

Memorandum

To: Mark Pugh, RG Project: 961M135580

Oregon Department of Environmental Quality

700 NE Multnomah St., Suite 600

Portland, OR 97232

From: WSP USA Inc.

Date: February 12, 2025

Re: Stormwater Conveyance System Mapping and Sediment & Stormwater Sampling Results

Summary

Former Blue Heron Property

419/427 Main Street Oregon City, Oregon

Dear Mark Pugh,

On behalf of the Confederated Tribes of the Grand Ronde Community of Oregon (CTGR), WSP USA Inc. (WSP) is submitting the results of the stormwater conveyance system mapping and sediment and stormwater sampling activities conducted at the Former Blue Heron Paper Mill property located in Oregon City (Site).

An initial effort of stormwater conveyance system mapping was conducted in August 2021. This report documents the findings from a second mapping effort conducted from September 24 through November 21, 2024, which was utilized to update the findings from the August 2021 mapping effort. Sediment sampling was conducted on October 2, 2024, and stormwater sampling conducted on October 16, and October 21, 2024, in compliance with the approved Sampling and Analysis Plan (SAP) – Stormwater Mapping and Sampling dated June 16, 2023. All figures and tables developed from this investigation are included in **Attachments A and B**, respectively. **Attachment C** is the photograph log of the Site investigation. **Attachment D** includes all laboratory analytical data from samples collected during this investigation.

BACKGROUND

To gain a better understanding of the Site and how its stormwater conveyance systems relate to Site Stabilization and High Priority Remedial Actions, WSP conducted an initial Site visit on November 4, 2019. During the visit, stormwater features throughout the Site (catch basins, manholes, trench drains, outfalls, downspout mixed-media filters, etc.) were inspected to identify opportunities for implementing initial Best Management Practices (BMPs) to improve stormwater quality. In September 2020, sampling of stormwater and sediment occurred at catch basins and drainage features. This was followed by the cleaning of various catch basins and drainage features, street sweeping, and installation of catch basin filters and absorption booms between January and February 2021. Maps showing the drainage basins and stormwater conveyance systems at the Site were provided in the Overarching Work Plan (OWP); however, the connections, conditions, and characteristics of the stormwater features were still not fully understood.

The first stormwater conveyance mapping event in August 2021 consisted of above-ground work at accessible stormwater structures which did not require confined space entry or additional safety protocols. This event utilized a common duct rodding approach to determine which pipes could be mapped by this method, and to help determine the level of effort and additional methods necessary in subsequent and more comprehensive mapping events, which would likely include in-line sediment removal. After this first event, WSP estimated that 75 percent of the Site's stormwater conveyance system, connections, and drainage basin boundaries had been accurately defined (WSP, 2022).

In June 2023, WSP developed an SAP (Sampling and Analysis Plan) to conduct a second round of investigations intended to complete the remaining stormwater mapping that was unable to be completed using only a traceable

duct rod during the first round. In addition, the SAP outlined collecting sediment samples from the drainage tailraces, and stormwater samples of select downspout media filter and tailrace gabion media filters, including disposal-profile sampling for in-line sediment removal activities.

Investigative mapping techniques were expanded from the original effort to include closed circuit television (CCTV) camera scoping, dye testing, smoke testing, and line cleaning and sediment removal. These investigative techniques were included during this effort to perform conveyance system mapping to the maximum extent practicable. Due to unknown conditions of the stormwater system, a decision hierarchy was developed which ordered the investigative techniques from least to most comprehensive (based on observations in the field) so that the most appropriate mapping techniques were utilized at each feature, and to the maximum extent practicable.

The sampling portion of the SAP included additional environmental assessment efforts related to the transport of legacy Site pollutants via stormwater. Stormwater which falls on the Site is collected in various stormwater features and is discharged directly to the Willamette River either via the tailraces or piped outfall. The stormwater itself or the sediment mobilized by the stormwater has the potential to be polluted by contaminants from former Site operations. The sampling was based off the results of two prior Phase II Environmental Site Assessments (ESAs) that had been completed for the Site, the first in 2012 (ERM, 2012) and another in 2019 (Apex, 2019). These ESAs indicated the presence of pollutants within the stormwater features of the Site, including the natural tailraces underneath the elevated platforms and structures at the Site. The contaminants of concern (COCs) for the Site related to stormwater were determined to be polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons (TPH), polychlorinated biphenyls (PCBs), dioxins/furans, and the 13 priority pollutant (PP) metals (antimony, arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc).

In 2020, Wood Environment and Infrastructure Solutions, Inc. (now WSP), sampled sediment from most catch basins at the Site and sampled stormwater at each point of centralized discharge from the Site to the Willamette River (Wood, 2020) In general, the analysis showed exceedances of COC concentrations compared to the screening criteria at each of the discharge locations.

Previous efforts to mitigate the transport of pollutants to the Willamette River through stormwater included the installation of filtration units at multiple roof downspouts and within the tailrace channels. The type of filtration media consisted of a mix of rock aggregate and compost within each of the units and each appeared unmaintained and in various states of disrepair.

FIELD WORK

Conveyance Mapping

From late September through November 2024, WSP along with Clean Harbors Environmental Services Inc. (Clean Harbors) completed the second round of stormwater conveyance investigation in accordance with the SAP decision hierarchy, beginning with duct rodding any locations that had not been traced during the initial mapping effort in August 2021.

Smoke and dye testing followed, with each being utilized to the maximum extent practicable. Dye testing was conducted by pouring a small amount of concentrated non-toxic biodegradable fluorescent green dye into the bottom of a catch basin, drain or stormwater pipe, and flushing the dye downstream with water. Visual evidence of the dye would be monitored at accessible downstream features. Smoke testing was conducted using smoke sticks and a blower for smaller diameter lines, and a liquid smoke machine for larger diameter lines, see **Photos 1, 2 and 3** in **Attachment C**. The combination of smoke and dye testing was necessary because certain stormwater features may allow for visual confirmation of the dye but not the smoke or vice versa. For example, the 'Grotto' (identified on **Figure 1**, immediately northeast of Building 32) is normally inundated with water, and smoke cannot travel through pipes inundated with water. Therefore, a dye test was conducted because the dye can be transported through such pipes, see **Photo 4** in the attached photograph log.

Clean Harbors contracted directly with Pacific Int-R-Tek (Int-R-Tek) to perform pre-cleaning and post-cleaning CCTV inspections of the stormwater features. These CCTV inspections were utilized to visually evaluate whether line cleaning/flushing was necessary. This initial pre-cleaning CCTV inspection of the lines and features

determined that, in general, most lines were plugged with sediment and could not be inspected prior to being cleaned.

After each known feature had been observed by Int-R-Tek, Clean Harbors cleaned each catch basin, manhole, trench drain, and stormwater pipe deemed to be impassable for the initial camera scoping. Line cleaning was performed utilizing a Vactor truck – which was equipped with jetting attachments (Photos 5 and 6) and a vacuum. The jetting attachments utilized pressurized water propulsion to move forward, breaking up debris in lines and pulling it back to the vacuum. Prior to cleaning, a pneumatic plug (Photo 7) would be installed in the most downstream accessible feature to prevent potentially contaminated debris from directly discharging to the Willamette River. Confined space entry was required in several deep manholes to place the pneumatic plug (Photo 8).

Clean Harbors prioritized cleaning lines starting from downstream to upstream. However, due to the uncertainty of some stormwater connections, some were cleaned beginning from the upstream end. Once debris was no longer mobilized with the jetting attachments and water became clear, Int-R-Tek performed the post-cleaning camera inspection. Larger lines were scoped using a crawler-mounted CCTV camera, and smaller lines were confirmed using a push-camera (Photos 12 and 13). The CCTV camera provided the added benefit of identifying connections in areas without above-ground features, otherwise known as 'blind-tee' connections. The pipe size, material, deficiencies, and connections were documented by on-Site WSP personnel during CCTV inspections and are documented in Table 1.

Stormwater and Sediment Sampling

WSP conducted sediment sampling on October 2, 2024, at Tailraces H, 1, and 2. The field crew utilized stainless steel hand augers, trowels, and a clamshell-type grab sampler to collect sediment from sampling locations. The SAP detailed 13 sample locations with two samples collected at each location: one at the shallow interval of 0.0-0.5 feet below ground surface (bgs), and the second at a deeper interval of 1.0-1.5 feet bgs (provided bedrock or bottom of concrete basins were not encountered first). Several of the deeper samples were in fact unable to be collected due to encountering refusal which appeared to be bedrock, (proposed samples TRH-1, TR1-2, TR2-1, TR2-2, TR2-3, and TR2-4) and concrete (TR1-1, TR1-4, and TR2-6) and therefore, only shallow sediment samples were collected in these locations. No samples were collected at TR2-5 due to safety risk for the sampling team because the sample location was underneath the foundation of a recently demolished structure and showed evidence of instability.

All used equipment and tools were decontaminated before and after each use at each sampling interval or location by using a water rinse/scrub, a deionized water/Alconox® soap wash, and a deionized water rinse. The rinsate was securely stored for disposal following characterization. A rinsate blank sample was collected as well as a duplicate sample at TR1-1 for the shallow interval (0.0–0.5 feet bgs) as quality assurance for the decontamination procedure and laboratory analysis.

WSP conducted stormwater sampling on October 16 and October 21, 2024. Legacy stormwater filtration media units remain on-Site; the discharge from Tailrace 1 and H is filtered through gabion units and the roof discharge from several remaining structures is filtered through downspout units in select locations. Three downspouts and two tailrace locations were analyzed for an influent 'pre-treatment' sample, and an effluent 'post-treatment' sample, totaling ten stormwater samples. Samples were collected on separate days due to different amounts of rainfall being required to generate discharge at each location.

EVALUATION AND RESULTS

Conveyance Mapping

The stormwater feature inventory table and Site map developed for the initial mapping effort was updated with the new findings (Table 1 & Figure 1). Following this second round of conveyance investigation, an updated drainage basin delineation map was developed (Figure 2). The drainage basins were delineated based on assumed historic drainage patterns where storm lines were capped, or unable to be confirmed due to pipe collapses. The boundary of Drainage Basin A was expanded east to include portions of the Former Kraft Tank and surrounding areas to reflect field observations of flow direction. During field investigation, MH-22 was discovered to be capped on the downstream end and would backfill with water from the Intake Basin. The cap location was observed to be

in Tailrace 1, and therefore Tailrace 1 was removed from the previous Drainage Basin B and added to Drainage Basin C. Drainage Basin B was updated to only include Tailrace H. During conveyance mapping, it was also determined that the line connecting CB-31, CB-38, CB-42, CB-43, and CB-35, flows northwest directly into Tailrace 1 as opposed to flowing east towards Tailrace 2 as previously assumed. The Drainage Basin C boundary was updated to reflect this discovery, and to encompass other confirmed connections on the northern side of the basin, including the pipe tunnel and buildings which are assumed to drain into the large sump in Building 18. The field crew was unable to determine where the sump in Building 18 drained to, however, since no laterals were observed in the mainline to Outfall C, this sump presumably drains towards the pipe tunnel then to Tailrace 1.

It was previously hypothesized that discharge to Outfall C was solely from off-Site contributions. Conveyance mapping was able to confirm that this is correct and discharge from Highway 99 enters the site and flows through to Outfall C with no incoming laterals and is solely off-Site stormwater from the City and Oregon Department of Transportation (ODOT). No stormwater features were discovered from the railroad line which follows Highway 99.

Drainage Basin D was updated to include all connections to MH-12. It was previously thought that the cluster of catch basins directly east of MH-12 drained to the City Outfall via MH-13, but field efforts determined that MH-13 serves as an overflow for MH-12 and would not drain MH-12 under normal circumstances. An overflow pipe was observed in MH-14 (directly downstream of MH-12) and was determined to be the only outlet from MH-14 and flowed towards Tailrace 2. The line between MH-12 and MH-14, as well as MH-14 itself, serves as detention for stormwater until MH-14 eventually accumulates enough water to drain through the overflow. The location where the line discharges into Tailrace 2 was not able to be confirmed.

Drainage Basin E was determined to encompass primarily City sanitary sewer, and its boundary area was reduced to reflect the changes in Drainage Basin D. Drainage Basin F remained the same as previous iterations of the drainage delineation, draining the historic Water Filter Plant via Outfall 2.

The following is a list of the newly discovered stormwater features since the initial mapping. These features are shown on **Figure 1**.

- Stormwater line upstream/southwest leading into MH-12. Estimated to extend at least 400 feet southwest (upstream) of MH-12 under the rail tracks along the main corridor.
- Underground Collection Basin located along Tailrace 2, see Photos 14 and 15;
- MH-3 leads to above mentioned Underground Collection Basin and Tailrace 2;
- Main line on Main Street flows southwest and ends in Tailrace 1; and
- Two sumps of water located in the Deink Repulper Building, connected via pump and drains to MH-11.

Sediment Sampling

Sediment samples were collected at multiple locations in each tailrace to characterize the extent and prevalence of the COCs. Each sample was analyzed for TPH by NWTPH-HCID with NWTPH-Dx and NWTPH-Gx as follow-up, PCBs by EPA 8082A, total metals by EPA 6020B, PAHs by EPA 8270E, and dioxins/furans by EPA 1613B. All analytical testing was performed by Apex Laboratories (Apex) in Tigard, Oregon, except for dioxins/furans which were analyzed by Enthalpy Analytical Laboratory, Inc. (Enthalpy) in El Dorado Hills, California. Sediment sample results were compared against standard screening criteria as shown in **Table 2** (EPA, 2022, DEQ, 2023, DEQ, 2020, DEQ, 2019, CFR, 2024). The following results summaries detail the findings at each sample location. **Figures 3A through 3C** document the sampling locations and which COCs, if any, exceeded applicable screening criteria for the shallow or deep interval.

Tailrace H

A total of five sediment samples (of the proposed six samples) were collected in Tailrace H. The only sample not collected was the deep interval (1.0–1.5 feet bgs) for BH-TRH-1 due to refusal. BH-TRH-1 is the most downstream sediment sample of Tailrace H and the sample results exceeded applicable screening criteria for some PP metals and the toxic equivalency quotient (TEQ) for dioxins/furans. BH-TRH-2 was collected near the centerline of the main tailrace channel and both shallow and deep interval samples were collected. Both shallow and deep interval sample results were similar to each other and exceeded applicable screening criteria for some PP metals and the

TEQ for dioxins/furans. BH-TRH-3 is the most upstream sample location for Tailrace H and both the shallow and deep intervals were able to be collected. The shallow interval results only exceeded applicable screening criteria for the TEQ for dioxins/furans. Alternatively, the deep interval results exceeded multiple applicable screening criteria including some PP metals, TPH, PAHs, and the TEQ for dioxins/furans. Most notably, the shallow interval sample was non-detect for TPH while the deep interval sample had the highest concentration of TPH from the entire investigation (42,500 milligrams per kilogram [mg/kg]).

To summarize the findings from the sediment sampling of Tailrace H:

- Concentrations and variety of COCs generally increase with distance upstream into the tailrace;
- The differences in COC concentrations between the shallow interval and deep interval samples is not consistent; and
- No PCBs were detected during the current round of sampling at Tailrace H. [Previous sediment sampling performed by Apex in 2019 (Apex, 2019) detected PCBs (1.19 mg/kg) in a sediment sample within 20 feet of BH-TRH-3.]

Tailrace 1

A total of five sediment samples of the proposed eight samples were collected in Tailrace 1, not including a field duplicate which is discussed later in this section. Of the five samples, four were collected at the shallow depth (0.0–0.5 feet bgs) and one was collected at the deeper depth (1.0–1.5 feet bgs) which was location BH-TR1-3. Not all proposed samples were collected due to minimal thickness of sediment. BH-TR1-1 is the most downstream sample location of Tailrace 1 and the shallow interval sample results exceeded applicable screening criteria for some PP metals and the TEQ for dioxins/furans. The BH-TR1-2 location is at the effluent channel of the 'Grotto' and was only collected for the shallow interval. The results exceeded applicable screening criteria for TPH-Dx, some PP metals, and the TEQ for dioxins/furans. BH-TR1-3 included samples at both the shallow and deep intervals and is the furthest upstream sample within Tailrace 1. Both intervals exceeded applicable screening criteria for some PP metals, PAHs, and the TEQ for dioxins/furans, but only the deep interval exceeded for total PCBs. The shallow interval sample showed higher results than the deep interval sample for PP metals and PAHs. The BH-TR1-4 location is only a shallow interval sample from the thin layer of sediment (less than an inch thick) within the northern end of the Pipe Tunnel structure. The sample results exceeded applicable screening criteria for some PP metals, PAHs, and the TEQ for dioxins/furans.

To summarize the findings from the sediment sampling of Tailrace 1:

- The data indicates that the concentrations of COCs generally increase with distance upstream into the tailrace;
- The deeper sample at BH-TR1-3 generally had less significant exceedances than the shallow sample (notable exception being PCBs); and
- All COCs of this investigation were detected within the sampled sediments from Tailrace 1. Significant
 exceedances include BH-TR1-3 for total arsenic and BH-TR1-2 and BH-TR1-3 TEQ for dioxins/furans, all of
 which exceeded some DEO Risk Based Concentrations (RBCs).

Tailrace 2

A total of five sediment samples of the proposed ten samples were collected in Tailrace 2. Of the five samples, all were only sampled from the shallow depth interval (0.0–0.5 feet bgs); no deep interval samples (1.0–1.5 feet bgs) were collected due to the limited thickness of the sediment. BH-TR2-1 and BH-TR2-4 were located within the main tailrace channel near the discharge point of Tailrace 2. Both samples exceeded applicable screening criteria for some PP metals, TPH, PAHs, and the TEQ for dioxins/furans. BH-TR2-2 and BH-TR2-3 were located along the north and south banks of the main tailrace channel. Both samples exceeded applicable screening criteria for some PP metals, PAHs, and the TEQ for dioxins/furans. Most notably, the main channel sediment samples exceeded screening criteria for TPH while the bank samples did not exceed. BH-TR2-6 was the most upstream sediment sample for Tailrace 2 and exceeded applicable screening criteria for most COCs.

To summarize the findings from the sediment sampling of Tailrace 2:

- The concentrations and the variety of the COCs increase with distance upstream into the tailrace and towards the centerline of the channel; and
- Most of the COCs of this investigation were found within the sampled sediment of Tailrace 2. Exceedances of the listed occupational RBC include BH-TR2-6 for total arsenic, and all sampled locations for the dioxins/furans TEQ.

Quality Assurance Samples

A field duplicate sample was collected for the BH-TR1-1 location shallow interval to provide quality assurance of the laboratory analytical methods. The duplicate sample was collected in accordance with the methods detailed in the SAP (WSP, 2023). Apex Laboratories and Enthalpy Laboratories were both provided a duplicate field sediment sample. The percent difference is calculated between each analyte's result for each of the samples for each of the labs. The maximum percent difference in the analytical results provided by Apex was 32.97% and by Enthalpy was 41.05%.

A rinsate sample was collected in the field by the WSP sediment sampling team following a typical decontamination procedure between sediment samples to provide quality assurance in the mitigation of cross-sample-contamination. The sample was collected from the hand sampling tools using deionized water in accordance with the methods detailed in the SAP (WSP, 2023). Apex and Enthalpy were both provided a rinsate sample. The rinsate sample was analyzed for dioxins/furans, TPH-Dx, total lead, and PAHs. The results were non-detect for dioxins/furans and TPH-Dx. For PAHs, the calculated TEQ of benzo(a)pyrene shows as detected in **Table 3,** however all the PAH analytical results utilized to calculate this TEQ are below laboratory reporting limits. For total lead, the rinsate sample result was 0.210 micrograms/liter (ug/L), barely exceeding the laboratory report limit of 0.200 ug/L. For comparison, the minimum detection of total lead within the tailrace sediment samples was 8.83 milligrams per kilogram (mg/kg). Because the trace levels of COCs detected in the rinsate blank were well below screening levels, all sampling data are considered valid for use.

Stormwater Sampling

Samples were collected and analyzed for TPH by NWTPH-HCID with NWTPH-Dx and NWTPH-Gx as follow-up, PCBs by EPA 8082A, total and dissolved metals (RCRA-8) by EPA 6020B, PAHs by EPA 8270E, dioxins/furans by EPA 1613B, and total suspended solids (TSS) by SM 2540D. Downspout unit samples were only analyzed for total and dissolved metals. All analytical testing was performed by Apex except for dioxins/furans which were analyzed by Enthalpy. All locations were analyzed for pH, temperature, and conductivity in the field via a calibrated handheld meter. Stormwater samples results were compared against screening criteria as shown in **Table 3** (DEQ, 2024, DEQ, 2021, EPA, 2024).

Downspout Filter Units

The three sampled downspout units are Downspout #14 (DS-14), DS-24, and DS-8, as shown on **Figure 1**. The results of the influent or 'pre-filter' samples (direct roof runoff) for all three downspouts show exceedances of applicable screening criteria (i.e., DEQ Freshwater Chronic RBCs) for some total metals and some dissolved metals. Most notably, the influent sample to DS-14 had significantly higher concentrations for total zinc and total copper than the other downspout influent samples. This indicates that the roof area which contributes stormwater flow to DS-14 (potentially from the roofs of Buildings 42 and 43, as shown on **Figure 1**) is most likely a significant pollutant source to Tailrace 2.

The effluent or 'post-filter' sample results for all three downspouts show exceedances of applicable screening criteria for some total metals and some dissolved metals. Collecting influent and effluent samples from the downspout filter units allows for analysis of their current treatment efficiency. The average percent dissolved metals fraction of the total metals for influent samples is 75.7% which indicates that the majority of the metals pollutants in the stormwater are in the dissolved phase. The average percent dissolved metals for effluent samples from the downspout filters is 86.1%. This increase in percentage indicates the downspout filters are ineffective at removing dissolved-phase metals which is typically the predominant COC for industrial roof runoff. The average total metals removal efficiency for the sampled downspout units (only for metal analytes detected in

the samples) is 48.5%. The lack of maintenance of the downspout filter units has most likely decreased their treatment efficiency but the filters remain partially effective.

Gabion Filter Units

The two gabion filter units are located near the discharge location of Tailrace H (TRH Gabion) and within the pipe tunnel that discharges to Tailrace 1 (TR1 Gabion), as shown on Figures 3A and 3B. The results of the influent or 'pre-filter' samples for the TR1 Gabion units show exceedances of applicable screening criteria for some PP metals, some dissolved-phase PP metals, PCBs, PAHs, and the TEQ for dioxins/furans. The effluent or 'post-filter' samples for the TR1 Gabion units show decreases in concentrations for PCBs, PAHs, the TEQ for dioxins/furans, total copper, lead, and zinc compared to the influent samples. Most notably, the TR1 Gabion units remain partially effective at removing heavy metals from the stormwater; the treatment efficiency was calculated at 56.1%. The average percent dissolved-phase metals in comparison to the total metals concentrations of the influent samples was 78.1%.

The influent sample to the TRH Gabion units shows exceedances of the applicable screening criteria for some total metals, some dissolved-phase metals, and the TEQ for dioxins/furans. The effluent samples for the TRH Gabion units show no significant decreases in the concentrations of the COCs which exceeded applicable screening criteria, in fact in some cases the effluent sample concentration for a COC was greater than the influent sample concentration. Using total metals removal efficiency as a metric, the TRH Gabion units averaged only 4.8% removal efficiency. This poor removal efficiency could be due to failure of the treatment filter media or a partial or complete bypass of the TRH Gabion units.

DISPOSAL

Stormwater conveyance mapping and line cleaning generated waste materials which filled three 30 cubic yard (CY) solids containers and three 21,000-gallon aqueous containers. This translates into an estimated 50 tons of solid materials and approximately 50,000 gallons of water. Each container was sampled for PCBs, volatile organic carbons (VOCs), total metals, and dioxins/furans to be profiled for hazardous or non-hazardous waste management. All results were determined to be non-hazardous. The non-hazardous soil/solids will be disposed of at the Hillsboro Landfill (Hillsboro, Oregon), and the non-regulated liquids will be solidified and disposed of at the Chemical Waste Management facility (Arlington, Oregon). All containers are currently securely stored on-Site awaiting landfill approval. Detailed hazardous profiling results can be found in **Tables 4 and 5.**

DATA GAPS AND RECOMMENDATIONS

The comprehensive mapping effort of the stormwater conveyance system is considered complete to the maximum extent practicable. Any further efforts would most likely require unique and cost-prohibitive methods. It should be noted that these data gaps only capture the known stormwater lines which were unable to be mapped; the possibility remains that additional stormwater features could exist but have not been discovered. The remaining data gaps as unconfirmed lines are listed below.

- Downstream of CB-49, unable to be camera scoped due to collapse in pipe;
- Downstream of MH-22, unable to be camera scoped due to water backfilling features;
- Downstream of CB-50, unable to be camera scoped due to collapse in pipe;
- Downstream of MH-1, unable to be camera scoped due to collapse in pipe;
- Downstream of MH-14, unable to be camera scoped due to multiple bends in pipe preventing advancement of the camera; and
- Downstream of MH-5, unable to be camera scoped due to debris and pipe damage preventing the camera from advancing.
- Large size sump in Building 18 (approximately 21 feet by 25 feet by 8 feet deep), unable to be pumped due to excessive disposal volume.

Recommended next steps should be focused on further characterization on the type and extent of pollutants within the tailrace sediments. The comprehensive stormwater mapping allows for accurate identification of potential upstream areas for further sampling analysis.

LIMITATIONS

WSP services have been performed in accordance with the normal and reasonable standard of care exercised by similar professionals performing services under similar conditions and geographic locations. Except for our stated standard of care, no other warranties or guarantees are offered as part of WSP's contracted services.

ATTACHMENTS

Attachment A – Figures

Figure 1: Stormwater Site Plan

Figure 2: Stormwater Drainage Basins

Figures 3A - 3C: Sampling Results

Attachment B - Tables

Table 1: Stormwater Feature Inventory Log

Table 2: Sediment Sampling Data Analysis

Table 3: Stormwater Sampling Data Analysis

Table 4: Waste Sediment Profiling Analysis

Table 5: Wastewater Profiling Analysis

Attachment C - Site Photograph Log

Attachment D - Laboratory Analytical Reports

REFERENCES

Apex Companies, LLC. 2019. Phase II Environmental Site Investigation, Former Blue Heron Mill. January.

Code of Federal Regulations. 2024. Title 40 § 261.24 Toxicity Characteristic. December.

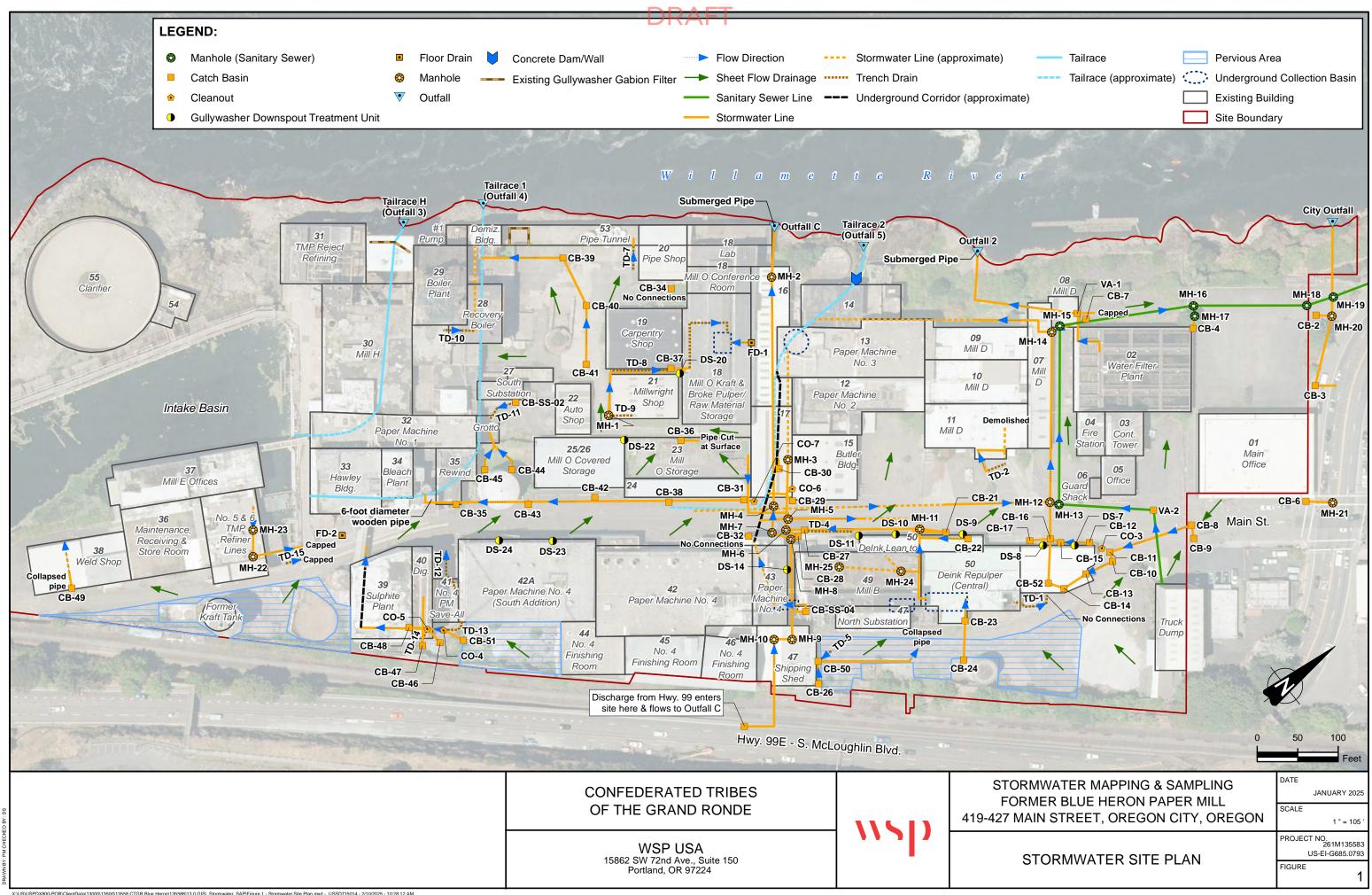
DEQ - see Oregon Department of Environmental Quality.

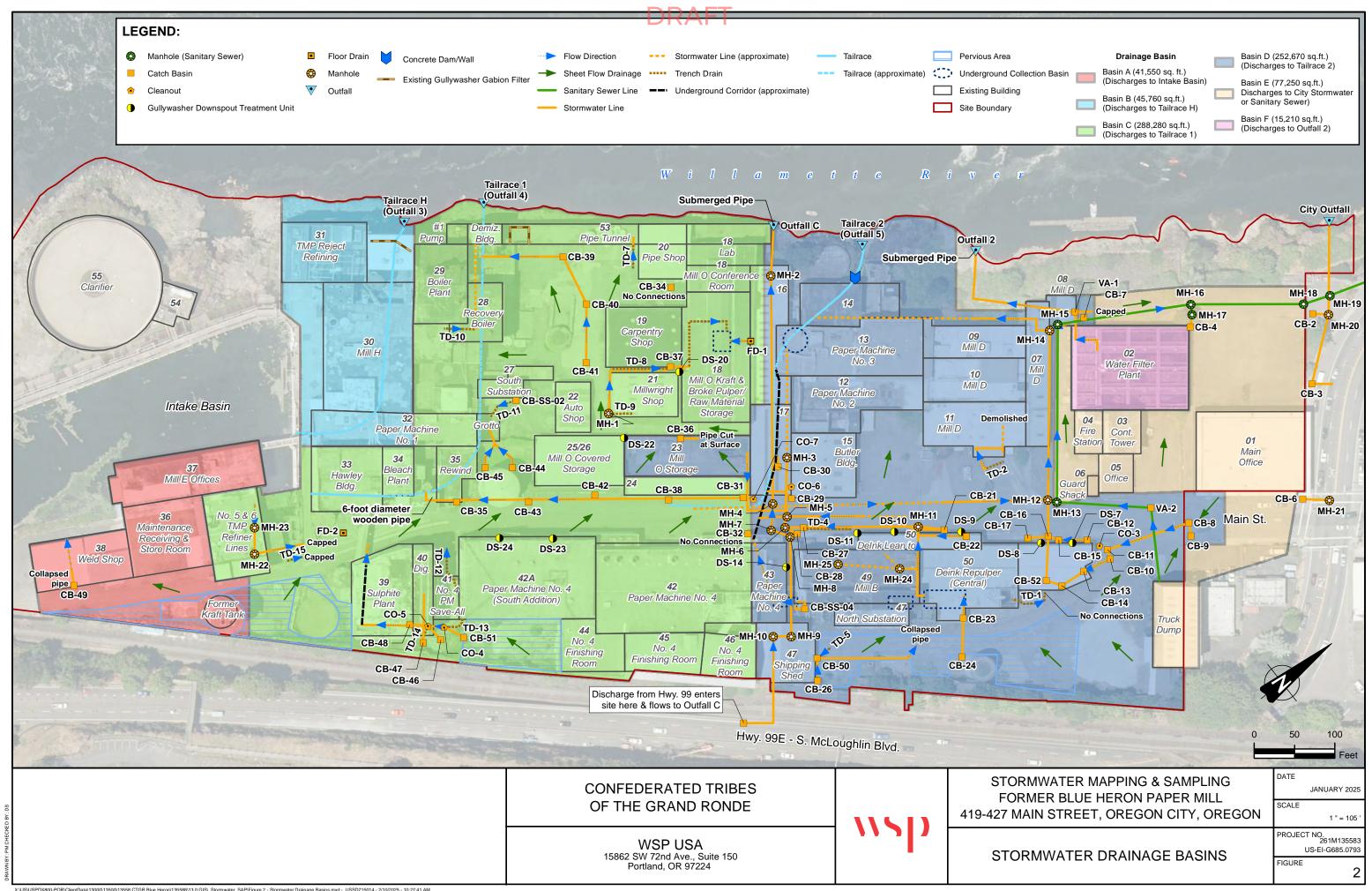
EPA – see United States Environmental Protection Agency.

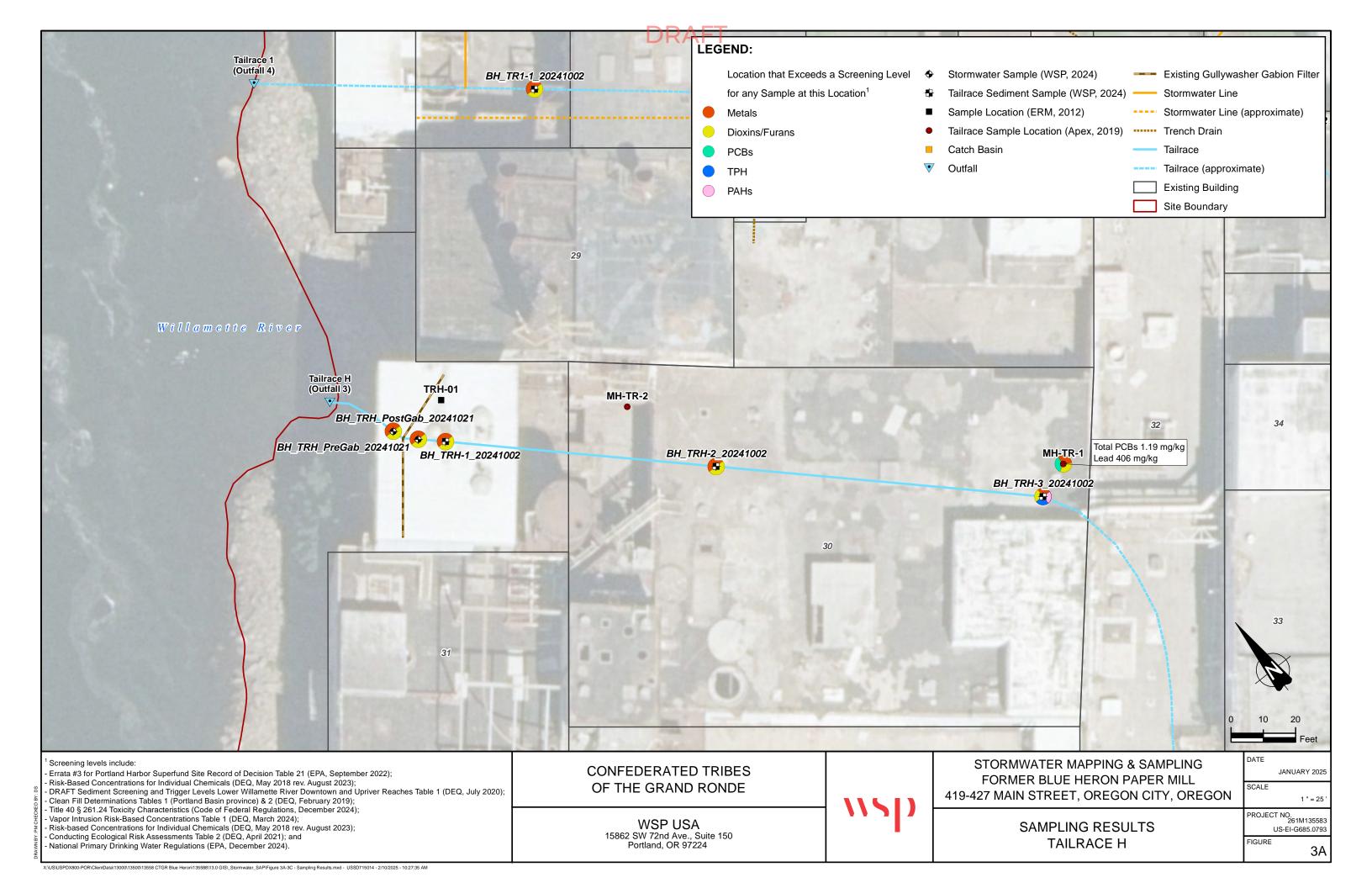
ERM, 2012. Phase II Environmental Site Assessment Results and Recommendations, blue Heron Mill, Oregon City, Oregon. Environmental Resources Management (ERM). August.

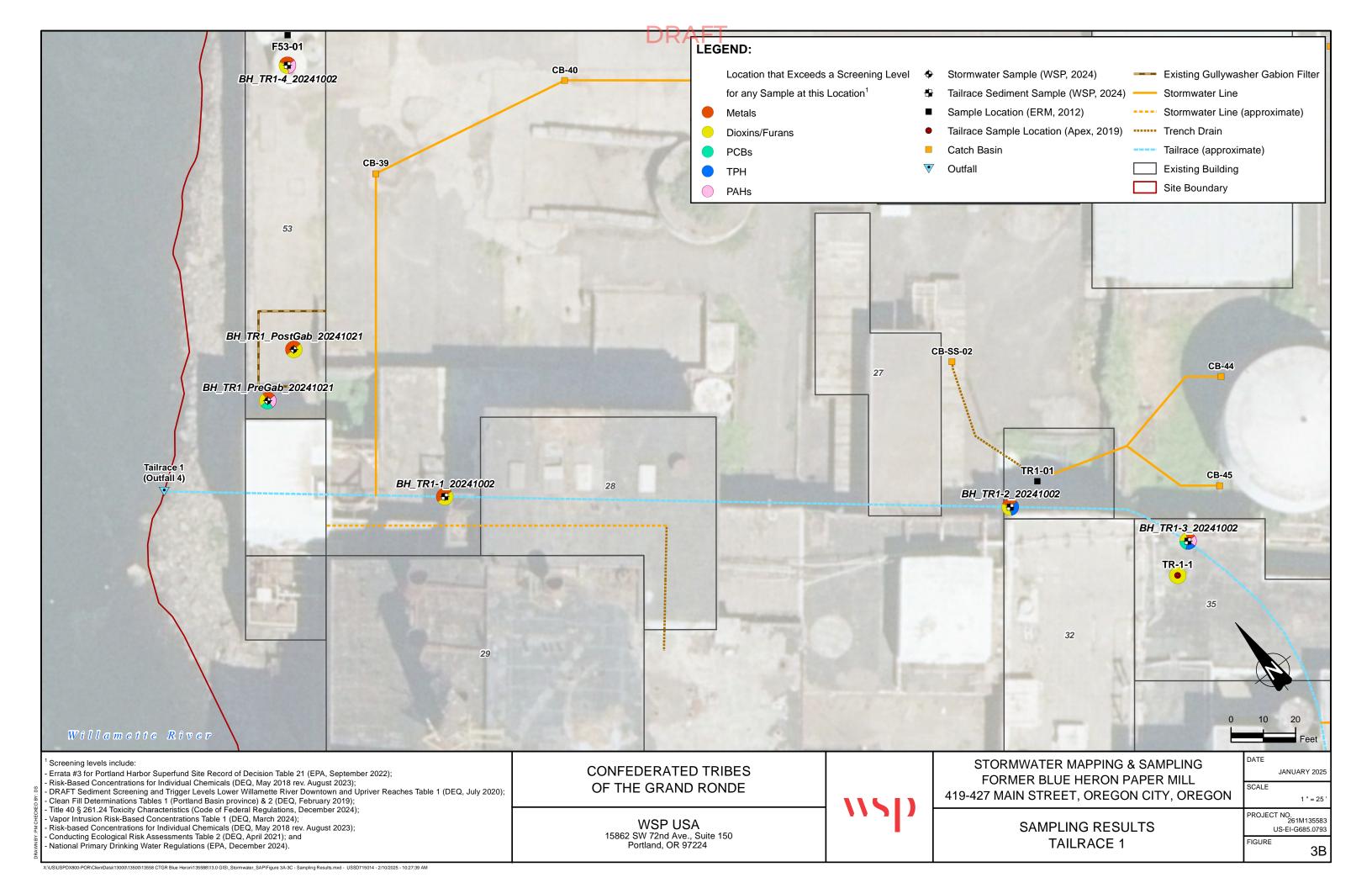
Oregon Department of Environmental Quality (DEQ). 2019. Clean Fill Determinations Table 1 (Portland Basin Province) and Table 2. February.

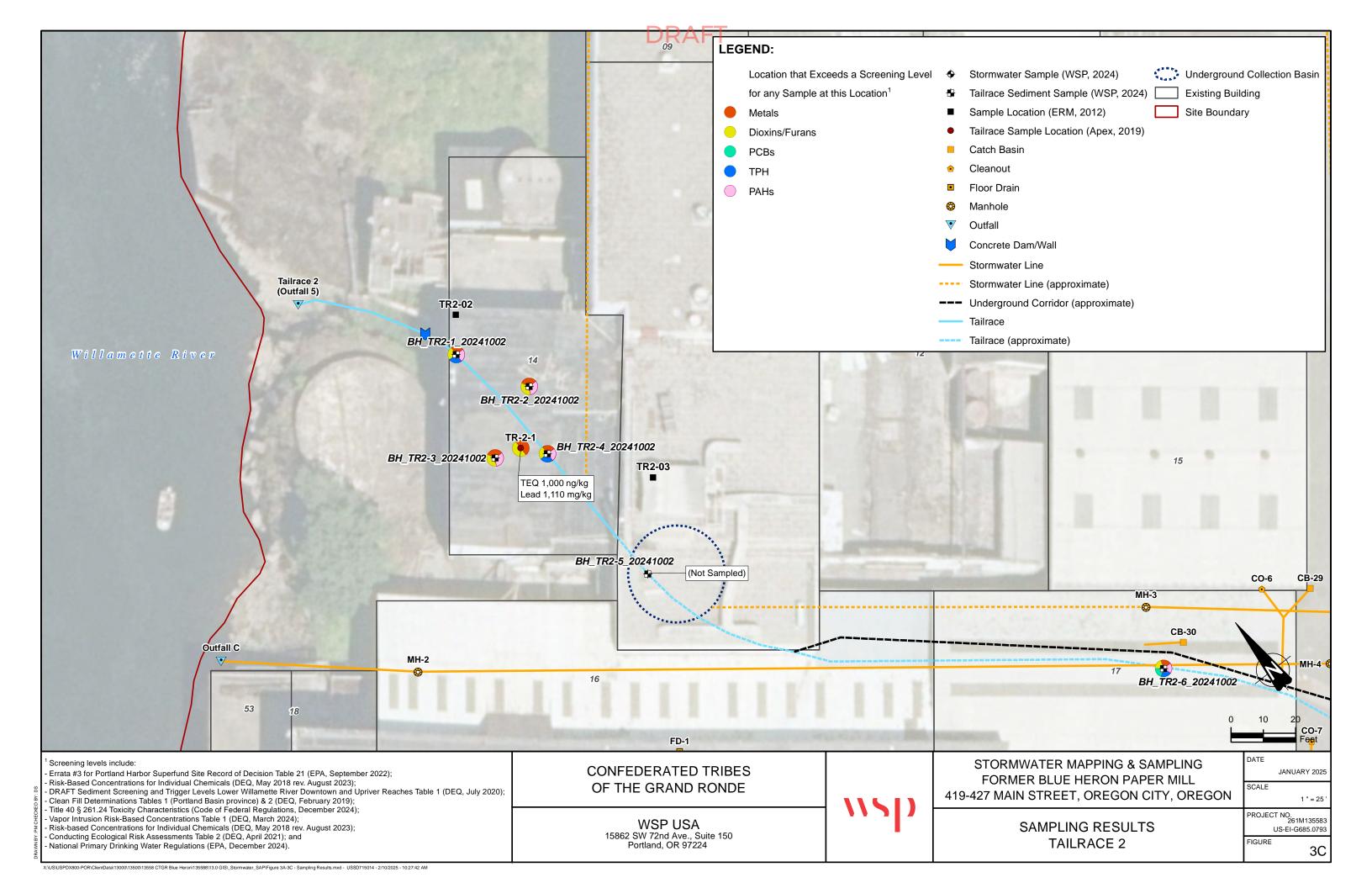
- ———, 2020. Draft Sediment Screening and Trigger Levels Lower Willamette River Downtown and Upriver Reaches Table 1. Oregon Department of Environmental Quality. July.
- ----, 2021. Conducting Ecological Risk Assessments Table 2. Oregon Department of Environmental Quality. April.
- ——, 2023. Risk-Based Concentrations for individual Chemicals. Oregon Department of Environmental Quality. May 2018, revised August.
- ———, 2024. Vapor Intrusion Risk-Based Concentration Table 1. Oregon Department of Environmental Quality. March.




- Stantec, 2022. Master Quality Assurance Project Plan (Revision 1) Former Blue Heron Mill Site. Stantec Consulting Services, Inc. May 13.
- United States Environmental Protection Agency (EPA). 2022. Errata #3 for Portland Harbor Superfund Site Record of Decision Table 21. United States Environmental Protection Agency. September.
- ———, 2024. National Primary Drinking Water Regulations. United States Environmental Protection Agency. December.
- Wood Environment & Infrastructure Solutions Inc. (Wood). 2020. Sediment and Stormwater Sampling Results Summary, Former Blue Heron Property. Wood Environment & Infrastructure Solutions, Inc. December 7.
- ——, 2022. Initial Stormwater Conveyance System Mapping Results (Revision 1) Former Blue Heron Paper Company Mill: January 12.
- WSP USA Environment & Infrastructure Inc. 2023. Sampling and Analysis Plan Stormwater Mapping & Sampling. Former Blue Heron Paper Company Mill. June 16.


x:\us\uspdx800-por\clientdata\13000\13500\13558 ctgr blue heron\13558\stormwater\wood files\stormwater mapping_july 2024\stormwater mapping and sampling memo\stormwater mapping and sampling memo\stormwater mapping and sampling memo\stormwater mapping and sampling memo.


ATTACHMENT A:


FIGURES

ATTACHMENT B:

TABLES

TABLE 1 - BLUE HERON STORMWATER FEATURE SOURCE CONTROL INVESTIGATION

	Gener	ral Info						Source Investigation Notes		
	Jene					т —		Source investigation Notes	Τ	
Feature Name	Feature Type	Dimensions (" = inches)	Drainage Basin	Sediment Depth Sept 2020 (" = inches)	Sediment Depth Sept/Oct 2024 (Pre-Cleaning) (" = inches)	Condition	Best Management Practices Implemented	Connections	Cleaning	Notes
CB-1	Catch Basin	Not Measured	E	Not Measured	Not Measured	Unknown - Off-Site	None	City Outfall	None	Off-Site
CB-2	Catch Basin	Not Measured	E	Not Measured	Not Measured	Unknown - Off-Site	None	City Outfall	None	Off-Site
CB-3	Catch Basin	Not Measured	E	Not Measured	Not Measured	Unknown - Off-Site	None	City Outfall	None	Off-Site
CB-4	Catch Basin	Not Measured	E	Not Measured	12"	Intact	Fabric Insert	CB-4 to MH-17	Cleaned Sept/Oct 2024	Connections confirmed
CB-5	Catch Basin	Not Measured	E	Not Measured	Not Measured	Demolished	None	Demolished	None	Off-Site
CB-6	Catch Basin	Not Measured	E	Not Measured	Not Measured	Unknown - Off-Site	None	City Outfall	None	Off-Site
CB-7	Catch Basin	28" x 12"	D	3"	4"	Intact	Fabric Insert	CB-7 to MH-14	Cleaned Sept/Oct 2024	Connections confirmed
CB-8	Catch Basin	30" diameter	D	3"	0"	Intact	Fabric Insert	CB-8 to CB-11	Cleaned Sept/Oct 2024	Connections confirmed
CB-9	Catch Basin	15" x 15"	D	15"	2"	Intact	Fabric Insert	CB-9 to CB-8	Cleaned Sept/Oct 2024	Connections confirmed
CB-10	Catch Basin	30" diameter	D	6"	2"	Intact	Fabric Insert	CB-10 to CB-13	Cleaned Sept/Oct 2024	Connections confirmed
CB-11	Catch Basin	30" diameter	D	4"	0"	Intact	Fabric Insert	CB-11 to CB-10	Cleaned Sept/Oct 2024	Connections confirmed
CB-12	Catch Basin	17" diameter	D	2"	2"	Intact	Fabric Insert	CB-12 to CB-15	Cleaned Sept/Oct 2024	Connections confirmed
CB-13	Catch Basin	30" diameter	D	12"	0"	Intact	Fabric Insert	CB-13 to CB-14	Cleaned Sept/Oct 2024	Connections confirmed
CB-14	Catch Basin	30" diameter	D	11"	0"	Intact	Fabric Insert	CB-14 to CB-14A	Cleaned Sept/Oct 2024	Connections confirmed
CB-15	Catch Basin	18" diameter	D	2"	5"	Intact	Fabric Insert	CB-15 to CB-16	Cleaned Sept/Oct 2024	Connections confirmed
CB-16	Catch Basin	30" diameter	D	12"	12"	Intact	Fabric Insert	CB-16 to MH-12	Cleaned Sept/Oct 2024	Connections confirmed
CB-17	Catch Basin	17" diameter	D	7"	7"	Intact	Fabric Insert	CB-17 to CB-16	Cleaned Sept/Oct 2024	Connections confirmed
CB-18	Catch Basin	24" x 24"	D	Full	N/A	Demolished	None	Demolished	None	Demolished
CB-21	Catch Basin	27" x 11"	D	9"	5"	Intact	Fabric Insert	CB-21 to MH-11	Cleaned Sept/Oct 2024	Connections confirmed
CB-22	Catch Basin	14" x 10"	D	0.25"	5"	Intact	Fabric Insert	CB-22 to MH-11	Cleaned Sept/Oct 2024	Connections confirmed
CB-23	Catch Basin	32" x 32"	D	14"	3"	Intact	Fabric Insert	CB-23 to Sump in Bldg 50	Cleaned Sept/Oct 2024	Connections confirmed
CB-24	Catch Basin	54" x 36"	D	2"	0.25"	Intact	Fabric Insert	CB-24 to CB-23	Cleaned Sept/Oct 2024	Connections confirmed
CB-25	Catch Basin	24" x 24"	D	32.5"	N/A	Demolished	None	Demolished	None	Demolished
CB-26	Catch Basin	24" x 24"	D	13"	6"	Intact	Fabric Insert	CB-26 to CB-50	Cleaned Sept/Oct 2024	Connections confirmed
CB-27	Catch Basin	58" x 35"	D	4"	12"	Intact	Fabric Insert	CB-27 to MH-6	Cleaned Sept/Oct 2024	Connections confirmed
CB-28	Catch Basin	28" x 14"	D	5"	32"	Intact	Fabric Insert	CB-28 to MH-6	Cleaned Sept/Oct 2024	Connections confirmed
CB-29	Catch Basin	24" x 24"	D	32"	3"	Intact	Fabric Insert	CB-29 to MH-3	Cleaned Sept/Oct 2024	Connections confirmed
CB-30	Catch Basin	18" x 18"	D	1"	1"	Intact	None	Utility Corridor	None	Vault door into Utility Corridor
CB-31	Catch Basin	24" x 24"	С	24"	1"	Intact	Fabric Insert	CB-31 to Tailrace 1	Cleaned Sept/Oct 2024	Connections confirmed
CB-32	Catch Basin	26" x 23"	С	2"	2"	Intact	None	No Connections	None	No connections found
CB-34	Catch Basin	15" diameter	С	14"	3"	Intact	Fabric Insert	Tailrace 1	None	Assumed connection to Tailrace 1
CB-35	Catch Basin	24" x 24"	С	26"	0"	Intact	Fabric Insert	CB-35 to Tailrace 1	Cleaned Sept/Oct 2024	Connections confirmed
CB-36	Catch Basin	24" x 24"	D	18"	5"	Intact	Fabric Insert	No Connections	None	No connections found
CB-37	Catch Basin	24" x 24"	С	15"	7"	Intact	Fabric Insert	CB-37 to TD-8	Cleaned Sept/Oct 2024	Connections confirmed
CB-38	Catch Basin	24" x 24"	С	20"	2"	Intact	Fabric Insert	CB-38 to Tailrace 1	Cleaned Sept/Oct 2024	Connections confirmed
CB-39	Catch Basin	28" x 13"	С	0"	3"	Intact	Fabric Insert	CB-39 to Tailrace 1	Cleaned Sept/Oct 2024	Connections confirmed
CB-40	Catch Basin	24" x 24"	С	17"	33"	Intact	Fabric Insert	CB-40 to CB-39	Cleaned Sept/Oct 2024	Connections confirmed
CB-41	Catch Basin	24" x 24"	С	19"	3"	Intact	Fabric Insert	CB-41 to CB-40	Cleaned Sept/Oct 2024	Connections confirmed
CB-42	Catch Basin	24" x 24"	С	17"	3"	Intact	Fabric Insert	CB-42 to Tailrace 1	Cleaned Sept/Oct 2024	Connections confirmed
CB-43	Catch Basin	24" x 24"	С	15"	1"	Intact	Fabric Insert	CB-43 to Tailrace 1	Cleaned Sept/Oct 2024	Connections confirmed
CB-44	Catch Basin	12" diameter	С	Not Measured	0"	Intact	None	CB-44 to Grotto	Cleaned Sept/Oct 2024	Connections confirmed
CB-45	Catch Basin	12" diameter	С	Not Measured	0"	Intact	None	CB-45 to Grotto	Cleaned Sept/Oct 2024	Connections confirmed
CB-46	Catch Basin	18" x 18"	С	3"	4"	Intact	Fabric Insert	CB-46 to CO-5	Cleaned Sept/Oct 2024	Connections confirmed
CB-47	Catch Basin	27" x 18"	С	2.5"	0.5"	Intact	Fabric Insert	CB-47 to Bldg 40	Cleaned Sept/Oct 2024	Connections confirmed
CB-48	Catch Basin	12" x 12"	С	3.5"	0.5"	Intact	Fabric Insert	CB-48 to Bldg 40	Cleaned Sept/Oct 2024	Connections confirmed
CB-49	Catch Basin	24" x 24"	Α	24.5"	10"	Intact	Fabric Insert	Unconfirmed	None	Collapsed pipe. Assumed connection to Intake Basin.
CB-50	Catch Basin	35" x 25"	D	16.5"	6"	Intact	Fabric Insert	CB-26 to CB-50.	None	Collapsed pipe to north
CB-51	Catch Basin	12" x 16"	С	Not Measured	12"	Intact	None	CB-51 to CO-4	None	Roots damaged pipe
CB-52	Catch Basin	24" diameter	D	Not Measured	4"	Intact	None	CB-52 to CB-16	Cleaned Sept/Oct 2024	Connections confirmed

	Genei	ral Info						Source Investigation Notes		
Feature Name	Feature Type	Dimensions (" = inches)	Drainage Basin	Sediment Depth Sept 2020 (" = inches)	Sediment Depth Sept/Oct 2024 (Pre-Cleaning) (" = inches)	Condition	Best Management Practices Implemented	Connections	Cleaning	Notes
	Catch Basin	36" x 24"	С	11.5"	4"	Intact	None	CB-SS-02 to Grotto	Cleaned Sept/Oct 2024	Connections confirmed
	Catch Basin	24" x 21"	D	4"	4"	Intact	Fabric Insert	CB-SS-04 to Bldg 43 Corridor	Cleaned Sept/Oct 2024	Connections confirmed
	Manhole	24" diameter	С	6"	6'	Damaged Outlet	None	TD-9 to MH-1	None	Collapsed outlet pipe
	Manhole	24" diameter	Outfall C	Not Measured	0"	Intact	None	MH-2 to Outfall C	None	Outfall C contains no Site discharge
	Manhole	24" diameter	D	Not Measured	Not Measured	Intact	None	Unconfirmed	Cleaned Sept/Oct 2024	MH-3 discharges to basin in Bldg 13
	Manhole	24" diameter	Outfall C	Not Measured	Not Measured	Intact	None	MH-4 to MH-2	None	Outfall C contains no Site discharge
	Manhole	24" diameter	D	Not Measured	Not Measured	Intact	None	Unconfirmed	Cleaned Sept/Oct 2024	Damaged pipe upstream of MH-5
	Manhole	24" diameter	D D	Not Measured	Not Measured	Intact	None	MH-6 to MH-3	Cleaned Sept/Oct 2024	Assumed downstream connection to MH-3
MH-7	Manhole	24" diameter	Outfall C	Not Measured	Not Measured	Intact	None	MH-7 to MH-4	None	Outfall C contains no Site discharge
	Manhole	24" diameter	Outfall C	Not Measured	Not Measured	Intact	None	MH-8 to MH-7	None	Outfall C contains no Site discharge
	Manhole	24" diameter	Outfall C	Not Measured	Not Measured	Intact	None	MH-9 to MH-8	None	Outfall C contains no Site discharge
	Manhole	24" diameter	Outfall C	Not Measured	Not Measured	Intact	None	MH-10 to MH-9	None	Outfall C contains no Site discharge
	Manhole Manhole	24" diameter 24" diameter	D	Not Measured	Not Measured	Intact, Inundated	None None	MH-11 to CB-27 MH-12 to MH-14	Cleaned Sept/Oct 2024	Connections confirmed
	Manhole	24 diameter	D E	Not Measured Not Measured	Not Measured Not Measured	Intact Intact	None	MH-13 to MH-15	Cleaned Sept/Oct 2024 Cleaned Sept/Oct 2024	Incoming line from west collapsed Connections confirmed
	Manhole	24" diameter	D	Not Measured	10"	Inundated	None		None	Assume connection to Tailrace 2
	Manhole	24" diameter	E	Not Measured	2"	Intact	None	Sanitary Sewer, No Scoping	None	Sanitary sewer connection
	Manhole	24" diameter	E	Not Measured	Not Measured	Intact	None	Sanitary Sewer, No Scoping Sanitary Sewer, No Scoping	None	Sanitary sewer connection
	Manhole	24" diameter	E	Not Measured	Not Measured	Intact	None	Sanitary Sewer, No Scoping Sanitary Sewer, No Scoping	None	Sanitary sewer connection
	Manhole	24" diameter	E	Not Measured	Not Measured	Intact	None	Sanitary Sewer, No Scoping	None	Sanitary sewer connection
	Manhole	24" diameter	E	Not Measured	Not Measured	Intact	None	Sanitary Sewer, No Scoping	None	Sanitary sewer connection
	Manhole	24" diameter	E	Not Measured	Not Measured	Not Inspected	Not Inspected	Not inspected	None	Connections assumed
	Manhole	24" diameter	E	Not Measured	Not Measured	Not Inspected	Not Inspected	Not inspected	None	Connections assumed
	Manhole	24" diameter	C	Not Measured	Not Measured	Inundated	None	MH-22 to MH-23	Cleaned Sept/Oct 2024	Capped downstream of MH-22
	Manhole	24" diameter	C	Not Measured	Not Measured	Inundated	None	MH-23 to MH-22	None	Assumed to receive flow from Intake Basin. Line capped.
	Manhole	24" diameter	D	Not Measured	Not Measured	Intact	None	MH-24 to MH-11	Cleaned Sept/Oct 2024	Downstream connection confirmed
	Manhole	24" diameter	D	Not Measured	Not Measured	Full of sediment	None	MH-25 to MH-24	Cleaned Sept/Oct 2024	Connection of MH-25 to MH-24 assumed
	Vault	12" x 12"	F	Not Measured	Not Measured	Intact	None	VA-1 to Outfall 2. Capped Upstream.	None	Connections confirmed
	Vault	24" x 24"	E	Not Measured	Not Measured	Intact	None	VA-2 to MH-13	None	Connections confirmed
	Cleanout	Unknown	E	Not Measured	Not Measured	Demolished	None	Not inspected	None	Demolished, further investigation not possible
	Cleanout	Unknown	E	Not Measured	Not Measured	Demolished	None	Not inspected	None	Demolished, further investigation not possible
	Cleanout	6" diameter	D	Not Measured	Not Measured	Intact	None	Not inspected	None	Unable to access
	Cleanout	6" diameter	С	Not Measured	Not Measured	Intact	None	CO-4 to CO-5	Cleaned Sept/Oct 2024	Connections confirmed
	Cleanout	6" diameter	С	Not Measured	Not Measured	Intact	None	CO-5 to Bldg 39	Cleaned Sept/Oct 2024	Connections confirmed
CO-6	Cleanout	6" diameter	D	Not Measured	Not Measured	Collapsed pipe	None	CO-6 to MH-3, CB-29	Cleaned Sept/Oct 2024	Connections confirmed
CO-7	Cleanout	6" diameter	С	Not Measured	Not Measured	Intact	None	CO-7 to CB-31	Cleaned Sept/Oct 2024	Connections confirmed
FD-1	Floor Drain	8" diameter	С	Not Measured	Not Measured	Intact	None	FD-1 to Basin in Bldg 18	Cleaned Sept/Oct 2024	Connections confirmed
FD-2	Floor Drain	8" diameter	C	Not Measured	Not Measured	Intact	None	Tailrace 1	None	Visually confirmed to drain directly into Tailrace 1.
TD-1	Trench Drain	8" wide	D	Not Measured	0"	Capped	None	Capped outlet	None	No connections found
TD-2	Trench Drain	8" wide	D	Not Measured	8"	Intact	None	TD-2 to demolished Bldg 11	Cleaned Sept/Oct 2024	Flows to demolished Bldg 11.
TD-3	Trench Drain	8" wide	D	Not Measured	Not Measured	Demolished	None	Not inspected	None	Demolished
TD-4	Trench Drain	12" wide	D	Not Measured	1"	Intact	None	TD-4 to CB-27	Cleaned Sept/Oct 2024	Connections confirmed
	Trench Drain	8" wide	D	Not Measured	6"	Intact	None	TD-5 to CB-50	Cleaned Sept/Oct 2024	Connections confirmed
	Trench Drain	8" wide	Outfall C	Not Measured	Not Measured	Demolished	None	Demolished	None	Demolished
	Trench Drain	12" wide	С	Not Measured	1"	Intact	None	TD-7 to Pipe Tunnel	Cleaned Sept/Oct 2024	Connections confirmed
	Trench Drain	12" wide	С	Not Measured	6"	Intact	None	TD-8 to Bldg 18 Basin	Cleaned Sept/Oct 2024	Connections confirmed
	Trench Drain	8" wide	С	Not Measured	3"	Intact	None	TD-9 to MH-1	Cleaned Sept/Oct 2024	Connections confirmed
	Trench Drain	8" wide	C	Not Measured	Not Measured	Intact	None	Unconfirmed	None	Assumed connection to Tailrace 1
	Trench Drain	12" wide	С	Not Measured	3"	Intact	None	TD-11 to Grotto	Cleaned Sept/Oct 2024	Connections confirmed
	Trench Drain	8" wide	C	Not Measured	Not Measured	Intact	None	Unconfirmed	None	Assumed connection to Tailrace 1
	Trench Drain	12" wide	C	Not Measured	3"	Intact	None	TD-13 to CO-4	Cleaned Sept/Oct 2024	Connections confirmed
TD-14	Trench Drain	12" wide	С	Not Measured	3"	Intact	None	TD-14 to CO-5	Cleaned Sept/Oct 2024	Connections confirmed

	Gener	ral Info						Source Investigation Notes		
	Gene	Tai IIIIO		1		<u> </u>	I	Jource investigation Notes	T	
Feature Name	Feature Type	Dimensions (" = inches)	Drainage Basin	Sediment Depth Sept 2020 (" = inches)	Sediment Depth Sept/Oct 2024 (Pre-Cleaning) (" = inches)	Condition	Best Management Practices Implemented	Connections	Cleaning	Notes
TD-15	Trench Drain	12" wide	С	Not Measured	2"	Capped Outlet	None	Capped Outlet	None	Capped outlet
	Downspout Unit	275 gallon tote	F	N/A	N/A	Removed	Gravity Biofilter	N/A	None	Building demolished. DS unit removed.
	Downspout Unit	275 gallon tote	F	N/A	N/A	Removed	Gravity Biofilter	N/A	None	Building demolished. DS unit removed.
DS-3	Downspout Unit	275 gallon tote	F	N/A	N/A	Removed	Gravity Biofilter	N/A	None	Building demolished. DS unit removed.
DS-4	Downspout Unit	275 gallon tote	D	N/A	N/A	Removed	Gravity Biofilter	N/A	None	Building demolished. DS unit removed.
DS-5	Downspout Unit	275 gallon tote	D	N/A	N/A	Removed	Gravity Biofilter	N/A	None	Building demolished. DS unit removed.
DS-6	Downspout Unit	275 gallon tote	D	N/A	N/A	Removed	Gravity Biofilter	N/A	None	Building demolished. DS unit removed.
DS-7	Downspout Unit	275 gallon tote	D	N/A	N/A	Connected. Not Maintained.	Gravity Biofilter	Flow to CB-15	None	Not maintained
DS-8	Downspout Unit	275 gallon tote	D	N/A	N/A	Connected. Not Maintained.	Gravity Biofilter	Flow to CB-16	None	Not maintained
DS-9	Downspout Unit	275 gallon tote	D	N/A	N/A	Connected. Not Maintained.	Gravity Biofilter	Flow to CB-21	None	Not maintained
DS-10	Downspout Unit	275 gallon tote	D	N/A	N/A	Connected. Not Maintained.	Gravity Biofilter	Flow to TD-4	None	Not maintained
DS-11	Downspout Unit	275 gallon tote	D	N/A	N/A	Connected. Not Maintained.	Gravity Biofilter	Flow to TD-4	None	Not maintained
DS-12	Downspout Unit	275 gallon tote	D	N/A	N/A	Removed	Gravity Biofilter	N/A	None	Building demolished. DS unit removed.
DS-13	Downspout Unit	275 gallon tote	D	N/A	N/A	Disconnected	Gravity Biofilter	N/A	None	DS unit disconnected. Not maintained.
DS-14	Downspout Unit	275 gallon tote	D	N/A	N/A	Connected. Not Maintained.	Gravity Biofilter	Flow to CB-28	None	Not maintained
DS-15	Downspout Unit	275 gallon tote	D	N/A	N/A	Removed	Gravity Biofilter	N/A	None	Building demolished. DS unit removed.
DS-16	Downspout Unit	275 gallon tote	D	N/A	N/A	Removed	Gravity Biofilter	N/A	None	Building demolished. DS unit removed.
DS-17	Downspout Unit	275 gallon tote	D	N/A	N/A	Removed	Gravity Biofilter	N/A	None	Building demolished. DS unit removed.
DS-18	Downspout Unit	275 gallon tote	D	N/A	N/A	Disconnected	Gravity Biofilter	N/A	None	DS unit disconnected. Not maintained.
DS-19	Downspout Unit	275 gallon tote	С	N/A	N/A	Removed	Gravity Biofilter	N/A	None	DS unit removed
DS-20	Downspout Unit	275 gallon tote	С	N/A	N/A	Disconnected	Gravity Biofilter	N/A	None	DS unit disconnected. Not maintained.
DS-21	Downspout Unit	275 gallon tote	С	N/A	N/A	Disconnected	Gravity Biofilter	N/A	None	DS unit disconnected. Not maintained.
DS-22	Downspout Unit	275 gallon tote	С	N/A	N/A	Disconnected	Gravity Biofilter	N/A	None	DS unit disconnected. Not maintained.
	Downspout Unit	275 gallon tote	С	N/A	N/A	Connected. Not Maintained.		N/A	None	Not maintained
	Downspout Unit	275 gallon tote	С	N/A	N/A	Connected. Not Maintained.		N/A	None	Not maintained
DS-25	Downspout Unit	275 gallon tote	Α	N/A	N/A	Removed		N/A	None	Building demolished. DS unit removed.
	Downspout Unit	275 gallon tote	Α	N/A	N/A			N/A	None	Building demolished. DS unit removed.
	Downspout Unit	275 gallon tote	Α	N/A	N/A			N/A	None	Building demolished. DS unit removed.
DS-28	Downspout Unit	275 gallon tote	Α	N/A	N/A	Removed	Gravity Biofilter	N/A	None	Building demolished. DS unit removed.
DS-29	Downspout Unit	275 gallon tote	Α	N/A	N/A	Removed	Gravity Biofilter	N/A	None	Building demolished. DS unit removed.
City Outfall		Unknown	Е	N/A	N/A		None	N/A	None	
Outfall 2	Outfall	Unknown	F	N/A	N/A	Unknown	None	N/A	None	
Tailrace 2	Outfall	Natural Channel	D	N/A	N/A	Unknown	None	N/A	None	
Outfall C	Outfall	Unknown	Outfall C	N/A	N/A	Unknown	None	N/A	None	
Tailrace 1	Outfall	Natural Channel	С	N/A	N/A	Unknown	Gabion Biofilter	N/A	None	
Tailrace H	Outfall	Natural Channel	В	N/A	N/A	Unknown	Gabion Biofilter	N/A	None	

				ТРН	by NWTPH	-HCID	TPH by N	NWTPH-Dx				PCBs by I	PA 8082A									Total M	etals by EF	A 6020B						TCLP Metals by EPA 1311/6020B
	Screening Criter	ia		Gasoline Range (C6-C10)	Diesel Range (C10-C22)	Oil Range (C22-C40)	Diesel Range (C10-C22)	Oil Range (C22-C40)	Total PCBs ⁶	Aroclor 1016	Aroclor 1221	Arocior 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc	Lead
				-	-	-	-	-	200	200	200	200	200	200	200	200	-	-	-	-	-	-	-	-	-	-	-	-	-	-
				1200	1100	-	1100	-	230	230	230	203	230	230	230	230	-	0.43	160	78	120000	3100	200	23	1500	-	390	-	-	-
				20000	14000	-	14000	-	590	590	590	590	590	590	590	590	-	1.9	2300	1100	-	47000	800	350	22000	-	5800	-	-	-
				9700	4600	-	4600	-	4900	4900	4900	4900	4900	4900	4900	4900	-	15	700	350	530000	14000	800	110	7000	-	1800	-	-	-
				<u> </u>	-	-	-	-	140000	140000	140000	140000	140000	140000	140000	140000	-	420	19000	9700	-	390000	800	2900	190000	-	49000	-	-	-
				31	9500	-	9500	-	240	240	240	240	240	240	240	240	-	-	-	-	-	-	30	-	-	-	-	-	-	-
				130	-	-	-	-	1100	1100	1100	1100	1100	1100	1100	1100	-	-	-	-	-	-	30	-	-	-	-	-	-	-
				-	-	-	-	-	9	9	9	9	9	9	9	9	-	2.9	-	0.63	76	-	35	0.2	-	-	-	-	123	-
				-	1100	1100	1100	1100	230	1100	4.8	4.8	41	7.3	41	240	0.56	8.8	2.0	0.63	76	34	28	0.23	47	0.71	0.82	5.2	180	-
RCR/				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5
Sample ID	bgs bgs bgs				mg/kg		mg	g/kg				ug	/kg										mg/kg							mg/L
BU BUB! (BU TB! 4 0 0 5)	bgs)		·	11.40.0					11.00.0	11000	11000			11000	1 11 00 0	11.00.0	11.4.00					40=		0.070	47.0	11400	1110010	110040		•
BH_DUP1 (BH_TR1-1_0-0.5)	0		10/2/2024 10/2/2024	U 19.9 U 19.6	U 49.8 U 49.0	DET	U 74.6	377	U 66.9 U 74.1	U 66.9 U 74.1	U 66.9 U 74.1	U 66.9	U 1.06 U 1.05	4.03 4.77	0.329	0.655 0.668	37.7 37.8	187	21.2	0.259	47.3	U 1.06 U 1.05	U 0.212	U 0.212 U 0.210		NA NA				
BH_TR1-1_0-0.5_20241002 BH_TR1-2_0-0.5_20241002	, ,		10/2/2024	U 19.6		DET	U 66.9 U 82.0	351 1.570	U 82.6	U 74.1	U 82.6	U 74.1 U 82.6	U 74.1 U 82.6	U 74.1 U 82.6	U 74.1 U 82.6	U 74.1 U 82.6	1.17	3.44	U 0.193	0.668	22.6	279 102	29.4 62.4	0.363	46.1 31.7		U 0.193		436 271	NA NA
			10/2/2024	U 99.1		DET	U 455	1,710	U 93.9	U 93.9	U 93.9	U 93.9	U 93.9	U 93.9	U 93.9	U 93.9	U 1.06	10.6	U 0.212	0.716	34.7	161	96.7	0.223	54.3	U 1.06	U 0.212		180	NA NA
BH TR1-3 1-1.5 20241002			10/2/2024	U 19.5	U 48.7	DET	U 467	1,710	93.6	U 87.7	93.6	U 87.7	U 1.05	5.75	U 0.212	0.346	28.8	65.1	71.0	0.223	35.6	U 1.05	U 0.212	U 0.212	130	NA NA				
BH TR1-4 0-0.5 20241002	· · · · · · · · · · · · · · · · · · ·		10/2/2024	U 19.6	U 49.0	DET	U 80.0	704	U 68.0	U 68.0	U 68.0	U 68.0	U 68.0	U 68.0	U 68.0	U 68.0	3.00	6.98	U 0.207	1.64	17.0	83.5	77.1	0.0961	41.9	U 1.03	0.551	U 0.207	1,220	NA NA
BH TR2-1 0-0.5 20241002			10/2/2024	U 19.8	U 49.4	DET	U 820	2,900	U 88.1	U 88.1	U 88.1	U 88.1	U 88.1	U 88.1	U 88.1	U 88.1	U 1.08	3.97	U 0.216	0.235	18.4	68.2	331	0.211	20.4	U 1.08	U 0.216		212	U 0.0500
BH TR2-2 0-0.5 20241002	<u> </u>		10/2/2024	U 18.6	U 46.6	DET	U 91.7	445	U 79.7	U 79.7	U 79.7	U 79.7	U 79.7	U 79.7	U 79.7	U 79.7	NA	NA	NA NA	NA	NA	NA	170	NA NA	NA NA	NA	NA	NA	NA	0.111
BH TR2-3 0-0.5 20241002	0		10/2/2024	U 18.9	U 47.3	DET	U 87.0	624	U 75.8	U 75.8	U 75.8	U 75.8	U 75.8	U 75.8	U 75.8	U 75.8	NA	NA	NA	NA	NA	NA	47.0	NA	NA	NA	NA	NA	NA	NA
BH_TR2-4_0-0.5_20241002	0		10/2/2024	U 18.6	U 46.4	DET	U 712	1,910	U 82.6	U 82.6	U 82.6	U 82.6	U 82.6	U 82.6	U 82.6	U 82.6	U 1.02	4.35	U 0.204	0.378	19.8	96.8	54.5	0.250	46.0	U 1.02	U 0.204	U 0.204	165	NA
BH_TR2-6_0-0.5_20241002	0	0.5	10/2/2024	U 99.1	U 248	DET	U 397	4,210	88.9	U 88.1	88.9	U 88.1	2.71	9.01	U 0.204	2.45	53.7	337	529	1.54	48.7	U 1.02	1.29	U 0.204	2,260	U 0.0500				
BH_TRH-1_0-0.5_20241002	0	0.5	10/2/2024	U 19.1	U 47.8	DET	U 67.3	424	U 89.3	U 89.3	U 89.3	U 89.3	U 89.3	U 89.3	U 89.3	U 89.3	U 1.03	2.87	U 0.206	0.224	21.1	81.9	33.4	0.108	16.7	U 1.03	U 0.206	U 0.206	131	NA
BH_TRH-2_0-0.5_20241002	0	0.5	10/2/2024	U 20.0	U 50.0	U 99.9	NA	NA	U 94.8	U 94.8	U 94.8	U 94.8	U 94.8	U 94.8	U 94.8	U 94.8	U 1.09	1.24	U 0.217	U 0.217	10.9	30.3	9.48	U 0.0870	14.7	U 1.09	U 0.217	U 0.217	102	NA
BH_TRH-2_1-1.5_20241002	1	1.5	10/2/2024	U 18.7	U 46.7	DET	U 96.2	546	U 92.2	U 92.2	U 92.2	U 92.2	U 92.2	U 92.2	U 92.2	U 92.2	U 1.08	1.69	U 0.217	U 0.217	10.5	35.0	8.83	U 0.0868	12.8	U 1.08	U 0.217	U 0.217	266	NA
BH_TRH-3_0-0.5_20241002	0	0.5	10/2/2024	U 19.0	U 47.5	U 95.1	NA	NA	U 79.1	U 79.1	U 79.1	U 79.1	U 79.1	U 79.1	U 79.1	U 79.1	U 1.00	5.04	U 0.201	U 0.201	1.47	7.19	10.3	U 0.0803	2.72	U 1.00	U 0.201	U 0.201	9.25	NA
BH_TRH-3_1-1.5_20241002	1	1.5	10/2/2024	U 19.1	U 47.8	DET	U 1750	42,500	U 70.9	U 70.9	U 70.9	U 70.9	U 70.9	U 70.9	U 70.9	U 70.9	U 1.09	2.97	U 0.219	U 0.219	2.49	10.5	219	U 0.0875	U 2.19	U 1.09	U 0.219	U 0.219	384	U 0.0500

Bold numbers indicate detections

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Light blue highlight indicates a detection which exceeds one or more regulatory standards Blue highlight indicates a detection which exceeds Clean Fill screening levels

Yellow highlight indicates a detection which exceeds the Clean Fill and Sediment Screening Levels
Orange highlight indicates a detection that exceed listed Residential, Occupational, or Construction Worker RBCs

Red highlight indicates a detection that exceeds listed Excavation Worker RBCs
Maroon highlight indicates a detection which exceeds RCRA Hazardous Waste Screening Levels

Green highlight indicates arsenic result less than Portland Basin background level of 8.8 mg/kg

- ¹ = Errata #3 for Portland Harbor Superfund Site Record of Decision Table 21 (EPA, September 2022).
- ² = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- ³ = DRAFT Sediment Screening and Trigger Levels Lower Willamette River Downtown and Upriver Reaches Table 1 (DEQ, July 2020).
- ⁴ = Clean Fill Determinations Tables 1 (Portland Basin province) & 2 (DEQ, February 2019).
- 5 = Title 40 \S 261.24 Toxicity characteristic (Code of Federal Regulations, December 2024).
- ⁶ = Total PCBs calculated as the sum of detect aroclors
- 7 = Benzo(a)pyrene TEQ calculated using TEFs specified in Human Health Risk Assessment Guidance (DEQ, 2010) and 1/2 the reporting limit for calculating non-detects.
- ⁸TEQ as

Abbreviations:

- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality

DET = Detected

EPA = Environmental Protection Agency

ft bgs = Feet below ground surface

J = Result is an estimated value

mg/kg = Milligrams per kilogram

mg/L = Milligrams per liter

NA = Sample not analyzed for this constituent ND = Analyte or summation not detected

NWTPH = Northwest Method Total Petroleum Hydrocarbons

PCBs = Polychlorinated Biphenyls

pg/g = Picograms per gram

PTW = Principal Threat Waste

RBCss = Risk-Based Concentrations for soil ingestion, dermal contact, and inhalation exposure pathways

RBCsw = Risk-Based Concentrations for leaching to groundwater pathway

RCRA = Resource Conservation and Recovery Act

TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient

TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

												Polycyclic Ar	omatic Hydroc	arbons (PAHs	s) by EPA 8270	E							
	Screening Criter	ia		Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(a)pyrene TEQ ⁷	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Dibenzofuran
	d Harbor PTW Th			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	140000	-	-	-
	RBCss Reside			4700000	-	23000000	1100	110	110	1100	11000	-	110000	110	2400000	3100000	1100	-	-	5300	-	1800000	-
	RBCss Occupa			70000000	-	350000000	21000	2100	2100	21000	210000	-	2100000	2100	30000000	47000000	21000	-	-	23000	-	23000000	-
	DEQ RBCss Construction Worker ² DEQ RBCss Excavation Worker ² DEQ RBCsw Residential ²			21000000	-	110000000	170000	17000	17000	170000	1700000	-	17000000	17000	10000000	14000000	170000	-	-	580000	-	7500000	-
	DEQ RBCss Excavation Worker ²			590000000	-	-	4800000	490000	490000	4900000	49000000	-	490000000	490000	280000000	390000000	4900000	-		16000000	-	210000000	-
	DEQ RBCss Excavation Worker ² DEQ RBCsw Residential ² DEQ RBCsw Occupational ²			<u> </u>	-	-	1600	4400	4400	-	-	-	-	-	-	-	-	-		77	-	-	-
				<u> </u>	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	340	-	-	-
	DEQ RBCsw Residential ² DEQ RBCsw Occupational ² Sediment Screening Levei ³			<u> </u>		-	-	85	85	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	DEQ RBCsw Occupational ² Sediment Screening Level ³ Clean Fill Screening Level ⁴			250	120000	6800	730	110	110	1100	11000	25000	3100	110	10000	3700	1100	360	11000	77	5500	10000	2.0
RCRA				- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sample ID	DEQ RBCsw Occupational ² Sediment Screening Level ³ Clean Fill Screening Level ⁴ RCRA Characteristic Waste ⁵ Start Depth (ft End Depth (ft												ug	J/kg									
BH DUP1 (BH TR1-1 0-0.5)	Dgs)		10/2/2024	U 41.5	U 41.5	U 41.5	U 41.5	U 41.5	48.2	U 41.5	U 41.5	U 41.5	U 41.5	U 41.5	U 41.5	U 41.5	U 41.5	U 41.5	U 41.5	U 41.5	U 41.5	U 41.5	U 41.5
BH TR1-1 0-0.5 20241002	0	0.5	10/2/2024	U 40.3	U 40.3	U 40.3	U 40.3	U 40.3	46.8	U 40.3	U 40.3	U 40.3	U 40.3	U 40.3	U 40.3	U 40.3	U 40.3	U 40.3	U 40.3	U 40.3	U 40.3	U 40.3	U 40.3
BH TR1-2 0-0.5 20241002	0	0.5	10/2/2024	U 34.7	U 34.7	U 34.7	U 34.7	39.7	69.5	58.8	U 34.7	66.3	42.2	U 34.7	49.7	U 34.7	39.9	U 34.7	U 34.7	U 34.7	U 34.7	63.2	U 34.7
BH TR1-3 0-0.5 20241002	0	0.5	10/2/2024	262	195	400	884	701	1,068	1,440	501	556	2,370	U 139	816	141	519	U 139	U 139	U 139	183	1,020	U 139
BH_TR1-3_1-1.5_20241002	1	1.5	10/2/2024	123	106	221	145	153	274	291	91.3	291	217	50.4	359	89.5	228	U 39.2	U 39.2	U 39.2	117	333	U 39.2
BH_TR1-4_0-0.5_20241002	0	0.5	10/2/2024	U 36.1	U 36.1	43.9	81.3	100	156	178	57.6	113	170	U 36.1	253	U 36.1	100	U 36.1	U 36.1	U 36.1	189	300	U 36.1
BH_TR2-1_0-0.5_20241002	0	0.5	10/2/2024	295	U 37.0	406	208	144	220	268	74.2	65.0	280	U 37.0	1,090	231	82.3	74.8	64.2	U 37.0	1,790	1,100	52.5
BH_TR2-2_0-0.5_20241002	0	0.5	10/2/2024	U 49.0	U 49.0	76.8	108	116	182	191	61.8	93.5	142	U 49.0	255	U 49.0	96.0	U 49.0	U 49.0	U 49.0	92.6	256	U 49.0
BH_TR2-3_0-0.5_20241002	0	0.5	10/2/2024	285	419	892	206	308	542	504	142	677	335	94.5	596	198	597	65.0	68.2	U 37.2	673	564	U 37.2
BH_TR2-4_0-0.5_20241002	0	0.5	10/2/2024	176	U 44.2	172	111	65.9	113	114	U 44.2	U 44.2	142	U 44.2	758	129	U 44.2	U 44.2	U 44.2	U 44.2	925	639	U 44.2
BH_TR2-6_0-0.5_20241002	0	0.5	10/2/2024	U 48.5	185	172	423	548	973	1,170	430	762	704	182	616	U 48.5	712	U 48.5	U 48.5	U 48.5	212	741	U 48.5
BH_TRH-1_0-0.5_20241002	0	0.5	10/2/2024	U 38.9	U 38.9	U 38.9	U 38.9	U 38.9	45.1	U 38.9	U 38.9	U 38.9	U 38.9	U 38.9	41.0	U 38.9	U 38.9	U 38.9	U 38.9	U 38.9	U 38.9	49.2	U 38.9
BH_TRH-2_0-0.5_20241002	0	0.5	10/2/2024	U 47.2	U 47.2	U 47.2	U 47.2	U 47.2	54.8	U 47.2	U 47.2	U 47.2	U 47.2	U 47.2	U 47.2	U 47.2	U 47.2	U 47.2	U 47.2	U 47.2	U 47.2	U 47.2	U 47.2
BH_TRH-2_1-1.5_20241002	1	1.5	10/2/2024	U 33.8	U 33.8	U 33.8	U 33.8	U 33.8	39.2	U 33.8	U 33.8	U 33.8	U 33.8	U 33.8	U 33.8	U 33.8	U 33.8	U 33.8	U 33.8	U 33.8	U 33.8	U 33.8	U 33.8
BH_TRH-3_0-0.5_20241002	0	0.5	10/2/2024	U 43.5	U 43.5	U 43.5	U 43.5	U 43.5	50.5	U 43.5	U 43.5	U 43.5	U 43.5	U 43.5	U 43.5	U 43.5	U 43.5	U 43.5	U 43.5	U 43.5	U 43.5	U 43.5	U 43.5
BH_TRH-3_1-1.5_20241002	1	1.5	10/2/2024	U 48.3	U 48.3	U 48.3	U 80.2	U 80.2	315	U 48.3	U 48.3	U 483	U 84.1	U 483	U 48.3	U 48.3	U 483	U 48.3	U 48.3	U 48.3	U 48.3	53.0	U 48.3

Bold numbers indicate detections

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Light blue highlight indicates a detection which exceeds one or more regulatory standards

Blue highlight indicates a detection which exceeds Clean Fill screening levels

Yellow highlight indicates a detection which exceeds the Clean Fill <u>and Sediment Screening Levels</u>

Orange highlight indicates a detection that exceed listed Residential, Occupational, or Construction Worker RBCs

Red highlight indicates a detection that exceeds listed Excavation Worker RBCs Maroon highlight indicates a d

Green highlight indicates arsenic result less than Portland Basin background level of 8.8 mg/kg

- ¹ = Errata #3 for Portland Harbor Superfund Site Record of Decision Table 21 (EPA, September 2022).
- ² = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- ³ = DRAFT Sediment Screening and Trigger Levels Lower Willamette River Downtown and Upriver Reaches Table 1 (DEQ, July 2020).
- ⁴ = Clean Fill Determinations Tables 1 (Portland Basin province) & 2 (DEQ, February 2019).
- $^{\rm 5}$ = Title 40 \S 261.24 Toxicity characteristic (Code of Federal Regulations, December 2024).
- ⁶ = Total PCBs calculated as the sum of detect aroclors
- 7 = Benzo(a)pyrene TEQ calculated using TEFs specified in Human Health Risk Assessment Guidance (DEQ, 2010) and 1/2 the reporting limit for calculating non-detects. ⁸TEQ as

Abbreviations:

- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality

DET = Detected

EPA = Environmental Protection Agency

ft bgs = Feet below ground surface J = Result is an estimated value

mg/kg = Milligrams per kilogram

mg/L = Milligrams per liter

NA = Sample not analyzed for this constituent

ND = Analyte or summation not detected

NWTPH = Northwest Method Total Petroleum Hydrocarbons PCBs = Polychlorinated Biphenyls

pg/g = Picograms per gram

PTW = Principal Threat Waste

RBCss = Risk-Based Concentrations for soil ingestion, dermal contact, and inhalation exposure pathways

RBCsw = Risk-Based Concentrations for leaching to groundwater pathway

RCRA = Resource Conservation and Recovery Act

TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient

TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

															Dioxir	ns and Fura	ıns by EPA	1613B												Percent Solids by 8000D
	Screening Criter	ia		2,3,7,8-TCDD	2,3,7,8-TCDD Equivalents (TEQ) ⁸	Total TCDD	1,2,3,7,8-PeCDD	Total PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDD	1,2,3,7,8,9-HxCDD	Total HxCDD	1,2,3,4,6,7,8-HpCDD	Total HpCDD	осрр	2,3,7,8-TCDF	Total TCDF	1,2,3,7,8-PeCDF	2,3,4,7,8-PeCDF	Total PeCDF	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDF	2,3,4,6,7,8-HxCDF	1,2,3,7,8,9-HxCDF	Total HxCDF	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	Total HpCDF	осрғ	Percent Solids
	DEQ RBCss Residential ² DEQ RBCss Occupational ²			10	10	-	10	-	-	-	-	-	-	-	-	600	-	-	200	-	400	-	-	-	-	-	-	-	-	-
DEG	DEQ RBCss Occupational ²			4.7	4.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEQ	RBCss Occupa	tional ²		16	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEQ RB0	DEQ RBCss Construction Worker ²			170	170	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEQ RB	Css Excavation	Worker ²		4800	4,800	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEQ	RBCsw Reside	ential ²		6.8	6.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEQ	RBCsw Occupa	tional ²		31	31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sedi	ment Screening	Level ³		1.0	10	-	-	-	-	-	-	-	-	-	-	0.40658	-	-	0.3	-	0.4	-	-	-	-	-	-	-	-	-
Clea	n Fill Screening I	Level⁴		0.29	0.29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
RCRA	Characteristic \	Vaste ⁵		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sample ID	DEQ RBCss Construction Worker ²		Sample Date													pg	g/g													%
BH DUP1 (BH TR1-1 0-0.5)	DEQ RBCss Occupational ²		10/2/2024	U 0.266	3.49	4.02	J 0.574	5.37	J 0.710	4.04	J 1.63	26.2	81.3	168	814	2.33	18.5	J 0.946	J 0.896	14.9	J 1.79	J 1.27	J 0.680	U 0.238	29.1	29.6	J 1.34	70.1	40.7	89.7
BH TR1-1 0-0.5 20241002	0		10/2/2024	U 0.369	3.28	6.00	J 0.932	8.40	U 0.569	3.18	U 1.41	22.4	65.6	140	651	2.61	21.0	J 0.997	J 1.24	12.4	J 1.32	J 0.934	J 0.604		22.5	21.6	J 0.892	49.7	32.4	90.0
BH TR1-2 0-0.5 20241002	0	0.5	10/2/2024	3.73	80.6	22.9	7.18	50.9	5.19	114	41.7	687	1,950	3,560	25,300	157	234	4.05	7.72	89.1	10.3	5.46	6.97	J 1.40	451	510	14.4	2,150	2,270	49.6
BH_TR1-3_0-0.5_20241002	0	0.5	10/2/2024	U 1.3	91.4	6.16	4.13	32.3	7.64	114	23.4	911	4,460	9,890	42,600	8.53	25.3	7.24	14.0	179	19.3	9.55	8.56	5.02	686	558	10.8	1,460	731	60.5
BH_TR1-3_1-1.5_20241002	1	1.5	10/2/2024	2.18	95.5	6.88	4.35	35.0	7.62	155	37.9	904	3,350	6,700	35,100	69.4	112	8.38	18.1	196	23.9	12.0	13.5	5.30	782	645	11.7	1,600	686	39.5
BH_TR1-4_0-0.5_20241002	0	0.5	10/2/2024	U 0.613	10.9	8.18	3.06	30.3	3.89	12.7	7.38	118	262	534	1,990	2.77	40.0	J 1.75	J 1.29	51.8	4.46	2.83	U 1.75	U 0.64	91.0	70.5	3.56	174	82.1	44.2
BH_TR2-1_0-0.5_20241002	0	0.5	10/2/2024	1.38	35.8	30.4	3.44	41.0	4.31	33.4	11.2	381	1,600	4,210	15,400	7.48	30.3	3.24	4.79	54.6	9.49	6.13	4.54	U 1.45	233	103	6.54	401	266	48.3
BH_TR2-2_0-0.5_20241002	0	0.5	10/2/2024	U 0.667	18.7	3.48	J 1.96	17.2	4.58	21.3	7.26	199	730	1,700	8,890	8.04	19.6	J 0.753	J 2.35	27.0	4.42	U 1.72	2.66	J 1.53	105	85.7	5.17	460	690	73.7
BH_TR2-3_0-0.5_20241002	0		10/2/2024	U 0.34	26.1	4.48	J 1.21	11.9	2.41	19.1	6.13	334	1,440	4,250	13,100	2.25	9.03	J 2.04	3.65	39.4	6.80	3.07	U 2.26	3.61	164	88.4	8.19	322	217	70.6
BH_TR2-4_0-0.5_20241002	0	0.5	10/2/2024	U 0.603	17.5	22.7	J 1.79	18.1	J 1.95	22.6	5.03	132	680	1,400	8,490	4.27	17.4	J 1.23	2.50	35.8	4.49	3.95	J 2.31	J 0.673	144	93.0	3.66	314	195	60.3
BH_TR2-6_0-0.5_20241002	0	0.5	10/2/2024	U 1.07	19.7	30.3	3.71	39.8	3.38	18.9	10.0	184	451	1,100	4,320	10.5	45.2	5.33	7.43	88.9	11.7	6.32	2.64	3.01	137	84.3	22.6	240	230	74.3
BH_TRH-1_0-0.5_20241002	0	0.5	10/2/2024	U 0.321	28.2	3.69	J 0.799	11.7	J 0.979	22.5	2.95	94.3	494	926	8,290	3.28	18.3	9.07	15.9	114	41.8	14.3	14.7	17.9	732	277	20.1	998	259	55.8
BH_TRH-2_0-0.5_20241002	0	0.5	10/2/2024	U 0.125	21.1	1.25	J 0.448	3.77	J 0.478	19.6	J 1.61	52.2	343	593	4,220	1.47	6.39	8.65	15.2	84.9	40.1	11.3	4.67	6.10	648	235	18.0	853	182	63.4
BH_TRH-2_1-1.5_20241002	1	1.5	10/2/2024	U 0.127	16.6	2.35	J 0.312	7.44	J 0.476	16.6	J 1.71	52.3	270	454	2,740	1.40	13.3	6.47	9.56	100	34.1	9.36	4.37	5.96	580	210	15.8	775	159	62.0
BH_TRH-3_0-0.5_20241002	0	0.5	10/2/2024	U 0.0827	1.47	1.78	U 0.46	5.13	J 0.531	J 2.47	U 0.929	24.7	51.0	107	572	0.686	1.96	J 0.281	J 0.472	8.67	J 0.668	U 0.728	J 0.542	J 0.0984	15.1	13.4	U 0.523	30.2	21.0	15.9
BH_TRH-3_1-1.5_20241002	1	1.5	10/2/2024	U 0.389	2.65	2.49	J 1.95	18.3	U 1.68	U 1.78	U 2.06	44.1	45.7	137	422	U 0.458	U 0.458	U 0.866	U 0.946	3.74	U 1.30	U 1.35	U 1.71	U 2.33	10.9	11.2	U 2.40	32.4	27.8	24.6

Bold numbers indicate detections

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Light blue highlight indicates a detection which exceeds one or more regulatory standards

Blue highlight indicates a detection which exceeds Clean Fill screening levels

Yellow highlight indicates a detection which exceeds the Clean Fill and Sediment Screening Levels

Orange highlight indicates a detection that exceed listed Residential, Occupational, or Construction Worker RBCs

Red highlight indicates a detection that exceeds listed Excavation Worker RBCs

Maroon highlight indicate

Green highlight indicates arsenic result less than Portland Basin background level of 8.8 mg/kg

- ¹ = Errata #3 for Portland Harbor Superfund Site Record of Decision Table 21 (EPA, September 2022).
- ² = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- ³ = DRAFT Sediment Screening and Trigger Levels Lower Willamette River Downtown and Upriver Reaches Table 1 (DEQ, July 2020).
- ⁴ = Clean Fill Determinations Tables 1 (Portland Basin province) & 2 (DEQ, February 2019).
- 5 = Title 40 \S 261.24 Toxicity characteristic (Code of Federal Regulations, December 2024).
- ⁶ = Total PCBs calculated as the sum of detect aroclors
- ⁷ = Benzo(a)pyrene TEQ calculated using TEFs specified in Human Health Risk Assessment Guidance (DEQ, 2010) and 1/2 the reporting limit for calculating non-detects.

