To: Katie Daugherty, RG Date: June 9, 2025

From: Carolyn Wise, RG

Tim Browning, RG Project No.: M8012.01.001

Re: Residential Yard March 2025 Sampling

Permapost Products, Inc. Hillsboro, Oregon ECSI #148

Maul Foster & Alongi, Inc. (MFA) and Permapost Products, Inc. (Permapost) have prepared this memorandum to summarize the results of the March 2025 supplemental soil sampling at Properties 1, 2, 3, and 4 within the residential properties (Area of Interest [AOI]-5) associated with the Permapost site in Hillsboro, Oregon (the Site). This sampling was conducted to inform the extent of dioxin/furan (D/F) and arsenic concentrations for Properties 2 and 4 of AOI-5.

In addition, all data collected to date at residential properties are provided in the attached Table and data validation memoranda.

Background and Purpose

AOI-5 is located to the south of the Permapost property located at 4205 SE Witch Hazel Road in Hillsboro, Oregon (the Permapost Property). AOI-5 includes properties immediately adjacent to the Permapost Property with residential zoning in residential use (Washington County tax parcels 1S209BD00800, 1S209BD00700, 1S209BD00600, 1S209BD00500, properties 1 through 4, respectively; see Figure).

In October 2022, concentrations of dioxins/furans and arsenic were identified in shallow soil in the residentials yards (AOI-5) (see Table) (MFA 2022). Additional data have been collected from the residential yards to support characterization of D/F and arsenic concentrations in soil, consistent with the sampling approach described in an email correspondence *Proposed Additional Sampling, Residential Property DU-2* approved by DEQ on October 23, 2024, and the Property 4, Yard Investigation Work Plan (MFA 2025; Permapost 2024).

Sampling Approach

Property 2

Three additional incremental sampling methodology (ISM) samples and three additional composite samples were collected to refine the excavation depth with DU-2 of Property 2.

Back Yard

One ISM surface sample (DU-2c at 0-0.5 feet below ground surface [bgs]) was collected from the back yard in an area set back from Property 3 (DU-3) and where historical flooding may have impacted prior results of DU-2 on Property 2.

Mid Yard

One ISM surface sample (DU-2d at 0-0.5 feet bgs) was collected from the western portion of the mid yard in an area set back from Property 3 (DU-3).

Two additional 3-point composite samples were collected from 2-3 feet bgs from 1) the western portion of the mid yard (HA-33-COMP) and 2) the eastern portion of the mid yard (HA-34-COMP) to further evaluate the vertical extent of D/F concentrations relative to their proximity to Property 3 (DU-3).

Front Yard

One ISM surface sample (DU-2e at 0-0.5 feet bgs) was collected from the western portion of the front yard in an area set back from Property 3 (DU-3).

One additional 3-point composite samples were collected from 1-2 feet bgs from 1) the western portion of the front yard (HA-32-COMP) to evaluate the vertical extent of D/F concentrations relative to their proximity to Property 3 (DU-3).

Property 4

Property 4 was divided into four decision units (DU-4-A, DU-4-B, DU-4-C, and DU-4-D, see Figure).

- DU-4-A represented soil conditions along the western portion of Property 4 and immediately east of Property 3.¹
- DU-4-B represents the central portion of Property 4.
- DU-4-C represents soil conditions along the northern portion of Property 4, immediately south of the Permapost Property.
- DU-4-D represents soil conditions along the eastern portions of Property 4, immediately west of the vehicle maintenance shop and yard on the adjacent property.

In addition, four (4) three-point composite samples were collected from 1.5 to 2 feet bgs and 2.5 to 3 feet bgs from each decision unit to evaluate the vertical extent of D/F and arsenic concentrations in soil (HA-35-COMP, HA-36-COMP, HA-37-COMP, HA-38-COMP).

Results

Laboratory analytical reports are provided as Attachment A. Analytical data and the laboratory's internal quality assurance and quality control data were reviewed to assess whether they met project-specific data quality objectives. This review was performed consistent with EPA procedures for evaluating laboratory analytical data (EPA, 2020a,b) and appropriate laboratory and method-specific guidelines (Apex, 2023; Enthalpy, 2023). A data validation memorandum summarizing data evaluation procedures, data usability, and deviations from specific field and/or laboratory methods is included as Attachment B. The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned. Analytical results are provided in the Table. Analytical data were

Property 3 contains the highest concentrations of dioxin/furans and arsenic of the other properties within AOI-5.

screened relative to a site-specific preliminary remediation goal (PRG) for dioxins/furans of 11.8 picograms per gram (pg/g) (MFA 2023) and regional background for arsenic of 8.8 milligrams per kilogram (mg/kg) (see Table).

Attachments

References

Limitations

Figure

Table

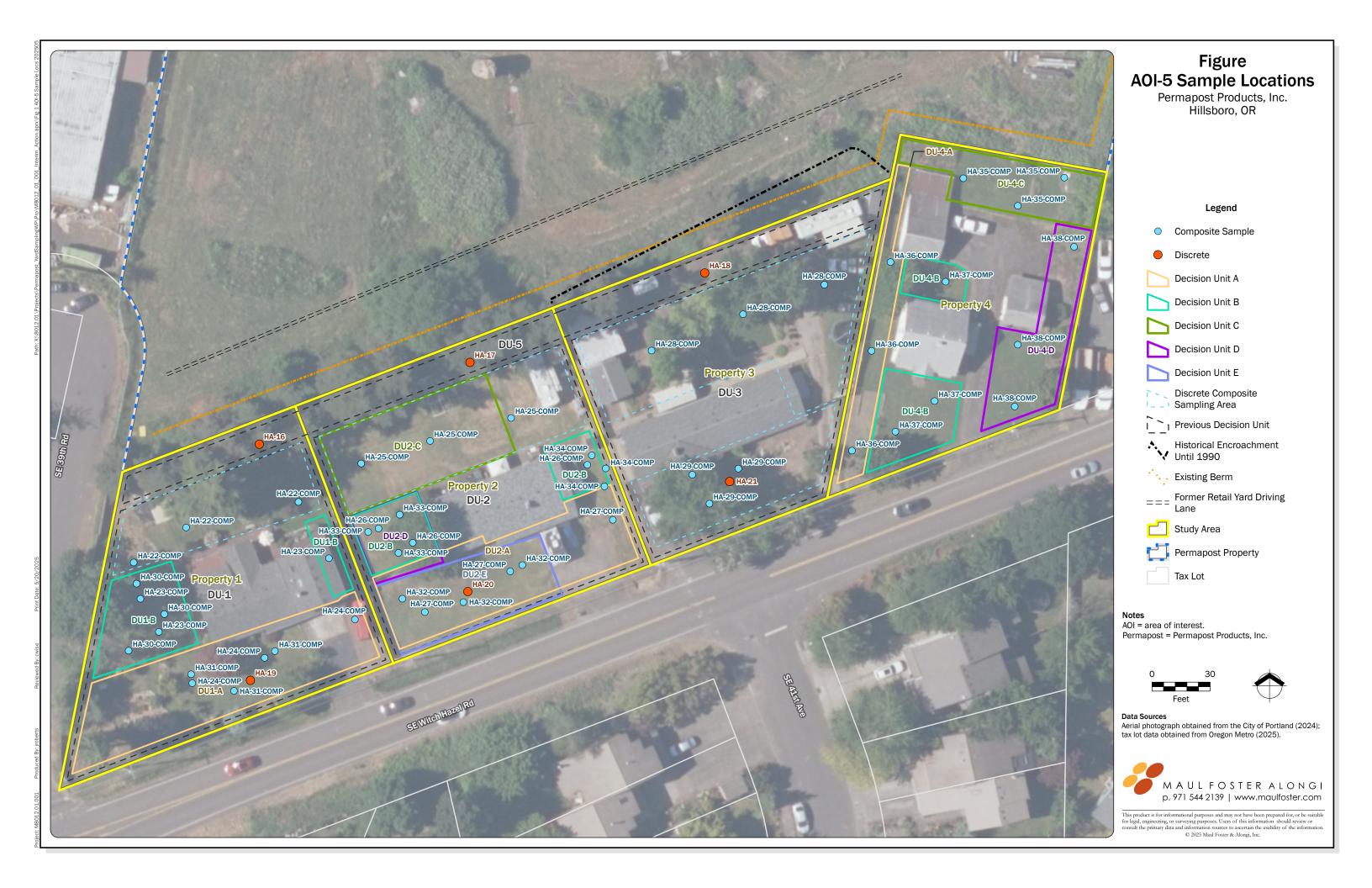
A—Analytical Laboratory Reports

B-Data Validation Memoranda

References

- Apex. 2023. Quality Systems Manual. Rev. 11. Apex Laboratories, LLC: Tigard, OR. June 20.
- Enthalpy. 2023. Quality Manual. Rev. 33. Enthalpy Analytical LLC: El Dorado Hills, CA. February 20.
- EPA. 2020a. National Functional Guidelines for High Resolution Superfund Methods Data Review. EPA 542-R-20-007. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.
- EPA. 2020b. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA 542-R-20-006. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.
- MFA. 2023. Phil Wiescher, PhD, Maul Foster & Alongi, Inc., Tim Browning, RG, Permapost Products, Inc. Topsoil Source Evaluation and Proposed Residential Preliminary Remediation Goal for Dioxins/Furans. Memorandum to Katie Daugherty, RG, Oregon Department of Environmental Quality. October 6.
- MFA. 2025. Phil Wiescher, PhD, & Carolyn Wise, RG, Maul Foster & Alongi, Inc., Property 4, Yard Investigation Work Plan, Permapost Products, Inc., Hillsboro, Oregon, ECSI #148.

 Memorandum to Katie Daugherty, RG, Oregon Department of Environmental Quality. January 15.
- Permapost. 2024. Tim Browning, RG, Permapost Products, Inc. Proposed Additional Sampling, Residential Property DU-2. Email to Katie Daugherty, RG, Oregon Department of Environmental Quality. October 23.


Limitations

The services undertaken in completing this technical memorandum were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This technical memorandum is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this technical memorandum apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this technical memorandum.

Figure

Table

Table Summary of Soil Analytical Results Yard Pre-Design Investigation Work Plan Permapost Products, Inc., Hillsboro, Oregon

Decision Unit:						DU	-01				
Sample Name:	Screening	DU01-S-0.5	⊔∧10 € 2 ∩	DU1-A	DU1-B	HA-22-	HA-22-	HA-23-	HA-23-	HA-24-	HA-24-
затріе натіе.	Criteria	D001-3-0.3	11/17-3-2.0	D01-A		Comp-1-2	COMP-2-3	COMP-1-2	COMP-2-3	COMP-1-2	COMP-2-3
Sample Date:	Ciliena	10/05/2022	10/05/2022	05/09/2023	05/09/2023	05/11/2023	05/11/2023	05/11/2023	05/11/2023	05/11/2023	05/11/2023
Sample Depth (ft bgs):		0-0.5	1.0-2.0	0-0.5	0-0.5	1.0-2.0	2.0-3.0	1.0-2.0	2.0-3.0	1.0-2.0	2.0-3.0
Total Metals (mg/kg)											
Arsenic	8.8 ^{(a)(1)}	10.0	5.58	6.21	7.75	9.25	12.2				
Dioxins and Furans (pg/g)											
Dioxin and Furan TEQ ^{(b)(2)}	11.8 ^{(c)(3)}	45.7 J	5.11 J	16.0 J	27.5 J	21.4 J	28.9 J	15.7 J	17.0 J	23.6 J	2.90 J

Table Summary of Soil Analytical Results Yard Pre-Design Investigation Work Plan Permapost Products, Inc., Hillsboro, Oregon

Decision Unit:			DU-01 (cont.)		DU-02							
Cample Name:	Screening	HA-30-1.5-	HA-30-2.5-	HA-31-1.5-	DU02-S-0.5	HA20 C 2 0	DU2-A	DU2-B	HA-25-	HA-25-	HA-26-	
Sample Name:	Criteria	COMP	COMP	COMP	D002-3-0.3	ПА20-3-2.0	D02-A	D02-B	Comp-1-2	COMP-2-3	COMP-1-2	
Sample Date:	Ciliena	05/31/2024	05/31/2024	05/31/2024	10/05/2022	10/05/2022	05/09/2023	05/09/2023	05/11/2023	05/11/2023	05/11/2023	
Sample Depth (ft bgs):		1.0-2.0	2.0-3.0	1.0-2.0	0-0.5	1.0-2.0	0-0.5	0-0.5	1.0-2.0	2.0-3.0	1.0-2.0	
Total Metals (mg/kg)												
Arsenic	8.8 ^{(a)(1)}				7.99			-	-			
Dioxins and Furans (pg/g)												
Dioxin and Furan TEQ ^{(b)(2)}	11.8 ^{(c)(3)}	13.9	179	2.58	28.6 J	9.8 J	71.7 J	80.2 J	7.60 J	3.96 J	6.30 J	

Table Summary of Soil Analytical Results

Yard Pre-Design Investigation Work Plan Permapost Products, Inc., Hillsboro, Oregon

Decision Unit:						DU-02 (cont.)					
Sample Name:	Screening	HA-26-	HA-27-	HA-27-	HA-32-	HA-33-	HA-34-	DII 26 S 0 5	DII 24 5 0 5	DU-2e-S-0.5	
sample Name.	Criteria	COMP-2-3	COMP-1-2	COMP-2-3	COMP-S-1-	COMP-S-2-	COMP-S-2-	D0-2C-3-0.3	D0-20-3-0.3	D0-2 0 -3-0.3	
Sample Date:	Ciliella	05/11/2023	05/11/2023	05/11/2023	03/12/2025	03/12/2025	03/12/2025	03/12/2025	03/12/2025	03/12/2025	
Sample Depth (ft bgs):		2.0-3.0	1.0-2.0	2.0-3.0	1.0-2.0	2.0-3.0	2.0-3.0	0.5	0.5	0.5	
Total Metals (mg/kg)											
Arsenic	8.8 ^{(a)(1)}					5.39		6.76	8.93	7.05	
Dioxins and Furans (pg/g)											
Dioxin and Furan TEQ ^{(b)(2)}	11.8 ^{(c)(3)}	18.4 J	26.7 J	7.90 J	4.18 J	4.57 J	15.8 J	21.9 J	49.6 J	35.8 J	

Table

Summary of Soil Analytical Results Yard Pre-Design Investigation Work Plan Permapost Products, Inc., Hillsboro, Oregon

Decision Unit:		DU-03										
Sample Name:	Scrooning	$DU03A \le 0.5$	DU03B-S-0.5	DU03C-S-	HA21-S-2.0	HA21-S-3.0	HA-28-	HA-29-				
Sample Name:	Criteria	D003A-3-0.3		0.5	11/21-3-2.0	11/21-3-3.0	Comp-2-3	Comp-2-3				
Sample Date:	Ciliella	10/05/2022	10/05/2022	10/05/2022	10/05/2022	10/05/2022	05/11/2023	05/11/2023				
Sample Depth (ft bgs):		0-0.5	0-0.5	0-0.5	1.0-2.0	2.0-3.0	2.0-3.0	2.0-3.0				
Total Metals (mg/kg)												
Arsenic	8.8 ^{(a)(1)}	38.2	38.4	40.3	9.60	13.2	16.4	9.96				
Dioxins and Furans (pg/g)												
Dioxin and Furan TEQ ^{(b)(2)}	11.8 ^{(c)(3)}	395 J	359 J	370	26.1 J	73.3 J	53.1 J	29.2 J				

Table Summary of Soil Analytical Results Yard Pre-Design Investigation Work Plan Permapost Products, Inc., Hillsboro, Oregon

Decision Unit:		DU-04										
Sample Name:	Screening Criteria	HA-35-COMP- \$-2.5-3.0	HA-36-COMP- \$-2.5-3.0	DU4-A-S-0.5	DU4-B-S-0.5	DU4-C-S-0.5	DU4-D-S-0.5					
Sample Date:	Ciliena	03/11/2025	03/11/2025	03/11/2025	03/11/2025	03/11/2025	03/11/2025					
Sample Depth (ft bgs):		2.5-3.0	2.5-3.0	0.5	0.5	0.5	0.5					
Total Metals (mg/kg)												
Arsenic	8.8 ^{(a)(1)}	6.32	5.20	17.8	5.85	47.2	6.18					
Dioxins and Furans (pg/g)												
Dioxin and Furan TEQ ^{(b)(2)}	11.8 ^{(c)(3)}	14.3 J	12.3 J	106	12.7 J	479	14.1 J					

Table Summary of Soil Analytical Results Yard Pre-Design Investigation Work Plan Permapost Products, Inc., Hillsboro, Oregon

Decision Unit:		DU-05										
Sample Name:	Screening	DU05-S-0.5	HA16-S-2.0	HA16-S-3.0	HA17-S-2.0	HA18-S-2.0	HA18-S-3.0					
Sample Date:	Criteria	10/05/2022	10/05/2022	10/05/2022	10/05/2022	10/05/2022	10/05/2022					
Sample Depth (ft bgs):		0-0.5	1.0-2.0	2.0-3.0	1.0-2.0	1.0-2.0	2.0-3.0					
Total Metals (mg/kg)												
Arsenic	8.8 ^{(a)(1)}	13.3	41.8	10.2	6.08	53.2	32.2					
Dioxins and Furans (pg/g)	Dioxins and Furans (pg/g)											
Dioxin and Furan TEQ ^{(b)(2)}	11.8 ^{(c)(3)}	68.2 J	74.1 J	18.3 J	6.60 J	506 J	91.3 J					

Attachment A

Analytical Laboratory Reports

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Wednesday, April 2, 2025 Phil Wiescher Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

RE: A5C1334 - Permapost Supplemental RI - M8012.01.001

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A5C1334, which was received by the laboratory on 3/12/2025 at 5:05:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information	

O - - | - - D - - - :-- t | -- f - --- - - t - --

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Cooler #1 3.3 degC Cooler #2 5.6 degC

Cooler #3 5.6 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 04 02 25 1828

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DU4-A-S-0.5	A5C1334-01	Soil	03/11/25 11:00	03/12/25 17:05
DU4-A-S-0.5	A5C1334-02	Soil	03/11/25 11:00	03/12/25 17:05
DU4-B-S-0.5	A5C1334-03	Soil	03/11/25 10:30	03/12/25 17:05
DU4-B-S-0.5	A5C1334-04	Soil	03/11/25 10:30	03/12/25 17:05
DU4-C-S-0.5	A5C1334-05	Soil	03/11/25 12:15	03/12/25 17:05
DU4-C-S-0.5	A5C1334-06	Soil	03/11/25 12:15	03/12/25 17:05
DU4-D-S-0.5	A5C1334-07	Soil	03/11/25 09:45	03/12/25 17:05
DU4-D-S-0.5	A5C1334-08	Soil	03/11/25 09:45	03/12/25 17:05
DU-2c-S-0.5	A5C1334-17	Soil	03/12/25 10:30	03/12/25 17:05
DU-2c-S-0.5	A5C1334-18	Soil	03/12/25 10:30	03/12/25 17:05
DU-2d-S-0.5	A5C1334-19	Soil	03/12/25 11:15	03/12/25 17:05
DU-2d-S-0.5	A5C1334-20	Soil	03/12/25 11:15	03/12/25 17:05
DU-2e-S-0.5	A5C1334-21	Soil	03/12/25 12:00	03/12/25 17:05
DU-2e-S-0.5	A5C1334-22	Soil	03/12/25 12:00	03/12/25 17:05

Apex Laboratories

Philip Marenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: Permapost Supplemental RI

Project Number: M8012.01.001
Project Manager: Phil Wiescher

Report ID: A5C1334 - 04 02 25 1828

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20B (ICPMS)								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
DU4-A-S-0.5 (A5C1334-02)				Matrix: Soi	I							
Batch: 25C1019												
Arsenic	17.8		1.02	mg/kg dry	10	03/26/25 22:49	EPA 6020B	PRO				
DU4-B-S-0.5 (A5C1334-04)				Matrix: Soil								
Batch: 25C1019												
Arsenic	5.85		1.09	mg/kg dry	10	03/26/25 22:54	EPA 6020B	PRO				
DU4-C-S-0.5 (A5C1334-06)				Matrix: Soi	I							
Batch: 25C1019												
Arsenic	47.2		1.03	mg/kg dry	10	03/26/25 22:59	EPA 6020B	PRO				
DU4-D-S-0.5 (A5C1334-08)				Matrix: Soi	I							
Batch: 25C1019												
Arsenic	6.18		1.09	mg/kg dry	10	03/26/25 23:05	EPA 6020B	PRO				
DU-2c-S-0.5 (A5C1334-18)				Matrix: Soi	I							
Batch: 25C1019												
Arsenic	6.76		1.05	mg/kg dry	10	03/26/25 23:21	EPA 6020B	PRO				
DU-2d-S-0.5 (A5C1334-20)				Matrix: Soi	I							
Batch: 25C1019												
Arsenic	8.93		1.08	mg/kg dry	10	03/26/25 23:27	EPA 6020B	PRO				
DU-2e-S-0.5 (A5C1334-22)				Matrix: Soi	I							
Batch: 25C1019												
Arsenic	7.05		1.08	mg/kg dry	10	03/26/25 23:32	EPA 6020B	PRO				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherg

Page 3 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: Permapost Supplemental RI

Project Number: M8012.01.001
Project Manager: Phil Wiescher

Report ID: A5C1334 - 04 02 25 1828

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
DU4-A-S-0.5 (A5C1334-02)				Matrix: So	oil	Batch:	25C0703	PRO	
% Solids	98.4		1.00	%	1	03/19/25 04:57	EPA 8000D		
DU4-B-S-0.5 (A5C1334-04)				Matrix: So	Matrix: Soil Batch: 25C0703				
% Solids	98.4		1.00	%	1	03/19/25 04:57	EPA 8000D		
DU4-C-S-0.5 (A5C1334-06)				Matrix: So	il	Batch:	25C0703	PRO	
% Solids	98.3		1.00	%	1	03/19/25 04:57	EPA 8000D		
DU4-D-S-0.5 (A5C1334-08)				Matrix: So	oil	Batch:	25C0703	PRO	
% Solids	98.2		1.00	%	1	03/19/25 04:57	EPA 8000D		
DU-2c-S-0.5 (A5C1334-18)				Matrix: So	il	Batch:	25C0703	PRO	
% Solids	98.1		1.00	%	1	03/19/25 04:57	EPA 8000D		
DU-2d-S-0.5 (A5C1334-20)				Matrix: So	oil	Batch:	25C0703	PRO	
% Solids	98.2		1.00	%	1	03/19/25 04:57	EPA 8000D		
DU-2e-S-0.5 (A5C1334-22)				Matrix: So	oil	Batch:	25C0703	PRO	
% Solids	98.2		1.00	%	1	03/19/25 04:57	EPA 8000D		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 4 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: Permapost Supplemental RI

Project Number: M8012.01.001
Project Manager: Phil Wiescher

Report ID: A5C1334 - 04 02 25 1828

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25C1019 - EPA 3051A							Soi	il .				
Blank (25C1019-BLK1)			Prepared	: 03/26/25	08:30 Ana	lyzed: 03/26	/25 21:16					
EPA 6020B Arsenic	ND		1.00	mg/kg w	vet 10							
LCS (25C1019-BS1)			Prepared	: 03/26/25	08:30 Ana	lyzed: 03/26	/25 21:38					
EPA 6020B Arsenic	51.1		1.00	mg/kg w	vet 10	50.0		102	80-120%			
Duplicate (25C1019-DUP1)			Prepared	: 03/26/25	08:30 Ana	lyzed: 03/26	/25 21:54					
QC Source Sample: Non-SDG (AS	5C1231-01)											
Arsenic	3.54		1.24	mg/kg d	ry 10		4.17			16	20%	
Matrix Spike (25C1019-MS1)			Prepared	: 03/26/25	08:30 Ana	lyzed: 03/26	/25 22:00					
QC Source Sample: Non-SDG (AS	5C1231-01)									_		
EPA 6020B Arsenic	66.3		1.26	mg/kg d	ry 10	63.2	4.17	98	75-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: Permapost Supplemental RI

Project Number: M8012.01.001
Project Manager: Phil Wiescher

Report ID: A5C1334 - 04 02 25 1828

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25C0703 - Dry Weight P	rep (EPA	8000D)					Soil					
Duplicate (25C0703-DUP1)			Prepared	: 03/18/25	10:13 Ana	lyzed: 03/19/	/25 04:57					PRO
QC Source Sample: DU4-A-S-0.5	(A5C1334-0	<u>)2)</u>										
EPA 8000D % Solids	98.4		1.00	%	1		98.4			0.06	10%	
Duplicate (25C0703-DUP2)			Prepared	: 03/18/25	10:13 Ana	lyzed: 03/19/	/25 04:57					
QC Source Sample: Non-SDG (A5	C1512-01)											
% Solids	72.1		1.00	%	1		74.7			4	10%	
Duplicate (25C0703-DUP3)			Prepared	: 03/18/25	18:27 Ana	lyzed: 03/19/	/25 04:57					
QC Source Sample: Non-SDG (A5	C1575-01)											
% Solids	75.4		1.00	%	1		75.7			0.4	10%	
Duplicate (25C0703-DUP4)			Prepared	: 03/18/25	18:27 Ana	lyzed: 03/19/	/25 04:57					
QC Source Sample: Non-SDG (A5	C1576-02)											
% Solids	74.2		1.00	%	1		74.0			0.3	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 6 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

Project: Permapost Supplemental RI

3140 NE Broadway Street Project Number: M8012.01.001
Portland, OR 97232 Project Manager: Phil Wiescher

Report ID: A5C1334 - 04 02 25 1828

SAMPLE PREPARATION INFORMATION

		Tota	al Metals by EPA 602	0B (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 25C1019							
A5C1334-02	Soil	EPA 6020B	03/11/25 11:00	03/26/25 08:30	0.496g/50mL	0.5g/50mL	1.01
A5C1334-04	Soil	EPA 6020B	03/11/25 10:30	03/26/25 08:30	0.467g/50mL	0.5g/50mL	1.07
A5C1334-06	Soil	EPA 6020B	03/11/25 12:15	03/26/25 08:30	0.496g/50mL	0.5g/50mL	1.01
A5C1334-08	Soil	EPA 6020B	03/11/25 09:45	03/26/25 08:30	0.467g/50mL	0.5g/50mL	1.07
A5C1334-18	Soil	EPA 6020B	03/12/25 10:30	03/26/25 08:30	0.486g/50mL	0.5g/50mL	1.03
A5C1334-20	Soil	EPA 6020B	03/12/25 11:15	03/26/25 08:30	0.471g/50mL	0.5g/50mL	1.06
A5C1334-22	Soil	EPA 6020B	03/12/25 12:00	03/26/25 08:30	0.472g/50mL	0.5g/50mL	1.06

			Percent Dry We	ight			
Prep: Dry Weight P	rep (EPA 8000D)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 25C0703							
A5C1334-02	Soil	EPA 8000D	03/11/25 11:00	03/18/25 10:13	1g	1g	1.00
A5C1334-04	Soil	EPA 8000D	03/11/25 10:30	03/18/25 10:13	1g	1g	1.00
A5C1334-06	Soil	EPA 8000D	03/11/25 12:15	03/18/25 10:13	1g	1g	1.00
A5C1334-08	Soil	EPA 8000D	03/11/25 09:45	03/18/25 10:13	1g	1g	1.00
A5C1334-18	Soil	EPA 8000D	03/12/25 10:30	03/18/25 10:13	1g	1g	1.00
A5C1334-20	Soil	EPA 8000D	03/12/25 11:15	03/18/25 10:13	1g	1g	1.00
A5C1334-22	Soil	EPA 8000D	03/12/25 12:00	03/18/25 10:13	1g	1g	1.00

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 7 of 16

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number: M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager: Phil Wiescher
 A5C1334 - 04 02 25 1828

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

PRO Sample has undergone sample processing prior to extraction and analysis.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 8 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 04 02 25 1828

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Validated Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"__" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 9 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 04 02 25 1828

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL).

Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level.

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 10 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 04 02 25 1828

Decanted Samples:

Soils/Sediments:

Unless TCLP analysis is required or there is notification otherwise for a specific project, all Soil and Sediments containing excess water are decanted prior to analysis in order to provide the most representative sample for analysis.

Water Samples

Water samples containing solids and sediment may need to be decanted in order to eliminate these particulates from the water extractions. In the case of organics extractions, a solvent rinse of the container will not be performed.

Volatiles Soils (5035s)

Samples that are field preserved by 5035 for volatiles are dry weight corrected using the same dry weight corretion as for normal analyses. In the case of decanted samples, the dry weight may be performed on a decanted sample, while the aliquot for 5035 may not have been treated the same way. If this is a concern, please submit separate containers for dry weight analysis for volatiles can be provided.

