

OREGON DEPARTMENT OF ENVIRONMENTAL QUALITY UNDERGROUND STORAGE TANK PROGRAM

Initial (Twenty Day) Report Form for UST Cleanup Projects

Guanty	This report is due twenty (20) days from the date of the release.
DEQ USTC File No.	
DEQ Facility ID No.	26-23-0131
Site Name:	Former Twelfth Avenue Motor Service
Site Address:	2436 SE 12th Avenue
INITIAL CLEAN	NUP INFORMATION
Gasolin	nation (check √ all that apply): e
(2) Estimate quantit <100 gal.	y of release (based on information known to date – ● select only one): 100-499 gal. 500-999 gal. 1,000-5,000 gal. >5,000 gal.
SITE INFORMA	$\underline{\text{TION}}$ (check $\underline{}$ yes or $\underline{}$ no)
(3) Y V	Did any water enter the excavation? If yes, please describe and identify the depth to groundwater in feet below ground surface:
(4) Y V	Was a sheen or odor observed on any water in the excavation?
	ter is encountered, soil samples from the soil/water interface must be collected and analyzed e appropriate TPH method.
	sel or other non-gasoline products have been released, the water may also have to be for polynuclear aromatic hydrocarbons (PAHs). <i>Please refer to OAR 340-122-0218.</i>
(5) Y V	Was water pumped from the excavation?
Y <u></u> N	If yes, did groundwater recharge within 24 hours after pumping?
Please describe	the pumping procedure and disposal option selected for the purged excavation water:
(6) Y V	Were any water samples collected from the excavation? If yes, please describe:
(7) Y L	Have any soil and/or water sample results been received at this time?
	If so, please attach any lab reports.

IF GROUNDWATER HAS BEEN ENCOUNTERED, PLEASE ANSWER QUESTIONS #8-13, BELOW. IF NO WATER HAS BEEN ENCOUNTERED, PLEASE SKIP TO QUESTION #14

(8) What are the known uses of groundwater within a 500-foot radius of the release site (check √ all that apply non-use industrial agricultural drinking supply	y)?
(9) If groundwater in this area is being used as a drinking water supply, please check √ the type and size of population served by the supply:	
Community (community well used for drinking water year round – • select only one)	
size: <1,000 people 1,000 - 5,000 people >5,000 people	
Intermittent use (public water used for drinking water only on a part-time basis – • select only one)	
size: <pre> <50 people</pre>	
Private wells (individual private well or wells used for drinking water – • select only one)	
size: <10 people 10 - 25 people >25 people	
(10) Y N Is there any evidence this water supply has been or is likely to be impacted from the petroleum product release? If yes, estimate how difficult it would be to replace the existing supply:	
on-site water treatment; bulk water delivery; new wells are available	
able to connect to existing water supply	
do not know what alternatives would be available	
(11) Y N Are/were vapors present in on-site or nearby buildings? If yes:	
A. Are you monitoring and/or mitigating any potential fire and safety hazards posed by vapor	rs
and free product? Explain:	
B. Estimate the number of people potentially affected by vapors – • select only one: 1-2 people 3-10 people >10 people	
(12) Y N Are vapors or is petroleum contamination present in the utility corridors?	
If yes, please explain:	
(13) Y N Are natural areas located within 1/4 mile of the site? If so, please describe types (pa	rks,
rivers, wetlands, sensitive habitats, etc.) and proximity:	
(14) Y N If groundwater was not encountered in the excavation, do you believe that this cleanuproject can be conducted under the requirements for an UST Cleanup Matrix site? If yes, the refer to OAR 340-122-0305 through 0360.	