⁸TEQ as

Abbreviations:

- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality

DET = Detected

EPA = Environmental Protection Agency

ft bgs = Feet below ground surface

J = Result is an estimated value

mg/kg = Milligrams per kilogram

mg/L = Milligrams per liter

NA = Sample not analyzed for this constituent

ND = Analyte or summation not detected

NWTPH = Northwest Method Total Petroleum Hydrocarbons PCBs = Polychlorinated Biphenyls

pg/g = Picograms per gram

PTW = Principal Threat Waste

RBCss = Risk-Based Concentrations for soil ingestion, dermal contact, and inhalation exposure pathways

RBCsw = Risk-Based Concentrations for leaching to groundwater pathway

RCRA = Resource Conservation and Recovery Act

TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient

TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

		TPH	by NWTPH-	HCID	TPH by N	WTPH-Dx				PCBs by I	EPA 8082A			
Screening Criteria		Gasoline Range (C6-C10)	Diesel Range (C10-C22)	Oil Range (C22-C40)	Diesel Range (C10-C22)	Oil Range (C22-C40)	Total PCBs ⁵	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260
DEQ RBCwi Residential - C	Chronic ¹	120	400	-	400	-	-	17	0.53	0.16	1.3	0.27	1.7	0.36
DEQ RBCtw Resident	_	110	100	-	100	-	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
DEQ Freshwater Chronic		0.44	0.64	-	0.64	-	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
DEQ RBCwe Construction & E	Excavation ²	14	-	-	-	-	30	30	30	30	30	30	30	30
EPA Drinking Water MO	CL⁴	-	-	-	-	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Sample ID	Sample Date		mg/L		mç	g/L					ug/L			
BH_TR1_Post Gab_20241021	10/21/2024	U 0.0952	U 0.238	U 0.238	NA	NA	U 0.0957	U 0.0957	U 0.0957	U 0.0957	U 0.0957	U 0.0957	U 0.0957	U 0.0957
BH_TR1_Pre Gab_20241021	10/21/2024	U 0.0952	U 0.238	DET	U 0.190	7.72	0.418	U 0.0952	U 0.0952	U 0.0952	0.146	U 0.0952	0.272	U 0.0952
BH_TRH_Post Gab_20241021	10/21/2024	U 0.0952	U 0.238	U 0.238	NA	NA	U 0.0952	U 0.0952	U 0.0952	U 0.0952	U 0.0952	U 0.0952	U 0.0952	U 0.0952
BH_TRH_Pre Gab_20241021	10/21/2024	U 0.0962	U 0.240	U 0.240	NA	NA	U 0.0943	U 0.0943	U 0.0943	U 0.0943	U 0.0943	U 0.0943	U 0.0943	U 0.0943
BH-DS14POST-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DS14PRE-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DS24POST-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DS24PRE-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DS8POST-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DS8PRE-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_Rinsate_20241002	10/2/2024	NA	NA	NA	U 0.192	U 0.385	NA	NA	NA	NA	NA	NA	NA	NA

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Blue highlight indicates a detected result which is greater than one or more of the regulatory standards

Orange highlight indicates a detected result which exceeds DEQ Freshwater Chronic RBC

EQ RBCwe Construction & Excavation, EPA Drinking Water MCL

- ¹ = Vapor Intrusion Risk-Based Concentrations Table1 (DEQ, March 2024).
- ² = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- ³ = Conducting Ecological Risk Assessments Table 2 (DEQ, April 2021).
- ⁴ = National Primary Drinking Water Regulations (EPA, December 2024).
- ⁵ = Total PCBs calculated as the sum of detect aroclors
- ⁶ = Benzo(a)pyrene TEQ calculated using TEFs specified in Human Health Risk Assessment Guidance (DEQ, 2010) and 1/2 the reporting limit for calculating nc
- 7 = TEQ as
- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality

EPA = Environmental Protection Agency

J = Result is an estimated value

MCL = Maximum Contaminant Level

mg/L = Milligrams per liter

NA = Sample not analyzed for this constituent

pg/L = Picograms per liter

RBCtw = Risk-Based Concentrations for ingestion & inhalation from tapwater

RBCwe = Risk-Based Concentrations for groundwater in excavation

RBCwi = Risk-Based Concentrations for vapor intrusion into buildings

RCRA = Resource Conservation and Recovery Act TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient

TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

ug/L = Micrograms per liter

Table 3, Page 1 of 5 | January 2025

									Polyo	yclic Aroma	tic Hydroc	arbons (PAF	ls) by EPA	8270E							
Screening Criteria		Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(a)pyrene TEQ Equivalents ⁶	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	indeno(1,2,3-cd)pyrene	I-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene	Dibenzofuran
DEQ RBCwi Residential - C	DEQ RBCwi Residential - Chronic ¹		-	-	-	-	-	-	-	-	-	-	-	-	-		- ' '	11	-	-	
DEQ RBCtw Resident	DEQ RBCtw Residential ²		-	-	0.03	0.025	0.025	0.25	-	-	-	0.025	-	280	-	-	-	0.17	-	110	-
DEQ Freshwater Chronic	RBC ³	15	13	0.02	4.7	0.06	0.06	2.6	0.06	0.012	4.7	0.012	0.8	19	0.012	6.1	4.7	0.021	2.3	4.6	4
DEQ RBCwe Construction & E	Excavation ²	-	-	-	•	-	•	-	-	-	-	-	-	-	-	•	-	500	-	-	-
EPA Drinking Water MC	CL⁴	-	-	-	-	0.2	0.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sample ID	Sample Date										uç	g/L									
BH_TR1_Post Gab_20241021	10/21/2024	U 0.0322	U 0.0322	U 0.0322	U 0.0161	U 0.0161	0.0188	U 0.0161	U 0.0161	U 0.0322	U 0.0161	U 0.0161	U 0.0322	U 0.0322	U 0.0161	U 0.0644	U 0.0644	U 0.0644	U 0.0644	U 0.0322	U 0.0322
BH_TR1_Pre Gab_20241021	10/21/2024	U 0.0326	U 0.0326	0.0489	0.0669	0.0881	0.128	0.107	0.0395	U 0.0611	0.114	0.0167	0.148	U 0.0326	0.0461	U 0.0652	U 0.0652	U 0.0652	0.102	0.196	U 0.0326
BH_TRH_Post Gab_20241021	10/21/2024	U 0.0322	U 0.0322	U 0.0322	U 0.0161	U 0.0161	0.0188	U 0.0161	U 0.0161	U 0.0322	U 0.0161	U 0.0161	U 0.0322	U 0.0322	U 0.0161	U 0.0643	U 0.0643	U 0.0643	U 0.0643	U 0.0322	U 0.0322
BH_TRH_Pre Gab_20241021	10/21/2024	U 0.0323	U 0.0323	U 0.0323	U 0.0162	U 0.0162	0.0189	U 0.0162	U 0.0162	U 0.0323	U 0.0162	U 0.0162	U 0.0323	U 0.0323	U 0.0162	U 0.0647	U 0.0647	U 0.0647	U 0.0647	U 0.0323	U 0.0323
BH-DS14POST-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DS14PRE-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DS24POST-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DS24PRE-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DS8POST-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DS8PRE-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH Rinsate 20241002	10/2/2024	U 0.0326	U 0.0326	U 0.0326	U 0.0163	U 0.0163	0.0190	U 0.0163	U 0.0163	U 0.0326	U 0.0163	U 0.0163	U 0.0326	U 0.0326	U 0.0163	U 0.0652	U 0.0652	U 0.0652	U 0.0652	U 0.0326	U 0.0326

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Blue highlight indicates a detected result which is greater than one or more of the regulatory standards

Orange highlight indicates a detected result which exceeds DEQ Freshwater Chronic RBC

ed highlight indicates a detected which exceeds at least two of the following: DEQ RBCwi Residential - Chronic, DEQ RBCtw Residential RBC,

- ¹ = Vapor Intrusion Risk-Based Concentrations Table1 (DEQ, March 2024).
- ² = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- ³ = Conducting Ecological Risk Assessments Table 2 (DEQ, April 2021).
- ⁴ = National Primary Drinking Water Regulations (EPA, December 2024).
- ⁵ = Total PCBs calculated as the sum of detect aroclors
- ⁶ = Benzo(a)pyrene TEQ calculated using TEFs specified in Human Health Risk Assessment Guidance (DEQ, 2010) and 1/2 the reporting limit for calculating non-detects.
- ⁷ = TEQ as reported by laboratory. Nondetects not included in calculation. TEQ calculated following method described in

Van den Berg et al., 2006. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency

Factors for Dioxins and Dioxin-Like Compounds. Toxicological Sciences 93(2): 223-241

- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality EPA = Environmental Protection Agency

J = Result is an estimated value

MCL = Maximum Contaminant Level

mg/L = Milligrams per liter

NA = Sample not analyzed for this constituent

pg/L = Picograms per liter

RBCtw = Risk-Based Concentrations for ingestion & inhalation from tapwater RBCwe = Risk-Based Concentrations for groundwater in excavation

RBCwi = Risk-Based Concentrations for vapor intrusion into buildings

RCRA = Resource Conservation and Recovery Act

TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient

TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

													Dioxi	ns and Fura	ins by EPA	1613B											
Screening Criteria		2,3,7,8-TCDD	2,3,7,8-TCDD Equivalents (TEQ) ⁷	Total TCDD	1,2,3,7,8-PeCDD	Total PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDD	1,2,3,7,8,9-HxCDD	Fotal HxCDD	1,2,3,4,6,7,8-HpCDD	Total HpCDD	освв	2,3,7,8-TCDF	Total TCDF	1,2,3,7,8-PeCDF	2,3,4,7,8-PeCDF	Total PeCDF	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDF	2,3,4,6,7,8-HxCDF	1,2,3,7,8,9-HxCDF	Fotal HxCDF	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	Total HpCDF	OCDF
DEQ RBCwi Residential -	Chronic ¹	36	36	-	-	-	-	-	-	-	1000	-	-	1100	-	-	-	-	-	470	-	-	-	-	13000	-	-
DEQ RBCtw Residen	ıtial ²	0.091	0.091	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
DEQ Freshwater Chronic	c RBC ³	0.0031	0.0031	-	-	-	-	-	-	-	-	-	-		-	-	•		•	-	-	-	-	-	-	-	-
DEQ RBCwe Construction &	Excavation ²	450	450	-	-	-	-	-	-	-	-	-	-		-	-	•		•	-	-	-	-	-	-	-	-
EPA Drinking Water M	ICL ⁴	30	30	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-
Sample ID	Sample Date													g/L													
BH_TR1_Post Gab_20241021	10/21/2024	U 0.705	0.0744	U 0.705	U 0.891	U 0.891	U 1.22	U 1.39	U 1.3	J 1.86	J 5.78	J 5.78	J 24.7	U 0.652	U 0.652	U 0.655	U 0.503	U 0.655	U 0.665	U 0.693	U 0.727	U 0.97	U 0.97	J 0.922	U 1.05	J 0.922	U 1.32
BH_TR1_Pre Gab_20241021	10/21/2024	U 0.644	7.84	J 3.86	U 1.55	J 4.62	J 3.31	J 11.8	J 5.14	97.3	235	505	1,900	U 1.85	10.3	U 1.16	J 3.28	32.3	J 4.59	J 3.08	J 2.53	U 0.402	102	86.8	U 2.51	194	76.3
BH_TRH_Post Gab_20241021	10/21/2024	U 0.476	0.0794	U 0.476	U 0.811	U 0.811	U 0.667	U 0.688	U 0.729	U 1.5	J 6.54	J 14.5	J 46.7	U 0.504	U 0.504	U 0.437	U 0.36	U 0.437	U 0.455	U 0.456	U 0.494	U 0.618	J 2.76	U 1.38	U 1.41	J 2.97	U 1.00
BH_TRH_Pre Gab_20241021	10/21/2024	U 0.506	0.0813	U 0.506	U 0.89	U 0.89	U 1.01	U 1.07	U 1.13	U 1.13	J 6.56	J 13.4	51.0	U 0.55	U 0.55	U 0.553	U 0.42	U 0.553	U 0.613	U 0.614	U 0.626	U 0.865	J 1.35	U 1.42	U 1.11	U 4.1	J 1.35
BH-DS14POST-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DS14PRE-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DS24POST-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DS24PRE-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DS8POST-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DS8PRE-20241016	10/16/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_Rinsate_20241002	10/2/2024	U 1.72	NA	U 1.72	U 3.04	U 3.04	U 2.28	U 2.35	U 2.32	U 2.35	U 2.27	U 2.27	U 3.63	U 1.13	U 1.13	U 1.23	U 1.2	U 1.23	U 0.994	U 1.04	U 1.13	U 1.43	U 1.43	U 1.08	U 1.69	U 1.69	U 3.41

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Blue highlight indicates a detected result which is greater than one or more of the regulatory standards

Orange highlight indicates a detected result which exceeds DEQ Freshwater Chronic RBC

ed highlight indicates a detected which exceeds at least two of the following: DEQ RBCwi Residential - Chronic, DEQ RBCtw Residential RBC,

- ¹ = Vapor Intrusion Risk-Based Concentrations Table1 (DEQ, March 2024).
- ² = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- ³ = Conducting Ecological Risk Assessments Table 2 (DEQ, April 2021).
- ⁴ = National Primary Drinking Water Regulations (EPA, December 2024).
- ⁵ = Total PCBs calculated as the sum of detect aroclors
- ⁶ = Benzo(a)pyrene TEQ calculated using TEFs specified in Human Health Risk Assessment Guidance (DEQ, 2010) and 1/2 the reporting limit for calculating non-detects.
- ⁷ = TEQ as reported by laboratory. Nondetects not included in calculation. TEQ calculated following method described in

Van den Berg et al., 2006. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency

Factors for Dioxins and Dioxin-Like Compounds. Toxicological Sciences 93(2): 223-241

- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality

EPA = Environmental Protection Agency

J = Result is an estimated value

MCL = Maximum Contaminant Level

mg/L = Milligrams per liter

NA = Sample not analyzed for this constituent

pg/L = Picograms per liter

RBCtw = Risk-Based Concentrations for ingestion & inhalation from tapwater

RBCwe = Risk-Based Concentrations for groundwater in excavation

RBCwi = Risk-Based Concentrations for vapor intrusion into buildings

RCRA = Resource Conservation and Recovery Act TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient

TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

							Dissolved	Metals by E	PA 6020B											Total Me	etals by EP	A 6020B					
Screening Criteria		Dissolved Antimony	Dissolved Arsenic	Dissolved Beryllium	Dissolved Cadmium	Dissolved Chromium	Dissolved Copper	Dissolved Lead	Dissolved Mercury	Dissolved Nickel	Dissolved Selenium	Dissolved Silver	Dissolved Thallium	Dissolved Zinc	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
DEQ RBCwi Residential -	Chronic ¹	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEQ RBCtw Residen	tial ²	-	0.052	40	20	30000	800	15	6	400	-	100	-		-	0.052	40	20	30000	800	15	6	400	-	100	-	-
DEQ Freshwater Chronic	RBC ³	190	150	11	0.094	24	1.4	0.54	0.012	16	4.6	0.1	6	36	190	150	11	0.094	24	1.4	0.54	0.012	16	4.6	0.1	6	36
DEQ RBCwe Construction &	Excavation ²	-	6300	270000	130000	-	5400000	-	-	-	-	1100000	-	-	-	6300	270000	130000	9400	5400000	-	-	-	-	1100000	-	-
EPA Drinking Water M	ICL ⁴	6	10	4	5	100	1300	15	2	-	50	-	2	-	6	10	4	5	100	1300	15	2	-	50	-	2	-
Sample ID	Sample Date							ug/L													ug/L						
BH_TR1_Post Gab_20241021	10/21/2024	2.43	1.50	U 0.200	U 0.200	U 2.00	10.6	U 0.200	U 0.0800	U 2.00	U 1.00	U 0.200	U 0.200	52.4	2.50	1.51	U 0.200	U 0.200	U 2.00	11.7	0.573	U 0.0800	2.01	U 1.00	U 0.200	U 0.200	59.7
BH_TR1_Pre Gab_20241021	10/21/2024	2.68	1.73	U 0.200	U 0.200	U 2.00	9.99	U 0.200	U 0.0800	U 2.00	U 1.00	U 0.200	U 0.200	42.6	2.90	2.45	U 0.200	0.211	3.19	29.4	9.26	U 0.0800	4.68	U 1.00	U 0.200	U 0.200	168
BH_TRH_Post Gab_20241021	10/21/2024	U 1.00	U 1.00	U 0.200	U 0.200	U 2.00	113	2.40	U 0.0800	6.15	U 1.00		U 0.200	52.2	U 1.00	1.25	U 0.200	U 0.200	U 2.00	119	7.00	U 0.0800	6.34	U 1.00	U 0.200	U 0.200	60.8
BH_TRH_Pre Gab_20241021	10/21/2024	U 1.00	1.04	U 0.200	0.204	U 2.00	124	3.84	U 0.0800	5.55	U 1.00		U 0.200	49.0	U 1.00	1.34	U 0.200	0.223	U 2.00	112	7.32	U 0.0800	5.84	U 1.00	U 0.200	U 0.200	53.8
BH-DS14POST-20241016	10/16/2024	U 1.00	1.49	U 0.200	0.225	6.52	20.5	U 0.200	U 0.0800	2.22	U 1.00		U 0.200	22.0	U 1.00	1.66	U 0.200	0.273	6.96	21.7	0.289	U 0.0800	3.23	U 1.00	U 0.200	U 0.200	21.5
BH-DS14PRE-20241016	10/16/2024	U 1.00	4.15	U 0.200	U 0.200	9.32	63.7	2.99	U 0.0800	U 2.00	U 1.00		U 0.200	55.3	U 1.00	14.3	U 0.200	0.510	28.6	514	204	U 0.0800	9.25	U 1.00	U 0.200	U 0.200	123
BH-DS24POST-20241016	10/16/2024	10.9	U 1.00	U 0.200	U 0.200	2.13	32.7	U 0.200	U 0.0800	3.56	U 1.00		U 0.200	32.6	12.7	U 1.00	U 0.200	U 0.200	2.36	35.4	0.420	U 0.0800	4.37	U 1.00	U 0.200	U 0.200	33.7
BH-DS24PRE-20241016	10/16/2024	11.6	2.20	U 0.200	0.217	3.03	38.0	3.96	U 0.0800	U 2.00	U 1.00		U 0.200	66.5	13.1	2.31	U 0.200	0.227	4.09	40.2	5.28	U 0.0800	2.64	U 1.00	U 0.200	U 0.200	67.0
BH-DS8POST-20241016	10/16/2024	U 1.00	U 1.00	U 0.200	U 0.200	U 2.00	2.50	U 0.200	U 0.0800	U 2.00	U 1.00		U 0.200	5.09	U 1.00	U 1.00	U 0.200	U 0.200	U 2.00	4.18	0.764	U 0.0800	3.68	U 1.00	U 0.200	U 0.200	21.6
BH-DS8PRE-20241016	10/16/2024	U 1.00	U 1.00	U 0.200	U 0.200	U 2.00	U 2.00	U 0.200	U 0.0800	U 2.00	U 1.00		U 0.200	69.6	U 1.00	U 1.00	U 0.200	U 0.200	U 2.00	5.84	1.77	U 0.0800	2.75	U 1.00	U 0.200	U 0.200	107
BH_Rinsate_20241002	10/2/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.21	NA NA	NA	NA	NA	NA	NA

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Blue highlight indicates a detected result which is greater than one or more of the regulatory standards

Orange highlight indicates a detected result which exceeds DEQ Freshwater Chronic RBC

ed highlight indicates a detected which exceeds at least two of the following: DEQ RBCwi Residential - Chronic, DEQ RBCtw Residential RBC,

- ¹ = Vapor Intrusion Risk-Based Concentrations Table1 (DEQ, March 2024).
- ² = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- ³ = Conducting Ecological Risk Assessments Table 2 (DEQ, April 2021).
- ⁴ = National Primary Drinking Water Regulations (EPA, December 2024).
- ⁵ = Total PCBs calculated as the sum of detect aroclors
- ⁶ = Benzo(a)pyrene TEQ calculated using TEFs specified in Human Health Risk Assessment Guidance (DEQ, 2010) and 1/2 the reporting limit for calculating non-detects.
- ⁷ = TEQ as reported by laboratory. Nondetects not included in calculation. TEQ calculated following method described in

Van den Berg et al., 2006. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency

Factors for Dioxins and Dioxin-Like Compounds. Toxicological Sciences 93(2): 223-241

- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality EPA = Environmental Protection Agency

J = Result is an estimated value

MCL = Maximum Contaminant Level

mg/L = Milligrams per liter

NA = Sample not analyzed for this constituent pg/L = Picograms per liter

RBCtw = Risk-Based Concentrations for ingestion & inhalation from tapwater

RBCwe = Risk-Based Concentrations for groundwater in excavation

RBCwi = Risk-Based Concentrations for vapor intrusion into buildings RCRA = Resource Conservation and Recovery Act

TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient

TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

		TSS by 2540D	Field	Measurer	nents
Screening Criteria		Total Suspended Solids (TSS)	Temperature	Hd	Conductivity
DEQ RBCwi Residential -	Chronic ¹	-	-	-	-
DEQ RBCtw Residen	tial ²	-	-	-	-
DEQ Freshwater Chronic	RBC ³	-	-	-	-
DEQ RBCwe Construction &	Excavation ²		-	-	-
EPA Drinking Water M	CL⁴	-	-	-	-
Sample ID	Sample Date	mg/L	°C	-	mS
BH_TR1_Post Gab_20241021	10/21/2024	U 5.00	13.6	7.5	0.15
BH_TR1_Pre Gab_20241021	10/21/2024	45.0	13.4	8.0	0.20
BH_TRH_Post Gab_20241021	10/21/2024	6.00	13.40	6.8	0.29
BH_TRH_Pre Gab_20241021	10/21/2024	6.00	13.40	6.9	0.29
BH-DS14POST-20241016	10/16/2024	NA	13.9	4.6	0.07
BH-DS14PRE-20241016	10/16/2024	NA	14.2	4.5	0.02
BH-DS24POST-20241016	10/16/2024	NA	14.2	4.6	0.02
BH-DS24PRE-20241016	10/16/2024	NA	14.7	4.5	0.02
BH-DS8POST-20241016	10/16/2024	NA	14.0	4.8	0.04
BH-DS8PRE-20241016	10/16/2024	NA	14.2	5.9	0.01
BH_Rinsate_20241002	10/2/2024	NA	· -	-	-

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Blue highlight indicates a detected result which is greater than one or more of the regulatory standards

Orange highlight indicates a detected result which exceeds DEQ Freshwater Chronic RBC

ed highlight indicates a detected which exceeds at least two of the following: DEQ RBCwi Residential - Chronic, DEQ RBCtw Residential RBC,

- ¹ = Vapor Intrusion Risk-Based Concentrations Table1 (DEQ, March 2024).
- ² = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- ³ = Conducting Ecological Risk Assessments Table 2 (DEQ, April 2021).
- ⁴ = National Primary Drinking Water Regulations (EPA, December 2024).
- ⁵ = Total PCBs calculated as the sum of detect aroclors
- ⁶ = Benzo(a)pyrene TEQ calculated using TEFs specified in Human Health Risk Assessment Guidance (DEQ, 2010) and 1/2 the reporting limit for calculating non-detects.
- ⁷ = TEQ as reported by laboratory. Nondetects not included in calculation. TEQ calculated following method described in

Van den Berg et al., 2006. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency

Factors for Dioxins and Dioxin-Like Compounds. Toxicological Sciences 93(2): 223-241

- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality EPA = Environmental Protection Agency

J = Result is an estimated value

MCL = Maximum Contaminant Level

mg/L = Milligrams per liter

NA = Sample not analyzed for this constituent

pg/L = Picograms per liter

RBCtw = Risk-Based Concentrations for ingestion & inhalation from tapwater

RBCwe = Risk-Based Concentrations for groundwater in excavation RBCwi = Risk-Based Concentrations for vapor intrusion into buildings

RCRA = Resource Conservation and Recovery Act

TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient

TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

					PCBs by E	PA 8082A						To	otal Metals I	oy EPA 6020)B					TCL	Metals by I	EPA 1311/6	020B		
Screening Crite	ria	Total PCBs ⁶	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
Portland Harbor PTW T	hreshold ¹	200	200	200	200	200	200	200	200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEQ RBCss Resid	ential ²	230	230	230	203	230	230	230	230	0.43	15000	78	120000	200	23	-	390	-	-	-	-	-	-	-	-
DEQ RBCss Occup	ational ²	590	590	590	590	590	590	590	590	1.9	220000	1100	-	800	350	-	5800	-	-	-	-	-	- 1	-	-
DEQ RBCss Constructi	on Worker ²	4900	4900	4900	4900	4900	4900	4900	4900	15	69000	350	530000	800	110	-	1800	-	-	-	-	-	- 1	-	-
DEQ RBCss Excavation	n Worker ²	140000	140000	140000	140000	140000	140000	140000	140000	420	-	9700	-	800	2900	-	49000	-	-	-	-	-	- 1	-	-
DEQ RBCsw Resid	ential ²	240	240	240	240	240	240	240	240					30	-		-					-	- 1	-	
DEQ RBCsw Occup	ational ²	1100	1100	1100	1100	1100	1100	1100	1100			-		30	-		-		-				- 1	-	-
Sediment Screening		9	9	9	9	9	9	9	9	2.9	-	0.63	76	35	0.2	-	-	-	-	-	-	-	- 1	-	-
Clean Fill Screening		230	1100	4.8	4.8	41	7.3	41	240	8.8	790	0.63	76	28	0.23	0.71	0.82	-	-	-	-	-	- 1	-	-
RCRA Characteristic		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	100	1	5	5	0.2	1	5
Sample ID	Sample Date				ug	/kg							mg	/kg							mg	ı/L			
BH DPSed#1 20241210	12/10/2024	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH DPSed#2 20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH DPSed#3 20241203	12/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U 0.100	U 5.00	U 0.100	U 0.100	0.149	U 0.00700	U 0.100	U 0.100
BH DPSed#3 20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DPSed#1_20241203	12/3/2024	597	U 11.2	U 11.2	U 11.2	231	U 11.2	234	132	7.22	117	1.14	81.6	875	21.7	U 1.35	10.1	NA	NA	NA	NA	0.799	U 0.00700	NA	NA
BH-DPSed#2 20241203	12/3/2024	253	U 11.5	U 11.5	U 11.5	61.5	U 11.5	135	56.0	4.53	125	1.04	28.0	86.3	1.33	U 1.43	U 0.286	NA	NA	NA	NA	NA	NA	NA	NA

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Light blue highlight indicates a detection which exceeds one or more regulatory standards

Blue highlight indicates a detection which exceeds Clean Fill screening levels
Yellow highlight indicates a detection which exceeds the Clean Fill and Sediment Screening Levels
Orange highlight indicates a detection that exceed listed Residential, Occupational, or Construction Worker RBCs

Red highlight indicates a detection that exceeds listed Excavation Worker RBCs
Maroon highlight indicates a detection which exceeds RCRA Hazardous Waste Screening Levels
Green highlight indicates arsenic result less than Portland Basin background level of 8.8 mg/kg

- ¹ = Errata #3 for Portland Harbor Superfund Site Record of Decision Table 21 (EPA, September 2022).
- ² = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- ³ = DRAFT Sediment Screening and Trigger Levels Lower Willamette River Downtown and upriver Reaches Table 1 (DEQ, July 2020).
- ⁴ = Clean Fill Determinations Tables 1 (Portland Basin province) & 2 (DEQ, February 2019).
- ⁵ = Title 40 § 261.24 Toxicity characteristic (Code of Federal Regulations, December 2024).
- $^{\rm 6}$ = Total PCBs calculated as the sum of detect aroclors
- ⁷ = TEQ as reported by laboratory. Nondetects

not included in calculation. TEQ calculated following method described in

- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality

DET = Detected

EPA = Environmental Protection Agency

ft bgs = Feet below ground surface
J = Result is an estimated value

mg/kg = Milligrams per kilogram

mg/L = Milligrams per liter

NA = Sample not analyzed for this constituent

ND = Analyte or summation not detected

NWTPH = Northwest Method Total Petroleum Hydrocarbons

PCBs = Polychlorinated Biphenyls

pg/g = Picograms per gram
PTW = Principal Threat Waste

RBCss = Risk-Based Concentrations for soil ingestion, dermal contact, and inhalation exposure pathways

RBCsw = Risk-Based Concentrations for leaching to groundwater pathway

RCRA = Resource Conservation and Recovery Act

TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

													Dioxi	ns and Fura	ns by EPA	1613B											
Screening Criter	ia	2,3,7,8-TCDD	2,3,7,8-TCDD Equivalents (TEQ) ⁷	Total TCDD	1,2,3,7,8-PeCDD	Total PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDD	1,2,3,7,8,9-HxCDD	Total HxCDD	1,2,3,4,6,7,8-HpCDD	Total HpCDD	освв	2,3,7,8-TCDF	Total TCDF	1,2,3,7,8-PeCDF	2,3,4,7,8-PeCDF	Total PeCDF	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDF	2,3,4,6,7,8-HxCDF	1,2,3,7,8,9-HxCDF	Total HxCDF	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	Total HpCDF	осрғ
Portland Harbor PTW Ti	reshold1	10	10	-	10	-	-	-	-	-	-	-	-	600	-	-	200	-	400	-	-	-	-	-	-	-	-
DEQ RBCss Reside	ntial ²	4.7	4.7	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
DEQ RBCss Occupa	tional ²	16	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
DEQ RBCss Construction	n Worker ²	170	170	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
DEQ RBCss Excavation	Worker ²	4800	4,800	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEQ RBCsw Reside	ntial ²	6.8	6.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEQ RBCsw Occupa	tional ²	31	31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
Sediment Screening		1.0	10	-	-	-	-	-	-	-	-	-	-	0.40658	-	-	0.3	-	0.4	-	-	-	-	-	-	-	-
Clean Fill Screening	Level⁴	0.29	0.29	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
RCRA Characteristic		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sample ID	Sample Date			•								•	•	pg	j/g						•			•			
BH DPSed#1 20241210	12/10/2024	1.53	10.2	6.45	J 2.17	13.8	J 1.64	8.04	5.68	73.2	166	341	1,630	2.50	22.1	J 1.29	3.68	43.6	5.32	3.45	J 1.28	J 0.609	64.4	33.9	3.46	91.5	57.8
BH_DPSed#2_20241210	12/10/2024	U 0.737	19.1	4.60	5.55	23.1	5.10	20.0	11.6	136	414	869	4,680	3.13	46.8	J 1.96	3.05	101	9.82	4.53	4.99	J 1.55	149	84.8	5.83	330	327
BH_DPSed#3_20241203	12/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSed#3_20241210	12/10/2024	U 0.439	3.34	U 2.3	U 0.415	3.42	J 1.25	5.09	2.78	42.5	95.2	223	1,090	2.08	9.91	U 0.694	J 1.56	15.6	U 1.78	J 1.51	J 1.22	U 0.876	26.3	19.0	U 1.62	48.5	40.2
BH-DPSed#1_20241203	12/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DPSed#2 20241203	12/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Light blue highlight indicates a detection which exceeds one or more regulatory standards

Blue highlight indicates a detection which exceeds Clean Fill screening levels
Yellow highlight indicates a detection which exceeds the Clean Fill and Sediment Screening Levels
Orange highlight indicates a detection that exceed listed Residential, Occupational, or Construction Worker RBCs

Red highlight indicates a detection that exceeds listed Excavation Worker RBCs
Maroon highlight indicates a detection which exceeds RCRA Hazardous Waste Screening Levels
Green highlight indicates arsenic result less than Portland Basin background level of 8.8 mg/kg

¹ = Errata #3 for Portland Harbor Superfund Site Record of Decision Table 21 (EPA, September 2022). ² = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).

³ = DRAFT Sediment Screening and Trigger Levels Lower Willamette River Downtown and upriver Reaches Table 1 (DEQ, July 2020).

⁴ = Clean Fill Determinations Tables 1 (Portland Basin province) & 2 (DEQ, February 2019).

⁵ = Title 40 § 261.24 Toxicity characteristic (Code of Federal Regulations, December 2024).

 $^{\rm 6}$ = Total PCBs calculated as the sum of detect aroclors

⁷ = TEQ as reported by laboratory. Nondetects

not included in calculation. TEQ calculated following method described in

- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality

DET = Detected

EPA = Environmental Protection Agency

ft bgs = Feet below ground surface
J = Result is an estimated value

mg/kg = Milligrams per kilogram

mg/L = Milligrams per liter

NA = Sample not analyzed for this constituent

ND = Analyte or summation not detected

NWTPH = Northwest Method Total Petroleum Hydrocarbons

PCBs = Polychlorinated Biphenyls

pg/g = Picograms per gram
PTW = Principal Threat Waste

RBCss = Risk-Based Concentrations for soil ingestion, dermal contact, and inhalation exposure pathways

RBCsw = Risk-Based Concentrations for leaching to groundwater pathway

RCRA = Resource Conservation and Recovery Act

TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

															Vola	tile Organi	ic Carbons I	oy 8260D															
Screening Criteria	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trich lorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3-chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Butanone (MEK)	2-Chlorotoluene	2-Hexanone	4-Chlorotoluene	4-Isopropyltoluene	4-Methyl-2-Pentanone (MIBK)	Acetone	Acrylonitrile	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane
Portland Harbor PTW Threshold ¹	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEQ RBCss Residential ²	-	53000000	-	3200	58000	1800000	-	-	-	-	430000	-	160	2200000	3600	-	430000	-	-	14000	-	-	-	-	-	-	-	-	860	8200	-	,	3400
DEQ RBCss Occupational ²	-	870000000	-	26000	260000	29000000	-	-	-	-	6900000	-	730	36000000	16000	-	6900000	-	-	64000	-	-	-	-	-	-	-	-	4000	37000	-	-	15000
DEQ RBCss Construction Worker ²	-	470000000	-	54000	3200000	13000000	-	-	-	-	2900000	-	9000	20000000	200000	-	2900000	-	-	1300000	-	-	-	-	-	-	-	-	40000	380000	-	-	230000
DEQ RBCss Excavation Worker ²	-	-	-	1500000	89000000	370000000	-	-	-	-	81000000	-	250000	5.6E+08	5600000	-	81000000	-	-	36000000	-	-	-	-	-	-	-	-	1100000	11000000	-	-	6300000
DEQ RBCsw Residential ²	-	190000	-	6.3	44	6700	-	-	-	-	10000	-	0.12	36000	2.8	-	11000	-	-	57	-	-	-	-	-	-	-	-	0.36	23	-	-	2
DEQ RBCsw Occupational ²	-	880000	-	29	200	32000	-	-	-	-	48000	-	0.56	160000	13	-	53000	-	-	250	-	-	-	-	-	-	-	-	1.7	100	-	-	8.8
Sediment Screening Level ³	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Clean Fill Screening Level⁴	13	190000	1.8	6.3	44	6700	-	1300	0.019	200	10000	0.0084	0.12	920	2.8	17	11000	740	7800	57	-	72000	14000	360	14000	-	9700	1200	0.36	23	2500	1300	2
RCRA Characteristic Waste ⁵	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sample ID Sample Date		•	,						,								ug/kg				,								,				
BH_DPSed#1_20241210 12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSed#2_20241210 12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSed#3_20241203 12/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSed#3_20241210 12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DPSed#1_20241203 12/3/2024	U 27.3	U 27.3	U 164	U 27.3	U 27.3	U 27.3	U 54.5	U 273	U 54.5	U 273	U 54.5	U 273	U 54.5	U 27.3	U 27.3	U 27.3	U 54.5	U 27.3	U 54.5	U 27.3	U 54.5	U 545	U 54.5	U 545	U 54.5	U 54.5	U 545	U 1090	U 109	U 10.9	U 27.3	U 54.5	U 54.5
BH-DPSed#2_20241203 12/3/2024	U 31.7	U 31.7	U 63.3	U 31.7	U 31.7	U 31.7	U 63.3	U 317	U 63.3	U 317	U 63.3	U 317	U 63.3	U 31.7	U 31.7	U 31.7	U 63.3	U 31.7	U 63.3	U 31.7	U 63.3	U 633	U 63.3	U 633	U 63.3	U 63.3	U 633	U 1270	U 127	U 12.7	U 31.7	U 63.3	U 63.3

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Light blue highlight indicates a detection which exceeds one or more regulatory standards

Blue highlight indicates a detection which exceeds Clean Fill screening levels
Yellow highlight indicates a detection which exceeds the Clean Fill and Sediment Screening Levels
Orange highlight indicates a detection that exceed listed Residential, Occupational, or Construction Worker RBCs

Red highlight indicates a detection that exceeds listed Excavation Worker RBCs
Maroon highlight indicates a detection which exceeds RCRA Hazardous Waste Screening Levels
Green highlight indicates arsenic result less than Portland Basin background level of 8.8 mg/kg

¹ = Errata #3 for Portland Harbor Superfund Site Record of Decision Table 21 (EPA, September 2022).

² = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).

³ = DRAFT Sediment Screening and Trigger Levels Lower Willamette River Downtown and upriver Reaches Table 1 (DEQ, July 2020).

⁴ = Clean Fill Determinations Tables 1 (Portland Basin province) & 2 (DEQ, February 2019).

⁵ = Title 40 § 261.24 Toxicity characteristic (Code of Federal Regulations, December 2024).

 $^{\rm 6}$ = Total PCBs calculated as the sum of detect aroclors

⁷ = TEQ as reported by laboratory. Nondetects

not included in calculation. TEQ calculated following method described in

- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality

DET = Detected

EPA = Environmental Protection Agency

ft bgs = Feet below ground surface
J = Result is an estimated value

mg/kg = Milligrams per kilogram

mg/L = Milligrams per liter

NA = Sample not analyzed for this constituent

ND = Analyte or summation not detected

NWTPH = Northwest Method Total Petroleum Hydrocarbons

PCBs = Polychlorinated Biphenyls

pg/g = Picograms per gram
PTW = Principal Threat Waste

RBCss = Risk-Based Concentrations for soil ingestion, dermal contact, and inhalation exposure pathways

RBCsw = Risk-Based Concentrations for leaching to groundwater pathway

RCRA = Resource Conservation and Recovery Act

TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

																Volatil	e Organic	Carbons by	y 8260D (coi	ntinued)														
Screening Criter	a	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane	Dibromomethane	Dichlorodifluoromethane (Freon 12)	Ethylbenzene	Hexachlorobutadiene	Isopropylbenzene	m,p-Xylene	Methyl tert-Butyl Ether (MTBE)	Methylene chloride	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	Trichloroethene	Trichlorofluoromethane (Freon 11)	Vinyl chloride
Portland Harbor PTW Th	reshold ¹	-	-	-	-	320	-	-	-	-	-	-	-	-	-	-	-	-	-	-	140000	-	-	-	-	-	-	-	-	-	-	-	-	-
DEQ RBCss Reside	ntial ²	57000	46000	-	7500	530000	1.6E+08	5800	1400000	160000	-	3700	-		34000	-	3500000		250000	76000	5300	-	-	-	-	7900000		220000	5800000	1600000	-	6700	7600000	360
DEQ RBCss Occupa	tional ²	260000	750000	-	34000	8700000	-	26000	25000000	2300000	-	17000	-	-	150000	-	57000000		1100000	1600000	23000	-	-	-	-	1.3E+08	-	1000000	88000000	23000000	-	51000	1.3E+08	4400
DEQ RBCss Construction	n Worker ²	2700000	370000	-	320000	4700000	-	410000	25000000	710000	-	210000	-	-	1700000	-	27000000	-	12000000	2100000	580000	-	-	-	-	56000000	-	1800000	28000000	7100000	-	130000	69000000	34000
DEQ RBCss Excavation	Worker ²	74000000	10000000	-	8900000	1.3E+08	-	11000000	7E+08	20000000	-	5800000	-	-	49000000	-	7.5E+08	-	3.2E+08	58000000	16000000	-	-	-	-	-	-	50000000	7.7E+08	2E+08	-	3700000	-	950000
DEQ RBCsw Reside	ntial ²	46	83	-	13	5800	310000	3.4	2200	630	-	2.4	-	-	220	-	96000	-	110	140	77	-	-	-	-	170000	-	460	84000	7000	-	13	61000	0.57
DEQ RBCsw Occupa	tional ²	220	400	-	58	27000	1300000	15	9100	4500	-	11	-	-	900	-	-	-	540	2400	340	-	-	-	-	800000	-	1900	490000	51000	-	87	280000	10
Sediment Screening	_evel ³	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Clean Fill Screening I	_evel ⁴	46	83	810	13	2400	310000	3.4	2200	630	-	2.4	130	18000	220	16	96000	-	110	140	77	190000	72000	1000	350000	1200	96000	180	23000	7000	-	13	52000	0.57
RCRA Characteristic \	Vaste⁵	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sample ID	Sample Date																	ug/kg																
BH_DPSed#1_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSed#2_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSed#3_20241203	12/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSed#3_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DPSed#1_20241203	12/3/2024	U 109	U 545	U 545	U 54.5	113	U 545	U 54.5	U 273	U 27.3	U 54.5	U 109	U 54.5	U 109	U 27.3	U 109	U 54.5	U 54.5	U 54.5	U 545	U 109	U 54.5	U 27.3	U 27.3	U 54.5	U 54.5	U 54.5	U 27.3	U 54.5	U 27.3	U 54.5	U 27.3	746	U 27.3
BH-DPSed#2 20241203	12/3/2024	U 127	U 633	U 633	U 63.3	U 31.7	U 633	U 63.3	U 317	U 31.7	U 63.3	U 127	U 63.3	U 127	U 31.7	U 127	U 63.3	U 63.3	U 63.3	U 633	U 127	U 63.3	U 31.7	U 31.7	U 63.3	U 63.3	U 63.3	U 31.7	U 63.3	U 31.7	U 63.3	U 31.7	U 317	U 31.7

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Light blue highlight indicates a detection which exceeds one or more regulatory standards

Blue highlight indicates a detection which exceeds Clean Fill screening levels
Yellow highlight indicates a detection which exceeds the Clean Fill and Sediment Screening Levels
Orange highlight indicates a detection that exceed listed Residential, Occupational, or Construction Worker RBCs

Red highlight indicates a detection that exceeds listed Excavation Worker RBCs
Maroon highlight indicates a detection which exceeds RCRA Hazardous Waste Screening Levels
Green highlight indicates arsenic result less than Portland Basin background level of 8.8 mg/kg

¹ = Errata #3 for Portland Harbor Superfund Site Record of Decision Table 21 (EPA, September 2022).

² = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).

³ = DRAFT Sediment Screening and Trigger Levels Lower Willamette River Downtown and upriver Reaches Table 1 (DEQ, July 2020).

⁴ = Clean Fill Determinations Tables 1 (Portland Basin province) & 2 (DEQ, February 2019).

⁵ = Title 40 § 261.24 Toxicity characteristic (Code of Federal Regulations, December 2024).

 $^{\rm 6}$ = Total PCBs calculated as the sum of detect aroclors

⁷ = TEQ as reported by laboratory.

Nondetects not included in calculation. TEQ calculated following method described in

- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality

DET = Detected

EPA = Environmental Protection Agency

ft bgs = Feet below ground surface
J = Result is an estimated value

mg/kg = Milligrams per kilogram

mg/L = Milligrams per liter NA = Sample not analyzed for this constituent

ND = Analyte or summation not detected

NWTPH = Northwest Method Total Petroleum Hydrocarbons

PCBs = Polychlorinated Biphenyls

pg/g = Picograms per gram
PTW = Principal Threat Waste

RBCss = Risk-Based Concentrations for soil ingestion, dermal contact, and inhalation exposure pathways

RBCsw = Risk-Based Concentrations for leaching to groundwater pathway

RCRA = Resource Conservation and Recovery Act

TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

					TC	_P Volatile C	Organic Car	bons by 82	:60D							TCLP	Semi-Volati	le Organic	Carbons by	/ 8270E				Percent Solids by 8000D
Screening Crite	ria	1,1-Dichloroethene	1,2-Dichloroethane	1,4-Dichlorobenzene	2-Butanone (MEK)	Benzene	Carbon tetrachloride	Chlorobenzene	Chloroform	Tetrachloroethene	Frichloroethene	Vinyl chloride	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dinitrotoluene	2-Methylphenol	3&4-Methylphenol	Hexachlorobenzene	Hexachlorobutadiene	Hexachloroethane	Vitrobenzene	Pentachlorophenol	Pyridine	Percent Solids
Portland Harbor PTW T	hreshold ¹	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEQ RBCss Resid	ential ²	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
DEQ RBCss Occup	ational ²	-	-	,	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
DEQ RBCss Constructi	on Worker ²	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEQ RBCss Excavation	n Worker ²	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DEQ RBCsw Resid	ential ²	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-
DEQ RBCsw Occup	ational ²	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-
Sediment Screening	Level ³	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-
Clean Fill Screening		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
RCRA Characteristic	Waste ⁵	0.7	0.5	7.5	200	0.5	0.5	100	6	0.7	0.5	0.2	400	2	0.13	200	200	0.13	0.5	3	2	100	5	-
Sample ID	Sample Date					· · · · · ·	mg/L											mg/L						%
BH DPSed#1 20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSed#2_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSed#3_20241203	12/3/2024	U 0.0200	U 0.0200	U 0.0250	U 0.500	U 0.0100	U 0.0500	U 0.0250	U 0.0500	U 0.0200	U 0.0200	U 0.0100	U 0.250	U 0.250	U 0.100	U 0.250	U 0.250	U 0.100	U 0.250	U 0.250	U 0.250	U 0.500	U 0.500	NA
BH_DPSed#3_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DPSed#1_20241203	12/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	81.1
BH-DPSed#2 20241203	12/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	77.1

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Light blue highlight indicates a detection which exceeds one or more regulatory standards

Blue highlight indicates a detection which exceeds Clean Fill screening levels
Yellow highlight indicates a detection which exceeds the Clean Fill and Sediment Screening Levels
Orange highlight indicates a detection that exceed listed Residential, Occupational, or Construction Worker RBCs

Red highlight indicates a detection that exceeds listed Excavation Worker RBCs
Maroon highlight indicates a detection which exceeds RCRA Hazardous Waste Screening Levels
Green highlight indicates arsenic result less than Portland Basin background level of 8.8 mg/kg

- ¹ = Errata #3 for Portland Harbor Superfund Site Record of Decision Table 21 (EPA, September 2022).
- ² = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- ³ = DRAFT Sediment Screening and Trigger Levels Lower Willamette River Downtown and upriver Reaches Table 1 (DEQ, July 2020).
- ⁴ = Clean Fill Determinations Tables 1 (Portland Basin province) & 2 (DEQ, February 2019).
- ⁵ = Title 40 § 261.24 Toxicity characteristic (Code of Federal Regulations, December 2024).
- $^{\rm 6}$ = Total PCBs calculated as the sum of detect aroclors
- ⁷ = TEQ as reported by laboratory. Nondetects

not included in calculation. TEQ calculated following method described in

- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality

DET = Detected

EPA = Environmental Protection Agency

ft bgs = Feet below ground surface
J = Result is an estimated value

mg/kg = Milligrams per kilogram

mg/L = Milligrams per liter

NA = Sample not analyzed for this constituent

ND = Analyte or summation not detected

NWTPH = Northwest Method Total Petroleum Hydrocarbons

PCBs = Polychlorinated Biphenyls

pg/g = Picograms per gram
PTW = Principal Threat Waste

RBCss = Risk-Based Concentrations for soil ingestion, dermal contact, and inhalation exposure pathways

RBCsw = Risk-Based Concentrations for leaching to groundwater pathway

RCRA = Resource Conservation and Recovery Act

TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

					PCBs by E	EPA 8082A			
Screening Crit	teria	rotal PCBs7	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260
DEQ RBCwi Residenti	ial - Chronic ¹	-	17	0.53	0.16	1.3	0.27	1.7	0.36
DEQ RBCtw Resi	idential ²	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
DEQ Freshwater Chr	onic RBC ³	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
DEQ RBCwe Constructio	n & Excavation ²	30	30	30	30	30	30	30	30
EPA Drinking Wat	er MCL ⁴	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Sample ID	Sample Date					ug/L		•	•
BH_DPSW#1_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSW#2_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSW#3_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA
BH-DPSW#1-20241203	12/3/2024	0.273	U 0.0935	0.153	0.120				
BH-DPSW#2-20241203	12/3/2024	U 0.0943	U 0.0943	U 0.0943	U 0.0943	U 0.0943	U 0.0943	U 0.0943	U 0.0943
BH-DPSW#3-20241203	12/3/2024	U 0.0935	U 0.0935	U 0.0935	U 0.0935	U 0.0935	U 0.0935	U 0.0935	U 0.0935

Bold numbers represent detections

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Blue highlight indicates a detected result which is greater than one or more of the regulatory standards

Orange highlight indicates a detected result which exceeds DEQ Freshwater Chronic RBC

Red highlight indicates a detected which exceeds at least two of the following: DEQ RBCwi Residential - Chronic, DEQ RBCtw Residential RBC,

- ¹ = Vapor Intrusion Risk-Based Concentrations Table1 (DEQ, March 2024).
- ² = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- 3 = Conducting Ecological Risk Assessments Table 2 (DEQ, April 2021).
- 4 = National Primary Drinking Water Regulations (EPA, December 2024).
- ⁵ = Total PCBs calculated as the sum of detect aroclors
- ⁶ = TEQ as
- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality

EPA = Environmental Protection Agency

J = Result is an estimated value

MCL = Maximum Contaminant Level

mg/L = Milligrams per liter

NA = Sample not analyzed for this constituent

pg/L = Picograms per liter

RBCtw = Risk-Based Concentrations for ingestion & inhalation from tapwater

RBCwe = Risk-Based Concentrations for groundwater in excavation

RBCwi = Risk-Based Concentrations for vapor intrusion into buildings

RCRA = Resource Conservation and Recovery Act

TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient

TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

Table 5, Page 1	1 of 6	January 2025
-----------------	--------	--------------

													Dioxi	ns and Fura	ns by EPA	1613B											
Screening Crit	eria	2,3,7,8-TCDD	2,3,7,8-TCDD Equivalents	Total TCDD	1,2,3,7,8-PeCDD	Total PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDD	1,2,3,7,8,9-HxCDD	Total HxCDD	1,2,3,4,6,7,8-HpCDD	Total HpCDD	освв	2,3,7,8-TCDF	Total TCDF	1,2,3,7,8-PeCDF	2,3,4,7,8-PeCDF	Total PeCDF	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDF	2,3,4,6,7,8-HxCDF	1,2,3,7,8,9-HxCDF	Total HxCDF	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	Total HpCDF	ocoF
DEQ RBCwi Resident	al - Chronic ¹	36	36	-	-	-	-	-	-	-	1000	-	-	1100	-	-	-	-	-	470	-	-	-	-	13000	-	-
DEQ RBCtw Resi	dential ²	0.091	0.091	-	-	-	-	-			-	-	-				-	-	-	-	-		-	-	-	-	-
DEQ Freshwater Chr	onic RBC ³	0.0031	0.0031	-	-	-	-	-	-	1	-	-	-	•	-	•	-	-	-	-	-	-	-	-	-	-	-
DEQ RBCwe Constructio	1 & Excavation ²	450	450	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EPA Drinking Wat	r MCL⁴	30	30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sample ID	Sample Date		<u> </u>	<u> </u>				<u> </u>			·	<u> </u>		pg	J/L		<u> </u>	·	<u> </u>	·	<u> </u>		<u> </u>	<u> </u>			
BH_DPSW#1_20241210	12/10/2024	U 1.08	3.11	U 1.1	U 1.58	J 2.07	U 2.71	J 4.67	J 2.39	33.5	123	247	1,490	U 2.33	U 2.33	U 2.24	U 2.15	J 18.2	J 3.38	U 2.47	J 1.77	U 0.691	31.9	J 19.4	U 2.11	49.9	J 45.5
BH_DPSW#2_20241210	12/10/2024	U 0.76	0.581	U 0.76	U 1.25	U 1.25	U 1.31	U 1.4	U 1.47	J 3.02	J 5.67	J 11.3	J 31.8	J 4.14	8.02	U 1.52	U 1.03	J 1.99	J 0.858	U 0.962	U 0.982	U 1.59	J 3.17	J 1.44	U 1.39	J 1.44	J 2.63
BH_DPSW#3_20241210	12/10/2024	U 0.681	0.136	U 0.681	U 0.908	U 0.908	U 1.02	U 1.1	U 1.22	J 0.636	J 1.91	J 1.91	J 11.7	J 1.13	J 1.13	U 1.02	U 0.788	U 1.02	U 0.609	U 0.63	U 0.728	U 0.982	U 0.982	U 0.919	U 0.944	U 0.944	U 1.41
BH-DPSW#1-20241203	12/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DPSW#2-20241203	12/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DPSW#3-20241203	12/3/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Bold numbers represent detections

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Blue highlight indicates a detected result which is greater than one or more of the regulatory standards

Orange highlight indicates a detected result which exceeds DEQ Freshwater Chronic RBC

Red highlight indicates a detected which exceeds at least two of the following: DEQ RBCwi Residential - Chronic, DEQ RBCtw Residential RBC,

- ¹ = Vapor Intrusion Risk-Based Concentrations Table1 (DEQ, March 2024).
- 2 = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- ³ = Conducting Ecological Risk Assessments Table 2 (DEQ, April 2021).
- 4 = National Primary Drinking Water Regulations (EPA, December 2024).
- ⁵ = Total PCBs calculated as the sum of detect aroclors
- $^{\rm 6}\,\textsc{=}\,\textsc{TEQ}$ as reported by laboratory. Nondetects not included in
- calculation. TEQ calculated following method described in Van den Berg et al., 2006. The 2005 World Health Organization
- = Screening levels not published for these constituents
- DEQ = State of Oregon Department of Environmental Quality
- EPA = Environmental Protection Agency
- J = Result is an estimated value
- MCL = Maximum Contaminant Level
- mg/L = Milligrams per liter
- NA = Sample not analyzed for this constituent
- pg/L = Picograms per liter
- RBCtw = Risk-Based Concentrations for ingestion & inhalation from tapwater
- RBCwe = Risk-Based Concentrations for groundwater in excavation
- RBCwi = Risk-Based Concentrations for vapor intrusion into buildings
- RCRA = Resource Conservation and Recovery Act
- TEF = Toxic Equivalency Factor
- TEQ = Toxic Equivalency Quotient
- TPH = Total Petroleum Hydrocarbons
- U = Analyte not detected at or above the reporting limit indicated
- ug/L = Micrograms per liter

					Total Metals I	by EPA 6020B			
Screening Crit	teria	Arsenic	Barium	Cadmium	Chromium	read	Mercury	Selenium	Silver
DEQ RBCwi Residenti	ial - Chronic ¹	-	-	-	-	-	-	-	-
DEQ RBCtw Resi	idential ²	0.052	4000	20	30000	15	6	-	100
DEQ Freshwater Chr	onic RBC ³	150	220	0.094	24	0.54	0.012	4.6	0.1
DEQ RBCwe Constructio	n & Excavation ²	6300	-	130000	9400	-	-	-	1100000
EPA Drinking Wat	er MCL ⁴	10	2000	5	100	15	2	50	-
Sample ID	Sample Date				uç	j/L			
BH_DPSW#1_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSW#2_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSW#3_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA
BH-DPSW#1-20241203	12/3/2024	5.85	86.2	4.29	7.93	174	0.136	U 1.00	0.391
BH-DPSW#2-20241203	12/3/2024	U 1.00	29.3	U 0.200	U 2.00	5.62	U 0.0800	U 1.00	U 0.200
BH-DPSW#3-20241203	12/3/2024	U 1.00	28.1	U 0.200	U 2.00	1.86	U 0.0800	U 1.00	U 0.200

Bold numbers represent detections

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Blue highlight indicates a detected result which is greater than one or more of the regulatory standards

Orange highlight indicates a detected result which exceeds DEQ Freshwater Chronic RBC

ed highlight indicates a detected which exceeds at least two of the following: DEQ RBCwi Residential - Chronic, DEQ RBCtw Residential RBC,

- ¹ = Vapor Intrusion Risk-Based Concentrations Table1 (DEQ, March 2024).
- 2 = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- ³ = Conducting Ecological Risk Assessments Table 2 (DEQ, April 2021).
- ⁴ = National Primary Drinking Water Regulations (EPA, December 2024).
- ⁵ = Total PCBs calculated as the sum of detect aroclors
- ⁶ = TEQ as reported by laboratory. Nondetects not included in calculation. TEQ calculated following method described in Van den Berg et al., 2006. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic

- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality

EPA = Environmental Protection Agency

J = Result is an estimated value

MCL = Maximum Contaminant Level

mg/L = Milligrams per liter

NA = Sample not analyzed for this constituent

pg/L = Picograms per liter

RBCtw = Risk-Based Concentrations for ingestion & inhalation from tapwater

RBCwe = Risk-Based Concentrations for groundwater in excavation

RBCwi = Risk-Based Concentrations for vapor intrusion into buildings

RCRA = Resource Conservation and Recovery Act

TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient

TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

ug/L = Micrograms per liter

Table 5, Page 3 of 6 | January 2025

											Volatile	Organic Co	mpounds b	y 8260D									
Screening Crit	teria	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene	1,2,3-Trichloropropane	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,2-Dibromo-3- chloropropane	1,2-Dibromoethane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3,5-Trimethylbenzene	1,3-Dichlorobenzene	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Butanone (MEK)
DEQ RBCwi Residenti	ial - Chronic ¹	8.3	13000	6.8	10	13	300	-	-	47	91	560	0.067	0.34	5900	4	12	400	-	-	5.8	-	4000000
DEQ RBCtw Resi	idential ²	-	8000	-	0.28	2.8	280	-	-	-	-	54	-	0.0075	300	0.17	-	59	-	-	0.48		-
DEQ Freshwater Chr	onic RBC ³	85	76	200	730	410	130		8	-	130	15	-	-	23	2000	520	26	22	-	9.4		22000
DEQ RBCwe Constructio	n & Excavation ²	-	1100000	-	49	10000	44000	-	-	-	-	6300	-	27	37000	630	-	7500	-	-	1500		
EPA Drinking Wat	er MCL⁴	-	200	-	5	-	7		-	-	70	-	0.2	-	-	5	5	-	-	-	-	-	-
Sample ID	Sample Date											uç	g/L										
BH_DPSW#1_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSW#2_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSW#3_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DPSW#1-20241203	12/3/2024	U 0.400	U 0.400	U 0.500	U 0.500	U 0.400	U 0.400	U 1.00	U 2.00	U 1.00	U 2.00	U 1.00	U 5.00	U 0.500	U 0.500	U 0.400	U 0.500	U 1.00	U 0.500	U 1.00	U 0.500	U 1.00	U 10.0
BH-DPSW#2-20241203	12/3/2024	U 0.400	U 0.400	U 0.500	U 0.500	U 0.400	U 0.400	U 1.00	U 2.00	U 1.00	U 2.00	U 1.00	U 5.00	U 0.500	U 0.500	U 0.400	U 0.500	U 1.00	U 0.500	U 1.00	U 0.500	U 1.00	U 10.0
BH-DPSW#3-20241203	12/3/2024	U 0.400	U 0.400	U 0.500	U 0.500	U 0.400	U 0.400	U 1.00	U 2.00	U 1.00	U 2.00	U 1.00	U 5.00	U 0.500	U 0.500	U 0.400	U 0.500	U 1.00	U 0.500	U 1.00	U 0.500	U 1.00	U 10.0

Bold numbers represent detections

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Blue highlight indicates a detected result which is greater than one or more of the regulatory standards

Orange highlight indicates a detected result which exceeds DEQ Freshwater Chronic RBC

Red highlight indicates a detected which exceeds at least two of the following: DEQ RBCwi Residential - Chronic, DEQ RBCtw Residential RBC,

- ¹ = Vapor Intrusion Risk-Based Concentrations Table1 (DEQ, March 2024).
- 2 = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- ³ = Conducting Ecological Risk Assessments Table 2 (DEQ, April 2021).
- ⁴ = National Primary Drinking Water Regulations (EPA, December 2024).
- ⁵ = Total PCBs calculated as the sum of detect aroclors
- $^{\rm 6}\!$ = TEQ as reported by laboratory. Nondetects not included in
- calculation. TEQ calculated following method described in Van den Berg et al., 2006. The 2005 World Health Organization
- = Screening levels not published for these constituents
- DEQ = State of Oregon Department of Environmental Quality
- EPA = Environmental Protection Agency
- J = Result is an estimated value
- MCL = Maximum Contaminant Level
- mg/L = Milligrams per liter
- NA = Sample not analyzed for this constituent
- pg/L = Picograms per liter
- RBCtw = Risk-Based Concentrations for ingestion & inhalation from tapwater
- RBCwe = Risk-Based Concentrations for groundwater in excavation
- RBCwi = Risk-Based Concentrations for vapor intrusion into buildings
- RCRA = Resource Conservation and Recovery Act
- TEF = Toxic Equivalency Factor
- TEQ = Toxic Equivalency Quotient
- TPH = Total Petroleum Hydrocarbons
- U = Analyte not detected at or above the reporting limit indicated
- ug/L = Micrograms per liter

										Vo	latile Orgar	nic Compou	nds by 826	0D (continu	ed)								
Screening Cri	teria	2-Chlorotoluene	2-Hexanone	4-Chlorotoluene	4-IsopropyItoluene	4-Methyl-2-Pentanone (MIBK)	Acetone	Acrylonitrile	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	Dibromochloromethane
DEQ RBCwi Resident	ial - Chronic ¹	-	17000	-	-	1100000	-	13	2.8	1500	1200	1.6	250	25	1900	0.71	810	14000	1.4	350	430	-	-
DEQ RBCtw Res	idential ²	-	-	-	-	-		0.052	0.46	-	-	0.13	3.3	7.5	1	0.46	77	21000	0.22	190	36	-	0.17
DEQ Freshwater Chr	onic RBC ³	-	99	-	16	170	1700	78	160	-	-	340	230	16	15	77	25	-	140	-	-	1.7	320
DEQ RBCwe Construction	n & Excavation ²	-	-	-	-	-	•	250	1800	-	-	450	14000	1200	ı	1800	10000	2400000	720	22000	18000	-	610
EPA Drinking Wat	er MCL ⁴	-	-	-	-	-	-	-	5	-	-	-	-	-	-	5	100	-	-	-	70	-	-
Sample ID	Sample Date	-										uç	g/L										
BH_DPSW#1_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSW#2_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSW#3_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DPSW#1-20241203	12/3/2024	U 1.00	U 10.0	U 1.00	U 1.00	U 10.0	U 20.0	U 2.00	U 0.200	U 0.500	U 1.00	U 1.00	U 1.00	U 5.00	U 10.0	U 1.00	U 0.500	U 5.00	U 1.00	U 5.00	U 0.400	U 1.00	U 1.00
BH-DPSW#2-20241203	12/3/2024	U 1.00	U 10.0	U 1.00	U 1.00	U 10.0	U 20.0	U 2.00	U 0.200	U 0.500	U 1.00	U 1.00	U 1.00	U 5.00	U 10.0	U 1.00	U 0.500	U 5.00	U 1.00	14.3	U 0.400	U 1.00	U 1.00
BH-DPSW#3-20241203	12/3/2024	U 1.00	U 10.0	U 1.00	U 1.00	U 10.0	22.8	U 2.00	U 0.200	U 0.500	U 1.00	U 1.00	U 1.00	U 5.00	U 10.0	U 1.00	U 0.500	U 5.00	U 1.00	U 5.00	U 0.400	U 1.00	U 1.00

Notes:

Bold numbers represent detections

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Blue highlight indicates a detected result which is greater than one or more of the regulatory standards

Orange highlight indicates a detected result which exceeds DEQ Freshwater Chronic RBC

Red highlight indicates a detected which exceeds at least two of the following: DEQ RBCwi Residential - Chronic, DEQ RBCtw Residential RBC,

- ¹ = Vapor Intrusion Risk-Based Concentrations Table1 (DEQ, March 2024).
- 2 = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- ³ = Conducting Ecological Risk Assessments Table 2 (DEQ, April 2021).
- ⁴ = National Primary Drinking Water Regulations (EPA, December 2024).
- ⁵ = Total PCBs calculated as the sum of detect aroclors
- $^{\rm 6}\!$ = TEQ as reported by laboratory. Nondetects not included in
- calculation. TEQ calculated following method described in Van den Berg et al., 2006. The 2005 World Health Organization
- = Screening levels not published for these constituents

DEQ = State of Oregon Department of Environmental Quality

EPA = Environmental Protection Agency

J = Result is an estimated value

MCL = Maximum Contaminant Level

mg/L = Milligrams per liter

NA = Sample not analyzed for this constituent

pg/L = Picograms per liter

RBCtw = Risk-Based Concentrations for ingestion & inhalation from tapwater

RBCwe = Risk-Based Concentrations for groundwater in excavation

 $\mbox{RBCwi = Risk-Based Concentrations for vapor intrusion into buildings} \label{eq:RBCwi}$

RCRA = Resource Conservation and Recovery Act

TEF = Toxic Equivalency Factor

TEQ = Toxic Equivalency Quotient

TPH = Total Petroleum Hydrocarbons

U = Analyte not detected at or above the reporting limit indicated

ug/L = Micrograms per liter

										Vo	latile Orga	nic Compou	ınds by 8260	0D (continu	ed)								
Screening Cri	teria	Dibromomethane	Dichlorodifluoromethane (Freon 12)	Ethylbenzene	Hexachlorobutadiene	Isopropylbenzene	m,p-Xylene	Methyl tert-Butyl Ether (MTBE)	Methylene chloride	Naphthalene	n-Butylbenzene	n-Propylbenzene	o-Xylene	sec-Butylbenzene	Styrene	tert-Butylbenzene	Tetrachloroethene	Toluene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	Trichloroethene	Trichlorofluoromethane (Freon 11)	Vinyl chloride
DEQ RBCwi Resident	ial - Chronic ¹	230	9.8	7.1	0.74	2200	-	740	1200	11	-	5300	1000	-	20000	-	29	36000	180	-	2.1	-	0.2
DEQ RBCtw Res	idential ²	-	-	1.5	-	440		14	11	0.17	-	-	-	-	1200	-	12	1100	360	-	0.49	1100	0.027
DEQ Freshwater Chr	ronic RBC ³	-	-	61	-	4.8	-	730	1500	-	-	-	27	-	-	-	-	62	-	1.7	220	-	930
DEQ RBCwe Construction	on & Excavation ²	-	-	4500	-	51000	23000	63000	79000	500	-	-	-	-	170000	-	5600	220000	180000	-	430	160000	960
EPA Drinking Wat	er MCL ⁴	-	-	700	-	-	-	-	5	-	-	-	-	-	100	-	5	1000	100	-	5	-	2
Sample ID	Sample Date											uį	g/L										
BH_DPSW#1_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSW#2_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH_DPSW#3_20241210	12/10/2024	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BH-DPSW#1-20241203	12/3/2024	U 1.00	U 1.00	U 0.500	U 5.00	U 1.00	U 1.00	U 1.00	U 10.0	U 5.00	U 1.00	U 0.500	U 0.500	U 1.00	U 1.00	U 1.00	U 0.400	U 1.00	U 0.400	U 1.00	U 0.400	U 2.00	U 0.200
BH-DPSW#2-20241203	12/3/2024	U 1.00	U 1.00	U 0.500	U 5.00	U 1.00	U 1.00	U 1.00	U 10.0	U 5.00	U 1.00	U 0.500	U 0.500	U 1.00	U 1.00	U 1.00	U 0.400	U 1.00	U 0.400	U 1.00	U 0.400	U 2.00	U 0.200
BH-DPSW#3-20241203	12/3/2024	U 1.00	U 1.00	U 0.500	U 5.00	U 1.00	U 1.00	U 1.00	U 10.0	U 5.00	U 1.00	U 0.500	U 0.500	U 1.00	U 1.00	U 1.00	U 0.400	U 1.00	U 0.400	U 1.00	U 0.400	U 2.00	U 0.200

Notes:

Bold numbers represent detections

Gray highlight indicates a non-detect result which is greater than one or more of the regulatory standards

Blue highlight indicates a detected result which is greater than one or more of the regulatory standards

Orange highlight indicates a detected result which exceeds DEQ Freshwater Chronic RBC

ed highlight indicates a detected which exceeds at least two of the following: DEQ RBCwi Residential - Chronic, DEQ RBCtw Residential RBC,

- ¹ = Vapor Intrusion Risk-Based Concentrations Table1 (DEQ, March 2024).
- 2 = Risk-Based Concentrations for Individual Chemicals (DEQ, May 2018 rev. August 2023).
- ³ = Conducting Ecological Risk Assessments Table 2 (DEQ, April 2021).
- ⁴ = National Primary Drinking Water Regulations (EPA, December 2024).
- ⁵ = Total PCBs calculated as the sum of detect aroclors
- $^{\rm 6}\!$ = TEQ as reported by laboratory. Nondetects not included in calculation. TEQ calculated following method described in
- Van den Berg et al., 2006. The 2005 World Health Organization
- = Screening levels not published for these constituents
- DEQ = State of Oregon Department of Environmental Quality
- EPA = Environmental Protection Agency
- J = Result is an estimated value
- MCL = Maximum Contaminant Level
- mg/L = Milligrams per liter
- NA = Sample not analyzed for this constituent
- pg/L = Picograms per liter
- RBCtw = Risk-Based Concentrations for ingestion & inhalation from tapwater
- RBCwe = Risk-Based Concentrations for groundwater in excavation
- RBCwi = Risk-Based Concentrations for vapor intrusion into buildings
- RCRA = Resource Conservation and Recovery Act
- TEF = Toxic Equivalency Factor TEQ = Toxic Equivalency Quotient
- TPH = Total Petroleum Hydrocarbons
- U = Analyte not detected at or above the reporting limit indicated
- ug/L = Micrograms per liter

ATTACHMENT C: SITE PHOTOGRAPH LOG

Photograph No. 1:

Photograph No. 2:

Comments:

Photo 1: Smoke testing setup - smoke sticks in can with intake of blower covering the opening of the can.

Photo 2: Smoke setup for larger lines using liquid smoke machine and higheroutput blower.

Photograph No. 3:

Comments:

An example of smoke testing at the opposite end of the connected feature. White smoke shown with red arrow.

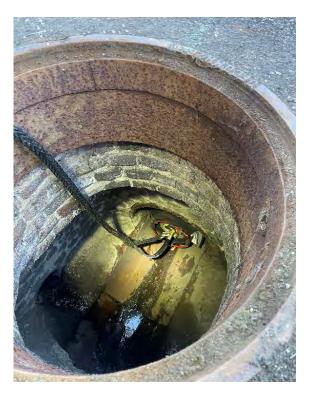
Photograph No. 4:

Comments:

Dye testing in Grotto. Fluorescent green dye appeared in the standing water, shown with red arrow.

Photograph No. 5:

Photograph No. 6:



Comments:

Examples of jetting nozzle attachments utilized for line cleaning.

Photograph No. 7:

Comments:

Pneumatic plug installed

Photograph No. 8:

Comments:

Confined space entry into VA-1.

Photograph No. 9:

Comments:

Captured line cleaning water storage tanks. Temporary secondary containment berms installed around each tank.

Photograph No. 10:

Comments:

Dewatering solids container with vacuum truck.

Photograph No. 11:

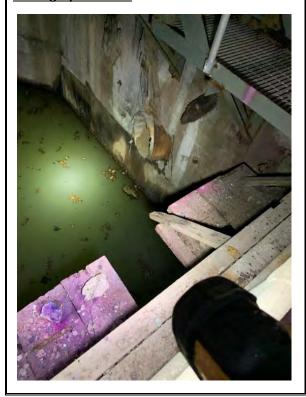
Comments:

Vacuum
truck
offloading
water and
debris
collection
from line
cleaning.
Waste
container
temporarily
opened to
facilitate
offloading.

Photograph No. 12:

Comments:

Push-cam set up for CCTV of TD-14.


Photograph No. 13:

Comments:

Track mounted CCTV camera crawler.

Photograph No. 14:

Photograph No. 15:

Comments:

Photo 14: Underground water collection basin in Building 13

Photo 15: Underground water collection basin in Building 13.

Photograph No. 16:

Comments:

Broken ceramic pipe piece dislodged during line jetting

Photograph No. 17:

Comments:

Demolished buildings near the Site entrance. Depression in the rubble is in the former location of Building 01 "Main Office".

Photograph No. 18:

Comments:

Pressure washing TD-2 and collecting water with vacuum truck.

Photograph No. 19:

Comments:

Debris removed from line jetting at VA-2.

ATTACHMENT D:

ANALYTICAL LABORATORY REPORTS

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Tuesday, November 5, 2024
John Kuiper
WSP USA Environment & Infrastructure Inc.
15862 SW 72nd Ave. Suite 150
Portland, OR 97224

RE: A4J1024 - Blue Heron - G685.0793 Task 400

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4J1024, which was received by the laboratory on 10/3/2024 at 3:10:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Acceptable Receipt Ter	nperature is less than, or eq	ual to, 6 degC (not frozen), or received on ice the same day as samplin
	(See Cod	oler Receipt Form for details)
Cooler #1	5.4 degC	Cooler #2 5.1 degC
Cooler #3	4.6 degC	

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project:

Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-TRH-1_0-0.5-20241002	A4J1024-01	Solid	10/02/24 09:15	10/03/24 15:10
BH-TRH-2_0-0.5-20241002	A4J1024-02	Solid	10/02/24 10:10	10/03/24 15:10
BH-TRH-2_1-1.5-20241002	A4J1024-03	Solid	10/02/24 09:50	10/03/24 15:10
BH-TRH-3_0-0.5-20241002	A4J1024-04	Solid	10/02/24 11:25	10/03/24 15:10
BH-TRH-3_1-1.5-20241002	A4J1024-05	Solid	10/02/24 12:00	10/03/24 15:10
BH-TR1-1_0-0.5-20241002	A4J1024-06	Solid	10/02/24 08:23	10/03/24 15:10
BH-TR1-2_0-0.5-20241002	A4J1024-07	Solid	10/02/24 14:00	10/03/24 15:10
BH-TR1-3_0-0.5-20241002	A4J1024-08	Solid	10/02/24 12:30	10/03/24 15:10
BH-TR1-3_1-1.5-20241002	A4J1024-09	Solid	10/02/24 12:50	10/03/24 15:10
BH-TR1-4_0-0.5-20241002	A4J1024-10	Solid	10/02/24 15:50	10/03/24 15:10
BH-TR2-1_0-0.5-20241002	A4J1024-11	Solid	10/02/24 16:30	10/03/24 15:10
BH-TR2-2_0-0.5-20241002	A4J1024-12	Solid	10/02/24 17:30	10/03/24 15:10
BH-TR2-3_0-0.5-20241002	A4J1024-13	Solid	10/02/24 17:50	10/03/24 15:10
BH-TR2-4_0-0.5-20241002	A4J1024-14	Solid	10/02/24 17:00	10/03/24 15:10
BH-TR2-6_0-0.5-20241002	A4J1024-15	Solid	10/02/24 15:10	10/03/24 15:10
BH-DUP1	A4J1024-16	Solid	10/02/24 00:00	10/03/24 15:10
BH-Rinsate-20241002	A4J1024-17	Water	10/02/24 18:40	10/03/24 15:10

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 2 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	Hydro	carbon Identif	fication Sc	reen by NWTP	H-HCID			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-TRH-1_0-0.5-20241002 (A4J1024-01)				Matrix: Solid	ı	Batch:	24J0195	
Gasoline Range Organics	ND		19.1	mg/kg	1	10/04/24 21:49	NWTPH-HCID	
Diesel Range Organics	ND		47.8	mg/kg	1	10/04/24 21:49	NWTPH-HCID	
Oil Range Organics	DET		95.7	mg/kg	1	10/04/24 21:49	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 90 %	Limits: 50-150 %	1	10/04/24 21:49	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			88 %	50-150 %	I	10/04/24 21:49	NWTPH-HCID	
BH-TRH-2_0-0.5-20241002 (A4J1024-02)				Matrix: Solic	i	Batch:	24J0195	
Gasoline Range Organics	ND		20.0	mg/kg	1	10/04/24 23:00	NWTPH-HCID	
Diesel Range Organics	ND		50.0	mg/kg	1	10/04/24 23:00	NWTPH-HCID	
Oil Range Organics	ND		99.9	mg/kg	1	10/04/24 23:00	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 88 %	Limits: 50-150 %	I	10/04/24 23:00	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			84 %	50-150 %	1	10/04/24 23:00	NWTPH-HCID	
BH-TRH-2_1-1.5-20241002 (A4J1024-03)				Matrix: Solid	i	Batch:	24J0195	
Gasoline Range Organics	ND		18.7	mg/kg	1	10/04/24 23:23	NWTPH-HCID	
Diesel Range Organics	ND		46.7	mg/kg	1	10/04/24 23:23	NWTPH-HCID	
Oil Range Organics	DET		93.4	mg/kg	1	10/04/24 23:23	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 90 %	Limits: 50-150 %	1	10/04/24 23:23	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			87 %	50-150 %	1	10/04/24 23:23	NWTPH-HCID	
BH-TRH-3_0-0.5-20241002 (A4J1024-04)				Matrix: Solid	i	Batch:	24J0195	
Gasoline Range Organics	ND		19.0	mg/kg	1	10/04/24 21:26	NWTPH-HCID	
Diesel Range Organics	ND		47.5	mg/kg	1	10/04/24 21:26	NWTPH-HCID	
Oil Range Organics	ND		95.1	mg/kg	1	10/04/24 21:26	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 92 %	Limits: 50-150 %	1	10/04/24 21:26	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			79 %	50-150 %	I	10/04/24 21:26	NWTPH-HCID	
BH-TRH-3_1-1.5-20241002 (A4J1024-05)				Matrix: Solic	i	Batch:	24J0195	
Gasoline Range Organics	ND		19.1	mg/kg	1	10/05/24 02:31	NWTPH-HCID	
Diesel Range Organics	ND		47.8	mg/kg	1	10/05/24 02:31	NWTPH-HCID	
Oil Range Organics	DET		95.5	mg/kg	1	10/05/24 02:31	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	ry: 89 %	Limits: 50-150 %	I	10/05/24 02:31	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			86 %	50-150 %	1	10/05/24 02:31	NWTPH-HCID	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	riyare	Jan Don Idontill		reen by NWTPI				
	Sample	Detection	Reporting	** **	D.1:	Date	M d 15 0	37 .
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH-TR1-1_0-0.5-20241002 (A4J1024-06)				Matrix: Solid	l	Batch:	24J0195	
Gasoline Range Organics	ND		19.6	mg/kg	1	10/04/24 23:47	NWTPH-HCID	
Diesel Range Organics	ND		49.0	mg/kg	1	10/04/24 23:47	NWTPH-HCID	
Oil Range Organics	DET		98.0	mg/kg	1	10/04/24 23:47	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	v: 94 %	Limits: 50-150 %	1	10/04/24 23:47	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			92 %	50-150 %	1	10/04/24 23:47	NWTPH-HCID	
BH-TR1-2_0-0.5-20241002 (A4J1024-07)				Matrix: Solid	I	Batch:	24J0195	
Gasoline Range Organics	ND		19.7	mg/kg	1	10/05/24 00:34	NWTPH-HCID	
Diesel Range Organics	ND		49.2	mg/kg	1	10/05/24 00:34	NWTPH-HCID	
Oil Range Organics	DET		98.3	mg/kg	1	10/05/24 00:34	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	v: 94 %	Limits: 50-150 %	1	10/05/24 00:34	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			90 %	50-150 %	1	10/05/24 00:34	NWTPH-HCID	
BH-TR1-3_0-0.5-20241002 (A4J1024-08)				Matrix: Solid	I	Batch:	24J0195	
Gasoline Range Organics	ND		99.1	mg/kg	5	10/05/24 05:16	NWTPH-HCID	
Diesel Range Organics	ND		248	mg/kg	5	10/05/24 05:16	NWTPH-HCID	
Oil Range Organics	DET		496	mg/kg	5	10/05/24 05:16	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	v: 97 %	Limits: 50-150 %	5	10/05/24 05:16	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			91 %	50-150 %	5	10/05/24 05:16	NWTPH-HCID	
BH-TR1-3_1-1.5-20241002 (A4J1024-09)				Matrix: Solid	l	Batch:	24J0195	
Gasoline Range Organics	ND		19.5	mg/kg	1	10/05/24 02:55	NWTPH-HCID	
Diesel Range Organics	ND		48.7	mg/kg	1	10/05/24 02:55	NWTPH-HCID	
Oil Range Organics	DET		97.4	mg/kg	1	10/05/24 02:55	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	v: 81 %	Limits: 50-150 %	1	10/05/24 02:55	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			76 %	50-150 %	1	10/05/24 02:55	NWTPH-HCID	
BH-TR1-4_0-0.5-20241002 (A4J1024-10)				Matrix: Solid	I	Batch:	24J0195	
Gasoline Range Organics	ND		19.6	mg/kg	1	10/05/24 04:29	NWTPH-HCID	
Diesel Range Organics	ND		49.0	mg/kg	1	10/05/24 04:29	NWTPH-HCID	
Oil Range Organics	DET		97.9	mg/kg	1	10/05/24 04:29	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	v: 77 %	Limits: 50-150 %	I	10/05/24 04:29	NWTPH-HCID	
4-Bromofluorobenzene (Surr)		•	76 %	50-150 %		10/05/24 04:29	NWTPH-HCID	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	Hydro	ocarbon Identif	ication Sc	reen by NWTP	H-HCID			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-TR2-1_0-0.5-20241002 (A4J1024-11)				Matrix: Solid	t	Batch:	24J0195	
Gasoline Range Organics	ND		19.8	mg/kg	1	10/05/24 03:18	NWTPH-HCID	
Diesel Range Organics	ND		49.4	mg/kg	1	10/05/24 03:18	NWTPH-HCID	
Oil Range Organics	DET		98.8	mg/kg	1	10/05/24 03:18	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	y: 75 %	Limits: 50-150 %	5 1	10/05/24 03:18	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			66 %	50-150 %	5 I	10/05/24 03:18	NWTPH-HCID	
BH-TR2-2_0-0.5-20241002 (A4J1024-12)				Matrix: Solid	t	Batch:	24J0195	
Gasoline Range Organics	ND		18.6	mg/kg	1	10/05/24 05:39	NWTPH-HCID	
Diesel Range Organics	ND		46.6	mg/kg	1	10/05/24 05:39	NWTPH-HCID	
Oil Range Organics	DET		93.1	mg/kg	1	10/05/24 05:39	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	y: 69 %	Limits: 50-150 %	5 1	10/05/24 05:39	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			66 %	50-150 %	1	10/05/24 05:39	NWTPH-HCID	
BH-TR2-3_0-0.5-20241002 (A4J1024-13)				Matrix: Solid	t	Batch:	24J0195	
Gasoline Range Organics	ND		18.9	mg/kg	1	10/05/24 06:26	NWTPH-HCID	
Diesel Range Organics	ND		47.3	mg/kg	1	10/05/24 06:26	NWTPH-HCID	
Oil Range Organics	DET		94.7	mg/kg	1	10/05/24 06:26	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	y: 91 %	Limits: 50-150 %	5 1	10/05/24 06:26	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			87 %	50-150 %	<i>I</i>	10/05/24 06:26	NWTPH-HCID	
BH-TR2-4_0-0.5-20241002 (A4J1024-14)				Matrix: Solid	t	Batch:	24J0195	
Gasoline Range Organics	ND		18.6	mg/kg	1	10/05/24 04:05	NWTPH-HCID	
Diesel Range Organics	ND		46.4	mg/kg	1	10/05/24 04:05	NWTPH-HCID	
Oil Range Organics	DET		92.8	mg/kg	1	10/05/24 04:05	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	y: 86 %	Limits: 50-150 %	5 1	10/05/24 04:05	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			80 %	50-150 %	i I	10/05/24 04:05	NWTPH-HCID	
BH-TR2-6_0-0.5-20241002 (A4J1024-15)				Matrix: Solid	t	Batch:	24J0195	
Gasoline Range Organics	ND		99.1	mg/kg	5	10/05/24 07:13	NWTPH-HCID	
Diesel Range Organics	ND		248	mg/kg	5	10/05/24 07:13	NWTPH-HCID	
Oil Range Organics	DET		496	mg/kg	5	10/05/24 07:13	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	y: 84 %	Limits: 50-150 %	5	10/05/24 07:13	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			83 %	50-150 %	5	10/05/24 07:13	NWTPH-HCID	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	Hydro	ocarbon Iden	tification So	creen by NWTP	H-HCID			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-DUP1 (A4J1024-16)				Matrix: Soli	d	Batch:	24J0195	
Gasoline Range Organics	ND		19.9	mg/kg	1	10/05/24 00:57	NWTPH-HCID	
Diesel Range Organics	ND		49.8	mg/kg	1	10/05/24 00:57	NWTPH-HCID	
Oil Range Organics	DET		99.6	mg/kg	1	10/05/24 00:57	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Reco	very: 95 %	Limits: 50-150 %	6 I	10/05/24 00:57	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			94 %	50-150 %	6 I	10/05/24 00:57	NWTPH-HCID	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 6 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-TRH-1_0-0.5-20241002 (A4J1024-01)				Matrix: Soli	d	Batch:	24J0545	
Diesel	ND		67.3	mg/kg	1	10/14/24 20:24	NWTPH-Dx	
Oil	424		135	mg/kg	1	10/14/24 20:24	NWTPH-Dx	Q-39
Surrogate: o-Terphenyl (Surr)		Reco	very: 81 %	Limits: 50-150 %	6 I	10/14/24 20:24	NWTPH-Dx	
BH-TRH-2_1-1.5-20241002 (A4J1024-03)				Matrix: Soli	d	Batch:	24J0545	
Diesel	ND		96.2	mg/kg	1	10/14/24 21:26	NWTPH-Dx	
Oil	546		192	mg/kg	1	10/14/24 21:26	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 78 %	Limits: 50-150 %	6 I	10/14/24 21:26	NWTPH-Dx	
BH-TRH-3_1-1.5-20241002 (A4J1024-05)				Matrix: Soli	d	Batch:	24J0545	
Diesel	ND		1750	mg/kg	25	10/14/24 21:47	NWTPH-Dx	
Oil	42500		3510	mg/kg	25	10/14/24 21:47	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Re	covery: %	Limits: 50-150 %	6 25	10/14/24 21:47	NWTPH-Dx	S-01
BH-TR1-1_0-0.5-20241002 (A4J1024-06)				Matrix: Soli	d	Batch:	24J0545	
Diesel	ND		66.9	mg/kg	1	10/14/24 22:28	NWTPH-Dx	
Oil	351		134	mg/kg	1	10/14/24 22:28	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 78 %	Limits: 50-150 %	6 1	10/14/24 22:28	NWTPH-Dx	
BH-TR1-2_0-0.5-20241002 (A4J1024-07)				Matrix: Soli	d	Batch:	24J0545	
Diesel	ND		82.0	mg/kg	1	10/14/24 22:49	NWTPH-Dx	
Oil	1570		164	mg/kg	1	10/14/24 22:49	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 81 %	Limits: 50-150 %	6 I	10/14/24 22:49	NWTPH-Dx	
BH-TR1-3_0-0.5-20241002 (A4J1024-08)				Matrix: Soli	d	Batch:	24J0545	
Diesel	ND		455	mg/kg	5	10/14/24 23:30	NWTPH-Dx	
Oil	1710		909	mg/kg	5	10/14/24 23:30	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 81 %	Limits: 50-150 %	6 5	10/14/24 23:30	NWTPH-Dx	S-05
BH-TR1-3_1-1.5-20241002 (A4J1024-09)				Matrix: Soli	d	Batch:	24J0545	
Diesel	ND		467	mg/kg	5	10/14/24 23:51	NWTPH-Dx	
Oil	1510		935	mg/kg	5	10/14/24 23:51	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 76 %	Limits: 50-150 %	6 5	10/14/24 23:51	NWTPH-Dx	S-05

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 7 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	DIE	Jei aliu/Ul Ull	riyurocari	bons by NWTP	11-DX			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
BH-TR1-4_0-0.5-20241002 (A4J1024-10)				Matrix: Solid	d	Batch:	24J0545	
Diesel	ND		80.0	mg/kg	1	10/15/24 00:32	NWTPH-Dx	_
Oil	704		160	mg/kg	1	10/15/24 00:32	NWTPH-Dx	F-03
Surrogate: o-Terphenyl (Surr)		Recove	ery: 83 %	Limits: 50-150 %	6 I	10/15/24 00:32	NWTPH-Dx	
BH-TR2-1_0-0.5-20241002 (A4J1024-11)				Matrix: Solid	d	Batch:	24J0545	
Diesel	ND		820	mg/kg	10	10/15/24 00:53	NWTPH-Dx	
Oil	2900		1640	mg/kg	10	10/15/24 00:53	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 79 %	Limits: 50-150 %	6 10	10/15/24 00:53	NWTPH-Dx	S-05
BH-TR2-2_0-0.5-20241002 (A4J1024-12RE	E1)			Matrix: Solid	d	Batch:	24J0545	
Diesel	ND		91.7	mg/kg	1	10/15/24 08:53	NWTPH-Dx	
Oil	445		183	mg/kg	1	10/15/24 08:53	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recover	y: 102 %	Limits: 50-150 %	6 I	10/15/24 08:53	NWTPH-Dx	
BH-TR2-3_0-0.5-20241002 (A4J1024-13)				Matrix: Solid	d	Batch:	24J0545	
Diesel	ND		87.0	mg/kg	1	10/15/24 01:55	NWTPH-Dx	
Oil	624		174	mg/kg	1	10/15/24 01:55	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 81 %	Limits: 50-150 %	6 I	10/15/24 01:55	NWTPH-Dx	
BH-TR2-4_0-0.5-20241002 (A4J1024-14)				Matrix: Solid	d	Batch:	24J0545	
Diesel	ND		712	mg/kg	10	10/15/24 02:36	NWTPH-Dx	
Oil	1910		1420	mg/kg	10	10/15/24 02:36	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 80 %	Limits: 50-150 %	6 10	10/15/24 02:36	NWTPH-Dx	S-05
BH-TR2-6_0-0.5-20241002 (A4J1024-15)				Matrix: Solid	d	Batch:	24J0545	
Diesel	ND		397	mg/kg	5	10/14/24 22:49	NWTPH-Dx	<u> </u>
Oil	4210		794	mg/kg	5	10/14/24 22:49	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 92 %	Limits: 50-150 %	6 5	10/14/24 22:49	NWTPH-Dx	S-05
BH-DUP1 (A4J1024-16)				Matrix: Solid	d	Batch:	24J0545	
Diesel	ND		74.6	mg/kg	1	10/14/24 23:30	NWTPH-Dx	
Oil	377		149	mg/kg	1	10/14/24 23:30	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 88 %	Limits: 50-150 %	6 1	10/14/24 23:30	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 8 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTPI	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-Rinsate-20241002 (A4J1024-17)				Matrix: Wate	er	Batch:	24J0995	H-02
Diesel	ND		0.192	mg/L	1	10/25/24 21:15	NWTPH-Dx	
Oil	ND		0.385	mg/L	1	10/25/24 21:15	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 94 %	Limits: 50-150 %	5 I	10/25/24 21:15	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 9 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	ls by EPA 8082	Α			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-TRH-1_0-0.5-20241002 (A4J1024-01)				Matrix: Solid	l	Batch:	24J0186	C-07
Aroclor 1016	ND		89.3	ug/kg	2	10/07/24 18:39	EPA 8082A	
Aroclor 1221	ND		89.3	ug/kg	2	10/07/24 18:39	EPA 8082A	
Aroclor 1232	ND		89.3	ug/kg	2	10/07/24 18:39	EPA 8082A	
Aroclor 1242	ND		89.3	ug/kg	2	10/07/24 18:39	EPA 8082A	
Aroclor 1248	ND		89.3	ug/kg	2	10/07/24 18:39	EPA 8082A	
Aroclor 1254	ND		89.3	ug/kg	2	10/07/24 18:39	EPA 8082A	Q-39
Aroclor 1260	ND		89.3	ug/kg	2	10/07/24 18:39	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 105 %	Limits: 60-125 %	2	10/07/24 18:39	EPA 8082A	
BH-TRH-2_0-0.5-20241002 (A4J1024-02)				Matrix: Solid	ı	Batch:	24J0186	C-07
Aroclor 1016	ND		94.8	ug/kg	2	10/07/24 20:25	EPA 8082A	
Aroclor 1221	ND		94.8	ug/kg	2	10/07/24 20:25	EPA 8082A	
Aroclor 1232	ND		94.8	ug/kg	2	10/07/24 20:25	EPA 8082A	
Aroclor 1242	ND		94.8	ug/kg	2	10/07/24 20:25	EPA 8082A	
Aroclor 1248	ND		94.8	ug/kg	2	10/07/24 20:25	EPA 8082A	
Aroclor 1254	ND		94.8	ug/kg	2	10/07/24 20:25	EPA 8082A	
Aroclor 1260	ND		94.8	ug/kg	2	10/07/24 20:25	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 104 %	Limits: 60-125 %	2	10/07/24 20:25	EPA 8082A	
BH-TRH-2_1-1.5-20241002 (A4J1024-03)				Matrix: Solid	i	Batch:	24J0186	C-07
Aroclor 1016	ND		92.2	ug/kg	2	10/07/24 21:17	EPA 8082A	
Aroclor 1221	ND		92.2	ug/kg	2	10/07/24 21:17	EPA 8082A	
Aroclor 1232	ND		92.2	ug/kg	2	10/07/24 21:17	EPA 8082A	
Aroclor 1242	ND		92.2	ug/kg	2	10/07/24 21:17	EPA 8082A	
Aroclor 1248	ND		92.2	ug/kg	2	10/07/24 21:17	EPA 8082A	
Aroclor 1254	ND		92.2	ug/kg	2	10/07/24 21:17	EPA 8082A	
Aroclor 1260	ND		92.2	ug/kg	2	10/07/24 21:17	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 108 %	Limits: 60-125 %	2	10/07/24 21:17	EPA 8082A	
BH-TRH-3_0-0.5-20241002 (A4J1024-04)				Matrix: Solic	ı	Batch:	24J0186	C-07
Aroclor 1016	ND		79.1	ug/kg	2	10/07/24 22:10	EPA 8082A	
Aroclor 1221	ND		79.1	ug/kg	2	10/07/24 22:10	EPA 8082A	
Aroclor 1232	ND		79.1	ug/kg	2	10/07/24 22:10	EPA 8082A	
Aroclor 1242	ND		79.1	ug/kg	2	10/07/24 22:10	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 10 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		Polychiorinale	a pihueui	ls by EPA 8082	A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-TRH-3_0-0.5-20241002 (A4J1024-04)				Matrix: Solid	I	Batch: 2	24J0186	C-07
Aroclor 1248	ND		79.1	ug/kg	2	10/07/24 22:10	EPA 8082A	
Aroclor 1254	ND		79.1	ug/kg	2	10/07/24 22:10	EPA 8082A	
Aroclor 1260	ND		79.1	ug/kg	2	10/07/24 22:10	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recover	v: 96 %	Limits: 60-125 %	2	10/07/24 22:10	EPA 8082A	
BH-TRH-3_1-1.5-20241002 (A4J1024-05R	E1)			Matrix: Solid	I	Batch: 2	24J0186	C-07
Aroclor 1016	ND		70.9	ug/kg	2	10/09/24 14:40	EPA 8082A	
Aroclor 1221	ND		70.9	ug/kg	2	10/09/24 14:40	EPA 8082A	
Aroclor 1232	ND		70.9	ug/kg	2	10/09/24 14:40	EPA 8082A	
Aroclor 1242	ND		70.9	ug/kg	2	10/09/24 14:40	EPA 8082A	
Aroclor 1248	ND		70.9	ug/kg	2	10/09/24 14:40	EPA 8082A	
Aroclor 1254	ND		70.9	ug/kg	2	10/09/24 14:40	EPA 8082A	
Aroclor 1260	ND		70.9	ug/kg	2	10/09/24 14:40	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recover	v: 92 %	Limits: 60-125 %	2	10/09/24 14:40	EPA 8082A	
BH-TR1-1_0-0.5-20241002 (A4J1024-06)				Matrix: Solid		Batch: 2	24J0186	C-07
Aroclor 1016	ND		74.1	ug/kg	2	10/07/24 23:55	EPA 8082A	
Aroclor 1221	ND		74.1	ug/kg	2	10/07/24 23:55	EPA 8082A	
Aroclor 1232	ND		74.1	ug/kg	2	10/07/24 23:55	EPA 8082A	
Aroclor 1242	ND		74.1	ug/kg	2	10/07/24 23:55	EPA 8082A	
Aroclor 1248	ND		74.1	ug/kg	2	10/07/24 23:55	EPA 8082A	
Aroclor 1254	ND		74.1	ug/kg	2	10/07/24 23:55	EPA 8082A	
Aroclor 1260	ND		74.1	ug/kg	2	10/07/24 23:55	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recover	v: 95 %	Limits: 60-125 %	2	10/07/24 23:55	EPA 8082A	
3H-TR1-2_0-0.5-20241002 (A4J1024-07)				Matrix: Solid		Batch: 2	24J0186	C-07
Aroclor 1016	ND		82.6	ug/kg	2	10/08/24 00:48	EPA 8082A	
Aroclor 1221	ND		82.6	ug/kg	2	10/08/24 00:48	EPA 8082A	
Aroclor 1232	ND		82.6	ug/kg	2	10/08/24 00:48	EPA 8082A	
Aroclor 1242	ND		82.6	ug/kg	2	10/08/24 00:48	EPA 8082A	
Aroclor 1248	ND		82.6	ug/kg	2	10/08/24 00:48	EPA 8082A	
Aroclor 1254	ND		82.6	ug/kg	2	10/08/24 00:48	EPA 8082A	
Aroclor 1260	ND		82.6	ug/kg	2	10/08/24 00:48	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recovery.	100 %	Limits: 60-125 %	2	10/08/24 00:48	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 11 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	Is by EPA 808	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
BH-TR1-3_0-0.5-20241002 (A4J1024-08)				Matrix: Soli	d	Batch: 2	24J0186	C-07
Aroclor 1016	ND		93.9	ug/kg	2	10/07/24 18:04	EPA 8082A	
Aroclor 1221	ND		93.9	ug/kg	2	10/07/24 18:04	EPA 8082A	
Aroclor 1232	ND		93.9	ug/kg	2	10/07/24 18:04	EPA 8082A	
Aroclor 1242	ND		93.9	ug/kg	2	10/07/24 18:04	EPA 8082A	
Aroclor 1248	ND		93.9	ug/kg	2	10/07/24 18:04	EPA 8082A	
Aroclor 1254	ND		93.9	ug/kg	2	10/07/24 18:04	EPA 8082A	
Aroclor 1260	ND		93.9	ug/kg	2	10/07/24 18:04	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 103 %	Limits: 60-125 %	% 2	10/07/24 18:04	EPA 8082A	
BH-TR1-3_1-1.5-20241002 (A4J1024-09)				Matrix: Soli	d	Batch: 2	24J0186	C-07
Aroclor 1016	ND		87.7	ug/kg	2	10/07/24 18:57	EPA 8082A	
Aroclor 1221	ND		87.7	ug/kg	2	10/07/24 18:57	EPA 8082A	
Aroclor 1232	ND		87.7	ug/kg	2	10/07/24 18:57	EPA 8082A	
Aroclor 1242	ND		87.7	ug/kg	2	10/07/24 18:57	EPA 8082A	
Aroclor 1248	ND		87.7	ug/kg	2	10/07/24 18:57	EPA 8082A	
Aroclor 1254	93.6		87.7	ug/kg	2	10/07/24 18:57	EPA 8082A	P-12
Aroclor 1260	ND		87.7	ug/kg	2	10/07/24 18:57	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recov	ery: 107%	Limits: 60-125 %	% 2	10/07/24 18:57	EPA 8082A	
BH-TR1-4_0-0.5-20241002 (A4J1024-10)				Matrix: Soli	d	Batch: 2	24J0186	C-07
Aroclor 1016	ND		68.0	ug/kg	2	10/07/24 19:50	EPA 8082A	
Aroclor 1221	ND		68.0	ug/kg	2	10/07/24 19:50	EPA 8082A	
Aroclor 1232	ND		68.0	ug/kg	2	10/07/24 19:50	EPA 8082A	
Aroclor 1242	ND		68.0	ug/kg	2	10/07/24 19:50	EPA 8082A	
Aroclor 1248	ND		68.0	ug/kg	2	10/07/24 19:50	EPA 8082A	
Aroclor 1254	ND		68.0	ug/kg	2	10/07/24 19:50	EPA 8082A	
Aroclor 1260	ND		68.0	ug/kg	2	10/07/24 19:50	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 102 %	Limits: 60-125 %	% 2	10/07/24 19:50	EPA 8082A	
BH-TR2-1_0-0.5-20241002 (A4J1024-11)				Matrix: Soli	d	Batch:	24J0186	C-07
Aroclor 1016	ND		88.1	ug/kg	2	10/07/24 20:42	EPA 8082A	
Aroclor 1221	ND		88.1	ug/kg	2	10/07/24 20:42	EPA 8082A	
Aroclor 1232	ND		88.1	ug/kg	2	10/07/24 20:42	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 12 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	ls by EPA 808	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-TR2-1_0-0.5-20241002 (A4J1024-11)				Matrix: Sol	id	Batch:	24J0186	C-07
Aroclor 1242	ND		88.1	ug/kg	2	10/07/24 20:42	EPA 8082A	
Aroclor 1248	ND		88.1	ug/kg	2	10/07/24 20:42	EPA 8082A	
Aroclor 1254	ND		88.1	ug/kg	2	10/07/24 20:42	EPA 8082A	
Aroclor 1260	ND		88.1	ug/kg	2	10/07/24 20:42	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 104 %	Limits: 60-125	% 2	10/07/24 20:42	EPA 8082A	
BH-TR2-2_0-0.5-20241002 (A4J1024-12)				Matrix: Sol	id	Batch:	24J0186	C-07
Aroclor 1016	ND		79.7	ug/kg	2	10/07/24 21:35	EPA 8082A	
Aroclor 1221	ND		79.7	ug/kg	2	10/07/24 21:35	EPA 8082A	
Aroclor 1232	ND		79.7	ug/kg	2	10/07/24 21:35	EPA 8082A	
Aroclor 1242	ND		79.7	ug/kg	2	10/07/24 21:35	EPA 8082A	
Aroclor 1248	ND		79.7	ug/kg	2	10/07/24 21:35	EPA 8082A	
Aroclor 1254	ND		79.7	ug/kg	2	10/07/24 21:35	EPA 8082A	
Aroclor 1260	ND		79.7	ug/kg	2	10/07/24 21:35	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 99 %	Limits: 60-125	% 2	10/07/24 21:35	EPA 8082A	
BH-TR2-3_0-0.5-20241002 (A4J1024-13)				Matrix: Sol	id	Batch:	24J0186	C-07
Aroclor 1016	ND		75.8	ug/kg	2	10/07/24 22:28	EPA 8082A	
Aroclor 1221	ND		75.8	ug/kg	2	10/07/24 22:28	EPA 8082A	
Aroclor 1232	ND		75.8	ug/kg	2	10/07/24 22:28	EPA 8082A	
Aroclor 1242	ND		75.8	ug/kg	2	10/07/24 22:28	EPA 8082A	
Aroclor 1248	ND		75.8	ug/kg	2	10/07/24 22:28	EPA 8082A	
Aroclor 1254	ND		75.8	ug/kg	2	10/07/24 22:28	EPA 8082A	
Aroclor 1260	ND		75.8	ug/kg	2	10/07/24 22:28	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 101 %	Limits: 60-125	% 2	10/07/24 22:28	EPA 8082A	
BH-TR2-4_0-0.5-20241002 (A4J1024-14)				Matrix: Sol	id	Batch:	24J0186	C-07
Aroclor 1016	ND		82.6	ug/kg	2	10/07/24 23:20	EPA 8082A	
Aroclor 1221	ND		82.6	ug/kg	2	10/07/24 23:20	EPA 8082A	
Aroclor 1232	ND		82.6	ug/kg	2	10/07/24 23:20	EPA 8082A	
Aroclor 1242	ND		82.6	ug/kg	2	10/07/24 23:20	EPA 8082A	
Aroclor 1248	ND		82.6	ug/kg	2	10/07/24 23:20	EPA 8082A	
Aroclor 1254	ND		82.6	ug/kg	2	10/07/24 23:20	EPA 8082A	
Aroclor 1260	ND		82.6	ug/kg	2	10/07/24 23:20	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 13 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		Polychlorinat	ed Bipheny	ls by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-TR2-4_0-0.5-20241002 (A4J1024-14)				Matrix: Solid	d	Batch: 2	24J0186	C-07
Surrogate: Decachlorobiphenyl (Surr)		Recove	ry: 100 %	Limits: 60-125 %	5 2	10/07/24 23:20	EPA 8082A	
BH-TR2-6_0-0.5-20241002 (A4J1024-15)					d	Batch: 2	24J0186	C-07
Aroclor 1016	ND		88.1	ug/kg	2	10/08/24 00:13	EPA 8082A	
Aroclor 1221	ND		88.1	ug/kg	2	10/08/24 00:13	EPA 8082A	
Aroclor 1232	ND		88.1	ug/kg	2	10/08/24 00:13	EPA 8082A	
Aroclor 1242	ND		88.1	ug/kg	2	10/08/24 00:13	EPA 8082A	
Aroclor 1248	ND		88.1	ug/kg	2	10/08/24 00:13	EPA 8082A	
Aroclor 1254	88.9		88.1	ug/kg	2	10/08/24 00:13	EPA 8082A	P-12
Aroclor 1260	ND		88.1	ug/kg	2	10/08/24 00:13	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recov	ery: 98%	Limits: 60-125 %	5 2	10/08/24 00:13	EPA 8082A	
BH-DUP1 (A4J1024-16)				Matrix: Solid		Batch: 24J0186		C-07
Aroclor 1016	ND		66.9	ug/kg	2	10/08/24 01:05	EPA 8082A	
Aroclor 1221	ND		66.9	ug/kg	2	10/08/24 01:05	EPA 8082A	
Aroclor 1232	ND		66.9	ug/kg	2	10/08/24 01:05	EPA 8082A	
Aroclor 1242	ND		66.9	ug/kg	2	10/08/24 01:05	EPA 8082A	
Aroclor 1248	ND		66.9	ug/kg	2	10/08/24 01:05	EPA 8082A	
Aroclor 1254	ND		66.9	ug/kg	2	10/08/24 01:05	EPA 8082A	
Aroclor 1260	ND		66.9	ug/kg	2	10/08/24 01:05	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recove	ry: 100 %	Limits: 60-125 %	5 2	10/08/24 01:05	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 14 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH-TRH-1_0-0.5-20241002 (A4J1024-01)				Matrix: Solid		Batch:	24J0210	
Acenaphthene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Acenaphthylene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Anthracene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Benz(a)anthracene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Benzo(a)pyrene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Benzo(b)fluoranthene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	Q-37
Benzo(k)fluoranthene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Chrysene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Fluoranthene	41.0		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Fluorene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
1-Methylnaphthalene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
2-Methylnaphthalene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Naphthalene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Phenanthrene	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Pyrene	49.2		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Dibenzofuran	ND		38.9	ug/kg	1	10/04/24 18:48	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 88 %	Limits: 44-120 %	1	10/04/24 18:48	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			78 %	54-127 %	1	10/04/24 18:48	EPA 8270E SIM	
BH-TRH-2_0-0.5-20241002 (A4J1024-02)				Matrix: Solid		Batch:	24J0210	
Acenaphthene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Acenaphthylene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Anthracene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Benz(a)anthracene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Benzo(a)pyrene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Benzo(b)fluoranthene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Chrysene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 15 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	roiyaro	mane riyarot	carbons (PA	AHs) by EPA 827	<u> </u>	,		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-TRH-2_0-0.5-20241002 (A4J1024-02)				Matrix: Solid		Batch:	24J0210	
Fluoranthene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Fluorene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
l-Methylnaphthalene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
2-Methylnaphthalene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Naphthalene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Phenanthrene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Pyrene	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Dibenzofuran	ND		47.2	ug/kg	1	10/04/24 21:19	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recov	very: 88 %	Limits: 44-120 %	I	10/04/24 21:19	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			76 %	54-127 %	I	10/04/24 21:19	EPA 8270E SIM	
BH-TRH-2_1-1.5-20241002 (A4J1024-03)				Matrix: Solid		Batch: 24J0210		
Acenaphthene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Acenaphthylene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Anthracene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Benz(a)anthracene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Benzo(a)pyrene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Benzo(b)fluoranthene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Chrysene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Fluoranthene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Fluorene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
-Methylnaphthalene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
2-Methylnaphthalene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Naphthalene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Phenanthrene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Pyrene	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Dibenzofuran	ND		33.8	ug/kg	1	10/04/24 21:44	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recov	very: 86 %	Limits: 44-120 %	1	10/04/24 21:44	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			76 %	54-127 %	1	10/04/24 21:44	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 16 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	Polyaro	matic Hydro	carbons (PA	Hs) by EPA 82	70E (SIM)		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH-TRH-2_1-1.5-20241002 (A4J1024-03)				Matrix: Solid	d	Batch:	24J0210	
BH-TRH-3_0-0.5-20241002 (A4J1024-04)				Matrix: Solid	d	Batch: 24J0210		
Acenaphthene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Acenaphthylene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Anthracene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Benz(a)anthracene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Benzo(a)pyrene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Benzo(b)fluoranthene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Chrysene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Fluoranthene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Fluorene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
1-Methylnaphthalene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
2-Methylnaphthalene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Naphthalene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Phenanthrene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Pyrene	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Dibenzofuran	ND		43.5	ug/kg	1	10/04/24 22:09	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 85 %	Limits: 44-120 %	5 1	10/04/24 22:09	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			75 %	54-127 %	5 1	10/04/24 22:09	EPA 8270E SIM	
BH-TRH-3_1-1.5-20241002 (A4J1024-05)				Matrix: Solid	d	Batch:	24J0210	
Acenaphthene	ND		48.3	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	
Acenaphthylene	ND		48.3	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	
Anthracene	ND		48.3	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	
Benz(a)anthracene	ND		80.2	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	R-02
Benzo(a)pyrene	ND		80.2	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	R-02
Benzo(b)fluoranthene	ND		48.3	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		48.3	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	
Chrysene	ND		84.1	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	R-02
Fluoranthene	ND		48.3	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 17 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	Polyard	matic Hydro	carbons (PA	AHs) by EPA 827	UE (SIM)		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH-TRH-3_1-1.5-20241002 (A4J1024-05)				Matrix: Solid		Batch:	24J0210	
Fluorene	ND		48.3	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	
1-Methylnaphthalene	ND		48.3	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	
2-Methylnaphthalene	ND		48.3	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	
Naphthalene	ND		48.3	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	
Phenanthrene	ND		48.3	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	
Pyrene	53.0		48.3	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	
Dibenzofuran	ND		48.3	ug/kg	1	10/04/24 22:34	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 81%	Limits: 44-120 %	1	10/04/24 22:34	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			80 %	54-127 %	1	10/04/24 22:34	EPA 8270E SIM	
BH-TRH-3_1-1.5-20241002 (A4J1024-05RI	E1)			Matrix: Solid		Batch:	24J0210	R-04
Benzo(g,h,i)perylene	ND		483	ug/kg	10	10/07/24 16:41	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		483	ug/kg	10	10/07/24 16:41	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND		483	ug/kg	10	10/07/24 16:41	EPA 8270E SIM	
BH-TR1-1_0-0.5-20241002 (A4J1024-06)				Matrix: Solid	I	Batch:	24J0210	
Acenaphthene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Acenaphthylene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Anthracene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Benz(a)anthracene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Benzo(a)pyrene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Benzo(b)fluoranthene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Chrysene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Fluoranthene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Fluorene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
1-Methylnaphthalene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
2-Methylnaphthalene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Naphthalene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Phenanthrene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Pyrene	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 18 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	Comm10	Detection	Donoutino			Date		
Analyte	Sample Result	Limit	Reporting Limit	Units	Dilution	Analyzed	Method Ref.	Notes
3H-TR1-1_0-0.5-20241002 (A4J1024-06)				Matrix: Solid	l	Batch:	24J0210	
Dibenzofuran	ND		40.3	ug/kg	1	10/04/24 22:59	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 88 %	Limits: 44-120 %	1	10/04/24 22:59	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			75 %	54-127 %	1	10/04/24 22:59	EPA 8270E SIM	
3H-TR1-2_0-0.5-20241002 (A4J1024-07)				Matrix: Solid	I	Batch:	24J0210	
Acenaphthene	ND		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Acenaphthylene	ND		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Anthracene	ND		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Benz(a)anthracene	ND		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Benzo(a)pyrene	39.7		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Benzo(b)fluoranthene	58.8		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Benzo(g,h,i)perylene	66.3		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Chrysene	42.2		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Fluoranthene	49.7		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Fluorene	ND		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	39.9		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
-Methylnaphthalene	ND		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
2-Methylnaphthalene	ND		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Naphthalene	ND		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Phenanthrene	ND		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Pyrene	63.2		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Dibenzofuran	ND		34.7	ug/kg	1	10/04/24 23:24	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 83 %	Limits: 44-120 %	1	10/04/24 23:24	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			71 %	54-127 %	1	10/04/24 23:24	EPA 8270E SIM	
3H-TR1-3_0-0.5-20241002 (A4J1024-08)				Matrix: Solic	I	Batch:	24J0210	
Acenaphthene	262		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
Acenaphthylene	195		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
Anthracene	400		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
Benz(a)anthracene	884		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
Benzo(a)pyrene	701		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
Benzo(b)fluoranthene	1440		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 19 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
BH-TR1-3_0-0.5-20241002 (A4J1024-08)				Matrix: Solid	t	Batch:	24J0210	
Benzo(k)fluoranthene	501		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	M-0:
Benzo(g,h,i)perylene	556		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
Chrysene	2370		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
Fluoranthene	816		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
Fluorene	141		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	519		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
l-Methylnaphthalene	ND		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
2-Methylnaphthalene	ND		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
Naphthalene	ND		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
Phenanthrene	183		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
Pyrene	1020		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
Dibenzofuran	ND		139	ug/kg	4	10/04/24 23:49	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 84 %	Limits: 44-120 %	5 4	10/04/24 23:49	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			77 %	54-127 %	5 4	10/04/24 23:49	EPA 8270E SIM	
BH-TR1-3_1-1.5-20241002 (A4J1024-09)				Matrix: Solid	d	Batch:	24J0210	
Acenaphthene	123		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
Acenaphthylene	106		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
Anthracene	221		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
Benz(a)anthracene	145		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
Benzo(a)pyrene	153		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
Benzo(b)fluoranthene	291		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
Benzo(k)fluoranthene	91.3		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	M-0
Benzo(g,h,i)perylene	291		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
Chrysene	217		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
Dibenz(a,h)anthracene	50.4		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
Fluoranthene	359		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
Fluorene	89.5		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	228		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
-Methylnaphthalene	ND		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
2-Methylnaphthalene	ND		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
Naphthalene	ND		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 20 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH-TR1-3_1-1.5-20241002 (A4J1024-09)				Matrix: Solid		Batch:	24J0210	
Phenanthrene	117		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
Pyrene	333		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
Dibenzofuran	ND		39.2	ug/kg	1	10/05/24 00:14	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recovery	y: 85 %	Limits: 44-120 %	I	10/05/24 00:14	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			71 %	54-127 %	1	10/05/24 00:14	EPA 8270E SIM	
BH-TR1-4_0-0.5-20241002 (A4J1024-10)				Matrix: Solid	l	Batch:	24J0210	
Acenaphthene	ND		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Acenaphthylene	ND		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Anthracene	43.9		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Benz(a)anthracene	81.3		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Benzo(a)pyrene	100		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Benzo(b)fluoranthene	178		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Benzo(k)fluoranthene	57.6		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	M-05
Benzo(g,h,i)perylene	113		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Chrysene	170		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Fluoranthene	253		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Fluorene	ND		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	100		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
1-Methylnaphthalene	ND		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
2-Methylnaphthalene	ND		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Naphthalene	ND		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Phenanthrene	189		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Pyrene	300		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Dibenzofuran	ND		36.1	ug/kg	1	10/05/24 00:39	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recovery	y: 85 %	Limits: 44-120 %	1	10/05/24 00:39	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			73 %	54-127 %	1	10/05/24 00:39	EPA 8270E SIM	
BH-TR2-1_0-0.5-20241002 (A4J1024-11)		-		Matrix: Solid		Batch:		
Acenaphthene	295		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
Acenaphthylene	ND		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
Anthracene	406		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
Benz(a)anthracene	208		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	Polyaro	matic Hydro	carbons (PA	Hs) by EPA 82	70E (SIM)		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
BH-TR2-1_0-0.5-20241002 (A4J1024-11)				Matrix: Solid	t	Batch:	24J0210	
Benzo(a)pyrene	144		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
Benzo(b)fluoranthene	268		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
Benzo(k)fluoranthene	74.2		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	M-05
Benzo(g,h,i)perylene	65.0		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
Chrysene	280		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
Fluoranthene	1090		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
Fluorene	231		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	82.3		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
1-Methylnaphthalene	74.8		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
2-Methylnaphthalene	64.2		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
Naphthalene	ND		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
Phenanthrene	1790		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
Pyrene	1100		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
Dibenzofuran	52.5		37.0	ug/kg	1	10/05/24 01:04	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 90 %	Limits: 44-120 %	1	10/05/24 01:04	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			74 %	54-127 %	1	10/05/24 01:04	EPA 8270E SIM	
BH-TR2-2_0-0.5-20241002 (A4J1024-12)				Matrix: Solid	t	Batch:	24J0210	
Acenaphthene	ND		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Acenaphthylene	ND		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Anthracene	76.8		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Benz(a)anthracene	108		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Benzo(a)pyrene	116		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Benzo(b)fluoranthene	191		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Benzo(k)fluoranthene	61.8		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	M-0
Benzo(g,h,i)perylene	93.5		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Chrysene	142		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Fluoranthene	255		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Fluorene	ND		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	96.0		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 22 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

