FEIGE & ASSOCIATES, INC.

27001 NW Saint Helens Road Scappoose, Oregon 97056 Tel: (503) 543-9700

Fax: (503) 543-8757

September 10, 2024

Ms. Rebecca Digiustino
Project Manager
Oregon Department of Environmental Quality
Northwest Region Cleanup Program
700 NE Multnomah Street, Suite 600
Portland, OR 97232

RE: Site Summary Report and Closure Request Cardlock and Bulk Fuel Facility 6750 SW 110th Court Beaverton, Oregon

Dear Ms. Digiustino:

At the request of Bretthauer Oil Co. (Bretthauer), Feige & Associates, Inc. (FAI) has prepared this Site Summary and Closure Request letter report for the Cardlock and Bulk Fuel Facility, located at 6750 SW 110th Court in Beaverton, Oregon (site). A site location map is presented in the attached Figure 1.

The purpose of this letter is to provide notification to DEQ regarding previously unreported residual diesel fuel which was discovered in shallow soil during facility upgrade activities. In addition, methyl tert-butyl ether (MTBE) which has been observed in on site groundwater monitoring wells and soil borings during both historic and recent site investigation activities. Therefore, we are requesting consultation and review of this matter with DEQ.

This letter includes a site description and site background, a summary of historic investigation and remedial activities at the site, a summary and analysis of soil sampling results and remedial activities undertaken during the 2023 fuel dispenser and associated piping upgrades at the site, an analysis of results from recent site assessment activities conducted by GeoEngineers in 2023, and an analysis of the soil and groundwater data as it relates to historic documented fuel releases at the site.

In addition, the goal of this letter is also to provide the basis for closure of the site and a request to obtain a no further action (NFA) determination. This is based on the extent of contamination and a screening of soil and groundwater sample results which demonstrates no exceedances of applicable DEQ Risk Based Concentrations.

Site Description

The site is located at 6750 SW 110th Court in Beaverton, Oregon (Figure 1). The site is located on the east corner of the of the cul-de-sac in an area of commercial and industrial properties. The topography at the site is flat and lies at an elevation of approximately 187 feet above mean sea level (msl). The regional topography in the vicinity of the site slopes gently to the east. Fanno Creek is located adjacent to the east property boundary of the site.

The site is currently operated as a card lock petroleum fueling station and bulk fuel facility and has retained the same general configuration and function since 1989. The card lock fuel

Site Summary and Closure Request Cardlock and Bulk Fuel Facility – Beaverton, OR September 10, 2024 Page 2 of 9

dispensers and islands are located under a canopy within the west-central portion of the site. The bulk fuel loading rack area is located within the east-central portion of the site. The site contains five (5) fuel underground storage tanks (UST). The USTs include three (3) 12,000-gallon gasoline USTs, one (1) 15,000-gallon diesel UST, and one (1) 4,000-gallon spill tank. The USTs nest is located within the central portion of the site. The west and central portion of the site, which contain the card lock and bulk fuel facility are primarily asphalt paved driveways with a landscaped perimeter. The east portion of the site is undeveloped land located adjacent to Fanno Creek. The developed and undeveloped portions of the site are separated by an 8-foot chain link fence with barbed wire.

Site location and topographic features are presented on Figure 1. A map showing site features is presented as Figure 2.

Historic Environmental Investigations and Remedial Activities

A review of site related documents indicates that previous environmental investigations and remedial activities were conducted at the site from 1989 through 2017.

Site Investigation, Remedial Activities, and DEQ No Further Action (1989-1990)

The site was initially developed in 1975 as a fueling facility and contained four 10,000-gallon fuel USTs and a 2,000-gallon oil/water separator. The location of the original USTs nest was in the same general location as the current. In 1989 the USTs were removed, and the site was redeveloped to its current configuration.

During the 1989 UST removal activities, 1,400 cubic yards of impacted soil were excavated and removed from the site. Soil samples collected from the excavation did not contain petroleum hydrocarbons or benzene, toluene, ethylbenzene, and xylenes (BTEX) at concentrations exceeding DEQ applicable cleanup levels. A groundwater sample collected from the excavation contained benzene exceeding the applicable DEQ cleanup level.

Three groundwater monitoring wells (W-1 through W-3) were installed at the site in 1990. Soil samples collected during well installation did not identify detectable concentrations of petroleum hydrocarbons. Groundwater sampling of the wells did not identify detectable concentrations of petroleum hydrocarbons or BTEX.

Based on these results of the investigation and remedial activities, DEQ issued a no further action (NFA) determination for the site in November 1990. Further details regarding the environmental investigation and remediation activities may be referenced in DEQ LUST File #34-89-0175.

A summary of historic soil and groundwater analytical results from this investigation are presented on the attached Table 1 and 2. Historic soil and groundwater analytical results and sample locations are presented on the attached Figures 3 and 4.

Due Diligence Site Investigation (1997)

As part of a property transaction, a subsurface investigation was conducted at the site in 1997. The investigation included installation of four soil borings (SB1 through SB4) and collection of groundwater samples from the three groundwater monitoring wells (W-1 through W-3).

Site Summary and Closure Request Cardlock and Bulk Fuel Facility – Beaverton, OR September 10, 2024 Page 3 of 9

The results of the soil investigation indicated that shallow soil in boring SB4, located south of the bulk fuel loading rack, was impacted with gasoline-range hydrocarbons at concentrations below applicable DEQ risk-based concentrations (RBCs). Analysis of groundwater samples collected from the wells detected methyl tert-butyl ether (MTBE) at a concentration of 94.6 micrograms per liter (μ g/L) in W-2 and 65.3 μ g/L in W-3 which exceed current RBCs for MTBE in groundwater. Petroleum hydrocarbons (gasoline and diesel) or BTEX were not detected above the laboratory method reporting limit (mrl) in any of the groundwater samples collected from the wells.

A report prepared by Noll Environmental (Noll) entitled *Results of Due Diligence Assessment Activities*, dated May 22, 1998, details these activities. The report was submitted to DEQ and indicated as be received by Northwest Region on May 27, 1998. It does not appear that DEQ provided a response to the report. However, since the report was filed under LUST #34-89-0175, we assume the presence of MTBE in groundwater was not of concern and was attributed to the previous release and NFA for the site.

A summary of historic soil and groundwater analytical results from this investigation are presented on the attached Table 1 and 2. Historic soil and groundwater analytical results and sample locations are presented on the attached Figures 3, 4, and 5.

Groundwater Monitoring Well Sampling (2017)

In conjunction with a Phase I Environmental Site Assessment being prepared for the site, Evergreen Environmental Management (EEM) sampled the three groundwater monitoring wells (W-1 through W-3) on June 30, 2017.

Results of the sampling did not detect gasoline, diesel, or BTEX above the laboratory mrl. We should note that MTBE was not analyzed during this sampling event.

A summary of historic groundwater analytical results from this investigation are presented on the attached Table 2. Historic groundwater analytical results and sample locations are presented on the attached Figure 4.

Facility Upgrade Activities – May 2023

In May 2023, 4C's Environmental, Inc. (4C's) performed facility upgrade work activities which included the installation of new fuel dispensers and associated piping. As part of these activities compliance soil sampling was conducted and a remedial soil excavation was performed. The associated environmental activities and results are discussed in detail below.

Soil Sampling Activities

During the site upgrade activities, soil samples were collected from beneath each of the former fuel dispensers. Results from laboratory analysis of soil samples are summarized in the attached Table 1. Soil sample locations are presented in the attached Figure 3. Copies of the chain-of-custody and the associated laboratory analytical report A3E1088 are enclosed in Appendix B.

On May 5, 2023 4C's collected 5 soil samples (B1 - B5) from directly under each of the former fuel dispenser locations. The soil samples were each collected at a depth of 3 feet below ground surface (bgs).

Site Summary and Closure Request Cardlock and Bulk Fuel Facility – Beaverton, OR September 10, 2024 Page 4 of 9

The soil samples were submitted to Apex Labs in Tigard, OR (Apex) for initial analysis for Petroleum Hydrocarbon Identification by Northwest Method NWTPH-HCID. Based on the results of NWTPH-HCID analysis, sample B5 was further quantified for analysis of diesel and oil range hydrocarbons by Northwest Method NWTPH-Dx. No other soil samples indicated the presence of petroleum hydrocarbons.

Lab analysis of soil sample B5 indicated that diesel range hydrocarbons were detected in the sample at 4,690 milligrams per kilogram (mg/kg). Oil range hydrocarbons were not detected above the mrl in sample B5.

A release was not reported to DEQ. However, based on the site conditions and the very limited amount of contaminated soil that was encountered, at the time it was believed this was residual contamination and related to the previous release (LUST #34-89-0175).

Remedial Excavation

Based on the results of the sample analysis, a remedial excavation was conducted directly under the former dispenser at the location of sample B5 and (See Figure 2). Approximately 3.4 tons of petroleum contaminated soil was excavated and transported for disposal.

FAI was not on site to observe the remedial excavations. We understand the excavation was located directly under the former dispenser at sample location B5 and excavation depths were based on the sample analysis discussed above. We also understand that confirmation samples were not collected from the base and/or sidewalls of the excavation. However, based on the amount of material that was disposed, a significant amount of petroleum contaminated soil was removed from this area.

GeoEngineers Phase II ESA – June 2023

In June 2023, GeoEngineers conducted a soil and groundwater assessment at the site. The investigation included the installation of 5 Geoprobe soil borings (B-2 through B-6) and 1 hand auger soil boring (HA) in and around the pump island, USTs nest, and bulk fuel loading rack areas. The soil borings were completed to depths of between 5 feet and 25 feet bgs and soil and groundwater samples were collected. In addition, a groundwater sample was collected for analysis from the exiting monitoring well W-2. A summary of petroleum hydrocarbon and VOC laboratory results for soil and groundwater from this investigation is presented on the attached Table 1 and 2. The boring locations with soil and groundwater analytical results are presented on the attached Figures 3, 4, and 5. For reference, a copy of GeoEngineers *Phase II Environmental Site Assessment* report, dated August 31, 2023, is attached in Appendix A.

According to GeoEngineers, subsurface materials included either concrete or soil top cover and then base rock fill to up to 3 feet bgs. The soil top cover or fill materials were underlain by alternating layers of native silt and clay to the depths explored. Groundwater was encountered in Geoprobe borings B-2 through B-6 at depths between 5.24 feet and 6.10 feet bgs.

GeoEngineers submitted select soil samples from the borings for laboratory analysis of petroleum hydrocarbons (gasoline, diesel, oil), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and RCRA 8 metals. Results indicated only elevated concentrations of diesel detected at 564 mg/kg at 1.5-2.5 feet bgs in the

Site Summary and Closure Request Cardlock and Bulk Fuel Facility – Beaverton, OR September 10, 2024 Page 5 of 9

hand auger boring (HA). In addition, elevated levels of arsenic (AS) and chromium (Cr) were detected in a number of borings.

Groundwater samples from borings B-3, B-4, and B-6 and from monitoring well W-2 were submitted for analysis of petroleum hydrocarbons, VOCs, PAHs, PCBs, and RCRA 8 metals. Results indicated only elevated concentrations of MTBE detected in B-4 at 19.0 μ g/L, B-6 at 9.27 μ g/L, and W-2 at 5.58 μ g/L. Only MTBE concentrations in the sample from boring B-4 exceeded DEQ RBCs for groundwater ingestion. No other petroleum hydrocarbons, VOCs, PAHs, or PCBs were detected above the laboratory mrl.

Elevated levels of metals that exceeded the DEQ RBCs for groundwater ingestion included As in B-3, B-4, B-6, and W-2; Cr in B-3, B-4, and B-6; and lead (Pb) in B-3 and B-4.

GeoEngineers assessment concluded the following:

- Concentrations of diesel identified in soil at shallow depth in the hand auger boring were below RBCs and does not pose a significant risk to human health.
- Elevated concentrations of metals in soil samples were indicative of background levels.
- Detected concentrations of metals in groundwater samples were likely elevated due to the entrainment of sediment in the samples.
- Since the site is not expected to have residential use in the future, therefore, MTBE in groundwater is not expected to pose a risk to human health or the environment.

Analysis of Current Soil and Groundwater Conditions

Based on the results of the historic and more recent investigation activities in 2023, FAIs analysis of the current soil and groundwater conditions at the site includes the following:

Soil Impacts

- Soil impacts at the site that have exceeded DEQ RBCs is confined to shallow diesel in soil that was identified under a fuel dispenser during facility upgrades in May 2023.
 - o It appears that a significant amount of shallow diesel impacted soil was removed from under the former dispenser during remedial excavations activities associated with facility upgrades in 2023.
 - O Confirmation soil samples were not collected from the remedial excavation in 2023. However, the non-detect results from confirmation sample B4, collected by 4C's in May 2023, and the non-detect results from sample B-2, collected by GeoEngineers in June 2023, confirms that any remaining impacted soil would be confined to the area directly under the dispenser island and a majority of those soils have been removed. Furthermore, any remaining soil impacts are likely not significant, confined to the far north portion of the existing fueling area, and inaccessible based on the current site operations.

Groundwater Impacts

• Groundwater samples collected from monitoring wells and soil borings at the site indicate elevated concentrations of MTBE.

Site Summary and Closure Request Cardlock and Bulk Fuel Facility – Beaverton, OR September 10, 2024 Page 6 of 9

- Groundwater samples collected by GeoEngineers in 2023 indicated elevated concentrations of As, Cr, and Pb. However, FAI concurs that entrained sediment in the samples is the likely cause. In addition, As and Cr would not be associated with either past or present site operations as a fueling facility. Furthermore, there is no evidence that leaded gasoline was ever stored or handled at the facility.
- Petroleum hydrocarbons (gas and diesel) or VOC constituents, including BTEX, have not been detected in samples collected monitoring wells or soil borings at the site.
- Groundwater flow direction has been measured generally to the east and toward Fanno Creek, which lies adjacent to the east property boundary of the site.
- The MTBE plume has not been delineated in the downgradient direction; however, based on the presence of the adjacent wetland and Fanno Creek, further investigation is not possible. The following can therefore be assumed:
 - o The MTBE plume appears to be naturally attenuating. Concentrations of MTBE in monitoring well W-2 decreased more than 94% from 1997 (94.6 μ g/L) to 2023 (5.58 μ g/L).
 - Based on the absence of MTBE in upgradient borings and monitoring well W-1, this indicates that the release was from an on-site source and is not associated with an upgradient and off-site source.
 - o MTBE is highly soluble and moves quickly through groundwater. However, it is uncommon for MTBE to be detected without the presence of reportable quantities of other VOCs so near to a source area. Therefore, we are assuming that the tight clay/silt subsurface soils are impeding groundwater flow and preventing any significant migration of the plume. This may be evidenced by the non-existence of less soluble BTEX constituents, which appear to have been confined to the area of the historic UST remedial excavation. MTBE in groundwater at the site has been detected in wells and borings that are only located directly outside and adjacent to the former remedial excavation footprint and current USTs nest.
 - The furthest downgradient extent of the shallow groundwater plume would be Fanno Creek, which lies approximately 100 feet east of monitoring wells W-2 and W-3.

Risk Screening

A Risk Assessment is beyond the scope of this letter. However, for the purpose of evaluation, we believe the following applies:

- Residential exposure is incomplete since no residential use occurs at the site.
- Occupational exposure is complete. However, we should note that the facility employs no regular on-site personnel and contains no occupied structures.
- Based on the current and likely future use of the site as a card lock and bulk fuel facility, vapor intrusion risk is not complete since there are no occupied structures on or in the vicinity of the site.

Site Summary and Closure Request Cardlock and Bulk Fuel Facility – Beaverton, OR September 10, 2024 Page 7 of 9

- Groundwater use does not occur at the site. Water at the site and in the vicinity of the site is supplied by the City of Beaverton, OR. In addition, future groundwater use is unlikely due to the availability of municipal supplies.
- Due to the proximity of Fanno Creek, surface water quality via groundwater discharge would potentially be applicable to the site.

Based on these assumptions, we anticipate that the applicable DEQ RBCs would include soil ingestion, dermal contact, and inhalation for occupational, construction, and excavation worker receptor scenarios; soil and groundwater volatilization to outdoor air in an occupational scenario; and groundwater exposure within an excavation scenario.

A screening of soil and groundwater sample results from the site indicates no exceedances of the applicable DEQ RBCs. Sample results compared to the applicable DEQ RBCs are presented on the attached Table 1 and Table 2.

Regarding the surface water pathway for groundwater contaminant discharge, the potential for this to be complete is greatly mitigated by the clay/silt soils at the site which prevent substantial migration of the MTBE plume. In addition, the United States Environmental Protection Agency (EPA) does not provide ambient water quality criteria for MTBE due to the extremely high concentrations that would be required to be harmful for aquatic life. Therefore, we do not believe the surface water pathway would be applicable at the site.

Summary and Conclusions

The site was initially developed in 1975 as a fueling facility. In 1989, the original USTs were removed, and the site was redeveloped to its current configuration. During these activities petroleum impacts to soil and groundwater were encountered. Further investigation and remediation activities were conducted at the site and a NFA was issued by DEQ in 1990.

During facility upgrade work in 2023, diesel impacts to shallow soil within the fueling area were encountered and remediated. These activities were not previously reported to DEQ. Remediation included 3.4 tons of petroleum contaminated soil excavated from under a former fuel dispenser location. Confirmation samples were not collected, however any remaining residual petroleum impacts to soil appear to be limited in extent and delineated to the area near the north portion of the fueling island.

In 1997 and 2023, additional groundwater investigation at the site identified elevated concentrations of MTBE in both groundwater monitoring wells and soil borings. The MTBE plume has not been delineated due to the presence of natural barriers. However, since 1997 concentrations of MTBE have decreased markedly, and subsurface conditions are likely to prevent any significant migration of the plume.

A screening of soil and groundwater sample results from the site indicates no exceedances of the applicable DEQ RBCs.

Recommendations

Based on the work performed by GeoEngineers and 4C's, FAI does not recommend any additional investigation or remediation related to the release and presence of petroleum hydrocarbons in soil and groundwater that have been identified at the site. In addition, to fulfill

Site Summary and Closure Request Cardlock and Bulk Fuel Facility – Beaverton, OR September 10, 2024 Page 8 of 9

the conditions of a property transaction, FAI requests that DEQ issue a letter of NFA designation for the site.

FAIs recommendation and request is based on the following:

- A screening of historic soil and groundwater sample results from the site indicates no exceedances of the applicable DEQ RBCs.
- A majority of the diesel impacted soil that was encountered in the area of the fueling island during facility upgrades in 2023 was remediated. Any residual impacts to soil appear to be limited in extent and are delineated to the area near the north portion of the fueling island.
- The MTBE groundwater plume is limited in extent, generally delineated, and appears to be confined to within the site boundaries. In addition, groundwater data indicates that the release occurred more than 27 years ago, is not on-going, and concentrations are attenuating.

Site Summary and Closure Request Cardlock and Bulk Fuel Facility - Beaverton, OR September 10, 2024 Page 9 of 9

If you have any questions, please call our office at (503) 543-9700.

Prepared by:

John A. Wyatt, RG

Associate

Date: 9/10/24

OHN A. WYATT Expires: 11/30/2021

Hans P. Feige, RG Senior Geologist

Date: 9-10-29

Enclosures:

Table 1 – Summary of Select Soil Sample Analytical Results

Table 2 - Summary of Select Groundwater Analytical Results

Figure 1 - Site Location Map

Figure 2 – Site Features Map

Figure 3 - Historic Investigation Soil Sample Results 1990-2023

Figure 4 – Historic Groundwater TPH/BTEX Results 1990-2023

Figure 5 - Historic Groundwater MTBE Results 1997 and 2023

Appendix A - Phase II Environmental Site Assessment - GeoEngineers August 31, 2023

Appendix B - Chain-of-Custody and Analytical Results - Laboratory Report A3E1088

Alex Bretthauer - Fuel Cloud cc: Kevin Bretthauer - Fuel Cloud

Chris W. Breemer - GeoEngineers, Inc.

Table 1 Summary of Select Soil Analytical Results

			Total	Gasoline-Range	Diesel-Range	Oil-Range		Select V	OCs - EPA 8260	C (mg/kg)	
Sample ID	Sample Date	Sample Depth (ft)	Petroleum Hydrocarbons (mg/kg)	Hydrocarbons NWTPH-Gx (mg/kg)	Hydrocarbons NWTPH-Dx (mg/kg)	Hydrocarbons NWTPH-Dx (mg/kg)	Benzene	Toluene	Ethylbenzene	Xvlenes	MTBE
Samples Collected			(1118/118)	(1116/116)	(mg/mg)	(1118/118)				J	
B-2	6/15/2023	6-7	-	< 8.41	<27.9	<55.8	< 0.0168	< 0.0841	< 0.0421	< 0.0841	< 0.0841
B-3	6/15/2023	8-9	-	<6.83	<23.7	<47.4	< 0.0137	< 0.0683	< 0.0342	< 0.0683	< 0.0683
B-4	6/15/2023	19-20	-	<20.3	<44.1	<88.2	< 0.0405	< 0.203	< 0.101	< 0.203	< 0.203
B-5	6/15/2023	5-6	-	< 8.03	<27.3	<54.6	< 0.016	< 0.0803	< 0.0402	< 0.0803	< 0.0803
B-6	6/15/2023	5-6	-	<6.67	<24.8	<49.5	< 0.0133	< 0.0667	< 0.0333	< 0.0667	< 0.0667
HA	6/15/2023	1.5-2.5	-	<6.55	564	<42.6	< 0.0131	< 0.0655	< 0.0328	< 0.0655	< 0.0655
Samples Collected	d by 4C's*										
B1	5/5/2023	3	-	ND	ND	ND	-	-	-	-	-
B2	5/5/2023	3	-	ND	ND	ND	-	-	-	-	-
B3	5/5/2023	3	-	ND	ND	ND	-	-	-	-	-
B4	5/5/2023	3	-	ND	ND	ND	-	-	-	-	-
B5 ^a	5/5/2023	3	-	ND	4,690	ND	-	-	-	-	-
Samples Collected	d by Noll										
SB1	10/3/1997	5	-	ND	ND	ND	ND	ND	ND	ND	-
SB2	10/3/1997	5	-	ND	ND	ND	ND	ND	ND	ND	-
SB3	10/3/1997	5	-	ND	ND	ND	ND	ND	ND	ND	-
SB4	10/3/1997	5	-	12.7	ND	ND	ND	ND	ND	ND	-
Samples Collected	d by Brown	And Caldwell									
W-1-1	2/23/1990	5	<5	=	-	-	1	1	-	-	-
W-1-1	2/23/1990	10	<5	-	-	-	1	-	-	-	-
W-2-1	2/23/1990	5	<5	-	-	-	1	1	-	-	-
W-2-4	2/23/1990	20	8	-	-	-	-	-	-	-	-
W-3-1	2/23/1990	5	<5	-	-	-	-	-	-	-	-
W-3-4	2/23/1990	20	<5	-	-	-	-	-	-	-	-
		RBCss(Occ)	-	20,000	14,000	36,000	50	88,000	250	25,000	1,100
		RBCss (Con)	-	9,700	4,600	11,000	380	28,000	1,700	20,000	12,000
		RBCss (Exc)	-	NE	NE	NE	11,000	770,000	49,000	560,000	320,000
		RBCso (Occ)	-	69,000	NE	NE	37	NE	NE	NE	1,500

Notes:

mg/kg = milligrams per kilogram

Bold = Compound was detected above laboratory reporting limits.

RBCss (Occ) = Oregon Department of Environmental Quality (DEQ) Risk-Based Concentration (RBC) for Ingestion, dermal contact, and inhalation with an occupational receptor (Table dated June 2023).

RBCss (Con) = DEQ RBC for ingestion, dermal contact, and inhalation with a construction worker receptor (Table dated June 2023).

RBCss (Exc) = DEQ RBC for ingestion, dermal contact, and inhalation with an excavation worker receptor (Table dated June 2023).

RBCso (Occ) = DEQ RBC for volatilization to outdoor air with an occupational receptor (Table dated June 2023).

NE - RBC is not established for this compound

^{- =} not applicable or not analyzed

a - Soil sample was collected prior to cleanup excavations. Based on the anticipated depth of the excavations, we are assuming that all soil exceeding applicable RBC's was removed.

< - compound was not detected at or above the laboratory method reporting limit

Table 2 Summary of Select Groundwater Analytical Results

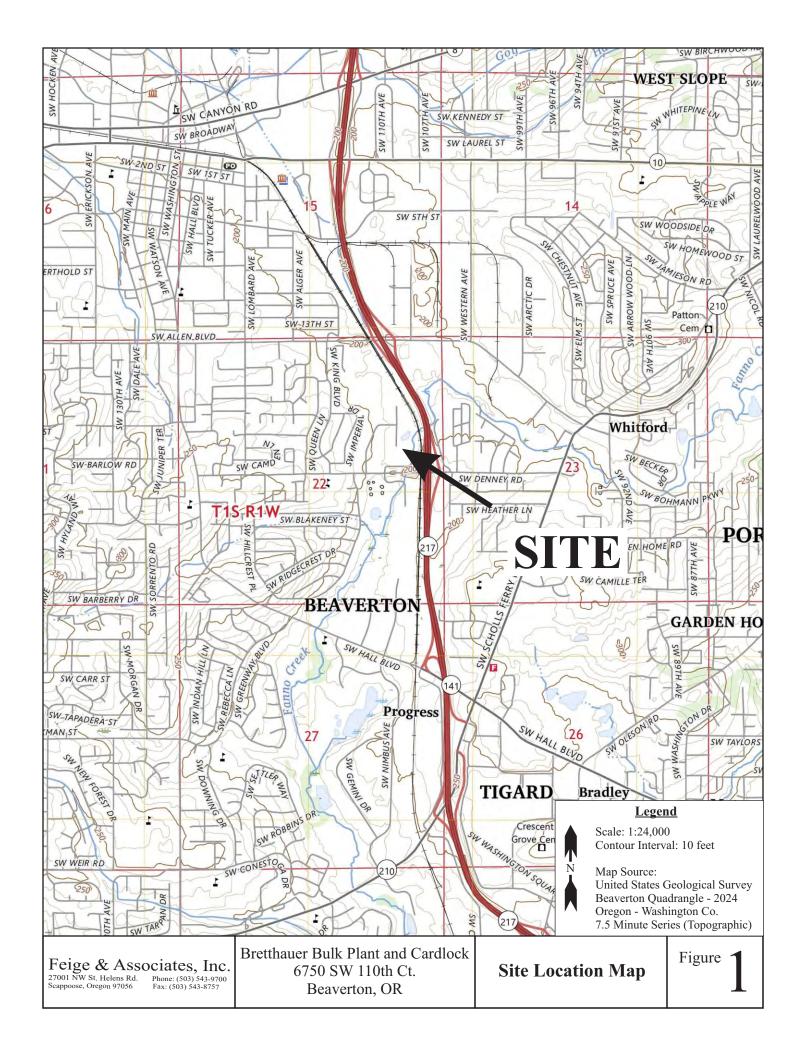
		T (I D ()	Gasoline-Range	Diesel-Range	Oil-Range	Select VOCs - EPA 8260C (ug/L)						
	Sample	Total Petroleum Hydrocarbons	Hydrocarbons NWTPH-Gx	Hydrocarbons NWTPH-Dx	Hydrocarbons NWTPH-Dx							
Sample ID	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE		
Samples Collected by GeoEngineers												
B-3	6/15/2023	-	<100	<83.3	<167	< 0.200	<1.00	< 0.500	<1.00	<1.00		
B-4	6/15/2023	-	<100	<81.6	<163	< 0.200	<1.00	< 0.500	<1.00	19.0		
B-6	6/15/2023	-	<100	< 80.8	<162	< 0.200	<1.00	< 0.500	<1.00	9.27		
W-2	6/15/2023	-	<100	<76.2	<152	< 0.200	<1.00	< 0.500	<1.00	5.58		
Samples Colle	ected by EEN	М										
MW-1	6/30/2017	-	<100	<189	<377	< 0.200	<1.00	< 0.500	<1.50	-		
MW-2	6/30/2017	-	<100	<187	<374	< 0.200	<1.00	< 0.500	<1.50	-		
MW-3	6/30/2017	-	<100	<185	<370	< 0.200	<1.00	< 0.500	<1.50	-		
Samples Colle	ected by Noll					•						
W-1	10/3/1997	-	ND	ND	ND	ND	ND	ND	ND	ND		
W-2	10/3/1997	-	ND	ND	ND	ND	ND	ND	ND	94.6		
W-3	10/3/1997	-	ND	ND	ND	ND	ND	ND	ND	65.3		
Samples Colle	ected by Bro	wn and Caldwell				•						
W-1	7/13/2023	< 500	-	-	-	<1.00	<1.00	<1.00	<1.00	-		
W-2	7/14/2023	< 500	-	-	-	<1.00	<1.00	<1.00	<1.00	-		
W-3	7/14/2023	< 500	-	-	-	<1.00	<1.00	<1.00	<1.00	-		
	RBCwe	-	14,000	NE	NE	1,800	220,000	4,500	23,000	63,000		
	RBCwo	-	NE	NE	NE	14,000	NE	43,000	NE	1,500,000		

Notes:

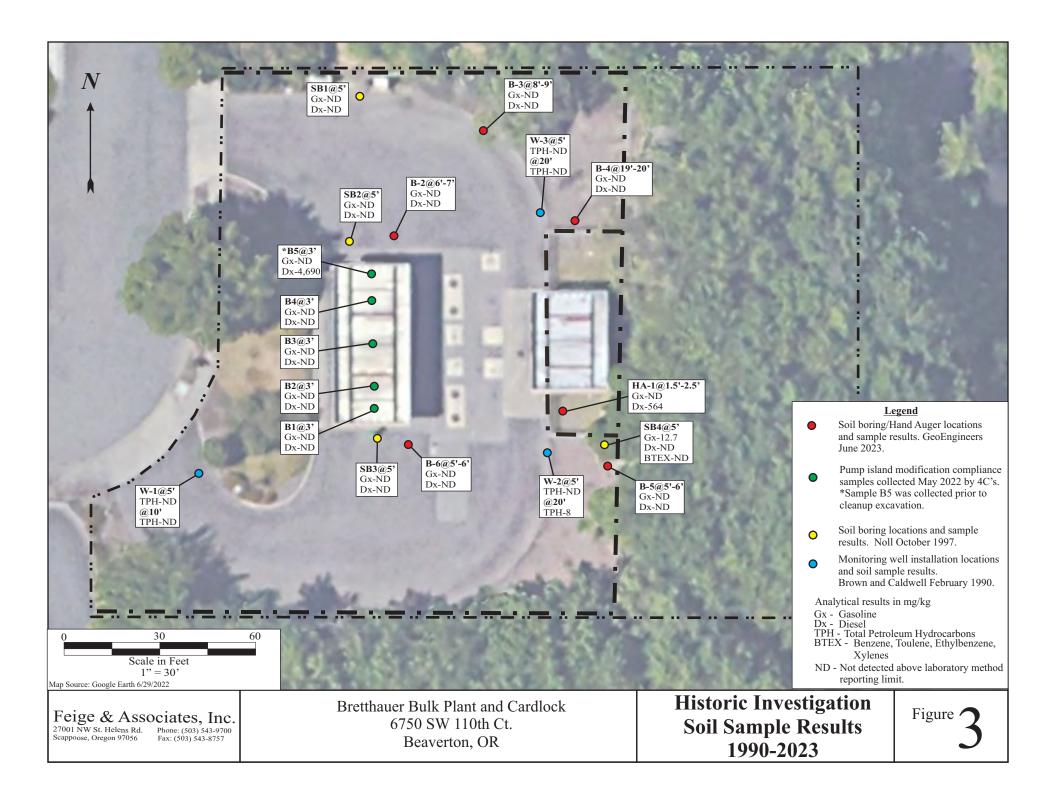
- = not applicable or not analyzed

ug/kg = micrograms per liter

ND = compound was not detected at or above the laboratory method reporting limit


< - compound was not detected at or above the laboratory method reporting limit

Bold = Compound was detected above laboratory reporting limits.


RBC_{we} = Oregon Department of Environmental Quality (DEQ) Risk-Based Concentration (RBC) for groundwater in excavation (Table dated June 2023).

RBC_{wo} = DEQ RBC for groundwater volatilization to outdoor air with an occupational receptor (Table dated June 2023).

NE - RBC is not established for this compound

Appendix A

Phase II Environmental Site Assessment GeoEngineers - August 31, 2023

Phase II Environmental Site Assessment

Beaverton Cardlock and Bulk Plant 6750 SW 110th Court Beaverton, Oregon

for
Jubitz Corporation and
Bretthauer Oil Company

August 31, 2023

Phase II Environmental Site Assessment

Beaverton Cardlock and Bulk Plant 6750 SW 110th Court Beaverton, Oregon

for Jubitz Corporation and Bretthauer Oil Company, Inc.

August 31, 2023

5820 South Kelly Avenue, Suite B Portland, Oregon 97239 503.906.6577

Phase II Environmental Site Assessment

Beaverton Cardlock and Bulk Plant 6750 SW 110th Court Beaverton, Oregon

File No. 26794-001-01

August 31, 2023

Prepared for:

Jubitz Corporation 33 NE Middlefield Road Portland, Oregon 97211

and

Bretthauer Oil Company c/o EnergyExits PO Box 365 Camas, Washington 98607

Prepared by:

GeoEngineers, Inc. 5820 South Kelly Avenue, Suite B Portland, Oregon 97239 503.906.6577

Ian Maguire, PE

Environmental Engineer

Chris Breemer, RG

Principal

IM:CB:jm:mls

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

1.0	INTRODUCTION	1
1.1.	Recognized Environmental Conditions	1
2.0	SITE DESCRIPTION AND BACKGROUND	2
	Site Description	
	_	
4.0	FIELD INVESTIGATION	
	Soil Borings	
	4.1.1. Exploration Locations and Rationale	
	4.1.2. Drilling Procedures	
	4.1.3. Soil Sampling	
	4.1.4. Field Screening Results	
4.2.	Investigation-Derived Waste	4
5.0	LABORATORY ANALYTICAL PROGRAM	4
6.0	RESULTS AND DISCUSSION	4
6 1	Soil and Groundwater Conditions	5
	Screening Levels	
	Soil Testing Results	
	6.3.1. Total Petroleum Hydrocarbons	
	6.3.2. Metals	
	6.3.3. Volatile Organic Compounds	
	6.3.4. Polychlorinated Biphenyls	
	6.3.5. Polycyclic Aromatic Hydrocarbons	
6.4.	Groundwater Testing Results	
	6.4.1. Total Petroleum Hydrocarbons	7
(6.4.2. Metals	7
(6.4.3. Polychlorinated Biphenyls	7
(6.4.4. Volatile Organic Compounds	8
(6.4.5. Polycyclic Aromatic Hydrocarbons	8
7.0	CONCLUSIONS	8
8.0	LIMITATIONS	9
a n	PEEEDENCES	a

LIST OF TABLES

- Table 1. Soil Chemical Analytical Results—Petroleum Hydrocarbons and Metals
- Table 2. Soil Chemical Analytical Results—Volatile Organic Compounds
- Table 3. Soil Chemical Analytical Results—Polychlorinated Biphenyls
- Table 4. Soil Chemical Analytical Results—Polycyclic Aromatic Hydrocarbons
- Table 5. Groundwater Chemical Analytical Results—Petroleum Hydrocarbons, Metals and PCBs
- Table 6. Groundwater Chemical Analytical Results—Volatile Organic Compounds
- Table 7. Groundwater Chemical Analytical Results—Polycyclic Aromatic Hydrocarbons

LIST OF FIGURES

Figure 1. Vicinity Map

Figure 2. Site Plan

LIST OF APPENDICES

Appendix A. Field Procedures and Boring Logs

Appendix B. Chemical Analytical Laboratory Reports

Appendix C. Report Limitations and Guidelines for Use

1.0 INTRODUCTION

GeoEngineers, Inc. (GeoEngineers) prepared this report to document the results of a Phase II Environmental Site Assessment (ESA) that was performed on June 15, 2023 at the property addressed as 6750 SW 110th Court, Beaverton, Oregon (the Site; Vicinity Map, Figure 1). The Site is currently occupied by a cardlock and for fuel loading rack facility. This Phase II ESA was performed to evaluate recognized environmental conditions (RECs) that were identified in a Phase I ESA that was prepared by GeoEngineers June 15, 2023. The Phase II ESA was performed at the request of Jubitz Corporation (Jubitz) and Bretthauer Oil Company (Bretthauer) in accordance with GeoEngineers proposal dated June 1, 2023.

1.1. Recognized Environmental Conditions

The RECs identified in the June 15, 2023 draft Phase I ESA report were:

The current cardlock facility was built in 1989. The facility includes fueling areas, a loading rack, and one 15,000-gallon diesel underground storage tank (UST), three 12,000-gallon gasoline USTs, and one 4.000-gallon spill tank. A subsurface assessment was conducted in 1997 in connection with Tosco's acquisition of the subject property from Union Oil. The 1997 investigation included completion of four soil borings at the site and collection of groundwater samples from three groundwater monitoring wells. The results of soil and groundwater sampling indicated that soil in the southeast portion of the Site was impacted with gasoline-range hydrocarbons at concentrations below applicable Oregon Department of Environmental Quality (DEQ) risk-based concentrations (RBCs), and that groundwater samples from the two monitoring wells along the east side of the facility paved area contain methyl tert-butyl ether (MTBE) at concentrations up to 94.6 micrograms per liter (µg/L), which exceed the RBCs for MTBE in groundwater. The subject property groundwater monitoring wells were resampled in 2017. Petroleum hydrocarbons and benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected in the 2017 groundwater samples, however, the 2017 samples were not analyzed for MTBE. During May 2023 facility renovation activities, gasoline-impacted soil was encountered underneath a fuel dispenser. Approximately 3.4 tons of petroleum-contaminated soil were removed from the affected dispenser area and transported for permitted disposal.

The facility's operations (bulk fuel storage and distribution) over a 30-year period, including documented releases of petroleum hydrocarbons was identified as a REC.

One historical recognized environmental condition (HREC) was identified for the subject property:

The subject property was first developed as a cardlock facility in 1975 by Unocal Oil Company. The original subject property USTs included four steel 10,000-gallon fuel USTs and a 2,000-gallon steel oil/water separator. The first generation of the subject property USTs was removed in 1989. Elevated hydrocarbon concentrations were identified in soil in the vicinity of the removed USTs. Approximately 1,400 cubic yards of impacted soil were excavated and removed from the Site. Soil samples from the limits of the excavation did not contain petroleum mixtures or BTEX concentrations that exceeded DEQ applicable cleanup levels, however, a groundwater sample from one location contained benzene at a concentration that exceeded the applicable DEQ cleanup level. Follow-up subsurface assessment activities did not identify detectable concentrations of petroleum hydrocarbon in soil and groundwater samples analyzed. Based on these results, DEQ issued a "no further action" determination for the subject property in November 1990. The USTs removed in 1989 are therefore considered an HREC for the subject property because the historical release has been addressed to the satisfaction of DEQ.

2.0 SITE DESCRIPTION AND BACKGROUND

2.1. Site Description

The Site consists of one Washington County parcel (1S122AD00400) that is currently developed with a cardlock and fuel loading rack facility that was built in 1989 and has been operated since then by Bretthauer. The site is shown relative to surrounding physical features in Vicinity Map, Figure 1 and Site Plan, Figure 2. The approximate locations of the Phase II ESA exploration locations in relation to existing buildings are shown in Figure 2.

2.2. Background

GeoEngineers reviewed the reports that are listed in Section 9.

3.0 SCOPE OF SERVICES

Our specific scope of services for this Phase II ESA included the following:

- 1. Prepared a Health and Safety Plan for our representatives.
- 2. Coordinated access to the property to perform the subsurface investigation activities.
- Subcontracted a private underground utility locate company and notified the utility notification center
 to check for potential underground utilities near the exploration locations prior to beginning subsurface
 exploratory work.
- 4. Advanced five soil borings using direct-push drilling and hand-auger methods at the approximate locations shown on Figure 2. Groundwater was encountered in all five direct-push boring locations.
- 5. Collected continuous core soil samples during direct-push drilling at 5-foot intervals and field screened discrete-depth soil samples using water sheen and headspace vapor measurements to assess the possible presence of petroleum hydrocarbon and volatile-related contaminants. Field screening procedures are described in Appendix A.
- 6. Submitted six soil samples from the borings to a subcontracted chemical analytical laboratory, Apex Laboratories, Inc. (Apex) in Tigard, Oregon, for chemical analytical testing.
- 7. Collected grab groundwater samples from three direct-push boring locations and from one previously constructed monitoring well.
- 8. Submitted four groundwater samples for chemical analyses.
- 9. Containerized investigation-derived waste (IDW) from the drilling and sampling activities into two drums that were left on site. The drums will be profiled and transported off site for permitted disposal.
- 10. Evaluated the data relative to applicable DEQ RBCs.
- 11. Prepared this report.

4.0 FIELD INVESTIGATION

4.1. Soil Borings

Five direct-push borings (B-2 through B-6) and one hand auger boring (HA) were completed at the Site on June 15, 2023. The direct-push borings were advanced to depths between 20 and 25 feet below ground surface (bgs). The hand auger boring was advanced to 5 feet bgs. Boring locations are shown in Figure 2 and are described below.

4.1.1. Exploration Locations and Rationale

The boring locations are shown in Figure 2 and described below.

BORING	AREA AND DESCRIPTION
B-2	Adjacent and north of fueling area
B-3	North end of Site
B-4	Adjacent and north of fuel loading rack
B-5	Adjacent and south of fuel loading rack
B-6	Adjacent and south of fueling area
НА	Adjacent and south of concrete staining observed at south side of fuel loading rack

4.1.2. Drilling Procedures

The explorations were completed using Geoprobe 7822DT direct-push drilling equipment, owned and operated by Holt Services, Inc. Drilling equipment was decontaminated prior to use and in between each boring location. Explorations were terminated at depths of 20 to 25 feet bgs.

The borings were completed in accordance with the Oregon Groundwater Law (Oregon Revised Statutes [ORS] Chapter 537) and the Rules for Construction and Maintenance of Monitoring Wells and Other Holes in Oregon (Oregon Administrative Rules [OAR] Chapter 690, Division 240).

A GeoEngineers field representative was present during the investigation activities to observe and document drilling and sample collection procedures, obtain field samples, perform field screening activities, select and prepare samples for laboratory analysis, and prepare lithologic logs for each boring. The exploration logs, including field screening results are included in Appendix A.

Following completion of the soil boring activities, the borings were backfilled with 3/8-inch bentonite chips to within 6 inches of the ground surface. The upper portion of each boring was patched to match the surrounding surface.

4.1.3. Soil Sampling

Soil explorations were completed using 2.25-inch diameter sampling equipment and a 3-inch diameter hand auger. Soil cores from the direct-push explorations were collected continuously in 5-foot increments. The soils were described using the Unified Soil Classification System (USCS) and screened for potential impacts based on visual and/or olfactory observations and headspace vapor measurements using a

photo-ionization detector (PID) calibrated to isobutylene. The explorations were logged and field screened in accordance with Standard Operating Procedures (SOPs) included in Appendix A. Subsurface conditions and field screening results are presented on exploration logs included in Appendix A. Soil samples for possible laboratory analysis were collected from depths ranging from just below the ground surface to 20 feet bgs. Soil samples were placed in new laboratory-supplied sample containers and stored in an iced cooler under chain-of-custody control.

4.1.4. Field Screening Results

As indicated on exploration logs in Appendix A, field indications of contamination were observed in just one boring "HA." This boring was advanced just south of the fuel loading rack in the soil adjacent to the southern edge of the concrete pad. Soil in this boring exhibited headspace vapor concentrations of 5 parts-per-million (ppm) at depths from 1–2 feet bgs.

4.2. Investigation-Derived Waste

Investigation-derived waste (IDW), consisting of soil cuttings and decontamination water, were placed in a labeled 55-gallon drum and stored on site. Following profiling of the IDW, the drum will be transported to a licensed facility for disposal.

5.0 LABORATORY ANALYTICAL PROGRAM

Six soil samples and four groundwater samples were submitted to Apex, an Oregon Environmental Laboratory Accreditation Program (ORELAP) certified laboratory, for one or more of the following chemical analyses:

- Gasoline-range hydrocarbons by Northwest Method NWTPH-Gx;
- Diesel- and oil-range hydrocarbons by Northwest Method NWTPH-Dx with silica gel cleanup;
- Volatile organic compounds (VOCs) by U.S. Environmental Protection Agency (EPA) Method 8260B;
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270D-SIM;
- Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) by EPA 6000/7000 series methods; and/or
- Polychlorinated biphenyls (PCBs) by EPA Method 8082.

The laboratory reports, including a data quality review, are included in Appendix B.

6.0 RESULTS AND DISCUSSION

The following sections describe soil and groundwater conditions encountered during the site assessment, the screening levels used to evaluate the soil and groundwater data and include a discussion of the soil and groundwater analytical results.

6.1. Soil and Groundwater Conditions

In general, the soils encountered in the borings consisted of sand and gravel fill to depths of 1 to 2 feet bgs. The fill material is underlain by silts with various amounts of clay to the depths explored. Groundwater was observed in soils at all direct-push borings at depths ranging between 5.24 and 6.10 feet bgs.