All samples decanted in the laboratory are noted in this report with the DCNT qualifier indicating the sample was decanted.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 04 02 25 1828

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number: M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager: Phil Wiescher
 A5C1334 - 04 02 25 1828

12232 S.W. Garden Place, Tigard, OR 97223 Ph: 503-718-2323 Fax: 503-718-0333	7223 Ph: 503-718-23	23 Fax: 50,	3-718-0	333												PO#			
Company: May Fisher Alphai	Project M	Project Mgr. PH.	3	Wieshur	1		-	Project Name: RKMAPOUT	lame:	五	3	3	1			Proje	# #	180j	Project # M8012, 61. 60)
Address: 3140 NE PROMONA	P. 25	8 Y			Phor	. 3.	Phone: Sieggy-6267 Fax.	۲-۱	15%	Fax				Em	<u> </u>	3	Se Se	Ų	Email: pwiescher Jroustatur, con
Sampled by: VSMBEL PERCL	whiley											YSIS	ANALYSIS REQUEST	ST	_		•		
	LAB ID#	# OF CONTAINERS	имтрн-нстр	NWTPH-Dx XD-H9TWN	8700 AOCs Enll Fist	8700 KBDW AOC®	8200 HAQCS	8740 SAOC 8760 BLEX AOC\$	8LYO SIM PAHS	8082 PCB ₈	OTT 009	RCRA Metals (8)	TCLP Metals (8) Al, Sb, (2) Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb.	CB, CP, CO, Cu, Fe, Ph, Rg, Me, Vi, K, Se, Ag, Va, Ti, V, Zu (OTAL) DISS TCLP	1500- COF2	Z-0071	EPA 1613B SIOKUSTIVEMA ARCHIVEMA	, -,	IEW PREP
DW4-A-6-0.5	3/11/25 1100 So	ر چ												×			×	X	
DU4-8-5-0.5	3/1.12 1036 S.	۔ گ												×			×	X	
24-6-5-0.5	314/2 1215 So	Jo /												×			×	Х	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
004-0-5-0.5	3/11/25 OP45 So	ري ا												><			~	X	
HA-38-COMP.5-2.5-30	3/11/2-11/02 50	S. 2												0			o ≺	√	
114-35-Comp. 5-1.5-2.0	3/11/25 1002 So													၁			×	_	
44-35-(OMP-5-1,5-2.D	3/11/25 1446 50	502												0			×	×	
44-36- CUMD-S -2.5-3.0	3/4/15 1515 5.	Z° 5												0			0	V	
HA-36 - (0Mp-S-15-2.0	3/1/155 1500 50	S. 2												0			0	X	
HA-37 COMP-5- 1.5-20	3/11/2/400	7 %												0			0	×	
Normal Turn Around Time (TAT) = 10 Business Days			NO.			T	SPECI	AL IN		Ó,	SA	Š	SPECIAL INSTRUCTIONS:	TAR	3	<			
	1 Day 2 Day	3 Day	>.				T	À		5		ن -	in a potential	3	3				
IAI Requested (circle)	4 DAY 5 DAY	Other:	<u>:</u>							2	(3 3	2 1 101 8 8 8	من					
SAMPLES	SAMPLES ARE HELD FOR 30 DAYS	AYS									3	}	כ			0.0000			
JISHED BY:	RECEIVED BY:	рву: 7,	,,,	3/12/21	7		RELINQUISHED BY:	PUISH PUISH	ED BY:	l			Date:	REC	RECEIVED BY	BY:		Date:	ü
Prince Nothern 1705 Prince Nothern 1705	ime: [7-05 Printed-Na	the (NO.	berg		1405		Printed Namo	Namc:					Time:	Print	Printed Name			Time:	22
May fisher Alber	C	Your Work)				Company	è						Com	Company:				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 13 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 04 02 25 1828

																						Administration additional designation of the control of the contro		
12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333	R 97223 Ph.	503-718-	2323 Fax	: 503-7	718-03	33	Ġ	1	Г			3	9	Ś	7				PO#				5	
Company: When tothe Hang	Maj	Project	Project Mgr. (THIL	=	いむられて	刺	5	£,	-	Project Name: KKINF 001	Name	4	至	\$	5				Projec	1# Δ	8	Project # M2017.04.00,	0	
Address: 3140 NE BROADWAY	AWOR.		POCTURNO, OR	2	80/)	3 6	25	700 594-6267	026	4	Fax:					Email	5	W.	3	G	Email: Pitaleshera) man/fister.com	ster.	3
Sampled by: VSAbel Parel	4	3											ANA	LYSE	ANALYSIS REQUEST	UEST		-						
Site Location: (OR) WA Other: SAMPLE ID	LAB ID #	TIME	XIATAM	# OF CONTAINERS	NMLBH-DZ	NWTPH-Gx	8760 VOCs Full List	8700 KBDW AOC	\$20A AAQC*	8710 SAOC 8790 BLEX AOC	8HA9 MIS 0718	8087 BCB8	OTT 009	RCRA Metals (8)	TCLP Metals (8)	AL Sb, (AS, BB, Be, Cd, Cd, Cf, Ce, Cu, Fe, Pb, Rg, Mn, Mr, W,	Se, Ag, Na, TI, V, Zn OTAL DISS TCLP	1500- COFS	Z-0071	CPR 1438	ARCHIVE			
HA-37 - COND-5-2530	8/11/	8/11/25 1410	ぱ	2												0			<u> </u>	ô	×			
HA-35- (DMP-5-2,53.0		3 July 1700	ઝ	2												O			+	O	X			
(B)				+	+-1,	4-4						3			1				+					
Normal Turn Around Time (TAT) = 10 Business Days	ness Days			Z	2		ŀ	Ť	SPECIAL INSTRUCTIONS:	AL IX	STRUC		ڳ ڇَن ڇَن	3	TONS:	3	3		Ω	~	Se Se			
TAT Requested (circle)	1 Day 4 DAY	2 Day 5 DAY		3 Day Other:			ſ					3 +	3 -3	<u>.</u>	posterital analysis	3	Ž	3	2					
SAMPI	SAMPLES ARE HELD FOR 30 DAYS	D FOR 30 1	DAYS					Τ																
RELINQUISHED BY Signature:	RECEIVED BY: Date: 3(1/2) Signature:	RECEIVED BY:	کــــها	ر ، ا		Date Date	3 12 25 Date:		RELINQUISHED BY: Signature:	E CISHI	ED BY				Date:		RECEIVED BY:	VED I	ä			Date:		
Printed Named Yearby Penz	Time: (705 Prince Kame:	Printed N	Sta No.	rber	2	Time	Time: 705		Printed Name	Vame:	li				Time:		Printed Name	Name:				Time:		
Company May Bolk Albry		Company	Company: DOX N	_					Company	5.							Company	ė						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 14 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 04 02 25 1828

12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333	DR 97223	Ph: 503-	718-2323	Fax: 50	3-718.	0333	718-0333	i)	1 Σ)	(3	3	-	1	383	(1) () () () () () () () () (4
Company: May Foster Klowg	Jews.	-	Project Mgr. PHI WIESCHYZ	Æ	NE	3	Q			Projec	Project Name:		Pek	5	PERMAPUST			-	oiect #	Project # 1/1 SOD OL. 60	01.00	_
Address: 3/40 NE BRORDWAN	ST WA	~~	POKTUMD, OF	D.OK		1	l	Sene.	300	7.	Phone 340 594- 6167 Fax	12	×	-	3	ш	mail:	3	16.50	Email: Pwie schor 2 multester	mach.	3
Sampled by: VSABEL DEREZ		\$ 100 m	ST 8											41.YS	ANALYSIS REQUEST	\$3000		4			2	(g)
Site Location: OR WA Other:	rvb id #	TAG TE	TIME	# OF CONTAINERS	NWTPH-HCID	xa-Hatwn	DOA 0978	8760 RBDM VOCs	8760 BTEX	OOAS 0478	8082 PCB.	9087 PCBs	RCRA Metals (8)	TCLP Metals (8)	TOTAL DISS TCLP Ca, Cr, Ca, Cu, Fe, Ph, Hg, Mg, Mn, Mo, Mi, K, Rg, Mg, Mn, Ho, Mi, K, Ag, Mg, Mn, Ho, Mi, K, Ag, Mg, Mn, Mo, Mi, K, Ag, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, M	dior ssid pivior	1700- COF3	1200-2 EPA 1015B 3000 FURAN	Mosin Fuenu			
10-26-5-015	2	3/4/15 1030	500												×			X	J			
DU-14-5-05	3	1245	3/2/5/1115 So										-		×			X	.,,			-
DW-2e-S-05		12/21	3/11/15 1200 90	-								-			×			X				-
HA-32-COMP-S-100-2		12/21	Spel 15 1250 50												٥			0	0			
1+19-33-COMP-5-2"3		12/21	3/12/12 (So												Ð			Q	0			
HA-34-COMP-5-2-3	<u> </u>	alt.5	Shits 1430 S.	7											0			0	0			-
Normal Turn Around Time (TAT) = 7-10 Business Days	usiness Days		(YES)		NO				SPEC		SPECIAL INSTRUCTIONS:	— S	-J.S.									
TAT Requested (circle)	1 Day	7	2 Day	3 Day	,		e.			4	3	是这	ر پ	E 3	ARLYHUE SAMPLES 4 ANEUGH	2 -	J {	څ څ	£ 3	۷		
SAMPI	4 DAY 5 DAY SAMPLES ARE HELD FOR 30 DAYS	5 ELD FO	5 DAY OR 30 DAY	Other:							9	Ē	<u></u>	5	3	-		9	2			
RELINQUISHED BY Signature:	2/12 Date: 3/12	RE Sig	Heceived BY:	ار 'ۃ		<i>6</i> 0 □	3 12 25- Date:	23	RELINQI Signature	VQUISI ure:	RELINQUISHED BY: Signature:	ا نا			Date:	R.E.	RECEIVED BY: Signature:	SD BY:		Date:		
Princel Name SPBH 168C2 Time 1905 Princel Name FC No body Time 705	Time: 7	S. Pri	Inted Name:	2	Dirto.	₹\ 	5		Printed	Printed Name:					Time:	Ţ.	Printed Name	me:		Time:		
Company Mr. J. A. L. M. M. S.		ق	A A A	Ž					Commonv							ć						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 15 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.

3140 NE Broadway Street Portland, OR 97232

Project:

Permapost Supplemental RI

Project Number: M8012.01.001

Project Manager: Phil Wiescher

Report ID:

A5C1334 - 04 02 25 1828

May 10	Her & Alongi Element WO#: ASC1334
	M8012.01.001
Delivery Info:	
Date/time received: 3 12	2/25 @ 1705 By: KN
Delivered by: Apex_Clie	ent XESS FedEx UPS Radio Morgan SDS Evergreen Other
	rigin? Yes No
Cooler Inspection Da	te/time inspected: 3 12 25 @ 1705 By: KN
Chain of Custody included	d? Yes <u>√</u> No
Signed/dated by client?	Yes No
Contains USDA Reg. Soil:	T .
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	3.3 5.6 5.6
Custody seals? (Y/N)	N N N
Received on ice? (Y/N)	<u>y</u> <u>y</u>
Temp. blanks? (Y/N)	<u> </u>
Ice type: (Gel/Real/Other)	
Condition (In/Out):	uh uh
Green dots applied to out o	of temperature camples? Vec/No
Green dots applied to out on Out of temperature samples Sample Inspection: Date All samples intact? Yes	e/time inspected: 3/1/25 @ 17:51 By: X&M No Comments:
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes	s form initiated? Yes No e/time inspected: 3/1/125 @ 17:51 By: XM
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes	s form initiated? Yes/No e/time inspected: 3/1215 @ 17:51 By: 2KgM No Comments:
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes	s form initiated? Yes No e/time inspected: 3/12/25 @ 17:51 By: 2KgM No Comments: Yes No + Comments: Time on Conts for HA-38-Comps-1. es form initiated? Yes No +
Out of temperature samples Sample Inspection: Date All samples intact? Yes	s form initiated? Yes/No e/time inspected: 3/1215 @ 17:51 By: 2KgM No Comments:
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes	s form initiated? Yes No By: Asm Yes No Comments: On Comps for HA-38-Comps -1. Sed appropriate for analysis? Yes No Comments:
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes	s form initiated? Yes No e/time inspected: 3/12/25 @ 17:51 By: 2KgM No Comments: Yes No + Comments: Time on Conts for HA-38-Comps-1. es form initiated? Yes No +
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes	s form initiated? Yes No e/time inspected: 3/12/25 @ 17:51 By: AM No Comments:
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes	s form initiated? Yes No By: AM No Comments: Yes No Comments: In Concords For HA-38-Comps-1 es form initiated? Yes No Comments: ed appropriate for analysis? Yes No Comments: headspace? Yes No NA PH appropriate? Yes No NA PH ID:
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes	s form initiated? Yes No By: AM No Comments: Yes No Comments: In Concords For HA-38-Comps-1 es form initiated? Yes No Comments: ed appropriate for analysis? Yes No Comments: headspace? Yes No NA PH appropriate? Yes No NA PH ID:
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes	s form initiated? Yes No By: AM No Comments: Yes No Comments: In Concords For HA-38-Comps-1 es form initiated? Yes No Comments: ed appropriate for analysis? Yes No Comments: headspace? Yes No NA PH appropriate? Yes No NA PH ID:
Green dots applied to out of Out of temperature samples Sample Inspection: Date All samples intact? Yes	s form initiated? Yes No By: AM No Comments: Yes No Comments: In Concords For HA-38-Comps-1 es form initiated? Yes No Comments: ed appropriate for analysis? Yes No Comments: headspace? Yes No NA PH appropriate? Yes No NA PH ID:

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 16 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, May 1, 2025
Phil Wiescher
Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

RE: A5C1334 - Permapost Supplemental RI - M8012.01.001

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A5C1334, which was received by the laboratory on 3/12/2025 at 5:05:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.	
(See Cooler Receipt Form for details)	

Cooler Receipt Information

Cooler #1 3.3 degC Cooler #2 5.6 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevemberg

Page 1 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number: M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager: Phil Wiescher
 A5C1334 - 05 01 25 1345

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INF	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
HA-36-COMP-S-2.5-3.0	A5C1334-12	Soil	03/11/25 15:15	03/12/25 17:05
HA-35-COMP-S-2.5-3.0	A5C1334-16	Soil	03/11/25 17:00	03/12/25 17:05
HA-33-COMP-S-2-3	A5C1334-24	Soil	03/12/25 13:30	03/12/25 17:05

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 2 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 05 01 25 1345

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
HA-36-COMP-S-2.5-3.0 (A5C1334-12)				Matrix: Soil	<u> </u>			
Batch: 25D1141								
Arsenic	5.20		1.44	mg/kg dry	10	04/29/25 18:16	EPA 6020B	
HA-35-COMP-S-2.5-3.0 (A5C1334-16)				Matrix: Soil				
Batch: 25D1141	•				•			•
Arsenic	6.32		1.39	mg/kg dry	10	04/29/25 18:21	EPA 6020B	CONT
HA-33-COMP-S-2-3 (A5C1334-24)				Matrix: Soil	1			
Batch: 25D1141								
Arsenic	5.39		1.27	mg/kg dry	10	04/29/25 18:26	EPA 6020B	CONT

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 05 01 25 1345

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
HA-36-COMP-S-2.5-3.0 (A5C1334-12)				Matrix: So	oil	Batch:	25D0840	H-01
% Solids	75.5		1.00	%	1	04/22/25 05:14	EPA 8000D	
HA-35-COMP-S-2.5-3.0 (A5C1334-16)				Matrix: So	oil	Batch:	25D0840	CONT, H-01
% Solids	75.9		1.00	%	1	04/22/25 05:14	EPA 8000D	
HA-33-COMP-S-2-3 (A5C1334-24)				Matrix: So	oil	Batch:	25D0840	CONT, H-01
% Solids	77.4		1.00	%	1	04/22/25 05:14	EPA 8000D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 4 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: Permapost Supplemental RI

Project Number: M8012.01.001
Project Manager: Phil Wiescher

Report ID: A5C1334 - 05 01 25 1345

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 602	OB (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25D1141 - EPA 3051A							Soi	I				
Blank (25D1141-BLK1)			Prepared	: 04/29/25 0	8:29 Ana	lyzed: 04/29	0/25 18:05					
EPA 6020B												
Arsenic	ND		1.00	mg/kg we	et 10							
LCS (25D1141-BS1)			Prepared	: 04/29/25 0	8:29 Ana	lyzed: 04/29	0/25 18:10					
EPA 6020B												
Arsenic	49.9		1.00	mg/kg we	et 10	50.0		100	80-120%			
Duplicate (25D1141-DUP1)			Prepared	: 04/29/25 0	8:29 Ana	lyzed: 04/29	0/25 20:23					
QC Source Sample: Non-SDG (ASI	D1679-01)											
Arsenic	3.03		1.22	mg/kg dr	y 10		1.26			82	20%	CONT,Q-05
Matrix Spike (25D1141-MS1)			Prepared	: 04/29/25 0	8:29 Ana	lyzed: 04/29	0/25 20:28					
QC Source Sample: Non-SDG (A5I	D1679-01)											
EPA 6020B												
Arsenic	59.3		1.17	mg/kg dr	y 10	58.7	1.26	99	75-125%			CONT

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 5 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

Project: Permapost Supplemental RI

Project Number: M8012.01.001
Project Manager: Phil Wiescher

Report ID: A5C1334 - 05 01 25 1345

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 25D0840 - Dry Weight P	rep (EPA	8000D)					Soil					
Duplicate (25D0840-DUP1)			Prepared	: 04/21/25	14:19 Anal	yzed: 04/22/	/25 05:14					
QC Source Sample: HA-36-COMI	P-S-2.5-3.0	(A5C1334-12)										
EPA 8000D % Solids	76.7		1.00	%	1		75.5			1	10%	
Duplicate (25D0840-DUP2)			Prepared	: 04/21/25	14:19 Anal	yzed: 04/22/	/25 05:14					
QC Source Sample: Non-SDG (A5	D1534-12)											
% Solids	74.8		1.00	%	1		74.8			0.006	10%	
Duplicate (25D0840-DUP3)			Prepared	: 04/21/25	14:19 Anal	yzed: 04/22/	/25 05:14					CONT
QC Source Sample: Non-SDG (A5	D1562-05)											
% Solids	82.9		1.00	%	1		82.8			0.1	10%	
Duplicate (25D0840-DUP4)			Prepared	: 04/21/25	14:19 Anal	yzed: 04/22/	/25 05:14					
QC Source Sample: Non-SDG (A5	D1601-09)											
% Solids	78.7		1.00	%	1		78.2			0.6	10%	
Duplicate (25D0840-DUP5)			Prepared	: 04/21/25	18:51 Anal	yzed: 04/22/	/25 05:14					
QC Source Sample: Non-SDG (A5	D1649-02)											
% Solids	82.4		1.00	%	1		82.6			0.3	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 6 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 05 01 25 1345

SAMPLE PREPARATION INFORMATION

		Tota	l Metals by EPA 602	0B (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 25D1141							
A5C1334-12	Soil	EPA 6020B	03/11/25 15:15	04/29/25 08:29	0.46g/50mL	0.5g/50mL	1.09
A5C1334-16	Soil	EPA 6020B	03/11/25 17:00	04/29/25 08:29	0.475g/50mL	0.5g/50mL	1.05
A5C1334-24	Soil	EPA 6020B	03/12/25 13:30	04/29/25 08:29	0.508g/50mL	0.5g/50mL	0.98

			Percent Dry We	ight			
Prep: Dry Weight Pre	p (EPA 8000D)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 25D0840							
A5C1334-12	Soil	EPA 8000D	03/11/25 15:15	04/21/25 14:19	1g	1g	1.00
A5C1334-16	Soil	EPA 8000D	03/11/25 17:00	04/21/25 14:19	1g	1g	1.00
A5C1334-24	Soil	EPA 8000D	03/12/25 13:30	04/21/25 14:19	1g	1g	1.00

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 05 01 25 1345

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

H-01

CONT The Sample Container provided for this analysis was not provided by Apex Laboratories, and has not been verified as part of the Apex Quality System.

Analyzed outside the recommended holding time.

Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 8 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 05 01 25 1345

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Validated Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting and Detection Limits: Default Limits

Default Reporting and Detection Limits are based on 100% dry weight with the minimum dilution for the analysis. Reporting and Detection Limits are raised due to moisture content, additional dilutions required for analysis, matrix interferences and in other cases, as necessary.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

" " Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Philip Newberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 05 01 25 1345

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL).

Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level.

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 05 01 25 1345

Decanted Samples:

Soils/Sediments:

Unless TCLP analysis is required or there is notification otherwise for a specific project, all Soil and Sediments containing excess water are decanted prior to analysis in order to provide the most representative sample for analysis.

Water Samples

Water samples containing solids and sediment may need to be decanted in order to eliminate these particulates from the water extractions. In the case of organics extractions, a solvent rinse of the container will not be performed.

Volatiles Soils (5035s)

Samples that are field preserved by 5035 for volatiles are dry weight corrected using the same dry weight corretion as for normal analyses. In the case of decanted samples, the dry weight may be performed on a decanted sample, while the aliquot for 5035 may not have been treated the same way. If this is a concern, please submit separate containers for dry weight analysis for volatiles can be provided.

All samples decanted in the laboratory are noted in this report with the DCNT qualifier indicating the sample was decanted.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 11 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 05 01 25 1345

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number: M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager: Phil Wiescher
 A5C1334 - 05 01 25 1345

12232 S.W. Garden Place, Tigard, OR 97223 Ph.: 503-718-2323 Fax: 503-718-0333	7223 Ph: 503-718-2323 Fax:	503-718-0333				PO#	
Company: May Loster Alnnai	Project Mgr. PH'L	L Wieshur	Project Name:	Project Name: PEKMAPOUT	_	Project # M 2012, 61. 60)	100.10
Address 3141) NE PONANINA	PASTAND OR		Phone: Suggy - 6267 Fax	Fax:		Email: pw.,escher Jron filter, con	J. Faithy . Low
Sampled by: VCMBCL PERC2	wally			ANALYSIS REQUEST	100000000		
OR WA	DATE TAGE TIME	8760 KBDW AOC* RTO AOC* EMI FIST WALLEH-DX WALLEH-HCID # OF CONTAINERS	8740 81M bvH8 8740 8AOC 8760 BLEX AOC 8760 HAOC	8082 PCBs 600 TTO	1700- COLS 1700- COLS 1700- COL Co, Cu, Fe, Ph, Sc, Ag, Na, Na, Na, Na, Na, Na, Na, Na, Na, Na	ISOO-Z	
DW4-A-6-0.5	3/11/ps 1100 So				×	X	
) U4-8-5-0.5	3/11/1 1036 Se				×	×	
NV4-C-5-0.5	314/21/218 So				×	X	
DV4-D-5-0.5	3/"hr 0945 So				~	Χ ×	
HA-38-COMP.S-2.5-30		2			- 0	0 ×	
114-35-Comp. S-1.5-2.0		7			ට	×	
4A-26-(OMP- 4-1,5-2.0	-	2			၁	× 0	
40-76- Chan-c -74-30		7			0	× 0	
4A-31, -(AMD.S-15-7.0	3/1/251500 5	7			0	X o	
HA-37 -COMP-5-1-5-7.0	3/11/2/1400 5	7			0	X o	
Normal Turn Around Time (TAT) = 10 Business Days		NO	SPECIAL INSTRU	CTIONS:	SPECIAL INSTRUCTIONS:	ک	
	1 Day 2 Day 3	3 Day			7070		
TAT Requested (circle)	2144	100		10 40/	and bet of		
4	- 1	Offier:		analysis	5 % D		
SAMPLES RELINQUISHED BY:	SAMPLES ARE HELD FOR 38 DAYS RECEIVED BY:		RELINQUISHED BY:	<i>(</i> :	RECEIVED BY:) BY:	
	130 3/2/12 Simply	3/12/21 Date:	Signature:	п	Date: Signature:	Date:	
Jysher Becz	LWSty	1205 1705	Printed Name:	I	Time: Printed Name	e: Time:	
May Liter Oliver	i out) ,×.	Ompany		Company		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 13 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number:
 M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager:
 Phil Wiescher
 A5C1334 - 05 01 25 1345

12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333	JR 97223 P	h: 503-7.	18-2323	Fax: 50	3-718	-0333													Ωų	#Od			
Company: Man Father Alma	Mai	Pro	Project Mgr. PHIL NIELUHER	PH.	2	3	- 22	Stores	1	Prc	ject N	ame:	8	d W	Project Name: REKINAPOUT	7			Ь	roject #	M	Project # [M26] 2.01.00,	_
Address: 3140 NE OROMONAY	A WOR	3	PIRCTLAND, OR	3	Ò	め		Sep	36	700 594-6267	16	-	Fax:					Email:	3	الأزعلا	12 J	Email: Pickesher a man foster. com	3.
Sampled by: VSAbel Pare 2	1	2												4NAI	YSIS	ANALYSIS REQUEST			L				
Site Location: (OR) WA Other: SAMPLE ID	**************************************	DATE	TIME	# OF CONTAINERS	NWTPH-HCID	xa-hatwn	NWTPH-Gx	8760 VOCs Full List	8760 HVOCs 8260 RBDM VOCs	8700 BLEX AOC	OOAS 0478	8HV4 WIS 0478	8087 bCB ⁸	OTT 009	RCRA Metals (8)	TCLP Metals (8) At, Sb, (As) Ba, Be, Cd,	Al, Sb, As, Ba, Be, Ca, Sc, Ca, Ca, Fe, Pb, Ca, Ca, Fe, Pb, Ca, Ca, Fe, Pb, Ca, Sc, Ca, Fe, Pb, Ca, Sc, Ca, Fe, Pb, Ca, Sc, Ca, Ca, Ca, Ca, Ca, Ca, Ca, Ca, Ca, Ca	OLVEDISS TCLP	1700- COFS	T-0021	CAN 1438 PRCHIVE		
HA-37 - COND-5-2.530	\$	8/11/25 1410	ري ري	7										*********			0			0	X		_
HA-35- (OMP-5-2,530		3)11/27 1700	3	2						-	ļ				-		O	ļ		Q	X		
Normal Turn Around Time (TAT) = 10 Business Days 1 Day	ness Days 1 Day	21	2 Day	3 Day	2				S	SPECIAL INSTRUCTIONS:	INS	RUC	S S	٤ .	3	3	dus	3	-2.	7 5	arithing samples 17 2 for		
TAT Requested (circle)	4 DAY	s D	\$ DAY						Т				حية	3	,Ļ	podewtial analysis	3	ر ع	3	n			
,	SAMPLES ARE HELD FOR 30 DAYS	LD FOR	30 DAYS						- 1								ľ						
KELINQUISHED BY Signature:	Date: 3/42/ Signature:	Z, Sign	RECEIVED BY: Signature:	" ' <u>'</u>			3/12/25 Date:	125		RELINQUISHED BY: Signature:	ISHEI	BY:			ñ	Date:	≃ i⊼	RECEIVED BY: Signature:	ED B		۵	Date:	
Printed Named Youby Pent	Time: (705 KMStal Novidens	N Print	MySta.	North	2		Time 755	\mathcal{R}	E	Printed Name	DG:				F	Time:	I d	Printed Name	аше:			Time:	
Company: May Fork Hibry		Com	Company: MOLN	3					<u></u>	Company:							Ō	Company					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 14 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: Permapost Supplemental RI

 3140 NE Broadway Street
 Project Number: M8012.01.001
 Report ID:

 Portland, OR 97232
 Project Manager: Phil Wiescher
 A5C1334 - 05 01 25 1345

12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333	NR 97223	Ph: 503-7	718-2323	Fax: 503	-218-0	333	718-0333	í								j			ı		<u>†</u>
Company: Man Foster Klowgi	Jang.	-	Project Mgr. PHI WIESCHVA	THE STATE OF THE S	JE JE	3			-	Project Name:	Name:	1	(R)	PERM APUST	750			- E	iect # M	Project # M PO D. OL. OA	(20)
Address: 3/40 NE BROMMAN	A MO		POUTUAND OF	D.0K		1		18.3°	25	Phone 340 594- 62 107 Fax:	1.6	Ear				III	mail:	3	2/35	Email: Pwie schor of mutitisky	163
Sampled by: YSABEL DEREZ	*	اح	My										ANA	LYSE	ANALYSIS REQUEST	100000000		L			£03
Sile Location: OR WA Other: SAMPLE ID	LAB ID #	DATE =	TIME MATRIX	# OF CONTAINERS	MWTPH-HCID	NWTPH-Dx	OOA 0978	8700 KBDW AOC8	8760 BTEX	9HV4 WIS 0478 2OAS 0478	8087 PCBs	OTT 009	RCRA Metals (8)	TCLP Metals (8)	Al, Sb, (As2 Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Se, Ag, Ma, Mu, W, K, Se, Ag, Ma, Mu, W, K, Ma, Mg, Ma, Mu, K, Se, Ag, Ma,	OLVI DISS ICLE	1500- COFS	2:0051 EPA 16138 WASH DISCRE	ANTHURAN		
N-2c-5-0.5	3	3/1/15 1030) os	_		l —						_			×	,		<u>X</u>			
DU-14-5-05	3/	12h5 11	3/2/5/1115 So												×	ļ		X			
DW-2e-S-05		n Sola	3/11/15 1200 50												×			X			
14-32-COMP-5-100-2		12/2014	9/4/15/1230 50	7											٥			0	٥		
149-33-COMP-5-2"3		MI TO	3/12/1330 So												Ð			Q	0		
HA-34-COMP-5-2-3	20	Shirs 1430 So	\$ \$	2											0			Q	0		
						++															
Normal Turn Annund Time /TAT\ = 7.4\0.8 Resinese Pare	isinase Dave				9				SPECI	SPECIAL INSTRUCTIONS:			ي				+				
	1 Day		2 Day	3 Day				Τ		Ž	3	3	د ن	SAr	nple	· 2)	7	ξ	ARCHINE SAMPLES 4 AMENGY	,	
TAT Requested (circle)	4 DAY	51	5 DAY	Other:			[***************************************		-	e,	Z.	a-	Ž	to for potential analysis		3	3	. 2		
SAMPI	SAMPLES ARE HELD FOR 30 DAYS	ELD FOR	OR 30 DAYS					\prod^{*}	200	NG WELLSTED IN THE	30					1		i			
Signature:	2) K. Date 2 (2	Signal Signal	2 1/2 Signature	. ,		€V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 12 25-	23-	Signature:	:: instruction	0.01			ы	Date:	S. S.	KECEIVED BY: Signature:	D BY:		Date:	
Princel Name / SPBH 16RC2 Time 1705 Princel Name LE No Dely Time 705	Time: 7	Print	LAWS+	3	sipe	Zin Zin	8		Printed Name	Yame:					Time:	E.	Printed Name	.e.		Time:	
Company Me Make Make			XX AP. XX	<u> </u>					Commons							((

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 15 of 16

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.

