Limited Scope Phase II Environmental Site Assessment Oregon Museum of Science and Industry – Crescent Parcel

Portland, Oregon

November 25, 2024

Prepared for
Oregon Museum of Science and Industry
1945 SE Water Avenue
Portland, OR 97214

Prepared by

16520 SW Upper Boones Ferry Road, Suite 100 Tigard, OR 97224 (503) 641-3478 | www.gri.com

EXECUTIVE SUMMARY

GRI, as a contractor to the Oregon Museum of Science and Industry (OMSI), conducted a Limited Scope Phase II Environmental Site Assessment (ESA) at the Crescent Parcel, which consists of one approximately 1.82-acre parcel, identified as tax lot number 1S1E03D-00101 in Portland, Multnomah County, Oregon, in conformance with ASTM International (ASTM) E1903-19.

A Phase I ESA completed previously by GRI described environmental and regulatory issues at and near the site. Based on the results of the Phase I ESA and upon discussion with OMSI personnel, a Limited Scope Phase II ESA was initiated to evaluate the potential for soil impacts from past industrial land use activities at the subject property. The following summarizes our findings and conclusions from the environmental sampling program conducted at the site. We recommend you read this report in its entirety.

- GRI collected a total of 17 soil samples from six explorations, three of which used combined hand auger-machine-drilled (direct push) exploratory techniques and three of which used machine-drilled (direct push) techniques. Soil samples were submitted to Apex Laboratory in Tigard, Oregon, for chemical analysis.
- Laboratory analytical testing of soil samples indicates heavy metals exceeding
 Oregon Department of Environmental Quality (DEQ) clean fill screening levels
 (CFSLs) were detected in explorations DP-1, DP-3/HA-1, DP-5/HA-2, and DP-6/HA3. One sample (DP-3-10 from exploration DP-3/HA-1) showed lead concentrations
 of 13,500 milligrams per kilogram (mg/kg), above the lead CFSL (28 mg/kg) and
 the established risk-based concentration (RBC) for the Excavation Worker—soil
 ingestion, dermal contact, and inhalation exposure pathway scenario (800 mg/kg).
 Based on supplemental toxicity characteristic leaching procedure (TCLP) testing,
 this material appears to exhibit characteristics of hazardous waste.
- Laboratory analytical testing results of samples from explorations DP-5/HA-2 and DP-6/HA-3 indicate analyte concentrations exceeded CFSLs for the polycyclic aromatic hydrocarbon (PAH) benzo(a)pyrene. The CFSL for polychlorinated biphenyls (PCBs) was exceeded in one sample from exploration DP-6/HA-3.
- All other analytes were present below regulatory thresholds or were not present above laboratory reporting limits.
- Staining, petroleum odor, or both were observed in three explorations (DP-1, DP-4, and DP-5/HA-2). According to the DEQ, "if the material appears chemically stained or has a chemical smell, it is not clean fill." In addition, material handled and disposed of as clean fill "does not include putrescible wastes,

construction and demolition wastes, or industrial solid wastes."

- Groundwater was not encountered during site exploration activities.
- Based on the results of this ESA, samples from the general location of exploration
 DP-2 generally appear to meet clean fill standards.
- Soil in the vicinity of explorations DP-1, DP-4, DP-5/HA-2, and DP-6/HA-3 does not appear to meet the conditions required for unrestricted use, and any excavated material in this area should be handled as non-clean fill and disposed of as solid waste at an approved landfill.
- Soil in the vicinity of exploration DP-3/HA-1 exceeded the Excavation Worker RBC for lead and appears to have characteristics of hazardous waste. Special handling and disposal requirements may apply to material generated in this area, depending on site redevelopment goals. Soil excavated from this area will require disposal as hazardous waste at a chemical waste landfill in Arlington, Oregon.
- Depending on future site redevelopment goals, additional soil and sediment sampling is recommended to more adequately define the lateral and vertical extents of possible residual contamination at the site to identify regulatory requirements, evaluate soil handling and disposal options, and determine appropriate safeguards for human health and safety. DEQ coordination may be required for redevelopment activities based on the Subject Property regulatory history and nearby active regulatory sites.
- Groundwater at the site, which is a former industrial facility with numerous industrial and regulatory sites nearby, is likely not suitable for beneficial use. Groundwater sampling and analysis is recommended as part of future site redevelopment activities to inform handling and disposal options, depending on future site dewatering needs during construction.
- Unanticipated contaminated soil pockets could be encountered during project site redevelopment. Based on future site redevelopment goals, a Contaminated Media Management Plan (CMMP) may be warranted to establish procedures that would be followed to manage contaminated soil identified during this assessment and in the event that unanticipated contaminated soil, sediment, and/or groundwater are discovered during construction. GRI can prepare a proposal to develop a CMMP upon request.

TABLE OF CONTENTS

EX	ECUTIVE	SUMMARY	l
1	INTR	ODUCTION	1
	1.1 Purpo	ose of Assessment	1
	1.2 Term	s and Conditions	2
	1.3 Limit	ations	2
2	SITE	DESCRIPTION AND PHYSICAL SETTING	3
	2.1 Site I	Description	3
	2.2 Physi	cal Setting and Site Geology	4
	2.3 Land	Use and Regulatory History	4
3		RONMENTAL SAMPLING	
	3.1 Samp	oling Methodology	6
	-	ratory Analytical Methods	
4		LYTICAL RESULTS	
	4.1 Soil S	ample Analytical Results	8
		ls	
	4.3 Petro	leum	9
	4.5 Polyc	hlorinated Biphenyls	12
	-	yclic Aromatic Hydrocarbons	
5		CLUSIONS AND RECOMMENDATIONS	
	5.1 Conc	lusions	15
	5.2 Reco	mmendations	15
6		RENCES	
TA	BLES		
	ole 3.1:	Summary of Selected Sample Analysis Requested	
	ole 4-1:	Metals	
	ole 4-2: ole 4-3:	Petroleum Detected in SoilBenzene, Toluene, Ethylbenzene, and Xylenes Detected in Soil	
	ole 4-3. ole 4-4:	Polychlorinated Biphenyls Detected in Soil	
	ole 4-5:	Polycyclic Aromatic Hydrocarbons Detected in Soil	
	pec		
	SURES	Vicinity Man	
_	ure 1: ure 2:	Vicinity Map Site Plan	

APPENDICES

Appendix A: Summary of Subsurface Materials

Appendix B: Apex Laboratories, LLC Analytical Laboratory Reports

Appendix C: Geoprofessional Business Association Guidance Document

1 INTRODUCTION

As requested, GRI conducted a Limited Scope Phase II Environmental Site Assessment (ESA) at the Crescent Parcel, which consists of one approximately 1.82-acre parcel, identified as tax lot number 1S1E03D-00101 in Portland, Multnomah County, Oregon (Subject Property). The location of the Subject Property is shown on the Vicinity Map, Figure 1. The Crescent Parcel is further identified as Oregon Department of Environmental Quality (DEQ) Environmental Cleanup Site Information (ECSI) Site 5547 and is a U.S. Environmental Protection Agency (EPA)-listed Brownfield site.

A Phase I ESA completed by GRI detailed environmental and regulatory issues at and near the Subject Property, including identification of the historical use of the Subject Property as adjacent to the Portland General Electric (PGE) Station L for most of the 20th century (GRI, 2024). Following site assessment, characterization, and mitigation efforts in the early 2010s, the Subject Property was conferred regulatory administrative closure ("No Further Action Required" [NFA]) status in October 2012. This was based on anticipated future site use, generally low levels of residual soil and groundwater contamination, and protective engineering controls such as riprap armoring of impacted sediments, which limits the potential for future ecological exposure in the Willamette River. Supplemental sampling and testing at the Crescent Site indicated elevated levels of lead in an area historically used for "lead-covered cable storage" (GRI, 2024).