<u>ARE</u>	A/SITE CONDITIONS:
(15)	Mean annual rainfall: <a> <20 inches <a> 20-45 inches <a> >45 inches
(16)	Soil type(s) of the naturally occurring soils, not the backfill around the tank − • select only one:
	clays, compact tills, shales, and unfractured metamorphic and igneous rocks
	sandy loams, loamy sands, silty clays, clay loams, moderately permeable limestone, dolomite, sandstones, moderately fractured igneous and metamorphic rock
	fine and silty sands, sands and gravels, highly fractured igneous and metamorphic rock, permeable basalts and lavas, karst limestones and dolomites
<u>SOIL</u>	MANAGEMENT
(17)	If soil sample results have been received:
	Y Will the level of contamination detected require removal of contaminated soil for treatment or disposal?
(18)	All contaminated soil temporarily stockpiled on-site prior to treatment or disposal must be contained within a bermed area, kept covered, and the entire area secured to prevent unauthorized access by the public. you haven't done this, please explain why:
	It is a violation to stockpile petroleum contaminated soil (PCS) on-site for greater than 30 days out a DEQ Solid Waste Letter Authorization (SWLA) Permit.
(19)	If contaminated soil is currently stockpiled on-site, please indicate when disposal will occur or when treatment will begin:
(20)	Estimated volume of contaminated soil (specify tons or cubic yards):
(21)	Intended disposition of soils (please • select only one):
	On-site/off-site treatment, Solid Waste Letter Authorization Permit Application attached.
	Thermal treatment off-site at an authorized facility.
	Facility name:
	Name of Landfill: Hillsboro Landfill

Note: Please attach additional information as necessary to explain any unusual circumstances associated with this project.

This initial report is intended to provide the Department with the basic initial information about activities associated with the release. Future reports should provide a more detailed and complete picture of the cleanup project.

Please be aware that a DEQ permit/authorization is required for the following activities:

- 1) Soil aeration, bioremediation (on-site or off-site), or on-site thermal treatment.
- 2) Water discharges to a stream/storm drain from the excavation or treatment tank.

If these activities will be included in your cleanup project, contact the regional DEQ office for the appropriate application forms, information on permit fees and guidance documents.

THIS REPORT WAS PREPARED BY:

Individual:	Kyle Fisher	Date: 3/15/23
Company:	Point Source Solutions	Phone: 5038608811
Address:	5317 NE St Johns Rd	
	Suite D	
City:	Vancouver	State WA Zip 98661

- 1. Please return this form to the regional office in which the site is located. If you have questions, call the contact person in your regional office.
- 2. For all tanks, except heating oil tanks, you must submit an UST Decommissioning

 Checklist and Site Assessment Report to the appropriate regional office

 within 30 days of the UST decommissioning.

 Failure to do so can result in delays to your project and
 may result in continued billing for the annual tank permit fees.
 - 3. Addresses and phone numbers for the regional offices can be found in the *UST Cleanup Manual* or viewed and downloaded from this DEQ Webpage: http://www.deq.state.or.us/about/locations.htm
- 4. Copies of the *UST Cleanup Manual* and other UST program forms and checklists can be viewed and downloaded from DEQ's Website:

 http://www.deq.state.or.us/lq/tanks/ust/index.htm

or in the Portland area by calling Steve Paiko at 503-229-6652

or outside the Portland area leaving a message on the UST Help Line (toll-free in Oregon) at 1-800-742-7878

KEEP A COPY OF THIS REPORT FOR YOUR FACILITY RECORDS

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 3, 2023

Gil Cobb, Project Manager Point Source Solutions 5317 NE St Johns Rd. Suite D Vancouver, WA 98661

Dear Mr Cobb:

Included are the results from the testing of material submitted on February 27, 2023 from the 2436 SE 12th Ave, F&BI 302353 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Johnny Ramus, Jeff Jackman, Kyle Fisher

PSS0303R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 27, 2023 by Friedman & Bruya, Inc. from the Point Source Solutions 2436 SE 12th Ave, F&BI 302353 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Point Source Solutions
302353 -01	B1-S1-10
302353 -02	B2-S1-11
302353 -03	B2-S2-16
302353 -04	B3-S1-4
302353 -05	B3-S2-10
302353 -06	B4-S1-4
302353 -07	B4-S2-11