3140 NE Broadway Street Portland, OR 97232 Project:

Permapost Supplemental RI

Project Number: M8012.01.001

Project Manager: Phil Wiescher

Report ID: A5C1334 - 05 01 25 1345

Chent.	Offer & Alongi Element WO#: A5C1334
	erma Post / M8012.01.001
Delivery Info:	
	12/25 @ 1705 By: KN
	lient XESS FedEx UPS Radio Morgan SDS Evergreen Other
	Origin? Yes No
	Date/time inspected: 3 12 25 @ 705 By: KN
Chain of Custody includ	A STATE OF THE STA
Signed/dated by client?	
Contains USDA Reg. So	
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	3,3 5.6 5.6
Custody seals? (Y/N)	N N
Received on ice? (Y/N)	<u> </u>
Femp. blanks? (Y/N)	<u> </u>
ce type: (Gel/Real/Other	
Condition (In/Out):	un in
Sample Inspection: Data Sample Inspection: Data Samples intact? Yes	N) Possible reason why: of temperature samples? Yes/No les form initiated? Yes/No ate/time inspected: 3/10/25 @ 17:51 By: 24M No Comments: Yes No Comments: Time on Conts for HA-38-Comps-1.
rends 1001.	23/11/25
	cies form initiated? Yes No 🔀
ontainers/volumes receiv	ved appropriate for analysis? Yes 🖊 No Comments:
o VOA vials have visibl	le headspace? Yes No NA X
omments	ed: YesNoNA_X_pH appropriate? YesNoNA_V_pH ID:
	ed. TesNoNApH appropriate? YesNoNApH ID:
Vater samples: pH checke	
Vater samples: pH checker omments:	
Vater samples: pH checke	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 16 of 16

April 29, 2025

Enthalpy Analytical - El Dorado Hills Work Order No. 2503187

Mr. Philip Nerenberg Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223

Dear Mr. Nerenberg,

Enclosed are the amended results for the sample set received at Enthalpy Analytical - EDH on March 19, 2025 under your Project Name 'A5C1334'.

Enthalpy Analytical - EDH is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at kathy.zipp@enthalpy.com.

Thank you for choosing Enthalpy Analytical - EDH as part of your analytical support team.

Sincerely,

Kathy Zipp Project Manager

Kathy Zoop

Enthalpy Analytical - EDH certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Enthalpy Analytical - EDH.

Enthalpy Analytical - EDH Work Order No. 2503187 Case Narrative

Sample Condition on Receipt:

Seven soil samples were received and stored securely in accordance with Enthalpy Analytical - EDH standard operating procedures and EPA methodology. The samples were received in good condition and within the method temperature requirements. As directed, this report was amended to include the reporting limit (RL) on the PDF and report to the MDL instead of zero.

Analytical Notes:

EPA Method 8290A

The sample was extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 8290A using a ZB-DIOXIN GC column.

Holding Times

The method holding time criteria was met for this sample.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	26
Certifications	27
Sample Receipt	28

Sample Inventory Report

Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2503187-01	DU4-A-S-0.5	11-Mar-25 11:00	19-Mar-25 09:38	Clear Glass Jar, 120mL
2503187-02	DU4-B-S-0.5	11-Mar-25 10:30	19-Mar-25 09:38	Clear Glass Jar, 120mL
2503187-03	DU4-C-S-0.5	11-Mar-25 12:15	19-Mar-25 09:38	Clear Glass Jar, 120mL
2503187-04	DU4-D-S-0.5	11-Mar-25 09:45	19-Mar-25 09:38	Clear Glass Jar, 120mL
2503187-05	DU-2c-S-0.5	12-Mar-25 10:30	19-Mar-25 09:38	Clear Glass Jar, 120mL
2503187-06	DU-2d-S-0.5	12-Mar-25 11:15	19-Mar-25 09:38	Clear Glass Jar, 120mL
2503187-07	DU-2e-S-0.5	12-Mar-25 12:00	19-Mar-25 09:38	Clear Glass Jar, 120mL

ANALYTICAL RESULTS

Sample ID: Method Blank EPA Method 8290A

Client Data

Name: Apex Laboratories

Project: A5C1334 Matrix: Solid **Laboratory Data**

Lab Sample: B25C292-BLK1

QC Batch: B25C292 Date Extracted: 24-Mar-25 Sample Size: 10.0 g Column: ZB-DIOXIN

Analyte	Conc. (pg/g)	EDL	MDL	EMPC	RL	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.0656	0.190		0.500)	25-Mar-25 23:49	1
1,2,3,7,8-PeCDD	ND	0.116	0.784		2.50		25-Mar-25 23:49	1
1,2,3,4,7,8-HxCDD	ND	0.140	0.633		2.50		25-Mar-25 23:49	1
1,2,3,6,7,8-HxCDD	ND	0.127	0.640		2.50		25-Mar-25 23:49	1
1,2,3,7,8,9-HxCDD	ND	0.134	0.717		2.50		25-Mar-25 23:49	1
1,2,3,4,6,7,8-HpCDD	ND	0.210	0.706		2.50		25-Mar-25 23:49	
OCDD	ND	0.242	1.62		5.00		25-Mar-25 23:49	
2,3,7,8-TCDF	ND	0.0667	0.183		0.500		25-Mar-25 23:49	
1,2,3,7,8-PeCDF	ND	0.0704	0.576		2.50		25-Mar-25 23:49	
2,3,4,7,8-PeCDF	ND	0.0626	0.686		2.50		25-Mar-25 23:49	
1,2,3,4,7,8-HxCDF	ND	0.0798	0.659		2.50		25-Mar-25 23:49	
1,2,3,6,7,8-HxCDF	ND	0.0804	0.621		2.50		25-Mar-25 23:49	
2,3,4,6,7,8-HxCDF	ND	0.0877	0.661		2.50		25-Mar-25 23:49	
1,2,3,7,8,9-HxCDF	ND	0.120	0.716		2.50		25-Mar-25 23:49	
1,2,3,4,6,7,8-HpCDF	ND	0.104	0.649		2.50		25-Mar-25 23:49	
1,2,3,4,7,8,9-HpCDF	ND ND	0.145	0.818		2.50		25-Mar-25 23:49	
OCDF	ND	0.201	3.84		5.00		25-Mar-25 23:49	1
Toxic Equivalent	0.00							
TEQMinWHO2005Dioxin Totals	0.00							
Total TCDD	ND	0.0656			0.500)		
Total PeCDD	ND	0.116			2.50			
Total HxCDD	ND	0.110			2.50			
Total HpCDD	ND	0.140			2.50			
Total TCDF	ND ND	0.210			0.500			
Total PeCDF	ND	0.0704			2.50			
Total HxCDF	ND	0.120			2.50			
Total HpCDF	ND	0.145			2.50			D'1 4'
Labeled Standards	Туре		Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS		80.2		40 - 135		25-Mar-25 23:49	
13C-1,2,3,7,8-PeCDD	IS		75.5		40 - 135		25-Mar-25 23:49	
13C-1,2,3,4,7,8-HxCDD	IS		80.7		40 - 135		25-Mar-25 23:49	
13C-1,2,3,6,7,8-HxCDD	IS		88.4		40 - 135		25-Mar-25 23:49	
13C-1,2,3,7,8,9-HxCDD	IS		91.6		40 - 135		25-Mar-25 23:49	
13C-1,2,3,4,6,7,8-HpCDD	IS		86.2		40 - 135		25-Mar-25 23:49	
13C-OCDD	IS		78.8		40 - 135		25-Mar-25 23:49) 1
13C-2,3,7,8-TCDF	IS		82.1		40 - 135		25-Mar-25 23:49) 1
13C-1,2,3,7,8-PeCDF	IS		73.5		40 - 135		25-Mar-25 23:49) 1
13C-2,3,4,7,8-PeCDF	IS		75.2		40 - 135		25-Mar-25 23:49	1
13C-1,2,3,4,7,8-HxCDF	IS		81.9		40 - 135		25-Mar-25 23:49	1
13C-1,2,3,6,7,8-HxCDF	IS		82.7		40 - 135		25-Mar-25 23:49	1
13C-2,3,4,6,7,8-HxCDF	IS		74.8		40 - 135		25-Mar-25 23:49	1
13C-1,2,3,7,8,9-HxCDF	IS		84.0		40 - 135		25-Mar-25 23:49) 1
13C-1,2,3,4,6,7,8-HpCDF	IS		79.1		40 - 135		25-Mar-25 23:49) 1
13C-1,2,3,4,7,8,9-HpCDF	IS		75.4		40 - 135		25-Mar-25 23:49	
100 1,2,0, 1,7,0,7 110001								
13C-OCDF	IS		76.0		40 - 135		25-Mar-25 23:49) 1

Sample ID: OPR EPA Method 8290A

Client Data

Name:

Apex Laboratories

Project: A5C1334 Matrix: Solid Laboratory Data

Lab Sample: B25C292-BS1

QC Batch: B25C292 Date Extracted: 24-Mar-25 11:03 Sample Size: 10.0 g Column: ZB-DIOXIN

Analyte	Amt Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	17.6	20.0	88.1	70-130		25-Mar-25 21:31	1
1,2,3,7,8-PeCDD	99.0	100	99.0	70-130		25-Mar-25 21:31	1
1,2,3,4,7,8-HxCDD	96.4	100	96.4	70-130		25-Mar-25 21:31	1
1,2,3,6,7,8-HxCDD	90.5	100	90.5	70-130		25-Mar-25 21:31	1
1,2,3,7,8,9-HxCDD	93.1	100	93.1	70-130		25-Mar-25 21:31	1
1,2,3,4,6,7,8-HpCDD	92.2	100	92.2	70-130		25-Mar-25 21:31	1
OCDD	196	200	98.2	70-130		25-Mar-25 21:31	
2,3,7,8-TCDF	19.1	20.0	95.6	70-130		25-Mar-25 21:31	
1,2,3,7,8-PeCDF	106	100	106	70-130		25-Mar-25 21:31	1
2,3,4,7,8-PeCDF	106	100	106	70-130		25-Mar-25 21:31	
1,2,3,4,7,8-HxCDF	99.9	100	99.9	70-130		25-Mar-25 21:31	1
1,2,3,6,7,8-HxCDF	99.4	100	99.4	70-130		25-Mar-25 21:31	1
2,3,4,6,7,8-HxCDF	95.5	100	95.5	70-130		25-Mar-25 21:31	
1,2,3,7,8,9-HxCDF	103	100	103	70-130		25-Mar-25 21:31	1
1,2,3,4,6,7,8-HpCDF	96.3	100	96.3	70-130		25-Mar-25 21:31	1
1,2,3,4,7,8,9-HpCDF	92.3	100	92.3	70-130		25-Mar-25 21:31	
OCDF Labeled Standards	197	200	98.6	70-130	0 1.6	25-Mar-25 21:31	1
	Туре		% Recovery	Limits	Qualifiers		Dilution
13C-2,3,7,8-TCDD	IS		79.8	40 - 135		25-Mar-25 21:31	
13C-1,2,3,7,8-PeCDD	IS		74.1	40 - 135		25-Mar-25 21:31	
13C-1,2,3,4,7,8-HxCDD	IS		70.7	40 - 135		25-Mar-25 21:31	
13C-1,2,3,6,7,8-HxCDD	IS		63.8	40 - 135		25-Mar-25 21:31	1
13C-1,2,3,7,8,9-HxCDD	IS		81.9	40 - 135		25-Mar-25 21:31	1
13C-1,2,3,4,6,7,8-HpCDD	IS		71.7	40 - 135		25-Mar-25 21:31	1
13C-OCDD	IS		68.0	40 - 135		25-Mar-25 21:31	1
13C-2,3,7,8-TCDF	IS		75.8	40 - 135		25-Mar-25 21:31	1
13C-1,2,3,7,8-PeCDF	IS		71.2	40 -135		25-Mar-25 21:31	1
13C-2,3,4,7,8-PeCDF	IS		72.8	40 -135		25-Mar-25 21:31	1
13C-1,2,3,4,7,8-HxCDF	IS		76.3	40 -135		25-Mar-25 21:31	1
13C-1,2,3,6,7,8-HxCDF	IS		76.7	40 - 135		25-Mar-25 21:31	1
13C-2,3,4,6,7,8-HxCDF	IS		68.2	40 - 135		25-Mar-25 21:31	1
	_		75.0	40 - 135		25-Mar-25 21:31	1
13C-1,2,3,7,8,9-HxCDF	IS		75.0	40 133			
13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	IS IS		67.6	40 -135		25-Mar-25 21:31	1
						25-Mar-25 21:31 25-Mar-25 21:31	
13C-1,2,3,4,6,7,8-HpCDF	IS		67.6	40 - 135			1

Sample ID: Method Blank EPA Method 8290A

Client Data

Name: Apex Laboratories

Project: A5C1334 Matrix: Solid **Laboratory Data**

Lab Sample: B25C335-BLK1

QC Batch: B25C335 Date Extracted: 26-Mar-25 Sample Size: 10.0 g Column: ZB-DIOXIN

Analyte	Conc. (pg/g)	EDL	MDL	EMPC	RL	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.115	0.190		0.500		28-Mar-25 11:36	1
1,2,3,7,8-PeCDD	ND	0.155	0.784		2.50		28-Mar-25 11:36	1
1,2,3,4,7,8-HxCDD	ND	0.183	0.633		2.50		28-Mar-25 11:36	1
1,2,3,6,7,8-HxCDD	ND	0.183	0.640		2.50		28-Mar-25 11:36	1
1,2,3,7,8,9-HxCDD	ND	0.209	0.717		2.50		28-Mar-25 11:36	1
1,2,3,4,6,7,8-HpCDD	ND	0.231	0.706		2.50		28-Mar-25 11:36	1
OCDD	ND		1.62	0.282	5.00		28-Mar-25 11:36	1
2,3,7,8-TCDF	ND	0.0957	0.183		0.500		28-Mar-25 11:36	1
1,2,3,7,8-PeCDF	ND	0.148	0.576		2.50		28-Mar-25 11:36	1
2,3,4,7,8-PeCDF	ND	0.140	0.686		2.50		28-Mar-25 11:36	1
1,2,3,4,7,8-HxCDF	ND	0.125	0.659		2.50		28-Mar-25 11:36	1
1,2,3,6,7,8-HxCDF	ND	0.128	0.621		2.50		28-Mar-25 11:36	
2,3,4,6,7,8-HxCDF	ND	0.139	0.661		2.50		28-Mar-25 11:36	1
1,2,3,7,8,9-HxCDF	ND	0.214	0.716		2.50		28-Mar-25 11:36	1
1,2,3,4,6,7,8-HpCDF	ND	0.147	0.649		2.50		28-Mar-25 11:36	1
1,2,3,4,7,8,9-HpCDF	ND	0.248	0.818		2.50		28-Mar-25 11:36	1
OCDF	ND	0.487	3.84		5.00		28-Mar-25 11:36	1
Toxic Equivalent	0.00							
TEQMinWHO2005Dioxin Totals	0.00							
Total TCDD	ND	0.115			0.500			
Total PeCDD	ND	0.155			2.50			
Total HxCDD	ND	0.209			2.50			
Total HpCDD	ND	0.231			2.50			
Total TCDF	ND	0.0957			0.500			
Total PeCDF	ND	0.0737			2.50			
Total HxCDF	ND ND	0.148			2.50			
	ND ND	0.214			2.50			
Total HpCDF Labeled Standards			D.		Limits	Qualifiers	Analyzad	Dilution
	Туре	% 0	Recovery			Quanners	Analyzed	
13C-2,3,7,8-TCDD	IS		73.9		40 - 135		28-Mar-25 11:36	
13C-1,2,3,7,8-PeCDD	IS		70.3		40 - 135		28-Mar-25 11:36	
13C-1,2,3,4,7,8-HxCDD	IS		70.5		40 - 135		28-Mar-25 11:36	
13C-1,2,3,6,7,8-HxCDD	IS		78.4		40 - 135		28-Mar-25 11:36	
13C-1,2,3,7,8,9-HxCDD	IS		71.7		40 - 135		28-Mar-25 11:36	
13C-1,2,3,4,6,7,8-HpCDD	IS		60.7		40 - 135		28-Mar-25 11:36	
13C-OCDD	IS		47.8		40 - 135		28-Mar-25 11:36	1
13C-2,3,7,8-TCDF	IS		76.3		40 - 135		28-Mar-25 11:36	
13C-1,2,3,7,8-PeCDF	IS		69.1		40 - 135		28-Mar-25 11:36	1
13C-2,3,4,7,8-PeCDF	IS		69.9		40 - 135		28-Mar-25 11:36	1
13C-1,2,3,4,7,8-HxCDF	IS		74.7		40 - 135		28-Mar-25 11:36	1
13C-1,2,3,6,7,8-HxCDF	IS		76.3		40 - 135		28-Mar-25 11:36	1
13C-2,3,4,6,7,8-HxCDF	IS		72.4		40 - 135		28-Mar-25 11:36	1
13C-1,2,3,7,8,9-HxCDF	IS		68.4		40 - 135		28-Mar-25 11:36	1
13C-1,2,3,4,6,7,8-HpCDF	IS		65.9		40 - 135		28-Mar-25 11:36	1
13C-1,2,3,4,7,8,9-HpCDF	IS		62.0		40 - 135		28-Mar-25 11:36	1
13C-OCDF	IS		50.4		40 - 135		28-Mar-25 11:36	
37Cl-2,3,7,8-TCDD	CRS		93.6		40 - 135		28-Mar-25 11:36	1

Sample ID: OPR EPA Method 8290A

Client Data

Name:

Apex Laboratories

Project: A5C1334 Matrix: Solid Laboratory Data

Lab Sample: B25C335-BS1

QC Batch: B25C335 Date Extracted: 26-Mar-25 16:57 Sample Size: 10.0 g Column: ZB-DIOXIN

Analyte	Amt Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	19.2	20.0	96.2	70-130		28-Mar-25 10:05	1
1,2,3,7,8-PeCDD	100	100	100	70-130		28-Mar-25 10:05	1
1,2,3,4,7,8-HxCDD	99.8	100	99.8	70-130		28-Mar-25 10:05	1
1,2,3,6,7,8-HxCDD	101	100	101	70-130		28-Mar-25 10:05	1
1,2,3,7,8,9-HxCDD	99.8	100	99.8	70-130		28-Mar-25 10:05	1
1,2,3,4,6,7,8-HpCDD	94.4	100	94.4	70-130		28-Mar-25 10:05	1
OCDD	198	200	99.1	70-130		28-Mar-25 10:05	1
2,3,7,8-TCDF	20.4	20.0	102	70-130		28-Mar-25 10:05	1
1,2,3,7,8-PeCDF	115	100	115	70-130		28-Mar-25 10:05	
2,3,4,7,8-PeCDF	106	100	106	70-130		28-Mar-25 10:05	
1,2,3,4,7,8-HxCDF	99.2	100	99.2	70-130		28-Mar-25 10:05	
1,2,3,6,7,8-HxCDF	103	100	103	70-130		28-Mar-25 10:05	
2,3,4,6,7,8-HxCDF	102	100	102	70-130		28-Mar-25 10:05	
1,2,3,7,8,9-HxCDF	99.9	100	99.9	70-130		28-Mar-25 10:05	
1,2,3,4,6,7,8-HpCDF	98.1	100	98.1	70-130		28-Mar-25 10:05	
1,2,3,4,7,8,9-HpCDF	91.1	100	91.1	70-130		28-Mar-25 10:05	
OCDF	199	200	99.3	70-130		28-Mar-25 10:05	
Labeled Standards	Туре		% Recovery	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS		80.2	40 -135		28-Mar-25 10:05	1
13C-1,2,3,7,8-PeCDD	IS		76.1	40 -135		28-Mar-25 10:05	1
13C-1,2,3,4,7,8-HxCDD	IS		72.0	40 - 135		28-Mar-25 10:05	1
13C-1,2,3,6,7,8-HxCDD	IS		84.1	40 - 135		28-Mar-25 10:05	1
13C-1,2,3,7,8,9-HxCDD	IS		79.4	40 -135		28-Mar-25 10:05	1
13C-1,2,3,4,6,7,8-HpCDD	IS		69.6	40 -135		28-Mar-25 10:05	1
13C-OCDD	IS		54.2	40 - 135		28-Mar-25 10:05	1
13C-2,3,7,8-TCDF	IS		78.4	40 - 135		28-Mar-25 10:05	1
13C-1,2,3,7,8-PeCDF	IS		69.3	40 -135		28-Mar-25 10:05	1
13C-2,3,4,7,8-PeCDF	IS		72.1	40 -135		28-Mar-25 10:05	1
13C-1,2,3,4,7,8-HxCDF	IS		78.4	40 - 135		28-Mar-25 10:05	1
13C-1,2,3,6,7,8-HxCDF	IS		81.2	40 - 135		28-Mar-25 10:05	1
13C-2,3,4,6,7,8-HxCDF	IS		73.4	40 - 135		28-Mar-25 10:05	1
13C-1,2,3,7,8,9-HxCDF	IS		73.4	40 - 135		28-Mar-25 10:05	1
13C-1,2,3,4,6,7,8-HpCDF	IS		70.5	40 - 135		28-Mar-25 10:05	1
13C-1,2,3,4,7,8,9-HpCDF	IS		68.4	40 - 135		28-Mar-25 10:05	1
13C-OCDF	IS		56.9	40 - 135		28-Mar-25 10:05	1
37Cl-2,3,7,8-TCDD	CRS		95.9	40 - 135		28-Mar-25 10:05	1

Sample ID: DU4-A-S-0.5 EPA Method 8290A

Client Data

Laboratory Data

Name: Apex Laboratories

A5C1334 Project:

2503187-01 Lab Sample: QC Batch: B25C292

Sample Size: 10.2 σ

Date Received: Date Extracted:

19-Mar-25 09:38 24-Mar-25

Column:

Matrix: Soil Date Collected: 11-Mar-25 1	1:00		Samp % So	ole Size: dids:	10.2 g 98.6	Colu	mn:	ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL M	IDL	EMPC		RL	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	0.514	0.	189			0.497		26-Mar-25 05:57	' 1
1,2,3,7,8-PeCDD	9.24		779			2.49		26-Mar-25 05:57	1
1,2,3,4,7,8-HxCDD	28.4	0.	629			2.49		26-Mar-25 05:57	1
1,2,3,6,7,8-HxCDD	142		636			2.49		26-Mar-25 05:57	1
1,2,3,7,8,9-HxCDD	64.8		713			2.49		26-Mar-25 05:57	1
1,2,3,4,6,7,8-HpCDD	4310		.02			24.9		27-Mar-25 17:12	
OCDD	39400		6.1			49.7		27-Mar-25 17:12	
2,3,7,8-TCDF	ND		182	0.819		0.497		26-Mar-25 05:57	
1,2,3,7,8-PeCDF	4.73		573			2.49		26-Mar-25 05:57	
2,3,4,7,8-PeCDF	7.84		682			2.49		26-Mar-25 05:57	
1,2,3,4,7,8-HxCDF	25.3		655			2.49		26-Mar-25 05:57	
1,2,3,6,7,8-HxCDF	25.5		617			2.49		26-Mar-25 05:57	
2,3,4,6,7,8-HxCDF	17.8		657			2.49		26-Mar-25 05:57	
1,2,3,7,8,9-HxCDF	5.97		712			2.49		26-Mar-25 05:57	
1,2,3,4,6,7,8-HpCDF	657		645			2.49		26-Mar-25 05:57	
1,2,3,4,7,8,9-HpCDF	35.4		813			2.49		26-Mar-25 05:57	
OCDF	1420	3	.82			4.97		26-Mar-25 05:57	1
Toxic Equivalent TEQMinWHO2005Dioxin	105								
Totals	103								
Total TCDD	3.15			3.37		0.497			
Total PeCDD	40.5			40.9		2.49			
Total HxCDD	609			10.5		2.49			
Total HpCDD	6290					2.49			
Total TCDF	13.5			14.4		0.497			
Total PeCDF	202			203		2.49			
	751			756		2.49			
Total HxCDF	1820								
Total HpCDF		0/ D		1830	Limita	2.49	Ouglifians	Analyzad	Dilution
Labeled Standards	Туре	% Recov	ery		Limits		Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	85.8			40 - 135			26-Mar-25 05:57	
13C-1,2,3,7,8-PeCDD	IS	72.6			40 - 135			26-Mar-25 05:57	
13C-1,2,3,4,7,8-HxCDD	IS	103			40 - 135			26-Mar-25 05:57	
13C-1,2,3,6,7,8-HxCDD	IS	103			40 - 135			26-Mar-25 05:57	
13C-1,2,3,7,8,9-HxCDD	IS	96.8			40 - 135			26-Mar-25 05:57	
13C-1,2,3,4,6,7,8-HpCDD	IS	91.9			40 - 135			27-Mar-25 17:12	
13C-OCDD	IS	81.0			40 - 135			27-Mar-25 17:12	
13C-2,3,7,8-TCDF	IS	85.8			40 - 135			26-Mar-25 05:57	7 1
13C-1,2,3,7,8-PeCDF	IS	70.7			40 - 135			26-Mar-25 05:57	7 1
13C-2,3,4,7,8-PeCDF	IS	70.2			40 - 135			26-Mar-25 05:57	7 1
13C-1,2,3,4,7,8-HxCDF	IS	88.4			40 - 135			26-Mar-25 05:57	7 1
13C-1,2,3,6,7,8-HxCDF	IS	87.9			40 - 135			26-Mar-25 05:57	7 1
13C-2,3,4,6,7,8-HxCDF	IS	87.6			40 - 135			26-Mar-25 05:57	7 1
13C-1,2,3,7,8,9-HxCDF	IS	88.2			40 - 135			26-Mar-25 05:57	7 1
13C-1,2,3,4,6,7,8-HpCDF	IS	74.4			40 - 135			26-Mar-25 05:57	7 1
13C-1,2,3,4,7,8,9-HpCDF	IS	73.4			40 - 135			26-Mar-25 05:57	7 1
13C-OCDF	IS	68.7			40 - 135			26-Mar-25 05:57	
37Cl-2,3,7,8-TCDD	CRS	102			40 - 135			26-Mar-25 05:57	7 1

Sample ID: DU4-B-S-0.5 **EPA Method 8290A**

Client Data

Laboratory Data

Name: Apex Laboratories Project:

A5C1334

Matrix: Soil

11-Mar-25 10-30

Lab Sample: 2503187-02

B25C335 QC Batch:

Sample Size: 10.2 g % Solids:

Date Received: Date Extracted: 19-Mar-25 09:38 26-Mar-25

Column: ZB-DIOXIN

Date Collected: 11-Mar-25	10:30		% Sc	olids: 9	98.5			
Analyte	Conc. (pg/g)	EDL	MDL	EMPC	ŀ	RL Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND		0.189	0.384	0.4	197	28-Mar-25 15:25	1
1,2,3,7,8-PeCDD	1.62		0.779			48 J	28-Mar-25 15:25	1
1,2,3,4,7,8-HxCDD	4.10		0.629		2.	48	28-Mar-25 15:25	1
1,2,3,6,7,8-HxCDD	18.9		0.636			48	28-Mar-25 15:25	1
1,2,3,7,8,9-HxCDD	9.68		0.713			48	28-Mar-25 15:25	1
1,2,3,4,6,7,8-HpCDD	511		0.702			48	28-Mar-25 15:25	1
OCDD	3750		1.61			97	28-Mar-25 15:25	1
2,3,7,8-TCDF	ND		0.182	0.183		197	28-Mar-25 15:25	
1,2,3,7,8-PeCDF	ND		0.572	0.725		48	28-Mar-25 15:25	
2,3,4,7,8-PeCDF	ND		0.682	0.743		48	28-Mar-25 15:25	
1,2,3,4,7,8-HxCDF	ND		0.655	2.47		48	28-Mar-25 15:25	
1,2,3,6,7,8-HxCDF	2.94		0.617			48	28-Mar-25 15:25	
2,3,4,6,7,8-HxCDF	ND		0.657	1.07		48	28-Mar-25 15:25	
1,2,3,7,8,9-HxCDF	ND		0.712			48	28-Mar-25 15:25	
1,2,3,4,6,7,8-HpCDF	67.3		0.645			48	28-Mar-25 15:25	
1,2,3,4,7,8,9-HpCDF	3.86		0.813			48	28-Mar-25 15:25	
OCDF	159		3.82		4.	97	28-Mar-25 15:25	1
Toxic Equivalent								
TEQMinWHO2005Dioxin	12.2							
Totals								
Total TCDD	1.02			1.40		197		
Total PeCDD	7.31			9.15		48		
Total HxCDD	99.4			101		48		
Total HpCDD	804				2.	48		
Total TCDF	2.19			3.40	0.4	197		
Total PeCDF	19.5			22.9	2.	48		
Total HxCDF	66.6			70.1	2.	48		
Total HpCDF	168				2.	48		
Labeled Standards	Type	% I	Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS		77.9		40 - 135		28-Mar-25 15:25	5 1
13C-1,2,3,7,8-PeCDD	IS		73.2		40 - 135		28-Mar-25 15:25	5 1
13C-1,2,3,4,7,8-HxCDD	IS		74.3		40 - 135		28-Mar-25 15:25	5 1
13C-1,2,3,6,7,8-HxCDD	IS		78.9		40 - 135		28-Mar-25 15:25	5 1
13C-1,2,3,7,8,9-HxCDD	IS		71.3		40 - 135		28-Mar-25 15:25	5 1
13C-1,2,3,4,6,7,8-HpCDD	IS		70.9		40 - 135		28-Mar-25 15:25	5 1
13C-OCDD	IS		59.0		40 - 135		28-Mar-25 15:25	
13C-2,3,7,8-TCDF	IS		81.7		40 - 135		28-Mar-25 15:25	
13C-1,2,3,7,8-PeCDF	IS		63.8		40 - 135		28-Mar-25 15:25	
13C-2,3,4,7,8-PeCDF	IS		65.9		40 - 135		28-Mar-25 15:25	
13C-1,2,3,4,7,8-HxCDF	IS		78.5		40 - 135		28-Mar-25 15:25	
13C-1,2,3,4,7,6-11XCDI	10		10.5		40 - 133		20-1VIa1-25 15.25	, 1

IS

IS

IS

IS

IS

IS

CRS

79.3

77.4

73.6

70.7

69.3

66.9

94.9

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

13C-1,2,3,6,7,8-HxCDF

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

37Cl-2,3,7,8-TCDD

13C-OCDF

28-Mar-25 15:25

1

1

1

1

1

Sample ID: DU4-C-S-0.5 EPA Method 8290A

Client Data

Laboratory Data

Apex Laboratories Name:

A5C1334 Project:

2503187-03 Lab Sample: QC Batch: B25C292

Sample Size

Date Received: 19-Mar-25 09:38 24-Mar-25 Date Extracted:

Matrix: Soil Date Collected: 11-Mar-25	12:15		Sample Size: % Solids:	10.2 g 98.6	Colu	mn:	ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL M	IDL EMPC		RL	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.1	189 1.65		0.498		26-Mar-25 07:29	1
1,2,3,7,8-PeCDD	63.3	0.7	781		2.49		26-Mar-25 07:29	1
1,2,3,4,7,8-HxCDD	138	0.6	631		2.49		26-Mar-25 07:29	1
1,2,3,6,7,8-HxCDD	785		638		2.49		26-Mar-25 07:29	1
1,2,3,7,8,9-HxCDD	341	0.7	714		2.49		26-Mar-25 07:29	1
1,2,3,4,6,7,8-HpCDD	16300	14	4.1		49.8		27-Mar-25 18:44	20
OCDD	115000	32	2.3		99.6		27-Mar-25 18:44	20
2,3,7,8-TCDF	5.88	0.1	182		0.498		26-Mar-25 07:29	1
1,2,3,7,8-PeCDF	31.8		574		2.49		26-Mar-25 07:29	1
2,3,4,7,8-PeCDF	61.4		684		2.49		26-Mar-25 07:29	1
1,2,3,4,7,8-HxCDF	117		657		2.49		26-Mar-25 07:29	
1,2,3,6,7,8-HxCDF	150		619		2.49		26-Mar-25 07:29	
2,3,4,6,7,8-HxCDF	139		659		2.49		26-Mar-25 07:29	1
1,2,3,7,8,9-HxCDF	33.6		713		2.49		26-Mar-25 07:29	
1,2,3,4,6,7,8-HpCDF	2460		647		2.49		26-Mar-25 07:29	
1,2,3,4,7,8,9-HpCDF	130		815		2.49		26-Mar-25 07:29	
OCDF	4160	3.	.83		4.98		26-Mar-25 07:29	1
Toxic Equivalent								
TEQMinWHO2005Dioxin	478							
Totals								
Total TCDD	12.7		17.3		0.498			
Total PeCDD	217				2.49			
Total HxCDD	3270				2.49			
Total HpCDD	21900				2.49			
Total TCDF	99.2		102		0.498			
Total PeCDF	1340		1350		2.49			
Total HxCDF	3900				2.49			
Total HpCDF	6210				2.49			
Labeled Standards	Туре	% Recove	Prv	Limits		Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	82.2		40 - 135			26-Mar-25 07:29	
13C-1,2,3,7,8-PeCDD	IS	70.6		40 - 135			26-Mar-25 07:29	
13C-1,2,3,4,7,8-HxCDD	IS	87.7					26-Mar-25 07:29	
	IS	86.6		40 - 135				
13C-1,2,3,6,7,8-HxCDD	IS			40 - 135			26-Mar-25 07:29	
13C-1,2,3,7,8,9-HxCDD		88.6		40 - 135			26-Mar-25 07:29	
13C-1,2,3,4,6,7,8-HpCDD	IS	84.3		40 - 135			27-Mar-25 18:44	
13C-OCDD	IS	83.7		40 - 135			27-Mar-25 18:44	
13C-2,3,7,8-TCDF	IS	82.2		40 - 135			26-Mar-25 07:29	
13C-1,2,3,7,8-PeCDF	IS	70.6		40 - 135			26-Mar-25 07:29	
13C-2,3,4,7,8-PeCDF	IS	68.3		40 - 135			26-Mar-25 07:29	
13C-1,2,3,4,7,8-HxCDF	IS	84.7		40 - 135			26-Mar-25 07:29	
13C-1,2,3,6,7,8-HxCDF	IS	84.6		40 - 135			26-Mar-25 07:29	
13C-2,3,4,6,7,8-HxCDF	IS	78.0		40 - 135			26-Mar-25 07:29	
13C-1,2,3,7,8,9-HxCDF	IS	81.6		40 - 135			26-Mar-25 07:29	1
13C-1,2,3,4,6,7,8-HpCDF	IS	72.1		40 - 135			26-Mar-25 07:29	1
13C-1,2,3,4,7,8,9-HpCDF	IS	70.7		40 - 135			26-Mar-25 07:29	1
13C-OCDF	IS	65.6		40 - 135			26-Mar-25 07:29	1
37Cl-2,3,7,8-TCDD	CRS	106		40 - 135			26-Mar-25 07:29	1

Sample ID: DU4-D-S-0.5 EPA Method 8290A

Client Data

Laboratory Data

% Solids:

Name: Apex Laboratories Project: A5C1334 Lab Sample: 2503187-04 QC Batch: B25C292

98.2

19-Mar-25 09:38

27-Mar-25 13:22

27-Mar-25 13:22

Project: A5C Matrix: Soil

1,2,3,4,7,8,9-HpCDF

QC Batch: B25C2 Sample Size: 10.2 g Date Extracted: 24-Mar-25 Column: ZB-DIOXIN

Date Received:

2.50

5.00

Date Collected: 11-Mar-25 09:45

Analyte	Conc. (pg/g)	EDL	MDL	EMPC	RL	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND		0.190	0.289	0.500		27-Mar-25 13:22	1
1,2,3,7,8-PeCDD	1.39		0.784		2.50	J	27-Mar-25 13:22	1
1,2,3,4,7,8-HxCDD	4.21		0.633		2.50		27-Mar-25 13:22	1
1,2,3,6,7,8-HxCDD	17.0		0.640		2.50		27-Mar-25 13:22	1
1,2,3,7,8,9-HxCDD	9.77		0.717		2.50		27-Mar-25 13:22	1
1,2,3,4,6,7,8-HpCDD	625		0.706		2.50		27-Mar-25 13:22	1
OCDD	4730		1.62		5.00		27-Mar-25 13:22	1
2,3,7,8-TCDF	0.186		0.183		0.500	J	27-Mar-25 13:22	1
1,2,3,7,8-PeCDF	ND		0.576		2.50		27-Mar-25 13:22	1
2,3,4,7,8-PeCDF	0.829		0.686		2.50	J	27-Mar-25 13:22	1
1,2,3,4,7,8-HxCDF	2.41		0.659		2.50	J	27-Mar-25 13:22	1
1,2,3,6,7,8-HxCDF	2.33		0.621		2.50	J	27-Mar-25 13:22	1
2,3,4,6,7,8-HxCDF	2.31		0.661		2.50	J	27-Mar-25 13:22	1
1,2,3,7,8,9-HxCDF	ND		0.716	0.306	2.50		27-Mar-25 13:22	1
1,2,3,4,6,7,8-HpCDF	73.6		0.649		2.50		27-Mar-25 13:22	1

0.818

OCDF	180	3.84
Toxic Equivalent		
TEQMinWHO2005Dioxin	14.0	
Totals		

3.47

Total TCDD	0.952	1.82	0.500
Total PeCDD	8.67	9.97	2.50
Total HxCDD	98.0	100	2.50
Total HpCDD	967		2.50
Total TCDF	2.36	2.76	0.500
Total PeCDF	14.9	15.5	2.50
Total HxCDF	61.6	63.2	2.50
Total HnCDF	179		2.50

Total HpCDF	179		2.50		
Labeled Standards	Type	% Recovery	Limits	Qualifiers Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	86.0	40 - 135	27-Mar-25 13:22	1
13C-1,2,3,7,8-PeCDD	IS	81.2	40 - 135	27-Mar-25 13:22	1
13C-1,2,3,4,7,8-HxCDD	IS	82.9	40 - 135	27-Mar-25 13:22	1
13C-1,2,3,6,7,8-HxCDD	IS	92.4	40 - 135	27-Mar-25 13:22	1
13C-1,2,3,7,8,9-HxCDD	IS	83.6	40 - 135	27-Mar-25 13:22	1
13C-1,2,3,4,6,7,8-HpCDD	IS	79.3	40 - 135	27-Mar-25 13:22	1
13C-OCDD	IS	75.7	40 - 135	27-Mar-25 13:22	1
13C-2,3,7,8-TCDF	IS	85.3	40 - 135	27-Mar-25 13:22	1
13C-1,2,3,7,8-PeCDF	IS	83.8	40 - 135	27-Mar-25 13:22	1
13C-2,3,4,7,8-PeCDF	IS	84.4	40 - 135	27-Mar-25 13:22	1
13C-1,2,3,4,7,8-HxCDF	IS	82.6	40 - 135	27-Mar-25 13:22	1
13C-1,2,3,6,7,8-HxCDF	IS	87.7	40 - 135	27-Mar-25 13:22	1
13C-2,3,4,6,7,8-HxCDF	IS	82.1	40 - 135	27-Mar-25 13:22	1
13C-1,2,3,7,8,9-HxCDF	IS	76.3	40 - 135	27-Mar-25 13:22	1
13C-1,2,3,4,6,7,8-HpCDF	IS	77.1	40 - 135	27-Mar-25 13:22	1
13C-1,2,3,4,7,8,9-HpCDF	IS	73.2	40 - 135	27-Mar-25 13:22	1
13C-OCDF	IS	71.7	40 - 135	27-Mar-25 13:22	1
37Cl-2,3,7,8-TCDD	CRS	107	40 - 135	27-Mar-25 13:22	1

Sample ID: DU-2c-S-0.5 EPA Method 8290A

Client Data

Laboratory Data

Name: Apex Laboratories

A5C1334 Project:

2503187-05 Lab Sample: QC Batch:

B25C292 Sample Size: 10.2 g

Date Received: 19-Mar-25 09:38

Date Extracted: 24-Mar-25 Column:

Matrix: Soil Date Collected: 12-Mar-25 1	0:30			ple Size: olids:	10.2 g 98.2	Colu	mn:	ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL M	IDL	EMPC		RL	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	1.38	0.	190			0.500		27-Mar-25 14:08	1
1,2,3,7,8-PeCDD	2.25		784			2.50	J	27-Mar-25 14:08	
1,2,3,4,7,8-HxCDD	5.78	0.	633			2.50		27-Mar-25 14:08	1
1,2,3,6,7,8-HxCDD	27.7	0.	640			2.50		27-Mar-25 14:08	1
1,2,3,7,8,9-HxCDD	14.0	0.	717			2.50		27-Mar-25 14:08	1
1,2,3,4,6,7,8-HpCDD	831		706			2.50		27-Mar-25 14:08	
OCDD	5490		.62			5.00		27-Mar-25 14:08	1
2,3,7,8-TCDF	0.909		183			0.500		27-Mar-25 14:08	
1,2,3,7,8-PeCDF	1.49		576			2.50	J	27-Mar-25 14:08	
2,3,4,7,8-PeCDF	1.85		686			2.50	J	27-Mar-25 14:08	
1,2,3,4,7,8-HxCDF	5.49		659			2.50		27-Mar-25 14:08	
1,2,3,6,7,8-HxCDF	5.16		621			2.50		27-Mar-25 14:08	
2,3,4,6,7,8-HxCDF	6.73		661			2.50		27-Mar-25 14:08	
1,2,3,7,8,9-HxCDF	ND		716	0.602		2.50		27-Mar-25 14:08	
1,2,3,4,6,7,8-HpCDF	100		649			2.50		27-Mar-25 14:08	
1,2,3,4,7,8,9-HpCDF	5.43		818			2.50		27-Mar-25 14:08	
OCDF	219	3	.84			5.00		27-Mar-25 14:08	1
Toxic Equivalent									
TEQMinWHO2005Dioxin	21.9								
Totals									
Total TCDD	6.12			6.94		0.500			
Total PeCDD	13.4			17.3		2.50			
Total HxCDD	141					2.50			
Total HpCDD	1320					2.50			
Total TCDF	22.5			26.6		0.500			
Total PeCDF	81.5			83.8		2.50			
Total HxCDF	135			136		2.50			
Total HpCDF	286			288		2.50			
Labeled Standards	Type	% Recov	ery		Limits		Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	86.3	•		40 - 135			27-Mar-25 14:08	3 1
13C-1,2,3,7,8-PeCDD	IS	85.4			40 - 135			27-Mar-25 14:08	3 1
13C-1,2,3,4,7,8-HxCDD	IS	91.6			40 - 135			27-Mar-25 14:08	3 1
13C-1,2,3,6,7,8-HxCDD	IS	96.5			40 - 135			27-Mar-25 14:08	
13C-1,2,3,7,8,9-HxCDD	IS	94.0			40 - 135			27-Mar-25 14:08	
13C-1,2,3,4,6,7,8-HpCDD	IS	76.8			40 - 135			27-Mar-25 14:08	
13C-OCDD	IS	79.8			40 - 135			27-Mar-25 14:08	
13C-2,3,7,8-TCDF	IS	89.1			40 - 135			27-Mar-25 14:08	
13C-1,2,3,7,8-PeCDF	IS	83.9			40 - 135			27-Mar-25 14:08	
13C-2,3,4,7,8-PeCDF	IS	88.1			40 - 135			27-Mar-25 14:08	
13C-1,2,3,4,7,8-HxCDF	IS	86.4			40 - 135			27-Mar-25 14:08	
13C-1,2,3,6,7,8-HxCDF	IS	93.0			40 - 135			27-Mar-25 14:08	
	IS								
13C-2,3,4,6,7,8-HxCDF		89.3			40 - 135			27-Mar-25 14:08	
13C-1,2,3,7,8,9-HxCDF	IS	90.7			40 - 135			27-Mar-25 14:08	
13C-1,2,3,4,6,7,8-HpCDF	IS	79.8			40 - 135			27-Mar-25 14:08	
13C-1,2,3,4,7,8,9-HpCDF	IS	74.1			40 - 135			27-Mar-25 14:08	
13C-OCDF	IS	70.8			40 - 135			27-Mar-25 14:08	
37Cl-2,3,7,8-TCDD	CRS	105			40 - 135			27-Mar-25 14:08	3 1

Sample ID: DU-2d-S-0.5 EPA Method 8290A

Client Data

Laboratory Data

Name: Apex Laboratories

Project: A5C1334 Matrix: Soil Lab Sample: 2503187-06

QC Batch: B25C335

Sample Size: 10.2 g % Solids: 98.2

Date Received: 19-Mar-25 09:38

Date Extracted: 26-Mar-25
Column: ZB-DIOXIN

Matrix: Soil Date Collected: 12-Mar-25 1	11:15		% Solids:	10.2 g 98.2	Colu	mn:	ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL M	DL EMPC	1	RL	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	2.35	0.1	89		0.497		28-Mar-25 16:11	1
1,2,3,7,8-PeCDD	3.66	0.7	79		2.48		28-Mar-25 16:11	1
1,2,3,4,7,8-HxCDD	12.8	0.6	529		2.48		28-Mar-25 16:11	1
1,2,3,6,7,8-HxCDD	63.8	0.6	536		2.48		28-Mar-25 16:11	1
1,2,3,7,8,9-HxCDD	29.7	0.7	13		2.48		28-Mar-25 16:11	1
1,2,3,4,6,7,8-HpCDD	1990	0.7	702		2.48		28-Mar-25 16:11	1
OCDD	14500	8.0	05		24.8		31-Mar-25 20:30	5
2,3,7,8-TCDF	1.54	0.1	.82		0.497		28-Mar-25 16:11	1
1,2,3,7,8-PeCDF	3.78	0.5	573		2.48		28-Mar-25 16:11	1
2,3,4,7,8-PeCDF	6.59	0.6	582		2.48		28-Mar-25 16:11	1
1,2,3,4,7,8-HxCDF	13.2	0.6	555		2.48		28-Mar-25 16:11	1
1,2,3,6,7,8-HxCDF	12.4	0.6	517		2.48		28-Mar-25 16:11	1
2,3,4,6,7,8-HxCDF	6.54	0.6	557		2.48		28-Mar-25 16:11	1
1,2,3,7,8,9-HxCDF	2.33	0.7			2.48	J	28-Mar-25 16:11	1
1,2,3,4,6,7,8-HpCDF	266	0.6			2.48		28-Mar-25 16:11	1
1,2,3,4,7,8,9-HpCDF	16.0	0.8			2.48		28-Mar-25 16:11	1
OCDF	632	3.8	82		4.97		28-Mar-25 16:11	1
Toxic Equivalent								
TEQMinWHO2005Dioxin	49.6							
Totals								
Total TCDD	6.70		8.47		0.497			
Total PeCDD	24.5				2.48			
Total HxCDD	280				2.48			
Total HpCDD	3130				2.48			
Total TCDF	44.0				0.497			
Total PeCDF	138				2.48			
Total HxCDF	346		352		2.48			
Total HpCDF	791				2.48			
Labeled Standards	Type	% Recove	ry	Limits		Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	75.0		40 - 135			28-Mar-25 16:11	. 1
13C-1,2,3,7,8-PeCDD	IS	71.0		40 - 135			28-Mar-25 16:11	. 1
13C-1,2,3,4,7,8-HxCDD	IS	69.8		40 - 135			28-Mar-25 16:11	. 1
13C-1,2,3,6,7,8-HxCDD	IS	78.1		40 - 135			28-Mar-25 16:11	
13C-1,2,3,7,8,9-HxCDD	IS	68.8		40 - 135			28-Mar-25 16:11	
13C-1,2,3,4,6,7,8-HpCDD	IS	66.3		40 - 135			28-Mar-25 16:11	
13C-OCDD	IS	60.5		40 - 135			31-Mar-25 20:30	
13C-2,3,7,8-TCDF	IS	79.2		40 - 135			28-Mar-25 16:11	
13C-1,2,3,7,8-PeCDF	IS	65.9		40 - 135			28-Mar-25 16:11	
13C-2,3,4,7,8-PeCDF	IS	67.2		40 - 135			28-Mar-25 16:11	
13C-1,2,3,4,7,8-HxCDF	IS	72.7		40 - 135			28-Mar-25 16:11	
13C-1,2,3,6,7,8-HxCDF	IS	73.2		40 - 135			28-Mar-25 16:11	
13C-2,3,4,6,7,8-HxCDF	IS	68.8					28-Mar-25 16:11	
13C-1,2,3,7,8,9-HxCDF	IS	69.9		40 - 135			28-Mar-25 16:11	
				40 - 135				
13C-1,2,3,4,6,7,8-HpCDF	IS	64.2		40 - 135			28-Mar-25 16:11	
13C-1,2,3,4,7,8,9-HpCDF	IS	65.3		40 - 135			28-Mar-25 16:11	
13C-OCDF	IS	61.3		40 - 135			28-Mar-25 16:11	
37Cl-2,3,7,8-TCDD	CRS	97.3		40 - 135			28-Mar-25 16:11	. 1

Sample ID: DU-2e-S-0.5 EPA Method 8290A

Client Data

Laboratory Data

Name: Apex Laboratories

Project: A5C1334

Lab Sample: 2503187-07 QC Batch: B25C292

2503187-07 Date Received: B25C292 Date Extracted:

te Received: 19-Mar-25 09:38 te Extracted: 24-Mar-25

Matrix: Soil Date Collected: 12-Mar-25	12:00		Sample Size: % Solids:	10.2 g 98.5	Colu	mn:	ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL M	DL EMPC		RL	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.1	190 0.446		0.500		27-Mar-25 15:40	1
1,2,3,7,8-PeCDD	2.88	0.7	784		2.50		27-Mar-25 15:40	1
1,2,3,4,7,8-HxCDD	9.00	0.6	633		2.50		27-Mar-25 15:40	1
1,2,3,6,7,8-HxCDD	48.1		540		2.50		27-Mar-25 15:40	1
1,2,3,7,8,9-HxCDD	22.6		717		2.50		27-Mar-25 15:40	1
1,2,3,4,6,7,8-HpCDD	1580		706		2.50		27-Mar-25 15:40	
OCDD	10300		10		25.0		27-Mar-25 20:16	
2,3,7,8-TCDF	0.527		183		0.500		27-Mar-25 15:40	
1,2,3,7,8-PeCDF	1.60		576		2.50	J	27-Mar-25 15:40	
2,3,4,7,8-PeCDF	4.76		586		2.50		27-Mar-25 15:40	
1,2,3,4,7,8-HxCDF	9.90		559		2.50		27-Mar-25 15:40	
1,2,3,6,7,8-HxCDF	7.35		521		2.50		27-Mar-25 15:40	
2,3,4,6,7,8-HxCDF	4.81		561		2.50		27-Mar-25 15:40	
1,2,3,7,8,9-HxCDF	ND		716 2.33		2.50		27-Mar-25 15:40	
1,2,3,4,6,7,8-HpCDF	174		549		2.50		27-Mar-25 15:40	
1,2,3,4,7,8,9-HpCDF	10.2		318		2.50		27-Mar-25 15:40	
OCDF	393	3.	84		5.00		27-Mar-25 15:40	1
Toxic Equivalent	27.1							
TEQMinWHO2005Dioxin	35.4							
Totals								
Total TCDD	0.863		1.83		0.500			
Total PeCDD	12.5		15.1		2.50			
Total HxCDD	212				2.50			
Total HpCDD	2470				2.50			
Total TCDF	13.0		13.7		0.500			
Total PeCDF	85.0				2.50			
Total HxCDF	236		238		2.50			
Total HpCDF	511				2.50			
Labeled Standards	Type	% Recove	ery	Limits		Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	83.8		40 - 135			27-Mar-25 15:40	1
13C-1,2,3,7,8-PeCDD	IS	80.9		40 - 135			27-Mar-25 15:40	1
13C-1,2,3,4,7,8-HxCDD	IS	89.1		40 - 135			27-Mar-25 15:40	1
13C-1,2,3,6,7,8-HxCDD	IS	92.3		40 - 135			27-Mar-25 15:40	1
13C-1,2,3,7,8,9-HxCDD	IS	87.9		40 - 135			27-Mar-25 15:40	1
13C-1,2,3,4,6,7,8-HpCDD	IS	82.3		40 - 135			27-Mar-25 15:40	1
13C-OCDD	IS	74.9		40 - 135			27-Mar-25 20:16	5
13C-2,3,7,8-TCDF	IS	86.8		40 - 135			27-Mar-25 15:40	1
13C-1,2,3,7,8-PeCDF	IS	80.5		40 - 135			27-Mar-25 15:40	1
13C-2,3,4,7,8-PeCDF	IS	84.2		40 - 135			27-Mar-25 15:40	1
13C-1,2,3,4,7,8-HxCDF	IS	83.7		40 - 135			27-Mar-25 15:40	
13C-1,2,3,6,7,8-HxCDF	IS	84.4		40 - 135			27-Mar-25 15:40	1
13C-2,3,4,6,7,8-HxCDF	IS	82.8		40 - 135			27-Mar-25 15:40	
13C-1,2,3,7,8,9-HxCDF	IS	82.8		40 - 135			27-Mar-25 15:40	
13C-1,2,3,4,6,7,8-HpCDF	IS	76.5		40 - 135			27-Mar-25 15:40	
13C-1,2,3,4,7,8,9-HpCDF	IS	76.5		40 - 135			27-Mar-25 15:40	
13C-OCDF	IS	71.4		40 - 135			27-Mar-25 15:40	
37Cl-2,3,7,8-TCDD	CRS	109		40 - 135			27-Mar-25 15:40	
5, 5, 2,5,7,0 1000		109		TO - 133			27 17101-23 13.70	1

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

EDL Estimated Detection Limit

EMPC Estimated Maximum Possible Concentration

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

RL For 537.1, the reported RLs are the MRLs.

TEQ Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the

sample concentrations.