Past industrial land use, regulatory history, documented history of contamination, and the potential for offsite migration of contamination to the Subject Property were identified as recognized environmental conditions (RECs) to the property in the Phase I ESA report. Based on the preliminary Phase I ESA results, GRI's experience in the area, and discussions with Oregon Museum of Science and Industry (OMSI) personnel, a Limited Scope Phase II ESA was initiated to evaluate the potential for near-surface soil impacts from past industrial land use activities at and near the subject property. The following summarizes our findings and conclusions from the environmental sampling program conducted at the Subject Property.

1.1 Purpose of Assessment

Based on discussions with OMSI personnel about future potential redevelopment options, a Limited Scope Phase II ESA was recommended to evaluate the potential implications of past industrial land use activities at the subject property. Under certain conditions, chemicals and fuels can persist in soil for many years and constitute an exposure hazard, depending on the future land use of the subject property. Soils that contain elevated levels of heavy metals, industrial chemicals such as polychlorinated biphenyls (PCBs), and residual fuel and petroleum byproducts exceeding DEQ Risk-Based Concentrations (RBCs) may need to be capped or removed to prevent human exposure. Impacted soils that

exceed DEQ clean fill screening levels (CFSLs) may require special handling and potential off-site disposal upon site redevelopment. In addition, worker protection measures will be required for handling soil material that exceeds RBC values for the Excavation Worker—soil ingestion, dermal contact, and inhalation exposure pathway scenario. Additional RBC scenario comparison(s) may be warranted based on planned redevelopment details.

The purpose of this Limited Scope Phase II ESA is to assess potential residual impacts at the Subject Property from past industrial practices, provide an initial evaluation of limited areas of near-surface soil for handling and disposal purposes by comparing soil sample laboratory analytical values to DEQ CFSLs, and evaluate limited areas of the Subject Property soil with respect to applicable DEQ RBCs for potential future site users. This Phase II ESA report includes our findings, conclusions, and recommendations for potential additional site assessment and characterization work.

This Phase II ESA is limited in scope and is not intended to provide comprehensive site characterization or detailed mitigation options.

1.2 Terms and Conditions

This Limited Scope Phase II ESA was conducted in general accordance with ASTM International (ASTM) E1903-19 (Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process) to evaluate known releases or likely release areas and/or assess the presence or likely presence of hazardous substances in selected areas of the project.

This report is based on our preliminary understanding of site environmental conditions, our experience with similar projects, and a review of the information compiled during the Phase I ESA.

1.3 Limitations

This report documents work that was performed in accordance with the generally accepted professional standards at the time and location at which the services were provided. The scope of work was limited to the specific project, location, and activities described within this report. In the performance of an assessment of this type, specific information is obtained at specific locations at specific times. Judgments leading to conclusions are generally made with an incomplete knowledge of the subsurface and historical conditions applicable to the project area. A more extensive assessment, including additional historical review, site exploration, soil and groundwater sampling, and chemical analyses, may be used to supplement the information presented by this assessment. Our assessment of the property may also change as new data become available during additional site exploration or development.

Since site activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings, and opinions can be considered valid only as of the date of this report. This report may be used only by the project team (hereinafter called the "User") within a reasonable time from its issuance. Land use, on- and off-site conditions, and other factors may change over time, and additional work may be required with the passage of time.

Any party other than the User who wishes to use this report shall notify GRI in writing. Based on the intended use of the report, GRI may require additional work to be performed and an updated report to be issued. Non-compliance with any of these requirements will release GRI from any liability resulting from the use of this report by any unauthorized party.

By virtue of contract conditions, GRI performed certain services for this project in general accordance with ASTM E1903-19. Because such standards are, of necessity, based on a wide array of significant assumptions, GRI exercised professional judgment to accommodate the unique site, project, and client involved. Any questions in this respect should be addressed to GRI.

The findings and conclusions presented in this report are based on our interpretation of the information obtained through the assessment procedures described in this report. No other warranty or representation, either expressed or implied, is included or intended in this report.

2 SITE DESCRIPTION AND PHYSICAL SETTING

2.1 Site Description

The Subject Property includes approximately 1.82 acres and is located in Township 1S, Range 1E, Section 3, Portland, Multnomah County, Oregon. The Subject Property is currently structurally developed with one rectangular building approximately 5,000 square feet (ft²) ("Warehouse Building"), one inoperative metal communications tower ("Tower"), and one approximately 700 ft² building under the Tower ("Tower Building"). One approximately 2,000 ft² building ("Radio Shop [Former]") south of the Tower/Tower Building area was demolished and removed in 2023. The Site Plan, Figure 2, depicts general site features.

The majority of the Subject Property is paved or surfaced with crushed rock/gravel and is generally level. Drop inlets collect and divert stormwater flow to discharge pipes that drain to the nearby Willamette River. The western edge of the Subject Property drops steeply to the Willamette River and is heavily vegetated with grass, blackberry vines, shrubs, and trees. The paved, generally north-south-oriented Eastbank Esplanade multi-use

trail/pathway traverses the central-to-western portion of the Subject Property, west of the Subject Property structures, and east of the vegetated riverbank area.

The subject property is currently zoned Central Employment (EX). The surrounding neighborhood is primarily industrial and commercial.

2.2 Physical Setting and Site Geology

According to a review of the U.S. Geological Survey (2020) topographic map of the Portland Quadrangle, Oregon, and Google Earth, the Subject Property slopes west toward the Willamette River and ranges in elevation from about 38 feet at the edge of the Eastbank Esplanade to about 10 feet at the Willamette River (North American Vertical Datum of 1988). The Willamette River is along the western border of the Subject Property and represents the largest surface water body in the vicinity.

Published geologic mapping indicates the Subject Property is mapped as artificial fill, with adjacent areas mapped as fine- to coarse-grained flood deposits (clay, silt, sand, and gravel) associated with the Missoula flood glacial lake outburst flood events of the late Pleistocene Epoch (Wells et al., 2020). Numerous well logs associated with the Subject Property and adjacent parcels were identified in the Oregon Water Resources Department online well log database. GRI's previous experience in the vicinity of the project site aligns with this understanding of the general geologic conditions.

The Willamette River, the largest surface water body in the area, is located along the western border of the Subject Property. Groundwater flow is generally assumed to be west, toward the Willamette River. Based on available nearby well logs, we anticipate the groundwater level is generally about 10 feet to 30 feet below the existing ground surface throughout the year. However, shallow and perched groundwater can approach the ground surface during periods of heavy or prolonged rainfall. Local subsurface geologic and manmade features can affect groundwater flow. Therefore, this groundwater flow interpretation is only an estimate.

2.3 Land Use and Regulatory History

The following summary points present a condensed synopsis of GRI's understanding of the historical and regulatory history at the subject Property. Additional details are found in GRI's Phase I ESA for the Crescent Parcel (GRI, 2024):

• The Subject Property was initially developed by at least the early 1900s as a boatbuilding yard and wharf area of the Portland Electric Power Company. Until the 1980s, the Subject Property supported PGE's Station L. Since the 1990s, the Subject Property has supported OMSI uses. Over time, the western edge of the

parcel was filled, adding upslope land and encroaching into the channel of the Willamette River.