			,	AHs) by EPA 827	,	,		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
BH-TR2-2_0-0.5-20241002 (A4J1024-12)				Matrix: Solid	I	Batch: 24J0210		
2-Methylnaphthalene	ND		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Naphthalene	ND		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Phenanthrene	92.6		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Pyrene	256		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Dibenzofuran	ND		49.0	ug/kg	1	10/05/24 01:29	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 93 %	Limits: 44-120 %	I	10/05/24 01:29	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			81 %	54-127 %	I	10/05/24 01:29	EPA 8270E SIM	
BH-TR2-3_0-0.5-20241002 (A4J1024-13)		Matrix: Solid			Batch:			
Acenaphthene	285		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Acenaphthylene	419		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Anthracene	892		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Benz(a)anthracene	206		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Benzo(a)pyrene	308		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Benzo(b)fluoranthene	504		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Benzo(k)fluoranthene	142		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	M-05
Benzo(g,h,i)perylene	677		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Chrysene	335		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Dibenz(a,h)anthracene	94.5		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Fluoranthene	596		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Fluorene	198		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	597		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
1-Methylnaphthalene	65.0		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
2-Methylnaphthalene	68.2		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Naphthalene	ND		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Phenanthrene	673		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Pyrene	564		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Dibenzofuran	ND		37.2	ug/kg	1	10/05/24 01:54	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 90 %	Limits: 44-120 %	1	10/05/24 01:54	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			76 %	54-127 %	1	10/05/24 01:54	EPA 8270E SIM	
BH-TR2-4_0-0.5-20241002 (A4J1024-14)	Matrix: Solid			I	Batch: 24J0210			
Acenaphthene	176		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM	
Acenaphthylene	ND		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)												
	Sample	Detection	Reporting	** •	D.: .	Date)	• •				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes				
BH-TR2-4_0-0.5-20241002 (A4J1024-14)				Matrix: Solid	t	Batch: 24J0210						
Anthracene	172		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
Benz(a)anthracene	111		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
Benzo(a)pyrene	65.9		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
Benzo(b)fluoranthene	114		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
Benzo(k)fluoranthene	ND		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
Benzo(g,h,i)perylene	ND		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
Chrysene	142		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
Dibenz(a,h)anthracene	ND		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
Fluoranthene	758		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
Fluorene	129		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
Indeno(1,2,3-cd)pyrene	ND		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
1-Methylnaphthalene	ND		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
2-Methylnaphthalene	ND		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
Naphthalene	ND		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
Phenanthrene	925		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
Pyrene	639		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
Dibenzofuran	ND		44.2	ug/kg	1	10/05/24 02:19	EPA 8270E SIM					
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 85 %	Limits: 44-120 %	1	10/05/24 02:19	EPA 8270E SIM					
p-Terphenyl-d14 (Surr)			69 %	54-127 %	5 1	10/05/24 02:19	EPA 8270E SIM					
-1-TR2-6_0-0.5-20241002 (A4J1024-15)				Matrix: Solid	lid Batch		24J0210					
Acenaphthene	ND		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM					
Acenaphthylene	185		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM					
Anthracene	172		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM					
Benz(a)anthracene	423		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM					
Benzo(a)pyrene	548		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM					
Benzo(b)fluoranthene	1170		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM					
Benzo(k)fluoranthene	430		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM	M-05				
Benzo(g,h,i)perylene	762		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM					
Chrysene	704		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM					
Dibenz(a,h)anthracene	182		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM					
Fluoranthene	616		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM					
Fluorene	ND		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM					
=	1112		10.5	~6 · · · 6	•							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 24 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

	Polyaro	matic Hydro	carbons (PA	AHs) by EPA 827	OE (SIM)		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH-TR2-6_0-0.5-20241002 (A4J1024-15)				Matrix: Solid		Batch:		
Indeno(1,2,3-cd)pyrene	712		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM	
1-Methylnaphthalene	ND		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM	
2-Methylnaphthalene	ND		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM	
Naphthalene	ND		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM	
Phenanthrene	212		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM	
Pyrene	741		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM	
Dibenzofuran	ND		48.5	ug/kg	1	10/05/24 02:44	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recov	very: 90 %	Limits: 44-120 %	1	10/05/24 02:44	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			75 %	54-127 %	1	10/05/24 02:44	EPA 8270E SIM	
BH-DUP1 (A4J1024-16)	Matrix: Solid Batch: 24J0210		24J0210					
Acenaphthene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Acenaphthylene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Anthracene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Benz(a)anthracene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Benzo(a)pyrene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Benzo(b)fluoranthene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Chrysene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Fluoranthene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Fluorene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
l-Methylnaphthalene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
2-Methylnaphthalene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Naphthalene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Phenanthrene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Pyrene	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Dibenzofuran	ND		41.5	ug/kg	1	10/04/24 19:38	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recov	very: 89 %	Limits: 44-120 %	1	10/04/24 19:38	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			78 %	54-127 %	1	10/04/24 19:38	EPA 8270E SIM	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 25 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		•	•	A 8270E (Large				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-Rinsate-20241002 (A4J1024-17)			Matrix: Water Batch: 24J0251				24J0251	
Acenaphthene	ND		0.0326	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Acenaphthylene	ND		0.0326	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Anthracene	ND		0.0326	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0163	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0163	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0163	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0163	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0326	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Chrysene	ND		0.0163	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0163	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Fluoranthene	ND		0.0326	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Fluorene	ND		0.0326	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0163	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
1-Methylnaphthalene	ND		0.0652	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0652	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Naphthalene	ND		0.0652	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Phenanthrene	ND		0.0652	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Pyrene	ND		0.0326	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Dibenzofuran	ND		0.0326	ug/L	1	10/07/24 18:02	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Recov	very: 90 %	Limits: 78-134 %	5 1	10/07/24 18:02	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			115 %	80-132 %	5 1	10/07/24 18:02	EPA 8270E LVI	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 26 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-TRH-1_0-0.5-20241002 (A4J1024-01)				Matrix: So	lid			
Batch: 24J0442								
Antimony	ND		1.03	mg/kg	10	10/10/24 20:36	EPA 6020B	
Arsenic	2.87		1.03	mg/kg	10	10/10/24 20:36	EPA 6020B	
Beryllium	ND		0.206	mg/kg	10	10/10/24 20:36	EPA 6020B	
Cadmium	0.224		0.206	mg/kg	10	10/10/24 20:36	EPA 6020B	
Chromium	21.1		1.03	mg/kg	10	10/10/24 20:36	EPA 6020B	
Copper	81.9		2.06	mg/kg	10	10/10/24 20:36	EPA 6020B	
Lead	33.4		0.206	mg/kg	10	10/10/24 20:36	EPA 6020B	
Mercury	0.108		0.0825	mg/kg	10	10/10/24 20:36	EPA 6020B	
Nickel	16.7		2.06	mg/kg	10	10/10/24 20:36	EPA 6020B	
Selenium	ND		1.03	mg/kg	10	10/10/24 20:36	EPA 6020B	
Silver	ND		0.206	mg/kg	10	10/10/24 20:36	EPA 6020B	
Thallium	ND		0.206	mg/kg	10	10/10/24 20:36	EPA 6020B	
Zinc	131		4.12	mg/kg	10	10/10/24 20:36	EPA 6020B	
BH-TRH-2_0-0.5-20241002 (A4J1024-02)				Matrix: So	lid			
Batch: 24J0442								
Antimony	ND		1.09	mg/kg	10	10/10/24 20:42	EPA 6020B	
Arsenic	1.24		1.09	mg/kg	10	10/10/24 20:42	EPA 6020B	
Beryllium	ND		0.217	mg/kg	10	10/10/24 20:42	EPA 6020B	
Cadmium	ND		0.217	mg/kg	10	10/10/24 20:42	EPA 6020B	
Chromium	10.9		1.09	mg/kg	10	10/10/24 20:42	EPA 6020B	
Copper	30.3		2.17	mg/kg	10	10/10/24 20:42	EPA 6020B	
Lead	9.48		0.217	mg/kg	10	10/10/24 20:42	EPA 6020B	
Mercury	ND		0.0870	mg/kg	10	10/10/24 20:42	EPA 6020B	
Nickel	14.7		2.17	mg/kg	10	10/10/24 20:42	EPA 6020B	
Selenium	ND		1.09	mg/kg	10	10/10/24 20:42	EPA 6020B	
Silver	ND		0.217	mg/kg	10	10/10/24 20:42	EPA 6020B	
Thallium	ND		0.217	mg/kg	10	10/10/24 20:42	EPA 6020B	
Zinc	102		4.35	mg/kg	10	10/10/24 20:42	EPA 6020B	
BH-TRH-2_1-1.5-20241002 (A4J1024-03)				Matrix: So	lid			
Batch: 24J0442								
Antimony	ND		1.08	mg/kg	10	10/10/24 20:47	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Normberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: **Blue Heron**

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-TRH-2_1-1.5-20241002 (A4J1024-03)				Matrix: So	olid			
Arsenic	1.69		1.08	mg/kg	10	10/10/24 20:47	EPA 6020B	
Beryllium	ND		0.217	mg/kg	10	10/10/24 20:47	EPA 6020B	
Cadmium	ND		0.217	mg/kg	10	10/10/24 20:47	EPA 6020B	
Chromium	10.5		1.08	mg/kg	10	10/10/24 20:47	EPA 6020B	
Copper	35.0		2.17	mg/kg	10	10/10/24 20:47	EPA 6020B	
Lead	8.83		0.217	mg/kg	10	10/10/24 20:47	EPA 6020B	
Mercury	ND		0.0868	mg/kg	10	10/10/24 20:47	EPA 6020B	
Nickel	12.8		2.17	mg/kg	10	10/10/24 20:47	EPA 6020B	
Selenium	ND		1.08	mg/kg	10	10/10/24 20:47	EPA 6020B	
Silver	ND		0.217	mg/kg	10	10/10/24 20:47	EPA 6020B	
Thallium	ND		0.217	mg/kg	10	10/10/24 20:47	EPA 6020B	
Zinc	266		4.34	mg/kg	10	10/10/24 20:47	EPA 6020B	
BH-TRH-3_0-0.5-20241002 (A4J1024-04)				Matrix: So	olid			
Batch: 24J0442								
Antimony	ND		1.00	mg/kg	10	10/10/24 20:53	EPA 6020B	
Arsenic	5.04		1.00	mg/kg	10	10/10/24 20:53	EPA 6020B	
Beryllium	ND		0.201	mg/kg	10	10/10/24 20:53	EPA 6020B	
Cadmium	ND		0.201	mg/kg	10	10/10/24 20:53	EPA 6020B	
Chromium	1.47		1.00	mg/kg	10	10/10/24 20:53	EPA 6020B	
Copper	7.19		2.01	mg/kg	10	10/10/24 20:53	EPA 6020B	
Lead	10.3		0.201	mg/kg	10	10/10/24 20:53	EPA 6020B	
Mercury	ND		0.0803	mg/kg	10	10/10/24 20:53	EPA 6020B	
Nickel	2.72		2.01	mg/kg	10	10/10/24 20:53	EPA 6020B	
Selenium	ND		1.00	mg/kg	10	10/10/24 20:53	EPA 6020B	
Silver	ND		0.201	mg/kg	10	10/10/24 20:53	EPA 6020B	
Thallium	ND		0.201	mg/kg	10	10/10/24 20:53	EPA 6020B	
Zinc	9.25		4.02	mg/kg	10	10/10/24 20:53	EPA 6020B	
BH-TRH-3_1-1.5-20241002 (A4J1024-05)				Matrix: So	olid			
Batch: 24J0442								
Antimony	ND		1.09	mg/kg	10	10/10/24 20:58	EPA 6020B	
Arsenic	2.97		1.09	mg/kg	10	10/10/24 20:58	EPA 6020B	
Beryllium	ND		0.219	mg/kg	10	10/10/24 20:58	EPA 6020B	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 28 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: **Blue Heron**

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-TRH-3_1-1.5-20241002 (A4J1024-05)				Matrix: So	lid			
Cadmium	ND		0.219	mg/kg	10	10/10/24 20:58	EPA 6020B	
Chromium	2.49		1.09	mg/kg	10	10/10/24 20:58	EPA 6020B	
Copper	10.5		2.19	mg/kg	10	10/10/24 20:58	EPA 6020B	
Lead	219		0.219	mg/kg	10	10/10/24 20:58	EPA 6020B	
Mercury	ND		0.0875	mg/kg	10	10/10/24 20:58	EPA 6020B	
Nickel	ND		2.19	mg/kg	10	10/10/24 20:58	EPA 6020B	
Selenium	ND		1.09	mg/kg	10	10/10/24 20:58	EPA 6020B	
Silver	ND		0.219	mg/kg	10	10/10/24 20:58	EPA 6020B	
Thallium	ND		0.219	mg/kg	10	10/10/24 20:58	EPA 6020B	
Zinc	384		4.38	mg/kg	10	10/10/24 20:58	EPA 6020B	
BH-TR1-1_0-0.5-20241002 (A4J1024-06)				Matrix: So	lid			
Batch: 24J0442								
Antimony	ND		1.05	mg/kg	10	10/10/24 21:03	EPA 6020B	
Arsenic	4.77		1.05	mg/kg	10	10/10/24 21:03	EPA 6020B	
Beryllium	0.293		0.210	mg/kg	10	10/10/24 21:03	EPA 6020B	
Cadmium	0.668		0.210	mg/kg	10	10/10/24 21:03	EPA 6020B	
Chromium	37.8		1.05	mg/kg	10	10/10/24 21:03	EPA 6020B	
Copper	279		2.10	mg/kg	10	10/10/24 21:03	EPA 6020B	
Lead	29.4		0.210	mg/kg	10	10/10/24 21:03	EPA 6020B	
Mercury	0.363		0.0839	mg/kg	10	10/10/24 21:03	EPA 6020B	
Nickel	46.1		2.10	mg/kg	10	10/10/24 21:03	EPA 6020B	
Selenium	ND		1.05	mg/kg	10	10/10/24 21:03	EPA 6020B	
Silver	ND		0.210	mg/kg	10	10/10/24 21:03	EPA 6020B	
Гhallium	ND		0.210	mg/kg	10	10/10/24 21:03	EPA 6020B	
Zinc	436		4.19	mg/kg	10	10/10/24 21:03	EPA 6020B	
BH-TR1-2_0-0.5-20241002 (A4J1024-07)				Matrix: So	lid			
Batch: 24J0442								
Arsenic	3.44		0.965	mg/kg	10	10/10/24 21:09	EPA 6020B	
Beryllium	ND		0.193	mg/kg	10	10/10/24 21:09	EPA 6020B	
Cadmium	0.716		0.193	mg/kg	10	10/10/24 21:09	EPA 6020B	
Chromium	22.6		0.965	mg/kg	10	10/10/24 21:09	EPA 6020B	
Copper	102		1.93	mg/kg	10	10/10/24 21:09	EPA 6020B	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: **Blue Heron**

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20B (ICPMS)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-TR1-2_0-0.5-20241002 (A4J1024-07)				Matrix: So	lid			
Lead	62.4		0.193	mg/kg	10	10/10/24 21:09	EPA 6020B	
Mercury	0.274		0.0772	mg/kg	10	10/10/24 21:09	EPA 6020B	
Nickel	31.7		1.93	mg/kg	10	10/10/24 21:09	EPA 6020B	
Selenium	ND		0.965	mg/kg	10	10/10/24 21:09	EPA 6020B	
Silver	ND		0.193	mg/kg	10	10/10/24 21:09	EPA 6020B	
Thallium	ND		0.193	mg/kg	10	10/10/24 21:09	EPA 6020B	
Zinc	271		3.86	mg/kg	10	10/10/24 21:09	EPA 6020B	
BH-TR1-2_0-0.5-20241002 (A4J1024-07RE	E2)			Matrix: So	lid			
Batch: 24J0442								
Antimony	1.17		0.965	mg/kg	10	10/13/24 01:43	EPA 6020B	
BH-TR1-3_0-0.5-20241002 (A4J1024-08)				Matrix: So	lid			
Batch: 24J0442								
Antimony	ND		1.06	mg/kg	10	10/10/24 21:14	EPA 6020B	
Arsenic	10.6		1.06	mg/kg	10	10/10/24 21:14	EPA 6020B	
Beryllium	ND		0.212	mg/kg	10	10/10/24 21:14	EPA 6020B	
Cadmium	0.346		0.212	mg/kg	10	10/10/24 21:14	EPA 6020B	
Chromium	34.7		1.06	mg/kg	10	10/10/24 21:14	EPA 6020B	
Copper	161		2.12	mg/kg	10	10/10/24 21:14	EPA 6020B	
Lead	96.7		0.212	mg/kg	10	10/10/24 21:14	EPA 6020B	
Mercury	0.223		0.0847	mg/kg	10	10/10/24 21:14	EPA 6020B	
Nickel	54.3		2.12	mg/kg	10	10/10/24 21:14	EPA 6020B	
Selenium	ND		1.06	mg/kg	10	10/10/24 21:14	EPA 6020B	
Silver	ND		0.212	mg/kg	10	10/10/24 21:14	EPA 6020B	
Thallium	ND		0.212	mg/kg	10	10/10/24 21:14	EPA 6020B	
Zinc	180		4.24	mg/kg	10	10/10/24 21:14	EPA 6020B	
BH-TR1-3_1-1.5-20241002 (A4J1024-09)				Matrix: So	lid			
Batch: 24J0442								
Arsenic	5.75		1.05	mg/kg	10	10/10/24 21:19	EPA 6020B	
Beryllium	ND		0.211	mg/kg	10	10/10/24 21:19	EPA 6020B	
Cadmium	0.305		0.211	mg/kg	10	10/10/24 21:19	EPA 6020B	
Chromium	28.8		1.05	mg/kg	10	10/10/24 21:19	EPA 6020B	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 30 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20B (ICPMS)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
BH-TR1-3_1-1.5-20241002 (A4J1024-09)				Matrix: So	lid			
Copper	65.1		2.11	mg/kg	10	10/10/24 21:19	EPA 6020B	
Lead	71.0		0.211	mg/kg	10	10/10/24 21:19	EPA 6020B	
Mercury	0.221		0.0844	mg/kg	10	10/10/24 21:19	EPA 6020B	
Nickel	35.6		2.11	mg/kg	10	10/10/24 21:19	EPA 6020B	
Selenium	ND		1.05	mg/kg	10	10/10/24 21:19	EPA 6020B	
Silver	ND		0.211	mg/kg	10	10/10/24 21:19	EPA 6020B	
Thallium	ND		0.211	mg/kg	10	10/10/24 21:19	EPA 6020B	
Zinc	130		4.22	mg/kg	10	10/10/24 21:19	EPA 6020B	
BH-TR1-3_1-1.5-20241002 (A4J1024-09RI	E1)			Matrix: So	lid			
Batch: 24J0442								
Antimony	ND		1.05	mg/kg	10	10/11/24 15:04	EPA 6020B	
BH-TR1-4_0-0.5-20241002 (A4J1024-10)				Matrix: So	lid			
Batch: 24J0442								
Arsenic	6.98		1.03	mg/kg	10	10/10/24 21:35	EPA 6020B	
Beryllium	ND		0.207	mg/kg	10	10/10/24 21:35	EPA 6020B	
Cadmium	1.64		0.207	mg/kg	10	10/10/24 21:35	EPA 6020B	
Chromium	17.0		1.03	mg/kg	10	10/10/24 21:35	EPA 6020B	
Copper	83.5		2.07	mg/kg	10	10/10/24 21:35	EPA 6020B	
Lead	77.1		0.207	mg/kg	10	10/10/24 21:35	EPA 6020B	
Mercury	0.0961		0.0826	mg/kg	10	10/10/24 21:35	EPA 6020B	
Nickel	41.9		2.07	mg/kg	10	10/10/24 21:35	EPA 6020B	
Selenium	ND		1.03	mg/kg	10	10/10/24 21:35	EPA 6020B	
Thallium	ND		0.207	mg/kg	10	10/10/24 21:35	EPA 6020B	
BH-TR1-4_0-0.5-20241002 (A4J1024-10RI	E1)			Matrix: So	lid			
Batch: 24J0442								
Silver	0.551		0.207	mg/kg	10	10/11/24 15:22	EPA 6020B	
Zinc	1220		4.13	mg/kg	10	10/11/24 15:22	EPA 6020B	
BH-TR1-4_0-0.5-20241002 (A4J1024-10RI	E3)			Matrix: So	lid			
Batch: 24J0442								
Antimony	3.00		1.03	mg/kg	10	10/13/24 01:48	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 31 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
BH-TR2-1_0-0.5-20241002 (A4J1024-11)				Matrix: So	lid						
Batch: 24J0442											
Antimony	ND		1.08	mg/kg	10	10/10/24 21:41	EPA 6020B				
Arsenic	3.97		1.08	mg/kg	10	10/10/24 21:41	EPA 6020B				
Beryllium	ND		0.216	mg/kg	10	10/10/24 21:41	EPA 6020B				
Cadmium	0.235		0.216	mg/kg	10	10/10/24 21:41	EPA 6020B				
Chromium	18.4		1.08	mg/kg	10	10/10/24 21:41	EPA 6020B				
Copper	68.2		2.16	mg/kg	10	10/10/24 21:41	EPA 6020B				
Lead	331		0.216	mg/kg	10	10/10/24 21:41	EPA 6020B				
Mercury	0.211		0.0862	mg/kg	10	10/10/24 21:41	EPA 6020B				
Nickel	20.4		2.16	mg/kg	10	10/10/24 21:41	EPA 6020B				
Selenium	ND		1.08	mg/kg	10	10/10/24 21:41	EPA 6020B				
Silver	ND		0.216	mg/kg	10	10/10/24 21:41	EPA 6020B				
Thallium	ND		0.216	mg/kg	10	10/10/24 21:41	EPA 6020B				
Zinc	212		4.31	mg/kg	10	10/10/24 21:41	EPA 6020B				
BH-TR2-2_0-0.5-20241002 (A4J1024-12)				Matrix: So	lid						
Batch: 24J0442											
Lead	170		0.206	mg/kg	10	10/10/24 21:46	EPA 6020B				
BH-TR2-3_0-0.5-20241002 (A4J1024-13)				Matrix: So	lid						
Batch: 24J0442											
Lead	47.0		0.217	mg/kg	10	10/10/24 21:52	EPA 6020B				
BH-TR2-4_0-0.5-20241002 (A4J1024-14)				Matrix: So	lid						
Batch: 24J0442											
Antimony	ND		1.02	mg/kg	10	10/10/24 21:57	EPA 6020B				
Arsenic	4.35		1.02	mg/kg	10	10/10/24 21:57	EPA 6020B				
Beryllium	ND		0.204	mg/kg	10	10/10/24 21:57	EPA 6020B				
Cadmium	0.378		0.204	mg/kg	10	10/10/24 21:57	EPA 6020B				
Chromium	19.8		1.02	mg/kg	10	10/10/24 21:57	EPA 6020B				
Copper	96.8		2.04	mg/kg	10	10/10/24 21:57	EPA 6020B				
Lead	54.5		0.204	mg/kg	10	10/10/24 21:57	EPA 6020B				
Mercury	0.250		0.0816	mg/kg	10	10/10/24 21:57	EPA 6020B				
Nickel	46.0		2.04	mg/kg	10	10/10/24 21:57	EPA 6020B				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherz

Page 32 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20B (ICPMS)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-TR2-4_0-0.5-20241002 (A4J1024	I-14)			Matrix: So	lid			
Selenium	ND		1.02	mg/kg	10	10/10/24 21:57	EPA 6020B	
Silver	ND		0.204	mg/kg	10	10/10/24 21:57	EPA 6020B	
Thallium	ND		0.204	mg/kg	10	10/10/24 21:57	EPA 6020B	
Zinc	165		4.08	mg/kg	10	10/10/24 21:57	EPA 6020B	
BH-TR2-6_0-0.5-20241002 (A4J1024	I-15)			Matrix: So	lid			
Batch: 24J0442								
Arsenic	9.01		1.02	mg/kg	10	10/10/24 22:02	EPA 6020B	
Beryllium	ND		0.204	mg/kg	10	10/10/24 22:02	EPA 6020B	
Cadmium	2.45		0.204	mg/kg	10	10/10/24 22:02	EPA 6020B	
Chromium	53.7		1.02	mg/kg	10	10/10/24 22:02	EPA 6020B	
Copper	337		2.04	mg/kg	10	10/10/24 22:02	EPA 6020B	
Mercury	1.54		0.0815	mg/kg	10	10/10/24 22:02	EPA 6020B	
Nickel	48.7		2.04	mg/kg	10	10/10/24 22:02	EPA 6020B	
Selenium	ND		1.02	mg/kg	10	10/10/24 22:02	EPA 6020B	
Thallium	ND		0.204	mg/kg	10	10/10/24 22:02	EPA 6020B	
BH-TR2-6_0-0.5-20241002 (A4J1024	I-15RE1)			Matrix: So	lid			
Batch: 24J0442								
Silver	1.29		0.204	mg/kg	10	10/11/24 15:09	EPA 6020B	
Zinc	2260		4.07	mg/kg	10	10/11/24 15:09	EPA 6020B	
BH-TR2-6_0-0.5-20241002 (A4J1024	I-15RE2)			Matrix: So	lid			_
Batch: 24J0442						<u> </u>		
Lead	529		2.04	mg/kg	100	10/11/24 14:48	EPA 6020B	
BH-TR2-6_0-0.5-20241002 (A4J1024	I-15RE3)			Matrix: So	lid			
Batch: 24J0442								
Antimony	2.71		1.02	mg/kg	10	10/13/24 01:53	EPA 6020B	
BH-DUP1 (A4J1024-16)				Matrix: So	lid			
Batch: 24J0513								
Antimony	ND		1.06	mg/kg	10	10/12/24 18:37	EPA 6020B	
Arsenic	4.03		1.06	mg/kg	10	10/12/24 18:37	EPA 6020B	
Beryllium	0.329		0.212	mg/kg	10	10/12/24 18:37	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherz

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		Total Meta	ils by EPA 602	20B (ICPMS)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-DUP1 (A4J1024-16)				Matrix: So	lid			
Cadmium	0.655		0.212	mg/kg	10	10/12/24 18:37	EPA 6020B	
Chromium	37.7		1.06	mg/kg	10	10/12/24 18:37	EPA 6020B	
Copper	187		2.12	mg/kg	10	10/12/24 18:37	EPA 6020B	
Lead	21.2		0.212	mg/kg	10	10/12/24 18:37	EPA 6020B	
Nickel	47.3		4.24	mg/kg	10	10/12/24 18:37	EPA 6020B	Q-42
Selenium	ND		1.06	mg/kg	10	10/12/24 18:37	EPA 6020B	
Silver	ND		0.212	mg/kg	10	10/12/24 18:37	EPA 6020B	
Thallium	ND		0.212	mg/kg	10	10/12/24 18:37	EPA 6020B	
Zinc	354		4.24	mg/kg	10	10/12/24 18:37	EPA 6020B	
BH-DUP1 (A4J1024-16RE1)				Matrix: So	lid			
Batch: 24J0513								
Mercury	0.259		0.0847	mg/kg	10	10/14/24 15:23	EPA 6020B	
BH-Rinsate-20241002 (A4J1024-17)				Matrix: Wa	iter			
Batch: 24K0065								
Lead	0.210		0.200	ug/L	1	11/04/24 23:14	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 34 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		TCLP Meta	als by EPA 60	20B (ICPMS	\$)					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
BH-TRH-3_1-1.5-20241002 (A4J1024-05)				Matrix: So	lid					
Batch: 24J1231 Lead	ND		0.0500	mg/L	10	11/01/24 23:14	1311/6020B			
BH-TR2-1_0-0.5-20241002 (A4J1024-11)		Matrix: Solid								
Batch: 24J1231	ND		0.0500		10	11/01/24 22 25	1211/6020D			
Lead	ND		0.0500	mg/L	10	11/01/24 23:25	1311/6020B			
BH-TR2-2_0-0.5-20241002 (A4J1024-12)				Matrix: So	lid					
Batch: 24J1231										
Lead	0.111		0.0500	mg/L	10	11/01/24 23:36	1311/6020B			
BH-TR2-6_0-0.5-20241002 (A4J1024-15)				Matrix: So	lid					
Batch: 24J1231										
Lead	ND		0.0500	mg/L	10	11/01/24 23:52	1311/6020B			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 35 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: **G685.0793 Task 400** Project Manager: **John Kuiper**

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
BH-TRH-1_0-0.5-20241002 (A4J1024-01)				Matrix:	Solid	Batch:	24J0181		
% Solids	55.8		1.00	%	1	10/07/24 05:57	EPA 8000D		
BH-TRH-2_0-0.5-20241002 (A4J1024-02)				Matrix:	Solid	Batch:	24J0181		
% Solids	63.4		1.00	%	1	10/07/24 05:57	EPA 8000D		
BH-TRH-2_1-1.5-20241002 (A4J1024-03)				Matrix:	Solid	Batch:	24J0181		
% Solids	62.0		1.00	%	1	10/07/24 05:57	EPA 8000D		
BH-TRH-3_0-0.5-20241002 (A4J1024-04)				Matrix:	Solid	Batch:	Batch: 24J0181		
% Solids	15.9		1.00	%	1	10/07/24 05:57	EPA 8000D		
BH-TRH-3_1-1.5-20241002 (A4J1024-05)				Matrix:	Solid	Batch:	24J0181		
% Solids	24.6		1.00	%	1	10/07/24 05:57	EPA 8000D		
BH-TR1-1_0-0.5-20241002 (A4J1024-06)				Matrix:	Solid	Batch:	24J0181		
% Solids	90.0		1.00	%	1	10/07/24 05:57	EPA 8000D		
BH-TR1-2_0-0.5-20241002 (A4J1024-07)				Matrix:	Solid	Batch:	24J0181		
% Solids	49.6		1.00	%	1	10/07/24 05:57	EPA 8000D		
BH-TR1-3_0-0.5-20241002 (A4J1024-08)				Matrix:	Solid	Batch:	24J0181		
% Solids	60.5		1.00	%	1	10/07/24 05:57	EPA 8000D		
BH-TR1-3_1-1.5-20241002 (A4J1024-09)				Matrix:	Solid	Batch:	24J0181		
% Solids	39.5		1.00	%	1	10/07/24 05:57	EPA 8000D		
BH-TR1-4_0-0.5-20241002 (A4J1024-10)				Matrix:	Solid	Batch:	24J0181		
% Solids	44.2		1.00	%	1	10/07/24 05:57	EPA 8000D		
BH-TR2-1_0-0.5-20241002 (A4J1024-11)				Matrix:	Solid	Batch:	Batch: 24J0181		
% Solids	48.3		1.00	%	1	10/07/24 05:57	EPA 8000D		
BH-TR2-2_0-0.5-20241002 (A4J1024-12)				Matrix:	Solid	Batch:	24J0181		
% Solids	73.7		1.00	%	1	10/07/24 05:57	EPA 8000D		
BH-TR2-3_0-0.5-20241002 (A4J1024-13)				Matrix:	Solid	Batch:	24J0181		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 36 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-TR2-3_0-0.5-20241002 (A4J1024-13)				Matrix: So	olid	Batch:	24J0181	
% Solids	70.6		1.00	%	1	10/07/24 05:57	EPA 8000D	
BH-TR2-4_0-0.5-20241002 (A4J1024-14)				Matrix: So	olid	Batch:	24J0181	
% Solids	60.3		1.00	%	1	10/07/24 05:57	EPA 8000D	
BH-TR2-6_0-0.5-20241002 (A4J1024-15)				Matrix: So	olid	Batch:	24J0181	
% Solids	74.3		1.00	%	1	10/07/24 05:57	EPA 8000D	
BH-DUP1 (A4J1024-16)				Matrix: So	olid	Batch:	24J0181	
% Solids	89.7		1.00	%	1	10/07/24 05:57	EPA 8000D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 37 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

ANALYTICAL SAMPLE RESULTS

		TCLP E	xtraction by	EPA 1311				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-TRH-3_1-1.5-20241002 (A4J1024-05)				Matrix: So	olid	Batch:	24J1164	
TCLP Extraction	PREP			N/A	1	10/30/24 16:10	EPA 1311	
BH-TR2-1_0-0.5-20241002 (A4J1024-11)				Matrix: So	olid	Batch:	24J1164	
TCLP Extraction	PREP			N/A	1	10/30/24 16:10	EPA 1311	
BH-TR2-2_0-0.5-20241002 (A4J1024-12)				Matrix: So	olid	Batch:	24J1164	
TCLP Extraction	PREP			N/A	1	10/30/24 16:10	EPA 1311	
BH-TR2-6_0-0.5-20241002 (A4J1024-15)				Matrix: So	olid	Batch:	24J1164	
TCLP Extraction	PREP			N/A	1	10/30/24 16:10	EPA 1311	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 38 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

		Hyd	rocarbon l	dentificat	ion Scree	n by NW	TPH-HCI	D				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0195 - EPA 3546 (Fu	iels)						Sol	id				
Blank (24J0195-BLK1)			Prepared	d: 10/04/24	10:44 Anal	lyzed: 10/04	/24 21:02					
NWTPH-HCID												
Gasoline Range Organics	ND		20.0	mg/kg	1							
Diesel Range Organics	ND		50.0	mg/kg	1							
Oil Range Organics	ND		100	mg/kg	1							
Surr: o-Terphenyl (Surr)		Rece	overy: 92 %	Limits: 50	-150 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			92 %	50	-150 %		"					
Duplicate (24J0195-DUP1)			Prepared	d: 10/04/24	10:44 Anal	lyzed: 10/04	/24 22:13					
QC Source Sample: BH-TRH-1 0-	-0.5-2024100	02 (A4J1024-0	<u>1)</u>									
NWTPH-HCID												
Gasoline Range Organics	ND		19.7	mg/kg	1		ND				30%	
Diesel Range Organics	ND		49.3	mg/kg	1		ND				30%	
Oil Range Organics	ND		98.5	mg/kg	1		ND				30%	Q-0:
Surr: o-Terphenyl (Surr)		Reco	overy: 86 %	Limits: 50	-150 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			82 %	50	-150 %		"					
Duplicate (24J0195-DUP2)			Prepared	d: 10/04/24	10:44 Anal	lyzed: 10/05	/24 01:45					
QC Source Sample: BH-DUP1 (A	4J1024-16)											
Gasoline Range Organics	ND		19.0	mg/kg	1		ND				30%	
Diesel Range Organics	ND		47.4	mg/kg	1		ND				30%	
Oil Range Organics	DET		94.8	mg/kg	1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 90 %	Limits: 50	-150 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			90 %	50	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 39 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	r Oil Hyd	rocarbor	s by NW7	ΓPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0545 - EPA 3546 (F	uels)						So	lid				
Blank (24J0545-BLK1)			Prepared	1: 10/14/24	09:47 Ana	lyzed: 10/14	/24 19:43					
NWTPH-Dx												
Diesel	ND		100	mg/kg	1							
Oil	ND		200	mg/kg	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 78 %	Limits: 50	-150 %	Dilt	ution: 1x					
LCS (24J0545-BS1)			Prepared	l: 10/14/24 (09:47 Ana	lyzed: 10/14	/24 20:03					
NWTPH-Dx												
Diesel	536		100	mg/kg	1	625		86	38-132%			
Surr: o-Terphenyl (Surr)		Rec	overy: 81 %	Limits: 50	-150 %	Dilı	ution: 1x					
Duplicate (24J0545-DUP1)			Prepared	1: 10/14/24	09:47 Ana	lyzed: 10/14	/24 20:45					
QC Source Sample: BH-TRH-1)-0.5-202410	02 (A4J1024-0	1)									
NWTPH-Dx												
Diesel	ND		74.9	mg/kg	1		ND				30%	
Oil	658		150	mg/kg	1		424			43	30%	Q-0
Surr: o-Terphenyl (Surr)		Rec	overy: 82 %	Limits: 50	-150 %	Dilı	ution: 1x					
Duplicate (24J0545-DUP2)			Prepared	1: 10/14/24 (09:47 Ana	lyzed: 10/14	/24 23:51					
QC Source Sample: BH-DUP1 (A	A4J1024-16)											
Diesel	ND		91.3	mg/kg	1		ND				30%	
Oil	329		183	mg/kg	1		377			14	30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 94 %	Limits: 50	-150 %	Dilı	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 40 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

		Di	esel and/o	r Oil Hyd	rocarbor	s by NWT	PH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0995 - EPA 3510C (Fuels/Acid	Ext.)					Wat	ter				
Blank (24J0995-BLK1)			Prepared	: 10/25/24 (07:04 Ana	lyzed: 10/25/	/24 20:10					
NWTPH-Dx												
Diesel	ND		0.0800	mg/L	1							
Oil	ND		0.160	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	very: 93 %	Limits: 50	1-150 %	Dilu	ıtion: 1x					
LCS (24J0995-BS1)			Prepared	: 10/25/24 (07:04 Ana	lyzed: 10/25/	/24 20:31					
NWTPH-Dx												
Diesel	0.447		0.0800	mg/L	1	0.500		89	36-132%			
Surr: o-Terphenyl (Surr)		Recove	ery: 101 %	Limits: 50	-150 %	Dilı	ution: 1x					
LCS Dup (24J0995-BSD1)			Prepared	: 10/25/24 (07:04 Ana	lyzed: 10/25/	/24 20:53					Q-19
NWTPH-Dx												
Diesel	0.424		0.0800	mg/L	1	0.500		85	36-132%	5	30%	
Surr: o-Terphenyl (Surr)		Reco	very: 99 %	Limits: 50	-150 %	Dilı	ıtion: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 41 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bi	phenyls	by EPA 80)82A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0186 - EPA 3546							So	lid				
Blank (24J0186-BLK1)			Prepared	d: 10/04/24	09:15 Ana	lyzed: 10/07	//24 18:04					C-07
EPA 8082A												
Aroclor 1016	ND		50.0	ug/kg	1							
Aroclor 1221	ND		50.0	ug/kg	1							
Aroclor 1232	ND		50.0	ug/kg	1							
Aroclor 1242	ND		50.0	ug/kg	1							
Aroclor 1248	ND		50.0	ug/kg	1							
Aroclor 1254	ND		50.0	ug/kg	1							
Aroclor 1260	ND		50.0	ug/kg	1							
Surr: Decachlorobiphenyl (Surr)		Rec	overy: 99 %	Limits: 60)-125 %	Dili	ution: 1x					
LCS (24J0186-BS1)			Prepared	d: 10/04/24	09:15 Ana	lyzed: 10/07	7/24 18:21					C-07
EPA 8082A												
Aroclor 1016	1120		50.0	ug/kg	1	1250		90	47-134%			
Aroclor 1260	1300		50.0	ug/kg	1	1250		104	53-140%			
Surr: Decachlorobiphenyl (Surr)		Reco	very: 108 %	Limits: 60)-125 %	Dilt	ution: 1x					
Duplicate (24J0186-DUP1)			Prepared	d: 10/04/24	09:15 Ana	lyzed: 10/07	7/24 19:32					C-07
QC Source Sample: BH-TRH-1 0	-0.5-2024100	02 (A4J1024-0	1)									
EPA 8082A												
Aroclor 1016	ND		69.7	ug/kg	2		ND				30%	
Aroclor 1221	ND		69.7	ug/kg	2		ND				30%	
Aroclor 1232	ND		69.7	ug/kg	2		ND				30%	
Aroclor 1242	ND		69.7	ug/kg	2		ND				30%	
Aroclor 1248	ND		69.7	ug/kg	2		ND				30%	
Aroclor 1254	137		69.7	ug/kg	2		ND				30%	Q-0
Aroclor 1260	ND		69.7	ug/kg	2		ND				30%	
Surr: Decachlorobiphenyl (Surr)		Reco	very: 104 %	Limits: 60)-125 %	Dilt	ution: 2x					
Matrix Spike (24J0186-MS1)			Prepared	d: 10/04/24	09:15 Ana	lyzed: 10/08	/24 01:58					C-07
OC Source Sample: BH-DUP1 (A	4J1024-16)											
Aroclor 1016	994		89.3	ug/kg	2	1120	ND	89	47-134%			
Aroclor 1260	1140		89.3	ug/kg	2	1120	ND	102	53-140%			
Surr: Decachlorobiphenyl (Surr)		Reco	very: 105 %	Limits: 60		Dilı	ution: 2x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 42 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A

Detection Reporting Spike Source % REC RPD % REC Dilution Analyte Result Ĺimit Units Amount Result Limits RPD Limit Notes Limit

Batch 24J0186 - EPA 3546 Solid

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 43 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polyar	omatic Hy	drocarbo	ns (PAHs) by EPA	8270E (S	im)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0210 - EPA 3546							Sol	id				
Blank (24J0210-BLK1)			Prepared	l: 10/04/24 1	12:15 Anal	yzed: 10/04	/24 17:58					
EPA 8270E SIM												
Acenaphthene	ND		50.0	ug/kg	1							
Acenaphthylene	ND		50.0	ug/kg	1							
Anthracene	ND		50.0	ug/kg	1							
Benz(a)anthracene	ND		50.0	ug/kg	1							
Benzo(a)pyrene	ND		50.0	ug/kg	1							
Benzo(b)fluoranthene	ND		50.0	ug/kg	1							
Benzo(k)fluoranthene	ND		50.0	ug/kg	1							
Benzo(g,h,i)perylene	ND		50.0	ug/kg	1							
Chrysene	ND		50.0	ug/kg	1							
Dibenz(a,h)anthracene	ND		50.0	ug/kg	1							
Fluoranthene	ND		50.0	ug/kg	1							
Fluorene	ND		50.0	ug/kg	1							
Indeno(1,2,3-cd)pyrene	ND		50.0	ug/kg	1							
1-Methylnaphthalene	ND		50.0	ug/kg	1							
2-Methylnaphthalene	ND		50.0	ug/kg	1							
Naphthalene	ND		50.0	ug/kg	1							
Phenanthrene	ND		50.0	ug/kg	1							
Pyrene	ND		50.0	ug/kg	1							
Dibenzofuran	ND		50.0	ug/kg	1							
urr: 2-Fluorobiphenyl (Surr)		Reco	overy: 89 %	Limits: 44	-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			80 %	54	-127 %		"					
LCS (24J0210-BS1)			Prepared	l: 10/04/24 1	12:15 Anal	yzed: 10/04	/24 18:23					
EPA 8270E SIM												
Acenaphthene	3750		50.0	ug/kg	1	4000		94	40-123%			
Acenaphthylene	3500		50.0	ug/kg	1	4000		87	32-132%			
Anthracene	3670		50.0	ug/kg	1	4000		92	47-123%			
Benz(a)anthracene	3550		50.0	ug/kg	1	4000		89	49-126%			
Benzo(a)pyrene	3720		50.0	ug/kg	1	4000		93	45-129%			
Benzo(b)fluoranthene	3530		50.0	ug/kg	1	4000		88	45-132%			
Benzo(k)fluoranthene	3770		50.0	ug/kg	1	4000		94	47-132%			
Benzo(g,h,i)perylene	3220		50.0	ug/kg	1	4000		81	43-134%			
Chrysene	3840		50.0	ug/kg	1	4000		96	50-124%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 44 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

A4J1024 - 11 05 24 1544

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: **Blue Heron**

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polyar	omatic Hy	drocarbo	ns (PAHs) by EPA	8270E (S	SIM)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0210 - EPA 3546							So	lid				
LCS (24J0210-BS1)			Prepared	1: 10/04/24	12:15 Anal	lyzed: 10/04	/24 18:23					
Dibenz(a,h)anthracene	3950		50.0	ug/kg	1	4000		99	45-134%			
Fluoranthene	3910		50.0	ug/kg	1	4000		98	50-127%			
Fluorene	3530		50.0	ug/kg	1	4000		88	43-125%			
Indeno(1,2,3-cd)pyrene	3550		50.0	ug/kg	1	4000		89	45-133%			
1-Methylnaphthalene	3530		50.0	ug/kg	1	4000		88	40-120%			
2-Methylnaphthalene	3720		50.0	ug/kg	1	4000		93	38-122%			
Naphthalene	3590		50.0	ug/kg	1	4000		90	35-123%			
Phenanthrene	3610		50.0	ug/kg	1	4000		90	50-121%			
Pyrene	3880		50.0	ug/kg	1	4000		97	47-127%			
Dibenzofuran	3610		50.0	ug/kg	1	4000		90	44-120%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 88 %	Limits: 44	-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			78 %	54	-127 %		"					

Duplicate (24J0210-DU	P1)
-----------------------	-----

Duplicate (24J0210-DUP1)			Prepared:	10/04/24 12	:15 Ana	lyzed: 10/04	/24 19:13				
QC Source Sample: BH-TRH-1	0-0.5-20241002 ((A4J1024-01)									
<u>EPA 8270E SIM</u>											
Acenaphthene	ND		36.8	ug/kg	1		ND	 		30%	
Acenaphthylene	ND		36.8	ug/kg	1		ND	 		30%	
Anthracene	ND		36.8	ug/kg	1		ND	 		30%	
Benz(a)anthracene	ND		36.8	ug/kg	1		23.1	 	***	30%	
Benzo(a)pyrene	ND		36.8	ug/kg	1		ND	 		30%	
Benzo(b)fluoranthene	ND		36.8	ug/kg	1		ND	 		30%	Q-05
Benzo(k)fluoranthene	ND		36.8	ug/kg	1		ND	 		30%	
Benzo(g,h,i)perylene	ND		36.8	ug/kg	1		ND	 		30%	
Chrysene	ND		36.8	ug/kg	1		25.4	 	***	30%	
Dibenz(a,h)anthracene	ND		36.8	ug/kg	1		ND	 		30%	
Fluoranthene	ND		36.8	ug/kg	1		41.0	 	***	30%	
Fluorene	ND		36.8	ug/kg	1		ND	 		30%	
Indeno(1,2,3-cd)pyrene	ND		36.8	ug/kg	1		ND	 		30%	
1-Methylnaphthalene	ND		36.8	ug/kg	1		ND	 		30%	
2-Methylnaphthalene	ND		36.8	ug/kg	1		ND	 		30%	
Naphthalene	ND		36.8	ug/kg	1		ND	 		30%	
Phenanthrene	ND		36.8	ug/kg	1		21.3	 	***	30%	Q-05
Pyrene	40.9		36.8	ug/kg	1		49.2	 	18	30%	

Apex Laboratories

Philip Nevenberg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 45 of 70 Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polyar	omatic Hy	drocarbo	ns (PAHs) by EPA	8270E (S	SIM)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0210 - EPA 3546							Sol	id				
Ouplicate (24J0210-DUP1)			Prepared	1: 10/04/24	12:15 Ana	lyzed: 10/04	/24 19:13					
QC Source Sample: BH-TRH-1 0-	-0.5-2024100	02 (A4J1024-0	<u>1)</u>									
Dibenzofuran	ND		36.8	ug/kg	1		ND				30%	
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 83 %	Limits: 44	-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			73 %	54	-127 %		"					
Matrix Spike (24J0210-MS1)			Prepared	1: 10/04/24	12:15 Ana	lyzed: 10/04	/24 20:04					
QC Source Sample: BH-DUP1 (A	4J1024-16)											
Acenaphthene	3700		46.9	ug/kg	1	3760	ND	98	40-123%			
Acenaphthylene	3450		46.9	ug/kg	1	3760	ND	92	32-132%			
Anthracene	3500		46.9	ug/kg	1	3760	ND	93	47-123%			
Benz(a)anthracene	3440		46.9	ug/kg	1	3760	ND	92	49-126%			
Benzo(a)pyrene	3470		46.9	ug/kg	1	3760	ND	92	45-129%			
Benzo(b)fluoranthene	3250		46.9	ug/kg	1	3760	ND	87	45-132%			
Benzo(k)fluoranthene	3530		46.9	ug/kg	1	3760	ND	94	47-132%			
Benzo(g,h,i)perylene	2990		46.9	ug/kg	1	3760	ND	80	43-134%			
Chrysene	3620		46.9	ug/kg	1	3760	ND	96	50-124%			
Dibenz(a,h)anthracene	3560		46.9	ug/kg	1	3760	ND	95	45-134%			
Fluoranthene	3760		46.9	ug/kg	1	3760	31.3	99	50-127%			
Fluorene	3490		46.9	ug/kg	1	3760	ND	93	43-125%			
Indeno(1,2,3-cd)pyrene	3210		46.9	ug/kg	1	3760	ND	86	45-133%			
1-Methylnaphthalene	3430		46.9	ug/kg	1	3760	ND	91	40-120%			
2-Methylnaphthalene	3610		46.9	ug/kg	1	3760	ND	96	38-122%			
Naphthalene	3500		46.9	ug/kg	1	3760	ND	93	35-123%			
Phenanthrene	3470		46.9	ug/kg	1	3760	30.6	92	50-121%			
Pyrene	3750		46.9	ug/kg	1	3760	32.1	99	47-127%			
Dibenzofuran	3520		46.9	ug/kg	1	3760	ND	94	44-120%			
urr: 2-Fluorobiphenyl (Surr)		Rece	overy: 96 %	Limits: 44	-120 %	Dilı	tion: 1x					
p-Terphenyl-d14 (Surr)			80 %	54	-127 %		"					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polya	romatic Hy	drocarbon	s (PAHs)	by EPA	3270E (La	rge Volu	me Injecti	on)			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0251 - EPA 3511 (Bo	ottle Extra	ction)					Wa	ter				
Blank (24J0251-BLK1)			Prepared	: 10/07/24	10:00 Anal	lyzed: 10/07	/24 16:23					
EPA 8270E LVI												
Acenaphthene	ND		0.0320	ug/L	1							
Acenaphthylene	ND		0.0320	ug/L	1							
Anthracene	ND		0.0320	ug/L	1							
Benz(a)anthracene	ND		0.0160	ug/L	1							
Benzo(a)pyrene	ND		0.0160	ug/L	1							
Benzo(b)fluoranthene	ND		0.0160	ug/L	1							
Benzo(k)fluoranthene	ND		0.0160	ug/L	1							
Benzo(g,h,i)perylene	ND		0.0320	ug/L	1							
Chrysene	ND		0.0160	ug/L	1							
Dibenz(a,h)anthracene	ND		0.0160	ug/L	1							
Fluoranthene	ND		0.0320	ug/L	1							
Fluorene	ND		0.0320	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND		0.0160	ug/L	1							
1-Methylnaphthalene	ND		0.0640	ug/L	1							
2-Methylnaphthalene	ND		0.0640	ug/L	1							
Naphthalene	ND		0.0640	ug/L	1							
Phenanthrene	ND		0.0640	ug/L	1							
Pyrene	ND		0.0320	ug/L	1							
Carbazole	ND		0.0320	ug/L	1							
Dibenzofuran	ND		0.0320	ug/L	1							
Surr: Acenaphthylene-d8 (Surr)		Reco	overy: 86 %	Limits: 78	8-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			113 %	80)-132 %		"					
LCS (24J0251-BS1)			Prepared	: 10/07/24	10:00 Ana	lyzed: 10/07	/24 16:56					
EPA 8270E LVI												
Acenaphthene	1.75		0.0320	ug/L	1	1.60		109	80-120%			
Acenaphthylene	1.70		0.0320	ug/L	1	1.60		106	80-124%			
Anthracene	1.60		0.0320	ug/L	1	1.60		100	80-123%			
Benz(a)anthracene	1.62		0.0160	ug/L	1	1.60		102	80-122%			
Benzo(a)pyrene	1.77		0.0160	ug/L	1	1.60		111	80-129%			
Benzo(b)fluoranthene	1.78		0.0160	ug/L	1	1.60		111	80-124%			
Benzo(k)fluoranthene	1.74		0.0160	ug/L	1	1.60		108	80-125%			
Benzo(g,h,i)perylene	1.50		0.0320	ug/L	1	1.60		94	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 47 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

		•	ydrocarbon		-	•	-	-	-			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0251 - EPA 3511 (B	ottle Extra	ction)					Wa	ter				
LCS (24J0251-BS1)			Prepared	: 10/07/24	10:00 Ana	lyzed: 10/07	/24 16:56					
Chrysene	1.50		0.0160	ug/L	1	1.60		94	80-120%			
Dibenz(a,h)anthracene	1.55		0.0160	ug/L	1	1.60		97	80-120%			
Fluoranthene	1.77		0.0320	ug/L	1	1.60		111	80-126%			
Fluorene	1.90		0.0320	ug/L	1	1.60		118	77-127%			
Indeno(1,2,3-cd)pyrene	1.41		0.0160	ug/L	1	1.60		88	80-121%			
1-Methylnaphthalene	1.85		0.0640	ug/L	1	1.60		115	53-148%			
2-Methylnaphthalene	1.93		0.0640	ug/L	1	1.60		121	48-150%			
Naphthalene	1.70		0.0640	ug/L	1	1.60		106	78-120%			
Phenanthrene	1.50		0.0640	ug/L	1	1.60		94	80-120%			
Pyrene	1.77		0.0320	ug/L	1	1.60		111	80-125%			
Carbazole	1.98		0.0320	ug/L	1	1.60		124	65-141%			
Dibenzofuran	1.78		0.0320	ug/L	1	1.60		111	76-121%			
Surr: Acenaphthylene-d8 (Surr)		Rec	overy: 89 %	Limits: 78	8-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			112 %	80)-132 %		"					
LCS Dup (24J0251-BSD1)			Prepared	: 10/07/24	10:00 Ana	lyzed: 10/07	/24 17:29					Q-
EPA 8270E LVI												
Acenaphthene	1.77		0.0320	ug/L	1	1.60		111	80-120%	1	30%	
Acenaphthylene	1.75		0.0320	ug/L	1	1.60		109	80-124%	3	30%	
Anthracene	1.65		0.0320	ug/L	1	1.60		103	80-123%	3	30%	
Benz(a)anthracene	1.66		0.0160	ug/L	1	1.60		104	80-122%	2	30%	
Benzo(a)pyrene	1.83		0.0160	ug/L	1	1.60		115	80-129%	3	30%	
Benzo(b)fluoranthene	1.80		0.0160	ug/L	1	1.60		112	80-124%	0.9	30%	
Benzo(k)fluoranthene	1.78		0.0160	ug/L	1	1.60		111	80-125%	2	30%	
Benzo(g,h,i)perylene	1.48		0.0320	ug/L	1	1.60		92	80-120%	1	30%	
Chrysene	1.54		0.0160	ug/L	1	1.60		96	80-120%	2	30%	
Dibenz(a,h)anthracene	1.52		0.0160	ug/L	1	1.60		95	80-120%	2	30%	
Fluoranthene	1.83		0.0320	ug/L	1	1.60		114	80-126%	3	30%	
Fluorene	1.90		0.0320	ug/L	1	1.60		119	77-127%	0.3	30%	
Indeno(1,2,3-cd)pyrene	1.43		0.0160	ug/L	1	1.60		89	80-121%	1	30%	
1-Methylnaphthalene	1.83		0.0640	ug/L	1	1.60		114	53-148%	1	30%	
2-Methylnaphthalene	1.87		0.0640	ug/L	1	1.60		117	48-150%	3	30%	
Naphthalene	1.75		0.0640	ug/L	1	1.60		109	78-120%	3	30%	

1

1.60

ug/L

Apex Laboratories

Phenanthrene

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

80-120%

0.5

30%

93

Philip Nerenberg, Lab Director

Philip Nevenberg

1.49

0.0640

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: **G685.0793 Task 400**Project Manager: **John Kuiper**

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (Large Volume Injection) Detection Reporting Spike Source % REC RPD Analyte Result Limit Units Dilution Result % REC Limits RPD Limit Notes Limit Amount Batch 24J0251 - EPA 3511 (Bottle Extraction) Water LCS Dup (24J0251-BSD1) Prepared: 10/07/24 10:00 Analyzed: 10/07/24 17:29 Q-19 Pyrene 1.78 0.0320 ug/L 1.60 111 80-125% 0.2 30% Carbazole 2.04 0.0320 127 3 30% ug/L 1 1.60 65-141% Dibenzofuran 0.0320 1.60 30% 1.79 ug/L 1 112 76-121% 0.8 Surr: Acenaphthylene-d8 (Surr) Recovery: 90 % 78-134 % Limits: Dilution: 1x Benzo(a)pyrene-d12 (Surr) 115 % 80-132 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 49 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0442 - EPA 3051A							Sol	lid				
Blank (24J0442-BLK1)			Prepared	10/10/24 1	2:34 Ana	lyzed: 10/10/	/24 19:43					
EPA 6020B												
Antimony	ND		1.00	mg/kg	10							
Arsenic	ND		1.00	mg/kg	10							
Beryllium	ND		0.200	mg/kg	10							
Cadmium	ND		0.200	mg/kg	10							
Chromium	ND		1.00	mg/kg	10							
Copper	ND		2.00	mg/kg	10							
Lead	ND		0.200	mg/kg	10							
Mercury	ND		0.0800	mg/kg	10							
Nickel	ND		2.00	mg/kg	10							
Selenium	ND		1.00	mg/kg	10							
Silver	ND		0.200	mg/kg	10							
Thallium	ND		0.200	mg/kg	10							
Zinc	ND		4.00	mg/kg	10							
LCS (24J0442-BS1) <u>EPA 6020B</u>			1 repared.	. 10/10/24 1	12.54 Alla	lyzed: 10/10/	724 17.40					
Antimony	26.9		1.00	mg/kg	10	25.0		108	80-120%			Q-4
Arsenic	50.5		1.00	mg/kg	10	50.0		101	80-120%			
Beryllium	24.7		0.200	mg/kg	10	25.0		99	80-120%			
Cadmium	51.2		0.200	mg/kg	10	50.0		102	80-120%			
Chromium	49.7		1.00	mg/kg	10	50.0		99	80-120%			
Copper	53.1		2.00	mg/kg	10	50.0		106	80-120%			
Lead	53.1		0.200	mg/kg	10	50.0		106	80-120%			
Mercury	1.03		0.0800	mg/kg	10	1.00		103	80-120%			
Nickel	53.4		2.00	mg/kg	10	50.0		107	80-120%			
Selenium	25.9		1.00	mg/kg	10	25.0		104	80-120%			
Silver	27.6		0.200	mg/kg	10	25.0		110	80-120%			
Thallium	26.0		0.200	mg/kg	10	25.0		104	80-120%			
			4.00	mg/kg	10	50.0		102	80-120%			
Zinc	51.1		4.00	mg/kg	10	50.0						
Zinc Duplicate (24J0442-DUP1)	51.1					lyzed: 10/10	/24 19:59					
							/24 19:59					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 50 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

PRO

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 6020	OB (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0442 - EPA 3051A							So	lid				
Duplicate (24J0442-DUP1)			Prepared	: 10/10/24	12:34 Ana	lyzed: 10/10	/24 19:59					
QC Source Sample: Non-SDG (A	4I1644-04 <u>)</u>											
Arsenic	ND		1.05	mg/kg	10		ND				20%	PR
Beryllium	ND		0.210	mg/kg	10		ND				20%	PR
Cadmium	ND		0.210	mg/kg	10		ND				20%	PR
Chromium	ND		1.05	mg/kg	10		ND				20%	PR
Copper	ND		2.10	mg/kg	10		1.49			***	20%	PR
Lead	ND		0.210	mg/kg	10		0.112			***	20%	PR
Mercury	ND		0.0840	mg/kg	10		ND				20%	PR
Nickel	ND		2.10	mg/kg	10		ND				20%	PR
Selenium	ND		1.05	mg/kg	10		ND				20%	PR
Silver	ND		0.210	mg/kg	10		ND				20%	PR
Thallium	ND		0.210	mg/kg	10		ND				20%	PR
Zinc	7.97		4.20	mg/kg	10		8.81			10	20%	PR
Matrix Spike (24J0442-MS1)			Prepared	: 10/10/24	12:34 Ana	lyzed: 10/10	0/24 20:04					
QC Source Sample: Non-SDG (A	<u>4I1644-04)</u>											
EPA 6020B												
Antimony	27.8		1.07	mg/kg	10	26.8	ND	104	75-125%			PRO,Q-4
Arsenic	53.2		1.07	mg/kg	10	53.5	ND	99	75-125%			PR
Beryllium	25.0		0.214	mg/kg	10	26.8	ND	93	75-125%			PR
Cadmium	53.1		0.214	mg/kg	10	53.5	ND	99	75-125%			PR
Chromium	51.4		1.07	mg/kg	10	53.5	ND	96	75-125%			PR
Copper	57.6		2.14	mg/kg	10	53.5	1.49	105	75-125%			PR
Lead	54.2		0.214	mg/kg	10	53.5	0.112	101	75-125%			PR
Mercury	1.03		0.0857	mg/kg	10	1.07	ND	96	75-125%			PR
Nickel	54.5		2.14	mg/kg	10	53.5	ND	102	75-125%			PR
Selenium	26.9		1.07	mg/kg	10	26.8	ND	101	75-125%			PR
Silver	28.4		0.214	mg/kg	10	26.8	ND	106	75-125%			PR
Thallium	26.3		0.214	mg/kg	10	26.8	ND	98	75-125%			PR

Apex Laboratories

Philip Nevenberg

Zinc

61.2

4.28

mg/kg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

10

53.5

8.81

98

75-125%

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0513 - EPA 3051A							So	lid				
Blank (24J0513-BLK1)			Prepared	: 10/11/24	16:35 Anal	lyzed: 10/12	/24 18:26					
EPA 6020B												
Antimony	ND		1.00	mg/kg	10							
Arsenic	ND		1.00	mg/kg	10							
Beryllium	ND		0.200	mg/kg	10							
Cadmium	ND		0.200	mg/kg	10							
Chromium	ND		1.00	mg/kg	10							
Copper	ND		2.00	mg/kg	10							
Lead	ND		0.200	mg/kg	10							
Nickel	ND		4.00	mg/kg	10							
Selenium	ND		1.00	mg/kg								
Silver	ND		0.200	mg/kg	10							
Thallium	ND		0.200	mg/kg	10							
Zinc	ND		4.00	mg/kg	10							
EPA 6020B			0.0800	mg/kg	10							0
Mercury	ND		0.0800	mg/Kg	10							Ų
	ND					 lyzed: 10/12	/24 18:31					Q
Mercury	ND						/24 18:31					
Mercury LCS (24J0513-BS1)	ND 24.3				16:35 Anal		/24 18:31	97	80-120%			
Mercury LCS (24J0513-BS1) EPA 6020B			Prepared	: 10/11/24	16:35 Anal	yzed: 10/12						
Mercury LCS (24J0513-BS1) EPA 6020B Antimony	24.3		Prepared	: 10/11/24 1	16:35 Anal	lyzed: 10/12/ 25.0		97	80-120%			V
Mercury LCS (24J0513-BS1) EPA 6020B Antimony Arsenic	24.3 47.1		Prepared 1.00 1.00	: 10/11/24 mg/kg mg/kg	16:35 Anal 10 10 10	25.0 50.0		97 94	80-120% 80-120%			
Mercury LCS (24J0513-BS1) EPA 6020B Antimony Arsenic Beryllium	24.3 47.1 23.4		1.00 1.00 0.200	: 10/11/24 : mg/kg mg/kg mg/kg	10 10 10 10	25.0 50.0 25.0	 	97 94 94	80-120% 80-120% 80-120%		 	
Mercury LCS (24J0513-BS1) EPA 6020B Antimony Arsenic Beryllium Cadmium	24.3 47.1 23.4 47.3		1.00 1.00 0.200 0.200	mg/kg mg/kg mg/kg mg/kg mg/kg	10 10 10 10 10	25.0 50.0 25.0 50.0	 	97 94 94 95	80-120% 80-120% 80-120% 80-120%			
Mercury LCS (24J0513-BS1) EPA 6020B Antimony Arsenic Beryllium Cadmium Chromium	24.3 47.1 23.4 47.3 46.7	 	1.00 1.00 0.200 0.200 1.00	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10 10 10 10 10 10	25.0 50.0 25.0 50.0 50.0 50.0	 	97 94 94 95 93	80-120% 80-120% 80-120% 80-120% 80-120%	 	 	
Mercury LCS (24J0513-BS1) EPA 6020B Antimony Arsenic Beryllium Cadmium Chromium Copper	24.3 47.1 23.4 47.3 46.7 48.2		1.00 1.00 0.200 0.200 1.00 2.00	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10 10 10 10 10 10 10	25.0 50.0 25.0 50.0 50.0 50.0 50.0	 	97 94 94 95 93 96	80-120% 80-120% 80-120% 80-120% 80-120%		 	V
Mercury LCS (24J0513-BS1) EPA 6020B Antimony Arsenic Beryllium Cadmium Chromium Copper Lead	24.3 47.1 23.4 47.3 46.7 48.2 47.7	 	1.00 1.00 0.200 0.200 1.00 2.00 0.200	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10 10 10 10 10 10 10	25.0 50.0 25.0 50.0 50.0 50.0 50.0 50.0	 	97 94 94 95 93 96 95	80-120% 80-120% 80-120% 80-120% 80-120% 80-120%	 	 	
Mercury LCS (24J0513-BS1) EPA 6020B Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Nickel	24.3 47.1 23.4 47.3 46.7 48.2 47.7 48.8	 	1.00 1.00 0.200 0.200 1.00 2.00 0.200 4.00	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10 10 10 10 10 10 10 10 10	25.0 50.0 25.0 50.0 50.0 50.0 50.0 50.0	 	97 94 94 95 93 96 95 98	80-120% 80-120% 80-120% 80-120% 80-120% 80-120% 80-120%	 	 	
Mercury LCS (24J0513-BS1) EPA 6020B Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Nickel Selenium	24.3 47.1 23.4 47.3 46.7 48.2 47.7 48.8 23.8	 	1.00 1.00 0.200 0.200 1.00 2.00 0.200 4.00 1.00	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10 10 10 10 10 10 10 10 10 10	25.0 50.0 25.0 50.0 50.0 50.0 50.0 50.0	 	97 94 94 95 93 96 95 98 95	80-120% 80-120% 80-120% 80-120% 80-120% 80-120% 80-120% 80-120%	 	 	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 52 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	OB (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0513 - EPA 3051A							So	lid				
LCS (24J0513-BS2)			Prepared	: 10/11/24	16:35 Ana	lyzed: 10/14	/24 15:18					
EPA 6020B												
Mercury	1.02		0.0800	mg/kg	10	1.00		102	80-120%			Q-1
Duplicate (24J0513-DUP1)			Prepared	: 10/11/24 1	16:35 Ana	lyzed: 10/12	/24 18:42					
QC Source Sample: BH-DUP1 (A	<u> 4J1024-16)</u>											
Antimony	ND		1.06	mg/kg	10		ND				20%	
Arsenic	4.23		1.06	mg/kg	10		4.03			5	20%	
Beryllium	0.333		0.212	mg/kg	10		0.329			1	20%	
Cadmium	0.549		0.212	mg/kg	10		0.655			18	20%	
Chromium	35.6		1.06	mg/kg	10		37.7			6	20%	
Copper	213		2.12	mg/kg	10		187			13	20%	
Lead	22.1		0.212	mg/kg	10		21.2			4	20%	
Nickel	44.2		4.24	mg/kg	10		47.3			7	20%	
Selenium	ND		1.06	mg/kg	10		ND				20%	
Silver	ND		0.212	mg/kg	10		ND				20%	
Thallium	ND		0.212	mg/kg	10		ND				20%	
Zinc	375		4.24	mg/kg	10		354			6	20%	
Duplicate (24J0513-DUP2)			Prepared	: 10/11/24 1	16:35 Ana	lyzed: 10/14	/24 15:40					
OC Source Sample: BH-DUP1 (A	A4J1024-16R	<u>E1)</u>										
Mercury	0.297		0.0847	mg/kg	10		0.259			13	20%	Q-1
Matrix Spike (24J0513-MS1)			Prepared	: 10/11/24 1	16:35 Ana	lyzed: 10/12	/24 18:47					
QC Source Sample: BH-DUP1 (A	A4J1024-16)											
Antimony	22.5		1.02	mg/kg	10	25.6	ND	88	75-125%			
Arsenic	50.1		1.02	mg/kg	10	51.1	4.03	90	75-125%			
Beryllium	23.2		0.204	mg/kg	10	25.6	0.329	89	75-125%			
Cadmium	47.5		0.204	mg/kg	10	51.1	0.655	92	75-125%			
Chromium	86.3		1.02	mg/kg	10	51.1	37.7	95	75-125%			
Copper	302		2.04	mg/kg	10	51.1	187	224	75-125%			Q-6
Lead	81.1		0.204	mg/kg	10	51.1	21.2	117	75-125%			
Nickel	131		4.09	mg/kg	10	51.1	47.3	163	75-125%			Q-0
Selenium	23.6		1.02	mg/kg	10	25.6	ND	92	75-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 53 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS) Detection Reporting Spike Source % REC RPD Analyte Result Limit Units Dilution Result % REC RPD Limit Notes Limit Amount Limits Batch 24J0513 - EPA 3051A Solid Matrix Spike (24J0513-MS1) Prepared: 10/11/24 16:35 Analyzed: 10/12/24 18:47 QC Source Sample: BH-DUP1 (A4J1024-16) 25.6 97 Silver 24.9 0.204 mg/kg 10 ND 75-125% Thallium 22.1 0.204 mg/kg 10 25.6 ND 87 75-125% 476 Q-65 Zinc 4.09 mg/kg 10 51.1 354 239 75-125% Matrix Spike (24J0513-MS2) Prepared: 10/11/24 16:35 Analyzed: 10/14/24 15:45 QC Source Sample: BH-DUP1 (A4J1024-16RE1) 0.0818 1.02 0.259 75-125% Q-16 Mercury 1.45 mg/kg 10 117

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 54 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24K0065 - EPA 3015A							Wat	er				
Blank (24K0065-BLK1)			Prepared	: 11/04/24	08:23 Ana	lyzed: 11/04/	24 23:03					
EPA 6020B Lead	ND		0.200	ug/L	1							
LCS (24K0065-BS1)			Prepared	: 11/04/24	08:23 Ana	lyzed: 11/04/	24 23:09					
EPA 6020B Lead	58.8		0.200	ug/L	1	55.6		106	80-120%			
Duplicate (24K0065-DUP1)			Prepared	: 11/04/24	08:23 Ana	lyzed: 11/04/	24 23:19					
QC Source Sample: BH-Rinsate-20)241002 (A	4J1024-17)										
EPA 6020B Lead	ND		0.200	ug/L	1		0.210			***	20%	
Matrix Spike (24K0065-MS1)			Prepared	: 11/04/24	08:23 Ana	lyzed: 11/04/	24 23:30					
OC Source Sample: Non-SDG (A4, EPA 6020B	J1638-01)											
Lead	55.5		0.200	ug/L	1	55.6	ND	100	75-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 55 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 24J1231 - EPA 1311/301	5A						Soi	I					
Blank (24J1231-BLK1)			Prepared	: 11/01/24	09:00 Ana	lyzed: 11/01	/24 23:03						
1311/6020B Lead	ND		0.0500	mg/L	10							TCL	
LCS (24J1231-BS1)			Prepared	: 11/01/24	09:00 Ana	lyzed: 11/01	/24 23:09						
1311/6020B Lead	5.28		0.0500	mg/L	10	5.00		106	80-120%			TCL	
Duplicate (24J1231-DUP1)			Prepared	: 11/01/24	09:00 Ana	lyzed: 11/01	/24 23:19						
QC Source Sample: BH-TRH-3 1-	1.5-2024100	02 (A4J1024-0	<u>15)</u>										
1311/6020B Lead	ND		0.0500	mg/L	10		ND				20%		
Matrix Spike (24J1231-MS1)			Prepared	: 11/01/24	09:00 Ana	lyzed: 11/01	/24 23:30						
OC Source Sample: BH-TR2-1_0-0	0.5-2024100	2 (A4J1024-11	D										
Lead	5.28		0.0500	mg/L	10	5.00	0.0303	105	50-150%				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 56 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	t Dry Weig	jht						
Analyte R	esult	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0181 - Dry Weight Prep (EPA 8	8000D)					Soil					
Duplicate (24J0181-DUP1)			Prepared	: 10/04/24	08:46 Anal	yzed: 10/07/	/24 05:57					
QC Source Sample: Non-SDG (A4J099	<u>6-05)</u>											
% Solids	82.1		1.00	%	1		82.0			0.07	10%	
Duplicate (24J0181-DUP2)			Prepared	: 10/04/24	08:46 Anal	yzed: 10/07/	/24 05:57					
QC Source Sample: Non-SDG (A4J099	<u>6-06)</u>											
% Solids	54.9		1.00	%	1		49.3			11	10%	Q-17
Duplicate (24J0181-DUP3)			Prepared	: 10/04/24	08:46 Anal	yzed: 10/07/	/24 05:57					
QC Source Sample: Non-SDG (A4J099	<u>6-07)</u>											
% Solids	83.7		1.00	%	1		82.5			1	10%	
Duplicate (24J0181-DUP4)			Prepared	: 10/04/24	08:46 Anal	yzed: 10/07/	/24 05:57					
QC Source Sample: Non-SDG (A4J099	<u>6-08)</u>											
% Solids	79.0		1.00	%	1		76.8			3	10%	
Duplicate (24J0181-DUP5)			Prepared	: 10/04/24	08:46 Anal	yzed: 10/07/	/24 05:57					
QC Source Sample: Non-SDG (A4J099	6-09 <u>)</u>											
% Solids	80.6		1.00	%	1		80.9			0.3	10%	
Duplicate (24J0181-DUP6)			Prepared	: 10/04/24	08:46 Anal	yzed: 10/07/	/24 05:57					
QC Source Sample: Non-SDG (A4J099	<u>6-10)</u>											_
% Solids	57.8		1.00	%	1		51.9			11	10%	Q-17
Duplicate (24J0181-DUP7)			Prepared	: 10/04/24	08:46 Anal	yzed: 10/07/	/24 05:57					
QC Source Sample: Non-SDG (A4J099	6-11)											
% Solids	84.0		1.00	%	1		82.4			2	10%	
Duplicate (24J0181-DUP8)			Prepared	: 10/04/24	08:46 Anal	yzed: 10/07/	/24 05:57					
QC Source Sample: Non-SDG (A4J099	<u>6-12)</u>											
% Solids	78.3		1.00	%	1		78.9			0.8	10%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Neienberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0181 - Dry Weight P	rep (EPA 8	3000D)					Soil					
Duplicate (24J0181-DUP9)			Prepared	: 10/04/24	08:46 Ana	lyzed: 10/07	/24 05:57					
QC Source Sample: Non-SDG (A4	4J0996-13)											
% Solids	88.2		1.00	%	1		89.1			0.9	10%	
Duplicate (24J0181-DUPA)			Prepared	: 10/04/24	19:11 Ana	lyzed: 10/07	/24 05:57					COMP
QC Source Sample: Non-SDG (A4	4J1060-11)											
% Solids	95.9		1.00	%	1		95.7			0.2	10%	
Duplicate (24J0181-DUPB)			Prepared	: 10/04/24	19:11 Ana	lyzed: 10/07	/24 05:57					
QC Source Sample: Non-SDG (A4	4J1064-01 <u>)</u>											
% Solids	89.6		1.00	%	1		89.2			0.5	10%	
Duplicate (24J0181-DUPC)			Prepared	: 10/04/24	19:11 Ana	lyzed: 10/07	/24 05:57					
QC Source Sample: Non-SDG (A4	<u>4J1069-01)</u>											
% Solids	80.6		1.00	%	1		82.7			3	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 58 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

SAMPLE PREPARATION INFORMATION

Prep: EPA 3546 (F	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J0195							
A4J1024-01	Solid	NWTPH-HCID	10/02/24 09:15	10/04/24 10:44	10.45g/10mL	10g/10mL	0.96
A4J1024-02	Solid	NWTPH-HCID	10/02/24 10:10	10/04/24 10:44	10.01g/10mL	10g/10mL	1.00
A4J1024-03	Solid	NWTPH-HCID	10/02/24 09:50	10/04/24 10:44	10.71g/10mL	10g/10mL	0.93
A4J1024-04	Solid	NWTPH-HCID	10/02/24 11:25	10/04/24 10:44	10.52g/10mL	10g/10mL	0.95
A4J1024-05	Solid	NWTPH-HCID	10/02/24 12:00	10/04/24 10:44	10.47g/10mL	10g/10mL	0.96
A4J1024-06	Solid	NWTPH-HCID	10/02/24 08:23	10/04/24 10:44	10.2g/10mL	10g/10mL	0.98
A4J1024-07	Solid	NWTPH-HCID	10/02/24 14:00	10/04/24 10:44	10.17g/10mL	10g/10mL	0.98
A4J1024-08	Solid	NWTPH-HCID	10/02/24 12:30	10/04/24 10:44	10.09g/10mL	10g/10mL	0.99
A4J1024-09	Solid	NWTPH-HCID	10/02/24 12:50	10/04/24 10:44	10.27g/10mL	10g/10mL	0.97
A4J1024-10	Solid	NWTPH-HCID	10/02/24 15:50	10/04/24 10:44	10.21g/10mL	10g/10mL	0.98
A4J1024-11	Solid	NWTPH-HCID	10/02/24 16:30	10/04/24 10:44	10.12g/10mL	10g/10mL	0.99
A4J1024-12	Solid	NWTPH-HCID	10/02/24 17:30	10/04/24 10:44	10.74g/10mL	10g/10mL	0.93
A4J1024-13	Solid	NWTPH-HCID	10/02/24 17:50	10/04/24 10:44	10.56g/10mL	10g/10mL	0.95
A4J1024-14	Solid	NWTPH-HCID	10/02/24 17:00	10/04/24 10:44	10.78g/10mL	10g/10mL	0.93
A4J1024-15	Solid	NWTPH-HCID	10/02/24 15:10	10/04/24 10:44	10.09g/10mL	10g/10mL	0.99
A4J1024-16	Solid	NWTPH-HCID	10/02/24 00:00	10/04/24 10:44	10.04g/10mL	10g/10mL	1.00

		Diesel an	d/or Oil Hydrocarbon	s by NWTPH-Dx			
Prep: EPA 3510C (F	uels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J0995							
A4J1024-17	Water	NWTPH-Dx	10/02/24 18:40	10/25/24 07:04	1040mL/5mL	1000mL/5mL	0.96
Prep: EPA 3546 (Fu	<u>iels)</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J0545							
A4J1024-01	Solid	NWTPH-Dx	10/02/24 09:15	10/14/24 09:47	2.97g/5mL	2g/5mL	0.67
A4J1024-03	Solid	NWTPH-Dx	10/02/24 09:50	10/14/24 09:47	2.08g/5mL	2g/5mL	0.96
A4J1024-05	Solid	NWTPH-Dx	10/02/24 12:00	10/14/24 09:47	2.85g/5mL	2g/5mL	0.70
A4J1024-06	Solid	NWTPH-Dx	10/02/24 08:23	10/14/24 09:47	2.99g/5mL	2g/5mL	0.67
A4J1024-07	Solid	NWTPH-Dx	10/02/24 14:00	10/14/24 09:47	2.44g/5mL	2g/5mL	0.82
A4J1024-08	Solid	NWTPH-Dx	10/02/24 12:30	10/14/24 09:47	2.2g/5mL	2g/5mL	0.91
A4J1024-09	Solid	NWTPH-Dx	10/02/24 12:50	10/14/24 09:47	2.14g/5mL	2g/5mL	0.94
A4J1024-10	Solid	NWTPH-Dx	10/02/24 15:50	10/14/24 09:47	2.5g/5mL	2g/5mL	0.80
A4J1024-11	Solid	NWTPH-Dx	10/02/24 16:30	10/14/24 09:47	2.44g/5mL	2g/5mL	0.82

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Namberg

Page 59 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

SAMPLE PREPARATION INFORMATION

Diesel and/or Oil Hydrocarbons by NWTPH-Dx												
Prep: EPA 3546 (Fu	els)				Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
A4J1024-12RE1	Solid	NWTPH-Dx	10/02/24 17:30	10/14/24 09:47	2.18g/5mL	2g/5mL	0.92					
A4J1024-13	Solid	NWTPH-Dx	10/02/24 17:50	10/14/24 09:47	2.3g/5mL	2g/5mL	0.87					
A4J1024-14	Solid	NWTPH-Dx	10/02/24 17:00	10/14/24 09:47	2.81g/5mL	2g/5mL	0.71					
A4J1024-15	Solid	NWTPH-Dx	10/02/24 15:10	10/14/24 09:47	2.52g/5mL	2g/5mL	0.79					
A4J1024-16	Solid	NWTPH-Dx	10/02/24 00:00	10/14/24 09:47	2.68g/5mL	2g/5mL	0.75					

Polychlorinated Biphenyls by EPA 8082A											
Prep: EPA 3546					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 24J0186											
A4J1024-01	Solid	EPA 8082A	10/02/24 09:15	10/04/24 09:15	2.24g/5mL	2g/5mL	0.89				
A4J1024-02	Solid	EPA 8082A	10/02/24 10:10	10/04/24 09:15	2.11g/5mL	2g/5mL	0.95				
A4J1024-03	Solid	EPA 8082A	10/02/24 09:50	10/04/24 09:15	2.17g/5mL	2g/5mL	0.92				
A4J1024-04	Solid	EPA 8082A	10/02/24 11:25	10/04/24 09:15	2.53g/5mL	2g/5mL	0.79				
A4J1024-05RE1	Solid	EPA 8082A	10/02/24 12:00	10/04/24 09:15	2.82g/5mL	2g/5mL	0.71				
A4J1024-06	Solid	EPA 8082A	10/02/24 08:23	10/04/24 09:15	2.7g/5mL	2g/5mL	0.74				
A4J1024-07	Solid	EPA 8082A	10/02/24 14:00	10/04/24 09:15	2.42g/5mL	2g/5mL	0.83				
A4J1024-08	Solid	EPA 8082A	10/02/24 12:30	10/04/24 09:15	2.13g/5mL	2g/5mL	0.94				
A4J1024-09	Solid	EPA 8082A	10/02/24 12:50	10/04/24 09:15	2.28g/5mL	2g/5mL	0.88				
A4J1024-10	Solid	EPA 8082A	10/02/24 15:50	10/04/24 09:15	2.94g/5mL	2g/5mL	0.68				
A4J1024-11	Solid	EPA 8082A	10/02/24 16:30	10/04/24 09:15	2.27g/5mL	2g/5mL	0.88				
A4J1024-12	Solid	EPA 8082A	10/02/24 17:30	10/04/24 09:15	2.51g/5mL	2g/5mL	0.80				
A4J1024-13	Solid	EPA 8082A	10/02/24 17:50	10/04/24 09:15	2.64g/5mL	2g/5mL	0.76				
A4J1024-14	Solid	EPA 8082A	10/02/24 17:00	10/04/24 09:15	2.42g/5mL	2g/5mL	0.83				
A4J1024-15	Solid	EPA 8082A	10/02/24 15:10	10/04/24 09:15	2.27g/5mL	2g/5mL	0.88				
A4J1024-16	Solid	EPA 8082A	10/02/24 00:00	10/04/24 09:15	2.99g/5mL	2g/5mL	0.67				

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)												
Prep: EPA 3546					Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 24J0210												
A4J1024-01	Solid	EPA 8270E SIM	10/02/24 09:15	10/04/24 12:15	2.57g/5mL	2g/5mL	0.78					
A4J1024-02	Solid	EPA 8270E SIM	10/02/24 10:10	10/04/24 12:15	2.12g/5mL	2g/5mL	0.94					
A4J1024-03	Solid	EPA 8270E SIM	10/02/24 09:50	10/04/24 12:15	2.96g/5mL	2g/5mL	0.68					
A4J1024-04	Solid	EPA 8270E SIM	10/02/24 11:25	10/04/24 12:15	2.3g/5mL	2g/5mL	0.87					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 60 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

SAMPLE PREPARATION INFORMATION

Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A4J1024-05	Solid	EPA 8270E SIM	10/02/24 12:00	10/04/24 12:15	2.07g/5mL	2g/5mL	0.97
A4J1024-05RE1	Solid	EPA 8270E SIM	10/02/24 12:00	10/04/24 12:15	2.07g/5mL	2g/5mL	0.97
A4J1024-06	Solid	EPA 8270E SIM	10/02/24 08:23	10/04/24 12:15	2.48g/5mL	2g/5mL	0.81
A4J1024-07	Solid	EPA 8270E SIM	10/02/24 14:00	10/04/24 12:15	2.88g/5mL	2g/5mL	0.69
A4J1024-08	Solid	EPA 8270E SIM	10/02/24 12:30	10/04/24 12:15	2.87g/5mL	2g/5mL	0.70
A4J1024-09	Solid	EPA 8270E SIM	10/02/24 12:50	10/04/24 12:15	2.55g/5mL	2g/5mL	0.78
A4J1024-10	Solid	EPA 8270E SIM	10/02/24 15:50	10/04/24 12:15	2.77g/5mL	2g/5mL	0.72
A4J1024-11	Solid	EPA 8270E SIM	10/02/24 16:30	10/04/24 12:15	2.7g/5mL	2g/5mL	0.74
A4J1024-12	Solid	EPA 8270E SIM	10/02/24 17:30	10/04/24 12:15	2.04g/5mL	2g/5mL	0.98
A4J1024-13	Solid	EPA 8270E SIM	10/02/24 17:50	10/04/24 12:15	2.69g/5mL	2g/5mL	0.74
A4J1024-14	Solid	EPA 8270E SIM	10/02/24 17:00	10/04/24 12:15	2.26g/5mL	2g/5mL	0.89
A4J1024-15	Solid	EPA 8270E SIM	10/02/24 15:10	10/04/24 12:15	2.06g/5mL	2g/5mL	0.97
A4J1024-16	Solid	EPA 8270E SIM	10/02/24 00:00	10/04/24 12:15	2.41g/5mL	2g/5mL	0.83

	Ро	lyaromatic Hydrocarb	ons (PAHs) by EPA	8270E (Large Volur	ne Injection)		
Prep: EPA 3511 (Bott	le Extraction)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J0251							
A4J1024-17	Water	EPA 8270E LVI	10/02/24 18:40	10/07/24 10:00	122.65mL/5mL	125mL/5mL	1.02

		Tota	al Metals by EPA 602	OB (ICPMS)			
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24K0065							
A4J1024-17	Water	EPA 6020B	10/02/24 18:40	11/04/24 08:23	45mL/50mL	45mL/50mL	1.00
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J0442							
A4J1024-01	Solid	EPA 6020B	10/02/24 09:15	10/10/24 12:34	0.485g/50mL	0.5g/50mL	1.03
A4J1024-02	Solid	EPA 6020B	10/02/24 10:10	10/10/24 12:34	0.46g/50mL	0.5g/50mL	1.09
A4J1024-03	Solid	EPA 6020B	10/02/24 09:50	10/10/24 12:34	0.461g/50mL	0.5g/50mL	1.08
A4J1024-04	Solid	EPA 6020B	10/02/24 11:25	10/10/24 12:34	0.498g/50mL	0.5g/50mL	1.00
A4J1024-05	Solid	EPA 6020B	10/02/24 12:00	10/10/24 12:34	0.457g/50mL	0.5g/50mL	1.09
A4J1024-06	Solid	EPA 6020B	10/02/24 08:23	10/10/24 12:34	0.477g/50mL	0.5g/50mL	1.05

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherz

Page 61 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

SAMPLE PREPARATION INFORMATION

		Tota	l Metals by EPA 6020	OB (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A4J1024-07	Solid	EPA 6020B	10/02/24 14:00	10/10/24 12:34	0.518g/50mL	0.5g/50mL	0.97
A4J1024-07RE2	Solid	EPA 6020B	10/02/24 14:00	10/10/24 12:34	0.518g/50mL	0.5g/50mL	0.97
A4J1024-08	Solid	EPA 6020B	10/02/24 12:30	10/10/24 12:34	0.472g/50mL	0.5g/50mL	1.06
A4J1024-09	Solid	EPA 6020B	10/02/24 12:50	10/10/24 12:34	0.474g/50mL	0.5g/50mL	1.05
A4J1024-09RE1	Solid	EPA 6020B	10/02/24 12:50	10/10/24 12:34	0.474g/50mL	0.5g/50mL	1.05
A4J1024-10	Solid	EPA 6020B	10/02/24 15:50	10/10/24 12:34	0.484g/50mL	0.5g/50mL	1.03
A4J1024-10RE1	Solid	EPA 6020B	10/02/24 15:50	10/10/24 12:34	0.484g/50mL	0.5g/50mL	1.03
A4J1024-10RE3	Solid	EPA 6020B	10/02/24 15:50	10/10/24 12:34	0.484g/50mL	0.5g/50mL	1.03
A4J1024-11	Solid	EPA 6020B	10/02/24 16:30	10/10/24 12:34	0.464g/50mL	0.5g/50mL	1.08
A4J1024-12	Solid	EPA 6020B	10/02/24 17:30	10/10/24 12:34	0.486g/50mL	0.5g/50mL	1.03
A4J1024-13	Solid	EPA 6020B	10/02/24 17:50	10/10/24 12:34	0.46g/50mL	0.5g/50mL	1.09
A4J1024-14	Solid	EPA 6020B	10/02/24 17:00	10/10/24 12:34	0.49g/50mL	0.5g/50mL	1.02
A4J1024-15	Solid	EPA 6020B	10/02/24 15:10	10/10/24 12:34	0.491g/50mL	0.5g/50mL	1.02
A4J1024-15RE1	Solid	EPA 6020B	10/02/24 15:10	10/10/24 12:34	0.491g/50mL	0.5g/50mL	1.02
A4J1024-15RE2	Solid	EPA 6020B	10/02/24 15:10	10/10/24 12:34	0.491g/50mL	0.5g/50mL	1.02
A4J1024-15RE3	Solid	EPA 6020B	10/02/24 15:10	10/10/24 12:34	0.491g/50mL	0.5g/50mL	1.02
Batch: 24J0513							
A4J1024-16	Solid	EPA 6020B	10/02/24 00:00	10/11/24 16:35	0.472g/50mL	0.5g/50mL	1.06
A4J1024-16RE1	Solid	EPA 6020B	10/02/24 00:00	10/11/24 16:35	0.472g/50mL	0.5g/50mL	1.06

		TCL	P Metals by EPA 602	OB (ICPMS)			
Prep: EPA 1311/301	<u>15A</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J1231							
A4J1024-05	Solid	1311/6020B	10/02/24 12:00	11/01/24 09:00	10mL/50mL	10mL/50mL	1.00
A4J1024-11	Solid	1311/6020B	10/02/24 16:30	11/01/24 09:00	10mL/50mL	10mL/50mL	1.00
A4J1024-12	Solid	1311/6020B	10/02/24 17:30	11/01/24 09:00	10mL/50mL	10mL/50mL	1.00
A4J1024-15	Solid	1311/6020B	10/02/24 15:10	11/01/24 09:00	10 mL / 50 mL	10 mL/50 mL	1.00

			Percent Dry We	ight			
Prep: Dry Weight Pr	ep (EPA 8000D)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J0181							
A4J1024-01	Solid	EPA 8000D	10/02/24 09:15	10/04/24 08:46			NA
A4J1024-02	Solid	EPA 8000D	10/02/24 10:10	10/04/24 08:46			NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 62 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

SAMPLE PREPARATION INFORMATION

			Percent Dry We	ight			
Prep: Dry Weight F	Prep (EPA 8000D)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A4J1024-03	Solid	EPA 8000D	10/02/24 09:50	10/04/24 08:46			NA
A4J1024-04	Solid	EPA 8000D	10/02/24 11:25	10/04/24 08:46			NA
A4J1024-05	Solid	EPA 8000D	10/02/24 12:00	10/04/24 08:46			NA
A4J1024-06	Solid	EPA 8000D	10/02/24 08:23	10/04/24 08:46			NA
A4J1024-07	Solid	EPA 8000D	10/02/24 14:00	10/04/24 08:46			NA
A4J1024-08	Solid	EPA 8000D	10/02/24 12:30	10/04/24 08:46			NA
A4J1024-09	Solid	EPA 8000D	10/02/24 12:50	10/04/24 08:46			NA
A4J1024-10	Solid	EPA 8000D	10/02/24 15:50	10/04/24 08:46			NA
A4J1024-11	Solid	EPA 8000D	10/02/24 16:30	10/04/24 08:46			NA
A4J1024-12	Solid	EPA 8000D	10/02/24 17:30	10/04/24 08:46			NA
A4J1024-13	Solid	EPA 8000D	10/02/24 17:50	10/04/24 08:46			NA
A4J1024-14	Solid	EPA 8000D	10/02/24 17:00	10/04/24 08:46			NA
A4J1024-15	Solid	EPA 8000D	10/02/24 15:10	10/04/24 08:46			NA
A4J1024-16	Solid	EPA 8000D	10/02/24 00:00	10/04/24 08:46			NA

			TCLP Extraction by E	PA 1311			
Prep: EPA 1311 (TC	:LP)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J1164							
A4J1024-05	Solid	EPA 1311	10/02/24 12:00	10/30/24 16:10	100g/2003g	100g/2000g	NA
A4J1024-11	Solid	EPA 1311	10/02/24 16:30	10/30/24 16:10	100.1g/1998g	100g/2000g	NA
A4J1024-12	Solid	EPA 1311	10/02/24 17:30	10/30/24 16:10	99.9g/2008g	100g/2000g	NA
A4J1024-15	Solid	EPA 1311	10/02/24 15:10	10/30/24 16:10	100g/2006g	100g/2000g	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 63 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224

Project: **Blue Heron**

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex

ex Laborate	<u>ories</u>
C-07	Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
COMP	Analyzed sample is a composite of discrete samples that was performed in the laboratory.
F-03	The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
H-02	This sample was extracted outside of the recommended holding time.
M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
P-12	Result estimated due to the presence of multiple PCB Aroclors and/or PCB congeners not defined as Aroclors.
PRO	Sample has undergone sample processing prior to extraction and analysis.
Q-04	Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-16	Reanalysis of an original Batch QC sample.
Q-17	RPD between original and duplicate sample, or spike duplicates, is outside of established control limits.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for

- analysis.
- Sample results are less than the Reporting Level (MDL and/or MRL) and Duplicate results exceed this level. See QC Section of the report Q-37 for Duplicate results. Sample may be non-homogenous, or results may bracket the reporting level.
- Q-39 Results for sample duplicate are higher than the sample results. See duplicate results in QC section of the report.
- Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely Q-41 biased high.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
- O-65 Spike recovery is estimated due to the high analyte concentration of the source sample.
- R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
- R-04 Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.
- S-01 Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.
- S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
- TCLP This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 24J1164.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 64 of 70 Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP <u>USA Environment & Infrastructure Inc.</u>

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Validated Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"__" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 65 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP <u>USA Environment & Infrastructure Inc.</u>

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL).

Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level.