TEQMax TEQ calculation that uses the detection limit as the concentration for non-detects

TEQMin TEQ calculation that uses zero as the concentration for non-detects

TEQRisk TEQ calculation that uses ½ the detection limit as the concentration for non-

detects

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Enthalpy Analytical - EDH Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	2211390
Nevada Division of Environmental Protection	CA00413
New Hampshire Environmental Accreditation Program	207721
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-021
Texas Commission on Environmental Quality	T104704189-22-13
Vermont Department of Health	VT-4042
Virginia Department of General Services	11276
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

 $Current\ certificates\ and\ lists\ of\ licensed\ parameters\ can\ be\ found\ at\ Enthalpy.com/Resources/Accreditations.$

SUBCONTRACT ORDER

Apex Laboratories A5C1334

2503187 1.7°C

HUL 3/17/15

RECEIVING LABORATORY:

Enthalpy Analytical- CA 1104 Windfield Way El Dorado Hills, CA 95762

Phone: (916) 673-1520

Fax: -

SENDING LABORATORY:

Apex Laboratories

6700 S.W. Sandburg Street

Tigard, OR 97223 Phone: (503) 718-2323

Fax: (503) 336-0745

Project Manager: P

Philip Nerenberg

After processing Sample Name: DU4-A-S-0.5 Sampled: 03/11/25 11:00 (A5C1334-02) Soil Due Expires Comments Analysis 8290 Dioxins/Furans by HRGC/HRMS (SUB) 03/25/25 17:00 04/10/25 11:00 Containers Supplied: (B)4 oz Glass Jar After processing Sampled: 03/11/25 10:30 Sample Name: DU4-B-S-0.5 Soil (A5C1334-04) Analysis Due Expires Comments 03/25/25 17:00 04/10/25 10:30 8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar After processing Sampled: 03/11/25 12:15 (A5C1334-06) Sample Name: DU4-C-S-0.5 Soil Due **Expires** Analysis Comments 8290 Dioxins/Furans by HRGC/HRMS (SUB) 03/25/25 17:00 04/10/25 12:15 Containers Supplied: (B)4 oz Glass Jar After processing Sample Name: DU4-D-S-0.5 Sampled: 03/11/25 09:45 Soil (A5C1334-08) Due Analysis Expires Comments 8290 Dioxins/Furans by HRGC/HRMS (SUB) 04/10/25 09:45 03/25/25 17:00 Containers Supplied: (B)4 oz Glass Jar

Standard TAT

Released By

Fed Ex (Shipper)

Date

Received By

Fed Ex (Shipper)

Date

Received By

Date

Received By

Date

Received By

Date

SUBCONTRACT ORDER

Apex Laboratories A5C1334

Sample Name: DU-2c-S-0.5		Soil	After processing Sampled: 03/12/25 10:30	(A5C1334-18)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	03/25/25 17:00	04/11/25 10:30		
			After processing	
Sample Name: DU-2d-S-0.5		Soil	Sampled: 03/12/25 11:15	(A5C1334-20)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	03/25/25 17:00	04/11/25 11:15		
			After processing	
Sample Name: DU-2e-S-0.5		Soil	Sampled: 03/12/25 12:00	(A5C1334-22)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	03/25/25 17:00	04/11/25 12:00		

Standard TAT

Released By

Fed Ex (Shipper)

Released By

Date

Received By

Date

Received By

Received By

Date

Received By

Date

Received By

Date

CoC/Label Reconciliation Report WO# 2503187

LabNumber	CoC Sample ID		SampleAlias	Sample Date/Time		Container	BaseMatrix	Sample Comments
2503187-01	A DU4-A-S-0.5	Ø	(A5C1334-02)	11-Mar-25 11:00	位	Clear Glass Jar, 120mL	Solid	
2503187-02	A DU4-B-S-0.5	⊭	(A5C1334-04)	11-Mar-25 10:30	\triangleleft	Clear Glass Jar, 120mL	Solid	
2503187-03	A DU4-C-S-0.5	₫	(A5C1334-06)	11-Mar-25 12:15	₫	Clear Glass Jar, 120mL	Solid	沙里是是四种
2503187-04	A DU4-D-S-0.5	ď	(A5C1334-08)	11-Mar-25 09:45	V	Clear Glass Jar, 120mL	Solid	
2503187-05	A DU-2c-S-0.5	₫	(A5C1334-18)	12-Mar-25 10:30	₫	Clear Glass Jar, 120mL	Solid	
2503187-06	A DU-2d-S-0.5	ゼ	(A5C1334-20)	12-Mar-25 11:15	ø	Clear Glass Jar, 120mL	Solid	
2503187-07	A DU-2e-S-0.5	₫	(A5C1334-22)	12-Mar-25 12:00	d	Clear Glass Jar, 120mL	Solid	医

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

CONDITION	Yes	No	NA
Sample Container Intact?	1		
Sample Container(s) Custody Seals Intact?			/
Custody Seals On Cooler Intact?			1
Adequate Sample Volume?	1		
Container Type Appropriate for Analysis(es)?	V		

Comments:

Preservation Documented: Na2S2O3 Trizma

NH4CH3CO2

Other

Printed: 4/24/2025 1:13:58PM 2503187 Page 1 of 1

Page 1 of 23

April 29, 2025

Enthalpy Analytical - El Dorado Hills Work Order No. 2504171

Mr. Philip Nerenberg Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223

Dear Mr. Nerenberg,

Enclosed are the results for the sample set received at Enthalpy Analytical - EDH on April 22, 2025 under your Project Name 'A5C1334'.

Enthalpy Analytical - EDH is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at kathy.zipp@enthalpy.com.

Thank you for choosing Enthalpy Analytical - EDH as part of your analytical support team.

Sincerely,

Kathy Zipp Project Manager

Kathy Zjorp

Enthalpy Analytical -EDH certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Enthalpy Analytical -EDH .

Work Order 2504171

Enthalpy Analytical - EDH Work Order No. 2504171 Case Narrative

Sample Condition on Receipt:

Five soil samples were received and stored securely in accordance with Enthalpy Analytical - EDH standard operating procedures and EPA methodology. The samples were received in good condition and within the method temperature requirements.

Analytical Notes:

EPA Method 1613B

The samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-DIOXIN GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limit in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Work Order 2504171 Page 2 of 23

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	19
Certifications	20
Sample Receipt	21

Work Order 2504171 Page 3 of 23

Sample Inventory Report

Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2504171-01	HA-36-COMP-S-2.5-3.0	11-Mar-25 15:15	22-Apr-25 09:39	Clear Glass Jar, 120mL
2504171-02	HA-35-COMP-S-2.5-3.0	11-Mar-25 17:00	22-Apr-25 09:39	Amber Glass, 120 mL
2504171-03	HA-32-COMP-S-1-2	12-Mar-25 12:30	22-Apr-25 09:39	Amber Glass, 120 mL
2504171-04	HA-33-COMP-S-2-3	12-Mar-25 13:30	22-Apr-25 09:39	Amber Glass, 120 mL
2504171-05	HA-34-COMP-S-2-3	12-Mar-25 14:30	22-Apr-25 09:39	Amber Glass, 120 mL

Work Order 2504171 Page 4 of 23

ANALYTICAL RESULTS

Work Order 2504171 Page 5 of 23

Sample ID: Method Blank EPA Method 1613B

Client Data

Name:

Apex Laboratories

Project: A5C1334 Matrix: Solid **Laboratory Data**

Lab Sample: B25D266-BLK1

QC Batch: B25D266 Date Extracted: 23-Apr-25 Sample Size: 10.0 g Column: ZB-DIOXIN

Analyte	Conc. (pg/g)	EDL	MDL	EMPC		RL	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.0634	0.190			0.500	X	25-Apr-25 17:11	1
1,2,3,7,8-PeCDD	ND	0.121	0.784			2.50		25-Apr-25 17:11	1
1,2,3,4,7,8-HxCDD	ND	0.209	0.633			2.50		25-Apr-25 17:11	1
1,2,3,6,7,8-HxCDD	ND	0.211	0.640			2.50		25-Apr-25 17:11	
1,2,3,7,8,9-HxCDD	ND	0.200	0.717			2.50		25-Apr-25 17:11	1
1,2,3,4,6,7,8-HpCDD	ND		0.706			2.50		25-Apr-25 17:11	1
OCDD	ND		1.62			5.00		25-Apr-25 17:11	1
2,3,7,8-TCDF	ND	0.0749	0.183			0.500		25-Apr-25 17:11	1
1,2,3,7,8-PeCDF	ND	0.0868	0.576			2.50		25-Apr-25 17:11	1
2,3,4,7,8-PeCDF	ND	0.0816	0.686			2.50		25-Apr-25 17:11	1
1,2,3,4,7,8-HxCDF	ND	0.131	0.659			2.50		25-Apr-25 17:11	1
1,2,3,6,7,8-HxCDF	ND	0.133	0.621			2.50		25-Apr-25 17:11	1
2,3,4,6,7,8-HxCDF	ND	0.162	0.661			2.50		25-Apr-25 17:11	
1,2,3,7,8,9-HxCDF	ND	0.154	0.716			2.50		25-Apr-25 17:11	
1,2,3,4,6,7,8-HpCDF	ND	0.134	0.649			2.50		25-Apr-25 17:11	1
1,2,3,4,7,8,9-HpCDF	ND	0.182	0.818			2.50		25-Apr-25 17:11	1
OCDF	ND	0.281	3.84			5.00		25-Apr-25 17:11	1
Toxic Equivalent	0.00								
TEQMinWHO2005Dioxin Totals	0.00								
Total TCDD	ND	0.0634				0.500			
Total PeCDD	ND ND	0.0034		2.71		2.50			
	ND ND	0.211		2./1		2.50			
Total HxCDD	0.192	0.211				2.50	T		
Total HpCDD				0.220			J		
Total TCDF	ND			0.230		0.500			
Total PeCDF	ND	0.162		0.379		2.50			
Total HxCDF	ND	0.162				2.50			
Total HpCDF	ND	0.182			T,	2.50	0 1'0"		D11 41
Labeled Standards	Туре		Recovery		Limits		Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS		86.9		25 - 164			25-Apr-25 17:11	
13C-1,2,3,7,8-PeCDD	IS		78.1		25 - 181			25-Apr-25 17:11	
13C-1,2,3,4,7,8-HxCDD	IS		67.9		32 - 141			25-Apr-25 17:11	
13C-1,2,3,6,7,8-HxCDD	IS		68.3		28 - 130			25-Apr-25 17:11	
13C-1,2,3,7,8,9-HxCDD	IS		68.4		32 - 141			25-Apr-25 17:11	
13C-1,2,3,4,6,7,8-HpCDD	IS		62.1		23 - 140			25-Apr-25 17:11	
13C-OCDD	IS		52.4		17 - 157			25-Apr-25 17:11	
13C-2,3,7,8-TCDF	IS		68.0		24 - 169			25-Apr-25 17:11	
13C-1,2,3,7,8-PeCDF	IS		64.4		24 - 185			25-Apr-25 17:11	
13C-2,3,4,7,8-PeCDF	IS		65.3		21 - 178			25-Apr-25 17:11	
13C-1,2,3,4,7,8-HxCDF	IS		67.4		26 - 152			25-Apr-25 17:11	
13C-1,2,3,6,7,8-HxCDF	IS		66.1		26 - 123			25-Apr-25 17:11	
13C-2,3,4,6,7,8-HxCDF	IS		64.6		28 - 136			25-Apr-25 17:11	
13C-1,2,3,7,8,9-HxCDF	IS		66.0		29 - 147			25-Apr-25 17:11	
13C-1,2,3,4,6,7,8-HpCDF	IS		59.8		28 - 143			25-Apr-25 17:11	
13C-1,2,3,4,7,8,9-HpCDF	IS		61.1		26 - 138			25-Apr-25 17:11	
13C-OCDF	IS		51.0		17 - 157			25-Apr-25 17:11	
37Cl-2,3,7,8-TCDD	CRS		117		35 - 197			25-Apr-25 17:11	1

Work Order 2504171 Page 6 of 23

EDL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration MDL - Method Detection Limit RL - Reporting limit The results are reported in dry weight.
The sample size is reported in wet weight.
Results reported to MDL.

Work Order 2504171 Page 7 of 23

Sample ID: OPR EPA Method 1613B

Client Data

Name:

Apex Laboratories

Project: A5C1334 Matrix: Solid Laboratory Data

Lab Sample: B25D266-BS1

QC Batch: B25D266 Date Extracted: 23-Apr-25 14:20 Sample Size: $10.0~\mathrm{g}$ Column: ZB-DIOXIN

Analyte	Amt Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	21.1	20.0	106	67-158		25-Apr-25 15:38	1
1,2,3,7,8-PeCDD	113	100	113	70-142		25-Apr-25 15:38	1
1,2,3,4,7,8-HxCDD	108	100	108	70-164		25-Apr-25 15:38	1
1,2,3,6,7,8-HxCDD	102	100	102	76-134		25-Apr-25 15:38	1
1,2,3,7,8,9-HxCDD	104	100	104	64-162		25-Apr-25 15:38	1
1,2,3,4,6,7,8-HpCDD	103	100	103	70-140		25-Apr-25 15:38	1
OCDD	228	200	114	78-144		25-Apr-25 15:38	1
2,3,7,8-TCDF	23.2	20.0	116	75-158		25-Apr-25 15:38	1
1,2,3,7,8-PeCDF	113	100	113	80-134		25-Apr-25 15:38	1
2,3,4,7,8-PeCDF	108	100	108	68-160		25-Apr-25 15:38	1
1,2,3,4,7,8-HxCDF	108	100	108	72-134		25-Apr-25 15:38	1
1,2,3,6,7,8-HxCDF	109	100	109	84-130		25-Apr-25 15:38	1
2,3,4,6,7,8-HxCDF	110	100	110	70-156		25-Apr-25 15:38	1
1,2,3,7,8,9-HxCDF	108	100	108	78-130		25-Apr-25 15:38	1
1,2,3,4,6,7,8-HpCDF	112	100	112	82-122		25-Apr-25 15:38	1
1,2,3,4,7,8,9-HpCDF	110	100	110	78-138		25-Apr-25 15:38	1
OCDF	226	200	113	63-170	0 110	25-Apr-25 15:38	1
Labeled Standards	Туре		% Recovery	Limits	Qualifiers		Dilution
13C-2,3,7,8-TCDD	IS		96.9	20 - 175		25-Apr-25 15:38	1
13C-1,2,3,7,8-PeCDD	IS		87.1	21 -227		25-Apr-25 15:38	1
13C-1,2,3,4,7,8-HxCDD	IS		75.9	21 -193		25-Apr-25 15:38	1
13C-1,2,3,6,7,8-HxCDD	IS		78.4	25 -163		25-Apr-25 15:38	1
13C-1,2,3,7,8,9-HxCDD	IS		75.8	21 -193		25-Apr-25 15:38	1
13C-1,2,3,4,6,7,8-HpCDD	IS		70.7	26-166		25-Apr-25 15:38	1
13C-OCDD	IS		58.4	13 -199		25-Apr-25 15:38	1
13C-2,3,7,8-TCDF	IS		77.0	22 -152		25-Apr-25 15:38	1
13C-1,2,3,7,8-PeCDF	IS		71.7	21 -192		25-Apr-25 15:38	1
13C-2,3,4,7,8-PeCDF	IS		74.6	13 -328		25-Apr-25 15:38	1
13C-1,2,3,4,7,8-HxCDF	IS		76.0	19 -202		25-Apr-25 15:38	1
13C-1,2,3,6,7,8-HxCDF	IS		74.9	21 - 159		25-Apr-25 15:38	1
13C-2,3,4,6,7,8-HxCDF	IS		72.9	22 - 176		25-Apr-25 15:38	1
13C-1,2,3,7,8,9-HxCDF	IS		74.1	17 -205		25-Apr-25 15:38	1
13C-1,2,3,4,6,7,8-HpCDF	IS		68.3	21 -158		25-Apr-25 15:38	1
-	IS		67.5	20 - 186		25-Apr-25 15:38	1
13C-1,2,3,4,7,8,9-HpCDF	10						
13C-1,2,3,4,7,8,9-HpCDF 13C-OCDF	IS		56.2	13 -199		25-Apr-25 15:38	1

Work Order 2504171 Page 8 of 23

Sample ID: HA-36-COMP-S-2.5-3.0 EPA Method 1613B

Client Data Laboratory Data

Name: Apex Laboratories Lab Sample: 2504171-01 Date Received: 22-Apr-25 09:39

Project: A5C1334 QC Batch: B25D266 Date Extracted: 23-Apr-25

Project: A5C1334				Batch:	B25D266	Date	Extracted:	23-Apr-25	
Matrix: Soil				ple Size:	13.5 g	Colu	nn:	ZB-DIOXIN	
Date Collected: 11-Mar-25 15	5:15		% S	olids:	74.4				
Analyte	Conc. (pg/g)	EDL	MDL	EMPC		RL	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND		0.189	0.130		0.498		25-Apr-25 17:58	1
1,2,3,7,8-PeCDD	1.82		0.781			2.49	J	25-Apr-25 17:58	1
1,2,3,4,7,8-HxCDD	4.14		0.631			2.49		25-Apr-25 17:58	1
1,2,3,6,7,8-HxCDD	19.7		0.638			2.49		25-Apr-25 17:58	1
1,2,3,7,8,9-HxCDD	8.69		0.714			2.49		25-Apr-25 17:58	1
1,2,3,4,6,7,8-HpCDD	408		0.703			2.49		25-Apr-25 17:58	1
OCDD	3090		1.61			4.98		25-Apr-25 17:58	1
2,3,7,8-TCDF	ND	0.0901	0.182			0.498		25-Apr-25 17:58	1
1,2,3,7,8-PeCDF	0.684		0.574			2.49	J	25-Apr-25 17:58	1
2,3,4,7,8-PeCDF	0.683		0.683			2.49	J	25-Apr-25 17:58	1
1,2,3,4,7,8-HxCDF	3.54		0.657			2.49		25-Apr-25 17:58	1
1,2,3,6,7,8-HxCDF	4.27		0.619			2.49	T	25-Apr-25 17:58	1
2,3,4,6,7,8-HxCDF	2.20		0.659			2.49	J	25-Apr-25 17:58	1
1,2,3,7,8,9-HxCDF	0.747 73.4		0.713 0.647			2.49 2.49	J	25-Apr-25 17:58	1
1,2,3,4,6,7,8-HpCDF	4.91		0.815			2.49		25-Apr-25 17:58 25-Apr-25 17:58	1
1,2,3,4,7,8,9-HpCDF OCDF	148		3.83			4.98		25-Apr-25 17:58 25-Apr-25 17:58	1
Toxic Equivalent	140		3.03			4.70		23-Apr-23 17.36	1
-	12.2								
TEQMinWHO2005Dioxin Totals	12.2								
	ND			0.266		0.400			
Total TCDD	ND			0.266		0.498	_		
Total PeCDD	2.33			7.94		2.49	J		
Total HxCDD	76.8					2.49			
Total HpCDD	666					2.49	В		
Total TCDF	2.54			2.74		0.498			
Total PeCDF	22.5			27.5		2.49			
Total HxCDF	109					2.49			
Total HpCDF	211			212		2.49			
Labeled Standards	Type	% Re	covery		Limits		Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	95	.5		25 - 164			25-Apr-25 17:58	1
13C-1,2,3,7,8-PeCDD	IS	79	.9		25 - 181			25-Apr-25 17:58	1
13C-1,2,3,4,7,8-HxCDD	IS	72	.0		32 - 141			25-Apr-25 17:58	1
13C-1,2,3,6,7,8-HxCDD	IS	72	.0		28 - 130			25-Apr-25 17:58	1
13C-1,2,3,7,8,9-HxCDD	IS	73	.2		32 - 141			25-Apr-25 17:58	1
13C-1,2,3,4,6,7,8-HpCDD	IS	59	.6		23 - 140			25-Apr-25 17:58	1
13C-OCDD	IS	49	.2		17 - 157			25-Apr-25 17:58	1
13C-2,3,7,8-TCDF	IS	76	.2		24 - 169			25-Apr-25 17:58	1
13C-1,2,3,7,8-PeCDF	IS	69			24 - 185			25-Apr-25 17:58	
13C-2,3,4,7,8-PeCDF	IS	65			21 - 178			25-Apr-25 17:58	
13C-1,2,3,4,7,8-HxCDF	IS	71			26 - 152			25-Apr-25 17:58	
13C-1,2,3,6,7,8-HxCDF	IS	69			26 - 123			25-Apr-25 17:58	
13C-2,3,4,6,7,8-HxCDF	IS	67			28 - 136			25-Apr-25 17:58	
13C-1,2,3,7,8,9-HxCDF	IS	70			29 - 147			25-Apr-25 17:58	
13C-1,2,3,4,6,7,8-HpCDF	IS	55			28 - 143			25-Apr-25 17:58	
13C-1,2,3,4,7,8,9-HpCDF	IS	58			26 - 138			25-Apr-25 17:58	
13C-OCDF	IS	50			20 - 138 17 - 157			25-Apr-25 17:58 25-Apr-25 17:58	
37Cl-2,3,7,8-TCDD	CRS	10			35 - 197			25-Apr-25 17:58 25-Apr-25 17:58	
5 / CI-2,5, / ,0-1 CDD	CIG	10	· /		33 - 19/			25-11p1-25 17.30	1

Work Order 2504171 Page 9 of 23

EDL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration MDL - Method Detection Limit RL - Reporting limit The results are reported in dry weight.
The sample size is reported in wet weight.
Results reported to MDL.

Work Order 2504171 Page 10 of 23

Sample ID: HA-35-COMP-S-2.5-3.0 EPA Method 1613B

Client Data Laboratory Data

Name: Apex Laboratories Lab Sample: 2504171-02 Date Received: 22-Apr-25 09:39

OC Batch: B25D266 Date Extracted: 23-Apr-25

Project: A5C1334			QC B	Batch:	B25D266	Date !	Extracted:	23-Apr-25	
Matrix: Soil				ole Size:	13.4 g	Colu	nn:	ZB-DIOXIN	
Date Collected: 11-Mar-25 17	:00		% So		75.7				
Analyte	Conc. (pg/g)	EDL 1	MDL	EMPC		RL	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND		0.187			0.492		25-Apr-25 18:45	1
1,2,3,7,8-PeCDD	2.36).772			2.46	J	25-Apr-25 18:45	1
1,2,3,4,7,8-HxCDD	5.01		0.623			2.46		25-Apr-25 18:45	1
1,2,3,6,7,8-HxCDD	23.7		0.630			2.46		25-Apr-25 18:45	1
1,2,3,7,8,9-HxCDD	11.4		0.706			2.46		25-Apr-25 18:45	1
1,2,3,4,6,7,8-HpCDD	448		0.695			2.46		25-Apr-25 18:45	1
OCDD	3020		1.60			4.92	_	25-Apr-25 18:45	1
2,3,7,8-TCDF	0.328		0.180			0.492	J	25-Apr-25 18:45	1
1,2,3,7,8-PeCDF	1.16		0.567			2.46	J	25-Apr-25 18:45	1
2,3,4,7,8-PeCDF	1.09		0.676			2.46	J	25-Apr-25 18:45	1
1,2,3,4,7,8-HxCDF	3.90).649			2.46		25-Apr-25 18:45	1
1,2,3,6,7,8-HxCDF	5.17 2.64).612).651			2.46		25-Apr-25 18:45	1
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND).705			2.46 2.46		25-Apr-25 18:45	1
1,2,3,4,6,7,8-HpCDF	80.3).639			2.46		25-Apr-25 18:45 25-Apr-25 18:45	1
1,2,3,4,7,8,9-HpCDF	5.43		0.806			2.46		25-Apr-25 18:45	1
OCDF	136		3.78			4.92		25-Apr-25 18:45	1
Toxic Equivalent	130		3.76			7.72		25-11pi-25 16.45	1
TEQMinWHO2005Dioxin	14.2								
Totals	14.2								
Total TCDD	0.0962			0.459		0.492	J		
Total PeCDD	7.61			10.8		2.46	J		
Total HxCDD	97.4			10.0		2.46			
Total HpCDD	745					2.46	В		
Total TCDF	4.81			5.10		0.492	ь		
Total PeCDF	15.9			36.9		2.46			
Total HxCDF	127			30.9		2.46			
Total HpCDF	218					2.46			
Labeled Standards	Type	% Reco	vorv		Limits	2.40	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	90.4	very		25 - 164		Qualificis	25-Apr-25 18:45	1
13C-1,2,3,7,8-PeCDD	IS	78.1			25 - 181			25-Apr-25 18:45	
13C-1,2,3,4,7,8-HxCDD	IS	67.5			32 - 141			25-Apr-25 18:45 25-Apr-25 18:45	
13C-1,2,3,6,7,8-HxCDD	IS	66.9			28 - 130			25-Apr-25 18:45	
13C-1,2,3,7,8,9-HxCDD	IS	65.2			32 - 141			-	1
13C-1,2,3,4,6,7,8-HpCDD	IS	58.3						25-Apr-25 18:45	
13C-OCDD	IS	49.4			23 - 140			25-Apr-25 18:45	
	IS				17 - 157			25-Apr-25 18:45	
13C-2,3,7,8-TCDF		72.1			24 - 169			25-Apr-25 18:45	
13C-1,2,3,7,8-PeCDF	IS	61.0			24 - 185			25-Apr-25 18:45	
13C-2,3,4,7,8-PeCDF	IS	64.5			21 - 178			25-Apr-25 18:45	
13C-1,2,3,4,7,8-HxCDF	IS	67.0			26 - 152			25-Apr-25 18:45	
13C-1,2,3,6,7,8-HxCDF	IS	64.5			26 - 123			25-Apr-25 18:45	
13C-2,3,4,6,7,8-HxCDF	IS	64.7			28 - 136			25-Apr-25 18:45	
13C-1,2,3,7,8,9-HxCDF	IS	65.0			29 - 147			25-Apr-25 18:45	
13C-1,2,3,4,6,7,8-HpCDF	IS	54.5			28 - 143			25-Apr-25 18:45	
13C-1,2,3,4,7,8,9-HpCDF	IS	57.6			26 - 138			25-Apr-25 18:45	
13C-OCDF	IS	50.4			17 - 157			25-Apr-25 18:45	
37Cl-2,3,7,8-TCDD	CRS	115			35 - 197			25-Apr-25 18:45	1

Work Order 2504171 Page 11 of 23

EDL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration MDL - Method Detection Limit RL - Reporting limit The results are reported in dry weight.
The sample size is reported in wet weight.
Results reported to MDL.

Work Order 2504171 Page 12 of 23

Sample ID: HA-32-COMP-S-1-2 EPA Method 1613B

Laboratory Data **Client Data**

IS

CRS

13C-OCDF

37Cl-2,3,7,8-TCDD

2504171-03 Lab Sample: Date Received: 22-Apr-25 09:39 Name: Apex Laboratories B25D266 QC Batch: Date Extracted: 23-Apr-25 Project: A5C1334

Sample Size: Column: 12.4 g Soil **ZB-DIOXIN**

Matrix: % Solids: Date Collected: 12-Mar-25 12:30 81.0 **EDL EMPC** Dilution MDL RLQualifiers Analyzed Analyte Conc. (pg/g) 0.500 0.190 2,3,7,8-TCDD ND 0.114 25-Apr-25 19:31 1,2,3,7,8-PeCDD ND 0.784 0.679 2.50 25-Apr-25 19:31 1,2,3,4,7,8-HxCDD 1.70 0.633 2.50 25-Apr-25 19:31 7.77 2.50 25-Apr-25 19:31 1,2,3,6,7,8-HxCDD 0.640 1 4.01 2.50 25-Apr-25 19:31 1,2,3,7,8,9-HxCDD 0.717 0.706 2.50 25-Apr-25 19:31 1,2,3,4,6,7,8-HpCDD 147 1 1090 1.62 5.00 25-Apr-25 19:31 OCDD 1 0.163 2,3,7,8-TCDF ND 0.1830.500 25-Apr-25 19:31 1 1,2,3,7,8-PeCDF ND 0.576 2.50 25-Apr-25 19:31 1 0.281 2.3.4.7.8-PeCDF ND 0.686 2.50 25-Apr-25 19:31 1 ND 2.50 1,2,3,4,7,8-HxCDF 0.659 1.31 25-Apr-25 19:31 1,2,3,6,7,8-HxCDF 1.60 0.621 2.50 J 25-Apr-25 19:31 1 2,3,4,6,7,8-HxCDF ND 0.661 0.847 2.50 25-Apr-25 19:31 25-Apr-25 19:31 1,2,3,7,8,9-HxCDF ND 0.716 0.287 2.50 1,2,3,4,6,7,8-HpCDF 26.8 0.649 2.50 25-Apr-25 19:31 J 1,2,3,4,7,8,9-HpCDF 1.89 0.818 2.50 25-Apr-25 19:31 1 49.2 3.84 5.00 25-Apr-25 19:31 OCDF **Toxic Equivalent** TEQMinWHO2005Dioxin 3.61 **Totals** Total TCDD ND 0.124 0.500 Total PeCDD ND 6.50 2.50 Total HxCDD 33.4 34.2 2.50 В Total HpCDD 247 2.50 Total TCDF 1.17 1.65 0.500 Total PeCDF 7.28 10.3 2.50 38.7 41.3 Total HxCDF 2.50 Total HpCDF 78.4 2.50 **Labeled Standards** Type Limits Qualifiers % Recovery Analyzed Dilution 13C-2,3,7,8-TCDD IS 76.6 25-Apr-25 19:31 25 - 164 IS 61.3 25-Apr-25 19:31 13C-1,2,3,7,8-PeCDD 25 - 1811 IS 13C-1,2,3,4,7,8-HxCDD 52.8 32 - 141 25-Apr-25 19:31 13C-1,2,3,6,7,8-HxCDD IS 52.4 28 - 130 25-Apr-25 19:31 1 IS 51.1 25-Apr-25 19:31 13C-1,2,3,7,8,9-HxCDD 32 - 141 13C-1,2,3,4,6,7,8-HpCDD IS 43.0 23 - 140 25-Apr-25 19:31 1 IS 33.7 25-Apr-25 19:31 13C-OCDD 17 - 157 1 25-Apr-25 19:31 IS 64.1 13C-2,3,7,8-TCDF 24 - 169 1 IS 51.9 25-Apr-25 19:31 13C-1,2,3,7,8-PeCDF 24 - 185 1 53.4 13C-2,3,4,7,8-PeCDF IS 21 - 178 25-Apr-25 19:31 1 13C-1,2,3,4,7,8-HxCDF IS 53.4 26 - 152 25-Apr-25 19:31 IS 25-Apr-25 19:31 13C-1,2,3,6,7,8-HxCDF 50.8 26 - 123 1 13C-2,3,4,6,7,8-HxCDF IS 49.0 25-Apr-25 19:31 28 - 136 13C-1,2,3,7,8,9-HxCDF IS 51.5 29 - 147 25-Apr-25 19:31 1 IS 38.9 13C-1,2,3,4,6,7,8-HpCDF 28 - 143 25-Apr-25 19:31 1 13C-1,2,3,4,7,8,9-HpCDF IS 42.6 25-Apr-25 19:31 26 - 138 1

Work Order 2504171 Page 13 of 23

17 - 157

35 - 197

25-Apr-25 19:31

25-Apr-25 19:31

1

34.9

118

EDL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration MDL - Method Detection Limit RL - Reporting limit The results are reported in dry weight.
The sample size is reported in wet weight.
Results reported to MDL.