- A 2010 Phase I ESA for the Subject Property identified the potential for impacts to soil and groundwater from past industrial land use practices at the Subject Property, including a "lead-covered cable storage area" along the southwestern riverfront portion.
- The Crescent Parcel was added to the DEQ ECSI database as Site 5547 in the early 2010s.
- In 2011, a Phase II ESA and Source Control Evaluation was conducted; this scope
 of work included soil and groundwater sampling and testing, as well as
 decommissioning of a cesspool and septic tank and upgrades to a stormwater
 drywell at the Subject Property.
- The DEQ made an NFA determination (i.e., administrative closure) in 2012. The NFA
 determination documented residual soil and groundwater contamination at the
 Subject Property but found that threats to health and human safety and the
 environment were limited. Groundwater contamination at the Subject Property was
 found to likely originate from offsite.
- PBS Engineering and Environmental, Inc. (PBS) conducted hazardous building material sampling (asbestos and lead paint) in 2022 prior to structural demolition of the former Radio Shop. In 2023, PBS conducted limited soil sampling following removal of the building. Lead paint and asbestos-containing materials were identified in building materials. Soil sampling showed elevated concentrations of oil, PCBs, polycyclic aromatic hydrocarbons (PAHs), and metals, including lead, at 2,490 milligrams per kilogram (mg/kg) in sample Building C-SUMP; the DEQ CFSL for lead is 28 mg/kg, and the Excavation Worker RBC is 800 mg/kg.

Based on the industrial land use history, documented past impacts to soil and groundwater, and the results of recent soil sampling activities, OMSI contracted GRI to conduct this Limited Scope Phase II ESA at the Subject Property.

3 ENVIRONMENTAL SAMPLING

As a preliminary effort to evaluate soil at the subject property for residual contamination resulting from past site and nearby industrial activities, six explorations were advanced at the locations shown on Figure 2. Three of the six locations were initially advanced using hand auger techniques to collect shallow soil samples. During a separate mobilization, a direct push drill rig was used to collect deeper soil samples at the initial three locations

and to collect soil samples at three additional locations. Groundwater samples were not collected.

Soil samples were collected from the borings and transported to Apex Laboratories, LLC in Tigard, Oregon, for analysis. Laboratory sample results were subsequently compared to applicable regulatory concentration thresholds, including the DEQ CFSLs and RBCs for the Excavation Worker—soil ingestion, inhalation, and dermal contact exposure pathway scenario.

3.1 Sampling Methodology

Prior to conducting the subsurface explorations, potential exploration locations were marked in the field and assessed for possible conflicts with underground utilities. The Oregon Utility Notification Center was notified prior to drilling. A private utility locating service was also used to further identify site utility locations.

On April 17, 2024, GRI obtained soil samples from three hand-augered borings (HA-1, HA-2, and HA-3) advanced at the locations shown on Figure 2. Upon completion, the borings were backfilled with the cuttings not retained for laboratory analysis.

On June 10, 2024, GRI obtained soil samples from six direct-push probe borings advanced at the locations shown on Figure 2. The direct-push borings were completed using a Track-Mounted Geoprobe 7822DT drill rig supplied and operated by Western States Soil Conservation of Hubbard, Oregon, and supervised and sampled by GRI. In three locations where hand-augered borings had already been collected, a combined exploration naming approach was used. For example, direct push boring DP-3 was advanced in the same location as hand-augered boring HA-1. The final exploration ID was designated "DP-3/HA-1."

An experienced environmental representative from GRI recorded soil descriptions for each exploration. The samples were field scanned for the presence of volatile organic compounds using a portable photo-ionization detector (PID) and screened for the presence of chemical odor, staining, and sheen. Non-disposable equipment was washed and rinsed between sample locations, while fresh disposable equipment was used at each sample location. Significant amounts of surface or subsurface litter were not observed at the sample locations. Subsurface material descriptions and field PID readings are included in Table 1A in Appendix A.

The direct-push sampling apparatus was fitted with hollow acetate sleeves and advanced in 5-foot runs. Upon completion of the run, the sleeve was removed from the apparatus and cut to reveal the material at the specified interval. Samples for chemical testing were subsequently collected from the exposed soil material.

Clean, laboratory-supplied sample containers were filled with soil and sealed with airtight, Teflon-lined caps. Sample containers were labeled, recorded on a chain-of-custody form, placed in a cooler with ice, and later transported to Apex Laboratories, LLC in Tigard, Oregon, for chemical analysis. Summary tables of analytical results are provided in Section 4, below. Laboratory analytical results are included in Appendix A.

The explorations were decommissioned in accordance with Oregon Water Resources Department regulations (Oregon Administrative Rules 690-220-0030) for permanent abandonment. Cuttings, decontamination fluids, and other investigation-derived waste were contained in a 55-gallon steel drum for temporary storage at the Subject Property pending disposal.

3.2 Laboratory Analytical Methods

Soil samples were analyzed for Northwest Total Petroleum Hydrocarbons (NWTPH)-diesel and NWTPH-oil; PCBs by EPA Method 8082A; and cadmium, chromium, and lead by EPA Method 6020A. Selected soil samples were subsequently analyzed for NWTPH-Gasoline; benzene, toluene, ethylbenzene, and xylenes (BTEX) using EPA Method 8260D; and PAHs using EPA Method 8270E SIM. The final analytical suite was determined by field indications of residual contamination, initial laboratory results, and budgetary limitations. Table 3.1 presents a summary of the requested soil sample analyses.

Table 3.1: SUMMARY OF SELECTED SAMPLE ANALYSIS REQUESTED

Boring ID	Sample ID	Depth, feet	NWTPH-Dx	NWTPH-Gx	втех	PAHs	PCBs	RCRA Metals	Cd, Cr, Pb
	DP-1-2	1.5-2	х				Х		Х
DP-1	DP-1-10	9.5-10	х				Х		Х
	DP-1-20	19.5-20	Х	Х	Х	Х	Х	Х	
	DP-2-2	1.5-2	х				Х		Х
DP-2	DP-2-9	8.5-9	х	Х	Х	Х	Х	Х	
	DP-2-20	19.5-20	х				Х		Х
DD 2/UA 1	HA-1: 0.5-1.5	0.5-1.5	х			Х	Х	Х	
DP-3/HA-1	DP-3-10	9.5-10	Х				Х		Х
	DP-4-2	1.5-2	х				Х		х
DP-4	DP-4-9	8.5-9	х				Х		х
	DP-4-20	19.5-20	Х				Х		Х
	HA-2: 0.5-1.5	0.5-1.5	Х	х	Х	Х	Х	Х	
DP-5/HA-2	HA-2: 4-4.5	4-4.5	х			Х	Х	Х	
	DP-5-10	9.5-10	Х				Х		Х
DP-6/HA-3	HA-3: 0.5-1.5	0.5-1.5	х			х	х	Х	

Boring ID	Sample ID	Depth, feet	NWTPH-Dx	NWTPH-Gx	втех	PAHs	PCBs	RCRA Metals	Cd, Cr, Pb
	HA-3: 2-2.5	2-2.5	х			х	х	Х	
	DP-6-10	9.5-10	х				х		x

Abbreviations: ID = identification; NWTPH-Dx = northwest total petroleum hydrocarbons – diesel; NWTPH-Gx = northwest total petroleum hydrocarbons – gasoline; BTEX = benzene, toluene, ethylbenzene, and xylenes; PAH = polycyclic aromatic hydrocarbon; PCB = polychlorinated biphenyls; RCRA = Resource Conservation and Recovery Act; Cd = Cadmium; Cr = Chromium; Pb = lead

4 ANALYTICAL RESULTS

4.1 Soil Sample Analytical Results

Samples were field screened for obvious signs of contamination using visual and olfactory evaluation methods. Staining, petroleum odor, or both were observed in three explorations (DP-1, DP-4, and DP-5/HA-2). Material from all explorations was screened using a PID. Explorations DP-3/HA-1, DP-4, DP-5/HA-2, and DP-6/HA-3 had PID readings of 0.0 to less than 1 parts per million (ppm). Exploration DP-1 had a maximum PID reading of 22.8 ppm at a depth between 19.5 feet and 20 feet. Exploration DP-2 had a maximum PID reading of 54.5 ppm at a depth between 8.5 feet and 9 feet. The explorations encountered silt, sand, gravel, and cobbles with varying amounts of scattered brick, asphalt, and organics. All encountered material was interpreted as fill. General descriptions of the materials encountered are provided in Table 1A (Appendix A).