6.2. Screening Levels

To provide a framework for evaluating the significance of findings, Site data were compared to risk-based concentrations (RBCs), which are screening levels established by the Oregon Department of Environmental Quality (DEQ). The screening levels discussed below are listed along with the analytical data in Tables 1 through 7.

Because these screening levels are based on several conservative assumptions (e.g., duration and type of exposure), exceeding one of the screening levels does not necessarily indicate that remediation is required. Rather, the exceedance of a screening level may indicate that additional investigation and evaluation, including consideration of site specific information (e.g., current and future land uses) may be necessary to determine if remediation or other actions are necessary. In many cases, it is not possible to determine whether unacceptable risks to human health and the environment are present, and require further action, until a risk assessment, including evaluation of current and reasonably likely land and water uses, is complete.

To evaluate potential risks to human health, GeoEngineers identified potentially complete exposure pathways at the Site for soil and groundwater. Potentially complete pathways are listed below. Incomplete pathways and the rationale for the incomplete determination are listed in the following table.

POTENTIALLY COMPLETE HUMAN EXPOSURE PATHWAYS

Media	Potentially Complete Pathway
Soil	Occupational, construction worker, and excavation worker exposure via soil ingestion, dermal contact, and ingestion.
	Occupational exposure via vapor intrusion from groundwater to indoor air.
Groundwater	Construction worker and excavation worker exposure via groundwater in excavations.
Soil Gas	Commercial exposure via vapor intrusion to indoor air.

INCOMPLETE HUMAN EXPOSURE PATHWAYS

Media	Incomplete Pathway	Rationale ¹
	Residential and urban residential soil ingestion, dermal contact, and ingestion.	Residential uses do not occur at the Site and are unlikely in the future.
Soil	All leaching to groundwater scenarios	Groundwater use does not occur at the Site and is unlikely in the future due to the availability of municipal supplies.
Groundwater	All groundwater ingestion and inhalation from tap water scenarios	Groundwater use does not occur at the Site and is unlikely in the future due to the availability of municipal supplies.
	Residential exposure via vapor intrusion from groundwater to indoor air.	Residential uses do not occur at the Site and are unlikely in the future.
Soil Gas	Residential exposure via vapor intrusion to indoor air.	Residential uses do not occur at the Site and are unlikely in the future.

The following discussion of soil, groundwater, and soil gas analytical data considers human health risks based on the potentially complete exposure pathways listed above. Regardless of the Site-specific potential for exposure, Tables 1 - 7 list RBCs for all pathways (potentially complete and incomplete).

6.3. Soil Testing Results

The analytical results for petroleum hydrocarbons, VOCs, PAHs, PCBs, and metals in Site soil are presented in Tables 1 through 4, respectively. The analytical results for petroleum hydrocarbons, VOCs, PAHs, PCBs, and dissolved metals in Site groundwater are presented in Tables 5 through 7, respectively. Analytical results are discussed below.

6.3.1. Total Petroleum Hydrocarbons

Six soil samples were submitted for laboratory analysis of gasoline-, diesel-, and oil-range hydrocarbons. Diesel-range hydrocarbons were detected in only one sample, HA (2), at a concentration of 564 milligrams per kilogram (mg/kg). The detected concentration of diesel-range hydrocarbons is lower than RBCs for residential and occupational exposure scenarios.

6.3.2. Metals

Three soil samples were submitted for analysis of metals. The following metals were detected in soil: arsenic, barium, chromium, lead, selenium, and silver. Arsenic was detected at concentrations ranging from 3.04 to 4.52 mg/kg. Barium was detected at concentrations ranging from 160 to 241 mg/kg. Chromium was detected at concentrations ranging from 43.3 to 55.5 mg/kg. Lead was detected at concentrations ranging from 4.86 to 11.8 mg/kg. Selenium was detected in boring B-4 at a concentration of 4.28 mg/kg. None of the detected concentrations of metals in soil exceed applicable RBCs for occupational,

¹ In addition to the rationale presented in the table, DEQ's 2002 no further action determination for the Site includes restrictions on future uses of the Site, including: (1) the current use and development of the property, including the configuration of paved surfaces, remain unchanged; (2) domestic use water used on the property continue to be supplied by the public water system; and (3) construction workers be informed that exposure to petroleum is a possibility prior to any excavation on the property.

construction worker, or excavation worker exposure scenarios, or the detected concentrations are less than naturally occurring default background concentrations.

6.3.3. Volatile Organic Compounds

Six soil samples were submitted for analysis of VOCs. VOCs were not detected in soil at concentrations that exceed the method detection limits.

6.3.4. Polychlorinated Biphenyls

One soil sample was submitted for analysis of PCBs. PCBs were not detected in the soil sample.

6.3.5. Polycyclic Aromatic Hydrocarbons

Four soil samples were submitted for analysis of PAHs. Pyrene and 2-methylnaphthalene were detected in soil in the hand auger boring HA at concentrations of 0.0109 mg/kg and 0.0166 mg/kg, respectively. None of the detected concentrations of PAHs in soil exceed applicable RBCs for occupational, construction worker, or excavation worker exposure scenarios.

6.4. Groundwater Testing Results

Groundwater samples were collected from three soil borings (B-3, B-4, B-6) and one groundwater monitoring well (W-2). Groundwater chemical analytical data are listed in Tables 5 through 7.

6.4.1. Total Petroleum Hydrocarbons

Four groundwater samples were submitted for laboratory analysis of gasoline-, diesel-, and oil-range hydrocarbons. Gasoline-, diesel-, and oil-range hydrocarbons were not detected in any groundwater samples.

6.4.2. Metals

Four groundwater samples were submitted for analysis of total metals. The following metals were detected in groundwater: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. Arsenic was detected in all samples at concentrations ranging from 5.81 to 28.5 μ g/L. Barium was detected in all samples at concentrations ranging from 114 to 808 μ g/L. Cadmium was detected in B-3, B-4, and B-6 at concentrations ranging from 0.376 to 3.76 μ g/L. Chromium was detected at concentrations ranging from 43.7 to 106 μ g/L. Lead was detected in all groundwater samples at concentrations ranging from 0.372 to 24.4 μ g/L. Mercury was detected in groundwater from boring B-4 at a concentration of 0.140 μ g/L. Selenium was detected at concentrations ranging from 1.34 to 15.1 μ g/L. Silver was detected in borings B-4 and B-6 at concentrations of 0.449 and 0.228 μ g/L, respectively. The detected concentrations of metals in the groundwater samples are likely elevated due to the entrainment of sediment in the groundwater samples. The detected concentrations of metals in groundwater do not exceed RBCs for applicable occupational, construction worker, or excavation worker exposure scenarios.

6.4.3. Polychlorinated Biphenyls

Two groundwater samples were submitted for analysis of PCBs. PCBs were not detected in groundwater samples.

6.4.4. Volatile Organic Compounds

Four groundwater samples were submitted for analysis of VOCs. MTBE was detected in samples from B-4, B-6, and W-2 at concentrations ranging from 9.27 to 19.0 μ g/L. The detected concentrations of MTBE in groundwater do not exceed RBCs for applicable occupational, construction worker, or excavation worker exposure scenarios.

6.4.5. Polycyclic Aromatic Hydrocarbons

Four groundwater samples were submitted for analysis of PAHs. PAHs were not detected above method detection limits in any groundwater samples.

7.0 CONCLUSIONS

Overall, the results from explorations and laboratory testing completed during the Phase II ESA indicate that current and historical operations have resulted in the release of petroleum hydrocarbon mixtures and VOCs to soil and groundwater at the Site. Our conclusions, including an assessment of human health risks, are summarized below.

- Soil south of the fuel loading rack (represented by boring HA) contains diesel-range hydrocarbons. The detected concentration (564 mg/kg) is lower than DEQ RBCs for residential and occupational exposure scenarios, indicating that the diesel-range hydrocarbons at that location do not pose a significant risk to human health.
- Soil in borings B-2, B-4, and B-5 exhibits concentrations of arsenic that exceed the DEQ RBC for occupational soil ingestion, dermal contact and inhalation. However, the expected DEQ background concentration of arsenic in soil for this region is 18 mg/kg, suggesting that the arsenic concentrations at the Site are naturally present and are not an indication of environmental contamination. The arsenic in soil currently poses little current risk to human health because it is covered by asphalt-concrete pavement.
- All of the soil samples collected during this investigation exhibited concentrations of chromium that exceed occupational DEQ RBCs for soil ingestion, dermal contact and inhalation. In addition, concentrations in boring B-2 at 6–7 feet also exceeded the RBC for construction workers for soil ingestion, dermal contact, and inhalation. However, the detected concentrations of chromium are lower than the DEQ default background concentration for chromium in soil, indicating that the chromium levels present in Site soil are not an indication of contamination. The chromium in soil also poses little current risk to human health because it is covered by asphalt-concrete pavement.
- Selenium concentrations in boring B-4 exceed DEQ background levels for the region. However, there are currently no established RBCs for selenium that are applicable to the Site.
- In groundwater, arsenic, chromium, and lead each exceeded one or more RBCs for groundwater ingestion and inhalation from tap water in one or more borings. However, groundwater is not used or accessed at the Site, and is not expected to be used or accessed in the future. Because the exposure pathway is incomplete, metals in groundwater at the Site are not considered a risk to human health or the environment.
- MTBE was detected in groundwater samples from B-4, B-6, and W-2. MTBE concentrations in the sample from B-4 exceed the residential groundwater RBCs for ingestion and inhalation from tap water.

The Site is not expected to have residential use in the future, therefore, MTBE in groundwater at the Site is not expected to pose a risk to human health or the environment.

8.0 LIMITATIONS

We have prepared this report for the exclusive use by Jubitz Corporation and Bretthauer for the Beaverton Cardlock and Bulk Plant property located on 6750 SW 110th Court in Beaverton, Oregon. Jubitz Corporation and Bretthauer may distribute copies of this report to authorized agents and regulatory agencies as may be required for the project.

Within the limitations of scope, schedule, and budget, our services have been executed in accordance with generally accepted environmental science practices in this area at the time this report was prepared. The conclusions and opinions presented in this report are based on our professional knowledge, judgment, and experience. No warranty, express or implied, applies to this report.

Please refer to Appendix C titled "Report Limitations and Guidelines for Use" for additional information pertaining to the use of this report.

9.0 REFERENCES

Bretthauer Oil Company, 2022. Oil Spill Prevention & Response Plan. February 23, 2022.

Bretthauer UST System Testing Data. 2019, 2020, 2021, and 2022.

Bretthauer Oil Company, 2022. Emergency and Hazardous Chemical Inventory.

Brown and Caldwell, 1989. Bulk Plant Site Investigation and Remedial Activities, 6750 Southwest 110th Avenue, Beaverton, Oregon. November 2, 1989.

Brown and Caldwell, 1990. Environmental Site Assessment, Phase II – Draft, 6750 Southwest 110th Avenue, Beaverton, Oregon. April 25, 1990.

DEQ, 1990. Letter RE: UST-Washington County, Unocal 0129A. November 19, 1990.

DEQ, 2021. Field Citation for UST Violations. October 2020.

Evergreen Environmental Management, LLC (EEM), 2017. Phase One Environmental Site Assessment for the Bretthauer Oil Company Property, 6750 SW 110th Avenue, Beaverton, Oregon. July 24, 2017.

Noll Environmental, 1998. Results of Due Diligence Assessment Activities, Tosco (Former 76 Products Company) Bulk Plant No. 0038. February 9, 1998

Soil Chemical Analytical Results¹—Petroleum Hydrocarbons and Metals

Beaverton Cardlock Beaverton, Oregon

										Metals ⁴	(mg/kg)			
Sample Location	Sample Identification	Date	Sample Depth (feet bgs)	Gasoline-Range Hydrocarbons NWTPH-Gx ² (mg/kg)	Diesel-Range Hydrocarbons NWTPH-Dx³ (mg/kg) Oil-Range Hydrocarbons NWTPH-Dx³ (mg/kg)		Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
B-2	B-2 (6-7)	6/15/2023	6-7	< 8.41	< 27.9	< 55.8	3.04	241	< 0.295	55.5	11.8	< 0.118	< 1.47	< 0.295
B-3	B-3 (8-9)	6/15/2023	8-9	< 6.83	< 23.7	< 47.4	-	-	-	-	-	-	-	-
B-4	B-4 (19-20)	6/15/2023	19-20	< 20.3	< 44.1	< 88.2	4.52	160	< 0.478	43.3	4.86	< 0.191	4.28	< 0.478
B-5	B-5 (5-6)	6/15/2023	5-6	< 8.03	< 27.3	< 54.6	3.24	197	< 0.288	47.8	9.50	< 0.115	< 1.44	< 0.288
B-6	B-6 (5-6)	6/15/2023	5-6	< 6.67	< 24.8	< 49.5	-		-	-	_	-	_	_
HA	HA (2)	6/15/2023	1.5-2.5	< 6.55	564	< 42.6	-	-	-	-	-	-	-	-
-	pplicable DEQ Risk-E n, Dermal Contact an		trations ⁵											
Residential				1,200	1,100	2,800	0.43	15,000	78	0.30	400	23	NE	390
Urban Resid	lential			2,500	2,200	5,700	1.0	31,000	160	0.67	400	47	NE	780
Occupationa	al			20,000	14,000	36,000	1.9	220,000	1,100	6.3	800	350	NE	5,800
Construction	n Worker			9,700	4,600 ⁶	11,000 7	15	69,000	350	49	800	110	NE	1,800
Excavation \	Worker			NE	NE	NE	420	NE	9,700	1,400	800	2,900	NE	49,000
Soil Leaching	g to Groundwater													
Residential				31	9,500	NE	NE	NE	NE	NE	30	NE	NE	NE
Urban Residential				31	9,500	NE	NE	NE	NE	NE	30	NE	NE	NE
Occupational				130	NE	NE	NE	NE	NE	NE	30	NE	NE	NE
Oregon DEQ	Background Metals (Concentration	s in Soil ⁸	NA	NA	NA	18	730	1.6	100	28	0.07	0.68	0.33

Notes:

mg/kg = milligrams per kilogram; bgs = below ground surface; ppm = parts per million

Bold indicates the analyte was detected above laboratory detection limit (MDL).

¹Chemical analyses were performed by Apex Laboratories in Tigard, Oregon.

 $^{^2\}mbox{\sc Gasoline-range}$ hydrocarbon analysis by Northwest Method NWTPH-Gx.

 $^{^{\}rm 3}\,{\rm Diesel}$ and lube oil hydrocarbons analyzed by Northwest Method NWTPH-Dx.

 $^{^4}$ Resource Conservation and Recovery Act (RCRA) metals analyzed by EPA Method 6020B.

⁵ Oregon Department of Environmental Quality (DEQ) Risk Based Decision Making for the Remediation of Petroleum-Contaminated Sites, revised June 2023. Chromium RBCs are for Chromium VI.

⁶ Result is for generic diesel/heating oil.

⁷ Result is for generic mineral/insulating oil.

⁸ Oregon Department of Environmental Quality (DEQ) 2013. Oregon Background Metals Concentrations In Soil, Table 4, South Willamette Valley

NE = Not Established; NA = not applicable (no detections)

^{- =} Not Analyzed;

<0.28 indicates analyte not detected above the method reporting limit.

Soil Chemical Analytical Results—Volatile Organic Compounds

Beaverton Cardlock Beaverton, Oregon

Sample Location	B-2	B-3	B-4	B-5	B-6	Truck Rack			Potentially App	olicable DEQ Risk	-Based Concent	rations (mg/kg	()	
Sample ID	B-2 (6-7)	B-3 (8-9)	B-4 (19-20)	B-5 (5-6)	B-6 (5-6)	HA (2)								
Sample Date	6/15/2023	6/15/2023	6/15/2023	6/15/2023	6/15/2023	6/15/2023		Soil I	ngestion, Derma	l Contact				
Sample Depth (feet bgs)	6-7	8-9	19-20	5-6	5-6	1.5-2.5		30111	and Inhalatio			Soil Le	eaching to Grou	ndwater
													l	
Aughdo							1	Urban	Occupational	Construction	Excavation		Urban	Occumentional
Analyte		T T	Concentration	 	T	T	Residential	Residential	Occupational	Worker	Worker	Residential	Residential	Occupational
Acetone	< 1.68	< 1.37	< 4.05	< 1.61	< 1.33	< 1.31			-	-		-		_
Acrylonitrile	< 0.168	< 0.137	< 0.405	< 0.161	< 0.133	< 0.131	0.86	2.5	4.0	40	1,100	0.00036	0.0016	0.0017
Benzene	< 0.0168	< 0.0137	< 0.0405	< 0.016	< 0.0133	< 0.0131	8.2	24	37	380	11,000	0.023	0.10	0.10
Bromobenzene	< 0.0421	< 0.0342	< 0.101	< 0.0402	< 0.0333	< 0.0328			-					
Bromochloromethane	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	3.4	12	15	230	6,300	0.002	0.0091	0.0088
Bromodichloromethane	< 0.0840	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655			-		-	-		
Bromoform	< 0.168	< 0.137	< 0.405	< 0.161	< 0.133	< 0.131	57	170	260	2,700	74,000	0.046	0.20	0.22
Bromomethane	< 0.841	< 0.683	< 2.03	< 0.803	< 0.667	< 0.655	46	92	750	370	10,000	0.083	0.30	0.40
2-Butanone (MEK)	< 0.841	< 0.683	< 2.03	< 0.803	< 0.667	< 0.655	-		-					
n-Butylbenzene	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655			-	-	-	-		
sec-Butylbenzene	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	-		-					
tert-Butylbenzene	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	-		-					
Carbon disulfide	< 0.841	< 0.683	< 2.03	< 0.803	< 0.667	< 0.655			-	-				
Carbon tetrachloride	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	7.5	21	34	320	8,900	0.013	0.055	0.058
Chlorobenzene	< 0.0421	< 0.0342	< 0.101	< 0.0402	< 0.0333	< 0.0328	530	1,100	8,700	4,700	130,000	5.8	22	27
Chloroethane	< 0.841	< 0.683	< 2.03	< 0.803	< 0.667	< 0.655	160,000	320,000	>Max	>Max	>Max	310	1,100	1,300
Chloroform	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	5.8	22	26	410	11,000	0.0034	0.016	0.015
Chloromethane	< 0.421	< 0.342	< 1.01	< 0.402	< 0.333	< 0.328	1,400	2,900	25,000	25,000	700,000	2.2	7.9	9.1
2-Chlorotoluene	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	-		-	-	-	-		
4-Chlorotoluene	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	-			-				
Dibromochloromethane	< 0.168	< 0.137	< 0.405	< 0.161	< 0.133	< 0.131	_		-	-	-	-		-
1,2-Dibromo-3-chloropropane	< 0.421	< 0.342	< 1.01	< 0.402	< 0.333	< 0.328	- 0.46		- 0.72	-		- 0.0004.0		
1,2-Dibromoethane	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	0.16	0.53	0.73	9.0	250	0.00012	0.00056	0.00056
Dibromomethane	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	-		-	-		-		- 4.00
1,2-Dichlorobenzene	< 0.0421	< 0.0342 < 0.0342	< 0.101 < 0.101	< 0.0402 < 0.0402	< 0.0333	< 0.0328 < 0.0328	2,200	4,400	36,000	20,000	560,000	36	140	160
1,3-Dichlorobenzene 1,4-Dichlorobenzene	< 0.0421		< 0.101 < 0.101		< 0.0333	******	14	62	64	1,300	36,000	0.057	0.27	
Dichlorodifluoromethane	< 0.0421 < 0.168	< 0.0342 < 0.137	< 0.101	< 0.0402 < 0.161	< 0.0333 < 0.133	< 0.0328 < 0.131					36,000			0.25
1,1-Dichloroethane	< 0.168	< 0.137	< 0.405	< 0.161	< 0.0333	< 0.0328	- 58	190	260	3,200	89,000	0.04	0.20	0.20
1,2-Dichloroethane	< 0.0421	< 0.0342	< 0.101	< 0.0402	< 0.0333	< 0.0328	3.6	190	16	200	5,600	0.0028	0.20	0.20
1,1-Dichloroethane	< 0.0421	< 0.0342	< 0.101	< 0.0402	< 0.0333	< 0.0328	1,800	3,500	29,000	13,000	370,000	6.70	25	32
cis-1,2-Dichloroethene	< 0.0421	< 0.0342	< 0.101	< 0.0402	< 0.0333	< 0.0328	1,800	3,500	29,000	710	20,000	0.63	2.4	4.5
trans-1,2-Dichloroethene	< 0.0421	< 0.0342	< 0.101	< 0.0402	< 0.0333	< 0.0328	1,600	3,100	23,000	7,100	20,000	7.0	2.4	4.5 51
1,2-Dichloropropane	< 0.0421	< 0.0342	< 0.101	< 0.0402	< 0.0333	< 0.0328	1,600	3,100	23,000	7,100	200,000	7.0		21
<u> </u>	ł —	< 0.0342	< 0.101	- I	< 0.0667	< 0.0328	-	-				_		
1,1-Dichloropropene	< 0.0421 < 0.0841	< 0.0342	< 0.203	< 0.0803 < 0.0803	< 0.0667	< 0.0655						-		
1,3-Dichloropropane			< 0.203	< 0.0803		< 0.0655	-	-	-	-	-	_		
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	< 0.0841 < 0.0841	< 0.0683 < 0.0683	< 0.203	< 0.0803	< 0.0667 < 0.0667	< 0.0655					_			
папъ-1,5-истиоторгорене	\ U.U641	· 0.0003	\ 0.∠03	· 0.0603	· 0.0007	· 0.0055	_	-	_	-	-	_		-

Please refer to notes at end of table.

Soil Chemical Analytical Results—Volatile Organic Compounds

Beaverton Cardlock Beaverton, Oregon

Sample Location	B-2	B-3	B-4	B-5	B-6	Truck Rack			Potentially App	licable DEQ Risk-	Based Concent	rations (mg/kg	<u>(</u>)		
Sample ID	B-2 (6-7)	B-3 (8-9)	B-4 (19-20)	B-5 (5-6)	B-6 (5-6)	HA (2)									
Sample Date	6/15/2023	6/15/2023	6/15/2023	6/15/2023	6/15/2023	6/15/2023	1	Soil I	ngestion, Derma	Contact.					
Sample Depth (feet bgs)	6-7	8-9	19-20	5-6	5-6	1.5-2.5	1		and Inhalatio	,		Soil Leaching to Groundwater			
Analyte			Concentration	s in mg/kg			Urban Construction Excavation Residential Occupational Worker Worker				Excavation Worker	Residential	Urban Residential	Occupational	
2,2-Dichloropropane	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	-	-	_	-	-	-		-	
Ethylbenzene	< 0.0421	< 0.0342	< 0.101	< 0.0402	< 0.0333	< 0.0328	34	110	150	1,700	49,000	0.22	0.94	0.90	
Hexachlorobutadiene	< 0.168	< 0.137	< 0.405	< 0.161	< 0.133	< 0.131	-	-	-	-	-	-		-	
2-Hexanone	< 0.841	< 0.683	< 2.03	< 0.803	< 0.667	< 0.655			-	-		-			
Isopropylbenzene	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	3,500	7,000	57,000	27,000	750,000	96	>Max	>Max	
4-Isopropyltoluene	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	-	-	_	-	-	-		-	
Methylene chloride	< 0.841	< 0.683	< 2.03	< 0.803	< 0.667	< 0.655	76	110	1,600	2,100	58,000	0.14	0.44	2.40	
4-Methyl-2-pentanone (MIBK)	< 0.841	< 0.683	< 2.03	< 0.803	< 0.667	< 0.655	-	-	-	-	-	-		-	
Methyl tert-butyl ether	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	250	730	1,100	12,000	320,000	0.11	0.50	0.54	
Naphthalene	< 0.168	< 0.137	< 0.405	< 0.161	< 0.133	< 0.131	5.3	25	23	580	16,000	0.077	0.37	0.34	
n-Propylbenzene	< 0.0421	< 0.0342	< 0.101	< 0.0402	< 0.0333	< 0.0328			-	-		-			
Styrene	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	7,900	16,000	130,000	56,000	>Max	170	640	800	
1,1,1,2-Tetrachloroethane	< 0.0421	< 0.0342	< 0.101	< 0.0402	< 0.0333	< 0.0328			-	-		-		-	
1,1,2,2-Tetrachloroethane	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655			-	-		-		-	
Tetrachloroethene	< 0.0421	< 0.0342	< 0.101	< 0.0402	< 0.0333	< 0.0328	220	540	1,000	1,800	50,000	0.46	1.90	1.9	
Toluene	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	5,800	12,000	88,000	28,000	770,000	84	340	490	
1,2,3-Trichlorobenzene	< 0.421	< 0.342	< 1.01	< 0.402	< 0.333	< 0.328			-	-		-			
1,2,4-Trichlorobenzene	< 0.421	< 0.342	< 1.01	< 0.402	< 0.333	< 0.328			-	-		-		-	
1,1,1-Trichloroethane	< 0.0421	< 0.0342	< 0.101	< 0.0402	< 0.0333	< 0.0328	53,000	110,000	870,000	470,000	>Max	190	710	880	
1,1,2-Trichloroethane	< 0.0421	< 0.0342	< 0.101	< 0.0402	< 0.0333	< 0.0328	3.2	6.3	26	54	1,500	0.006	0.029	0.029	
Trichloroethene	< 0.0421	< 0.0342	< 0.101	< 0.0402	< 0.0333	< 0.0328	6.7	17	51	470	13,000	0.013	0.053	0.087	
Trichlorofluoromethane	< 0.168	< 0.137	< 0.405	< 0.161	< 0.133	< 0.131	7,600	15,000	130,000	69,000	>Max	61	230	280	
1,2,3-Trichloropropane	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655						-			
1,2,4-Trimethylbenzene	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	430	860	6,900	2,900	81,000	10	43	48	
1,3,5-Trimethylbenzene	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	430	860	6,900	2,900	81,000	11	45	53	
Vinyl chloride	< 0.0421	< 0.0342	< 0.101	< 0.0402	< 0.0333	< 0.0328	0.36	0.80	4.4	34	950	0.0006	0.0014	0.01	
Xylenes, total	< 0.0841	< 0.0683	< 0.203	< 0.0803	< 0.0667	< 0.0655	1,400	2,900	25,000	20,000	560,000	23	87	100	

Notes:

Bold = Analyte was detected above the laboratory method detection limit.

¹Chemical analyses were performed by Apex Laboratories in Tigard, Oregon. Volatile Organic Compounds (VOCs) analysis by United States Environmental Protection Agency (EPA) Method 8260D.

² Oregon Department of Environmental Quality (DEQ) Risk Based Decision Making for the Remediation of Petroleum-Contaminated Sites, revised May 2018. Chromium RBCs are for Chromium VI.

< = constituent was not detected at a concentration greater than laboratory reporting limit shown

^{-- =} not analyzed or not established

mg/kg = milligrams per kilogram; bgs = below ground surface

>Csat = This soil RBC exceeds the limit of three-phase equilibrium partitioning

>Max = The constituent RBC for this pathway is calculated as greater than 1,000,000 mg/kg. Therefore, this substance is deemed not to pose risks in this scenario.

Soil Chemical Analytical Results¹—Polychlorinated Biphenyls

Beaverton Cardlock Beaverton, Oregon

			Sample Depth	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs			
Sample Location	Sample ID	Sample Date	(feet bgs)	Concentration in mg/kg										
B-4	B-4 (19-20)	6/15/2023	19-20	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214			
Potentially Applicable D	otentially Applicable DEQ Risk-Based Concentrations ² (mg/kg)													
		Residential			-						0.23			
		Urban Residential	Urban Residential		-	-		-			0.33			
Soil Ingestion, Derma	al Contact, Inhalation	Occupational				-		-			0.59			
		Construction Worker		-	-	1		1			4.9			
		Excavation Worker	Excavation Worker		-	1		1			140			
			Residential								0.24			
Soil Leaching to Groundwater		Urban Residential	Urban Residential			1		1			1.1			
				-	-	1		1			1.1			

Notes:

mg/kg = milligrams per kilogram; bgs = below ground surface

Bold = Analyte was detected above the laboratory method detection limit.

>Csat = This soil RBC exceeds the limit of three-phase equilibrium partitioning

¹Chemical analyses were performed by Apex Laboratories in Tigard, Oregon. PCB Aroclors analysis by United States Environmental Protection Agency (EPA) Method 8082.

² Oregon Department of Environmental Quality (DEQ) Risk Based Decision Making for the Remediation of Petroleum-Contaminated Sites, revised June 2023. Chromium RBCs are for Chromium VI.

< = constituent was not detected at a concentration greater than laboratory reporting limit shown

^{-- =} not analyzed or not established

Table 4

Soil Chemical Analytical Results¹—Polycyclic Aromatic Hydrocarbons

Beaverton Cardlock Beaverton, Oregon

									PAHs ² ((mg/kg)					
Sample Location	Sample ID	Sample Date	Sample Depth (feet bgs)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Crysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene
B-2	B-2 (6-7)	6/15/2023	6-7	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014
B-4	B-4 (19-20)	6/15/2023	19-20	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022
B-5	B-5 (5-6)	6/15/2023	5-6	< 0.0129	< 0.0129	< 0.0129	< 0.0129	< 0.0129	< 0.0129	< 0.0129	< 0.0129	< 0.0129	< 0.0129	< 0.0129	< 0.0129
Truck Rack	HA (2)	6/15/2023	1.5-2.5	< 0.0145 R-02	< 0.0103	< 0.0103	< 0.0103	< 0.0103	< 0.0103	< 0.0103	< 0.0103	< 0.0114 R-02	< 0.0103	< 0.0103	< 0.0103
	plicable DEQ Risk-B , Dermal Contact an		trations ²												
Residential				4,700	NE	23,000	1.1	0.11	1.1	11	NE	NE	NE	2,400	3,100
Urban Resider	ntial			9,400	NE	47,000	2.5	0.25	2.5	25	NE	NE	NE	4,800	6,300
Occupational				70,000	NE	350,000	21	2.1	21	210	NE	NE	NE	30,000	47,000
Construction V				21,000	NE	110,000	170	17	170	1,700	NE NE	NE NE	NE NE	10,000	14,000
Excavation Wo	-			590,000	NE	NE	4,800	490	4,900	49,000	NE	NE	NE	280,000	390,000
	to Groundwater			NE	NE	NE	NE	NE	NE	l NE	NE	l NE	NE	NE	NE
Residential Urban Resider	ntial			NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE
Occupational				NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE	NE NE
	lean Fill Determina	tions ³		NE	120	6.8	0.73	0.11	1.1	11	25	3.1	0.11	10	3.7

Please refer to notes at end of table.

Soil Chemical Analytical Results¹ - Polycyclic Aromatic Hydrocarbons

Newberg Cardlock and Warehouse Newberg, Oregon

							PAHs ² (mg/kg)			
Sample Location	Sample ID	Sample Date	Sample Depth (feet bgs)	Indeno(1,2,3-CD)pyrene	Naphthalene	Phenanthrene	Pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Dibenzofuran
B-2	B-2 (6-7)	6/15/2023	6-7	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014
B-4	B-4 (19-20)	6/15/2023	19-20	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022
B-5	B-5 (5-6)	6/15/2023	5-6	< 0.0129	< 0.0129	< 0.0129	< 0.0129	< 0.0129	< 0.0129	< 0.0129
Truck Rack	HA (2)	6/15/2023	1.5-2.5	< 0.0103	< 0.0103	< 0.0103	0.0109	< 0.0103	0.0166	< 0.444 R-02
	plicable DEQ Ris , Dermal Contac									
Residential				1.1	5.3	NE	1,800	NE	NE	NE
Urban Reside	ntial			2.5	25	NE	3,600	NE	NE	NE
Occupational				21	23	NE	23,000	NE	NE	NE
Construction V				170	580	NE	7,500	NE	NE	NE
Excavation We				4,900	16,000	NE	210,000	NE	NE	NE
Soil Leaching	to Groundwater									
Residential				NE	0.077	NE	NE	NE	NE	NE
Urban Reside				NE	0.37	NE	NE	NE	NE	NE
Occupational				NE	0.34	NE	NE	NE	NE	NE
Oregon DEQ C	lean Fill Determ	inations ³		1.1	0.077	5.5	10	0.36	11	NE

Notes:

Bold indicates the analyte was detected above laboratory method reporting limit (MRL).

¹Chemical analyses were performed by Apex Laboratories in Tigard, Oregon. Polycyclic Aromatic Hydrocarbons analyzed by EPA Method 8270E. See laboratory report for full list of analytes.

²Oregon Department of Environmental Quality (DEQ) Risk Based Decision Making for the Remediation of Petroleum-Contaminated Sites, revised June 2023.

 $^{^3}$ DEQ 2019. Clean Fill Determinations. Oregon DEQ Materials Management, Portland, Oregon, February 2019.

mg/kg = milligrams per kilogram; -- = Not Analyzed, bgs = below ground surface; NE = Not Established; ppm = parts per million

< 0.0109 indicates analyte not detected above the method reporting limit.

Groundwater Chemical Analytical Results Petroleum Hydrocarbons, Metals and PCBs

Beaverton Cardlock Beaverton, Oregon

									Metals (µg/L)				
Sample Location	Sample ID	Date	Gasoline-Range Hydrocarbons NWTPH-Gx (μg/L)	Diesel-Range Hydrocarbons NWTPH-Dx (µg/L)	Residual-Range Hydrocarbons NWTPH-Dx (µg/L)	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Total Polychlorinated Biphenyls (µg/L)
B-3	B-3 (GW)	6/15/2023	< 100	< 83.3	< 167	17.8	734	0.376	90.1	18.0	< 0.0800	1.34	< 0.200	-
B-4	B-4 (GW)	6/15/2023	< 100	< 81.6	< 163	28.5	808	3.76	106	24.4	0.140	15.1	0.449	< 0.103
B-6	B-6 (GW)	6/15/2023	< 100	< 80.8	< 162	13.0	500	0.766	43.7	8.15	< 0.0800	4.89	0.228	< 0.104
W-2	W-2 (1)	6/15/2023	< 100	< 76.2	< 152	5.81	114	< 0.200	< 2.00	0.372	< 0.0800	< 1.00	< 0.200	-
Potentially Applicable DEQ Risk-Based	d Concentrations	•	-				-							
Groundwater Ingestion and Inhalation	from Tap Water													
Residential			110	100	300	0.052	4,000	20	0.05	15	6.0	NE	100	0.0060
Urban Residential			110	100	300	0.21	15,000	73	0.16	15	22	NE	370	0.028
Occupational			450	430	1,300	0.31	33,000	160	0.90	15	49	NE	820	0.028
Groundwater to Indoor Air														
Residential			NE	NE	NE	NE	NE	NE	NE	NE	2.6	NE	NE	0.029
Occupational			NE	NE	NE	NE	NE	NE	NE	NE	11	NE	NE	1.3
Groundwater in Excavation														
Construction and Excavation Worker			14,000	NE	NE	6,300	NE	130,000	9,400	NE	NE	NE	1,100,000	30

Notes:

Chemical analyses were performed by Apex Laboratories in Tigard, Oregon.

Gasoline analyzed by Northwest Method NWTPH-Gx. Diesel- and oil-range hydrocarbons by Northwest Method NWTPH-Dx.

Polychlorinated biphenyls (PCBS) by EPA Method 8082. The listed result in the maximum reporting limit for the Aroclors. Refer to chemical analytical report in Appendix B for complete list of method analytes and detection limits.

Oregon Department of Environmental Quality (DEQ) Risk Based Decision Making for the Remediation of Petroleum-Contaminated Sites, revised June 2023.

µg/L = micrograms per liter, -- = Not Analyzed, bgs = below ground surface; NE = Not Established; ND = Not Detected

J = The identification of the analyte is acceptable; the reported value is an estimate.

<100 indicates analyte not detected above the method detection limit.

Bold indicates the analyte was detected above laboratory method reporting limit (MRL).

NE = Not established.

Groundwater Chemical Analytical Results Volatile Organic Compounds

Beaverton Cardlock Beaverton, Oregon

Sample ID	B-3 (GW)	B-4 (GW)	B-6 (GW)	W-2 (GW)		DI	Q Risk-Based Co	oncentrations (με	g/L) ^{6.}	
Sample Date	6/15/2023	6/15/2023	6/15/2023	6/15/2023	Groundwate	Ingestion and Ir	halationfrom	0		Groundwater in
Screened Interval (feet bgs)	5-20	5-20	5-2	Unknown	1	Tapwater		Groundwater	r to Indoor Air	Excavation
Volatile Organic Compounds by E	PA Method 8260	B (μg/L)			Res.	Urb. Res.	Occ.	Res.	Occ.	Const. and Exc. Worker
1,1,1,2-Tetrachloroethane	<0.400	<0.400	<0.400	<0.400				8	36	
1,1,1-Trichloroethane	<0.400	<0.400	<0.400	<0.400	8,000	30,000	37,000	13,000	53,000	1,100,000
1,1,2,2-Tetrachloroethane	<0.500	<0.500	<0.500	<0.500	-	-		6.8	30	
1,1,2-Trichloroethane	<0.500	<0.500	<0.500	<0.500	0.28	1.30	1.30	10	44	49
1,1-Dichloroethane	<0.400	<0.400	<0.400	<0.400	2.8	13	13	13	55	10,000
1,1-Dichloroethene	<0.400	<0.400	<0.400	<0.400						
1,1-Dichloroethene	<1.00	<1.00	<1.00	<1.00	280	1,100	1,400	300	890	44,000
1,2,3-Trichlorobenzene	<2.00	<2.00	<2.00	<2.00						
1,2,3-Trichloropropane	<1.00	<1.00	<1.00	<1.00	-	-		47	200	
1,2,4-Trichlorobenzene	<2.00	<2.00	<2.00	<2.00						
1,2,4-Trimethylbenzene	<1.00	<1.00	<1.00	<1.00	54	230	250	560	2,400	6,300
1,2-Dibromo-3-Chloropropane	<5.00	<5.00	<5.00	<5.00	_	_		0.07	0.81	
1,2-Dibromoethane	<0.500	<0.500	<0.500	<0.500		_	0.03	0.34	1.5	27
1,2-Dichlorobenzene	<0.500	<0.500	<0.500	<0.500	300	1,200	1,400			37,000
1,2-Dichloroethane	<0.400	<0.400	<0.400	<0.400	0.17	0.78	0.8	4.0	18	630
'1,2-Dichloropropane	<0.500	<0.500	<0.500	<0.500	_	_		_		
1,3,5-Trimethylbenzene	<1.00	<1.00	<1.00	<1.00	59	240	280	400	1,700	7,500
1,3-Dichlorobenzene	<0.500	<0.500	<0.500	<0.500	_	_			-	
1,3-Dichloropropane	<1.00	<1.00	<1.00	<1.00	_	_				
1,4-Dichlorobenzene	<0.500	<0.500	<0.500	<0.500	0.48	2.3	2.1	5.8	25	1,500
1,2-Dichloropropane	<1.00	<1.00	<1.00	<1.00				12	52	
2-Butanone (MEK)	<10.0	<10.0	<10.0	<10.0				170,000	12,000,000	
2-Chlorotoluene	<1.00	<1.00	<1.00	<1.00	-	-				
'2-Hexanone	<10.0	<10.0	<10.0	<10.0	_	_		-	-	
4-Chlorotoluene	<1.00	<1.00	<1.00	<1.00	-	-				
p-Isopropyltoluene	<1.00	<1.00	<1.00	<1.00						
4-Methyl-2-pentanone (MIBK)	<10.0	<10.0	<10.0	<10.0	_	-		1,100,000	4,600,000	
Acetone	<20.0	<20.0	<20.0	<20.0	_	-		2,100,000	-	
Acrylonitrile	<2.00	<2.00	<2.00	<2.00	0.05	0.23	0.3	13	58	250
Benzene	<0.200	<0.200	<0.200	<0.200	0.46	2.0	2.1	2.8	12	1,800
Bromobenzene	<0.500	<0.500	<0.500	<0.500	-	-				
Bromochloromethane	<1.00	<1.00	<1.00	<1.00	-	-		-		
Bromodichloromethane	<1.00	<1.00	<1.00	<1.00	0.13	0.62	0.6			450
Bromoform	<1.00	<1.00	<1.00	<1.00	3.3	15	16	250	1,100	14,000
Bromomethane Carbon digulfide	<5.00	<5.00	<5.00	<5.00	7.5	28	36	25	110	1,200
Carbon disulfide	<10.0	<10.0	<10.0	<10.0	- 0.46	-		1,900	8,200	1 200
Carbon tetrachloride Chlorobenzene	<1.00 <0.500	<1.00 <0.500	<1.00 <0.500	<1.00 <0.500	0.46 77	2 290	2.1 350	0.7 810	3.1 3,400	1,800 10,000
Chloroethane	<0.500	<0.500	<0.500 <5.00	<0.500 <5.00	21,000	76,000	88,000	14,000	57,000	2,400,000

Please refer to notes at end of table.

Groundwater Chemical Analytical Results Volatile Organic Compounds

Beaverton Cardlock Beaverton, Oregon

Sample ID	B-3	B-4	B-6	W-2	Potentially Applicable DEQ Risk-Based Concentrations (µg/L)									
Sample Date	6/15/2023	6/15/2023	6/15/2023	6/15/2023	Groundwate	r Ingestion and In	halationfrom	Cucumduyata	r to Indoor Air	Groundwater in				
Screened Interval (feet bgs)	5-20	5-20	5-2	Unknown		Tapwater		Groundwate	r to indoor Air	Excavation				
Volatile Organic Compounds by I	EPA Method 8260	B (μg/L)			Res.	Urb. Res.	Occ.	Res.	Occ.	Const. and Exc. Worker				
Chloroform	<1.00	<1.00	<1.00	<1.00	0.22	1.0	1.0	1.4	5.9	720				
Chloromethane	<5.00	<5.00	<5.00	<5.00	190	690	790	350	1,500	22,000				
cis-1,2-Dichloroethene	<0.400	<0.400	<0.400	<0.400	36	140	260	-		18,000				
cis-1,3-Dichloropropene	<1.00	<1.00	<1.00	<1.00	-	-		-						
Chlorodibromomethane	<1.00	<1.00	<1.00	<1.00	0.17	0.77	0.76	-		610				
Dibromomethane	<1.00	<1.00	<1.00	<1.00	-	-		-						
Dichlorodifluoromethane	<1.00	<1.00	<1.00	<1.00	-	-		-						
Ethylbenzene	<0.500	<0.500	<0.500	<0.500	1.5	6.7	6.4	7.1	31	4,500				
Hexachloro-1,3-butadiene	<5.00	<5.00	<5.00	<5.00	-	-	-	0.7	3.3					
Isopropylbenzene	<1.00	<1.00	<1.00	<1.00	440	1,800	2,000	2,200	9,100	51,000				
Xylenes, Total	<1.00	<1.00	<1.00	<1.00	190	710	830	780	3,300	23,000				
Methyl tert-butyl ether	<1.00	19.0	9.27	5.58	14	64	68	740	3,200	63,000				
Methylene Chloride	<10.0	<10.0	<10.0	<10.0	11	37	200	1,200	15,000	79,000				
Naphthalene	<2.00	<2.00	<2.00	<2.00	0.17	0.78	0.72	11	50	500				
n-Butylbenzene	<1.00	<1.00	<1.00	<1.00	-	-	-	-						
n-Propylbenzene	<0.500	<0.500	<0.500	<0.500	-	-	-	-						
Xylenes, Total	<0.500	<0.500	<0.500	<0.500	190	710	830	780	3,300	23,000				
sec-Butylbenzene	<1.00	<1.00	<1.00	<1.00	-	-		-						
Styrene	<1.00	<1.00	<1.00	<1.00	1,200	4,600	5,700	20,000	84,000	170,000				
tert-Butylbenzene	<1.00	<1.00	<1.00	<1.00	-	-		-						
Tetrachloroethene	<0.400	<0.400	<0.400	<0.400	12	49	48	29	130	5,600				
Toluene	<1.00	<1.00	<1.00	<1.00	1,100	4,400	6,300	36,000	150,000	220,000				
trans-1,2-Dichloroethene	<0.400	<0.400	<0.400	<0.400	360	1,400	2,600	180	750	180,000				
trans-1,3-Dichloropropene	<1.00	<1.00	<1.00	<1.00	_	-	-	_	-					
Trichloroethene	<0.400	<0.400	<0.400	<0.400	0.49	2.0	3.3	2.1	13	430				
Trichlorofluoromethane	<2.00	<2.00	<2.00	<2.00	1,100	4,200	5,200	_	-	160,000				
Vinyl chloride	<0.400	<0.400	<0.400	<0.400	0.027	0.066	0.5	0.2	3.3	960				

Notes:

< = constituent was not detected at a concentration greater than laboratory reporting limit shown.</p>

-- = not applicable or not established

Oregon Department of Environmental Quality Risk Based Concentrations (RBCs), Updated June 2023.

 μ g/L = micrograms per liter

Shaded values exceed one or more DEQ Risk-Based Concentrations.

bgs = below ground surface

Res. = Residential

Urb. Res. = Urban Residential

Occ. = Occupational

Const. = Construction worker

Exc. = Excavation worker

Bold = Analyte was detected above the laboratory method detection limit.

