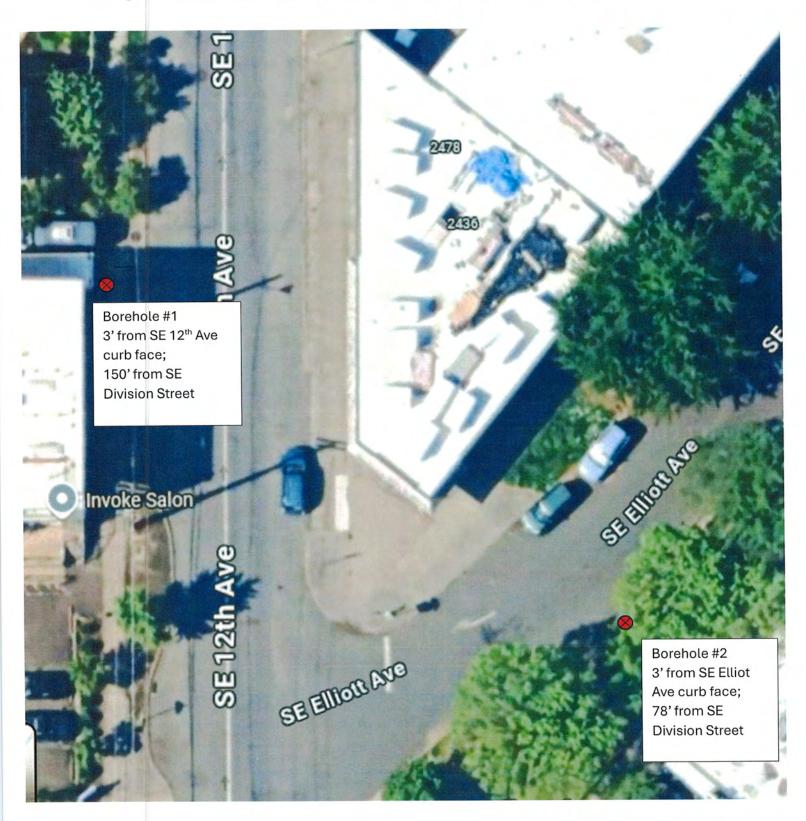
Thanks,

--

Conor McGeehan

Project Manager conor@pointsourcesolutions.com

p: 541.390.8805


APPROVED BY JACOB WILSON
CONTINGENT UPON COVERING CITY CODE & FRANCHISES
OF THE CITY OF PORTLAND BUREAU OF TRANSPORTATION

Jan 13 2025

Test Bore, Monitoring Well, & Underground Storage Tank Decommissioning Permit Request Form

Contractor requesting permit	Work Site Info
Company name Point Source Solutions, LLC	Site address 2436 SE 12th Ave. Portland,
Address 5317 NE St. Tohns Ad.	Primary street SE12 th Ave
Vancauver, WA	Cross streets SE ELLIOT Street / SE ELLIOT
Contact name Conor McGeehan	street / spence Ave ALLEY
Contact phone 541. 390. 8805	
Contact email Conor@ points oure solution	Secare Test bore / Monitoring Well
	Number of bores 2
Contractor working in ROW Same as above	Number of wells
Company name	Greatest diameter 2"
Address	Greatest depth 51
Contact name	Underground Storage Tanks
Contact phone	Number of tanks
Contact email	Decommission in place* ☐ Remove from Ground ☐
application will not be accepted	NORTH NORTH STATE OF THE PARTY
NAME OF STREET CURB LINE	The state of the s
Batins 31	736 124 A. S.
PROPERTY LINE	The state of the s
150' A FEE	Boring #2
NAMEOF STREET	NAME OF STREET
1	Updated 6/16/2017

APPROVED BY JACOB WILSON CONTINGENT UPON COVERING CITY CODE & FRANCHISES OF THE CITY OF PORTLAND BUREAU OF TRANSPORTATION