Laboratory analytical testing of soil samples indicates heavy metals exceeding CFSLs were detected in explorations DP-1, DP-3/HA-1, DP-5/HA-2, and DP-6/HA-3. One sample, DP-3-10 from exploration DP-3/HA-1, showed lead concentrations above the established RBC for the Excavation Worker—soil ingestion, dermal contact, and inhalation exposure pathway scenario. Based on supplemental toxicity characteristic leaching procedure (TCLP) testing, this material appears to exhibit characteristics of hazardous waste.

Laboratory analytical testing of samples from explorations DP-5/HA-2 and DP-6/HA-3 exceeded CFSLs for the PAH benzo(a)pyrene. The CFSL for PCBs was exceeded in one sample from exploration DP-6/HA-3.

All other analytes were present below regulatory thresholds or were not present above laboratory detection limits. Copies of the Apex Laboratories, LLC reports and corresponding chain-of-custody documentation are included in Appendix B. Summary tables of the analytical results are presented below.

4.2 Metals

Arsenic was detected in sample HA-1: 0.5-1.5 in boring DP-3/HA-1 at 9.78 mg/kg, above the 8.8 mg/kg CFSL and below the Excavation RBC of 420 mg/kg. Where analyzed, barium was detected above laboratory quantitation limits and below established CFSL and RBC

values. Cadmium was analyzed in all samples and was found above the CFSL of 0.63 mg/kg in samples HA-1: 0.5-1.5 (0.696 mg/kg) and DP-5-10 (1.82 mg/kg). All other samples showed levels lower than CFSLs or were below the laboratory quantitation limits. All detected cadmium concentrations were below the Excavation Worker RBC of 9,700 mg/kg. Chromium was detected in all samples above laboratory quantitation limits; two samples showed elevated chromium concentrations above the CFSL (76 mg/kg). These include sample HA-2: 05-1.5 (118 mg/kg) and DP-5-10 (176 mg/kg). All detected chromium concentrations were below the Excavation Worker RBC of 1,400 mg/kg. Where analyzed, mercury was present above laboratory quantitation limits in two samples at levels below CFSLs and Excavation Worker RBCs. Where analyzed, neither selenium nor silver were present above laboratory quantitation limits.

Lead was detected in all samples above laboratory quantitation limits. Nine samples had elevated lead concentrations above the CFSL of 28 mg/kg. Of these, sample DP-3-10 had a lead concentration of 13,500 mg/kg, greater than the Excavation Worker RBC of 800 mg/kg.

Based on initial laboratory results of lead concentrations greater than 100 mg/kg, supplemental TCLP testing was conducted for lead on samples HA-1: 0.5-1.5, HA-2: 0.5-1.5, HA-3: 2-2.5, DP-1-2, DP-3-10, DP-5-10, and DP-6-10. Sample DP-3-10 had a TCLP result of 168 milligrams per liter (mg/L), greater than the regulatory screening level of 5 mg/L, indicating this material has characteristics of hazardous waste. No other lead TCLP results exceeded 5 mg/L. Based on initial laboratory results greater than 100 mg/kg, supplemental TCLP testing for chromium was conducted on two samples: DP-5-10 (176 mg/kg) and HA-2: 0.5-1.5 (118 mg/kg). TCLP results indicate the material in these areas does not exhibit toxic characteristics of hazardous waste.

Summary Table 4-1 presents the levels of detected metals in the soil. Analytical lab reports are presented in Appendix B.

4.3 Petroleum

Oil was detected in 11 of 17 samples above the laboratory quantitation limits and below the CFSL of 1,100 mg/kg at concentrations ranging from 145 mg/kg to 2,440 mg/kg. Diesel and gasoline (where analyzed) were not detected above the corresponding laboratory quantitation limits. The Excavation Worker RBCs were not exceeded. Summary Table 4-2 presents the levels of petroleum compounds detected in soil. Analytical lab reports are presented in Appendix B.

Table 4-1: METALS DETECTED IN SOIL (mg/kg)

		Arsenic,	Barium,	Cadmium,	Chromium,	Lead,	Mercury,	Selenium,	Silver,
Boring ID	Sample ID	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	DP-1-2	-	-	0.386	8.37 (Q-42)	140 (Q-42)	-	-	-
DP-1	DP-1-10	-	-	ND	8.49	5.21	-	-	-
	DP-1-20	2.61	53.3	ND	8.68	2	ND	ND	ND
	DP-2-2	-	-	ND	30.5	25.9	-	-	-
DP-2	DP-2-9	2.66	79.2	ND	10.9	17.7	ND	ND	ND
	DP-2-20	-	-	ND	7.75	2.83	-	-	-
DP-3/HA-1	HA-1: 0.5-1.5	9.78	123	0.696	54.9	182	ND	ND	ND
DF -3/ΠΑ-1	DP-3-10	-	-	0.496	31.8	13,500		-	-
	DP-4-2	-	-	ND	8.63	11.8	-	-	-
DP-4	DP-4-9	-	-	ND	10.1	2.45	-	-	-
	DP-4-20	-	-	ND	9.93	2.04	-	-	-
	HA-2: 0.5-1.5	8.4	130	0.568	118	167	ND	ND	ND
DP-5/HA-2	HA-2: 4-4.5	3.45	117	ND	11	56.3	0.134	ND	ND
	DP-5-10	-	-	1.82	176	398		-	-
	HA-3: 0.5-1.5	2.82	98.2	ND	10.1	50.2	ND	ND	ND
DP-6/HA-3	HA-3: 2-2.5	3.58	99.3	0.603	11.6	149	0.138	ND	ND
	DP-6-10	-	-	0.31	24	167	-	-	-
	CFSL ¹	8.8	790	0.63	76	28	0.23	0.71	0.82
F	RBC ²	420	NE	9,700	1,400	800	2,900	NE	49,000

 $\textbf{Abbreviations:} \ \mathsf{ID} = \mathsf{identification;} \ \mathsf{mg/kg} = \mathsf{milligrams} \ \mathsf{per} \ \mathsf{kilogram;} \ \mathsf{-} = \mathsf{not} \ \mathsf{analyzed;} \ \mathsf{ND} = \mathsf{not} \ \mathsf{detected;} \ \mathsf{NE} = \mathsf{not} \ \mathsf{established}$

Notes:

Bold: Above CFSL

Highlighted: Above RBC

Lab Qualifier Q-42: Matrix spike and/or Duplicate analysis was preformed on this sample. % Recovery or relevant percent difference for this analysis is outside laboratory control limits (see lab report QC).