Work Order 2504171 Page 14 of 23

Sample ID: HA-33-COMP-S-2-3 EPA Method 1613B

Client Data Laboratory Data

CRS

37Cl-2,3,7,8-TCDD

Name: Apex Laboratories Lab Sample: 2504171-04 Date Received: 22-Apr-25 09:39
Project: A5C1334 QC Batch: B25D266 Date Extracted: 23-Apr-25

Matrix: Soil Sample Size: 13.1 g Column: ZB-DIOXIN

% Solids: Date Collected: 12-Mar-25 13:30 76.8 **EDL EMPC** Dilution **MDL** RL Qualifiers Analyzed Analyte Conc. (pg/g) 0.497 25-Apr-25 20:18 2,3,7,8-TCDD ND 0.189 0.171 1,2,3,7,8-PeCDD ND 0.779 2.48 25-Apr-25 20:18 0.629 2.48 1,2,3,4,7,8-HxCDD 1.62 25-Apr-25 20:18 7.36 2.48 25-Apr-25 20:18 1,2,3,6,7,8-HxCDD 0.6361 3.61 2.48 25-Apr-25 20:18 1,2,3,7,8,9-HxCDD 0.713 0.702 2.48 25-Apr-25 20:18 1,2,3,4,6,7,8-HpCDD 166 1 1220 4.97 25-Apr-25 20:18 OCDD 1.61 1 2,3,7,8-TCDF ND 0.182 0.497 25-Apr-25 20:18 1 0.399 1,2,3,7,8-PeCDF ND 0.572 2.48 25-Apr-25 20:18 1 2.3.4.7.8-PeCDF ND 0.682 2.48 25-Apr-25 20:18 1 1.46 2.48 1,2,3,4,7,8-HxCDF 0.655 25-Apr-25 20:18 1,2,3,6,7,8-HxCDF 1.45 0.617 2.48 J 25-Apr-25 20:18 1 2,3,4,6,7,8-HxCDF 1.01 0.657 2.48 25-Apr-25 20:18 1,2,3,7,8,9-HxCDF ND 0.712 0.436 2.48 25-Apr-25 20:18 1,2,3,4,6,7,8-HpCDF 24.4 0.645 2.48 25-Apr-25 20:18 J 1,2,3,4,7,8,9-HpCDF 2.07 0.813 2.48 25-Apr-25 20:18 1 55.7 3.82 4.97 25-Apr-25 20:18 OCDF Toxic Equivalent TEQMinWHO2005Dioxin 3.96 **Totals** Total TCDD ND 0.171 0.497 Total PeCDD 1.24 4.87 J 2.48 Total HxCDD 30.9 2.48 В Total HpCDD 269 2.48 Total TCDF 0.523 1.53 0.497 Total PeCDF 6.20 9.59 2.48 2.48 Total HxCDF 37.3 38.2 Total HpCDF 80.6 2.48 **Labeled Standards** Qualifiers Analyzed Type % Recovery Limits Dilution 13C-2,3,7,8-TCDD IS 73.9 25-Apr-25 20:18 25 - 164 IS 64.5 25-Apr-25 20:18 13C-1,2,3,7,8-PeCDD 25 - 1811 IS 13C-1,2,3,4,7,8-HxCDD 59.3 32 - 141 25-Apr-25 20:18 1 13C-1,2,3,6,7,8-HxCDD IS 58.4 28 - 130 25-Apr-25 20:18 1 IS 25-Apr-25 20:18 13C-1,2,3,7,8,9-HxCDD 57.6 32 - 141 13C-1,2,3,4,6,7,8-HpCDD IS 48.2 23 - 140 25-Apr-25 20:18 1 IS 25-Apr-25 20:18 13C-OCDD 37.8 17 - 157 1 25-Apr-25 20:18 IS 13C-2,3,7,8-TCDF 63.7 1 24 - 169 IS 25-Apr-25 20:18 13C-1,2,3,7,8-PeCDF 57.7 24 - 185 1 13C-2,3,4,7,8-PeCDF IS 21 - 178 25-Apr-25 20:18 1 56.5 13C-1,2,3,4,7,8-HxCDF IS 59.9 26 - 152 25-Apr-25 20:18 IS 25-Apr-25 20:18 13C-1,2,3,6,7,8-HxCDF 57.5 1 26 - 123 13C-2,3,4,6,7,8-HxCDF IS 55.0 25-Apr-25 20:18 28 - 136 13C-1,2,3,7,8,9-HxCDF IS 57.8 25-Apr-25 20:18 1 29 - 147 IS 44.2 13C-1,2,3,4,6,7,8-HpCDF 28 - 143 25-Apr-25 20:18 1 13C-1,2,3,4,7,8,9-HpCDF IS 49.1 25-Apr-25 20:18 26 - 138 1 IS 13C-OCDF 39.1 17 - 157 25-Apr-25 20:18 1

Work Order 2504171 Page 15 of 23

35 - 197

25-Apr-25 20:18

103

EDL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration MDL - Method Detection Limit RL - Reporting limit The results are reported in dry weight.
The sample size is reported in wet weight.
Results reported to MDL.

Work Order 2504171 Page 16 of 23

Sample ID: HA-34-COMP-S-2-3 EPA Method 1613B

Laboratory Data **Client Data**

CRS

37Cl-2,3,7,8-TCDD

Lab Sample: 2504171-05 Date Received: 22-Apr-25 09:39 Name: Apex Laboratories B25D266 QC Batch: Date Extracted: 23-Apr-25 Project: A5C1334

Sample Size: 12.9 g Column: Soil **ZB-DIOXIN**

Matrix: % Solids: Date Collected: 12-Mar-25 14:30 77.7 **EDL EMPC** Dilution **MDL** RLQualifiers Analyzed Analyte Conc. (pg/g) 0.499 0.0930 2,3,7,8-TCDD ND 0.190 25-Apr-25 21:05 1,2,3,7,8-PeCDD 1.41 0.783 2.50 T 25-Apr-25 21:05 4.68 1,2,3,4,7,8-HxCDD 0.632 2.50 25-Apr-25 21:05 20.7 2.50 25-Apr-25 21:05 1,2,3,6,7,8-HxCDD 0.639 1 9.00 2.50 25-Apr-25 21:05 1,2,3,7,8,9-HxCDD 0.716 642 0.705 2.50 25-Apr-25 21:05 1,2,3,4,6,7,8-HpCDD 1 6690 8.09 25.0 D 26-Apr-25 16:02 5 OCDD 0.162 0.499 2,3,7,8-TCDF ND 0.18325-Apr-25 21:05 1 1,2,3,7,8-PeCDF 0.857 0.575 2.50 J 25-Apr-25 21:05 1 0.999 2.3.4.7.8-PeCDF 0.685 2.50 25-Apr-25 21:05 1 4.46 2.50 1,2,3,4,7,8-HxCDF 0.658 25-Apr-25 21:05 1,2,3,6,7,8-HxCDF 3.57 0.620 2.50 25-Apr-25 21:05 1 2,3,4,6,7,8-HxCDF 1.97 0.660 2.50 25-Apr-25 21:05 1,2,3,7,8,9-HxCDF 0.854 0.715 2.50 J 25-Apr-25 21:05 1,2,3,4,6,7,8-HpCDF 93.3 0.648 2.50 25-Apr-25 21:05 1,2,3,4,7,8,9-HpCDF 7.67 0.817 2.50 25-Apr-25 21:05 1 260 3.83 4.99 25-Apr-25 21:05 OCDF Toxic Equivalent TEQMinWHO2005Dioxin 15.8 **Totals** Total TCDD ND 0.0930 0.499 Total PeCDD 1.41 6.16 J 2.50 Total HxCDD 80.9 83.2 2.50 1050 В Total HpCDD 2.50 Total TCDF 0.372 1.29 0.499 Total PeCDF 19.4 20.5 2.50 122 Total HxCDF 2.50 Total HpCDF 349 2.50 **Labeled Standards** Qualifiers Type % Recovery Limits Analyzed Dilution 13C-2,3,7,8-TCDD IS 69.8 25-Apr-25 21:05 25 - 164 IS 55.6 25-Apr-25 21:05 13C-1,2,3,7,8-PeCDD 25 - 1811 IS 13C-1,2,3,4,7,8-HxCDD 48.0 32 - 141 25-Apr-25 21:05 1 13C-1,2,3,6,7,8-HxCDD IS 46.1 28 - 130 25-Apr-25 21:05 1 IS 44.9 25-Apr-25 21:05 13C-1,2,3,7,8,9-HxCDD 32 - 141 13C-1,2,3,4,6,7,8-HpCDD IS 37.2 23 - 140 25-Apr-25 21:05 1 IS D 26-Apr-25 16:02 5 13C-OCDD 27.6 17 - 157 IS 13C-2,3,7,8-TCDF 59.0 24 - 169 25-Apr-25 21:05 1 IS 49.3 25-Apr-25 21:05 13C-1,2,3,7,8-PeCDF 24 - 185 1 13C-2,3,4,7,8-PeCDF IS 47.8 21 - 178 25-Apr-25 21:05 1 13C-1,2,3,4,7,8-HxCDF IS 47.7 26 - 152 25-Apr-25 21:05 IS 25-Apr-25 21:05 13C-1,2,3,6,7,8-HxCDF 46.2 1 26 - 123 13C-2,3,4,6,7,8-HxCDF IS 44.0 25-Apr-25 21:05 28 - 136 13C-1,2,3,7,8,9-HxCDF IS 46.4 25-Apr-25 21:05 1 29 - 147 IS 13C-1,2,3,4,6,7,8-HpCDF 33.4 28 - 143 25-Apr-25 21:05 1 13C-1,2,3,4,7,8,9-HpCDF IS 37.2 26 - 138 25-Apr-25 21:05 1 IS 13C-OCDF 31.1 17 - 157 25-Apr-25 21:05 1

Work Order 2504171 Page 17 of 23

35 - 197

25-Apr-25 21:05

111

EDL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration MDL - Method Detection Limit RL - Reporting limit The results are reported in dry weight.
The sample size is reported in wet weight.
Results reported to MDL.

Work Order 2504171 Page 18 of 23

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

EDL Estimated Detection Limit

EMPC Estimated Maximum Possible Concentration

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

RL For 537.1, the reported RLs are the MRLs.

TEQ Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the

sample concentrations.

TEQMax TEQ calculation that uses the detection limit as the concentration for non-detects

TEQMin TEQ calculation that uses zero as the concentration for non-detects

TEQRisk TEQ calculation that uses ½ the detection limit as the concentration for non-

detects

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2504171 Page 19 of 23

Enthalpy Analytical - EDH Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	2211390
Nevada Division of Environmental Protection	CA00413
New Hampshire Environmental Accreditation Program	207721
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-021
Texas Commission on Environmental Quality	T104704189-22-13
Vermont Department of Health	VT-4042
Virginia Department of General Services	11276
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

 $Current\ certificates\ and\ lists\ of\ licensed\ parameters\ can\ be\ found\ at\ Enthalpy.com/Resources/Accreditations.$

Work Order 2504171 Page 20 of 23

SUBCONTRACT ORDER

Apex Laboratories A5C1334

Are Wiels

kn .

250 4171 2.8°C

SENDING LABORATORY:

Apex Laboratories

6700 S.W. Sandburg Street

Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 336-0745

Project Manager: Philip Nerenberg

RECEIVING LABORATORY:

Enthalpy Analytical- CA
1104 Windfield Way
El Daniel Hills CA 0577

El Dorado Hills, CA 95762 Phone :(916) 673-1520

Fax: -

Analysis added per client request 4/16/25 akk

Sample Name: HA-36-COMP-S-2.5-3.0		Soil	Sampled: 03/11/25 15:15	(A5C1334-12)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (B)4 oz Glass Jar	05/07/25 17:00	03/11/26 15:15	+4/16	
		_	Analysis added per clien	
Sample Name: HA-35-COMP-S-2.5-3.0		Soil	Sampled: 03/11/25 17:00	(A5C1334-16)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (B)4 oz Glass Jar · Amber	05/07/25 17:00	03/11/26 17:00	+4/16	
			Subcontracted Analysis	added per client reque
Sample Name: HA-32-COMP-S-1-2		Soil	Sampled: 03/12/25 12:30	(A5C1334-23)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (B)4 oz Glass Jar - Amber	05/07/25 17:00	03/12/26 12:30	+4/16	
			Analysis added per clien	t request 4/16/25 akk
Sample Name: HA-33-COMP-S-2-3		Soil	Sampled: 03/12/25 13:30	(A5C1334-24)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (B)4 oz Glass Jar - Amber	05/07/25 17:00	03/12/26 13:30	+4/16	

Standard TAT

Released By Date Received By Date

Fed Ex (Shipper)

Released By Date

Received By Date

Received By Date

Received By Date

Page 1 of 2

Work Order 2504171 Page 21 of 23

SUBCONTRACT ORDER

Apex Laboratories

A5C1334

EN 2504171

Standard TAT

Released By

Fed Ex (Shipper)

Date

Received By

Date

Received By

Orlarlar

O9:39

Released By

Date

Received By

Date

Received By

Date

CoC/Label Reconciliation Report WO# 2504171

LabNumber	CoC Sample ID		SampleAlias	Sample Date/Time		Container	BaseMatrix	Sample Comments
2504171-01	A HA-36-COMP-S-2.5-3.0	₫	A5C1334-12	11-Mar-25 15:15	d	Clear Glass Jar, 120mL	Solid	HOLDE SERVE
2504171-02	A HA-35-COMP-S-2.5-3.0	ø	A5C1334-16	11-Mar-25 17:00	☑	Amber Glass, 120 mL	Solid	
2504171-03	A HA-32-COMP-S-1-2	₫	A5C1334-23	12-Mar-25 12:30	☑	Amber Glass, 120 mL	Solid	
2504171-04	A HA-33-COMP-S-2-3	₫	A5C1334-24	12-Mar-25 13:30	₫	Amber Glass, 120 mL	Solid	
2504171-05	A HA-34-COMP-S-2-3	ď	A5C1334-25	12-Mar-25 14:30	₫	Amber Glass, 120 mL	Solid	

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

CONDITION	Yes	No	NA
Sample Container Intact?	1		
Sample Container(s) Custody Seals Intact?			1
Custody Seals On Cooler Intact?			1
Adequate Sample Volume?	5		
Container Type Appropriate for Analysis(es)?	V		

Comments:

Preservation Documented: Na2S2O3 Trizma

NH4CH3CO2

Other

Printed: 4/24/2025 1:14:15PM

Attachment B

Data Validation Memoranda

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. M8012.01.001 | JULY 14, 2023 | PERMAPOST PRODUCTS, INC.

Maul Foster & Alongi, Inc. (MFA), conducted an independent Stage 2A review of the quality of analytical results for soil and associated quality control samples collected on October 5, 2022, at the Permapost study area located south of 4205 SE Witch Hazel Road in Hillsboro, Oregon.

Apex Laboratories, LLC (Apex), Bureau Veritas (BV), and Enthalpy Analytical, LLC (Enthalpy) located in El Dorado Hills, California performed the analyses. Portions of samples submitted to Apex were subcontracted to BV and Enthalpy for dioxin and furan analysis. MFA reviewed Apex report number A2J0128, BV report numbers C2U4196 and C2Z1621, and Enthalpy report 2301252. The analyses performed and the samples analyzed are listed in the following tables. All samples collected by hand auger (named with "HA") were submitted to Apex on hold. Following evaluation of results initially requested for reports A2J0128 and C2U4196, some hand auger samples were removed from hold and analyzed by Apex for total arsenic. Samples that were removed from hold were also submitted to BV and Enthalpy for dioxins and furans analysis and results are provided in reports C2Z1621 and 2301252.

Analysis	References				
Dioxins and furans	EPA 8290, 8290A				
Percent solids	EPA 8000D				
Percent moisture	Carter, 2008				
Total arsenic	EPA 6020B				
Notes EPA = U.S. Environmental Protection Agency.					

Samples Analyzed						
Samples Analyzea						
Report A2J0128, C2U4196, C2Z1621, 2301252						
HA20-S-2.0(a) HA19-S-2.0(a) DU03C-S-0.5						
HA20-S-3.0 (hold)	HA19-S-3.0 (hold)	DU03A-S-0.5				
HA18-S-2.0(a)	HA16-S-2.0(a)	DU02-S-0.5				
HA18-S-3.0 ^(a)	HA16-S-3.0 ^(a)	DU01-S-0.5				
HA21-S-2.0(a)	HA17-S-2.0(a)	DU05-S-0.5				
HA21-S-3.0 ^(a)	HA17-S-3.0 (hold)	DU03B-S-0.5				

Note

^(a)Sample originally submitted to laboratory on hold. Analysis requested after evaluation of dataset reported in A2J0128 and C2U4196.

DATA QUALIFICATION

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2020a, 2020b) and appropriate laboratory- and method-specific guidelines (Apex 2022, BV 2022, Enthalpy 2023, EPA 1986).

Based on the results of the data quality review procedures described below, the data, with the appropriate final data qualifiers assigned, are considered acceptable for their intended use. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, and data qualifiers assigned by the reviewer during validation.

Final data qualifiers:

- J = result is estimated.
- J- = result is estimated but may be biased low.
- JK = result is estimated and an estimated maximum potential value (EMPC).
- U = result is non-detect at the estimated detection limit (EDL) or method reporting limit (MRL).
- UJK = result is non-detect, an estimated value, and an EMPC.

Positive identification of 2,3,7,8-TCDF cannot be achieved using typical EPA Method 8290A columns; therefore, BV performed second analysis using an analytical column with 2,3,7,8-TCDF specificity to confirm and qualify any detected 2,3,7,8-TCDF results. The confirmation analysis was referenced in report C2U4196 as "EPA Method 8290A modified/Method 1613B modified." In reports C2U4196 and C2Z1621, the TCDF results that are shown in the following table were confirmed by secondary analysis and are considered the results of record:

Report	Sample	Analyte	Primary Result (pg/g)	Confirmation Result (Result of Record) (pg/g)
	DU03C-S-0.5	2,3,7,8-TCDF	4.77	3.90
	DU03A-S-0.5		5.64	5.00
C2U4196	DU02-S-0.5		1.3 U ^(a)	0.60 J
C204196	DU01-S-0.5		1.02 J	0.83 J
	DU05-S-0.5		3.0 U ^(a)	1.50
	DU03B-S-0.5		4.57	3.80
C2Z1621	HA18-S-2.0		4.04	3.81

Notes

J = result is estimated.

pg/g = picograms per gram.

U = result is non-detect at the estimated detection limit.

 $^{(a)}$ Result qualified by the laboratory as non-detect because the analyte peak exceeded the expected retention time.

EPA Method 8290 confirmation of detected 2,3,7,8-TCDF results was not required in Enthalpy report 2301252 because the analysis was performed using a column with sufficient 2,3,7,8-TCDF resolution.

The reviewer qualified EPA Method 8290 EMPC results in accordance with EPA Region 10 guidance for data validation of polychlorinated dibenzodioxins and polychlorinated dibenzofurans (EPA 2014) and EPA national functional guidelines for high-resolution Superfund methods data review (EPA 2020a). BV did not flag any EPA Method 8290A results as EMPCs. Enthalpy flagged some dioxin and furan congener results as EMPCs, which the reviewer confirmed were also below MRLs. The reviewer qualified the results at the reported concentrations with UJK.

When Enthalpy reported EPA Method 8290 total homolog results as EMPCs and one or more associated dioxin or furan congeners were detected but without EMPC flags, the reviewer qualified the total homolog results with JK. The reviewer noted that Enthalpy provided a lower result concentration along with the EMPC result, and confirmed with Enthalpy that the EMPC was the final result value. When Enthalpy reported total homolog results as EMPCs and all associated dioxin or furan congeners were either EMPCs or non-detect, the reviewer qualified the total homolog result at the reported concentration with UJK.

Final data qualifiers for EPA Method 8290 EMPC results are as follows:

Report	Sample	Component	Original Result (pg/g)	Qualified Result (pg/g)
	HA18-S-3.0	2,3,7,8-TCDD	0.285	0.285 UJK
		Total TCDD	0.494	0.494 UJK
		Total PeCDD	21.7	21.7 JK
		Total TCDF	6.20	6.20 JK
		Total PeCDF	118	118 JK
		Total HxCDF	763	763 JK
2301252	HA21-S-3.0	Total PeCDD	12.2	12.2 JK
		Total HxCDD	332	332 JK
		Total TCDF	3.54	3.54 JK
	HA16-S-3.0	2,3,7,8-TCDF	0.132	0.132 UJK
		Total PeCDD	4.14	4.14 JK
		Total TCDF	1.40	1.40 UJK
		Total HxCDF	135	135 JK

Notes

J = result is estimated.

JK = result is estimated and an estimated maximum potential concentration.

pg/g = picograms per gram.

U = result is non-detect at the reported detection limit.

UJK = result is non-detect, an estimated value, and an estimated maximum potential concentration.

SAMPLE CONDITIONS

Sample Custody

Sample custody was appropriately documented on the chain-of-custody (COC) forms accompanying the reports.

Holding Times

According to report A2J0128, the EPA Method 8000D percent solids results for samples HA18-S-2.0, HA21-S-2.0, HA19-S-2.0, HA-16-S-2.0, and HA17-S-2.0 were flagged by Apex due to analysis after the recommended holding time. The reviewer confirmed that a 14-day holding time was applied by Apex to the percent solids analysis based on general accepted EPA holding times for soil analysis, and that samples were analyzed approximately eight weeks after sample collection. Qualification was not required, as there is no official holding time or qualification recommendation for holding time exceedance for soil percent solids analysis, and the associated metals and dioxins and furans analyses were performed within method-recommended holding times.

According to the case narrative and the sample receipt anomaly form provided with report 2301252, all samples were received by Enthalpy after the EPA Method 8290 recommended 30-day holding time. Enthalpy confirmed with the primary laboratory, Apex, that the samples had been stored frozen at -18 degrees Celsius to extend the holding time to one year. Samples were held in frozen storage from the date of receipt by Apex to the day before shipment from Apex to Enthalpy. The reviewer confirmed that EPA Method 8290 states that dioxins and furans are very stable in a variety of matrices and that holding times may be as long as a year for certain matrices. EPA SW-846 organic analytes chapter four (EPA 1986) indicates that there is no recommended holding time for dioxins and furans analysis of solid samples. Qualification was not required.

The remaining extractions and analyses were performed within the recommended holding times.

Preservation and Sample Storage

The reviewer confirmed with the MFA field sampler that samples DU03C-S-0.5, DU3A-S-0.5, DU2-S-0.5, DU01-S-0.5, DU05-S-0.5, and DU03B-S-0.5 were collected from five decision units (DUs) as 30-part incremental sampling methodology (ISM) samples. Samples DU03A-S-0.5, DU03B-S-0.5, and DU03C-S-0.5 were collected from DU 3 in triplicate. Apex performed representative sampling methodology (RSM) processing, as requested on the COC form provided with report A2J0128 and noted that the samples were processed prior to extraction and analysis; the reviewer confirmed RSM was performed consistent with standard ISM guidance. The samples were air-dried, passed through #10 sieves, and a 260-gram portion of each sample was retained after processing with a sectorial rotary splitter. The entire split mass of each sample was ground to 70 micron particle size. All ground material from each sample was retained, mixed to evenly distribute the sample, and then subsampled for analysis.

According to the COC form provided with report C2Z1621, samples HA20-S-2.0, HA18-S-2.0, HA21-S-2.0, HA19-S-2.0, HA16-S-2.0, and HA17-S-2.0 were shipped by Apex to BV on November 29, 2022, and were received by BV on November 30, 2022. BV measured the temperature of the sample cooler instead of the provided temperature blank, and the averaged cooler temperature was acceptable, at 5.5 degrees Celsius. The COC form listed samples DU03C-S-0.5, DU03A-S-0.5, DU02-S-0.5, DU01-S-0.5, DU05-S-0.5, and DU03B-S-0.5, but these were crossed out by Apex and noted as "already received." The reviewer confirmed that these samples were not included in the November 29, 2022 shipment. Apex also noted on the COC form that the hand auger samples provided to BV had been frozen since October 5, 2022 and were thawed and subsampled on November 28, 2022. These storage and handling conditions were acceptable. No action was required by the reviewer.

The samples were preserved and stored appropriately.

REPORTING LIMITS

Apex evaluated EPA Method 6020B results to MRLs. BV evaluated percent moisture results to method detection limits, and BV and Enthalpy reported EPA Method 8290A and 8290 non-detect results to EDLs. BV labeled MRLs as reporting detection limits. Enthalpy did not provide MRLs. Samples that required dilutions because of high analyte concentrations, matrix interferences, and/or dilutions necessary for preparation and/or analysis were reported with raised EDLs, method detection limits, and MRLs. BV and Enthalpy qualified results between the EDL and the MRL with J, as estimated.

BLANKS

Method Blanks

Laboratory method blanks are used to assess whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the laboratory method blanks were associated with all samples prepared in the analytical batch.

According to report C2U4196, the EPA Method 8290A batch 8324575 laboratory method blank had a detection of OCDD between the EDL and MRL, at 0.29 picograms per gram (pg/g). The reviewer confirmed that the OCDD concentration was less than three times the MRL. All associated sample results had detected OCDD results that were greater than three times the MRL; thus, qualification was not required.

According to report C2Z1621, the EPA Method 8290A batch 8409212 laboratory method blank had a detection of 1,2,3,4,6,7,8-HpCDF and total HpCDF between the EDL and MRL, both at 0.64 pg/g. The reviewer confirmed that the associated sample concentrations were greater than five times the laboratory method blank concentrations; thus, qualification was not required.

According to report 2301252, the EPA Method 8290 batch B23B125 laboratory method blank analysis detected total PeCDF, at 0.515 picograms per gram. The associated sample results

were all greater than five times the laboratory method blank concentration; thus, qualification was not required.

All remaining BV laboratory method blank results were non-detect to EDLs. The Apex EPA Method 6020B laboratory method blank was non-detect to the MRL.

Equipment Rinsate Blanks

Equipment rinsate blanks are used to evaluate field equipment decontamination. These blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

Trip Blanks

Trip blanks are used to evaluate whether volatile organic compound contamination was introduced during sample storage and during shipment between the sampling location and the laboratory.

Trip blank samples were not required for this sampling event because samples were not analyzed for volatile organic compounds.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

A laboratory control sample (LCS) and a laboratory control sample duplicate (LCSD) are spiked with target analytes to provide information about laboratory precision and accuracy. The LCS were prepared and analyzed at the required frequency. LCSD were not reported by Apex, BV, or Enthalpy; batch precision was evaluated with available laboratory duplicate sample results.

All LCS results were within acceptance limits for percent recovery.

LABORATORY DUPLICATE RESULTS

Laboratory duplicate results are used to evaluate laboratory precision. All laboratory duplicate samples were prepared and analyzed at the required frequency.

Laboratory duplicate results greater than five times the MRL were evaluated using laboratory relative percent difference (RPD) control limits. Laboratory duplicate results less than five times the MRL, including non-detect results, were evaluated using a control limit of the MRL of the parent sample. The absolute difference of the laboratory duplicate sample result and the parent sample result, or the MRL for non-detects, was compared to the MRL of the parent sample.

According to report C2U4196, the EPA Method 8290A batch 8324575 laboratory duplicate (DU03B-S-0.5-Lab-Dup) total TCDD result exceeded the laboratory duplicate RPD of 25 percent, at 59 percent. BV noted that the exceedance may be due to sample heterogeneity. The

sample results shown in the following table including associated ISM triplicate sample results were qualified by the reviewer:

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
	DU03C-S-0.5	Total TCDD	8.78	8.78 J
C2U4196	DU03A-S-0.5	Total TCDD	13.1	13.1 J
	DU03B-S-0.5	Total TCDD	13.2	13.2 J

Notes

J = result is estimated.

pg/g = picograms per gram.

A laboratory duplicate sample was not included with EPA Method 8290 batch quality control results in report 2301252. The reviewer could not evaluate laboratory precision for this analytical batch.