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 66 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: **G685.0793 Task 400**Project Manager: **John Kuiper**

Report ID: A4J1024 - 11 05 24 1544

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: **Blue Heron**

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

Sampled by: Matthews State OR State OR State DR						
thew Brown		Project Name: Blue Heron	Heror	د	Project #. 6685,0793 Task 400	Task 400
MATPH-DX WATPH-DX # OF COUNTAINERS MATRIX State OR SAMPLE ID SAMPLE ID		Email: John	Email: John Kviper@WSP.com	USP,COM	PO# (
MALLH-HCID WALKIX MALLHIX			AN	ANALYSIS REOUEST		
MALLH-HCID WATRIX TIME DATE				TCLP (i, K,), (v, Pb,), (cd,)		
DATE TIME # OF CC	BDW AOC ²	OCs Eul Lis	esticides Metals (8)	Co, Cu, Fe Ma, Ma, Mo, N Na, Tl, V, Zi		
	H 0978	IS 0/28	9 1808	AL Sb, TOTAL Se, Ag, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, M		Hold Sar
BH-IRM-1.0-05,304/002/10/2/01/5 S 3 X X	×	×	×	×		
84.TR1-2.0-0.5-20041002 1010 X X	×	×		×		
BH-TRH-2-1-15_20041002 10950 X X	×	×		×		
81.1711-3.0-05.2941002 1125 X X	×	×	×	×		
BH. TRH -3.1-1.5. apay1002 1900 X X	×	×		×		
8H-TR1-10-0.5-20241002 0833 XX	×	7	×	×		
BH.TR1.4.0-05.30341002 1400 XX	×	*		×		
BH-TR1-3.0-0.5 arayloxa 1230 XXX	×	×	×	× ×		
8H-TR1-3_1-1.5_24341002 113.50 X X	×	×		×		
BH-TR1-4_0-0.55 2041000 1 1550 + 1 × ×	×	メ		×		
Standard Turn Around Time (TAT) = 10 Business Days		SPECIAL IN	STRUCTIONS	1		-
1 Day 2 Day 3 Day		-Ren 17	=== ==================================	tallow-up with	· Run TPH-HCID tollow-up with Gx and/or Dx as needed	needed
		2 09 ·	み、デ	endolf on m	etals lesvics	
3 Day Standard Other:		T				
SAMPLES ARE HELD FOR 30						
RECEIVED BY: RECEIVED BY: Signature: Date: Spentime:	Date	RELINQUISHED BY	ED BY:	ote.	RECEIVED BY:	
Min Jer 10/3/34	10/3/24					
Hather Eran Time: Printed Name: Time: Time: Additional Brooks 15:10	Time: 5a /5:10	Printed Name:		Тіте:	Printed Name: Time:	
Company: WSP Company:		Company:		-	Сопрану:	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 68 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

Company: WSP Address: NSGS SULTR Ove, #150 Borlow, OR Sine Location: Site Location:																			
Far Davin	Project Mgr. John	In K	Kiner			Proje	Project Name: 310E HOYON	$(\overline{\mathcal{X}})$	3	#	Ó	ر ا		- K	ject #:(Project #: G-685, 0793 Test 400	737	act 4	8
d by: Mathew Brown ocation:		97224	Phone:	, i			田田	Email; John. Kuiper@W.D. Com	Jun.	199	9	\$	D/M	<u>R</u>	PO #		١		
0		•									AN	u.ys	ANALYSIS REQUEST					1	
State OR								Jsi			,		CITS K'	-					
					9C8	S,					(8)		L 'S	(8					
County Clark						OOA 9					etals (nisa Pi Li) zlate				-	ərd
SAMPLE ID	XIATAN	MMLbH t OL COM	H4TWN	HALMN	8260 RTI	4sH 0328	OA 0978	MIS 0728	8087 PCI	8081 Pesi	KCKA N	Priority A	L, Sb, A Se, Cr, C Se, Ag, Vi	TCLP M					mas biol
2	S	X	×	×	-		Ħ	×	X	ļ.,		_	b S I	×					,
6H-191-2,0-0.5_20241002 101717417130	-	×	×	×	-		İ	×	>			×	"X	×	25.4	lead fiftst	SA Hold	100	8
_,			×	×	-			×	×			×	સ	×	1	Run lead first, Hold	4, F	2/	
8H_TRZ-4_0-05_20241002 01212417:00			×	×	-			×	×			×		×			D		
8H-TR2-6-0-5-20241002 1017124 15:10		×	×	×				×	×	\ \ \ \		×		×					
HZ/Z/M	<i>→</i>	~	×	×				×	×			×		×					
64_ Rinsak_20241002 1012174 18:40	<u> </u>	0	×	ж				×	×	X		×	•	~					×
					-									\dashv					
							7								-				\neg
		-					\dashv	\dashv	_					\dashv	_			\exists	\dashv
Standard Turn Around Time (TAT) = 10 Business Days	= 10 Bus	iness Day	90				N N	SPECIAL INSTRUCTIONS	LE	TRUC	NOI (: :::		<		(-	. 6	7	_
1 Day	2 Day		3 Day				•	<u>\$</u>	至	\$	\mathcal{I} .	allotr	· Kin TH-HOLD talked up with the depart Jx, as neaded	B -	9	×	§ ₹	8	5
1								40年	13	7	8	\$	· Hold TCLF, dependent on metals results	る	<u> </u>	, 22			
5 Day	Standard		Other:			ı	1	KI	Ē	10	ζ.	ACD	By DIPA is diminute sample for QC	Jan	م م	700			
SAMPLES ARE HELD FOR 30 DAYS	DAYS							5		ا!		-		-		,			
IUISHED BY:	RECEIVED BY:	ED BY:		ć			~ 3	RELINQUISHED BY:	CISH	3D BY:		٠	į	24 2	RECEIVED BY:	D BY:	Pate		
75	Chu MM	MA	N	ă –	10/3/24	3	<u> </u>	Summer.						<u> </u>	Jakime.				
	Printed Name	ime:		-	L L L		-	Printed Name	ame:			_	Time:	Æ	Printed Name	29	Time:		
	Commence	§ 7	10 1 ac. 6021		5		-	Commanir	١.						Commany				
S. S	200	>						Company of the Compan						•					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 69 of 70

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1024 - 11 05 24 1544

	APEX LABS COOLER R	ECEIPT FORM	
Client: WSP		Element WO#: A4_T1024	
Project/Project #:		793 Task 400	
Delivery Info:			
Date/time received: 10/3/	124 @ 15:10 By: 5	Zan	
Delivered by: Apex_Clier	nt≭ESS FedEx UPS Radio	Morgan SDS Evergreen Other	
From USDA Regulated Or			_
Cooler Inspection Date		15:10 By: 20M	
Chain of Custody included			
Signed/dated by client?	Yes × No		
Contains USDA Reg. Soils		Unsure (email RegSoils)	
		B Cooler #4 Cooler #5 Cooler #6 Cooler #	÷7
Temperature (°C)	5.4 5.1 4.6	- COOLETTI COOLETTI COOLETTI	<u> </u>
Custody seals? (Y/N)			
Received on ice? (Y/N)			
Temp. blanks? (Y/N)			
	Real		_
Condition (In/Out):			-
Out of temperature samples Sample Inspection: Date	f temperature samples? Yes No s form initiated? Yes No /time inspected: 10/3/2 4 @	15:38 By: 24M	-
All samples intact? Yes			
Bottle labels/COCs agree?			
COC/container discrepancie	es form initiated? Yes No X		
		No Comments:	
Do VOA vials have visible	headspace? Yes No × N	NA	
Comments			
	l: Yes × No NA pH approp	riate? Yes X No NA pH ID: A23 D7	2
Labeled by:	Witness:	Cooler Inspected by:	
X DM	¥	Form Y-003 R-02	2 -
J V	W	CX JH.	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Sunday, November 3, 2024

John Kuiper

WSP USA Environment & Infrastructure Inc.
15862 SW 72nd Ave. Suite 150

Portland, OR 97224

RE: A4J1445 - Blue Heron - G685.0793 Task 400

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4J1445, which was received by the laboratory on 10/16/2024 at 4:05:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 5.6 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION											
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received							
BH-DS8Pre-20241016	A4J1445-01	Water	10/16/24 13:50	10/16/24 16:05							
BH-DS8Post-20241016	A4J1445-02	Water	10/16/24 13:55	10/16/24 16:05							
BH-DS14Pre-20241016	A4J1445-03	Water	10/16/24 14:00	10/16/24 16:05							
BH-DS14Post-20241016	A4J1445-04	Water	10/16/24 14:05	10/16/24 16:05							
BH-DS24Pre-20241016	A4J1445-05	Water	10/16/24 14:15	10/16/24 16:05							
BH-DS24Post-20241016	A4J1445-06	Water	10/16/24 14:20	10/16/24 16:05							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 2 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

ANALYTICAL SAMPLE RESULTS

		iotal Meta	als by EPA 60	ZOR (ICHWS	<u>)</u>			
Analyte	Sample Result	Detection Limit	1 0		Dilution	Date Analyzed	Method Ref.	Notes
BH-DS8Pre-20241016 (A4J1445-01)				Matrix: Wa	ater			
Batch: 24J1054		· · · · · · · · · · · · · · · · · · ·		· <u> </u>				
Antimony	ND		1.00	ug/L	1	10/29/24 20:02	EPA 6020B	
Arsenic	ND		1.00	ug/L	1	10/29/24 20:02	EPA 6020B	
Beryllium	ND		0.200	ug/L	1	10/29/24 20:02	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	10/29/24 20:02	EPA 6020B	
Chromium	ND		2.00	ug/L	1	10/29/24 20:02	EPA 6020B	
Lead	1.77		0.200	ug/L	1	10/29/24 20:02	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	10/29/24 20:02	EPA 6020B	
Nickel	2.75		2.00	ug/L	1	10/29/24 20:02	EPA 6020B	
Selenium	ND		1.00	ug/L	1	10/29/24 20:02	EPA 6020B	
Silver	ND		0.200	ug/L	1	10/29/24 20:02	EPA 6020B	
Thallium	ND		0.200	ug/L	1	10/29/24 20:02	EPA 6020B	
Zinc	107		4.00	ug/L	1	10/29/24 20:02	EPA 6020B	
BH-DS8Pre-20241016 (A4J1445-01RE1)			_	Matrix: Wa	ater			
Batch: 24J1202								
Copper	5.84		2.00	ug/L	1	11/01/24 03:05	EPA 6020B	
BH-DS8Post-20241016 (A4J1445-02)				Matrix: Wa	ater			
Batch: 24J1054								
Antimony	ND		1.00	ug/L	1	10/29/24 20:07	EPA 6020B	
Arsenic	ND		1.00	ug/L	1	10/29/24 20:07	EPA 6020B	
Beryllium	ND		0.200	ug/L	1	10/29/24 20:07	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	10/29/24 20:07	EPA 6020B	
Chromium	ND		2.00	ug/L	1	10/29/24 20:07	EPA 6020B	
Lead	0.764		0.200	ug/L	1	10/29/24 20:07	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	10/29/24 20:07	EPA 6020B	
Nickel	3.68		2.00	ug/L	1	10/29/24 20:07	EPA 6020B	
Selenium	ND		1.00	ug/L	1	10/29/24 20:07	EPA 6020B	
Silver	ND		0.200	ug/L	1	10/29/24 20:07	EPA 6020B	
Гhallium	ND		0.200	ug/L	1	10/29/24 20:07	EPA 6020B	
Zinc	21.6		4.00	ug/L	1	10/29/24 20:07	EPA 6020B	
BH-DS8Post-20241016 (A4J1445-02RE1				Matrix: Wa				

Batch: 24J1202

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 3 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
BH-DS8Post-20241016 (A4J1445-02RE1)			Matrix: W	ater						
Copper	4.18		2.00	ug/L	1	11/01/24 03:10	EPA 6020B				
BH-DS14Pre-20241016 (A4J1445-03)				Matrix: W	ater						
Batch: 24J1054											
Antimony	ND		1.00	ug/L	1	10/29/24 20:12	EPA 6020B				
Arsenic	14.3		1.00	ug/L	1	10/29/24 20:12	EPA 6020B				
Beryllium	ND		0.200	ug/L	1	10/29/24 20:12	EPA 6020B				
Cadmium	0.510		0.200	ug/L	1	10/29/24 20:12	EPA 6020B				
Chromium	28.6		2.00	ug/L	1	10/29/24 20:12	EPA 6020B				
Copper	514		2.00	ug/L	1	10/29/24 20:12	EPA 6020B	B-02			
Lead	204		0.200	ug/L	1	10/29/24 20:12	EPA 6020B				
Mercury	ND		0.0800	ug/L	1	10/29/24 20:12	EPA 6020B				
Nickel	9.25		2.00	ug/L	1	10/29/24 20:12	EPA 6020B				
Selenium	ND		1.00	ug/L	1	10/29/24 20:12	EPA 6020B				
Silver	ND		0.200	ug/L	1	10/29/24 20:12	EPA 6020B				
Thallium	ND		0.200	ug/L	1	10/29/24 20:12	EPA 6020B				
Zinc	123		4.00	ug/L	1	10/29/24 20:12	EPA 6020B				
BH-DS14Post-20241016 (A4J1445-04)				Matrix: W	ater						
Batch: 24J1054											
Antimony	ND		1.00	ug/L	1	10/29/24 20:18	EPA 6020B				
Arsenic	1.66		1.00	ug/L	1	10/29/24 20:18	EPA 6020B				
Beryllium	ND		0.200	ug/L	1	10/29/24 20:18	EPA 6020B				
Cadmium	0.273		0.200	ug/L	1	10/29/24 20:18	EPA 6020B				
Chromium	6.96		2.00	ug/L	1	10/29/24 20:18	EPA 6020B				
Copper	21.7		2.00	ug/L	1	10/29/24 20:18	EPA 6020B	B-02			
Lead	0.289		0.200	ug/L	1	10/29/24 20:18	EPA 6020B				
Mercury	ND		0.0800	ug/L	1	10/29/24 20:18	EPA 6020B				
Nickel	3.23		2.00	ug/L	1	10/29/24 20:18	EPA 6020B				
Selenium	ND		1.00	ug/L	1	10/29/24 20:18	EPA 6020B				
Silver	ND		0.200	ug/L	1	10/29/24 20:18	EPA 6020B				
Thallium	ND		0.200	ug/L	1	10/29/24 20:18	EPA 6020B				
Zinc	21.5		4.00	ug/L	1	10/29/24 20:18	EPA 6020B				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 4 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20B (ICPMS	S)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-DS24Pre-20241016 (A4J1445-05)				Matrix: W	ater			
Batch: 24J1054								
Antimony	13.1		1.00	ug/L	1	10/29/24 20:23	EPA 6020B	
Arsenic	2.31		1.00	ug/L	1	10/29/24 20:23	EPA 6020B	
Beryllium	ND		0.200	ug/L	1	10/29/24 20:23	EPA 6020B	
Cadmium	0.227		0.200	ug/L	1	10/29/24 20:23	EPA 6020B	
Chromium	4.09		2.00	ug/L	1	10/29/24 20:23	EPA 6020B	
Copper	40.2		2.00	ug/L	1	10/29/24 20:23	EPA 6020B	B-02
Lead	5.28		0.200	ug/L	1	10/29/24 20:23	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	10/29/24 20:23	EPA 6020B	
Nickel	2.64		2.00	ug/L	1	10/29/24 20:23	EPA 6020B	
Selenium	ND		1.00	ug/L	1	10/29/24 20:23	EPA 6020B	
Silver	ND		0.200	ug/L	1	10/29/24 20:23	EPA 6020B	
Thallium	ND		0.200	ug/L	1	10/29/24 20:23	EPA 6020B	
Zinc	67.0		4.00	ug/L	1	10/29/24 20:23	EPA 6020B	
BH-DS24Post-20241016 (A4J1445-06)				Matrix: W	ater			
Batch: 24J1054								
Antimony	12.7		1.00	ug/L	1	10/29/24 20:29	EPA 6020B	
Arsenic	ND		1.00	ug/L	1	10/29/24 20:29	EPA 6020B	
Beryllium	ND		0.200	ug/L	1	10/29/24 20:29	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	10/29/24 20:29	EPA 6020B	
Chromium	2.36		2.00	ug/L	1	10/29/24 20:29	EPA 6020B	
Copper	35.4		2.00	ug/L	1	10/29/24 20:29	EPA 6020B	B-02
Lead	0.420		0.200	ug/L	1	10/29/24 20:29	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	10/29/24 20:29	EPA 6020B	
Nickel	4.37		2.00	ug/L	1	10/29/24 20:29	EPA 6020B	
Selenium	ND		1.00	ug/L	1	10/29/24 20:29	EPA 6020B	
Silver	ND		0.200	ug/L	1	10/29/24 20:29	EPA 6020B	
Thallium	ND		0.200	ug/L	1	10/29/24 20:29	EPA 6020B	
Zinc	33.7		4.00	ug/L	1	10/29/24 20:29	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

ANALYTICAL SAMPLE RESULTS

		Dissolved M	etals by EPA	6020B (ICP	MS)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-DS8Pre-20241016 (A4J1445-01)				Matrix: W	ater			
Batch: 24J0960								
Antimony	ND		1.00	ug/L	1	10/24/24 13:38	EPA 6020B (Diss)	FILT1
Arsenic	ND		1.00	ug/L	1	10/24/24 13:38	EPA 6020B (Diss)	FILT1
Beryllium	ND		0.200	ug/L	1	10/24/24 13:38	EPA 6020B (Diss)	FILT1
Cadmium	ND		0.200	ug/L	1	10/24/24 13:38	EPA 6020B (Diss)	FILT1
Chromium	ND		2.00	ug/L	1	10/24/24 13:38	EPA 6020B (Diss)	FILT1
Copper	ND		2.00	ug/L	1	10/24/24 13:38	EPA 6020B (Diss)	FILT1
Lead	ND		0.200	ug/L	1	10/24/24 13:38	EPA 6020B (Diss)	FILT1
Mercury	ND		0.0800	ug/L	1	10/24/24 13:38	EPA 6020B (Diss)	FILT1
Nickel	ND		2.00	ug/L	1	10/24/24 13:38	EPA 6020B (Diss)	FILT1
Selenium	ND		1.00	ug/L	1	10/24/24 13:38	EPA 6020B (Diss)	FILT1
Silver	ND		0.200	ug/L	1	10/24/24 13:38	EPA 6020B (Diss)	FILT1
Thallium	ND		0.200	ug/L	1	10/24/24 13:38	EPA 6020B (Diss)	FILT1
Zinc	69.6		4.00	ug/L	1	10/24/24 13:38	EPA 6020B (Diss)	FILT1
BH-DS8Post-20241016 (A4J1445-02)				Matrix: Wa	ater			
Batch: 24J0960								
Antimony	ND		1.00	ug/L	1	10/24/24 13:49	EPA 6020B (Diss)	FILT1
Arsenic	ND		1.00	ug/L	1	10/24/24 13:49	EPA 6020B (Diss)	FILT1
Beryllium	ND		0.200	ug/L	1	10/24/24 13:49	EPA 6020B (Diss)	FILT1
Cadmium	ND		0.200	ug/L	1	10/24/24 13:49	EPA 6020B (Diss)	FILT1
Chromium	ND		2.00	ug/L	1	10/24/24 13:49	EPA 6020B (Diss)	FILT1
Copper	2.50		2.00	ug/L	1	10/24/24 13:49	EPA 6020B (Diss)	FILT1
Lead	ND		0.200	ug/L	1	10/24/24 13:49	EPA 6020B (Diss)	FILT1
Mercury	ND		0.0800	ug/L	1	10/24/24 13:49	EPA 6020B (Diss)	FILT1
Nickel	ND		2.00	ug/L	1	10/24/24 13:49	EPA 6020B (Diss)	FILT1
Selenium	ND		1.00	ug/L	1	10/24/24 13:49	EPA 6020B (Diss)	FILT1
Silver	ND		0.200	ug/L	1	10/24/24 13:49	EPA 6020B (Diss)	FILT1
Thallium	ND		0.200	ug/L	1	10/24/24 13:49	EPA 6020B (Diss)	FILT1
Zinc	5.09		4.00	ug/L	1	10/24/24 13:49	EPA 6020B (Diss)	FILT1
BH-DS14Pre-20241016 (A4J1445-03)				Matrix: W	ater			
Batch: 24J0960								
Antimony	ND		1.00	ug/L	1	10/24/24 13:59	EPA 6020B (Diss)	FILT1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nevemberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: **Blue Heron**

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

ANALYTICAL SAMPLE RESULTS

		Dissolved Mo						
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-DS14Pre-20241016 (A4J1445-03)				Matrix: Wa	ater			
Arsenic	4.15		1.00	ug/L	1	10/24/24 13:59	EPA 6020B (Diss)	FILT1
Beryllium	ND		0.200	ug/L	1	10/24/24 13:59	EPA 6020B (Diss)	FILT1
Cadmium	ND		0.200	ug/L	1	10/24/24 13:59	EPA 6020B (Diss)	FILT1
Chromium	9.32		2.00	ug/L	1	10/24/24 13:59	EPA 6020B (Diss)	FILT1
Copper	63.7		2.00	ug/L	1	10/24/24 13:59	EPA 6020B (Diss)	FILT1
Lead	2.99		0.200	ug/L	1	10/24/24 13:59	EPA 6020B (Diss)	FILT1
Mercury	ND		0.0800	ug/L	1	10/24/24 13:59	EPA 6020B (Diss)	FILT1
Nickel	ND		2.00	ug/L	1	10/24/24 13:59	EPA 6020B (Diss)	FILT1
Selenium	ND		1.00	ug/L	1	10/24/24 13:59	EPA 6020B (Diss)	FILT1
Silver	ND		0.200	ug/L	1	10/24/24 13:59	EPA 6020B (Diss)	FILT1
Thallium	ND		0.200	ug/L	1	10/24/24 13:59	EPA 6020B (Diss)	FILT1
Zinc	55.3		4.00	ug/L	1	10/24/24 13:59	EPA 6020B (Diss)	FILT1
BH-DS14Post-20241016 (A4J1445-04)				Matrix: Wa	ater			
Batch: 24J0960								
Antimony	ND		1.00	ug/L	1	10/24/24 14:05	EPA 6020B (Diss)	FILT1
Arsenic	1.49		1.00	ug/L	1	10/24/24 14:05	EPA 6020B (Diss)	FILT1
Beryllium	ND		0.200	ug/L	1	10/24/24 14:05	EPA 6020B (Diss)	FILT1
Cadmium	0.225		0.200	ug/L	1	10/24/24 14:05	EPA 6020B (Diss)	FILT1
Chromium	6.52		2.00	ug/L	1	10/24/24 14:05	EPA 6020B (Diss)	FILT1
Copper	20.5		2.00	ug/L	1	10/24/24 14:05	EPA 6020B (Diss)	FILT1
Lead	ND		0.200	ug/L	1	10/24/24 14:05	EPA 6020B (Diss)	FILT1
Mercury	ND		0.0800	ug/L	1	10/24/24 14:05	EPA 6020B (Diss)	FILT1
Nickel	2.22		2.00	ug/L	1	10/24/24 14:05	EPA 6020B (Diss)	FILT1
Selenium	ND		1.00	ug/L	1	10/24/24 14:05	EPA 6020B (Diss)	FILT1
Silver	ND		0.200	ug/L	1	10/24/24 14:05	EPA 6020B (Diss)	FILT1
Thallium	ND		0.200	ug/L	1	10/24/24 14:05	EPA 6020B (Diss)	FILT1
Zinc	22.0		4.00	ug/L	1	10/24/24 14:05	EPA 6020B (Diss)	FILT1
BH-DS24Pre-20241016 (A4J1445-05)				Matrix: Wa	ater			
Batch: 24J0960								
Antimony	11.6		1.00	ug/L	1	10/24/24 14:10	EPA 6020B (Diss)	FILT1
Arsenic	2.20		1.00	ug/L	1	10/24/24 14:10	EPA 6020B (Diss)	FILT1
Beryllium	ND		0.200	ug/L	1	10/24/24 14:10	EPA 6020B (Diss)	FILT1

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherz

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

ANALYTICAL SAMPLE RESULTS

Dissolved Metals by EPA 6020B (ICPMS)											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
BH-DS24Pre-20241016 (A4J1445-05)				Matrix: W	ater		-				
Cadmium	0.217		0.200	ug/L	1	10/24/24 14:10	EPA 6020B (Diss)	FILT1			
Chromium	3.03		2.00	ug/L	1	10/24/24 14:10	EPA 6020B (Diss)	FILT1			
Copper	38.0		2.00	ug/L	1	10/24/24 14:10	EPA 6020B (Diss)	FILT1			
Lead	3.96		0.200	ug/L	1	10/24/24 14:10	EPA 6020B (Diss)	FILT1			
Mercury	ND		0.0800	ug/L	1	10/24/24 14:10	EPA 6020B (Diss)	FILT1			
Nickel	ND		2.00	ug/L	1	10/24/24 14:10	EPA 6020B (Diss)	FILT1			
Selenium	ND		1.00	ug/L	1	10/24/24 14:10	EPA 6020B (Diss)	FILT1			
Silver	ND		0.200	ug/L	1	10/24/24 14:10	EPA 6020B (Diss)	FILT1			
Thallium	ND		0.200	ug/L	1	10/24/24 14:10	EPA 6020B (Diss)	FILT1			
Zinc	66.5		4.00	ug/L	1	10/24/24 14:10	EPA 6020B (Diss)	FILT1			
BH-DS24Post-20241016 (A4J1445-06)				Matrix: W	ater						
Batch: 24J0960											
Antimony	10.9		1.00	ug/L	1	10/24/24 14:15	EPA 6020B (Diss)	FILT1			
Arsenic	ND		1.00	ug/L	1	10/24/24 14:15	EPA 6020B (Diss)	FILT1			
Beryllium	ND		0.200	ug/L	1	10/24/24 14:15	EPA 6020B (Diss)	FILT1			
Cadmium	ND		0.200	ug/L	1	10/24/24 14:15	EPA 6020B (Diss)	FILT1			
Chromium	2.13		2.00	ug/L	1	10/24/24 14:15	EPA 6020B (Diss)	FILT1			
Copper	32.7		2.00	ug/L	1	10/24/24 14:15	EPA 6020B (Diss)	FILT1			
Lead	ND		0.200	ug/L	1	10/24/24 14:15	EPA 6020B (Diss)	FILT1			
Mercury	ND		0.0800	ug/L	1	10/24/24 14:15	EPA 6020B (Diss)	FILT1			
Nickel	3.56		2.00	ug/L	1	10/24/24 14:15	EPA 6020B (Diss)	FILT1			
Selenium	ND		1.00	ug/L	1	10/24/24 14:15	EPA 6020B (Diss)	FILT1			
Silver	ND		0.200	ug/L	1	10/24/24 14:15	EPA 6020B (Diss)	FILT1			
Thallium	ND		0.200	ug/L	1	10/24/24 14:15	EPA 6020B (Diss)	FILT1			
Zinc	32.6		4.00	ug/L	1	10/24/24 14:15	EPA 6020B (Diss)	FILT1			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 8 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

ANALYTICAL SAMPLE RESULTS

			Lab Filtration	on				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-DS8Pre-20241016 (A4J1445-01)				Matrix: W	ater	Batch:		
Lab Filtration (prep only)	PREP			N/A	1	10/17/24 09:45	NA	
BH-DS8Post-20241016 (A4J1445-02)				Matrix: W	ater	Batch:	24J0693	
Lab Filtration (prep only)	PREP			N/A	1	10/17/24 09:46	NA	
BH-DS14Pre-20241016 (A4J1445-03)				Matrix: W	ater	Batch:	24J0693	
Lab Filtration (prep only)	PREP			N/A	1	10/17/24 09:46	NA	
BH-DS14Post-20241016 (A4J1445-04)				Matrix: W	ater	Batch:	24J0693	
Lab Filtration (prep only)	PREP			N/A	1	10/17/24 09:47	NA	
BH-DS24Pre-20241016 (A4J1445-05)				Matrix: W	ater	Batch:	24J0693	
Lab Filtration (prep only)	PREP			N/A	1	10/17/24 09:48	NA	
BH-DS24Post-20241016 (A4J1445-06)				Matrix: W	ater	Batch:	24J0693	
Lab Filtration (prep only)	PREP			N/A	1	10/17/24 09:48	NA	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 9 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
atch 24J1054 - EPA 3015A							Wa	ter				
lank (24J1054-BLK1)			Prepared	: 10/29/24	08:55 Anal	yzed: 10/29/	/24 17:52					
EPA 6020B												
Antimony	ND		1.00	ug/L	1							
Arsenic	ND		1.00	ug/L	1							
Beryllium	ND		0.200	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		2.00	ug/L	1							
Copper	ND		2.00	ug/L	1							В
Lead	ND		0.200	ug/L	1							
Mercury	ND		0.0800	ug/L	1							
Nickel	ND		2.00	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
Thallium	ND		0.200	ug/L	1							
Zinc	ND		4.00	ug/L	1							
CS (24J1054-BS1) <u>EPA 6020B</u>			Prepared	: 10/29/24	Jo:33 Aliai	yzed: 10/29/	/24 17:38					
Antimony	26.9		1.00	ug/L	1	27.8		97	80-120%			
Arsenic	54.2		1.00	ug/L	1	55.6		98	80-120%			
Beryllium	27.8		0.200	ug/L	1	27.8		100	80-120%			
Cadmium	55.1		0.200	ug/L	1	55.6		99	80-120%			
Chromium	53.7		2.00	ug/L	1	55.6		97	80-120%			
Copper	56.0		2.00	ug/L	1	55.6		101	80-120%			В
Lead	56.7		0.200	ug/L	1	55.6		102	80-120%			
Mercury	1.09		0.0800	ug/L	1	1.11		98	80-120%			
Nickel	56.2		2.00	ug/L	1	55.6		101	80-120%			
Selenium	27.9		1.00	ug/L	1	27.8		100	80-120%			
Silver	28.5		0.200	ug/L	1	27.8		103	80-120%			
Thallium	27.9		0.200	ug/L	1	27.8		100	80-120%			
Zinc	55.7		4.00	ug/L	1	55.6		100	80-120%			
			Prepared	. 10/29/24	08:55 Anal	vzed: 10/29/	/24 18:08					
ouplicate (24J1054-DUP1)			rrepared	. 10/2//24	00.55 111141	J 200. 10/2/						
Ouplicate (24J1054-DUP1) QC Source Sample: Non-SDG (A	4J1393-10)		Trepared	. 10/2//24	00.33 Tillus	J200. 10/29/	2.10.00					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 6020	B (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J1054 - EPA 3015A							Wa	ter				
Duplicate (24J1054-DUP1)			Prepared	: 10/29/24	08:55 Ana	lyzed: 10/29	/24 18:08					
QC Source Sample: Non-SDG (A	4J1393-10)											
Arsenic	2.28		1.00	ug/L	1		2.30			0.9	20%	
Beryllium	ND		0.200	ug/L	1		ND				20%	
Cadmium	ND		0.200	ug/L	1		ND				20%	
Chromium	ND		2.00	ug/L	1		ND				20%	
Copper	ND		2.00	ug/L	1		ND				20%	
Lead	ND		0.200	ug/L	1		0.168			***	20%	
Mercury	ND		0.0800	ug/L	1		ND				20%	
Nickel	2.10		2.00	ug/L	1		2.52			18	20%	
Selenium	ND		1.00	ug/L	1		ND				20%	
Silver	ND		0.200	ug/L	1		ND				20%	
Thallium	ND		0.200	ug/L	1		ND				20%	
Zinc	ND		4.00	ug/L	1		2.38			***	20%	
Matrix Spike (24J1054-MS1)			Prepared	: 10/29/24	08:55 Ana	lyzed: 10/29	/24 18:19					
QC Source Sample: Non-SDG (A	.4J1393-11)											
EPA 6020B												
Antimony	28.4		1.00	ug/L	1	27.8	ND	102	75-125%			
Arsenic	58.4		1.00	ug/L	1	55.6	2.37	101	75-125%			
Beryllium	29.5		0.200	ug/L	1	27.8	ND	106	75-125%			
Cadmium	57.5		0.200	ug/L	1	55.6	ND	104	75-125%			
Chromium	55.0		2.00	ug/L	1	55.6	ND	99	75-125%			
Copper	54.6		2.00	ug/L	1	55.6	1.13	96	75-125%			В-
Lead	54.5		0.200	ug/L	1	55.6	ND	98	75-125%			
Mercury	1.11		0.0800	ug/L	1	1.11	ND	100	75-125%			
Nickel	55.5		2.00	ug/L	1	55.6	1.44	97	75-125%			
Selenium	28.8		1.00	ug/L	1	27.8	ND	104	75-125%			
Silver	28.6		0.200	ug/L	1	27.8	ND	103	75-125%			
Thallium	26.6		0.200	ug/L	1	27.8	ND	96	75-125%			
Zinc	55.0		4.00	ug/L	1	55.6	ND	99	75-125%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J1202 - EPA 3015A							Wa	ter				
Blank (24J1202-BLK1)			Prepared	: 10/31/24	09:34 Ana	lyzed: 11/01	/24 02:54					
EPA 6020B Copper	ND		2.00	ug/L	1							
LCS (24J1202-BS1)			Prepared	: 10/31/24	09:34 Ana	lyzed: 11/01	/24 02:59					
EPA 6020B Copper	53.4		2.00	ug/L	1	55.6		96	80-120%			
Duplicate (24J1202-DUP1)			Prepared	: 10/31/24	09:34 Ana	lyzed: 11/01	/24 03:21					
QC Source Sample: Non-SDG (A	4J1505-05)											
Copper	ND		2.00	ug/L	1		1.19			***	20%	
Matrix Spike (24J1202-MS1)			Prepared	: 10/31/24	09:34 Ana	lyzed: 11/01	/24 03:32					
QC Source Sample: Non-SDG (A	4J1505-06)											
EPA 6020B Copper	54.0		2.00	ug/L	1	55.6	2.83	92	75-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 12 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	Metals	by EPA 6	020B (ICP	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0960 - Matrix Mat	ched Direct I	nject					Wa	iter				
Blank (24J0960-BLK1)			Prepared	: 10/24/24	09:10 Ana	lyzed: 10/24	/24 12:48					
EPA 6020B (Diss)												
Antimony	ND		1.00	ug/L	1							FIL
Arsenic	ND		1.00	ug/L	1							FIL
Beryllium	ND		0.200	ug/L	1							FIL
Cadmium	ND		0.200	ug/L	1							FIL
Chromium	ND		2.00	ug/L	1							FIL
Copper	ND		2.00	ug/L	1							FIL
Lead	ND		0.200	ug/L	1							FIL
Mercury	ND		0.0800	ug/L	1							FIL
Nickel	ND		2.00	ug/L	1							FIL
Selenium	ND		1.00	ug/L	1							FIL
Silver	ND		0.200	ug/L	1							FIL
Thallium	ND		0.200	ug/L	1							FIL
Zinc	ND		4.00	ug/L	1							FIL
LCS (24J0960-BS1)			Prepared	: 10/24/24	09:10 Ana	lyzed: 10/24	/24 13:32					
EPA 6020B (Diss)												
Antimony	26.4		1.00	ug/L	1	27.8		95	80-120%			
Arsenic	52.0		1.00	ug/L	1	55.6		94	80-120%			
Beryllium	26.5		0.200	ug/L	1	27.8		95	80-120%			
Cadmium	53.8		0.200	ug/L	1	55.6		97	80-120%			
Chromium	53.7		2.00	ug/L	1	55.6		97	80-120%			
Copper	54.7		2.00	ug/L	1	55.6		99	80-120%			
Lead	56.1		0.200	ug/L	1	55.6		101	80-120%			
Mercury	1.11		0.0800	ug/L	1	1.11		100	80-120%			
Nickel	53.6		2.00	ug/L	1	55.6		97	80-120%			
Selenium	28.2		1.00	ug/L	1	27.8		101	80-120%			
Silver	28.9		0.200	ug/L	1	27.8		104	80-120%			
Thallium	28.4		0.200	ug/L	1	27.8		102	80-120%			
Zinc	55.3		4.00	ug/L	1	55.6		100	80-120%			

Duplicate (24J0960-DUP1)

Prepared: 10/24/24 09:10 Analyzed: 10/24/24 13:43

QC Source Sample: BH-DS8Pre-20241016 (A4J1445-01)

EPA 6020B (Diss)

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 13 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	Metals	by EPA 60)20B (ICP	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0960 - Matrix Match	ned Direct	Inject					Wa	ter				
Duplicate (24J0960-DUP1)			Prepared	: 10/24/24	09:10 Anal	yzed: 10/24	/24 13:43					
QC Source Sample: BH-DS8Pre-	20241016 (A	4J1445-01)										
Antimony	ND		1.00	ug/L	1		ND				20%	FILT
Arsenic	ND		1.00	ug/L	1		ND				20%	FILT
Beryllium	ND		0.200	ug/L	1		ND				20%	FILT
Cadmium	ND		0.200	ug/L	1		ND				20%	FILT
Chromium	ND		2.00	ug/L	1		ND				20%	FILT
Copper	ND		2.00	ug/L	1		1.88			***	20%	FILT
Lead	ND		0.200	ug/L	1		ND				20%	FILT
Mercury	ND		0.0800	ug/L	1		ND				20%	FILT
Nickel	ND		2.00	ug/L	1		ND				20%	FILT
Selenium	ND		1.00	ug/L	1		ND				20%	FILT
Silver	ND		0.200	ug/L	1		ND				20%	FILT
Thallium	ND		0.200	ug/L	1		ND				20%	FILT
Zinc	70.0		4.00	ug/L	1		69.6			0.6	20%	FILT
Matrix Spike (24J0960-MS1)			Prepared	: 10/24/24	09:10 Anal	yzed: 10/24	/24 13:54					
QC Source Sample: BH-DS8Post	-20241016 (A	A4J1445-02)										
EPA 6020B (Diss)												
Antimony	27.3		1.00	ug/L	1	27.8	ND	98	75-125%			FILT
Arsenic	53.0		1.00	ug/L	1	55.6	ND	95	75-125%			FILT
Beryllium	25.8		0.200	ug/L	1	27.8	ND	93	75-125%			FILT
Cadmium	54.0		0.200	ug/L	1	55.6	ND	97	75-125%			FILT
Chromium	54.1		2.00	ug/L	1	55.6	ND	97	75-125%			FILT
Copper	57.7		2.00	ug/L	1	55.6	2.50	99	75-125%			FILT
Lead	56.4		0.200	ug/L	1	55.6	ND	101	75-125%			FILT
Mercury	1.07		0.0800	ug/L	1	1.11	ND	96	75-125%			FILT
Nickel	55.3		2.00	ug/L	1	55.6	ND	100	75-125%			FILT
Selenium	27.0		1.00	ug/L	1	27.8	ND	97	75-125%			FILT
Silver	28.1		0.200	ug/L	1	27.8	ND	101	75-125%			FILT
Thallium	27.4		0.200	ug/L	1	27.8	ND	99	75-125%			FILT

Apex Laboratories

Philip Nevenberg

60.3

4.00

ug/L

Zinc

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

1

55.6

5.09

99

75-125%

FILT1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

SAMPLE PREPARATION INFORMATION

		Tota	al Metals by EPA 602	OB (ICPMS)			
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J1054							
A4J1445-01	Water	EPA 6020B	10/16/24 13:50	10/29/24 08:55	45mL/50mL	45mL/50mL	1.00
A4J1445-02	Water	EPA 6020B	10/16/24 13:55	10/29/24 08:55	45mL/50mL	45mL/50mL	1.00
A4J1445-03	Water	EPA 6020B	10/16/24 14:00	10/29/24 08:55	45mL/50mL	45mL/50mL	1.00
A4J1445-04	Water	EPA 6020B	10/16/24 14:05	10/29/24 08:55	45mL/50mL	45mL/50mL	1.00
A4J1445-05	Water	EPA 6020B	10/16/24 14:15	10/29/24 08:55	45mL/50mL	45mL/50mL	1.00
A4J1445-06	Water	EPA 6020B	10/16/24 14:20	10/29/24 08:55	45mL/50mL	45mL/50mL	1.00
Batch: 24J1202							
A4J1445-01RE1	Water	EPA 6020B	10/16/24 13:50	10/31/24 09:34	45mL/50mL	45mL/50mL	1.00
A4J1445-02RE1	Water	EPA 6020B	10/16/24 13:55	10/31/24 09:34	45mL/50mL	45mL/50mL	1.00

	Dissolv	ed Metals by EPA 6	020B (ICPMS)			
d Direct Inject				Sample	Default	RL Prep
Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Water	EPA 6020B (Diss)	10/16/24 13:50	10/24/24 09:10	45 mL/50 mL	45mL/50mL	1.00
Water	EPA 6020B (Diss)	10/16/24 13:55	10/24/24 09:10	45 mL/50 mL	45 mL/50 mL	1.00
Water	EPA 6020B (Diss)	10/16/24 14:00	10/24/24 09:10	45 mL/50 mL	45 mL/50 mL	1.00
Water	EPA 6020B (Diss)	10/16/24 14:05	10/24/24 09:10	45 mL/50 mL	45 mL/50 mL	1.00
Water	EPA 6020B (Diss)	10/16/24 14:15	10/24/24 09:10	45 mL/50 mL	45mL/50mL	1.00
Water	EPA 6020B (Diss)	10/16/24 14:20	10/24/24 09:10	45mL/50mL	45 mL/50 mL	1.00
	Water Water Water Water Water	Matrix Method Water EPA 6020B (Diss)	Matrix Method Sampled Water EPA 6020B (Diss) 10/16/24 13:50 Water EPA 6020B (Diss) 10/16/24 13:55 Water EPA 6020B (Diss) 10/16/24 14:00 Water EPA 6020B (Diss) 10/16/24 14:05 Water EPA 6020B (Diss) 10/16/24 14:15	Matrix Method Sampled Prepared Water EPA 6020B (Diss) 10/16/24 13:50 10/24/24 09:10 Water EPA 6020B (Diss) 10/16/24 13:55 10/24/24 09:10 Water EPA 6020B (Diss) 10/16/24 14:00 10/24/24 09:10 Water EPA 6020B (Diss) 10/16/24 14:05 10/24/24 09:10 Water EPA 6020B (Diss) 10/16/24 14:15 10/24/24 09:10	Matrix Method Sampled Prepared Initial/Final Water EPA 6020B (Diss) 10/16/24 13:50 10/24/24 09:10 45mL/50mL Water EPA 6020B (Diss) 10/16/24 13:55 10/24/24 09:10 45mL/50mL Water EPA 6020B (Diss) 10/16/24 14:00 10/24/24 09:10 45mL/50mL Water EPA 6020B (Diss) 10/16/24 14:05 10/24/24 09:10 45mL/50mL Water EPA 6020B (Diss) 10/16/24 14:15 10/24/24 09:10 45mL/50mL	Matrix Method Sample Default Water EPA 6020B (Diss) 10/16/24 13:50 10/24/24 09:10 45mL/50mL 45mL/50mL Water EPA 6020B (Diss) 10/16/24 13:55 10/24/24 09:10 45mL/50mL 45mL/50mL Water EPA 6020B (Diss) 10/16/24 14:00 10/24/24 09:10 45mL/50mL 45mL/50mL Water EPA 6020B (Diss) 10/16/24 14:05 10/24/24 09:10 45mL/50mL 45mL/50mL Water EPA 6020B (Diss) 10/16/24 14:05 10/24/24 09:10 45mL/50mL 45mL/50mL Water EPA 6020B (Diss) 10/16/24 14:15 10/24/24 09:10 45mL/50mL 45mL/50mL

			Lab Filtration	l			
Prep: Lab Filtration	1				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J0693							
A4J1445-01	Water	NA	10/16/24 13:50	10/17/24 09:45	150mL/150mL		NA
A4J1445-02	Water	NA	10/16/24 13:55	10/17/24 09:46	150mL/150mL		NA
A4J1445-03	Water	NA	10/16/24 14:00	10/17/24 09:46	150mL/150mL		NA
A4J1445-04	Water	NA	10/16/24 14:05	10/17/24 09:47	150mL/150mL		NA
A4J1445-05	Water	NA	10/16/24 14:15	10/17/24 09:48	150mL/150mL		NA
A4J1445-06	Water	NA	10/16/24 14:20	10/17/24 09:48	150mL/150mL		NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 15 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

B-02 Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)

FILT1 Sample was lab filtered and acid preserved prior to analysis. See sample preparation section of report for date and time of filtration.

FILT3 This is a laboratory filtration blank, associated with filtration batch 24J0693. See Prep page of report for associated samples.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 16 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP <u>USA Environment & Infrastructure Inc.</u>

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Validated Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

" " Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 17 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL).

Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level.

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 18 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 19 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1445 - 11 03 24 1416

Company: WSP		Project	Project Mgr. John	JA.	Kniper	L			Projec	Project Name:		Olue Hern	Her	20			Γ	Project #:	Project #: (9685,0793	1763	Task 400	3	0
Address: 158625W 72m3 Mp. H(S) Portland OR 97224	50 Portl	and OR	ath	1 1		Phone:				描	liai]:	John	نْد	(3)	, wS	Email: John, Kuiperle WSP. com		PO #					
Sampled by: 10 AMMP (MEM	Z										n T		140	Ž	LYS.	ANALYSIS REQUEST							
Site Location:											1si,					CCFb k' bp' cq'		po					
State OR				EEES				\$20						(8)		, Be, Mo, Ni, T, Zn T, Zn		1/45 <u>£</u>					
County Clack				MATN				A WO					ticides	letals		19, Bs (0, Ci (Mn, N 8, Tl, 11, Si (DIS)		'O ¥				əįd	evido.
SAMPLE ID	DATE	HMIT	XIATAM	# OŁ COI	HALMN	HATWN	TH 0978	8260 RB	IAH 0328	OA 0978	mas ovas	8087 PC	8081 Pes	KCKY N	Priority h	AL, SB, A Ca, Cr, C Hg, Mg, Se, Ag, N TOTAL	LCLP M	[ptc]				mas bloH	Frozen Ar
BH_DS8 Pre_20241016	91/01	1350	3	h											×			×		-			
BH_138Post_20241016		355			-					\vdash					7			>					
8H_DS14 Pre_20241016		(40)							-	-					7			×					
BH_DS14Post_20241016		1405			\vdash	-									У.			>					
84_DS24Pre_202+1016		1415													*			>					
BH_DS24POST_20241016	\rightarrow	1420	->	7											×			×					
					\forall	+												\perp		-		\top	l
	+				+		_				-				\top					-		1	
	+				+	+	-		+-	+-	1	1_			-			-		-		1	
Standard 7	Standard Turn Around Time (TAT) = 10 Business Days	Time (TA1)=10B	usiness I	ays	$\mid \mid$]	1		SPECIAL INSTRUCTIONS:		E C		[، إ	1	1	
	1 Day		2 Day		3 Day	Ą					to)	N. N.	2	350	Total and classived promity follutant (13) Metals.	121	18 P6	/ utant ((S)	netal.	۲,	
TAT Requested (circle)	5 Day		Standard	(P	Other:	Ľ					000	ise	100	7	7/4	please lab filtor for dissi	dis	٠,٠					
HVS	PLES ARE H	ELD FOR	DAYS							$\overline{}$	160	EM	A.Y	de	Mile	Aso email daniel. shall@usp.com	23	o.com					
UISHED BY:	RECEIVED BY:		RECE	VED BY						2	RELINQUISHED BY:	UISHE	D BY:		'		Γ	RECEIVED BY:	D BY:				1
ignature:	(0/16	2	Quant.	\mathcal{L}	V)	16/16/DL	12	1	Sign	nature:				_	Date:		Signature:		Date:			
JOUNNE CLEM	1 for 5	1.	A Z	Miced Name:		<u> </u>	Tine	5	38		Printed Name;	ime:			-	Time:		Printed Name	DE	Time:			
Company:	٠,٠		Compa		,	\				8	Company:							Соптрапу:					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 20 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID:

A4J1445 - 11 03 24 1416

	APEX LABS COOLER RECEIPT FORM
Client: WSP	Element WO#: A4 J1 UUS
Project/Project #: \$\bullet	e Heron Gloss 0793 Task 400
Delivery Info:	
Date/time received: \O	16/14 @ 1605 By: APW
Delivered by: ApexCli	ent_ESSFedExUPSRadioMorganSDSEvergreenOther
From USDA Regulated (
Cooler Inspection Da	te/time inspected: 10/16/14@ 1605 By: #
Chain of Custody include	od? Yes X No
Signed/dated by client?	Yes No No
Contains USDA Reg. So	ils? Yes No Unsure (email RegSoils)
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	5.0
Custody seals? (Y/N)	N
Received on ice? (Y/N)	
Temp. blanks? (Y/N)	N
Ice type: (Gel/Real/Other	Real
Condition (In/Out):	
Green dots applied to out Out of temperature sampl Sample Inspection: Dat	of temperature samples? Yes/No es form initiated? Yes/No By:
An samples intact? Tes	V No Comments:
Bottle labels/COCs agree	? YesNo Comments:
	*
-	cies form initiated? Yes No
Containers/volumes recei	ved appropriate for analysis? Yes No Comments:
Do VOA vials have visib	le headspace? Yes No NA
Comments	
Water samples: pH check	ed: Yes No NA pH appropriate? Yes No NA pH ID: ALTU7 L
	71
Labeled by:	Witness: Cooler Inspected by:
- /	Form Y-003 R-02

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Tuesday, November 5, 2024

John Kuiper

WSP USA Environment & Infrastructure Inc.
15862 SW 72nd Ave. Suite 150

Portland, OR 97224

RE: A4J1568 - Blue Heron - G685.0793 Task 400

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4J1568, which was received by the laboratory on 10/21/2024 at 5:17:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Cooler #1 4.5 degC

Cooler #2 5.5 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

te 150 Project Num

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Blue Heron

Project:

Report ID: A4J1568 - 11 05 24 1631

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INF	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH_TRH_PreGab_20241021	A4J1568-01	Water	10/21/24 13:45	10/21/24 17:17
BH_TRH_PostGab_20241021	A4J1568-02	Water	10/21/24 14:10	10/21/24 17:17
BH_TR1_PreGab_20241021	A4J1568-03	Water	10/21/24 15:00	10/21/24 17:17
BH_TR1_PostGab_20241021	A4J1568-04	Water	10/21/24 15:20	10/21/24 17:17

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 2 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

ANALYTICAL SAMPLE RESULTS

	Hydro	ocarbon Identifi	cation So	reen by NWTP	H-HCID			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
		Lillit	Lillit					Notes
BH_TRH_PreGab_20241021 (A4J1568-	-01)			Matrix: Wate	r	Batch:	24J0927	
Gasoline Range Organics	ND		0.0962	mg/L	1	10/23/24 19:33	NWTPH-HCID	
Diesel Range Organics	ND		0.240	mg/L	1	10/23/24 19:33	NWTPH-HCID	
Oil Range Organics	ND		0.240	mg/L	1	10/23/24 19:33	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	: 78 %	Limits: 50-150 %	1	10/23/24 19:33	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			44 %	10-120 %	1	10/23/24 19:33	NWTPH-HCID	
BH_TRH_PostGab_20241021 (A4J156	8-02)			Matrix: Wate	er	Batch:	24J0927	
Gasoline Range Organics	ND		0.0952	mg/L	1	10/23/24 19:56	NWTPH-HCID	
Diesel Range Organics	ND		0.238	mg/L	1	10/23/24 19:56	NWTPH-HCID	
Oil Range Organics	ND		0.238	mg/L	1	10/23/24 19:56	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	: 80 %	Limits: 50-150 %	1	10/23/24 19:56	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			46 %	10-120 %	1	10/23/24 19:56	NWTPH-HCID	
BH_TR1_PreGab_20241021 (A4J1568-	03)			Matrix: Wate	er	Batch:	24J0927	
Gasoline Range Organics	ND		0.0952	mg/L	1	10/23/24 20:43	NWTPH-HCID	
Diesel Range Organics	ND		0.238	mg/L	1	10/23/24 20:43	NWTPH-HCID	
Oil Range Organics	DET		0.238	mg/L	1	10/23/24 20:43	NWTPH-HCID	F-03
Surrogate: o-Terphenyl (Surr)		Recovery	: 84 %	Limits: 50-150 %	1	10/23/24 20:43	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			43 %	10-120 %	1	10/23/24 20:43	NWTPH-HCID	
BH_TR1_PostGab_20241021 (A4J1568	3-04)			Matrix: Wate	er	Batch:	24J0927	
Gasoline Range Organics	ND		0.0952	mg/L	1	10/23/24 20:20	NWTPH-HCID	
Diesel Range Organics	ND		0.238	mg/L	1	10/23/24 20:20	NWTPH-HCID	
Oil Range Organics	ND		0.238	mg/L	1	10/23/24 20:20	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	: 83 %	Limits: 50-150 %	1	10/23/24 20:20	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			45 %	10-120 %	1	10/23/24 20:20	NWTPH-HCID	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

ANALYTICAL SAMPLE RESULTS

Diesel	and/or Oil	Hydrocarbon	s by NWTP	H-Dx with Acid	/Silica G	el Cleanup		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH_TR1_PreGab_20241021 (A4J1568-03)			Matrix: Wate	ər	Batch:	24K0042	
Diesel	ND		0.190	mg/L	1	11/01/24 21:12	NWTPH-Dx/SG	
Oil	7.72		0.381	mg/L	1	11/01/24 21:12	NWTPH-Dx/SG	F-03
Surrogate: o-Terphenyl (Surr)		Reco	very: 95 %	Limits: 50-150 %	6 I	11/01/24 21:12	NWTPH-Dx/SG	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 4 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

ANALYTICAL SAMPLE RESULTS

		Polychlorinate	ed Bipheny	ls by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH_TRH_PreGab_20241021 (A4J1568	-01)			Matrix: Wate	ər	Batch:	24J1191	C-07
Aroclor 1016	ND		0.0943	ug/L	1	10/31/24 15:42	EPA 8082A	
Aroclor 1221	ND		0.0943	ug/L	1	10/31/24 15:42	EPA 8082A	
Aroclor 1232	ND		0.0943	ug/L	1	10/31/24 15:42	EPA 8082A	
Aroclor 1242	ND		0.0943	ug/L	1	10/31/24 15:42	EPA 8082A	
Aroclor 1248	ND		0.0943	ug/L	1	10/31/24 15:42	EPA 8082A	
Aroclor 1254	ND		0.0943	ug/L	1	10/31/24 15:42	EPA 8082A	
Aroclor 1260	ND		0.0943	ug/L	1	10/31/24 15:42	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 88 %	Limits: 40-135 %	5 1	10/31/24 15:42	EPA 8082A	
BH_TRH_PostGab_20241021 (A4J156	8-02)			Matrix: Wate	er	Batch:	24J1191	C-07
Aroclor 1016	ND		0.0952	ug/L	1	10/31/24 16:00	EPA 8082A	
Aroclor 1221	ND		0.0952	ug/L	1	10/31/24 16:00	EPA 8082A	
Aroclor 1232	ND		0.0952	ug/L	1	10/31/24 16:00	EPA 8082A	
Aroclor 1242	ND		0.0952	ug/L	1	10/31/24 16:00	EPA 8082A	
Aroclor 1248	ND		0.0952	ug/L	1	10/31/24 16:00	EPA 8082A	
Aroclor 1254	ND		0.0952	ug/L	1	10/31/24 16:00	EPA 8082A	
Aroclor 1260	ND		0.0952	ug/L	1	10/31/24 16:00	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 75 %	Limits: 40-135 %	5 1	10/31/24 16:00	EPA 8082A	
BH_TR1_PreGab_20241021 (A4J1568	-03)			Matrix: Wate	er	Batch:	24J1191	C-07
Aroclor 1016	ND		0.0952	ug/L	1	10/31/24 16:18	EPA 8082A	
Aroclor 1221	ND		0.0952	ug/L	1	10/31/24 16:18	EPA 8082A	
Aroclor 1232	ND		0.0952	ug/L	1	10/31/24 16:18	EPA 8082A	
Aroclor 1242	0.146		0.0952	ug/L	1	10/31/24 16:18	EPA 8082A	P-12
Aroclor 1248	ND		0.0952	ug/L	1	10/31/24 16:18	EPA 8082A	
Aroclor 1254	0.272		0.0952	ug/L	1	10/31/24 16:18	EPA 8082A	P-12
Aroclor 1260	ND		0.0952	ug/L	1	10/31/24 16:18	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 61 %	Limits: 40-135 %	5 1	10/31/24 16:18	EPA 8082A	
BH_TR1_PostGab_20241021 (A4J156	8-04)			Matrix: Wate	er	Batch:	24J1191	C-07
Aroclor 1016	ND		0.0957	ug/L	1	10/31/24 16:53	EPA 8082A	
Aroclor 1221	ND		0.0957	ug/L	1	10/31/24 16:53	EPA 8082A	
Aroclor 1232	ND		0.0957	ug/L	1	10/31/24 16:53	EPA 8082A	
Aroclor 1242	ND		0.0957	ug/L	1	10/31/24 16:53	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

ANALYTICAL SAMPLE RESULTS

	Polychlorinated Biphenyls by EPA 8082A											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
BH_TR1_PostGab_20241021 (A4J156	68-04)			Matrix: Wate	x: Water Batch: 24J1191		C-07					
Aroclor 1248	ND		0.0957	ug/L	1	10/31/24 16:53	EPA 8082A					
Aroclor 1254	ND		0.0957	ug/L	1	10/31/24 16:53	EPA 8082A					
Aroclor 1260	ND		0.0957	ug/L	1	10/31/24 16:53	EPA 8082A					
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 89 %	Limits: 40-135 %	5 1	10/31/24 16:53	EPA 8082A					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 6 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH_TRH_PreGab_20241021 (A4J1568	3-01)			Matrix: Wate	er	Batch:	24J0849	
Acenaphthene	ND		0.0323	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Acenaphthylene	ND		0.0323	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Anthracene	ND		0.0323	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0162	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0162	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0162	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0162	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0323	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Chrysene	ND		0.0162	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0162	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Fluoranthene	ND		0.0323	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Fluorene	ND		0.0323	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0162	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
1-Methylnaphthalene	ND		0.0647	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0647	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Naphthalene	ND		0.0647	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Phenanthrene	ND		0.0647	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Pyrene	ND		0.0323	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Dibenzofuran	ND		0.0323	ug/L	1	10/22/24 14:21	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Reco	very: 94 %	Limits: 78-134 %	1	10/22/24 14:21	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			116 %	80-132 %	1	10/22/24 14:21	EPA 8270E LVI	
BH_TRH_PostGab_20241021 (A4J156	8-02)			Matrix: Wate	er	Batch:	24J0849	
Acenaphthene	ND		0.0322	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
Acenaphthylene	ND		0.0322	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
Anthracene	ND		0.0322	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0161	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0161	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0161	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0161	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0322	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
Chrysene	ND		0.0161	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0161	ug/L	1	10/22/24 14:54	EPA 8270E LVI	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 7 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
BH_TRH_PostGab_20241021 (A4J156	88-02)			Matrix: Wate	r	Batch:		
Fluoranthene	ND		0.0322	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
Fluorene	ND		0.0322	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0161	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
l-Methylnaphthalene	ND		0.0643	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0643	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
Naphthalene	ND		0.0643	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
Phenanthrene	ND		0.0643	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
Pyrene	ND		0.0322	ug/L	1	10/22/24 14:54	EPA 8270E LVI	
Dibenzofuran	ND		0.0322	ug/L	1	10/22/24 14:54	EPA 8270E LVI	_
Surrogate: Acenaphthylene-d8 (Surr)		Recov	very: 91 %	Limits: 78-134 %	1	10/22/24 14:54	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			116 %	80-132 %	I	10/22/24 14:54	EPA 8270E LVI	
BH_TR1_PreGab_20241021 (A4J1568	-03)			Matrix: Wate	r	Batch:	24J0849	
Acenaphthene	ND		0.0326	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
Acenaphthylene	ND		0.0326	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
Anthracene	0.0489		0.0326	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
Benz(a)anthracene	0.0669		0.0163	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
Benzo(a)pyrene	0.0881		0.0163	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
Benzo(b)fluoranthene	0.107		0.0163	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
Benzo(k)fluoranthene	0.0395		0.0163	ug/L	1	10/22/24 15:26	EPA 8270E LVI	M-05
Benzo(g,h,i)perylene	ND		0.0611	ug/L	1	10/22/24 15:26	EPA 8270E LVI	R-02
Chrysene	0.114		0.0163	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
Dibenz(a,h)anthracene	0.0167		0.0163	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
Fluoranthene	0.148		0.0326	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
Fluorene	ND		0.0326	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	0.0461		0.0163	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
l-Methylnaphthalene	ND		0.0652	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0652	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
Naphthalene	ND		0.0652	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
Phenanthrene	0.102		0.0652	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
Pyrene	0.196		0.0326	ug/L	1	10/22/24 15:26	EPA 8270E LVI	
Jiene								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherz

Page 8 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH_TR1_PreGab_20241021 (A4J1568	3-03)			Matrix: Wate	er	Batch:		
Surrogate: Benzo(a)pyrene-d12 (Surr)		Recov	ery: 119 %	Limits: 80-132 %	1	10/22/24 15:26	EPA 8270E LVI	
BH_TR1_PostGab_20241021 (A4J156	68-04)			Matrix: Wate	er	Batch:	24J0849	
Acenaphthene	ND		0.0322	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Acenaphthylene	ND		0.0322	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Anthracene	ND		0.0322	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0161	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0161	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0161	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0161	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0322	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Chrysene	ND		0.0161	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0161	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Fluoranthene	ND		0.0322	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Fluorene	ND		0.0322	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0161	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
1-Methylnaphthalene	ND		0.0644	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0644	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Naphthalene	ND		0.0644	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Phenanthrene	ND		0.0644	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Pyrene	ND		0.0322	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Dibenzofuran	ND		0.0322	ug/L	1	10/22/24 15:59	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Reco	very: 92 %	Limits: 78-134 %	5 1	10/22/24 15:59	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			117 %	80-132 %	1	10/22/24 15:59	EPA 8270E LVI	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 9 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS	5)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH_TRH_PreGab_20241021 (A4J1568-01)				Matrix: W	ater			
Batch: 24J1202								
Antimony	ND		1.00	ug/L	1	11/01/24 04:09	EPA 6020B	
Arsenic	1.34		1.00	ug/L	1	11/01/24 04:09	EPA 6020B	
Beryllium	ND		0.200	ug/L	1	11/01/24 04:09	EPA 6020B	
Cadmium	0.223		0.200	ug/L	1	11/01/24 04:09	EPA 6020B	
Chromium	ND		2.00	ug/L	1	11/01/24 04:09	EPA 6020B	
Copper	112		2.00	ug/L	1	11/01/24 04:09	EPA 6020B	
Lead	7.32		0.200	ug/L	1	11/01/24 04:09	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	11/01/24 04:09	EPA 6020B	
Nickel	5.84		2.00	ug/L	1	11/01/24 04:09	EPA 6020B	
Selenium	ND		1.00	ug/L	1	11/01/24 04:09	EPA 6020B	
Silver	ND		0.200	ug/L	1	11/01/24 04:09	EPA 6020B	
Гhallium	ND		0.200	ug/L	1	11/01/24 04:09	EPA 6020B	
Zinc	53.8		4.00	ug/L	1	11/01/24 04:09	EPA 6020B	
BH_TRH_PostGab_20241021 (A4J1568-02)			Matrix: W	ater			
Batch: 24J1202								
Antimony	ND		1.00	ug/L	1	11/01/24 04:14	EPA 6020B	
Arsenic	1.25		1.00	ug/L	1	11/01/24 04:14	EPA 6020B	
Beryllium	ND		0.200	ug/L	1	11/01/24 04:14	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	11/01/24 04:14	EPA 6020B	
Chromium	ND		2.00	ug/L	1	11/01/24 04:14	EPA 6020B	
Copper	119		2.00	ug/L	1	11/01/24 04:14	EPA 6020B	
Lead	7.00		0.200	ug/L	1	11/01/24 04:14	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	11/01/24 04:14	EPA 6020B	
Nickel	6.34		2.00	ug/L	1	11/01/24 04:14	EPA 6020B	
Selenium	ND		1.00	ug/L	1	11/01/24 04:14	EPA 6020B	
Silver	ND		0.200	ug/L	1	11/01/24 04:14	EPA 6020B	
Гhallium	ND		0.200	ug/L	1	11/01/24 04:14	EPA 6020B	
Zinc	60.8		4.00	ug/L	1	11/01/24 04:14	EPA 6020B	
BH_TR1_PreGab_20241021 (A4J1568-03)				Matrix: W	ater			
Batch: 24J1202								
Antimony	2.90		1.00	ug/L	1	11/01/24 04:20	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Namberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

ANALYTICAL SAMPLE RESULTS

	Total Metals by EPA 6020B (ICPMS)												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
BH_TR1_PreGab_20241021 (A4J1568-03)	03) Matrix: Water												
Arsenic	2.45		1.00	ug/L	1	11/01/24 04:20	EPA 6020B						
Beryllium	ND		0.200	ug/L	1	11/01/24 04:20	EPA 6020B						
Cadmium	0.211		0.200	ug/L	1	11/01/24 04:20	EPA 6020B						
Chromium	3.19		2.00	ug/L	1	11/01/24 04:20	EPA 6020B						
Copper	29.4		2.00	ug/L	1	11/01/24 04:20	EPA 6020B						
Lead	9.26		0.200	ug/L	1	11/01/24 04:20	EPA 6020B						
Mercury	ND		0.0800	ug/L	1	11/01/24 04:20	EPA 6020B						
Nickel	4.68		2.00	ug/L	1	11/01/24 04:20	EPA 6020B						
Selenium	ND		1.00	ug/L	1	11/01/24 04:20	EPA 6020B						
Silver	ND		0.200	ug/L	1	11/01/24 04:20	EPA 6020B						
Thallium	ND		0.200	ug/L	1	11/01/24 04:20	EPA 6020B						
Zinc	168		4.00	ug/L	1	11/01/24 04:20	EPA 6020B						
BH_TR1_PostGab_20241021 (A4J1568-04	l)			Matrix: W	ater								
Batch: 24J1202													
Antimony	2.50		1.00	ug/L	1	11/01/24 04:25	EPA 6020B						
Arsenic	1.51		1.00	ug/L	1	11/01/24 04:25	EPA 6020B						
Beryllium	ND		0.200	ug/L	1	11/01/24 04:25	EPA 6020B						
Cadmium	ND		0.200	ug/L	1	11/01/24 04:25	EPA 6020B						
Chromium	ND		2.00	ug/L	1	11/01/24 04:25	EPA 6020B						
Copper	11.7		2.00	ug/L	1	11/01/24 04:25	EPA 6020B						
Lead	0.573		0.200	ug/L	1	11/01/24 04:25	EPA 6020B						
Mercury	ND		0.0800	ug/L	1	11/01/24 04:25	EPA 6020B						
Nickel	2.01		2.00	ug/L	1	11/01/24 04:25	EPA 6020B						
Selenium	ND		1.00	ug/L	1	11/01/24 04:25	EPA 6020B						
Silver	ND		0.200	ug/L	1	11/01/24 04:25	EPA 6020B						
Thallium	ND		0.200	ug/L	1	11/01/24 04:25	EPA 6020B						
Zinc	59.7		4.00	ug/L	1	11/01/24 04:25	EPA 6020B						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 11 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

ANALYTICAL SAMPLE RESULTS

		Dissolved M	etals by EPA	6020B (ICP	MS)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH_TRH_PreGab_20241021 (A4J1568-01)				Matrix: W	ater			
Batch: 24J1227								
Antimony	ND		1.00	ug/L	1	11/01/24 04:57	EPA 6020B (Diss)	FILT1
Arsenic	1.04		1.00	ug/L	1	11/01/24 04:57	EPA 6020B (Diss)	FILT1
Beryllium	ND		0.200	ug/L	1	11/01/24 04:57	EPA 6020B (Diss)	FILT1
Cadmium	0.204		0.200	ug/L	1	11/01/24 04:57	EPA 6020B (Diss)	FILT1
Chromium	ND		2.00	ug/L	1	11/01/24 04:57	EPA 6020B (Diss)	FILT1
Copper	124		2.00	ug/L	1	11/01/24 04:57	EPA 6020B (Diss)	FILT1
Lead	3.84		0.200	ug/L	1	11/01/24 04:57	EPA 6020B (Diss)	FILT1
Mercury	ND		0.0800	ug/L	1	11/01/24 04:57	EPA 6020B (Diss)	FILT1
Nickel	5.55		2.00	ug/L	1	11/01/24 04:57	EPA 6020B (Diss)	FILT1
Selenium	ND		1.00	ug/L	1	11/01/24 04:57	EPA 6020B (Diss)	FILT1
Silver	ND		0.200	ug/L	1	11/01/24 04:57	EPA 6020B (Diss)	FILT1
Thallium	ND		0.200	ug/L	1	11/01/24 04:57	EPA 6020B (Diss)	FILT1
Zinc	49.0		4.00	ug/L	1	11/01/24 04:57	EPA 6020B (Diss)	FILT1
BH_TRH_PostGab_20241021 (A4J1568-02)			Matrix: W	ater			
Batch: 24J1227								
Antimony	ND		1.00	ug/L	1	11/01/24 05:03	EPA 6020B (Diss)	FILT1
Arsenic	ND		1.00	ug/L	1	11/01/24 05:03	EPA 6020B (Diss)	FILT1
Beryllium	ND		0.200	ug/L	1	11/01/24 05:03	EPA 6020B (Diss)	FILT1
Cadmium	ND		0.200	ug/L	1	11/01/24 05:03	EPA 6020B (Diss)	FILT1
Chromium	ND		2.00	ug/L	1	11/01/24 05:03	EPA 6020B (Diss)	FILT1
Copper	113		2.00	ug/L	1	11/01/24 05:03	EPA 6020B (Diss)	FILT1
Lead	2.40		0.200	ug/L	1	11/01/24 05:03	EPA 6020B (Diss)	FILT1
Mercury	ND		0.0800	ug/L	1	11/01/24 05:03	EPA 6020B (Diss)	FILT1
Nickel	6.15		2.00	ug/L	1	11/01/24 05:03	EPA 6020B (Diss)	FILT1
Selenium	ND		1.00	ug/L	1	11/01/24 05:03	EPA 6020B (Diss)	FILT1
Silver	ND		0.200	ug/L	1	11/01/24 05:03	EPA 6020B (Diss)	FILT1
Thallium	ND		0.200	ug/L	1	11/01/24 05:03	EPA 6020B (Diss)	FILT1
Zinc	52.2		4.00	ug/L	1	11/01/24 05:03	EPA 6020B (Diss)	FILT1
BH_TR1_PreGab_20241021 (A4J1568-03)				Matrix: W	ater			
Batch: 24J1227								
Antimony	2.68		1.00	ug/L	1	11/01/24 05:08	EPA 6020B (Diss)	FILT1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Marenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

ANALYTICAL SAMPLE RESULTS

Dissolved Metals by EPA 6020B (ICPMS)												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
BH_TR1_PreGab_20241021 (A4J1568-03)				Matrix: W	ater							
Arsenic	1.73		1.00	ug/L	1	11/01/24 05:08	EPA 6020B (Diss)	FILT1				
Beryllium	ND		0.200	ug/L	1	11/01/24 05:08	EPA 6020B (Diss)	FILT1				
Cadmium	ND		0.200	ug/L	1	11/01/24 05:08	EPA 6020B (Diss)	FILT1				
Chromium	ND		2.00	ug/L	1	11/01/24 05:08	EPA 6020B (Diss)	FILT1				
Copper	9.99		2.00	ug/L	1	11/01/24 05:08	EPA 6020B (Diss)	FILT1				
Lead	ND		0.200	ug/L	1	11/01/24 05:08	EPA 6020B (Diss)	FILT1				
Mercury	ND		0.0800	ug/L	1	11/01/24 05:08	EPA 6020B (Diss)	FILT1				
Nickel	ND		2.00	ug/L	1	11/01/24 05:08	EPA 6020B (Diss)	FILT1				
Selenium	ND		1.00	ug/L	1	11/01/24 05:08	EPA 6020B (Diss)	FILT1				
Silver	ND		0.200	ug/L	1	11/01/24 05:08	EPA 6020B (Diss)	FILT1				
Thallium	ND		0.200	ug/L	1	11/01/24 05:08	EPA 6020B (Diss)	FILT1				
Zinc	42.6		4.00	ug/L	1	11/01/24 05:08	EPA 6020B (Diss)	FILT1				
BH_TR1_PostGab_20241021 (A4J1568-04	.)			Matrix: W	ater							
Batch: 24J1227												
Antimony	2.43		1.00	ug/L	1	11/01/24 05:19	EPA 6020B (Diss)	FILT1				
Arsenic	1.50		1.00	ug/L	1	11/01/24 05:19	EPA 6020B (Diss)	FILT1				
Beryllium	ND		0.200	ug/L	1	11/01/24 05:19	EPA 6020B (Diss)	FILT1				
Cadmium	ND		0.200	ug/L	1	11/01/24 05:19	EPA 6020B (Diss)	FILT1				
Chromium	ND		2.00	ug/L	1	11/01/24 05:19	EPA 6020B (Diss)	FILT1				
Copper	10.6		2.00	ug/L	1	11/01/24 05:19	EPA 6020B (Diss)	FILT1				
Lead	ND		0.200	ug/L	1	11/01/24 05:19	EPA 6020B (Diss)	FILT1				
Mercury	ND		0.0800	ug/L	1	11/01/24 05:19	EPA 6020B (Diss)	FILT1				
Nickel	ND		2.00	ug/L	1	11/01/24 05:19	EPA 6020B (Diss)	FILT1				
Selenium	ND		1.00	ug/L	1	11/01/24 05:19	EPA 6020B (Diss)	FILT1				
Silver	ND		0.200	ug/L	1	11/01/24 05:19	EPA 6020B (Diss)	FILT1				
Thallium	ND		0.200	ug/L	1	11/01/24 05:19	EPA 6020B (Diss)	FILT1				
Zinc	52.4		4.00	ug/L	1	11/01/24 05:19	EPA 6020B (Diss)	FILT1				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 13 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

ANALYTICAL SAMPLE RESULTS

Solid and Moisture Determinations													
Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed								
1)			Matrix: Wa	ater									
6.00		5.00	mg/L	1	10/22/24 10:58	SM 2540 D	TSS						
H_TRH_PostGab_20241021 (A4J1568-02) Matrix: Water													
					-								
6.00		5.00	mg/L	1	10/22/24 10:58	SM 2540 D	TSS						
)			Matrix: Wa	ater									
45.0		5.00	mg/L	1	10/22/24 10:58	SM 2540 D							
BH_TR1_PostGab_20241021 (A4J1568-04)													
ND		5.00	mg/L	1	10/22/24 10:58	SM 2540 D	TSS						
	Result 6.00 02) 6.00 45.0	Result Limit 6.00 92) 6.00 9.) 45.0 44)	Result Limit Limit 6.00 5.00 02) 6.00 5.00 1) 45.0 5.00	Result Limit Limit Units	Result Limit Limit Units Dilution	Result Limit Limit Units Dilution Analyzed	Result Limit Limit Units Dilution Analyzed Method Ref.						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherz

Page 14 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

ANALYTICAL SAMPLE RESULTS

		Lab Filtration	n				
Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
68-01)			Matrix: W	24J0880	FILT1		
PREP			N/A	1	10/22/24 12:34	NA	
BH_TRH_PostGab_20241021 (A4J1568-02)				ater	Batch:	FILT1	
PREP			N/A	1	10/22/24 12:36	NA	
68-03)			Matrix: W	ater	Batch:	24J0880	FILT1
PREP			N/A	1	10/22/24 12:37	NA	
BH_TR1_PostGab_20241021 (A4J1568-04)				ater	Batch:	24J0880	FILT1
PREP			N/A	1	10/22/24 12:39	NA	
	Result 68-01) PREP 68-02) PREP 68-03) PREP	Result Limit 58-01) PREP 568-02) PREP 58-03) PREP	Sample Detection Reporting Limit	Result Limit Limit Units 68-01) Matrix: W PREP N/A 568-02) Matrix: W PREP N/A 68-03) Matrix: W PREP N/A Matrix: W Matrix: W	Sample Result Detection Limit Reporting Limit Units Dilution 68-01) Matrix: Water PREP N/A 1 668-02) Matrix: Water PREP N/A 1 68-03) Matrix: Water PREP N/A 1 Matrix: Water	Sample Result Detection Limit Reporting Limit Units Dilution Date Analyzed 68-01) Matrix: Water Batch: PREP N/A 1 10/22/24 12:34 68-02) Matrix: Water Batch: PREP N/A 1 10/22/24 12:36 68-03) Matrix: Water Batch: PREP N/A 1 10/22/24 12:37 68-04) Matrix: Water Batch:	Sample Result Limit Limit Units Dilution Date Analyzed Method Ref.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherz

Page 15 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: **G685.0793 Task 400**Project Manager: **John Kuiper**

Report ID: A4J1568 - 11 05 24 1631

QUALITY CONTROL (QC) SAMPLE RESULTS

Hydrocarbon Identification Screen by NWTPH-HCID Detection Reporting Spike Source % REC RPD Limits RPD Analyte Result Limit Units Dilution Result % REC Limit Notes Limit Amount Batch 24J0927 - EPA 3510C (Fuels/Acid Ext.) Water Blank (24J0927-BLK1) Prepared: 10/23/24 11:07 Analyzed: 10/23/24 18:23 NWTPH-HCID Gasoline Range Organics ND 0.100 mg/L ND 0.250 Diesel Range Organics mg/L Oil Range Organics ND 0.250 mg/L Surr: o-Terphenyl (Surr) Recovery: 85 % Limits: 50-150 % Dilution: 1x 4-Bromofluorobenzene (Surr) 57% 10-120 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 16 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diese	l and/or Oi	l Hydrocar	bons by	NWTPH-	ox with Ac	id/Silica	Gel Clea	nup			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24K0042 - EPA 3510C (Fuels/Acid	Ext.) w/SG	+Acid				Wa	ter				
Blank (24K0042-BLK1)			Prepared	1: 10/23/24	11:07 Ana	lyzed: 11/01/	/24 20:11					
NWTPH-Dx/SG												
Diesel	ND		0.200	mg/L	1							
Oil	ND		0.400	mg/L	1							
Surr: o-Terphenyl (Surr)		Rece	overy: 90 %	Limits: 50)-150 %	Dilı	ution: 1x					
LCS (24K0042-BS1)			Prepared	1: 10/23/24	11:07 Ana	lyzed: 11/01/	/24 20:31					
NWTPH-Dx/SG												
Diesel	1.00		0.200	mg/L	1	1.25		80	36-132%			
Surr: o-Terphenyl (Surr)		Reco	overy: 93 %	Limits: 50)-150 %	Dilı	ution: 1x					
LCS Dup (24K0042-BSD1)			Prepared	1: 10/23/24	11:07 Ana	lyzed: 11/01/	/24 20:51					Q-1
NWTPH-Dx/SG			<u> </u>				<u> </u>		<u> </u>		<u> </u>	
Diesel	1.02		0.200	mg/L	1	1.25		82	36-132%	2	30%	
Surr: o-Terphenyl (Surr)		Rece	overy: 96 %	Limits: 50	0-150 %	Dilı	ıtion: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 17 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	inated B	iphenyls	by EPA 80)82A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J1191 - EPA 3510C (Neutral pH)					Wa	ter				
Blank (24J1191-BLK1)			Prepared	: 10/31/24	07:07 Anal	lyzed: 10/31	/24 14:49					C-07
EPA 8082A												
Aroclor 1016	ND		0.100	ug/L	1							
Aroclor 1221	ND		0.100	ug/L	1							
Aroclor 1232	ND		0.100	ug/L	1							
Aroclor 1242	ND		0.100	ug/L	1							
Aroclor 1248	ND		0.100	ug/L	1							
Aroclor 1254	ND		0.100	ug/L	1							
Aroclor 1260	ND		0.100	ug/L	1							
Surr: Decachlorobiphenyl (Surr)		Rec	overy: 81 %	Limits: 40	0-135 %	Dilı	ution: 1x					
LCS (24J1191-BS1)			Prepared	: 10/31/24	07:07 Anal	lyzed: 10/31	/24 15:07					C-07
EPA 8082A												
Aroclor 1016	2.16		0.100	ug/L	1	2.50		86	46-129%			
Aroclor 1260	2.25		0.100	ug/L	1	2.50		90	45-134%			
Surr: Decachlorobiphenyl (Surr)		Rec	overy: 84 %	Limits: 40	0-135 %	Dilı	ution: 1x					
LCS Dup (24J1191-BSD1)			Prepared	: 10/31/24	07:07 Anal	lyzed: 10/31	/24 15:24					C-07, Q-19
EPA 8082A												
Aroclor 1016	2.09		0.100	ug/L	1	2.50		83	46-129%	3	30%	
Aroclor 1260	2.22		0.100	ug/L	1	2.50		89	45-134%	1	30%	
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 92 %	Limits: 40	0-135 %	Dilı	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 18 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polya	romatic Hy	drocarbon	s (PAHs)	by EPA	3270E (La	rge Volu	me Injecti	on)			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0849 - EPA 3511 (Bo	ottle Extra	ction)					Wa	ter				
Blank (24J0849-BLK1)			Prepared	: 10/22/24	06:18 Anal	lyzed: 10/22	/24 12:43					
EPA 8270E LVI												
Acenaphthene	ND		0.0320	ug/L	1							
Acenaphthylene	ND		0.0320	ug/L	1							
Anthracene	ND		0.0320	ug/L	1							
Benz(a)anthracene	ND		0.0160	ug/L	1							
Benzo(a)pyrene	ND		0.0160	ug/L	1							
Benzo(b)fluoranthene	ND		0.0160	ug/L	1							
Benzo(k)fluoranthene	ND		0.0160	ug/L	1							
Benzo(g,h,i)perylene	ND		0.0320	ug/L	1							
Chrysene	ND		0.0160	ug/L	1							
Dibenz(a,h)anthracene	ND		0.0160	ug/L	1							
Fluoranthene	ND		0.0320	ug/L	1							
Fluorene	ND		0.0320	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND		0.0160	ug/L	1							
1-Methylnaphthalene	ND		0.0640	ug/L	1							
2-Methylnaphthalene	ND		0.0640	ug/L	1							
Naphthalene	ND		0.0640	ug/L	1							
Phenanthrene	ND		0.0640	ug/L	1							
Pyrene	ND		0.0320	ug/L	1							
Carbazole	ND		0.0320	ug/L	1							
Dibenzofuran	ND		0.0320	ug/L	1							
Surr: Acenaphthylene-d8 (Surr)		Reco	overy: 89 %	Limits: 78	8-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			114 %	80)-132 %		"					
LCS (24J0849-BS1)			Prepared	: 10/22/24	06:18 Anal	lyzed: 10/22	/24 13:16					
EPA 8270E LVI												
Acenaphthene	1.59		0.0320	ug/L	1	1.60		99	80-120%			
Acenaphthylene	1.70		0.0320	ug/L	1	1.60		106	80-124%			
Anthracene	1.61		0.0320	ug/L	1	1.60		100	80-123%			
Benz(a)anthracene	1.61		0.0160	ug/L	1	1.60		100	80-122%			
Benzo(a)pyrene	1.76		0.0160	ug/L	1	1.60		110	80-129%			
Benzo(b)fluoranthene	1.69		0.0160	ug/L	1	1.60		105	80-124%			
Benzo(k)fluoranthene	1.66		0.0160	ug/L	1	1.60		104	80-125%			
Benzo(g,h,i)perylene	1.43		0.0320	ug/L	1	1.60		89	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0849 - EPA 3511 (Bo	ottle Extra	ction)					Wa	ter				
LCS (24J0849-BS1)			Prepared	: 10/22/24	06:18 Ana	lyzed: 10/22	/24 13:16					
Chrysene	1.50		0.0160	ug/L	1	1.60		94	80-120%			
Dibenz(a,h)anthracene	1.49		0.0160	ug/L	1	1.60		93	80-120%			
Fluoranthene	1.80		0.0320	ug/L	1	1.60		113	80-126%			
Fluorene	1.68		0.0320	ug/L	1	1.60		105	77-127%			
Indeno(1,2,3-cd)pyrene	1.37		0.0160	ug/L	1	1.60		86	80-121%			
1-Methylnaphthalene	1.65		0.0640	ug/L	1	1.60		103	53-148%			
2-Methylnaphthalene	1.59		0.0640	ug/L	1	1.60		100	48-150%			
Naphthalene	1.58		0.0640	ug/L	1	1.60		99	78-120%			
Phenanthrene	1.49		0.0640	ug/L	1	1.60		93	80-120%			
Pyrene	1.80		0.0320	ug/L	1	1.60		112	80-125%			
Carbazole	1.69		0.0320	ug/L	1	1.60		105	65-141%			
Dibenzofuran	1.67		0.0320	ug/L	1	1.60		104	76-121%			
Surr: Acenaphthylene-d8 (Surr)		Rec	overy: 89 %	Limits: 78	3-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			112 %		-132 %		"					
CS Dup (24J0849-BSD1) EPA 8270E LVI			Prepared	: 10/22/24	06:18 Ana	lyzed: 10/22	/24 13:48					Q-
Acenaphthene	1.56		0.0320	ug/L	1	1.60		98	80-120%	2	30%	
Acenaphthylene	1.66		0.0320	ug/L	1	1.60		104	80-124%	3	30%	
Anthracene	1.53		0.0320	ug/L	1	1.60		96	80-123%	5	30%	
Benz(a)anthracene	1.54		0.0160	ug/L	1	1.60		96	80-122%	4	30%	
Benzo(a)pyrene	1.75		0.0160	ug/L	1	1.60		109	80-129%	0.5	30%	
Benzo(b)fluoranthene	1.63		0.0160	ug/L	1	1.60		102	80-124%	4	30%	
Benzo(k)fluoranthene	1.64		0.0160	ug/L	1	1.60		102	80-125%	1	30%	
Benzo(g,h,i)perylene	1.41		0.0320	ug/L	1	1.60		88	80-120%	2	30%	
Chrysene	1.45		0.0160	ug/L	1	1.60		90	80-120%	4	30%	
Dibenz(a,h)anthracene	1.44		0.0160	ug/L	1	1.60		90	80-120%	3	30%	
Fluoranthene	1.75		0.0320	ug/L	1	1.60		109	80-126%	3	30%	
Fluorene	1.64		0.0320	ug/L	1	1.60		102	77-127%	3	30%	
Indeno(1,2,3-cd)pyrene	1.34		0.0160	ug/L	1	1.60		84	80-121%	2	30%	
1-Methylnaphthalene	1.54		0.0640	ug/L	1	1.60		96	53-148%	7	30%	
2-Methylnaphthalene	1.48		0.0640	ug/L	1	1.60		93	48-150%	7	30%	
Naphthalene	1.64		0.0640	ug/L	1	1.60		102	78-120%	3	30%	
			0 0 6 4 0									

Apex Laboratories

Phenanthrene

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

80-120%

30%

89

Philip Nerenberg, Lab Director

Philip Nevenberg

1.43

0.0640

ug/L

1

1.60

Page 20 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polya	romatic H	ydrocarbon	s (PAHs)	by EPA	3270E (La	rge Volu	me Inject	ion)			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0849 - EPA 3511 (Bo	ottle Extra	ction)					Wa	ter				
LCS Dup (24J0849-BSD1)			Prepared	: 10/22/24	06:18 Ana	lyzed: 10/22	/24 13:48					Q-19
Pyrene	1.71		0.0320	ug/L	1	1.60		107	80-125%	5	30%	
Carbazole	1.65		0.0320	ug/L	1	1.60		103	65-141%	2	30%	
Dibenzofuran	1.61		0.0320	ug/L	1	1.60		101	76-121%	4	30%	
Surr: Acenaphthylene-d8 (Surr)		Rec	overy: 89 %	Limits: 78	8-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			114 %	80	0-132 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 21 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	5)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
atch 24J1202 - EPA 3015A							Wa	ter				
Blank (24J1202-BLK1)			Prepared	: 10/31/24	09:34 Ana	yzed: 11/01/	/24 02:54					
EPA 6020B												
Antimony	ND		1.00	ug/L	1							
Arsenic	ND		1.00	ug/L	1							
Beryllium	ND		0.200	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		2.00	ug/L	1							
Copper	ND		2.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Mercury	ND		0.0800	ug/L	1							
Nickel	ND		2.00	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
Thallium	ND		0.200	ug/L	1							
Zinc	ND		4.00	ug/L	1							
CS (24J1202-BS1) EPA 6020B			Prepared	: 10/31/24	09:34 Ana	yzed: 11/01/	/24 02:59					
Antimony	27.0		1.00	ug/L	1	27.8		97	80-120%			
Arsenic	52.5		1.00	ug/L	1	55.6		95	80-120%			
Beryllium	28.4		0.200	ug/L	1	27.8		102	80-120%			
Cadmium	54.7		0.200	ug/L	1	55.6		98	80-120%			
Chromium	50.5		2.00	ug/L	1	55.6		91	80-120%			
Copper	53.4		2.00	ug/L	1	55.6		96	80-120%			
Lead	55.7		0.200	ug/L	1	55.6		100	80-120%			
Mercury	1.09		0.0800	ug/L	1	1.11		98	80-120%			
Nickel	52.5		2.00	ug/L	1	55.6		94	80-120%			
Selenium	27.0		1.00	ug/L	1	27.8		97	80-120%			
Silver	28.6		0.200	ug/L	1	27.8		103	80-120%			
Thallium	27.3		0.200	ug/L	1	27.8		98	80-120%			
Zinc	53.4		4.00	ug/L	1	55.6		96	80-120%			
uplicate (24J1202-DUP1)			Prepared	: 10/31/24	09:34 Ana	yzed: 11/01/	/24 03:21					
QC Source Sample: Non-SDG (A-	4J1505-05)											
Antimony	ND		1.00	ug/L	1		ND				20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J1202 - EPA 3015A							Wa	ter				
Ouplicate (24J1202-DUP1)			Prepared	: 10/31/24	09:34 Ana	yzed: 11/01/	/24 03:21					
QC Source Sample: Non-SDG (A	4J1505-05)											
Arsenic	1.29		1.00	ug/L	1		1.30			1	20%	
Beryllium	ND		0.200	ug/L	1		ND				20%	
Cadmium	ND		0.200	ug/L	1		ND				20%	
Chromium	ND		2.00	ug/L	1		ND				20%	
Copper	ND		2.00	ug/L	1		1.19			***	20%	
Lead	ND		0.200	ug/L	1		ND				20%	
Mercury	ND		0.0800	ug/L	1		ND				20%	
Nickel	ND		2.00	ug/L	1		1.21			***	20%	
Selenium	ND		1.00	ug/L	1		ND				20%	
Silver	ND		0.200	ug/L	1		ND				20%	
Thallium	ND		0.200	ug/L	1		ND				20%	
Zinc	ND		4.00	ug/L	1		2.13			***	20%	
Aatrix Spike (24J1202-MS1) OC Source Sample: Non-SDG (A-	4J1505-06 <u>)</u>		Prepared	: 10/31/24	09:34 Ana	lyzed: 11/01/	/24 03:32					
EPA 6020B												
Antimony	28.5		1.00	ug/L	1	27.8	ND	102	75-125%			
Arsenic	55.4		1.00	ug/L	1	55.6	0.747	98	75-125%			
Beryllium	28.7		0.200	ug/L	1	27.8	ND	103	75-125%			
Cadmium	54.9		0.200	ug/L	1	55.6	ND	99	75-125%			
Chromium	51.2		2.00	ug/L	1	55.6	ND	92	75-125%			
Copper	54.0		2.00	ug/L	1	55.6	2.83	92	75-125%			
Lead	54.1		0.200	ug/L	1	55.6	0.367	97	75-125%			
Mercury	1.11		0.0800	ug/L	1	1.11	ND	100	75-125%			
Nickel	52.8		2.00	ug/L	1	55.6	2.04	91	75-125%			
Selenium	27.9		1.00	ug/L	1	27.8	ND	100	75-125%			
Silver	28.6		0.200	ug/L	1	27.8	ND	103	75-125%			
Thallium	26.5		0.200	ug/L	1	27.8	ND	95	75-125%			
Zinc	53.6		4.00	ug/L	1	55.6	ND	96	75-125%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Blue Heron Project:

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	Metals	by EPA 6	020B (ICP	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J1227 - Matrix Mate	ched Direct I	nject					Wa	iter				
Blank (24J1227-BLK1)			Prepared	: 10/31/24	14:07 Ana	lyzed: 11/01	/24 04:47					
EPA 6020B (Diss)												
Antimony	ND		1.00	ug/L	1							FIL
Arsenic	ND		1.00	ug/L	1							FIL
Beryllium	ND		0.200	ug/L	1							FIL
Cadmium	ND		0.200	ug/L	1							FILT
Chromium	ND		2.00	ug/L	1							FILT
Copper	ND		2.00	ug/L	1							FIL
Lead	ND		0.200	ug/L	1							FILT
Mercury	ND		0.0800	ug/L	1							FIL
Nickel	ND		2.00	ug/L	1							FIL
Selenium	ND		1.00	ug/L	1							FIL
Silver	ND		0.200	ug/L	1							FILT
Thallium	ND		0.200	ug/L	1							FILT
Zinc	ND		4.00	ug/L	1							FILT
LCS (24J1227-BS1)			Prepared	: 10/31/24	14:07 Ana	lyzed: 11/01	/24 04:52					
EPA 6020B (Diss)												
Antimony	26.7		1.00	ug/L	1	27.8		96	80-120%			
Arsenic	53.1		1.00	ug/L	1	55.6		96	80-120%			
Beryllium	28.2		0.200	ug/L	1	27.8		102	80-120%			
Cadmium	54.0		0.200	ug/L	1	55.6		97	80-120%			
Chromium	51.8		2.00	ug/L	1	55.6		93	80-120%			
Copper	55.2		2.00	ug/L	1	55.6		99	80-120%			
Lead	55.4		0.200	ug/L	1	55.6		100	80-120%			
Mercury	1.05		0.0800	ug/L	1	1.11		95	80-120%			
Nickel	53.6		2.00	ug/L	1	55.6		96	80-120%			
Selenium	27.0		1.00	ug/L	1	27.8		97	80-120%			
Silver	28.4		0.200	ug/L	1	27.8		102	80-120%			
Thallium	27.9		0.200	ug/L	1	27.8		100	80-120%			
Zinc	53.9		4.00	ug/L	1	55.6		97	80-120%			

Duplicate (24J1227-DUP1)

Prepared: 10/31/24 14:07 Analyzed: 11/01/24 05:14

QC Source Sample: BH TR1 PreGab 20241021 (A4J1568-03)

EPA 6020B (Diss)

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 24 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	d Metals	by EPA 60)20B (ICP	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J1227 - Matrix Match	ed Direct l	Inject					Wa	ter				
Duplicate (24J1227-DUP1)			Prepared	: 10/31/24	14:07 Ana	yzed: 11/01	/24 05:14					
QC Source Sample: BH TR1 Pro	eGab_202410	021 (A4J1568-	-03)									
Antimony	2.70		1.00	ug/L	1		2.68			0.8	20%	FILT
Arsenic	1.72		1.00	ug/L	1		1.73			0.8	20%	FILT
Beryllium	ND		0.200	ug/L	1		ND				20%	FILT
Cadmium	ND		0.200	ug/L	1		ND				20%	FILT
Chromium	ND		2.00	ug/L	1		ND				20%	FILT
Copper	10.1		2.00	ug/L	1		9.99			1	20%	FILT
Lead	ND		0.200	ug/L	1		ND				20%	FILT
Mercury	ND		0.0800	ug/L	1		ND				20%	FILT
Nickel	ND		2.00	ug/L	1		1.34			***	20%	FILT
Selenium	ND		1.00	ug/L	1		ND				20%	FILT
Silver	ND		0.200	ug/L	1		ND				20%	FILT
Thallium	ND		0.200	ug/L	1		ND				20%	FILT
Zinc	42.8		4.00	ug/L	1		42.6			0.6	20%	FILT
Matrix Spike (24J1227-MS1)			Prepared	: 10/31/24	14:07 Anal	yzed: 11/01	/24 05:24					
QC Source Sample: BH TR1 Po	stGab 20241	021 (A4J1568	<u>3-04)</u>									
EPA 6020B (Diss)												
Antimony	30.4		1.00	ug/L	1	27.8	2.43	101	75-125%			FILT
Arsenic	55.1		1.00	ug/L	1	55.6	1.50	96	75-125%			FILT
Beryllium	28.8		0.200	ug/L	1	27.8	ND	104	75-125%			FILT
Cadmium	54.6		0.200	ug/L	1	55.6	ND	98	75-125%			FILT
Chromium	52.1		2.00	ug/L	1	55.6	ND	94	75-125%			FILT
Copper	65.4		2.00	ug/L	1	55.6	10.6	99	75-125%			FILT
Lead	55.5		0.200	ug/L	1	55.6	ND	100	75-125%			FILT
Mercury	1.08		0.0800	ug/L	1	1.11	ND	97	75-125%			FILT
Nickel	54.6		2.00	ug/L	1	55.6	1.97	95	75-125%			FILT
Selenium	27.1		1.00	ug/L	1	27.8	ND	98	75-125%			FILT
Silver	29.0		0.200	ug/L	1	27.8	ND	104	75-125%			FILT
Thallium	28.1		0.200	ug/L	1	27.8	ND	101	75-125%			FILT

Apex Laboratories

Philip Nevenberg

104

Zinc

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 25 of 34

1

55.6

52.4

94

75-125%

FILT1

ug/L

4.00

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

QUALITY CONTROL (QC) SAMPLE RESULTS

			Solid a	and Mois	ture Dete	rmination	s					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24J0866 - Total Suspen	ded Solids	s - 2022					Wat	er				
Blank (24J0866-BLK1)			Prepared	: 10/22/24	10:58 Anal	lyzed: 10/22	/24 10:58					
SM 2540 D Total Suspended Solids	ND		5.00	mg/L	1							
Duplicate (24J0866-DUP1)			Prepared	: 10/22/24	10:58 Anal	lyzed: 10/22	/24 10:58					
QC Source Sample: BH TRH Pr	eGab 20241	021 (A4J1568	<u>-01)</u>									
SM 2540 D Total Suspended Solids	ND		5.00	mg/L	1		6.00			***	10%	Q-05, TSS
Duplicate (24J0866-DUP2)			Prepared	: 10/22/24	10:58 Anal	lyzed: 10/22	/24 10:58					
QC Source Sample: Non-SDG (A	4J1550-01 <u>)</u>											
Total Suspended Solids	9.00		5.00	mg/L	1		9.00			0.00	10%	TSS
Reference (24J0866-SRM1)			Prepared	: 10/22/24	10:58 Anal	lyzed: 10/22	/24 10:58					
SM 2540 D Total Suspended Solids	871			mg/L	1	828		105	85-115%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 26 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

SAMPLE PREPARATION INFORMATION

		Hydrocarbon	Identification Scree	n by NWTPH-HCID	1		
Prep: EPA 3510C (Fu	els/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J0927							
A4J1568-01	Water	NWTPH-HCID	10/21/24 13:45	10/23/24 11:07	1040mL/5mL	1000mL/5mL	0.96
A4J1568-02	Water	NWTPH-HCID	10/21/24 14:10	10/23/24 11:07	1050mL/5mL	1000mL/5mL	0.95
A4J1568-03	Water	NWTPH-HCID	10/21/24 15:00	10/23/24 11:07	1050mL/5mL	1000mL/5mL	0.95
A4J1568-04	Water	NWTPH-HCID	10/21/24 15:20	10/23/24 11:07	1050 mL/5 mL	1000mL/5mL	0.95

	Di	esel and/or Oil Hydrod	arbons by NWTPH-	Dx with Acid/Silica (Gel Cleanup		
Prep: EPA 3510C (F	uels/Acid Ext.) w/	SG+Acid			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24K0042							
A4J1568-03	Water	NWTPH-Dx/SG	10/21/24 15:00	10/23/24 11:07	1050mL/5mL	1000mL/5mL	0.95

		Polych	nlorinated Biphenyls I	by EPA 8082A			
Prep: EPA 3510C (I	Neutral pH)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J1191							
A4J1568-01	Water	EPA 8082A	10/21/24 13:45	10/31/24 07:07	1060mL/5mL	1000mL/5mL	0.94
A4J1568-02	Water	EPA 8082A	10/21/24 14:10	10/31/24 07:07	1050 mL/5 mL	1000mL/5mL	0.95
A4J1568-03	Water	EPA 8082A	10/21/24 15:00	10/31/24 07:07	1050 mL/5 mL	1000mL/5mL	0.95
A4J1568-04	Water	EPA 8082A	10/21/24 15:20	10/31/24 07:07	1045mL/5mL	1000 mL/5 mL	0.96

	Pol	yaromatic Hydrocarbo	ons (PAHs) by EPA	8270E (Large Volur	ne Injection)		
Prep: EPA 3511 (Bott	le Extraction)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J0849							
A4J1568-01	Water	EPA 8270E LVI	10/21/24 13:45	10/22/24 11:24	123.74mL/5mL	125mL/5mL	1.01
A4J1568-02	Water	EPA 8270E LVI	10/21/24 14:10	10/22/24 11:24	124.39mL/5mL	125mL/5mL	1.00
A4J1568-03	Water	EPA 8270E LVI	10/21/24 15:00	10/22/24 11:24	122.65mL/5mL	125mL/5mL	1.02
A4J1568-04	Water	EPA 8270E LVI	10/21/24 15:20	10/22/24 11:24	124.15mL/5mL	125mL/5mL	1.01

		Total	Metals by EPA 602	0B (ICPMS)			
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherg

Page 27 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

SAMPLE PREPARATION INFORMATION

		Tota	al Metals by EPA 602	0B (ICPMS)			
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J1202							
A4J1568-01	Water	EPA 6020B	10/21/24 13:45	10/31/24 09:34	45mL/50mL	45 mL/50 mL	1.00
A4J1568-02	Water	EPA 6020B	10/21/24 14:10	10/31/24 09:34	45mL/50mL	45mL/50mL	1.00
A4J1568-03	Water	EPA 6020B	10/21/24 15:00	10/31/24 09:34	45mL/50mL	45mL/50mL	1.00
A4J1568-04	Water	EPA 6020B	10/21/24 15:20	10/31/24 09:34	45mL/50mL	45mL/50mL	1.00

		Dissolve	ed Metals by EPA 6	020B (ICPMS)			
Prep: Matrix Matched	d Direct Inject				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J1227							
A4J1568-01	Water	EPA 6020B (Diss)	10/21/24 13:45	10/31/24 14:07	45mL/50mL	45mL/50mL	1.00
A4J1568-02	Water	EPA 6020B (Diss)	10/21/24 14:10	10/31/24 14:07	45mL/50mL	45mL/50mL	1.00
A4J1568-03	Water	EPA 6020B (Diss)	10/21/24 15:00	10/31/24 14:07	45mL/50mL	45mL/50mL	1.00
A4J1568-04	Water	EPA 6020B (Diss)	10/21/24 15:20	10/31/24 14:07	45 mL/50 mL	45 mL/50 mL	1.00

		So	lid and Moisture Dete	erminations			
Prep: Total Suspende	ed Solids - 2022				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J0866							
A4J1568-01	Water	SM 2540 D	10/21/24 13:45	10/22/24 10:58			NA
A4J1568-02	Water	SM 2540 D	10/21/24 14:10	10/22/24 10:58			NA
A4J1568-03	Water	SM 2540 D	10/21/24 15:00	10/22/24 10:58			NA
A4J1568-04	Water	SM 2540 D	10/21/24 15:20	10/22/24 10:58			NA

			Lab Filtration	1			
Prep: Lab Filtration					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24J0880							
A4J1568-01	Water	NA	10/21/24 13:45	10/22/24 12:34	150 mL/150 mL		NA
A4J1568-02	Water	NA	10/21/24 14:10	10/22/24 12:36	150mL/150mL		NA
A4J1568-03	Water	NA	10/21/24 15:00	10/22/24 12:37	150mL/150mL		NA
A4J1568-04	Water	NA	10/21/24 15:20	10/22/24 12:39	150mL/150mL		NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 28 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

A4J1568 - 11 05 24 1631

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.

F-03 The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.

FILT1 Sample was lab filtered and acid preserved prior to analysis. See sample preparation section of report for date and time of filtration.

FILT3 This is a laboratory filtration blank, associated with filtration batch 24J0880. See Prep page of report for associated samples.

M-05 Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.

P-12 Result estimated due to the presence of multiple PCB Aroclors and/or PCB congeners not defined as Aroclors.

Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.

Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.

R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.

TSS Dried residue was less than 2.5mg as specified in the method. Results meet regulatory requirements.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 29 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP <u>USA Environment & Infrastructure Inc.</u>

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Validated Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 30 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP <u>USA Environment & Infrastructure Inc.</u>

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL).

Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level.