The groundwater to indoor air RBC is the minimum of the chromic and acute RBCs published by DEQ.

Groundwater Chemical Analytical Results Polycyclic Aromatic Hydrocarbons

Beaverton Cardlock Beaverton, Oregon

Sample ID	B-3 (GW)	B-4 (GW)	W-2 (GW)	Pot	entially Appli	cable DEQ	Risk-Based C	Concentratio	ns (µg/L)	
Sample Date	6/15/2023	6/15/2023	6/15/2023	6/15/2023	Ground	lwater Ingest	ion and	Groundwat	ter to Indoor	Groundwater in
Screened Interval (Feet bgs)	5-20	5-20	5-2	Unknown	Inhala	ition from Ta _l	owater		Air	Exc.
Polycyclic Aromatic Hydrocarboi	ns by EPA 8270S	-SIM (µg/L)			Res.	Urb. Res.	Occ.	Res.	Occ.	Const. and Exc. Worker
Anthracene	< 0.0372	<0.0366	<0.0403	<0.0355	-	-	-	-	-	-
Acenaphthene	<0.0372	<0.0366	<0.0403	<0.0355	510	2400	2500	-		-
Acenaphthylene	<0.0372	<0.0366	<0.0403	<0.0355	-	-	-	-	-	-
Benzo(a)Anthracene	<0.0186	<0.0183	<0.0202	<0.0178	0.03	0.11	0.38	190	2300	-
Benzo(a)Pyrene	<0.0186	<0.0183	<0.0202	<0.0178	0.025	0.08	0.47	-	-	-
Benzo(b)Fluoranthene	<0.0186	<0.0183	<0.0202	<0.0178	0.25	0.8	-	-	-	-
Benzo(g,h,i)Perylene	<0.0372	<0.0366	<0.0403	<0.0355	-	-	-	-	-	-
Benzo(k)Fluoranthene	<0.0186	<0.0183	<0.0202	<0.0178	-	-	-	-	-	-
Chrysene	<0.0186	<0.0183	<0.0202	<0.0178	-	-	-	-	-	-
Carbazole	<0.0372	<0.0366	<0.0403	<0.0355	-	-	-	-	-	-
Dibenz(a,h)Anthracene	<0.0186	<0.0183	<0.0202	<0.0178	0.025	0.08	0.47	-	-	-
Dibenzofuran	<0.0372	<0.0366	<0.0403	<0.0355	-	-	-	-	-	-
Fluoranthene	<0.0372	<0.0366	<0.0403	<0.0355	-	-	-	-	-	-
Fluorene	<0.0372	<0.0366	<0.0403	<0.0355	280	1400	1300	-	-	-
Indeno(1,2,3-cd)Pyrene	<0.0186	<0.0183	<0.0202	<0.0178	-	-	-	-	-	-
Naphthalene	<0.0743	<0.0731	<0.0806	<0.0711	0.17	0.78	0.72	11	50	500
Phenanthrene	<0.0743	<0.0731	<0.0806	<0.0711	-	-	-	_	-	_
Pyrene	<0.0372	<0.0366	<0.0403	<0.0355	110	-	-	-		_
1-Methylnaphthalene	<0.0743	<0.0731	<0.0806	<0.0711	_	-	-	_	-	-
2-Methylnaphthalene	< 0.0743	<0.0731	<0.0806	<0.0711	-	_	-			-

Notes:

- < = constituent was not detected at a concentration greater than laboratory reporting limit shown.</p>
- = not applicable or not established
- J = concentration is less than the reporting limit but greater than the laboratory detection limit. The reported value is an estimate.
- B = The same analyte was found in the associated laboratory blank sample.

Oregon Department of Environmental Quality Risk Based Concentrations (RBCs), Updated June 2023.

Shaded values exceed one or more DEQ Risk-Based Concentrations.

μg/L = micrograms per liter

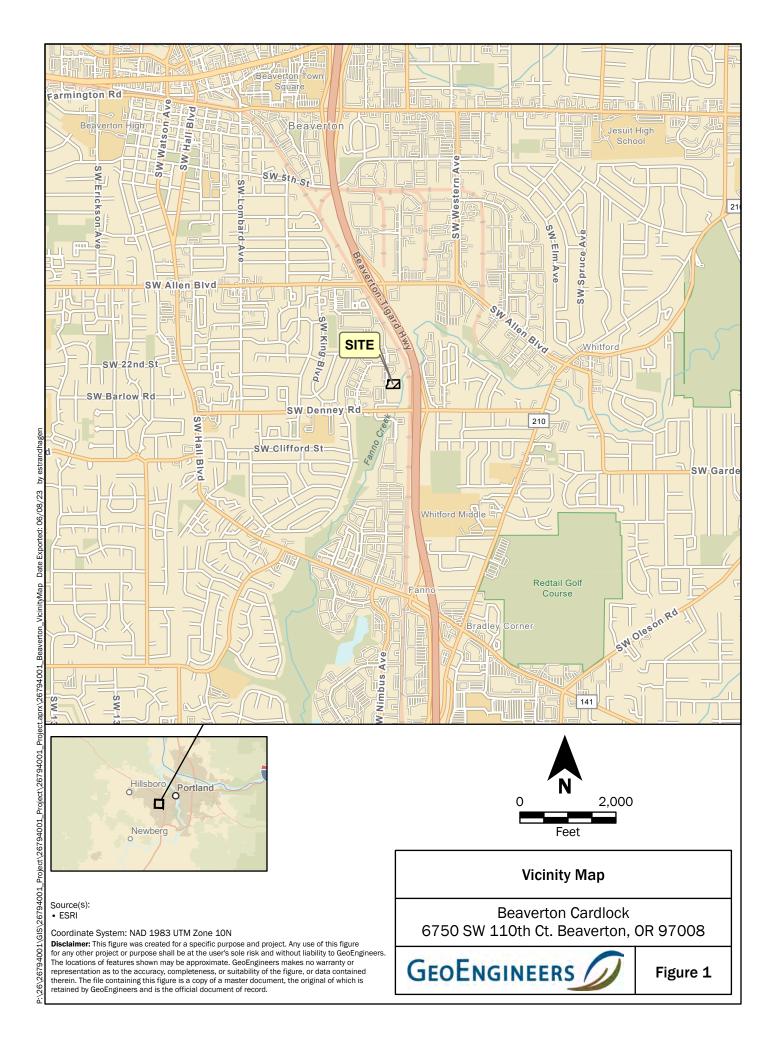
bgs = below ground surface

Res. = Residential

Urb. Res. = Urban Residential

Occ. = Occupational

Const. = Construction worker


Exc. = Excavation worker

Bold = Analyte was detected above the laboratory method detection limit.

The groundwater to indoor air RBC is the minimum of the chromic and acute RBCs published by DEQ.

መረው

APPENDIX A Field Procedures and Boring Logs

APPENDIX A FIELD PROCEDURES AND BORING LOGS

Underground Utility Locate

An underground utility locate was conducted within the area of the proposed boring locations to identify any subsurface utilities and/or potential underground physical hazards prior to beginning drilling activities. An underground utility check consisting of contacting a local utility alert service and a private utility locating service was also performed. Services performed included ground penetrating radar (GPR) location, and conductible location.

Soil Sampling

Soil borings were advanced using direct-push drilling equipment operated by Holt Drilling. Soil samples were collected in clean, plastic 1.5-inch diameter disposable liners during direct-push drilling activities.

A GeoEngineers representative classified the soil encountered in each of the borings. Soil in the explorations was visually classified in general accordance with ASTM International (ASTM) D2488-00.

Non-dedicated sampling equipment was decontaminated before each sampling attempt with an Alconox® solution wash and a distilled water rinse. Soil samples were obtained for field screening and possible chemical analysis. Soil samples obtained during the exploration activities were collected from the sampler with a new laboratory-supplied syringe and plunger (by EPA Method 5035), stainless-steel knife and/or spoon, or new nitrile gloves. A portion of each sample was placed in laboratory-prepared sample jars for chemical analysis.

Samples submitted for chemical analysis are shown on the boring logs. Soil samples collected during directpush drilling activities were placed in a cooler with ice for transport to Apex following standard chain-ofcustody procedures.

Groundwater Sample Collection and Handling

Groundwater samples were obtained from selected borings from a temporary polyvinyl chloride (PVC) well screen using a peristaltic pump with high-density polyethylene tubing at low-flow sampling rates. The groundwater was pumped at approximately 0.5 liter per minute until the water purged relatively clear, after which samples were collected at a flow rate of approximately 0.5 liter per minute (low-flow). The groundwater sample from the established monitoring well (W-2) was collected using a low-flow sampling procedure. The well was purged at a flow rate of 0.2 liter per minute, and parameters were allowed to stabilize before a sample was collected. Purging generated wastewater, which was drummed and temporarily stored on the property pending off-site disposal.

The groundwater samples were transferred directly from the tubing outlet to laboratory-prepared sample containers. New nitrile gloves were worn when collecting the groundwater sample. The sample containers were filled completely and placed in a cooler with ice pending transport to the analytical laboratory. Sample labels were completed and chain-of-custody procedures were followed in transporting the sample to the laboratory.

Field Screening of Soil Samples

Soil samples obtained from the borings were screened in the field for evidence of contamination using: (1) visual examination; (2) sheen screening; and (3) a photoionization detector (PID). The results of headspace and sheen screening are included on the boring logs and in Table 1 for soil samples tested by chemical analysis.

Visual screening consists of inspecting the soil for stains indicative of petroleum-related contamination. Visual screening is generally more effective when contamination is related to heavy petroleum hydrocarbons, such as motor oil or hydraulic oil, or when hydrocarbon concentrations are high. Sheen screening and headspace vapor screening are more sensitive methods that have been effective in detecting contamination at concentrations less than regulatory cleanup guidelines. Sheen screening involves placing soil in a pan of water and observing the water surface for signs of sheen. Sheen classifications are as follows:

- No Sheen (NS): No visible sheen on water surface.
- Slight Sheen (SS): Light, colorless, dull sheen; spread is irregular, not rapid; sheen dissipates rapidly. Natural organic matter in the soil may produce a slight sheen.
- Moderate Sheen (MS): Light to heavy sheen; may have some color/iridescence; spread is irregular to flowing, may be rapid; few remaining areas of no sheen on water surface.
- Heavy Sheen (HS): Heavy sheen with color/iridescence; spread is rapid; entire water surface may be covered with sheen.

Headspace vapor screening involves placing a portion of the soil sample in a plastic sample bag or clean 4-ounce jar covered with aluminum foil. Air is captured in the bag or jar and the bag or jar is shaken to expose the soil to the trapped air. The probe of a PID is inserted in the bag or used to puncture the aluminum foil covering the jar and the instrument measures the concentration of combustible vapor in the air removed from the sample headspace. The PID measures concentrations in parts per million (ppm) and is calibrated to isobutylene. The PID is designed to quantify combustible gas and organic vapor concentrations up to 2,500 ppm. Field screening results are site-specific and vary with soil type, soil moisture content, temperature and type of contaminant.

Soil Logging

The field representative visually classified the soil in accordance with ASTM Method D2488 and recorded soil descriptions and other relevant field screening details (e.g., staining, debris, odor etc.) in the field log. ASTM Method D2488 is the visual-manual soil description method that corresponds to laboratory ASTM Method D2487 (Unified Soil Classification System [USCS] method). The boring logs are presented in this appendix.

Sample Nomenclature

Soil samples collected from the borings were identified using the following identification system: B# (start depth-end depth), where B# is the boring number, and start depth-end depth is the depth interval at which

the specific sample was collected (e.g., B1 [7–8]) was collected from boring location B-1 between 7 and 8 feet bgs).

Boring Backfilling

The borings were backfilled with bentonite and restored to match the surrounding surface (concrete or asphalt) in accordance with applicable regulations for borehole abandonment.

Investigation-Derived Waste

IDW was transferred to a steel drum stored at the Site pending pickup and disposal coordination for disposal at a permitted off-site disposal facility.

SOIL CLASSIFICATION CHART

	MAJOR DIVIS	IONE	SYM	BOLS	TYPICAL		
	MAJOR DIVIS	10143	GRAPH	LETTER	DESCRIPTIONS		
	GRAVEL	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES		
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES		
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES		
SULS	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		
MORE THAN 50%	SAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS		
RETAINED ON NO. 200 SIEVE	AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELL SAND		
	MORE THAN 50% OF COARSE FRACTION PASSING	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURI		
	ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES		
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY		
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS LEAN CLAYS		
SOILS				OL	ORGANIC SILTS AND ORGANIC SILT CLAYS OF LOW PLASTICITY		
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS		
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY		
				ОН	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY		
	HIGHLY ORGANIC	SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		

NOTE: Multiple symbols are used to indicate borderline or dual soil classifications

Sampler Symbol Descriptions

2.4-inch I.D. split barrel / Dames & Moore (D&M)
Standard Penetration Test (SPT)
Shelby tube

Piston

Direct-Push

Bulk or grab

Continuous Coring

Blowcount is recorded for driven samplers as the number of blows required to advance sampler 12 inches (or distance noted). See exploration log for hammer weight and drop.

"P" indicates sampler pushed using the weight of the drill rig.

"WOH" indicates sampler pushed using the weight of the hammer.

ADDITIONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL			
GRAPH	LETTER	DESCRIPTIONS			
	AC	Asphalt Concrete			
	cc	Cement Concrete			
13	CR	Crushed Rock/ Quarry Spalls			
7 71 71 71 71 71 71 71 71 71 71 71 71 71	SOD	Sod/Forest Duff			
	TS	Topsoil			

Groundwater Contact

Ţ

Measured groundwater level in exploration, well, or piezometer

Measured free product in well or piezometer

Graphic Log Contact

Distinct contact between soil strata

Approximate contact between soil strata

Material Description Contact
Contact between geologic units

____ Contact between soil of the same geologic

Laboratory / Field Tests

%F Percent fines %G Percent gravel AL Atterberg limits CA Chemical analysis

CP Laboratory compaction test

CS Consolidation test
DD Dry density
DS Direct shear
HA Hydrometer analysis

MC Moisture content

MD Moisture content and dry density
Mohs Mohs hardness scale
OC Organic content

PM Permeability or hydraulic conductivity

PI Plasticity index
PL Point load test
PP Pocket penetrometer

SA Sieve analysis

TX Triaxial compression UC Unconfined compression

UU Unconsolidated undrained triaxial compression

VS Vane shear

Sheen Classification

NS No Visible Sheen SS Slight Sheen MS Moderate Sheen HS Heavy Sheen

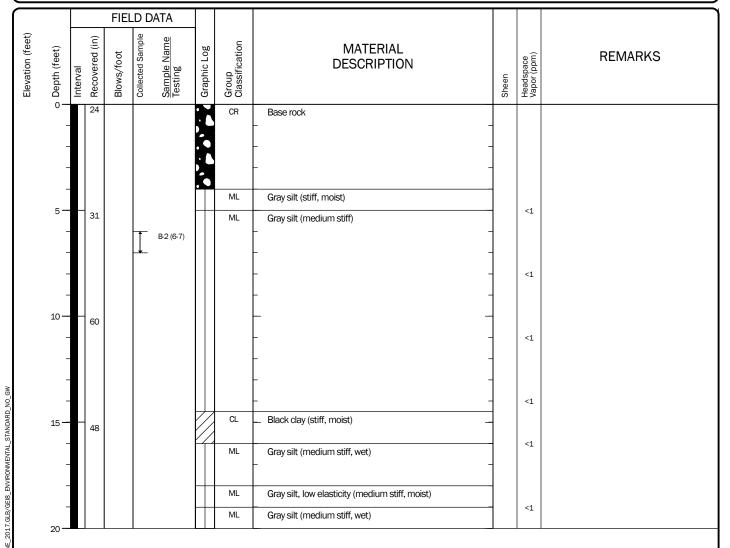
NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Key to Exploration Logs

Figure A-1

Start Drilled	<u>End</u>	Total Depth (ft)	2	Logged By Checked By	SJR	Driller Holt Services, Inc.		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data			Drilling Equipment	Geoprobe 7822DT
Latitude Longitude				System Datum			Groundwate	r not observed at time of exploration
Notes:								

			FIEL	D D	ATA						
Elevation (feet)	, Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
	0 -						ML	Gray silt with trace sand (medium stiff, dry)		<1	

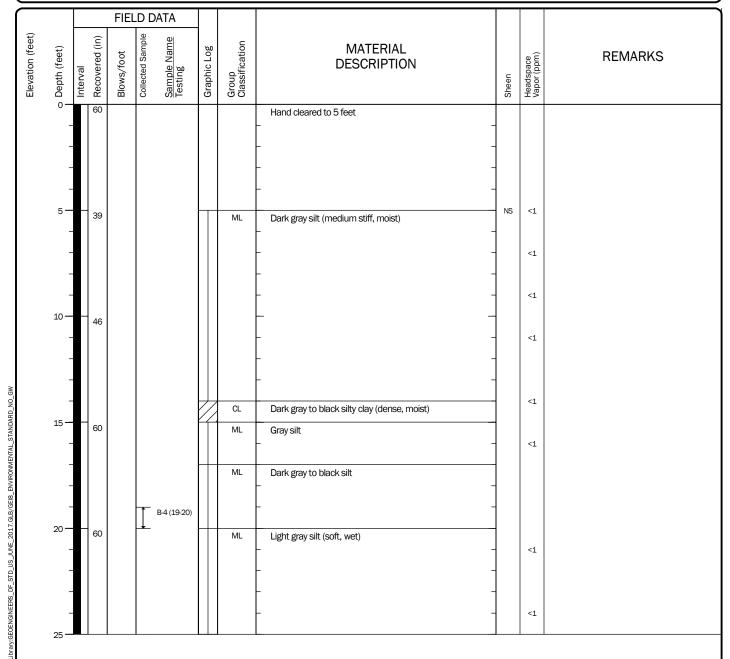

Hand auger refusal 1 foot west and 2 feet north of original location; three cases of hand auger refusal; refusal at 30 inches

Note: See Figure A-1 for explanation of symbols. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

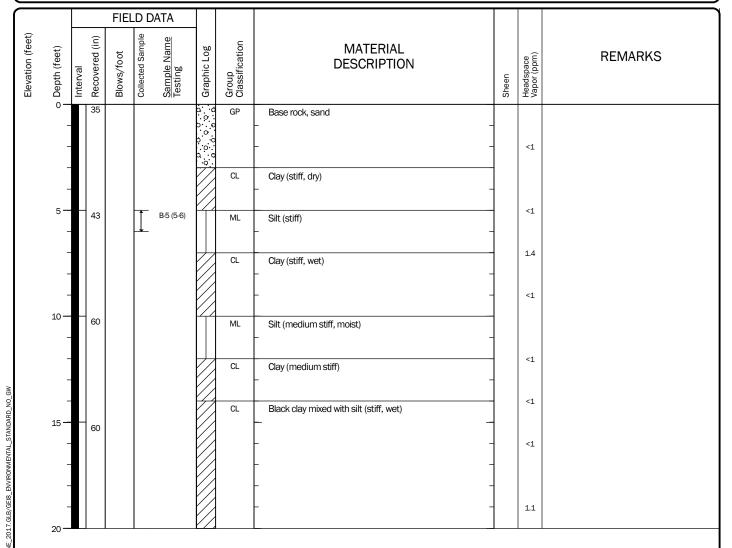
Log of Boring B-1

Start Drilled	<u>End</u>	Total Depth (ft)	20	Logged By Checked By	SJR	Driller Holt Services, Inc.		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data			Drilling Equipment	Geoprobe 7822DT
Latitude Longitude				System Datum			Groundwate	er not observed at time of exploration
Notes:								

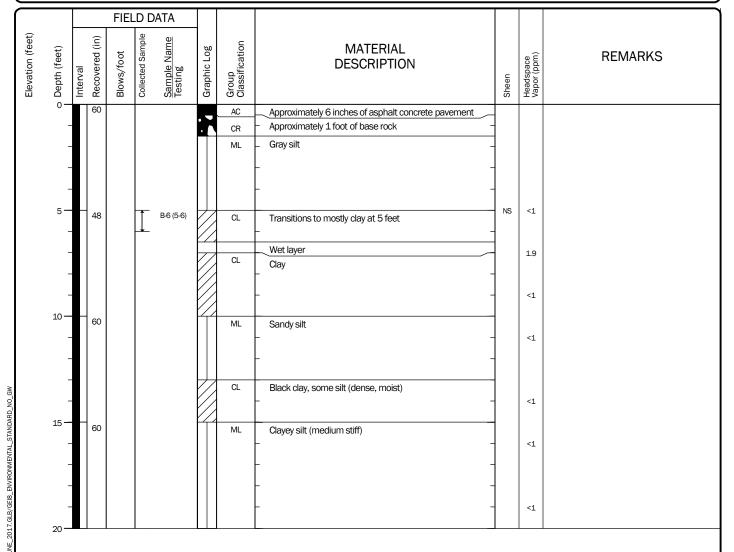
Log of Boring B-2


Start Drilled	<u>End</u>	Total Depth (ft)	20	Logged By Checked By	SJR	Driller Holt Services, Inc.		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data			Drilling Equipment	Geoprobe 7822DT
Latitude Longitude				System Datum			Groundwate	er not observed at time of exploration
Notes:								

Log of Boring B-3


Drilled	<u>Start</u> 6/15/2023	<u>End</u> 6/15/2023	Total Depth (ft)	25	Logged By Checked By	SJR	Driller Holt Services, Inc.		Drilling Method Direct Push
Surface Vertical	Elevation (ft) Datum	Undet	ermined		Hammer Data			Drilling Equipment	Geoprobe 7822DT
Latitude Longitud					System Datum			Groundwate	er not observed at time of exploration
Notes:									,

Log of Boring B-4


Start Drilled	<u>End</u>	Total Depth (ft)	20	Logged By Checked By	SJR	Driller Holt Services, Inc.		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data			Drilling Equipment	Geoprobe 7822DT
Latitude Longitude				System Datum			Groundwate	er not observed at time of exploration
Notes:								

Log of Boring B-5

Start Drilled	<u>End</u>	Total Depth (ft)	20	Logged By Checked By	SJR	Driller Holt Services, Inc.		Drilling Method Direct Push
Surface Elevation (ft) Vertical Datum	Undet	ermined		Hammer Data			Drilling Equipment	Geoprobe 7822DT
Latitude Longitude				System Datum			Groundwate	er not observed at time of exploration
Notes:								

Log of Boring B-6

Date Excavated	Total Depth (ft) 5	Logged By SJR Checked By	Excavator Holt Services, Inc. Equipment Hand Auger		Groundwater not observed Caving not observed
Surface Elevation (ft) Vertical Datum	Undetermined	Latitude Longitude		Coordinate S Horizontal Da	

		SAMPLE						
Elevation (feet)	Testing Sample	Sample Name Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION	Sheen	Headspace Vapor (ppm)	REMARKS
			000	GI	Sand/gravel			
	-		0 0					
	1—			GM	Silt/sand/gravel	NS	5.2	
		_		awi	Sity saity graver	10		
		HA (2)				NS	5.7	
2	2			GF.	Gravel			
	-	-	000					
	3—		o			NS	<1	
				ML	Clay/silt	INO	1	
	1							
2	4—			ML	Clay/silt	NS	<1	
					owy, out			
Ę	5 —		Ш			NS	_< <u>1</u>	I

Notes: See Figure A-1 for explanation of symbols. The depths on the hand-augered boring logs are based on an average of measurements across the hand-auger and should be considered accurate to $\frac{1}{2}$ foot. Coordinates Data Source: Horizontal approximated based on . Vertical approximated based on .

Log of Hand Auger HA

APPENDIX B Chemical Analytical Laboratory Reports

APPENDIX B CHEMICAL ANALYTICAL LABORATORY REPORTS

Analytical Methods

Chain-of-custody procedures were followed during the transport of the soil samples collected during direct-push drilling activities to the analytical laboratory. The samples were held in cold storage pending extraction and/or analysis.

The analytical results, analytical method references and laboratory quality control (QC) records are included in this appendix. The analytical results are also summarized in the text and tables of this report.

Analytical Data Review

The analytical laboratories maintain an internal quality assurance program as documented in their respective laboratory quality assurance manuals. The laboratories use a combination of blanks, surrogate recoveries, duplicates, matrix spike recoveries, matrix spike duplicate recoveries, laboratory control spike recoveries and laboratory control spike duplicate recoveries to evaluate the validity of the analytical results. The laboratories also use data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. Data quality goals were included in the laboratory reports. The laboratories compared each group of samples with the existing data quality goals and noted any exceptions in the laboratory report. Data quality exceptions documented by the accredited laboratories were reviewed by GeoEngineers and are addressed in the data quality exception section of this appendix.

Analytical Data Review Summary

Following data quality exceptions were noted in the laboratory reports during our review.

- In QC batch 23F0713 (report A3F1237), the matrix spike (MS) recovery percentage (using the non-source QC sample) was outside acceptable limits for chloroethane, 1,1,1,2-tetrachloroethane, and trichlorofluoromethane. No associated sample data were detected; therefore, no sample data were flagged as a result.
- In QC batch 23F0647 (report A3F1239), the MS recovery percentage (using the non-source QC sample) was outside acceptable limits for chloroethane and trichlorofluoromethane. No associated sample data were detected; therefore, no sample data were flagged as a result
- In QC batch 23F0648 (report A3F1239), the MS recovery percentage (using the non-source QC sample) was outside acceptable limits for n-propylbenzene. No associated sample data were detected, therefore; no data were flagged as a result.
- In QC batch 23F0706 (report A3F1239), the MS recovery percentage (using the non-source QC sample) was outside acceptable limits for acenaphthene, fluorene, 1-methylnaphthalene, 2-methylnaphthalene, phenanthrene, and dibenzofuran. No sample data were flagged as a result.
- In some cases, the surrogate recovery was either estimated or not available due to sample dilution due to matrix interference.

Based on our data quality review, it is our opinion that the laboratory data qualifier listed for the sample above is not significant with respect to the use of the data for characterization purposes. The samples/results were considered of acceptable quality for their intended use in this report.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Monday, June 26, 2023 lan Maguire GeoEngineers 4000 Kruse Way Place, Bldg 3 Suite 200 Lake Oswego, OR 97035

RE: A3F1237 - Beaverton Phs. II - [none]

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3F1237, which was received by the laboratory on 6/16/2023 at 1:55:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: cobrien@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Default Cooler 3.5 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMATIO	N	
Client Sample ID	Laboratory ID Matrix	Date Sampled	Date Received
W-2 (1)	A3F1237-01 Water	06/16/23 13:00	06/16/23 13:55

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 2 of 32

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
W-2 (1) (A3F1237-01)				Matrix: Wate	ər	Batch:	23F0874	
Diesel	ND		0.0762	mg/L	1	06/23/23 21:27	NWTPH-Dx LL	
Oil	ND		0.152	mg/L	1	06/23/23 21:27	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 69 %	Limits: 50-150 %	6 I	06/23/23 21:27	NWTPH-Dx LL	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons	(Benzene ti	nrough Naphtha	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
W-2 (1) (A3F1237-01)				Matrix: Wate	ər	Batch:	23F0713	
Gasoline Range Organics	ND		0.100	mg/L	1	06/20/23 20:10	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 98 % 109 %	Limits: 50-150 % 50-150 %		06/20/23 20:10 06/20/23 20:10	NWTPH-Gx (MS) NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

ANALYTICAL SAMPLE RESULTS

	Vo	olatile Organ	ic Compound	ds by EPA 8	260D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
W-2 (1) (A3F1237-01)				Matrix: Wa	ater	Batch:	23F0713	
Acetone	ND		20.0	ug/L	1	06/20/23 20:10	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	06/20/23 20:10	EPA 8260D	
Benzene	ND		0.200	ug/L	1	06/20/23 20:10	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	06/20/23 20:10	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	06/20/23 20:10	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	06/20/23 20:10	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	06/20/23 20:10	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	06/20/23 20:10	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	06/20/23 20:10	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	06/20/23 20:10	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	06/20/23 20:10	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	06/20/23 20:10	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	06/20/23 20:10	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	06/20/23 20:10	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	06/20/23 20:10	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	06/20/23 20:10	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	06/20/23 20:10	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	06/20/23 20:10	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	06/20/23 20:10	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L ug/L	1	06/20/23 20:10	EPA 8260D	
-,	110		J. 100	-5 L	•		-	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number:[none]Report ID:Lake Oswego, OR 97035Project Manager:Ian MaguireA3F1237 - 06 26 23 1644

ANALYTICAL SAMPLE RESULTS

A 1.	Sample	Detection	Reporting	** *-	P.1 -1	Date	M 4 15 2	3.7
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
W-2 (1) (A3F1237-01)				Matrix: Wa	ater	Batch:	23F0713	
1,2-Dichloropropane	ND		0.500	ug/L	1	06/20/23 20:10	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	06/20/23 20:10	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	06/20/23 20:10	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	06/20/23 20:10	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	06/20/23 20:10	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	06/20/23 20:10	EPA 8260D	
Methyl tert-butyl ether (MTBE)	5.58		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
Naphthalene	ND		2.00	ug/L	1	06/20/23 20:10	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	06/20/23 20:10	EPA 8260D	
Styrene	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	06/20/23 20:10	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	06/20/23 20:10	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	06/20/23 20:10	EPA 8260D	
Toluene	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	06/20/23 20:10	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	06/20/23 20:10	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	06/20/23 20:10	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	06/20/23 20:10	EPA 8260D	
Trichloroethene (TCE)	ND		0.400	ug/L	1	06/20/23 20:10	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	06/20/23 20:10	EPA 8260D	
,2,3-Trichloropropane	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
,2,4-Trimethylbenzene	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
,3,5-Trimethylbenzene	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
/inyl chloride	ND		0.400	ug/L	1	06/20/23 20:10	EPA 8260D	
n,p-Xylene	ND		1.00	ug/L	1	06/20/23 20:10	EPA 8260D	
o-Xylene	ND		0.500	ug/L ug/L	1	06/20/23 20:10	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

ANALYTICAL SAMPLE RESULTS

	Volatile Organic Compounds by EPA 8260D									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
W-2 (1) (A3F1237-01)				Matrix: Wa	ter	Batch:	23F0713			
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 110 %	Limits: 80-120	% I	06/20/23 20:10	EPA 8260D			
Toluene-d8 (Surr)			103 %	80-120	% 1	06/20/23 20:10	EPA 8260D			
4-Bromofluorobenzene (Surr)			108 %	80-120	% I	06/20/23 20:10	EPA 8260D			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number:[none]Report ID:Lake Oswego, OR 97035Project Manager:Ian MaguireA3F1237 - 06 26 23 1644

ANALYTICAL SAMPLE RESULTS

					A 8270E (Large Volume Injection)						
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
W-2 (1) (A3F1237-01)				Matrix: Wate	ir	Batch:	: 23F0693				
Acenaphthene	ND		0.0355	ug/L	1	06/20/23 18:20	EPA 8270E LVI	_			
Acenaphthylene	ND		0.0355	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Anthracene	ND		0.0355	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Benz(a)anthracene	ND		0.0178	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Benzo(a)pyrene	ND		0.0178	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Benzo(b)fluoranthene	ND		0.0178	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Benzo(k)fluoranthene	ND		0.0178	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Benzo(g,h,i)perylene	ND		0.0355	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Chrysene	ND		0.0178	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Dibenz(a,h)anthracene	ND		0.0178	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Fluoranthene	ND		0.0355	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Fluorene	ND		0.0355	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Indeno(1,2,3-cd)pyrene	ND		0.0178	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
1-Methylnaphthalene	ND		0.0711	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
2-Methylnaphthalene	ND		0.0711	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Naphthalene	ND		0.0711	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Phenanthrene	ND		0.0711	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Pyrene	ND		0.0355	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Carbazole	ND		0.0355	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Dibenzofuran	ND		0.0355	ug/L	1	06/20/23 18:20	EPA 8270E LVI				
Surrogate: Acenaphthylene-d8 (Surr)		Recov	very: 81 %	Limits: 78-134 %	6 1	06/20/23 18:20	EPA 8270E LVI				
Benzo(a)pyrene-d12 (Surr)			103 %	80-132 %	6 I	06/20/23 18:20	EPA 8270E LVI				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)										
	Sample	Detection	Reporting			Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
W-2 (1) (A3F1237-01)				Matrix: Wa	ater					
Batch: 23F0682										
Arsenic	5.81		1.00	ug/L	1	06/19/23 22:03	EPA 6020B			
Barium	114		2.00	ug/L	1	06/19/23 22:03	EPA 6020B			
Cadmium	ND		0.200	ug/L	1	06/19/23 22:03	EPA 6020B			
Chromium	ND		2.00	ug/L	1	06/19/23 22:03	EPA 6020B			
Lead	0.372		0.200	ug/L	1	06/19/23 22:03	EPA 6020B			
Mercury	ND		0.0800	ug/L	1	06/19/23 22:03	EPA 6020B			
Selenium	ND		1.00	ug/L	1	06/19/23 22:03	EPA 6020B			
Silver	ND		0.200	ug/L	1	06/19/23 22:03	EPA 6020B			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0874 - EPA 3510C (Fuels/Acid	Ext.)					Wa	ter				
Blank (23F0874-BLK1)			Prepared	: 06/23/23	11:03 Anal	lyzed: 06/23/	/23 20:17					
NWTPH-Dx LL												
Diesel	ND		0.0800	mg/L	1							
Oil	ND		0.160	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 81 %	Limits: 50)-150 %	Dilı	ution: 1x					
LCS (23F0874-BS1)			Prepared	: 06/23/23	11:03 Anal	lyzed: 06/23/	/23 20:40					
NWTPH-Dx LL												
Diesel	0.310		0.0800	mg/L	1	0.500		62	36-132%			
Surr: o-Terphenyl (Surr)		Rece	overy: 88 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS Dup (23F0874-BSD1)			Prepared	: 06/23/23	11:03 Anal	lyzed: 06/23/	/23 21:03					Q-19
NWTPH-Dx LL												
Diesel	0.309		0.0800	mg/L	1	0.500		62	36-132%	0.5	30%	
Surr: o-Terphenyl (Surr)		Rece	overy: 86 %	Limits: 50	0-150 %	Dilı	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0713 - EPA 5030C							Wa	ter				
Blank (23F0713-BLK1)			Prepared	d: 06/20/23	10:01 Ana	lyzed: 06/20	/23 12:51					
NWTPH-Gx (MS) Gasoline Range Organics	ND		0.100	mg/L	, 1							
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	overy: 94 % 107 %	Limits: 5	0-150 % 0-150 %	Dilt	ution: Ix					
LCS (23F0713-BS2)			Prepared	1: 06/20/23	10:01 Ana	lyzed: 06/20	/23 12:24					
NWTPH-Gx (MS) Gasoline Range Organics	0.472		0.100	mg/L	. 1	0.500		94	80-120%			
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	overy: 96 % 102 %	Limits: 5	0-150 % 0-150 %	Dilt	ution: Ix					
Duplicate (23F0713-DUP1)			Prepared	1: 06/20/23	10:01 Ana	lyzed: 06/20	/23 19:42					
QC Source Sample: Non-SDG (A3	F1280-01)											
Gasoline Range Organics	ND		0.100	mg/L	. 1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	overy: 98 % 110 %	Limits: 5	0-150 % 0-150 %	Dili	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Batch 23F0713 - EPA 5030C Water Blank (23F0713-BLK1) Prepared: 06/20/23 10:01 Analyzed: 06/20/23 12:51 EPA 8260D ND 20.0 ug/L Acetone ND 2.00 Acrylonitrile ug/L 1 Benzene ND 0.200 ug/L 1 Bromobenzene ND 0.500 1 ug/L Bromochloromethane ND 1.00 ug/L 1 Bromodichloromethane ND 1.00 ug/L 1 Bromoform ND 1.00 ug/L Bromomethane 5.00 ND ug/L 1 2-Butanone (MEK) ND 10.0 ug/L 1 n-Butylbenzene ND 1.00 1 ug/L sec-Butylbenzene ND 1.00 ug/L 1 ND tert-Butylbenzene 1.00 1 ug/L ---Carbon disulfide ND 10.0 ug/L 1 Carbon tetrachloride ND 1.00 ug/L 1 Chlorobenzene ND 0.500 ug/L 1 Chloroethane ND 5.00 ug/L 1 ---Chloroform ND 1.00 ug/L 1 ND 5.00 Chloromethane 1 ug/L 2-Chlorotoluene ND 1.00 ug/L 1 4-Chlorotoluene ND 1.00 ug/L 1 Dibromochloromethane ND 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.500 ug/L 1 Dibromomethane ND 1.00 ug/L 1 0.500 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.500 ug/L 1

Apex Laboratories

Dichlorodifluoromethane

1,2-Dichloroethane (EDC)

1,1-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

COSi

ND

ND

ND

ND

ND

ND

1.00

0.400

0.400

0.400

0.400

0.400

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

1

1

1

1

1

1

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0713 - EPA 5030C							Wat	er				
Blank (23F0713-BLK1)			Prepared	: 06/20/23	10:01 Anal	yzed: 06/20/	/23 12:51					
1,2-Dichloropropane	ND		0.500	ug/L	1							
1,3-Dichloropropane	ND		1.00	ug/L	1							
2,2-Dichloropropane	ND		1.00	ug/L	1							
,1-Dichloropropene	ND		1.00	ug/L	1							
eis-1,3-Dichloropropene	ND		1.00	ug/L	1							
rans-1,3-Dichloropropene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Hexachlorobutadiene	ND		5.00	ug/L	1							
2-Hexanone	ND		10.0	ug/L	1							
sopropylbenzene	ND		1.00	ug/L	1							
-Isopropyltoluene	ND		1.00	ug/L	1							
Methylene chloride	ND		10.0	ug/L	1							
-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		2.00	ug/L	1							
n-Propylbenzene	ND		0.500	ug/L	1							
Styrene	ND		1.00	ug/L	1							
,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1							
,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1							
Tetrachloroethene (PCE)	ND		0.400	ug/L	1							
Toluene	ND		1.00	ug/L	1							
,2,3-Trichlorobenzene	ND		2.00	ug/L	1							
,2,4-Trichlorobenzene	ND		2.00	ug/L	1							
,1,1-Trichloroethane	ND		0.400	ug/L	1							
,1,2-Trichloroethane	ND		0.500	ug/L	1							
Trichloroethene (TCE)	ND		0.400	ug/L	1							
Frichlorofluoromethane	ND		2.00	ug/L	1							
,2,3-Trichloropropane	ND		1.00	ug/L	1							
,2,4-Trimethylbenzene	ND		1.00	ug/L	1							
,3,5-Trimethylbenzene	ND		1.00	ug/L	1							
/inyl chloride	ND		0.200	ug/L	1							
n,p-Xylene	ND		1.00	ug/L	1							
-Xylene	ND		0.500	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco		Limits: 80		Dila	ıtion: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0713 - EPA 5030C							Wa	iter				
Blank (23F0713-BLK1)			Prepared	1: 06/20/23	10:01 Anal	yzed: 06/20	/23 12:51					
Surr: Toluene-d8 (Surr)		Reco	very: 104 %	Limits: 80	0-120 %	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			106 %	80	0-120 %		"					
LCS (23F0713-BS1)			Prepared	1: 06/20/23	10:01 Anal	lyzed: 06/20	/23 11:52					
EPA 8260D												
Acetone	38.2		20.0	ug/L	1	40.0		95	80-120%			
Acrylonitrile	21.7		2.00	ug/L	1	20.0		109	80-120%			
Benzene	20.5		0.200	ug/L	1	20.0		102	80-120%			
Bromobenzene	19.9		0.500	ug/L	1	20.0		99	80-120%			
Bromochloromethane	22.8		1.00	ug/L	1	20.0		114	80-120%			
Bromodichloromethane	23.5		1.00	ug/L	1	20.0		118	80-120%			
Bromoform	20.7		1.00	ug/L	1	20.0		104	80-120%			
Bromomethane	23.9		5.00	ug/L	1	20.0		120	80-120%			
2-Butanone (MEK)	43.6		10.0	ug/L	1	40.0		109	80-120%			
n-Butylbenzene	20.2		1.00	ug/L	1	20.0		101	80-120%			
sec-Butylbenzene	19.2		1.00	ug/L	1	20.0		96	80-120%			
tert-Butylbenzene	17.6		1.00	ug/L	1	20.0		88	80-120%			
Carbon disulfide	20.2		10.0	ug/L	1	20.0		101	80-120%			
Carbon tetrachloride	20.7		1.00	ug/L	1	20.0		104	80-120%			
Chlorobenzene	19.8		0.500	ug/L	1	20.0		99	80-120%			
Chloroethane	32.3		5.00	ug/L	1	20.0		161	80-120%			ICV-01, Q
Chloroform	21.2		1.00	ug/L	1	20.0		106	80-120%			
Chloromethane	18.9		5.00	ug/L	1	20.0		95	80-120%			
2-Chlorotoluene	18.8		1.00	ug/L	1	20.0		94	80-120%			
4-Chlorotoluene	19.2		1.00	ug/L	1	20.0		96	80-120%			
Dibromochloromethane	20.0		1.00	ug/L	1	20.0		100	80-120%			
1,2-Dibromo-3-chloropropane	18.4		5.00	ug/L	1	20.0		92	80-120%			
1,2-Dibromoethane (EDB)	20.1		0.500	ug/L	1	20.0		100	80-120%			
Dibromomethane	22.2		1.00	ug/L	1	20.0		111	80-120%			
1,2-Dichlorobenzene	20.1		0.500	ug/L	1	20.0		101	80-120%			
1,3-Dichlorobenzene	20.1		0.500	ug/L	1	20.0		101	80-120%			
1,4-Dichlorobenzene	19.0		0.500	ug/L	1	20.0		95	80-120%			
Dichlorodifluoromethane	18.1		1.00	ug/L	1	20.0		90	80-120%			
1,1-Dichloroethane	21.1		0.400	ug/L	1	20.0		106	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0713 - EPA 5030C							Wa	iter				
LCS (23F0713-BS1)			Prepared	: 06/20/23	10:01 Anal	lyzed: 06/20	/23 11:52					_
1,2-Dichloroethane (EDC)	21.5		0.400	ug/L	1	20.0		108	80-120%			
1,1-Dichloroethene	19.8		0.400	ug/L	1	20.0		99	80-120%			
cis-1,2-Dichloroethene	20.4		0.400	ug/L	1	20.0		102	80-120%			
trans-1,2-Dichloroethene	19.9		0.400	ug/L	1	20.0		100	80-120%			
1,2-Dichloropropane	21.2		0.500	ug/L	1	20.0		106	80-120%			
1,3-Dichloropropane	19.9		1.00	ug/L	1	20.0		100	80-120%			
2,2-Dichloropropane	21.1		1.00	ug/L	1	20.0		106	80-120%			
1,1-Dichloropropene	20.1		1.00	ug/L	1	20.0		100	80-120%			
cis-1,3-Dichloropropene	21.0		1.00	ug/L	1	20.0		105	80-120%			
trans-1,3-Dichloropropene	20.2		1.00	ug/L	1	20.0		101	80-120%			
Ethylbenzene	19.8		0.500	ug/L	1	20.0		99	80-120%			
Hexachlorobutadiene	21.9		5.00	ug/L	1	20.0		110	80-120%			
2-Hexanone	41.2		10.0	ug/L	1	40.0		103	80-120%			
Isopropylbenzene	18.8		1.00	ug/L	1	20.0		94	80-120%			
4-Isopropyltoluene	19.4		1.00	ug/L	1	20.0		97	80-120%			
Methylene chloride	20.7		10.0	ug/L	1	20.0		104	80-120%			
4-Methyl-2-pentanone (MiBK)	41.0		10.0	ug/L	1	40.0		103	80-120%			
Methyl tert-butyl ether (MTBE)	17.5		1.00	ug/L	1	20.0		88	80-120%			
Naphthalene	13.8		2.00	ug/L	1	20.0		69	80-120%			Q-55
n-Propylbenzene	19.4		0.500	ug/L	1	20.0		97	80-120%			
Styrene	20.0		1.00	ug/L	1	20.0		100	80-120%			
1,1,1,2-Tetrachloroethane	23.9		0.400	ug/L	1	20.0		119	80-120%			
1,1,2,2-Tetrachloroethane	21.7		0.500	ug/L	1	20.0		109	80-120%			
Tetrachloroethene (PCE)	19.2		0.400	ug/L	1	20.0		96	80-120%			
Toluene	19.1		1.00	ug/L	1	20.0		96	80-120%			
1,2,3-Trichlorobenzene	18.6		2.00	ug/L	1	20.0		93	80-120%			
1,2,4-Trichlorobenzene	19.1		2.00	ug/L	1	20.0		96	80-120%			
1,1,1-Trichloroethane	20.8		0.400	ug/L	1	20.0		104	80-120%			
1,1,2-Trichloroethane	20.5		0.500	ug/L	1	20.0		103	80-120%			
Trichloroethene (TCE)	19.8		0.400	ug/L	1	20.0		99	80-120%			
Trichlorofluoromethane	28.6		2.00	ug/L	1	20.0		143	80-120%			Q-56
1,2,3-Trichloropropane	20.0		1.00	ug/L	1	20.0		100	80-120%			
1,2,4-Trimethylbenzene	20.4		1.00	ug/L	1	20.0		102	80-120%			
1,3,5-Trimethylbenzene	20.1		1.00	ug/L	1	20.0		100	80-120%			
-				-								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0713 - EPA 5030C							Wa	ter				
LCS (23F0713-BS1)			Prepared	: 06/20/23	10:01 Ana	lyzed: 06/20	/23 11:52					
/inyl chloride	20.6		0.200	ug/L	1	20.0		103	80-120%			
n,p-Xylene	39.3		1.00	ug/L	1	40.0		98	80-120%			
-Xylene	18.0		0.500	ug/L	1	20.0		90	80-120%			
urr: 1,4-Difluorobenzene (Surr)		Reco	very: 104 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80)-120 %		"					
Ouplicate (23F0713-DUP1)			Prepared	: 06/20/23	10:01 Ana	lyzed: 06/20.	/23 19:42					
OC Source Sample: Non-SDG (A3	F1280-01)											
Acetone	ND		20.0	ug/L	1		ND				30%	
crylonitrile	ND		2.00	ug/L	1		ND				30%	
Benzene	ND		0.200	ug/L	1		ND				30%	
romobenzene	ND		0.500	ug/L	1		ND				30%	
Bromochloromethane	ND		1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND		1.00	ug/L	1		ND				30%	
Bromoform	ND		1.00	ug/L	1		ND				30%	
Bromomethane	ND		5.00	ug/L	1		ND				30%	
-Butanone (MEK)	ND		10.0	ug/L	1		ND				30%	
-Butylbenzene	ND		1.00	ug/L	1		ND				30%	
ec-Butylbenzene	ND		1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND		1.00	ug/L	1		ND				30%	
Carbon disulfide	ND		10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND		1.00	ug/L	1		ND				30%	
'hlorobenzene	ND		0.500	ug/L	1		ND				30%	
Chloroethane	ND		5.00	ug/L	1		ND				30%	
Chloroform	2.38		1.00	ug/L	1		2.24			6	30%	
Chloromethane	ND		5.00	ug/L	1		ND				30%	
-Chlorotoluene	ND		1.00	ug/L	1		ND				30%	
-Chlorotoluene	ND		1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND		1.00	ug/L	1		ND				30%	
,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND		0.500	ug/L	1		ND				30%	
Dibromomethane	ND		1.00	ug/L	1		ND				30%	
,2-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution RPD Limit Amount Result Limits Limit Notes Batch 23F0713 - EPA 5030C Water Duplicate (23F0713-DUP1) Prepared: 06/20/23 10:01 Analyzed: 06/20/23 19:42 QC Source Sample: Non-SDG (A3F1280-01) 1,3-Dichlorobenzene ND 0.500 ug/L 1 ND 30% ND 0.500 1,4-Dichlorobenzene ug/L 1 ND 30% Dichlorodifluoromethane ND 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.400 ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.400 1 ND 30% ug/L ---ND 0.400 1,1-Dichloroethene ug/L 1 ND 30% cis-1,2-Dichloroethene ND 0.400 ug/L 1 ND 30% trans-1,2-Dichloroethene ND 0.400 ND 30% ug/L 1 1,2-Dichloropropane ND 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 1.00 ug/L 1 ND 30% 2,2-Dichloropropane ND 1.00 ug/L 1 ND 30% ND 1.00 ND 30% 1,1-Dichloropropene ug/L 1 cis-1,3-Dichloropropene ND 1.00 ug/L 1 ND 30% ND 1.00 ND 30% trans-1,3-Dichloropropene ug/L 1 0.500 Ethylbenzene ND ug/L 1 ND 30% Hexachlorobutadiene ND 5.00 ug/L 1 ND ___ 30% 2-Hexanone ND 10.0 ug/L 1 ND 30% ND 1.00 ND 30% Isopropylbenzene 1 ug/L ND 4-Isopropyltoluene ND 1.00 ug/L 1 30% 10.0 Methylene chloride ND ND 30% ug/L 1 4-Methyl-2-pentanone (MiBK) ND ND 30% 10.0 ug/L 1 Methyl tert-butyl ether (MTBE) ND ---1.00 ug/L 1 ND ---30% Naphthalene ND 2.00 ug/L 1 ND 30% ND 0.500 ND 30% n-Propylbenzene ug/L 1 ND 1.00 ND 30% Styrene ug/L 1 ND 1,1,1,2-Tetrachloroethane 0.400 ND 30% ug/L 1 1,1,2,2-Tetrachloroethane ND 0.500 ND 30% ug/L 1 Tetrachloroethene (PCE) R-06 ND 0.600 ug/L 1 ND 30% ND 1.00 ug/L 1 ND 30% 1,2,3-Trichlorobenzene ND 2.00 ND 30% ug/L 1 1,2,4-Trichlorobenzene ND 2.00 ug/L 1 ND 30% 0.400 ND 1,1,1-Trichloroethane ND 1 30% ug/L 1,1,2-Trichloroethane ND 0.500 ug/L 1 ND 30%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0713 - EPA 5030C							Wa	ter				
Duplicate (23F0713-DUP1)			Prepared	d: 06/20/23	10:01 Ana	lyzed: 06/20	/23 19:42					
QC Source Sample: Non-SDG (A3	F1280-01)											
Trichloroethene (TCE)	ND		0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND		2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND		1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1		ND				30%	
Vinyl chloride	ND		0.200	ug/L	1		ND				30%	
m,p-Xylene	ND		1.00	ug/L	1		ND				30%	
o-Xylene	ND		0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 110 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			104 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			109 %	80	0-120 %		"					
QC Source Sample: Non-SDG (A3	F1282-01)											
EPA 8260D	207		100	/ *	_	200	NID	00	20.1600/			
Acetone	287		100	ug/L	5	200	ND	98	39-160%			
Acrylonitrile	114		10.0	ug/L	5	100	ND	114	63-135%			
Benzene	110		1.00	ug/L	5	100	ND	110	79-120%			
Bromobenzene	104		2.50	ug/L	5	100	ND	104	80-120%			
Bromochloromethane	118		5.00	ug/L	5	100	ND	118	78-123%			
Bromodichloromethane	124		5.00	ug/L	5	100	ND	124	79-125%			
Bromoform	109		5.00	ug/L	5	100	ND	109	66-130%			
Bromomethane	135		25.0	ug/L	5	100	ND	135	53-141%			
2-Butanone (MEK)	243		50.0	ug/L	5	200	ND	122	56-143%			
n-Butylbenzene	113 106		5.00	ug/L	5	100	ND	113	75-128%			
sec-Butylbenzene			5.00	ug/L	5	100	ND	106	77-126%			
ert-Butylbenzene Carbon disulfide	96.4 112		5.00 50.0	ug/L	5 5	100 100	ND ND	96 112	78-124% 64-133%			
Carbon disumde Carbon tetrachloride			5.00	ug/L	5	100	ND ND					
Chlorobenzene	115 103		2.50	ug/L		100		115	72-136%			
Chlorobenzene Chloroethane	103		2.50	ug/L	5 5	100	ND ND	103	80-120%			ICV
Chloroform	172		5.00	ug/L ug/L	5	100	12.6	172 112	60-138% 79-124%			Q