All remaining laboratory duplicate results met the acceptance criteria.

MATRIX SPIKE AND MATRIX SPIKE DUPLICATE RESULTS

Matrix spike (MS) and matrix spike duplicate (MSD) results are used to evaluate laboratory precision, accuracy, and the effect of the sample matrix on sample preparation and analysis. All MS samples were prepared and analyzed at the required frequency. MSD sample results were not reported by Apex or BV; batch precision was evaluated with laboratory duplicate sample results.

When MS were prepared from samples with high concentrations of target analytes, associated MS percent recovery exceedances did not require qualification because spike concentrations could not be accurately quantified. High concentrations of target analytes are defined as four times the spike amount for all analyses.

When MS were prepared with samples from unrelated projects, the MS percent recovery exceedances did not require qualification because these sample matrices were not representative of project sample matrices.

According to report C2Z1621, the EPA Method 8290A batch 8409212 MS prepared with sample HA20-S-2.0 had a result for 1,2,3,4,7,8-HxCDD that was below the lower percent recovery acceptance limit of 80 percent, at 79 percent, and the results for 1,2,3,4,6,7,8-HpCDD, OCDD, and OCDF exceeded the upper percent recovery acceptance limit of 140 percent, at 178 percent, 330 percent, and 151 percent, respectively. The reviewer confirmed with BV that MS spike concentrations were 1,250 pg/g for 1,2,3,4,7,8-HxCDD and 1,2,3,4,6,7,8-HpCDD and 2,500 pg/g for OCDD and OCDF. Qualification of OCDD was not required due to high associated sample concentrations. Qualification based on 1,2,3,4,7,8-HxCDD recovery was not required because the associated sample result was already qualified as estimated due to detection below the MRL. The sample results were qualified by the reviewer as shown in the following table:

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
C071/01	11420 2 0 0	1,2,3,4,6,7,8-HpCDD	337	337 J
C2Z1621 HA20-S-2.0		OCDF	134	134 J
Notes	•			

J = result is estimated. pg/g = picograms per gram.

All remaining MS results were within acceptance limits for percent recovery.

SURROGATE RECOVERY RESULTS

Surrogate compounds are used to evaluate laboratory performance for individual samples for organic analyses. No surrogates were reported, as they were not required by the analytical methods that were reviewed.

LABELED ANALOG RECOVERY RESULTS

According to report C2U4196, EPA Method 8290A samples were spiked with carbon-13 labeled standards to quantify the relative response of analytes in each sample. A chlorine-37 labeled standard was also used to evaluate the efficiency of the extract cleanup process.

According to report C2Z1621, the labeled analog standard ¹³C₁₂-OCDD recovery was below the lower control limit, at 29 percent. The reviewer confirmed with BV by a separate email communication that the lower control limit for ¹³C₁₂-OCDD was 40 percent. BV indicated that the low recovery was likely caused by matrix interference. The reviewer confirmed that the low recovery may indicate a low bias in the associated OCDD and OCDF sample results. The associated sample results were by the reviewer with J, as shown in the following table.

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
C2Z1621 HA18-S-2.0	OCDD	180,000	180,000 J-	
	ПА 10-3-2.0	OCDF	16,300	16,300 J-

J- = result is estimated, but the result may be biased low. pg/g = picograms per gram.

All remaining labeled analog standard results were within acceptance limits.

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. CCV results were not required for validation but were reviewed when provided. Surrogate or batch quality control results flagged

by the laboratory based on CCV exceedances but meeting percent recovery and/or RPD acceptance criteria required no action from the reviewer.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. Field duplicate samples were not submitted for analysis.

ISM TRIPLICATE RESULTS

According to report C2U4196, ISM samples were collected and named according to DUs. As described in the Sample Conditions section above, Apex processed and composited ISM samples prior to analysis consistent with industry standard procedures. DU 3 was sampled in triplicate, and the replicate set included samples DU03A-S-0.5, DU03B-S-0.5, and DU03C-S-0.5. Triplicate sample results were compared to acceptance criteria of 35 percent relative standard deviation (RSD) for analytes with one or more detected results (DEQ 2020). All triplicate ISM results met the RSD criterion.

Analyte	DU03A-S-0.5 Results (pg/g)	DU03B-S-0.5 Results (pg/g)	DU03C-S-0.5 Results (pg/g)	RSD (%)
2,3,7,8-TCDD	1.7 J	1.2 J	1.8 U	21
1,2,3,7,8-PeCDD	32.2	30.1	29.8	4.3
1,2,3,4,7,8-HxCDD	119	104	115	6.9
1,2,3,6,7,8-HxCDD	653	574	597	6.7
1,2,3,7,8,9-HxCDD	238	216	230	4.9
1,2,3,4,6,7,8-HpCDD	15,300	14,600	14600	2.7
OCDD	134,000	105,000	118000	12
Total TCDD	13.1	13.2	8.78	22
Total PeCDD	125	118	127	3.8
Total HxCDD	2,210	2,020	2,100	4.5
Total HpCDD	23,600	22,700	22,900	2.0
2,3,7,8-TCDF	5.64	4.57	4.77	11
1,2,3,7,8-PeCDF	24.1	19.7	21.6	10
2,3,4,7,8-PeCDF	20.6	16.9	20.1	10
1,2,3,4,7,8-HxCDF	146	116	125	12
1,2,3,6,7,8-HxCDF	100	89.6	95.7	5.5
2,3,4,6,7,8-HxCDF	49.2	48	47.1	2.2
1,2,3,7,8,9-HxCDF	5.24	5.04	5.06	2.2
1,2,3,4,6,7,8-HpCDF	2,380	2,390	2,450	1.6
1,2,3,4,7,8,9-HpCDF	238	227	230	2.5
OctaCDF	9,390	9,980	7,750	13
Total TCDF	41.1	36.9	39.5	5.4

Analyte	DU03A-S-0.5 Results (pg/g)	DU03B-S-0.5 Results (pg/g)	DU03C-S-0.5 Results (pg/g)	RSD (%)
Total PeCDF	677	563	644	9.3
Total HxCDF	2,940	2,600	2,740	6.2
Total HpCDF	7,920	7,680	7,640	2.0
Confirmation 2,3,7,8-TCDF	5	3.8	3.9	16

Notes

J = result is estimated.

pg/g = picograms per gram.

RSD = relative standard deviation.

U = result is non-detect at the estimated detection limit.

DATA PACKAGE

The data package was reviewed for transcription errors, omissions, and anomalies.

According to report C2U4196, BV noted that the 1,2,3,4,6,7,8-HpCDD and total HpCDD results for sample DU01-S-0.5 were associated with a dilution of 20. The note of explanation provided by BV included OCDD in addition to the HpCDD compounds; however, the OCDD result for sample DU01-S-0.5 was separately annotated by the laboratory. Because the dilution factor was correctly identified in both notes, no change was required.

According to reports C2U4196 and C2Z1621, 2,3,7,8-TCDF confirmation was performed in accordance with EPA Method 8290A, but because the confirmation analysis meets both EPA Method 8290A and 1613B requirements, both analytical methods are referenced in the laboratory's reporting system.

EPA Method 8290 MRLs were not provided with report 2301252. The reviewer confirmed that results flagged by Enthalpy with "J" were detected below MRLs by reviewing the electronic data deliverable file that accompanied the report.

No additional issues were found.

Apex. 2022. Quality Systems Manual. Rev. 10. Apex Laboratories, LLC: Tigard, OR. June 20.

BV. 2021. Corporate Quality Manual. Rev. 22. Bureau Veritas: Mississauga, ON, Canada. September 7.

DEQ. 2020. Decision Unit Characterization. Oregon Department of Environmental Quality, Land Quality Division Cleanup Program: Portland, OR. September 14.

Enthalpy. 2023. Quality Manual. Rev. 33. Enthalpy Analytical, LLC. El Dorado Hills. February 20.

EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase II (2019), VII phase I (2019), and VII phase II (2020).

EPA. 2014. R10 Data Validation and Review Guidelines for Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Data (PCDD/PCDF) using Method 1613B and SW846 Method 8290A. EPA-910-R-14-003. U.S. Environmental Protection Agency, Office of Environmental Assessment. May.

EPA. 2020a. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA 542-R-20-006. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.

EPA. 2020b. National Functional Guidelines for High Resolution Superfund Methods Data Review. EPA 542-R-20-007. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.

Data Quality Assurance/Quality Control Review

Project No. M8012.01.001 | June 9, 2025 | Permapost Products, Inc.

Maul Foster & Alongi, Inc. (MFA), conducted an independent Stage 2A review of the quality of analytical results for soil samples collected in May, July, and November 2023 at the Permapost study area located south of 4205 SE Witch Hazel Road in Hillsboro, Oregon.

Apex Laboratories, LLC (Apex), and Enthalphy Analytical LLC (Enthalpy) located in El Dorado Hills, California, performed the analyses. Portions of samples submitted to Apex were subcontracted to Enthalpy for dioxin and furan analysis. MFA reviewed Apex report numbers A3E1301, A3G1175, and A3K1113 and Enthalpy report numbers 2305185, 2305254, 2307224, 2308007, and 2311099. The analyses performed and the samples analyzed are listed in the following tables. Samples submitted on hold are indicated below.

Analysis	Reference
Dioxins and furans	EPA 8290A, EPA 1613B
Percent dry weight	EPA 8000D
Total arsenic	EPA 6020B

Note

EPA = U.S. Environmental Protection Agency.

Samples Analyzed					
Reports A3E1301/2305185/2308007					
HA-28-Comp-1-2 (hold)	HA-28-Comp-1-2 (hold)				
HA-28-Comp-2-3	HA-25-Comp-1-2	HA-29-Comp-2-3	DU1-A		
HA-27-Comp-1-2	HA-25-Comp-2-3	HA-23-Comp-1-2	DU1-B		
HA-27-Comp-2-3	HA-24-Comp-1-2	HA-23-Comp-2-3	DU2-A		
HA-26-Comp-1-2	HA-24-Comp-2-3	HA-22-Comp-1-2	DU2-B		
	Report 2305254 Reports A3G1175/230722				
PP-1	PP-1 PP-2 PP-3				
Reports A3K1113/2311099					
PP-5	PP-5 PP-6 PP-7				

Data Qualification

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2014, 2020a, 2020b) and appropriate laboratory- and method-specific guidelines (Apex 2023, Enthalpy 2023, EPA 1986).

Based on the results of the data quality review procedures described below, the data, with the appropriate final data qualifiers assigned, are considered acceptable for their intended use. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, and data qualifiers assigned by the reviewer during validation.

Final data qualifiers:

J = result is estimated.

- JK = result is estimated and an estimated maximum potential concentration (EMPC).
- U = result is non-detect at the estimated detection limit (EDL), method detection limit (MDL), or method reporting limit (MRL).
- UJ = result is non-detect with an estimated detection limit.
- UJK = result is non-detect, an estimated value, and an EMPC.

Second Column Confirmation

Positive identification of 2,3,7,8-TCDF cannot be achieved using typical EPA Method 8290A or 1613B columns; therefore, analysis using a second column is required to confirm and qualify any detections above the MRL. The reviewer confirmed that EPA Method 8290A or 1613B confirmation of detected 2,3,7,8-TCDF results was not required in Enthalpy reports because the analyses were performed using a column with sufficient resolution.

Estimated Maximum Potential Concentration Results

In accordance with EPA Region 10 guidance for data validation of polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/PCDFs) (EPA 2014) and EPA national functional guidelines for high-resolution Superfund methods data review (EPA 2020a), the reviewer qualified EPA Method 8290A and 1613B results in Enthalpy report numbers 2305185, 2305254, 2307224, and 2311099 because of laboratory EMPC detections. The reviewer confirmed that where Enthalpy provided a lower result concentration along with an EMPC result, the EMPC is considered the final result value.

Where Enthalpy flagged non-detect congener or total homolog results as EMPCs, the reviewer accepted the laboratory qualification. Results were additionally qualified by the reviewer due to improper storage in the Preservation and Sample Storage below. Final qualification for these results is UJK.

Where Enthalpy flagged detected total homolog results above or below MRLs as EMPCs, and all associated congeners were either EMPCs or non-detect, the reviewer qualified the total homolog result as non-detect at the reported concentration. Results were additionally qualified by the reviewer due to improper storage in the Preservation and Sample Storage below. Final qualification for these results is UJK.

Where Enthalpy flagged total homolog results above MRLs as EMPCs and one or more associated congeners were detected without an EMPC flag, the reviewer accepted the laboratory qualification. Results were additionally qualified by the reviewer due to improper storage in the Preservation and Sample Storage below. Final qualification for these results is JK.

Final data qualifiers for EMPC results are shown in the following table.

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result ^(a) (pg/g)
		2,3,7,8-TCDD	0.160 UK	0.160 UJK
2205105	UA 20 Comp 2 2	2,3,7,8-TCDF	0.349 UK	0.349 UJK
2305185	HA-28-Comp-2-3	Total TCDDs	0.160 UK	0.160 UJK
		Total PeCDDs	11.5 K	11.5 JK
0205405	HA-28-Comp-2-3	Total TCDFs	3.87 K	3.87 UJK
2305185	HA-25-Comp-1-2	2,3,7,8-TCDD	0.179 UK	0.179 UJK

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result ^(a) (pg/g)
		1,2,3,7,8-PeCDD	1.41 UK	1.41 UJK
		Total TCDDs	0.179 UK	0.179 UJK
		Total PeCDDs	2.58 K	2.58 UJK
		Total TCDFs	1.02 UK	1.02 UJK
		Total PeCDFs	11.8 K	11.8 JK
		Total HxCDFs	59.3 K	59.3 JK
		Total PeCDDs	5.21 K	5.21 JK
	HA-29-Comp-2-3	Total TCDFs	1.29 K	1.29 JK
		Total PeCDFs	33.7 K	33.7 JK
		2,3,7,8-TCDD	0.106 UK	0.106 UJK
		2,3,7,8-TCDF	0.391 UK	0.391 UJK
		Total TCDDs	0.492 K	0.492 UJK
	HA-22-Comp-1-2	Total PeCDDs	7.39 K	7.39 JK
		Total TCDFs	3.05 K	3.05 UJK
		Total PeCDFs	45.0 K	45.0 JK
		Total HxCDFs	193 K	193 JK
		2,3,7,8-TCDF	0.318 UK	0.318 UJK
		Total TCDDs	3.46 K	3.46 JK
	DU1-A	Total PeCDDs	8.82 K	8.82 JK
		Total TCDFs	2.06 K	2.06 UJK
		Total HxCDFs	98.5 K	98.5 JK
		1,2,3,7,8,9-HxCDF	0.451 UK	0.451 UJK
		Total TCDDs	4.96 K	4.96 JK
	DU1-B	Total PeCDDs	10.2 K	10.2 JK
		Total TCDFs	2.54 K	2.54 JK
		Total HxCDFs	171 K	171 JK
		Total TCDDs	2.47 K	2.47 JK
	DUO	Total TCDFs	26.3 K	26.3 JK
	DU2-A	Total PeCDFs	129 K	129 JK
		Total HxCDFs	583 K	583 JK
		Total TCDDs	4.83 K	4.83 JK
		Total PeCDDs	30.2 K	30.2 JK
	DU2-B	Total TCDFs	31.6 K	31.6 JK
		Total PeCDFs	198 K	198 JK
		Total HxCDFs	706 K	706 JK
		2,3,7,8-TCDD	0.294 UK	0.294 UJK
		2,3,7,8-TCDF	0.930 UK	0.930 UJK
	PP-1	Total TCDDs	4.66 K	4.66 UJK
2305254		Total PeCDDs	14.1 K	14.1 JK
		Total HxCDDs	58.2 K	58.2 JK
		Total TCDF	10.1 K	10.1 UJK
	PP-2	1,2,3,7,8-PeCDD	0.324 UK	0.324 UJK
2305254	DD 2	1,2,3,4,7,8,9-HpCDF	0.544 UK	0.544 UJK
2303234	PP-2	Total PeCDDs	2.24 K	2.24 UJK

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result ^(a) (pg/g)
		Total HxCDDs	11.2 K	11.2 JK
		Total PeCDFs	2.55 K	2.55 JK
	PP-2	Total HpCDFs	23.8 K	23.8 JK
		2,3,7,8-TCDD	0.290 UK	0.290 UJK
2305254		Total TCDDs	3.09 K	3.09 UJK
	PP-3	Total PeCDDs	13.3 K	13.3 JK
		Total TCDFs	9.71 K	9.71 JK
		2,3,7,8-TCDD	0.218 UK	0.218 UJK
		1,2,3,7,8-PeCDF	0.361 UK	0.361 UJK
		1,2,3,7,8,9-HxCDF	0.191 UK	0.191 UJK
		Total TCDD	2.11 K	2.11 UJK
2307224	PP-4	Total PeCDD	7.52 K	7.52 JK
		Total HxCDD	37.8 K	37.8 JK
		Total TCDF	6.59 K	6.59 JK
		Total PeCDF	12.8 K	12.8 JK
		Total HxCDF	39.8 K	39.8 JK
		1,2,3,7,8-PeCDD	1.92 UK	1.92 UJK
	HA-27-Comp-1-2	2,3,4,7,8-PeCDF	2.13 UK	2.13 UJK
		2,3,4,6,7,8-HxCDF	3.59 UK	3.59 UJK
		Total TCDDs	0.602 K	0.602 UJK
		Total PeCDDs	7.99 K	7.99 UJK
		Total TCDFs	3.22 K	3.22 JK
		Total PeCDFs	44.4 K	44.4 JK
		Total HxCDFs	208 K	208 JK
		1,2,3,7,8-PeCDD	0.902 UK	0.902 UJK
		1,2,3,4,7,8-HxCDD	2.17 UK	2.17 UJK
		1,2,3,7,8-PeCDF	0.456 UK	0.456 UJK
		2,3,4,6,7,8-HxCDF	1.11 UK	1.11 UJK
0000007	UA 07 0 0 0	1,2,3,7,8,9-HxCDF	0.500 UK	0.500 UJK
2308007	HA-27-Comp-2-3	Total PeCDDs	2.08 K	2.08 UJK
		Total HxCDDs	44.1 K	44.1 JK
		Total TCDFs	1.70 K	1.70 UJK
		Total PeCDFs	15.4 K	15.4 JK
		Total HxCDFs	65.9 K	65.9 JK
		2,3,7,8-TCDD	0.133 UK	0.133 UJK
		1,2,3,4,7,8-HxCDD	1.75 UK	1.75 UJK
		2,3,4,7,8-PeCDF	0.809 UK	0.809 UJK
	HA-26-Comp-1-2	2,3,4,6,7,8-HxCDF	1.10 UK	1.10 UJK
	ΠΑ-20-00IIIP-1-2	Total TCDDs	0.292 UK	0.292 UJK
		Total PeCDDs	2.33 K	2.33 JK
		Total HxCDDs	36.2 K	36.2 JK
		Total TCDF	2.14 UK	2.14 UJK
2308007	HA-26-Comp-1-2	Total PeCDF	13.3 K	13.3 JK
2300001	11A-20-00111p-1-2	Total HxCDF	49.0 K	49.0 JK

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result ^(a) (pg/g)
		2,3,7,8-TCDF	0.182 UK	0.182 UJK
		1,2,3,7,8-PeCDF	0.640 UK	0.640 UJK
	HA-26-Comp-2-3	Total PeCDDs	4.53 K	4.53 JK
	•	Total TCDF	1.51 K	1.51 UJK
		Total PeCDF	27.6 K	27.6 JK
		1,2,3,4,7,8-HxCDD	1.12 UK	1.12 UJK
		2,3,4,7,8-PeCDF	0.421 UK	0.421 UJK
		2,3,4,6,7,8-HxCDF	0.980 UK	0.980 UJK
	HA-25-Comp-2-3	Total HxCDDs	23.1 K	23.1 JK
	·	Total TCDFs	0.379 UK	0.379 UJK
		Total PeCDFs	8.10 K	8.10 JK
		Total HxCDFs	32.3 K	32.3 JK
		2,3,4,6,7,8-HxCDF	3.56 UK	3.56 UJK
		1,2,3,7,8,9-HxCDF	0.886 UK	0.886 UJK
		Total PeCDDs	6.32 K	6.32 JK
	HA-24-Comp-1-2	Total TCDFs	2.82 K	2.82 JK
		Total PeCDFs	42.6 K	42.6 JK
		Total HxCDFs	185 K	185 JK
		1,2,3,7,8,9-HxCDF	0.218 UK	0.218 UJK
		1,2,3,4,7,8,9-HpCDF	1.56 UK	1.56 UJK
		Total TCDDs	0.292 UK	0.292 UJK
	HA-24-Comp-2-3	Total TCDFs	1.47 K	1.47 UJK
		Total PeCDFs	6.33 K	6.33 JK
		Total HxCDFs	24.0 K	24.0 JK
		Total HpCDFs	45.7 K	45.7 JK
		2,3,7,8-TCDD	0.207 UK	0.207 UJK
		Total TCDDs	0.471 K	0.471 UJK
	HA-23-Comp-1-2	Total PeCDDs	4.93 K	4.93 JK
	11A-25-00111p-1-2	Total TCDFs	2.56 K	2.56 JK
		Total PeCDFs	36.8 K	36.8 JK
		Total HpCDFs	276 K	276 JK
		2,3,7,8-TCDF	0.264 UK	0.264 UJK
		1,2,3,7,8-PeCDF	1.12 UK	1.12 UJK(b)
	HA-23-Comp-2-3	Total PeCDDs	4.16 K	4.16 JK
		Total TCDFs	3.01 K	3.01 UJK
		Total PeCDFs	32.8 K	32.8 JK
		2,3,7,8-TCDD	0.241 UK	0.241 UJK
	HA-22-Comp-2-3	Total TCDD	0.528 UK	0.528 UJK
	22 John 2 J	Total PeCDD	9.83 K	9.83 JK
		Total TCDF	3.90 K	3.90 JK
		2,3,4,7,8-PeCDF	1.32 UK	1.32 UJK
2311099	PP-5	Total PeCDD	3.23 UK	3.23 UJK
	LL-O	Total PeCDF	7.49 K	7.49 UJK
		Total HxCDF	34.4 K	34.4 JK

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result ^(a) (pg/g)
		2,3,7,8-TCDD	0.316 UK	0.316 UJK
		1,2,3,7,8-PeCDD	0.549 UK	0.549 UJK
		1,2,3,7,8,9-HxCDF	0.167 UK	0.167 UJK
	PP-6	Total TCDD	2.12 K	2.12 UJK
		Total PeCDD	8.19 K	8.19 UJK
		Total TCDF	21.1 K	21.1 JK
		Total HxCDF	35.9 K	35.9 JK
		2,3,7,8-TCDD	0.127 UK	0.127 UJK
		1,2,3,7,8,9-HxCDD	0.390 UK	0.390 UJK
		2,3,4,7,8-PeCDF	0.182 UK	0.182 UJK
		1,2,3,6,7,8-HxCDF	0.212 UK	0.212 UJK
	PP-7	2,3,4,6,7,8-HxCDF	0.227 UK	0.227 UJK
	FF-1	Total TCDD	0.332 UK	0.332 UJK
		Total PeCDD	1.28 JK	1.28 UJK
		Total HxCDD	9.28 K	9.28 JK
		Total PeCDF	1.89 JK	1.89 UJK
		Total HxCDF	7.52 K	7.52 JK
		1,2,3,7,8-PeCDD	0.683 UK	0.683 UJK
		2,3,7,8-TCDF	0.488 UK	0.488 UJK
	PP-8	Total TCDD	2.69 K	2.69 JK
		Total PeCDD	8.53 K	8.53 UJK
		Total TCDF	17.0 K	17.0 UJK
		Total PeCDF	28.8 K	28.8 JK
		Total HxCDF	49.6 K	49.6 JK

Notes

JK = result is estimated and an estimated maximum potential concentration.

K = result is an estimated maximum potential concentration.

pg/g = picograms per gram.

UJK = result is non-detect, an estimated value, and an estimated maximum potential concentration.

UK = result is non-detect and an estimated maximum potential concentration.

(aFinal qualifications are based on estimated maximum potential concentration flags and improper storage.

(b) Final qualification based on estimated maximum potential concentration flag and carbon-13 labeled standard result.

Sample Conditions

Sample Custody

Sample custody was appropriately documented on the chain-of-custody (COC) forms accompanying the reports.

Holding Times

Extractions and analyses were performed within the recommended holding times.

Preservation and Sample Storage

According to report A3G1175, sample PP-4 was received at Apex at 34.1 degrees Celius, which is above the recommended storage temperature range of 0 to 6 degrees for dioxins and furans

analysis. The reviewer confirmed that the sample was collected less than two hours prior to receipt at the laboratory, however, the sample was not submitted on ice and no attempt was made to cool the sample between collection and submittal to the laboratory. EPA Method 6020B does not have temperature requirements and thus the associated total arsenic result did not require qualification. A portion of this sample was subcontracted by Apex to Enthalpy, and the reviewer confirmed that Apex shipped this portion on ice. The subcontracted EPA Method 1613B results in report 2307224 are qualified by the reviewer based on the initial temperature exceedance and the lack of protection from light, as indicated below.

According to reports 2305185, 2305254, 2307224, and 2311099, all samples for EPA Method 8290A and 1613B analysis were received in clear jars with no foil around the outside of the jars. The reviewer confirmed with the laboratory that the samples for report 2308007 were also in clear jars with no foil. Samples for EPA Method 8290A or 1613B analysis should be protected from light. The reviewer alerted the MFA project manager about the proper storage requirements for the method. Since samples were improperly stored, the reviewer qualified all sample results with J or UJ, as shown in the following table. Qualifications based on EMPC detections take precedence and combined final qualifications for those results are shown in the EMPC Results section above.

Reports	Samples	Analysis	Original Results	Qualification ^(a)
2305185,2305254,		EPA 8290A	Detected	J
2307224, 2308007, 2311099	All	EPA 1613B	Non-detect	UJ

Notes

EPA = U.S. Environmental Protection Agency.

J = result is estimated.

UJ = result is non-detect with an estimated detection limit.

The remaining samples were preserved and stored appropriately.

Reporting Limits

Apex evaluated results to MRLs. Enthalpy reported EPA Method 8290A and 1613B non-detect results to EDLs or MDLs. Samples that required dilutions because of high analyte concentrations, matrix interferences, and/or dilutions necessary for preparation and/or analysis were reported with raised EDLs or MDLs, and MRLs.

Enthalpy qualified results between the EDL or MDL and the MRL with J, as estimated. The reviewer confirmed that results flagged by Enthalpy with J were detected below MRLs by reviewing the electronic data deliverable file that accompanied the report.

Blanks

Method Blanks

Laboratory method blanks are used to assess whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the laboratory method blanks were associated with all samples prepared in the analytical batch.

In report 2311099, the EPA Method 1613B batch B23K196 laboratory method blank was non-detect for analytes but total PeCDD and total PeCDF were flagged as EMPCs at concentrations of 1.24 picograms per gram (pg/g) and 0.146 pg/g, respectively. All associated sample results were

⁽a)Qualifications based on estimated maximum potential concentration results take precedence.

flagged as EMPCs or were detected without EMPC flags at concentrations greater than five times the laboratory method blank EMPC concentrations. Qualifications by the reviewer based on sample EMPC flags are shown in the EMPC results section above. Additional qualification based on the laboratory method blank results was not necessary.

All remaining laboratory method blank results were non-detect.

Equipment Rinsate Blanks

Equipment rinsate blanks are used to evaluate field equipment decontamination. These blanks were not required for this sampling event.

Trip Blanks

Trip blanks are used to evaluate whether volatile organic compound contamination was introduced during sample storage and during shipment between the sampling location and the laboratory.

Trip blank samples were not required for this sampling event because samples were not analyzed for volatile organic compounds.

Laboratory Control Sample and Laboratory Control Sample Duplicate Results

A laboratory control sample (LCS) and a laboratory control sample duplicate (LCSD) are spiked with target analytes to provide information about laboratory precision and accuracy.

No LCSDs were reported, in accordance with the methods. The LCSs were prepared and analyzed at the required frequency. Enthalpy reported LCSs as "ongoing precision and recovery" samples, in accordance with EPA Method 8290A.

All LCS results were within acceptance limits for percent recovery.

Laboratory Duplicate Results

Laboratory duplicate results are used to evaluate laboratory precision. The EPA Method 6020B laboratory duplicate samples were prepared and analyzed at the required frequency. Enthalpy did not report laboratory duplicate results for EPA Method 8290A or 1613B, in accordance with the methods.

Laboratory duplicate results greater than five times the MRL were evaluated using laboratory relative percent difference control limits. Laboratory duplicate results less than five times the MRL, including non-detects, were evaluated using a control limit of the MRL of the parent sample; the absolute difference of the laboratory duplicate sample result and the parent sample result, or the MRL for non-detects, was compared to the MRL of the parent sample.