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

Date Extracted: 02/28/23 Date Analyzed: 03/01/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 58-139)
B1-S1-10 302353-01	230	ip
B2-S1-11 302353-02 1/20	2,200	ip
B2-S2-16 302353-03	7.8	105
B3-S1-4 302353-04	<5	94
B3-S2-10 302353-05	<5	102
B4-S1-4 302353-06	<5	100
B4-S2-11 302353-07	<5	100
Method Blank 03-467 MB	<5	109

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

Date Extracted: 02/27/23 Date Analyzed: 02/27/23

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$rac{ ext{Diesel Range}}{ ext{(C}_{10} ext{-C}_{25})}$	$rac{ ext{Motor Oil Range}}{ ext{(C}_{25} ext{-C}_{36} ext{)}}$	Surrogate (% Recovery) (Limit 50-150)
B1-S1-10 302353-01	<50	<250	107
B2-S1-11 302353-02	2,000 x	<250	112
B2-S2-16 302353-03	<50	<250	107
B3-S1-4 302353-04	<50	<250	110
B3-S2-10 302353-05	<50	<250	108
B4-S1-4 302353-06	<50	<250	107
B4-S2-11 302353-07	<50	<250	104
Method Blank 03-492 MB	<50	<250	107

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 302344-01 (Duplicate)

		Sample	Duplicate	
	Reporting	Result	Result	RPD
Analyte	Units	(Wet Wt)	(Wet Wt)	(Limit 20)
Gasoline	mg/kg (ppm)	<5	<5	nm

Laboratory Code: Laboratory Control Sample

			1 ercent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	100	70-130	-

ENVIRONMENTAL CHEMISTS

Date of Report: 03/03/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 302229-04 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (nnm)	5,000	3 400	124	110	70-130	12

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	102	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Gil Cobb

Company Point Scure Solutions

Address 5317 NE St Johns Rd, StED

City, State, ZIP Vancouver, NA

SAMPLE CHAIN OF CUSTODY

02/27/23

2

PROJECT NAME
PO#

2436 SE 12th Aug

REMARKS
INVOICE TO

Project Specific RLs - Yes / No

Other_

Page # _____ of ____
TURNAROUND TIME

X Standard Turnaround
RUSH______
Rush charges authorized by:

SAMPLE DISPOSAL
Dispose after 30 days
Archive Samples

-	 	 								_
		B4-52-11	B4-51-4	B3-82-16	B3-Si-4	B2-52-16	82-51-11	B1-S1-10	Sample ID	
13		7	8	05	04	03	Q Z	01 A-C	Lab ID	
SIGNATURE		ι, η	[1] N	F.	z	E E	2	2/22/23	Date Sampled	
	-	14:52	14544	13:58	13:43	12:16	11:58	10037	Time Sampled	
		8011	1:05	50.7	Sail	Soil	Soil	Soil	Sample Type	
PRI		w	w	w	w	w	w	W	# of Jars	
		*	×	×	× ×	×	×	×	NWTPH-Dx	
PRINT NAME		×	×	×	×	×	×	~	NWTPH-Gx	
되									BTEX EPA 8021	
	Sa								VOCs EPA 8260	A
	 T T				<u> </u>	<u> </u>	<u> </u>	<u> </u>	PAHs EPA 8270	IAN
	 Je		<u> </u>						PCBs EPA 8082	YSE
	re								`	SRI
Ž Ž	Cej									QUI
COMPANY	mples received									ANALYSES REQUESTED
7	at								4	٦
	0									
DATE TIME	ဂိ								Notes	
اري	<u> </u>	 <u> </u>	1		1		<u> </u>	1	<u> </u>	<u> </u>

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029
Ph. (206) 285-8282

	SIGNATURE	PRINT NAME	COMPANY	DATE TIME	TIME
è Bruya, Inc.	Relinquished by:	John Ramus	Point Source	2/27/23 1:33	1.23
venue West	Received by:	ANHPHAN	F8b	02/27/23 11:23	11:23
98119-2029	98119-2029 Relinquished by:				
35-8282	Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S.