¹ = CFSLs are based on DEQ established natural background levels for the Portland Basin

² = Excavation Worker – soil ingestion, dermal contact, and inhalation exposure scenario

Table 4-2: PETROLEUM DETECTED IN SOIL L

Paving ID	Samula ID	Discol man/len	Oil mar/les	Casalina mar/len
Boring ID	Sample ID	Diesel, mg/kg	Oil, mg/kg	Gasoline, mg/kg
	DP-1-2	ND	452	-
DP-1	DP-1-10	ND	145	-
	DP-1-20	ND	ND	ND
	DP-2-2	ND	ND	-
DP-2	DP-2-9	ND	ND	-
	DP-2-20	ND	ND	ND
DP-3/HA-1	HA-1: 0.5-1.5	ND	2440	-
DP-3/HA-1	DP-3-10	ND	387	-
	DP-4-2	ND	399	-
DP-4	DP-4-9	ND	ND	-
	DP-4-20	ND	ND	-
	HA-2: 0.5-1.5	ND	467	ND
DP-5/HA-2	HA-2: 4-4.5	ND	455	-
	DP-5-10	ND	714	-
	HA-3: 0.5-1.5	ND	811	-
DP-6/HA-3	HA-3: 2-2.5	ND	741	-
	DP-6-10	ND	149	-
	CFSL	1,100	2,800	31
	RBC ¹	>Max	>Max	>Max

Abbreviations: ID = identification; mg/kg = milligrams per kilogram; ND = not detected above lab quantitation limit; - = no value

Notes:

¹ = Excavation Worker – soil ingestion, dermal contact, and inhalation exposure scenario

4.4 Benzene, Toluene, Ethylbenzene, and Xylenes

BTEX constituents were not detected above the applicable laboratory reporting limits in the samples analyzed. Summary Table 4-3 presents BTEX constituents detected in soil. Analytical lab reports are presented in Appendix B.

Table 4-3: BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES DETECTED IN SOIL

Boring ID	Sample ID	Benzene, mg/kg	Ethylbenzene, mg/kg	Toluene, mg/kg	Xylenes, mg/kg
DP-1	DP-1-20	ND	ND	ND	ND
DP-2	DP-2-9	ND	ND	ND	ND
DP- 5/HA-2	HA-2: 0.5-1.5	ND	ND	ND	ND
	CFSL	0.023	0.22	23	1.4
	RBC ^(a)	11,000	49,000	770,000	560,000

Abbreviations: ID = identification; ND = not detected; CFSL = clean fill screening level; RBC = Risk-Basec Concentration

Notes:

(a) Excavation Worker – soil ingestion, dermal contact, and inhalation exposure scenario

4.5 Polychlorinated Biphenyls

PCB Aroclor 1260 was detected above the corresponding CFSL (0.24 mg/kg) in one sample, HA-3: 2-2.5 from boring DP-6/HA-3 (0.297 mg/kg). A total of seven other samples had concentrations of Aroclor 1260 above laboratory reporting limits and below CFSLs. Aroclor 1254 was detected above laboratory quantitation limits and below CFSLs in one of 17 samples. No other PCBs were detected. RBCs are not established for the PCB Aroclors analyzed for this assessment. Table 4-4 presents a summary of PCBs detected in soil. Analytical lab reports are presented in Appendix B.

4.6 Polycyclic Aromatic Hydrocarbons

Benzo(a)pyrene was detected above the CFSL (0.11 mg/kg) and below the Excavation Worker RBC (490 mg/kg) in three samples (HA-2: 0.5-1.5, HA-2: 4-4.5, and HA-3: 2-2.5) at concentrations ranging from 0.125 mg/kg to 0.588 mg/kg. All other PAHs were detected below RBC and CFSL values or were not present at concentrations above laboratory reporting limits. Table 4-5 presents a summary of PAHs detected in soil. Analytical lab reports are presented in Appendix B.

Table 4-4: POLYCHLORINATED BIPHENYLS DETECTED IN SOIL

Boring ID	Sample ID	Aroclor 1016, mg/kg	Aroclor 1221, mg/kg	Aroclor 1232, mg/kg	Aroclor 1242, mg/kg	Aroclor 1248, mg/kg	Aroclor 1254, mg/kg	Aroclor 1260, mg/kg
	DP-1-2	ND						
DP-1	DP-1-10	ND	ND	ND	ND	ND	0.011 (P-12)	0.0171 (P-12)
	DP-1-20	ND						
	DP-2-2	ND	ND	ND	ND	ND	ND	0.0706
DP-2	DP-2-9	ND						
	DP-2-20	ND						
DD 2/UA 1	HA-1: 0.5-1.5	ND	ND	ND	ND	ND	ND	0.026 (P-12)
DP-3/HA-1	DP-3-10	ND						
	DP-4-2	ND						
DP-4	DP-4-9	ND						
	DP-4-20	ND	ND	ND	ND	ND	ND	0.0102 (P-09)
	HA-2: 0.5-1.5	ND	ND	ND	ND	ND	ND	0.0413 (P-12)
DP-5/HA-2	HA-2: 4-4.5	ND						
	DP-5-10	ND						
	HA-3: 0.5-1.5	ND	ND	ND	ND	ND	ND	0.0158 (P-12)
DP-6/HA-3	HA-3: 2-2.5	ND	ND	ND	ND	ND	ND	0.297 (P-12)
	DP-6-10	ND	ND	ND	ND	ND	ND	0.0458
	CFSL	1.1	0.0048	0.0048	0.041	0.0073	0.041	0.24
	RBC ¹	NE						

Abbreviations: ID = identification; ND = not detected; NE = not established; mg/kg = milligrams per kilogram

Notes:

Bold: Above CFSL

P-12: Result estimated due to the presence of multiple PCB Aroclors and/or PCB congeners not defined as Aroclors

P-09: Due to weathering and/or the presence of an unknown mixture of PCB Congeners, the pattern does not match the standard used for calibration. Results are estimated and based on the closest matching Aroclor.

CFSLs are based on DEQ established natural background levels (NBL) for the Portland Basin

¹ = Excavation Worker: Soil Ingestion, Dermal Contact, and Inhalation exposure scenario

Table 4-5: POLYCYCLIC AROMATIC HYDROCARBONS DETECTED IN SOIL

		Acenaphthene,	Acenaphthylene,	Anthracene,	Benz(a)anthracene,	Benzo(a)pyrene,	Benzo(b)fluoranthene,	Benzo(k)fluoranthene,	Benzo(g,h,i)perylene	Chrysene,	Dibenz(a,h)anthracene,	Fluoranthene,	Fluorene,	Indeno(1,2,3-cd)pyrene,	1-Methylnaphthalene,	2-Methylnaphthalene,	Naphthalene,	Phenanthrene,	Pyrene,	Dibenzofuran
Boring ID	Sample ID	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
DP-1	DP-1-20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DP-2	DP-2-9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DP-3/HA-1	HA-1: 0.5-1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.102	ND	ND	ND	ND	ND	ND	0.113	ND
DP-5/HA-2	HA-2: 0.5-1.5	ND	ND	ND	0.0871	0.125	0.222	0.0702 (M-05)	0.102	0.158	ND	0.134	ND	0.0986	ND	ND	ND	0.0663	0.156	ND
DP-5/HA-2	HA-2: 4-4.5	ND	0.103	0.0801	0.499	0.588	0.67	0.223 (M-05)	0.307	0.672	0.099	0.724	ND	0.322	ND	ND	0.0681	0.241	1.02	ND
DD 6/114 2	HA-3: 0.5-1.5	ND	ND	ND	ND	0.0481	0.061	ND	0.0663	0.0536 (M-05)	ND	0.0497	ND	ND	ND	ND	ND	ND	0.0637	ND
DP-6/HA-3	HA-3: 2-2.5	ND	0.174	0.146	0.34	0.414	0.446	0.149 (M-05)	0.423	0.568	0.0627	0.643	0.0451	0.344	ND	ND	ND	0.608	0.859	ND
	CFSL	0.25	120	6.8	0.73	0.11	1.1	11	25	3.1	0.11	10	3.7	1.1	0.36	11	0.077	5.5	10	0.002
	RBC ¹	590,000	NE	350,000	4800	490	4900	49000	NE	NE	490	280,000	390,000	4900	NE	NE	16000	NE	210,000	NE