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: **Beaverton Phs. II**

4000 Kruse Way Place, Bldg 3 Suite 200 Project Number: [none] Report ID: Lake Oswego, OR 97035 Project Manager: Ian Maguire A3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23F0713 - EPA 5030C Water Matrix Spike (23F0713-MS1) Prepared: 06/20/23 10:01 Analyzed: 06/20/23 14:13 V-01, V-13 QC Source Sample: Non-SDG (A3F1282-01) 5 Chloromethane 100 25.0 ug/L 100 ND 100 50-139% 99.4 5.00 5 100 99 2-Chlorotoluene ug/L ND 79-122% ug/L 5 4-Chlorotoluene 101 5.00 100 ND 101 78-122% 5 Dibromochloromethane 105 5.00 ug/L 100 ND 105 74-126% 1,2-Dibromo-3-chloropropane 101 25.0 5 100 ND 101 62-128% ug/L 1,2-Dibromoethane (EDB) 104 2.50 5 100 ND 104 77-121% ug/L Dibromomethane 115 5.00 ug/L 5 100 ND 115 79-123% 105 5 100 ND 105 80-120% 1,2-Dichlorobenzene 2.50 ug/L 1,3-Dichlorobenzene 105 2.50 ug/L 5 100 ND 105 80-120% 1,4-Dichlorobenzene 99.2 2.50 ug/L 5 100 ND 99 79-120% Dichlorodifluoromethane 106 5.00 ug/L 5 100 ND 106 32-152% 5 1,1-Dichloroethane 115 2.00 100 ND 77-125% ug/L 115 5 100 ND 1,2-Dichloroethane (EDC) 112 2.00 ug/L 112 73-128% 5 100 1,1-Dichloroethene 113 2.00 ND 113 71-131% ug/L 5 cis-1,2-Dichloroethene 109 2.00 ug/L 100 ND 109 78-123% trans-1,2-Dichloroethene 109 2.00 ug/L 5 100 ND 109 75-124% 1,2-Dichloropropane 111 2.50 ug/L 5 100 ND 111 78-122% 103 5.00 5 100 ND 103 80-120% 1,3-Dichloropropane ug/L 117 5 100 ND 60-139% 2,2-Dichloropropane 5.00 ug/L 117 5.00 5 1,1-Dichloropropene 111 100 ND 111 79-125% ug/L 110 5 100 ND 110 75-124% cis-1,3-Dichloropropene 5.00 ug/L trans-1,3-Dichloropropene 106 ---5.00 ug/L 5 100 ND 106 73-127% Ethylbenzene 106 2.50 ug/L 5 100 ND 106 79-121% 128 25.0 5 100 ND 128 66-134% Hexachlorobutadiene ug/L 224 50.0 5 200 ND 57-139% 2-Hexanone ug/L 112 101 100 5.00 5 ND 101 72-131% Isopropylbenzene ug/L 4-Isopropyltoluene 105 5.00 5 100 ND 105 77-127% ug/L 107 5 ND 74-124% Methylene chloride 50.0 ug/L 100 107 4-Methyl-2-pentanone (MiBK) 224 50.0 ug/L 5 200 ND 112 67-130% Methyl tert-butyl ether (MTBE) 91.8 5.00 5 100 ND 92 71-124%

ug/L

ug/L

ug/L

ug/L

5

5

5

100

100

100

ND

ND

ND

10.0

2.50

5.00

Apex Laboratories

Naphthalene

Styrene

n-Propylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

73

105

105

61-128%

76-126%

78-123%

Q-54b

73.4

105

105

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection Spike % REC RPD Reporting Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Batch 23F0713 - EPA 5030C Water Matrix Spike (23F0713-MS1) Prepared: 06/20/23 10:01 Analyzed: 06/20/23 14:13 V-01, V-13 QC Source Sample: Non-SDG (A3F1282-01) 5 Q-01 1,1,1,2-Tetrachloroethane 128 2.00 ug/L 100 ND 128 78-124% 113 2.50 5 100 1,1,2,2-Tetrachloroethane ug/L ND 113 71-121% 105 ug/L 5 74-129% Tetrachloroethene (PCE) 2.00 100 ND 105 Toluene 102 5.00 ug/L 5 100 ND 102 80-121% 1,2,3-Trichlorobenzene 99.6 10.0 ug/L 5 100 ND 100 69-129% 1,2,4-Trichlorobenzene 101 10.0 5 100 ND ug/L 101 69-130% 1,1,1-Trichloroethane 113 2.00 ug/L 5 100 ND 113 74-131% 1,1,2-Trichloroethane 106 2.50 5 100 ND 106 80-120% ug/L 5 Trichloroethene (TCE) 109 2.00 ug/L 100 ND 109 79-123% Trichlorofluoromethane 163 10.0 ug/L 5 100 ND 163 65-141% O - 541,2,3-Trichloropropane 106 5.00 ug/L 5 100 ND 106 73-122% 1,2,4-Trimethylbenzene 109 5.00 5 100 ND 109 76-124% ug/L 1,3,5-Trimethylbenzene 107 5 100 ND 107 75-124% 5.00 ug/L 5 100 Vinyl chloride 115 1.00 ND 58-137% ug/L 115 5.00 5 m,p-Xylene 211 ug/L 200 ND 106 80-121% o-Xylene 97.0 2.50 ug/L 5 100 ND 97 78-122% ---Surr: 1,4-Difluorobenzene (Surr) 104 % Dilution: 1x Recovery: Limits: 80-120 %

80-120 %

80-120 %

99 %

96%

Apex Laboratories

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polya	romatic H	ydrocarbon	s (PAHs)	by EPA 8	3270E (La	rge Volu	me Injecti	on)			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0693 - EPA 3511 (Be	ottle Extra	ction)					Wa	ter				
Blank (23F0693-BLK1)			Prepared	: 06/20/23	07:45 Anal	lyzed: 06/20	/23 14:31					
EPA 8270E LVI												
Acenaphthene	ND		0.0320	ug/L	1							
Acenaphthylene	ND		0.0320	ug/L	1							
Anthracene	ND		0.0320	ug/L	1							
Benz(a)anthracene	ND		0.0160	ug/L	1							
Benzo(a)pyrene	ND		0.0160	ug/L	1							
Benzo(b)fluoranthene	ND		0.0160	ug/L	1							
Benzo(k)fluoranthene	ND		0.0160	ug/L	1							
Benzo(g,h,i)perylene	ND		0.0320	ug/L	1							
Chrysene	ND		0.0160	ug/L	1							
Dibenz(a,h)anthracene	ND		0.0160	ug/L	1							
Fluoranthene	ND		0.0320	ug/L	1							
Fluorene	ND		0.0320	ug/L	1							
ndeno(1,2,3-cd)pyrene	ND		0.0160	ug/L	1							
-Methylnaphthalene	ND		0.0640	ug/L	1							
2-Methylnaphthalene	ND		0.0640	ug/L	1							
Naphthalene	ND		0.0640	ug/L	1							
Phenanthrene	ND		0.0640	ug/L	1							
Pyrene	ND		0.0320	ug/L	1							
Carbazole	ND		0.0320	ug/L	1							
Dibenzofuran	ND		0.0320	ug/L	1							
Surr: Acenaphthylene-d8 (Surr)		Rec	overy: 84 %	Limits: 78		Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			100 %)-132 %		"					
LCS (23F0693-BS1)		_	Prepared	: 06/20/23	07:45 Anal	lyzed: 06/20	/23 15:04					
EPA 8270E LVI			1			-						
Acenaphthene	1.55		0.0320	ug/L	1	1.60		97	80-120%			
Acenaphthylene	1.40		0.0320	ug/L	1	1.60		88	80-124%			
Anthracene	1.51		0.0320	ug/L	1	1.60		94	80-123%			
Benz(a)anthracene	1.50		0.0160	ug/L	1	1.60		94	80-122%			
Benzo(a)pyrene	1.53		0.0160	ug/L ug/L	1	1.60		96	80-129%			
Benzo(b)fluoranthene	1.63		0.0160	ug/L ug/L	1	1.60		102	80-124%			
Benzo(k)fluoranthene	1.52		0.0160	ug/L ug/L	1	1.60		95	80-125%			
Benzo(g,h,i)perylene	1.76		0.0320	ug/L ug/L	1	1.60		110	80-120%			
Denzo(g,n,r)perylene	1.70		0.0320	ug/L	1	1.00		110	00-120/0			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polya	romatic Hy	drocarbon	s (PAHS)	DY EPA 8	s∠/UE (La	rge volu	me injecti	on)			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0693 - EPA 3511 (Bo	ttle Extra	ction)					Wa	ter				
LCS (23F0693-BS1)			Prepared:	06/20/23	07:45 Anal	lyzed: 06/20/	/23 15:04					
Chrysene	1.54		0.0160	ug/L	1	1.60		96	80-120%			
Dibenz(a,h)anthracene	1.49		0.0160	ug/L	1	1.60		93	80-120%			
Fluoranthene	1.62		0.0320	ug/L	1	1.60		101	80-126%			
Fluorene	1.58		0.0320	ug/L	1	1.60		99	77-127%			
Indeno(1,2,3-cd)pyrene	1.51		0.0160	ug/L	1	1.60		95	80-121%			
l-Methylnaphthalene	1.48		0.0640	ug/L	1	1.60		92	53-148%			
2-Methylnaphthalene	1.45		0.0640	ug/L	1	1.60		90	48-150%			
Naphthalene	1.54		0.0640	ug/L	1	1.60		96	78-120%			
Phenanthrene	1.48		0.0640	ug/L	1	1.60		92	80-120%			
Pyrene	1.62		0.0320	ug/L	1	1.60		101	80-125%			
Carbazole	1.52		0.0320	ug/L	1	1.60		95	65-141%			
Dibenzofuran	1.41		0.0320	ug/L	1	1.60		88	76-121%			
Surr: Acenaphthylene-d8 (Surr)		Rece	overy: 84 %	Limits: 78	8-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			102 %		0-132 %		"					
LCS Dup (23F0693-BSD1)			Drangrad	06/20/23	07:45 Anal	lyzed: 06/20/	/23 15.37					Q-1
EPA 8270E LVI			Trepared.	. 00/20/23	07.43 Allai	19200. 00/20/	23 13.37					· ·
Acenaphthene	1.56		0.0320	ug/L	1	1.60		98	80-120%	1	30%	
Acenaphthylene	1.45		0.0320	ug/L	1	1.60		91	80-124%	3	30%	
Anthracene	1.53		0.0320	ug/L	1	1.60		96	80-123%	2	30%	
Benz(a)anthracene	1.53		0.0320	ug/L ug/L	1	1.60		95	80-122%	2	30%	
Benzo(a)pyrene	1.59		0.0160	ug/L ug/L	1	1.60		100	80-122%	4	30%	
Benzo(b)fluoranthene	1.63		0.0160	ug/L	1	1.60		100	80-124%	0.4	30%	
Benzo(k)fluoranthene	1.56		0.0160	ug/L ug/L	1	1.60		97	80-124%	3	30%	
Benzo(g,h,i)perylene	1.72		0.0320	ug/L	1	1.60		107	80-120%	3	30%	
Chrysene	1.72		0.0320	ug/L ug/L	1	1.60		96	80-120%	0.2	30%	
Dibenz(a,h)anthracene	1.53		0.0160	ug/L ug/L	1	1.60		96	80-120%	3	30%	
Fluoranthene	1.66		0.0100	ug/L ug/L	1	1.60		104	80-126%	3	30%	
Fluorantinene	1.65		0.0320	ug/L ug/L	1	1.60		104	77-127%	5	30%	
Indeno(1,2,3-cd)pyrene	1.56		0.0320	ug/L ug/L	1	1.60		97	80-121%	3	30%	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			0.0160	_	1	1.60			53-148%	6	30%	
l-Methylnaphthalene 2-Methylnaphthalene	1.56		0.0640	ug/L		1.60		98 97		7	30%	
· -	1.56		0.0640	ug/L	1			97 97	48-150%			
Naphthalene	1.55		0.0040	ug/L	1	1.60		91	78-120%	0.8	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (Large Volume Injection) Detection Reporting Spike Source % REC **RPD** Analyte Result Ĺimit Units Dilution Amount Result % REC Limits RPD Limit Notes Limit Batch 23F0693 - EPA 3511 (Bottle Extraction) Water LCS Dup (23F0693-BSD1) Prepared: 06/20/23 07:45 Analyzed: 06/20/23 15:37 Q-19 Pyrene 1.66 0.0320 ug/L 1.60 104 80-125% 3 30% Carbazole 1.57 0.0320 1.60 98 65-141% 30% ug/L 1 3 Dibenzofuran 0.0320 ug/L 1.60 92 1.47 1 76-121% 4 30% Surr: Acenaphthylene-d8 (Surr) Recovery: 84 % 78-134 % Limits: Dilution: 1x Benzo(a)pyrene-d12 (Surr) 103 % 80-132 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0682 - EPA 3015A							Wa	ter				
Blank (23F0682-BLK1)			Prepared	: 06/19/23	15:45 Anal	yzed: 06/19/	/23 21:48					
EPA 6020B												
Arsenic	ND		1.00	ug/L	1							
Barium	ND		2.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		2.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Mercury	ND		0.0800	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
LCS (23F0682-BS1)			Prepared	: 06/19/23	15:45 Anal	lyzed: 06/19/	/23 21:53					
EPA 6020B												
Arsenic	55.4		1.00	ug/L	1	55.6		100	80-120%			
Barium	61.9		2.00	ug/L	1	55.6		111	80-120%			
Cadmium	55.3		0.200	ug/L	1	55.6		99	80-120%			
Chromium	55.6		2.00	ug/L	1	55.6		100	80-120%			
Lead	59.2		0.200	ug/L	1	55.6		107	80-120%			
Mercury	1.08		0.0800	ug/L	1	1.11		97	80-120%			
Selenium	29.0		1.00	ug/L	1	27.8		104	80-120%			
Silver	27.4		0.200	ug/L	1	27.8		99	80-120%			
Duplicate (23F0682-DUP1)			Prepared	: 06/19/23	15:45 Anal	lyzed: 06/19/	/23 22:08					
QC Source Sample: W-2 (1) (A3F	1237-01)					<u>-</u>						
EPA 6020B												
Arsenic	5.72		1.00	ug/L	1		5.81			2	20%	
Barium	111		2.00	ug/L	1		114			2	20%	
Cadmium	ND		0.200	ug/L	1		ND				20%	
Chromium	ND		2.00	ug/L	1		1.77			***	20%	
Lead	0.364		0.200	ug/L	1		0.372			2	20%	
Mercury	ND		0.0800	ug/L	1		ND				20%	
Selenium	ND		1.00	ug/L	1		ND				20%	
Silver	ND		0.200	ug/L	1		ND				20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(BDi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS) Detection Reporting Spike Source % REC **RPD** Analyte Result Ĺimit Units Dilution Amount Result % REC Limits RPD Limit Limit Notes Batch 23F0682 - EPA 3015A Water Matrix Spike (23F0682-MS1) Prepared: 06/19/23 15:45 Analyzed: 06/19/23 22:13 QC Source Sample: W-2 (1) (A3F1237-01) EPA 6020B 1.00 61.9 ug/L 1 55.6 5.81 101 75-125% Arsenic Barium 173 2.00 ug/L 1 55.6 114 108 75-125% Cadmium 55.9 0.200 55.6 75-125% ug/L 1 ND 101 Chromium 57.1 2.00 ug/L 1 55.6 1.77 100 75-125% Lead 58.4 0.200 55.6 0.372 75-125% ug/L 1 104 1.07 0.08001 1.11 ND 96 75-125% Mercury ug/L 29.7 Selenium 1.00 27.8 ND 107 75-125% ug/L 1 ---Silver 27.4 0.200 ug/L 1 27.8 ND 99 75-125%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

SAMPLE PREPARATION INFORMATION

		Diesel and	l/or Oil Hydrocarbon	s by NWTPH-Dx			
Prep: EPA 3510C (Fu	els/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23F0874 A3F1237-01	Water	NWTPH-Dx LL	06/16/23 13:00	06/23/23 11:06	1050mL/2mL	1000mL/2mL	0.95
	Gas	oline Range Hydrocart	oons (Benzene throu	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23F0713 A3F1237-01	Water	NWTPH-Gx (MS)	06/16/23 13:00	06/20/23 13:13	5mL/5mL	5mL/5mL	1.00
		Volatile 0	Organic Compounds	by EPA 8260D			
Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23F0713 A3F1237-01	Water	EPA 8260D	06/16/23 13:00	06/20/23 13:13	5mL/5mL	5mL/5mL	1.00
	Po	olyaromatic Hydrocarbo	ons (PAHs) by EPA	3270E (Large Volun	ne Injection)		
Prep: EPA 3511 (Bottl	e Extraction)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23F0693 A3F1237-01	Water	EPA 8270E LVI	06/16/23 13:00	06/20/23 07:45	112.58mL/5mL	125mL/5mL	1.11
		Total	Metals by EPA 6020	OB (ICPMS)			
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23F0682 A3F1237-01	Water	EPA 6020B	06/16/23 13:00	06/19/23 15:45	45mL/50mL	45mL/50mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: **Beaverton Phs. II**

4000 Kruse Way Place, Bldg 3 Suite 200 Project Number: [none] Report ID: Lake Oswego, OR 97035 Project Manager: Ian Maguire A3F1237 - 06 26 23 1644

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex

ex Laborate	<u>ories</u>
ICV-01	Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the \pm 20% criteria listed in EPA method 8260/8270 by \pm 23%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +41%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -11%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260
R-06	Reporting level raised due to possible carryover from a previous sample.
V-01	Sample aliquot taken from VOA vial with headspace (air bubble greater than 6 mm diameter).
V-13	Reporting levels raised due to dilution necessary for analysis due to sample foaming in sparge vessel.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(ODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

- Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).
- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

COSì

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1237 - 06 26 23 1644

TOTA Metals (8) ANTRIX ANTRIX ANTRHA ANTRH
X 8760 AOC* EFII FFEE 8760 HFIP AOC* 8760 HFIP AOC* 8760 HFIP AOC* 8760 HFIP AOC* 4760 H
Vr' 20' Ve' Ba' Re' Cq'
× × × × × × × × × × × × × × × × × × ×
Standard Turn Around Time (TAT) = 10 Business Days SPECIAL INSTRUCTIONS:
2 Day 3 Day
Standard Other:
Date: Signature: Date: Q Q / 23 Signature: Date:
Proposition Time: 1355 Primed Name. Time:
Company:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(BDi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers

Project:

Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200 Lake Oswego, OR 97035 Project Number: [none]

Project Manager: Ian Maguire

Report ID: A3F1237 - 06 26 23 1644

,	APEX LABS COOLER		
Client: <u>GeoEngin</u>	ieers	Element WO#: A3 4123	7
Project/Project #:	peaverton Phs 11		
Delivery Info:	7	,	
Date/time received: 6/1	a /23@ 1355 By: /	4JM	
Delivered by: Apex_Clie	ent_ESSFedEx_UPS_Rac	dioMorganSDSEvergreen	Other
Cooler Inspection Da	te/time inspected: $\frac{6}{16}/23$	@ 13.59 By: AJM	
Chain of Custody include	,	,	
Signed/dated by client?	Yes No		
	Cooler #1 Cooler #2 Coole	er #3 Cooler #4 Cooler #5 Cooler	#6 Cooler #7
Temperature (°C)	3.5		
Custody seals? (YN)	<u>N</u>	- PARAMAN - MANAMAN - MANA	
Received on ice?(Y/N)			
Temp. blanks?(Y/N)	W		
Ice type: (Gel/Real/Other)		- Marian	
Condition (In/Out):			
Green dots applied to out of temperature sample Sample Inspection: Date of the		<u>а 14:19</u> ву: <u>АА</u>	
Green dots applied to out of temperature sample Sample Inspection: Dat All samples intact? Yes	of temperature samples? Yes/No es form initiated? Yes/No te/time inspected: () No Comments:	<u>а 14;19</u> ву: <u>AAU</u>	
Green dots applied to out of temperature sample Sample Inspection: Dat All samples intact? Yes	of temperature samples? Yes/No es form initiated? Yes/No te/time inspected: () No Comments:	<u>а 14;19</u> ву: <u>АА</u>	
Green dots applied to out Out of temperature sample Sample Inspection: Dat All samples intact? Yes >	of temperature samples? Yes/Noes form initiated? Yes/No te/time inspected: ////////////////////////////////////	<u>14;19</u> ву: <u>AAU</u>	
Green dots applied to out of temperature sample Sample Inspection: Dat All samples intact? Yes > Bottle labels/COCs agree?	of temperature samples? Yes/No es form initiated? Yes/No te/time inspected: ////////////////////////////////////	<u>14;19</u> ву: <u>AAU</u>	
Green dots applied to out of temperature sample Sample Inspection: Dat All samples intact? Yes > Bottle labels/COCs agree? COC/container discrepanc Containers/volumes received.	of temperature samples? Yes/No es form initiated? Yes/No te/time inspected: ////////////////////////////////////	By: AAU By: AAU By: X So X No Comments:	
Green dots applied to out of temperature sample Sample Inspection: Dat All samples intact? Yes >> Bottle labels/COCs agree? COC/container discrepance Containers/volumes received Do VOA vials have visible Comments	of temperature samples? Yes/No es form initiated? Yes/No te/time inspected: Selly Comments: Yes No Comments: Yes No Comments: Period Yes No Comments: Period Appropriate for analysis? Yes the headspace? Yes No	14:19 By: APL By: APL By: APL By: APL	
Green dots applied to out of temperature sample Sample Inspection: Dat All samples intact? Yes >> Bottle labels/COCs agree? COC/container discrepance Containers/volumes received Do VOA vials have visible Comments	of temperature samples? Yes/No es form initiated? Yes/No te/time inspected: ////////////////////////////////////	14:19 By: APL By: APL By: APL By: APL	
Green dots applied to out of temperature sample Sample Inspection: Dat All samples intact? Yes > Bottle labels/COCs agree? COC/container discrepanc Containers/volumes received Do VOA vials have visible Comments Water samples: pH checkers.	of temperature samples? Yes/No es form initiated? Yes/No te/time inspected: Selly Comments: Yes No Comments: Yes No Comments: Period Yes No Comments: Period Appropriate for analysis? Yes the headspace? Yes No	14:19 By: APL By: APL By: APL By: APL	
Green dots applied to out of temperature sample Sample Inspection: Dat All samples intact? Yes >> Bottle labels/COCs agree? COC/container discrepance Containers/volumes received Do VOA vials have visible Comments Water samples: pH checker Comments:	of temperature samples? Yes/No es form initiated? Yes/No te/time inspected: ////////////////////////////////////	D	
Green dots applied to out of temperature sample Sample Inspection: Dat All samples intact? Yes >> Bottle labels/COCs agree? COC/container discrepanc Containers/volumes receiv Do VOA vials have visible Comments Water samples: pH checke Comments:	of temperature samples? Yes/No es form initiated? Yes/No te/time inspected: ////////////////////////////////////	D	
Green dots applied to out Out of temperature sample Sample Inspection: Dat All samples intact? Yes All samples received Do VOA vials have visible Comments. Water samples: pH checker Comments:	of temperature samples? Yes/No es form initiated? Yes/No te/time inspected: ////////////////////////////////////	D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Monday, June 26, 2023 lan Maguire GeoEngineers 4000 Kruse Way Place, Bldg 3 Suite 200 Lake Oswego, OR 97035

RE: A3F1239 - Beaverton Phs. II - [none]

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3F1239, which was received by the laboratory on 6/15/2023 at 5:30:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: cobrien@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Cooler #1 4.7 degC Cooler #2 1.9 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-4 (19-20)	A3F1239-01	Soil	06/15/23 12:50	06/15/23 17:30
B-2 (6-7)	A3F1239-02	Soil	06/15/23 15:30	06/15/23 17:30
B-3 (8-9)	A3F1239-03	Soil	06/15/23 13:50	06/15/23 17:30
B-5 (5-6)	A3F1239-04	Soil	06/15/23 15:00	06/15/23 17:30
B-6 (5-6)	A3F1239-05	Soil	06/15/23 14:30	06/15/23 17:30
HA (2)	A3F1239-06	Soil	06/15/23 16:00	06/15/23 17:30
B-4 (GW)	A3F1239-07	Water	06/15/23 13:30	06/15/23 17:30
B-3 (GW)	A3F1239-08	Water	06/15/23 14:45	06/15/23 17:30
B-6 (GW)	A3F1239-09	Water	06/15/23 15:30	06/15/23 17:30

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	ıı Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection	Reporting			Date		-
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-4 (19-20) (A3F1239-01)				Matrix: Soil		Batch:	23F0772	
Diesel	ND		44.1	mg/kg dry	1	06/22/23 01:26	NWTPH-Dx	
Oil	ND		88.2	mg/kg dry	1	06/22/23 01:26	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 80 %	Limits: 50-150 %	6 1	06/22/23 01:26	NWTPH-Dx	
B-2 (6-7) (A3F1239-02)				Matrix: Soil		Batch:	23F0772	
Diesel	ND		27.9	mg/kg dry	1	06/22/23 01:49	NWTPH-Dx	
Oil	ND		55.8	mg/kg dry	1	06/22/23 01:49	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 79 %	Limits: 50-150 %	6 1	06/22/23 01:49	NWTPH-Dx	
B-3 (8-9) (A3F1239-03)				Matrix: Soil		Batch:	23F0772	
Diesel	ND		23.7	mg/kg dry	1	06/21/23 21:08	NWTPH-Dx	
Oil	ND		47.4	mg/kg dry	1	06/21/23 21:08	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 75 %	Limits: 50-150 %	6 1	06/21/23 21:08	NWTPH-Dx	
B-5 (5-6) (A3F1239-04)	_		Matrix: Soil			Batch:	23F0772	
Diesel	ND		27.3	mg/kg dry	1	06/21/23 21:31	NWTPH-Dx	
Oil	ND		54.6	mg/kg dry	1	06/21/23 21:31	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 73 %	Limits: 50-150 %	6 1	06/21/23 21:31	NWTPH-Dx	
B-6 (5-6) (A3F1239-05)				Matrix: Soil		Batch:	23F0772	
Diesel	ND		24.8	mg/kg dry	1	06/21/23 21:55	NWTPH-Dx	
Oil	ND		49.5	mg/kg dry	1	06/21/23 21:55	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 78 %	Limits: 50-150 %	6 1	06/21/23 21:55	NWTPH-Dx	
HA (2) (A3F1239-06)				Matrix: Soil		Batch:	23F0772	
Diesel	564		21.3	mg/kg dry	1	06/21/23 22:18	NWTPH-Dx	F-13
Oil	ND		42.6	mg/kg dry	1	06/21/23 22:18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 85 %	Limits: 50-150 %	6 1	06/21/23 22:18	NWTPH-Dx	
B-4 (GW) (A3F1239-07)	_			Matrix: Wat	er	Batch:	23F0798	
Diesel	ND		0.0816	mg/L	1	06/23/23 05:32	NWTPH-Dx LL	
Oil	ND		0.163	mg/L	1	06/23/23 05:32	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 85 %	Limits: 50-150 %	6 I	06/23/23 05:32	NWTPH-Dx LL	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODI

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-3 (GW) (A3F1239-08)				Matrix: Wate	er	Batch:	23F0798	
Diesel	ND		0.0833	mg/L	1	06/23/23 05:55	NWTPH-Dx LL	
Oil	ND		0.167	mg/L	1	06/23/23 05:55	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 80 %	Limits: 50-150 %	6 I	06/23/23 05:55	NWTPH-Dx LL	
B-6 (GW) (A3F1239-09)				Matrix: Wate	er	Batch:	23F0798	
Diesel	ND		0.0808	mg/L	1	06/23/23 06:19	NWTPH-Dx LL	
Oil	ND		0.162	mg/L	1	06/23/23 06:19	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 91 %	Limits: 50-150 %	6 I	06/23/23 06:19	NWTPH-Dx LL	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-4 (19-20) (A3F1239-01)				Matrix: Soil		Batch	23F0647	
Gasoline Range Organics	ND		20.3	mg/kg dry	50	06/19/23 11:15	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 103 %	Limits: 50-150 %	6 I	06/19/23 11:15	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			106 %	50-150 %	6 1	06/19/23 11:15	NWTPH-Gx (MS)	
B-2 (6-7) (A3F1239-02)				Matrix: Soil		Batch	23F0647	
Gasoline Range Organics	ND		8.41	mg/kg dry	50	06/19/23 15:55	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 103 %	Limits: 50-150 %	6 I	06/19/23 15:55	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			103 %	50-150 %	6 I	06/19/23 15:55	NWTPH-Gx (MS)	
B-3 (8-9) (A3F1239-03)				Matrix: Soil		Batch	23F0647	
Gasoline Range Organics	ND		6.83	mg/kg dry	50	06/19/23 16:21	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 106 %	Limits: 50-150 %	6 1	06/19/23 16:21	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			104 %	50-150 %	6 <i>1</i>	06/19/23 16:21	NWTPH-Gx (MS)	
B-5 (5-6) (A3F1239-04)				Matrix: Soil		Batch	23F0647	
Gasoline Range Organics	ND		8.03	mg/kg dry	50	06/19/23 16:46	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 105 %	Limits: 50-150 %	6 I	06/19/23 16:46	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			105 %	50-150 %	6 I	06/19/23 16:46	NWTPH-Gx (MS)	
B-6 (5-6) (A3F1239-05)				Matrix: Soil		Batch	23F0647	
Gasoline Range Organics	ND		6.67	mg/kg dry	50	06/19/23 17:11	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 104 %	Limits: 50-150 %	6 I	06/19/23 17:11	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			105 %	50-150 %	6 1	06/19/23 17:11	NWTPH-Gx (MS)	
HA (2) (A3F1239-06)				Matrix: Soil		Batch	23F0647	
Gasoline Range Organics	ND		6.55	mg/kg dry	50	06/19/23 17:37	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	y: 106 %	Limits: 50-150 %	6 I	06/19/23 17:37	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			107 %	50-150 %	6 1	06/19/23 17:37	NWTPH-Gx (MS)	
B-4 (GW) (A3F1239-07)				Matrix: Wate	er	Batch	23F0648	
Gasoline Range Organics	ND		0.100	mg/L	1	06/19/23 16:09	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 96 %	Limits: 50-150 %	6 <i>1</i>	06/19/23 16:09	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			107 %	50-150 %	6 I	06/19/23 16:09	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	/drocarbons	(Benzene t	hrough Naphtha	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B-3 (GW) (A3F1239-08)				Matrix: Wate	er	Batch	: 23F0648	
Gasoline Range Organics	ND		0.100	mg/L	1	06/19/23 17:03	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 97 %	Limits: 50-150 %	6 I	06/19/23 17:03	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			108 %	50-150 %	6 I	06/19/23 17:03	NWTPH-Gx (MS)	
B-6 (GW) (A3F1239-09)				Matrix: Wate	ər	Batch	: 23F0648	
Gasoline Range Organics	ND		0.100	mg/L	1	06/19/23 17:30	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 97 %	Limits: 50-150 %	6 1	06/19/23 17:30	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			107 %	50-150 %	6 1	06/19/23 17:30	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