Jan 13 2025

CITY OF PORTLAND, OREGON **PORTLAND FIRE & RESCUE**

(503) 823-1199

Prevention Division 1300 SE Gideon St., Portland OR 97202-2419

FIRE SYSTEMS PERMIT 23-046107-000-00-FS

Issued: 6/2/23 Site Address: 2436 SE 12TH AVE

PROJECT INFORMATION			Occ. Group	Const. Type				
Hazardous Materials		Removal						
Project Description:	Project Description: HAZARDOUS / TANK - REMOVAL OF (2) USTs. CONSTRUCTION AND CONTENTS OF TANKS UNKNOWN (TANKS ARE BELIEVED TO BE APPROX. 1,000 GALLONS EACH)							
APPLICANT	APPLICANT Point Source Solutions *Kyle Fisher* Phone: (503) 860-8811							
PROPERTY OWNER	SKYHOOK HOLD	INGS LLC		Phone:				
CONTRACTOR Point Source Solutions *Kyle Fisher* Phone:								
Pro	oject Details			Project Details				
Building, New Const or Exis	Remova	al						
Fire System Valuation	45009	on	Underg	round				
Product Stored in Tank	UNKNO	WN						

6/2/23 - PERMIT EMAILED TO APPLICANT NO RELATED PERMITS FOUND **OVER THE COUNTER**

CERTIFICATION **REQUIRED**

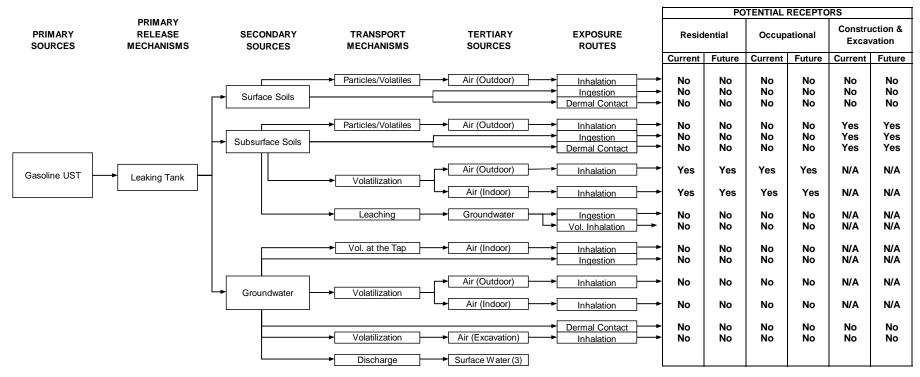
With the exception of Fire Alarm, Special Hazards, and Paint booth permits, All permitted work must be performed by or under the direct supervision of an individual with a valid Certificate of Fitness from the Fire Marshal's Office.

Phone: (503) 823-3712 **CITY CONTACT**

Fax: E-Mail: pfrpc@portlandoregon.gov (503) 823-3925

INSPECTION REQUEST PHONE NUMBERS

FIRE SYSTEM PERMITS - Call before 6:00 am, Mon. - Fri.


TDD: (503) 823-6868

IVR Inspection Request Number:

4929627

APPENDIX G CONCEPTUAL SITE MODEL

Notes:

Yes= This route is a primary source of exposure.

There is no exposure by this route.