Abbreviations: ID = identification; mg/kg = milligrams per kilogram; ND = not detected; NE = not established

¹ = Excavation Worker – soil ingestion, dermal contact, and inhalation exposure scenario **Bold**: Above CFSL

M-05: Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

GRI conducted a Limited Scope Phase II ESA at the Subject Property, which consists of one approximately 1.82-acre parcel, identified as tax lot number 1S1E03D-00101 in Portland, Multnomah County, Oregon, in substantial conformance with ASTM E1903-19. A summary of the findings is provided below:

- GRI collected a total of 17 soil samples from six explorations, three of which used combined hand auger-machine drilled (direct push) exploratory techniques and three of which used machine-drilled (direct push) techniques. Soil samples were submitted to Apex Laboratory in Tigard, Oregon, for chemical analysis.
- Laboratory analytical testing of soil samples indicates heavy metals exceeding CFSLs were detected in explorations DP-1, DP-3/HA-1, DP-5/HA-2, and DP-6/HA-3. One sample, DP-3-10 from exploration DP-3/HA-1, showed lead concentrations of 13,500 mg/kg, above the lead CFSL (28 mg/kg) and the established RBC for the Excavation Worker—soil ingestion, dermal contact, and inhalation exposure pathway scenario (800 mg/kg). Based on supplemental TCLP testing, this material appears to exhibit characteristics of hazardous waste.
- Laboratory analytical testing results of samples from explorations DP-5/HA-2 and DP-6/HA-3 indicate analyte concentrations exceeded CFSLs for the PAH benzo(a)pyrene. The CFSL for PCBs was exceeded in one sample from exploration DP-6/HA-3.
- All other analytes were present below regulatory thresholds or were not present above laboratory reporting limits.
- Staining, petroleum odor, or both were observed in three explorations (DP-1, DP-4, and DP-5/HA-2). According to the Oregon DEQ, "if the material appears chemically stained or has a chemical smell, it is not clean fill." In addition, material handled and disposed of as clean fill "does not include putrescible wastes, construction and demolition wastes, or industrial solid wastes."
- Groundwater was not encountered during site exploration activities.

5.2 Recommendations

Based on the findings of this investigation, GRI recommends the following:

Based on the results of this ESA, samples from the general location of exploration
 DP-2 generally appear to meet clean fill standards.

- Soil in the vicinity of explorations DP-1, DP-4, DP-5/HA-2, and DP-6/HA-3 does not appear to meet conditions required for unrestricted use, and any excavated material in this area should be handled as non-clean fill and disposed of as solid waste at an approved landfill.
- Soil in the vicinity of exploration DP-3/HA-1 exceeded the Excavation Worker RBC for lead and appears to have characteristics of hazardous waste. Special handling and disposal requirements may apply to material generated in this area, depending on site redevelopment goals. Soil excavated from this area will require disposal as hazardous waste at a chemical waste landfill in Arlington, Oregon.
- Depending on future site redevelopment goals, additional soil and sediment sampling is recommended to more adequately define the lateral and vertical extents of possible residual contamination at the Subject Property to identify regulatory requirements, evaluate soil handling and disposal options, and determine appropriate safeguards for human health and safety. DEQ coordination may be required for redevelopment activities based on the Subject Property regulatory history and nearby active regulatory sites.
- Groundwater at the Subject Property, which is a former industrial facility with numerous industrial and regulatory sites nearby, is likely not suitable for beneficial use. Groundwater sampling and analysis is recommended as part of future site redevelopment activities to inform handling and disposal options, depending on future site dewatering needs during construction.
- Unanticipated contaminated soil pockets could be encountered during project site redevelopment. Based on future site redevelopment goals, a Contaminated Media Management Plan (CMMP) may be warranted to establish procedures that would be followed to manage contaminated soil identified during this assessment and in the event that unanticipated contaminated soil, sediment, and/or groundwater are discovered during construction. GRI can prepare a proposal to develop a CMMP upon request.

We have included as Appendix B the Geoprofessional Business Association guidance document "Important Information about This Geoenvironmental Report" to assist you and others in understanding the use and limitations of this report. We recommend you read this document.

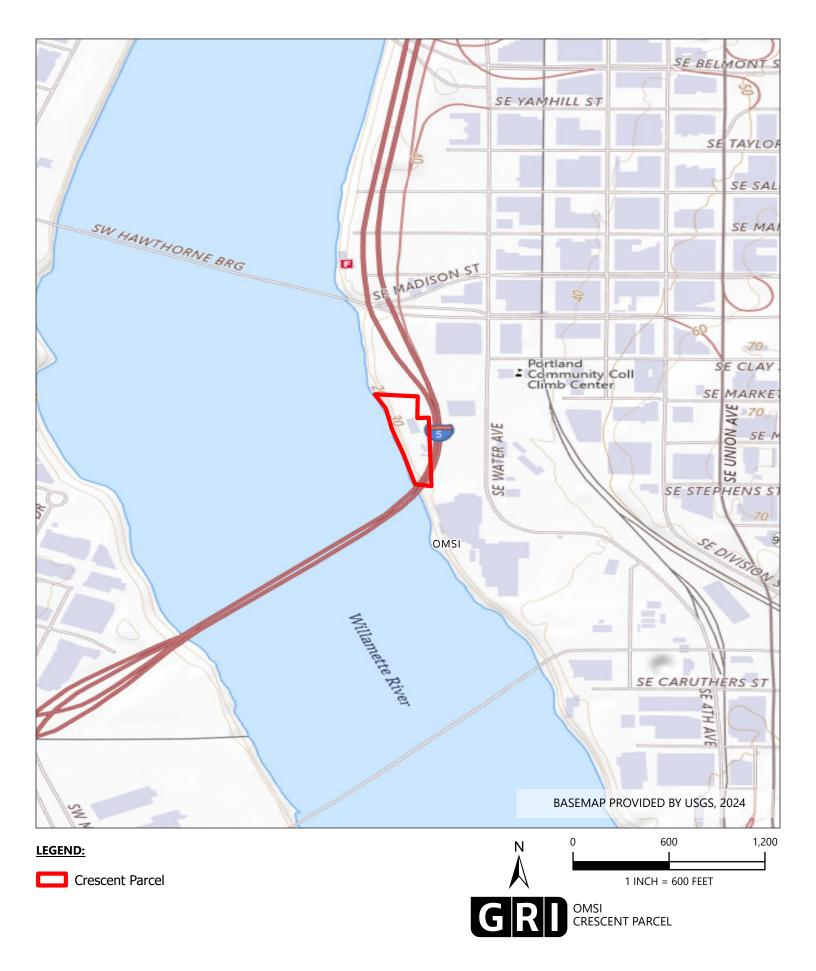
We appreciate the opportunity to be of service to you. Please contact the undersigned if you have any questions regarding this report or require further assistance.