5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 10, 2023

Gil Cobb, Project Manager Point Source Solutions 5317 NE St Johns Rd, Suite D Vancouver, WA 98661

Dear Mr Cobb:

Included are the additional results from the testing of material submitted on February 27, 2023 from the 2436 SE 12th Ave, F&BI 302353 project. There are 13 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Johnny Ramus, Jeff Jackman, Kyle Fisher

PSS0310R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 27, 2023 by Friedman & Bruya, Inc. from the Point Source Solutions 2436 SE 12th Ave, F&BI 302353 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Point Source Solutions
302353 -01	B1-S1-10
302353 -02	B2-S1-11
302353 -03	B2-S2-16
302353 -04	B3-S1-4
302353 -05	B3-S2-10
302353 -06	B4-S1-4
302353 -07	B4-S2-11

The 8260D matrix spike and matrix spike duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

The 8260D laboratory control sample exceeded the acceptance criteria for bromomethane. The compound was not detected, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: B2-S1-11 Client: Point Source Solutions

Date Received: 02/27/23 Project: 2436 SE 12th Ave, F&BI 302353

 Date Extracted:
 03/07/23
 Lab ID:
 302353-02

 Date Analyzed:
 03/07/23
 Data File:
 302353-02.105

 Matrix:
 Soil
 Instrument:
 ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead 8.07

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Method Blank Client: Point Source Solutions

Date Received: Not Applicable Project: 2436 SE 12th Ave, F&BI 302353

Date Extracted: 03/07/23 Lab ID: I3-165 mb
Date Analyzed: 03/07/23 Data File: I3-165 mb.078
Matrix: Soil Instrument: ICPMS2

Units: mg/kg (ppm) Dry Weight Operator: SP

Concentration

Analyte: mg/kg (ppm)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: B2-S1-11 Client: Point Source Solutions

Date Received: 02/27/23 Project: 2436 SE 12th Ave, F&BI 302353

03/07/23 Lab ID: Date Extracted: 302353-02 Date Analyzed: 03/07/23 Data File: 030712.DMatrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Dry Weight Operator: lm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	90	109
Toluene-d8	103	89	112
4-Bromofluorobenzene	102	84	115

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	0.085
Acetone	<5 ca	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	0.23
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	0.58
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	0.48
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	1.8
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	0.12
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	1.6
Benzene	< 0.03	sec-Butylbenzene	2.0
Trichloroethene	< 0.02	p-Isopropyltoluene	3.6
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260D

Client Sample ID: Method Blank Client: Point Source Solutions

Date Received: Not Applicable Project: 2436 SE 12th Ave, F&BI 302353

03/06/23 Lab ID: Date Extracted: 03-0372 mbDate Analyzed: 03/06/23 Data File: 030605.DSoil GCMS4 Matrix: Instrument: Units: mg/kg (ppm) Dry Weight Operator: lm

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	90	109
Toluene-d8	103	89	112
4-Bromofluorobenzene	96	84	115

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	<5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Hexane	< 0.25	o-Xylene	< 0.05
Methylene chloride	< 0.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	Bromobenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,3,5-Trimethylbenzene	< 0.05
Chloroform	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
2-Butanone (MEK)	<1	1,2,3-Trichloropropane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	2-Chlorotoluene	< 0.05
1,1,1-Trichloroethane	< 0.05	4-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	tert-Butylbenzene	< 0.05
Carbon tetrachloride	< 0.05	1,2,4-Trimethylbenzene	< 0.05
Benzene	< 0.03	sec-Butylbenzene	< 0.05
Trichloroethene	< 0.02	p-Isopropyltoluene	< 0.05
1,2-Dichloropropane	< 0.05	1,3-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,4-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,2-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	<1	1,2-Dibromo-3-chloropropane	< 0.5
cis-1,3-Dichloropropene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
Toluene	< 0.05	Hexachlorobutadiene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
1,1,2-Trichloroethane	< 0.05	1,2,3-Trichlorobenzene	< 0.25
2-Hexanone	< 0.5		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: B2-S1-11 Client: Point Source Solutions