APPENDIX H BORING LOGS

Client: Skyhook Fitness

Project: 2436 SE 12th Ave

Address: 2436 SE 12th Ave, Portland, OR

BORING LOG

Boring No. B1
Page: 1 of 1

Drilling Start Date: 2/22/23

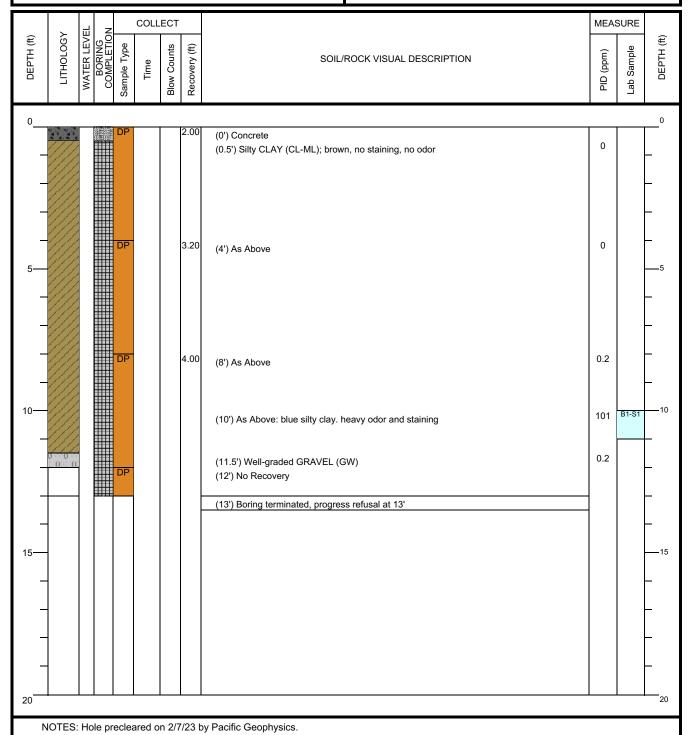
Drilling End Date: 2/22/23

Drilling Company: Point Source Solutions

Drilling Method: Direct Push
Drilling Equipment: Geoprobe DT22

Driller: JR
Logged By: KF

Boring Depth (ft): 13


Boring Diameter (in): 2.25

Sampling Method(s): Direct Push

DTW During Drilling (ft): N/A

DTW After Drilling (ft): N/A
Ground Surface Elev. (ft): N/A

Location (Lat, Long): N/A

Client: Skyhook Fitness

Project: 2436 SE 12th Ave

Address: 2436 SE 12th Ave, Portland, OR

BORING LOG

Boring No. B2 Page: 1 of 1

Drilling Start Date: 2/22/23

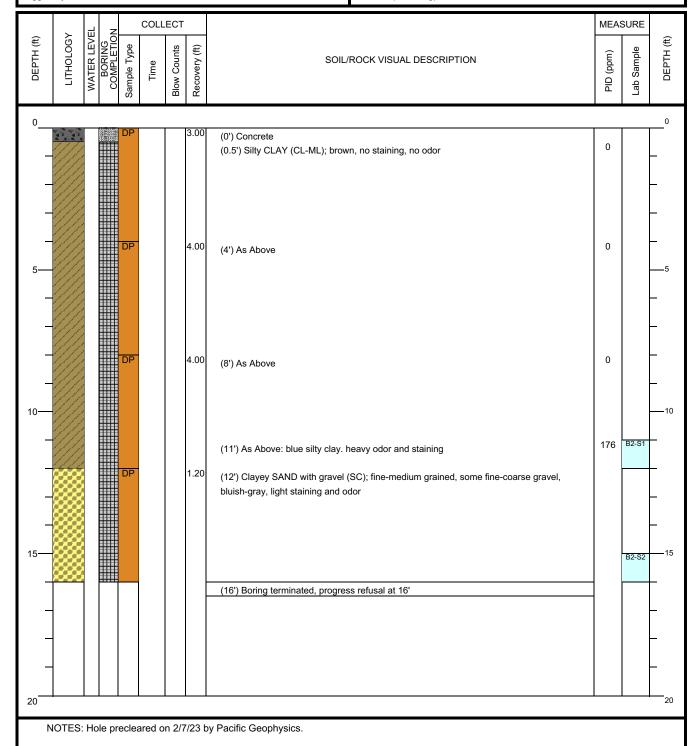
Drilling End Date: 2/22/23

Drilling Company: Point Source Solutions

Drilling Method: Direct Push
Drilling Equipment: Geoprobe DT22

Driller: KF
Logged By: JR

Boring Depth (ft): 16


Boring Diameter (in): 2.25

Sampling Method(s): Direct Push

DTW During Drilling (ft): N/A

DTW After Drilling (ft): N/A
Ground Surface Elev. (ft): N/A

Location (Lat, Long): N/A

Client: Skyhook Fitness

Project: 2436 SE 12th Ave

Address: 2436 SE 12th Ave, Portland, OR

BORING LOG

Boring No. B3
Page: 1 of 1

Drilling Start Date: 2/22/23

Drilling End Date: 2/22/23

Drilling Company: Point Source Solutions

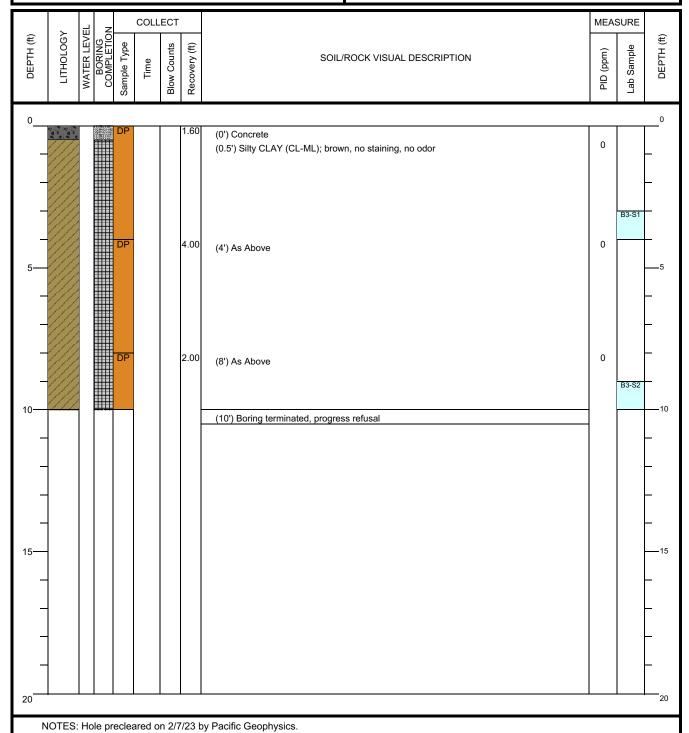
Drilling Method: Direct Push
Drilling Equipment: Geoprobe DT22