			ic Compoun	40 Ny E1 A 02		_		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B-4 (19-20) (A3F1239-01)				Matrix: Soi	I	Batch:	23F0647	
Acetone	ND		4050	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Acrylonitrile	ND		405	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Benzene	ND		40.5	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Bromobenzene	ND		101	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Bromochloromethane	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Bromodichloromethane	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Bromoform	ND		405	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Bromomethane	ND		2030	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
2-Butanone (MEK)	ND		2030	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
n-Butylbenzene	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
sec-Butylbenzene	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
ert-Butylbenzene	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Carbon disulfide	ND		2030	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Carbon tetrachloride	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Chlorobenzene	ND		101	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Chloroethane	ND		2030	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Chloroform	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Chloromethane	ND		1010	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
2-Chlorotoluene	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
l-Chlorotoluene	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Dibromochloromethane	ND		405	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		1010	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
,2-Dibromoethane (EDB)	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Dibromomethane	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
1,2-Dichlorobenzene	ND		101	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
1,3-Dichlorobenzene	ND		101	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
1,4-Dichlorobenzene	ND		101	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Dichlorodifluoromethane	ND		405	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
,1-Dichloroethane	ND		101	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
,2-Dichloroethane (EDC)	ND		101	ug/kg dry ug/kg dry	50	06/19/23 11:15	5035A/8260D	
1,1-Dichloroethene	ND		101	ug/kg dry ug/kg dry	50	06/19/23 11:15	5035A/8260D	
cis-1,2-Dichloroethene	ND		101	ug/kg dry ug/kg dry	50	06/19/23 11:15	5035A/8260D	
rans-1,2-Dichloroethene	ND		101	ug/kg dry ug/kg dry	50	06/19/23 11:15	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number:[none]Report ID:Lake Oswego, OR 97035Project Manager:Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
B-4 (19-20) (A3F1239-01)				Matrix: Soil	ı	Batch:	23F0647	
1,2-Dichloropropane	ND		101	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
1,3-Dichloropropane	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
2,2-Dichloropropane	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
1,1-Dichloropropene	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
cis-1,3-Dichloropropene	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
trans-1,3-Dichloropropene	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Ethylbenzene	ND		101	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Hexachlorobutadiene	ND		405	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
2-Hexanone	ND		2030	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Isopropylbenzene	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
4-Isopropyltoluene	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Methylene chloride	ND		2030	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		2030	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Naphthalene	ND		405	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
n-Propylbenzene	ND		101	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Styrene	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		101	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Tetrachloroethene (PCE)	ND		101	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Toluene	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
1,2,3-Trichlorobenzene	ND		1010	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
1,2,4-Trichlorobenzene	ND		1010	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
1,1,1-Trichloroethane	ND		101	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
1,1,2-Trichloroethane	ND		101	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Trichloroethene (TCE)	ND		101	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Trichlorofluoromethane	ND		405	ug/kg dry	50	06/19/23 11:15	5035A/8260D	Q-52
1,2,3-Trichloropropane	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
,2,4-Trimethylbenzene	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
,3,5-Trimethylbenzene	ND		203	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
Vinyl chloride	ND		101	ug/kg dry	50	06/19/23 11:15	5035A/8260D	
n,p-Xylene	ND		203	ug/kg dry ug/kg dry	50	06/19/23 11:15	5035A/8260D	
o-Xylene	ND		101	ug/kg dry ug/kg dry	50	06/19/23 11:15	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B-4 (19-20) (A3F1239-01)				Matrix: Soil		Batch:	23F0647	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	1	06/19/23 11:15	5035A/8260D	
Toluene-d8 (Surr)			100 %	80-120 %	1	06/19/23 11:15	5035A/8260D	
4-Bromofluorobenzene (Surr)			95 %	79-120 %	1	06/19/23 11:15	5035A/8260D	
B-2 (6-7) (A3F1239-02)				Matrix: Soil		Batch:	23F0647	
Acetone	ND		1680	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Acrylonitrile	ND		168	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Benzene	ND		16.8	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Bromobenzene	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Bromochloromethane	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Bromodichloromethane	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Bromoform	ND		168	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Bromomethane	ND		841	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
2-Butanone (MEK)	ND		841	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
n-Butylbenzene	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
sec-Butylbenzene	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
tert-Butylbenzene	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Carbon disulfide	ND		841	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Carbon tetrachloride	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Chlorobenzene	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Chloroethane	ND		841	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Chloroform	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Chloromethane	ND		421	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
2-Chlorotoluene	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
4-Chlorotoluene	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Dibromochloromethane	ND		168	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		421	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Dibromomethane	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
,2-Dichlorobenzene	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
,3-Dichlorobenzene	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
,4-Dichlorobenzene	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Dichlorodifluoromethane	ND		168	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
,1-Dichloroethane	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-2 (6-7) (A3F1239-02)				Matrix: Soil	ı	Batch:	23F0647	
1,2-Dichloroethane (EDC)	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
1,1-Dichloroethene	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
cis-1,2-Dichloroethene	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
rans-1,2-Dichloroethene	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
1,2-Dichloropropane	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
1,3-Dichloropropane	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
2,2-Dichloropropane	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
1,1-Dichloropropene	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
cis-1,3-Dichloropropene	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
rans-1,3-Dichloropropene	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Ethylbenzene	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Hexachlorobutadiene	ND		168	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
2-Hexanone	ND		841	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Sopropylbenzene	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
4-Isopropyltoluene	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Methylene chloride	ND		841	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		841	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Naphthalene	ND		168	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
n-Propylbenzene	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Styrene	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Tetrachloroethene (PCE)	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Toluene	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
1,2,3-Trichlorobenzene	ND		421	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
,2,4-Trichlorobenzene	ND		421	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
,1,1-Trichloroethane	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
,1,2-Trichloroethane	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Frichloroethene (TCE)	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
richlorofluoromethane	ND		168	ug/kg dry	50	06/19/23 15:55	5035A/8260D	Q-52
,2,3-Trichloropropane	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
,2,4-Trimethylbenzene	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compour	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B-2 (6-7) (A3F1239-02)				Matrix: Soil	Matrix: Soil		Batch: 23F0647	
1,3,5-Trimethylbenzene	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Vinyl chloride	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
m,p-Xylene	ND		84.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
o-Xylene	ND		42.1	ug/kg dry	50	06/19/23 15:55	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97%	Limits: 80-120 %	1	06/19/23 15:55	5035A/8260D	
Toluene-d8 (Surr)			99 %	80-120 %	1	06/19/23 15:55	5035A/8260D	
4-Bromofluorobenzene (Surr)			95 %	79-120 %	1	06/19/23 15:55	5035A/8260D	
B-3 (8-9) (A3F1239-03)				Matrix: Soil		Batch:	23F0647	
Acetone	ND		1370	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Acrylonitrile	ND		137	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Benzene	ND		13.7	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Bromobenzene	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Bromochloromethane	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Bromodichloromethane	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Bromoform	ND		137	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Bromomethane	ND		683	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
2-Butanone (MEK)	ND		683	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
n-Butylbenzene	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
sec-Butylbenzene	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
tert-Butylbenzene	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Carbon disulfide	ND		683	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Carbon tetrachloride	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Chlorobenzene	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Chloroethane	ND		683	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Chloroform	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Chloromethane	ND		342	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
2-Chlorotoluene	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
4-Chlorotoluene	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Dibromochloromethane	ND		137	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		342	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Dibromomethane	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	v	olatile Organ	ic Compoun	ds by EPA 82	:60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B-3 (8-9) (A3F1239-03)				Matrix: Soi	ı	Batch:	23F0647	
1,2-Dichlorobenzene	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
1,3-Dichlorobenzene	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
1,4-Dichlorobenzene	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Dichlorodifluoromethane	ND		137	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
1,1-Dichloroethane	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
1,1-Dichloroethene	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
cis-1,2-Dichloroethene	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
trans-1,2-Dichloroethene	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
1,2-Dichloropropane	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
1,3-Dichloropropane	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
2,2-Dichloropropane	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
1,1-Dichloropropene	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
cis-1,3-Dichloropropene	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
rans-1,3-Dichloropropene	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Ethylbenzene	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Hexachlorobutadiene	ND		137	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
2-Hexanone	ND		683	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Isopropylbenzene	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
4-Isopropyltoluene	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Methylene chloride	ND		683	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		683	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Naphthalene	ND		137	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
n-Propylbenzene	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Styrene	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
1,1,2-Tetrachloroethane	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
,1,2,2-Tetrachloroethane	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Cetrachloroethene (PCE)	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Toluene	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
,2,3-Trichlorobenzene	ND		342	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
,2,4-Trichlorobenzene	ND		342	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
,1,1-Trichloroethane	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
B-3 (8-9) (A3F1239-03)				Matrix: Soil		Batch:	23F0647	
1,1,2-Trichloroethane	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Trichloroethene (TCE)	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Trichlorofluoromethane	ND		137	ug/kg dry	50	06/19/23 16:21	5035A/8260D	Q-52
1,2,3-Trichloropropane	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
1,2,4-Trimethylbenzene	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
1,3,5-Trimethylbenzene	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Vinyl chloride	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
n,p-Xylene	ND		68.3	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
o-Xylene	ND		34.2	ug/kg dry	50	06/19/23 16:21	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recon	very: 99 %	Limits: 80-120 %	1	06/19/23 16:21	5035A/8260D	
Toluene-d8 (Surr)			99 %	80-120 %	1	06/19/23 16:21	5035A/8260D	
4-Bromofluorobenzene (Surr)			96 %	79-120 %	1	06/19/23 16:21	5035A/8260D	
3-5 (5-6) (A3F1239-04)				Matrix: Soil		Batch:		
Acetone	ND		1610	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
Acrylonitrile	ND		161	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
Benzene	ND		16.1	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
Bromobenzene	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
Bromochloromethane	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
Bromodichloromethane	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
Bromoform	ND		161	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
Bromomethane	ND		803	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
2-Butanone (MEK)	ND		803	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
-Butylbenzene	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
ec-Butylbenzene	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
ert-Butylbenzene	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
Carbon disulfide	ND		803	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
Carbon tetrachloride	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
Chlorobenzene	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
Chloroethane	ND		803	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
Chloroform	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
Chloromethane	ND		402	ug/kg dry	50	06/19/23 16:46	5035A/8260D	
-Chlorotoluene	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number:[none]Report ID:Lake Oswego, OR 97035Project Manager:Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D											
	Sample	Detection	Reporting	** .	P.11 .	Date	W 4 45 5				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
B-5 (5-6) (A3F1239-04)				Matrix: Soi	Matrix: Soil		23F0647				
4-Chlorotoluene	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
Dibromochloromethane	ND		161	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
1,2-Dibromo-3-chloropropane	ND		402	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
1,2-Dibromoethane (EDB)	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
Dibromomethane	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
1,2-Dichlorobenzene	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
1,3-Dichlorobenzene	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
1,4-Dichlorobenzene	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
Dichlorodifluoromethane	ND		161	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
1,1-Dichloroethane	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
1,2-Dichloroethane (EDC)	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
1,1-Dichloroethene	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
cis-1,2-Dichloroethene	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
trans-1,2-Dichloroethene	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
1,2-Dichloropropane	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
1,3-Dichloropropane	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
2,2-Dichloropropane	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
1,1-Dichloropropene	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
cis-1,3-Dichloropropene	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
trans-1,3-Dichloropropene	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
Ethylbenzene	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
Hexachlorobutadiene	ND		161	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
2-Hexanone	ND		803	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
Isopropylbenzene	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
4-Isopropyltoluene	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
Methylene chloride	ND		803	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
4-Methyl-2-pentanone (MiBK)	ND		803	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
Methyl tert-butyl ether (MTBE)	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
Naphthalene	ND		161	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
n-Propylbenzene	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
Styrene	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
1,1,1,2-Tetrachloroethane	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D				
1,1,2,2-Tetrachloroethane	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
B-5 (5-6) (A3F1239-04)				Matrix: Soil		Batch: 23F0647						
Tetrachloroethene (PCE)	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D					
Toluene	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D					
1,2,3-Trichlorobenzene	ND		402	ug/kg dry	50	06/19/23 16:46	5035A/8260D					
1,2,4-Trichlorobenzene	ND		402	ug/kg dry	50	06/19/23 16:46	5035A/8260D					
1,1,1-Trichloroethane	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D					
1,1,2-Trichloroethane	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D					
Trichloroethene (TCE)	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D					
Trichlorofluoromethane	ND		161	ug/kg dry	50	06/19/23 16:46	5035A/8260D	Q-52				
1,2,3-Trichloropropane	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D					
1,2,4-Trimethylbenzene	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D					
1,3,5-Trimethylbenzene	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D					
Vinyl chloride	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D					
m,p-Xylene	ND		80.3	ug/kg dry	50	06/19/23 16:46	5035A/8260D					
o-Xylene	ND		40.2	ug/kg dry	50	06/19/23 16:46	5035A/8260D					
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 100 %	Limits: 80-120 %	1	06/19/23 16:46	5035A/8260D					
Toluene-d8 (Surr)			100 %	80-120 %	1	06/19/23 16:46	5035A/8260D					
4-Bromofluorobenzene (Surr)			95 %	79-120 %	1	06/19/23 16:46	5035A/8260D					
B-6 (5-6) (A3F1239-05)				Matrix: Soil		Batch: 23F0647						
Acetone	ND		1330	ug/kg dry	50	06/19/23 17:11	5035A/8260D					
Acrylonitrile	ND		133	ug/kg dry	50	06/19/23 17:11	5035A/8260D					
Benzene	ND		13.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D					
Bromobenzene	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D					
Bromochloromethane	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D					
Bromodichloromethane	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D					
Bromoform	ND		133	ug/kg dry	50	06/19/23 17:11	5035A/8260D					
Bromomethane	ND		667	ug/kg dry	50	06/19/23 17:11	5035A/8260D					
2-Butanone (MEK)	ND		667	ug/kg dry	50	06/19/23 17:11	5035A/8260D					
n-Butylbenzene	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D					
sec-Butylbenzene	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D					
tert-Butylbenzene	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D					
Carbon disulfide	ND		667	ug/kg dry	50	06/19/23 17:11	5035A/8260D					
Carbon tetrachloride	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
3-6 (5-6) (A3F1239-05)				Matrix: Soi	ı	Batch: 23F0647		
Chlorobenzene	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Chloroethane	ND		667	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Chloroform	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Chloromethane	ND		333	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
-Chlorotoluene	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
-Chlorotoluene	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Dibromochloromethane	ND		133	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
,2-Dibromo-3-chloropropane	ND		333	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
,2-Dibromoethane (EDB)	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Dibromomethane	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
,2-Dichlorobenzene	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
,3-Dichlorobenzene	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
,4-Dichlorobenzene	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Dichlorodifluoromethane	ND		133	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
,1-Dichloroethane	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
,2-Dichloroethane (EDC)	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
,1-Dichloroethene	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
is-1,2-Dichloroethene	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
rans-1,2-Dichloroethene	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
,2-Dichloropropane	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
,3-Dichloropropane	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
2,2-Dichloropropane	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
,1-Dichloropropene	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
is-1,3-Dichloropropene	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
rans-1,3-Dichloropropene	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Ethylbenzene	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Iexachlorobutadiene	ND		133	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
-Hexanone	ND		667	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
sopropylbenzene	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
-Isopropyltoluene	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Methylene chloride	ND		667	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
-Methyl-2-pentanone (MiBK)	ND		667	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

			-	nds by EPA 826	עטי			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
B-6 (5-6) (A3F1239-05)				Matrix: Soil		Batch:	23F0647	
Naphthalene	ND		133	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
n-Propylbenzene	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Styrene	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Tetrachloroethene (PCE)	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Toluene	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
1,2,3-Trichlorobenzene	ND		333	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
1,2,4-Trichlorobenzene	ND		333	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
1,1,1-Trichloroethane	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
1,1,2-Trichloroethane	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Trichloroethene (TCE)	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Trichlorofluoromethane	ND		133	ug/kg dry	50	06/19/23 17:11	5035A/8260D	Q-52
1,2,3-Trichloropropane	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
1,2,4-Trimethylbenzene	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
1,3,5-Trimethylbenzene	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Vinyl chloride	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
m,p-Xylene	ND		66.7	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
o-Xylene	ND		33.3	ug/kg dry	50	06/19/23 17:11	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-120 %	5 I	06/19/23 17:11	5035A/8260D	
Toluene-d8 (Surr)			101 %	80-120 %	<i>i 1</i>	06/19/23 17:11	5035A/8260D	
4-Bromofluorobenzene (Surr)			94 %	79-120 %	5 1	06/19/23 17:11	5035A/8260D	
HA (2) (A3F1239-06)				Matrix: Soil		Batch:	23F0647	
Acetone	ND		1310	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Acrylonitrile	ND		131	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Benzene	ND		13.1	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Bromobenzene	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Bromochloromethane	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Bromodichloromethane	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Bromoform	ND		131	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Bromomethane	ND		655	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
2-Butanone (MEK)	ND		655	ug/kg dry	50	06/19/23 17:37	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
HA (2) (A3F1239-06)				Matrix: Soi	I	Batch:	23F0647	
n-Butylbenzene	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
sec-Butylbenzene	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
tert-Butylbenzene	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Carbon disulfide	ND		655	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Carbon tetrachloride	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Chlorobenzene	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Chloroethane	ND		655	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Chloroform	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Chloromethane	ND		328	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
2-Chlorotoluene	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
4-Chlorotoluene	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Dibromochloromethane	ND		131	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		328	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Dibromomethane	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,2-Dichlorobenzene	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,3-Dichlorobenzene	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,4-Dichlorobenzene	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Dichlorodifluoromethane	ND		131	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,1-Dichloroethane	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,1-Dichloroethene	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
cis-1,2-Dichloroethene	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
trans-1,2-Dichloroethene	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,2-Dichloropropane	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,3-Dichloropropane	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
2,2-Dichloropropane	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
,1-Dichloropropene	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
cis-1,3-Dichloropropene	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
rans-1,3-Dichloropropene	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Ethylbenzene	ND		32.8	ug/kg dry ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Hexachlorobutadiene	ND		131	ug/kg dry ug/kg dry	50	06/19/23 17:37	5035A/8260D	
2-Hexanone	ND		655	ug/kg dry ug/kg dry	50	06/19/23 17:37	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	V	olatile Organi	c Compou	nds by EPA 826	עט			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
HA (2) (A3F1239-06)				Matrix: Soil		Batch: 23F0647		
Isopropylbenzene	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
4-Isopropyltoluene	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Methylene chloride	ND		655	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		655	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Naphthalene	ND		131	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
n-Propylbenzene	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Styrene	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Tetrachloroethene (PCE)	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Toluene	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,2,3-Trichlorobenzene	ND		328	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,2,4-Trichlorobenzene	ND		328	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,1,1-Trichloroethane	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,1,2-Trichloroethane	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Trichloroethene (TCE)	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Trichlorofluoromethane	ND		131	ug/kg dry	50	06/19/23 17:37	5035A/8260D	Q-52
1,2,3-Trichloropropane	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,2,4-Trimethylbenzene	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
1,3,5-Trimethylbenzene	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Vinyl chloride	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
m,p-Xylene	ND		65.5	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
o-Xylene	ND		32.8	ug/kg dry	50	06/19/23 17:37	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recover	y: 101 %	Limits: 80-120 %	1	06/19/23 17:37	5035A/8260D	
Toluene-d8 (Surr)			100 %	80-120 %		06/19/23 17:37	5035A/8260D	
4-Bromofluorobenzene (Surr)			94 %	79-120 %	1	06/19/23 17:37	5035A/8260D	
B-4 (GW) (A3F1239-07)	Matrix: Water Batch: 23F0648				23F0648			
Acetone	ND		20.0	ug/L	1	06/19/23 16:09	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	06/19/23 16:09	EPA 8260D	
Benzene	ND		0.200	ug/L	1	06/19/23 16:09	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	06/19/23 16:09	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
3-4 (GW) (A3F1239-07)				Matrix: Wa	ater	Batch:	23F0648	
Bromochloromethane	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	06/19/23 16:09	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	06/19/23 16:09	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
ec-Butylbenzene	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
ert-Butylbenzene	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	06/19/23 16:09	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	06/19/23 16:09	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	06/19/23 16:09	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	06/19/23 16:09	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
-Chlorotoluene	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	06/19/23 16:09	EPA 8260D	
,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	06/19/23 16:09	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
,2-Dichlorobenzene	ND		0.500	ug/L	1	06/19/23 16:09	EPA 8260D	
,3-Dichlorobenzene	ND		0.500	ug/L	1	06/19/23 16:09	EPA 8260D	
,4-Dichlorobenzene	ND		0.500	ug/L	1	06/19/23 16:09	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
,1-Dichloroethane	ND		0.400	ug/L	1	06/19/23 16:09	EPA 8260D	
,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	06/19/23 16:09	EPA 8260D	
,1-Dichloroethene	ND		0.400	ug/L	1	06/19/23 16:09	EPA 8260D	
is-1,2-Dichloroethene	ND		0.400	ug/L	1	06/19/23 16:09	EPA 8260D	
rans-1,2-Dichloroethene	ND		0.400	ug/L	1	06/19/23 16:09	EPA 8260D	
,2-Dichloropropane	ND		0.500	ug/L	1	06/19/23 16:09	EPA 8260D	
,3-Dichloropropane	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
,2-Dichloropropane	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
,1-Dichloropropene	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-4 (GW) (A3F1239-07)				Matrix: Wate	er .	Batch: 2	23F0648	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	06/19/23 16:09	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	06/19/23 16:09	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	06/19/23 16:09	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	06/19/23 16:09	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	06/19/23 16:09	EPA 8260D	
Methyl tert-butyl ether (MTBE)	19.0		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
Naphthalene	ND		2.00	ug/L	1	06/19/23 16:09	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	06/19/23 16:09	EPA 8260D	
Styrene	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	06/19/23 16:09	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	06/19/23 16:09	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	06/19/23 16:09	EPA 8260D	
Toluene	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	06/19/23 16:09	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	06/19/23 16:09	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	06/19/23 16:09	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	06/19/23 16:09	EPA 8260D	
Trichloroethene (TCE)	ND		0.400	ug/L	1	06/19/23 16:09	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	06/19/23 16:09	EPA 8260D	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
Vinyl chloride	ND		0.400	ug/L	1	06/19/23 16:09	EPA 8260D	
n,p-Xylene	ND		1.00	ug/L	1	06/19/23 16:09	EPA 8260D	
-Xylene	ND		0.500	ug/L	1	06/19/23 16:09	EPA 8260D	_
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 106%	Limits: 80-120 %	6 I	06/19/23 16:09	EPA 8260D	
Toluene-d8 (Surr)			103 %	80-120 %	6 1	06/19/23 16:09	EPA 8260D	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	6 1	06/19/23 16:09	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	us by EPA 8	260D			
	Sample	Detection	Reporting		- ·	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-3 (GW) (A3F1239-08)				Matrix: Wa	ater	Batch:	23F0648	
Acetone	ND		20.0	ug/L	1	06/19/23 17:03	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	06/19/23 17:03	EPA 8260D	
Benzene	ND		0.200	ug/L	1	06/19/23 17:03	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	06/19/23 17:03	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	06/19/23 17:03	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	06/19/23 17:03	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	06/19/23 17:03	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	06/19/23 17:03	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	06/19/23 17:03	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	06/19/23 17:03	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	06/19/23 17:03	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	06/19/23 17:03	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	06/19/23 17:03	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	06/19/23 17:03	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	06/19/23 17:03	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
,1-Dichloroethane	ND		0.400	ug/L	1	06/19/23 17:03	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	06/19/23 17:03	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	06/19/23 17:03	EPA 8260D	
ris-1,2-Dichloroethene	ND		0.400	ug/L	1	06/19/23 17:03	EPA 8260D	
rans-1,2-Dichloroethene	ND		0.400	ug/L ug/L	1	06/19/23 17:03	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

COSì

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
B-3 (GW) (A3F1239-08)				Matrix: Wa	ater	Batch:	23F0648	
1,2-Dichloropropane	ND		0.500	ug/L	1	06/19/23 17:03	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	06/19/23 17:03	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	06/19/23 17:03	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	06/19/23 17:03	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	06/19/23 17:03	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	06/19/23 17:03	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
Naphthalene	ND		2.00	ug/L	1	06/19/23 17:03	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	06/19/23 17:03	EPA 8260D	
Styrene	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	06/19/23 17:03	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	06/19/23 17:03	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	06/19/23 17:03	EPA 8260D	
Toluene	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	06/19/23 17:03	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	06/19/23 17:03	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	06/19/23 17:03	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	06/19/23 17:03	EPA 8260D	
Trichloroethene (TCE)	ND		0.400	ug/L	1	06/19/23 17:03	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	06/19/23 17:03	EPA 8260D	
,2,3-Trichloropropane	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
,2,4-Trimethylbenzene	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
,3,5-Trimethylbenzene	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
/inyl chloride	ND		0.400	ug/L	1	06/19/23 17:03	EPA 8260D	
n,p-Xylene	ND		1.00	ug/L	1	06/19/23 17:03	EPA 8260D	
-Xylene	ND		0.500	ug/L	1	06/19/23 17:03	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-3 (GW) (A3F1239-08)				Matrix: Wate	er	Batch: 23F0648		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 108 %	Limits: 80-120 %	1	06/19/23 17:03	EPA 8260D	
Toluene-d8 (Surr)			104 %	80-120 %	1	06/19/23 17:03	EPA 8260D	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	I	06/19/23 17:03	EPA 8260D	
B-6 (GW) (A3F1239-09)				Matrix: Wate	er	Batch:	23F0648	
Acetone	ND		20.0	ug/L	1	06/19/23 17:30	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	06/19/23 17:30	EPA 8260D	
Benzene	ND		0.200	ug/L	1	06/19/23 17:30	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	06/19/23 17:30	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	06/19/23 17:30	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	06/19/23 17:30	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	06/19/23 17:30	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	06/19/23 17:30	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	06/19/23 17:30	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	06/19/23 17:30	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	06/19/23 17:30	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	06/19/23 17:30	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	06/19/23 17:30	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	06/19/23 17:30	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	06/19/23 17:30	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	06/19/23 17:30	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

		olatile Organ	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B-6 (GW) (A3F1239-09)				Matrix: W	ater	Batch:	23F0648	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	06/19/23 17:30	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	06/19/23 17:30	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	06/19/23 17:30	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	06/19/23 17:30	EPA 8260D	
1,2-Dichloropropane	ND		0.500	ug/L	1	06/19/23 17:30	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	06/19/23 17:30	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	06/19/23 17:30	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	06/19/23 17:30	EPA 8260D	
sopropylbenzene	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
1-Isopropyltoluene	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	06/19/23 17:30	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	06/19/23 17:30	EPA 8260D	
Methyl tert-butyl ether (MTBE)	9.27		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
Naphthalene	ND		2.00	ug/L	1	06/19/23 17:30	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	06/19/23 17:30	EPA 8260D	
Styrene	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	06/19/23 17:30	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	06/19/23 17:30	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	06/19/23 17:30	EPA 8260D	
Toluene	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	06/19/23 17:30	EPA 8260D	
,2,4-Trichlorobenzene	ND		2.00	ug/L	1	06/19/23 17:30	EPA 8260D	
,1,1-Trichloroethane	ND		0.400	ug/L	1	06/19/23 17:30	EPA 8260D	
,1,2-Trichloroethane	ND		0.500	ug/L	1	06/19/23 17:30	EPA 8260D	
richloroethene (TCE)	ND		0.400	ug/L	1	06/19/23 17:30	EPA 8260D	
Frichlorofluoromethane	ND		2.00	ug/L	1	06/19/23 17:30	EPA 8260D	
,2,3-Trichloropropane	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	
,2,4-Trimethylbenzene	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	60D			Volatile Organic Compounds by EPA 8260D										
	Sample	Detection	Reporting			Date												
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes										
B-6 (GW) (A3F1239-09)				Matrix: Water Batch: 23F0648														
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D											
Vinyl chloride	ND		0.400	ug/L	1	06/19/23 17:30	EPA 8260D											
m,p-Xylene	ND		1.00	ug/L	1	06/19/23 17:30	EPA 8260D											
o-Xylene	ND		0.500	ug/L	1	06/19/23 17:30	EPA 8260D											
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 107 %	Limits: 80-120 %	6 1	06/19/23 17:30	EPA 8260D											
Toluene-d8 (Surr)			104 %	80-120 %	6 I	06/19/23 17:30	EPA 8260D											
4-Bromofluorobenzene (Surr)			106 %	80-120 %	6 I	06/19/23 17:30	EPA 8260D											

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	yls by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
B-4 (19-20) (A3F1239-01)				Matrix: Soil		Batch:	23F0754	C-07
Aroclor 1016	ND		21.4	ug/kg dry	1	06/21/23 22:34	EPA 8082A	
Aroclor 1221	ND		21.4	ug/kg dry	1	06/21/23 22:34	EPA 8082A	
Aroclor 1232	ND		21.4	ug/kg dry	1	06/21/23 22:34	EPA 8082A	
Aroclor 1242	ND		21.4	ug/kg dry	1	06/21/23 22:34	EPA 8082A	
Aroclor 1248	ND		21.4	ug/kg dry	1	06/21/23 22:34	EPA 8082A	
Aroclor 1254	ND		21.4	ug/kg dry	1	06/21/23 22:34	EPA 8082A	
Aroclor 1260	ND		21.4	ug/kg dry	1	06/21/23 22:34	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 101 %	Limits: 60-125 %	6 1	06/21/23 22:34	EPA 8082A	
B-4 (GW) (A3F1239-07)				Matrix: Wate	er	Batch:	23F0845	C-07
Aroclor 1016	ND		0.103	ug/L	1	06/23/23 14:55	EPA 8082A	
Aroclor 1221	ND		0.103	ug/L	1	06/23/23 14:55	EPA 8082A	
Aroclor 1232	ND		0.103	ug/L	1	06/23/23 14:55	EPA 8082A	
Aroclor 1242	ND		0.103	ug/L	1	06/23/23 14:55	EPA 8082A	
Aroclor 1248	ND		0.103	ug/L	1	06/23/23 14:55	EPA 8082A	
Aroclor 1254	ND		0.103	ug/L	1	06/23/23 14:55	EPA 8082A	
Aroclor 1260	ND		0.103	ug/L	1	06/23/23 14:55	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 82 %	Limits: 40-135 %	5 1	06/23/23 14:55	EPA 8082A	
B-6 (GW) (A3F1239-09)				Matrix: Wate	er	Batch:	23F0845	C-07
Aroclor 1016	ND		0.104	ug/L	1	06/23/23 15:14	EPA 8082A	
Aroclor 1221	ND		0.104	ug/L	1	06/23/23 15:14	EPA 8082A	
Aroclor 1232	ND		0.104	ug/L	1	06/23/23 15:14	EPA 8082A	
Aroclor 1242	ND		0.104	ug/L	1	06/23/23 15:14	EPA 8082A	
Aroclor 1248	ND		0.104	ug/L	1	06/23/23 15:14	EPA 8082A	
Aroclor 1254	ND		0.104	ug/L	1	06/23/23 15:14	EPA 8082A	
Aroclor 1260	ND		0.104	ug/L	1	06/23/23 15:14	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 89 %	Limits: 40-135 %	5 1	06/23/23 15:14	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
B-4 (19-20) (A3F1239-01)				Matrix: Soil		Batch:	23F0706				
Acenaphthene	ND		22.0	ug/kg dry	1	06/21/23 04:31 EPA 8270E SIM					
Acenaphthylene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Anthracene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Benz(a)anthracene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Benzo(a)pyrene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Benzo(b)fluoranthene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Benzo(k)fluoranthene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Benzo(g,h,i)perylene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Chrysene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Dibenz(a,h)anthracene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Fluoranthene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Fluorene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Indeno(1,2,3-cd)pyrene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
l-Methylnaphthalene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
2-Methylnaphthalene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Naphthalene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Phenanthrene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Pyrene	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Dibenzofuran	ND		22.0	ug/kg dry	1	06/21/23 04:31	EPA 8270E SIM				
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 80 %	Limits: 44-120 %	1	06/21/23 04:31	EPA 8270E SIM				
p-Terphenyl-d14 (Surr)			81 %	54-127 %	1	06/21/23 04:31	EPA 8270E SIM				
B-2 (6-7) (A3F1239-02)				Matrix: Soil		Batch:	23F0706				
Acenaphthene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM				
Acenaphthylene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM				
Anthracene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM				
Benz(a)anthracene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM				
Benzo(a)pyrene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM				
Benzo(b)fluoranthene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM				
Benzo(k)fluoranthene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM				
Benzo(g,h,i)perylene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM				
Chrysene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM				
Dibenz(a,h)anthracene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

				Ms) by EPA 827	<u> </u>					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
B-2 (6-7) (A3F1239-02)				Matrix: Soil		•	23F0706			
Fluoranthene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM			
Fluorene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM			
Indeno(1,2,3-cd)pyrene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM			
1-Methylnaphthalene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM			
2-Methylnaphthalene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM			
Naphthalene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM			
Phenanthrene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM			
Pyrene	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM			
Dibenzofuran	ND		14.0	ug/kg dry	1	06/21/23 09:26	EPA 8270E SIM			
Surrogate: 2-Fluorobiphenyl (Surr)		Recon	very: 81 %	Limits: 44-120 %	1	06/21/23 09:26	EPA 8270E SIM			
p-Terphenyl-d14 (Surr)			78 %	54-127 %	1	06/21/23 09:26	EPA 8270E SIM			
B-5 (5-6) (A3F1239-04)			Matrix: Soil				Batch: 23F0706			
Acenaphthene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
Acenaphthylene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
Anthracene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
Benz(a)anthracene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
Benzo(a)pyrene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
Benzo(b)fluoranthene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
Benzo(k)fluoranthene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
Benzo(g,h,i)perylene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
Chrysene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
Dibenz(a,h)anthracene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
Fluoranthene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
Fluorene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
ndeno(1,2,3-cd)pyrene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
-Methylnaphthalene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
-Methylnaphthalene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
Vaphthalene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
Phenanthrene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
yrene yrene	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
Dibenzofuran	ND		12.9	ug/kg dry	1	06/21/23 09:52	EPA 8270E SIM			
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 86 %	Limits: 44-120 %	1	06/21/23 09:52	EPA 8270E SIM			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
B-5 (5-6) (A3F1239-04)				Matrix: Soil		Batch:	23F0706				
Surrogate: p-Terphenyl-d14 (Surr)		Reco	very: 85 %	Limits: 54-127 %	5 1	06/21/23 09:52	EPA 8270E SIM				
HA (2) (A3F1239-06)				Matrix: Soil		Batch:	23F0706				
Acenaphthene	ND		14.5	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM	R-02			
Acenaphthylene	ND		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
Anthracene	ND		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
Benz(a)anthracene	ND		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
Benzo(a)pyrene	ND		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
Benzo(b)fluoranthene	ND		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
Benzo(k)fluoranthene	ND		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
Benzo(g,h,i)perylene	ND		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
Chrysene	ND		11.4	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM	R-02			
Dibenz(a,h)anthracene	ND		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
Fluoranthene	ND		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
Fluorene	ND		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
Indeno(1,2,3-cd)pyrene	ND		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
1-Methylnaphthalene	ND		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
2-Methylnaphthalene	16.6		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
Naphthalene	ND		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
Phenanthrene	ND		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
Pyrene	10.9		10.3	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM				
Dibenzofuran	ND		444	ug/kg dry	1	06/21/23 10:17	EPA 8270E SIM	R-02			
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 95 %	Limits: 44-120 %	5 1	06/21/23 10:17	EPA 8270E SIM				
p-Terphenyl-d14 (Surr)			91 %	54-127 %	5 I	06/21/23 10:17	EPA 8270E SIM				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

COSì

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

Analyta	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Analyte B-4 (GW) (A3F1239-07)	Kesun	Lillit	LIIIII	Matrix: Wate			23F0693	notes
, , ,								
Acenaphthene	ND		0.0366	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Acenaphthylene	ND		0.0366	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Anthracene	ND		0.0366	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0183	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0183	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0183	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0183	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0366	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Chrysene	ND		0.0183	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0183	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Fluoranthene	ND		0.0366	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Fluorene	ND		0.0366	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0183	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
l-Methylnaphthalene	ND		0.0731	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0731	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Naphthalene	ND		0.0731	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Phenanthrene	ND		0.0731	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Pyrene	ND		0.0366	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Carbazole	ND		0.0366	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Dibenzofuran	ND		0.0366	ug/L	1	06/20/23 18:52	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Reco	very: 82 %	Limits: 78-134 %	1	06/20/23 18:52	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			105 %	80-132 %	1	06/20/23 18:52	EPA 8270E LVI	
B-3 (GW) (A3F1239-08)				Matrix: Wate	er	Batch:	23F0693	
Acenaphthene	ND		0.0372	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Acenaphthylene	ND		0.0372	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Anthracene	ND		0.0372	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0186	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0186	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0186	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0186	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0372	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Chrysene	ND		0.0186	ug/L	1	06/20/23 19:25	EPA 8270E LVI	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

	G 1	ъ:	D ::			ъ.		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
B-3 (GW) (A3F1239-08)				Matrix: Wate	r	Batch:	23F0693	
Dibenz(a,h)anthracene	ND		0.0186	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Fluoranthene	ND		0.0372	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Fluorene	ND		0.0372	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND		0.0186	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
l-Methylnaphthalene	ND		0.0743	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0743	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Naphthalene	ND		0.0743	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Phenanthrene	ND		0.0743	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Pyrene	ND		0.0372	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Carbazole	ND		0.0372	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Dibenzofuran	ND		0.0372	ug/L	1	06/20/23 19:25	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Recov	ery: 83 %	Limits: 78-134 %	1	06/20/23 19:25	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			107 %	80-132 %	1	06/20/23 19:25	EPA 8270E LVI	
B-6 (GW) (A3F1239-09)				Matrix: Wate	r	Batch: 23F0693		
Acenaphthene	ND		0.0403	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
Acenaphthylene	ND		0.0403	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
Anthracene	ND		0.0403	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
Benz(a)anthracene	ND		0.0202	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
Benzo(a)pyrene	ND		0.0202	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
Benzo(b)fluoranthene	ND		0.0202	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
Benzo(k)fluoranthene	ND		0.0202	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND		0.0403	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
Chrysene	ND		0.0202	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND		0.0202	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
Fluoranthene	ND		0.0403	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
Fluorene	ND		0.0403	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
ndeno(1,2,3-cd)pyrene	ND		0.0202	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
-Methylnaphthalene	ND		0.0806	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
2-Methylnaphthalene	ND		0.0806	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
Naphthalene	ND		0.0806	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
Phenanthrene	ND		0.0806	ug/L	1	06/20/23 19:57	EPA 8270E LVI	
Pyrene	ND		0.0403	ug/L	1	06/20/23 19:57	EPA 8270E LVI	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

Poly	Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (Large Volume Injection)											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
B-6 (GW) (A3F1239-09)				Matrix: Wate	er	Batch:						
Carbazole	ND		0.0403	ug/L	1	06/20/23 19:57	EPA 8270E LVI					
Dibenzofuran	ND		0.0403	ug/L	1	06/20/23 19:57	EPA 8270E LVI					
Surrogate: Acenaphthylene-d8 (Surr)		Reco	very: 81 %	Limits: 78-134 %	5 I	06/20/23 19:57	EPA 8270E LVI					
Benzo(a)pyrene-d12 (Surr)			105 %	80-132 %	5 1	06/20/23 19:57	EPA 8270E LVI					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
B-4 (19-20) (A3F1239-01RE1)				Matrix: Soi	I			
Batch: 23F0688								
Arsenic	4.52		2.39	mg/kg dry	10	06/20/23 20:31	EPA 6020B	
Barium	160		2.39	mg/kg dry	10	06/20/23 20:31	EPA 6020B	
Cadmium	ND		0.478	mg/kg dry	10	06/20/23 20:31	EPA 6020B	
Chromium	43.3		2.39	mg/kg dry	10	06/20/23 20:31	EPA 6020B	
Lead	4.86		0.478	mg/kg dry	10	06/20/23 20:31	EPA 6020B	
Mercury	ND		0.191	mg/kg dry	10	06/20/23 20:31	EPA 6020B	
Selenium	4.28		2.39	mg/kg dry	10	06/20/23 20:31	EPA 6020B	
Silver	ND		0.478	mg/kg dry	10	06/20/23 20:31	EPA 6020B	
B-2 (6-7) (A3F1239-02RE1)				Matrix: Soi	ı			
Batch: 23F0688								
Arsenic	3.04		1.47	mg/kg dry	10	06/20/23 20:36	EPA 6020B	
Barium	241		1.47	mg/kg dry	10	06/20/23 20:36	EPA 6020B	
Cadmium	ND		0.295	mg/kg dry	10	06/20/23 20:36	EPA 6020B	
Chromium	55.5		1.47	mg/kg dry	10	06/20/23 20:36	EPA 6020B	
Lead	11.8		0.295	mg/kg dry	10	06/20/23 20:36	EPA 6020B	
Mercury	ND		0.118	mg/kg dry	10	06/20/23 20:36	EPA 6020B	
Selenium	ND		1.47	mg/kg dry	10	06/20/23 20:36	EPA 6020B	
Silver	ND		0.295	mg/kg dry	10	06/20/23 20:36	EPA 6020B	
3-5 (5-6) (A3F1239-04RE1)				Matrix: Soi	I			
Batch: 23F0688								
Arsenic	3.24		1.44	mg/kg dry	10	06/20/23 20:41	EPA 6020B	
Barium	197		1.44	mg/kg dry	10	06/20/23 20:41	EPA 6020B	
Cadmium	ND		0.288	mg/kg dry	10	06/20/23 20:41	EPA 6020B	
Chromium	47.8		1.44	mg/kg dry	10	06/20/23 20:41	EPA 6020B	
ead	9.50		0.288	mg/kg dry	10	06/20/23 20:41	EPA 6020B	
Mercury	ND		0.115	mg/kg dry	10	06/20/23 20:41	EPA 6020B	
Selenium	ND		1.44	mg/kg dry	10	06/20/23 20:41	EPA 6020B	
Silver	ND		0.288	mg/kg dry	10	06/20/23 20:41	EPA 6020B	
HA (2) (A3F1239-06)				Matrix: Soi				

Batch: 23F0688

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
HA (2) (A3F1239-06)				Matrix: Soi	ı						
Arsenic	1.34		1.16	mg/kg dry	10	06/20/23 20:46	EPA 6020B				
Barium	75.8		1.16	mg/kg dry	10	06/20/23 20:46	EPA 6020B				
Cadmium	ND		0.232	mg/kg dry	10	06/20/23 20:46	EPA 6020B				
Chromium	10.5		1.16	mg/kg dry	10	06/20/23 20:46	EPA 6020B				
Lead	6.39		0.232	mg/kg dry	10	06/20/23 20:46	EPA 6020B				
Mercury	ND		0.0927	mg/kg dry	10	06/20/23 20:46	EPA 6020B				
Selenium	ND		1.16	mg/kg dry	10	06/20/23 20:46	EPA 6020B				
Silver	ND		0.232	mg/kg dry	10	06/20/23 20:46	EPA 6020B				
B-4 (GW) (A3F1239-07)				Matrix: Wat	ter						
Batch: 23F0682											
Arsenic	28.5		1.00	ug/L	1	06/19/23 22:19	EPA 6020B				
Barium	808		2.00	ug/L	1	06/19/23 22:19	EPA 6020B				
Cadmium	3.76		0.200	ug/L	1	06/19/23 22:19	EPA 6020B				
Chromium	106		2.00	ug/L	1	06/19/23 22:19	EPA 6020B				
Lead	24.4		0.200	ug/L	1	06/19/23 22:19	EPA 6020B				
Mercury	0.140		0.0800	ug/L	1	06/19/23 22:19	EPA 6020B				
Selenium	15.1		1.00	ug/L	1	06/19/23 22:19	EPA 6020B				
Silver	0.449		0.200	ug/L	1	06/19/23 22:19	EPA 6020B				
B-3 (GW) (A3F1239-08)				Matrix: Wat	ter						
Batch: 23F0682											
Arsenic	17.8		1.00	ug/L	1	06/19/23 22:24	EPA 6020B				
Barium	734		2.00	ug/L	1	06/19/23 22:24	EPA 6020B				
Cadmium	0.376		0.200	ug/L	1	06/19/23 22:24	EPA 6020B				
Chromium	90.1		2.00	ug/L	1	06/19/23 22:24	EPA 6020B				
Lead	18.0		0.200	ug/L	1	06/19/23 22:24	EPA 6020B				
Mercury	ND		0.0800	ug/L	1	06/19/23 22:24	EPA 6020B				
Selenium	1.34		1.00	ug/L	1	06/19/23 22:24	EPA 6020B				
Silver	ND		0.200	ug/L	1	06/19/23 22:24	EPA 6020B				
B-6 (GW) (A3F1239-09)				Matrix: Wat	ter						
Batch: 23F0682											
Arsenic	13.0		1.00	ug/L	1	06/19/23 22:29	EPA 6020B				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers

Project:

Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200 Lake Oswego, OR 97035 Project Number: [none]
Project Manager: Ian Maguire

Report ID: A3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

		Total Meta	ils by EPA 602	20B (ICPMS	5)			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-6 (GW) (A3F1239-09)				Matrix: Wa	ater			
Barium	500		2.00	ug/L	1	06/19/23 22:29	EPA 6020B	
Cadmium	0.766		0.200	ug/L	1	06/19/23 22:29	EPA 6020B	
Chromium	43.7		2.00	ug/L	1	06/19/23 22:29	EPA 6020B	
Lead	8.15		0.200	ug/L	1	06/19/23 22:29	EPA 6020B	
Mercury	ND		0.0800	ug/L	1	06/19/23 22:29	EPA 6020B	
Selenium	4.89		1.00	ug/L	1	06/19/23 22:29	EPA 6020B	
Silver	0.228		0.200	ug/L	1	06/19/23 22:29	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers

Project:

Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200 Lake Oswego, OR 97035 Project Number: [none]
Project Manager: Ian Maguire

Report ID:

A3F1239 - 06 26 23 1646

ANALYTICAL SAMPLE RESULTS

Percent Dry Weight												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
B-4 (19-20) (A3F1239-01)				Matrix: So	il	Batch: 23F0651						
% Solids	45.1		1.00	%	1	06/20/23 06:22	EPA 8000D					
B-2 (6-7) (A3F1239-02)				Matrix: So	il	Batch:	23F0651					
% Solids	71.3		1.00	%	1	06/20/23 06:22	EPA 8000D					
B-3 (8-9) (A3F1239-03)				Matrix: So	il	Batch:						
% Solids	76.8		1.00	%	1	06/20/23 06:22	EPA 8000D					
B-5 (5-6) (A3F1239-04)				Matrix: So	il	Batch:	23F0651					
% Solids	71.7		1.00	%	1	06/20/23 06:22	EPA 8000D					
B-6 (5-6) (A3F1239-05)				Matrix: So	il	Batch:	23F0651					
% Solids	74.7		1.00	%	1	06/20/23 06:22	EPA 8000D					
HA (2) (A3F1239-06)				Matrix: So	il	Batch: 23F0651						
% Solids	90.4		1.00	%	1	06/20/23 06:22	EPA 8000D					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	r Oil Hyd	rocarbor	s by NW	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0772 - EPA 3546 (F	uels)						So	il				
Blank (23F0772-BLK1)			Prepared	1: 06/21/23	11:03 Ana	lyzed: 06/21	/23 21:08					
NWTPH-Dx												
Diesel	ND		20.0	mg/kg w	et 1							
Oil	ND		40.0	mg/kg w	et 1							
Surr: o-Terphenyl (Surr)		Rec	overy: 83 %	Limits: 50	1-150 %	Dil	ution: 1x					
LCS (23F0772-BS1)			Prepared	1: 06/21/23	11:03 Ana	lyzed: 06/21	/23 21:31					
NWTPH-Dx												
Diesel	117		20.0	mg/kg w	et 1	125		94	38-132%			
Surr: o-Terphenyl (Surr)		Rec	overy: 87 %	Limits: 50)-150 %	Dil	ution: 1x					
Duplicate (23F0772-DUP1)			Prepared	d: 06/21/23	11:03 Ana	lyzed: 06/21	/23 22:18					
QC Source Sample: Non-SDG (A3	3F1214-01)											
Diesel	ND		23.9	mg/kg d	ry 1		ND				30%	
Oil	121		47.7	mg/kg d	ry 1		88.9			31	30%	Q-0
Surr: o-Terphenyl (Surr)		Rec	overy: 82 %	Limits: 50	1-150 %	Dil	ution: 1x					
Duplicate (23F0772-DUP2)			Prepared	d: 06/21/23	11:03 Ana	lyzed: 06/22	2/23 01:02					
OC Source Sample: Non-SDG (A3	3F1303-06)											
Diesel	ND		23.6	mg/kg d	ry 1		ND				30%	
Oil	ND		47.2	mg/kg d	ry 1		ND				30%	
Surr: o-Terphenyl (Surr)		Rec	overy: 78 %	Limits: 50)-150 %	Dil	ution: 1x					
Batch 23F0798 - EPA 3510C (F	Fuels/Acid	Ext.)					Wa	iter				
Blank (23F0798-BLK1)			Prepared	1: 06/22/23	07:10 Ana	lyzed: 06/22	2/23 22:07			_		
NWTPH-Dx LL			*			-						
Diesel	ND		0.0800	mg/L	1							
Oil	ND		0.160	mg/L	1							
Surr: o-Terphenyl (Surr)		Rec	overy: 56 %	Limits: 50)-150 %	Dil	ution: 1x					
LCS (23F0798-BS1)			Prepared	1: 06/22/23	07:10 Ana	lyzed: 06/22	2/23 22:30					
NWTPH-Dx LL												
Diesel	0.351		0.0800	mg/L	1	0.500		70	36-132%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx Detection Reporting Spike Source % REC **RPD** Analyte Result Ĺimit Units Dilution Amount Result % REC Limits RPD Limit Notes Limit Batch 23F0798 - EPA 3510C (Fuels/Acid Ext.) Water LCS (23F0798-BS1) Prepared: 06/22/23 07:10 Analyzed: 06/22/23 22:30 Recovery: 84 % Limits: 50-150 % Surr: o-Terphenyl (Surr) Dilution: 1x LCS Dup (23F0798-BSD1) Prepared: 06/22/23 07:10 Analyzed: 06/22/23 22:53 Q-19 NWTPH-Dx LL 0.276 0.0800 0.500 55 36-132% 30% Diesel mg/L 24 Surr: o-Terphenyl (Surr) Recovery: 63 % Limits: 50-150 % Dilution: 1x