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 31 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 32 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4J1568 - 11 05 24 1631

		and the second of the second o																							
company: WSP		Project N	Mgr.	Project Mgr. John Knipek	Mipe	7			Proj	Project Name:	me:	8	Blue Heron	18	8			<u>e</u>	roject	9	Project #: G685,0793 Task 400	193 1	35 6	3	1 1
Address: 15862 SW 72nd AVR # 150 Porthind OR 97224 Prome	50 Po	rtland	용	972	4	hone:					Email:	3	17.K	Miple	3	Email: John. Kuiper @ WSQ - COM	٤	_6	PO#						
Sampled by: JOHNNE (Len, Mutther Brown	latthe	50	OWN						1000	101.00		7.4		1000	NAL	ANALYSIS REQUEST	CEST						ensje	-	
Site Location:												isi,J				'qa	TCLP		(MIS	(p+	(Gov.				
State OR County Clark				NTAINERS				DW AOC®		Cs Juli List		l llu4 sloV-in		nenes Tetals (8)	(EI) sistely	1s, Ba, Be,	Mn, Mo, M A, T, V, Zn DISS.	Tetals (8)	- 30£78	19) 943 m S	101) (B) 25-1			ગૃહા	rchive
SAMPLE ID	DATE	TIME	XISTAM	# OF CO	HALMN	HALMN	H4TWN T8 6518		laH 0328	OA 0978	VIS 0728		8087 PC	8081 Pes		AL Sb, A	Se, Ag, N TOTAL	TCLP N		5L	6) HOW			ms2 bloH	Frozen A
BH-TRH-PreGab-20241021	10/21	345	3	ū	У	×	×	-					×		×	1/		-	X	^ ×	*				- }
BH_TRH_POSTGAB_20241021	_	1410	7	٠	¥	<u>х</u>	×					-	x		У.				X	人					1
QH_TR1_PreGab, 20241021		1500			х	×	N				1446		X		X				<u></u>	y y					
BHLTRI-PORGOS-20241021	>	520	>	À	¥	y V	¥						¥		×				\	×		-		\neg	
														-	-				$\neg \uparrow$	\dashv		-			1
						\dashv	\dashv	\dashv				$\neg \dagger$	-	\dashv	-+				-	-		+			ł
					\dashv	+	+	-	_			\top	+	+	+	-			-	\dashv	1	+			
						1	-	-	_					+	+			\top	+	+	-	+		+	1
						+	+	-	-			T	+	+	+	-		\top	+	+-		+		1	
Standard Tum Around Time (TAT) = 10 Business Davs	Around T	ime (TAT)= 10 B	usiness I	Javs	\dashv	\dashv	4	_		SPEC	TIE!	SPECIAL INSTRUCTIONS:	- ğ	-SNS	4			1	-]	\dashv		1	1
	1		3.00		3 Dev	1					Rur	1	チェ	SH	7,0	Run TPH HCID, follow-up with Gx and/or Dx as needed	3	7	Ť	and	J jo	X as	MERG	To the	
TAT Requested (circle)	I Day		, Day		9	÷					16	101	, po	0.356	Tes	priort	4	16/1	font) ;	3/14	2/2/			
	5 Day		Standard	æ	Other:	ii.			ï		9	pase	, (9	F.F.	place (ab filter for diss.	ر مر م	25.5	١,	ر		i			
SAMPL	SAMPLES ARE HELD FOR 30 DAYS	LD FOR 3	10 DAYS								4	50	ABO Email	111	8	aniel.s	chal	رو	3	3	٤				- 1
UISHED BY:			RECE	RECEIVED BY:	,		ı				REL	NOUIE	RELINQUISHED BY:	BY:				6	RECE	RECEIVED BY:	;;	į			
ignature:	Date: (0/2	-	Sold Services	Signature:	Z		Date:	10/21/24	7		Signafi	<u>;</u>				Date:			THE REAL PROPERTY.	ឋ					- 1
Princed Name: JOANNE CLEN	17me:		系表	Printed Name: Kathona Marc. 1975	lac. 0		if T	五子子	4		Printe	Printed Name				Time:			Printed Name	Name:		Time:			- 1
Company:			Company:	Onpany:		3					Company:	any:							Company:	ıy:					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 33 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: **Blue Heron**

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID:

A4J1568 - 11 05 24 1631

113° O	APEX LABS COOLER RECEIPT FORM
Client: WSP	Element WO#: A4
Project/Project #:	Blue Heron /G685-0793 Task 400
Delivery Info:	
Date/time received: 10/2	21/24 @ 17:17 By: Stay
Delivered by: Apex_Cli	ient_ESSFedExUPSRadioMorganSDSEvergreenOther
	Origin? Yes No
Cooler Inspection D	rate/time inspected: 10/21/24 @ 17:14 By: 2524
Chain of Custody include	
Signed/dated by client?	Yes No
Contains USDA Reg. Soi	ils? Yes No _X Unsure (email RegSoils)
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	4.5 5.5
Custody seals? (Y/N)	
Received on ice? (Y/N)	<u> </u>
Temp. blanks? (Y/N)	<u> </u>
Ice type: (Gel/Real/Other	i) feg
Condition (In/Out):	11 - 2
Cooler out of temp? (Y/K	N) Possible reason why:
	of temperature samples? Yes No les form initiated? Yes No
Sample Inspection: Da	ate/time inspected: 1074/24@ 1906 By: ZA
All samples intact? Yes	No Comments:

Bottle labels/COCs agree	e? Yes/ No Comments:
COC/container discrenan	cies form initiated? Yes No
	ived appropriate for analysis? Yes No Comments:
	<u></u>
Do VOA vials have visib	le headspace? Yes No NA
Comments	
Water samples: pH check	red: Yes No NA pH appropriate? Yes No NA pH ID: A231172
	The state of the s
Labeled by: Z	Witness: Cooler Inspected by: Form Y-003 R-02

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Monday, December 30, 2024

John Kuiper

WSP USA Environment & Infrastructure Inc.
15862 SW 72nd Ave. Suite 150

Portland, OR 97224

RE: A4L0877 - Blue Heron - Waste Pile - G685.0793 task 400

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4L0877, which was received by the laboratory on 12/4/2024 at 11:30:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 5.6 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron - Waste Pile

Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID: A4L0877 - 12 30 24 1713

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	RMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH_DPSed#3_20241203	A4L0877-01	Solid	12/03/24 15:30	12/04/24 11:30

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 2 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron - Waste Pile
Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID: A4L0877 - 12 30 24 1713

ANALYTICAL SAMPLE RESULTS

R	egulated To	CLP Volatile (Organic Co	mpounds by EP	A 1311/8	260D		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH_DPSed#3_20241203 (A4L0877-01)				Matrix: Solid	1	Batch:	24L0372	
Benzene	ND		0.0100	mg/L	50	12/11/24 14:56	1311/8260D	
2-Butanone (MEK)	ND		0.500	mg/L	50	12/11/24 14:56	1311/8260D	
Carbon tetrachloride	ND		0.0500	mg/L	50	12/11/24 14:56	1311/8260D	
Chlorobenzene	ND		0.0250	mg/L	50	12/11/24 14:56	1311/8260D	
Chloroform	ND		0.0500	mg/L	50	12/11/24 14:56	1311/8260D	
1,4-Dichlorobenzene	ND		0.0250	mg/L	50	12/11/24 14:56	1311/8260D	
1,1-Dichloroethene	ND		0.0200	mg/L	50	12/11/24 14:56	1311/8260D	
1,2-Dichloroethane (EDC)	ND		0.0200	mg/L	50	12/11/24 14:56	1311/8260D	
Tetrachloroethene (PCE)	ND		0.0200	mg/L	50	12/11/24 14:56	1311/8260D	
Trichloroethene (TCE)	ND		0.0200	mg/L	50	12/11/24 14:56	1311/8260D	
Vinyl chloride	ND		0.0100	mg/L	50	12/11/24 14:56	1311/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 109 %	Limits: 80-120 %	1	12/11/24 14:56	1311/8260D	 ,
Toluene-d8 (Surr)			101 %	80-120 %	1	12/11/24 14:56	1311/8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	12/11/24 14:56	1311/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron - Waste Pile
Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID: A4L0877 - 12 30 24 1713

ANALYTICAL SAMPLE RESULTS

	TCLP Sen	nivolatile Orç	ganic Comp	ounds by EPA	1311/827	0E		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH_DPSed#3_20241203 (A4L0877-01)				Matrix: Solid	d	Batch:	24L0640	R-04
2-Methylphenol	ND		0.250	mg/L	50	12/17/24 22:32	1311/8270E	
3+4-Methylphenol(s)	ND		0.250	mg/L	50	12/17/24 22:32	1311/8270E	
Pentachlorophenol (PCP)	ND		0.500	mg/L	50	12/17/24 22:32	1311/8270E	
2,4,5-Trichlorophenol	ND		0.250	mg/L	50	12/17/24 22:32	1311/8270E	
2,4,6-Trichlorophenol	ND		0.250	mg/L	50	12/17/24 22:32	1311/8270E	
Hexachlorobenzene	ND		0.100	mg/L	50	12/17/24 22:32	1311/8270E	
Hexachlorobutadiene	ND		0.250	mg/L	50	12/17/24 22:32	1311/8270E	
Hexachloroethane	ND		0.250	mg/L	50	12/17/24 22:32	1311/8270E	
Nitrobenzene	ND		0.250	mg/L	50	12/17/24 22:32	1311/8270E	
2,4-Dinitrotoluene	ND		0.100	mg/L	50	12/17/24 22:32	1311/8270E	
Pyridine	ND		0.500	mg/L	50	12/17/24 22:32	1311/8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 79 %	Limits: 44-120 %	50	12/17/24 22:32	1311/8270E	S-05
2-Fluorobiphenyl (Surr)			69 %	44-120 %	50	12/17/24 22:32	1311/8270E	S-05
Phenol-d6 (Surr)			27 %	10-133 %	50	12/17/24 22:32	1311/8270E	S-05
p-Terphenyl-d14 (Surr)			87 %	50-134 %	50	12/17/24 22:32	1311/8270E	S-05
2-Fluorophenol (Surr)			41 %	19-120 %	50	12/17/24 22:32	1311/8270E	S-0.
2,4,6-Tribromophenol (Surr)			133 %	43-140 %	50	12/17/24 22:32	1311/8270E	S-03

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 4 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron - Waste Pile

Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID: A4L0877 - 12 30 24 1713

ANALYTICAL SAMPLE RESULTS

		TCLP Meta	als by EPA 602	20B (ICPMS	S)			·
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH_DPSed#3_20241203 (A4L0877-01)				Matrix: So	olid			
Batch: 24L0468								
Arsenic	ND		0.100	mg/L	10	12/12/24 23:10	1311/6020B	
Barium	ND		5.00	mg/L	10	12/12/24 23:10	1311/6020B	
Cadmium	ND		0.100	mg/L	10	12/12/24 23:10	1311/6020B	
Chromium	ND		0.100	mg/L	10	12/12/24 23:10	1311/6020B	
Lead	0.149		0.0500	mg/L	10	12/12/24 23:10	1311/6020B	
Mercury	ND		0.00700	mg/L	10	12/12/24 23:10	1311/6020B	
Selenium	ND		0.100	mg/L	10	12/12/24 23:10	1311/6020B	
Silver	ND		0.100	mg/L	10	12/12/24 23:10	1311/6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron - Waste Pile

Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID: A4L0877 - 12 30 24 1713

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0372 - EPA 1311/503	OC TCLP	Volatiles					Wa	ter				
Blank (24L0372-BLK1)			Prepared	l: 12/11/24 (07:00 Ana	lyzed: 12/11/	/24 13:33					TCL
1311/8260D												
Benzene	ND		0.0100	mg/L	50							
2-Butanone (MEK)	ND		0.500	mg/L	50							
Carbon tetrachloride	ND		0.0500	mg/L	50							
Chlorobenzene	ND		0.0250	mg/L	50							
Chloroform	ND		0.0500	mg/L	50							
1,4-Dichlorobenzene	ND		0.0250	mg/L	50							
1,1-Dichloroethene	ND		0.0200	mg/L	50							
1,2-Dichloroethane (EDC)	ND		0.0200	mg/L	50							
Tetrachloroethene (PCE)	ND		0.0200	mg/L	50							
Trichloroethene (TCE)	ND		0.0200	mg/L	50							
Vinyl chloride	ND		0.0100	mg/L	50							
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 107 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80	-120 %		"					
LCS (24L0372-BS1)			Prepared	l: 12/11/24 (07:00 Ana	lyzed: 12/11/	/24 12:17					TCL
1311/8260D												
Benzene	0.940		0.0100	mg/L	50	1.00		94	80-120%			
2-Butanone (MEK)	1.63		0.500	mg/L	50	2.00		82	80-120%			
Carbon tetrachloride	1.20		0.0500	mg/L	50	1.00		120	80-120%			
Chlorobenzene	0.952		0.0250	mg/L	50	1.00		95	80-120%			
Chloroform	0.976		0.0500	mg/L	50	1.00		98	80-120%			
1,4-Dichlorobenzene	0.929		0.0250	mg/L	50	1.00		93	80-120%			
1,1-Dichloroethene	1.20		0.0200	mg/L	50	1.00		120	80-120%			
1,2-Dichloroethane (EDC)	0.978		0.0200	mg/L	50	1.00		98	80-120%			
Tetrachloroethene (PCE)	1.04		0.0200	mg/L	50	1.00		104	80-120%			
Trichloroethene (TCE)	0.848		0.0200	mg/L	50	1.00		85	80-120%			
Vinyl chloride	1.00		0.0100	mg/L	50	1.00		100	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 101 %	Limits: 80	1-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			95 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	80	-120 %		"					

Duplicate (24L0372-DUP1)

Prepared: 12/09/24 15:09 Analyzed: 12/11/24 14:29

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 6 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: <u>Blue Heron - Waste Pile</u>

Project Number: G685.0793 task 400 Project Manager: John Kuiper

Report ID:
A4L0877 - 12 30 24 1713

QUALITY CONTROL (QC) SAMPLE RESULTS

		D (.:	D			g '1	C		0/ BEC		DPD	
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0372 - EPA 1311/503	OC TCLP	Volatiles					Wa	er				
Duplicate (24L0372-DUP1)			Prepared	: 12/09/24	15:09 Ana	yzed: 12/11/	/24 14:29					
QC Source Sample: Non-SDG (A4	K1690-01)											
Benzene	ND		0.0100	mg/L	50		ND				30%	
2-Butanone (MEK)	ND		0.500	mg/L	50		ND				30%	
Carbon tetrachloride	ND		0.0500	mg/L	50		ND				30%	
Chlorobenzene	ND		0.0250	mg/L	50		ND				30%	
Chloroform	0.112		0.0500	mg/L	50		0.110			2	30%	
1,4-Dichlorobenzene	ND		0.0250	mg/L	50		ND				30%	
1,1-Dichloroethene	ND		0.0200	mg/L	50		ND				30%	
1,2-Dichloroethane (EDC)	ND		0.0200	mg/L	50		ND				30%	
Tetrachloroethene (PCE)	ND		0.0200	mg/L	50		ND				30%	
Trichloroethene (TCE)	ND		0.0200	mg/L	50		ND				30%	
Vinyl chloride	ND		0.0100	mg/L	50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 108 %	Limits: 80	1-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80-120 %			"					
4-Bromofluorobenzene (Surr)			104 %	80-120 %			"					
Matrix Spike (24L0372-MS1)			Prepared	: 12/09/24	15:09 Ana	lyzed: 12/11/	/24 15:24					
QC Source Sample: BH DPSed#3	20241203	(A4L0877-01)										
<u>1311/8260D</u>												
Benzene	1.02		0.0100	mg/L	50	1.00	ND	102	79-120%			
2-Butanone (MEK)	1.67		0.500	mg/L	50	2.00	ND	83	56-143%			
Carbon tetrachloride	1.37		0.0500	mg/L	50	1.00	ND	137	72-136%			Q-(
Chlorobenzene	1.02		0.0250	mg/L	50	1.00	ND	102	80-120%			
Chloroform	1.07		0.0500	mg/L	50	1.00	ND	107	79-124%			
1,4-Dichlorobenzene	0.986		0.0250	mg/L	50	1.00	ND	99	79-120%			
1,1-Dichloroethene	1.36		0.0200	mg/L	50	1.00	ND	136	71-131%			Q-(
1,2-Dichloroethane (EDC)	1.04		0.0200	mg/L	50	1.00	ND	104	73-128%			
Tetrachloroethene (PCE)	1.13		0.0200	mg/L	50	1.00	ND	113	74-129%			
Trichloroethene (TCE)	0.924		0.0200	mg/L	50	1.00	ND	92	79-123%			
Vinyl chloride	1.06		0.0100	mg/L	50	1.00	ND	106	58-137%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80-120 %		Dilution: 1x						
Toluene-d8 (Surr)			94 %	80-120 %		"						
4-Bromofluorobenzene (Surr)			92 %	90	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 7 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron - Waste Pile
Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID: A4L0877 - 12 30 24 1713

QUALITY CONTROL (QC) SAMPLE RESULTS

		TCLP Se	emivolatile	Organic	Compou	nds by EP	PA 1311/8	3270E				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0640 - EPA 1311/351	IOC (BNA I	Extraction)					So	lid				
Blank (24L0640-BLK1)			Prepared	: 12/17/24	14:17 Ana	lyzed: 12/17	/24 21:25					TCLPa
<u>1311/8270E</u>												
2-Methylphenol	ND		0.00500	mg/L	1							
3+4-Methylphenol(s)	ND		0.00500	mg/L	1							
Pentachlorophenol (PCP)	ND		0.0100	mg/L	1							
2,4,5-Trichlorophenol	ND		0.00500	mg/L	1							
2,4,6-Trichlorophenol	ND		0.00500	mg/L	1							
Hexachlorobenzene	ND		0.00200	mg/L	1							
Hexachlorobutadiene	ND		0.00500	mg/L	1							
Hexachloroethane	ND		0.00500	mg/L	1							
Nitrobenzene	ND		0.00500	mg/L	1							
2,4-Dinitrotoluene	ND		0.00200	mg/L	1							
Pyridine	ND		0.0100	mg/L	1							
Surr: Nitrobenzene-d5 (Surr)		Rec	overy: 92 %	Limits: 44	-120 %	Dili	ution: 1x					
2-Fluorobiphenyl (Surr)			77 %	44	-120 %		"					
Phenol-d6 (Surr)			28 %	10	-133 %		"					
p-Terphenyl-d14 (Surr)			100 %	50	-134 %		"					
2-Fluorophenol (Surr)			43 %	19	-120 %		"					
2,4,6-Tribromophenol (Surr)			101 %	43	-140 %		"					
LCS (24L0640-BS1)			Prepared	: 12/17/24	14:17 Ana	lyzed: 12/17	/24 21:58					Q-18, TCLPa
<u>1311/8270E</u>												
2-Methylphenol	0.0318		0.0200	mg/L	4	0.0400		79	30-120%			
3+4-Methylphenol(s)	0.0311		0.0200	mg/L	4	0.0400		78	29-120%			Q-4
Pentachlorophenol (PCP)	ND		0.0400	mg/L	4	0.0400		95	35-138%			
2,4,5-Trichlorophenol	0.0481		0.0200	mg/L	4	0.0400		120	53-123%			Q-4
2,4,6-Trichlorophenol	0.0425		0.0200	mg/L	4	0.0400		106	50-125%			Q-4
Hexachlorobenzene	0.0376		0.00800	mg/L	4	0.0400		94	53-125%			
Hexachlorobutadiene	0.0267		0.0200	mg/L	4	0.0400		67	22-124%			
Hexachloroethane	0.0250		0.0200	mg/L	4	0.0400		63	21-120%			
Nitrobenzene	0.0377		0.0200	mg/L	4	0.0400		94	45-121%			
2,4-Dinitrotoluene	0.0405		0.00800	mg/L	4	0.0400		101	57-128%			
Pyridine	ND		0.0400	mg/L	4	0.0400		58	10-120%			
Surr: Nitrobenzene-d5 (Surr)		Rec	overy: 95 %		!-120 %	Dilt	ution: 4x					
2-Fluorobiphenyl (Surr)			79 %	44	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Monterg

Page 8 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron - Waste Pile

Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID: A4L0877 - 12 30 24 1713

S-05

QUALITY CONTROL (QC) SAMPLE RESULTS

		TCLP Se	emivolatile	Organic	Compou	nds by EP	A 1311/8	270E				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0640 - EPA 1311/351	0C (BNA	Extraction)					Sol	id				
LCS (24L0640-BS1)			Prepared	1: 12/17/24	14:17 Anal	lyzed: 12/17/	/24 21:58					Q-18, TCLI
Surr: Phenol-d6 (Surr)		Rece	overy: 31 %	Limits: 10	0-133 %	Dilı	ıtion: 4x					
p-Terphenyl-d14 (Surr)			102 %	50)-134 %		"					
2-Fluorophenol (Surr)			46 %	19	0-120 %		"					
2,4,6-Tribromophenol (Surr)			109 %	43	3-140 %		"					
Duplicate (24L0640-DUP1)			Prepared	1: 12/17/24	14:17 Anal	lyzed: 12/17	/24 23:06					R-(
OC Source Sample: BH_DPSed#3	20241203	(A4L0877-01)										
<u>1311/8270E</u>												
2-Methylphenol	ND		0.250	mg/L	50		ND				30%	
3+4-Methylphenol(s)	ND		0.250	mg/L	50		ND				30%	
Pentachlorophenol (PCP)	ND		0.500	mg/L	50		ND				30%	
2,4,5-Trichlorophenol	ND		0.250	mg/L	50		ND				30%	
2,4,6-Trichlorophenol	ND		0.250	mg/L	50		ND				30%	
Hexachlorobenzene	ND		0.100	mg/L	50		ND				30%	
Hexachlorobutadiene	ND		0.250	mg/L	50		ND				30%	
Hexachloroethane	ND		0.250	mg/L	50		ND				30%	
Nitrobenzene	ND		0.250	mg/L	50		ND				30%	
2,4-Dinitrotoluene	ND		0.100	mg/L	50		ND				30%	
Pyridine	ND		0.500	mg/L	50		ND				30%	
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 80 %	Limits: 44	4-120 %	Dilı	ution: 50x					S-05
2-Fluorobiphenyl (Surr)			70 %	44	1-120 %		"					S-05
Phenol-d6 (Surr)			27 %	10	0-133 %		"					S-05
p-Terphenyl-d14 (Surr)			93 %	50	0-134 %		"					S-05
2-Fluorophenol (Surr)			42 %	19	0-120 %		"					S-05

43-140 %

131 %

Apex Laboratories

Philip Nevenberg

2,4,6-Tribromophenol (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 9 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron - Waste Pile

Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID: A4L0877 - 12 30 24 1713

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP M	letals by	EPA 602	OB (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0468 - EPA 1311/30	15A						Sol	id				
Blank (24L0468-BLK1)			Prepared:	12/12/24	14:30 Ana	lyzed: 12/12	/24 22:59					
1311/6020B												
Arsenic	ND		0.100	mg/L	10							TCL
Barium	ND		5.00	mg/L	10							TCL
Cadmium	ND		0.100	mg/L	10							TCL
Chromium	ND		0.100	mg/L	10							TCL
Lead	ND		0.0500	mg/L	10							TCL
Mercury	ND		0.00700	mg/L	10							TCL
Selenium	ND		0.100	mg/L	10							TCL
Silver	ND		0.100	mg/L	10							TCL
LCS (24L0468-BS1)			Prepared:	12/12/24	14:30 Ana	lyzed: 12/12	/24 23:04					
1311/6020B												
Arsenic	5.02		0.100	mg/L	10	5.00		100	80-120%			TCL
Barium	10.3		5.00	mg/L	10	10.0		103	80-120%			TCL
Cadmium	1.01		0.100	mg/L	10	1.00		101	80-120%			TCL
Chromium	5.03		0.100	mg/L	10	5.00		101	80-120%			TCL
Lead	5.10		0.0500	mg/L	10	5.00		102	80-120%			TCL
Mercury	0.0979		0.00700	mg/L	10	0.100		98	80-120%			TCL
Selenium	1.00		0.100	mg/L	10	1.00		100	80-120%			TCL
Silver	0.983		0.100	mg/L	10	1.00		98	80-120%			TCL
Duplicate (24L0468-DUP1)			Prepared:	12/12/24	14:30 Ana	lyzed: 12/12	/24 23:15					
QC Source Sample: BH DPSed#3	20241203	(A4L0877-01)										
1311/6020B												
Arsenic	ND		0.100	mg/L	10		ND				20%	
Barium	ND		5.00	mg/L	10		ND				20%	
Cadmium	ND		0.100	mg/L	10		ND				20%	
Chromium	ND		0.100	mg/L	10		ND				20%	
Lead	0.142		0.0500	mg/L	10		0.149			5	20%	
Mercury	ND		0.00700	mg/L	10		ND				20%	
Selenium	ND		0.100	mg/L	10		ND				20%	
Silver	ND		0.100	mg/L	10		ND				20%	

Matrix Spike (24L0468-MS1)

Prepared: 12/12/24 14:30 Analyzed: 12/12/24 23:20

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 10 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: <u>Blue Heron - Waste Pile</u>

Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID: A4L0877 - 12 30 24 1713

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS) Detection Reporting Spike Source % REC RPD Dilution Analyte Result Limit Units Result % REC RPD Limit Notes Limit Amount Limits Batch 24L0468 - EPA 1311/3015A Solid Matrix Spike (24L0468-MS1) Prepared: 12/12/24 14:30 Analyzed: 12/12/24 23:20 QC Source Sample: BH DPSed#3 20241203 (A4L0877-01) 1311/6020B 0.100 5.04 5.00 101 Arsenic mg/L10 ND 50-150% Barium 10.9 5.00 mg/L 10 10.0 ND 109 50-150% Cadmium 1.04 0.100 mg/L104 10 1.00 ND 50-150% Chromium 5.08 0.100 mg/L 10 5.00 ND 102 50-150% Lead 5.26 0.0500 10 5.00 102 mg/L 0.149 50-150% mg/L Mercury 0.0975 0.0070010 0.100 ND 97 50-150% 1.01 0.100 10 1.00 101 Selenium mg/L ND 50-150% ---Silver 0.985 ---0.100 mg/L 10 1.00 ND 98 50-150%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 11 of 21

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron - Waste Pile

Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID: A4L0877 - 12 30 24 1713

SAMPLE PREPARATION INFORMATION

		Regulated TCLP Vo	latile Organic Comp	ounds by EPA 1311	/8260D		
Prep: EPA 1311/5030	C TCLP Volatiles				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0372 A4L0877-01	Solid	1311/8260D	12/03/24 15:30	12/09/24 15:09	5mL/5mL	5mL/5mL	1.00
		TCLP Semivolati	le Organic Compour	nds by EPA 1311/82	70E		
Prep: EPA 1311/3510	C (BNA Extraction	<u>ı)</u>			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0640 A4L0877-01	Solid	1311/8270E	12/03/24 15:30	12/17/24 14:17	200mL/2mL	200mL/2mL	1.00
		TCLF	P Metals by EPA 602	0B (ICPMS)			
Prep: EPA 1311/3015	<u>A</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0468							
A4L0877-01	Solid	1311/6020B	12/03/24 15:30	12/12/24 14:30	10mL/50mL	10mL/50mL	1.00
		Т	CLP Extraction by E	PA 1311			
Prep: EPA 1311 (TCL	<u>P)</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0385							
A4L0877-01	Solid	EPA 1311	12/03/24 15:30	12/11/24 14:15	100g/2000g	100g/2000g	NA
Prep: EPA 1311 TCLF	P/ZHE				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0308 A4L0877-01	Solid	EPA 1311 ZHE	12/03/24 15:30	12/09/24 14:33	25g/501.7g	25g/500g	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 12 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron - Waste Pile

Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID: A4L0877 - 12 30 24 1713

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

Q-01 Spike recovery and/or RPD is outside acceptance limits.

Q-18 Matrix Spike results for this extraction batch are not reported due to the high dilution necessary for analysis of the source sample.

Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely

biased high.

R-04 Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.

S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

TCLP This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 24L0308.

TCLPa This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 24L0385.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 13 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

WSP USA Environment & Infrastructure Inc.

Project: Blue Heron - Waste Pile

15862 SW 72nd Ave. Suite 150

Project Number: G685.0793 task 400

Portland, OR 97224 Project Manager: John Kuiper A4L0877 - 12 30 24 1713

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Validated Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

" " Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 14 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

Project: Blue Heron - Waste Pile

15862 SW 72nd Ave. Suite 150

Project Number: G685.0793 task 400

 15862 SW 72nd Ave. Suite 150
 Project Number: G685.0793 task 400
 Report ID:

 Portland, OR 97224
 Project Manager: John Kuiper
 A4L0877 - 12 30 24 1713

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL).

Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level.

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 15 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron - Waste Pile
Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID: A4L0877 - 12 30 24 1713

Decanted Samples:

Soils/Sediments:

Unless TCLP analysis is required or there is notification otherwise for a specific project, all Soil and Sediments containing excess water are decanted prior to analysis in order to provide the most representative sample for analysis.

Water Samples

Water samples containing solids and sediment may need to be decanted in order to eliminate these particulates from the water extractions. In the case of organics extractions, a solvent rinse of the container will not be performed.

Volatiles Soils (5035s)

Samples that are field preserved by 5035 for volatiles are dry weight corrected using the same dry weight corretion as for normal analyses. In the case of decanted samples, the dry weight may be performed on a decanted sample, while the aliquot for 5035 may not have been treated the same way. If this is a concern, please submit separate containers for dry weight analysis for volatiles can be provided.

All samples decanted in the laboratory are noted in this report with the DCNT qualifier indicating the sample was decanted.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherg

Page 16 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

WSP USA Environment & Infrastructure Inc.

Project: Blue Heron - Waste Pile

15862 SW 72nd Ave. Suite 150

Project Number: G685.0793 task 400

Portland, OR 97224

Project Manager: John Kuiper

Project Manager: John Kuiper A4L0877 - 12 30 24 1713

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 17 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron - Waste Pile

Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID: A4L0877 - 12 30 24 1713

Company: (NSP		_ E	Project Mgr. bhu Kuiner	da	K	30				Project	Name	(C)	Project Name: Blue Hough	1	100			Γ	Project #. 66 85.0793 task 400	793 to	12 6	8
15067 GL 72, 1400 #155 0. 4. 100 0273CL	27#	0.4	100	011	200	اً ا					H		170	3	1	0	my Other Com	T	n (
/ / / / / / / / / / / / / / / / / / /	200	1000	Line U		2	3		100					2) M	\$	3		1	#O#			
Sampled by: JOHNAC CLON,	242	Isiyar Jensen	3	-	-					H	ŀ	-	F	L	¥	ALV.	ANALYSIS REQUEST				ŀ	-
State OR County Clack	AL. V	HTA	IME	OF CONTAINERS	WTPH-HCID	xd-H4TW)	xD-H4TW)	790 BLEX	700 KBDW AOC	260 VOCs Pall 15c	270 SIM PAHs	270 Semi-Vols Full List	085 PCBs	081 Pesticides	CRA Metals (8)	riority Metals (13)	, Sb, As, Bs, Be, Cd, t, Mg, Ma, Mo, Nt, K, t, Ag, Na, Tt, V, Zn Ag, Na, Tt, V, Zn	CLP Metals (8)	5 aton 200	E 11.00 to 00000000	olamo S blo	old Sample ozen Archive
9H 008/#2100#1703		- 4	+	_	+	+-	1	8		-		+	_	+	_		Y S S C C	ı.	· ×		$\ddot{+}$	
1					+	+			\top	+	-	+	-	1	1	\perp		\top			-	-
		-			+	-			+	+	+-	+	-								+-	+
		+				-			-	+	+	+	+								+	+
		ļ		-	-	-			1	+	┼	-	<u> </u>		ļ			1			\vdash	-
										-			<u> </u>		<u> </u>							
							18															
										-	+							1				+
The state of the s				-								-		<u> </u>	<u> </u>							
Standard 7	Standard Turn Around Time (TAT) = 10 Business Days	nd Time	(TAT) = 1	0 Busine	ss Days]	1	1	Sil	EGA BCIA	SPECIAL INSTRUCTIONS:	M	NOIL	iż		1				1
	=	1 Day	2 Day	ay	\ ''	3 Day					~~	e,	13.	7	1	73	oundra.	nce	See list of TCLP compliance cuitena, run all anolytes	in al	Jub 1	dy.
IAT Requested (circle)	51	5 Day	Standard	dard	0	Other:					7	750	3	· ·	Jan	12	Also ce daniel schall@wsp.com	S.	200			
SAM	SAMPLES ARE HELD FOR 30 DAYS	E HELD F	OR 30 DA	I/S							Т											
RELINQUISHED BY: signature:	Date:	Date:		RECEIVED BY:	BY:	2		Date:	,		2 %	ELINQ pature:	RELINQUISHED BY: Signature:	ED BY			Date:	7	RECEIVED BY: Signature:	Date:		
Printed Name:	Time:	0		Printed Name:	2	5	-	対質	17.30	-	E	Printed Name	ame:				Time:	1	Printed Name:	Time:		
Company:			- [5] -	Company:	3	Ç ş	040			,	3	Company.			-	***************************************			Company:			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 18 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224

Blue Heron - Waste Pile Project:

Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID: A4L0877 - 12 30 24 1713

AUW877

Requirements and Procedures

T C L P - Compliance Criteria

Toxicity - A solid waste exhibits the characteristics of toxicity if the extract from a representative sample of the waste contains any contaminants listed by EPA at a concentration to or greater than a respective thresholds value.

Maximum Concentrations

Metals:	mg/l
Arsenic	5.0
Barium	100
Cadmium	1.0
Chromium	5.0
Lead	5.0
Mercury	0.2
Selenium	1.0
Silver	5.0
Volatiles:	mg/l
Benzene	0.5
Carbon Tetrachloride	0.5
Chlorobenzene	100
Chloroform	6.0
1,2-Dichloroethane	0.5
1,1-Dichloroethane	0.7
Methyl Ethyl Ketone	200
Tetrachloroethylene	0.7
Trichloroethylene	0.5
Vinyl Chloride	0.2
Semivolatiles:	mg/l
o-Cresol	200
m-Cresol	200
p-Cresol	200
2,4-Dinitrotoluene	0.13
Hexachlorobenzene	0.13

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 19 of 21

Portland, OR 97224

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc. Project: Blue Heron - Waste Pile

15862 SW 72nd Ave. Suite 150 Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID:

A4L0877 - 12 30 24 1713

		A440877
Hexachlorobutadiene Hexachloroethane Nitrobenzene Pentachlorophenol Pyridine	0.5 3.0 2.0 100 5.0	free for AAN
2,4,5-Trichlorophenol	400	
2,4,6-Trichlorophenol	2.0	
1,4-Dichlorobenzene	7.5	
Chloride:	mg/l	
Chloride	250.0	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 20 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron - Waste Pile

Project Number: G685.0793 task 400

Project Manager: John Kuiper

Report ID: A4L0877 - 12 30 24 1713

	APEX LABS COOLER RECEIPT FORM
Client: WSP	Element WO#: A4
Project/Project #: Blue	leron / 6685. 0793 Task 400
Delivery Info:	
Date/time received: 12/4/24	@ 11:30 By: 2KM
Delivered by: Apex_Client	ESSFedEx_UPS_RadioMorganSDSEvergreenOther
From USDA Regulated Origin	n? Yes No _X
Cooler Inspection Date/tim	ne inspected: 121424 @ 1130 By: AM
Chain of Custody included?	Yes _ × No
Signed/dated by client?	Yes Y No
Contains USDA Reg. Soils?	Yes No X Unsure (email RegSoils)
C	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
-	5.6
Custody seals? (Y/N)	N
Received on ice? (Y/N)	у
Temp. blanks? (Y/N)	y
	(Pe (I)
Condition (In/Out):	1/
	ssible reason why: emperature samples? Yes/No orm initiated? Yes/No ue inspected: 133 By: No Comments:
All samples intact? Yes	
Rottle labels/COCs agree? Vs	es No Comments:
Bottle labels/COCs agree: Te	S Comments.
COC/container discrenancies t	form initiated? Yes No
And the second s	appropriate for analysis? Yes No Comments:
Containers, voidines received a	appropriate for unarysis. 1 co 110 Comments.
	1
Do VOA vials have visible her	adspace? Yes No NA
Do VOA vials have visible her	adspace? Yes No NA
Comments	
Comments	YesNoNApH appropriate? YesNoNApH ID:

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 21 of 21

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Monday, December 30, 2024

John Kuiper

WSP USA Environment & Infrastructure Inc.
15862 SW 72nd Ave. Suite 150

Portland, OR 97224

RE: A4L0926 - Blue Heron - G685.0793 Task 400

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4L0926, which was received by the laboratory on 12/4/2024 at 11:30:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 5.6 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID:

A4L0926 - 12 30 24 1725

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	RMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-DPSed#1_20241203	A4L0926-01	Soil	12/03/24 14:55	12/04/24 11:30
BH-DPSed#2_20241203	A4L0926-02	Soil	12/03/24 15:10	12/04/24 11:30

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 2 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-DPSed#1 20241203 (A4L0926-01)				Matrix: Soil		•	24L0206	1.5105
<u>-</u>	ND		1000			12/06/24 18:47	5035A/8260D	
Acetone	ND		1090	ug/kg dry	50			
Acrylonitrile	ND		109	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Benzene	ND		10.9	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Bromobenzene	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Bromochloromethane	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Bromodichloromethane	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Bromoform	ND		109	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Bromomethane	ND		545	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
2-Butanone (MEK)	ND		545	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
n-Butylbenzene	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
sec-Butylbenzene	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
tert-Butylbenzene	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Carbon disulfide	ND		545	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Carbon tetrachloride	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Chlorobenzene	113		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Chloroethane	ND		545	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Chloroform	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Chloromethane	ND		273	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
2-Chlorotoluene	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
4-Chlorotoluene	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Dibromochloromethane	ND		109	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		273	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Dibromomethane	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,2-Dichlorobenzene	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,3-Dichlorobenzene	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,4-Dichlorobenzene	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Dichlorodifluoromethane	ND		109	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,1-Dichloroethane	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,1-Dichloroethene	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
cis-1,2-Dichloroethene	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
trans-1,2-Dichloroethene	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 82	:60D			
A 17	Sample	Detection	Reporting	** *	Bu :	Date	16.4 (5.5	3.7
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH-DPSed#1_20241203 (A4L0926-01)				Matrix: Soi	I	Batch:	24L0206	
1,2-Dichloropropane	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,3-Dichloropropane	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
2,2-Dichloropropane	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,1-Dichloropropene	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
cis-1,3-Dichloropropene	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
trans-1,3-Dichloropropene	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Ethylbenzene	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Hexachlorobutadiene	ND		109	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
2-Hexanone	ND		545	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Isopropylbenzene	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
4-Isopropyltoluene	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Methylene chloride	ND		545	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		545	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Naphthalene	ND		109	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
n-Propylbenzene	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Styrene	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		164	ug/kg dry	50	12/06/24 18:47	5035A/8260D	R-02
Tetrachloroethene (PCE)	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Toluene	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,2,3-Trichlorobenzene	ND		273	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,2,4-Trichlorobenzene	ND		273	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,1,1-Trichloroethane	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,1,2-Trichloroethane	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Trichloroethene (TCE)	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Trichlorofluoromethane	746		273	ug/kg dry	50	12/06/24 18:47	5035A/8260D	Q-54h, V-14
1,2,3-Trichloropropane	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,2,4-Trimethylbenzene	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
1,3,5-Trimethylbenzene	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
Vinyl chloride	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
m,p-Xylene	ND		54.5	ug/kg dry	50	12/06/24 18:47	5035A/8260D	
o-Xylene	ND		27.3	ug/kg dry	50	12/06/24 18:47	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 4 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-DPSed#1 20241203 (A4L0926-01)	Result	Lillit	Lillit	Matrix: Soil	Dilution	•	24L0206	110168
		D	00.0/		1	12/06/24 18:47		
Surrogate: 1,4-Difluorobenzene (Surr) Toluene-d8 (Surr)		Reco	very: 99 % 99 %	Limits: 80-120 % 80-120 %	1 1	12/06/24 18:47	5035A/8260D 5035A/8260D	
4-Bromofluorobenzene (Surr)			102 %	79-120 %	1	12/06/24 18:47	5035A/8260D 5035A/8260D	
BH-DPSed#2_20241203 (A4L0926-02)				Matrix: Soil		Batch:	24L0206	
Acetone	ND		1270	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Acrylonitrile	ND		127	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Benzene	ND		12.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Bromobenzene	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Bromochloromethane	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Bromodichloromethane	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Bromoform	ND		127	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Bromomethane	ND		633	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
2-Butanone (MEK)	ND		633	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
n-Butylbenzene	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
sec-Butylbenzene	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
tert-Butylbenzene	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Carbon disulfide	ND		633	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Carbon tetrachloride	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Chlorobenzene	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Chloroethane	ND		633	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Chloroform	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Chloromethane	ND		317	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
2-Chlorotoluene	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
4-Chlorotoluene	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Dibromochloromethane	ND		127	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		317	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Dibromomethane	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,2-Dichlorobenzene	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,3-Dichlorobenzene	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,4-Dichlorobenzene	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Dichlorodifluoromethane	ND		127	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,1-Dichloroethane	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

ANALYTICAL SAMPLE RESULTS

	Vo	olatile Organ	ic Compound	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-DPSed#2_20241203 (A4L0926-02)				Matrix: Soil	1	Batch:	24L0206	
1,2-Dichloroethane (EDC)	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	_
1,1-Dichloroethene	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
cis-1,2-Dichloroethene	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
trans-1,2-Dichloroethene	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,2-Dichloropropane	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,3-Dichloropropane	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
2,2-Dichloropropane	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,1-Dichloropropene	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
cis-1,3-Dichloropropene	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
trans-1,3-Dichloropropene	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Ethylbenzene	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Hexachlorobutadiene	ND		127	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
2-Hexanone	ND		633	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Isopropylbenzene	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
4-Isopropyltoluene	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Methylene chloride	ND		633	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		633	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Naphthalene	ND		127	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
n-Propylbenzene	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Styrene	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Tetrachloroethene (PCE)	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Toluene	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,2,3-Trichlorobenzene	ND		317	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,2,4-Trichlorobenzene	ND		317	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,1,1-Trichloroethane	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,1,2-Trichloroethane	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Trichloroethene (TCE)	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Trichlorofluoromethane	ND		317	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,2,3-Trichloropropane	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
1,2,4-Trimethylbenzene	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 6 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	30D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH-DPSed#2_20241203 (A4L0926-02)				Matrix: Soil		Batch:	24L0206	
1,3,5-Trimethylbenzene	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Vinyl chloride	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
m,p-Xylene	ND		63.3	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
o-Xylene	ND		31.7	ug/kg dry	50	12/06/24 15:36	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	5 1	12/06/24 15:36	5035A/8260D	
Toluene-d8 (Surr)			100 %	80-120 %	5 1	12/06/24 15:36	5035A/8260D	
4-Bromofluorobenzene (Surr)			100 %	79-120 %	5 1	12/06/24 15:36	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 7 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	ls by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-DPSed#1_20241203 (A4L0926-01)				Matrix: Soil		Batch:	24L0546	C-07
Aroclor 1016	ND		11.2	ug/kg dry	1	12/16/24 19:58	EPA 8082A	
Aroclor 1221	ND		11.2	ug/kg dry	1	12/16/24 19:58	EPA 8082A	
Aroclor 1232	ND		11.2	ug/kg dry	1	12/16/24 19:58	EPA 8082A	
Aroclor 1242	231		11.2	ug/kg dry	1	12/16/24 19:58	EPA 8082A	P-12
Aroclor 1248	ND		11.2	ug/kg dry	1	12/16/24 19:58	EPA 8082A	
Aroclor 1254	234		11.2	ug/kg dry	1	12/16/24 19:58	EPA 8082A	P-12
Aroclor 1260	132		11.2	ug/kg dry	1	12/16/24 19:58	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Recov	ery: 111 %	Limits: 60-125 %	1	12/16/24 19:58	EPA 8082A	
BH-DPSed#2_20241203 (A4L0926-02)				Matrix: Soil		Batch:	24L0546	C-07
Aroclor 1016	ND		11.5	ug/kg dry	1	12/16/24 20:34	EPA 8082A	
Aroclor 1221	ND		11.5	ug/kg dry	1	12/16/24 20:34	EPA 8082A	
Aroclor 1232	ND		11.5	ug/kg dry	1	12/16/24 20:34	EPA 8082A	
Aroclor 1242	61.5		11.5	ug/kg dry	1	12/16/24 20:34	EPA 8082A	P-12
Aroclor 1248	ND		11.5	ug/kg dry	1	12/16/24 20:34	EPA 8082A	
Aroclor 1254	135		11.5	ug/kg dry	1	12/16/24 20:34	EPA 8082A	P-12
Aroclor 1260	56.0		11.5	ug/kg dry	1	12/16/24 20:34	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Recov	ery: 113 %	Limits: 60-125 %	1	12/16/24 20:34	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 8 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20B (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH-DPSed#1_20241203 (A4L0926-01)				Matrix: Soil				
Batch: 24L0557								
Arsenic	7.22		1.35	mg/kg dry	10	12/16/24 22:22	EPA 6020B	Q-42
Barium	117		1.35	mg/kg dry	10	12/16/24 22:22	EPA 6020B	Q-42
Cadmium	1.14		0.270	mg/kg dry	10	12/16/24 22:22	EPA 6020B	
Chromium	81.6		1.35	mg/kg dry	10	12/16/24 22:22	EPA 6020B	Q-42
Selenium	ND		1.35	mg/kg dry	10	12/16/24 22:22	EPA 6020B	
Silver	10.1		0.270	mg/kg dry	10	12/16/24 22:22	EPA 6020B	Q-42
BH-DPSed#1_20241203 (A4L0926-01RE1	1)			Matrix: Soil	1			
Batch: 24L0557		<u></u>	<u></u>					
Lead	875		2.70	mg/kg dry	100	12/17/24 22:02	EPA 6020B	Q-42
Mercury	21.7		1.08	mg/kg dry	100	12/17/24 22:02	EPA 6020B	Q-42
BH-DPSed#2_20241203 (A4L0926-02)				Matrix: Soil				
Batch: 24L0557								
Arsenic	4.53		1.43	mg/kg dry	10	12/16/24 22:48	EPA 6020B	
Barium	125		1.43	mg/kg dry	10	12/16/24 22:48	EPA 6020B	
Cadmium	1.04		0.286	mg/kg dry	10	12/16/24 22:48	EPA 6020B	
Chromium	28.0		1.43	mg/kg dry	10	12/16/24 22:48	EPA 6020B	
Lead	86.3		0.286	mg/kg dry	10	12/16/24 22:48	EPA 6020B	
Mercury	1.33		0.114	mg/kg dry	10	12/16/24 22:48	EPA 6020B	
Selenium	ND		1.43	mg/kg dry	10	12/16/24 22:48	EPA 6020B	
Silver	ND		0.286	mg/kg dry	10	12/16/24 22:48	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherz

Page 9 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID:

A4L0926 - 12 30 24 1725

ANALYTICAL SAMPLE RESULTS

		TCLP Meta	als by EPA 60	20B (ICPMS	5)									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes						
BH-DPSed#1_20241203 (A4L0926-01)		Matrix: Soil												
Batch: 24L0997														
Lead	0.799		0.0500	mg/L	10	12/27/24 23:54	1311/6020B							
Mercury	ND		0.00700	mg/L	10	12/27/24 23:54	1311/6020B							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 10 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry We	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-DPSed#1_20241203 (A4L0926-01)				Matrix: So	oil	Batch:	24L0168	
% Solids	81.1		1.00	%	1	12/06/24 05:52	EPA 8000D	
BH-DPSed#2_20241203 (A4L0926-02)				Matrix: So	oil	Batch:	24L0168	
% Solids	77.1		1.00	%	1	12/06/24 05:52	EPA 8000D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 11 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Cor	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0206 - EPA 5035A							Soi	I				
Blank (24L0206-BLK1)			Prepared	l: 12/06/24 0	9:00 Ana	lyzed: 12/06	/24 11:31					
5035A/8260D												
Acetone	ND		1000	ug/kg we	t 50							
Acrylonitrile	ND		100	ug/kg we	t 50							
Benzene	ND		10.0	ug/kg we	t 50							
Bromobenzene	ND		25.0	ug/kg we	t 50							
Bromochloromethane	ND		50.0	ug/kg we	t 50							
Bromodichloromethane	ND		50.0	ug/kg we								
Bromoform	ND		100	ug/kg we	t 50							
Bromomethane	ND		500	ug/kg we								
2-Butanone (MEK)	ND		500	ug/kg we								
n-Butylbenzene	ND		50.0	ug/kg we								
sec-Butylbenzene	ND		50.0	ug/kg we								
tert-Butylbenzene	ND		50.0	ug/kg we								
Carbon disulfide	ND		500	ug/kg we								
Carbon tetrachloride	ND		50.0	ug/kg we								
Chlorobenzene	ND		25.0	ug/kg we								
Chloroethane	ND		500	ug/kg we								
Chloroform	ND		50.0	ug/kg we								
Chloromethane	ND		250	ug/kg we								
2-Chlorotoluene	ND		50.0	ug/kg we								
4-Chlorotoluene	ND		50.0	ug/kg we								
Dibromochloromethane	ND		100	ug/kg we								
1,2-Dibromo-3-chloropropane	ND		250	ug/kg we								
1,2-Dibromoethane (EDB)	ND		50.0	ug/kg we								
Dibromomethane	ND		50.0	ug/kg we								
1,2-Dichlorobenzene	ND		25.0									
1,3-Dichlorobenzene	ND ND		25.0	ug/kg we ug/kg we								
1,4-Dichlorobenzene	ND		25.0									
Dichlorodifluoromethane			100	ug/kg we								
	ND			ug/kg we								
1,1-Dichloroethane	ND		25.0	ug/kg we								
1,2-Dichloroethane (EDC)	ND		25.0	ug/kg we								
1,1-Dichloroethene	ND		25.0	ug/kg we								
cis-1,2-Dichloroethene	ND		25.0	ug/kg we								
trans-1,2-Dichloroethene	ND		25.0	ug/kg we	t 50							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 12 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24L0206 - EPA 5035A Soil Blank (24L0206-BLK1) Prepared: 12/06/24 09:00 Analyzed: 12/06/24 11:31 ND 25.0 50 1,2-Dichloropropane ug/kg wet 1,3-Dichloropropane ND 50.0 ug/kg wet 50 ---------2,2-Dichloropropane ND 50.0 ug/kg wet 50 1,1-Dichloropropene ND 50.0 ug/kg wet 50 50.0 cis-1,3-Dichloropropene ND 50 ug/kg wet trans-1,3-Dichloropropene ND 50.0 ug/kg wet 50 Ethylbenzene ND 25.0 ug/kg wet 50 Hexachlorobutadiene ND 100 ug/kg wet 50 2-Hexanone 500 ND ug/kg wet 50 Isopropylbenzene ND 50.0 ug/kg wet 50 4-Isopropyltoluene ND 50.0 50 ug/kg wet Methylene chloride 500 ND ug/kg wet 50 4-Methyl-2-pentanone (MiBK) ND 500 ug/kg wet 50 ------Methyl tert-butyl ether (MTBE) ND 50.0 ug/kg wet 50 Naphthalene ND 100 ug/kg wet 50 n-Propylbenzene ND 25.0 ug/kg wet 50 ND 50.0 Stvrene ug/kg wet 50 1,1,1,2-Tetrachloroethane ND 25.0 50 ug/kg wet 1,1,2,2-Tetrachloroethane ND 50.0 ug/kg wet 50 ------Tetrachloroethene (PCE) ND 25.0 ug/kg wet 50 Toluene ND 50.0 50 ug/kg wet ---1,2,3-Trichlorobenzene ND 250 ug/kg wet 50 1.2.4-Trichlorobenzene ND 250 50 ug/kg wet 1,1,1-Trichloroethane ND 25.0 50 ug/kg wet ND 25.0 1,1,2-Trichloroethane ug/kg wet 50 ------------Trichloroethene (TCE) ND 25.0 ug/kg wet 50 Trichlorofluoromethane ND 250 50 ug/kg wet ---------1,2,3-Trichloropropane ND 50.0 ug/kg wet 50 1,2,4-Trimethylbenzene ND 50.0 50 ug/kg wet ---1,3,5-Trimethylbenzene ND 50.0 ug/kg wet 50 50 Vinyl chloride ND 25.0 ug/kg wet --m,p-Xylene ND 50.0 ug/kg wet 50

Surr: 1,4-Difluorobenzene (Surr) Recovery: 97 % Limits: 80-120 % Dilution: 1x

25.0

ug/kg wet

ND

Apex Laboratories

Philip Merenberg

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 13 of 45

50

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0206 - EPA 5035A							Soi	il				
Blank (24L0206-BLK1)			Prepared	d: 12/06/24 0	09:00 Ana	lyzed: 12/06	/24 11:31					
Surr: Toluene-d8 (Surr)		Reco	very: 102 %	Limits: 80-	-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			98 %	79-	-120 %		"					
LCS (24L0206-BS1)			Prepared	1: 12/06/24 0	09:00 Ana	lyzed: 12/06	/24 10:36					
5035A/8260D												
Acetone	1980		1000	ug/kg we	et 50	2000		99	80-120%			ICV-0
Acrylonitrile	1070		100	ug/kg we	et 50	1000		107	80-120%			
Benzene	1120		10.0	ug/kg we	et 50	1000		112	80-120%			
Bromobenzene	1080		25.0	ug/kg we	et 50	1000		108	80-120%			
Bromochloromethane	1130		50.0	ug/kg we	et 50	1000		113	80-120%			
Bromodichloromethane	1160		50.0	ug/kg we	et 50	1000		116	80-120%			
Bromoform	1020		100	ug/kg we	et 50	1000		102	80-120%			
Bromomethane	1510		500	ug/kg we	et 50	1000		151	80-120%			Q-5
2-Butanone (MEK)	2200		500	ug/kg we	et 50	2000		110	80-120%			
n-Butylbenzene	1170		50.0	ug/kg we	et 50	1000		117	80-120%			
sec-Butylbenzene	1200		50.0	ug/kg we	et 50	1000		120	80-120%			
tert-Butylbenzene	1170		50.0	ug/kg we	et 50	1000		117	80-120%			
Carbon disulfide	1120		500	ug/kg we	et 50	1000		112	80-120%			
Carbon tetrachloride	1200		50.0	ug/kg we	et 50	1000		120	80-120%			
Chlorobenzene	1060		25.0	ug/kg we	et 50	1000		106	80-120%			
Chloroethane	1010		500	ug/kg we	et 50	1000		101	80-120%			
Chloroform	1100		50.0	ug/kg we	et 50	1000		110	80-120%			
Chloromethane	862		250	ug/kg we	et 50	1000		86	80-120%			
2-Chlorotoluene	1140		50.0	ug/kg we	et 50	1000		114	80-120%			
4-Chlorotoluene	1130		50.0	ug/kg we	et 50	1000		113	80-120%			
Dibromochloromethane	1250		100	ug/kg we	et 50	1000		125	80-120%			Q-5
1,2-Dibromo-3-chloropropane	860		250	ug/kg we	et 50	1000		86	80-120%			
1,2-Dibromoethane (EDB)	1110		50.0	ug/kg we	et 50	1000		111	80-120%			
Dibromomethane	1110		50.0	ug/kg we		1000		111	80-120%			
1,2-Dichlorobenzene	1040		25.0	ug/kg we		1000		104	80-120%			
1,3-Dichlorobenzene	1070		25.0	ug/kg we	et 50	1000		107	80-120%			
1,4-Dichlorobenzene	1040		25.0	ug/kg we		1000		104	80-120%			
Dichlorodifluoromethane	862		100	ug/kg we	et 50	1000		86	80-120%			
1,1-Dichloroethane	1130		25.0	ug/kg we		1000		113	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 14 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection	Reporting	Spike	Source	% REC	RPD

Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	% REC Limits	RPD	Limit	Notes
Batch 24L0206 - EPA 5035A							Soi	il				
LCS (24L0206-BS1)			Prepared	l: 12/06/24 0	9:00 Ana	lyzed: 12/06	/24 10:36					
1,2-Dichloroethane (EDC)	1120		25.0	ug/kg we	t 50	1000		112	80-120%			
1,1-Dichloroethene	1220		25.0	ug/kg we	t 50	1000		122	80-120%			Q-5
cis-1,2-Dichloroethene	1140		25.0	ug/kg we	t 50	1000		114	80-120%			
trans-1,2-Dichloroethene	1170		25.0	ug/kg we	t 50	1000		117	80-120%			
1,2-Dichloropropane	1140		25.0	ug/kg we	t 50	1000		114	80-120%			
1,3-Dichloropropane	1120		50.0	ug/kg we	t 50	1000		112	80-120%			
2,2-Dichloropropane	1400		50.0	ug/kg we	t 50	1000		140	80-120%			Q-5
1,1-Dichloropropene	1140		50.0	ug/kg we	t 50	1000		114	80-120%			
cis-1,3-Dichloropropene	1240		50.0	ug/kg we	t 50	1000		124	80-120%			Q-5
trans-1,3-Dichloropropene	1350		50.0	ug/kg we	t 50	1000		135	80-120%			Q-5
Ethylbenzene	1140		25.0	ug/kg we	t 50	1000		114	80-120%			
Hexachlorobutadiene	1000		100	ug/kg we	t 50	1000		100	80-120%			
2-Hexanone	1870		500	ug/kg we	t 50	2000		93	80-120%			
Isopropylbenzene	1090		50.0	ug/kg we	t 50	1000		109	80-120%			
4-Isopropyltoluene	1180		50.0	ug/kg we	t 50	1000		118	80-120%			
Methylene chloride	1070		500	ug/kg we	t 50	1000		107	80-120%			
4-Methyl-2-pentanone (MiBK)	2200		500	ug/kg we	t 50	2000		110	80-120%			
Methyl tert-butyl ether (MTBE)	1130		50.0	ug/kg we	t 50	1000		113	80-120%			
Naphthalene	887		100	ug/kg we	t 50	1000		89	80-120%			
n-Propylbenzene	1180		25.0	ug/kg we	t 50	1000		118	80-120%			
Styrene	930		50.0	ug/kg we	t 50	1000		93	80-120%			
1,1,1,2-Tetrachloroethane	1180		25.0	ug/kg we	t 50	1000		118	80-120%			
1,1,2,2-Tetrachloroethane	1160		50.0	ug/kg we	t 50	1000		116	80-120%			
Tetrachloroethene (PCE)	1050		25.0	ug/kg we	t 50	1000		105	80-120%			
Toluene	1040		50.0	ug/kg we	t 50	1000		104	80-120%			
1,2,3-Trichlorobenzene	960		250	ug/kg we	t 50	1000		96	80-120%			
1,2,4-Trichlorobenzene	993		250	ug/kg we	t 50	1000		99	80-120%			
1,1,1-Trichloroethane	1140		25.0	ug/kg we	t 50	1000		114	80-120%			
1,1,2-Trichloroethane	1070		25.0	ug/kg we	t 50	1000		107	80-120%			
Trichloroethene (TCE)	1010		25.0	ug/kg we		1000		101	80-120%			
Trichlorofluoromethane	724		250	ug/kg we		1000		72	80-120%			Q-5
1,2,3-Trichloropropane	1090		50.0	ug/kg we		1000		109	80-120%			
1,2,4-Trimethylbenzene	1190		50.0	ug/kg we		1000		119	80-120%			
1,3,5-Trimethylbenzene	1220		50.0	ug/kg we		1000		122	80-120%			Q-5

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherg

Page 15 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	pounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0206 - EPA 5035A							Soi	I				
LCS (24L0206-BS1)			Prepare	d: 12/06/24 09	9:00 Ana	lyzed: 12/06	5/24 10:36					
Vinyl chloride	1120		25.0	ug/kg wet	50	1000		112	80-120%			
m,p-Xylene	2370		50.0	ug/kg wet	50	2000		118	80-120%			
o-Xylene	1120		25.0	ug/kg wet		1000		112	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 97 %	Limits: 80-	120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			101 %	80-1	120 %		"					
4-Bromofluorobenzene (Surr)			96 %	79-1	120 %		"					
Duplicate (24L0206-DUP1)			Prepare	d: 12/05/24 1:	5:11 Ana	lyzed: 12/06	5/24 14:42					V -1
OC Source Sample: Non-SDG (A4)	L0948-01)											
Acetone	ND		7000	ug/kg dry	200		ND				30%	
Acrylonitrile	ND		700	ug/kg dry			ND				30%	
Benzene	ND		70.0	ug/kg dry			52.5			***	30%	
Bromobenzene	ND		175	ug/kg dry			ND				30%	
Bromochloromethane	ND		350	ug/kg dry	200		ND				30%	
Bromodichloromethane	ND		350	ug/kg dry	200		ND				30%	
Bromoform	ND		700	ug/kg dry	200		ND				30%	
Bromomethane	ND		3500	ug/kg dry	200		ND				30%	
2-Butanone (MEK)	ND		3500	ug/kg dry	200		ND				30%	
n-Butylbenzene	619		350	ug/kg dry	200		745			18	30%	
sec-Butylbenzene	ND		350	ug/kg dry	200		315			***	30%	
tert-Butylbenzene	ND		350	ug/kg dry	200		ND				30%	
Carbon disulfide	ND		3500	ug/kg dry	200		ND				30%	
Carbon tetrachloride	ND		350	ug/kg dry	200		ND				30%	
Chlorobenzene	ND		175	ug/kg dry	200		ND				30%	
Chloroethane	ND		3500	ug/kg dry	200		ND				30%	
Chloroform	ND		350	ug/kg dry	200		ND				30%	
Chloromethane	ND		1750	ug/kg dry	200		ND				30%	
2-Chlorotoluene	ND		350	ug/kg dry	200		ND				30%	
4-Chlorotoluene	ND		350	ug/kg dry			ND				30%	
Dibromochloromethane	ND		700	ug/kg dry			ND				30%	
1,2-Dibromo-3-chloropropane	ND		1750	ug/kg dry			ND				30%	
1,2-Dibromoethane (EDB)	ND		350	ug/kg dry	200		ND				30%	
Dibromomethane	ND		350	ug/kg dry			ND				30%	
				2 2 3								

Apex Laboratories

1,2-Dichlorobenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

ND

Philip Nerenberg, Lab Director

Philip Nevenberg

ND

175

ug/kg dry

200

Page 16 of 45

30%

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Orç	ganic Cor	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0206 - EPA 5035A							Soi	I				
Ouplicate (24L0206-DUP1)			Prepared	: 12/05/24 1	5:11 Anal	yzed: 12/06/	/24 14:42					V-1
QC Source Sample: Non-SDG (A4L	.0948-01)											
1,3-Dichlorobenzene	ND		175	ug/kg dry	y 200		ND				30%	
1,4-Dichlorobenzene	ND		175	ug/kg dry	y 200		ND				30%	
Dichlorodifluoromethane	ND		700	ug/kg dry	y 200		ND				30%	
1,1-Dichloroethane	ND		175	ug/kg dry	y 200		ND				30%	
1,2-Dichloroethane (EDC)	ND		175	ug/kg dry	y 200		ND				30%	
1,1-Dichloroethene	ND		175	ug/kg dry	y 200		ND				30%	
cis-1,2-Dichloroethene	ND		175	ug/kg dry	y 200		ND				30%	
trans-1,2-Dichloroethene	ND		175	ug/kg dry	y 200		ND				30%	
1,2-Dichloropropane	ND		175	ug/kg dry	y 200		ND				30%	
1,3-Dichloropropane	ND		350	ug/kg dry	y 200		ND				30%	
2,2-Dichloropropane	ND		350	ug/kg dry	y 200		ND				30%	
1,1-Dichloropropene	ND		350	ug/kg dry	y 200		ND				30%	
cis-1,3-Dichloropropene	ND		350	ug/kg dry	y 200		ND				30%	
trans-1,3-Dichloropropene	ND		350	ug/kg dry	y 200		ND				30%	
Ethylbenzene	871		175	ug/kg dry	y 200		899			3	30%	
Hexachlorobutadiene	ND		700	ug/kg dry	y 200		ND				30%	
2-Hexanone	ND		3500	ug/kg dry	y 200		ND				30%	
Isopropylbenzene	357		350	ug/kg dry	y 200		378			6	30%	
4-Isopropyltoluene	ND		350	ug/kg dry	y 200		ND				30%	
Methylene chloride	ND		3500	ug/kg dry	y 200		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		3500	ug/kg dry	y 200		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		350	ug/kg dry	y 200		ND				30%	
Naphthalene	1080		700	ug/kg dry	y 200		1370			24	30%	
n-Propylbenzene	1830		175	ug/kg dry	y 200		1910			4	30%	
Styrene	ND		350	ug/kg dry	y 200		ND				30%	
1,1,1,2-Tetrachloroethane	ND		175	ug/kg dry	y 200		ND				30%	
1,1,2,2-Tetrachloroethane	ND		350	ug/kg dry	y 200		ND				30%	
Tetrachloroethene (PCE)	ND		175	ug/kg dry	y 200		ND				30%	
Toluene	ND		350	ug/kg dry	y 200		ND				30%	
1,2,3-Trichlorobenzene	ND		1750	ug/kg dry	y 200		ND				30%	
1,2,4-Trichlorobenzene	ND		1750	ug/kg dry	y 200		ND				30%	
1,1,1-Trichloroethane	ND		175	ug/kg dry	y 200		ND				30%	
1,1,2-Trichloroethane	ND		175	ug/kg dry	y 200		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 17 of 45

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224

Blue Heron Project:

Project Number: G685.0793 Task 400

Project Manager: John Kuiper A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0206 - EPA 5035A							Soi	I				
Duplicate (24L0206-DUP1)	Prepared: 12/05/24 15:11 Analyzed: 12/06/24 14:42											V-15
QC Source Sample: Non-SDG (A4	L0948-01)											
Trichloroethene (TCE)	ND		175	ug/kg dr	y 200		ND				30%	
Trichlorofluoromethane	ND		1750	ug/kg dr	y 200		ND				30%	
1,2,3-Trichloropropane	ND		350	ug/kg dr	y 200		ND				30%	
1,2,4-Trimethylbenzene	ND		350	ug/kg dr	y 200		ND				30%	
1,3,5-Trimethylbenzene	ND		350	ug/kg dr	y 200		ND				30%	
Vinyl chloride	ND		175	ug/kg dr	y 200		ND				30%	
m,p-Xylene	ND		350	ug/kg dr	y 200		ND				30%	
o-Xylene	ND		175	ug/kg dr	y 200		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			101 %	80-120 %			"					
4-Bromofluorobenzene (Surr)			102 %	79-	-120 %		"					
QC Source Sample: Non-SDG (A4	L0921-01)											
5035A/8260D												
Acetone	2180		1050	ug/kg dr		2090	ND	104	36-164%			ICV-01
Acrylonitrile	1110		105	ug/kg dr		1040	ND	106	65-134%			
Benzene	1230		10.5	ug/kg dr		1040	ND	118	77-121%			
Bromobenzene	1080		26.2	ug/kg dr		1040	ND	104	78-121%			
Bromochloromethane	1220		52.3	ug/kg dr		1040	ND	117	78-125%			
Bromodichloromethane	1200		52.3	ug/kg dr		1040	ND	115	75-127%			
Bromoform	1070		105	ug/kg dr	•	1040	ND	102	67-132%			0.54
Bromomethane	1740		523	ug/kg dr		1040	ND	166	53-143%			Q-54d
2-Butanone (MEK)	2260		523	ug/kg dr		2090	ND	108	51-148%			
n-Butylbenzene	1190		52.3	ug/kg dr		1040	ND	114	70-128%			
sec-Butylbenzene	1240		52.3	ug/kg dr		1040	ND	119	73-126%			
tert-Butylbenzene	1210		52.3	ug/kg dr		1040	ND	116	73-125%			0.01
Carbon disulfide	1470		523	ug/kg dr		1040	ND	141	63-132%			Q-01
Carbon tetrachloride	1370		52.3	ug/kg dr		1040	ND	131	70-135%			
Chlorobenzene	1140		26.2	ug/kg dr		1040	ND	109	79-120%			
Chloroethane	1140		523	ug/kg dr		1040	ND	109	59-139%			
Chloroform	1190		52.3	ug/kg dr		1040	ND	114	78-123%			
Chloromethane	1040		262	ug/kg dr	y 50	1040	ND	100	50-136%			

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source RPD Analyte Result Units Dilution % REC Limit Limit Amount Result Limits Limit Notes Batch 24L0206 - EPA 5035A Soil Matrix Spike (24L0206-MS1) Prepared: 12/05/24 12:54 Analyzed: 12/06/24 17:25 QC Source Sample: Non-SDG (A4L0921-01) 2-Chlorotoluene 1170 52.3 50 1040 ND 112 75-122% ug/kg dry 4-Chlorotoluene 1180 52.3 1040 ug/kg dry 50 ND 113 72-124% Dibromochloromethane 1320 105 ug/kg dry 50 1040 ND 126 74-126% Q-54f 1,2-Dibromo-3-chloropropane 852 262 ug/kg dry 50 1040 ND 82 61-132% 1,2-Dibromoethane (EDB) 1180 52.3 50 1040 ND 113 78-122% ug/kg dry 1040 52.3 Dibromomethane 1150 ug/kg dry 50 ND 110 78-125% 1,2-Dichlorobenzene 1080 26.2 50 1040 ND 103 78-121% ug/kg dry 26.2 1,3-Dichlorobenzene 1110 ug/kg dry 50 1040 ND 106 77-121% 1,4-Dichlorobenzene 1080 26.2 ug/kg dry 50 1040 ND 103 75-120% Dichlorodifluoromethane 1240 105 ug/kg dry 50 1040 ND 119 29-149% 1,1-Dichloroethane 1240 26.2 ug/kg dry 50 1040 ND 118 76-125% 1,2-Dichloroethane (EDC) 1040 1200 26.2 73-128% ug/kg dry 50 ND 115 Q-54b 1,1-Dichloroethene 1480 26.2 ug/kg dry 50 1040 ND 142 70-131% cis-1,2-Dichloroethene 1230 26.2 1040 ND 77-123% ug/kg dry 50 118 trans-1,2-Dichloroethene 26.2 1300 ug/kg dry 50 1040 ND 125 74-125% 1,2-Dichloropropane 1210 26.2 ug/kg dry 50 1040 ND 116 76-123% ___ 1,3-Dichloropropane 1170 52.3 ug/kg dry 50 1040 ND 112 77-121% 1480 52.3 50 1040 ND O-54c 2,2-Dichloropropane 67-133% ug/kg dry 142 52.3 76-125% 1,1-Dichloropropene 1280 ug/kg dry 50 1040 ND 122 Q-54e 52.3 cis-1,3-Dichloropropene 1320 50 1040 ND 74-126% ug/kg dry 126 1390 52.3 Q-54a trans-1,3-Dichloropropene ug/kg dry 50 1040 ND 133 71-130% Ethylbenzene 1200 ---26.2 ug/kg dry 50 1040 ND 114 76-122% Hexachlorobutadiene 1050 105 ug/kg dry 50 1040 ND 101 61-135% 1870 523 2090 2-Hexanone ug/kg dry 50 ND 89 53-145% ------Isopropylbenzene 52.3 1110 ug/kg dry 50 1040 ND 106 68-134% 52.3 1040 ND 4-Isopropyltoluene 1200 50 73-127% ug/kg dry 115 Methylene chloride 1120 523 50 1040 ND 107 70-128% ug/kg dry 4-Methyl-2-pentanone (MiBK) 2210 523 ug/kg dry 50 2090 ND 106 65-135% ------Methyl tert-butyl ether (MTBE) 1190 52.3 ug/kg dry 50 1040 ND 114 73-125% Naphthalene 900 105 50 1040 ND 62-129% ug/kg dry 86 n-Propylbenzene 1250 26.2 50 1040 ND 119 73-125% ug/kg dry 52.3 1040 92 Styrene 966 50 ND 76-124% ug/kg dry ---1,1,1,2-Tetrachloroethane 1200 26.2 ug/kg dry 50 1040 ND 115 78-125%

Apex Laboratories

Philip Manherz

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 19 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24L0206 - EPA 5035A Soil Matrix Spike (24L0206-MS1) Prepared: 12/05/24 12:54 Analyzed: 12/06/24 17:25 QC Source Sample: Non-SDG (A4L0921-01) 1,1,2,2-Tetrachloroethane 1150 52.3 ug/kg dry 50 1040 ND 110 70-124% 73-128% Tetrachloroethene (PCE) 26.2 1040 1190 ug/kg dry 50 ND 114 77-121% Toluene 1120 52.3 ug/kg dry 50 1040 ND 107 1,2,3-Trichlorobenzene 979 262 ug/kg dry 50 1040 ND 94 66-130% 1,2,4-Trichlorobenzene 984 262 ug/kg dry 50 1040 ND 94 67-129% 1,1,1-Trichloroethane 1250 26.2 1040 ug/kg dry 50 ND 120 73-130% 26.2 1,1,2-Trichloroethane 1140 ug/kg dry 50 1040 ND 109 78-121% 50 Trichloroethene (TCE) 1130 26.2 1040 77-123% ug/kg dry ND 108 Q-54h Trichlorofluoromethane 1240 262 ug/kg dry 50 1040 ND 119 62-140% 1070 1,2,3-Trichloropropane 52.3 ug/kg dry 50 1040 ND 103 73-125% 1,2,4-Trimethylbenzene 1200 52.3 ug/kg dry 50 1040 ND 115 75-123% 1,3,5-Trimethylbenzene 52.3 50 O-54b 1250 1040 120 73-124% ug/kg dry ND 1370 26.2 50 1040 56-135% Vinyl chloride ug/kg dry ND 131 52.3 2090 2500 50 ND 120 77-124% m,p-Xylene ug/kg dry o-Xylene 26.2 77-123% 1140 ug/kg dry 50 ND 109 Surr: 1,4-Difluorobenzene (Surr) 98 % Limits: 80-120 % Dilution: 1x Recovery: Toluene-d8 (Surr) 102 % 80-120 % 4-Bromofluorobenzene (Surr) 97% 79-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 20 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24L0392 - EPA 5035A Soil Blank (24L0392-BLK1) Prepared: 12/11/24 10:00 Analyzed: 12/11/24 12:07 5035A/8260D ND 1000 ug/kg wet Acetone 50 ND 100 50 Acrylonitrile ug/kg wet ---Benzene ND 10.0 ug/kg wet 50 ND 25.0 50 Bromobenzene ug/kg wet Bromochloromethane ND 50.0 50 ug/kg wet ND Bromodichloromethane 50.0 ug/kg wet 50 ---Bromoform ND 100 50 ug/kg wet 500 Bromomethane ND ug/kg wet 50 ---2-Butanone (MEK) ND 500 ug/kg wet 50 n-Butylbenzene ND 50.0 50 ug/kg wet sec-Butylbenzene ND 50.0 ug/kg wet 50 ND 50.0 tert-Butylbenzene 50 ug/kg wet ---Carbon disulfide ND 500 ug/kg wet 50 Carbon tetrachloride ND 50.0 50 ug/kg wet Chlorobenzene ND 25.0 ug/kg wet 50 Chloroethane ND 500 ug/kg wet 50 ---------Chloroform ND 50.0 ug/kg wet 50 Chloromethane ND 250 ug/kg wet 50 ---------2-Chlorotoluene ND 50.0 ug/kg wet 50 ---4-Chlorotoluene ND 50.0 ug/kg wet 50 Dibromochloromethane ND 100 ug/kg wet 50 1,2-Dibromo-3-chloropropane ND 250 ug/kg wet 50 1,2-Dibromoethane (EDB) ND 50.0 ug/kg wet 50 Dibromomethane ND 50.0 ug/kg wet 50 25.0 1,2-Dichlorobenzene ND ug/kg wet 50 1,3-Dichlorobenzene ND 25.0 ug/kg wet 50 1,4-Dichlorobenzene ND 25.0 ug/kg wet 50 Dichlorodifluoromethane ND 100 ug/kg wet 50 ------ND 25.0 1,1-Dichloroethane ug/kg wet 50 25.0 1,2-Dichloroethane (EDC) ND ug/kg wet 50 1,1-Dichloroethene ND 25.0 50 ug/kg wet cis-1,2-Dichloroethene ND 25.0 ug/kg wet 50 trans-1,2-Dichloroethene 25.0 ND ug/kg wet 50

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

Page 21 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24L0392 - EPA 5035A Soil Blank (24L0392-BLK1) Prepared: 12/11/24 10:00 Analyzed: 12/11/24 12:07 ND 25.0 50 1,2-Dichloropropane ug/kg wet 1,3-Dichloropropane ND 50.0 ug/kg wet 50 ---------2,2-Dichloropropane ND 50.0 ug/kg wet 50 1,1-Dichloropropene ND 50.0 ug/kg wet 50 50.0 cis-1,3-Dichloropropene ND 50 ug/kg wet trans-1,3-Dichloropropene ND 50.0 ug/kg wet 50 Ethylbenzene ND 25.0 ug/kg wet 50 Hexachlorobutadiene ND 100 ug/kg wet 50 2-Hexanone 500 ND ug/kg wet 50 Isopropylbenzene ND 50.0 ug/kg wet 50 4-Isopropyltoluene ND 50.0 50 ug/kg wet Methylene chloride 500 ND ug/kg wet 50 4-Methyl-2-pentanone (MiBK) ND 500 ug/kg wet 50 ------Methyl tert-butyl ether (MTBE) ND 50.0 ug/kg wet 50 Naphthalene ND 100 ug/kg wet 50 n-Propylbenzene ND 25.0 ug/kg wet 50 ND 50.0 Stvrene ug/kg wet 50 1,1,1,2-Tetrachloroethane ND 25.0 50 ug/kg wet 1,1,2,2-Tetrachloroethane ND 50.0 ug/kg wet 50 ------Tetrachloroethene (PCE) ND 25.0 ug/kg wet 50 Toluene ND 50.0 50 ug/kg wet ---1,2,3-Trichlorobenzene ND 250 ug/kg wet 50 1.2.4-Trichlorobenzene ND 250 50 ug/kg wet 1,1,1-Trichloroethane ND 25.0 50 ug/kg wet ND 25.0 1,1,2-Trichloroethane ug/kg wet 50 ------------Trichloroethene (TCE) ND 25.0 ug/kg wet 50 Trichlorofluoromethane ND 250 50 ug/kg wet ---------1,2,3-Trichloropropane ND 50.0 ug/kg wet 50 1,2,4-Trimethylbenzene ND 50.0 50 ug/kg wet ---1,3,5-Trimethylbenzene ND 50.0 ug/kg wet 50 50 Vinyl chloride ND 25.0 ug/kg wet --m,p-Xylene ND 50.0 ug/kg wet 50

Surr: 1,4-Difluorobenzene (Surr) Recovery: 100 % Limits: 80-120 % Dilution: 1x

ND

Apex Laboratories

Philip Merenberg

o-Xylene

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 22 of 45

Philip Nerenberg, Lab Director

25.0

ug/kg wet

50

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 24L0392 - EPA 5035A							Soi	il					
Blank (24L0392-BLK1)			Prepared	1: 12/11/24 1	0:00 Anal	lyzed: 12/11/	/24 12:07						
Surr: Toluene-d8 (Surr)		Rec	overy: 99 %	Limits: 80-	-120 %	Dilı	ution: 1x						
4-Bromofluorobenzene (Surr)			99 %	79-	120 %		"						
LCS (24L0392-BS1)			Prepared	l: 12/11/24 1	0:00 Anal	lyzed: 12/11	/24 11:13						
5035A/8260D						-							
Acetone	1840		1000	ug/kg we	t 50	2000		92	80-120%				
Acrylonitrile	1010		100	ug/kg we	t 50	1000		101	80-120%				
Benzene	996		10.0	ug/kg we	t 50	1000		100	80-120%				
Bromobenzene	1060		25.0	ug/kg we	t 50	1000		106	80-120%				
Bromochloromethane	1060		50.0	ug/kg we	t 50	1000		106	80-120%				
Bromodichloromethane	937		50.0	ug/kg we	t 50	1000		94	80-120%				
Bromoform	905		100	ug/kg we	t 50	1000		90	80-120%				
Bromomethane	1300		500	ug/kg we	t 50	1000		130	80-120%			Q-:	
2-Butanone (MEK)	1910		500	ug/kg we	t 50	2000		95	80-120%				
n-Butylbenzene	1060		50.0	ug/kg we	t 50	1000		106	80-120%				
sec-Butylbenzene	1090		50.0	ug/kg we	t 50	1000		109	80-120%				
tert-Butylbenzene	1020		50.0	ug/kg we	t 50	1000		102	80-120%				
Carbon disulfide	934		500	ug/kg we	t 50	1000		93	80-120%				
Carbon tetrachloride	1120		50.0	ug/kg we	t 50	1000		112	80-120%				
Chlorobenzene	1030		25.0	ug/kg we	t 50	1000		103	80-120%				
Chloroethane	839		500	ug/kg we	t 50	1000		84	80-120%				
Chloroform	1050		50.0	ug/kg we	t 50	1000		105	80-120%				
Chloromethane	894		250	ug/kg we	t 50	1000		89	80-120%				
2-Chlorotoluene	1090		50.0	ug/kg we	t 50	1000		109	80-120%				
4-Chlorotoluene	1050		50.0	ug/kg we	t 50	1000		105	80-120%				
Dibromochloromethane	944		100	ug/kg we	t 50	1000		94	80-120%				
1,2-Dibromo-3-chloropropane	855		250	ug/kg we	t 50	1000		86	80-120%				
1,2-Dibromoethane (EDB)	1100		50.0	ug/kg we	t 50	1000		110	80-120%				
Dibromomethane	1100		50.0	ug/kg we	t 50	1000		110	80-120%				
1,2-Dichlorobenzene	1060		25.0	ug/kg we	t 50	1000		106	80-120%				
1,3-Dichlorobenzene	1090		25.0	ug/kg we	t 50	1000		109	80-120%				
1,4-Dichlorobenzene	1060		25.0	ug/kg we	t 50	1000		106	80-120%				
Dichlorodifluoromethane	1010		100	ug/kg we	t 50	1000		101	80-120%				
1,1-Dichloroethane	1010		25.0	ug/kg we	t 50	1000		101	80-120%				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 23 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24L0392 - EPA 5035A Soil LCS (24L0392-BS1) Prepared: 12/11/24 10:00 Analyzed: 12/11/24 11:13 1,2-Dichloroethane (EDC) 1060 25.0 50 1000 106 ug/kg wet 80-120% 25.0 1,1-Dichloroethene 996 ug/kg wet 50 1000 100 80-120% --------cis-1.2-Dichloroethene 1000 25.0 ug/kg wet 50 1000 100 80-120% trans-1,2-Dichloroethene 1000 25.0 ug/kg wet 50 1000 100 80-120% 25.0 1000 1,2-Dichloropropane 1000 50 100 80-120% ug/kg wet 1,3-Dichloropropane 1030 50.0 ug/kg wet 50 1000 103 80-120% 2,2-Dichloropropane 50.0 O-56 1270 ug/kg wet 50 1000 127 80-120% 1040 1,1-Dichloropropene 50.0 ug/kg wet 50 1000 104 80-120% 953 50.0 95 cis-1,3-Dichloropropene ug/kg wet 50 1000 80-120% trans-1,3-Dichloropropene 972 50.0 ug/kg wet 50 1000 97 80-120% Ethylbenzene 1030 25.0 ug/kg wet 50 1000 103 80-120% Hexachlorobutadiene 100 1130 ug/kg wet 50 1000 113 80-120% 2000 1810 500 91 2-Hexanone ug/kg wet 50 80-120% Isopropylbenzene 1070 50.0 ug/kg wet 50 1000 107 80-120% 4-Isopropyltoluene 1100 50.0 50 1000 110 80-120% ug/kg wet Methylene chloride 921 500 ug/kg wet 50 1000 92 80-120% 4-Methyl-2-pentanone (MiBK) 2040 500 102 ug/kg wet 50 2000 80-120% Methyl tert-butyl ether (MTBE) 1020 50.0 50 1000 102 80-120% ug/kg wet Naphthalene 100 1010 1000 101 ug/kg wet 50 80-120% -----n-Propylbenzene 1070 25.0 ug/kg wet 50 1000 107 80-120% Styrene 1080 50.0 50 1000 108 80-120% ug/kg wet 1,1,1,2-Tetrachloroethane 998 25.0 ug/kg wet 50 1000 100 80-120% 1,1,2,2-Tetrachloroethane 1140 50.0 50 1000 114 80-120% ug/kg wet

50

50

50

50

50

50

50

50

50

50

50

ug/kg wet

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

Apex Laboratories

Tetrachloroethene (PCE)

1,2,3-Trichlorobenzene

1.2.4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Toluene

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

107

96

107

107

106

106

102

92

113

109

110

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

80-120%

Philip Nerenberg, Lab Director

Philip Manherz

1070

961

1070

1070

1060

1060

1020

921

1130

1090

1100

25.0

50.0

250

250

25.0

25.0

25.0

250

50.0

50.0

50.0

Page 24 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0392 - EPA 5035A							Soi	I .				
LCS (24L0392-BS1)			Prepared	1: 12/11/24 1	0:00 Ana	lyzed: 12/11/	/24 11:13					
Vinyl chloride	1020		25.0	ug/kg we	t 50	1000		102	80-120%			
m,p-Xylene	2120		50.0	ug/kg we	t 50	2000		106	80-120%			
o-Xylene	1050		25.0	ug/kg we	et 50	1000		105	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			100 %	79-	120 %		"					
Duplicate (24L0392-DUP1)			Prepared	l: 12/06/24 1	4:00 Ana	lyzed: 12/11/	/24 19:53					
OC Source Sample: Non-SDG (A4	L1015-01)											
Acetone	ND		2940	ug/kg dr	y 100		ND				30%	
Acrylonitrile	ND		294	ug/kg dr	y 100		ND				30%	
Benzene	41.1		29.4	ug/kg dr	y 100		39.7			4	30%	
Bromobenzene	ND		73.5	ug/kg dr	y 100		ND				30%	
Bromochloromethane	ND		147	ug/kg dr	y 100		ND				30%	
Bromodichloromethane	ND		147	ug/kg dr	y 100		ND				30%	
Bromoform	ND		294	ug/kg dr	y 100		ND				30%	
Bromomethane	ND		1470	ug/kg dr	y 100		ND				30%	
2-Butanone (MEK)	ND		1470	ug/kg dr	y 100		ND				30%	
n-Butylbenzene	4940		147	ug/kg dr	y 100		5000			1	30%	M-(
sec-Butylbenzene	2030		147	ug/kg dr	y 100		2020			0.7	30%	
tert-Butylbenzene	ND		147	ug/kg dr	y 100		ND				30%	
Carbon disulfide	ND		1470	ug/kg dr	y 100		ND				30%	
Carbon tetrachloride	ND		147	ug/kg dr	y 100		ND				30%	
Chlorobenzene	ND		73.5	ug/kg dr	y 100		ND				30%	
Chloroethane	ND		1470	ug/kg dr	y 100		ND				30%	
Chloroform	ND		147	ug/kg dr	y 100		ND				30%	
Chloromethane	ND		735	ug/kg dr	y 100		ND				30%	
2-Chlorotoluene	ND		147	ug/kg dr	y 100		ND				30%	
4-Chlorotoluene	ND		147	ug/kg dr	y 100		ND				30%	
Dibromochloromethane	ND		294	ug/kg dr	y 100		ND				30%	
1,2-Dibromo-3-chloropropane	ND		735	ug/kg dr	y 100		ND				30%	
1,2-Dibromoethane (EDB)	ND		147	ug/kg dr			ND				30%	
Dibromomethane	ND		147	ug/kg dr	y 100		ND				30%	
1,2-Dichlorobenzene	ND		73.5	ug/kg dr			ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 25 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24L0392 - EPA 5035A Soil Duplicate (24L0392-DUP1) Prepared: 12/06/24 14:00 Analyzed: 12/11/24 19:53 QC Source Sample: Non-SDG (A4L1015-01) 1,3-Dichlorobenzene ND 73.5 100 ND 30% ug/kg dry ND 73.5 30% 1,4-Dichlorobenzene ug/kg dry 100 ND Dichlorodifluoromethane ND 294 ug/kg dry 100 ND 30% 1,1-Dichloroethane ND 73.5 ug/kg dry 100 ND 30% 1,2-Dichloroethane (EDC) ND 73.5 100 ND 30% ug/kg dry ---------ND 73.5 30% 1,1-Dichloroethene ug/kg dry 100 ND cis-1,2-Dichloroethene ND 73.5 100 ND 30% ug/kg dry ND 30% trans-1,2-Dichloroethene 73.5 ug/kg dry 100 ND ---1,2-Dichloropropane ND 73.5 ug/kg dry 100 ND 30% 1,3-Dichloropropane ND 147 ug/kg dry 100 ND 30% 2,2-Dichloropropane ND 147 ug/kg dry 100 ND 30% 1,1-Dichloropropene ND 147 30% ug/kg dry 100 ND 147 cis-1,3-Dichloropropene ND ug/kg dry 100 ND 30% trans-1,3-Dichloropropene ND 147 ND 30% ug/kg dry 100 73.5 Ethylbenzene 2160 ug/kg dry 100 2100 3 30% Hexachlorobutadiene ND 294 ug/kg dry 100 ND ___ ___ 30% 2-Hexanone ND 1470 ug/kg dry 100 ND 30% 147 3 30% Isopropylbenzene 1300 100 1260 ug/kg dry 147 1490 0.3 30% M-02 4-Isopropyltoluene 1490 ug/kg dry 100 Methylene chloride 1470 ND 100 ND 30% ug/kg dry 4-Methyl-2-pentanone (MiBK) ND 1470 30% ug/kg dry 100 ND 147 Methyl tert-butyl ether (MTBE) ND --ug/kg dry 100 ND ------30% Naphthalene 3690 294 ug/kg dry 100 3550 4 30% 4100 73.5 3980 3 30% n-Propylbenzene ug/kg dry 100 ---147 30% Stvrene ND ug/kg dry 100 ND 30% 1,1,1,2-Tetrachloroethane ND 73.5 ND ug/kg dry 100 1,1,2,2-Tetrachloroethane ND 808 ND 30% R-02 ug/kg dry 100 Tetrachloroethene (PCE) 30% ND 73.5 ug/kg dry 100 ND ---Toluene ND 147 ug/kg dry 100 ND 30% 1.2.3-Trichlorobenzene ND 735 ND 30% ug/kg dry 100 ------1,2,4-Trichlorobenzene ND 735 100 ND 30% ug/kg dry 1,1,1-Trichloroethane 73.5 30% ND 100 ND ug/kg dry ---1,1,2-Trichloroethane ND 735 ug/kg dry 100 ND 30% R-02

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherz

Page 26 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 24L0392 - EPA 5035A							Soi	il					
Duplicate (24L0392-DUP1)			Prepared	d: 12/06/24 1	14:00 Ana	lyzed: 12/11	1/24 19:53						
QC Source Sample: Non-SDG (A4	L1015-01)												
Trichloroethene (TCE)	ND		73.5	ug/kg dr	y 100		ND				30%		
Trichlorofluoromethane	ND		735	ug/kg dr	y 100		ND				30%		
1,2,3-Trichloropropane	ND		441	ug/kg dr	y 100		ND				30%	R-0	
1,2,4-Trimethylbenzene	21900		147	ug/kg dr	y 100		21100			3	30%		
1,3,5-Trimethylbenzene	6180		147	ug/kg dr	y 100		5980			3	30%		
Vinyl chloride	ND		73.5	ug/kg dr	y 100		ND				30%		
m,p-Xylene	8400		147	ug/kg dr	y 100		8090			4	30%		
o-Xylene	4920		73.5	ug/kg dr	y 100		4740			4	30%		
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80	-120 %	Dil	lution: 1x						
Toluene-d8 (Surr)			100 %	80-	-120 %		"						
4-Bromofluorobenzene (Surr)			101 %	79-	-120 %		"						
QC Source Sample: Non-SDG (A4 5035A/8260D	L0916-02)												
	<u>L0710-02)</u>												
Acetone	7570		4050	ug/kg dr	y 50	8090	ND	94	36-164%				
Acrylonitrile	4080		405	ug/kg dr		4040	ND	101	65-134%				
Benzene	4200		40.5	ug/kg dr		4040	ND	104	77-121%				
Bromobenzene	4140		101	ug/kg dr	y 50	4040	ND	102	78-121%				
Bromochloromethane	4320		202	ug/kg dr		4040	ND	107	78-125%				
Bromodichloromethane	3930		202	ug/kg dr	y 50	4040	ND	97	75-127%				
Bromoform	3910		405	ug/kg dr		4040	ND	97	67-132%				
Bromomethane	5190		2020	ug/kg dr	y 50	4040	ND	128	53-143%			Q-5	
2-Butanone (MEK)	8090		2020	ug/kg dr	y 50	8090	ND	100	51-148%				
n-Butylbenzene	4290		202	ug/kg dr		4040	ND	106	70-128%				
sec-Butylbenzene	4260		202	ug/kg dr		4040	ND	105	73-126%				
tert-Butylbenzene	4030		202	ug/kg dr		4040	ND	100	73-125%				
Carbon disulfide	4130		2020	ug/kg dr		4040	ND	102	63-132%				
Carbon tetrachloride	4990		202	ug/kg dr		4040	ND	123	70-135%				
Chlorobenzene	4230		101	ug/kg dr		4040	ND	105	79-120%				
Chloroethane	5180		2020	ug/kg dr		4040	ND	128	59-139%				
Chloroform	4420		202	ug/kg dr		4040	ND	109	78-123%				
Chloromethane	3730		1010	ug/kg dr		4040	ND	92	50-136%				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 27 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Cor	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0392 - EPA 5035A							Soi	I				
Matrix Spike (24L0392-MS1)			Prepared	: 12/04/24 1	4:00 Ana	lyzed: 12/11/	/24 15:47					
QC Source Sample: Non-SDG (A4I	.0916-02)											
2-Chlorotoluene	4210		202	ug/kg dry	50	4040	ND	104	75-122%			
4-Chlorotoluene	4050		202	ug/kg dry	50	4040	ND	100	72-124%			
Dibromochloromethane	3860		405	ug/kg dry	50	4040	ND	95	74-126%			
1,2-Dibromo-3-chloropropane	3380		1010	ug/kg dry	50	4040	ND	84	61-132%			
1,2-Dibromoethane (EDB)	4460		202	ug/kg dry	50	4040	ND	110	78-122%			
Dibromomethane	4400		202	ug/kg dry	50	4040	ND	109	78-125%			
1,2-Dichlorobenzene	4190		101	ug/kg dry	50	4040	ND	104	78-121%			
1,3-Dichlorobenzene	4270		101	ug/kg dry	50	4040	ND	106	77-121%			
1,4-Dichlorobenzene	4140		101	ug/kg dry	50	4040	ND	102	75-120%			
Dichlorodifluoromethane	4480		405	ug/kg dry	50	4040	ND	111	29-149%			
1,1-Dichloroethane	4350		101	ug/kg dry	50	4040	ND	108	76-125%			
1,2-Dichloroethane (EDC)	4260		101	ug/kg dry	, 50	4040	ND	105	73-128%			
1,1-Dichloroethene	4480		101	ug/kg dry	50	4040	ND	111	70-131%			
cis-1,2-Dichloroethene	4170		101	ug/kg dry	50	4040	ND	103	77-123%			
trans-1,2-Dichloroethene	4360		101	ug/kg dry	, 50	4040	ND	108	74-125%			
1,2-Dichloropropane	4150		101	ug/kg dry	50	4040	ND	103	76-123%			
1,3-Dichloropropane	4140		202	ug/kg dry	, 50	4040	ND	102	77-121%			
2,2-Dichloropropane	5030		202	ug/kg dry	, 50	4040	ND	124	67-133%			Q-54
1,1-Dichloropropene	4520		202	ug/kg dry	, 50	4040	ND	112	76-125%			
cis-1,3-Dichloropropene	3840		202	ug/kg dry	50	4040	ND	95	74-126%			
trans-1,3-Dichloropropene	3930		202	ug/kg dry	, 50	4040	ND	97	71-130%			
Ethylbenzene	4260		101	ug/kg dry	50	4040	ND	105	76-122%			
Hexachlorobutadiene	4520		405	ug/kg dry	, 50	4040	ND	112	61-135%			
2-Hexanone	7910		2020	ug/kg dry	50	8090	ND	98	53-145%			
Isopropylbenzene	4420		202	ug/kg dry		4040	ND	109	68-134%			
4-Isopropyltoluene	4360		202	ug/kg dry		4040	ND	108	73-127%			
Methylene chloride	4000		2020	ug/kg dry		4040	ND	99	70-128%			
4-Methyl-2-pentanone (MiBK)	8820		2020	ug/kg dry		8090	ND	109	65-135%			
Methyl tert-butyl ether (MTBE)	4180		202	ug/kg dry		4040	ND	103	73-125%			
Naphthalene	4190		405	ug/kg dry		4040	ND	104	62-129%			
n-Propylbenzene	4160		101	ug/kg dry		4040	ND	103	73-125%			
Styrene	4440		202	ug/kg dry		4040	ND	110	76-124%			
1,1,2-Tetrachloroethane	4080		101	ug/kg dry		4040	ND	101	78-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 28 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24L0392 - EPA 5035A Soil Matrix Spike (24L0392-MS1) Prepared: 12/04/24 14:00 Analyzed: 12/11/24 15:47 QC Source Sample: Non-SDG (A4L0916-02) 1,1,2,2-Tetrachloroethane 4510 202 ug/kg dry 50 4040 ND 112 70-124% 101 73-128% Tetrachloroethene (PCE) 4460 4040 ug/kg dry 50 ND 110 3930 202 97 77-121% Toluene ug/kg dry 50 4040 ND 1,2,3-Trichlorobenzene 4010 1010 ug/kg dry 50 4040 ND 99 66-130% 1,2,4-Trichlorobenzene 4150 1010 ug/kg dry 50 4040 ND 103 67-129% 1,1,1-Trichloroethane 4650 101 4040 ug/kg dry 50 ND 115 73-130% 1,1,2-Trichloroethane 4300 101 ug/kg dry 50 4040 ND 106 78-121% 50 Trichloroethene (TCE) 4360 101 4040 77-123% ug/kg dry ND 108 1010 Q-01 Trichlorofluoromethane 15700 ug/kg dry 50 4040 ND 389 62-140% 1,2,3-Trichloropropane 4430 202 ug/kg dry 50 4040 ND 109 73-125% 1,2,4-Trimethylbenzene 4560 202 ug/kg dry 50 4040 ND 113 75-123% 1,3,5-Trimethylbenzene 202 50 4290 4040 106 73-124% ug/kg dry ND 4760 101 50 4040 56-135% Vinyl chloride ug/kg dry ND 118 202 8090 m,p-Xylene 8670 50 ND 107 77-124% ug/kg dry o-Xylene 4310 101 77-123% ug/kg dry 50 ND 106 Surr: 1,4-Difluorobenzene (Surr) 101 % Limits: 80-120 % Dilution: 1x Recovery: Toluene-d8 (Surr) 98 % 80-120 % 4-Bromofluorobenzene (Surr) 98 % 79-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 29 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	rinated Bi _l	henyls	by EPA 80	082A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0546 - EPA 3546							So	il				
Blank (24L0546-BLK1)			Prepared	d: 12/16/24 0	7:40 Ana	lyzed: 12/16	6/24 18:11					C-07
EPA 8082A												
Aroclor 1016	ND		10.0	ug/kg we	t 1							
Aroclor 1221	ND		10.0	ug/kg we	t 1							
Aroclor 1232	ND		10.0	ug/kg we	t 1							
Aroclor 1242	ND		10.0	ug/kg we	t 1							
Aroclor 1248	ND		10.0	ug/kg we	t 1							
Aroclor 1254	ND		10.0	ug/kg we	t 1							
Aroclor 1260	ND		10.0	ug/kg we	t 1							
Surr: Decachlorobiphenyl (Surr)		Reco	very: 115 %	Limits: 60-	125 %	Dill	ution: 1x					
LCS (24L0546-BS1)			Prepared	d: 12/16/24 0	7:40 Anal	lyzed: 12/16	5/24 18:29					C-07
EPA 8082A												
Aroclor 1016	216		10.0	ug/kg we	t 1	250		86	47-134%			
Aroclor 1260	242		10.0	ug/kg we	t 1	250		97	53-140%			
Surr: Decachlorobiphenyl (Surr)		Reco	very: 118 %	Limits: 60-		Dill	ution: 1x					
Duplicate (24L0546-DUP1)			Prepared	d: 12/16/24 0	7:40 Anal	lyzed: 12/16	5/24 19:22					C-07
QC Source Sample: Non-SDG (A	4L0921-01)											
Aroclor 1016	ND		9.37	ug/kg dry	1		ND				30%	
Aroclor 1221	ND		9.37	ug/kg dry	1		ND				30%	
Aroclor 1232	ND		9.37	ug/kg dry			ND				30%	
Aroclor 1242	ND		9.37	ug/kg dry			ND				30%	
Aroclor 1248	ND		9.37	ug/kg dry			ND				30%	
Aroclor 1254	ND		9.37	ug/kg dry			ND				30%	
Aroclor 1260	ND		9.37	ug/kg dry			ND				30%	
Surr: Decachlorobiphenyl (Surr)		Reco	very: 111 %	Limits: 60-		Dill	ution: 1x					
Matrix Spike (24L0546-MS1)			Prepared	d: 12/16/24 0	7:40 Anal	lyzed: 12/16	5/24 23:32		_		_	C-07
QC Source Sample: Non-SDG (A-	4L1011-02)		1			<u>-</u>						
EPA 8082A												
Aroclor 1016	166		9.39	ug/kg dry	, 1	235	ND	71	47-134%			
Aroclor 1260	153		9.39	ug/kg dry		235	ND ND	65	53-140%			
AIOCIOI 1200	133		overy: 88 %	Limits: 60-	1	433	עויו	03	JJ-1 4 0/0			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A

		Detection	Reporting			Spike	Source		% REC		RPD	
Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC		RPD	Limit	Notes

Batch 24L0546 - EPA 3546 Soil

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 31 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0557 - EPA 3051A							Soi	il				
Blank (24L0557-BLK1)			Prepared	: 12/16/24 0	8:47 Ana	lyzed: 12/16	/24 22:06					
EPA 6020B												
Arsenic	ND		1.00	mg/kg we	et 10							
Barium	ND		1.00	mg/kg we	et 10							
Cadmium	ND		0.200	mg/kg we	et 10							
Chromium	ND		1.00	mg/kg we	et 10							
Lead	ND		0.200	mg/kg we	et 10							
Mercury	ND		0.0800	mg/kg we	et 10							
Selenium	ND		1.00	mg/kg we	et 10							
Silver	ND		0.200	mg/kg we	et 10							
LCS (24L0557-BS1)			Prepared	: 12/16/24 0	8:47 Ana	lyzed: 12/16	/24 22:11					
EPA 6020B												
Arsenic	49.8		1.00	mg/kg we	et 10	50.0		100	80-120%			
Barium	52.8		1.00	mg/kg we	et 10	50.0		106	80-120%			
Cadmium	50.8		0.200	mg/kg we	et 10	50.0		102	80-120%			
Chromium	48.8		1.00	mg/kg we	et 10	50.0		98	80-120%			
Lead	52.9		0.200	mg/kg we	et 10	50.0		106	80-120%			
Mercury	0.980		0.0800	mg/kg we	et 10	1.00		98	80-120%			
Selenium	25.3		1.00	mg/kg we	et 10	25.0		101	80-120%			
Silver	27.0		0.200	mg/kg we	et 10	25.0		108	80-120%			
Duplicate (24L0557-DUP1)			Prepared	: 12/16/24 0	8:47 Ana	lyzed: 12/16	/24 22:27					
QC Source Sample: BH-DPSed#1	20241203 (A4L0926-01)										
EPA 6020B												
Arsenic	4.40		1.21	mg/kg dr	y 10		7.22			48	20%	Q-0
Barium	120		1.21	mg/kg dr	y 10		117			3	20%	
Cadmium	1.14		0.241	mg/kg dr	y 10		1.14			0.3	20%	
Chromium	26.7		1.21	mg/kg dr	y 10		81.6			101	20%	Q-0
Selenium	ND		1.21	mg/kg dr	y 10		ND				20%	
Silver	1.30		0.241	mg/kg dr	y 10		10.1			154	20%	Q-0

Duplicate (24L0557-DUP2)

Prepared: 12/16/24 08:47 Analyzed: 12/17/24 22:07

QC Source Sample: BH-DPSed#1 20241203 (A4L0926-01RE1)

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 32 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by I	EPA 602	OB (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0557 - EPA 3051A							So	il				
Duplicate (24L0557-DUP2)			Prepared	: 12/16/24 0	8:47 Ana	lyzed: 12/17	//24 22:07					
QC Source Sample: BH-DPSed#1	20241203	(A4L0926-01R	E1)									
EPA 6020B												
Lead	1240		2.41	mg/kg dry	y 100		875			35	20%	Q-04, Q-16
Mercury	1.40		0.965	mg/kg dry	y 100		21.7			176	20%	Q-04, Q-16
Matrix Spike (24L0557-MS1) OC Source Sample: BH-DPSed#1	20241203	(A4L0926-01)	Prepared	: 12/16/24 0	8:47 Ana	llyzed: 12/16	5/24 22:32					
EPA 6020B												
Arsenic	71.5		1.35	mg/kg dry	y 10	67.7	7.22	95	75-125%			
Barium	227		1.35	mg/kg dry	y 10	67.7	117	162	75-125%			Q-04
Cadmium	68.0		0.271	mg/kg dry	y 10	67.7	1.14	99	75-125%			
Chromium	109		1.35	mg/kg dry	y 10	67.7	81.6	40	75-125%			Q-04
Lead	1170		0.271	mg/kg dry	y 10	67.7	897	410	75-125%			F
Mercury	2.40		0.108	mg/kg dry	y 10	1.35	21.0	-1370	75-125%			Q-04
Selenium	31.8		1.35	mg/kg dry	y 10	33.9	ND	94	75-125%			
Silver	35.5		0.271	mg/kg dry	v 10	33.9	10.1	75	75-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 33 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 24L0997 - EPA 1311/301	5A						Soi	il					
Blank (24L0997-BLK1)			Prepared	: 12/27/24	14:19 Anal	yzed: 12/27	7/24 23:44						
1311/6020B													
Lead	ND		0.0500	mg/L	10							TCLF	
Mercury	ND		0.00700	mg/L	10							TCLI	
LCS (24L0997-BS2)			Prepared	: 12/27/24	14:19 Anal	yzed: 12/28	3/24 12:46						
1311/6020B													
Lead	5.17		0.0500	mg/L	10	5.00		103	80-120%			Q-16	
Mercury	0.101		0.00700	mg/L	10	0.100		101	80-120%			Q-16	
Duplicate (24L0997-DUP1)			Prepared	: 12/27/24	14:19 Anal	yzed: 12/28	3/24 00:10						
OC Source Sample: BH-DPSed#1_ 1311/6020B	20241203 (A4L0926-01)											
Lead	0.761		0.0500	mg/L	10		0.799			5	20%		
Mercury	ND		0.00700	mg/L	10		ND				20%		
Matrix Spike (24L0997-MS1)			Prepared	: 12/27/24	14:19 Anal	yzed: 12/28	3/24 00:15						
QC Source Sample: BH-DPSed#1	20241203 (A4L0926-01)											
<u>1311/6020B</u>													
Lead	5.96		0.0500	mg/L	10	5.00	0.799	103	50-150%				
Mercury	0.105		0.00700	mg/L	10	0.100	ND	105	50-150%				
Matrix Spike (24L0997-MS2)			Prepared	: 12/27/24	14:19 Anal	yzed: 12/28	3/24 00:26						
QC Source Sample: Non-SDG (A4	L1013-04)												
<u>1311/6020B</u>													
Lead	5.41		0.0500	mg/L	10	5.00	ND	108	50-150%			PRO	
Mercury	0.103		0.00700	mg/L	10	0.100	ND	103	50-150%			PRO	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 34 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 24L0168 - Dry Weight Pro	ep (EPA 8	3000D)					Soil						
Duplicate (24L0168-DUP1)			Prepared	: 12/05/24	11:38 Anal	yzed: 12/06/	24 05:52						
OC Source Sample: Non-SDG (A4L % Solids	93.7		1.00	%	1		93.1			0.7	10%		
Duplicate (24L0168-DUP2)			Prepared	: 12/05/24	11:38 Anal	yzed: 12/06/	24 05:52						
OC Source Sample: Non-SDG (A4L % Solids	96.6		1.00	%	1		97.6			1	10%		
Duplicate (24L0168-DUP3)			Prepared	: 12/05/24	11:38 Anal	lyzed: 12/06/	24 05:52						
OC Source Sample: Non-SDG (A4L % Solids	91.3		1.00	%	1		91.2			0.09	10%		
Duplicate (24L0168-DUP4)			Prepared	: 12/05/24	19:19 Anal	lyzed: 12/06/	24 05:52						
QC Source Sample: Non-SDG (A4L	.0947-01)												
% Solids	70.6		1.00	%	1		69.9			1	10%		

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 35 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

SAMPLE PREPARATION INFORMATION

	Volatile Organic Compounds by EPA 8260D													
Prep: EPA 5035A					Sample	Default	RL Prep							
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor							
Batch: 24L0206														
A4L0926-01	Soil	5035A/8260D	12/03/24 14:55	12/03/24 14:55	7.18g/5mL	5g/5mL	0.70							
A4L0926-02	Soil	5035A/8260D	12/03/24 15:10	12/03/24 15:10	6.68g/5mL	5g/5mL	0.75							

		Polych	nlorinated Biphenyls I	oy EPA 8082A			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0546							
A4L0926-01	Soil	EPA 8082A	12/03/24 14:55	12/16/24 07:40	11.04g/5mL	10g/5mL	0.91
A4L0926-02	Soil	EPA 8082A	12/03/24 15:10	12/16/24 07:40	11.25g/5mL	10g/5mL	0.89

		Tota	al Metals by EPA 602	0B (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0557							
A4L0926-01	Soil	EPA 6020B	12/03/24 14:55	12/16/24 08:47	0.456g/50mL	0.5g/50mL	1.10
A4L0926-01RE1	Soil	EPA 6020B	12/03/24 14:55	12/16/24 08:47	0.456g/50mL	0.5g/50mL	1.10
A4L0926-02	Soil	EPA 6020B	12/03/24 15:10	12/16/24 08:47	0.454g/50mL	0.5g/50mL	1.10

		TCL	P Metals by EPA 602	OB (ICPMS)			
Prep: EPA 1311/3015	<u>5A</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0997							
A4L0926-01	Soil	1311/6020B	12/03/24 14:55	12/27/24 14:19	10mL/50mL	10mL/50mL	1.00

			Percent Dry We	ght			
Prep: Dry Weight P	rep (EPA 8000D)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0168							
A4L0926-01	Soil	EPA 8000D	12/03/24 14:55	12/05/24 11:38	1g	1g	1.00
A4L0926-02	Soil	EPA 8000D	12/03/24 15:10	12/05/24 11:38	1g	1g	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherz

Page 36 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID:

A4L0926 - 12 30 24 1725

SAMPLE PREPARATION INFORMATION

			TCLP Extraction by E	PA 1311			
Prep: EPA 1311 (TC	CLP)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0826							
A4L0926-01	Soil	EPA 1311	12/03/24 14:55	12/23/24 14:40	100g/2000g	100g/2000g	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 37 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
- **E** Estimated Value. The result is above the calibration range of the instrument.
- ICV-01 Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.
- M-02 Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.
- P-12 Result estimated due to the presence of multiple PCB Aroclors and/or PCB congeners not defined as Aroclors.
- **PRO** Sample has undergone sample processing prior to extraction and analysis.
- Q-01 Spike recovery and/or RPD is outside acceptance limits.
- Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
- **Q-16** Reanalysis of an original Batch QC sample.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
- Q-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +10%. The results are reported as Estimated Values.
- Q-54a Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +15%. The results are reported as Estimated Values.
- Q-54b Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +2%. The results are reported as Estimated Values.
- Q-54c Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +20%. The results are reported as Estimated Values.
- Q-54d Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +31%. The results are reported as Estimated Values.
- Q-54e Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +4%. The results are reported as Estimated Values.
- Q-54f Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +5%. The results are reported as Estimated Values.
- Q-54g Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +7%. The results are reported as Estimated Values.
- Q-54h Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -8%. The results are reported as Estimated Values.
- Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 38 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc. Project: Blue Heron

 15862 SW 72nd Ave. Suite 150
 Project Number: G685.0793 Task 400
 Report ID:

 Portland, OR 97224
 Project Manager: John Kuiper
 A4L0926 - 12 30 24 1725

Q-56 Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260. Samples that are ND (Non-Detect) are not impacted.