Date Received: 02/27/23 Project: 2436 SE 12th Ave, F&BI 302353

Date Extracted: 03/06/23 Lab ID: 302353-02 1/5 Date Analyzed: 03/06/23 Data File: 030616.DSoil Matrix: Instrument: GCMS9 Units: mg/kg (ppm) Dry Weight VMOperator:

Upper Lower % Recovery: Surrogates: Limit: Limit: Nitrobenzene-d5 130 198 10 2-Fluorobiphenyl 85 117 45 2,4,6-Tribromophenol 81 11 158 50 124

Terphenyl-d14 100 Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 2-Methylnaphthalene 0.151-Methylnaphthalene 0.17 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene 0.074 Phenanthrene 0.061 Anthracene < 0.01 Fluoranthene 0.011 Pyrene 0.013 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270E

Client Sample ID: Method Blank Client: Point Source Solutions

Date Received: Not Applicable Project: 2436 SE 12th Ave, F&BI 302353

Date Extracted: 03/06/23 Lab ID: 03-527 mb 1/5 Date Analyzed: 03/06/23 Data File: 030615.DSoil Matrix: Instrument: GCMS12 Units: mg/kg (ppm) Dry Weight VMOperator:

Upper Lower Surrogates: % Recovery: Limit: Limit: 137 Nitrobenzene-d5 102 16 2-Fluorobiphenyl 95 122 46 2,4,6-Tribromophenol 105 17 154 Terphenyl-d14 98 31 167

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 2-Methylnaphthalene < 0.01 1-Methylnaphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 303073-01 x5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Lead	mg/kg (ppm)	50	<5	90	96	75-125	6

Laboratory Code: Laboratory Control Sample

			$\operatorname{Percent}$	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	96	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 303040-01 (Matrix Spike)