Driller: KF Logged By: JR

Boring Depth (ft):

Boring Diameter (in): 2.25

 $Sampling \ Method(s): \qquad \ \textbf{Direct Push}$


10

DTW During Drilling (ft): N/A

DTW After Drilling (ft): N/A
Ground Surface Elev. (ft): N/A

Cround Guriace Liev. (it). WA

Location (Lat, Long): N/A

Client: **Skyhook Fitness**

Project: 2436 SE 12th Ave

Address: 2436 SE 12th Ave, Portland, OR **BORING LOG**

Boring No. В4

Page: 1 of 1

Drilling Start Date: 2/22/23

Drilling End Date: 2/22/23

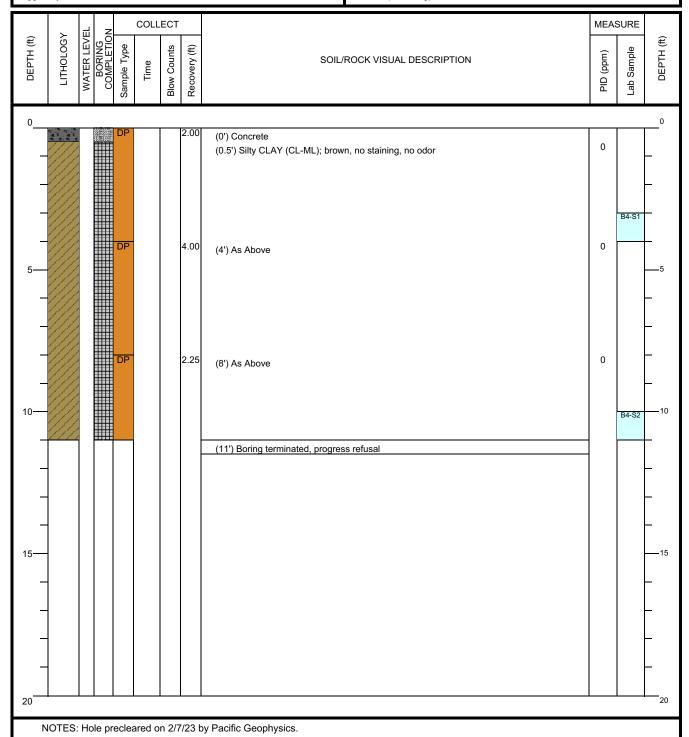
Drilling Company: Point Source Solutions

Drilling Method: **Direct Push** Drilling Equipment: Geoprobe DT22

Driller: KF JR Logged By:

Boring Diameter (in): 2.25

Boring Depth (ft):


Sampling Method(s): **Direct Push**

11

DTW During Drilling (ft):

DTW After Drilling (ft): N/A Ground Surface Elev. (ft): N/A

Location (Lat, Long): N/A

Client: **Skyhook Fitness**

Project: 2436 SE 12th Ave

Address: 2436 SE 12th Ave, Portland, OR **BORING LOG**

Boring No. **B5** Page: 1 of 1

Drilling Start Date: 2/28/23 Boring Depth (ft):