Submitted for GRI,

RENEWS: 02/2025

George A. Freitag, CEG

Principal

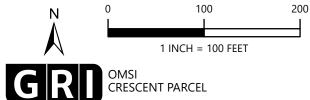

Gregory D. Martin, CEG Senior Geologist

This document has been submitted electronically.


6 REFERENCES

- GRI, 2024, Phase I environmental site assessment, OMSI Crescent Parcel, dated November 12, 2024.
- U.S. Geological Survey, 2020, Portland quadrangle, Oregon-Washington 7.5-Minute topographic map: 1:24,000 scale.
- Wells, R. E, Haugerud, R. A., Niem, A. R., Niem, W. A., Ma, L., Evarts, R. C., O'Connor, J. E., Madin, I. P., Sherrod, D. R., Beeson, M. H., et al., 2020, Geologic map of the greater Portland metropolitan area and surrounding region, Oregon and Washington: U.S. Geological Survey, Scientific Investigations Map 3443.

VICINITY MAP


NOV. 2024 JOB NO. 6909-A FIG. 1

LEGEND:

APPROXIMATE LOCATION OF SAMPLING LOCATIONS

SITE PLAN

NOV. 2024 JOB NO. 6909-A FIG. 2

APPENDIX A

Summary of Subsurface Materials

Table 1A: SUMMARY OF SUBSURFACE MATERIALS

Exploration ID	Sample ID	Sample Depth, feet	Exploration Method	PID, ppm	Material Description
	DP-1-2	1.5-2		0.0	0 feet – 2.5 feet: Sandy GRAVEL, some silt, dark brown, moist, scattered organics (FILL) 2.5 feet – 12.5 feet: Silty SAND, brown, moist; minor staining, slight petroleum odor (FILL)
DP-1	DP-1-10	9.5-10	Direct Push	0.0	-trace to some gravel, scattered organics and brick fragments; minor staining, no odor (9 feet – 12.5 feet)
	DP-1-20	19.5-20		22.8	12.5 feet – 17 feet: SAND, trace gravel, some silt, brown to gray, moist (FILL) 17 feet – 20 feet: Gravelly SAND, trace silt, moist; petroleum odor (FILL)
	DP-2-2	1.5-2		1.4	0 feet – 3 feet: Silty, Sandy GRAVEL, brown, moist, contains brick fragments (FILL)
DP-2	DP-2-9	8.5-9	Direct Push	54.5	3 feet – 7.5 feet: SILT, some sand, brown, moist (FILL)
	DP-2-20	19.5-20		3.1	7.5 feet – 11 feet: SAND, some silt, trace gravel, brown, moist (FILL) 11 feet – 20 feet: Sandy GRAVEL to Gravelly
DD 2/UA 1	HA-1: 0.5-1.5	0.5-1.5	Hand Auger	0.1	SAND, brown to gray, moist (FILL) 0 feet – 2 feet: Sandy GRAVEL, some silt, brown, moist, scattered asphalt fragments (FILL) 2 feet – 8 feet: SILT, some sand, brown, moist,
DP-3/HA-1	DP-3-10	9.5-10	Direct Push	0.0	scattered brick fragments (FILL) 8 feet – 10 feet: Sandy GRAVEL to Gravelly SAND, brown, moist, contains brick fragments (FILL)
	DP-4-2	1.5-2		0.0	0 feet – 3.5 feet: Sandy GRAVEL to Gravelly SAND, brown to gray, moist, contains brick
DP-4	DP-4-9	9.5-10	Direct Push	0.0	fragments; some staining (FILL) 3.5 feet – 10 feet: SAND, some silt, trace gravel,
	DP-4-20	19.5-20		0.0	brown, moist, some staining and minor petroleum odor (FILL)
	HA-2: 0.5-1.5	0.5-1.5	Hand Auger	0.5	0 feet – 15 feet: Sandy GRAVEL, some silt, brown, moist, minor odor (FILL)
DP-5/HA-2	HA-2: 4-4.5	4-4.5	nanu Auger	0.0	scattered brick beginning at 7.5 feet increased staining below 7.5 feet
	DP-5-10	9.5-10	Direct Push	0.0	

Table 1A: SUMMARY OF SUBSURFACE MATERIALS

Exploration ID	Sample ID	Sample Depth, feet	Exploration Method	PID, ppm	Material Description
	HA-3: 0.5-1.5	1.5-2		0.0	0 feet – 0.5 feet: Sandy SILT, trace gravel, brown, moist (FILL)
DP-6/HA-3	HA-3: 2-2.5	2-2.5	Hand Auger	0.0	0.5 feet – 2.5 feet: Silty SAND, trace gravel and cobbles, gray, moist, scattered brick fragments (FILL)
DF-0/ПА-3	DP-6-10	9.5-10	Direct Push	0.0	 2.5 feet – 7.5 feet: Silty GRAVEL, some sand, brown to gray, damp (FILL) 7.5 feet – 10 feet: Sandy SILT – Silty SAND, trace gravel, brown, moist, scattered brick fragments (FILL)

Abbreviations: ID = identification; PID = photo-ionization detector; ppm = parts per million

APPENDIX B

Apex Laboratories, LLC Analytical Laboratory Reports

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Tuesday, July 2, 2024
Greg Martin
GRI
16520 SW Upper Boones Ferry Rd, Ste 100
Tigard, OR 97224

RE: A4D1396 - 6909-A - 6909-A

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4D1396, which was received by the laboratory on 4/18/2024 at 2:30:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: dthomas@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 1.3 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

<u>Report ID:</u> A4D1396 - 07 02 24 0825

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	RMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
HA-1:0.5-1.5	A4D1396-01	Soil	04/17/24 15:44	04/18/24 14:30
HA-2:0.5-1.5	A4D1396-02	Soil	04/17/24 12:56	04/18/24 14:30
HA-2:4-4.5	A4D1396-03	Soil	04/17/24 13:45	04/18/24 14:30
HA-3:0.5-1.5	A4D1396-04	Soil	04/17/24 14:34	04/18/24 14:30
HA-3:2-2.5	A4D1396-05	Soil	04/17/24 15:07	04/18/24 14:30

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>GRI</u> Project: 16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

ANALYTICAL SAMPLE RESULTS

6909-A

	Die	esel and/or O	il Hydrocar	bons by NWTPI	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
HA-1:0.5-1.5 (A4D1396-01)				Matrix: Soil		Batch:	24D0881	
Diesel	ND		763	mg/kg dry	40	04/24/24 22:25	NWTPH-Dx	
Oil	2440		1530	mg/kg dry	40	04/24/24 22:25	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Re	covery: %	Limits: 50-150 %	40	04/24/24 22:25	NWTPH-Dx	S-01
HA-2:0.5-1.5 (A4D1396-02RE1)				Matrix: Soil		Batch:	24D1134	
Diesel	ND		192	mg/kg dry	10	05/01/24 10:55	NWTPH-Dx	
Oil	467		385	mg/kg dry	10	05/01/24 10:55	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 89 %	Limits: 50-150 %	10	05/01/24 10:55	NWTPH-Dx	S-05
HA-2:4-4.5 (A4D1396-03)				Matrix: Soil		Batch:	24D0881	
Diesel	ND		216	mg/kg dry	10	04/24/24 22:45	NWTPH-Dx	
Oil	455		431	mg/kg dry	10	04/24/24 22:45	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 85 %	Limits: 50-150 %	10	04/24/24 22:45	NWTPH-Dx	S-05
HA-3:0.5-1.5 (A4D1396-04)				Matrix: Soil		Batch:	24D0881	
Diesel	ND		189	mg/kg dry	10	04/24/24 23:27	NWTPH-Dx	
Oil	811		377	mg/kg dry	10	04/24/24 23:27	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 86 %	Limits: 50-150 %	10	04/24/24 23:27	NWTPH-Dx	S-05
HA-3:2-2.5 (A4D1396-05)	-	_		Matrix: Soil		Batch:	24D0881	
Diesel	ND		203	mg/kg dry	10	04/25/24 00:08	NWTPH-Dx	
Oil	741		407	mg/kg dry	10	04/25/24 00:08	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 87 %	Limits: 50-150 %	10	04/25/24 00:08	NWTPH-Dx	S-05