· ·	1 /		Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2	< 0.5	27	19	10-142	35 vo
Chloromethane	mg/kg (ppm)	2	< 0.5	56	43	10-126	26 vo
Vinyl chloride	mg/kg (ppm)	$\frac{2}{2}$	< 0.05	52	43 99	10-138	19
Bromomethane Chloroethane	mg/kg (ppm)	2	<0.5 <0.5	74 70	99 62	10-163 10-176	29 vo 12
Trichlorofluoromethane	mg/kg (ppm) mg/kg (ppm)	2	< 0.5	69	60	10-176	14
Acetone	mg/kg (ppm)	10	<5	65	51	10-170	24 vo
1.1-Dichloroethene	mg/kg (ppm)	2	< 0.05	78	68	10-160	14
Hexane	mg/kg (ppm)	2	< 0.25	63	54	10-137	15
Methylene chloride	mg/kg (ppm)	2	< 0.5	80	67	10-156	18
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	< 0.05	90	81	21-145	11
trans-1,2-Dichloroethene	mg/kg (ppm)	2	< 0.05	82	73	14-137	12
1,1-Dichloroethane	mg/kg (ppm)	2 2	<0.05 <0.05	81 88	71 81	19-140 10-158	13 8
2,2-Dichloropropane cis-1,2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2	< 0.05	84	77	25-135	9
Chloroform	mg/kg (ppm)	2	< 0.05	89	80	21-145	11
2-Butanone (MEK)	mg/kg (ppm)	10	<1	88	76	19-147	15
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	< 0.05	88	79	12-160	11
1,1,1-Trichloroethane	mg/kg (ppm)	2	< 0.05	94	83	10-156	12
1,1-Dichloropropene	mg/kg (ppm)	2	< 0.05	82	74	17-140	10
Carbon tetrachloride	mg/kg (ppm)	2	< 0.05	90	81	9-164	11
Benzene	mg/kg (ppm)	2	< 0.03	87	77	29-129	12
Trichloroethene	mg/kg (ppm)	2	<0.02	86	77	21-139	11
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm) mg/kg (ppm)	$\frac{2}{2}$	<0.05 <0.05	80 92	70 82	30-135 23-155	13 11
Dibromomethane	mg/kg (ppm)	2	< 0.05	90	79	23-145	13
4-Methyl-2-pentanone	mg/kg (ppm)	10	<1	96	84	24-155	13
cis-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	88	77	28-144	13
Toluene	mg/kg (ppm)	2	< 0.05	84	74	35-130	13
trans-1,3-Dichloropropene	mg/kg (ppm)	2	< 0.05	86	76	26-149	12
1,1,2-Trichloroethane	mg/kg (ppm)	2	< 0.05	82	72	10-205	13
2-Hexanone	mg/kg (ppm)	10	< 0.5	95	84	15-166	12
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm)	$\frac{2}{2}$	<0.05 <0.025	86 96	76 85	31-137 20-133	12 12
Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	2	< 0.025	86 86	89 78	28-150	10
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	< 0.05	84	74	28-142	13
Chlorobenzene	mg/kg (ppm)	2	< 0.05	89	79	32-129	12
Ethylbenzene	mg/kg (ppm)	2	< 0.05	89	79	32-137	12
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	89	80	31-143	11
m,p-Xylene	mg/kg (ppm)	4	< 0.1	89	78	34-136	13
o-Xylene	mg/kg (ppm)	2	< 0.05	86	78	33-134	10
Styrene	mg/kg (ppm)	$\frac{2}{2}$	< 0.05	88 93	79 83	35-137	11 11
Isopropylbenzene Bromoform	mg/kg (ppm) mg/kg (ppm)	2	<0.05 <0.05	93 89	82	31-142 21-156	8
n-Propylbenzene	mg/kg (ppm)	2	< 0.05	87	81	23-146	7
Bromobenzene	mg/kg (ppm)	2	< 0.05	91	84	34-130	8
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	< 0.05	89	82	18-149	8
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	< 0.05	92	87	28-140	6
1,2,3-Trichloropropane	mg/kg (ppm)	2	< 0.05	83	77	25-144	7
2-Chlorotoluene	mg/kg (ppm)	2	0.65	73 b	60 b	31-134	20 b
4-Chlorotoluene	mg/kg (ppm)	$\frac{2}{2}$	< 0.05	85 92	79	31-136 30-137	7
tert-Butylbenzene 1,2,4-Trimethylbenzene	mg/kg (ppm) mg/kg (ppm)	2	<0.05 <0.05	92 87	85 81	30-137 10-182	8 7
sec-Butylbenzene	mg/kg (ppm)	2	0.087	90	82	23-145	9
p-Isopropyltoluene	mg/kg (ppm)	2	< 0.05	91	84	21-149	8
1,3-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	89	83	30-131	7
1,4-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	91	84	29-129	8
1,2-Dichlorobenzene	mg/kg (ppm)	2	< 0.05	90	84	31-132	7
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	< 0.5	80	75	11-161	6
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	< 0.25	93	83	22-142	11
Hexachlorobutadiene	mg/kg (ppm)	2 2	<0.25	120	105	10-142	13 10
Naphthalene 1,2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2	<0.05 <0.25	88 94	80 83	14-157 20-144	10 12
1,2,0 IIICIIIOIODEIIZEIIE	mg/rg (ppm)	2	~0.20	J4	99	20-144	14