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range H	lydrocarbo	ons (Ben	zene throu	igh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0647 - EPA 5035A							Soi	il				
Blank (23F0647-BLK1)			Prepared	d: 06/19/23	08:22 Anal	yzed: 06/19	/23 10:49					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.00	mg/kg v	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 102 %	Limits: 5	0-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			106 %	5	0-150 %		"					
LCS (23F0647-BS2)			Prepared	d: 06/19/23	08:22 Anal	yzed: 06/19/	/23 10:19					
NWTPH-Gx (MS)												
Gasoline Range Organics	20.8		5.00	mg/kg v	vet 50	25.0		83	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 100 %	Limits: 5	0-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			105 %	5	0-150 %		"					
Duplicate (23F0647-DUP1)			Prepared	d: 06/15/23	12:50 Anal	yzed: 06/19	/23 11:40					
QC Source Sample: B-4 (19-20)	A3F1239-01)	<u>1</u>										
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		20.3	mg/kg o	dry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 105 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			107 %	5	0-150 %		"					
Duplicate (23F0647-DUP2)			Prepared	d: 06/15/23	10:30 Anal	yzed: 06/19	/23 15:29					
OC Source Sample: Non-SDG (A3	3F1242-02)											
Gasoline Range Organics	ND		6.59	mg/kg	dry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 106 %	Limits: 5	0-150 %	Dilı	ıtion: 1x		<u> </u>			
1,4-Difluorobenzene (Sur)			104 %	5	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	lydrocarbo	ons (Benz	zene throu	ıgh Naphi	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0648 - EPA 5030C							Wa	ter				
Blank (23F0648-BLK1)			Prepared	d: 06/19/23	08:30 Anal	yzed: 06/19/	/23 11:32					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 94 %	Limits: 50	0-150 %	Dilu	ution: 1x					
1,4-Difluorobenzene (Sur)			106 %	50	0-150 %		"					
LCS (23F0648-BS2)			Prepared	d: 06/19/23	08:30 Anal	yzed: 06/19/	/23 11:05					
NWTPH-Gx (MS)												
Gasoline Range Organics	0.497		0.100	mg/L	1	0.500		99	80-120%			
Surr: 4-Bromofluorobenzene (Sur)	<u> </u>	Reco	overy: 94 %	Limits: 50	0-150 %	Dilu	ition: 1x				<u> </u>	
1,4-Difluorobenzene (Sur)			103 %	50	0-150 %		"					
Duplicate (23F0648-DUP1)			Prepared	d: 06/19/23	11:30 Anal	yzed: 06/19/	/23 12:28					
QC Source Sample: Non-SDG (A3	F1209-01)											
Gasoline Range Organics	ND		0.100	mg/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 96 %	Limits: 50	0-150 %	Dilu	ution: 1x					
1,4-Difluorobenzene (Sur)			108 %	50	0-150 %		"					
Duplicate (23F0648-DUP2)			Prepared	d: 06/19/23	11:30 Anal	yzed: 06/19/	23 16:36					
QC Source Sample: B-4 (GW) (A.	3F1239-07)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		0.100	mg/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 97 %	Limits: 50	0-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			108 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units % REC RPD Limit Amount Result Limits Limit Notes Batch 23F0647 - EPA 5035A Soil Blank (23F0647-BLK1) Prepared: 06/19/23 08:22 Analyzed: 06/19/23 10:49 5035A/8260D ND 1000 ug/kg wet 50 Acetone ND 100 50 Acrylonitrile ug/kg wet Benzene ND 10.0 ug/kg wet 50 Bromobenzene ND 25.0 ug/kg wet 50 Bromochloromethane ND 50.0 50 ug/kg wet Bromodichloromethane ND 50.0 ug/kg wet 50 Bromoform ND 100 ug/kg wet 50 500 Bromomethane ND ug/kg wet 50 2-Butanone (MEK) ND 500 ug/kg wet 50 n-Butylbenzene ND 50.0 50 ug/kg wet sec-Butylbenzene ND 50.0 ug/kg wet 50 ND 50.0 tert-Butylbenzene 50 ug/kg wet ---Carbon disulfide ND 500 ug/kg wet 50 Carbon tetrachloride ND 50.0 50 ug/kg wet Chlorobenzene ND 25.0 ug/kg wet 50 Chloroethane ND 500 ug/kg wet 50 ---Chloroform ND 50.0 ug/kg wet 50 250 Chloromethane ND ug/kg wet 50 ---2-Chlorotoluene ND 50.0 ug/kg wet 50 4-Chlorotoluene ND 50.0 ug/kg wet 50 Dibromochloromethane ND 100 ug/kg wet 50 1,2-Dibromo-3-chloropropane ND 250 ug/kg wet 50 1,2-Dibromoethane (EDB) ND 50.0 ug/kg wet 50 Dibromomethane ND 50.0 ug/kg wet 50 25.0 1,2-Dichlorobenzene ND ug/kg wet 50 1,3-Dichlorobenzene ND 25.0 ug/kg wet 50 1,4-Dichlorobenzene ND 25.0 ug/kg wet 50 Dichlorodifluoromethane ND 100 ug/kg wet 50 ---ND 25.0 1,1-Dichloroethane ug/kg wet 50 1,2-Dichloroethane (EDC) ND 25.0 ug/kg wet 50 1,1-Dichloroethene ND 25.0 50 ug/kg wet cis-1,2-Dichloroethene ND 25.0 ug/kg wet 50 25.0 trans-1,2-Dichloroethene ND ug/kg wet 50

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** % REC Limits RPD Analyte Result Ĺimit Units Dilution Amount Result Limit Notes Limit Batch 23F0647 - EPA 5035A Soil

Blank (23F0647-BLK1)		Prepared	: 06/19/23 08:	22 Anal	yzed: 06/19/	23 10:49			
1,2-Dichloropropane	ND	 25.0	ug/kg wet	50			 	 	
1,3-Dichloropropane	ND	 50.0	ug/kg wet	50			 	 	
2,2-Dichloropropane	ND	 50.0	ug/kg wet	50			 	 	
1,1-Dichloropropene	ND	 50.0	ug/kg wet	50			 	 	
cis-1,3-Dichloropropene	ND	 50.0	ug/kg wet	50			 	 	
trans-1,3-Dichloropropene	ND	 50.0	ug/kg wet	50			 	 	
Ethylbenzene	ND	 25.0	ug/kg wet	50			 	 	
Hexachlorobutadiene	ND	 100	ug/kg wet	50			 	 	
2-Hexanone	ND	 500	ug/kg wet	50			 	 	
Isopropylbenzene	ND	 50.0	ug/kg wet	50			 	 	
4-Isopropyltoluene	ND	 50.0	ug/kg wet	50			 	 	
Methylene chloride	ND	 500	ug/kg wet	50			 	 	
4-Methyl-2-pentanone (MiBK)	ND	 500	ug/kg wet	50			 	 	
Methyl tert-butyl ether (MTBE)	ND	 50.0	ug/kg wet	50			 	 	
Naphthalene	ND	 100	ug/kg wet	50			 	 	
n-Propylbenzene	ND	 25.0	ug/kg wet	50			 	 	
Styrene	ND	 50.0	ug/kg wet	50			 	 	
1,1,1,2-Tetrachloroethane	ND	 25.0	ug/kg wet	50			 	 	
1,1,2,2-Tetrachloroethane	ND	 50.0	ug/kg wet	50			 	 	
Tetrachloroethene (PCE)	ND	 25.0	ug/kg wet	50			 	 	
Toluene	ND	 50.0	ug/kg wet	50			 	 	
1,2,3-Trichlorobenzene	ND	 250	ug/kg wet	50			 	 	
1,2,4-Trichlorobenzene	ND	 250	ug/kg wet	50			 	 	
1,1,1-Trichloroethane	ND	 25.0	ug/kg wet	50			 	 	
1,1,2-Trichloroethane	ND	 25.0	ug/kg wet	50			 	 	
Trichloroethene (TCE)	ND	 25.0	ug/kg wet	50			 	 	
Trichlorofluoromethane	ND	 100	ug/kg wet	50			 	 	Q-52
1,2,3-Trichloropropane	ND	 50.0	ug/kg wet	50			 	 	
1,2,4-Trimethylbenzene	ND	 50.0	ug/kg wet	50			 	 	
1,3,5-Trimethylbenzene	ND	 50.0	ug/kg wet	50			 	 	
Vinyl chloride	ND	 25.0	ug/kg wet	50			 	 	
m,p-Xylene	ND	 50.0	ug/kg wet	50			 	 	
o-Xylene	ND	 25.0	ug/kg wet	50			 	 	

Surr: 1,4-Difluorobenzene (Surr) Recovery: 101 % Limits: 80-120 % Dilution: Ix

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

	Volatile Organic Compounds by EPA 8260D											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0647 - EPA 5035A							Soi	il				
Blank (23F0647-BLK1)			Prepared	: 06/19/23 0	8:22 Anal	yzed: 06/19/	/23 10:49					
Surr: Toluene-d8 (Surr)		Reco	very: 102 %	Limits: 80-	120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			96 %	79	120 %		"					
LCS (23F0647-BS1)			Prepared	: 06/19/23 0	8:22 Anal	yzed: 06/19/	/23 09:54					
5035A/8260D												
Acetone	1900		1000	ug/kg we	t 50	2000		95	80-120%			
Acrylonitrile	996		100	ug/kg we	t 50	1000		100	80-120%			
Benzene	978		10.0	ug/kg we	t 50	1000		98	80-120%			
Bromobenzene	920		25.0	ug/kg we	t 50	1000		92	80-120%			
Bromochloromethane	1020		50.0	ug/kg we	t 50	1000		102	80-120%			
Bromodichloromethane	1090		50.0	ug/kg we	t 50	1000		109	80-120%			
Bromoform	1070		100	ug/kg we	t 50	1000		107	80-120%			
Bromomethane	1070		500	ug/kg we	t 50	1000		107	80-120%			
2-Butanone (MEK)	1880		500	ug/kg we	t 50	2000		94	80-120%			
n-Butylbenzene	892		50.0	ug/kg we	t 50	1000		89	80-120%			
sec-Butylbenzene	942		50.0	ug/kg we	t 50	1000		94	80-120%			
ert-Butylbenzene	893		50.0	ug/kg we	t 50	1000		89	80-120%			
Carbon disulfide	940		500	ug/kg we	t 50	1000		94	80-120%			
Carbon tetrachloride	1110		50.0	ug/kg we	t 50	1000		111	80-120%			
Chlorobenzene	971		25.0	ug/kg we		1000		97	80-120%			
Chloroethane	1180		500	ug/kg we		1000		118	80-120%			
Chloroform	976		50.0	ug/kg we		1000		98	80-120%			
Chloromethane	918		250	ug/kg we	t 50	1000		92	80-120%			
2-Chlorotoluene	916		50.0	ug/kg we		1000		92	80-120%			
1-Chlorotoluene	925		50.0	ug/kg we		1000		92	80-120%			
Dibromochloromethane	1200		100	ug/kg we		1000		120	80-120%			
,2-Dibromo-3-chloropropane	997		250	ug/kg we		1000		100	80-120%			
,2-Dibromoethane (EDB)	963		50.0	ug/kg we		1000		96	80-120%			
Dibromomethane	1040		50.0	ug/kg we		1000		104	80-120%			
,2-Dichlorobenzene	945		25.0	ug/kg we	t 50	1000		94	80-120%			
,3-Dichlorobenzene	952		25.0	ug/kg we		1000		95	80-120%			
,4-Dichlorobenzene	923		25.0	ug/kg we		1000		92	80-120%			
Dichlorodifluoromethane	1020		100	ug/kg we		1000		102	80-120%			
,1-Dichloroethane	997		25.0	ug/kg we		1000		100	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23F0647 - EPA 5035A Soil LCS (23F0647-BS1) Prepared: 06/19/23 08:22 Analyzed: 06/19/23 09:54 1,2-Dichloroethane (EDC) 1000 25.0 ug/kg wet 50 1000 100 80-120% 1,1-Dichloroethene 986 25.0 ug/kg wet 50 1000 99 80-120% ---------1000 97 cis-1,2-Dichloroethene 972 25.0 ug/kg wet 50 80-120% trans-1,2-Dichloroethene 955 25.0 ug/kg wet 50 1000 96 80-120% 974 25.0 1000 97 50 80-120% 1,2-Dichloropropane ug/kg wet 972 97 1,3-Dichloropropane 50.0 ug/kg wet 50 1000 80-120% 80-120% 2,2-Dichloropropane 922 50.0 ug/kg wet 50 1000 92 1000 98 1,1-Dichloropropene 980 50.0 ug/kg wet 50 80-120% 1000 50.0 1000 cis-1,3-Dichloropropene ug/kg wet 50 100 80-120% trans-1,3-Dichloropropene 994 50.0 ug/kg wet 50 1000 99 80-120% Ethylbenzene 1000 92 915 25.0 ug/kg wet 50 80-120% 100 90 Hexachlorobutadiene 898 ug/kg wet 50 1000 80-120% 1610 500 2000 80 2-Hexanone ug/kg wet 50 80-120% ---Isopropylbenzene 912 50.0 ug/kg wet 50 1000 91 80-120% 93 929 50.0 50 1000 80-120% 4-Isopropyltoluene ug/kg wet Methylene chloride 1040 500 ug/kg wet 50 1000 104 80-120% 1730 500 2000 4-Methyl-2-pentanone (MiBK) ug/kg wet 50 86 80-120% Methyl tert-butyl ether (MTBE) 886 50.0 50 1000 89 80-120% ug/kg wet Naphthalene 865 100 50 1000 86 80-120% --ug/kg wet -----n-Propylbenzene 938 25.0 ug/kg wet 50 1000 94 80-120% 912 50.0 50 1000 91 80-120% Styrene ug/kg wet 1,1,1,2-Tetrachloroethane 1100 25.0 ug/kg wet 50 1000 110 80-120% 1,1,2,2-Tetrachloroethane 882 50.0 ug/kg wet 50 1000 88 80-120% Tetrachloroethene (PCE) 950 25.0 ug/kg wet 50 1000 95 80-120% 910 50.0 1000 91 Toluene ug/kg wet 50 80-120% ---------1,2,3-Trichlorobenzene 892 250 ug/kg wet 50 1000 89 80-120% 1,2,4-Trichlorobenzene 832 250 50 1000 83 80-120% ug/kg wet 1,1,1-Trichloroethane 1050 25.0 ug/kg wet 50 1000 105 80-120% 1.1.2-Trichloroethane 1000 25.0 50 1000 100 80-120% ug/kg wet ---

Apex Laboratories

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

105

79

97

91

94

80-120%

80-120%

80-120%

80-120%

80-120%

CODi

Q-52

1050

786

972

910

944

25.0

100

50.0

50.0

50.0

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

ug/kg wet

50

50

50

50

50

1000

1000

1000

1000

1000

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0647 - EPA 5035A							So	il				
LCS (23F0647-BS1)			Prepared	1: 06/19/23 0	8:22 Anal	yzed: 06/19	/23 09:54					
/inyl chloride	1040		25.0	ug/kg we	t 50	1000		104	80-120%			
n,p-Xylene	1810		50.0	ug/kg we	t 50	2000		90	80-120%			
-Xylene	869		25.0	ug/kg we	t 50	1000		87	80-120%			
urr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			93 %	79-	120 %		"					
Ouplicate (23F0647-DUP1)			Prepared	1: 06/15/23 1	2:50 Anal	yzed: 06/19	/23 11:40					
OC Source Sample: B-4 (19-20) (A	A3F1239-01))										
5035A/8260D												
Acetone	ND		4050	ug/kg dry			ND				30%	
Acrylonitrile	ND		405	ug/kg dry	50		ND				30%	
Benzene	ND		40.5	ug/kg dry	50		ND				30%	
Bromobenzene	ND		101	ug/kg dry			ND				30%	
Bromochloromethane	ND		203	ug/kg dry	50		ND				30%	
Bromodichloromethane	ND		203	ug/kg dry	50		ND				30%	
Bromoform	ND		405	ug/kg dry	50		ND				30%	
Bromomethane	ND		2030	ug/kg dry	50		ND				30%	
-Butanone (MEK)	ND		2030	ug/kg dry	50		ND				30%	
-Butylbenzene	ND		203	ug/kg dry	50		ND				30%	
ec-Butylbenzene	ND		203	ug/kg dry	50		ND				30%	
ert-Butylbenzene	ND		203	ug/kg dry	50		ND				30%	
Carbon disulfide	ND		2030	ug/kg dry	50		ND				30%	
Carbon tetrachloride	ND		203	ug/kg dry	50		ND				30%	
Chlorobenzene	ND		101	ug/kg dry	50		ND				30%	
Chloroethane	ND		2030	ug/kg dry	50		ND				30%	
Chloroform	ND		203	ug/kg dry			ND				30%	
Chloromethane	ND		1010	ug/kg dry	7 50		ND				30%	
-Chlorotoluene	ND		203	ug/kg dry			ND				30%	
-Chlorotoluene	ND		203	ug/kg dry			ND				30%	
Dibromochloromethane	ND		405	ug/kg dry			ND				30%	
,2-Dibromo-3-chloropropane	ND		1010	ug/kg dry			ND				30%	
,2-Dibromoethane (EDB)	ND		203	ug/kg dry			ND				30%	
Dibromomethane	ND		203	ug/kg dry			ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23F0647 - EPA 5035A Soil Duplicate (23F0647-DUP1) Prepared: 06/15/23 12:50 Analyzed: 06/19/23 11:40 QC Source Sample: B-4 (19-20) (A3F1239-01) 1,2-Dichlorobenzene ND 101 ug/kg dry 50 ND 30% ND 101 1,3-Dichlorobenzene ug/kg dry 50 ND 30% 1,4-Dichlorobenzene ND 101 ug/kg dry 50 ND 30% Dichlorodifluoromethane ND 405 ug/kg dry 50 ND 30% 1,1-Dichloroethane ND 101 ug/kg dry 50 ND 30% ---1,2-Dichloroethane (EDC) ND 101 ug/kg dry 50 ND 30% 1,1-Dichloroethene ND 101 50 ND 30% ug/kg dry 101 ND 30% cis-1,2-Dichloroethene ND ug/kg dry 50 trans-1,2-Dichloroethene ND 101 ug/kg dry 50 ND 30% 1,2-Dichloropropane ND 101 ug/kg dry 50 ND 30% 1,3-Dichloropropane ND 203 ug/kg dry 50 ND 30% ND 203 30% 2,2-Dichloropropane ug/kg dry 50 ND 1,1-Dichloropropene ND 203 ug/kg dry 50 ND 30% ND 203 30% cis-1,3-Dichloropropene ug/kg dry 50 ND trans-1,3-Dichloropropene ND 203 ug/kg dry 50 ND 30% Ethylbenzene ND 101 ug/kg dry 50 ND ___ 30% Hexachlorobutadiene ND 405 ug/kg dry 50 ND 30% 2-Hexanone ND 2030 30% 50 ND ug/kg dry Isopropylbenzene ND 203 ug/kg dry 50 ND 30% ND 203 4-Isopropyltoluene 50 ND 30% ug/kg dry ND 2030 Methylene chloride ug/kg dry 50 ND 30% 4-Methyl-2-pentanone (MiBK) ND ---2030 ug/kg dry 50 ND 30% Methyl tert-butyl ether (MTBE) ND 203 ug/kg dry 50 ND 30% Naphthalene ND 405 ND 30% ug/kg dry 50 ND 101 30% n-Propylbenzene ug/kg dry 50 ND ND 203 ND 30% Styrene ug/kg dry 50 1,1,1,2-Tetrachloroethane ND 101 ND 30% ug/kg dry 50 1,1,2,2-Tetrachloroethane ND 203 ug/kg dry 50 ND 30% Tetrachloroethene (PCE) ND 101 ug/kg dry 50 ND 30% Toluene ND 203 30% ug/kg dry 50 ND 1,2,3-Trichlorobenzene ND 1010 ug/kg dry 50 ND 30% 1010 1,2,4-Trichlorobenzene ND 50 ND 30% ug/kg dry ---1,1,1-Trichloroethane ND 101 ug/kg dry 50 ND 30%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0647 - EPA 5035A							Soi	il				
Duplicate (23F0647-DUP1)			Prepare	d: 06/15/23	2:50 Ana	lyzed: 06/19	/23 11:40					
QC Source Sample: B-4 (19-20) (A	A3F1239-01)										
1,1,2-Trichloroethane	ND		101	ug/kg dr	y 50		ND				30%	
Trichloroethene (TCE)	ND		101	ug/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND		405	ug/kg dr	y 50		ND				30%	Q-5
1,2,3-Trichloropropane	ND		203	ug/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND		203	ug/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND		203	ug/kg dr	y 50		ND				30%	
Vinyl chloride	ND		101	ug/kg dr	y 50		ND				30%	
m,p-Xylene	ND		203	ug/kg dr	y 50		ND				30%	
o-Xylene	ND		101	ug/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			100 %	80-	-120 %		"					
4-Bromofluorobenzene (Surr)			94 %	79	-120 %		"					
Duplicate (23F0647-DUP2)			Prepared	d: 06/15/23 1	0:30 Ana	lvzed: 06/19	/23 15:20					
QC Source Sample: Non-SDG (A3	SF1242_02)		Trepared	a. 00/13/23 I	10.50 7 KH	1y2cu. 00/17	723 13.27					
Acetone	ND		1320	ug/kg dr	y 50		ND				30%	
Acrylonitrile	ND		1320	ug/kg dr			ND				30%	
Benzene	ND		13.2	ug/kg dr	•		ND				30%	
Bromobenzene	ND		33.0	ug/kg dr			ND				30%	
Bromochloromethane	ND		65.9	ug/kg dr			ND				30%	
Bromodichloromethane	ND		65.9	ug/kg dr			ND				30%	
Bromoform	ND		132	ug/kg dr	•		ND				30%	
Bromomethane	ND ND		659	ug/kg dr			ND ND				30%	
2-Butanone (MEK)	ND ND		659	ug/kg dr ug/kg dr			ND ND				30%	
n-Butylbenzene	ND ND		65.9	ug/kg dr ug/kg dr			ND ND				30%	
sec-Butylbenzene	ND ND		65.9	ug/kg dr ug/kg dr			ND ND				30%	
tert-Butylbenzene	ND ND		65.9	ug/kg dr	,		ND ND				30%	
Carbon disulfide	ND ND		659				ND ND				30%	
Carbon distillide Carbon tetrachloride	ND ND		65.9	ug/kg dr			ND ND				30%	
			33.0	ug/kg dr								
Chlorobenzene	ND			ug/kg dr			ND				30%	
Chloroethane	ND		659	ug/kg dr			ND				30%	
Chloroform	ND		65.9	ug/kg dr			ND				30%	
Chloromethane	ND		330	ug/kg dr	y 50		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23F0647 - EPA 5035A Soil Duplicate (23F0647-DUP2) Prepared: 06/15/23 10:30 Analyzed: 06/19/23 15:29 QC Source Sample: Non-SDG (A3F1242-02) 2-Chlorotoluene ND 65.9 ug/kg dry 50 ND 30% ND 65.9 4-Chlorotoluene ug/kg dry 50 ND 30% Dibromochloromethane ND 132 ug/kg dry 50 ND 30% 1,2-Dibromo-3-chloropropane ND 330 ug/kg dry 50 ND 30% 1,2-Dibromoethane (EDB) ND 65.9 ug/kg dry 50 ND 30% ---ND Dibromomethane 65.9 ug/kg dry 50 ND 30% 1,2-Dichlorobenzene ND 33.0 50 ND 30% ug/kg dry ND ND 30% 1,3-Dichlorobenzene 33.0 ug/kg dry 50 1,4-Dichlorobenzene ND 33.0 ug/kg dry 50 ND 30% Dichlorodifluoromethane ND 132 ug/kg dry 50 ND 30% 1,1-Dichloroethane ND 33.0 ug/kg dry 50 ND 30% 1,2-Dichloroethane (EDC) ND 33.0 ND 30% ug/kg dry 50 1,1-Dichloroethene ND 33.0 ug/kg dry 50 ND 30% ND 33.0 ND 30% cis-1,2-Dichloroethene ug/kg dry 50 33.0 trans-1,2-Dichloroethene ND ug/kg dry 50 ND 30% 1,2-Dichloropropane ND 33.0 ug/kg dry 50 ND ___ 30% 1,3-Dichloropropane ND 65.9 ug/kg dry 50 ND 30% ND 65.9 30% 2,2-Dichloropropane 50 ND ug/kg dry ND 1,1-Dichloropropene ND 65.9 ug/kg dry 50 30% cis-1,3-Dichloropropene ND 65.9 50 ND 30% ug/kg dry trans-1,3-Dichloropropene ND ND 65.9 ug/kg dry 50 30% Ethylbenzene ND ---33.0 ug/kg dry 50 ND 30% Hexachlorobutadiene ND 132 ug/kg dry 50 ND 30% 659 ND 30% 2-Hexanone ND ug/kg dry 50 ND 65.9 ND 30% Isopropylbenzene ug/kg dry 50 ND 65.9 ND 30% 4-Isopropyltoluene ug/kg dry 50 50 Methylene chloride ND 659 ND 30% ug/kg dry 4-Methyl-2-pentanone (MiBK) ND 659 ug/kg dry 50 ND 30% Methyl tert-butyl ether (MTBE) ND 65.9 ug/kg dry 50 ND 30% Naphthalene ND 132 ND 30% ug/kg dry 50 n-Propylbenzene ND 33.0 50 ND 30% ug/kg dry 65.9 Styrene ND 50 ND 30% ug/kg dry 1,1,1,2-Tetrachloroethane ND 33.0 ug/kg dry 50 ND 30%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0647 - EPA 5035A							Soi	il				
Duplicate (23F0647-DUP2)			Prepared	1: 06/15/23 1	0:30 Ana	lyzed: 06/19	/23 15:29					
QC Source Sample: Non-SDG (A3	F1242-02)											
1,1,2,2-Tetrachloroethane	ND		65.9	ug/kg dr	y 50		ND				30%	
Tetrachloroethene (PCE)	ND		33.0	ug/kg dr	y 50		ND				30%	
Toluene	ND		65.9	ug/kg dr	y 50		ND				30%	
1,2,3-Trichlorobenzene	ND		330	ug/kg dr	y 50		ND				30%	
1,2,4-Trichlorobenzene	ND		330	ug/kg dr	y 50		ND				30%	
1,1,1-Trichloroethane	ND		33.0	ug/kg dr	y 50		ND				30%	
1,1,2-Trichloroethane	ND		33.0	ug/kg dr	y 50		ND				30%	
Trichloroethene (TCE)	ND		33.0	ug/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND		132	ug/kg dr	y 50		ND				30%	Q-5
1,2,3-Trichloropropane	ND		65.9	ug/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND		65.9	ug/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND		65.9	ug/kg dr	y 50		ND				30%	
Vinyl chloride	ND		33.0	ug/kg dr	y 50		ND				30%	
m,p-Xylene	ND		65.9	ug/kg dr	y 50		ND				30%	
o-Xylene	ND		33.0	ug/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 98 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			96 %	79-	120 %		"					
Matrix Spike (23F0647-MS1)			Prepare	d: 06/15/23 1	3:40 Ana	lyzed: 06/19	/23 13:48					
QC Source Sample: Non-SDG (A3	F1227-11)		Trepuree	2. 00/13/23 1	5.10 Tilla	1920a. 00/19/	723 13.10					
5035A/8260D												
Acetone	2580		1290	ug/kg dr	y 50	2580	ND	100	36-164%			
Acrylonitrile	1360		129	ug/kg dr		1290	ND	106	65-134%			
Benzene	1380		12.9	ug/kg dr		1290	ND	107	77-121%			
Bromobenzene	1250		32.2	ug/kg dr		1290	ND	97	78-121%			
Bromochloromethane	1430		64.4	ug/kg dr		1290	ND	111	78-125%			
Bromodichloromethane	1430		64.4	ug/kg dr		1290	ND	111	75-127%			
Bromoform	1310		129	ug/kg dr		1290	ND	102	67-132%			
Bromomethane	1580		644	ug/kg dr		1290	ND	122	53-143%			
2-Butanone (MEK)	2640		644	ug/kg dr		2580	ND	102	51-148%			
n-Butylbenzene	1390		64.4	ug/kg dr		1290	ND	108	70-128%			
	10,0			~5 ~5 ar.	, 20			- 00	. 5 125/0			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23F0647 - EPA 5035A Soil Matrix Spike (23F0647-MS1) Prepared: 06/15/23 13:40 Analyzed: 06/19/23 13:48 QC Source Sample: Non-SDG (A3F1227-11) tert-Butylbenzene 1290 64.4 ug/kg dry 50 1290 ND 100 73-125% 1290 Carbon disulfide 1320 644 ug/kg dry 50 ND 102 63-132% Carbon tetrachloride 1530 64.4 ug/kg dry 50 1290 ND 119 70-135% Chlorobenzene 1320 32.2 ug/kg dry 50 1290 ND 102 79-120% Chloroethane 1900 644 ug/kg dry 50 1290 ND 148 59-139% Q-01 ---1290 ND Chloroform 1350 64.4 ug/kg dry 50 105 78-123% Chloromethane 1270 322 50 1290 ND 99 50-136% ug/kg dry 1290 ND 100 2-Chlorotoluene 1290 64.4 ug/kg dry 50 75-122% 4-Chlorotoluene 1300 64.4 ug/kg dry 50 1290 ND 101 72-124% Dibromochloromethane 1510 129 ug/kg dry 50 1290 ND 117 74-126% 1,2-Dibromo-3-chloropropane 1340 322 ug/kg dry 50 1290 ND 104 61-132% 1,2-Dibromoethane (EDB) 64.4 50 1290 ND 101 78-122% 1300 ug/kg dry 1290 Dibromomethane 1390 64.4 ug/kg dry 50 ND 108 78-125% 1290 32.2 1290 ND 100 78-121% 1,2-Dichlorobenzene ug/kg dry 50 32.2 1,3-Dichlorobenzene 1310 ug/kg dry 50 1290 ND 102 77-121% 1.4-Dichlorobenzene 1260 32.2 ug/kg dry 50 1290 ND 98 75-120% ___ Dichlorodifluoromethane 1460 129 ug/kg dry 50 1290 ND 113 29-149% 1410 32.2 1290 ND 109 1.1-Dichloroethane 50 76-125% ug/kg dry 32.2 1290 ND 73-128% 1,2-Dichloroethane (EDC) 1400 ug/kg dry 50 108 32.2 1,1-Dichloroethene 50 1290 ND 70-131% 1440 ug/kg dry 112 32.2 1290 ND 106 77-123% cis-1,2-Dichloroethene 1370 ug/kg dry 50 trans-1,2-Dichloroethene 1370 ---32.2 ug/kg dry 50 1290 ND 106 74-125% 1,2-Dichloropropane 1350 32.2 ug/kg dry 50 1290 ND 105 76-123% 64.4 1290 ND 103 1,3-Dichloropropane 1320 ug/kg dry 50 77-121% 64.4 1290 ND 103 67-133% 2,2-Dichloropropane 1320 ug/kg dry 50 1410 64.4 50 1290 ND 110 76-125% 1,1-Dichloropropene ug/kg dry cis-1,3-Dichloropropene 1330 64.4 50 1290 ND 103 74-126% ug/kg dry trans-1,3-Dichloropropene 1290 64.4 ug/kg dry 50 1290 ND 100 71-130% Ethylbenzene 1270 32.2 ug/kg dry 50 1290 ND 99 76-122% Hexachlorobutadiene 1390 129 50 1290 ND 107 ug/kg dry 61-135% 2-Hexanone 2280 644 ug/kg dry 50 2580 ND 88 53-145% Isopropylbenzene 64.4 1290 ND 1320 50 102 68-134% ug/kg dry ---4-Isopropyltoluene 1360 64.4 ug/kg dry 50 1290 ND 105 73-127%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23F0647 - EPA 5035A Soil Matrix Spike (23F0647-MS1) Prepared: 06/15/23 13:40 Analyzed: 06/19/23 13:48 QC Source Sample: Non-SDG (A3F1227-11) Methylene chloride 1380 644 ug/kg dry 50 1290 ND 107 70-128% 2510 2580 97 4-Methyl-2-pentanone (MiBK) 644 ug/kg dry 50 ND 65-135% Methyl tert-butyl ether (MTBE) 1210 64.4 ug/kg dry 50 1290 ND 94 73-125% Naphthalene 1410 129 ug/kg dry 50 1290 ND 109 62-129% n-Propylbenzene 1330 32.2 ug/kg dry 50 1290 ND 103 73-125% 1280 1290 ND Styrene 64.4 ug/kg dry 50 100 76-124% 32.2 1,1,1,2-Tetrachloroethane 1450 ug/kg dry 50 1290 ND 113 78-125% 1,1,2,2-Tetrachloroethane 64.4 1290 ND 89 1220 ug/kg dry 50 70-124% Tetrachloroethene (PCE) 1340 32.2 ug/kg dry 50 1290 ND 104 73-128% Toluene 1260 64.4 ug/kg dry 50 1290 ND 98 77-121% 1,2,3-Trichlorobenzene 1300 322 ug/kg dry 50 1290 ND 101 66-130% 322 50 1290 ND 99 67-129% 1.2.4-Trichlorobenzene 1270 ug/kg dry 1290 1,1,1-Trichloroethane 1480 32.2 ug/kg dry 50 ND 115 73-130% 1,1,2-Trichloroethane 32.2 1290 ND 104 78-121% 1340 ug/kg dry 50 32.2 Trichloroethene (TCE) 1460 ug/kg dry 50 1290 ND 113 77-123% Trichlorofluoromethane 4500 129 ug/kg dry 50 1290 ND 349 62-140% ___ O - 521,2,3-Trichloropropane 1280 64.4 ug/kg dry 50 1290 ND 99 73-125% 1270 64.4 1290 ND 98 75-123% 1,2,4-Trimethylbenzene 50 ug/kg dry 1,3,5-Trimethylbenzene 1290 ND 73-124% 1300 64.4 ug/kg dry 50 101 32.2 Vinyl chloride 50 1290 ND 119 56-135% 1540 ug/kg dry m,p-Xylene 2500 64.4 2580 ND 97 77-124% ug/kg dry 50 o-Xylene 1240 32.2 ug/kg dry 50 1290 ND 96 77-123% Surr: 1,4-Difluorobenzene (Surr) 99 % Dilution: lχ Limits: 80-120 % Recovery: Toluene-d8 (Surr) 100 % 80-120 % 79-120 % 4-Bromofluorobenzene (Surr) 94 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Batch 23F0648 - EPA 5030C Water Blank (23F0648-BLK1) Prepared: 06/19/23 08:30 Analyzed: 06/19/23 11:32 EPA 8260D ND 20.0 ug/L Acetone ND 2.00 Acrylonitrile ug/L 1 Benzene ND 0.200 ug/L 1 Bromobenzene ND 0.500 1 ug/L Bromochloromethane ND 1.00 ug/L 1 Bromodichloromethane ND 1.00 ug/L 1 Bromoform ND 1.00 ug/L 5.00 Bromomethane ND ug/L 1 2-Butanone (MEK) ND 10.0 ug/L 1 n-Butylbenzene ND 1.00 1 ug/L sec-Butylbenzene ND 1.00 ug/L 1 ND tert-Butylbenzene 1.00 1 ug/L ---Carbon disulfide ND 10.0 ug/L 1 Carbon tetrachloride ND 1.00 ug/L 1 Chlorobenzene ND 0.500 ug/L 1 Chloroethane ND 5.00 ug/L 1 ---Chloroform ND 1.00 ug/L 1 ND 5.00 Chloromethane 1 ug/L 2-Chlorotoluene ND 1.00 ug/L 1 4-Chlorotoluene ND 1.00 ug/L 1 Dibromochloromethane ND 1.00 ug/L 1 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 1,2-Dibromoethane (EDB) ND 0.500 ug/L 1 Dibromomethane ND 1.00 ug/L 1 0.500 1,2-Dichlorobenzene ND ug/L 1 1,3-Dichlorobenzene ND 0.500 ug/L 1 1,4-Dichlorobenzene ND 0.500 ug/L 1 Dichlorodifluoromethane ND 1.00 ug/L 1 ---1,1-Dichloroethane ND 0.400ug/L 1 1,2-Dichloroethane (EDC) ND 0.400ug/L 1 1,1-Dichloroethene ND 0.400ug/L 1 cis-1,2-Dichloroethene ND 0.400 ug/L 1 trans-1,2-Dichloroethene 0.400 ND ug/L 1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0648 - EPA 5030C							Wat	ter				
Blank (23F0648-BLK1)			Prepared	1: 06/19/23	08:30 Anal	lyzed: 06/19	/23 11:32					
1,2-Dichloropropane	ND		0.500	ug/L	1							
1,3-Dichloropropane	ND		1.00	ug/L	1							
2,2-Dichloropropane	ND		1.00	ug/L	1							
1,1-Dichloropropene	ND		1.00	ug/L	1							
eis-1,3-Dichloropropene	ND		1.00	ug/L	1							
rans-1,3-Dichloropropene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Hexachlorobutadiene	ND		5.00	ug/L	1							
2-Hexanone	ND		10.0	ug/L	1							
sopropylbenzene	ND		1.00	ug/L	1							
1-Isopropyltoluene	ND		1.00	ug/L	1							
Methylene chloride	ND		10.0	ug/L	1							
1-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		2.00	ug/L	1							
n-Propylbenzene	ND		0.500	ug/L	1							
Styrene	ND		1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1							
Tetrachloroethene (PCE)	ND		0.400	ug/L	1							
Гoluene	ND		1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1							
1,1,1-Trichloroethane	ND		0.400	ug/L	1							
1,1,2-Trichloroethane	ND		0.500	ug/L	1							
Γrichloroethene (TCE)	ND		0.400	ug/L	1							
Trichlorofluoromethane	ND		2.00	ug/L	1							
1,2,3-Trichloropropane	ND		1.00	ug/L	1							
,2,4-Trimethylbenzene	ND		1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1							
Vinyl chloride	ND		0.400	ug/L	1							
n,p-Xylene	ND		1.00	ug/L	1							
o-Xylene	ND		0.500	ug/L	1							

Surr: 1,4-Difluorobenzene (Surr) Recovery: 106 % Limits: 80-120 % Dilution: 1x

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0648 - EPA 5030C							Wa	ter				
Blank (23F0648-BLK1)			Prepared	1: 06/19/23	08:30 Ana	lyzed: 06/19	/23 11:32					
Surr: Toluene-d8 (Surr)		Reco	very: 104 %	Limits: 80	0-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			108 %	80	0-120 %		"					
LCS (23F0648-BS1)			Prepared	1: 06/19/23	08:30 Ana	lyzed: 06/19	/23 10:28					
EPA 8260D												
Acetone	38.7		20.0	ug/L	1	40.0		97	80-120%			
Acrylonitrile	21.7		2.00	ug/L	1	20.0		108	80-120%			
Benzene	20.4		0.200	ug/L	1	20.0		102	80-120%			
Bromobenzene	19.9		0.500	ug/L	1	20.0		99	80-120%			
Bromochloromethane	22.7		1.00	ug/L	1	20.0		114	80-120%			
Bromodichloromethane	23.7		1.00	ug/L	1	20.0		118	80-120%			
Bromoform	21.4		1.00	ug/L	1	20.0		107	80-120%			
Bromomethane	26.5		5.00	ug/L	1	20.0		133	80-120%			Q-5
2-Butanone (MEK)	44.1		10.0	ug/L	1	40.0		110	80-120%			
n-Butylbenzene	20.3		1.00	ug/L	1	20.0		102	80-120%			
sec-Butylbenzene	19.2		1.00	ug/L	1	20.0		96	80-120%			
tert-Butylbenzene	17.8		1.00	ug/L	1	20.0		89	80-120%			
Carbon disulfide	20.3		10.0	ug/L	1	20.0		102	80-120%			
Carbon tetrachloride	20.7		1.00	ug/L	1	20.0		104	80-120%			
Chlorobenzene	19.8		0.500	ug/L	1	20.0		99	80-120%			
Chloroethane	28.6		5.00	ug/L	1	20.0		143	80-120%			ICV-01, Q-5
Chloroform	21.1		1.00	ug/L	1	20.0		106	80-120%			
Chloromethane	19.8		5.00	ug/L	1	20.0		99	80-120%			
2-Chlorotoluene	19.0		1.00	ug/L	1	20.0		95	80-120%			
4-Chlorotoluene	19.4		1.00	ug/L	1	20.0		97	80-120%			
Dibromochloromethane	20.5		1.00	ug/L	1	20.0		103	80-120%			
1,2-Dibromo-3-chloropropane	19.8		5.00	ug/L	1	20.0		99	80-120%			
1,2-Dibromoethane (EDB)	20.5		0.500	ug/L	1	20.0		102	80-120%			
Dibromomethane	21.9		1.00	ug/L	1	20.0		110	80-120%			
1,2-Dichlorobenzene	20.1		0.500	ug/L	1	20.0		100	80-120%			
1,3-Dichlorobenzene	20.2		0.500	ug/L	1	20.0		101	80-120%			
1,4-Dichlorobenzene	19.2		0.500	ug/L	1	20.0		96	80-120%			
Dichlorodifluoromethane	18.1		1.00	ug/L	1	20.0		91	80-120%			
1,1-Dichloroethane	21.5		0.400	ug/L	1	20.0		108	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number:[none]Report ID:Lake Oswego, OR 97035Project Manager:Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** % REC Limits RPD Analyte Result Ĺimit Units Dilution Amount Result Limit Notes Limit