The laboratory duplicate result met the acceptance criteria.

Matrix Spike and Matrix Spike Duplicate Results

Matrix spike (MS) and matrix spike duplicate (MSD) results are used to evaluate laboratory precision, accuracy, and the effect of the sample matrix on sample preparation and analysis.

The EPA Method 6020B MSs and batch 23H0221 MSD were prepared and analyzed at the required frequency. No other MS or MSD were reported, in accordance with the methods.

The EPA Method 602B MS and MSD results were within acceptance limits for percent recovery and relative percent difference.

Labeled Analog Recovery Results

According to reports 2305185, 2305254, and 2308007, EPA Method 8290A and 1613B samples were spiked with carbon-13 (C13) labeled standards to quantify the relative response of analytes in each sample.

According to report 2308007, the EPA Method 8290A C13 labeled standard 13C-1,2,3,7,8-PeCDF for sample HA-23-Comp-2-3 was below the lower percent recovery limit of 40 percent, at 37.5 percent. The associated 1,2,3,7,8-PeCDF result was qualified by the reviewer due to an EMPC detection which takes precedence and the final qualification is shown in the EMPC Results section above.

According to report 2311099, several EPA Method 1613B C13 labeled standards and the Cl-37 cleanup internal standard for sample PP-5 were below their respective lower percent recovery limits, ranging from 22.4 percent 27.3 percent. Widespread internal and labeled standard issues indicate a matrix effect for sample PP-5, which was reported from an undiluted analysis. Enthalpy did not reanalyze this sample at a higher dilution. All associated sample results were qualified due to improper storage in the Preservation and Sample Storage section above and did not require additional qualification.

All remaining C13 labeled standard recoveries were within acceptance limits.

Field Duplicate Results

Field duplicate samples measure both field and laboratory precision. No field duplicate samples were submitted for analysis.

Data Package

The data package was reviewed for transcription errors, omissions, and anomalies.

The COC form accompanying report A3G1175 does not list a project number. Additionally, the company is not noted under the relinquishment section. The reviewer confirmed that the sample was collected and relinquished by Tim Browning of Permapost.

According to the cooler receipt form accompanying report A3E1301, the sample container for HA-22-Comp2-3 listed a collection time of 14:50. Apex correctly reported the sample using the collection time of 14:55 as written on the COC form.

At MFA's request, several samples initially submitted on hold were taken off hold on July 20, 2023, for analysis by EPA Method 8290A and EPA Method 6020B for sample HA-22-Comp-2-3. These additional results are reported in Enthalpy report 2308007 and Apex report A3E1301.

Report A3K1113 was revised on January 17, 2024, to update the project name to "Permapost Property."

No other issues were found.

References

Apex. 2023. Quality Systems Manual. Rev. 11. Apex Laboratories, LLC: Tigard, OR. June 20.

Enthalpy. 2023. Quality Manual. Rev. 33. Enthalpy Analytical LLC: El Dorado Hills, CA. February 20.

EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA

- (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase II (2019), VII phase I (2019), and VII phase II (2020).
- EPA. 2014. R10 Data Validation and Review Guidelines for Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Data (PCDD/PCDF) using Method 1613B and SW846 Method 8290A. EPA-910-R-14-003. U.S. Environmental Protection Agency, Office of Environmental Assessment. May.
- EPA. 2020a. *National Functional Guidelines for High Resolution Superfund Methods Data Review.*EPA 542-R-20-007. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.
- EPA. 2020b. *National Functional Guidelines for Inorganic Superfund Methods Data Review.* EPA 542-R-20-006. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.

Data Validation Memorandum

Project No. M8012.01.001 | July 26, 2024 | Permapost Products, Inc.

Maul Foster & Alongi, Inc. (MFA), conducted an independent Stage 2A review of the quality of analytical results for soil samples collected on May 31, 2024 at the Permapost study area located south of 4205 SE Witch Hazel Road in Hillsboro, Oregon.

Apex Laboratories, LLC (Apex), and Enthalpy Analytical LLC (Enthalpy) located in El Dorado Hills, California, performed the analyses. Portions of samples submitted to Apex were subcontracted to Enthalpy for dioxin and furan analysis, and Enthalpy reports are appended to the Apex reports. MFA reviewed Apex report number A4E1783 and Enthalpy report 2406043. The analyses performed and the samples analyzed are listed in the following tables.

Analysis	Reference
Dioxins and furans	EPA 1613B(a)

Notes

EPA = U.S. Environmental Protection Agency.

(a)Percent moisture measurement for dry-weight calculation is included in EPA Method 1613B.

Samples Analyzed		
Report A4E1783/2406043		
HA-30-1.5-Comp		
HA-30-2.5-Comp		
HA-31-1.5-Comp		

Data Validation Procedures

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2014, EPA 2020) and appropriate laboratory- and method-specific guidelines (Apex 2023, Enthalpy 2023, EPA 1986).

Based on the data quality assurance/quality control review described herein, the data, with the appropriate final data qualifiers assigned, are considered acceptable for their intended use. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, and data qualifiers assigned by the reviewer during validation.

Final data qualifiers:

- J = result is estimated.
- J+ = result is estimated, but the result may be biased high.
- J- = result is estimated, but the result may be biased low.
- U = result is non-detect at the estimated detection limit (EDL).
- UJ = result is non-detect with an estimated LDL/MDL/MRL.
- UJK = result is non-detect at the estimated maximum potential concentration (EMPC) and qualified as estimated.

• UK = result is non-detect at the EMPC.

Dioxins and Furans

Second Column Confirmation

Positive identification of 2,3,7,8-TCDF cannot be achieved using typical EPA Method 1613B analytical columns; therefore, analysis using a second column is required to confirm and qualify any detections above the method reporting limit (MRL). Enthalpy noted that EPA Method 1613B analysis of all samples was performed with a column that resolves 2,3,7,8-TCDD and 2,3,7,8-TCDF. Second column confirmation of 2,3,7,8-TCDF detected results was therefore not required.

Estimated Maximum Potential Concentration Results

In accordance with EPA Region 10 guidance for data validation of dioxins and furans (EPA 2014) and EPA national functional guidelines for high-resolution Superfund methods data review (EPA 2020), the reviewer qualified EPA Method 8290A results that were identified by Enthalpy as EMPC detections. The reviewer confirmed that, where Enthalpy provided a lower result concentration along with an EMPC result, the EMPC is considered the final result value.

Where Enthalpy flagged non-detect congener results or total homolog below MRLs as EMPCs, the reviewer qualified the results with UJK. The reviewer qualified congener or total homolog results above MRLs that were flagged as EMPCs with UK.

Where Enthalpy flagged detected total homolog results as EMPCs, and all associated congeners were either EMPCs or non-detect, the reviewer qualified the total homolog result as non-detect at the reported concentration. Final qualification for total homolog results above MRLs is UK. Final qualification for total homolog results below MRLs is UJK.

Where Enthalpy flagged total homolog results as EMPCs and one or more associated congeners were detected without an EMPC flag, the reviewer accepted the laboratory qualification. Final qualification for total homolog results above MRLs is K.

Final data qualifiers for EMPC results are shown in the following table. Some EMPC results were also qualified based on holding time or laboratory control sample (LCS) recovery. Final qualification is shown.

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
		2,3,7,8-TCDD	0.119 K	0.119 UJK
		2,3,7,8-TCDF	0.230 K	0.230 UJK
		1,2,3,7,8,9-HxCDF	0.473 K	0.473 UJK
	UA 20 4 5 0	Total TCDD	0.205 JK	0.205 UJK
2406043	HA-30-1.5-Comp	Total PeCDD	4.88 K	4.88 K
		Total TCDF	1.98 K	1.98 UK
		Total PeCDF	38.4 K	38.4 K
		Total HpCDF	211 K	211 K
		2,3,7,8-TCDD	0.609 K	0.609 UJK
	114 20 0 F Comp	Total TCDD	2.90 K	2.90 UK
	HA-30-2.5-Comp	Total PeCDD	61.0 K	61.0 K
		Total TCDF	24.7 K	24.7 K

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
		2,3,7,8-TCDD	0.0689 K	0.0689 UJK
	HA-31-1.5-Comp	1,2,3,7,8-PeCDD	0.228 K	0.228 UJK
		1,2,3,4,7,8-HxCDD	0.895 K	0.895 UJK
		Total TCDD	0.0689 K	0.0689 UJK
		Total PeCDD	0.412 K	0.412 UJK
		Total HxCDD	17.3 K	17.3 K
		Total PeCDF	5.36 K	5.36 K

Notes

J = result is estimated.

JK = result is qualified as estimated and an estimated maximum potential concentration.

K = result is an estimated maximum potential concentration.

pg/g = picograms per gram.

UJK = result is non-detect at the estimated maximum potential concentration and qualified as estimated.

UK = result is non-detect at the estimated maximum potential concentration.

Sample Conditions

Sample Custody

Sample custody was appropriately documented on the chain-of-custody (COC) form accompanying the reports with the following exceptions:

According to the chain-of-custody (COC) forms provided with report 2406043, sample relinquishment time was not recorded by Apex for shipments to Enthalpy. The reviewer notified the laboratory. No qualification was required. The reviewer also confirmed that the gap in custody on the COC form accompanying the Enthalpy reports was for shipment via a third-party service.

Holding Times

Extractions and analyses were performed within the recommended holding times.

Preservation and Sample Storage

The samples were preserved and stored appropriately. The reviewer confirmed that samples were protected from light; Enthalpy noted on the COC label reconciliation report provided with report 2406043, that the samples were received in clear glass wrapped in foil.

Reporting Limits

Enthalpy reported EPA Method 1613B non-detect results to EDLs. EDLs are sample-specific detection limits calculated for non-detect results. Method detection limits (MDLs) were also provided for all EPA Method 1613B dioxin and furan congener results. Samples that required dilutions because of high analyte concentrations were reported with raised MDLs.

Enthalpy qualified results detected between the MDL and MRL with J. Because MRLs were not included in the reports, the reviewer confirmed that results flagged by Enthalpy with J were detected below MRLs by reviewing the electronic data deliverable file that accompanied the report. These qualifiers were accepted by the reviewer.

Blank Results

Method Blanks

Laboratory method blanks are used to evaluate whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the required frequencies, in accordance with laboratory- and method-specific requirements.

All laboratory method blank results were non-detect to EDLs.

Equipment Rinsate Blanks

Equipment rinsate blanks are used to evaluate the adequacy of the field equipment decontamination process when decontaminated sampling equipment is used to collect samples.

No equipment rinsate blanks were submitted for analysis. The reviewer was unable to evaluate field samples for possible contamination from sampling equipment.

Trip Blanks

Trip blanks are used to evaluate whether volatile organic compound contamination was introduced during sample storage and during shipment between the sampling location and the laboratory. Trip blank samples were not required because samples were not analyzed for volatile organic compounds.

Laboratory Control Sample and Laboratory Control Sample Duplicate Results

An LCS and a laboratory control sample duplicate (LCSD) are spiked with target analytes to provide information about laboratory precision and accuracy. No LCSD results were reported, in accordance with the method. The LCS samples were prepared and analyzed at the required frequency. Enthalpy reported LCS samples as "ongoing precision and recovery" samples.

All LCS results were within acceptance limits for percent recovery.

Laboratory Duplicate Results

Laboratory duplicate results are used to evaluate laboratory precision. Laboratory duplicate samples are not required for EPA Method 1613B and were not reported by Enthalpy.

Matrix Spike and Matrix Spike Duplicate Results

Matrix spike (MS) and matrix spike duplicate (MSD) results are used to evaluate laboratory precision, accuracy, and the effect of the sample matrix on sample preparation and analysis. MS and MSD results were not reported by Enthalpy.

Labeled Analog Results

All EPA Method 1613B project samples and associated batch quality control samples were spiked with carbon-13 (C13) labeled analogs as internal standards to quantify the relative response of analytes in each sample. Samples were also spiked with labeled cleanup standards to evaluate the efficiency of extract cleanup.

All labeled standard recoveries were within acceptance limits.

Field Duplicate Results

Field duplicate samples measure both field and laboratory precision. Feld duplicate samples were not submitted for analysis.

Data Package

The data package was reviewed for transcription errors, omissions, and anomalies.

None were found.

References

Apex. 2023. Quality Systems Manual. Rev. 11. Apex Laboratories, LLC: Tigard, OR. June 20.

Enthalpy. 2023. Quality Manual. Rev. 33. Enthalpy Analytical, LLC: El Dorado Hills, CA. February 20.

- EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase II (2019), VII phase I (2019), and VII phase II (2020).
- EPA. 2014. R10 Data Validation and Review Guidelines for Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Data (PCDD/PCDF) Using Method 1613B and SW846 Method 8290A. EPA-910-R-14-003. U.S. Environmental Protection Agency, Office of Environmental Assessment. May.
- EPA. 2020. *National Functional Guidelines for High Resolution Superfund Methods Data Review*. EPA 542-R-20-007. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. November.

Data Validation Memorandum

Project No. M8012.01.001 | May 8, 2025 | Permapost Products, Inc.

Maul Foster & Alongi, Inc. (MFA), conducted an independent Stage 2A review of the quality of analytical results for soil samples collected on March 11 and 12, 2025, at the Permapost study area located south of 4205 SE Witch Hazel Road in Hillsboro, Oregon.

Apex Laboratories, LLC (Apex), and Enthalpy Analytical LLC (Enthalpy) performed the analyses. MFA reviewed Apex report numbers A5C1334 and A5C1334 (follow-up analyses) and Enthalpy report numbers 2503187 and 2504171. Dioxins and furans analysis was subcontracted by Apex to Enthalpy and results are in separate reports. The analyses performed and the samples analyzed are listed in the following tables. Samples submitted on hold are not shown. Follow-up analyses were requested by MFA after initial results were received.

Analysis	Reference
Dioxins and furans	EPA 8290A. EPA 1613B
Percent dry weight	EPA 8000D
Total arsenic	EPA 6020B

Note

EPA = U.S. Environmental Protection Agency.

Samples Analyzed			
Reports A5C1334/2503187	Reports A5C1334 (follow-ups)/2504171		
DU4-A-S-0.5	HA-36-COMP-S-2.5-3.0		
DU4-B-S-0.5	HA-35-COMP-S-2.5-3.0		
DU4-C-S-0.5	HA-32-COMP-S-1-2		
DU4-D-S-0.5	HA-33-COMP-S-2-3		
DU-2c-S-0.5	HA-34-COMP-S-2-3		
DU-2d-S-0.5			
DU-2e-S-0.5			

Data Validation Procedures

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2020a, 2020b) and appropriate laboratory- and method-specific guidelines (Apex 2023, Enthalpy 2023, EPA 1986).

EPA Method 8000D percent dry-weight results reported by the laboratory for dry-weight correction were reviewed for completeness but were not included in Stage 2A data validation.

Based on the data quality assurance/quality control review described herein, the data, with the appropriate final data qualifiers assigned, are considered acceptable for their intended use. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, and data qualifiers assigned by the reviewer during validation.

Final data qualifiers:

- J = result is estimated.
- K = result is an estimated maximum potential concentration (EMPC).

- U = result is non-detect at the method detection limit (MDL) or method reporting limit (MRL).
- UJK = result is non-detect, an estimated value, and an EMPC.
- UK = result is non-detect and an EMPC.

General Qualifications

Second Column Confirmation

The reviewer confirmed that EPA Method 8290A and 1613B confirmation of detected 2,3,7,8-TCDF results was not required in Enthalpy reports 2503187 and 2504171 because the analyses were performed using a column with sufficient resolution.

Estimated Maximum Potential Concentration Results

In accordance with EPA Region 10 guidance for data validation of polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/PCDFs) (EPA 2014) and EPA national functional guidelines for high-resolution Superfund methods data review (EPA 2020a), the reviewer qualified EPA Method 8290A and 1613B results in Enthalpy report numbers 2503187 and 2504171 because of laboratory EMPC detections. The reviewer confirmed that where Enthalpy provided a lower result concentration along with an EMPC result, the EMPC is considered the final value.

Where Enthalpy flagged non-detect congener or total homolog results as EMPCs, the reviewer accepted the laboratory qualification. Final qualification for these results is UK.

Where Enthalpy flagged detected total homolog results above or below MRLs as EMPCs, and all associated congeners were either EMPCs or non-detect, the reviewer qualified the total homolog result as non-detect at the reported concentration. Final qualification for these results is UK or UJK.

Where Enthalpy flagged total homolog results above MRLs as EMPCs and one or more associated congeners were detected without an EMPC flag, the reviewer accepted the laboratory qualification. Final qualification for these results is K.

Final data qualifiers for EMPC results are shown in the following table.

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
		2,3,7,8-TCDF	0.819 UK	0.819 UK ^(a)
		Total TCDD	3.37 K	3.37 K ^(a)
		Total PeCDD	40.9 K	40.9 K ^(a)
	DU4-A-S-0.5	Total TCDF	14.4 K	14.4 UK
		Total PeCDF	203 K	203 K ^(a)
		Total HxCDF	756 K	756 K ^(a)
2503187		Total HpCDF	1,830 K	1,830 K ^(a)
2505167		2,3,7,8-TCDD	0.384 UK	0.384 UK ^(a)
		2,3,7,8-TCDF	0.183 UK	0.183 UK ^(a)
		1,2,3,7,8-PeCDF	0.725 UK	0.725 UK ^(a)
	DU4-B-S-0.5	2,3,4,7,8-PeCDF	0.743 UK	0.743 UK ^(a)
		1,2,3,4,7,8-HxCDF	2.47 UK	2.47 UK ^(a)
		2,3,4,6,7,8-HxCDF	1.07 UK	1.07 UK ^(a)
		Total TCDD	1.40 K	1.40 UK

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
		Total PeCDD	9.15 K	9.15 K ^(a)
		Total HxCDD	101 K	101 K ^(a)
	DU4-B-S-0.5	Total TCDF	3.40 K	3.40 UK
	5015000	Total PeCDF	22.9 K	22.9 UK
		Total HxCDF	70.1 K	70.1 K ^(a)
		2,3,7,8-TCDD	1.65 UK	1.65 UK ^(a)
		Total TCDD	17.3 K	17.3 UK
	DU4-C-S-0.5	Total TCDF	102 K	102 K ^(a)
		Total PeCDF	1,350 K	1,350 K ^(a)
		2,3,7,8-TCDD	0.289 UK	0.289 UK ^(a)
		1,2,3,7,8,9-HxCDF	0.306 UK	0.306 UK ^(a)
		Total TCDD	1.82 K	1.82 UK
		Total PeCDD	9.97 K	9.97 K ^(a)
	DU4-D-S-0.5	Total HxCDD	100 K	100 K ^(a)
		Total TCDF	2.76 K	2.76 K ^(a)
		Total PeCDF	15.5 K	15.5 K ^(a)
2503187		Total HxCDF	63.2 K	63.2 K ^(a)
		1,2,3,7,8,9-HxCDF	0.602 UK	0.602 UK ^(a)
		Total TCDD	6.94 K	6.94 K ^(a)
	DU-2c-S-0.5	Total PeCDD	17.3 K	17.3 K ^(a)
		Total TCDF	26.6 K	26.6 K ^(a)
	D0-20-3-0.3	Total PeCDF	83.8 K	83.8 K ^(a)
		Total HxCDF	136 K	136 K ^(a)
			288 K	288 K ^(a)
	DU-2d-S-0.5	Total HpCDF Total TCDD	8.47 K	8.47 K ^(a)
		Total HxCDF	352 K	352 K ^(a)
	DU-2e-S-0.5		0.446 UK	0.446 UK ^(a)
		2,3,7,8-TCDD	2.33 UK	2.33 UK ^(a)
		1,2,3,7,8,9-HxCDF Total TCDD	2.33 UK 1.83 K	2.33 UK
		Total PeCDD	1.65 K 15.1 K	15.1 K ^(a)
		Total TCDF	13.7 K	13.7 K ^(a)
		Total HxCDF	238 K	
		2,3,7,8-TCDD	0.130 UK	238 K ^(a) 0.130 UK ^(a)
		Total TCDD	0.130 UK 0.266 UK	0.130 UK ^(a)
		Total PeCDD	7.94 JK	7.94 JK ^(a)
	HA-36-COMP-S-2.5-3.0	Total TCDF	2.74 K	2.74 UK
		Total PeCDF	2.74 K	27.5 K ^(a)
2504171		Total HpCDF	212 K	212 K ^(a)
	HA-35-COMP-S-2.5-3.0	Total TCDD	0.459 JK	0.459 UJK
		Total PeCDD	10.8 K	10.8 K ^(a)
		Total TCDF	5.10 K	5.10 K ^(a)
		Total PeCDF	36.9 K	36.9 K ^(a)
	HA-32-COMP-S-1-2	1,2,3,7,8-PeCDD	0.679 UK	0.679 UK ^(a)
2504171				
		2,3,7,8-TCDF	0.163 UK	0.163 UK ^(a)

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
		2,3,4,7,8-PeCDF	0.281 UK	0.281 UK ^(a)
		1,2,3,4,7,8-HxCDF	1.31 UK	1.31 UK ^(a)
		2,3,4,6,7,8-HxCDF	0.847 UK	0.847 UK ^(a)
		1,2,3,7,8,9-HxCDF	0.287 UK	0.287 UK ^(a)
		Total TCDD	0.124 UK	0.124 UK ^(a)
		Total PeCDD	6.50 UK	6.50 UK ^(a)
		Total HxCDD	34.2 K	34.2 K ^(a)
		Total TCDF	1.65 K	1.65 UK
		Total PeCDF	10.3 K	10.3 UK
		Total HxCDF	41.3 K	41.3 K ^(a)
		2,3,7,8-TCDD	0.171 UK	0.171 UK ^(a)
		1,2,3,7,8-PeCDF	0.399 UK	0.399 UK ^(a)
		1,2,3,7,8,9-HxCDF	0.436 UK	0.436 UK ^(a)
	HA-33-COMP-S-2-3	Total TCDD	0.171 UK	0.171 UK ^(a)
	TA-33-60101P-3-2-3	Total PeCDD	4.87 JK	4.87 UJK
		Total TCDF	1.53 K	1.53 UK
		Total PeCDF	9.59 K	9.59 UK
		Total HxCDF	38.2 K	38.2 K ^(a)
	HA-34-COMP-S-2-3	2,3,7,8-TCDF	0.162 UK	0.162 UK ^(a)
		Total PeCDD	6.16 JK	6.16 JK ^(a)
		Total HxCDD	83.2 K	83.2 K ^(a)
		Total TCDF	1.29 JK	1.29 UJK
		Total PeCDF	20.5 K	20.5 K ^(a)

Notes

K = result is an estimated maximum potential concentration.

pg/g = picograms per gram.

UJK = result is non-detect, an estimated value, and an estimated maximum potential concentration.

UK = result is non-detect and an estimated maximum potential concentration.

(aLaboratory qualification accepted by the reviewer.

Sample Conditions

Sample Custody

Sample custody was appropriately documented on the chain-of-custody forms accompanying the reports.

Holding Times

According to follow-up report A5C1334, the EPA Method 8000D percent dry weight analysis for all samples was performed outside the method-recommended holding time. Percent dry weight results are used for dry weight correction only and qualification by the reviewer was not required.

The remaining extractions and analyses were performed within the recommended holding times.

Preservation and Sample Storage

According to 2503187, all samples for EPA Method 8290A analysis were received in clear jars with no foil around the outside of the jars. Samples for EPA Method 8290A analysis should be protected from light. The reviewer confirmed with the MFA field sampler that tinted jars were requested from the laboratory during project setup but were not provided, and that the samples were kept inside covered containers and protected from light in the field when not actively being sampled. Since samples were protected from light, qualification by the reviewer was not necessary.

According to follow-up report A5C1334, some sample containers were not provided by Apex and not verified under Apex' quality system. The reviewer confirmed that sample containers were from an accredited laboratory. Qualification by the reviewer was not required.

The samples were preserved and stored appropriately.

Reporting Limits

Apex evaluated results to MRLs. Enthalpy reported EPA Method 8290A non-detect results to MDLs. Samples that required dilutions because of high analyte concentrations, matrix interferences, and/or dilutions necessary for preparation and/or analysis were reported with raised MDLs and MRLs.

Enthalpy qualified results between the MDL and the MRL with J, as estimated.

Blank Results

Method Blanks

Laboratory method blanks are used to evaluate whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the required frequencies, in accordance with laboratory- and method-specific requirements.

In report 2503187, the EPA Method 8290A batch B25C335 laboratory method blank had an OCDD detection below the estimated detection limit and flagged as an EMPC, at a concentration of 0.282 picograms per gram (pg/g). The reviewer confirmed with the laboratory that the result was reported as a detection below the estimated detection limit since the result met signal-to-noise ratio and retention time requirements. All associated sample results were detected without EMPCs flags at concentrations greater than five times the laboratory method blank concentration; thus, qualification by the reviewer was not required.

In report 2504171, the EPA Method 1613B batch B25D266 laboratory method blank had a total HpCDD detection below the MRL, at a concentration of 0.192 pg/g. All associated total HpCDD sample results were greater than five times the blank concentration and thus did not require qualification. Additionally, the laboratory method blank had total PeCDD, total TCDF, and total PeCDF detections flagged as EMPCs, at concentrations of 2.71 pg/g, 0.230 pg/g, and 0.379 pg/g, respectively. All associated sample results were also qualified as EMPCs and qualification based on EMPCs takes precedence; see General Qualifications section above.

All remaining laboratory method blank results were non-detect to MDLs or MRLs.

Equipment Rinsate Blanks

Equipment rinsate blanks are used to evaluate the adequacy of the field equipment decontamination process when decontaminated sampling equipment is used to collect samples.

These blanks were not required for this sampling event, as all samples were collected using dedicated or single-use equipment.

Laboratory Control Sample and Laboratory Control Sample Duplicate Results

Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) results are used to evaluate laboratory precision and accuracy. No LCSD were reported; all LCS were prepared and analyzed at the required frequency, in accordance with laboratory- and method-specific requirements. Enthalpy reported the LCS as an "ongoing precision and recovery" sample, in accordance with EPA Method 8290A.

All LCS results were within acceptance limits for percent.

Laboratory Duplicate Results

Laboratory duplicate results are used to evaluate laboratory precision and sample homogeneity. The EPA Method 6020B laboratory duplicates were prepared and analyzed at the required frequency. No other laboratory duplicates were reported, in accordance with laboratory- and method-specific requirements.

Laboratory duplicate results greater than five times the MRL were evaluated using laboratory and relative percent difference control limits. A secondary criterion was used when laboratory duplicate results were non-detect or less than five times the MRL. Results meet the secondary criterion if the absolute difference of the laboratory duplicate sample result and the parent sample result, or the MRL for non-detects, is equal to or less than the MRL value of the parent sample.

In cases where the laboratory had prepared laboratory duplicates with samples from unrelated projects, laboratory duplicate RPD control limit exceedances did not require qualification because these sample matrices were not representative of project sample matrices.

All remaining laboratory duplicate results met the acceptance criteria.

Matrix Spike and Matrix Spike Duplicate Results

Matrix spike (MS) and matrix spike duplicate (MSD) results are used to evaluate laboratory precision, accuracy, and the effect of the sample matrix on sample preparation and target analyte recovery. The EPA Method 6020B MSs were prepared and analyzed at the required frequency. No other MS or MSD were reported, in accordance with laboratory- and method-specific requirements.

The EPA Method 602B MS results were within acceptance limits for percent recovery.

Labeled Analog Recovery Results

In report 2503187, EPA Method 8290A samples and associated batch quality control samples were spiked with carbon-13 labeled standards and a chlorine-37 labeled cleanup recovery standard to quantify the relative response of analytes in each sample.

All labeled standard recoveries were within acceptance limits.

Field Duplicate Results

Field duplicate results are used to evaluate field precision and sample homogeneity. No field duplicate samples were submitted for analysis.

Data Package

The data package was reviewed for transcription errors, omissions, and anomalies.

Report 2503187 was revised by Enthalpy on April 29, 2025, to show MRLs on the report.

No other issues were found.

References

Apex. 2023. Quality Systems Manual. Rev. 11. Apex Laboratories, LLC: Tigard, OR. June 20.

Enthalpy. 2023. Quality Manual. Rev. 33. Enthalpy Analytical LLC: El Dorado Hills, CA. February 20.

- EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase II (2019), VII phase I (2019), and VII phase II (2020).
- EPA. 2014. R10 Data Validation and Review Guidelines for Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Data (PCDD/PCDF) using Method 1613B and SW846 Method 8290A. EPA-910-R-14-003. U.S. Environmental Protection Agency, Office of Environmental Assessment. May.
- EPA. 2020a. *National Functional Guidelines for High Resolution Superfund Methods Data Review.*EPA 542-R-20-007. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.
- EPA. 2020b. *National Functional Guidelines for Inorganic Superfund Methods Data Review.* EPA 542-R-20-006. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.