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2	53	10-146
Chloromethane	mg/kg (ppm)	2	69	27-133
Vinyl chloride	mg/kg (ppm)	2	72	22-139
Bromomethane	mg/kg (ppm)	$\frac{2}{2}$	143 vo	38-114
Chloroethane Trichlorofluoromethane	mg/kg (ppm)	2	91 92	9-163 10-196
Acetone	mg/kg (ppm) mg/kg (ppm)	10	92 72	52-141
1.1-Dichloroethene	mg/kg (ppm)	2	92	47-128
Hexane	mg/kg (ppm)	2	86	43-142
Methylene chloride	mg/kg (ppm)	2	92	10-184
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2	99	60-123
trans-1,2-Dichloroethene	mg/kg (ppm)	2	92	67-129
1,1-Dichloroethane	mg/kg (ppm)	2	91	68-115
2,2-Dichloropropane	mg/kg (ppm)	2 2	98	52-170
cis-1,2-Dichloroethene Chloroform	mg/kg (ppm) mg/kg (ppm)	2	95 98	72-127 66-120
2-Butanone (MEK)	mg/kg (ppm)	10	95	30-120
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2	95	56-135
1,1,1-Trichloroethane	mg/kg (ppm)	2	106	62-131
1,1-Dichloropropene	mg/kg (ppm)	2	92	69-128
Carbon tetrachloride	mg/kg (ppm)	2	103	60-139
Benzene	mg/kg (ppm)	2	94	71-118
Trichloroethene	mg/kg (ppm)	2	99	63-121
1,2-Dichloropropane	mg/kg (ppm)	$\frac{2}{2}$	86	72-127
Bromodichloromethane Dibromomethane	mg/kg (ppm) mg/kg (ppm)	2	100 99	57-126 62-123
4-Methyl-2-pentanone	mg/kg (ppm)	10	99	45-145
cis-1,3-Dichloropropene	mg/kg (ppm)	2	93	67-122
Toluene	mg/kg (ppm)	2	89	66-126
trans-1,3-Dichloropropene	mg/kg (ppm)	2	88	72-132
1,1,2-Trichloroethane	mg/kg (ppm)	2	84	64-115
2-Hexanone	mg/kg (ppm)	10	99	33-152
1,3-Dichloropropane	mg/kg (ppm)	2 2	89	72-130
Tetrachloroethene Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	2	102 93	72-114 55-121
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2	95 88	74-132
Chlorobenzene	mg/kg (ppm)	2	92	76-111
Ethylbenzene	mg/kg (ppm)	2	92	64-123
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2	94	64-121
m,p-Xylene	mg/kg (ppm)	4	92	78-122
o-Xylene	mg/kg (ppm)	2	93	77-124
Styrene	mg/kg (ppm)	2	92	74-126
Isopropylbenzene Bromoform	mg/kg (ppm) mg/kg (ppm)	$\frac{2}{2}$	98 97	76-127 56-132
n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	2	93	74-124
Bromobenzene	mg/kg (ppm)	2	99	72-122
1,3,5-Trimethylbenzene	mg/kg (ppm)	2	98	76-126
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2	88	56-143
1,2,3-Trichloropropane	mg/kg (ppm)	2	88	61-137
2-Chlorotoluene	mg/kg (ppm)	2	94	74-121
4-Chlorotoluene	mg/kg (ppm)	$\frac{2}{2}$	92	75-122
tert-Butylbenzene	mg/kg (ppm)	2 2	99 96	73-130
1,2,4-Trimethylbenzene sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2	96 97	76-125 71-130
p-Isopropyltoluene	mg/kg (ppm)	2	97	70-132
1,3-Dichlorobenzene	mg/kg (ppm)	2	98	75-121
1,4-Dichlorobenzene	mg/kg (ppm)	2	99	74-117
1,2-Dichlorobenzene	mg/kg (ppm)	2	100	76-121
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2	89	58-138
1,2,4-Trichlorobenzene	mg/kg (ppm)	2	96	64-135
Hexachlorobutadiene	mg/kg (ppm)	2 2	107	50-153
Naphthalene 1,2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2 2	92 95	63-140 63-138
1,2,0-111CHIOTODEHZEHE	mg/vg (hhiii)	4	ฮย	09-190

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: 303077-11 1/5 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result		Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.83	< 0.01	84	81	50-150	4
2-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	92	87	50-150	6
1-Methylnaphthalene	mg/kg (ppm)	0.83	< 0.01	94	89	50-150	5
Acenaphthylene	mg/kg (ppm)	0.83	< 0.01	98	94	50-150	4
Acenaphthene	mg/kg (ppm)	0.83	< 0.01	89	85	50-150	5
Fluorene	mg/kg (ppm)	0.83	< 0.01	97	93	50-150	4
Phenanthrene	mg/kg (ppm)	0.83	< 0.01	90	89	10-170	1
Anthracene	mg/kg (ppm)	0.83	< 0.01	90	89	50-150	1
Fluoranthene	mg/kg (ppm)	0.83	< 0.01	96	94	10-203	2
Pyrene	mg/kg (ppm)	0.83	< 0.01	89	86	10-208	3
Benz(a)anthracene	mg/kg (ppm)	0.83	< 0.01	95	93	37-146	2
Chrysene	mg/kg (ppm)	0.83	< 0.01	93	90	36-144	3
Benzo(a)pyrene	mg/kg (ppm)	0.83	< 0.01	91	90	40-150	1
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	< 0.01	94	91	45-157	3
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	< 0.01	89	88	50-150	1
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	< 0.01	82	81	24-145	1
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	< 0.01	79	76	31-137	4
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	< 0.01	75	71	14-141	5