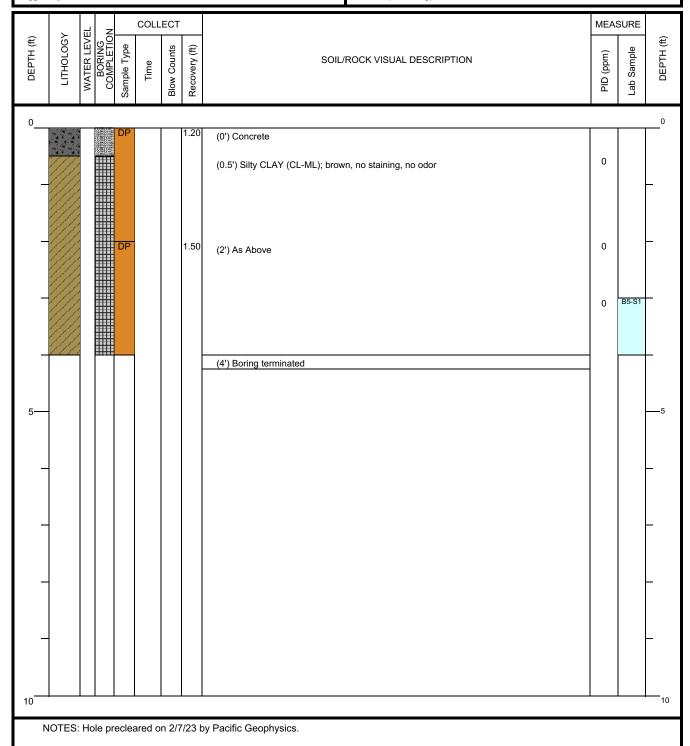
Drilling End Date: 2/28/23

Drilling Company: Point Source Solutions

Drilling Method: **Direct Push** Drilling Equipment: Geoprobe LB

Driller: KF KF Logged By:

4


Boring Diameter (in): 1.25

Direct Push Sampling Method(s):

DTW During Drilling (ft):

DTW After Drilling (ft): N/A Ground Surface Elev. (ft): N/A

Location (Lat, Long): N/A

Client: **Skyhook Fitness**

Project: 2436 SE 12th Ave

Address: 2436 SE 12th Ave, Portland, OR **BORING LOG**

1 of 1

Boring No. **B6**

Page:

Drilling Start Date: 2/28/23

Drilling End Date: 2/28/23

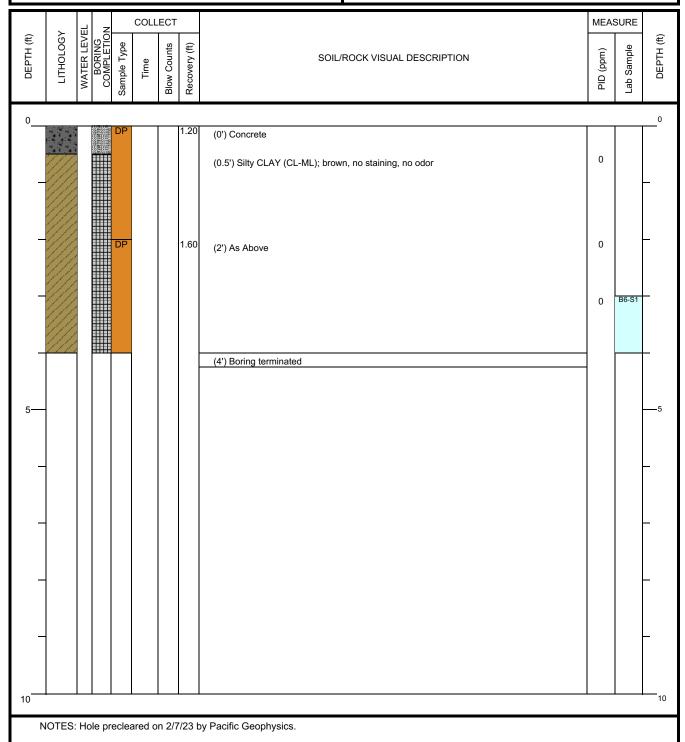
Drilling Company: Point Source Solutions

Drilling Method: **Direct Push** Drilling Equipment: Geoprobe LB

KF Logged By:

Driller: KF Boring Depth (ft): 4

Boring Diameter (in): 1.25


Direct Push Sampling Method(s):

DTW During Drilling (ft):

DTW After Drilling (ft): N/A

Ground Surface Elev. (ft): N/A

Location (Lat, Long): N/A

PROJECT NAME: Skyhook Fitness PROJECT NO: LUST 26-23-0131

LOCATION / ADDRESS: 2436 SE 12th Ave, Portland, OR

BOREHOLE / PROBEHOLE / WELL NO.