R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.

TCLP This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 24L0826.

V-14 Results differ between analyzed VOA vials, highest result reported.

V-15 Sample aliquot was subsampled from the sample container in the laboratory. The subsampled aliquot was preserved in the laboratory within 48 hours of sampling.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 39 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP <u>USA Environment & Infrastructure Inc.</u>

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Validated Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"__" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 40 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL).

Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level.

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 41 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper A4L0926 - 12 30 24 1725

Decanted Samples:

Soils/Sediments:

Unless TCLP analysis is required or there is notification otherwise for a specific project, all Soil and Sediments containing excess water are decanted prior to analysis in order to provide the most representative sample for analysis.

Water Samples

Water samples containing solids and sediment may need to be decanted in order to eliminate these particulates from the water extractions. In the case of organics extractions, a solvent rinse of the container will not be performed.

Volatiles Soils (5035s)

Samples that are field preserved by 5035 for volatiles are dry weight corrected using the same dry weight corretion as for normal analyses. In the case of decanted samples, the dry weight may be performed on a decanted sample, while the aliquot for 5035 may not have been treated the same way. If this is a concern, please submit separate containers for dry weight analysis for volatiles can be provided.

All samples decanted in the laboratory are noted in this report with the DCNT qualifier indicating the sample was decanted.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherg

Page 42 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 43 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

		-							ŀ												1	1
Company: 1/158		Proje	Project Mgr. Jolan.	N		1,000	>			roject	Name	Project Name: 13 Lus He Koly	15	T	5				Printest # 16685. 11703 Fast 400	193 fast	20 h	_
Address: 15862 Sw Fred Ave #150 Portand OR 17224	450 Barl	and f	740 OC	7.4		Phone:] "		1	1	-	i i	13	1.2	to Co	13	Email: 1941. Kulber Cusp.com	1	PO#			1
Sampled by: JOHN 18 (LAN)	Bunds	1011	Lingen								1				1	}	ANAL VSIG DECITION					
Cita I contion:	+	1	-	L					H	-	-	_	F	_	-		and medicinal			E		
State OR				TAINERS	HCID	xc	xe		W VOCs		s Full List	-Vols Full List					Bs, Be, Cd, fa, Fe, Pb, fa, Mo, Vi, K, fa, Mo, Vi, K, fa, Mo, Vi, K, fa, Fe, Pb, fa, Fe, Fe, Fe, Fe, Fe, Fe, Fe, Fe, Fe, Fe				9	- OAșt
SAMPLE ID	3TA0	IME	XIATAN	OF CON	-HJ.LM.	-HALMN	-HJLMN	1260 BTE		olaH 0921	MIS 9/2		1087 PCB	180: Pesti	SCRA M	M yinoir	, Sb, As , Cr, Cc , Mg, M , Ag, Na , Ag, Na	CLP Me			lqms2 blo	элА пэхо
84-008-47 20241203	12	1-2	1 ~		ī	I	I	-	-	-	-		_	٠,	_		N Se Se Se Se Se Se Se Se Se Se Se Se Se				н	'백
BH-DP6#2-20241203	-	-	200	1				+	+	×	+	-	×	-	4			1				
							1	+	-	-	+-	+-	-	-	4_			T				
The state of the s								+	-	+		+	-	-				1				
										-	-		_	ļ								
The state of the s									 				ļ	-								
			_					+	\vdash	\vdash	_											1
								+		_	-							<u> </u>				1
THE STATE OF THE S							T			 	-	 	ļ					1				İ
Standard	Standard Turn Around Time (TAT) = 10 Business Days	Time (T/	VT) = 101	Susiness	Days	1				$\ \ $	읾	SPECIAL INSTRUCTIONS:	LINS	TRUC	NOI	i i		1			1	1
The state of the s	1 Day	1	2 Day		3.1	3 Day						رر	2	ani	(;)	200	daniel.schall Gusp. Lom	j	ž			
1A1 Requesteu (circie)	5 Day		Standard	<u> </u>	ŧ	Other:			1													
	SAMPLES ARE HELD FOR 30 DAYS	ELD FOF	R 30 DAYS	ړ							_											
RELINQUISHED BY: Signature:	Date: 1v (4/24	54	Signatu.	Signature: Signature: Signature: Signature: Signature: Signature: Signature: Signature: Signature: Signature: Date:		38	Α -	Z ië	2		Sign	RELINQUISHED BY: Signature:	UISHE	D BY			Date:	- s	RECEIVED BY: Signature:	Date:		
inted Name:	1.80 1.80		建茎	Printed Name: KALOW Mariosom	May	S	F 2	Time: 130	2 0		<u>E</u>	Printed Name	inc:				Time:	+	Printed Name:	Time:		1
Company: WSP			Сошрану	Section 25	-	-					ਤ	Company:						<u> </u>	Сотрапу:			1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 44 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: **Blue Heron**

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0926 - 12 30 24 1725

1.100	
Client: USP	Element WO#: A4LO926
Project/Project #: Blu	e Heron/G685. 6793 Task 400
Delivery Info:	
	124 @ 11:30 By: 2/2M
Delivered by: ApexClie	ent_ZESSFedExUPSRadioMorganSDSEvergreenOther
	rigin? Yes No
Cooler Inspection Date	e/time inspected: 12/4/24 @ 11:30 By: Fam
Chain of Custody included	
Signed/dated by client?	
Contains USDA Reg. Soil	s? Yes No X Unsure (email RegSoils)
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	5.6
Custody seals? (Y/N)	<i>N</i>
Received on ice? (Y/N)	<u>y</u>
Temp. blanks? (Y/N)	
Ice type: (Gel/Real/Other)	leal
Condition (In/Out):	
Cooler out of temp? I Y AINA	Possible reason why:
Green dots applied to out of Out of temperature sample Sample Inspection: Date	temperature samples? Tes/No es form initiated? Yes/No /time inspected: 215/45 @ 11:04 By: 24M Left No Comments:
Green dots applied to out of Out of temperature sample Sample Inspection: Date. All samples intact? Yes	rs form initiated? Yes/No /time inspected: 12/5/49 @ 11:03 By: 2/4M
Green dots applied to out of Out of temperature sample Sample Inspection: Date All samples intact? Yes	Yes form initiated? Yes No
Green dots applied to out of Out of temperature sample Sample Inspection: Date All samples intact? Yes	Yes No Comments: Yes No Comments:
Green dots applied to out of Out of temperature sample Sample Inspection: Date. All samples intact? Yes	res form initiated? Yes No
Green dots applied to out of Out of temperature sample Sample Inspection: Date. All samples intact? Yes	res form initiated? Yes/No

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 45 of 45

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, December 20, 2024

John Kuiper

WSP USA Environment & Infrastructure Inc.
15862 SW 72nd Ave. Suite 150

Portland, OR 97224

RE: A4L0933 - Blue Heron - G685.0793 Task 400

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4L0933, which was received by the laboratory on 12/4/2024 at 11:30:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 5.6 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID:

A4L0933 - 12 20 24 1821

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-DPSW#1-20241203	A4L0933-01	Water	12/03/24 16:00	12/04/24 11:30
BH-DPSW#2-20241203	A4L0933-02	Water	12/03/24 16:20	12/04/24 11:30
BH-DPSW#3-20241203	A4L0933-03	Water	12/03/24 16:30	12/04/24 11:30

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 2 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

ANALYTICAL SAMPLE RESULTS

	Vo	olatile Organ	ic Compound	ls by EPA 8	260D			
Analysis	Sample	Detection	Reporting	T T i.e	Diletie	Date	M-4- 4 D-6	NI-4-
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH-DPSW#1-20241203 (A4L0933-01RE2)				Matrix: Wa	ater	Batch:	24L0517	
Acetone	ND		20.0	ug/L	1	12/14/24 13:20	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	12/14/24 13:20	EPA 8260D	
Benzene	ND		0.200	ug/L	1	12/14/24 13:20	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	12/14/24 13:20	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	12/14/24 13:20	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	12/14/24 13:20	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	12/14/24 13:20	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	12/14/24 13:20	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	12/14/24 13:20	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	12/14/24 13:20	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	12/14/24 13:20	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	12/14/24 13:20	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	12/14/24 13:20	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	12/14/24 13:20	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	12/14/24 13:20	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	12/14/24 13:20	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	12/14/24 13:20	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	12/14/24 13:20	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	12/14/24 13:20	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	12/14/24 13:20	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 3 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	us by EPA 8	עטט∠			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-DPSW#1-20241203 (A4L0933-01RE2)				Matrix: Wa	ater	Batch:	24L0517	
1,2-Dichloropropane	ND		0.500	ug/L	1	12/14/24 13:20	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	12/14/24 13:20	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	12/14/24 13:20	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	12/14/24 13:20	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	12/14/24 13:20	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	12/14/24 13:20	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
Naphthalene	ND		5.00	ug/L	1	12/14/24 13:20	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	12/14/24 13:20	EPA 8260D	
Styrene	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	12/14/24 13:20	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	12/14/24 13:20	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	12/14/24 13:20	EPA 8260D	
Toluene	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	12/14/24 13:20	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	12/14/24 13:20	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	12/14/24 13:20	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	12/14/24 13:20	EPA 8260D	
Trichloroethene (TCE)	ND		0.400	ug/L	1	12/14/24 13:20	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	12/14/24 13:20	EPA 8260D	
,2,3-Trichloropropane	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
,2,4-Trimethylbenzene	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
,3,5-Trimethylbenzene	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
/inyl chloride	ND		0.200	ug/L	1	12/14/24 13:20	EPA 8260D	
n,p-Xylene	ND		1.00	ug/L	1	12/14/24 13:20	EPA 8260D	
-Xylene	ND		0.500	ug/L	1	12/14/24 13:20	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 4 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-DPSW#1-20241203 (A4L0933-01RE2)				Matrix: Wate	r	Batch: 2	24L0517	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	1	12/14/24 13:20	EPA 8260D	
Toluene-d8 (Surr)			105 %	80-120 %	1	12/14/24 13:20	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	12/14/24 13:20	EPA 8260D	
BH-DPSW#2-20241203 (A4L0933-02RE2)				Matrix: Wate	r	Batch: 2	24L0517	
Acetone	ND		20.0	ug/L	1	12/14/24 13:42	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	12/14/24 13:42	EPA 8260D	
Benzene	ND		0.200	ug/L	1	12/14/24 13:42	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	12/14/24 13:42	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	12/14/24 13:42	EPA 8260D	
-Butanone (MEK)	ND		10.0	ug/L	1	12/14/24 13:42	EPA 8260D	
-Butylbenzene	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
ec-Butylbenzene	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
ert-Butylbenzene	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	12/14/24 13:42	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	12/14/24 13:42	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	12/14/24 13:42	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
Chloromethane	14.3		5.00	ug/L	1	12/14/24 13:42	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
-Chlorotoluene	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	12/14/24 13:42	EPA 8260D	
,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	12/14/24 13:42	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
,2-Dichlorobenzene	ND		0.500	ug/L	1	12/14/24 13:42	EPA 8260D	
,3-Dichlorobenzene	ND		0.500	ug/L	1	12/14/24 13:42	EPA 8260D	
,4-Dichlorobenzene	ND		0.500	ug/L	1	12/14/24 13:42	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
,1-Dichloroethane	ND		0.400	ug/L	1	12/14/24 13:42	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 5 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

ANALYTICAL SAMPLE RESULTS

			ic Compound	JO DY EPA 0	-00D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-DPSW#2-20241203 (A4L0933-02RE2)				Matrix: Wa	ater	Batch:	24L0517	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	12/14/24 13:42	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	12/14/24 13:42	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	12/14/24 13:42	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	12/14/24 13:42	EPA 8260D	
1,2-Dichloropropane	ND		0.500	ug/L	1	12/14/24 13:42	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	12/14/24 13:42	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	12/14/24 13:42	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	12/14/24 13:42	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	12/14/24 13:42	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	12/14/24 13:42	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
Naphthalene	ND		5.00	ug/L	1	12/14/24 13:42	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	12/14/24 13:42	EPA 8260D	
Styrene	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	12/14/24 13:42	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	12/14/24 13:42	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	12/14/24 13:42	EPA 8260D	
Toluene	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	12/14/24 13:42	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	12/14/24 13:42	EPA 8260D	
,1,1-Trichloroethane	ND		0.400	ug/L	1	12/14/24 13:42	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	12/14/24 13:42	EPA 8260D	
Frichloroethene (TCE)	ND		0.400	ug/L	1	12/14/24 13:42	EPA 8260D	
Frichlorofluoromethane	ND		2.00	ug/L	1	12/14/24 13:42	EPA 8260D	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
,2,4-Trimethylbenzene	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 6 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting	nds by EPA 826		Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
BH-DPSW#2-20241203 (A4L0933-02RE2)	_			Matrix: Wate	r	Batch:	24L0517	_
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
Vinyl chloride	ND		0.200	ug/L	1	12/14/24 13:42	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	12/14/24 13:42	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	12/14/24 13:42	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery.	101 %	Limits: 80-120 %	1	12/14/24 13:42	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	12/14/24 13:42	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	I	12/14/24 13:42	EPA 8260D	
BH-DPSW#3-20241203 (A4L0933-03RE2)				Matrix: Wate	r	Batch:	24L0517	
Acetone	22.8		20.0	ug/L	1	12/14/24 14:05	EPA 8260D	Q-54c
Acrylonitrile	ND		2.00	ug/L	1	12/14/24 14:05	EPA 8260D	
Benzene	ND		0.200	ug/L	1	12/14/24 14:05	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	12/14/24 14:05	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	12/14/24 14:05	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	12/14/24 14:05	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	12/14/24 14:05	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	12/14/24 14:05	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	12/14/24 14:05	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	12/14/24 14:05	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D	
1-Chlorotoluene	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D	
,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	12/14/24 14:05	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	12/14/24 14:05	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	12/14/24 14:05	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 7 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note			
BH-DPSW#3-20241203 (A4L0933-03RE2)				Matrix: Wa	ater	Batch:	24L0517				
1,3-Dichlorobenzene	ND		0.500	ug/L	1	12/14/24 14:05	EPA 8260D				
1,4-Dichlorobenzene	ND		0.500	ug/L	1	12/14/24 14:05	EPA 8260D				
Dichlorodifluoromethane	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D				
1,1-Dichloroethane	ND		0.400	ug/L	1	12/14/24 14:05	EPA 8260D				
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	12/14/24 14:05	EPA 8260D				
1,1-Dichloroethene	ND		0.400	ug/L	1	12/14/24 14:05	EPA 8260D				
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	12/14/24 14:05	EPA 8260D				
rans-1,2-Dichloroethene	ND		0.400	ug/L	1	12/14/24 14:05	EPA 8260D				
1,2-Dichloropropane	ND		0.500	ug/L	1	12/14/24 14:05	EPA 8260D				
1,3-Dichloropropane	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D				
2,2-Dichloropropane	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D				
,1-Dichloropropene	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D				
is-1,3-Dichloropropene	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D				
rans-1,3-Dichloropropene	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D				
Ethylbenzene	ND		0.500	ug/L	1	12/14/24 14:05	EPA 8260D				
Hexachlorobutadiene	ND		5.00	ug/L	1	12/14/24 14:05	EPA 8260D				
2-Hexanone	ND		10.0	ug/L	1	12/14/24 14:05	EPA 8260D				
sopropylbenzene	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D				
4-Isopropyltoluene	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D				
Methylene chloride	ND		10.0	ug/L	1	12/14/24 14:05	EPA 8260D				
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	12/14/24 14:05	EPA 8260D				
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D				
Naphthalene	ND		5.00	ug/L	1	12/14/24 14:05	EPA 8260D				
-Propylbenzene	ND		0.500	ug/L	1	12/14/24 14:05	EPA 8260D				
Styrene	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D				
,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	12/14/24 14:05	EPA 8260D				
,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	12/14/24 14:05	EPA 8260D				
Cetrachloroethene (PCE)	ND		0.400	ug/L	1	12/14/24 14:05	EPA 8260D				
oluene	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D				
,2,3-Trichlorobenzene	ND		2.00	ug/L	1	12/14/24 14:05	EPA 8260D				
,2,4-Trichlorobenzene	ND		2.00	ug/L	1	12/14/24 14:05	EPA 8260D				
,1,1-Trichloroethane	ND		0.400	ug/L	1	12/14/24 14:05	EPA 8260D				
,1,2-Trichloroethane	ND		0.500	ug/L	1	12/14/24 14:05	EPA 8260D				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 8 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
BH-DPSW#3-20241203 (A4L0933-03RE2)				Matrix: Wate	24L0517						
Trichloroethene (TCE)	ND		0.400	ug/L	1	12/14/24 14:05	EPA 8260D				
Trichlorofluoromethane	ND		2.00	ug/L	1	12/14/24 14:05	EPA 8260D				
1,2,3-Trichloropropane	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D				
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D				
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D				
Vinyl chloride	ND		0.200	ug/L	1	12/14/24 14:05	EPA 8260D				
m,p-Xylene	ND		1.00	ug/L	1	12/14/24 14:05	EPA 8260D				
o-Xylene	ND		0.500	ug/L	1	12/14/24 14:05	EPA 8260D				
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	5 1	12/14/24 14:05	EPA 8260D				
Toluene-d8 (Surr)			103 %	80-120 %	5 1	12/14/24 14:05	EPA 8260D				
4-Bromofluorobenzene (Surr)			103 %	80-120 %	5 1	12/14/24 14:05	EPA 8260D				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 9 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	ls by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
BH-DPSW#1-20241203 (A4L0933-01)				Matrix: Wate	er	Batch:	24L0319	C-07
Aroclor 1016	ND		0.0935	ug/L	1	12/10/24 20:28	EPA 8082A	
Aroclor 1221	ND		0.0935	ug/L	1	12/10/24 20:28	EPA 8082A	
Aroclor 1232	ND		0.0935	ug/L	1	12/10/24 20:28	EPA 8082A	
Aroclor 1242	ND		0.0935	ug/L	1	12/10/24 20:28	EPA 8082A	
Aroclor 1248	ND		0.0935	ug/L	1	12/10/24 20:28	EPA 8082A	
Aroclor 1254	0.153		0.0935	ug/L	1	12/10/24 20:28	EPA 8082A	P-12
Aroclor 1260	0.120		0.0935	ug/L	1	12/10/24 20:28	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 82 %	Limits: 40-135 %	5 1	12/10/24 20:28	EPA 8082A	
BH-DPSW#2-20241203 (A4L0933-02)				Matrix: Water		Batch: 24L0319		C-07
Aroclor 1016	ND		0.0943	ug/L	1	12/10/24 20:46	EPA 8082A	
Aroclor 1221	ND		0.0943	ug/L	1	12/10/24 20:46	EPA 8082A	
Aroclor 1232	ND		0.0943	ug/L	1	12/10/24 20:46	EPA 8082A	
Aroclor 1242	ND		0.0943	ug/L	1	12/10/24 20:46	EPA 8082A	
Aroclor 1248	ND		0.0943	ug/L	1	12/10/24 20:46	EPA 8082A	
Aroclor 1254	ND		0.0943	ug/L	1	12/10/24 20:46	EPA 8082A	
Aroclor 1260	ND		0.0943	ug/L	1	12/10/24 20:46	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 73 %	Limits: 40-135 %	5 1	12/10/24 20:46	EPA 8082A	
BH-DPSW#3-20241203 (A4L0933-03)				Matrix: Water		Batch:	C-07	
Aroclor 1016	ND		0.0935	ug/L	1	12/10/24 21:04	EPA 8082A	
Aroclor 1221	ND		0.0935	ug/L	1	12/10/24 21:04	EPA 8082A	
Aroclor 1232	ND		0.0935	ug/L	1	12/10/24 21:04	EPA 8082A	
Aroclor 1242	ND		0.0935	ug/L	1	12/10/24 21:04	EPA 8082A	
Aroclor 1248	ND		0.0935	ug/L	1	12/10/24 21:04	EPA 8082A	
Aroclor 1254	ND		0.0935	ug/L	1	12/10/24 21:04	EPA 8082A	
Aroclor 1260	ND		0.0935	ug/L	1	12/10/24 21:04	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 87 %	Limits: 40-135 %	5 1	12/10/24 21:04	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 10 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20B (ICPMS)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
BH-DPSW#1-20241203 (A4L0933-01)				Matrix: Wa	ater			
Batch: 24L0560								
Arsenic	5.85		1.00	ug/L	1	12/17/24 02:30	EPA 6020B	
Barium	86.2		2.00	ug/L	1	12/17/24 02:30	EPA 6020B	
Cadmium	4.29		0.200	ug/L	1	12/17/24 02:30	EPA 6020B	
Chromium	7.93		2.00	ug/L	1	12/17/24 02:30	EPA 6020B	
Lead	174		0.200	ug/L	1	12/17/24 02:30	EPA 6020B	
Mercury	0.136		0.0800	ug/L	1	12/17/24 02:30	EPA 6020B	
Selenium	ND		1.00	ug/L	1	12/17/24 02:30	EPA 6020B	
Silver	0.391		0.200	ug/L	1	12/17/24 02:30	EPA 6020B	
BH-DPSW#2-20241203 (A4L0933-02)				Matrix: Wa	ater			
Batch: 24L0560								
Arsenic	ND		1.00	ug/L	1	12/17/24 02:35	EPA 6020B	
Barium	29.3		2.00	ug/L	1	12/17/24 02:35	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	12/17/24 02:35	EPA 6020B	
Chromium	ND		2.00	ug/L	1	12/17/24 02:35	EPA 6020B	
Lead	5.62		0.200	ug/L	1	12/17/24 02:35	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	12/17/24 02:35	EPA 6020B	
Selenium	ND		1.00	ug/L	1	12/17/24 02:35	EPA 6020B	
Silver	ND		0.200	ug/L	1	12/17/24 02:35	EPA 6020B	
BH-DPSW#3-20241203 (A4L0933-03)				Matrix: Wa	ater			
Batch: 24L0560								
Arsenic	ND		1.00	ug/L	1	12/17/24 02:40	EPA 6020B	
Barium	28.1		2.00	ug/L	1	12/17/24 02:40	EPA 6020B	
Cadmium	ND		0.200	ug/L	1	12/17/24 02:40	EPA 6020B	
Chromium	ND		2.00	ug/L	1	12/17/24 02:40	EPA 6020B	
Lead	1.86		0.200	ug/L	1	12/17/24 02:40	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	12/17/24 02:40	EPA 6020B	
Selenium	ND		1.00	ug/L	1	12/17/24 02:40	EPA 6020B	
Silver	ND		0.200	ug/L	1	12/17/24 02:40	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 11 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Reporting Detection Spike Source % REC RPD % REC Limits RPD Analyte Result Ĺimit Units Dilution Amount Result Limit Notes Limit

Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 24L0305 - EPA 5030C							Wa	ter				
Blank (24L0305-BLK1)			Prepared	: 12/09/24	10:00 Anal	yzed: 12/09/	24 14:22					
EPA 8260D												
Acetone	ND		20.0	ug/L	1							
Acrylonitrile	ND		2.00	ug/L	1							
Benzene	ND		0.200	ug/L	1							
Bromobenzene	ND		0.500	ug/L	1							
Bromochloromethane	ND		1.00	ug/L	1							
Bromodichloromethane	ND		1.00	ug/L	1							
Bromoform	ND		1.00	ug/L	1							
Bromomethane	ND		5.00	ug/L	1							
2-Butanone (MEK)	ND		10.0	ug/L	1							
n-Butylbenzene	ND		1.00	ug/L	1							
sec-Butylbenzene	ND		1.00	ug/L	1							
tert-Butylbenzene	ND		1.00	ug/L	1							
Carbon disulfide	ND		10.0	ug/L	1							
Carbon tetrachloride	ND		1.00	ug/L	1							
Chlorobenzene	ND		0.500	ug/L	1							
Chloroethane	ND		5.00	ug/L	1							
Chloroform	ND		1.00	ug/L	1							
Chloromethane	ND		5.00	ug/L	1							
2-Chlorotoluene	ND		1.00	ug/L	1							
4-Chlorotoluene	ND		1.00	ug/L	1							
Dibromochloromethane	ND		1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1							
Dibromomethane	ND		1.00	ug/L	1							
1,2-Dichlorobenzene	ND		0.500	ug/L	1							
1,3-Dichlorobenzene	ND		0.500	ug/L	1							
1,4-Dichlorobenzene	ND		0.500	ug/L	1							
Dichlorodifluoromethane	ND		1.00	ug/L	1							
1,1-Dichloroethane	ND		0.400	ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1							
1,1-Dichloroethene	ND		0.400	ug/L	1							
cis-1,2-Dichloroethene	ND		0.400	ug/L	1							
trans-1,2-Dichloroethene	ND		0.400	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 12 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

))))))))	0.500 1.00 1.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L	10:00 Anal 1 1 1 1	yzed: 12/09/ 	Wat '24 14:22	ter				
)))))))	0.500 1.00 1.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L	1 1 1	 						
)))))))	1.00 1.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L	1 1							
)))))	1.00 1.00 1.00 1.00	ug/L ug/L ug/L	1							
))))	1.00 1.00 1.00	ug/L ug/L								
)))	1.00 1.00	ug/L	1							
)))	1.00	_								
)			1							
	0.500	ug/L	1							
	0.500	ug/L	1							
)	5.00	ug/L	1							
	10.0	ug/L	1							
)	1.00	ug/L	1							
)	1.00	ug/L	1							
)	10.0	ug/L	1							
)	10.0	ug/L	1							
)	1.00	ug/L	1							
)	5.00	ug/L	1							
)	0.500	ug/L	1							
)	1.00	ug/L	1							
)	0.400	ug/L	1							
)	0.500	ug/L	1							
)	0.400	ug/L	1							
		_	1							
		_								
		_								
		_								
		_								
		_								
		_								
		_								
		_								
	D D	D 1.00 D 2.00 D 2.00 D 0.400 D 0.500 D 0.400 D 1.00	D 1.00 ug/L D 2.00 ug/L D 0.400 ug/L D 0.500 ug/L D 0.500 ug/L D 0.400 ug/L D 1.00 ug/L D 0.500 ug/L	D 1.00 ug/L 1 D 2.00 ug/L 1 D 2.00 ug/L 1 D 0.400 ug/L 1 D 0.500 ug/L 1 D 0.500 ug/L 1 D 1.00 ug/L 1 D 0.500 ug/L 1	D 1.00 ug/L 1 D 2.00 ug/L 1 D 0.400 ug/L 1 D 0.400 ug/L 1 D 0.400 ug/L 1 D 1.00 ug/L 1 D 0.200 ug/L 1 D 0.500 ug/L 1 D D 0.500 ug/L 1 D D 0.500 ug/L 1 D D 0.500 ug/L 1 D D 0.500 ug/L 1 D D 0.500 ug/L 1 D	D 1.00 ug/L 1 D 2.00 ug/L 1 D 0.400 ug/L 1 D 0.400 ug/L 1 D 0.400 ug/L 1 D 0.400 ug/L 1 D 1.00 ug/L 1 D 0.200 ug/L 1 D 1.00 ug/L 1 D 0.500 ug/L 1 D 0.500 ug/L 1 D 0.500 ug/L 1 D 0.500 ug/L 1	D 1.00 ug/L 1 D 2.00 ug/L 1 D 2.00 ug/L 1 D 0.400 ug/L 1 D 0.500 ug/L 1 D 2.00 ug/L 1 D 1.00 ug/L 1 D 0.500 ug/L 1 D 0.500 ug/L 1	D 1.00 ug/L 1 D 2.00 ug/L 1 D 0.500 ug/L 1 D 1.00 ug/L 1 D 1.00 ug/L 1 D 1.00 ug/L 1	D 1.00 ug/L 1 D 2.00 ug/L 1	D 1.00 ug/L 1 D 2.00 ug/L 1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherz

Page 13 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0305 - EPA 5030C							Wa	ter				
Blank (24L0305-BLK1)			Prepared	l: 12/09/24	10:00 Ana	lyzed: 12/09	/24 14:22					
Surr: Toluene-d8 (Surr)		Rec	overy: 99 %	Limits: 80	0-120 %	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			99 %	80	0-120 %		"					
LCS (24L0305-BS1)			Prepared	1: 12/09/24	10:00 Ana	lyzed: 12/09	/24 13:37					
EPA 8260D												
Acetone	40.9		20.0	ug/L	1	40.0		102	80-120%			
Acrylonitrile	20.5		2.00	ug/L	1	20.0		103	80-120%			
Benzene	22.3		0.200	ug/L	1	20.0		112	80-120%			
Bromobenzene	18.8		0.500	ug/L	1	20.0		94	80-120%			
Bromochloromethane	26.0		1.00	ug/L	1	20.0		130	80-120%			Q-5
Bromodichloromethane	23.6		1.00	ug/L		20.0		118	80-120%			
Bromoform	21.7		1.00	ug/L	1	20.0		109	80-120%			
Bromomethane	37.4		5.00	ug/L	1	20.0		187	80-120%			Q-5
2-Butanone (MEK)	42.1		10.0	ug/L	1	40.0		105	80-120%			
n-Butylbenzene	19.6		1.00	ug/L	1	20.0		98	80-120%			
sec-Butylbenzene	20.5		1.00	ug/L	1	20.0		103	80-120%			
tert-Butylbenzene	19.0		1.00	ug/L	1	20.0		95	80-120%			
Carbon disulfide	25.0		10.0	ug/L	1	20.0		125	80-120%			Q-5
Carbon tetrachloride	22.1		1.00	ug/L	1	20.0		110	80-120%			
Chlorobenzene	20.9		0.500	ug/L	1	20.0		105	80-120%			
Chloroethane	32.9		5.00	ug/L	1	20.0		164	80-120%			Q-5
Chloroform	23.3		1.00	ug/L	1	20.0		116	80-120%			
Chloromethane	18.8		5.00	ug/L	1	20.0		94	80-120%			
2-Chlorotoluene	19.6		1.00	ug/L	1	20.0		98	80-120%			
4-Chlorotoluene	19.8		1.00	ug/L	1	20.0		99	80-120%			
Dibromochloromethane	21.5		1.00	ug/L	1	20.0		107	80-120%			
1,2-Dibromo-3-chloropropane	18.0		5.00	ug/L	1	20.0		90	80-120%			
1,2-Dibromoethane (EDB)	21.0		0.500	ug/L	1	20.0		105	80-120%			
Dibromomethane	23.5		1.00	ug/L	1	20.0		117	80-120%			
1,2-Dichlorobenzene	20.0		0.500	ug/L	1	20.0		100	80-120%			
1,3-Dichlorobenzene	21.0		0.500	ug/L	1	20.0		105	80-120%			
1,4-Dichlorobenzene	20.2		0.500	ug/L	1	20.0		101	80-120%			
Dichlorodifluoromethane	20.9		1.00	ug/L	1	20.0		105	80-120%			
				5 -								

0.400

ug/L

1

20.0

24.3

Apex Laboratories

1,1-Dichloroethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

121

80-120%

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 14 of 41

Q-56

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0305 - EPA 5030C							Wa	ter				
LCS (24L0305-BS1)			Prepared	: 12/09/24	10:00 Anal	lyzed: 12/09	/24 13:37					
1,2-Dichloroethane (EDC)	24.4		0.400	ug/L	1	20.0		122	80-120%			Q-56
1,1-Dichloroethene	24.8		0.400	ug/L	1	20.0		124	80-120%			Q-56
cis-1,2-Dichloroethene	22.2		0.400	ug/L	1	20.0		111	80-120%			
trans-1,2-Dichloroethene	22.8		0.400	ug/L	1	20.0		114	80-120%			
1,2-Dichloropropane	22.5		0.500	ug/L	1	20.0		112	80-120%			
1,3-Dichloropropane	19.6		1.00	ug/L	1	20.0		98	80-120%			
2,2-Dichloropropane	24.2		1.00	ug/L	1	20.0		121	80-120%			Q-56
1,1-Dichloropropene	22.1		1.00	ug/L	1	20.0		110	80-120%			
cis-1,3-Dichloropropene	19.8		1.00	ug/L	1	20.0		99	80-120%			
trans-1,3-Dichloropropene	21.3		1.00	ug/L	1	20.0		106	80-120%			
Ethylbenzene	20.6		0.500	ug/L	1	20.0		103	80-120%			
Hexachlorobutadiene	18.2		5.00	ug/L	1	20.0		91	80-120%			
2-Hexanone	31.8		10.0	ug/L	1	40.0		79	80-120%			Q-55
Isopropylbenzene	18.5		1.00	ug/L	1	20.0		92	80-120%			
4-Isopropyltoluene	19.8		1.00	ug/L	1	20.0		99	80-120%			
Methylene chloride	21.9		10.0	ug/L	1	20.0		110	80-120%			
4-Methyl-2-pentanone (MiBK)	36.1		10.0	ug/L	1	40.0		90	80-120%			
Methyl tert-butyl ether (MTBE)	21.1		1.00	ug/L	1	20.0		106	80-120%			
Naphthalene	16.2		5.00	ug/L	1	20.0		81	80-120%			
n-Propylbenzene	21.1		0.500	ug/L	1	20.0		106	80-120%			
Styrene	18.7		1.00	ug/L	1	20.0		94	80-120%			
1,1,2-Tetrachloroethane	19.9		0.400	ug/L	1	20.0		100	80-120%			
1,1,2,2-Tetrachloroethane	22.1		0.500	ug/L	1	20.0		111	80-120%			
Tetrachloroethene (PCE)	20.6		0.400	ug/L	1	20.0		103	80-120%			
Toluene	19.9		1.00	ug/L	1	20.0		99	80-120%			
1,2,3-Trichlorobenzene	16.9		2.00	ug/L	1	20.0		85	80-120%			
1,2,4-Trichlorobenzene	15.9		2.00	ug/L	1	20.0		80	80-120%			
1,1,1-Trichloroethane	23.6		0.400	ug/L	1	20.0		118	80-120%			
1,1,2-Trichloroethane	20.6		0.500	ug/L	1	20.0		103	80-120%			
Trichloroethene (TCE)	22.4		0.400	ug/L	1	20.0		112	80-120%			
Trichlorofluoromethane	39.4		2.00	ug/L	1	20.0		197	80-120%			Q-56
1,2,3-Trichloropropane	20.5		1.00	ug/L	1	20.0		103	80-120%			
1,2,4-Trimethylbenzene	20.5		1.00	ug/L	1	20.0		103	80-120%			
1,3,5-Trimethylbenzene	20.6		1.00	ug/L	1	20.0		103	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 15 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0305 - EPA 5030C							Wa	ter				
LCS (24L0305-BS1)			Prepared	1: 12/09/24	10:00 Ana	lyzed: 12/09	/24 13:37					
Vinyl chloride	25.0		0.200	ug/L	1	20.0		125	80-120%			Q-5
m,p-Xylene	42.8		1.00	ug/L	1	40.0		107	80-120%			
o-Xylene	17.9		0.500	ug/L	1	20.0		90	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 107 %		0-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			96 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			92 %	80	0-120 %		"					
Duplicate (24L0305-DUP1)			Prepared	d: 12/09/24	10:00 Ana	lyzed: 12/09	/24 20:56					
OC Source Sample: Non-SDG (A4)	L0850-13R	E1)										
Acetone	ND		2000	ug/L	100		ND				30%	
Acrylonitrile	ND		200	ug/L	100		ND				30%	
Benzene	ND		20.0	ug/L	100		ND				30%	
Bromobenzene	ND		50.0	ug/L	100		ND				30%	
Bromochloromethane	ND		100	ug/L	100		ND				30%	
Bromodichloromethane	ND		100	ug/L	100		ND				30%	
Bromoform	ND		100	ug/L	100		ND				30%	
Bromomethane	ND		500	ug/L	100		ND				30%	
2-Butanone (MEK)	ND		1000	ug/L	100		ND				30%	
n-Butylbenzene	ND		100	ug/L	100		ND				30%	
sec-Butylbenzene	ND		100	ug/L	100		ND				30%	
tert-Butylbenzene	ND		100	ug/L	100		ND				30%	
Carbon disulfide	ND		1000	ug/L	100		ND				30%	
Carbon tetrachloride	ND		100	ug/L	100		ND				30%	
Chlorobenzene	ND		50.0	ug/L	100		ND				30%	
Chloroethane	ND		500	ug/L	100		ND				30%	
Chloroform	ND		100	ug/L	100		ND				30%	
Chloromethane	ND		500	ug/L	100		ND				30%	
2-Chlorotoluene	ND		100	ug/L	100		ND				30%	
4-Chlorotoluene	ND		100	ug/L	100		ND				30%	
Dibromochloromethane	ND		100	ug/L	100		ND				30%	
1,2-Dibromo-3-chloropropane	ND		500	ug/L	100		ND				30%	
1,2-Dibromoethane (EDB)	ND		50.0	ug/L	100		ND				30%	
Dibromomethane	ND		100	ug/L	100		ND				30%	
				-								

Apex Laboratories

1,2-Dichlorobenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

ND

Philip Nerenberg, Lab Director

Philip Nevenberg

ND

50.0

ug/L

100

30%

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0305 - EPA 5030C							Wa	ter				
Duplicate (24L0305-DUP1)			Prepared	: 12/09/24	10:00 Anal	lyzed: 12/09/	/24 20:56					
QC Source Sample: Non-SDG (A4L	L0850-13R	E1)										
1,3-Dichlorobenzene	ND		50.0	ug/L	100		ND				30%	
1,4-Dichlorobenzene	ND		50.0	ug/L	100		ND				30%	
Dichlorodifluoromethane	ND		100	ug/L	100		ND				30%	
1,1-Dichloroethane	53.0		40.0	ug/L	100		55.0			4	30%	Q-54
1,2-Dichloroethane (EDC)	ND		40.0	ug/L	100		ND				30%	
1,1-Dichloroethene	ND		40.0	ug/L	100		ND				30%	
cis-1,2-Dichloroethene	581		40.0	ug/L	100		587			1	30%	
trans-1,2-Dichloroethene	ND		40.0	ug/L	100		ND				30%	
1,2-Dichloropropane	ND		50.0	ug/L	100		ND				30%	
1,3-Dichloropropane	ND		100	ug/L	100		ND				30%	
2,2-Dichloropropane	ND		100	ug/L	100		ND				30%	
1,1-Dichloropropene	ND		100	ug/L	100		ND				30%	
cis-1,3-Dichloropropene	ND		100	ug/L	100		ND				30%	
trans-1,3-Dichloropropene	ND		100	ug/L	100		ND				30%	
Ethylbenzene	ND		50.0	ug/L	100		ND				30%	
Hexachlorobutadiene	ND		500	ug/L	100		ND				30%	
2-Hexanone	ND		1000	ug/L	100		ND				30%	
Isopropylbenzene	ND		100	ug/L	100		ND				30%	
4-Isopropyltoluene	ND		100	ug/L	100		ND				30%	
Methylene chloride	ND		1000	ug/L	100		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		1000	ug/L	100		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		100	ug/L	100		ND				30%	
Naphthalene	ND		500	ug/L	100		ND				30%	
n-Propylbenzene	ND		50.0	ug/L	100		ND				30%	
Styrene	ND		100	ug/L	100		ND				30%	
1,1,1,2-Tetrachloroethane	ND		40.0	ug/L	100		ND				30%	
1,1,2,2-Tetrachloroethane	ND		50.0	ug/L	100		ND				30%	
Tetrachloroethene (PCE)	2500		40.0	ug/L	100		2510			0.5	30%	
Toluene	ND		100	ug/L	100		ND				30%	
1,2,3-Trichlorobenzene	ND		200	ug/L	100		ND				30%	
1,2,4-Trichlorobenzene	ND		200	ug/L	100		ND				30%	
1,1,1-Trichloroethane	ND		40.0	ug/L	100		ND				30%	
1,1,2-Trichloroethane	ND		50.0	ug/L	100		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 17 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0305 - EPA 5030C							Wa	ter				
Duplicate (24L0305-DUP1)			Prepared	l: 12/09/24	10:00 Ana	yzed: 12/09	/24 20:56					
QC Source Sample: Non-SDG (A4	L0850-13R	E1)										
Trichloroethene (TCE)	661		40.0	ug/L	100		674			2	30%	
Trichlorofluoromethane	ND		200	ug/L	100		ND				30%	
1,2,3-Trichloropropane	ND		100	ug/L	100		ND				30%	
1,2,4-Trimethylbenzene	ND		100	ug/L	100		ND				30%	
1,3,5-Trimethylbenzene	ND		100	ug/L	100		ND				30%	
Vinyl chloride	ND		20.0	ug/L	100		15.0			***	30%	Q-54
m,p-Xylene	ND		100	ug/L	100		ND				30%	
o-Xylene	ND		50.0	ug/L	100		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 111 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80	-120 %		"					
QC Source Sample: Non-SDG (A4	L0976-18)											
EPA 8260D												
Acetone	54.0		20.0	ug/L	1	40.0	ND	110	39-160%			
Acrylonitrile	20.5		2.00	ug/L	1	20.0	ND	103	63-135%			
Benzene	23.4		0.200	ug/L	1	20.0	0.210	116	79-120%			
Bromobenzene	17.8		0.500	ug/L	1	20.0	ND	89	80-120%			
Bromochloromethane	26.9		1.00	ug/L	1	20.0	ND	135	78-123%			Q-54
Bromodichloromethane	24.4		1.00	ug/L	1	20.0	ND	122	79-125%			
Bromoform	21.7		1.00	ug/L	1	20.0	ND	108	66-130%			
Bromomethane	42.4		5.00	ug/L	1	20.0	ND	212	53-141%			Q-54n
2-Butanone (MEK)	42.4		10.0	ug/L	1	40.0	ND	106	56-143%			
n-Butylbenzene	17.8		1.00	ug/L	1	20.0	ND	89	75-128%			
sec-Butylbenzene	19.3		1.00	ug/L	1	20.0	ND	96	77-126%			
tert-Butylbenzene	17.8		1.00	ug/L	1	20.0	ND	89	78-124%			
Carbon disulfide	27.0		10.0	ug/L	1	20.0	ND	135	64-133%			Q-54
Carbon tetrachloride	24.5		1.00	ug/L	1	20.0	ND	123	72-136%			
Chlorobenzene	21.0		0.500	ug/L	1	20.0	ND	105	80-120%			

Apex Laboratories

Philip Nevenberg

24.5

20.6

Chloroform

Chloromethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

122

103

79-124%

50-139%

Page 18 of 41

Philip Nerenberg, Lab Director

ug/L

ug/L

1

1

20.0

20.0

ND

ND

1.00

5.00

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

Detection

15862 SW 72nd Ave. Suite 150 Portland, OR 97224

Project: **Blue Heron**

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

% REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 24L0305 - EPA 5030C Water Matrix Spike (24L0305-MS1) Prepared: 12/09/24 10:00 Analyzed: 12/09/24 17:56 QC Source Sample: Non-SDG (A4L0976-18) 2-Chlorotoluene 18.5 1.00 ug/L 1 20.0 ND 93 79-122% 4-Chlorotoluene 1.00 94 18.7 ug/L 1 20.0 ND 78-122% Dibromochloromethane 21.3 1.00 ug/L 1 20.0 ND 107 74-126% 1,2-Dibromo-3-chloropropane 15.9 5.00 ug/L 1 20.0 ND 80 62-128% 1,2-Dibromoethane (EDB) 20.6 0.500 1 20.0 ND 103 77-121% ug/L 24.2 1.00 Dibromomethane ug/L 1 20.0 ND 121 79-123% 1,2-Dichlorobenzene 18.8 0.500ug/L 1 20.0 ND 94 80-120% 20.2 0.5001,3-Dichlorobenzene ug/L 1 20.0 ND 101 80-120% 1,4-Dichlorobenzene 19.6 0.500 ug/L 1 20.0 ND 98 79-120% Dichlorodifluoromethane 24.6 1.00 ug/L 1 20.0 ND 123 32-152% 1,1-Dichloroethane 25.2 0.400 ug/L 1 20.0 ND 126 77-125% Q-54 1,2-Dichloroethane (EDC) 0.400 Q-54e 24.8 ug/L 1 20.0 ND 124 73-128% 0.400 Q-54j 1,1-Dichloroethene 27.0 ug/L 20.0 ND 135 71-131% cis-1,2-Dichloroethene 22.2 0.400 20.0 ND ug/L 1 111 78-123% trans-1,2-Dichloroethene 0.400 23.9 ug/L 1 20.0 ND 120 75-124% 0.500 1,2-Dichloropropane 23.0 ug/L 1 20.0 ND 115 78-122% ___ 1,3-Dichloropropane 19.3 1.00 ug/L 1 20.0 ND 97 80-120% 24.2 1.00 20.0 ND 60-139% O-54 2,2-Dichloropropane ug/L 1 121 79-125% 1,1-Dichloropropene 23.6 1.00 ug/L 1 20.0 ND 118 1.00 cis-1,3-Dichloropropene 16.8 20.0 ND 75-124% ug/L 1 84 20.7 1.00 104 73-127% trans-1,3-Dichloropropene ug/L 20.0 ND Ethylbenzene 0.500 20.0 20.6 --ug/L 1 ND 103 79-121% ---

Apex Laboratories

1,1,1,2-Tetrachloroethane

Philip Manherz

Hexachlorobutadiene

Isopropylbenzene

4-Isopropyltoluene

Methylene chloride

4-Methyl-2-pentanone (MiBK)

Methyl tert-butyl ether (MTBE)

2-Hexanone

Naphthalene

Styrene

n-Propylbenzene

14.8

29.0

17.9

18.6

22.8

33.7

21.1

14 1

20.1

18.5

20.2

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

5.00

10.0

1.00

1.00

10.0

10.0

1.00

5.00

0.500

1.00

0.400

ug/L

1

1

1

1

1

1

1

1

1

20.0

40.0

20.0

20.0

20.0

40.0

20.0

20.0

20.0

20.0

20.0

ND

74

72

89

93

114

84

106

71

100

92

101

66-134%

57-139%

72-131%

77-127%

74-124%

67-130%

71-124%

61-128%

76-126%

78-123%

78-124%

Q-54o

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24L0305 - EPA 5030C Water Matrix Spike (24L0305-MS1) Prepared: 12/09/24 10:00 Analyzed: 12/09/24 17:56 QC Source Sample: Non-SDG (A4L0976-18) 1,1,2,2-Tetrachloroethane 22.0 0.500 ug/L 1 20.0 ND 110 71-121% ug/L 20.0 Tetrachloroethene (PCE) 21.1 0.400 1 ND 106 74-129% 80-121% Toluene 20.3 1.00 ug/L 1 20.0 ND 101 1,2,3-Trichlorobenzene 15.1 2.00 ug/L 1 20.0 ND 76 69-129% 1,2,4-Trichlorobenzene 13.7 2.00 ug/L 1 20.0 ND 68 69-130% Q-01 1,1,1-Trichloroethane 25.8 0.40020.0 74-131% ug/L 1 ND 129 0.500 1,1,2-Trichloroethane 20.4 ug/L 1 20.0 ND 102 80-120% Trichloroethene (TCE) 22.6 0.40020.0 79-123% ug/L 1 ND 113 Q-54n Trichlorofluoromethane 47.1 2.00 ug/L 1 20.0 ND 235 65-141% 1,2,3-Trichloropropane 19.2 1.00 ug/L 1 20.0 ND 96 73-122% 1,2,4-Trimethylbenzene 19.6 1.00 ug/L 1 20.0 ND 98 76-124% 1,3,5-Trimethylbenzene 1.00 19.5 20.0 98 75-124% ug/L 1 ND 27.8 0.200 20.0 Q-541 Vinyl chloride ug/L ND 139 58-137% 1.00 43.1 ug/L 40.0 ND 108 m,p-Xylene 1 80-121% o-Xylene 0.500 78-122% 17.3 ug/L ND 86 Surr: 1,4-Difluorobenzene (Surr) 110 % Limits: 80-120 % Dilution: 1x Recovery: 94 % Toluene-d8 (Surr) 80-120 %

80-120 %

90 %

Apex Laboratories

Philip Nevenberg

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 20 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 826	חחי
Volatile Organic Compounds by EFA 626	שט

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0517 - EPA 5030C							Wat	ter				
Blank (24L0517-BLK1)			Prepared	: 12/14/24	09:00 Anal	lyzed: 12/14/	24 12:12					
EPA 8260D												
Acetone	ND		20.0	ug/L	1							
Acrylonitrile	ND		2.00	ug/L	1							
Benzene	ND		0.200	ug/L	1							
Bromobenzene	ND		0.500	ug/L	1							
Bromochloromethane	ND		1.00	ug/L	1							
Bromodichloromethane	ND		1.00	ug/L	1							
Bromoform	ND		1.00	ug/L	1							
Bromomethane	ND		5.00	ug/L	1							
2-Butanone (MEK)	ND		10.0	ug/L	1							
n-Butylbenzene	ND		1.00	ug/L	1							
sec-Butylbenzene	ND		1.00	ug/L	1							
tert-Butylbenzene	ND		1.00	ug/L	1							
Carbon disulfide	ND		10.0	ug/L	1							
Carbon tetrachloride	ND		1.00	ug/L	1							
Chlorobenzene	ND		0.500	ug/L	1							
Chloroethane	ND		5.00	ug/L	1							
Chloroform	ND		1.00	ug/L	1							
Chloromethane	ND		5.00	ug/L	1							
2-Chlorotoluene	ND		1.00	ug/L	1							
4-Chlorotoluene	ND		1.00	ug/L	1							
Dibromochloromethane	ND		1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1							
Dibromomethane	ND		1.00	ug/L	1							
1,2-Dichlorobenzene	ND		0.500	ug/L	1							
1,3-Dichlorobenzene	ND		0.500	ug/L	1							
1,4-Dichlorobenzene	ND		0.500	ug/L	1							
Dichlorodifluoromethane	ND		1.00	ug/L	1							
1,1-Dichloroethane	ND		0.400	ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1							
1,1-Dichloroethene	ND		0.400	ug/L	1							
cis-1,2-Dichloroethene	ND		0.400	ug/L	1							
trans-1,2-Dichloroethene	ND		0.400	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 21 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

	Volatile	Organic	Compounds b	v EPA 8260D
--	----------	---------	-------------	-------------

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0517 - EPA 5030C							Wat	ter				
Blank (24L0517-BLK1)			Prepared	: 12/14/24	09:00 Ana	yzed: 12/14/	/24 12:12					
1,2-Dichloropropane	ND		0.500	ug/L	1							
1,3-Dichloropropane	ND		1.00	ug/L	1							
2,2-Dichloropropane	ND		1.00	ug/L	1							
1,1-Dichloropropene	ND		1.00	ug/L	1							
cis-1,3-Dichloropropene	ND		1.00	ug/L	1							
trans-1,3-Dichloropropene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Hexachlorobutadiene	ND		5.00	ug/L	1							
2-Hexanone	ND		10.0	ug/L	1							
Isopropylbenzene	ND		1.00	ug/L	1							
4-Isopropyltoluene	ND		1.00	ug/L	1							
Methylene chloride	ND		10.0	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		5.00	ug/L	1							
n-Propylbenzene	ND		0.500	ug/L	1							
Styrene	ND		1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1							
Tetrachloroethene (PCE)	ND		0.400	ug/L	1							
Toluene	ND		1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND		2.00	ug/L ug/L	1							
1,1,1-Trichloroethane	ND		0.400	ug/L ug/L	1							
1,1,2-Trichloroethane	ND		0.500	ug/L ug/L	1							
Trichloroethene (TCE)	ND		0.400	ug/L ug/L	1							
Trichlorofluoromethane	ND		2.00	ug/L ug/L	1							
1,2,3-Trichloropropane	ND		1.00	ug/L ug/L	1							
1,2,4-Trimethylbenzene	ND		1.00	ug/L ug/L	1							
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1							
Vinyl chloride	ND		0.200	ug/L ug/L	1							
m,p-Xylene	ND		1.00	ug/L ug/L	1							
o-Xylene	ND		0.500	ug/L ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 22 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0517 - EPA 5030C							Wa	ter				
Blank (24L0517-BLK1)			Prepared	1: 12/14/24	09:00 Ana	lyzed: 12/14	/24 12:12					
Surr: Toluene-d8 (Surr)		Reco	very: 101 %	Limits: 80	0-120 %	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			102 %	80	0-120 %		"					
LCS (24L0517-BS1)			Prepared	l: 12/14/24	09:00 Ana	lyzed: 12/14	1/24 11:04					
EPA 8260D												
Acetone	55.0		20.0	ug/L	1	40.0		138	80-120%			Q-5
Acrylonitrile	20.8		2.00	ug/L	1	20.0		104	80-120%			
Benzene	20.9		0.200	ug/L	1	20.0		104	80-120%			
Bromobenzene	20.1		0.500	ug/L	1	20.0		100	80-120%			
Bromochloromethane	24.0		1.00	ug/L	1	20.0		120	80-120%			
Bromodichloromethane	23.3		1.00	ug/L	1	20.0		117	80-120%			
Bromoform	21.5		1.00	ug/L	1	20.0		108	80-120%			
Bromomethane	29.9		5.00	ug/L	1	20.0		149	80-120%			Q-5
2-Butanone (MEK)	42.9		10.0	ug/L	1	40.0		107	80-120%			
n-Butylbenzene	20.4		1.00	ug/L	1	20.0		102	80-120%			
sec-Butylbenzene	20.0		1.00	ug/L	1	20.0		100	80-120%			
tert-Butylbenzene	19.7		1.00	ug/L	1	20.0		98	80-120%			
Carbon disulfide	31.6		10.0	ug/L	1	20.0		158	80-120%			Q-5
Carbon tetrachloride	23.3		1.00	ug/L	1	20.0		116	80-120%			
Chlorobenzene	21.7		0.500	ug/L	1	20.0		108	80-120%			
Chloroethane	27.9		5.00	ug/L	1	20.0		139	80-120%			Q-5
Chloroform	22.9		1.00	ug/L	1	20.0		115	80-120%			
Chloromethane	22.9		5.00	ug/L	1	20.0		115	80-120%			
2-Chlorotoluene	20.3		1.00	ug/L	1	20.0		102	80-120%			
4-Chlorotoluene	20.6		1.00	ug/L	1	20.0		103	80-120%			
Dibromochloromethane	22.1		1.00	ug/L	1	20.0		110	80-120%			
1,2-Dibromo-3-chloropropane	18.8		5.00	ug/L	1	20.0		94	80-120%			
1,2-Dibromoethane (EDB)	21.2		0.500	ug/L	1	20.0		106	80-120%			
Dibromomethane	22.7		1.00	ug/L	1	20.0		113	80-120%			
1,2-Dichlorobenzene	20.2		0.500	ug/L	1	20.0		101	80-120%			
1,3-Dichlorobenzene	21.2		0.500	ug/L	1	20.0		106	80-120%			
1,4-Dichlorobenzene	20.8		0.500	ug/L	1	20.0		104	80-120%			
Dichlorodifluoromethane	22.5		1.00	ug/L	1	20.0		113	80-120%			
1,1-Dichloroethane	22.2		0.400	ug/L	1	20.0		111	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 23 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0517 - EPA 5030C							Wa	ter				
LCS (24L0517-BS1)			Prepared	: 12/14/24	09:00 Ana	lyzed: 12/14	/24 11:04					
1,2-Dichloroethane (EDC)	22.5		0.400	ug/L	1	20.0		112	80-120%			
1,1-Dichloroethene	29.5		0.400	ug/L	1	20.0		148	80-120%			Q-56
cis-1,2-Dichloroethene	20.2		0.400	ug/L	1	20.0		101	80-120%			
trans-1,2-Dichloroethene	29.1		0.400	ug/L	1	20.0		145	80-120%			Q-56
1,2-Dichloropropane	22.0		0.500	ug/L	1	20.0		110	80-120%			
1,3-Dichloropropane	21.0		1.00	ug/L	1	20.0		105	80-120%			
2,2-Dichloropropane	23.6		1.00	ug/L	1	20.0		118	80-120%			
1,1-Dichloropropene	20.7		1.00	ug/L	1	20.0		104	80-120%			
cis-1,3-Dichloropropene	21.6		1.00	ug/L	1	20.0		108	80-120%			
trans-1,3-Dichloropropene	22.7		1.00	ug/L	1	20.0		113	80-120%			
Ethylbenzene	21.0		0.500	ug/L	1	20.0		105	80-120%			
Hexachlorobutadiene	18.6		5.00	ug/L	1	20.0		93	80-120%			
2-Hexanone	41.8		10.0	ug/L	1	40.0		105	80-120%			
Isopropylbenzene	18.9		1.00	ug/L	1	20.0		94	80-120%			
4-Isopropyltoluene	19.0		1.00	ug/L	1	20.0		95	80-120%			
Methylene chloride	26.3		10.0	ug/L	1	20.0		132	80-120%			Q-56
4-Methyl-2-pentanone (MiBK)	41.9		10.0	ug/L	1	40.0		105	80-120%			
Methyl tert-butyl ether (MTBE)	20.5		1.00	ug/L	1	20.0		103	80-120%			
Naphthalene	16.6		5.00	ug/L	1	20.0		83	80-120%			
n-Propylbenzene	20.7		0.500	ug/L	1	20.0		104	80-120%			
Styrene	18.8		1.00	ug/L	1	20.0		94	80-120%			
1,1,2-Tetrachloroethane	22.1		0.400	ug/L	1	20.0		111	80-120%			
1,1,2,2-Tetrachloroethane	22.2		0.500	ug/L	1	20.0		111	80-120%			
Tetrachloroethene (PCE)	20.5		0.400	ug/L	1	20.0		102	80-120%			
Toluene	20.8		1.00	ug/L	1	20.0		104	80-120%			
1,2,3-Trichlorobenzene	18.8		2.00	ug/L	1	20.0		94	80-120%			
1,2,4-Trichlorobenzene	17.3		2.00	ug/L	1	20.0		86	80-120%			
1,1,1-Trichloroethane	22.6		0.400	ug/L	1	20.0		113	80-120%			
1,1,2-Trichloroethane	21.5		0.500	ug/L	1	20.0		107	80-120%			
Trichloroethene (TCE)	20.8		0.400	ug/L	1	20.0		104	80-120%			
Trichlorofluoromethane	30.0		2.00	ug/L	1	20.0		150	80-120%			Q-56
1,2,3-Trichloropropane	21.5		1.00	ug/L	1	20.0		107	80-120%			
1,2,4-Trimethylbenzene	20.5		1.00	ug/L	1	20.0		103	80-120%			
1,3,5-Trimethylbenzene	20.7		1.00	ug/L	1	20.0		103	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 24 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224

Project: **Blue Heron**

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0517 - EPA 5030C							Wa	ter				
LCS (24L0517-BS1)			Prepared	l: 12/14/24	09:00 Anal	yzed: 12/14	/24 11:04					
Vinyl chloride	21.1		0.200	ug/L	1	20.0		105	80-120%			
m,p-Xylene	42.8		1.00	ug/L	1	40.0		107	80-120%			
o-Xylene	19.2		0.500	ug/L	1	20.0		96	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			92 %		-120 %		"					
Duplicate (24L0517-DUP1)			Prepared	l: 12/14/24	09:00 Anal	yzed: 12/14	/24 17:51					
OC Source Sample: Non-SDG (A4)	L1122-01)											
Acetone	ND		200	ug/L	10		ND				30%	
Acrylonitrile	ND		20.0	ug/L	10		ND				30%	
Benzene	ND		2.00	ug/L	10		ND				30%	
Bromobenzene	ND		5.00	ug/L	10		ND				30%	
Bromochloromethane	ND		10.0	ug/L	10		ND				30%	
Bromodichloromethane	ND		10.0	ug/L	10		ND				30%	
Bromoform	ND		10.0	ug/L	10		ND				30%	
Bromomethane	ND		50.0	ug/L	10		ND				30%	
2-Butanone (MEK)	ND		100	ug/L	10		ND				30%	
n-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
sec-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
tert-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
Carbon disulfide	ND		100	ug/L	10		ND				30%	
Carbon tetrachloride	ND		10.0	ug/L	10		ND				30%	
Chlorobenzene	ND		5.00	ug/L	10		ND				30%	
Chloroethane	ND		50.0	ug/L	10		ND				30%	
Chloroform	ND		10.0	ug/L	10		ND				30%	
Chloromethane	ND		50.0	ug/L	10		ND				30%	
2-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
4-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
Dibromochloromethane	ND		10.0	ug/L	10		ND				30%	
1,2-Dibromo-3-chloropropane	ND		50.0	ug/L	10		ND				30%	
1,2-Dibromoethane (EDB)	ND		5.00	ug/L	10		ND				30%	
Dibromomethane	ND		10.0	ug/L	10		ND				30%	
1,2-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 25 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0517 - EPA 5030C							Wa	ter				
Duplicate (24L0517-DUP1)			Prepared	1: 12/14/24	09:00 Ana	lyzed: 12/14	/24 17:51					
QC Source Sample: Non-SDG (A4I	<u>.1122-01)</u>											
1,3-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	
1,4-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	
Dichlorodifluoromethane	ND		10.0	ug/L	10		ND				30%	
1,1-Dichloroethane	ND		4.00	ug/L	10		ND				30%	
1,2-Dichloroethane (EDC)	ND		4.00	ug/L	10		ND				30%	
1,1-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
cis-1,2-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
trans-1,2-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
1,2-Dichloropropane	ND		5.00	ug/L	10		ND				30%	
1,3-Dichloropropane	ND		10.0	ug/L	10		ND				30%	
2,2-Dichloropropane	ND		10.0	ug/L	10		ND				30%	
1,1-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
cis-1,3-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
trans-1,3-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
Ethylbenzene	ND		5.00	ug/L	10		ND				30%	
Hexachlorobutadiene	ND		50.0	ug/L	10		ND				30%	
2-Hexanone	ND		100	ug/L	10		ND				30%	
Isopropylbenzene	ND		10.0	ug/L	10		ND				30%	
4-Isopropyltoluene	ND		10.0	ug/L	10		ND				30%	
Methylene chloride	ND		100	ug/L	10		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		100	ug/L	10		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		10.0	ug/L	10		ND				30%	
Naphthalene	ND		50.0	ug/L	10		ND				30%	
n-Propylbenzene	ND		5.00	ug/L	10		ND				30%	
Styrene	ND		10.0	ug/L	10		ND				30%	
1,1,1,2-Tetrachloroethane	ND		4.00	ug/L	10		ND				30%	
1,1,2,2-Tetrachloroethane	ND		5.00	ug/L	10		ND				30%	
Tetrachloroethene (PCE)	ND		4.00	ug/L	10		ND				30%	
Toluene	ND		10.0	ug/L	10		ND				30%	
1,2,3-Trichlorobenzene	ND		20.0	ug/L	10		ND				30%	
1,2,4-Trichlorobenzene	ND		20.0	ug/L	10		ND				30%	
1,1,1-Trichloroethane	ND		4.00	ug/L	10		ND				30%	
1,1,7 Themoreculare	ND		5.00	ug/L	10		. TD				2007	

Apex Laboratories

1,1,2-Trichloroethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

ND

Philip Nerenberg, Lab Director

Philip Nevenberg

ND

5.00

ug/L

10

Page 26 of 41

30%

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0517 - EPA 5030C							Wa	ter				
Duplicate (24L0517-DUP1)			Prepared	d: 12/14/24	09:00 Ana	lyzed: 12/14	/24 17:51					
QC Source Sample: Non-SDG (A4	L1122-01)											
Trichloroethene (TCE)	ND		4.00	ug/L	10		ND				30%	
Trichlorofluoromethane	ND		20.0	ug/L	10		ND				30%	
1,2,3-Trichloropropane	ND		10.0	ug/L	10		ND				30%	
1,2,4-Trimethylbenzene	ND		10.0	ug/L	10		ND				30%	
1,3,5-Trimethylbenzene	ND		10.0	ug/L	10		ND				30%	
Vinyl chloride	ND		2.00	ug/L	10		ND				30%	
m,p-Xylene	ND		10.0	ug/L	10		ND				30%	
o-Xylene	ND		5.00	ug/L	10		ND				30%	
urr: 1,4-Difluorobenzene (Surr)		Reco	very: 102 %	Limits: 80	0-120 %	Dila	ution: 1x					
Toluene-d8 (Surr)			103 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	0-120 %		"					
QC Source Sample: Non-SDG (A4	L1186-01)											
EPA 8260D	70.7		20.0	/T	1	40.0	ND	151	20.1600/			O-5
Acetone	79.7		2.00	ug/L	1		ND ND	171	39-160%			Q-3
Acrylonitrile Benzene	20.6 21.3		0.200	ug/L	1 1	20.0 20.0	ND ND	103 106	63-135% 79-120%			
Bromobenzene	19.9		0.200	ug/L	1	20.0	ND ND	99	79-120% 80-120%			
Bromochloromethane	24.2		1.00	ug/L	1	20.0	ND ND	121	78-123%			
Bromodichloromethane	23.9		1.00	ug/L ug/L	1	20.0	ND ND	121	79-125%			
Bromoform	23.9		1.00	ug/L ug/L	1	20.0	ND ND	107	79-125% 66-130%			
Bromomethane	32.7		5.00	ug/L ug/L	1	20.0	ND ND	163	53-141%			Q-5
2-Butanone (MEK)	43.1		10.0	ug/L ug/L	1	40.0	ND ND	108	56-143%			Q-2
n-Butylbenzene	20.8		1.00	ug/L ug/L	1	20.0	ND ND	108	75-128%			
sec-Butylbenzene	20.5		1.00	ug/L ug/L	1	20.0	ND ND	104	77-126%			
tert-Butylbenzene	20.3		1.00	ug/L	1	20.0	ND	101	78-124%			
Carbon disulfide	36.0		10.0	ug/L	1	20.0	ND	180	64-133%			Q-:
Carbon tetrachloride	24.1		1.00	ug/L	1	20.0	ND	121	72-136%			~
Chlorobenzene	21.9		0.500	ug/L	1	20.0	ND	109	80-120%			
Chloroethane	30.3		5.00	ug/L	1	20.0	ND	152	60-138%			Q-5
Chloroform	23.8		1.00	ug/L	1	20.0	ND	119	79-124%			ζ.
	23.0		1.00	~g/ L	•	_5.0	.,,		,, 121/0			

Apex Laboratories

Chloromethane

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

50-139%

121

Philip Nerenberg, Lab Director

Philip Nevenberg

24.3

5.00

ug/L

1

20.0

ND

Page 27 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

	_
Valatila Organia Compoundo by EDA 9260D	
Volatile Organic Compounds by EPA 8260D	

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0517 - EPA 5030C							Wa	ter				
Matrix Spike (24L0517-MS1)			Prepared	: 12/14/24	09:00 Anal	lyzed: 12/14	/24 18:36					
QC Source Sample: Non-SDG (A4)	L1186-01)											
2-Chlorotoluene	20.5		1.00	ug/L	1	20.0	ND	102	79-122%			
4-Chlorotoluene	21.4		1.00	ug/L	1	20.0	ND	107	78-122%			
Dibromochloromethane	22.0		1.00	ug/L	1	20.0	ND	110	74-126%			
1,2-Dibromo-3-chloropropane	18.1		5.00	ug/L	1	20.0	ND	91	62-128%			
1,2-Dibromoethane (EDB)	21.2		0.500	ug/L	1	20.0	ND	106	77-121%			
Dibromomethane	23.3		1.00	ug/L	1	20.0	ND	117	79-123%			
1,2-Dichlorobenzene	20.5		0.500	ug/L	1	20.0	ND	102	80-120%			
1,3-Dichlorobenzene	21.5		0.500	ug/L	1	20.0	ND	108	80-120%			
1,4-Dichlorobenzene	21.2		0.500	ug/L	1	20.0	ND	106	79-120%			
Dichlorodifluoromethane	23.6		1.00	ug/L	1	20.0	ND	118	32-152%			
1,1-Dichloroethane	22.7		0.400	ug/L	1	20.0	ND	114	77-125%			
1,2-Dichloroethane (EDC)	22.6		0.400	ug/L	1	20.0	ND	113	73-128%			
1,1-Dichloroethene	33.3		0.400	ug/L	1	20.0	ND	167	71-131%			Q-54c
cis-1,2-Dichloroethene	20.6		0.400	ug/L	1	20.0	ND	103	78-123%			
trans-1,2-Dichloroethene	32.5		0.400	ug/L	1	20.0	ND	162	75-124%			Q-54f
1,2-Dichloropropane	22.4		0.500	ug/L	1	20.0	ND	112	78-122%			
1,3-Dichloropropane	21.3		1.00	ug/L	1	20.0	ND	106	80-120%			
2,2-Dichloropropane	21.4		1.00	ug/L	1	20.0	ND	107	60-139%			
1,1-Dichloropropene	21.5		1.00	ug/L	1	20.0	ND	107	79-125%			
cis-1,3-Dichloropropene	20.3		1.00	ug/L	1	20.0	ND	102	75-124%			
trans-1,3-Dichloropropene	22.5		1.00	ug/L	1	20.0	ND	112	73-127%			
Ethylbenzene	21.4		0.500	ug/L	1	20.0	ND	107	79-121%			
Hexachlorobutadiene	17.4		5.00	ug/L	1	20.0	ND	87	66-134%			
2-Hexanone	42.6		10.0	ug/L	1	40.0	ND	106	57-139%			
Isopropylbenzene	19.1		1.00	ug/L	1	20.0	ND	95	72-131%			
4-Isopropyltoluene	19.2		1.00	ug/L	1	20.0	ND	96	77-127%			
Methylene chloride	28.8		10.0	ug/L	1	20.0	ND	144	74-124%			Q-54b
4-Methyl-2-pentanone (MiBK)	42.4		10.0	ug/L	1	40.0	ND	106	67-130%			
Methyl tert-butyl ether (MTBE)	19.4		1.00	ug/L	1	20.0	ND	97	71-124%			
Naphthalene	15.9		5.00	ug/L	1	20.0	ND	80	61-128%			
n-Propylbenzene	21.4		0.500	ug/L	1	20.0	ND	107	76-126%			
Styrene	18.8		1.00	ug/L	1	20.0	ND	94	78-123%			
1,1,1,2-Tetrachloroethane	22.6		0.400	ug/L	1	20.0	ND	113	78-124%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 28 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Notes Limit Limit Amount Result Limits Limit Batch 24L0517 - EPA 5030C Water Matrix Spike (24L0517-MS1) Prepared: 12/14/24 09:00 Analyzed: 12/14/24 18:36 QC Source Sample: Non-SDG (A4L1186-01) 1,1,2,2-Tetrachloroethane 22.8 0.500 ug/L 1 20.0 ND 114 71-121% ug/L Tetrachloroethene (PCE) 21.0 0.400 20.0 74-129% 1 ND 105 80-121% Toluene 21.5 1.00 ug/L 1 20.0 ND 108 1,2,3-Trichlorobenzene 18.3 2.00 ug/L 20.0 ND 92 69-129% 1,2,4-Trichlorobenzene 16.2 2.00 ug/L 1 20.0 ND 81 69-130% 1,1,1-Trichloroethane 23.3 0.40020.0 74-131% ug/L 1 ND 116 0.500 1,1,2-Trichloroethane 21.8 ug/L 1 20.0 ND 109 80-120% Trichloroethene (TCE) 21.1 0.40020.0 79-123% ug/L 1 ND 106 Q-54h Trichlorofluoromethane 33.3 2.00 ug/L 1 20.0 ND 167 65-141% 1,2,3-Trichloropropane 22.3 1.00 ug/L 1 20.0 ND 112 73-122% 1,2,4-Trimethylbenzene 20.9 1.00 ug/L 1 20.0 ND 105 76-124% 1,3,5-Trimethylbenzene 1.00 21.1 20.0 106 75-124% ug/L 1 ND 22.3 0.200 20.0 58-137% Vinyl chloride ug/L ND 112 1.00 40.0 m,p-Xylene 43.9 ug/L ND 110 80-121% 1 o-Xylene 0.500 78-122% 19.1 ug/L ND 95 Surr: 1,4-Difluorobenzene (Surr) 102 % Limits: 80-120 % Dilution: 1x Recovery: Toluene-d8 (Surr) 99 % 80-120 % 4-Bromofluorobenzene (Surr) 90 % 80-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 29 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	inated B	iphenyls	by EPA 80	82A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0319 - EPA 3510C(Neutral pH	l)					Wa	ter				
Blank (24L0319-BLK1)			Prepared	l: 12/10/24	07:19 Anal	yzed: 12/10	/24 19:35					C-07
EPA 8082A												
Aroclor 1016	ND		0.100	ug/L	1							
Aroclor 1221	ND		0.100	ug/L	1							
Aroclor 1232	ND		0.100	ug/L	1							
Aroclor 1242	ND		0.100	ug/L	1							
Aroclor 1248	ND		0.100	ug/L	1							
Aroclor 1254	ND		0.100	ug/L	1							
Aroclor 1260	ND		0.100	ug/L	1							
Surr: Decachlorobiphenyl (Surr)		Rece	overy: 85 %	Limits: 4	0-135 %	Dilı	ution: 1x					
LCS (24L0319-BS1)			Prepared	l: 12/10/24	07:19 Anal	yzed: 12/10	/24 19:52					C-07
EPA 8082A												
Aroclor 1016	2.17		0.100	ug/L	1	2.50		87	46-129%			
Aroclor 1260	2.29		0.100	ug/L	1	2.50		92	45-134%			
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 81 %	Limits: 4	0-135 %	Dilt	ution: 1x					
LCS Dup (24L0319-BSD1)			Prepared	l: 12/10/24	07:19 Anal	yzed: 12/10	/24 20:10					C-07, Q-19
EPA 8082A												
Aroclor 1016	2.22		0.100	ug/L	1	2.50		89	46-129%	2	30%	
Aroclor 1260	2.45		0.100	ug/L	1	2.50		98	45-134%	7	30%	

Limits: 40-135 %

Recovery: 93 %

Apex Laboratories

Surr: Decachlorobiphenyl (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Dilution: 1x

Philip Nerenberg, Lab Director

Philip Manherz

Page 30 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0560 - EPA 3015A							Wa	ter				
Blank (24L0560-BLK1)			Prepared	: 12/16/24	09:26 Anal	yzed: 12/17	/24 00:23					
EPA 6020B												
Arsenic	ND		1.00	ug/L	1							
Barium	ND		2.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		2.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Mercury	ND		0.0800	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
LCS (24L0560-BS1)			Prepared	: 12/16/24	09:26 Anal	yzed: 12/17	/24 00:28					
EPA 6020B												
Arsenic	54.2		1.00	ug/L	1	55.6		98	80-120%			
Barium	58.6		2.00	ug/L	1	55.6		105	80-120%			
Cadmium	54.5		0.200	ug/L	1	55.6		98	80-120%			
Chromium	53.1		2.00	ug/L	1	55.6		96	80-120%			
Lead	54.7		0.200	ug/L	1	55.6		98	80-120%			
Mercury	1.06		0.0800	ug/L	1	1.11		96	80-120%			
Selenium	26.2		1.00	ug/L	1	27.8		94	80-120%			
Silver	28.0		0.200	ug/L	1	27.8		101	80-120%			
Duplicate (24L0560-DUP1)			Prepared	: 12/16/24	09:26 Anal	yzed: 12/17/	/24 01:16					
QC Source Sample: Non-SDG (A4	L0893-01)											
Arsenic	9.11		1.00	ug/L	1		9.20			1	20%	
Cadmium	0.553		0.200	ug/L	1		0.497			11	20%	
Chromium	49.8		2.00	ug/L	1		46.5			7	20%	
Lead	17.2		0.200	ug/L	1		14.7			15	20%	
Mercury	ND		0.0800	ug/L	1		ND				20%	
Selenium	3.16		1.00	ug/L	1		3.10			2	20%	
Silver	ND		0.200	ug/L	1		0.115			***	20%	
Duplicate (24L0560-DUP2)			Prepared	: 12/16/24	09:26 Anal	yzed: 12/17/	/24 22:18					

QC Source Sample: Non-SDG (A4L0893-01RE1)

Philip Manhera

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 31 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24L0560 - EPA 3015A							Wa	iter				
Duplicate (24L0560-DUP2)			Prepared	: 12/16/24	09:26 Anal	lyzed: 12/17	/24 22:18					
QC Source Sample: Non-SDG (A4	L0893-01R	E1)										
Barium	895		20.0	ug/L	10		875			2	20%	Q-1
Matrix Spike (24L0560-MS1)			Prepared	: 12/16/24	09:26 Anal	lyzed: 12/17	/24 01:26					
QC Source Sample: Non-SDG (A4	(L0893-02)											
<u>EPA 6020B</u>												
Arsenic	58.0		1.00	ug/L	1	55.6	4.25	97	75-125%			
Barium	362		2.00	ug/L	1	55.6	316	83	75-125%			
Cadmium	56.8		0.200	ug/L	1	55.6	0.143	102	75-125%			
Chromium	59.2		2.00	ug/L	1	55.6	8.69	91	75-125%			
Lead	53.7		0.200	ug/L	1	55.6	3.86	90	75-125%			
Mercury	1.01		0.0800	ug/L	1	1.11	ND	91	75-125%			
Selenium	28.2		1.00	ug/L	1	27.8	ND	102	75-125%			
Silver	27.9		0.200	ug/L	1	27.8	ND	101	75-125%			
Matrix Spike Dup (24L0560-M	ISD1)		Prepared	: 12/16/24	09:26 Anal	lyzed: 12/17	/24 01:32					
QC Source Sample: Non-SDG (A4	(L0893-02)											
Arsenic	59.6		1.00	ug/L	1	55.6	4.25	100	75-125%	3	20%	
Barium	369		2.00	ug/L	1	55.6	316	96	75-125%	2	20%	
Cadmium	56.6		0.200	ug/L	1	55.6	0.143	102	75-125%	0.4	20%	
Chromium	61.1		2.00	ug/L	1	55.6	8.69	94	75-125%	3	20%	
Lead	54.6		0.200	ug/L	1	55.6	3.86	91	75-125%	2	20%	
Mercury	1.03		0.0800	ug/L	1	1.11	ND	93	75-125%	2	20%	
Selenium	28.1		1.00	ug/L	1	27.8	ND	101	75-125%	0.5	20%	
Silver	28.2		0.200	ug/L	1	27.8	ND	102	75-125%	1	20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 32 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

SAMPLE PREPARATION INFORMATION

		Volatile	Organic Compounds	by EPA 8260D			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0517							
A4L0933-01RE2	Water	EPA 8260D	12/03/24 16:00	12/14/24 09:00	5mL/5mL	5mL/5mL	1.00
A4L0933-02RE2	Water	EPA 8260D	12/03/24 16:20	12/14/24 09:00	5mL/5mL	5mL/5mL	1.00
A4L0933-03RE2	Water	EPA 8260D	12/03/24 16:30	12/14/24 09:00	5mL/5mL	5mL/5mL	1.00

		Polych	nlorinated Biphenyls I	by EPA 8082A			
Prep: EPA 3510C (N	Neutral pH)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0319							
A4L0933-01	Water	EPA 8082A	12/03/24 16:00	12/10/24 07:19	1070mL/5mL	1000 mL/5 mL	0.94
A4L0933-02	Water	EPA 8082A	12/03/24 16:20	12/10/24 07:19	1060mL/5mL	1000 mL/5 mL	0.94
A4L0933-03	Water	EPA 8082A	12/03/24 16:30	12/10/24 07:19	1070 mL/5 mL	1000mL/5mL	0.94

		Tota	al Metals by EPA 602	0B (ICPMS)			
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24L0560							
A4L0933-01	Water	EPA 6020B	12/03/24 16:00	12/16/24 09:26	45mL/50mL	45 mL/50 mL	1.00
A4L0933-02	Water	EPA 6020B	12/03/24 16:20	12/16/24 09:26	45mL/50mL	45 mL/50 mL	1.00
A4L0933-03	Water	EPA 6020B	12/03/24 16:30	12/16/24 09:26	45mL/50mL	45mL/50mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

Page 33 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: **G685.0793 Task 400**Project Manager: **John Kuiper**

Report ID: A4L0933 - 12 20 24 1821

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
- P-12 Result estimated due to the presence of multiple PCB Aroclors and/or PCB congeners not defined as Aroclors.
- Q-01 Spike recovery and/or RPD is outside acceptance limits.
- Q-16 Reanalysis of an original Batch QC sample.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +1%. The results are reported as Estimated Values.
- Q-54a Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +10%. The results are reported as Estimated Values.
- Q-54b Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +12%. The results are reported as Estimated Values.
- Q-54c Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +18%. The results are reported as Estimated Values.
- Q-54d Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +19%. The results are reported as Estimated Values.
- Q-54e Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +2%. The results are reported as Estimated Values.
- Q-54f Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +25%. The results are reported as Estimated Values.
- Q-54g Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +29%. The results are reported as Estimated Values.
- Q-54h Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +30%. The results are reported as Estimated Values.
- Q-54i Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +38%. The results are reported as Estimated Values.
- Q-54j Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +4%. The results are reported as Estimated Values.
- Q-54k Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +44%. The results are reported as Estimated Values.
- Q-541 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +5%. The results are reported as Estimated Values.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 34 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc. Project: Blue Heron

 15862 SW 72nd Ave. Suite 150
 Project Number: G685.0793 Task 400
 Report ID:

 Portland, OR 97224
 Project Manager: John Kuiper
 A4L0933 - 12 20 24 1821

Q-54m Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +67%. The results are reported as Estimated Values.

Q-54n Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +77%. The results are reported as Estimated Values.

Q-540 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -1%. The results are reported as Estimated Values.

Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.

Q-56 Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260. Samples that are ND (Non-Detect) are not impacted.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 35 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP <u>USA Environment & Infrastructure Inc.</u>

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400 Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Validated Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"__" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 36 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP <u>USA Environment & Infrastructure Inc.</u>

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL).

Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level.

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 37 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID:

A4L0933 - 12 20 24 1821

Decanted Samples:

Soils/Sediments:

Unless TCLP analysis is required or there is notification otherwise for a specific project, all Soil and Sediments containing excess water are decanted prior to analysis in order to provide the most representative sample for analysis.

Water Samples

Water samples containing solids and sediment may need to be decanted in order to eliminate these particulates from the water extractions. In the case of organics extractions, a solvent rinse of the container will not be performed.

Volatiles Soils (5035s)

Samples that are field preserved by 5035 for volatiles are dry weight corrected using the same dry weight corretion as for normal analyses. In the case of decanted samples, the dry weight may be performed on a decanted sample, while the aliquot for 5035 may not have been treated the same way. If this is a concern, please submit separate containers for dry weight analysis for volatiles can be provided.

All samples decanted in the laboratory are noted in this report with the DCNT qualifier indicating the sample was decanted.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Manherg

Page 38 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150 Portland, OR 97224 Project: Blue Heron

Project Number: G685.0793 Task 400
Project Manager: John Kuiper

Report ID: A4L0933 - 12 20 24 1821

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 39 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project:

Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID:

A4L0933 - 12 20 24 1821

0100 511 Sandows 51, 118a/4, OK 9/225 FT: 305-/10-2323	11. C22/F	01/-cnc	-7373																			
Company: √SP		Project Mgr. 4 John Luiper	Mgr. Mg	John	7	pa	`		Pro	ect Na	Project Name: Blue Heron	She	4	lere	Ž			Project #: 6685, 17493 795k (800	5.07	93	fask	080
Address: 15862 SW72N Are #150 Portland OR 97284	05/A 20	Port	and l	RFF	72¢ P	Phone:					Email:	É	In. L	uspe	\$	Jan. Eusper Cusp. com	7	PO #				
Sampled by: LUMA CHM.	Bruer	Knga	_					Note 717						•	NAL	ANALYSIS REQUEST	-				100	115
Site Location:								ļ		,		181.1				n n' K' ' bp' ' Cq'	TCLP					-
State OR		2000 000 000		VINERS					NOC*	Full Lis		Vols Full					.6614 (8) sli					
County C. (ref. C. SAMPLE ID	SATE	IME	XIATAN	OF CONT	H-HJLMN	O-HTTWV	1760 BTEN	1260 RBD?	olsH 092	500 AOC	I WIS 047	-imaS 072	087 PCBs	OSI Pestici SCRA Met	riority Me	, Sb, As, t, Ct, Co, t, Mg, M , Ag, Va, '	CLP Mea				old Sample	ozen Arch
BH-0PSW#1-2024(203	1 ~	1600	ν <u>3</u>	# 0	+	+		+-		, ×		+					L		-		-11	
BH_905 W #2-2024 (203	12/3	620	3	9			-	_		V	T	+	×	1	×		-		-		+	-
DH-D1511#3-20241203	12/3	63	3	0		-	_			×	m	-	×	Ļ	1		-					+-
														-	-		 					
TO COMPANY AND A STATE OF THE S									,													
					_	\dashv					_	\dashv		-	_							\dashv
					+		+	\perp				+	-	_	_		_		\dashv		-	
					+	+	_	_			\top	+		-								
The second secon					+	+	-	1			+-	+	+	-			1		-		-	-
Standard Tu.	Standard Turn Around Time $(TAT) = 10$ Business Days	ae (TAT)	= 10 Bu	siness D	ays	$\ \ $	$ \ $		$\ \ $	П	SPEC	W.D	STRU	SPECIAL INSTRUCTIONS	iğ.				-		-	-
TAT Bornosted (civeled)	1 Day		2 Day		3 Day	* >					CC		La	ž,	1.50	daniel. schall @ wsp. com	3	o. con				
(ara tra) maneam have a tra	5 Day	(5)	Standard	\triangle	Other:				ì													
	SAMPLES ARE HELD FOR 30 DAYS	D FOR 30	DAYS							Π												
RELINQUISHED BY: signature:	Date:		RECEIVED BY:	ED BY:			Date				RELINQUISHED BY:	QUISE	ED B	ü		.45		RECEIVED BY:				
7	4/4/21		Steen Mh 1214/24	17	1	3	-	4/2	12							. Calle		Signature:		Date:		
Danne Cler	тіпе: //30		Printed Name: Mary, new Mars Posses	Net 7	المور:	2059		Time:	2		Printed Name	Name:				Тте:		Printed Name:		Time:		
Company: WSP	į		Company:	از ي		,			6 5	_	Company.	<u> </u>						Company:				
																				, E	Form Y-002 R-00	12 R-0

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 40 of 41

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

WSP USA Environment & Infrastructure Inc.

15862 SW 72nd Ave. Suite 150

Portland, OR 97224

Project: Blue Heron

Project Number: G685.0793 Task 400

Project Manager: John Kuiper

Report ID:

A4L0933 - 12 20 24 1821

	APEX LABS COOLER RECEIPT FORM
Client: WSP	Element WO#: A410933
Project/Project #:	e Heron / G685. 0793 Task 400
Delivery Info:	
Date/time received: 1241	124 @ 11:30 By: 2/2M
Delivered by: ApexClie	ent KESS FedEx UPS Radio Morgan SDS Evergreen Other
	rigin? Yes No
Cooler Inspection Date	e/time inspected: 12/4/24 @ 11:30 By: AM
Chain of Custody included	d? Yes <u>×</u> No
Signed/dated by client?	Yes No
Contains USDA Reg. Soil	
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	5.6
Custody seals? (Y/N)	<u>N</u>
Received on ice? (Y/N)	у
Temp. blanks? (Y/N)	<u></u>
Ice type: (Gel/Real/Other)	leal
Condition (In/Out):	<u> </u>
Out of temperature sample Sample Inspection: Date	Possible reason why: of temperature samples? Yes/No es form initiated? Yes/No c/time inspected: 1215/24 @ 1202 By: JA No Comments:
Bottle labels/COCs agree?	Yes No Comments:
COC/container discrepanc	ies form initiated? Yes No
Containers/volumes receiv	ved appropriate for analysis? Yes No Comments:
Do VOA vials have visible	e headspace? Yes No NA
Comments 3/ VOAs	have sed for BH-DPSN #1-20241203
Water samples: pH checke	ed: Yes No NA pH appropriate? Yes No NA pH ID: 4231/32
Comments:	Witness: Cooler Inspected by:
Labeled by: JA	Form Y-003 R-02

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 41 of 41

Page 1 of 36

October 28, 2024

Enthalpy Analytical - El Dorado Hills Work Order No. 2410029

Mr. John Kuiper WSP 7376 SW Durham Road Portland, OR 97224

Dear Mr. Kuiper,

Enclosed are the results for the sample set received at Enthalpy Analytical - EDH on October 04, 2024 under your Project Name 'Blue Heron'.

Enthalpy Analytical - EDH is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at byron.clack@enthalpy.com.

Thank you for choosing Enthalpy Analytical - EDH as part of your analytical support team.

Sincerely,

Byron Clack Project Manager

Byrn Clack

Work Order 2410029

Enthalpy Analytical -EDH certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Enthalpy Analytical -EDH.

Enthalpy Analytical - EDH Work Order No. 2410029 Case Narrative

Sample Condition on Receipt:

One water sample and sixteen soil samples were received and stored securely in accordance with Enthalpy Analytical - EDH standard operating procedures and EPA methodology. The samples were received in good condition and within the method temperature requirements. No collection time was noted on the Chain-of-Custody (CoC) for sample "BH DUP1"; the collection time has been reported as 00:00.