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/23 Date Received: 02/27/23

Project: 2436 SE 12th Ave, F&BI 302353

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR SEMIVOLATILES BY EPA METHOD 8270E

Laboratory Code: Laboratory Control Sample 1/5

			Percent	
Analyte	Reporting Units	Spike Level	Recovery LCS	Acceptance Criteria
Naphthalene	mg/kg (ppm)	0.83	89	58-108
2-Methylnaphthalene	mg/kg (ppm)	0.83	96	67-109
1-Methylnaphthalene	mg/kg (ppm)	0.83	98	66-107
Acenaphthylene	mg/kg (ppm)	0.83	105	70-130
Acenaphthene	mg/kg (ppm)	0.83	97	66-112
Fluorene	mg/kg (ppm)	0.83	103	67-117
Phenanthrene	mg/kg (ppm)	0.83	98	70-130
Anthracene	mg/kg (ppm)	0.83	98	70-130
Fluoranthene	mg/kg (ppm)	0.83	103	70-130
Pyrene	mg/kg (ppm)	0.83	97	70-130
Benz(a)anthracene	mg/kg (ppm)	0.83	101	70-130
Chrysene	mg/kg (ppm)	0.83	100	70-130
Benzo(a)pyrene	mg/kg (ppm)	0.83	95	68-120
Benzo(b)fluoranthene	mg/kg (ppm)	0.83	95	69-125
Benzo(k)fluoranthene	mg/kg (ppm)	0.83	92	70-130
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.83	92	67-129
Dibenz(a,h)anthracene	mg/kg (ppm)	0.83	87	67-128
Benzo(g,h,i)perylene	mg/kg (ppm)	0.83	85	67-127

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dv Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The analyte is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits due to sample matrix effects.
- j The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- k The calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Ph. (206) 285-8282 Seattle, WA 98119-2029 3012 16th Avenue West Friedman & Bruya, Inc. B4-52-11 City, State, ZIP Vancouver, NA B4-51-4 302353 Report To Address 5317 NEST Johns Rd, StED B3-82-10 B3-81-4 Company Point Source Solutions B2-52-16 B2-51-11 Bi-Si-10 Sample ID Gil C065 Received by: Relinquished by: Received by: Relinquished by: _Email_ P 8 2 b3 04 S S 01 A-C Lab ID tow Year SIGNATURE ۲ ۶. 2/22/23 7 2 E ţ. Date Sampled 7 ť 3 14:44 14:52 13:58 13:43 12:16 Time Sampled i en 3:7 11:58 SAMPLE CHAIN OF CLISTODY Project Specific RLs - Yes SAMPLERS (signature) REMARKS PROJECT NAME 2436 SE 12+ Au 7.105 8011 <u>~</u> & Soil Sil Soi/ 50. Sample Type John Rowanie ANHROTALS PRINT ZAME w w تى w # of Jars W w W メ X X X X X NWTPH-Dx Z the Mein メ X X × X NWTPH-Gx BTEX EPA 8021 Sample \$ received VOCs EPA 8260 AN ALYSES REQUESTED PAHs EPA 8270 INVOICE TO PCBs EPA 8082 **P**0# Point Source L end COMPANY X Standard Turnaround 23 Rush charges authorized by a **Archive Samples** Dispose after 30 days TURNAROUND TIME Page # SAMPLE DISPOSAL 9 ကိ 02/27/23 11 2 27 23 16 DATE 2/3/23 1 Der KF Notes of

-