SB7 PAGE 1 OF 1

START DATE:10/08/2024

COMPLETETION DATE: 10/08/2024

DRILLING COMPANY: Soil Solutions Environmental Services

DRILLING METHOD: **Direct Push** DRILLING EQUIPMENT: **Geoprobe,**

BOREHOLE DEPTH (FT): 12 BOREHOLE DIAM. (IN): 2 INITIAL DTW (FT): na ▼ STATIC DTW (FT): na ▼

			/IEASUF	RE INFORMATION	_
VISUAL DESCRIPTION	Percent Recovery	PID (ppm)	WTQ	SAMPLE ID	BOREHOLE WELL CONST
0-1 Concrete and Base	_		na		Benton
1-5 Silty clay, brown, low plasticity, damp	80	0.1			12'b
5-12 Silty sand, fine to medium, well	80				
sorted, brown/grey, damp		8.1			
	80				
		4.7			
Borehole Terminated @ 12'				SB7-S1-12	

PROJECT NAME: Skyhook Fitness PROJECT NO: LUST 26-23-0131

LOCATION / ADDRESS: 2436 SE 12th Ave, Portland, OR

PAGE 1 OF 1

BOREHOLE / PROBEHOLE / WELL NO. SB8

START DATE:10/08/2024

COMPLETETION DATE: 10/08/2024

DRILLING COMPANY: Soil Solutions Environmental Services

DRILLING METHOD: Direct Push DRILLING EQUIPMENT: Geoprobe, BOREHOLE DEPTH (FT): 12 BOREHOLE DIAM. (IN): 2 INITIAL DTW (FT): na 🔽 STATIC DTW (FT): na

BY: CM	COLLE	CTION & N	/FASIII	RE INFORMATION	
VISUAL DESCRIPTION	Percent Secovery	(mqq) OIA	MLQ	SAMPLE ID	BOREHOLE DECOM / WELL CONSTRUCTION
0-1 Concrete and Base			na		
1-4 Silty clay, brown, low plasticity, damp	80	0.2	IIa		Bentonite to 12'bgs
4-12 Silty sand with some gravels, fine to medium, poorly sorted, brown, damp	80	1.7			
	80	1.5			
Borehole Terminated @ 12'				SB8-S1-12	

PROJECT NAME: Skyhook Fitness PROJECT NO: LUST 26-23-0131

LOCATION / ADDRESS: 2436 SE 12th Ave, Portland, OR

BOREHOLE / PROBEHOLE / WELL NO.

SB9 PAGE 1 OF 1

START DATE:10/08/2024

COMPLETETION DATE: 10/08/2024

DRILLING COMPANY: Soil Solutions Environmental Services

DRILLING METHOD: **Direct Push** DRILLING EQUIPMENT: **Geoprobe,**

LOGGED BY: CM

BOREHOLE DEPTH (FT): 12
BOREHOLE DIAM. (IN): 2
INITIAL DTW (FT): na

▼
STATIC DTW (FT): na

▼

LUGGE	D BY: CM					
F		COLLE	CTION & N	MEASU	RE INFORMATION	
ОЕРТН (FT)	VISUAL DESCRIPTION	Percent Recovery	PID (ppm)	DTW	SAMPLE ID	BOREHOLE DECOM / WELL CONSTRUCTION
° T	0-1 Concrete and Base			na		Double with the
+	1-4 Silty clay, brown, low plasticity, damp	70	0.1			Bentonite to 12'bgs
5 +	4-12 Silty sand, fine to medium, poorly sorted, brown, damp	80	0.1			
10		90	1.7			
+	Borehole Terminated @ 12'				SB9-S1-12	
15 +						
20						
+ + + + + + + + + + + + + + + + + + + +						
25 —						
30 —						
35						

PROJECT NAME: Skyhook Fitness PROJECT NO: LUST 26-23-0131

LOCATION / ADDRESS: 2436 SE 12th Ave, Portland, OR

BOREHOLE / PROBEHOLE / WELL NO.

SB10 PAGE 1 OF 1

START DATE:10/08/2024

COMPLETETION DATE: 10/08/2024

DRILLING COMPANY: Soil Solutions Environmental Services

DRILLING METHOD: **Direct Push** DRILLING EQUIPMENT: **Geoprobe**,

BOREHOLE DEPTH (FT): 12 BOREHOLE DIAM. (IN): 2 INITIAL DTW (FT): na ▼ STATIC DTW (FT): na ▼

			/IEASUI	RE INFORMATION	_	
VISUAL DESCRIPTION	Percent Recovery	PID (ppm)	WTQ	SAMPLE ID	BOREHOLE DECOM / WELL CONSTRUCTION	
0-1 Concrete and Base			na			
-5 Silty clay, brown, low plasticity, damp	75	0.2			Bentonite to 12'bgs	
5-12 Silty sand, fine to medium, well	75	3.9				
sorted, brown/grey, damp						
	80					
		4.0				
orehole Terminated @ 12'	<u> </u>			SB10-S1-12		