Analytical Notes:

EPA Method 1613B (Aqueous)

The sample was extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-DIOXIN GC column.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank, Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) and Low-Level Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch B24J085. No analytes were detected in the Method Blank above 1/2 the Reporting Limit concentration. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

EPA Method 1613B (Solid)

The samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-DIOXIN GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batches B24J121 and B24J163. No analytes were detected above the sample quantitation limit in the

Work Order 2410029 Page 2 of 36

Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Work Order 2410029 Page 3 of 36

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	4
Sample Inventory	5
Analytical Results	6
Qualifiers	31
Certifications	32
Sample Receipt	33

Work Order 2410029 Page 4 of 36

Sample Inventory Report

Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2410029-01	BH_TRH-1_0-0.5_20241002	02-Oct-24 09:15	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-02	BH_TRH-2_0-0.5_20241002	02-Oct-24 10:10	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-03	BH_TRH-2_1-1.5_20241002	02-Oct-24 09:50	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-04	BH_TRH-3_0-0.5_20241002	02-Oct-24 11:25	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-05	BH_TRH-3_1-1.5_20241002	02-Oct-24 12:00	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-06	BH_TRI-1_0-0.5_20241002	02-Oct-24 08:23	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-07	BH_TRI-2_0-0.5_20241002	02-Oct-24 14:00	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-08	BH_TRI-3_0-0.5_20241002	02-Oct-24 12:30	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-09	BH_TRI-3_1-1.5_20241002	02-Oct-24 12:50	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-10	BH_TRI-4_0-0.5_20241002	02-Oct-24 15:50	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-11	BH_TR2-1_0-0.5_20241002	02-Oct-24 16:30	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-12	BH_TR2-2_0-0.5_20241002	02-Oct-24 17:30	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-13	BH_TR2-3_0-0.5_20241002	02-Oct-24 17:50	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-14	BH_TR2-4_0-0.5_20241002	02-Oct-24 17:00	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-15	BH_TR2-6_0-0.5_20241002	02-Oct-24 15:10	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-16	BH_DUP1	02-Oct-24 00:00	04-Oct-24 08:55	Amber Glass, 120 mL
2410029-17	BH_Rinsate_20241002	02-Oct-24 18:40	04-Oct-24 08:55	Amber Glass WM Bottle, 1L
				Amber Glass WM Bottle, 1L

Work Order 2410029 Page 5 of 36

ANALYTICAL RESULTS

Work Order 2410029 Page 6 of 36

Sample ID: Method Blank EPA Method 1613B

Client Data Laboratory Data

Name: WSP Lab Sample: B24J085-BLK1

Project: Blue Heron QC Batch: B24J085 Date Extracted: 10-Oct-24

Matrix: Aqueous Sample Size: 1.00 L Column: ZB-DIOXIN

				Sample Size:		Column:		
Analyte		Conc. (pg/L)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND	0.817				18-Oct-24 13:39	1
1,2,3,7,8-PeCDD		ND	1.85				18-Oct-24 13:39	1
1,2,3,4,7,8-HxCDI		ND	1.30				18-Oct-24 13:39	1
1,2,3,6,7,8-HxCDI	D	ND	1.40				18-Oct-24 13:39	1
1,2,3,7,8,9-HxCDI		ND	1.39				18-Oct-24 13:39	1
1,2,3,4,6,7,8-HpCI	DD	ND	2.29				18-Oct-24 13:39	1
OCDD		4.47				J	18-Oct-24 13:39	
2,3,7,8-TCDF		ND	0.722				18-Oct-24 13:39	
1,2,3,7,8-PeCDF		ND	1.04				18-Oct-24 13:39	
2,3,4,7,8-PeCDF		ND	1.18				18-Oct-24 13:39	
1,2,3,4,7,8-HxCDI		ND	0.759				18-Oct-24 13:39	
1,2,3,6,7,8-HxCDI		ND	0.806				18-Oct-24 13:39	
2,3,4,6,7,8-HxCDI		ND	0.837				18-Oct-24 13:39	
1,2,3,7,8,9-HxCDI		ND	1.12				18-Oct-24 13:39	
1,2,3,4,6,7,8-HpCI		ND	1.29				18-Oct-24 13:39	
1,2,3,4,7,8,9-HpCI	DF	ND	2.09				18-Oct-24 13:39	
OCDF		ND	2.60				18-Oct-24 13:39	1
Toxic Equivalent								
TEQMinWHO200)5Dioxin	0.00134						
Totals								
Total TCDD		ND	0.817					
Total PeCDD		ND	1.85					
Total HxCDD		ND	1.40					
Total HpCDD		ND	2.29					
Total TCDF		ND		0.698				
Total PeCDF		ND	1.18					
Total HxCDF		ND	1.12					
Total HpCDF								
		NI)	2 ()9					
•	de	ND Type	2.09	APS/	Limits	Qualifiers	Analyzed	Dilution
Labeled Standard		Type	% Recove	ery	Limits	Qualifiers	Analyzed	Dilution
Labeled Standard	D	Type IS	% Recove 80.2	ery	25 - 164	Qualifiers	18-Oct-24 13:39	1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC	D CDD	Type IS IS	% Recove 80.2 65.9	ery	25 - 164 25 - 181	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39	1 1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H	D CDD xCDD	Type IS IS IS	% Recove 80.2 65.9 89.8	ery	25 - 164 25 - 181 32 - 141	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39	1 1 1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,6,7,8-H:	D CDD xCDD xCDD	Type IS IS IS IS	% Recove 80.2 65.9 89.8 84.4	ery	25 - 164 25 - 181 32 - 141 28 - 130	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39	1 1 1 1 1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,6,7,8-H: 13C-1,2,3,7,8,9-H:	D CDD xCDD xCDD xCDD	Type IS IS IS IS IS IS	% Recove 80.2 65.9 89.8 84.4 89.6	ery	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,6,7,8-H: 13C-1,2,3,7,8,9-H: 13C-1,2,3,4,6,7,8-	D CDD xCDD xCDD xCDD	Type IS IS IS IS IS IS IS	% Recove 80.2 65.9 89.8 84.4 89.6 70.9	ery	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,6,7,8-H: 13C-1,2,3,7,8,9-H: 13C-1,2,3,4,6,7,8-1 13C-1,2,3,4,6,7,8-1	D CDD xCDD xCDD xCDD xCDD	Type IS IS IS IS IS IS IS IS IS	% Recove 80.2 65.9 89.8 84.4 89.6 70.9 73.6	ery	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,6,7,8-H: 13C-1,2,3,7,8,9-H: 13C-1,2,3,4,6,7,8-I: 13C-OCDD 13C-2,3,7,8-TCDF	D CDD xCDD xCDD xCDD xCDD xCDD	Type IS IS IS IS IS IS IS IS IS IS	% Recove 80.2 65.9 89.8 84.4 89.6 70.9 73.6 89.6	ery	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,6,7,8-H: 13C-1,2,3,7,8,9-H: 13C-1,2,3,4,6,7,8-1 13C-OCDD 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC	D CDD xCDD xCDD xCDD HpCDD	Type IS IS IS IS IS IS IS IS IS IS IS IS IS	80.2 65.9 89.8 84.4 89.6 70.9 73.6 89.6 84.9	ery	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,6,7,8-H: 13C-1,2,3,4,6,7,8-H: 13C-1,2,3,4,6,7,8-H: 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeC 13C-2,3,4,7,8-PeC	D CDD XCDD XCDD XCDD XCDD CDD CDD CDD CD	Type IS IS IS IS IS IS IS IS IS IS IS IS IS	80.2 65.9 89.8 84.4 89.6 70.9 73.6 89.6 84.9 63.9	ery	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,7,8,9-H: 13C-1,2,3,4,6,7,8-1 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,4,7,8-PeC 13C-2,3,4,7,8-PeC 13C-1,2,3,4,7,8-H:	D CDD xCDD xCDD xCDD xCDD HpCDD F CDF cxCDF	Type IS IS IS IS IS IS IS IS IS IS IS IS IS	80.2 65.9 89.8 84.4 89.6 70.9 73.6 89.6 84.9	ery	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,6,7,8-H: 13C-1,2,3,4,6,7,8-H: 13C-1,2,3,4,6,7,8-H: 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeC 13C-2,3,4,7,8-PeC	D CDD xCDD xCDD xCDD xCDD HpCDD F CDF cxCDF	Type IS IS IS IS IS IS IS IS IS IS IS IS IS	80.2 65.9 89.8 84.4 89.6 70.9 73.6 89.6 84.9 63.9	ery	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,7,8,9-H: 13C-1,2,3,4,6,7,8-1 13C-0CDD 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-2,3,4,7,8-PeC 13C-1,2,3,4,7,8-H:	D CDD xCDD xCDD xCDD xCDD HpCDD F CDF cxCDF xCDF xCDF	Type IS IS IS IS IS IS IS IS IS IS IS IS IS	% Recove 80.2 65.9 89.8 84.4 89.6 70.9 73.6 89.6 84.9 63.9 83.7	ery	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,7,8,9-H: 13C-1,2,3,4,6,7,8-1 13C-0CDD 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-2,3,4,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,6,7,8-H:	D CDD xCDD xCDD xCDD xCDD HpCDD F CDF CDF xCDF xCDF xCDF xCDF xCDF	Type IS IS IS IS IS IS IS IS IS IS IS IS IS	% Recove 80.2 65.9 89.8 84.4 89.6 70.9 73.6 89.6 84.9 63.9 83.7 85.3	ery	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,4,6,7,8-H: 13C-1,2,3,4,6,7,8-H: 13C-0CDD 13C-2,3,7,8-PeC 13C-1,2,3,4,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,6,7,8-H: 13C-1,2,3,6,7,8-H: 13C-1,2,3,6,7,8-H: 13C-1,2,3,4,6,7,8-H:	D CDD xCDD xCDD xCDD xCDD HpCDD F CDF xCDF xCDF xCDF xCDF xCDF xCDF	Type IS IS IS IS IS IS IS IS IS IS IS IS IS	% Recove 80.2 65.9 89.8 84.4 89.6 70.9 73.6 89.6 84.9 63.9 83.7 85.3	ery	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,7,8,9-H: 13C-1,2,3,4,6,7,8-I: 13C-0CDD 13C-2,3,7,8-PeC 13C-1,2,3,4,7,8-PeC 13C-2,3,4,7,8-H: 13C-1,2,3,4,7,8-H: 13C-1,2,3,4,7,8-H: 13C-1,2,3,4,6,7,8-H: 13C-1,2,3,4,6,7,8-H: 13C-1,2,3,4,6,7,8-H: 13C-1,2,3,4,6,7,8-H:	D CDD xCDD xCDD xCDD HpCDD F CDF xCDF xCDF xCDF xCDF xCDF	Type IS IS IS IS IS IS IS IS IS IS IS IS IS	% Recove 80.2 65.9 89.8 84.4 89.6 70.9 73.6 89.6 84.9 63.9 83.7 85.3 84.9 87.4	ery	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Labeled Standard 13C-2,3,7,8-TCDI 13C-1,2,3,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,7,8,9-H: 13C-1,2,3,4,6,7,8-I: 13C-0CDD 13C-2,3,7,8-PeC 13C-1,2,3,4,7,8-PeC 13C-1,2,3,4,7,8-H: 13C-1,2,3,6,7,8-H: 13C-1,2,3,6,7,8-H: 13C-1,2,3,4,6,7,8-H: 13C-2,3,4,6,7,8-H:	D CDD xCDD xCDD xCDD HpCDD F CDF xCDF xCDF xCDF xCDF xCDF	Type IS IS IS IS IS IS IS IS IS IS IS IS IS	% Recove 80.2 65.9 89.8 84.4 89.6 70.9 73.6 89.6 84.9 63.9 83.7 85.3 84.9	Pry	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147	Qualifiers	18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39 18-Oct-24 13:39	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

Work Order 2410029 Page 7 of 36

Sample ID: OPR EPA Method 1613B

Client Data

37Cl-2,3,7,8-TCDD

Name:

WSP

Project: Blue Heron Matrix: Aqueous Laboratory Data

Lab Sample: B24J085-BS1

QC Batch: B24J085 Date Extracted: 10-Oct-24 11:28
Sample Size: 1.00 L Column: ZB-DIOXIN

% Recovery Limits **Qualifiers** Analyte Amt Found (pg/L) Spike Amt Analyzed Dilution 2,3,7,8-TCDD 205 200 103 67-158 16-Oct-24 09:34 1,2,3,7,8-PeCDD 1130 16-Oct-24 09:34 1000 113 70 - 1421 1,2,3,4,7,8-HxCDD 1070 1000 107 70-164 16-Oct-24 09:34 1,2,3,6,7,8-HxCDD 1100 110 76-134 16-Oct-24 09:34 1000 1 1080 108 64-162 16-Oct-24 09:34 1 1,2,3,7,8,9-HxCDD 1000 1,2,3,4,6,7,8-HpCDD 1130 113 70 - 14016-Oct-24 09:34 1 1000 16-Oct-24 09:34 OCDD 2200 110 78-144 В 1 2000 2,3,7,8-TCDF 213 107 75-158 16-Oct-24 09:34 200 1.2.3.7.8-PeCDF 1040 104 80-134 16-Oct-24 09:34 1000 1 2,3,4,7,8-PeCDF 1070 107 68-160 16-Oct-24 09:34 1000 1 1,2,3,4,7,8-HxCDF 1120 112 72-134 16-Oct-24 09:34 1000 1140 16-Oct-24 09:34 1,2,3,6,7,8-HxCDF 1000 114 84 - 1301 1130 113 70-156 16-Oct-24 09:34 2,3,4,6,7,8-HxCDF 1000 1140 114 1,2,3,7,8,9-HxCDF 78-130 16-Oct-24 09:34 1 1000 1,2,3,4,6,7,8-HpCDF 1140 114 82-122 16-Oct-24 09:34 1000 1,2,3,4,7,8,9-HpCDF 1120 1000 112 78-138 16-Oct-24 09:34 1 2290 **OCDF** 2000 114 63-170 16-Oct-24 09:34 **Qualifiers Labeled Standards** Type % Recovery Limits Analyzed **Dilution** 13C-2,3,7,8-TCDD IS 87.1 20 - 17516-Oct-24 09:34 1 13C-1,2,3,7,8-PeCDD IS 80.8 21 - 227 16-Oct-24 09:34 IS 13C-1,2,3,4,7,8-HxCDD 93.6 21 - 193 16-Oct-24 09:34 1 IS 13C-1,2,3,6,7,8-HxCDD 90.3 25 - 163 16-Oct-24 09:34 1 13C-1,2,3,7,8,9-HxCDD IS 94.5 21 - 19316-Oct-24 09:34 1 13C-1,2,3,4,6,7,8-HpCDD IS 89.8 26-166 16-Oct-24 09:34 1 13C-OCDD IS 87.2 13-199 16-Oct-24 09:34 1 IS 94.0 13C-2,3,7,8-TCDF 22 - 152 16-Oct-24 09:34 1 13C-1,2,3,7,8-PeCDF IS 96.7 21-192 16-Oct-24 09:34 1 13C-2,3,4,7,8-PeCDF IS 95.2 13 - 328 16-Oct-24 09:34 1 13C-1,2,3,4,7,8-HxCDF IS 92.8 19-202 16-Oct-24 09:34 1 13C-1,2,3,6,7,8-HxCDF IS 90.2 21-159 16-Oct-24 09:34 1 16-Oct-24 09:34 IS 91.9 1 13C-2,3,4,6,7,8-HxCDF 22 - 17613C-1,2,3,7,8,9-HxCDF IS 93.9 17 - 205 16-Oct-24 09:34 1 IS 96.5 13C-1,2,3,4,6,7,8-HpCDF 21 - 158 16-Oct-24 09:34 1 IS 13C-1,2,3,4,7,8,9-HpCDF 105 20-186 16-Oct-24 09:34 13C-OCDF IS 95.6 13-199 16-Oct-24 09:34 1

Work Order 2410029 Page 8 of 36

88.4

31-191

16-Oct-24 09:34

1

CRS

Sample ID: LCSD EPA Method 1613B

Lab Sample:

B24J085-BSD1

Name: WSP

Project: Blue Heron

Matrix: Aqueous QC Batch: B24J085 Date Extracted: 10-Oct-24
Date Analyzed: 16-Oct-24 10:20 Samp Size: 1.00/1.00 L Column: 7B-DIOX

Date Analyzed: 16-Oct-24	10.20				Samp Size:	1.0	0/1.00 L		Allactea.	7	D DIOVI	N.T.
Date Analyzed: 16-Oct-24					Samp Size:	1.0	0/1.00 L	Colun	nn:	Z	B-DIOXI	IN
		LCS	LCS	LCS	LCS	LCSD	LCSD	LCSD		LCSD	%Rec	RPD
Analyte		(pg/L)	Spike Amt	% Rec	Quals	(pg/L)	Spike Amt	% Rec	RPD	Quals	Limits	Limits
2,3,7,8-TCDD		205	200	103		212	200	106	3.39		67- 158	200
1,2,3,7,8-PeCDD		1130	1000	113		1130	1000	113	0.751		70-142	200
1,2,3,4,7,8-HxCDD		1070	1000	107		1110	1000	111	3.12		70-164	200
1,2,3,6,7,8-HxCDD		1100	1000	110		1080	1000	108	2.23		76-134	200
1,2,3,7,8,9-HxCDD		1080	1000	108		1100	1000	110	2.52		64 162	200
1,2,3,4,6,7,8-HpCDD		1130	1000	113		1150	1000	115	2.03		70-140	200
OCDD		2200	2000	110	В	2070	2000	104	5.92	В	78-144	200
2,3,7,8-TCDF		213	200	107		215	200	108	1.09		75- 158	200
1,2,3,7,8-PeCDF		1040	1000	104		1070	1000	107	3.24		80-134	200
2,3,4,7,8-PeCDF		1070	1000	107		1090	1000	109	1.02		68-160	200
1,2,3,4,7,8-HxCDF		1120	1000	112		1140	1000	114	1.52		72- 134	200
1,2,3,6,7,8-HxCDF		1140	1000	114		1150	1000	115	1.13		84 130	200
2,3,4,6,7,8-HxCDF		1130	1000	113		1150	1000	115	2.01		70-156	200
1,2,3,7,8,9-HxCDF		1140	1000	114		1100	1000	110	3.48		78-130	200
1,2,3,4,6,7,8-HpCDF		1140	1000	114		1150	1000	115	0.762		82-122	200
1,2,3,4,7,8,9-HpCDF		1120	1000	112		1180	1000	118	5.21		78-138	200
OCDF		2290	2000	114		2370	2000	118	3.44		63- 170	200
				LCS	LCS			LCSD		LCSD		
Labeled Standards	Type			% Rec	Quals			% Rec		Quals	Limits	
13C-2,3,7,8-TCDD	IS			87.1				90.9			20 - 175	
13C-1,2,3,7,8-PeCDD	IS			80.8				83.2			21 - 227	
13C-1,2,3,4,7,8-HxCDD	IS			93.6				93.7			21 - 193	
13C-1,2,3,6,7,8-HxCDD	IS			90.3				88.7			25 - 163	
13C-1,2,3,7,8,9-HxCDD	IS			94.5				93.0			21 - 193	
13C-1,2,3,4,6,7,8-HpCDD	IS			89.8				87.3			26 - 166	
13C-OCDD	IS			87.2				91.7			13 - 199	

13C-2,3,7,8-TCDF IS 94.0 96.6 22 - 152 IS 13C-1,2,3,7,8-PeCDF 96.7 101 21 - 192 13C-2,3,4,7,8-PeCDF IS 95.2 89.7 13 - 328 13C-1,2,3,4,7,8-HxCDF IS 92.8 94.0 19 - 202 13C-1,2,3,6,7,8-HxCDF IS 90.2 91.0 21 - 159 91.9 93.1 13C-2,3,4,6,7,8-HxCDF IS 22 - 176 IS 93.9 96.6 17 - 205 13C-1,2,3,7,8,9-HxCDF IS 95.3 21 - 158 13C-1,2,3,4,6,7,8-HpCDF 96.5 13C-1,2,3,4,7,8,9-HpCDF IS 105 104 20 - 186 13C-OCDF IS 95.6 91.4 13 - 199 37Cl-2,3,7,8-TCDD CRS 88.4 99.1 31 - 191

Work Order 2410029 Page 9 of 36

Sample ID: BH_Rinsate_20241002 EPA Method 1613B

Laboratory Data Client Data

2410029-17 04-Oct-24 08:55 Lab Sample: Date Received: WSP Name: QC Batch: B24J085 Date Extracted: 10-Oct-24 Project: Blue Heron

Matrix: Water Date Collected: 02-Oct-24 1	8:40		Sample Size:	1.03 L	Column:	ZB-DIOXIN	ſ
Analyte	Conc. (pg/L)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	1.72				16-Oct-24 18:58	1
1,2,3,7,8-PeCDD	ND	3.04				16-Oct-24 18:58	1
1,2,3,4,7,8-HxCDD	ND	2.28				16-Oct-24 18:58	1
1,2,3,6,7,8-HxCDD	ND	2.35				16-Oct-24 18:58	
1,2,3,7,8,9-HxCDD	ND	2.32				16-Oct-24 18:58	1
1,2,3,4,6,7,8-HpCDD	ND	2.27				16-Oct-24 18:58	
OCDD	ND	3.63				16-Oct-24 18:58	
2,3,7,8-TCDF	ND	1.13				16-Oct-24 18:58	
1,2,3,7,8-PeCDF	ND	1.23				16-Oct-24 18:58	
2,3,4,7,8-PeCDF	ND	1.20				16-Oct-24 18:58	
1,2,3,4,7,8-HxCDF	ND	0.994				16-Oct-24 18:58	
1,2,3,6,7,8-HxCDF	ND	1.04				16-Oct-24 18:58	
2,3,4,6,7,8-HxCDF	ND	1.13				16-Oct-24 18:58	
1,2,3,7,8,9-HxCDF	ND	1.43				16-Oct-24 18:58	
1,2,3,4,6,7,8-HpCDF	ND	1.08				16-Oct-24 18:58	
1,2,3,4,7,8,9-HpCDF	ND	1.69				16-Oct-24 18:58	
OCDF	ND	3.41				16-Oct-24 18:58	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	0.00						
Totals							
Total TCDD	ND	1.72					
Total PeCDD	ND	3.04					
Total HxCDD	ND	2.35					
Total HpCDD	ND	2.27					
Total TCDF	ND	1.13					
Total PeCDF	ND	1.23					
Total HxCDF	ND	1.43					
Total HpCDF	ND	1.69					
Labeled Standards	Type			Limits	Qualifiers	Analyzed	Dilution
		% Recover	<u>y</u>		Quanners	· ·	
13C-2,3,7,8-TCDD	IS	87.4		25 - 164		16-Oct-24 18:58	
13C-1,2,3,7,8-PeCDD	IS	82.9		25 - 181		16-Oct-24 18:58	
13C-1,2,3,4,7,8-HxCDD	IS	84.3		32 - 141		16-Oct-24 18:58	
13C-1,2,3,6,7,8-HxCDD	IS	83.3		28 - 130		16-Oct-24 18:58	
13C-1,2,3,7,8,9-HxCDD	IS	84.4		32 - 141		16-Oct-24 18:58	
13C-1,2,3,4,6,7,8-HpCDD	IS	82.5		23 - 140		16-Oct-24 18:58	3 1
13C-OCDD	IS	76.8		17 - 157		16-Oct-24 18:58	3 1
13C-2,3,7,8-TCDF	IS	94.1		24 - 169		16-Oct-24 18:58	3 1
13C-1,2,3,7,8-PeCDF	IS	100		24 - 185		16-Oct-24 18:58	3 1
13C-2,3,4,7,8-PeCDF	IS	94.3		21 - 178		16-Oct-24 18:58	3 1
13C-1,2,3,4,7,8-HxCDF	IS	87.4		26 - 152		16-Oct-24 18:58	3 1
13C-1,2,3,6,7,8-HxCDF	IS	85.9		26 - 123		16-Oct-24 18:58	
13C-2,3,4,6,7,8-HxCDF	IS	86.8		28 - 136		16-Oct-24 18:58	
13C-1,2,3,7,8,9-HxCDF	IS	89.8		29 - 147		16-Oct-24 18:58	
13C-1,2,3,4,6,7,8-HpCDF	IS	92.0		28 - 143		16-Oct-24 18:58	
13C-1,2,3,4,7,8,9-HpCDF	IS	94.8		26 - 138		16-Oct-24 18:58	
13C-OCDF	IS	74.4		17 - 157		16-Oct-24 18:58	
37Cl-2,3,7,8-TCDD	CRS	92.3		35 - 197		16-Oct-24 18:58	3 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

Work Order 2410029 Page 10 of 36

Sample ID: Method Blank EPA Method 1613B

Client Data Laboratory Data

Name: WSP Lab Sample: B24J121-BLK1

Project:Blue HeronQC Batch:B24J121Date Extracted:15-Oct-24Matrix:SolidSample Size:10.0 gColumn:ZB-DIOXIN

Analyte	Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.0436				16-Oct-24 18:40	1
1,2,3,7,8-PeCDD	ND	0.0796				16-Oct-24 18:40	
1,2,3,4,7,8-HxCDD	ND	0.0622				16-Oct-24 18:40	
1,2,3,6,7,8-HxCDD	ND	0.0649				16-Oct-24 18:40	
1,2,3,7,8,9-HxCDD	ND	0.0668				16-Oct-24 18:40	
1,2,3,4,6,7,8-HpCDD	ND	0.0743				16-Oct-24 18:40	
OCDD	ND		0.127			16-Oct-24 18:40	
2,3,7,8-TCDF	ND	0.0508				16-Oct-24 18:40	
1,2,3,7,8-PeCDF	ND	0.0416				16-Oct-24 18:40	
2,3,4,7,8-PeCDF	ND	0.0383				16-Oct-24 18:40	
1,2,3,4,7,8-HxCDF	ND	0.0393				16-Oct-24 18:40	
1,2,3,6,7,8-HxCDF	ND	0.0391				16-Oct-24 18:40	
2,3,4,6,7,8-HxCDF	ND	0.0441				16-Oct-24 18:40	
1,2,3,7,8,9-HxCDF	ND	0.0580				16-Oct-24 18:40	
1,2,3,4,6,7,8-HpCDF	ND	0.0562				16-Oct-24 18:40	
1,2,3,4,7,8,9-HpCDF OCDF	ND	0.0529				16-Oct-24 18:40	
Toxic Equivalent	ND	0.0881				16-Oct-24 18:40	1
TEQMinWHO2005Dioxin	0.00						
Totals	0.00						
Total TCDD	ND	0.0436					
Total PeCDD	ND	0.0796					
Total HxCDD	ND	0.0668					
Total HpCDD	ND	0.0743					
Total TCDF	ND	0.0508					
Total PeCDF	ND	0.0416					
Total HxCDF	ND	0.0580					
Total HpCDF	ND	0.0562					
Labeled Standards	Туре	% Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	97.5		25 - 164		16-Oct-24 18:40	1
13C-1,2,3,7,8-PeCDD	IS	83.1		25 - 181		16-Oct-24 18:40	1
13C-1,2,3,4,7,8-HxCDD	IS	96.8		32 - 141		16-Oct-24 18:40	
13C-1,2,3,6,7,8-HxCDD	IS	89.6		28 - 130		16-Oct-24 18:40	
13C-1,2,3,7,8,9-HxCDD	IS	98.4		32 - 141		16-Oct-24 18:40	
13C-1,2,3,4,6,7,8-HpCDD	IS	79.7		23 - 140		16-Oct-24 18:40	
13C-OCDD	IS	75.3		17 - 157		16-Oct-24 18:40	
13C-2,3,7,8-TCDF	IS	96.0		24 - 169		16-Oct-24 18:40	
13C-1,2,3,7,8-PeCDF	IS	88.9		24 - 185		16-Oct-24 18:40	
13C-2,3,4,7,8-PeCDF	IS	84.6		21 - 178		16-Oct-24 18:40	
13C-1,2,3,4,7,8-HxCDF	IS	96.4		26 - 152		16-Oct-24 18:40	
13C-1,2,3,6,7,8-HxCDF	IS	90.7		26 - 123		16-Oct-24 18:40	
13C-2,3,4,6,7,8-HxCDF	IS	94.6		28 - 136		16-Oct-24 18:40	
13C-1,2,3,7,8,9-HxCDF	IS	96.2		29 - 147		16-Oct-24 18:40	
13C-1,2,3,4,6,7,8-HpCDF	IS IS						
•	IS	81.6 87.1		28 - 143		16-Oct-24 18:40 16-Oct-24 18:40	
13C-1,2,3,4,7,8,9-HpCDF 13C-OCDF	IS IS	76.8		26 - 138			
	CRS			17 - 157		16-Oct-24 18:40 16-Oct-24 18:40	
37C1-2,3,7,8-TCDD EDL - Sample specifc estimated determined to the specific estimated determined by the specific estimated by the speci		116	he results are reported	35 - 197		10-001-24 10:40	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

Work Order 2410029 Page 11 of 36

Sample ID: OPR EPA Method 1613B

Client Data

Name:

WSP

Project: Blue Heron

Matrix: Solid

Laboratory Data

Lab Sample: B24J121-BS1

QC Batch: B24J121 Date Extracted: 15-Oct-24 09:25

Sample Size: 10.0 g Column: ZB-DIOXIN

Analyte	Amt Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	19.9	20.0	99.5	67-158		16-Oct-24 16:22	1
1,2,3,7,8-PeCDD	109	100	109	70-142		16-Oct-24 16:22	1
1,2,3,4,7,8-HxCDD	102	100	102	70-164		16-Oct-24 16:22	1
1,2,3,6,7,8-HxCDD	105	100	105	76-134		16-Oct-24 16:22	1
1,2,3,7,8,9-HxCDD	105	100	105	64-162		16-Oct-24 16:22	1
1,2,3,4,6,7,8-HpCDD	111	100	111	70-140		16-Oct-24 16:22	1
OCDD	211	200	105	78-144		16-Oct-24 16:22	1
2,3,7,8-TCDF	18.5	20.0	92.3	75-158		16-Oct-24 16:22	1
1,2,3,7,8-PeCDF	101	100	101	80-134		16-Oct-24 16:22	1
2,3,4,7,8-PeCDF	104	100	104	68-160		16-Oct-24 16:22	1
1,2,3,4,7,8-HxCDF	97.8	100	97.8	72-134		16-Oct-24 16:22	1
1,2,3,6,7,8-HxCDF	101	100	101	84-130		16-Oct-24 16:22	
2,3,4,6,7,8-HxCDF	99.5	100	99.5	70-156		16-Oct-24 16:22	1
1,2,3,7,8,9-HxCDF	97.7	100	97.7	78-130		16-Oct-24 16:22	1
1,2,3,4,6,7,8-HpCDF	98.2	100	98.2	82-122		16-Oct-24 16:22	1
1,2,3,4,7,8,9-HpCDF	92.1	100	92.1	78-138		16-Oct-24 16:22	
OCDF	196	200	97.8	63-170		16-Oct-24 16:22	1
Labeled Standards	Туре		% Recovery	Limits	Qualifiers	<u> </u>	Dilution
13C-2,3,7,8-TCDD	IS		101	20 -175		16-Oct-24 16:22	
13C-1,2,3,7,8-PeCDD	IS		80.4	21 -227		16-Oct-24 16:22	1
13C-1,2,3,4,7,8-HxCDD	IS		104	21 -193		16-Oct-24 16:22	1
13C-1,2,3,6,7,8-HxCDD	IS		95.6	25 - 163		16-Oct-24 16:22	1
13C-1,2,3,7,8,9-HxCDD	IS		105	21 -193		16-Oct-24 16:22	1
13C-1,2,3,4,6,7,8-HpCDD	IS		84.1	26-166		16-Oct-24 16:22	1
13C-OCDD	IS		84.0	13 -199		16-Oct-24 16:22	1
13C-2,3,7,8-TCDF	IS		101	22 -152		16-Oct-24 16:22	1
13C-1,2,3,7,8-PeCDF	IS		90.4	21 -192		16-Oct-24 16:22	
13C-2,3,4,7,8-PeCDF	IS		82.5	13 -328		16-Oct-24 16:22	
13C-1,2,3,4,7,8-HxCDF	IS		104	19 -202		16-Oct-24 16:22	
13C-1,2,3,6,7,8-HxCDF	IS		95.2	21 -159		16-Oct-24 16:22	
13C-2,3,4,6,7,8-HxCDF	IS		99.1	22 - 176		16-Oct-24 16:22	
13C-1,2,3,7,8,9-HxCDF	IS		102	17 - 205		16-Oct-24 16:22	
1 / 1 1 1 / / 6 // U Had (111)	IS		85.3	21 - 158		16-Oct-24 16:22	
13C-1,2,3,4,6,7,8-HpCDF							
13C-1,2,3,4,7,8,9-HpCDF	IS		93.6	20-186		16-Oct-24 16:22	
•			93.6 86.8 129	20 - 186 13 - 199 31 - 191		16-Oct-24 16:22 16-Oct-24 16:22 16-Oct-24 16:22	1

Work Order 2410029 Page 12 of 36

Sample ID: Method Blank EPA Method 1613B

Client Data

Laboratory Data

Name: WSP

Lab Sample: B24J163-BLK1

Project: Blue Heron

QC Batch: B24J163 Date Extracted: 21-Oct-24
Sample Size: 10.0 g Column: ZB-DIOXIN

Matrix: Solid			Sample Size:	10.0 g	Column:	ZB-DIOXIN	-
Analyte	Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.302				23-Oct-24 21:31	1
1,2,3,7,8-PeCDD	ND	0.424				23-Oct-24 21:31	1
1,2,3,4,7,8-HxCDD	ND	0.384				23-Oct-24 21:31	1
1,2,3,6,7,8-HxCDD	ND	0.405				23-Oct-24 21:31	1
1,2,3,7,8,9-HxCDD	ND	0.438				23-Oct-24 21:31	1
1,2,3,4,6,7,8-HpCDD	ND	0.506				23-Oct-24 21:31	
OCDD	1.25				J	23-Oct-24 21:31	1
2,3,7,8-TCDF	ND	0.222				23-Oct-24 21:31	
1,2,3,7,8-PeCDF	ND	0.187				23-Oct-24 21:31	
2,3,4,7,8-PeCDF	ND	0.197				23-Oct-24 21:31	
1,2,3,4,7,8-HxCDF	ND	0.220				23-Oct-24 21:31	
1,2,3,6,7,8-HxCDF	ND	0.258				23-Oct-24 21:31	
2,3,4,6,7,8-HxCDF	ND	0.255				23-Oct-24 21:31	
1,2,3,7,8,9-HxCDF	ND	0.398				23-Oct-24 21:31	
1,2,3,4,6,7,8-HpCDF	ND	0.231				23-Oct-24 21:31	
1,2,3,4,7,8,9-HpCDF	ND	0.352				23-Oct-24 21:31	
OCDF	ND	0.666				23-Oct-24 21:31	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	0.000375						
Totals							
Total TCDD	ND	0.302					
Total PeCDD	ND	0.424					
Total HxCDD	ND	0.438					
Total HpCDD	ND	0.506					
Total TCDF	ND	0.222					
Total PeCDF	ND	0.197					
Total HxCDF	ND	0.398					
Total HpCDF	ND	0.352					
Labeled Standards	Type	% Recover		Limits	Qualifiers	Analyzed	Dilution
			<u>y</u>		Qualifiers	· ·	
13C-2,3,7,8-TCDD	IS	68.7		25 - 164		23-Oct-24 21:31	
13C-1,2,3,7,8-PeCDD	IS	57.8		25 - 181		23-Oct-24 21:31	
13C-1,2,3,4,7,8-HxCDD	IS	67.8		32 - 141		23-Oct-24 21:31	
13C-1,2,3,6,7,8-HxCDD	IS	72.0		28 - 130		23-Oct-24 21:31	
13C-1,2,3,7,8,9-HxCDD	IS	68.7		32 - 141		23-Oct-24 21:31	
13C-1,2,3,4,6,7,8-HpCDD	IS	62.5		23 - 140		23-Oct-24 21:31	
13C-OCDD	IS	59.7		17 - 157		23-Oct-24 21:31	
13C-2,3,7,8-TCDF	IS	72.8		24 - 169		23-Oct-24 21:31	
13C-1,2,3,7,8-PeCDF	IS	81.7		24 - 185		23-Oct-24 21:31	
13C-2,3,4,7,8-PeCDF	IS	70.4		21 - 178		23-Oct-24 21:31	. 1
13C-1,2,3,4,7,8-HxCDF	IS	67.7		26 - 152		23-Oct-24 21:31	1
13C-1,2,3,6,7,8-HxCDF	IS	69.5		26 - 123		23-Oct-24 21:31	. 1
13C-2,3,4,6,7,8-HxCDF	IS	68.4		28 - 136		23-Oct-24 21:31	1
13C-1,2,3,7,8,9-HxCDF	IS	67.3		29 - 147		23-Oct-24 21:31	
13C-1,2,3,4,6,7,8-HpCDF	IS	67.9		28 - 143		23-Oct-24 21:31	
13C-1,2,3,4,7,8,9-HpCDF	IS	68.5		26 - 138		23-Oct-24 21:31	
13C-OCDF							
113C-OCD)	IS	59.3		17 - 157		23-Oct-24 21:31	. 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

Work Order 2410029 Page 13 of 36

Sample ID: OPR **EPA Method 1613B**

Client Data

Laboratory Data

Name: WSP Project: Blue Heron Matrix:

Solid

Lab Sample: B24J163-BS1

QC Batch: B24J163 Date Extracted: 21-Oct-24 13:23

Sample Size: Column: **ZB-DIOXIN** 10.0 g

Analyte	Amt Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	19.8	20.0	99.1	67-158		23-Oct-24 19:11	1
1,2,3,7,8-PeCDD	117	100	117	70-142		23-Oct-24 19:11	1
1,2,3,4,7,8-HxCDD	106	100	106	70-164		23-Oct-24 19:11	1
1,2,3,6,7,8-HxCDD	102	100	102	76-134		23-Oct-24 19:11	1
1,2,3,7,8,9-HxCDD	99.3	100	99.3	64-162		23-Oct-24 19:11	1
1,2,3,4,6,7,8-HpCDD	110	100	110	70-140		23-Oct-24 19:11	1
OCDD	211	200	106	78-144	В	23-Oct-24 19:11	1
2,3,7,8-TCDF	20.5	20.0	102	75-158		23-Oct-24 19:11	1
1,2,3,7,8-PeCDF	108	100	108	80-134		23-Oct-24 19:11	1
2,3,4,7,8-PeCDF	111	100	111	68-160		23-Oct-24 19:11	1
1,2,3,4,7,8-HxCDF	110	100	110	72-134		23-Oct-24 19:11	1
1,2,3,6,7,8-HxCDF	108	100	108	84-130		23-Oct-24 19:11	1
2,3,4,6,7,8-HxCDF	109	100	109	70-156		23-Oct-24 19:11	1
1,2,3,7,8,9-HxCDF	108	100	108	78-130		23-Oct-24 19:11	1
1,2,3,4,6,7,8-HpCDF	111	100	111	82-122		23-Oct-24 19:11	1
1,2,3,4,7,8,9-HpCDF	110	100	110	78-138		23-Oct-24 19:11	1
OCDF	228	200	114	63-170	0 110	23-Oct-24 19:11	1
Labeled Standards	Type		% Recovery	Limits	Qualifiers	-	Dilution
13C-2,3,7,8-TCDD	IS		65.1	20 - 175		23-Oct-24 19:11	1
13C-1,2,3,7,8-PeCDD	IS		50.1	21 -227		23-Oct-24 19:11	1
13C-1,2,3,4,7,8-HxCDD	IS		60.0	21 -193		23-Oct-24 19:11	1
13C-1,2,3,6,7,8-HxCDD	IS		64.1	25 -163		23-Oct-24 19:11	1
13C-1,2,3,7,8,9-HxCDD	IS		62.8	21 -193		23-Oct-24 19:11	1
13C-1,2,3,4,6,7,8-HpCDD	IS		53.6	26-166		23-Oct-24 19:11	1
13C-OCDD	IS		53.1	13 -199		23-Oct-24 19:11	1
13C-2,3,7,8-TCDF	IS		66.9	22 -152		23-Oct-24 19:11	1
13C-1,2,3,7,8-PeCDF	IS		70.9	21 -192		23-Oct-24 19:11	1
13C-2,3,4,7,8-PeCDF	IS		62.9	13 -328		23-Oct-24 19:11	1
13C-1,2,3,4,7,8-HxCDF	IS		62.8	19 -202		23-Oct-24 19:11	1
13C-1,2,3,6,7,8-HxCDF	IS		65.6	21 -159		23-Oct-24 19:11	1
13C-2,3,4,6,7,8-HxCDF	IS		62.6	22 - 176		23-Oct-24 19:11	1
13C-1,2,3,7,8,9-HxCDF	IS		60.9	17 - 205		23-Oct-24 19:11	1
13C-1,2,3,4,6,7,8-HpCDF	IS		59.9	21 -158		23-Oct-24 19:11	1
13C-1,2,3,4,7,8,9-HpCDF	IS		63.2	20 - 186		23-Oct-24 19:11	1
							1
13C-OCDF	IS		54.5	13 - 199		23-Oct-24 19:11	1

Work Order 2410029 Page 14 of 36

Sample ID: BH TRH-1 0-0.5 20241002 EPA Method 1613B

Client Data Laboratory Data

Name: WSP Lab Sample: 2410029-01 Date Received: 04-Oct-24 08:55

Project: Blue Heron QC Batch: B24J121 Date Extracted: 15-Oct-24

Matrix: Soil Sample Size: 20.1 g Column: ZB-DIOXIN

% Solids: Date Collected: 02-Oct-24 09:15 50.2 EDL **EMPC** Dilution Qualifiers Analyzed Analyte Conc. (pg/g) 2,3,7,8-TCDD 0.321 ND 16-Oct-24 20:59 1,2,3,7,8-PeCDD 0.799 J 16-Oct-24 20:59 0.979 1,2,3,4,7,8-HxCDD 16-Oct-24 20:59 22.5 1,2,3,6,7,8-HxCDD 16-Oct-24 20:59 1 2.95 1,2,3,7,8,9-HxCDD 16-Oct-24 20:59 494 1,2,3,4,6,7,8-HpCDD 16-Oct-24 20:59 1 8290 D OCDD 18-Oct-24 10:19 5 2,3,7,8-TCDF 3.28 16-Oct-24 20:59 1 1,2,3,7,8-PeCDF 9.07 16-Oct-24 20:59 1 2.3.4.7.8-PeCDF 15.9 16-Oct-24 20:59 1 41.8 1,2,3,4,7,8-HxCDF 16-Oct-24 20:59 1,2,3,6,7,8-HxCDF 14.3 16-Oct-24 20:59 2,3,4,6,7,8-HxCDF 14.7 16-Oct-24 20:59 1,2,3,7,8,9-HxCDF 17.9 16-Oct-24 20:59 1,2,3,4,6,7,8-HpCDF 277 16-Oct-24 20:59 1,2,3,4,7,8,9-HpCDF 20.1 16-Oct-24 20:59 1 259 16-Oct-24 20:59 OCDF Toxic Equivalent 28.2 TEQMinWHO2005Dioxin **Totals** Total TCDD 3.69 4.18 Total PeCDD 11.7 12.4 Total HxCDD 94.3 95.0 Total HpCDD 926 Total TCDF 18.3 19.5 Total PeCDF 114 115 Total HxCDF 732 Total HpCDF 998 **Labeled Standards** Type Limits % Recovery Qualifiers Analyzed Dilution 13C-2,3,7,8-TCDD 97.1 IS 25 - 164 16-Oct-24 20:59 IS 78.7 13C-1,2,3,7,8-PeCDD 25 - 18116-Oct-24 20:59 1 13C-1,2,3,4,7,8-HxCDD IS 99.1 32 - 141 16-Oct-24 20:59 13C-1,2,3,6,7,8-HxCDD IS 94.0 28 - 130 16-Oct-24 20:59 IS 13C-1,2,3,7,8,9-HxCDD 96.4 16-Oct-24 20:59 32 - 141 13C-1,2,3,4,6,7,8-HpCDD IS 83.9 23 - 140 16-Oct-24 20:59 1 IS 13C-OCDD 87.4 17 - 157 D 18-Oct-24 10:19 5 13C-2,3,7,8-TCDF IS 96.7 16-Oct-24 20:59 1 24 - 169 IS 13C-1,2,3,7,8-PeCDF 85.3 24 - 185 16-Oct-24 20:59 1 13C-2,3,4,7,8-PeCDF IS 21 - 178 16-Oct-24 20:59 1 82.3 13C-1,2,3,4,7,8-HxCDF IS 97.3 26 - 152 16-Oct-24 20:59 IS 13C-1,2,3,6,7,8-HxCDF 90.6 16-Oct-24 20:59 1 26 - 123

EDL - Sample specifc estimated detection limit

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

37Cl-2,3,7,8-TCDD

13C-OCDF

EMPC - Estimated maximum possible concentration

IS

IS

IS

IS

IS

CRS

The results are reported in dry weight. The sample size is reported in wet weight.

28 - 136

29 - 147

28 - 143

26 - 138

17 - 157

35 - 197

16-Oct-24 20:59

16-Oct-24 20:59

16-Oct-24 20:59

16-Oct-24 20:59

16-Oct-24 20:59

16-Oct-24 20:59

1

1

1

Work Order 2410029 Page 15 of 36

95.7

93.4

83.7

86.0

79.4

109

Analyzed

16-Oct-24 21:45

16-Oct-24 21:45

16-Oct-24 21:45

16-Oct-24 21:45

16-Oct-24 21:45

Dilution

1

Qualifiers

J

Sample ID: BH_TRH-2_0-0.5_20241002 **EPA Method 1613B**

Laboratory Data Client Data

Conc. (pg/g)

ND

0.448

0.478

19.6

1.61

Analyte

2,3,7,8-TCDD

1,2,3,7,8-PeCDD

1,2,3,4,7,8-HxCDD

1,2,3,6,7,8-HxCDD

1,2,3,7,8,9-HxCDD

Lab Sample: 2410029-02 Date Received: 04-Oct-24 08:55 WSP Name: B24J121 QC Batch: Date Extracted: 15-Oct-24 Project: Blue Heron

EMPC

0.125

Sample Size: Column: 16.5 g Matrix: Soil **ZB-DIOXIN**

% Solids: Date Collected: 62.2 02-Oct-24 10:10 **EDL**

1,2,3,7,0,7-11ACDD	1.01			J	10 000 21 21.13	-
1,2,3,4,6,7,8-HpCDD	343				16-Oct-24 21:45	1
OCDD	4220				16-Oct-24 21:45	1
2,3,7,8-TCDF	1.47				16-Oct-24 21:45	1
1,2,3,7,8-PeCDF	8.65				16-Oct-24 21:45	1
2,3,4,7,8-PeCDF	15.2				16-Oct-24 21:45	1
1,2,3,4,7,8-HxCDF	40.1				16-Oct-24 21:45	1
1,2,3,6,7,8-HxCDF	11.3				16-Oct-24 21:45	1
2,3,4,6,7,8-HxCDF	4.67				16-Oct-24 21:45	1
1,2,3,7,8,9-HxCDF	6.10				16-Oct-24 21:45	1
1,2,3,4,6,7,8-HpCDF	235				16-Oct-24 21:45	1
1,2,3,4,7,8,9-HpCDF	18.0				16-Oct-24 21:45	1
OCDF	182				16-Oct-24 21:45	1
Toxic Equivalent						
TEQMinWHO2005Dioxin	21.1					
Totals						
Total TCDD	1.25		1.70			
Total PeCDD	3.77		4.06			
Total HxCDD	52.2					
Total HpCDD	593					
Total TCDF	6.39		7.03			
Total PeCDF	84.9		85.8			
m tracen	648					
Total HxCDF	048		008			
Total HxCDF Total HxCDF			668			
	853			Qualifiers	Analyzed	Dilution
Total HpCDF Labeled Standards	853 Type	% Recovery	Limits	Qualifiers		Dilution
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD	853 Type IS	% Recovery 99.7	Limits 25 - 164	Qualifiers	16-Oct-24 21:45	1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	853 Type IS IS	% Recovery 99.7 79.6	Limits 25 - 164 25 - 181	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45	1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD	853 Type IS IS IS	% Recovery 99.7 79.6 96.0	25 - 164 25 - 181 32 - 141	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45	1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	853 Type IS IS IS IS	% Recovery 99.7 79.6 96.0 89.0	Limits 25 - 164 25 - 181 32 - 141 28 - 130	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45	1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD	853 Type IS IS IS IS IS	% Recovery 99.7 79.6 96.0 89.0 95.5	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45	1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD	853 Type IS IS IS IS IS IS IS	% Recovery 99.7 79.6 96.0 89.0 95.5 78.7	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45	1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	853 Type IS IS IS IS IS IS IS IS	99.7 79.6 96.0 89.0 95.5 78.7 78.8	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45	1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF	853 Type IS IS IS IS IS IS IS IS IS IS IS	% Recovery 99.7 79.6 96.0 89.0 95.5 78.7 78.8 96.4	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45	1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	853 Type IS IS IS IS IS IS IS IS IS IS IS	% Recovery 99.7 79.6 96.0 89.0 95.5 78.7 78.8 96.4 86.6	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45	1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	853 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	99.7 79.6 96.0 89.0 95.5 78.7 78.8 96.4 86.6 82.5	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45	1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	853 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	99.7 79.6 96.0 89.0 95.5 78.7 78.8 96.4 86.6 82.5 96.3	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45 16-Oct-24 21:45	1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF	853 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	99.7 79.6 96.0 89.0 95.5 78.7 78.8 96.4 86.6 82.5 96.3 88.7	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45	1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	853 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	99.7 79.6 96.0 89.0 95.5 78.7 78.8 96.4 86.6 82.5 96.3 88.7 92.2	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45	1 1 1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF	853 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	99.7 79.6 96.0 89.0 95.5 78.7 78.8 96.4 86.6 82.5 96.3 88.7 92.2	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45	1 1 1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,7,8,9-HxCDF	853 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	99.7 79.6 96.0 89.0 95.5 78.7 78.8 96.4 86.6 82.5 96.3 88.7 92.2 92.6 80.3	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-0CDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	853 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	99.7 79.6 96.0 89.0 95.5 78.7 78.8 96.4 86.6 82.5 96.3 88.7 92.2 92.6 80.3 84.2	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	853 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	99.7 79.6 96.0 89.0 95.5 78.7 78.8 96.4 86.6 82.5 96.3 88.7 92.2 92.6 80.3	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143	Qualifiers	16-Oct-24 21:45 16-Oct-24 21:45	

Work Order 2410029 Page 16 of 36

Sample ID: BH_TRH-2_1-1.5_20241002 EPA Method 1613B

Laboratory Data **Client Data**

Date Collected:

02-Oct-24 09:50

Lab Sample: 2410029-03 Date Received: 04-Oct-24 08:55 Name: WSP B24J121 QC Batch: Date Extracted: 15-Oct-24 Blue Heron Project:

61.4

Sample Size: Column: 16.4 g Matrix: Soil **ZB-DIOXIN** % Solids:

EDL EMPC Dilution Qualifiers Analyzed Analyte Conc. (pg/g) 0.127 2,3,7,8-TCDD ND 16-Oct-24 22:31 1,2,3,7,8-PeCDD 0.312 J 16-Oct-24 22:31 1,2,3,4,7,8-HxCDD 0.476 16-Oct-24 22:31 1,2,3,6,7,8-HxCDD 16.6 16-Oct-24 22:31 1 1.71 16-Oct-24 22:31 1,2,3,7,8,9-HxCDD 270 16-Oct-24 22:31 1,2,3,4,6,7,8-HpCDD 1 2740 16-Oct-24 22:31 OCDD 1 1.40 2,3,7,8-TCDF 16-Oct-24 22:31 1 1,2,3,7,8-PeCDF 6.47 16-Oct-24 22:31 9.56 2,3,4,7,8-PeCDF 16-Oct-24 22:31 1 34.1 1,2,3,4,7,8-HxCDF 16-Oct-24 22:31 1,2,3,6,7,8-HxCDF 9.36 16-Oct-24 22:31 2,3,4,6,7,8-HxCDF 4.37 16-Oct-24 22:31 1,2,3,7,8,9-HxCDF 5.96 16-Oct-24 22:31 1,2,3,4,6,7,8-HpCDF 210 16-Oct-24 22:31 1,2,3,4,7,8,9-HpCDF 15.8 16-Oct-24 22:31 1 OCDF 159 16-Oct-24 22:31 **Toxic Equivalent** TEQMinWHO2005Dioxin 16.6 **Totals** Total TCDD 2.35 2.81

Total PeCDD	7.44		7.75			
Total HxCDD	52.3					
Total HpCDD	454					
Total TCDF	13.3		13.8			
Total PeCDF	100					
Total HxCDF	580		592			
Total HpCDF	775					
Labeled Standards	Type	% Recovery	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	102	25 - 164		16-Oct-24 22:31	1
13C-1,2,3,7,8-PeCDD	IS	83.9	25 - 181		16-Oct-24 22:31	1
13C-1,2,3,4,7,8-HxCDD	IS	101	32 - 141		16-Oct-24 22:31	1

Labeled Standards	Туре	% Recovery	Limits	Qualifiers Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	102	25 - 164	16-Oct-24 22:31	1
13C-1,2,3,7,8-PeCDD	IS	83.9	25 - 181	16-Oct-24 22:31	1
13C-1,2,3,4,7,8-HxCDD	IS	101	32 - 141	16-Oct-24 22:31	1
13C-1,2,3,6,7,8-HxCDD	IS	92.1	28 - 130	16-Oct-24 22:31	1
13C-1,2,3,7,8,9-HxCDD	IS	97.2	32 - 141	16-Oct-24 22:31	1
13C-1,2,3,4,6,7,8-HpCDD	IS	83.1	23 - 140	16-Oct-24 22:31	1
13C-OCDD	IS	83.2	17 - 157	16-Oct-24 22:31	1
13C-2,3,7,8-TCDF	IS	102	24 - 169	16-Oct-24 22:31	1
13C-1,2,3,7,8-PeCDF	IS	90.0	24 - 185	16-Oct-24 22:31	1
13C-2,3,4,7,8-PeCDF	IS	85.6	21 - 178	16-Oct-24 22:31	1
13C-1,2,3,4,7,8-HxCDF	IS	100	26 - 152	16-Oct-24 22:31	1
13C-1,2,3,6,7,8-HxCDF	IS	92.7	26 - 123	16-Oct-24 22:31	1
13C-2,3,4,6,7,8-HxCDF	IS	96.2	28 - 136	16-Oct-24 22:31	1
13C-1,2,3,7,8,9-HxCDF	IS	95.2	29 - 147	16-Oct-24 22:31	1
13C-1,2,3,4,6,7,8-HpCDF	IS	83.5	28 - 143	16-Oct-24 22:31	1
13C-1,2,3,4,7,8,9-HpCDF	IS	85.4	26 - 138	16-Oct-24 22:31	1
13C-OCDF	IS	79.0	17 - 157	16-Oct-24 22:31	1
37Cl-2,3,7,8-TCDD	CRS	105	35 - 197	16-Oct-24 22:31	1

EDL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration The results are reported in dry weight.

The sample size is reported in wet weight.

16-Oct-24 23:17

1

1

1

Sample ID: BH_TRH-3_0-0.5_20241002 EPA Method 1613B

Client Data Laboratory Data

Name:WSPLab Sample:2410029-04Date Received:04-Oct-24 08:55Project:Blue HeronQC Batch:B24J121Date Extracted:15-Oct-24

Matrix: Soil Sample Size: 51.1 g Column: ZB-DIOXIN
Date Collected: 02-Oct-24 11:25 % Solids: 19.6

Date Collected: 02-Oct-24	11:25		% Solids:	19.6	Column.	ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.0827				16-Oct-24 23:17	1
1,2,3,7,8-PeCDD	ND		0.460			16-Oct-24 23:17	1
1,2,3,4,7,8-HxCDD	0.531				J	16-Oct-24 23:17	1
1,2,3,6,7,8-HxCDD	2.47				J	16-Oct-24 23:17	1
1,2,3,7,8,9-HxCDD	ND		0.929			16-Oct-24 23:17	1
1,2,3,4,6,7,8-HpCDD	51.0					16-Oct-24 23:17	1
OCDD	572					16-Oct-24 23:17	1
2,3,7,8-TCDF	0.686					16-Oct-24 23:17	
1,2,3,7,8-PeCDF	0.281				J	16-Oct-24 23:17	1
2,3,4,7,8-PeCDF	0.472				J	16-Oct-24 23:17	1
1,2,3,4,7,8-HxCDF	0.668				J	16-Oct-24 23:17	
1,2,3,6,7,8-HxCDF	ND		0.728			16-Oct-24 23:17	
2,3,4,6,7,8-HxCDF	0.542				J	16-Oct-24 23:17	1
1,2,3,7,8,9-HxCDF	0.0984				J	16-Oct-24 23:17	
1,2,3,4,6,7,8-HpCDF	13.4					16-Oct-24 23:17	
1,2,3,4,7,8,9-HpCDF	ND		0.523			16-Oct-24 23:17	
OCDF	21.0					16-Oct-24 23:17	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	1.47						
Totals							
Total TCDD	1.78		2.20				
Total PeCDD	5.13		6.51				
Total HxCDD	24.7		25.6				
Total HpCDD	107						
Total TCDF	1.96						
Total PeCDF	8.67		9.61				
Total HxCDF	15.1		16.4				
Total HpCDF	30.2		30.8				
Labeled Standards	Type	% Recovery	,	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	100		25 - 164		16-Oct-24 23:17	7 1
13C-1,2,3,7,8-PeCDD	IS	83.8		25 - 181		16-Oct-24 23:17	7 1
13C-1,2,3,4,7,8-HxCDD	IS	107		32 - 141		16-Oct-24 23:17	7 1
13C-1,2,3,6,7,8-HxCDD	IS	97.1		28 - 130		16-Oct-24 23:17	1
13C-1,2,3,7,8,9-HxCDD	IS	98.3		32 - 141		16-Oct-24 23:17	7 1
13C-1,2,3,4,6,7,8-HpCDD	IS	82.4		23 - 140		16-Oct-24 23:17	
13C-OCDD	IS	78.9		17 - 157		16-Oct-24 23:17	
13C-2,3,7,8-TCDF	IS	101		24 - 169		16-Oct-24 23:17	
13C-1,2,3,7,8-PeCDF	IS	88.3		24 - 185		16-Oct-24 23:17	
13C-2,3,4,7,8-PeCDF	IS	87.3		21 - 178		16-Oct-24 23:17	
13C-1,2,3,4,7,8-HxCDF	IS	101		26 - 152		16-Oct-24 23:17	
13C-1,2,3,4,7,6-HACDI	10	101		20 - 132		16-001-24 23.17	

EDL - Sample specifc estimated detection limit

13C-1,2,3,6,7,8-HxCDF

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

37Cl-2,3,7,8-TCDD

13C-OCDF

EMPC - Estimated maximum possible concentration The sample size is repor

IS

IS

IS

IS

IS

IS

CRS

The results are reported in dry weight.

The sample size is reported in wet weight.

26 - 123

28 - 136

29 - 147

28 - 143

26 - 138

17 - 157

35 - 197

Work Order 2410029 Page 18 of 36

95.1

95.1

95.5

84.8

89.2

78.1

121

Sample ID: BH_TRH-3_1-1.5_20241002 **EPA Method 1613B**

Laboratory Data Client Data

2410029-05 Lab Sample: Date Received: 04-Oct-24 08:55 WSP Name: QC Batch: B24J121 Date Extracted: 15-Oct-24 Blue Heron Project:

Sample Size: 39.0 g Column: Matrix: Soil ZB-DIOXIN

Matrix: Soil Date Collected: 02-Oct-24 1	2:00		% Solids:	39.0 g 25.8	Column:	ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.389				17-Oct-24 10:10	
1,2,3,7,8-PeCDD	1.95				J	17-Oct-24 10:10	
1,2,3,4,7,8-HxCDD	ND	1.68				17-Oct-24 10:10	
1,2,3,6,7,8-HxCDD	ND	1.78				17-Oct-24 10:10	
1,2,3,7,8,9-HxCDD	ND	2.06				17-Oct-24 10:10	
1,2,3,4,6,7,8-HpCDD	45.7					17-Oct-24 10:10	
OCDD	422	0.450				17-Oct-24 10:10	
2,3,7,8-TCDF	ND	0.458				17-Oct-24 10:10	
1,2,3,7,8-PeCDF	ND	0.866				17-Oct-24 10:10	
2,3,4,7,8-PeCDF	ND	0.946				17-Oct-24 10:10	
1,2,3,4,7,8-HxCDF	ND	1.30				17-Oct-24 10:10	
1,2,3,6,7,8-HxCDF	ND	1.35				17-Oct-24 10:10	
2,3,4,6,7,8-HxCDF	ND	1.71				17-Oct-24 10:10	
1,2,3,7,8,9-HxCDF	ND 11.2	2.33				17-Oct-24 10:10	
1,2,3,4,6,7,8-HpCDF	ND	2.40				17-Oct-24 10:10 17-Oct-24 10:10	
1,2,3,4,7,8,9-HpCDF OCDF	ND 27.8	2.40				17-Oct-24 10:10 17-Oct-24 10:10	
	21.8					17-001-24 10:10	1
Toxic Equivalent TEQMinWHO2005Dioxin	2.65						
Totals	2.03						
Total TCDD	2.49						
Total PeCDD	18.3		21.2				
Total HxCDD	44.1		55.9				
Total HpCDD	137		33.9				
Total TCDF	ND	0.458					
Total PeCDF	3.74	0.430					
Total HxCDF	10.9						
Total HpCDF Labeled Standards	32.4	0/ D		Limits	Qualifiers	A1 J	Dilution
	Туре	% Recover	<u>y</u>		Quaimers	Analyzed	
13C-2,3,7,8-TCDD	IS	81.6		25 - 164		17-Oct-24 10:10	
13C-1,2,3,7,8-PeCDD	IS	44.1		25 - 181		17-Oct-24 10:10	
13C-1,2,3,4,7,8-HxCDD	IS	101		32 - 141		17-Oct-24 10:10	
13C-1,2,3,6,7,8-HxCDD	IS	85.4		28 - 130		17-Oct-24 10:10	
13C-1,2,3,7,8,9-HxCDD	IS	88.9		32 - 141		17-Oct-24 10:10	
13C-1,2,3,4,6,7,8-HpCDD	IS	37.9		23 - 140		17-Oct-24 10:10) 1
13C-OCDD	IS	26.6		17 - 157		17-Oct-24 10:10) 1
13C-2,3,7,8-TCDF	IS	79.1		24 - 169		17-Oct-24 10:10) 1
13C-1,2,3,7,8-PeCDF	IS	54.0		24 - 185		17-Oct-24 10:10) 1
13C-2,3,4,7,8-PeCDF	IS	43.0		21 - 178		17-Oct-24 10:10) 1
13C-1,2,3,4,7,8-HxCDF	IS	105		26 - 152		17-Oct-24 10:10) 1
13C-1,2,3,6,7,8-HxCDF	IS	92.2		26 - 123		17-Oct-24 10:10) 1
13C-2,3,4,6,7,8-HxCDF	IS	87.9		28 - 136		17-Oct-24 10:10) 1
13C-1,2,3,7,8,9-HxCDF	IS	79.6		29 - 147		17-Oct-24 10:10	
13C-1,2,3,4,6,7,8-HpCDF	IS	50.4		28 - 143		17-Oct-24 10:10	
13C-1,2,3,4,7,8,9-HpCDF	IS	38.1		26 - 138		17-Oct-24 10:10	
13C-OCDF	IS	25.6		17 - 157		17-Oct-24 10:10	
37C1-2,3,7,8-TCDD	CRS	98.9		35 - 197		17-Oct-24 10:10	
EDL - Sample specifc estimated detec		,,,,	Th	orted in dry weight.		2 . 10.10	

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Work Order 2410029 Page 19 of 36

Sample ID: BH_TR1-1_0-0.5_20241002 **EPA Method 1613B**

Laboratory Data Client Data

2410029-06 Lab Sample: Date Received: 04-Oct-24 08:55 WSP Name: QC Batch: B24J121 Date Extracted: 15-Oct-24 Project: Blue Heron

Sample Size: Column: 11.4 g Matrix: Soil ZB-DIOXIN

Matrix: Soil Date Collected: 02-Oct-2	4 08:23		% Solids:	11.4 g 89.5	Column:	ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND		0.369			17-Oct-24 02:29	1
1,2,3,7,8-PeCDD	0.932				J	17-Oct-24 02:29	1
1,2,3,4,7,8-HxCDD	ND		0.569			17-Oct-24 02:29	1
1,2,3,6,7,8-HxCDD	3.18					17-Oct-24 02:29	1
1,2,3,7,8,9-HxCDD	ND		1.41			17-Oct-24 02:29	1
1,2,3,4,6,7,8-HpCDD	65.6					17-Oct-24 02:29	1
OCDD	651					17-Oct-24 02:29	1
2,3,7,8-TCDF	2.61					17-Oct-24 02:29	1
1,2,3,7,8-PeCDF	0.997				J	17-Oct-24 02:29	1
2,3,4,7,8-PeCDF	1.24				J	17-Oct-24 02:29	1
1,2,3,4,7,8-HxCDF	1.32				J	17-Oct-24 02:29	1
1,2,3,6,7,8-HxCDF	0.934				J	17-Oct-24 02:29	1
2,3,4,6,7,8-HxCDF	0.604				J	17-Oct-24 02:29	1
1,2,3,7,8,9-HxCDF	ND		0.341			17-Oct-24 02:29	
1,2,3,4,6,7,8-HpCDF	21.6					17-Oct-24 02:29	
1,2,3,4,7,8,9-HpCDF	0.892				J	17-Oct-24 02:29	1
OCDF	32.4					17-Oct-24 02:29	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	3.29						
Totals							
Total TCDD	6.00		6.58				
Total PeCDD	8.40						
Total HxCDD	22.4		24.4				
Total HpCDD	140						
Total TCDF	21.0		25.6				
Total PeCDF	12.4		14.5				
Total HxCDF	22.5		23.2				
Total HpCDF	49.7						
Labeled Standards	Type	% Recovery	7	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	90.3		25 - 164		17-Oct-24 02:29	1
13C-1,2,3,7,8-PeCDD	IS	77.2		25 - 181		17-Oct-24 02:29	1
13C-1,2,3,4,7,8-HxCDD	IS	94.4		32 - 141		17-Oct-24 02:29	
13C-1,2,3,6,7,8-HxCDD	IS	89.0		28 - 130		17-Oct-24 02:29	
13C-1,2,3,7,8,9-HxCDD	IS	91.8		32 - 141		17-Oct-24 02:29	
13C-1,2,3,4,6,7,8-HpCDD	IS	77.5		23 - 140		17-Oct-24 02:29	
13C-OCDD	IS	72.6				17-Oct-24 02:29	
13C-2,3,7,8-TCDF	IS	90.8		17 - 157		17-Oct-24 02:29	
				24 - 169			
13C-1,2,3,7,8-PeCDF	IS	80.6		24 - 185		17-Oct-24 02:29	
13C-2,3,4,7,8-PeCDF	IS	77.5		21 - 178		17-Oct-24 02:29	
13C-1,2,3,4,7,8-HxCDF	IS	91.7		26 - 152		17-Oct-24 02:29	
13C-1,2,3,6,7,8-HxCDF	IS	85.3		26 - 123		17-Oct-24 02:29	
13C-2,3,4,6,7,8-HxCDF	IS	89.0		28 - 136		17-Oct-24 02:29	
13C-1,2,3,7,8,9-HxCDF	IS	88.2		29 - 147		17-Oct-24 02:29	
13C-1,2,3,4,6,7,8-HpCDF	IS	75.0		28 - 143		17-Oct-24 02:29	
13C-1,2,3,4,7,8,9-HpCDF	IS	79.8		26 - 138		17-Oct-24 02:29	
13C-OCDF	IS	70.1		17 - 157		17-Oct-24 02:29	
37Cl-2,3,7,8-TCDD	CRS	121		35 - 197		17-Oct-24 02:29	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Work Order 2410029 Page 20 of 36

Sample ID: BH_TR1-2_0-0.5_20241002 EPA Method 1613B

Client Data Laboratory Data

Name:WSPLab Sample:2410029-07Date Received:04-Oct-24 08:55Project:Blue HeronQC Batch:B24J121Date Extracted:15-Oct-24

Matrix: Soil Sample Size: 26.1 g Column: ZB-DIOXIN

Date Collected: 02-Oct-24	14:00	% S	olids: 38.6			ZD DIOIHIV	
Analyte	Conc. (pg/g)	EDL	ЕМРС		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	3.73					17-Oct-24 03:15	1
1,2,3,7,8-PeCDD	7.18					17-Oct-24 03:15	1
1,2,3,4,7,8-HxCDD	5.19					17-Oct-24 03:15	1
1,2,3,6,7,8-HxCDD	114					17-Oct-24 03:15	1
1,2,3,7,8,9-HxCDD	41.7					17-Oct-24 03:15	1
1,2,3,4,6,7,8-HpCDD	1950					17-Oct-24 03:15	
OCDD	25300				D	18-Oct-24 11:05	
2,3,7,8-TCDF	157					17-Oct-24 03:15	
1,2,3,7,8-PeCDF	4.05					17-Oct-24 03:15	
2,3,4,7,8-PeCDF	7.72					17-Oct-24 03:15	
1,2,3,4,7,8-HxCDF	10.3					17-Oct-24 03:15	
1,2,3,6,7,8-HxCDF	5.46					17-Oct-24 03:15	
2,3,4,6,7,8-HxCDF	6.97				_	17-Oct-24 03:15	
1,2,3,7,8,9-HxCDF	1.40				J	17-Oct-24 03:15	
1,2,3,4,6,7,8-HpCDF	510					17-Oct-24 03:15	
1,2,3,4,7,8,9-HpCDF	14.4					17-Oct-24 03:15	
OCDF	2270					17-Oct-24 03:15	1
Toxic Equivalent	90.6						
TEQMinWHO2005Dioxin Totals	80.6						
	22.0		24.6				
Total TCDD	22.9		24.6				
Total PeCDD	50.9						
Total HxCDD	687						
Total HpCDD	3560						
Total TCDF	234						
Total PeCDF	89.1		91.9				
Total HxCDF	451		456				
Total HpCDF	2150						
Labeled Standards	Type	% Recovery	I	imits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	88.5	2	5 - 164		17-Oct-24 03:15	1
13C-1,2,3,7,8-PeCDD	IS	75.2	2	5 - 181		17-Oct-24 03:15	1
13C-1,2,3,4,7,8-HxCDD	IS	91.7	3:	2 - 141		17-Oct-24 03:15	1
13C-1,2,3,6,7,8-HxCDD	IS	89.7	2	8 - 130		17-Oct-24 03:15	1
13C-1,2,3,7,8,9-HxCDD	IS	91.6	3:	2 - 141		17-Oct-24 03:15	1
13C-1,2,3,4,6,7,8-HpCDD	IS	76.4		3 - 140		17-Oct-24 03:15	1
13C-OCDD	IS	76.5		7 - 157	D	18-Oct-24 11:05	
13C-2,3,7,8-TCDF	IS	93.0		4 - 169		17-Oct-24 03:15	
13C-1,2,3,7,8-PeCDF	IS	80.1		4 - 185		17-Oct-24 03:15	
13C-2,3,4,7,8-PeCDF	IS	76.7		1 - 178		17-Oct-24 03:15	
13C-1,2,3,4,7,8-HxCDF	IS	88.7		6 - 152		17-Oct-24 03:15	
13C-1,2,3,6,7,8-HxCDF	IS	83.8		6 - 123		17-Oct-24 03:15	
13C-2,3,4,6,7,8-HxCDF	IS						
15C-2,5,4,0,7,8-HXCDF	15	86.3	2	8 - 136		17-Oct-24 03:15	1

EDL - Sample specifc estimated detection limit

13C-1,2,3,7,8,9-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

37Cl-2,3,7,8-TCDD

13C-OCDF

EMPC - Estimated maximum possible concentration

IS

IS

IS

IS

CRS

The results are reported in dry weight.

The sample size is reported in wet weight.

29 - 147

28 - 143

26 - 138

17 - 157

35 - 197

17-Oct-24 03:15

17-Oct-24 03:15

17-Oct-24 03:15

17-Oct-24 03:15

17-Oct-24 03:15

1

1

1

Work Order 2410029 Page 21 of 36

86.6

75.3

74.4

73.9

105

Sample ID: BH_TR1-3_0-0.5_20241002 **EPA Method 1613B**

Laboratory Data Client Data

2410029-08 04-Oct-24 08:55 Lab Sample: Date Received: WSP Name: QC Batch: B24J121 Date Extracted: 15-Oct-24 Project: Blue Heron

Sample Size: Column: 16.1 g Matrix: Soil **ZB-DIOXIN**

2,37,8-PCDD	Matrix: Soil Date Collected: 02-Oct-24 12:30			% Solids:	62.2	Column:	ZB-DIOXIN	
1,2,3,4,7,8-PCDD			EDL	EMPC		Qualifiers	Analyzed	Dilution
1.2.3.4.7.8-HxCDD	2,3,7,8-TCDD	ND		1.30			17-Oct-24 04:01	1
1,2,3,6,7,8-HxCDD	1,2,3,7,8-PeCDD	4.13					17-Oct-24 04:01	1
1.2.3.4.6.7.8-HRCDD	1,2,3,4,7,8-HxCDD	7.64					17-Oct-24 04:01	1
1.2.3.4.6.7.8-PCDD	1,2,3,6,7,8-HxCDD						17-Oct-24 04:01	1
OCDD 42600 D 18-0ct-24 11:51 23-18-17 CDF 18-23,78-PCDF 18-23,78-PCDF 7.24 17-0ct-24 04:01 12-3,78-PCDF 17-0ct-24 04:01 12-3,47,8-PCDF 19.3 17-0ct-24 04:01 12-3,47,8-PCDF 19.3 17-0ct-24 04:01 12-3,47,8-PCDF 19.3 17-0ct-24 04:01 12,3,47,8-PCDF 8.56 17-0ct-24 04:01 12,3,47,8-PKCDF 18.0 17-0ct-24 04:01 12,3,47,8-PKCDF 18.0 17-0ct-24 04:01 12,3,47,8-PKCDF 18.0	1,2,3,7,8,9-HxCDD	23.4					17-Oct-24 04:01	1
2,3,7,8-PCDF	-							10
1,2,3,4,7,8-PCDF						D		10
2,34,78-PCDF								
1,2,3,4,7,8-HxCDF								1
1.2.3.6,7.8-HxCDF 9.55 17-Oct-24 O4-01 2.3.4,6,7.8-HxCDF 8.56 17-Oct-24 O4-01 1.2.3.4,6,7.8-HpCDF 558 17-Oct-24 O4-01 1.2.3.4,6,7.8-HpCDF 10.8 17-Oct-24 O4-01 OCDF 731 17-Oct-24 O4-01 Tous Equivalent TEQMINWHO2005Dixin 91.4 TOUR PCDD 0.16 8.27 Total PCDD 3.23 34.5 Total HCDD 911 Total HCDF 25.3 30.0 Total HCDF 179 Total HCDF 179 Total HCDF 186 Total HCDF 186 Total HCDF 179 Total HCDF 179 Total HCDF 186 Total HCDF 186 Total HCDF 18 Total HCDF 18 Total HCDF 186 Total HCDF 18 <								
2.3.4,6.7.8-HXCDF 8.56 7-0et-24 04-0 1.2,3.7,8.9-HXCDF 5.02 7-0et-24 04-0 1.2,3.4,7.8.9-HYCDF 10.8 7-0et-24 04-0 OCDF 731 7-0et-24 04-0 OCDF 731 7-0et-24 04-0 Tosic Equivalent Tosic Equivalent Tosia TCDD 6.16 8.27 Total TCDD 6.16 8.27 Total HXCDD 911 Total HXCDD 911 Total HXCDD 980 Total HXCDF 25.3 30.0 Total PCDF 179 Total HXCDF 686 Total HXCDF 686 Total HXCDF 686 Total HXCDF 179 Total HXCDF 180 Total								1
1.2.3.4,8.9.HpCDF								
1.2.3.4,6.7.8-HpCDF 10.8 17-Oct-24 04.0 1.2.3.4,7.8.9-HpCDF 73 1-7-Oct-24 04.0 1.2.3.4,7.8.9-HpCDF 73 1-7-Oct-24 04.0								1
17-0c-24 04:0 OCDF 73								1
Total PCDF To	-							1
Tegwin Parameter Paramet								
TEQMINWHO2005Dioxin 91.4 Total TCDD 6.16 8.27 Total PCDD 32.3 34.5 Total PCDD 9890 Total PCDF 25.3 30.0 Total PCDF 179 Total HxCDF 686 Total HxCDF 460 Labeled Standards Type % Recovery Limits Qualifiers Analyzed DI 13C-2,3,7,8-PCDD IS 87.7 25 - 164 17-Oct-24 04:01 13C-1,2,3,47,8-HxCDD IS 87.7 25 - 164 17-Oct-24 04:01 13C-1,2,3,47,8-HxCDD IS 83.3 25 - 164 17-Oct-24 04:01 13C-1,2,3,47,8-HxCDD IS 83.3 28 - 130 17-Oct-24 04:01 13		/31					1/-Oct-24 04:01	1
Total TCDD		91.4						
Total PCDD 32.3 34.5 Total HxCDD 911 Total HpCDD 9890 Total PCDF 25.3 30.0 Total PCDF 179 Total HxCDF 686 Total HpCDF 1460 Labeled Standards Type % Recovery Limits Qualifiers Analyzed Dil 13C-2,3,7,8-TCDD 18 87.7 25 - 164 17-Oct-24 04:01 13C-1,2,3,7,8-PCDD 18 73.4 25 - 181 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDD 18 90.5 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDD 18 83.3 28 - 130 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HxCDD 18 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HxCDD 18 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HxCDD 18 85.3 32 - 140 D 18-Oct-24 11:51 13C-1,2,3,4,6,7,8-HxCDD 18 72.6 17 - 157 D 18-Oct-24 11:51 13C-1,2,3,7,8-PcCDF 18 89.9 24 - 169 17-Oct-24 04:01		71.1						
Total HxCDD 991 Total HpCDD 9890 Total TCDF 25.3 30.0 Total PcDF 179 Total HxCDF 686 Total HpCDF 1460 Limits Qualifiers Analyzed Dil Labeled Standards Type % Recovery Limits Qualifiers Analyzed Dil 13C-1,2,3,7,8-TCDD 1S 87.7 25 - 164 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDD 1S 73.4 25 - 181 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDD 1S 83.3 28 - 130 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HxCDD 1S 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HxCDD 1S 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HxCDD 1S 73.4 23 - 140 D 18-Oct-24 11:51 13C-0CDD 1S 73.4 23 - 140 D 18-Oct-24 11:51 13C-1,2,3,4,8-PxCDF 1S 78.7 24 - 185	Total TCDD	6.16		8.27				
Total HxCDD 9890 Total TCDF 25.3 30.0 Section 179 Total HxCDF 179 Section 1866 Total HxCDF 1460 Limits Qualifiers Analyze Dil Labeled Standards Type % Recovery Limits Qualifiers Analyze Dil Dil 13C-1,2,3,7,8-TCDD 18 87.7 25 - 164 17-Oct-24 04:01 13C-1,2,3,7,8-PCDD 18 87.7 25 - 181 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDD 18 89.5 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDD 18 85.3 28 - 130 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HxCDD 18 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HxCDD 18 73.4 23 - 140 D 18-Oct-24 11:51 13C-1,2,3,4,6,7,8-HxCDD 18 72.6 17 - 157 D 18-Oct-24 11:51 13C-2,3,7,8-PcCDF 18 89.9 24 - 169 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDF 18 88.	Total PeCDD	32.3		34.5				
Total HpCDD 9890 Total TCDF 25.3 30.0 Total PeCDF 179 Total HxCDF 686 Total HpCDF 1460 Labeled Standards Type % Recovery Limits Qualifiers Analyzed Dil 13C-1,2,3,7,8-PcCDD IS 87.7 25 - 164 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDD IS 73.4 25 - 181 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDD IS 89.0 32 - 141 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDD IS 83.3 28 - 130 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDD IS 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDF IS 89.9 24 - 169 17-Oct-24 04:01 13C-1,2,3,7,8,PeCDF IS								
Total TCDF 25.3 30.0 Total PeCDF 179 Total HxCDF 686 Total HpCDF 1460 Limits Qualifiers Analyzel Dil 13C-12,37,8-TCDD IS 87.7 25 - 164 17-Oct-24 04:01 13C-1,2,37,8-PeCDD IS 73.4 25 - 181 17-Oct-24 04:01 13C-1,2,34,78-HxCDD IS 90.5 32 - 141 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDD IS 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HxCDD IS 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HxCDD IS 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HxCDD IS 85.3 32 - 141 17-Oct-24 04:01 13C-0,2,3,4,6,7,8-HxCDD IS 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HxCDF IS 89.9 24 - 169 17-Oct-24 04:01 13C-2,3,4,7,8-PxCDF IS 88.2 26 - 152 17-Oct-24 04:01 13C-1,2,3,4,7,8-H								
Total PeCDF 179 Total HxCDF 686 Total HpCDF 1460 Labeled Standards Type % Recovery Limits Qualifiers Analyzed Dil 13C-2,3,7,8-TCDD 1S 87.7 25 - 164 17-Oct-24 04:01 13C-1,2,3,7,8-PeCDD 1S 73.4 25 - 181 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDD 1S 90.5 32 - 141 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDD 1S 83.3 28 - 130 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDD 1S 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HxCDD 1S 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HyCDD 1S 73.4 23 - 140 D 18-Oct-24 04:01 13C-0,2,3,4,6,7,8-HyCDD 1S 73.4 23 - 140 D 18-Oct-24 11:51 13C-0,2,3,4,6,7,8-HyCDF 1S 89.9 24 - 169 17-Oct-24 04:01 13C-2,3,7,8-PeCDF 1S 89.9 24 - 169 17-Oct-24 04:01 13C-1,2,3,7,8-PeCDF 1S 74.3 21 - 178 17-Oct-24 04:01 13C-1,2,3,4,7,8-PeCDF <td< td=""><td></td><td></td><td></td><td>30.0</td><td></td><td></td><td></td><td></td></td<>				30.0				
Total HxCDF 686 Total HpCDF 1460 Labeled Standards Type % Recovery Limits Qualifiers Analyzed Dil 13C-2,3,7,8-TCDD IS 87.7 25 - 164 17-Oct-24 04:01 13C-1,2,3,7,8-PeCDD IS 73.4 25 - 181 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDD IS 90.5 32 - 141 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDD IS 83.3 28 - 130 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDD IS 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDD IS 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDD IS 73.4 23 - 140 D 18-Oct-24 04:01 13C-2,2,3,4,6,7,8-HpCDD IS 73.4 23 - 140 D 18-Oct-24 11:51 13C-2,2,3,4,6,7,8-HpCDD IS 72.6 17 - 157 D 18-Oct-24 11:51 13C-2,3,7,8-TCDF IS 89.9 24 - 169 17-Oct-24 04:01 13C-1,2,3,7,8-PeCDF IS 74.3 21 - 178 17-Oct-24 04:01 13C-2,3,4,7,8-PeCDF IS 88.2 26 - 152				20.0				
Total HpCDF 1460 Labeled Standards Type % Recovery Limits Qualifiers Analyzed Dil 13C-2,3,7,8-TCDD IS 87.7 25 - 164 17-Oct-24 04:01 13C-1,2,3,7,8-PeCDD IS 73.4 25 - 181 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDD IS 90.5 32 - 141 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDD IS 83.3 28 - 130 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDD IS 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDD IS 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HpCDD IS 73.4 23 - 140 D 18-Oct-24 11:51 13C-0CDD IS 72.6 17 - 157 D 18-Oct-24 11:51 13C-2,3,7,8-TCDF IS 89.9 24 - 169 17-Oct-24 04:01 13C-1,2,3,7,8-PeCDF IS 78.7 24 - 185 17-Oct-24 04:01 13C-2,3,4,7,8-PeCDF IS 74.3 21 - 178 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDF IS 88.2 26 - 152 17-Oct-24 04:01 13C-2,3,4,6,7,8-HxCDF IS <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Labeled Standards Type % Recovery Limits Qualifiers Analyzed Dit 13C-2,3,7,8-TCDD 1S 87.7 25 - 164 17-Oct-24 04:01 13C-1,2,3,7,8-PcCDD 1S 73.4 25 - 181 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDD 1S 90.5 32 - 141 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDD 1S 83.3 28 - 130 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDD 1S 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HpCDD 1S 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HpCDD 1S 73.4 23 - 140 D 18-Oct-24 11:51 13C-0CDD 1S 72.6 17 - 157 D 18-Oct-24 11:51 13C-2,3,7,8-TCDF 1S 89.9 24 - 169 17-Oct-24 04:01 13C-1,2,3,7,8-PcDF 1S 78.7 24 - 185 17-Oct-24 04:01 13C-2,3,4,7,8-PcDF 1S 74.3 21 - 178 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDF 1S 88.2 26 - 152 17-Oct-24 04:01 13C-2,3,4,6,7,8-HxCDF 1S 82.4 28 - 136 17-Oct-24 04:01								
13C-2,3,7,8-TCDD IS 87.7 25 - 164 17-Oct-24 04:01 13C-1,2,3,7,8-PeCDD IS 73.4 25 - 181 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDD IS 90.5 32 - 141 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDD IS 83.3 28 - 130 17-Oct-24 04:01 13C-1,2,3,7,8-HxCDD IS 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HpCDD IS 73.4 23 - 140 D 18-Oct-24 11:51 13C-OCDD IS 72.6 17 - 157 D 18-Oct-24 11:51 13C-2,3,7,8-TCDF IS 89.9 24 - 169 17-Oct-24 04:01 13C-1,2,3,7,8-PeCDF IS 78.7 24 - 185 17-Oct-24 04:01 13C-2,3,4,7,8-PeCDF IS 74.3 21 - 178 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDF IS 82.1 26 - 152 17-Oct-24 04:01 13C-2,3,4,6,7,8-HxCDF IS 82.4 28 - 136 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDF IS 81.5 29 - 147 17-Oct-24 04:01	•		% Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-1,2,3,7,8-PeCDD IS 73.4 25 - 181 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDD IS 90.5 32 - 141 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDD IS 83.3 28 - 130 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDD IS 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HpCDD IS 73.4 23 - 140 D 18-Oct-24 11:51 13C-OCDD IS 72.6 17 - 157 D 18-Oct-24 11:51 13C-2,3,7,8-TCDF IS 89.9 24 - 169 17-Oct-24 04:01 13C-1,2,3,7,8-PeCDF IS 78.7 24 - 185 17-Oct-24 04:01 13C-2,3,4,7,8-PeCDF IS 74.3 21 - 178 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDF IS 88.2 26 - 152 17-Oct-24 04:01 13C-2,3,4,6,8-HxCDF IS 82.1 26 - 123 17-Oct-24 04:01 13C-2,3,4,6,8-HxCDF IS 82.4 28 - 136 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDF IS 81.5 29 - 147 17-Oct-24 04:01						Quantiers	· ·	
13C-1,2,3,4,7,8-HxCDD IS 90.5 32 - 141 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDD IS 83.3 28 - 130 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDD IS 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HpCDD IS 73.4 23 - 140 D 18-Oct-24 11:51 13C-OCDD IS 72.6 17 - 157 D 18-Oct-24 11:51 13C-2,3,7,8-TCDF IS 89.9 24 - 169 17-Oct-24 04:01 13C-1,2,3,7,8-PeCDF IS 78.7 24 - 185 17-Oct-24 04:01 13C-2,3,4,7,8-PeCDF IS 74.3 21 - 178 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDF IS 88.2 26 - 152 17-Oct-24 04:01 13C-2,3,4,6,7,8-HxCDF IS 82.1 26 - 123 17-Oct-24 04:01 13C-2,3,4,6,7,8-HxCDF IS 82.4 28 - 136 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDF IS 81.5 29 - 147 17-Oct-24 04:01								
13C-1,2,3,6,7,8-HxCDD IS 83.3 28 - 130 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDD IS 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HpCDD IS 73.4 23 - 140 D 18-Oct-24 11:51 13C-OCDD IS 72.6 17 - 157 D 18-Oct-24 11:51 13C-2,3,7,8-TCDF IS 89.9 24 - 169 17-Oct-24 04:01 13C-1,2,3,7,8-PeCDF IS 78.7 24 - 185 17-Oct-24 04:01 13C-2,3,4,7,8-PeCDF IS 74.3 21 - 178 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDF IS 88.2 26 - 152 17-Oct-24 04:01 13C-2,3,4,6,7,8-HxCDF IS 82.1 26 - 123 17-Oct-24 04:01 13C-2,3,4,6,7,8-HxCDF IS 82.4 28 - 136 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDF IS 81.5 29 - 147 17-Oct-24 04:01								
13C-1,2,3,7,8,9-HxCDD IS 85.3 32 - 141 17-Oct-24 04:01 13C-1,2,3,4,6,7,8-HpCDD IS 73.4 23 - 140 D 18-Oct-24 11:51 13C-OCDD IS 72.6 17 - 157 D 18-Oct-24 11:51 13C-2,3,7,8-TCDF IS 89.9 24 - 169 17-Oct-24 04:01 13C-1,2,3,7,8-PeCDF IS 78.7 24 - 185 17-Oct-24 04:01 13C-2,3,4,7,8-PeCDF IS 74.3 21 - 178 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDF IS 88.2 26 - 152 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDF IS 82.1 26 - 123 17-Oct-24 04:01 13C-2,3,4,6,7,8-HxCDF IS 82.4 28 - 136 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDF IS 81.5 29 - 147 17-Oct-24 04:01								
13C-1,2,3,4,6,7,8-HpCDD IS 73.4 23 - 140 D 18-Oct-24 11:51 13C-OCDD IS 72.6 17 - 157 D 18-Oct-24 11:51 13C-2,3,7,8-TCDF IS 89.9 24 - 169 17-Oct-24 04:01 13C-1,2,3,7,8-PeCDF IS 78.7 24 - 185 17-Oct-24 04:01 13C-2,3,4,7,8-PeCDF IS 74.3 21 - 178 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDF IS 88.2 26 - 152 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDF IS 82.1 26 - 123 17-Oct-24 04:01 13C-2,3,4,6,7,8-HxCDF IS 82.4 28 - 136 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDF IS 81.5 29 - 147 17-Oct-24 04:01								
13C-OCDD IS 72.6 17 - 157 D 18-Oct-24 11:51 13C-2,3,7,8-TCDF IS 89.9 24 - 169 17-Oct-24 04:01 13C-1,2,3,7,8-PeCDF IS 78.7 24 - 185 17-Oct-24 04:01 13C-2,3,4,7,8-PeCDF IS 74.3 21 - 178 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDF IS 88.2 26 - 152 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDF IS 82.1 26 - 123 17-Oct-24 04:01 13C-2,3,4,6,7,8-HxCDF IS 82.4 28 - 136 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDF IS 81.5 29 - 147 17-Oct-24 04:01						D		
13C-2,3,7,8-TCDF IS 89.9 24 - 169 17-Oct-24 04:01 13C-1,2,3,7,8-PeCDF IS 78.7 24 - 185 17-Oct-24 04:01 13C-2,3,4,7,8-PeCDF IS 74.3 21 - 178 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDF IS 88.2 26 - 152 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDF IS 82.1 26 - 123 17-Oct-24 04:01 13C-2,3,4,6,7,8-HxCDF IS 82.4 28 - 136 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDF IS 81.5 29 - 147 17-Oct-24 04:01	•							
13C-1,2,3,7,8-PeCDF IS 78.7 24 - 185 17-Oct-24 04:01 13C-2,3,4,7,8-PeCDF IS 74.3 21 - 178 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDF IS 88.2 26 - 152 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDF IS 82.1 26 - 123 17-Oct-24 04:01 13C-2,3,4,6,7,8-HxCDF IS 82.4 28 - 136 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDF IS 81.5 29 - 147 17-Oct-24 04:01						D		
13C-2,3,4,7,8-PeCDF IS 74.3 21 - 178 17-Oct-24 04:01 13C-1,2,3,4,7,8-HxCDF IS 88.2 26 - 152 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDF IS 82.1 26 - 123 17-Oct-24 04:01 13C-2,3,4,6,7,8-HxCDF IS 82.4 28 - 136 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDF IS 81.5 29 - 147 17-Oct-24 04:01								
13C-1,2,3,4,7,8-HxCDF IS 88.2 26 - 152 17-Oct-24 04:01 13C-1,2,3,6,7,8-HxCDF IS 82.1 26 - 123 17-Oct-24 04:01 13C-2,3,4,6,7,8-HxCDF IS 82.4 28 - 136 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDF IS 81.5 29 - 147 17-Oct-24 04:01								
13C-1,2,3,6,7,8-HxCDF IS 82.1 26 - 123 17-Oct-24 04:01 13C-2,3,4,6,7,8-HxCDF IS 82.4 28 - 136 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDF IS 81.5 29 - 147 17-Oct-24 04:01								
13C-2,3,4,6,7,8-HxCDF IS 82.4 28 - 136 17-Oct-24 04:01 13C-1,2,3,7,8,9-HxCDF IS 81.5 29 - 147 17-Oct-24 04:01								
13C-1,2,3,7,8,9-HxCDF IS 81.5 29 - 147 17-Oct-24 04:01								
13C-1 2 3 4 6 7 8-HpCDF IS 72 5 28 1/2 17-Oct-2/4 0/±01								
•	13C-1,2,3,4,6,7,8-HpCDF	IS	72.5		28 - 143		17-Oct-24 04:01	
13C-1,2,3,4,7,8,9-HpCDF IS 74.0 26 - 138 17-Oct-24 04:01	•							
13C-OCDF IS 64.5 17 - 157 17-Oct-24 04:01					17 - 157			
37Cl-2,3,7,8-TCDD CRS 109 35 - 197 17-Oct-24 04:01 EDL - Sample specific estimated detection limit The results are reported in dry weight.			109				17-Oct-24 04:01	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Work Order 2410029 Page 22 of 36

17-Oct-24 04:47

17-Oct-24 04:47

17-Oct-24 04:47

17-Oct-24 04:47

1

Sample ID: BH_TR1-3_1-1.5_20241002 EPA Method 1613B

Client Data Laboratory Data

Name:WSPLab Sample:2410029-09Date Received:04-Oct-24 08:55Project:Blue HeronQC Batch:B24J121Date Extracted:15-Oct-24

Matrix: Soil Sample Size: 24.9 g Column: ZB-DIOXIN

Date Collected: 02-Oct-24 1	2:50	% Se	olids: 40).5		ZD DIOIMY	
Analyte	Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	2.18					17-Oct-24 04:47	1
1,2,3,7,8-PeCDD	4.35					17-Oct-24 04:47	1
1,2,3,4,7,8-HxCDD	7.62					17-Oct-24 04:47	1
1,2,3,6,7,8-HxCDD	155					17-Oct-24 04:47	1
1,2,3,7,8,9-HxCDD	37.9					17-Oct-24 04:47	1
1,2,3,4,6,7,8-HpCDD	3350				D	18-Oct-24 12:37	10
OCDD	35100				D	18-Oct-24 12:37	10
2,3,7,8-TCDF	69.4					17-Oct-24 04:47	1
1,2,3,7,8-PeCDF	8.38					17-Oct-24 04:47	1
2,3,4,7,8-PeCDF	18.1					17-Oct-24 04:47	1
1,2,3,4,7,8-HxCDF	23.9					17-Oct-24 04:47	1
1,2,3,6,7,8-HxCDF	12.0					17-Oct-24 04:47	1
2,3,4,6,7,8-HxCDF	13.5					17-Oct-24 04:47	1
1,2,3,7,8,9-HxCDF	5.30					17-Oct-24 04:47	1
1,2,3,4,6,7,8-HpCDF	645					17-Oct-24 04:47	1
1,2,3,4,7,8,9-HpCDF	11.7					17-Oct-24 04:47	1
OCDF	686					17-Oct-24 04:47	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	95.5						
Totals							
Total TCDD	6.88		8.74				
Total PeCDD	35.0		35.9				
Total HxCDD	904						
Total HpCDD	6700						
Total TCDF	112		114				
Total PeCDF	196						
Total HxCDF	782						
Total HpCDF	1600						
Labeled Standards	Type	% Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	88.4		25 - 164		17-Oct-24 04:47	1
13C-1,2,3,7,8-PeCDD	IS	74.9		25 - 181		17-Oct-24 04:47	1
13C-1,2,3,4,7,8-HxCDD	IS	93.0		32 - 141		17-Oct-24 04:47	1
13C-1,2,3,6,7,8-HxCDD	IS	83.8		28 - 130		17-Oct-24 04:47	1
13C-1,2,3,7,8,9-HxCDD	IS	89.4		32 - 141		17-Oct-24 04:47	1
13C-1,2,3,4,6,7,8-HpCDD	IS	77.7		23 - 140	D	18-Oct-24 12:37	10
13C-OCDD	IS	84.7		17 - 157	D	18-Oct-24 12:37	10
13C-2,3,7,8-TCDF	IS	91.6		24 - 169		17-Oct-24 04:47	
13C-1,2,3,7,8-PeCDF	IS	80.9		24 - 185		17-Oct-24 04:47	
13C-2,3,4,7,8-PeCDF	IS	76.5		21 - 178		17-Oct-24 04:47	
13C-1,2,3,4,7,8-HxCDF	IS	90.1		26 - 152		17-Oct-24 04:47	
13C-1,2,3,6,7,8-HxCDF	IS	85.2		26 - 123		17-Oct-24 04:47	
13C-2,3,4,6,7,8-HxCDF	IS	85.9		28 - 136		17-Oct-24 04:47	
13C-1,2,3,7,8,9-HxCDF	IS	83.4				17-Oct-24 04:47 17-Oct-24 04:47	
13C-1,2,3,7,0,9-HXCDF	13	03.4		29 - 147		17-001-24 04.47	1

EDL - Sample specifc estimated detection limit

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

37Cl-2,3,7,8-TCDD

13C-OCDF

EMPC - Estimated maximum possible concentration

IS

IS

IS

CRS

The results are reported in dry weight.

The sample size is reported in wet weight.

28 - 143

26 - 138

17 - 157

35 - 197

Work Order 2410029 Page 23 of 36

76.3

77.2

71.2

107

Sample ID: BH_TR1-4_0-0.5_20241002 EPA Method 1613B

Laboratory Data **Client Data**

Date Collected:

02-Oct-24 15:50

04-Oct-24 08:55 Lab Sample: 2410029-10 Date Received: Name: WSP B24J121 QC Batch: Date Extracted: 15-Oct-24 Project: Blue Heron

41.2

Sample Size: Column: 24.4 g Matrix: Soil **ZB-DIOXIN** % Solids:

EDL EMPC Dilution Qualifiers Analyzed Analyte Conc. (pg/g) 2,3,7,8-TCDD ND 0.613 17-Oct-24 05:34 1,2,3,7,8-PeCDD 3.06 17-Oct-24 05:34 3.89 1,2,3,4,7,8-HxCDD 17-Oct-24 05:34 12.7 1,2,3,6,7,8-HxCDD 17-Oct-24 05:34 1 17-Oct-24 05:34 7.38 1,2,3,7,8,9-HxCDD 262 17-Oct-24 05:34 1,2,3,4,6,7,8-HpCDD 1 1990 17-Oct-24 05:34 OCDD 1 2,3,7,8-TCDF 2.77 17-Oct-24 05:34 1 1,2,3,7,8-PeCDF 1.75 17-Oct-24 05:34 1 1.29 2,3,4,7,8-PeCDF 17-Oct-24 05:34 1 4.46 1,2,3,4,7,8-HxCDF 17-Oct-24 05:34 1,2,3,6,7,8-HxCDF 2.83 17-Oct-24 05:34 2,3,4,6,7,8-HxCDF ND 1.75 17-Oct-24 05:34 1,2,3,7,8,9-HxCDF ND 0.640 17-Oct-24 05:34 70.5 1,2,3,4,6,7,8-HpCDF 17-Oct-24 05:34 1,2,3,4,7,8,9-HpCDF 3.56 17-Oct-24 05:34 1 82.1 17-Oct-24 05:34 OCDF **Toxic Equivalent** TEQMinWHO2005Dioxin 10.9 **Totals** Total TCDD 8.18 9.18 Total PeCDD 30.3 Total HxCDD 118 Total HpCDD 534 Total TCDF 40.0 43.9 Total PeCDF 51.8 53.4 91.0 96.5 Total HxCDF Total HaCDE 174

Total HpCDF	1/4					
Labeled Standards	Type	% Recovery	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	96.1	25 - 164		17-Oct-24 05:34	1
13C-1,2,3,7,8-PeCDD	IS	81.3	25 - 181		17-Oct-24 05:34	1
13C-1,2,3,4,7,8-HxCDD	IS	102	32 - 141		17-Oct-24 05:34	1
13C-1,2,3,6,7,8-HxCDD	IS	92.0	28 - 130		17-Oct-24 05:34	1
13C-1,2,3,7,8,9-HxCDD	IS	97.8	32 - 141		17-Oct-24 05:34	1
13C-1,2,3,4,6,7,8-HpCDD	IS	81.9	23 - 140		17-Oct-24 05:34	1
13C-OCDD	IS	75.5	17 - 157		17-Oct-24 05:34	1
13C-2,3,7,8-TCDF	IS	97.0	24 - 169		17-Oct-24 05:34	1
13C-1,2,3,7,8-PeCDF	IS	86.4	24 - 185		17-Oct-24 05:34	1
13C-2,3,4,7,8-PeCDF	IS	82.6	21 - 178		17-Oct-24 05:34	1
13C-1,2,3,4,7,8-HxCDF	IS	96.9	26 - 152		17-Oct-24 05:34	1
13C-1,2,3,6,7,8-HxCDF	IS	89.8	26 - 123		17-Oct-24 05:34	1
13C-2,3,4,6,7,8-HxCDF	IS	93.8	28 - 136		17-Oct-24 05:34	1
13C-1,2,3,7,8,9-HxCDF	IS	90.7	29 - 147		17-Oct-24 05:34	1
13C-1,2,3,4,6,7,8-HpCDF	IS	79.4	28 - 143		17-Oct-24 05:34	1
13C-1,2,3,4,7,8,9-HpCDF	IS	83.7	26 - 138		17-Oct-24 05:34	1
13C-OCDF	IS	71.8	17 - 157		17-Oct-24 05:34	1
37Cl-2,3,7,8-TCDD	CRS	115	35 - 197		17-Oct-24 05:34	1

EDL - Sample specifc estimated detection limit

The results are reported in dry weight. EMPC - Estimated maximum possible concentration The sample size is reported in wet weight.

Work Order 2410029 Page 24 of 36

Sample ID: BH_TR2-1_0-0.5_20241002 **EPA Method 1613B**

Laboratory Data Client Data

2410029-11 Lab Sample: Date Received: 04-Oct-24 08:55 WSP Name: B24J163 QC Batch: Date Extracted: 21-Oct-24 Project: Blue Heron

Sample Size: 21.4 g Column: Matrix: Soil **ZB-DIOXIN**

% Solids: 02-Oct-24 16:30 46.8 Date Collected:

Date Collected: 02-Oct-24 1	6:30	% S	Solids:	46.8			
Analyte	Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	1.38					23-Oct-24 23:04	1
1,2,3,7,8-PeCDD	3.44					23-Oct-24 23:04	1
1,2,3,4,7,8-HxCDD	4.31					23-Oct-24 23:04	1
1,2,3,6,7,8-HxCDD	33.4					23-Oct-24 23:04	1
1,2,3,7,8,9-HxCDD	11.2					23-Oct-24 23:04	1
1,2,3,4,6,7,8-HpCDD	1600					23-Oct-24 23:04	1
OCDD	15400				D, B	24-Oct-24 15:07	10
2,3,7,8-TCDF	7.48					23-Oct-24 23:04	1
1,2,3,7,8-PeCDF	3.24					23-Oct-24 23:04	1
2,3,4,7,8-PeCDF	4.79					23-Oct-24 23:04	1
1,2,3,4,7,8-HxCDF	9.49					23-Oct-24 23:04	1
1,2,3,6,7,8-HxCDF	6.13					23-Oct-24 23:04	1
2,3,4,6,7,8-HxCDF	4.54					23-Oct-24 23:04	1
1,2,3,7,8,9-HxCDF	ND		1.45			23-Oct-24 23:04	1
1,2,3,4,6,7,8-HpCDF	103					23-Oct-24 23:04	1
1,2,3,4,7,8,9-HpCDF	6.54					23-Oct-24 23:04	1
OCDF	266					23-Oct-24 23:04	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	35.8						
Totals							
Total TCDD	30.4		33.0				
Total PeCDD	41.0		50.9				
Total HxCDD	381						
Total HpCDD	4210						
Total TCDF	30.3		33.6				
Total PeCDF	54.6		55.2				
Total HxCDF	233		236				
Total HpCDF	401		250				
Labeled Standards	Туре	% Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	70.2		25 - 164	`	23-Oct-24 23:04	1
13C-1,2,3,7,8-PeCDD	IS	54.1		25 - 181		23-Oct-24 23:04	1
13C-1,2,3,4,7,8-HxCDD	IS	68.1		32 - 141		23-Oct-24 23:04	
13C-1,2,3,6,7,8-HxCDD	IS	71.4		28 - 130		23-Oct-24 23:04	
13C-1,2,3,7,8,9-HxCDD	IS	66.3		32 - 141		23-Oct-24 23:04 23-Oct-24 23:04	
13C-1,2,3,4,6,7,8-HpCDD	IS	69.8		23 - 140		23-Oct-24 23:04 23-Oct-24 23:04	
-					D		
13C-OCDD	IS	65.5		17 - 157	D	24-Oct-24 15:07	
13C-2,3,7,8-TCDF	IS	70.4		24 - 169		23-Oct-24 23:04	
13C-1,2,3,7,8-PeCDF	IS	75.8		24 - 185		23-Oct-24 23:04	
13C-2,3,4,7,8-PeCDF	IS	69.7		21 - 178		23-Oct-24 23:04	
13C-1,2,3,4,7,8-HxCDF	IS	69.1		26 - 152		23-Oct-24 23:04	
13C-1,2,3,6,7,8-HxCDF	IS	69.8		26 - 123		23-Oct-24 23:04	1
13C-2,3,4,6,7,8-HxCDF	IS	66.5		28 - 136		23-Oct-24 23:04	1
13C-1,2,3,7,8,9-HxCDF	IS	68.0		29 - 147		23-Oct-24 23:04	1
13C-1,2,3,4,6,7,8-HpCDF	IS	68.3		28 - 143		23-Oct-24 23:04	1
13C-1,2,3,4,7,8,9-HpCDF	IS	73.7		26 - 138		23-Oct-24 23:04	
13C-OCDF						23-Oct-24 23:04	
15C CCDI	IS	69.6		1/-15/		23-001-24 23.04	
37Cl-2,3,7,8-TCDD	CRS	69.6		17 - 157 35 - 197		23-Oct-24 23:04 23-Oct-24 23:04	

EMPC - Estimated maximum possible concentration The sample size is reported in wet weight.

Work Order 2410029 Page 25 of 36

Sample ID: BH_TR2-2_0-0.5_20241002 **EPA Method 1613B**

Laboratory Data Client Data

2410029-12 04-Oct-24 08:55 Lab Sample: Date Received: WSP Name: QC Batch: B24J121 Date Extracted: 15-Oct-24 Project: Blue Heron

Sample Size: 14.4 g Column: Matrix: Soil **ZB-DIOXIN**

% Solids: Date Collected: 02-Oct-24 17:30 70.1

Analyte	Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND		0.667			17-Oct-24 06:20	1
1,2,3,7,8-PeCDD	1.96				J	17-Oct-24 06:20	1
1,2,3,4,7,8-HxCDD	4.58					17-Oct-24 06:20	1
1,2,3,6,7,8-HxCDD	21.3					17-Oct-24 06:20	1
1,2,3,7,8,9-HxCDD	7.26					17-Oct-24 06:20	1
1,2,3,4,6,7,8-HpCDD	730					17-Oct-24 06:20	1
OCDD	8890				D	18-Oct-24 13:23	5
2,3,7,8-TCDF	8.04					17-Oct-24 06:20	1
1,2,3,7,8-PeCDF	0.753				J	17-Oct-24 06:20	1
2,3,4,7,8-PeCDF	2.35				J	17-Oct-24 06:20	1
1,2,3,4,7,8-HxCDF	4.42					17-Oct-24 06:20	1
1,2,3,6,7,8-HxCDF	ND		1.72			17-Oct-24 06:20	1
2,3,4,6,7,8-HxCDF	2.66					17-Oct-24 06:20	1
1,2,3,7,8,9-HxCDF	1.53				J	17-Oct-24 06:20	1
1,2,3,4,6,7,8-HpCDF	85.7					17-Oct-24 06:20	1
1,2,3,4,7,8,9-HpCDF	5.17					17-Oct-24 06:20	1
OCDF	690					17-Oct-24 06:20	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	18.8						
Totals							
Total TCDD	3.48		4.15				
Total PeCDD	17.2						
Total HxCDD	199		202				
Total HpCDD	1700						
Total TCDF	19.6		21.7				
Total PeCDF	27.0		29.5				
Total HxCDF	105		108				
Total HpCDF	460		108				
*		0/ D		Limits	O1:6:	A l J	D:14:
Labeled Standards	Туре	% Recovery			Qualifiers		Dilution
13C-2,3,7,8-TCDD	IS	88.6		25 - 164		17-Oct-24 06:20	
13C-1,2,3,7,8-PeCDD	IS	74.0		25 - 181		17-Oct-24 06:20	
13C-1,2,3,4,7,8-HxCDD	IS	91.8		32 - 141		17-Oct-24 06:20	
13C-1,2,3,6,7,8-HxCDD	IS	83.3		28 - 130		17-Oct-24 06:20	1
13C-1,2,3,7,8,9-HxCDD	IS	87.2		32 - 141		17-Oct-24 06:20	1
13C-1,2,3,4,6,7,8-HpCDD	IS	73.4		23 - 140		17-Oct-24 06:20	1
	15	/3.4					5
13C-OCDD	IS	77.2		17 - 157	D	18-Oct-24 13:23	3
13C-OCDD 13C-2,3,7,8-TCDF				17 - 157	D	18-Oct-24 13:23 17-Oct-24 06:20	
13C-2,3,7,8-TCDF	IS IS	77.2 92.8		17 - 157 24 - 169	D	17-Oct-24 06:20	1
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	IS IS IS	77.2 92.8 80.5		17 - 157 24 - 169 24 - 185	D	17-Oct-24 06:20 17-Oct-24 06:20	1
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	IS IS IS IS	77.2 92.8 80.5 77.4		17 - 157 24 - 169 24 - 185 21 - 178	D	17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20	1 1 1
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	IS IS IS IS	77.2 92.8 80.5 77.4 90.4		17 - 157 24 - 169 24 - 185 21 - 178 26 - 152	D	17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20	1 1 1
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	IS IS IS IS IS IS	77.2 92.8 80.5 77.4 90.4 85.3		17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123	D	17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20	1 1 1 1 1
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF	IS IS IS IS IS IS IS IS	77.2 92.8 80.5 77.4 90.4 85.3 87.2		17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136	D	17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20	1 1 1 1 1
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	IS IS IS IS IS IS IS IS IS	77.2 92.8 80.5 77.4 90.4 85.3 87.2 85.3		17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147	D	17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20	1 1 1 1 1 1
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	IS IS IS IS IS IS IS IS IS IS IS	77.2 92.8 80.5 77.4 90.4 85.3 87.2 85.3 70.0		17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143	D	17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20	1 1 1 1 1 1 1
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS	77.2 92.8 80.5 77.4 90.4 85.3 87.2 85.3 70.0		17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143 26 - 138	D	17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20	1 1 1 1 1 1 1 1
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	IS IS IS IS IS IS IS IS IS IS IS	77.2 92.8 80.5 77.4 90.4 85.3 87.2 85.3 70.0		17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143	D	17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20 17-Oct-24 06:20	1 1 1 1 1 1 1 1 1

EMPC - Estimated maximum possible concentration The sample size is reported in wet weight.