7 that y to	resure	Limit	Limit	Omto	Diraction	rimount	recourt	70 REC	Emmo	Tu D	Limit	110165
Batch 23F0648 - EPA 5030C							Wa	ater				
LCS (23F0648-BS1)			Prepared	: 06/19/23	08:30 An	alyzed: 06/19	/23 10:28					
1,2-Dichloroethane (EDC)	21.2		0.400	ug/L	1	20.0		106	80-120%			
1,1-Dichloroethene	20.1		0.400	ug/L	1	20.0		101	80-120%			
cis-1,2-Dichloroethene	20.4		0.400	ug/L	1	20.0		102	80-120%			
trans-1,2-Dichloroethene	20.5		0.400	ug/L	1	20.0		102	80-120%			
1,2-Dichloropropane	21.2		0.500	ug/L	1	20.0		106	80-120%			
1,3-Dichloropropane	20.2		1.00	ug/L	1	20.0		101	80-120%			
2,2-Dichloropropane	21.2		1.00	ug/L	1	20.0		106	80-120%			
1,1-Dichloropropene	19.9		1.00	ug/L	1	20.0		100	80-120%			
cis-1,3-Dichloropropene	21.4		1.00	ug/L	1	20.0		107	80-120%			
trans-1,3-Dichloropropene	20.7		1.00	ug/L	1	20.0		104	80-120%			
Ethylbenzene	19.9		0.500	ug/L	1	20.0		99	80-120%			
Hexachlorobutadiene	21.7		5.00	ug/L	1	20.0		109	80-120%			
2-Hexanone	42.9		10.0	ug/L	1	40.0		107	80-120%			
Isopropylbenzene	19.1		1.00	ug/L	1	20.0		95	80-120%			
4-Isopropyltoluene	19.7		1.00	ug/L	1	20.0		99	80-120%			
Methylene chloride	21.1		10.0	ug/L	1	20.0		105	80-120%			
4-Methyl-2-pentanone (MiBK)	42.9		10.0	ug/L	1	40.0		107	80-120%			
Methyl tert-butyl ether (MTBE)	17.9		1.00	ug/L	1	20.0		90	80-120%			
Naphthalene	14.8		2.00	ug/L	1	20.0		74	80-120%			Q-:
n-Propylbenzene	19.5		0.500	ug/L	1	20.0		98	80-120%			
Styrene	19.9		1.00	ug/L	1	20.0		99	80-120%			
1,1,1,2-Tetrachloroethane	24.7		0.400	ug/L	1	20.0		124	80-120%			Q-:
1,1,2,2-Tetrachloroethane	22.1		0.500	ug/L	1	20.0		111	80-120%			
Tetrachloroethene (PCE)	19.0		0.400	ug/L	1	20.0		95	80-120%			
Toluene	19.4		1.00	ug/L	1	20.0		97	80-120%			
1,2,3-Trichlorobenzene	18.8		2.00	ug/L	1	20.0		94	80-120%			
1,2,4-Trichlorobenzene	19.6		2.00	ug/L	1	20.0		98	80-120%			
1,1,1-Trichloroethane	20.7		0.400	ug/L	1	20.0		104	80-120%			
1,1,2-Trichloroethane	20.6		0.500	ug/L	1	20.0		103	80-120%			
Trichloroethene (TCE)	19.7		0.400	ug/L	1	20.0		98	80-120%			
Trichlorofluoromethane	27.3		2.00	ug/L	1	20.0		137	80-120%			Q-:
1,2,3-Trichloropropane	20.1		1.00	ug/L	1	20.0		101	80-120%			
1,2,4-Trimethylbenzene	20.8		1.00	ug/L	1	20.0		104	80-120%			
1,3,5-Trimethylbenzene	20.3		1.00	ug/L	1	20.0		101	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number:[none]Report ID:Lake Oswego, OR 97035Project Manager:Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0648 - EPA 5030C							Wa	ter				
LCS (23F0648-BS1)			Prepared	1: 06/19/23	08:30 Anal	yzed: 06/19/	/23 10:28					
Vinyl chloride	20.6		0.400	ug/L	1	20.0		103	80-120%			
n,p-Xylene	40.0		1.00	ug/L	1	40.0		100	80-120%			
o-Xylene	18.6		0.500	ug/L	1	20.0		93	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 103 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	0-120 %		"					
Duplicate (23F0648-DUP1)			Prepared	1: 06/19/23	11:30 Anal	yzed: 06/19/	/23 12:28					
OC Source Sample: Non-SDG (A3	F1209-01)											
Acetone	ND		20.0	ug/L	1		ND				30%	
Acrylonitrile	ND		2.00	ug/L	1		ND				30%	
Benzene	ND		0.200	ug/L	1		ND				30%	
Bromobenzene	ND		0.500	ug/L	1		ND				30%	
Bromochloromethane	ND		1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND		1.00	ug/L	1		ND				30%	
Bromoform	ND		1.00	ug/L	1		ND				30%	
Bromomethane	ND		5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND		10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND		1.00	ug/L	1		ND				30%	
sec-Butylbenzene	ND		1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND		1.00	ug/L	1		ND				30%	
Carbon disulfide	ND		10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND		1.00	ug/L	1		ND				30%	
Chlorobenzene	ND		0.500	ug/L	1		ND				30%	
Chloroethane	ND		5.00	ug/L	1		ND				30%	
Chloroform	ND		1.00	ug/L	1		ND				30%	
Chloromethane	ND		5.00	ug/L	1		ND				30%	
2-Chlorotoluene	ND		1.00	ug/L	1		ND				30%	
1-Chlorotoluene	ND		1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND		1.00	ug/L	1		ND				30%	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1		ND				30%	
,2-Dibromoethane (EDB)	ND		0.500	ug/L	1		ND				30%	
Dibromomethane	ND		1.00	ug/L	1		ND				30%	
,2-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution RPD Limit Amount Result Limits Limit Notes Batch 23F0648 - EPA 5030C Water Duplicate (23F0648-DUP1) Prepared: 06/19/23 11:30 Analyzed: 06/19/23 12:28 QC Source Sample: Non-SDG (A3F1209-01) 1,3-Dichlorobenzene ND 0.500 ug/L 1 ND 30% ND 0.500 1,4-Dichlorobenzene ug/L 1 ND 30% Dichlorodifluoromethane ND 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.400 ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.400 ug/L 1 ND 30% ---ND 0.400 1,1-Dichloroethene ug/L 1 ND 30% cis-1,2-Dichloroethene ND 0.400ug/L 1 ND 30% trans-1,2-Dichloroethene ND 0.400ND 30% ug/L 1 1,2-Dichloropropane ND 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 1.00 ug/L 1 ND 30% 2,2-Dichloropropane ND 1.00 ug/L 1 ND 30% ND 1.00 ND 30% 1,1-Dichloropropene ug/L 1 cis-1,3-Dichloropropene ND 1.00 ug/L 1 ND 30% ND 1.00 ND 30% trans-1,3-Dichloropropene ug/L 1 0.500 Ethylbenzene ND ug/L 1 ND 30% Hexachlorobutadiene ND 5.00 ug/L 1 ND ___ 30% 2-Hexanone ND 10.0 ug/L 1 ND 30% ND 1.00 ND 30% Isopropylbenzene 1 ug/L ND 4-Isopropyltoluene ND 1.00 ug/L 1 30% 10.0 Methylene chloride ND ND 30% ug/L 1 4-Methyl-2-pentanone (MiBK) ND ND 30% 10.0 ug/L 1 Methyl tert-butyl ether (MTBE) ND ---1.00 ug/L 1 ND ---30% Naphthalene ND 2.00 ug/L 1 ND 30% ND 0.500 ND 30% n-Propylbenzene ug/L 1 ND 1.00 ND 30% Styrene ug/L 1 ND 1,1,1,2-Tetrachloroethane 0.400 ND 30% ug/L 1 1,1,2,2-Tetrachloroethane ND 0.500 ND 30% ug/L 1 ug/L Tetrachloroethene (PCE) ND 0.400 1 ND 30% ND 1.00 ug/L 1 ND 30% 1,2,3-Trichlorobenzene ND 2.00 ND 30% ug/L 1 1,2,4-Trichlorobenzene ND 2.00 ug/L 1 ND 30% 0.400 1,1,1-Trichloroethane ND 1 ND 30% ug/L 1,1,2-Trichloroethane ND 0.500 ug/L 1 ND 30%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0648 - EPA 5030C							Wat	ter				
Duplicate (23F0648-DUP1)			Prepared	1: 06/19/23	11:30 Anal	yzed: 06/19/	/23 12:28					
QC Source Sample: Non-SDG (A3	F1209-01)											
Trichloroethene (TCE)	ND		0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND		2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND		1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1		ND				30%	
Vinyl chloride	ND		0.400	ug/L	1		ND				30%	
n,p-Xylene	ND		1.00	ug/L	1		ND				30%	
o-Xylene	ND		0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			104 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			108 %	80	-120 %		"					
QC Source Sample: B-4 (GW) (AS EPA 8260D	3F1239-07)											
<u> </u>			•••									
Acetone	ND		20.0 2.00	ug/L	1		ND				30% 30%	
Acrylonitrile	ND			ug/L	1		ND ND					
Benzene	ND		0.200	ug/L	1		ND				30%	
Bromobenzene	ND		0.500	ug/L	1		ND				30%	
Bromochloromethane	ND		1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND		1.00 1.00	ug/L	1		ND				30%	
Bromoform Bromomothono	ND ND			ug/L	1		ND ND				30% 30%	
Bromomethane O Putonone (MEV)	ND ND		5.00	ug/L	1		ND					
2-Butanone (MEK)	ND		10.0 1.00	ug/L	1		ND ND				30%	
a-Butylbenzene	ND ND		1.00	ug/L	1		ND ND				30% 30%	
ec-Butylbenzene				ug/L	1		ND					
ert-Butylbenzene	ND		1.00	ug/L	1		ND ND				30%	
Carbon disulfide	ND		10.0	ug/L	1		ND ND				30%	
Carbon tetrachloride	ND		1.00	ug/L	1		ND				30%	
Chlorobenzene	ND		0.500	ug/L	1		ND				30%	
Chloroethane	ND		5.00	ug/L	1		ND				30%	
Chloroform	ND		1.00	ug/L	1		ND				30%	
Chloromethane	ND		5.00	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23F0648 - EPA 5030C Water Duplicate (23F0648-DUP2) Prepared: 06/19/23 11:30 Analyzed: 06/19/23 16:36 QC Source Sample: B-4 (GW) (A3F1239-07) 2-Chlorotoluene ND 1.00 ug/L 1 ND 30% ND 1.00 4-Chlorotoluene ug/L 1 ND 30% ug/L Dibromochloromethane ND 1.00 1 ND 30% 1,2-Dibromo-3-chloropropane ND 5.00 ug/L 1 ND 30% 1,2-Dibromoethane (EDB) ND 0.500 1 ND 30% ug/L ---Dibromomethane ND 1.00 ug/L 1 ND 30% 1,2-Dichlorobenzene ND 0.500 ug/L 1 ND 30% ND 0.500 ND 30% 1,3-Dichlorobenzene ug/L 1 1,4-Dichlorobenzene ND 0.500 ug/L 1 ND 30% Dichlorodifluoromethane ND 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.400 ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.400 ND 30% ug/L 1 1,1-Dichloroethene ND 0.400 ug/L 1 ND 30% ND 0.400 ND 30% cis-1,2-Dichloroethene ug/L 1 0.400 ug/L trans-1,2-Dichloroethene ND 1 ND 30% 1,2-Dichloropropane ND 0.500 ug/L 1 ND ___ 30% 1,3-Dichloropropane ND 1.00 ug/L 1 ND 30% ND ND 30% 2,2-Dichloropropane 1.00 1 ug/L ---ND ND 1,1-Dichloropropene 1.00 ug/L 1 30% 1.00 cis-1,3-Dichloropropene ND ND 30% ug/L 1 trans-1,3-Dichloropropene ND ND 30% 1.00 ug/L 1 Ethylbenzene ND ---0.500 ug/L 1 ND 30% Hexachlorobutadiene ND 5.00 ug/L 1 ND 30% ND 10.0 ND 30% 2-Hexanone ug/L 1 ND 1.00 ND 30% Isopropylbenzene ug/L 1 ND 1.00 ND 30% 4-Isopropyltoluene ug/L 1 Methylene chloride ND 10.0 ND 30% ug/L 1 ND 4-Methyl-2-pentanone (MiBK) ND 10.0 ug/L 1 30% Methyl tert-butyl ether (MTBE) 18.7 1.00 ug/L 1 19.0 1 30% Naphthalene ND 2.00 ND 30% ug/L 1 n-Propylbenzene ND 0.500 ug/L 1 ND 30% ND 1.00 ND Styrene 1 30% ug/L ---1,1,1,2-Tetrachloroethane ND 0.400 ug/L 1 ND 30%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0648 - EPA 5030C							Wa	ter				
Duplicate (23F0648-DUP2)			Prepared	: 06/19/23	11:30 Anal	lyzed: 06/19/	/23 16:36					
QC Source Sample: B-4 (GW) (A.	3F1239-07)											
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1		ND				30%	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1		ND				30%	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1		ND				30%	
1,1,1-Trichloroethane	ND		0.400	ug/L	1		ND				30%	
1,1,2-Trichloroethane	ND		0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND		0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND		2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND		1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1		ND				30%	
Vinyl chloride	ND		0.400	ug/L	1		ND				30%	
m,p-Xylene	ND		1.00	ug/L	1		ND				30%	
o-Xylene	ND		0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 107 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			103 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			108 %	80	0-120 %		"					
Matrix Spike (23F0648-MS1) OC Source Sample: Non-SDG (A3	F1222-08)		Prepared	: 06/19/23	11:30 Anal	lyzed: 06/19/	/23 21:35					
EPA 8260D	(0.6		20.0	/T	1	40.0	ND	110	20.1609/			
Acetone	60.6		20.0	ug/L	1	40.0	ND	118	39-160%			
Acrylonitrile	29.7		2.00	ug/L	1	20.0	ND	100	63-135%			
Benzene	37.0		0.200	ug/L	1	20.0	20.0	85	79-120%			
Bromobenzene	20.2		0.500	ug/L	1	20.0	ND	101	80-120%			
Bromochloromethane	20.7		1.00	ug/L	1	20.0	ND	104	78-123%			
Bromodichloromethane	22.7		1.00	ug/L	1	20.0	ND	114	79-125%			
Bromoform	20.0		1.00	ug/L	1	20.0	ND	100	66-130%			
Bromomethane	13.4		5.00	ug/L	1	20.0	ND	67	53-141%			•
2-Butanone (MEK)	65.8		10.0	ug/L	1	40.0	ND	129	56-143%			
n-Butylbenzene	22.7		1.00	ug/L	1	20.0	3.65	95	75-128%			
sec-Butylbenzene	20.9		1.00	ug/L	1	20.0	2.55	92	77-126%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Analyte Result Limit Units Dilution Result % REC RPD Limit Amount Limits Limit Notes Batch 23F0648 - EPA 5030C Water Matrix Spike (23F0648-MS1) Prepared: 06/19/23 11:30 Analyzed: 06/19/23 21:35 QC Source Sample: Non-SDG (A3F1222-08) tert-Butylbenzene 17.9 1.00 ug/L 1 20.0 ND 90 78-124% 10.0 20.0 Carbon disulfide 20.4 ug/L 1 ND 102 64-133% ug/L Carbon tetrachloride 21.0 1.00 1 20.0 ND 105 72-136% Chlorobenzene 19.9 0.500 ug/L 1 20.0 ND 99 80-120% Chloroethane 21.3 5.00 1 20.0 ND 106 60-138% ICV-01, ug/L ---Q-54b Chloroform 20.0 ND 106 79-124% 21.3 1.00 1 ug/L Chloromethane 17.9 5.00 ug/L 1 20.0 ND 89 50-139% 2-Chlorotoluene 19.5 1.00 ug/L 1 20.0 ND 97 79-122% 4-Chlorotoluene 18.8 1.00 ug/L 1 20.0 ND 94 78-122% 1.00 20.0 ND 100 Dibromochloromethane 20.0 ug/L 1 74-126% 1,2-Dibromo-3-chloropropane 20.5 5.00 ug/L 1 20.0 ND 103 62-128% 21.3 0.500 20.0 ND 106 77-121% 1,2-Dibromoethane (EDB) 1 ug/L Dibromomethane 22.7 1.00 ug/L 1 20.0 ND 110 79-123% ug/L 1.2-Dichlorobenzene 20.2 0.500 1 20.0 ND 101 80-120% 1,3-Dichlorobenzene 19.6 0.500 ug/L 1 20.0 ND 98 80-120% 1,4-Dichlorobenzene 18.4 0.500 1 20.0 ND 92 79-120% ug/L ---Dichlorodifluoromethane 17.7 1.00 ug/L 1 20.0 ND 88 32-152% 1,1-Dichloroethane 0.400 20.0 ND 105 77-125% 21.0 1 ug/L 1,2-Dichloroethane (EDC) 20.0 0.400 ug/L 1 20.0 ND 100 73-128% 1.1-Dichloroethene 20.1 0.400 ug/L 1 20.0 ND 100 71-131% 20.0 cis-1,2-Dichloroethene 21.0 0.400 ug/L 1 ND 105 78-123% trans-1,2-Dichloroethene 20.7 0.400 20.0 ND 104 75-124% ug/L 1 1,2-Dichloropropane 21.2 0.500 ug/L 1 20.0 ND 106 78-122% 1,3-Dichloropropane 20.2 1.00 ug/L 1 20.0 ND 101 80-120% 1.00 20.0 2,2-Dichloropropane 17.2 ug/L 1 ND 82 60-139% ug/L 1,1-Dichloropropene 20.8 1.00 1 20.0 ND 104 79-125% 20.0 102 cis-1,3-Dichloropropene 20.4 1.00 ug/L 1 ND 75-124% trans-1,3-Dichloropropene 19.0 1.00 1 20.0 ND 95 73-127% ug/L ---47.8 Ethylbenzene 0.500 ug/L 1 20.0 30.6 86 79-121% Hexachlorobutadiene 15.9 5.00 ug/L 1 20.0 ND 80 66-134% 43.9 10.0 40.0 ND 110 57-139% 2-Hexanone ug/L 1 20.0 Isopropylbenzene 73.6 1.00 ug/L 1 56.7 84 72-131% 1.00 4-Isopropyltoluene 23.2 ug/L 20.0 1.63 108 77-127%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source % REC Analyte Result Limit Units Dilution RPD Limit Amount Result Limits Limit Notes Batch 23F0648 - EPA 5030C Water Matrix Spike (23F0648-MS1) Prepared: 06/19/23 11:30 Analyzed: 06/19/23 21:35 QC Source Sample: Non-SDG (A3F1222-08) Methylene chloride 20.4 10.0 ug/L 1 20.0 ND 102 74-124% 4-Methyl-2-pentanone (MiBK) 43.2 10.0 40.0 ug/L 1 ND 108 67-130% Methyl tert-butyl ether (MTBE) ug/L 19.3 1.00 1 20.0 ND 97 71-124% Q-54d Naphthalene 30.8 2.00 ug/L 1 20.0 14.0 84 61-128% n-Propylbenzene 103 0.500 ug/L 1 20.0 98.2 24 76-126% Q-03 ---20.4 1.00 20.0 ND 102 Styrene ug/L 1 78-123% Q-54c 1,1,1,2-Tetrachloroethane 24.0 0.400ug/L 1 20.0 ND 120 78-124% 1,1,2,2-Tetrachloroethane 21.2 0.500 20.0 ND 106 71-121% ug/L 1 20.0 97 Tetrachloroethene (PCE) 19.4 0.400 ug/L 1 ND 74-129% 25.6 Toluene 1.00 ug/L 1 20.0 6.68 95 80-121% 1,2,3-Trichlorobenzene 18.7 2.00 ug/L 1 20.0 ND 94 69-129% 2.00 20.0 ND 105 69-130% 1,2,4-Trichlorobenzene 21.0 ug/L 1 20.0 ND 74-131% 1,1,1-Trichloroethane 20.5 0.400 ug/L 1 103 1,1,2-Trichloroethane 20.0 80-120% 20.9 0.500 ND 105 ug/L 1 0.400 Trichloroethene (TCE) 22.1 ug/L 1 20.0 ND 110 79-123% Trichlorofluoromethane 21.7 2.00 ug/L 1 20.0 ND 108 65-141% ___ O-54a 1,2,3-Trichloropropane 19.6 1.00 ug/L 1 20.0 ND 98 73-122% 24.5 1.00 20.0 4.06 102 1,2,4-Trimethylbenzene 76-124% ug/L 1 1,3,5-Trimethylbenzene 20.0 3.98 100 75-124% 24.0 1.00 ug/L 1 0.400 20.0 Vinyl chloride 20.5 ND 103 58-137% ug/L 1 m,p-Xylene 117 1.00 ug/L 40.0 79.6 95 80-121% 1 23.6 o-Xylene 0.500 ug/L 1 20.0 3.22 102 78-122% Surr: 1,4-Difluorobenzene (Surr) 105 % Dilution: lχ Limits: 80-120 % Recovery: Toluene-d8 (Surr) 99 % 80-120 %

80-120 %

100 %

Apex Laboratories

4-Bromofluorobenzene (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bi	phenyls	by EPA 80)82A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0754 - EPA 3546							So	il				
Blank (23F0754-BLK1)			Prepared	d: 06/21/23 (7:56 Ana	lyzed: 06/21	/23 18:53					C-0
EPA 8082A												
Aroclor 1016	ND		10.0	ug/kg we	t 1							
Aroclor 1221	ND		10.0	ug/kg we	t 1							
Aroclor 1232	ND		10.0	ug/kg we	t 1							
Aroclor 1242	ND		10.0	ug/kg we	t 1							
Aroclor 1248	ND		10.0	ug/kg we	t 1							
Aroclor 1254	ND		10.0	ug/kg we	t 1							
Aroclor 1260	ND		10.0	ug/kg we	t 1							
Surr: Decachlorobiphenyl (Surr)		Reco	very: 113 %	Limits: 60	125 %	Dili	ution: 1x					
LCS (23F0754-BS1)			Prepared	d: 06/21/23 (7:56 Ana	lyzed: 06/21	/23 19:11					C-0
EPA 8082A												
Aroclor 1016	216		10.0	ug/kg we	t 1	250		86	47-134%			
Aroclor 1260	257		10.0	ug/kg we		250		103	53-140%			
Surr: Decachlorobiphenyl (Surr)		Reco	very: 117 %	Limits: 60		Dili	ution: 1x					_
Duplicate (23F0754-DUP1)			Prepared	d: 06/21/23 (7:56 Ana	lyzed: 06/21	/23 20:04					C-0'
QC Source Sample: Non-SDG (A3	3F1210-01)											
Aroclor 1016	ND		13.5	ug/kg dr	, 1		ND				30%	
Aroclor 1221	ND		13.5	ug/kg dr			ND				30%	
Aroclor 1232	ND		13.5	ug/kg dr			ND				30%	
Aroclor 1242	ND		13.5	ug/kg dr			ND				30%	
Aroclor 1248	ND		13.5	ug/kg dr			ND				30%	
Aroclor 1254	ND		13.5	ug/kg dr			ND				30%	
Aroclor 1260	ND		13.5	ug/kg dr			ND				30%	
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 76 %	Limits: 60		Dili	ution: 1x					
Matrix Spike (23F0754-MS1)			Prepared	d: 06/21/23 (7:56 Ana	lyzed: 06/21	/23 23:11					C-0'
QC Source Sample: B-4 (19-20) (A	43F1239-01)	1			-						
EPA 8082A	201 1207-01	1										
Aroclor 1016	399		20.9	ug/kg dr	, 1	522	ND	76	47-134%			
Aroclor 1016 Aroclor 1260	399 478		20.9	ug/kg dr		522	ND ND	92	53-140%			
	4/0		∠0.9	ug/kg ar	v I		INII					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A Detection Reporting Spike Source % REC **RPD** Limit % REC Limits RPD Analyte Result Units Dilution Amount Result Limit Notes Limit Batch 23F0754 - EPA 3546 Soil

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	inated B	iphenyls	by EPA 80	082A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0845 - EPA 3510C ((Neutral pl	l)					Wa	ter				
Blank (23F0845-BLK1)			Prepared	: 06/23/23	07:16 Ana	lyzed: 06/23	/23 14:02					C-07
EPA 8082A												
Aroclor 1016	ND		0.0200	ug/L	1							
Aroclor 1221	ND		0.0200	ug/L	1							
Aroclor 1232	ND		0.0200	ug/L	1							
Aroclor 1242	ND		0.0200	ug/L	1							
Aroclor 1248	ND		0.0200	ug/L	1							
Aroclor 1254	ND		0.0200	ug/L	1							
Aroclor 1260	ND		0.0200	ug/L	1							
Surr: Decachlorobiphenyl (Surr)		Rece	overy: 64 %	Limits: 40	0-135 %	Dili	ution: 1x					
LCS (23F0845-BS1)			Prepared	: 06/23/23	07:16 Ana	lyzed: 06/23	/23 14:20					C-07
EPA 8082A												
Aroclor 1016	0.677		0.0200	ug/L	1	1.25		54	46-129%			
Aroclor 1260	0.841		0.0200	ug/L	1	1.25		67	45-134%			
Surr: Decachlorobiphenyl (Surr)		Rece	overy: 70 %	Limits: 40	0-135 %	Dili	ution: 1x					
LCS Dup (23F0845-BSD1)			Prepared	: 06/23/23	07:16 Ana	lyzed: 06/23	/23 14:38					C-07, Q-19
EPA 8082A												
Aroclor 1016	0.628		0.0200	ug/L	1	1.25		50	46-129%	8	30%	
Aroclor 1260	0.746		0.0200	ug/L	1	1.25		60	45-134%	12	30%	
Surr: Decachlorobiphenyl (Surr)		Rece	overy: 66 %	Limits: 40	0-135 %	Dili	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODI

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polyai	romatic Hy	drocarbo	ıs (PAHs) by EPA	8270E (S	SIM)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0706 - EPA 3546							So	il				
Blank (23F0706-BLK1)			Prepared	1: 06/20/23 (9:34 Ana	yzed: 06/20	/23 13:47					
EPA 8270E SIM												
Acenaphthene	ND		10.0	ug/kg we	t 1							
Acenaphthylene	ND		10.0	ug/kg we	t 1							
Anthracene	ND		10.0	ug/kg we	t 1							
Benz(a)anthracene	ND		10.0	ug/kg we	t 1							
Benzo(a)pyrene	ND		10.0	ug/kg we	t 1							
Benzo(b)fluoranthene	ND		10.0	ug/kg we	t 1							
Benzo(k)fluoranthene	ND		10.0	ug/kg we								
Benzo(g,h,i)perylene	ND		10.0	ug/kg we								
Chrysene	ND		10.0	ug/kg we								
Dibenz(a,h)anthracene	ND		10.0	ug/kg we								
Fluoranthene	ND		10.0	ug/kg we								
Fluorene	ND		10.0	ug/kg we								
ndeno(1,2,3-cd)pyrene	ND		10.0	ug/kg we								
-Methylnaphthalene	ND		10.0	ug/kg we								
2-Methylnaphthalene	ND		10.0	ug/kg we								
Naphthalene	ND		10.0	ug/kg we								
Phenanthrene	ND		10.0	ug/kg we								
Pyrene	ND		10.0	ug/kg we								
Dibenzofuran	ND		10.0	ug/kg we								
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 84 %	Limits: 44		Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			87 %		127 %		"					
LCS (23F0706-BS1)			Prenared	1: 06/20/23 (9:34 Anal	lyzed: 06/20	/23 14:12					
EPA 8270E SIM			- 1 op a1 oo			J 00:20						
Acenaphthene	738		10.0	ug/kg we	t 1	800		92	40-123%			
Acenaphthylene	719		10.0	ug/kg we		800		90	32-132%			
Anthracene	709		10.0	ug/kg we		800		89	47-123%			
Benz(a)anthracene	713		10.0	ug/kg we		800		89	49-126%			
Benzo(a)pyrene	743		10.0	ug/kg we		800		93	45-129%			
Benzo(b)fluoranthene	771		10.0	ug/kg we		800		96	45-132%			
Benzo(k)fluoranthene	780		10.0	ug/kg we		800		98	47-132%			
Jenzo(k)Huorammene	700				. 1	000						
Benzo(g,h,i)perylene	558		10.0	ug/kg we	t 1	800		70	43-134%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polyai	omatic Hy	drocarbo	ns (PAHs) by EPA	8270E (S	SIM)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0706 - EPA 3546							Soi	il				
LCS (23F0706-BS1)			Prepared	1: 06/20/23 (9:34 Ana	lyzed: 06/20/	/23 14:12					
Dibenz(a,h)anthracene	734		10.0	ug/kg we	t 1	800		92	45-134%			
Fluoranthene	797		10.0	ug/kg we	t 1	800		100	50-127%			
Fluorene	755		10.0	ug/kg we	et 1	800		94	43-125%			
Indeno(1,2,3-cd)pyrene	694		10.0	ug/kg we	t 1	800		87	45-133%			
1-Methylnaphthalene	727		10.0	ug/kg we	t 1	800		91	40-120%			
2-Methylnaphthalene	728		10.0	ug/kg we	et 1	800		91	38-122%			
Naphthalene	698		10.0	ug/kg we	t 1	800		87	35-123%			
Phenanthrene	704		10.0	ug/kg we	et 1	800		88	50-121%			
Pyrene	819		10.0	ug/kg we	et 1	800		102	47-127%			
Dibenzofuran	735		10.0	ug/kg we	et 1	800		92	44-120%			
Surr: 2-Fluorobiphenyl (Surr)		Rece	overy: 91%	Limits: 44	-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			91 %	54-	127 %		"					
QC Source Sample: Non-SDG (A			36.8	ua/ka wa	st 1		ND				30%	
Acenaphthene	ND		36.8	ug/kg we	et 4		ND				30%	
Acenaphthylene	ND		36.8	ug/kg we			ND				30%	
Anthracene	ND		36.8	ug/kg we			ND				30%	
Benz(a)anthracene	ND		36.8	ug/kg we			28.8			***	30%	
Benzo(a)pyrene	ND		36.8	ug/kg we			21.2			***	30%	
Benzo(b)fluoranthene	ND		36.8	ug/kg we			30.7			***	30%	
Benzo(k)fluoranthene	ND		36.8	ug/kg we			ND				30%	
Benzo(g,h,i)perylene	53.0		36.8	ug/kg we			42.3			22	30%	
Chrysene	ND		36.8	ug/kg we			20.5			***	30%	
Dibenz(a,h)anthracene	ND		36.8	ug/kg we			ND				30%	
Fluoranthene	ND		36.8	ug/kg we			ND				30%	
Fluorene	ND		36.8	ug/kg we			ND				30%	
Indeno(1,2,3-cd)pyrene	ND		36.8	ug/kg we			21.3			***	30%	(
l-Methylnaphthalene	ND		36.8	ug/kg we			ND				30%	
2-Methylnaphthalene	ND		36.8	ug/kg we			ND				30%	
Naphthalene	ND		36.8	ug/kg we			ND				30%	
Phenanthrene	ND		36.8	ug/kg we			ND				30%	
Pyrene	ND		36.8	ug/kg we			29.4			***	30%	
Dibenzofuran	ND		36.8	ug/kg we	et 4		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polyaro	matic Hy	drocarbon	s (PAHs) by EPA	8270E (S	SIM)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0706 - EPA 3546							So	il				
Duplicate (23F0706-DUP2)			Prepared	d: 06/20/23 09	9:34 Ana	lyzed: 06/21	/23 12:24					
QC Source Sample: Non-SDG (A.	3F0808-05RI	E2)										
Surr: 2-Fluorobiphenyl (Surr)		Recov	ery: 87%	Limits: 44-	20 %	Dilı	ution: 4x					
p-Terphenyl-d14 (Surr)			87 %	54-1	27 %		"					
Matrix Spike (23F0706-MS1)			Prepared	d: 06/20/23 09	9:34 Anal	lyzed: 06/20	/23 21:49					
QC Source Sample: Non-SDG (A	3F1137-10)											
EPA 8270E SIM												
Acenaphthene	3690		2210	ug/kg dry	5	984	ND	145	40-123%			Q-0
Acenaphthylene	1940		941	ug/kg dry	5	984	ND	100	32-132%			
Anthracene	1590		677	ug/kg dry	5	984	ND	92	47-123%			
Benz(a)anthracene	812		86.1	ug/kg dry	5	984	ND	82	49-126%			
Benzo(a)pyrene	762		61.5	ug/kg dry	5	984	ND	77	45-129%			
Benzo(b)fluoranthene	783		61.5	ug/kg dry	5	984	ND	80	45-132%			
Benzo(k)fluoranthene	792		61.5	ug/kg dry	5	984	ND	80	47-132%			
Benzo(g,h,i)perylene	761		61.5	ug/kg dry	5	984	ND	77	43-134%			
Chrysene	871		80.0	ug/kg dry	5	984	ND	88	50-124%			
Dibenz(a,h)anthracene	770		61.5	ug/kg dry	5	984	ND	78	45-134%			
Fluoranthene	1070		61.5	ug/kg dry	5	984	139	95	50-127%			
Fluorene	11500		61.5	ug/kg dry	5	984	8270	331	43-125%			Q-0
Indeno(1,2,3-cd)pyrene	814		61.5	ug/kg dry	5	984	ND	83	45-133%			
1-Methylnaphthalene	59000		61.5	ug/kg dry	5	984	45300	1400	40-120%			E, Q-0
2-Methylnaphthalene	92700		61.5	ug/kg dry	5	984	70900	2220	38-122%			Q-03, 1
Naphthalene	1560		529	ug/kg dry	5	984	ND	104	35-123%			
Phenanthrene	13300		61.5	ug/kg dry	5	984	9480	386	50-121%			Q-0
Pyrene	1170		61.5	ug/kg dry	5	984	170	101	47-127%			
Dibenzofuran	3650		61.5	ug/kg dry	5	984	ND	134	44-120%			Q-0
Surr: 2-Fluorobiphenyl (Surr)		Recov	ery: 91%	Limits: 44-	20 %	Dilı	ution: 5x					
p-Terphenyl-d14 (Surr)			86 %	54-1	27 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polya	romatic H	ydrocarbon	s (PAHs)	by EPA 8	3270E (La	rge Volu	me Injecti	on)			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0693 - EPA 3511 (Be	ottle Extra	ction)					Wa	ter				
Blank (23F0693-BLK1)			Prepared	: 06/20/23	07:45 Anal	lyzed: 06/20	/23 14:31					
EPA 8270E LVI												
Acenaphthene	ND		0.0320	ug/L	1							
Acenaphthylene	ND		0.0320	ug/L	1							
Anthracene	ND		0.0320	ug/L	1							
Benz(a)anthracene	ND		0.0160	ug/L	1							
Benzo(a)pyrene	ND		0.0160	ug/L	1							
Benzo(b)fluoranthene	ND		0.0160	ug/L	1							
Benzo(k)fluoranthene	ND		0.0160	ug/L	1							
Benzo(g,h,i)perylene	ND		0.0320	ug/L	1							
Chrysene	ND		0.0160	ug/L	1							
Dibenz(a,h)anthracene	ND		0.0160	ug/L	1							
Fluoranthene	ND		0.0320	ug/L	1							
Fluorene	ND		0.0320	ug/L	1							
ndeno(1,2,3-cd)pyrene	ND		0.0160	ug/L	1							
-Methylnaphthalene	ND		0.0640	ug/L	1							
2-Methylnaphthalene	ND		0.0640	ug/L	1							
Naphthalene	ND		0.0640	ug/L	1							
Phenanthrene	ND		0.0640	ug/L	1							
Pyrene	ND		0.0320	ug/L	1							
Carbazole	ND		0.0320	ug/L	1							
Dibenzofuran	ND		0.0320	ug/L	1							
Surr: Acenaphthylene-d8 (Surr)		Rec	overy: 84 %	Limits: 78		Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			100 %)-132 %		"					
LCS (23F0693-BS1)		_	Prepared	: 06/20/23	07:45 Anal	lyzed: 06/20	/23 15:04					
EPA 8270E LVI			1			-						
Acenaphthene	1.55		0.0320	ug/L	1	1.60		97	80-120%			
Acenaphthylene	1.40		0.0320	ug/L	1	1.60		88	80-124%			
Anthracene	1.51		0.0320	ug/L	1	1.60		94	80-123%			
Benz(a)anthracene	1.50		0.0160	ug/L	1	1.60		94	80-122%			
Benzo(a)pyrene	1.53		0.0160	ug/L ug/L	1	1.60		96	80-129%			
Benzo(b)fluoranthene	1.63		0.0160	ug/L ug/L	1	1.60		102	80-124%			
Benzo(k)fluoranthene	1.52		0.0160	ug/L ug/L	1	1.60		95	80-125%			
Benzo(g,h,i)perylene	1.76		0.0320	ug/L ug/L	1	1.60		110	80-120%			
Denzo(g,n,1)perylene	1.70		0.0320	ug/L	1	1.00		110	00-120/0			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

			ydrocarbon		-	-	-	-				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0693 - EPA 3511 (B	ottle Extra	ction)					Wa	ter				
LCS (23F0693-BS1)			Prepared	: 06/20/23	07:45 Ana	lyzed: 06/20	/23 15:04					
Chrysene	1.54		0.0160	ug/L	1	1.60		96	80-120%			
Dibenz(a,h)anthracene	1.49		0.0160	ug/L	1	1.60		93	80-120%			
Fluoranthene	1.62		0.0320	ug/L	1	1.60		101	80-126%			
Fluorene	1.58		0.0320	ug/L	1	1.60		99	77-127%			
Indeno(1,2,3-cd)pyrene	1.51		0.0160	ug/L	1	1.60		95	80-121%			
1-Methylnaphthalene	1.48		0.0640	ug/L	1	1.60		92	53-148%			
2-Methylnaphthalene	1.45		0.0640	ug/L	1	1.60		90	48-150%			
Naphthalene	1.54		0.0640	ug/L	1	1.60		96	78-120%			
Phenanthrene	1.48		0.0640	ug/L	1	1.60		92	80-120%			
Pyrene	1.62		0.0320	ug/L	1	1.60		101	80-125%			
Carbazole	1.52		0.0320	ug/L	1	1.60		95	65-141%			
Dibenzofuran	1.41		0.0320	ug/L	1	1.60		88	76-121%			
Surr: Acenaphthylene-d8 (Surr)		Rece	overy: 84 %	Limits: 78	8-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			102 %		0-132 %		"					
LCS Dup (23F0693-BSD1)			D 1	06/20/22	07.45	1 06/20	/22 15 27					Q -1
EPA 8270E LVI			Prepared	. 00/20/23	07:43 Ana	lyzed: 06/20	/23 13:37					Q-
Acenaphthene	1.56		0.0320	ug/L	1	1.60		98	80-120%	1	30%	
Acenaphthylene	1.45		0.0320	ug/L ug/L	1	1.60		91	80-120%	3	30%	
Anthracene	1.53		0.0320	_	1	1.60		96	80-124%	2	30%	
Anthracene Benz(a)anthracene	1.53		0.0320	ug/L ug/L		1.60		96 95	80-123% 80-122%	2	30%	
` '	1.53		0.0160	_	1 1	1.60		100	80-122% 80-129%	4	30%	
Benzo(a)pyrene	1.63		0.0160	ug/L		1.60		100		0.4	30%	
Benzo(b)fluoranthene				ug/L	1			102 97	80-124%		30%	
Benzo(k)fluoranthene	1.56		0.0160	ug/L	1	1.60			80-125%	3		
Benzo(g,h,i)perylene	1.72		0.0320	ug/L	1	1.60		107	80-120%	3	30%	
Chrysene	1.54		0.0160	ug/L	1	1.60		96	80-120%	0.2	30%	
Dibenz(a,h)anthracene	1.53		0.0160	ug/L	1	1.60		96	80-120%	3	30%	
Fluoranthene	1.66		0.0320	ug/L	1	1.60		104	80-126%	3	30%	
Fluorene	1.65		0.0320	ug/L	1	1.60		103	77-127%	5	30%	
Indeno(1,2,3-cd)pyrene	1.56		0.0160	ug/L	1	1.60		97	80-121%	3	30%	
l-Methylnaphthalene	1.56		0.0640	ug/L	1	1.60		98	53-148%	6	30%	
2-Methylnaphthalene	1.56		0.0640	ug/L	1	1.60		97	48-150%	7	30%	
Naphthalene	1.55		0.0640	ug/L	1	1.60		97	78-120%	0.8	30%	
Phenanthrene	1.50		0.0640	ug/L	1	1.60		94	80-120%	1	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (Large Volume Injection) Detection Reporting Spike Source % REC **RPD** Analyte Result Ĺimit Units Dilution Amount Result % REC Limits RPD Limit Notes Limit Batch 23F0693 - EPA 3511 (Bottle Extraction) Water LCS Dup (23F0693-BSD1) Prepared: 06/20/23 07:45 Analyzed: 06/20/23 15:37 Q-19 Pyrene 1.66 0.0320 ug/L 1.60 104 80-125% 3 30% Carbazole 1.57 0.0320 1.60 98 65-141% 3 30% ug/L 1 Dibenzofuran 0.0320 ug/L 1.60 92 1.47 1 76-121% 4 30% Surr: Acenaphthylene-d8 (Surr) Recovery: 84 % 78-134 % Limits: Dilution: 1x Benzo(a)pyrene-d12 (Surr) 103 % 80-132 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

			iotai W	etais by	EPA 6020	B (ICPMS) 					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0682 - EPA 3015A							Wa	ter				
Blank (23F0682-BLK1)			Prepared	: 06/19/23	15:45 Anal	lyzed: 06/19	/23 21:48					
EPA 6020B												
Arsenic	ND		1.00	ug/L	1							
Barium	ND		2.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		2.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Mercury	ND		0.0800	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
LCS (23F0682-BS1)			Prepared	: 06/19/23	15:45 Anal	lyzed: 06/19/	/23 21:53					
EPA 6020B												
Arsenic	55.4		1.00	ug/L	1	55.6		100	80-120%			
Barium	61.9		2.00	ug/L	1	55.6		111	80-120%			
Cadmium	55.3		0.200	ug/L	1	55.6		99	80-120%			
Chromium	55.6		2.00	ug/L	1	55.6		100	80-120%			
Lead	59.2		0.200	ug/L	1	55.6		107	80-120%			
Mercury	1.08		0.0800	ug/L	1	1.11		97	80-120%			
Selenium	29.0		1.00	ug/L	1	27.8		104	80-120%			
Silver	27.4		0.200	ug/L	1	27.8		99	80-120%			
Duplicate (23F0682-DUP1)			Prepared	: 06/19/23	15:45 Anal	lyzed: 06/19	/23 22:08					
QC Source Sample: Non-SDG (A3	3F1237-01)		<u> </u>	·		·	·	<u> </u>	·			
Arsenic	5.72		1.00	ug/L	1		5.81			2	20%	
Barium	111		2.00	ug/L	1		114			2	20%	
Cadmium	ND		0.200	ug/L	1		ND				20%	
Chromium	ND		2.00	ug/L	1		1.77			***	20%	
Lead	0.364		0.200	ug/L	1		0.372			2	20%	
Mercury	ND		0.0800	ug/L	1		ND				20%	
Selenium	ND		1.00	ug/L	1		ND				20%	
Silver	ND		0.200	ug/L	1		ND				20%	
			_									
Matrix Spike (23F0682-MS1)			Prepared	: 06/19/23	15:45 Ana	lyzed: 06/19/	/23 22:13					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(Boi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS) Detection Reporting Spike Source % REC **RPD** Analyte Result Ĺimit Units Dilution Amount Result % REC Limits RPD Limit Limit Notes Batch 23F0682 - EPA 3015A Water Matrix Spike (23F0682-MS1) Prepared: 06/19/23 15:45 Analyzed: 06/19/23 22:13 QC Source Sample: Non-SDG (A3F1237-01) EPA 6020B 1.00 61.9 ug/L 1 55.6 5.81 101 75-125% Arsenic Barium 173 2.00 ug/L 1 55.6 114 108 75-125% Cadmium 55.9 0.200 55.6 75-125% ug/L 1 ND 101 Chromium 57.1 2.00 ug/L 1 55.6 1.77 100 75-125% Lead 0.200 55.6 0.372 75-125% 58.4 ug/L 1 104 1.07 0.08001 1.11 ND 96 75-125% Mercury ug/L 29.7 Selenium 1.00 27.8 ND 107 75-125% ug/L 1 ---Silver 27.4 0.200 ug/L 1 27.8 ND 99 75-125%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number:[none]Report ID:Lake Oswego, OR 97035Project Manager:Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0688 - EPA 3051A							So	il				
Blank (23F0688-BLK2)			Prepared	: 06/20/23 0	7:07 Ana	lyzed: 06/20	/23 19:44					
EPA 6020B												
Arsenic	ND		1.00	mg/kg we	et 10							Q-1
Barium	ND		1.00	mg/kg we	et 10							Q-1
Cadmium	ND		0.200	mg/kg we	et 10							Q-1
Chromium	ND		1.00	mg/kg we	et 10							Q-1
Lead	ND		0.200	mg/kg we								Q-1
Mercury	ND		0.0800	mg/kg we	et 10							Q-1
Selenium	ND		1.00	mg/kg we								Q-1
Silver	ND		0.200	mg/kg we								Q-1
LCS (23F0688-BS2)			Prepared	: 06/20/23 0	7:07 Ana	lyzed: 06/20	/23 17:38					
EPA 6020B												
Arsenic	46.9		1.00	mg/kg we	et 10	50.0		94	80-120%			Q-1
Barium	52.9		1.00	mg/kg we	et 10	50.0		106	80-120%			Q-1
Cadmium	47.0		0.200	mg/kg we	et 10	50.0		94	80-120%			Q-1
Chromium	46.6		1.00	mg/kg we	et 10	50.0		93	80-120%			Q-1
Lead	51.6		0.200	mg/kg we	et 10	50.0		103	80-120%			Q-1
Mercury	0.980		0.0800	mg/kg we	et 10	1.00		98	80-120%			Q-1
Selenium	24.5		1.00	mg/kg we	et 10	25.0		98	80-120%			Q-1
Silver	24.1		0.200	mg/kg we	et 10	25.0		97	80-120%			Q-1
Duplicate (23F0688-DUP2)			Prepared	: 06/20/23 0	7:07 Ana	lyzed: 06/20	/23 19:55					
QC Source Sample: Non-SDG (A3	3F1214-02RI	E <u>1)</u>										
Arsenic	4.84		1.32	mg/kg dr	y 10		6.53			30	20%	Q-05, Q-1
Barium	149		1.32	mg/kg dr	y 10		179			19	20%	Q-1
Cadmium	ND		0.264	mg/kg dr	y 10		0.244			***	20%	Q-1
Chromium	16.7		1.32	mg/kg dr	y 10		22.5			30	20%	Q-04,Q-1
Lead	9.21		0.264	mg/kg dr			10.6			14	20%	Q-1
Mercury	ND		0.106	mg/kg dr	y 10		ND				20%	Q-1
Selenium	ND		1.32	mg/kg dr			ND				20%	Q-1
Silver	ND		0.264	mg/kg dr			ND				20%	Q-1
Matrix Spike (23F0688-MS2)			Prepared	: 06/20/23 0	7:07 Ana	lyzed: 06/20	/23 20:00					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(Bon

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS) Detection Reporting Spike Source % REC **RPD** Analyte Result Limit Units Dilution Amount Result % REC Limits RPD Limit Limit Notes Batch 23F0688 - EPA 3051A Soil Matrix Spike (23F0688-MS2) Prepared: 06/20/23 07:07 Analyzed: 06/20/23 20:00 QC Source Sample: Non-SDG (A3F1214-02RE1) EPA 6020B Q-16 93 74.1 1.45 mg/kg dry 10 72.6 75-125% Arsenic 6.53 Barium 241 1.45 mg/kg dry 10 72.6 179 85 75-125% Q-16 Cadmium 0.290 95 75-125% Q-16 68.9 mg/kg dry 10 72.6 0.244 Chromium 88.9 1.45 mg/kg dry 10 72.6 22.5 91 75-125% Q-16 72.6 Lead 79.9 0.290 95 Q-16 mg/kg dry 10 10.6 75-125% 1.38 0.116 10 1.45 ND 95 75-125% Q-16 Mercury mg/kg dry 97 Q-16 Selenium 35.1 1.45 10 36.3 ND 75-125% mg/kg dry ---Silver 33.7 0.290 mg/kg dry 10 36.3 ND 93 75-125% Q-16

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Weig	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0651 - Total Solids ([Ory Weigh	nt) - 2022					Soi	I				
Duplicate (23F0651-DUP1)			Prepared	: 06/19/23	09:47 Anal	yzed: 06/20/	/23 06:22					
QC Source Sample: Non-SDG (A31	F0702-12)											
% Solids	94.6		1.00	%	1		93.9			0.7	10%	
Duplicate (23F0651-DUP2)			Prepared	: 06/19/23	09:47 Anal	yzed: 06/20/	/23 06:22					
QC Source Sample: Non-SDG (A31	F0702-16)											
% Solids	89.5		1.00	%	1		90.1			0.6	10%	
Duplicate (23F0651-DUP3)			Prepared	: 06/19/23	09:47 Anal	yzed: 06/20/	/23 06:22					
QC Source Sample: Non-SDG (A31	F0702-20)											
% Solids	85.8		1.00	%	1		84.7			1	10%	
Duplicate (23F0651-DUP4)			Prepared	: 06/19/23	09:47 Anal	yzed: 06/20/	/23 06:22					
QC Source Sample: Non-SDG (A31	F0702-31)											
% Solids	88.8		1.00	%	1		87.7			1	10%	
Duplicate (23F0651-DUP5)			Prepared	: 06/19/23	09:47 Anal	yzed: 06/20/	/23 06:22					
QC Source Sample: Non-SDG (A31	F0702-35)											
% Solids	89.0		1.00	%	1		88.9			0.08	10%	
Duplicate (23F0651-DUP6)			Prepared	: 06/19/23	09:47 Anal	yzed: 06/20/	/23 06:22					
QC Source Sample: Non-SDG (A31	F0702-39)											
% Solids	89.1		1.00	%	1		89.1			0.08	10%	
Duplicate (23F0651-DUP7)			Prepared	: 06/19/23	09:47 Anal	yzed: 06/20/	/23 06:22					
QC Source Sample: Non-SDG (A31	F1199-02)											
% Solids	41.9		1.00	%	1		42.5			1	10%	
Duplicate (23F0651-DUP8)			Prepared	: 06/19/23	19:12 Anal	yzed: 06/20/	/23 06:22					
QC Source Sample: Non-SDG (A31	F1291-03)											
% Solids	83.7		1.00	%	1		80.2			4	10%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	ıt Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23F0651 - Total Solids ((Dry Weigh	nt) - 2022					Soil					
Duplicate (23F0651-DUP9)			Prepared	: 06/19/23	19:12 Anal	yzed: 06/20/	/23 06:22					
QC Source Sample: Non-SDG (A3	3F1283-01)											
% Solids	91.9		1.00	%	1		92.4			0.5	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

SAMPLE PREPARATION INFORMATION

				is by NWTPH-Dx			
Prep: EPA 3510C (Fu	uels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23F0798							
A3F1239-07	Water	NWTPH-Dx LL	06/15/23 13:30	06/22/23 07:11	980mL/2mL	1000mL/2mL	1.02
A3F1239-08	Water	NWTPH-Dx LL	06/15/23 14:45	06/22/23 07:11	960mL/2mL	1000mL/2mL	1.04
A3F1239-09	Water	NWTPH-Dx LL	06/15/23 15:30	06/22/23 07:11	990mL/2mL	1000mL/2mL	1.01
Prep: EPA 3546 (Fu	els)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23F0772							
A3F1239-01	Soil	NWTPH-Dx	06/15/23 12:50	06/21/23 11:03	10.05g/5mL	10g/5mL	1.00
A3F1239-02	Soil	NWTPH-Dx	06/15/23 15:30	06/21/23 11:03	10.06g/5mL	10g/5mL	0.99
A3F1239-03	Soil	NWTPH-Dx	06/15/23 13:50	06/21/23 11:03	10.99g/5mL	10g/5mL	0.91
A3F1239-04	Soil	NWTPH-Dx	06/15/23 15:00	06/21/23 11:03	10.21g/5mL	10g/5mL	0.98
A3F1239-05	Soil	NWTPH-Dx	06/15/23 14:30	06/21/23 11:03	10.81g/5mL	10g/5mL	0.93
				0.010.000.00			
A3F1239-06	Soil	NWTPH-Dx	06/15/23 16:00	06/21/23 11:03	10.39g/5mL	10g/5mL	0.96
A3F1239-06		NWTPH-Dx oline Range Hydrocart				10g/5mL	0.96
						10g/5mL Default	
Prep: EPA 5030C					y NWTPH-Gx		RL Prep
Prep: EPA 5030C	Gas	oline Range Hydrocarb	oons (Benzene throu	ugh Naphthalene) b	y NWTPH-Gx Sample	Default	RL Prep
Prep: EPA 5030C Lab Number Batch: 23F0648	Gas	oline Range Hydrocarb	oons (Benzene throu	ugh Naphthalene) b	y NWTPH-Gx Sample	Default	RL Prep
Prep: EPA 5030C Lab Number Batch: 23F0648 A3F1239-07	Gas Matrix	oline Range Hydrocart Method	oons (Benzene throu	ugh Naphthalene) b	y NWTPH-Gx Sample Initial/Final	Default Initial/Final	RL Prej Factor
Prep: EPA 5030C Lab Number Batch: 23F0648 A3F1239-07 A3F1239-08	Gas Matrix Water	oline Range Hydrocart Method NWTPH-Gx (MS)	Sampled 06/15/23 13:30	Prepared 06/19/23 11:30	y NWTPH-Gx Sample Initial/Final 5mL/5mL	Default Initial/Final 5mL/5mL	RL Prep Factor
Prep: EPA 5030C Lab Number	Gas Matrix Water Water	oline Range Hydrocart Method NWTPH-Gx (MS) NWTPH-Gx (MS)	Sampled 06/15/23 13:30 06/15/23 14:45	Prepared 06/19/23 11:30 06/19/23 11:30	y NWTPH-Gx Sample Initial/Final 5mL/5mL 5mL/5mL	Default Initial/Final 5mL/5mL 5mL/5mL	RL Prej Factor 1.00 1.00
Prep: EPA 5030C Lab Number Batch: 23F0648 A3F1239-07 A3F1239-08 A3F1239-09 Prep: EPA 5035A	Gas Matrix Water Water	oline Range Hydrocart Method NWTPH-Gx (MS) NWTPH-Gx (MS)	Sampled 06/15/23 13:30 06/15/23 14:45 06/15/23 15:30	Prepared 06/19/23 11:30 06/19/23 11:30	y NWTPH-Gx Sample Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL	Default Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL	RL Prej Factor 1.00 1.00 1.00 RL Prej
Prep: EPA 5030C Lab Number Batch: 23F0648 A3F1239-07 A3F1239-08 A3F1239-09 Prep: EPA 5035A	Matrix Water Water Water	Oline Range Hydrocart Method NWTPH-Gx (MS) NWTPH-Gx (MS) NWTPH-Gx (MS)	Sampled 06/15/23 13:30 06/15/23 14:45	Prepared 06/19/23 11:30 06/19/23 11:30 06/19/23 11:30	y NWTPH-Gx Sample Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL Sample	Default Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL	RL Prep Factor
Prep: EPA 5030C Lab Number Batch: 23F0648 A3F1239-07 A3F1239-08 A3F1239-09 Prep: EPA 5035A Lab Number Batch: 23F0647	Matrix Water Water Water	Oline Range Hydrocart Method NWTPH-Gx (MS) NWTPH-Gx (MS) NWTPH-Gx (MS)	Sampled 06/15/23 13:30 06/15/23 14:45 06/15/23 15:30	Prepared 06/19/23 11:30 06/19/23 11:30 06/19/23 11:30	y NWTPH-Gx Sample Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL Sample	Default Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL	RL Prej Factor 1.00 1.00 1.00 RL Prej
Prep: EPA 5030C Lab Number Batch: 23F0648 A3F1239-07 A3F1239-08 A3F1239-09 Prep: EPA 5035A Lab Number Batch: 23F0647 A3F1239-01	Matrix Water Water Water Matrix	Oline Range Hydrocart Method NWTPH-Gx (MS) NWTPH-Gx (MS) NWTPH-Gx (MS)	Sampled 06/15/23 13:30 06/15/23 14:45 06/15/23 15:30 Sampled	Prepared 06/19/23 11:30 06/19/23 11:30 06/19/23 11:30 Prepared	y NWTPH-Gx Sample Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL Sample Initial/Final 3.9g/5mL	Default Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL Default Initial/Final	RL Prej Factor 1.00 1.00 1.00 RL Prej Factor
Prep: EPA 5030C Lab Number Batch: 23F0648 A3F1239-07 A3F1239-08 A3F1239-09 Prep: EPA 5035A Lab Number Batch: 23F0647 A3F1239-01 A3F1239-02	Matrix Water Water Water Matrix	Oline Range Hydrocart Method NWTPH-Gx (MS) NWTPH-Gx (MS) NWTPH-Gx (MS) Method NWTPH-Gx (MS)	Sampled 06/15/23 13:30 06/15/23 14:45 06/15/23 15:30 Sampled 06/15/23 12:50	Prepared 06/19/23 11:30 06/19/23 11:30 06/19/23 11:30 Prepared 06/15/23 12:50	y NWTPH-Gx Sample Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL Sample Initial/Final 3.9g/5mL 5.48g/5mL	Default Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL Default Initial/Final 5g/5mL 5g/5mL	RL Pre Factor 1.00 1.00 1.00 RL Pre Factor
Prep: EPA 5030C Lab Number Batch: 23F0648 A3F1239-07 A3F1239-08 A3F1239-09 Prep: EPA 5035A Lab Number	Matrix Water Water Water Matrix Soil Soil	Method NWTPH-Gx (MS) NWTPH-Gx (MS) NWTPH-Gx (MS) Method NWTPH-Gx (MS) NWTPH-Gx (MS)	Sampled 06/15/23 13:30 06/15/23 14:45 06/15/23 15:30 Sampled 06/15/23 12:50 06/15/23 15:30	Prepared 06/19/23 11:30 06/19/23 11:30 06/19/23 11:30 Prepared 06/15/23 12:50 06/15/23 15:30	y NWTPH-Gx Sample Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL Sample Initial/Final 3.9g/5mL 5.48g/5mL 6.11g/5mL	Default Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL Default Initial/Final 5g/5mL 5g/5mL 5g/5mL	RL Pre Factor 1.00 1.00 1.00 RL Pre Factor 1.28 0.91
Prep: EPA 5030C Lab Number Batch: 23F0648 A3F1239-07 A3F1239-08 A3F1239-09 Prep: EPA 5035A Lab Number Batch: 23F0647 A3F1239-01 A3F1239-02 A3F1239-03	Matrix Water Water Water Matrix Soil Soil	Method NWTPH-Gx (MS) NWTPH-Gx (MS) NWTPH-Gx (MS) Method NWTPH-Gx (MS) NWTPH-Gx (MS) NWTPH-Gx (MS) NWTPH-Gx (MS)	Sampled 06/15/23 13:30 06/15/23 14:45 06/15/23 15:30 Sampled 06/15/23 15:30 06/15/23 15:30 06/15/23 15:30	Prepared 06/19/23 11:30 06/19/23 11:30 06/19/23 11:30 Prepared 06/15/23 12:50 06/15/23 15:30 06/15/23 13:50	y NWTPH-Gx Sample Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL Sample Initial/Final 3.9g/5mL 5.48g/5mL	Default Initial/Final 5mL/5mL 5mL/5mL 5mL/5mL Default Initial/Final 5g/5mL 5g/5mL	RL Pre Factor 1.00 1.00 1.00 RL Pre Factor 1.28 0.91 0.82

Volatile Organic Compounds by EPA 8260D

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(BDi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

SAMPLE PREPARATION INFORMATION

Prep: EPA 5030C					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23F0648							
A3F1239-07	Water	EPA 8260D	06/15/23 13:30	06/19/23 11:30	5mL/5mL	5mL/5mL	1.00
A3F1239-08	Water	EPA 8260D	06/15/23 14:45	06/19/23 11:30	5mL/5mL	5mL/5mL	1.00
A3F1239-09	Water	EPA 8260D	06/15/23 15:30	06/19/23 11:30	5mL/5mL	5mL/5mL	1.00
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23F0647							
A3F1239-01	Soil	5035A/8260D	06/15/23 12:50	06/15/23 12:50	3.9g/5mL	5g/5mL	1.28
A3F1239-02	Soil	5035A/8260D	06/15/23 15:30	06/15/23 15:30	5.48g/5mL	5g/5mL	0.91
A3F1239-03	Soil	5035A/8260D	06/15/23 13:50	06/15/23 13:50	6.11g/5mL	5g/5mL	0.82
A3F1239-04	Soil	5035A/8260D	06/15/23 15:00	06/15/23 15:00	5.75g/5mL	5g/5mL	0.87
A3F1239-05	Soil	5035A/8260D	06/15/23 14:30	06/15/23 14:30	6.73g/5mL	5g/5mL	0.74
A3F1239-06	Soil	5035A/8260D	06/15/23 16:00	06/15/23 16:00	4.59g/5mL	5g/5mL	1.09

	Polychlorinated Biphenyls by EPA 8082A										
Prep: EPA 3510C (N	eutral pH)				Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 23F0845											
A3F1239-07	Water	EPA 8082A	06/15/23 13:30	06/23/23 07:16	970mL/5mL	1000mL/5mL	1.03				
A3F1239-09	Water	EPA 8082A	06/15/23 15:30	06/23/23 07:16	960mL/5mL	1000mL/5mL	1.04				
Prep: EPA 3546					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 23F0754											
A3F1239-01	Soil	EPA 8082A	06/15/23 12:50	06/21/23 07:56	10.33g/5mL	10g/5mL	0.97				

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)											
<u>Prep: EPA 3546</u>		V 1 1	2 11		Sample Initial/Final	Default Initial/Final	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	IIIItiai/Tillai	IIIIIIai/Tillai	ractor				
Batch: 23F0706											
A3F1239-01	Soil	EPA 8270E SIM	06/15/23 12:50	06/20/23 12:57	10.06g/5mL	10g/5mL	0.99				
A3F1239-02	Soil	EPA 8270E SIM	06/15/23 15:30	06/20/23 12:57	10.03g/5mL	10g/5mL	1.00				
A3F1239-04	Soil	EPA 8270E SIM	06/15/23 15:00	06/20/23 12:57	10.81g/5mL	10g/5mL	0.93				
A3F1239-06	Soil	EPA 8270E SIM	06/15/23 16:00	06/20/23 12:57	10.69g/5mL	10g/5mL	0.94				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODI

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

SAMPLE PREPARATION INFORMATION

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)										
Prep: EPA 3546					Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			

	Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (Large Volume Injection)											
Prep: EPA 3511 (Bott	le Extraction)				Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 23F0693												
A3F1239-07	Water	EPA 8270E LVI	06/15/23 13:30	06/20/23 07:46	109.38mL/5mL	125mL/5mL	1.14					
A3F1239-08	Water	EPA 8270E LVI	06/15/23 14:45	06/20/23 07:46	107.62mL/5mL	125mL/5mL	1.16					
A3F1239-09	Water	EPA 8270E LVI	06/15/23 15:30	06/20/23 07:46	99.22mL/5mL	125mL/5mL	1.26					

Total Metals by EPA 6020B (ICPMS)										
Prep: EPA 3015A					Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 23F0682										
A3F1239-07	Water	EPA 6020B	06/15/23 13:30	06/19/23 15:45	45mL/50mL	45 mL/50 mL	1.00			
A3F1239-08	Water	EPA 6020B	06/15/23 14:45	06/19/23 15:45	45mL/50mL	45mL/50mL	1.00			
A3F1239-09	Water	EPA 6020B	06/15/23 15:30	06/19/23 15:45	45mL/50mL	45mL/50mL	1.00			
Prep: EPA 3051A					Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 23F0688										
A3F1239-01RE1	Soil	EPA 6020B	06/15/23 12:50	06/20/23 07:07	0.463g/50mL	0.5g/50mL	1.08			
A3F1239-02RE1	Soil	EPA 6020B	06/15/23 15:30	06/20/23 07:07	0.476g/50mL	0.5g/50mL	1.05			
A3F1239-04RE1	Soil	EPA 6020B	06/15/23 15:00	06/20/23 07:07	0.484g/50mL	0.5g/50mL	1.03			
A3F1239-06	Soil	EPA 6020B	06/15/23 16:00	06/20/23 07:07	0.477g/50mL	0.5g/50mL	1.05			

Percent Dry Weight												
Prep: Total Solids (I	Dry Weight) - 2022				Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 23F0651												
A3F1239-01	Soil	EPA 8000D	06/15/23 12:50	06/19/23 09:47			NA					
A3F1239-02	Soil	EPA 8000D	06/15/23 15:30	06/19/23 09:47			NA					
A3F1239-03	Soil	EPA 8000D	06/15/23 13:50	06/19/23 09:47			NA					
A3F1239-04	Soil	EPA 8000D	06/15/23 15:00	06/19/23 09:47			NA					
A3F1239-05	Soil	EPA 8000D	06/15/23 14:30	06/19/23 09:47			NA					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

SAMPLE PREPARATION INFORMATION

Percent Dry Weight											
Prep: Total Solids (Sample	Default	RL Prep								
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
A3F1239-06	Soil	EPA 8000D	06/15/23 16:00	06/19/23 09:47			NA				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
- E Estimated Value. The result is above the calibration range of the instrument.
- F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation
- ICV-01 Estimated Result. Initial Calibration Verification (ICV) failed high. There is no effect on non-detect results.
- Q-01 Spike recovery and/or RPD is outside acceptance limits.
- Q-02 Spike recovery is outside of established control limits due to matrix interference.
- Q-03 Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
- Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
- Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
- Q-16 Reanalysis of an original Batch QC sample.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-52 Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.
- Q-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +13%. The results are reported as Estimated Values.
- Q-54a Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +17%. The results are reported as Estimated Values.
- Q-54b Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +23%. The results are reported as Estimated Values.
- Q-54c Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +4%. The results are reported as Estimated Values.
- Q-54d Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -6%. The results are reported as Estimated Values.
- Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.
- Q-56 Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260
- R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

CODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

- Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).
- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 85 of 89

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

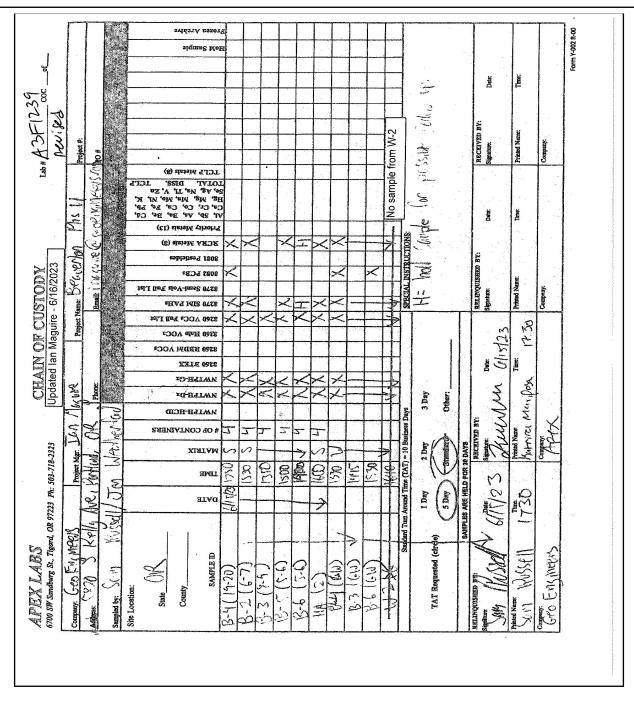
Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.


Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers Project: Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200Project Number: [none]Report ID:Lake Oswego, OR 97035Project Manager: Ian MaguireA3F1239 - 06 26 23 1646

Comment of Machine													ſ			I				١
County CO TIL MICES	Ь	roject Mgr	Project Mgr. Lan	-	W. UNE			Projec	Name	图	Sure.	É	-	Project Name: Becycling Phs V			Project #:			
Address: 5820 8 1401/4	Kells Ave, Parkind	Philad	B		Phone:				Bm	ail:	05%	9	B	Bmail: I'MIGGO NE @ CONPUGUI COST (ONRO#	100	(\$	#0 d			
Sampled by: SCI VI 19.0 (SCI)	() () (M)		Wecherton	3			NEW YEAR)	1000 310	SAL.	U U Analysis request	QUEST					
	L	-				-			-	15			-	'q¿	C.F.B.					
State OIR			IEBS				8 30		\$\$ '] II	i Full Li			1/50	1, Be, (Mo, Wi, T .2		•			
County			MAT1	нсп			A WO	OA O	LA PAE		88	icides	letals sfetals	O '0;	ATI, a PISIG	siats.				bje
	н		TRIX		HAT	HALA THE O					7 bC			Sb, A	TV. N°8'N WB'					ms2 i
SAMPLE ID	DV.	MIT							-		808			Al, Ca,	7 '95	Secretary at				ПоН
8-4(16-50)	1 841/9	0321	S F		X	-			×		X		×							
8-2 (6-1)	_	88	2		<u>×</u>				<u> </u>											
8-3 (4-4)	-	6	7		×	<u>_</u>							-			Ľ				
(3-5 (5-6)	1.5	0263	2		2		<u> </u>		Š	. 2			×							
(3-5) 3-8		夏星	 		Ž				X				I							
<u> </u>	7	8	1		2				× ×	_										
्रिक्ट) हिं		330	-3		X	-/			×		×		<u> </u>							
R-3 ((J.1)		レジュ				_														
		3.3	<u> </u>			-			E		\times	+	 							
X 22		1820	<u> </u>		3				K	_		1	>							
Standard Tu	Standard Turn Around Time (TAT) = 10 Business Days	(TAT)=	10 Busine	ss Days		$\ \ $			B I	SPECIAL INSTRUCTIONS	INST	INCID	SNC	`						
	1 Day	7	2 Day	60	3 Day				anhi	<u>"</u>	Z		THE STATE OF THE S	Slumple H	5) OC	the possible follow up.	<u>G</u>		
TAT Requested (circle)	5 Day	Sta	Standard	ŏ	Other:											2		•		
SAMPI	SAMPLES ARE HELD FOR 30 DAYS	78. 39 30 50	AYS.						Т											
UISHED BY: //	į	<u>α</u>	RECEIVED BY	BY:		,				RELINQUISHED BY:	TSHED	BY:		į			RECEIVED BY:	Ė	,	
Sim Mosell 6	(10/23		Sugnature:	3	Ź	E E	10115123	2	50 72	pante:				naie:			Signature:	Date	s.	
Pussell	(730)	oc. →	Frinted Name: Karpanisca Max Dosa	ž	r Dog	ا ا		17.30		Printed Name				Time:			Printed Name:	Time:	ŝi	
Company:		0	Company:	×	-				රී	Company:							Соптрану:			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(BDi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GeoEngineers

Project:

Beaverton Phs. II

4000 Kruse Way Place, Bldg 3 Suite 200 Lake Oswego, OR 97035 Project Number: [none]

Project Manager: Ian Maguire

Report ID: A3F1239 - 06 26 23 1646

Client: (9-CD)(-)(9)	rears	Element WO#: A3F1239
Project/Project #: Bea		
	<u>Va / C / 1 / 13 / 1</u>	
Delivery Info:	123 @ 17:30 By	Van
		Radio Morgan SDS Evergreen Other By: Am
Cooler Inspection Date Chain of Custody included		
Signed/dated by client?		
Signed/dated by chent?	Yes No	
Temperature (°C)	4.7 1.9	Soler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #1
Custody seals? (Y/N)	\vec{v}	
Received on ice? (Y/N)	y ' <u>'</u> <u>'</u> '	
Temp. blanks? (Y/N)	y y	
ice type: (Gel/Real/Other)	Real Real	· · · · · · · · · · · · · · · · · · ·
Condition (In/Out):	10 10	
Sample Inspection: Date All samples intact? Yes <u>\</u>	∠ No Comments:	@ 15:22 By: (FWY)
	2000 6/16	nts: No containers for W-2 read thanco
Bottle labels/COCs agree?	Yes No Commen	nts: No containers for W-2 read Plance
were received	Section 19 10 10 10 10 10 10 10 10 10 10 10 10 10	394000000000000000000000000000000000000
-	es form initiated? Yes	
Containers/volumes receive	ed appropriate for analysis?	Yes <u> No Comments: </u>
Do VOA viala have visible	headspace? Yes No _	V NIA
Comments B4/Lu/ 6-36	10 Back 10 3/3 has so	ed.
		appropriate? Yes ≻ No NA
Water samples: nH checked		
Comments:	\$#3320 provided, no	ot listed on LOC.
Comments:	5#3320 provided, no	of listed on COC.
Comments:	E#3320 provided, no	Cooler Inspected by:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(Di

APPENDIX C Report Limitations and Guidelines for Use

APPENDIX D

REPORT LIMITATIONS AND GUIDELINES FOR USE²

This appendix provides information to help you manage your risks with respect to the use of this report. Please confer with GeoEngineers if you need to know more about how these "Report Limitations and Guidelines for Use" apply to your project or property.

Read These Provisions Closely

It is important to recognize that environmental engineering and geoscience practices (geotechnical engineering, geology and environmental science) are less exact than other engineering and natural science disciplines. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce the risk of misunderstandings or unrealistic expectations that lead to disappointments, claims and disputes.

Environmental Services are Performed for Specific Purposes, Persons and Projects

GeoEngineers has performed this Phase II ESA of the Beaverton Cardlock and Bulk Plant facility at 6750 SW 110th Court, Beaverton, Oregon in general accordance with the scope and limitations of our proposal, dated June 1, 2023 and subsequent contract amendments. This report has been prepared for the exclusive use of Jubitz Corporation (Jubitz) and Bretthauer Oil Company, Inc. (Bretthauer). This report is not intended for use by others, and the information contained herein is not applicable to other properties.

GeoEngineers structures its services to meet the specific needs of its clients. For example, an ESA study conducted for a property owner may not fulfill the needs of a prospective purchaser of the same property. Because each environmental study is unique, each environmental report is unique, prepared solely for the specific client and property. The use of this report is not recommended for any purpose or project other than as expressly stated in this report.

This Environmental Report is Based on a Unique Set of Project-Specific Factors

This report has been prepared for the B Cardlock and Bulk Plant facility at 6750 SW 110th Court, Beaverton, Oregon. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this Project. Unless GeoEngineers specifically indicates otherwise, it is important not to rely on this report if it was:

- not prepared for you,
- not prepared for your Project,
- not prepared for the specific site explored, or
- completed before Project changes were made.

If changes to the Project or property occur after the date of this report, GeoEngineers cannot be responsible for any consequences of such changes in relation to this report unless we have been given the opportunity

² Developed based on material provided by GBA, GeoProfessional Business Association; www.geoprofessional.org.

to review our interpretations and recommendations in the context of such changes. Based on that review, we can provide written modifications or confirmation, as appropriate.

Reliance Conditions for Third Parties

This report was prepared for the exclusive use of the party to whom this report is addressed. No other party may rely on the product of our services unless we agree to such reliance in advance and in writing. Within the limitations of the agreed Project scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and generally accepted environmental practices in this area at the time this report was prepared.

Understand That Geotechnical Issues Have Not Been Addressed

Unless geotechnical engineering was specifically included in our scope of service, this report does not provide any geotechnical findings, conclusions, or recommendations, including but not limited to, the suitability of subsurface materials for construction purposes.

Do Not Separate Documentation from the Report

Environmental reports often include supplemental documentation, such as maps, figures, and tables. Do not separate such documentation from the report. Further, do not, and do not permit any other party to redraw or modify any of the supplemental documentation for incorporation into other professionals' instruments of service.

Environmental Regulations Change and Evolve

Some substances may be present in the vicinity of the site in quantities or under conditions that may have led, or may lead, to contamination of the site, but are not included in current local, state or federal regulatory definitions of hazardous substances or do not otherwise present current potential liability. GeoEngineers cannot be responsible if the standards for appropriate inquiry, or regulatory definitions of hazardous substances, change or if more stringent environmental standards are developed in the future.

Uncertainty May Remain Even After This Phase II ESA is Completed

Performance of a Phase II ESA is intended to reduce uncertainty regarding the potential for contamination in connection with a property, but no ESA can wholly eliminate that uncertainty. Our interpretation of subsurface conditions in this study is based on field observations and chemical analytical data from widely spaced sampling locations. It is always possible that contamination exists in areas that were not explored, sampled or analyzed.

Subsurface Conditions Can Change

This environmental report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by man-made events such as construction on or adjacent to the site, by new releases of hazardous substances, new information or technology that become available subsequent to the report date, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Please contact GeoEngineers before applying this

report for its intended purpose so that GeoEngineers may evaluate whether changed conditions affect the continued applicability of the report.

Soil and Groundwater End Use

The cleanup levels referenced in this report are site- and situation-specific. The cleanup levels may not be applicable for other properties or for other on-site uses of the affected soil and/or groundwater. Note that hazardous substances may be present in some of the on-site soil and/or groundwater at detectable concentrations that are less than the referenced cleanup levels. GeoEngineers should be contacted prior to the export of soil or groundwater from the site or reuse of the affected soil or groundwater on-site to evaluate the potential for associated environmental liabilities. GeoEngineers will not assume responsibility for potential environmental liability arising out of the transfer of soil and/or groundwater from the site to another location, or the reuse of such soil and/or groundwater on-site in any instances that we did not recommend, know of, or control.

Most Environmental Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations and chemical analytical data from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied its professional judgment to render an informed opinion about subsurface conditions throughout the property. Actual subsurface conditions may differ significantly from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Do Not Redraw the Exploration Logs

Environmental scientists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in an environmental report should never be redrawn for inclusion in other design documents. Only photographic or electronic reproduction that preserves the entire original boring log is acceptable, but separating logs from the report can increase the risk of potential misinterpretation.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention, or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing, or abating of Biological Pollutants, and no conclusions or inferences should be drawn regarding Biological Pollutants as they may relate to this Project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria and viruses, and/or any of their byproducts.

A Client that desires these specialized services is advised to obtain them from a consultant who offers services in this specialized field.

Appendix B

Chain-of-Custody and Analytical Results Laboratory Report A3E1088

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, May 18, 2023 Casey Michaels 4C's Environmental Inc. 1590 SE Uglow Ave Dallas, OR 97338

RE: A3E1088 - BRET-Beaverton-2012

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3E1088, which was received by the laboratory on 5/5/2023 at 4:03:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Default Cooler 1.9 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

4C's Environmental Inc. Project/#: BRET-Beaverton-2012

1590 SE Uglow Ave
Dallas, OR 97338
Project Manager: Casey Michaels
A3E1088 - 05 18 23 1104

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORM	ATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B1	A3E1088-01	Soil	05/05/23 08:05	05/05/23 16:03
B2	A3E1088-02	Soil	05/05/23 08:11	05/05/23 16:03
В3	A3E1088-03	Soil	05/05/23 08:15	05/05/23 16:03
B4	A3E1088-04	Soil	05/05/23 08:18	05/05/23 16:03
B5	A3E1088-05	Soil	05/05/23 08:20	05/05/23 16:03

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

4C's Environmental Inc. Project/#: BRET-Beaverton-2012

1590 SE Uglow Ave
Dallas, OR 97338
Project Manager: Casey Michaels
A3E1088 - 05 18 23 1104

ANALYTICAL SAMPLE RESULTS

	Hyara	ocarbon iden	uncation Sc	reen by NWTP	п-нсір			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B1 (A3E1088-01)				Matrix: Soil		Batch:	23E0243	
Gasoline Range Organics	ND		23.9	mg/kg dry	1	05/06/23 01:24	NWTPH-HCID	
Diesel Range Organics	ND		59.8	mg/kg dry	1	05/06/23 01:24	NWTPH-HCID	
Oil Range Organics	ND		120	mg/kg dry	1	05/06/23 01:24	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 101 %	Limits: 50-150 %	1	05/06/23 01:24	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			93 %	50-150 %	1	05/06/23 01:24	NWTPH-HCID	
B2 (A3E1088-02)				Matrix: Soil		Batch:	23E0243	
Gasoline Range Organics	ND		25.6	mg/kg dry	1	05/06/23 01:47	NWTPH-HCID	
Diesel Range Organics	ND		63.9	mg/kg dry	1	05/06/23 01:47	NWTPH-HCID	
Oil Range Organics	ND		128	mg/kg dry	1	05/06/23 01:47	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 102 %	Limits: 50-150 %	1	05/06/23 01:47	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			95 %	50-150 %	1	05/06/23 01:47	NWTPH-HCID	
B3 (A3E1088-03)				Matrix: Soil		Batch:	23E0243	
Gasoline Range Organics	ND		24.4	mg/kg dry	1	05/06/23 02:10	NWTPH-HCID	
Diesel Range Organics	ND		61.0	mg/kg dry	1	05/06/23 02:10	NWTPH-HCID	
Oil Range Organics	ND		122	mg/kg dry	1	05/06/23 02:10	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 106 %	Limits: 50-150 %	1	05/06/23 02:10	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			95 %	50-150 %	1	05/06/23 02:10	NWTPH-HCID	
B4 (A3E1088-04)				Matrix: Soil		Batch:	23E0243	
Gasoline Range Organics	ND		24.3	mg/kg dry	1	05/06/23 04:29	NWTPH-HCID	
Diesel Range Organics	DET		60.7	mg/kg dry	1	05/06/23 04:29	NWTPH-HCID	F-11
Oil Range Organics	ND		121	mg/kg dry	1	05/06/23 04:29	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 106%	Limits: 50-150 %	1	05/06/23 04:29	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			94 %	50-150 %	I	05/06/23 04:29	NWTPH-HCID	
B5 (A3E1088-05)				Matrix: Soil		Batch:	23E0243	
Gasoline Range Organics	ND		22.4	mg/kg dry	1	05/06/23 02:33	NWTPH-HCID	
Diesel Range Organics	ND		56.1	mg/kg dry	1	05/06/23 02:33	NWTPH-HCID	
Oil Range Organics	ND		112	mg/kg dry	1	05/06/23 02:33	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Reco	very: 99 %	Limits: 50-150 %	1	05/06/23 02:33	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			88 %	50-150 %	1	05/06/23 02:33	NWTPH-HCID	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

4C's Environmental Inc. Project/#: BRET-Beaverton-2012

1590 SE Uglow Ave
Dallas, OR 97338
Project Manager: Casey Michaels
A3E1088 - 05 18 23 1104

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTPI	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B4 (A3E1088-04)				Matrix: Soil		Batch:	23E0377	
Diesel Oil	4690 ND		249 498	mg/kg dry mg/kg dry	10 10	05/09/23 22:01 05/09/23 22:01	NWTPH-Dx NWTPH-Dx	F-11
Surrogate: o-Terphenyl (Surr)		Reco	very: 89 %	Limits: 50-150 %	10	05/09/23 22:01	NWTPH-Dx	S-05

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

4C's Environmental Inc. 1590 SE Uglow Ave Dallas, OR 97338 Project/#: BRET-Beaverton-2012

Project Manager: Casey Michaels

A3E1088 - 05 18 23 1104

ANALYTICAL SAMPLE RESULTS

		Po	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B1 (A3E1088-01)				Matrix: So	oil	Batch:	23E0298	
% Solids	81.2		1.00	%	1	05/08/23 04:24	EPA 8000D	
B2 (A3E1088-02)				Matrix: So	oil	Batch:	23E0298	
% Solids	78.1		1.00	%	1	05/08/23 04:24	EPA 8000D	
B3 (A3E1088-03)				Matrix: So	oil	Batch:	23E0298	
% Solids	77.7		1.00	%	1	05/08/23 04:24	EPA 8000D	
B4 (A3E1088-04)				Matrix: So	oil	Batch:	23E0298	
% Solids	76.1		1.00	%	1	05/08/23 04:24	EPA 8000D	
B5 (A3E1088-05)				Matrix: So	oil	Batch:	23E0298	
% Solids	81.8		1.00	%	1	05/08/23 04:24	EPA 8000D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

4C's Environmental Inc.

1590 SE Uglow Ave Dallas, OR 97338 Project/#: BRET-Beaverton-2012

Project Manager: Casey Michaels

A3E1088 - 05 18 23 1104

QUALITY CONTROL (QC) SAMPLE RESULTS

		Hyd	rocarbon l	dentificati	on Scree	en by NW7	PH-HCIE)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E0243 - NWTPH-HCID	(Soil)						Soil					
Blank (23E0243-BLK1)		Prepared	: 05/05/23 07:	12 Analyze	ed: 05/05/2	3 22:41						
NWTPH-HCID												
Gasoline Range Organics	ND		20.0	mg/kg we	t 1							
Diesel Range Organics	ND		50.0	mg/kg we	t 1							
Oil Range Organics	ND		100	mg/kg we	t 1							
Surr: o-Terphenyl (Surr)		Reco	overy: 90 %	Limits: 50-	150 %	Dilı	tion: 1x					
4-Bromofluorobenzene (Surr)			87 %	50-	150 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

4C's Environmental Inc.

1590 SE Uglow Ave Dallas, OR 97338 Project/#: BRET-Beaverton-2012

Project Manager: Casey Michaels

Report ID:

A3E1088 - 05 18 23 1104

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	r Oil Hyd	rocarbor	s by NW	ГРН-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E0377 - EPA 3546	(Fuels)						Soil					
Blank (23E0377-BLK1)		Prepared	: 05/09/23 09:	50 Analyze	ed: 05/09/2	3 20:40						
NWTPH-Dx												
Diesel	ND		20.0	mg/kg we	et 1							
Oil	ND		40.0	mg/kg we	et 1							
Surr: o-Terphenyl (Surr)		Recon	very: 103 %	Limits: 50-	-150 %	Dili	ution: 1x					
LCS (23E0377-BS1)		Prepared	: 05/09/23 09:	50 Analyze	ed: 05/09/2	3 21:00						
NWTPH-Dx												
Diesel	107		20.0	mg/kg we	et 1	125		85	38 - 132%			
Surr: o-Terphenyl (Surr)		Reco	very: 105 %	Limits: 50-	-150 %	Dili	ution: 1x					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

4C's Environmental Inc.

1590 SE Uglow Ave Dallas, OR 97338 Project/#: BRET-Beaverton-2012

Project Manager: Casey Michaels

Report ID:

A3E1088 - 05 18 23 1104

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E0298 - Total Solids (Dry Weigh	nt) - 2022					Soil					
Duplicate (23E0298-DUP1)		Prepared	: 05/06/23 15:2	5 Analy	zed: 05/08/2	3 04:24						
QC Source Sample: B1 (A3E1088 EPA 8000D	<u>-01)</u>											
% Solids	81.6		1.00	%	1		81.2			0.5	10%	
Duplicate (23E0298-DUP2)		Prepared	: 05/06/23 15:2	5 Analy	zed: 05/08/2	3 04:24						
QC Source Sample: B2 (A3E1088 EPA 8000D	<u>-02)</u>											
% Solids	75.8		1.00	%	1		78.1			3	10%	
Duplicate (23E0298-DUP3)		Prepared	: 05/06/23 15:2	5 Analy	zed: 05/08/2	3 04:24						
QC Source Sample: B3 (A3E1088 EPA 8000D	<u>-03)</u>											
% Solids	77.1		1.00	%	1		77.7			0.7	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

4C's Environmental Inc.

1590 SE Uglow Ave Dallas, OR 97338 Project/#: BRET-Beaverton-2012

Project Manager: Casey Michaels A3E1088 - 05 18 23 1104

SAMPLE PREPARATION INFORMATION

		Hydrocarbor	ldentification Scree	n by NWTPH-HCID	1		
Prep: NWTPH-HC	ID (Soil)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23E0243							
A3E1088-01	Soil	NWTPH-HCID	05/05/23 08:05	05/05/23 18:34	10.29g/10mL	10g/10mL	0.97
A3E1088-02	Soil	NWTPH-HCID	05/05/23 08:11	05/05/23 18:34	10.01g/10mL	10g/10mL	1.00
A3E1088-03	Soil	NWTPH-HCID	05/05/23 08:15	05/05/23 18:34	10.55g/10mL	10g/10mL	0.95
A3E1088-04	Soil	NWTPH-HCID	05/05/23 08:18	05/05/23 18:34	10.82g/10mL	10g/10mL	0.92
A3E1088-05	Soil	NWTPH-HCID	05/05/23 08:20	05/05/23 18:34	10.89g/10mL	10g/10mL	0.92

		Diesel an	d/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3546 (I	Fuels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23E0377							
A3E1088-04	Soil	NWTPH-Dx	05/05/23 08:18	05/09/23 17:13	10.55g/5mL	10g/5mL	0.95

			Percent Dry We	ight			
Prep: Total Solids	(Dry Weight) - 20	<u>22</u>			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23E0298							
A3E1088-01	Soil	EPA 8000D	05/05/23 08:05	05/06/23 15:25			NA
A3E1088-02	Soil	EPA 8000D	05/05/23 08:11	05/06/23 15:25			NA
A3E1088-03	Soil	EPA 8000D	05/05/23 08:15	05/06/23 15:25			NA
A3E1088-04	Soil	EPA 8000D	05/05/23 08:18	05/06/23 15:25			NA
A3E1088-05	Soil	EPA 8000D	05/05/23 08:20	05/06/23 15:25			NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

Page 9 of 15

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

4C's Environmental Inc. Project/#: BRET-Beaverton-2012

1590 SE Uglow Ave
Dallas, OR 97338
Project Manager: Casey Michaels
A3E1088 - 05 18 23 1104

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

F-11 The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.

S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dund by hail

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

4C's Environmental Inc. Project/#: BRET-Beaverton-2012

 1590 SE Uglow Ave
 Report ID:

 Dallas, OR 97338
 Project Manager: Casey Michaels
 A3E 1088 - 05 18 23 1104

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

<u>Detection Limits:</u> Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Anex	Labora	atories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dunall la famile

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

4C's Environmental Inc. Project/#: BRET-Beaverton-2012

 1590 SE Uglow Ave
 Report ID:

 Dallas, OR 97338
 Project Manager: Casey Michaels
 A3E1088 - 05 18 23 1104

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

4C's Environmental Inc. Project/#: BRET-Beaverton-2012

1590 SE Uglow Ave
Dallas, OR 97338
Project Manager: Casey Michaels
A3E1088 - 05 18 23 1104

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

mul la famil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

4C's Environmental Inc. Project/#: BRET-Beaverton-2012

1590 SE Uglow AveReport ID:Dallas, OR 97338Project Manager: Casey MichaelsA3E1088 - 05 18 23 1104

Company to Clinical Company to Co	nentaphas.		MACE	7				roject	Project Name		100		388	1	2RFT-Barrie	4	_		c		1
Address: Dallas, OR 97338	Jglow Ave. 28 97338			上一	Phone: 503 606 80 CO Email:	23		3	Ema	::	T CAL			-	2000	Tow	PO#		2012	1 7	
												¥	3	SIS	ANALYSIS REQUEST						
Site Location:				<u> </u>							_ is		-		,s ,gM	'u.					
OB WA CA			SAS				Cs				ia Ilua				13) Cd, Cd, Cd, Hg, Na, Na, Na, Na, Na, Na, Na, Na, Na, Na	Ag, Na, TCLP					
AK ID			INIV.		X					sHVe	[sloV					'8s'		_5			
			LNOC XIX	H-Hd.	а-на	D-Hq	втех	olsH	AOC	I WIS	-iməs			~		N' N'	100000	£0			 ę
SAMPLEID	LAB	TIME	HOF		LMN					0728	0718	2808	1808	BCB	Priori 1, Sb, 2, Co,	oM, mi nS., JATO	TCL	S			тећіче
Bi	5/5/53	18.05 Co	-	*			_	_					1	-	2	T		 			V
82	←	8.11		×							<u> </u>		 	-				\ \ \		-	
63		8:15	_	1			 				1	-	+	-					_	-	
20		9. 0	<u> </u>	()		+	+	ļ				+	+	╁			T	× \	1	-	
7.0	>-	2 ,	<u> </u>	×	1	+	+	\perp	Ţ		+	+	+	+			+	×		+	
54	12/13	5:50	<u>-</u> اح	×	1	+	-	4	\Box			\dashv	-					×			
						\dashv	\downarrow				\dashv	-									
			-	_			_					\dashv									 V
							+	_			\dashv			-				-			
			-				_					+									
Normal	Port American													-							
Normal	Normal 1 um Around 1 um $(1A1) = 10$ Business Days	(IAI)=1	0 Busines	s Days					SPE	SPECIAL INSTRUCTIONS:	INST	SUCT	ONS								
TAT Democrated (charle)	1 Day	2 Day	3 Day	ý				100													
ra i Acquesica (circie)	4 DAY	5 DAY	0	Other:			ſ														
	SAMPLES ARE HELD FOR 30 DAYS	FOR 30 DA	, vs							-											
RELINQUISHED BY: Signature:	Date:	RECEIVED BY: Signature:	BY:		Ω	Date:			RELINQU Signature:	RELINQUISHED BY: Signature:	SHED	i;;				Date	RECEIV	RECEIVED BY:		Date.	T
UN MAN	22/5/5/0	\emptyset			5	5.5.2	62											i		2	
Printed Name:	Time: 17:03	Printed Name:	. S	2	1	Time: 1603	5		Printe	Printed Name	ii ii				Ē	Time:	Printed Name	Name:		Time:	T
Company: HCs Folicon M. Atal	hal Tar	Company:			.1				Company:	any:							Company:	5			1

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

4C's Environmental Inc. 1590 SE Uglow Ave Dallas, OR 97338 Project/#: BRET-Beaverton-2012

Project Manager: Casey Michaels

A3E1088 - 05 18 23 1104

APEX LABS COOLER RECEIPT FORM	
CHEMI: LICS Environmental	
Client:	88
Date/time received: 5.5.23 @ (603 By: D1)	
Delivered by: Apex_Client >ESS_FedEx_UPS_Radio_Morgan_SDS_Evergreen Cooler Inspection Date/time inspected: 5-5-2-3-0	
Cooler Inspection Date/time inspected: 5-5-2-3 @ 160-(By: DJ)	nOther
Chain of Custody included? Yes No No	
Signed/dated by client? Yes > No	
Cooler #1 Cooler #2 Cooler #2 Cooler #2	
Temperature (°C) Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #5	#6 Cooler #7
Custody seals? (Y/N)	
Condition (In/Out):	
Sample Inspection: Date/time inspected: 5/5/23 @_16:14 By: JAM All samples intact? Yes X No Comments:	
No Comments:	
Bottle labels/COCs agree? Yes \(\subseteq \) No Comments:	
COC/container discrepancies form initiated? Yes No No Comments: Do VOA vials have visible headspace? Yes No NA Comments	
COC/container discrepancies form initiated? Yes No Containers/volumes received appropriate for analysis? Yes No Comments: Do VOA vials have visible headspace? Yes No NA Comments	
COC/container discrepancies form initiated? Yes No No Comments: Do VOA vials have visible headspace? Yes No NA Comments	
COC/container discrepancies form initiated? Yes No No Comments: Containers/volumes received appropriate for analysis? Yes No Comments: Do VOA vials have visible headspace? Yes No NA Y Comments Water samples: pH checked: Yes No NA Y Comments: No NA Y Comments: No NA Y	
COC/container discrepancies form initiated? Yes No No Comments: No Comments: No NA NO NO NO NO NO NO	
COC/container discrepancies form initiated? Yes No No Comments: Containers/volumes received appropriate for analysis? Yes No Comments: Do VOA vials have visible headspace? Yes No NA Comments Water samples: pH checked: Yes No NA pH appropriate? Yes No NA Comments:	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Commel to buil