Work Order 2410029 Page 26 of 36

Qualifiers

Analyzed

Dilution

Sample ID: BH_TR2-3_0-0.5_20241002 **EPA Method 1613B**

Laboratory Data Client Data

Conc. (pg/g)

Analyte

Lab Sample: 2410029-13 Date Received: 04-Oct-24 08:55 WSP Name: B24J121 QC Batch: Date Extracted: 15-Oct-24 Project: Blue Heron

EMPC

Sample Size: Column: 14.8 g Matrix: Soil **ZB-DIOXIN**

% Solids: Date Collected: 71.3 02-Oct-24 17:50

EDL

<u> </u>	4007					
2,3,7,8-TCDD	ND	0	.340		17-Oct-24 07:06	1
1,2,3,7,8-PeCDD	1.21			J	17-Oct-24 07:06	1
1,2,3,4,7,8-HxCDD	2.41				17-Oct-24 07:06	1
1,2,3,6,7,8-HxCDD	19.1				17-Oct-24 07:06	1
1,2,3,7,8,9-HxCDD	6.13				17-Oct-24 07:06	1
1,2,3,4,6,7,8-HpCDD	1440				17-Oct-24 07:06	1
OCDD	13100			D	18-Oct-24 14:09	5
2,3,7,8-TCDF	2.25				17-Oct-24 07:06	
1,2,3,7,8-PeCDF	2.04			J	17-Oct-24 07:06	
2,3,4,7,8-PeCDF	3.65				17-Oct-24 07:06	
1,2,3,4,7,8-HxCDF	6.80				17-Oct-24 07:06	
1,2,3,6,7,8-HxCDF	3.07				17-Oct-24 07:06	
2,3,4,6,7,8-HxCDF	ND	2	2.26		17-Oct-24 07:06	
1,2,3,7,8,9-HxCDF	3.61				17-Oct-24 07:06	
1,2,3,4,6,7,8-HpCDF	88.4				17-Oct-24 07:06	
1,2,3,4,7,8,9-HpCDF	8.19				17-Oct-24 07:06	
OCDF	217				17-Oct-24 07:06	1
Toxic Equivalent						
TEQMinWHO2005Dioxin	26.1					
Totals						
Total TCDD	4.48	4	5.02			
Total PeCDD	11.9	1	12.2			
Total HxCDD	334					
Total HpCDD	4250					
Total TCDF	9.03	1	14.0			
Total PeCDF	39.4		40.5			
Total HxCDF	164		169			
Total HpCDF	322					
*			Limits	Qualifiers	Analyzed	Dilution
Labeled Standards	Type	% Recovery	Limits	Quanners		
Labeled Standards	Type IS	% Recovery		Quantiers		1
13C-2,3,7,8-TCDD	IS	95.3	25 - 164	Quanners	17-Oct-24 07:06	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	IS IS	95.3 79.3	25 - 164 25 - 181	Quainiers	17-Oct-24 07:06 17-Oct-24 07:06	1
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD	IS IS IS	95.3 79.3 97.8	25 - 164 25 - 181 32 - 141	Quanners	17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06	1
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	IS IS IS	95.3 79.3 97.8 89.7	25 - 164 25 - 181 32 - 141 28 - 130	Quainiers	17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06	1 1 1
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD	IS IS IS IS IS	95.3 79.3 97.8 89.7 94.9	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141	Quainiers	17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06	1 1 1
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD	IS IS IS IS IS IS	95.3 79.3 97.8 89.7 94.9 85.5	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140		17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06	1 1 1 1 1
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	IS IS IS IS IS IS IS	95.3 79.3 97.8 89.7 94.9 85.5 86.8	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157	D	17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 18-Oct-24 14:09	1 1 1 1 1 1 5
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF	IS IS IS IS IS IS IS IS IS	95.3 79.3 97.8 89.7 94.9 85.5 86.8 96.9	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169		17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 18-Oct-24 14:09 17-Oct-24 07:06	1 1 1 1 1 5
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	IS IS IS IS IS IS IS IS IS IS	95.3 79.3 97.8 89.7 94.9 85.5 86.8 96.9 84.7	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185		17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 18-Oct-24 14:09 17-Oct-24 07:06 17-Oct-24 07:06	1 1 1 1 1 5 1
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	IS IS IS IS IS IS IS IS IS IS IS	95.3 79.3 97.8 89.7 94.9 85.5 86.8 96.9 84.7 81.7	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178		17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 18-Oct-24 14:09 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06	1 1 1 1 1 5 1 1 1
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	95.3 79.3 97.8 89.7 94.9 85.5 86.8 96.9 84.7 81.7	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152		17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 18-Oct-24 14:09 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06	1 1 1 1 5 1 1 1 1 1
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	95.3 79.3 97.8 89.7 94.9 85.5 86.8 96.9 84.7 81.7 94.7	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123		17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 18-Oct-24 14:09 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06	1 1 1 1 5 1 1 1 1 1
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	95.3 79.3 97.8 89.7 94.9 85.5 86.8 96.9 84.7 81.7 94.7 88.4	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152		17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 18-Oct-24 14:09 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06	1 1 1 1 1 5 1 1 1 1 1 1
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	95.3 79.3 97.8 89.7 94.9 85.5 86.8 96.9 84.7 81.7 94.7 88.4 92.6 90.6	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123		17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 18-Oct-24 14:09 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06	1 1 1 1 1 5 1 1 1 1 1 1
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	95.3 79.3 97.8 89.7 94.9 85.5 86.8 96.9 84.7 81.7 94.7 88.4	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136		17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 18-Oct-24 14:09 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06	1 1 1 1 5 1 1 1 1 1 1 1
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	95.3 79.3 97.8 89.7 94.9 85.5 86.8 96.9 84.7 81.7 94.7 88.4 92.6 90.6	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147		17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 18-Oct-24 14:09 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06	1 1 1 1 5 1 1 1 1 1 1 1 1
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,7,8,9-HxCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	95.3 79.3 97.8 89.7 94.9 85.5 86.8 96.9 84.7 81.7 94.7 88.4 92.6 90.6 79.0	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143		17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 18-Oct-24 14:09 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06 17-Oct-24 07:06	

EMPC - Estimated maximum possible concentration

The sample size is reported in wet weight.

Work Order 2410029 Page 27 of 36

17-Oct-24 07:52

17-Oct-24 07:52

17-Oct-24 07:52

17-Oct-24 07:52

17-Oct-24 07:52

17-Oct-24 07:52

1

1

1

Sample ID: BH_TR2-4_0-0.5_20241002 EPA Method 1613B

Laboratory Data **Client Data**

Lab Sample: 2410029-14 Date Received: 04-Oct-24 08:55 Name: WSP B24J121 QC Batch: Date Extracted: 15-Oct-24 Project: Blue Heron

Sample Size: Column: 20.7 gMatrix: Soil ZB-DIOXIN % Solids:

Date Collected: 02-Oct-24 17:00 49.2 EDL **EMPC** Dilution Qualifiers Analyzed Analyte Conc. (pg/g) 2,3,7,8-TCDD 0.603 17-Oct-24 07:52 ND 1,2,3,7,8-PeCDD 1.79 J 17-Oct-24 07:52 1,2,3,4,7,8-HxCDD 1.95 17-Oct-24 07:52 22.6 1,2,3,6,7,8-HxCDD 17-Oct-24 07:52 1 5.03 17-Oct-24 07:52 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 680 17-Oct-24 07:52 1 8490 D OCDD 18-Oct-24 14:55 5 2,3,7,8-TCDF 4.27 17-Oct-24 07:52 1 1,2,3,7,8-PeCDF 1.23 J 17-Oct-24 07:52 1 2.3.4.7.8-PeCDF 2.50 17-Oct-24 07:52 1 4.49 1,2,3,4,7,8-HxCDF 17-Oct-24 07:52 1,2,3,6,7,8-HxCDF 3.95 17-Oct-24 07:52 2,3,4,6,7,8-HxCDF 2.31 17-Oct-24 07:52 1,2,3,7,8,9-HxCDF 0.673 J 17-Oct-24 07:52 1,2,3,4,6,7,8-HpCDF 93.0 17-Oct-24 07:52 1,2,3,4,7,8,9-HpCDF 3.66 17-Oct-24 07:52 1 195 17-Oct-24 07:52 OCDF Toxic Equivalent 17.5 TEQMinWHO2005Dioxin **Totals** Total TCDD 22.7 24.7 Total PeCDD 25.2 18.1 Total HxCDD 132 Total HpCDD 1400 Total TCDF 17.4 38.1 Total PeCDF 35.8 37.3 144 Total HxCDF Total HpCDF 314 Limits **Labeled Standards** Type % Recovery Qualifiers Analyzed Dilution 13C-2,3,7,8-TCDD 92.1 17-Oct-24 07:52 IS 25 - 164 IS 79.1 13C-1,2,3,7,8-PeCDD 25 - 18117-Oct-24 07:52 1 13C-1,2,3,4,7,8-HxCDD IS 100 32 - 141 17-Oct-24 07:52 13C-1,2,3,6,7,8-HxCDD IS 91.7 28 - 130 17-Oct-24 07:52 IS 13C-1,2,3,7,8,9-HxCDD 98.9 17-Oct-24 07:52 32 - 141 13C-1,2,3,4,6,7,8-HpCDD IS 80.2 23 - 140 17-Oct-24 07:52 1 IS 13C-OCDD 87.3 17 - 157 D 18-Oct-24 14:55 5 13C-2,3,7,8-TCDF IS 99.5 17-Oct-24 07:52 1 24 - 169 IS 13C-1,2,3,7,8-PeCDF 86.0 24 - 185 17-Oct-24 07:52 1 13C-2,3,4,7,8-PeCDF IS 79.9 21 - 178 17-Oct-24 07:52 1 13C-1,2,3,4,7,8-HxCDF IS 98.6 26 - 152 17-Oct-24 07:52 IS 13C-1,2,3,6,7,8-HxCDF 90.5 17-Oct-24 07:52 1 26 - 123

EDL - Sample specifc estimated detection limit

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

37Cl-2,3,7,8-TCDD

13C-OCDF

IS

IS

IS

IS

IS

CRS

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

28 - 136

29 - 147

28 - 143

26 - 138

17 - 157

35 - 197

Work Order 2410029 Page 28 of 36

94.2

90.8

79.3

82.4

70.5

114

Qualifiers

Analyzed

17-Oct-24 08:38

Dilution

Sample ID: BH_TR2-6_0-0.5_20241002 EPA Method 1613B

Client Data Laboratory Data

Conc. (pg/g)

ND

Analyte

2,3,7,8-TCDD

Name:WSPLab Sample:2410029-15Date Received:04-Oct-24 08:55Project:Blue HeronQC Batch:B24J121Date Extracted:15-Oct-24

EMPC

1.07

Matrix: Soil Sample Size: 13.7 g Column: ZB-DIOXIN

Matrix: Soil Sample Size. 13.7 g Column:

Date Collected: 02-Oct-24 15:10 % Solids: 73.4

EDL

2,5,7,6-1CDD	ND		1.07	17-001-24 00.30	
1,2,3,7,8-PeCDD	3.71			17-Oct-24 08:38	1
1,2,3,4,7,8-HxCDD	3.38			17-Oct-24 08:38	1
1,2,3,6,7,8-HxCDD	18.9			17-Oct-24 08:38	1
1,2,3,7,8,9-HxCDD	10.0			17-Oct-24 08:38	1
1,2,3,4,6,7,8-HpCDD	451			17-Oct-24 08:38	1
OCDD	4320			17-Oct-24 08:38	1
2,3,7,8-TCDF	10.5			17-Oct-24 08:38	1
1,2,3,7,8-PeCDF	5.33			17-Oct-24 08:38	1
2,3,4,7,8-PeCDF	7.43			17-Oct-24 08:38	1
1,2,3,4,7,8-HxCDF	11.7			17-Oct-24 08:38	1
1,2,3,6,7,8-HxCDF	6.32			17-Oct-24 08:38	1
2,3,4,6,7,8-HxCDF	2.64			17-Oct-24 08:38	1
1,2,3,7,8,9-HxCDF	3.01			17-Oct-24 08:38	1
1,2,3,4,6,7,8-HpCDF	84.3			17-Oct-24 08:38	1
1,2,3,4,7,8,9-HpCDF	22.6			17-Oct-24 08:38	1
OCDF	230			17-Oct-24 08:38	1
Toxic Equivalent					
TEQMinWHO2005Dioxin	19.7				
Totals					
Total TCDD	30.3		32.9		
Total PeCDD	39.8				
Total HxCDD	184				
Total HpCDD	1100				
Total TCDF	45.2		49.5		
Total TCDF Total PeCDF	45.2 88.9		49.5 89.1		
Total PeCDF	88.9		89.1		
Total PeCDF Total HxCDF	88.9 137	% Recovery	89.1	Qualifiers Analyzed	Dilution
Total PeCDF Total HxCDF Total HpCDF Labeled Standards	88.9 137 240 Type	% Recovery 92.3	89.1 138 Limits	_	
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD	88.9 137 240 Type IS	92.3	89.1 138 Limits 25 - 164	17-Oct-24 08:38	1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	88.9 137 240 Type IS IS	92.3 78.9	89.1 138 Limits 25 - 164 25 - 181	17-Oct-24 08:38 17-Oct-24 08:38	1 1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD	88.9 137 240 Type IS IS	92.3 78.9 95.6	89.1 138 Limits 25 - 164 25 - 181 32 - 141	17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38	1 1 1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	88.9 137 240 Type IS IS IS	92.3 78.9 95.6 88.8	89.1 138 Limits 25 - 164 25 - 181 32 - 141 28 - 130	17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38	1 1 1 1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD	88.9 137 240 Type IS IS IS	92.3 78.9 95.6 88.8 86.8	89.1 138 Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141	17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38	1 1 1 1 1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD	88.9 137 240 Type IS IS IS IS	92.3 78.9 95.6 88.8 86.8 76.5	89.1 138 Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140	17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38	1 1 1 1 1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD	88.9 137 240 Type IS IS IS IS IS IS IS	92.3 78.9 95.6 88.8 86.8 76.5 69.0	89.1 138 Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157	17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38	1 1 1 1 1 1 1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF	88.9 137 240 Type IS IS IS IS IS IS IS IS	92.3 78.9 95.6 88.8 86.8 76.5 69.0	89.1 138 Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169	17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38	1 1 1 1 1 1 1 1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	88.9 137 240 Type IS IS IS IS IS IS IS IS IS IS IS	92.3 78.9 95.6 88.8 86.8 76.5 69.0 93.6 83.0	89.1 138 Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185	17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38	1 1 1 1 1 1 1 1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	88.9 137 240 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	92.3 78.9 95.6 88.8 86.8 76.5 69.0 93.6 83.0 76.9	89.1 138 Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178	17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38	1 1 1 1 1 1 1 1 1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	88.9 137 240 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	92.3 78.9 95.6 88.8 86.8 76.5 69.0 93.6 83.0 76.9 94.3	89.1 138 Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152	17-Oct-24 08:38 17-Oct-24 08:38	1 1 1 1 1 1 1 1 1 1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF	88.9 137 240 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	92.3 78.9 95.6 88.8 86.8 76.5 69.0 93.6 83.0 76.9 94.3 83.5	89.1 138 Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123	17-Oct-24 08:38 17-Oct-24 08:38	1 1 1 1 1 1 1 1 1 1 1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF	88.9 137 240 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	92.3 78.9 95.6 88.8 86.8 76.5 69.0 93.6 83.0 76.9 94.3 83.5 80.3	89.1 138 Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136	17-Oct-24 08:38 17-Oct-24 08:38	1 1 1 1 1 1 1 1 1 1 1 1 1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF	88.9 137 240 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	92.3 78.9 95.6 88.8 86.8 76.5 69.0 93.6 83.0 76.9 94.3 83.5 80.3 77.9	89.1 138 Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147	17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38	1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HyCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF	88.9 137 240 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	92.3 78.9 95.6 88.8 86.8 76.5 69.0 93.6 83.0 76.9 94.3 83.5 80.3 77.9 76.0	89.1 138 Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136	17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HyCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,6,7,8-HyCDF	88.9 137 240 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	92.3 78.9 95.6 88.8 86.8 76.5 69.0 93.6 83.0 76.9 94.3 83.5 80.3 77.9 76.0 78.1	89.1 138 Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147	17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF	88.9 137 240 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	92.3 78.9 95.6 88.8 86.8 76.5 69.0 93.6 83.0 76.9 94.3 83.5 80.3 77.9 76.0	89.1 138 Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143	17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38 17-Oct-24 08:38	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

Work Order 2410029 Page 29 of 36

Sample ID: BH_DUP1 **EPA Method 1613B**

Laboratory Data Client Data

2410029-16 04-Oct-24 08:55 Lab Sample: Date Received: WSP Name: QC Batch: B24J121 Date Extracted: 15-Oct-24

Project: Blue Heron

Matrix: Soil Date Collected: 02-Oct-24 0		:	Sample Size: % Solids:	11.4 g 89.3	Column:	ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND		0.266			17-Oct-24 09:24	1
1,2,3,7,8-PeCDD	0.574				J	17-Oct-24 09:24	1
1,2,3,4,7,8-HxCDD	0.710				J	17-Oct-24 09:24	1
1,2,3,6,7,8-HxCDD	4.04					17-Oct-24 09:24	
1,2,3,7,8,9-HxCDD	1.63				J	17-Oct-24 09:24	
1,2,3,4,6,7,8-HpCDD	81.3					17-Oct-24 09:24	
OCDD	814					17-Oct-24 09:24	
2,3,7,8-TCDF	2.33					17-Oct-24 09:24	
1,2,3,7,8-PeCDF	0.946				J	17-Oct-24 09:24	
2,3,4,7,8-PeCDF	0.896				J	17-Oct-24 09:24	
1,2,3,4,7,8-HxCDF	1.79				J	17-Oct-24 09:24	
1,2,3,6,7,8-HxCDF	1.27				J	17-Oct-24 09:24	
2,3,4,6,7,8-HxCDF	0.680		0.220		J	17-Oct-24 09:24	
1,2,3,7,8,9-HxCDF	ND		0.238			17-Oct-24 09:24	
1,2,3,4,6,7,8-HpCDF	29.6					17-Oct-24 09:24	
1,2,3,4,7,8,9-HpCDF	1.34				J	17-Oct-24 09:24	
OCDF Toxic Equivalent	40.7					17-Oct-24 09:24	1
TEQMinWHO2005Dioxin	3.49						
Totals	3.49						
Total TCDD	4.02		5.28				
Total PeCDD	5.37		7.31				
Total HxCDD	26.2		7.31				
Total HpCDD	168						
-			21.4				
Total TCDF	18.5						
Total PeCDF	14.9		16.4				
Total HxCDF	29.1		29.7				
Total HpCDF	70.1	01.7		T,	0 1'6"		D:1 /:
Labeled Standards	Type	% Recovery	•	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	96.0		25 - 164		17-Oct-24 09:24	
13C-1,2,3,7,8-PeCDD	IS	84.1		25 - 181		17-Oct-24 09:24	
13C-1,2,3,4,7,8-HxCDD	IS	105		32 - 141		17-Oct-24 09:24	
13C-1,2,3,6,7,8-HxCDD	IS	97.1		28 - 130		17-Oct-24 09:24	
13C-1,2,3,7,8,9-HxCDD	IS	101		32 - 141		17-Oct-24 09:24	
13C-1,2,3,4,6,7,8-HpCDD	IS	84.5		23 - 140		17-Oct-24 09:24	
13C-OCDD	IS	78.7		17 - 157		17-Oct-24 09:24	
13C-2,3,7,8-TCDF	IS	102		24 - 169		17-Oct-24 09:24	
13C-1,2,3,7,8-PeCDF	IC	00.0		24 - 185		17-Oct-24 09:24	1
13C-2,3,4,7,8-PeCDF	IS	89.8					
	IS	85.9		21 - 178		17-Oct-24 09:24	
13C-1,2,3,4,7,8-HxCDF		85.9 101				17-Oct-24 09:24	. 1
	IS	85.9		21 - 178			. 1
13C-1,2,3,4,7,8-HxCDF	IS IS	85.9 101		21 - 178 26 - 152		17-Oct-24 09:24	1 1
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	IS IS IS	85.9 101 93.2		21 - 178 26 - 152 26 - 123		17-Oct-24 09:24 17-Oct-24 09:24	1 1 1
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF	IS IS IS IS	85.9 101 93.2 96.3		21 - 178 26 - 152 26 - 123 28 - 136		17-Oct-24 09:24 17-Oct-24 09:24 17-Oct-24 09:24	1 1 1 1
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	IS IS IS IS IS	85.9 101 93.2 96.3 96.9		21 - 178 26 - 152 26 - 123 28 - 136 29 - 147		17-Oct-24 09:24 17-Oct-24 09:24 17-Oct-24 09:24 17-Oct-24 09:24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	IS IS IS IS IS IS	85.9 101 93.2 96.3 96.9 82.8		21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143		17-Oct-24 09:24 17-Oct-24 09:24 17-Oct-24 09:24 17-Oct-24 09:24 17-Oct-24 09:24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Page 30 of 36 Work Order 2410029

DRAFT DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

RL For 537.1, the reported RLs are the MRLs.

TEQ Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the

sample concentrations.

TEQMax TEQ calculation that uses the detection limit as the concentration for non-detects

TEQMin TEQ calculation that uses zero as the concentration for non-detects

TEQRisk TEQ calculation that uses ½ the detection limit as the concentration for non-

detects

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2410029 Page 31 of 36

DRAFT

Enthalpy Analytical - EDH Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	2211390
Nevada Division of Environmental Protection	CA00413
New Hampshire Environmental Accreditation Program	207721
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-021
Texas Commission on Environmental Quality	T104704189-22-13
Vermont Department of Health	VT-4042
Virginia Department of General Services	11276
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

 $Current\ certificates\ and\ lists\ of\ licensed\ parameters\ can\ be\ found\ at\ Enthalpy.com/Resources/Accreditations.$

Work Order 2410029 Page 32 of 36

15862 SW 72 ave, #150

Company

Invoice to: Name

John Kuiper

CHAIN OF CUSTODY

Address

GC/HRMS Methods

P.O.#. G685.0793 Task40@ampler:

Labora	atory Project ID: 24 0029 Temp: 13 °C Storage Secured: 12 Yes No
	TAT Standard: 21 days (check one): Rush (surcharge may apply)
	(check one): Rush (surcharge may apply) 14 days 7 days Other:
City	State Phone #
	-0
ortla	ind OR John, kui perie wsp. co
ortla ure)	Date Time
ortla ure)	

Relinquished by (printed name and s Matthew Brown	signatur	(e) L	Date In	e /3/24	Time 120	20		Receive					natur	e)		-				ì	DIEVI	ate	Time	55
Relinquished by (printed name and s	signatur	re)	Dat		Time		-	Receive					ınatur	()	0	-		-	_		Di Bi	29 ate	Time	3)
SHIP TO: Enthalpy Analytical - ED 1104 Windfield Way El Dorado Hills, CA 957 (916) 673-1520			Method of Shipme	ight	Analy	sis(es)	Reque	ested	/	O. 1673.	su /	/	2,000 8390 C	Suem	/	/	Spy Je.	880	150 KG3	1 8 × 5 ×	/ ome	/	/	
ATTN: Bryon Clack		-	Tracking No.: 7789 9879 598	59	/	1		20 St. St. St. St. St. St. St. St. St. St.	7		1/8	\$ \\ \forall \forall \\ \forall \cong\cong\cong\cong\cong\cong\cong\cong	/	100 s	1050 1050 M	,	PAHS CENERS	1	/	/	1	7		
Sample ID Da	ate	Time	Location/Sample Descri	iption / o	Till State of the state of the	100	18	15/ 8	Full (200)	15/5	8/8	The state of the s	1 de	3	1 2 /	\$	8	Q Z	/	/	/ 0	ommen	s	
BH_TRH-1_0-05_20241002 1010	2/24	9:15		1	6	SO			X															
BH_TRH-2_0-0.5_20241002 10/0:	2/24	10:10			1	1.4			×	-43	Ľ L	100	100											
BH_TRH-2_1-15_20241002 10/0	2/24	9:50						-186	×															
BH_TRH-3_0-0.5.2024 1002 1010	2/24 1	1:25	41					4 4	X							H	- 1							
3H_TRH-3_1-15_20241002 1010	2/24	2:00	8		11			TH,	×			-1												
H_TRI-1-0-05-2024100210/0									×	4		4.4	211				-							
3H-TRI-Z-0-05 20241002 10/07	2/24 1	4:00				10-			×															
SH_TRI-3_0-0.5_20241002 1010	2/24	2:30			CIT				×				114			11								
3H_TRI-3_ 1-15_ 20241002 1010	21241	2:50							×															
BH_TRI-4_0-05_20241002 10/0	2124	5:50		4	1	1		7	×					-						1				
Special Instructions/Comments:										SE DCUME ID RES	NTAT		C	Nar compa Addre	ny:									
									All	D RES	ULIS	, 0.		Addre C	ity:					7	State:		ip.	
														Pho	ne:_						-			
Container Types: A = 1 Liter Amber, G = O = Other:	= Amber	Glass Ja		eservation: [])/=	Inzm	а,			Matrix T					v = vn							aper, SL	= Sedime	nt.
ID: LR-COC			Rev. No. 2			Rev.	Date:	1/2/20				22.21	CO.		- 35 1			120.0	(W.			gė: 🍂		==

ea	E	1	17		H	A	I		P	Y	Lab N
	A	N	A	L	Y	T	1	C	A	L	Page:

Chain of Custody Record

Lab No:

Turn Around Time (rush by advanced notice only) Standard:

2 Day:

3 Day:

5 Day:

Custom TAT:

Enthalpy Analytical

1104 Windfield Way, El Dorado Hills, CA

Phone (916) 673, 1520

Matrix: A = Air S = Soil/Solid

W = Water DW = Drinking Wate SD = Sediment PP = Pure Product SEA = Sea Water

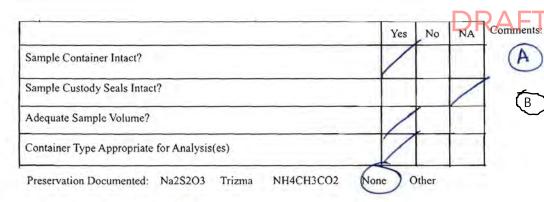
SW = Swah T = Tissue WP = Wine O = Other

1 Day: Preservatives:

 $1 = Na_2S_2O_3$ 2 = HCI $3 = HNO_3$ $4 = H_2SO_4$ 5 = NaOH 6 = Other

(Jah use only)

Sample Receipt Temp:


		Phone (916) 6/3-	1520			34	v - Swab 1	- Hissue VV	F - Wilhe	0 - Other		(lab use only)	
	CUSTOMER INFORMATION			PROJECT INFORMATION						Analysis R	equest	Test Instructions / Comments	= 14
Company:	WS	P		Name:	16	lue:	Heron	J = 1	35				
Report To:		wiper		Number:					orans				
Email:		uiper@u	USP.Com	P.O. #:	G	685.0	793 To	k 400	#				
Address:	15862	SW 72 held are	#150	Address:			City	-					
	Botland	OR 975	224			0,1			oxins.			9	
Phone:	10-1-11	-		Global ID:		_			Ď.			*	
Fax:				Sampled By	. 1	lattle	ew Br	aun	00				
	Sample ID		Sampling		npling	Matrix	Container		4 161	24/1/11	1000		
	Sample ID		Date	Ti	ime	IVIALITY	No. / Size	ries.	2				
1 BH_TR	21_0-0.5_2	20241002	10/2/21	+ 163	0	SO	1/6	Non	X				
	R2-2_0-0.5				30	1	1		X			Hold	
	R2-3_0-0.1								×			Hald	
	R2-4-0-0.							HELE	X				
	R2-6_0-03				0				X	1, 8, 9,			
	Dup1		10/2/24			4	4	115	X			Duplicate for QC	
7 BH_	Rinsate - 20	2841002	10/2/21		O	W	2 amb	75	×				
8	11110=10					1177							
9													
10						1		10.		-121			
		S	ignature			Pr	int Name			Company	/ Title	Date / Time	
1 Relinqui	shed By:	· Stiller	4/20		Ma	their) Brow	in.	2	ISP/En	aineer	10/3/24 @ 1300	
1 Received		220					Torry		_	-EDH	J	10/04/24 0855	
	shed By:	0 00			1	-1101	1000			V V 11			
² Received													
	shed By:												
³ Received													
													$\overline{}$

DRAFT

CoC/Label Reconciliation Report WO# 2410029

LabNumber	CoC Sample ID	Sample/	Sample Date/Time	Container	BaseMatrix	Sample Comments
2410029-01	A BH_TRH-1_0-0.5_20241002	Ø	02-Oct-24 09:15	Amber Glass, 120 mL	Solid	
2410029-02	A BH_TRH-2_0-0.5_20241002	Ø	02-Oct-24 10:10	Amber Glass, 120 mL	Solid	
2410029-03	A BH_TRH-2_1-1.5_20241002	Ø	02-Oct-24 09:50	Amber Glass, 120 mL	Solid	
2410029-04	A BH_TRH-3_0-0.5_20241002	Ø	02-Oct-24 11:25	Amber Glass, 120 mL	Solid	
2410029-05	A BH_TRH-3_1-1.5_20241002	Ø	02-Oct-24 12:00	Amber Glass, 120 mL	Solid	
2410029-06	A BH_TRI-1_0-0.5_20241002	Ø(B)	02-Oct-24 08:23	Amber Glass, 120 mL	Solid	
2410029-07	A BH_TRI-2_0-0.5_20241002	Ø]	02-Oct-24 14:00	Amber Glass, 120 mL	Solid	
2410029-08	A BH_TRI-3_0-0.5_20241002	Ø	02-Oct-24 12:30	Amber Glass, 120 mL	Solid	
2410029-09	A BH_TRI-3_1-1.5_20241002	Ø	02-Oct-24 12:50	Amber Glass, 120 mL	Solid	
2410029-10	A BH_TRI-4_0-0.5_20241002		02-Oct-24 15:50	Amber Glass, 120 mL	Solid	
2410029-11	A BH_TR2-1_0-0.5_20241002	Ø	02-Oct-24 16:30	Amber Glass, 120 mL	Solid	
2410029-12	A BH_TR2-2_0-0.5_20241002	Ø	02-Oct-24 17:30	Amber Glass, 120 mL	Solid	
2410029-13	A BH_TR2-3_0-0.5_20241002	Ø	02-Oct-24 17:50	Amber Glass, 120 mL	Solid	
2410029-14	A BH_TR2-4_0-0.5_20241002	Ø	02-Oct-24 17:00	Amber Glass, 120 mL	Solid	
2410029-15	A BH_TR2-6_0-0.5_20241002	Ø	02-Oct-24 15:10	Amber Glass, 120 mL	Solid	
2410029-16	A BH_DUPI	Ø	02-Oct-24 00:00 \(\bigcap \)	Amber Glass, 120 mL	Solid	
2410029-17	A BH_Rinsate_20241002	Ø	02-Oct-24 18:40	Amber Glass WM Bottle, 1L	Aqueous	
2410029-17	B BH_Rinsate_20241002	Ø	02-Oct-24 18:40	Amber Glass WM Bottle, 1L	Aqueous	

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

A) NO time on Col or gample lakel used 00:00

(B) Underlined part was updated to reflect "1"

Verifed by/Date: XAO 10/04/24

Printed: 10/4/2024 3:24:39PM

Work Order 2410029

November 05, 2024

Enthalpy Analytical - El Dorado Hills Work Order No. 2410125

Mr. John Kuiper WSP 7376 SW Durham Road Portland, OR 97224

Dear Mr. Kuiper,

Enclosed are the results for the sample set received at Enthalpy Analytical - EDH on October 23, 2024 under your Project Name 'Blue Heron'.

Enthalpy Analytical - EDH is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at byron.clack@enthalpy.com.

Thank you for choosing Enthalpy Analytical - EDH as part of your analytical support team.

Sincerely,

Chris Whitehead For Byron Clack

C.R. Whitehead

Project Manager

Enthalpy Analytical -EDH certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Enthalpy Analytical -EDH.

Enthalpy Analytical - EDH 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.enthalpy.com

Work Order 2410125 Page 1 of 15

Enthalpy Analytical - EDH Work Order No. 2410125 Case Narrative

Sample Condition on Receipt:

Four water samples were received and stored securely in accordance with Enthalpy Analytical - EDH standard operating procedures and EPA methodology. The samples were received in good condition and within the method temperature requirements.

Analytical Notes:

EPA Method 1613B

The samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-DIOXIN GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limit in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Work Order 2410125 Page 2 of 15

DRAFT

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	12
Certifications	13
Sample Receipt	14

Work Order 2410125 Page 3 of 15

Sample Inventory Report

Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2410125-01	BH_TRH-Pre Gab_20241021	21-Oct-24 13:45	23-Oct-24 09:51	Amber Glass NM Bottle, 1L Amber Glass NM Bottle, 1L
2410125-02	BH_TRH-Post Gab_20241021	21-Oct-24 14:10	23-Oct-24 09:51	Amber Glass NM Bottle, 1L Amber Glass NM Bottle, 1L
2410125-03	BH_TR1-Pre Gab_20241021	21-Oct-24 15:00	23-Oct-24 09:51	Amber Glass NM Bottle, 1L Amber Glass NM Bottle, 1L
2410125-04	BH_TR1-Post Gab_20241021	21-Oct-24 15:20	23-Oct-24 09:51	Amber Glass NM Bottle, 1L Amber Glass NM Bottle, 1L

Work Order 2410125 Page 4 of 15

DRAFT

ANALYTICAL RESULTS

Work Order 2410125 Page 5 of 15

Sample ID: Method Blank EPA Method 1613B

Client Data Laboratory Data

Name: WSP Lab Sample: B24J236-BLK1

Project: Blue Heron QC Batch: B24J236 Date Extracted: 29-Oct-24

Matrix: Aqueous Sample Size: 1.00 L Column: ZB-DIOXIN

Matrix: Aqueous			Sample Size:	1.00 L	Column:	ZB-DIOXIN	ſ
Analyte	Conc. (pg/L)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.426				01-Nov-24 08:34	1 1
1,2,3,7,8-PeCDD	ND	0.585				01-Nov-24 08:34	1 1
1,2,3,4,7,8-HxCDD	ND	0.706				01-Nov-24 08:34	1
1,2,3,6,7,8-HxCDD	ND	0.738				01-Nov-24 08:34	1 1
1,2,3,7,8,9-HxCDD	ND	0.789				01-Nov-24 08:34	1 1
1,2,3,4,6,7,8-HpCDD	ND		0.498			01-Nov-24 08:34	1 1
OCDD	ND	1.83				01-Nov-24 08:34	1
2,3,7,8-TCDF	ND	0.550				01-Nov-24 08:34	1
1,2,3,7,8-PeCDF	ND	0.472				01-Nov-24 08:34	1 1
2,3,4,7,8-PeCDF	ND	0.346				01-Nov-24 08:34	1
1,2,3,4,7,8-HxCDF	ND	0.342				01-Nov-24 08:34	1
1,2,3,6,7,8-HxCDF	ND	0.333				01-Nov-24 08:34	1
2,3,4,6,7,8-HxCDF	ND	0.367				01-Nov-24 08:34	1
1,2,3,7,8,9-HxCDF	ND	0.453				01-Nov-24 08:34	1
1,2,3,4,6,7,8-HpCDF	ND	0.577				01-Nov-24 08:34	1 1
1,2,3,4,7,8,9-HpCDF	ND	0.579				01-Nov-24 08:34	1
OCDF	ND	1.03				01-Nov-24 08:34	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	0.00						
Totals							
Total TCDD	ND	0.426					
Total PeCDD	ND	0.585					
Total HxCDD	ND	0.789					
Total HpCDD	ND		0.498				
Total TCDF	ND	0.550					
Total PeCDF	ND	0.472					
Total HxCDF	ND	0.453					
Total HpCDF	ND	0.579					
Labeled Standards	Туре	% Recover	·v	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	81.4	· J	25 - 164	- Quantiers	01-Nov-24 08:34	
13C-1,2,3,7,8-PeCDD	IS	74.0		25 - 181		01-Nov-24 08:3	
13C-1,2,3,4,7,8-HxCDD	IS	77.5				01-Nov-24 08:34	
	IS			32 - 141			
13C-1,2,3,6,7,8-HxCDD		73.3		28 - 130		01-Nov-24 08:34	
13C-1,2,3,7,8,9-HxCDD	IS	77.5		32 - 141		01-Nov-24 08:34	
13C-1,2,3,4,6,7,8-HpCDD	IS	59.4		23 - 140		01-Nov-24 08:3	
13C-OCDD	IS	47.5		17 - 157		01-Nov-24 08:3	
13C-2,3,7,8-TCDF	IS	79.7		24 - 169		01-Nov-24 08:3	
13C-1,2,3,7,8-PeCDF	IS	71.8		24 - 185		01-Nov-24 08:3	4 1
13C-2,3,4,7,8-PeCDF	IS	76.5		21 - 178		01-Nov-24 08:3	4 1
13C-1,2,3,4,7,8-HxCDF	IS	73.8		26 - 152		01-Nov-24 08:3	4 1
13C-1,2,3,6,7,8-HxCDF	IS	69.4		26 - 123		01-Nov-24 08:3	4 1
13C-2,3,4,6,7,8-HxCDF	IS	75.8		28 - 136		01-Nov-24 08:34	4 1
13C-1,2,3,7,8,9-HxCDF	IS	73.9		29 - 147		01-Nov-24 08:3	
13C-1,2,3,4,6,7,8-HpCDF	IS	63.5		28 - 143		01-Nov-24 08:3	
13C-1,2,3,4,7,8,9-HpCDF	IS	61.4		26 - 138		01-Nov-24 08:3	
13C-OCDF	IS	51.5		17 - 157		01-Nov-24 08:3	
37Cl-2,3,7,8-TCDD	CRS					01-Nov-24 08:34	
3/CI-2,3,7,8-1CDD	CKS	108		35 - 197		01-N0V-24 08:34	4 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

Work Order 2410125 Page 6 of 15

Sample ID: OPR EPA Method 1613B

Client Data

Laboratory Data WSP

Name: Project: Blue Heron Matrix: Aqueous

Lab Sample: B24J236-BS1

QC Batch: B24J236 Date Extracted: 29-Oct-24 08:10 Sample Size: Column: **ZB-DIOXIN** 1.00 L

% Recovery Limits **Qualifiers** Analyte Amt Found (pg/L) Spike Amt Analyzed Dilution 2,3,7,8-TCDD 209 200 104 67-158 31-Oct-24 12:55 1,2,3,7,8-PeCDD 1200 1000 120 70 - 14231-Oct-24 12:55 1 1000 1,2,3,4,7,8-HxCDD 1120 112 70-164 31-Oct-24 12:55 1,2,3,6,7,8-HxCDD 1100 110 76-134 31-Oct-24 12:55 1000 1 1130 64-162 31-Oct-24 12:55 1 1,2,3,7,8,9-HxCDD 1000 113 1,2,3,4,6,7,8-HpCDD 1170 117 70 - 14031-Oct-24 12:55 1 1000 OCDD 2420 121 78-144 31-Oct-24 12:55 1 2000 2,3,7,8-TCDF 203 101 75-158 31-Oct-24 12:55 200 1.2.3.7.8-PeCDF 1200 120 80-134 31-Oct-24 12:55 1000 1 2,3,4,7,8-PeCDF 1120 112 68-160 31-Oct-24 12:55 1000 1 1,2,3,4,7,8-HxCDF 1210 121 72-134 31-Oct-24 12:55 1 1000 1210 121 31-Oct-24 12:55 1,2,3,6,7,8-HxCDF 1000 84 - 1301 1170 117 31-Oct-24 12:55 2,3,4,6,7,8-HxCDF 1000 70-156 1200 120 1,2,3,7,8,9-HxCDF 78-130 31-Oct-24 12:55 1 1000 1,2,3,4,6,7,8-HpCDF 1170 117 82-122 31-Oct-24 12:55 1000 1 1,2,3,4,7,8,9-HpCDF 1160 1000 116 78-138 31-Oct-24 12:55 1 **OCDF** 2240 2000 112 63-170 31-Oct-24 12:55 **Qualifiers Labeled Standards** Type % Recovery Limits Analyzed **Dilution** 13C-2,3,7,8-TCDD IS 87.7 20 - 17531-Oct-24 12:55 1 13C-1,2,3,7,8-PeCDD IS 83.1 21 - 227 31-Oct-24 12:55 IS 31-Oct-24 12:55 13C-1,2,3,4,7,8-HxCDD 89.8 21 - 193 1 IS 13C-1,2,3,6,7,8-HxCDD 83.7 25 - 163 31-Oct-24 12:55 1 13C-1,2,3,7,8,9-HxCDD IS 87.4 21 - 19331-Oct-24 12:55 1 13C-1,2,3,4,6,7,8-HpCDD IS 70.5 26-166 31-Oct-24 12:55 1 13C-OCDD IS 13-199 56.6 31-Oct-24 12:55 1 IS 13C-2,3,7,8-TCDF 88.3 22 - 152 31-Oct-24 12:55 1 13C-1,2,3,7,8-PeCDF IS 78.1 21-192 31-Oct-24 12:55 1 13C-2,3,4,7,8-PeCDF IS 85.0 13 - 328 31-Oct-24 12:55 1 13C-1,2,3,4,7,8-HxCDF IS 19-202 31-Oct-24 12:55 83.4 1 13C-1,2,3,6,7,8-HxCDF IS 77.8 21-159 31-Oct-24 12:55 1 IS 31-Oct-24 12:55 1 13C-2,3,4,6,7,8-HxCDF 83.7 22 - 17613C-1,2,3,7,8,9-HxCDF IS 85.3 17 - 205 31-Oct-24 12:55 1 IS 13C-1,2,3,4,6,7,8-HpCDF 71.8 21 - 158 31-Oct-24 12:55 1 IS 13C-1,2,3,4,7,8,9-HpCDF 76.4 20-186 31-Oct-24 12:55 13C-OCDF IS 66.3 13-199 31-Oct-24 12:55 1 CRS 1 37Cl-2,3,7,8-TCDD 106 31-191 31-Oct-24 12:55

Work Order 2410125 Page 7 of 15

Sample ID: BH_TRH_Pre Gab_20241021 EPA Method 1613B

Client Data Laboratory Data

Name:WSPLab Sample:2410125-01Date Received:23-Oct-24 09:51Project:Blue HeronQC Batch:B24J236Date Extracted:29-Oct-24

Matrix: Water Sample Size: 1.04 L Column: ZB-DIOXIN

Date Collected: 21-Oct-24 13:45 **EDL EMPC** Dilution Qualifiers Analyzed Analyte Conc. (pg/L) 2,3,7,8-TCDD ND 0.506 01-Nov-24 02:52 1,2,3,7,8-PeCDD ND 0.890 01-Nov-24 02:52 ND 1.01 01-Nov-24 02:52 1,2,3,4,7,8-HxCDD ND 1.07 01-Nov-24 02:52 1,2,3,6,7,8-HxCDD 1 ND 1.13 01-Nov-24 02:52 1,2,3,7,8,9-HxCDD 6.56 J 01-Nov-24 02:52 1,2,3,4,6,7,8-HpCDD 1 51.0 01-Nov-24 02:52 OCDD 1 0.550 2,3,7,8-TCDF ND 01-Nov-24 02:52 1 1,2,3,7,8-PeCDF ND 0.553 01-Nov-24 02:52 01-Nov-24 02:52 2,3,4,7,8-PeCDF ND 0.420 1 ND 1,2,3,4,7,8-HxCDF 0.613 01-Nov-24 02:52 0.614 1,2,3,6,7,8-HxCDF ND 01-Nov-24 02:52 2,3,4,6,7,8-HxCDF ND 0.626 01-Nov-24 02:52 1,2,3,7,8,9-HxCDF ND 0.865 01-Nov-24 02:52 ND 1.42 1,2,3,4,6,7,8-HpCDF 01-Nov-24 02:52 1,2,3,4,7,8,9-HpCDF ND 1.11 01-Nov-24 02:52 OCDF 1.35 01-Nov-24 02:52 **Toxic Equivalent** FEOM: WILO2005D: 0.0012

Labalad Standards	Trmo	0/ D	T ::4a	Qualifians	Amalagad	Dilution
Total HpCDF	ND		4.10			
Total HxCDF	1.35		2.30	J		
Total PeCDF	ND	0.553				
Total TCDF	ND	0.550				
Total HpCDD	13.4			J		
Total HxCDD	ND	1.13				
Total PeCDD	ND	0.890				
Total TCDD	ND	0.506				
Totals						
TEQMinWHO2005Dioxin	0.0813					

Total HpCDF	ND		4.10			
Labeled Standards	Type	% Recovery	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	85.4	25 - 164	0	1-Nov-24 02:52	2 1
13C-1,2,3,7,8-PeCDD	IS	78.5	25 - 181	0	1-Nov-24 02:52	2 1
13C-1,2,3,4,7,8-HxCDD	IS	79.9	32 - 141	0	1-Nov-24 02:52	2 1
13C-1,2,3,6,7,8-HxCDD	IS	74.5	28 - 130	0	1-Nov-24 02:52	2 1
13C-1,2,3,7,8,9-HxCDD	IS	76.1	32 - 141	0	1-Nov-24 02:52	2 1
13C-1,2,3,4,6,7,8-HpCDD	IS	65.0	23 - 140	0	1-Nov-24 02:52	2 1
13C-OCDD	IS	51.2	17 - 157	0	1-Nov-24 02:52	2 1
13C-2,3,7,8-TCDF	IS	88.8	24 - 169	0	1-Nov-24 02:52	2 1
13C-1,2,3,7,8-PeCDF	IS	74.3	24 - 185	0	1-Nov-24 02:52	2 1
13C-2,3,4,7,8-PeCDF	IS	79.4	21 - 178	0	1-Nov-24 02:52	2 1
13C-1,2,3,4,7,8-HxCDF	IS	77.5	26 - 152	0	1-Nov-24 02:52	2 1
13C-1,2,3,6,7,8-HxCDF	IS	72.4	26 - 123	0	1-Nov-24 02:52	2 1
13C-2,3,4,6,7,8-HxCDF	IS	77.4	28 - 136	0	1-Nov-24 02:52	2 1
13C-1,2,3,7,8,9-HxCDF	IS	77.2	29 - 147	0	1-Nov-24 02:52	2 1
13C-1,2,3,4,6,7,8-HpCDF	IS	63.6	28 - 143	0	1-Nov-24 02:52	2 1
13C-1,2,3,4,7,8,9-HpCDF	IS	68.8	26 - 138	0	1-Nov-24 02:52	2 1
13C-OCDF	IS	55.5	17 - 157	0	1-Nov-24 02:52	2 1
37Cl-2,3,7,8-TCDD	CRS	111	35 - 197	0	1-Nov-24 02:52	2 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

Work Order 2410125 Page 8 of 15

Sample ID: BH_TRH_Post Gab_20241021 EPA Method 1613B

Client Data Laboratory Data

Name:WSPLab Sample:2410125-02Date Received:23-Oct-24 09:51Project:Blue HeronQC Batch:B24J236Date Extracted:29-Oct-24

Matrix: Water Sample Size: 1.04 L Column: ZB-DIOXIN

Date Collected: 21-Oct-24 14:10

Analyte	Conc. (pg/L)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.476				01-Nov-24 03:38	1
1,2,3,7,8-PeCDD	ND	0.811				01-Nov-24 03:38	1
1,2,3,4,7,8-HxCDD	ND	0.667				01-Nov-24 03:38	
1,2,3,6,7,8-HxCDD	ND	0.688				01-Nov-24 03:38	
1,2,3,7,8,9-HxCDD	ND	0.729				01-Nov-24 03:38	1
1,2,3,4,6,7,8-HpCDD	6.54				J	01-Nov-24 03:38	1
OCDD	46.7				J	01-Nov-24 03:38	1
2,3,7,8-TCDF	ND	0.504				01-Nov-24 03:38	
1,2,3,7,8-PeCDF	ND	0.437				01-Nov-24 03:38	1
2,3,4,7,8-PeCDF	ND	0.360				01-Nov-24 03:38	1
1,2,3,4,7,8-HxCDF	ND	0.455				01-Nov-24 03:38	1
1,2,3,6,7,8-HxCDF	ND	0.456				01-Nov-24 03:38	1
2,3,4,6,7,8-HxCDF	ND	0.494				01-Nov-24 03:38	1
1,2,3,7,8,9-HxCDF	ND	0.618				01-Nov-24 03:38	1
1,2,3,4,6,7,8-HpCDF	ND		1.38			01-Nov-24 03:38	1
1,2,3,4,7,8,9-HpCDF	ND	1.41				01-Nov-24 03:38	1
OCDF	ND		1.00			01-Nov-24 03:38	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	0.0794						
Totals							
Total TCDD	ND	0.476					
Total PeCDD	ND	0.811					
Total HxCDD	ND		1.50				
Total HpCDD	14.5				J		
Total TCDF	ND	0.504					
Total PeCDF	ND	0.437					
Total HxCDF	2.76				J		
Total HpCDF	2.97		4.34		J		
Labeled Standards							D.11
	rype	% Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2.3.7.8-TCDD	Type IS	% Recovery 85.0			Qualifiers	Analyzed 01-Nov-24 03:38	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	IS	85.0		25 - 164	Qualifiers	01-Nov-24 03:38	3 1
13C-1,2,3,7,8-PeCDD	IS IS	85.0 78.1		25 - 164 25 - 181	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38	3 1 3 1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD	IS IS IS	85.0 78.1 81.0		25 - 164 25 - 181 32 - 141	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38	3 1 3 1 3 1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	IS IS IS IS	85.0 78.1 81.0 75.0		25 - 164 25 - 181 32 - 141 28 - 130	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38	3 1 3 1 3 1 3 1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD	IS IS IS IS	85.0 78.1 81.0 75.0 78.7		25 - 164 25 - 181 32 - 141 28 - 130 32 - 141	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38	3 1 3 1 3 1 3 1 3 1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD	IS IS IS IS IS IS	85.0 78.1 81.0 75.0 78.7 64.7		25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38	3 1 3 1 3 1 3 1 3 1 3 1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	IS IS IS IS IS IS IS	85.0 78.1 81.0 75.0 78.7 64.7 54.4		25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38	3 1 3 1 3 1 3 1 3 1 3 1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF	IS IS IS IS IS IS IS IS IS	85.0 78.1 81.0 75.0 78.7 64.7 54.4 86.6		25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38	3 1 3 1 3 1 3 1 3 1 3 1 3 1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	IS IS IS IS IS IS IS IS IS IS	85.0 78.1 81.0 75.0 78.7 64.7 54.4 86.6 73.6		25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	IS IS IS IS IS IS IS IS IS IS IS IS	85.0 78.1 81.0 75.0 78.7 64.7 54.4 86.6 73.6 79.2		25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	85.0 78.1 81.0 75.0 78.7 64.7 54.4 86.6 73.6 79.2 77.8		25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	IS IS IS IS IS IS IS IS IS IS IS IS	85.0 78.1 81.0 75.0 78.7 64.7 54.4 86.6 73.6 79.2		25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	85.0 78.1 81.0 75.0 78.7 64.7 54.4 86.6 73.6 79.2 77.8		25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	85.0 78.1 81.0 75.0 78.7 64.7 54.4 86.6 73.6 79.2 77.8 72.0		25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38 01-Nov-24 03:38	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	85.0 78.1 81.0 75.0 78.7 64.7 54.4 86.6 73.6 79.2 77.8 72.0 78.5		25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,7,8,9-HxCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	85.0 78.1 81.0 75.0 78.7 64.7 54.4 86.6 73.6 79.2 77.8 72.0 78.5 78.6 66.5		25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38	3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	85.0 78.1 81.0 75.0 78.7 64.7 54.4 86.6 73.6 79.2 77.8 72.0 78.5 78.6		25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147	Qualifiers	01-Nov-24 03:38 01-Nov-24 03:38	3 1 4 1 5 1 6 1 7 1 8 1 8 1 8 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 10 1 10 1 10 1 10 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

Work Order 2410125 Page 9 of 15

EPA Method 1613B Sample ID: BH_TR1_Pre Gab_20241021

Client Data Laboratory Data

2410125-03 23-Oct-24 09:51 Lab Sample: Date Received: WSP Name: QC Batch: B24J236 29-Oct-24 Date Extracted: Project: Blue Heron

Sample Size 1 03 I

Matrix: Water Date Collected: 21-Oct-24 1	15:00		Sample Size:	1.03 L	Column:	ZB-DIOXIN	
Analyte	Conc. (pg/L)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.644				01-Nov-24 04:24	. 1
1,2,3,7,8-PeCDD	ND		1.55			01-Nov-24 04:24	. 1
1,2,3,4,7,8-HxCDD	3.31				J	01-Nov-24 04:24	1
1,2,3,6,7,8-HxCDD	11.8				J	01-Nov-24 04:24	1
1,2,3,7,8,9-HxCDD	5.14				J	01-Nov-24 04:24	1
1,2,3,4,6,7,8-HpCDD	235					01-Nov-24 04:24	. 1
OCDD	1900					01-Nov-24 04:24	. 1
2,3,7,8-TCDF	ND		1.85			01-Nov-24 04:24	. 1
1,2,3,7,8-PeCDF	ND	1.16				01-Nov-24 04:24	
2,3,4,7,8-PeCDF	3.28				J	01-Nov-24 04:24	
1,2,3,4,7,8-HxCDF	4.59				J	01-Nov-24 04:24	
1,2,3,6,7,8-HxCDF	3.08				J	01-Nov-24 04:24	
2,3,4,6,7,8-HxCDF	2.53				J	01-Nov-24 04:24	
1,2,3,7,8,9-HxCDF	ND		0.402			01-Nov-24 04:24	
1,2,3,4,6,7,8-HpCDF	86.8					01-Nov-24 04:24	
1,2,3,4,7,8,9-HpCDF	ND		2.51			01-Nov-24 04:24	
OCDF	76.3					01-Nov-24 04:24	. 1
Toxic Equivalent							
TEQMinWHO2005Dioxin	7.84						
Totals							
Total TCDD	3.86		5.80		J		
Total PeCDD	4.62		16.9		J		
Total HxCDD	97.3		102				
Total HpCDD	505						
Total TCDF	10.3		26.0				
Total PeCDF	32.3		42.6				
Total HxCDF	102		.2.0				
Total HpCDF	194		197				
Labeled Standards	Туре	% Recover		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	81.6	<u>y</u>		Quanticis	01-Nov-24 04:24	
	IS	74.7		25 - 164		01-Nov-24 04:24	
13C-1,2,3,7,8-PeCDD				25 - 181			
13C-1,2,3,4,7,8-HxCDD	IS	78.9		32 - 141		01-Nov-24 04:24	
13C-1,2,3,6,7,8-HxCDD	IS	72.2		28 - 130		01-Nov-24 04:24	
13C-1,2,3,7,8,9-HxCDD	IS	76.2		32 - 141		01-Nov-24 04:24	
13C-1,2,3,4,6,7,8-HpCDD	IS	62.7		23 - 140		01-Nov-24 04:24	
13C-OCDD	IS	56.7		17 - 157		01-Nov-24 04:24	
13C-2,3,7,8-TCDF	IS	84.0		24 - 169		01-Nov-24 04:24	
13C-1,2,3,7,8-PeCDF	IS	72.6		24 - 185		01-Nov-24 04:24	
13C-2,3,4,7,8-PeCDF	IS	77.8		21 - 178		01-Nov-24 04:24	1 1
13C-1,2,3,4,7,8-HxCDF	IS	76.2		26 - 152		01-Nov-24 04:24	1 1
13C-1,2,3,6,7,8-HxCDF	IS	70.2		26 - 123		01-Nov-24 04:24	1 1
13C-2,3,4,6,7,8-HxCDF	IS	76.2		28 - 136		01-Nov-24 04:24	1 1
13C-1,2,3,7,8,9-HxCDF	IS	78.2		29 - 147		01-Nov-24 04:24	1 1
13C-1,2,3,4,6,7,8-HpCDF	IS	65.6		28 - 143		01-Nov-24 04:24	
13C-1,2,3,4,7,8,9-HpCDF	IS	65.9		26 - 138		01-Nov-24 04:24	
13C-OCDF	IS	59.6		17 - 157		01-Nov-24 04:24	
27CL 2.2.7.9 TCDD	CDC	111		25 105		01 N 24 04-24	

EDL - Sample specifc estimated detection limit

37Cl-2,3,7,8-TCDD

EMPC - Estimated maximum possible concentration

CRS

Work Order 2410125 Page 10 of 15

35 - 197

01-Nov-24 04:24

111

Qualifiers

Dilution

Analyzed

01-Nov-24 05:10

Sample ID: BH_TR1_Post Gab_20241021 EPA Method 1613B

Client Data Laboratory Data

Conc. (pg/L)

ND

EDL

0.705

Name:WSPLab Sample:2410125-04Date Received:23-Oct-24 09:51Project:Blue HeronQC Batch:B24J236Date Extracted:29-Oct-24

EMPC

Matrix: Water Sample Size: 1.03 L Column: ZB-DIOXIN

Date Collected: 21-Oct-24 15:20

Analyte

2,3,7,8-TCDD

1,2,3,7,8-PeCDD	NID					
1 2 2 4 7 0 H-CDD	ND	0.891		01-No	ov-24 05:10	1
1,2,3,4,7,8-HxCDD	ND	1.22		01-No	ov-24 05:10	1
1,2,3,6,7,8-HxCDD	ND	1.39		01-No	ov-24 05:10	1
1,2,3,7,8,9-HxCDD	ND	1.30		01-No	ov-24 05:10	1
1,2,3,4,6,7,8-HpCDD	5.78				ov-24 05:10	1
OCDD	24.7				ov-24 05:10	1
2,3,7,8-TCDF	ND	0.652			v-24 05:10	1
1,2,3,7,8-PeCDF	ND	0.655			v-24 05:10	1
2,3,4,7,8-PeCDF	ND	0.503			ov-24 05:10	1
1,2,3,4,7,8-HxCDF	ND	0.665			ov-24 05:10	1
1,2,3,6,7,8-HxCDF	ND	0.693			ov-24 05:10	1
2,3,4,6,7,8-HxCDF	ND	0.727			v-24 05:10	1
1,2,3,7,8,9-HxCDF	ND	0.970			v-24 05:10	1
1,2,3,4,6,7,8-HpCDF	0.922				ov-24 05:10	1
1,2,3,4,7,8,9-HpCDF	ND	1.05			v-24 05:10	1
OCDF	ND	1.32		01-No	ov-24 05:10	1
Toxic Equivalent						
TEQMinWHO2005Dioxin	0.0744					
Totals						
Total TCDD	ND	0.705				
Total PeCDD	ND	0.891				
Total HxCDD	1.86		2.89	J		
Total HpCDD	5.78		12.5	J		
Total TCDF	ND	0.652				
Total PeCDF	ND	0.655				
Total HxCDF	ND	0.970				
Total HxCDF Total HpCDF	ND 0.922	0.970	1.87	J		
		0.970 % Recovery	1.87 Limits		alyzed D	Dilution
Total HpCDF	0.922			Qualifiers An	alyzed D	Dilution 1
Total HpCDF Labeled Standards	0.922 Type	% Recovery	Limits	Qualifiers An		
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD	0.922 Type IS	% Recovery 79.1	Limits 25 - 164	Qualifiers An 01-No 01-No	ov-24 05:10	1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD	0.922 Type IS IS	% Recovery 79.1 71.6	25 - 164 25 - 181 32 - 141	Qualifiers An 01-No 01-No 01-No 01-No	ov-24 05:10 ov-24 05:10	1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	0.922 Type IS IS IS	% Recovery 79.1 71.6 72.1 68.2	25 - 164 25 - 181 32 - 141 28 - 130	Qualifiers An 01-No 01-No 01-No 01-No 01-No 01-No	ov-24 05:10 ov-24 05:10 ov-24 05:10	1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD	0.922 Type IS IS IS IS IS	% Recovery 79.1 71.6 72.1 68.2 70.6	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141	Qualifiers An 01-No 01-No 01-No 01-No 01-No 01-No	ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10	1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD	0.922 Type IS IS IS IS IS IS IS	79.1 71.6 72.1 68.2 70.6 58.0	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140	Qualifiers An 01-No 01-No 01-No 01-No 01-No 01-No 01-No 01-No	ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10	1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	0.922 Type IS IS IS IS IS IS IS IS IS	79.1 71.6 72.1 68.2 70.6 58.0 48.6	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157	Qualifiers An 01-No 01-No 01-No 01-No 01-No 01-No 01-No 01-No 01-No 01-No	ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10	1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF	0.922 Type IS IS IS IS IS IS IS IS IS IS IS	79.1 71.6 72.1 68.2 70.6 58.0 48.6 83.0	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169	Qualifiers An 01-No 01-No 01-No 01-No 01-No 01-No 01-No 01-No 01-No 01-No 01-No 01-No	ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10	1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	0.922 Type IS IS IS IS IS IS IS IS IS I	79.1 71.6 72.1 68.2 70.6 58.0 48.6 83.0 68.2	25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185	Qualifiers An 01-No 01-No	ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10 ov-24 05:10	1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	0.922 Type IS IS IS IS IS IS IS IS IS I	79.1 71.6 72.1 68.2 70.6 58.0 48.6 83.0 68.2 73.5	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178	Qualifiers An 01-No 01-No	ov-24 05:10 ov-24 05:10	1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	0.922 Type IS IS IS IS IS IS IS IS IS I	79.1 71.6 72.1 68.2 70.6 58.0 48.6 83.0 68.2 73.5	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152	Qualifiers An 01-No 01-No	ov-24 05:10 ov-24 05:10	1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF	0.922 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	79.1 71.6 72.1 68.2 70.6 58.0 48.6 83.0 68.2 73.5 69.0 66.0	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123	Qualifiers An 01-No 01-No	ov-24 05:10 ov-24 05:10	1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	0.922 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	79.1 71.6 72.1 68.2 70.6 58.0 48.6 83.0 68.2 73.5 69.0 66.0 71.5	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136	Qualifiers An 01-No 01-No	ov-24 05:10 ov-24 05:10	1 1 1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF	0.922 Type IS IS IS IS IS IS IS IS IS I	79.1 71.6 72.1 68.2 70.6 58.0 48.6 83.0 68.2 73.5 69.0 66.0 71.5	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147	Qualifiers An 01-No 01-No	ov-24 05:10 ov-24 05:10	1 1 1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	0.922 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	79.1 71.6 72.1 68.2 70.6 58.0 48.6 83.0 68.2 73.5 69.0 66.0 71.5 69.9 58.1	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143	Qualifiers An 01-No 01-No	ov-24 05:10 ov-24 05:10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	0.922 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	79.1 71.6 72.1 68.2 70.6 58.0 48.6 83.0 68.2 73.5 69.0 66.0 71.5 69.9 58.1 60.8	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143 26 - 138	Qualifiers An 01-No 01-No 01-No 01-No	ov-24 05:10 ov-24 05:10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,7,8,9-HxCDF	0.922 Type IS IS IS IS IS IS IS IS IS IS IS IS IS	79.1 71.6 72.1 68.2 70.6 58.0 48.6 83.0 68.2 73.5 69.0 66.0 71.5 69.9 58.1	Limits 25 - 164 25 - 181 32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143	Qualifiers An 01-No 01-No 01-No 01-No	ov-24 05:10 ov-24 05:10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

Work Order 2410125 Page 11 of 15

DRAFT DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

RL For 537.1, the reported RLs are the MRLs.

TEQ Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the

sample concentrations.

TEQMax TEQ calculation that uses the detection limit as the concentration for non-detects

TEQMin TEQ calculation that uses zero as the concentration for non-detects

TEQRisk TEQ calculation that uses ½ the detection limit as the concentration for non-

detects

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2410125 Page 12 of 15

Enthalpy Analytical - EDH Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	2211390
Nevada Division of Environmental Protection	CA00413
New Hampshire Environmental Accreditation Program	207721
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-021
Texas Commission on Environmental Quality	T104704189-22-13
Vermont Department of Health	VT-4042
Virginia Department of General Services	11276
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

 $Current\ certificates\ and\ lists\ of\ licensed\ parameters\ can\ be\ found\ at\ Enthalpy.com/Resources/Accreditations.$

Work Order 2410125 Page 13 of 15

CHAIN OF CUSTODY

GC/HRMS Methods

For Labor	ratory Use	Only		
Laboratory	Project ID:	241012	5 Temp:	2.5 00
Storage ID:	wa.	- 2	Storage Secured:	L Yes ∐ No
	2.2	0.5 500 616	172	

Project ID: Blut Hen	h		P.O.#: 9685,0	79	3.40	£ 4	Sam	pler: (Matth	ewt		name)		He I	120	1	TA (ch	AT eck o	ne):	Rush	dard: (sur	charg	21 days ge may apply) 7 days		
Invoice to: Name John Kuiper		Company		862	Addre		JA	ve #	150	Pi)R	City 9		20	4		State			Phone # John. ku		isp con
Relinquished by (printed name a	and signat	ture)	Date 10/2	į	Time 17	00	2			MISS	88	park	S 1	Plo	M	0							Date 10 23 24	Time	
Relinquished by (printed name a	and signat	lurs	Date		Time			Rece	eived by	y (pri	nted	name	and s	signat	ure)								Date	Time	
SHIP TO: Enthalpy Analytical 1104 Windfield Wa El Dorado Hills, CA (916) 673-1520 ATTN: By hon C	95762		Method of Shipment: Fedex Overnight Tracking No.: 7794 0662 6811	Con	Analysi	(s)	7	1	10000	/	23/2/20 Films &	//		000000	Supplied Sup	W. Pagang	2 120 20 List	1	2 16°	7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- Journal of the second of the		
Sample ID	Date	Time	Location/Sample Description	1	13	Water	18	18	13/	Full List	30	80/0	3/4	1 /11/51	8/3	2 3	2/5		2/0	1000 mg	/		Comme	nts	
BH-TRH. Pre Gob 2024(02)	10/21	1345		2		W			3	×															
1-TRH_POST Gab -70241071	10/21	1410				1			10	X	310														-
3H-TRI-Pre Gab - 20241021	18/21	1500							2	ĸ												1.1			
BH-TRI-Post Gab-2014021	12/21	1520		V		V			1	K				1				_							
					d	- 10		167						1			1	1							
													4	\perp	1			-							
									_	1				-	4		2	-	-						
		-								-	4		-	+	+-	\vdash	+	╄	H						
						-			-	+	-	+	4	+	-	-		+	-						_
											بإ			_	1	L		L		L					_
Special Instructions/Comments:											CUM		TION S TO:		Com Add	dress City hone							late:	Zip:	
Container Types: A = 1 Liter Ambé O = Other:	er, G = Am	ber Glass J	Bottle Preserva		_TZ=	Trizm	а,						s: AQ SO =		eous,		= Drin						er:	SD = Sedime	ent,
ID: LR-COC			Rev. No. 4			Rev.	Date:	6/2	24/2024														Page:	1 of 1	

CoC/Label Reconciliation Report WO# 2410125

LabNumber	CoC Sample ID	S	Sample Alias Sample Date/Time		Container	BaseMatrix	Sample Comments
2410125-01	A BH_TRH_Pre Gab_20241021	d	21-Oct-24 13:45	B'	Amber Glass NM Bottle, 1L	Aqueous	
2410125-01	B BH_TRH_Pre Gab_20241021	Ø	21-Oct-24 13:45	Image: Control of the control of the	Amber Glass NM Bottle, 1L	Aqueous	
2410125-02	A BH_TRH_Post Gab_20241021	✓	21-Oct-24 14:10	D'	Amber Glass NM Bottle, 1L	Aqueous	
2410125-02	B BH_TRH_Post Gab_20241021	B	21-Oct-24 14:10	G'	Amber Glass NM Bottle, 1L	Aqueous	
2410125-03	A BH_TR1_Pre Gab_20241021	ਰ	21-Oct-24 15:00	B	Amber Glass NM Bottle, 1L	Aqueous	
2410125-03	B BH_TR1_Pre Gab_20241021	Ø	21-Oct-24 15:00	B	Amber Glass NM Bottle, IL	Aqueous	
2410125-04	A BH_TR1_Post Gab_20241021	d	21-Oct-24 15:20	D'	Amber Glass NM Bottle, IL	Aqueous	
2410125-04	B BH_TR1_Post Gab_20241021	ď	21-Oc1-24 15:20	d	Amber Glass NM Bottle, 1L	Aqueous	

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

	Yes	No	NA	Comments
Sample Container Intact?	,			
Sample Custody Seals Intact?			1	
Adequate Sample Volume?	1			Ī
Container Type Appropriate for Analysis(es)	1			İ

Preservation Documented: Na2S2O3 Trizma NH4CH3CO2 (None Other

Verifed by/Date:

Printed: 10/23/2024 1:14:52PM 2410125 Page 1 of 1

Page 1 of 16

December 26, 2024

Enthalpy Analytical - El Dorado Hills Work Order No. 2412064

Mr. John Kuiper WSP 7376 SW Durham Road Portland, OR 97224

Dear Mr. Kuiper,

Enclosed are the results for the sample set received at Enthalpy Analytical - EDH on December 11, 2024 under your Project Name 'Blue Heron'.

Enthalpy Analytical - EDH is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at byron.clack@enthalpy.com.

Thank you for choosing Enthalpy Analytical - EDH as part of your analytical support team.

Sincerely,

Byron Clack Project Manager

Byrn Clack

Work Order 2412064

Enthalpy Analytical -EDH certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Enthalpy Analytical -EDH.

Enthalpy Analytical - EDH Work Order No. 2412064 Case Narrative

Sample Condition on Receipt:

Three water samples and three soil samples were received and stored securely in accordance with Enthalpy Analytical - EDH standard operating procedures and EPA methodology. The samples were received in good condition and within the method temperature requirements.

Analytical Notes:

EPA Method 1613B (Aqueous)

The samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-DIOXIN GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limit in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

EPA Method 1613B (Solid)

The samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 1613B using a ZB-DIOXIN GC column.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limit in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Work Order 2412064 Page 2 of 16

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Work Order 2412064 Page 3 of 16

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	4
Sample Inventory	5
Analytical Results	6
Qualifiers	12
Certifications	13
Sample Receipt	14

Work Order 2412064 Page 4 of 16

Sample Inventory Report

Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2412064-01	BH_DPSed#1_20241210	10-Dec-24 09:45	11-Dec-24 09:33	Amber Glass, 120 mL
2412064-02	BH_DPSed#2_20241210	10-Dec-24 10:00	11-Dec-24 09:33	Amber Glass, 120 mL
2412064-03	BH_DPSed#3_20241210	10-Dec-24 10:15	11-Dec-24 09:33	Amber Glass, 120 mL
				Amber Glass, 120 mL
2412064-04	BH_DPSW#1_20241210	10-Dec-24 10:30	11-Dec-24 09:33	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
2412064-05	BH_DPSW#2_20241210	10-Dec-24 10:40	11-Dec-24 09:33	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
2412064-06	BH_DPSW#3_20241210	10-Dec-24 10:45	11-Dec-24 09:33	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L

Work Order 2412064 Page 5 of 16

ANALYTICAL RESULTS

Work Order 2412064 Page 6 of 16

Sample ID: Method Blank EPA Method 1613B

Client Data Laboratory Data

Name: WSP Lab Sample: B24L138-BLK1

Project:Blue HeronQC Batch:B24L138Date Extracted:16-Dec-24Matrix:SolidSample Size:10.0 gColumn:ZB-DIOXIN

Matrix: Solid			sampre size.	10.0 g	Column.	ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.153				18-Dec-24 19:58	1
1,2,3,7,8-PeCDD	ND	0.173				18-Dec-24 19:58	
1,2,3,4,7,8-HxCDD	ND	0.264				18-Dec-24 19:58	
1,2,3,6,7,8-HxCDD	ND	0.286				18-Dec-24 19:58	
1,2,3,7,8,9-HxCDD	ND	0.284				18-Dec-24 19:58	
1,2,3,4,6,7,8-HpCDD	ND	0.350				18-Dec-24 19:58	
OCDD	ND	0.337				18-Dec-24 19:58	
2,3,7,8-TCDF	ND	0.0856				18-Dec-24 19:58	
1,2,3,7,8-PeCDF	ND	0.104				18-Dec-24 19:58	
2,3,4,7,8-PeCDF	ND	0.0785				18-Dec-24 19:58	
1,2,3,4,7,8-HxCDF	ND	0.0908				18-Dec-24 19:58	
1,2,3,6,7,8-HxCDF	ND	0.102				18-Dec-24 19:58	
2,3,4,6,7,8-HxCDF	ND	0.108				18-Dec-24 19:58	
1,2,3,7,8,9-HxCDF	ND	0.135				18-Dec-24 19:58	
1,2,3,4,6,7,8-HpCDF	ND	0.115				18-Dec-24 19:58	
1,2,3,4,7,8,9-HpCDF OCDF	ND ND	0.133 0.368				18-Dec-24 19:58 18-Dec-24 19:58	
Toxic Equivalent	ND	0.308				18-Dec-24 19:38	1
TEQMinWHO2005Dioxin	0.00						
Totals	0.00						
Total TCDD	ND	0.153					
Total PeCDD	ND	0.173					
Total HxCDD	ND	0.286					
Total HpCDD	ND	0.350					
Total TCDF	ND	0.0856					
Total PeCDF	ND	0.104					
Total HxCDF	ND	0.135					
Total HpCDF	ND	0.133					
Labeled Standards	Туре	% Recover	y	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	58.0	•	25 - 164		18-Dec-24 19:58	1
13C-1,2,3,7,8-PeCDD	IS	52.8		25 - 181		18-Dec-24 19:58	3 1
13C-1,2,3,4,7,8-HxCDD	IS	58.9		32 - 141		18-Dec-24 19:58	1
13C-1,2,3,6,7,8-HxCDD	IS	57.4		28 - 130		18-Dec-24 19:58	1
13C-1,2,3,7,8,9-HxCDD	IS	59.2		32 - 141		18-Dec-24 19:58	3 1
13C-1,2,3,4,6,7,8-HpCDD	IS	54.4		23 - 140		18-Dec-24 19:58	3 1
13C-OCDD	IS	57.2		17 - 157		18-Dec-24 19:58	
13C-2,3,7,8-TCDF	IS	56.1		24 - 169		18-Dec-24 19:58	
13C-1,2,3,7,8-PeCDF	IS	53.1		24 - 185		18-Dec-24 19:58	
13C-2,3,4,7,8-PeCDF	IS	51.4		21 - 178		18-Dec-24 19:58	
13C-1,2,3,4,7,8-HxCDF	IS	59.8		26 - 152		18-Dec-24 19:58	
13C-1,2,3,6,7,8-HxCDF	IS	55.7		26 - 123		18-Dec-24 19:58	
13C-2,3,4,6,7,8-HxCDF	IS	57.9		28 - 136		18-Dec-24 19:58	
13C-1,2,3,7,8,9-HxCDF	IS	57.7		29 - 147		18-Dec-24 19:58	
13C-1,2,3,4,6,7,8-HpCDF	IS	55.8		28 - 143		18-Dec-24 19:58	
13C-1,2,3,4,7,8,9-HpCDF	IS	58.2		26 - 138		18-Dec-24 19:58	
13C-OCDF	IS	57.0		26 - 138 17 - 157		18-Dec-24 19:58	
37Cl-2,3,7,8-TCDD	CRS					18-Dec-24 19:58	
5 /CI-2,5,/,8-1 CDD EDL - Sample specific estimated detection		61.5		35 - 197		10-1000-24 19:38	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

Work Order 2412064 Page 7 of 16

Sample ID: OPR EPA Method 1613B

Client Data

Name:

WSP

Project: Blue Heron Matrix: Solid Laboratory Data

Lab Sample: B24L138-BS1

QC Batch: B24L138 Date Extracted: 16-Dec-24 09:08

Sample Size: 10.0 g Column: ZB-DIOXIN

Analyte	Amt Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	20.8	20.0	104	67-158		18-Dec-24 16:52	1
1,2,3,7,8-PeCDD	111	100	111	70-142		18-Dec-24 16:52	1
1,2,3,4,7,8-HxCDD	104	100	104	70-164		18-Dec-24 16:52	1
1,2,3,6,7,8-HxCDD	107	100	107	76-134		18-Dec-24 16:52	1
1,2,3,7,8,9-HxCDD	108	100	108	64-162		18-Dec-24 16:52	1
1,2,3,4,6,7,8-HpCDD	107	100	107	70-140		18-Dec-24 16:52	
OCDD	238	200	119	78-144		18-Dec-24 16:52	
2,3,7,8-TCDF	21.1	20.0	105	75-158		18-Dec-24 16:52	
1,2,3,7,8-PeCDF	108	100	108	80-134		18-Dec-24 16:52	1
2,3,4,7,8-PeCDF	103	100	103	68-160		18-Dec-24 16:52	
1,2,3,4,7,8-HxCDF	105	100	105	72-134		18-Dec-24 16:52	
1,2,3,6,7,8-HxCDF	112	100	112	84-130		18-Dec-24 16:52	
2,3,4,6,7,8-HxCDF	104	100	104	70-156		18-Dec-24 16:52	
1,2,3,7,8,9-HxCDF	107	100	107	78-130		18-Dec-24 16:52	
1,2,3,4,6,7,8-HpCDF	107	100	107	82-122		18-Dec-24 16:52	1
1,2,3,4,7,8,9-HpCDF OCDF	105	100	105	78-138		18-Dec-24 16:52	
Labeled Standards	205 Type	200	103 % Recovery	63-170 Limits	Qualifiers	18-Dec-24 16:52 Analyzed	1 Dilution
13C-2,3,7,8-TCDD	IS		76.8	20-175	Quanners	18-Dec-24 16:52	
13C-1,2,3,7,8-PeCDD	IS		68.1	21 -227		18-Dec-24 16:52	
13C-1,2,3,4,7,8-HxCDD	IS		72.5	21 -193		18-Dec-24 16:52	
13C-1,2,3,6,7,8-HxCDD	IS		70.5	25 - 163		18-Dec-24 16:52	
13C-1,2,3,7,8,9-HxCDD	IS		74.4	21-193		18-Dec-24 16:52	
	IS		66.3	26-166		18-Dec-24 16:52	
13C-1,2,3,4,6,7,8-HpCDD							
13C-OCDD	IS		73.3	13 - 199		18-Dec-24 16:52	
13C-2,3,7,8-TCDF	IS		72.8	22 - 152		18-Dec-24 16:52	
13C-1,2,3,7,8-PeCDF	IS		69.9	21 -192		18-Dec-24 16:52	1
13C-2,3,4,7,8-PeCDF	IS		73.0	13 -328		18-Dec-24 16:52	1
13C-1,2,3,4,7,8-HxCDF	IS		75.6	19 -202		18-Dec-24 16:52	1
13C-1,2,3,6,7,8-HxCDF	IS		71.3	21 -159		18-Dec-24 16:52	1
13C-2,3,4,6,7,8-HxCDF	IS		72.5	22 - 176		18-Dec-24 16:52	1
13C-1,2,3,7,8,9-HxCDF	IS		73.7	17 - 205		18-Dec-24 16:52	1
13C-1,2,3,4,6,7,8-HpCDF	IS		69.1	21 -158		18-Dec-24 16:52	1
13C-1,2,3, 1 ,0,7,6-11pCD1				20 106		10 D 24 16-52	1
13C-1,2,3,4,7,8,9-HpCDF	IS		70.4	20 - 186		18-Dec-24 16:52	1
•	IS IS		70.4 74.8	20 - 186 13 - 199		18-Dec-24 16:52 18-Dec-24 16:52	

Work Order 2412064 Page 8 of 16

Sample ID: BH_DPSed#1_20241210 EPA Method 1613B

Laboratory Data Client Data

2412064-01 11-Dec-24 09:33 Lab Sample: Date Received: WSP Name: B24L138 QC Batch: Date Extracted: 16-Dec-24 Project: Blue Heron Sample Size: Column: 12.8 g Matrix: Soil **ZB-DIOXIN**

Matrix: Soil Date Collected: 10-Dec-24	09:45		% Solids:	12.8 g 78.6	Column:	ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	1.53					19-Dec-24 11:30	1
1,2,3,7,8-PeCDD	2.17				J	19-Dec-24 11:30	1
1,2,3,4,7,8-HxCDD	1.64				J	19-Dec-24 11:30	1
1,2,3,6,7,8-HxCDD	8.04					19-Dec-24 11:30	1
1,2,3,7,8,9-HxCDD	5.68					19-Dec-24 11:30	
1,2,3,4,6,7,8-HpCDD	166					19-Dec-24 11:30	
OCDD	1630					19-Dec-24 11:30	
2,3,7,8-TCDF	2.50					19-Dec-24 11:30	
1,2,3,7,8-PeCDF	1.29				J	19-Dec-24 11:30	
2,3,4,7,8-PeCDF	3.68					19-Dec-24 11:30	
1,2,3,4,7,8-HxCDF	5.32					19-Dec-24 11:30	
1,2,3,6,7,8-HxCDF	3.45					19-Dec-24 11:30	
2,3,4,6,7,8-HxCDF	1.28				J	19-Dec-24 11:30	
1,2,3,7,8,9-HxCDF	0.609				J	19-Dec-24 11:30	
1,2,3,4,6,7,8-HpCDF	33.9					19-Dec-24 11:30	
1,2,3,4,7,8,9-HpCDF	3.46					19-Dec-24 11:30	
OCDF	57.8					19-Dec-24 11:30	1
Toxic Equivalent TEQMinWHO2005Dioxin	10.2						
Totals	10.2						
Total TCDD	6.45		9.51				
Total PeCDD	13.8		16.5				
Total HxCDD	73.2		10.5				
Total HpCDD	341						
-	22.1		30.3				
Total TCDF							
Total PeCDF	43.6		44.4				
Total HxCDF	64.4		00.5				
Total HpCDF	91.5		92.5				
Labeled Standards	Туре	% Recovery	7	Limits	Qualifiers		Dilution
13C-2,3,7,8-TCDD	IS	73.9		25 - 164		19-Dec-24 11:30	
13C-1,2,3,7,8-PeCDD	IS	75.4		25 - 181		19-Dec-24 11:30	
13C-1,2,3,4,7,8-HxCDD	IS	70.9		32 - 141		19-Dec-24 11:30	1
13C-1,2,3,6,7,8-HxCDD	IS	70.1		28 - 130		19-Dec-24 11:30	1
13C-1,2,3,7,8,9-HxCDD	IS	71.3		32 - 141		19-Dec-24 11:30	1
13C-1,2,3,4,6,7,8-HpCDD	IS	77.7		23 - 140		19-Dec-24 11:30	1
13C-OCDD	IS	74.0		17 - 157		19-Dec-24 11:30	1
13C-2,3,7,8-TCDF	IS	77.4		24 - 169		19-Dec-24 11:30	1
13C-1,2,3,7,8-PeCDF	IS	69.6		24 - 185		19-Dec-24 11:30	1
13C-2,3,4,7,8-PeCDF	IS	68.2		21 - 178		19-Dec-24 11:30	1
13C-1,2,3,4,7,8-HxCDF	IS	72.9		26 - 152		19-Dec-24 11:30	1
13C-1,2,3,6,7,8-HxCDF	IS	72.4		26 - 123		19-Dec-24 11:30	1
13C-2,3,4,6,7,8-HxCDF	IS	71.6		28 - 136		19-Dec-24 11:30	
13C-1,2,3,7,8,9-HxCDF	IS	74.2		29 - 147		19-Dec-24 11:30	
13C-1,2,3,4,6,7,8-HpCDF	IS	74.2		28 - 143		19-Dec-24 11:30	
13C-1,2,3,4,7,8,9-HpCDF	IS	80.7		26 - 138		19-Dec-24 11:30	
13C-OCDF	IS	78.1		17 - 157		19-Dec-24 11:30	
37Cl-2,3,7,8-TCDD	CRS	80.7		35 - 197		19-Dec-24 11:30	
FDI - Sample specific estimated dete		00.7		orted in dry weight		17 1000-27 11.30	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight. The sample size is reported in wet weight.

Page 9 of 16 Work Order 2412064

Sample ID: BH_DPSed#2_20241210 EPA Method 1613B

Client Data Laboratory Data

Name:WSPLab Sample:2412064-02Date Received:11-Dec-24 09:33Project:Blue HeronQC Batch:B24L138Date Extracted:16-Dec-24Matrix:SoilSample Size:13.2 gColumn:7B-DIOXIN

Project: Blue Heron Matrix: Soil			QC Batch: Sample Size:	B24L138 13.2 g	Date Extracted: Column:	16-Dec-24 ZB-DIOXIN	
Date Collected: 10-Dec-24 10	0:00		% Solids:	76.5			
Analyte	Conc. (pg/g)	EDL	ЕМРС		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND		0.737			19-Dec-24 12:15	
1,2,3,7,8-PeCDD	5.55					19-Dec-24 12:15	
1,2,3,4,7,8-HxCDD	5.10					19-Dec-24 12:15	
1,2,3,6,7,8-HxCDD	20.0					19-Dec-24 12:15	
1,2,3,7,8,9-HxCDD	11.6					19-Dec-24 12:15	
1,2,3,4,6,7,8-HpCDD	414					19-Dec-24 12:15	
OCDD	4680					19-Dec-24 12:15	
2,3,7,8-TCDF	3.13				T	19-Dec-24 12:15	
1,2,3,7,8-PeCDF	1.96 3.05				J	19-Dec-24 12:15	
2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF	9.82					19-Dec-24 12:15 19-Dec-24 12:15	
1,2,3,6,7,8-HxCDF	4.53					19-Dec-24 12:15	
2,3,4,6,7,8-HxCDF	4.99					19-Dec-24 12:15	
1,2,3,7,8,9-HxCDF	1.55				J	19-Dec-24 12:15	
1,2,3,4,6,7,8-HpCDF	84.8				J	19-Dec-24 12:15	
1,2,3,4,7,8,9-HpCDF	5.83					19-Dec-24 12:15	
OCDF	327					19-Dec-24 12:15	
Toxic Equivalent	321					17-Dec-24 12.13	1
TEQMinWHO2005Dioxin	19.1						
Totals	19.1						
Total TCDD	4.60		6.07				
Total PeCDD	23.1		29.9				
Total HxCDD	136						
Total HpCDD	869		50.1				
Total TCDF	46.8		52.1				
Total PeCDF	101		102				
Total HxCDF	149						
Total HpCDF	330						
Labeled Standards	Type	% Recove	ry	Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	75.2		25 - 164		19-Dec-24 12:15	
13C-1,2,3,7,8-PeCDD	IS	73.4		25 - 181		19-Dec-24 12:15	1
13C-1,2,3,4,7,8-HxCDD	IS	72.9		32 - 141		19-Dec-24 12:15	1
13C-1,2,3,6,7,8-HxCDD	IS	70.5		28 - 130		19-Dec-24 12:15	1
13C-1,2,3,7,8,9-HxCDD	IS	70.1		32 - 141		19-Dec-24 12:15	1
13C-1,2,3,4,6,7,8-HpCDD	IS	73.5		23 - 140		19-Dec-24 12:15	1
13C-OCDD	IS	74.5		17 - 157		19-Dec-24 12:15	1
13C-2,3,7,8-TCDF	IS	72.8		24 - 169		19-Dec-24 12:15	1
13C-1,2,3,7,8-PeCDF	IS	68.4		24 - 185		19-Dec-24 12:15	
13C-2,3,4,7,8-PeCDF	IS	68.1		21 - 178		19-Dec-24 12:15	
13C-1,2,3,4,7,8-HxCDF	IS	72.3		26 - 152		19-Dec-24 12:15	
13C-1,2,3,6,7,8-HxCDF	IS	70.4		26 - 123		19-Dec-24 12:15	
13C-2,3,4,6,7,8-HxCDF	IS	69.8		28 - 136		19-Dec-24 12:15	
13C-1,2,3,7,8,9-HxCDF	IS	69.8		29 - 147		19-Dec-24 12:15	
13C-1,2,3,4,6,7,8-HpCDF	IS	71.3		28 - 143		19-Dec-24 12:15	
13C-1,2,3,4,7,8,9-HpCDF	IS	76.0		26 - 138		19-Dec-24 12:15	
13C-OCDF	IS	75.2				19-Dec-24 12:15	
	CRS			17 - 157		19-Dec-24 12:15 19-Dec-24 12:15	
37C1-2,3,7,8-TCDD EDL - Sample specific estimated detect		82.1	The results are ren	35 - 197		19-1000-24 12:13	5 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

Work Order 2412064 Page 10 of 16

Qualifiers

Analyzed

19-Dec-24 13:01

Dilution

Sample ID: BH_DPSed#3_20241210 EPA Method 1613B

Client Data Laboratory Data

Conc. (pg/g)

ND

Analyte

2,3,7,8-TCDD

2412064-03 Lab Sample: Date Received: 11-Dec-24 09:33 WSP Name: B24L138 QC Batch: Date Extracted: 16-Dec-24 Project: Blue Heron Sample Size: Column: 15.3 g Matrix: Soil **ZB-DIOXIN**

EMPC

0.439

Date Collected: 10-Dec-24 10:15 % Solids: 66.4

EDL

2,5,7,6-1CDD	ND		0.439			19-Dec-24 13.01	1
1,2,3,7,8-PeCDD	ND		0.415			19-Dec-24 13:01	1
1,2,3,4,7,8-HxCDD	1.25				J	19-Dec-24 13:01	1
1,2,3,6,7,8-HxCDD	5.09					19-Dec-24 13:01	1
1,2,3,7,8,9-HxCDD	2.78					19-Dec-24 13:01	1
1,2,3,4,6,7,8-HpCDD	95.2					19-Dec-24 13:01	1
OCDD	1090					19-Dec-24 13:01	1
2,3,7,8-TCDF	2.08					19-Dec-24 13:01	1
1,2,3,7,8-PeCDF	ND		0.694			19-Dec-24 13:01	1
2,3,4,7,8-PeCDF	1.56				J	19-Dec-24 13:01	1
1,2,3,4,7,8-HxCDF	ND		1.78		_	19-Dec-24 13:01	1
1,2,3,6,7,8-HxCDF	1.51				J	19-Dec-24 13:01	1
2,3,4,6,7,8-HxCDF	1.22	0.0=4			J	19-Dec-24 13:01	1
1,2,3,7,8,9-HxCDF	ND	0.876				19-Dec-24 13:01	1
1,2,3,4,6,7,8-HpCDF	19.0		1.62			19-Dec-24 13:01	1
1,2,3,4,7,8,9-HpCDF	ND		1.62			19-Dec-24 13:01	1
OCDF	40.2					19-Dec-24 13:01	1
Toxic Equivalent							
TEQMinWHO2005Dioxin	3.34						
Totals							
Total TCDD	ND		2.30				
Total PeCDD	3.42		7.42				
Total HxCDD	42.5						
Total HpCDD	223						
Total TCDF	9.91		13.4				
Total PeCDF	15.6		17.5				
Total HxCDF	26.3		28.5				
Total HpCDF	48.5		50.1				
Labeled Standards	Type	% Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS	44.0		25 - 164		19-Dec-24 13:01	1
13C-1,2,3,7,8-PeCDD							1
	IS	45.1		25 - 181		19-Dec-24 13:01	1
13C-1,2,3,4,7,8-HxCDD	IS IS	45.1 44.8		25 - 181 32 - 141		19-Dec-24 13:01 19-Dec-24 13:01	
				32 - 141			1
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD	IS	44.8 44.4		32 - 141 28 - 130		19-Dec-24 13:01 19-Dec-24 13:01	1 1
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD	IS IS IS	44.8 44.4 41.6		32 - 141 28 - 130 32 - 141		19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01	1 1 1
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD	IS IS IS IS	44.8 44.4 41.6 46.4		32 - 141 28 - 130 32 - 141 23 - 140		19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01	1 1 1 1
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	IS IS IS IS	44.8 44.4 41.6 46.4 47.0		32 - 141 28 - 130 32 - 141 23 - 140 17 - 157		19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01	1 1 1 1
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF	IS IS IS IS IS IS	44.8 44.4 41.6 46.4 47.0 41.8		32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169		19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01	1 1 1 1 1
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	IS IS IS IS IS IS IS	44.8 44.4 41.6 46.4 47.0 41.8 42.0		32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185		19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01	1 1 1 1 1 1 1
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	IS IS IS IS IS IS IS IS	44.8 44.4 41.6 46.4 47.0 41.8 42.0 41.1		32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178		19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01	1 1 1 1 1 1 1
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF	IS IS IS IS IS IS IS IS IS	44.8 44.4 41.6 46.4 47.0 41.8 42.0 41.1 45.3		32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152		19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01	1 1 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	IS IS IS IS IS IS IS IS IS IS IS IS	44.8 44.4 41.6 46.4 47.0 41.8 42.0 41.1 45.3 43.2		32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123		19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01	1 1 1 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	44.8 44.4 41.6 46.4 47.0 41.8 42.0 41.1 45.3 43.2 40.2		32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136		19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01 19-Dec-24 13:01	1 1 1 1 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	44.8 44.4 41.6 46.4 47.0 41.8 42.0 41.1 45.3 43.2 40.2 40.1		32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147		19-Dec-24 13:01 19-Dec-24 13:01	1 1 1 1 1 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	44.8 44.4 41.6 46.4 47.0 41.8 42.0 41.1 45.3 43.2 40.2 40.1 46.1		32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143		19-Dec-24 13:01 19-Dec-24 13:01	1 1 1 1 1 1 1 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	44.8 44.4 41.6 46.4 47.0 41.8 42.0 41.1 45.3 43.2 40.2 40.1 46.1 47.7		32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143 26 - 138		19-Dec-24 13:01 19-Dec-24 13:01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8,9-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	IS IS IS IS IS IS IS IS IS IS IS IS IS I	44.8 44.4 41.6 46.4 47.0 41.8 42.0 41.1 45.3 43.2 40.2 40.1 46.1		32 - 141 28 - 130 32 - 141 23 - 140 17 - 157 24 - 169 24 - 185 21 - 178 26 - 152 26 - 123 28 - 136 29 - 147 28 - 143		19-Dec-24 13:01 19-Dec-24 13:01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EMPC - Estimated maximum possible concentration

The results are reported in dry weight.

The sample size is reported in wet weight.

Work Order 2412064 Page 11 of 16

DRAFT DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection Limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

MDL Method Detection Limit

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

RL For 537.1, the reported RLs are the MRLs.

TEQ Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the

sample concentrations.

TEQMax TEQ calculation that uses the detection limit as the concentration for non-detects

TEQMin TEQ calculation that uses zero as the concentration for non-detects

TEQRisk TEQ calculation that uses ½ the detection limit as the concentration for non-

detects

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2412064 Page 12 of 16

Enthalpy Analytical - EDH Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	2211390
Nevada Division of Environmental Protection	CA00413
New Hampshire Environmental Accreditation Program	207721
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-021
Texas Commission on Environmental Quality	T104704189-22-13
Vermont Department of Health	VT-4042
Virginia Department of General Services	11276
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

 $Current\ certificates\ and\ lists\ of\ licensed\ parameters\ can\ be\ found\ at\ Enthalpy.com/Resources/Accreditations.$

Work Order 2412064 Page 13 of 16

CHAIN OF CUSTODY

GC/HRMS Methods

For Laboratory Use O	nly			
Laboratory Project ID:	2412064	Temp:	1.8	°C
Storage ID: Pull-3		Storage Secured:	Yes	∐ No

Project ID: Blue Heven			P.O.#: \$685,079	3 t			Sam	pler:	Joe	nné	(nar	me)	yar				heck	one):	Rus]14 0			ipply) lays (Other: _	
nvoice to: Name	1	Compan		72	Addr		-	0.	1 1	20	00	12.7		(City				Sta		,	Phone #		4.74	
John Kuiper		NSP	15862 SW 7	Graf			0							A free or to		_				104	n. Ki	Date: 33	- Lus	pion	1
Relinquished by (printed name a	ind signat	ure)	Date		Time				eived by								. 0	1.	100		- 0	Date	е	Time	
Joanne Chen	1/1		12/10		1200		Xi		YOW					ei	-		12	/"/	24	1	04				
Relinquished by (printed name	ind signat	ure)	Date		Time	91		Rec	eived by	(print	ted na	me an	d sig	nature)							Date	е	Time	
SHIP TO: Enthalpy Analytical 1104 Windfield Wa El Dorado Hills, CA (916) 673-1520	y 95762		Method of Shipment: Felly Overright		Analys		Reque	ested	//	104 167	Fundans &	/	/ 24	Post 830	Sup	/		200,000	/4	Se 1625	(Sign 2)	Omer	/		
ATTN: Byron Clas			Tracking No.: 77.06 2298 6886	1	The state of the s	/ Man	7	23/2° 25/2° 2	100/0	Jan 1. sal	00/20/20/20/20/20/20/20/20/20/20/20/20/2	10000	Full List	/		WHO.29 / 28.8	10 mg 1	18 / 1848	Sallicones	/	/	//			
Sample ID	Date	Time	Location/Sample Description	10			18	13		3/8	2/2	100	\(\varthings\)	12/	3/	Z/	8/0	1 0	-	\leftarrow	\leftarrow	Co	mment	S	
H-DPJed#1-20241210	12/10	0945	Blue HEIDM	1	Soil	Sail	-	-	×	+	+-		-	-	+	-	+	+	+	-					
H-DPSed #2-20241210			1	1	1	1			X	_	-			1,5	-	-		-	_						
H_DPSed #3_2024120	12/10	1015	V	2		V			×	_	-	\vdash			4	4	+	\perp	-		Ш				
										+	4			255				-	-						
				_						_	-			100			110	_	_		-				
	2.7	71																							
										L										_					
																		JIT.							
																11									
Special Instructions/Comments:										7 7 7 7 7 7		ID ITATIO	9.70	C	Addre	ny:								Mar.	
			-	-		_	+									ity: ne:						tate:	- 4	ip:	_
																ail:						,			
Container Types: A = 1 Liter Amber O = Other:	er, G = Ami	ber Glass .	Bottle Preserva		_ TZ:	= Trizm	na,					pes: A		34.4	ıs, DV	V = Dri						er:	aper, S	D = Sedim	ent,
D: LR-COC	_		Rev. No. 4			Rev.	Date:	6/	24/2024		-						_					Pag	e: 1	of 1	

CHAIN OF CUSTODY

GC/HRMS Methods

Laboratory	ratory Us Project ID:	2	4120	64	Tem	o: _ / F
Storage ID	we			Storage S	ecured:	L⁴Yes ∐ !
	TAT	Star	ndard:	21	days	
_	(check on			arge may a		Dilbara
City		Stat		7 da		Other:
		12.00	-			a 2 - 1 -
e)			Ser. L	Date 4	ادب	Time
100	1	12	11/2	4	09:	55
e)	01	, -		Date		Time
U)				Date		Time
				, ,		
	/	.90	//	//		
2 /		8/2			/	
" / Supple /	2	14	18/	No.	/	
12/	1/2	1/	1	77	/	
8 8	1 / 3	//	//	//		
Copensor Polate only	18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$ 80 miles	//	//		
3 7	2 3	18/	//	/ Con	nment	S
	16.					
= =	12 (15)		LU			
	1-1 (-4)					
	11.04	A.	11111			
	hi a		14 7			
Name						
ompany:		_				
				0		
City:				State:		ip:

Project ID: Blue Hewn			P.O.#: 9685,079	3 ta	44	00	Samp	ler:	unne	Cla	en Bo	yer	Jou.	sca		(check	one			1 1 1 1	charg	e may	apply)		
Invoice to: Name		Company	,	_	Addre	988	_			_	(nam	ie)	-		City	_			J	State	14 d	_	Phone	-7-3	Other:	
John Kniper	1	ISP	158629	WZ			50	Dor	must	108	0 00	77	11		Oity						0.00				Sp. can	
Relinquished by (printed name a			Date	10	Time				ed by (natur	e)						1	Lung	Da		Time	
11/	1000	re li	en 12/10		1200	2	Xi	Hal	ilO v	VO:	s	X	1	1	0	e	0	(12	111	24		09	:53	
Relinquished by (printed name a			Date		Time				ed by (ne ar	nd sigi	natur	e)								Da	ite	Time	li .
SHIP TO: Enthalpy Analytical 1104 Windfield Wa El Dorado Hills, CA (916) 673-1520	y		Method of Shipment:		Analys		Reques	sted	/	0,047673	P Suena	/	/ XX	010 839.	Sues	/		\$ P		/å	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	J somo	/	/	
ATTN: Byron Clack	Date	Time	Tracking No.: 770622586886	1	Time Say	Many	7	00 / 20 / 20 / 20 / 20 / 20 / 20 / 20 /		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/	200000 JOOO	Full List	/	1 5	WHO.28 / 28.	187 80 P	the Genera	1	/	1	//	//	7		
Sample ID	12/10	1030		2	100	W	\ \\ \\	W/	0 1	1 2	13	100	12	7	0/	7	*/	°/	Q	_		$\overline{}$	C	ommer	าเร	
BH-DPSN#7-20241210 BH-DPSN#2-20241210	1		Blackers	2	W	W		+	×	H							+	=				\vdash				
3H_DPSV#3-20241210	1	1045		2	W	W			×								+	Ť								
SH-UIDAH 2-100 FICIO		10.2		-													1	1								
																	\top									
		2																								
									3											П						
											15			101								2				
Special Instructions/Comments:							_			ocu	SENI MENT	TATIO			ompa	me:_ any:_ ess:_										
									A	ND N	COUL	.101	J.			City:						Sta	ate:		Zip:	
				_	-											ne:_			_				_			
Container Types: A = 1 Liter Amb	er, G = Am	ber Glass J	ar Bottle Preserva ☐ = Other		_] TZ =	Trìzm	a,								us, D							nt, PP		Paper,	SD = Sedi	ment,
ID: LR-COC			Rev. No. 4			Rev. I	Date:	6/24	/2024														Pa	ge:	1 of 1	
Work Order 2412	064																							Page	15 of 16	

CoC/Label Reconciliation Report WO# 2412064

LabNumber	CoC Sample ID		SampleAlias	Sample Date/Time	Container	BaseMatrix	Sample Comments
2412064-01	A BH-DPSed#1_20241210	d	Blue Heron	10-Dec-24 09:45	Amber Glass, 120 mL	Solid	
2412064-02	A BH-DPSed#2_20241210	Ø	Blue Heron	10-Dec-24 10:00	Amber Glass, 120 mL	Solid	
2412064-03	A BH-DPSed#3_20241210	III	Blue Heron	10-Dec-24 10:15	Amber Glass, 120 mL	Solid	
2412064-03	B BH-DPScd#3_20241210		Blue Heron	10-Dec-24 10:15	Amber Glass, 120 mL	Solid	
2412064-04	A BH_DPSW#1_20241210	B ′	Blue Heron	10-Dec-24 10:30	Amber Glass NM Bottle, 1L	Aqueous	
2412064-04	B BH_DPSW#1_20241210	◪	Blue Heron	10-Dec-24 10:30	Amber Glass NM Bottle, IL	Aqueous	
2412064-05	A BH_DPSW#2_20241210		Blue Heron	10-Dec-24 10:40	Amber Glass NM Bottle, 1L	Aqueous	
2412064-05	B BH_DPSW#2_20241210	o o	Blue Heron	10-Dec-24 10:40	Amber Glass NM Bottle, 1L	Aqueous	
2412064-06	A BH_DPSW#3_20241210		Blue Heron	10-Dec-24 10:45	Amber Glass NM Bottle, 1L	Aqueous	
2412064-06	B BH_DPSW#3_20241210		Blue Heron	10-Dec-24 10:45	Amber Glass NM Bottle, 1L	Aqueous	

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

	Yes	No	NA	Comments: a underlined part updated to "under acone"
Sample Container Intact?	1)
Sample Custody Seals Intact?			1	
Adequate Sample Volume?	1			
Container Type Appropriate for Analysis(es)	1			

Verifed by/Date: 14 12/11/24

Printed: 12/11/2024 3:06:10PM