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: 6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4D1396 - 07 02 24 0825

ANALYTICAL SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
HA-2:0.5-1.5 (A4D1396-02)				Matrix: Soil Batch: 24D0954					
Gasoline Range Organics	ND		4.26	mg/kg dry	50	04/25/24 13:06	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recove	ery: 103 % 99 %	Limits: 50-150 % 50-150 %		04/25/24 13:06 04/25/24 13:06	NWTPH-Gx (MS) NWTPH-Gx (MS)		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 GRI
 Project:
 6909-A

 16520 SW Upper Boones Ferry Rd, Ste 100
 Project Number:
 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

<u>Report ID:</u> A4D1396 - 07 02 24 0825

ANALYTICAL SAMPLE RESULTS

BTEX Compounds by EPA 8260D										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
HA-2:0.5-1.5 (A4D1396-02)	Matrix: Soil Batch: 24D0954									
Benzene	ND		0.00851	mg/kg dry	50	04/25/24 13:06	5035A/8260D			
Toluene	ND		0.0426	mg/kg dry	50	04/25/24 13:06	5035A/8260D			
Ethylbenzene	ND		0.0213	mg/kg dry	50	04/25/24 13:06	5035A/8260D			
Xylenes, total	ND		0.0639	mg/kg dry	50	04/25/24 13:06	5035A/8260D			
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	5 1	04/25/24 13:06	5035A/8260D			
Toluene-d8 (Surr)			98 %	80-120 %	5 1	04/25/24 13:06	5035A/8260D			
4-Bromofluorobenzene (Surr)			101 %	79-120 %	1	04/25/24 13:06	5035A/8260D			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

ANALYTICAL SAMPLE RESULTS

		-	-	ls by EPA 8082		_		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
•	Result	Limit	Limit		Dilution	<u> </u>		
HA-1:0.5-1.5 (A4D1396-01)				Matrix: Soil		Batch: 24D0823		C-07
Aroclor 1016	ND		0.00895	mg/kg dry	1	04/23/24 20:08	EPA 8082A	
Aroclor 1221	ND		0.00895	mg/kg dry	1	04/23/24 20:08	EPA 8082A	
Aroclor 1232	ND		0.00895	mg/kg dry	1	04/23/24 20:08	EPA 8082A	
Aroclor 1242	ND		0.00895	mg/kg dry	1	04/23/24 20:08	EPA 8082A	
Aroclor 1248	ND		0.00895	mg/kg dry	1	04/23/24 20:08	EPA 8082A	
Aroclor 1254	ND		0.00895	mg/kg dry	1	04/23/24 20:08	EPA 8082A	
Aroclor 1260	0.0260		0.00895	mg/kg dry	1	04/23/24 20:08	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 99 %	Limits: 60-125 %	5 I	04/23/24 20:08	EPA 8082A	
HA-2:0.5-1.5 (A4D1396-02)				Matrix: Soil		Batch: 2	24D0823	C-07
Aroclor 1016	ND		0.00998	mg/kg dry	1	04/23/24 20:43	EPA 8082A	
Aroclor 1221	ND		0.00998	mg/kg dry	1	04/23/24 20:43	EPA 8082A	
Aroclor 1232	ND		0.00998	mg/kg dry	1	04/23/24 20:43	EPA 8082A	
Aroclor 1242	ND		0.00998	mg/kg dry	1	04/23/24 20:43	EPA 8082A	
Aroclor 1248	ND		0.00998	mg/kg dry	1	04/23/24 20:43	EPA 8082A	
Aroclor 1254	ND		0.00998	mg/kg dry	1	04/23/24 20:43	EPA 8082A	
Aroclor 1260	0.0413		0.00998	mg/kg dry	1	04/23/24 20:43	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 93 %	Limits: 60-125 %	5 I	04/23/24 20:43	EPA 8082A	
HA-2:4-4.5 (A4D1396-03)				Matrix: Soil	il Batch: 24D0823		24D0823	C-07
Aroclor 1016	ND		0.0110	mg/kg dry	1	04/23/24 21:19	EPA 8082A	
Aroclor 1221	ND		0.0110	mg/kg dry	1	04/23/24 21:19	EPA 8082A	
Aroclor 1232	ND		0.0110	mg/kg dry	1	04/23/24 21:19	EPA 8082A	
Aroclor 1242	ND		0.0110	mg/kg dry	1	04/23/24 21:19	EPA 8082A	
Aroclor 1248	ND		0.0110	mg/kg dry	1	04/23/24 21:19	EPA 8082A	
Aroclor 1254	ND		0.0110	mg/kg dry	1	04/23/24 21:19	EPA 8082A	
Aroclor 1260	ND		0.0110	mg/kg dry	1	04/23/24 21:19	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 88 %	Limits: 60-125 %	5 1	04/23/24 21:19	EPA 8082A	
HA-3:0.5-1.5 (A4D1396-04)				Matrix: Soil		Batch: 24D0823		C-07
Aroclor 1016	ND		0.00942	mg/kg dry	1	04/23/24 21:54	EPA 8082A	
Aroclor 1221	ND		0.00942	mg/kg dry	1	04/23/24 21:54	EPA 8082A	
Aroclor 1232	ND		0.00942	mg/kg dry	1	04/23/24 21:54	EPA 8082A	
Aroclor 1242	ND		0.00942	mg/kg dry	1	04/23/24 21:54	EPA 8082A	

Apex Laboratories

Tigard, OR 97224

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI 16520 SW Upper Boones Ferry Rd, Ste 100 Project: 6909-A
Project Number: 6909-A
Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

ANALYTICAL SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
HA-3:0.5-1.5 (A4D1396-04)				Matrix: Soil		Batch: 24D0823		C-07	
Aroclor 1248	ND		0.00942	mg/kg dry	1	04/23/24 21:54	EPA 8082A		
Aroclor 1254	ND		0.00942	mg/kg dry	1	04/23/24 21:54	EPA 8082A		
Aroclor 1260	0.0158		0.00942	mg/kg dry	1	04/23/24 21:54	EPA 8082A	P-12	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 96 %	Limits: 60-125 %	1	04/23/24 21:54	EPA 8082A		
HA-3:2-2.5 (A4D1396-05)		Mat		Matrix: Soil	Batch: 24D0823		24D0823	C-07	
Aroclor 1016	ND		0.0100	mg/kg dry	1	04/23/24 22:29	EPA 8082A		
Aroclor 1221	ND		0.0100	mg/kg dry	1	04/23/24 22:29	EPA 8082A		
Aroclor 1232	ND		0.0100	mg/kg dry	1	04/23/24 22:29	EPA 8082A		
Aroclor 1242	ND		0.0100	mg/kg dry	1	04/23/24 22:29	EPA 8082A		
Aroclor 1248	ND		0.0100	mg/kg dry	1	04/23/24 22:29	EPA 8082A		
Aroclor 1254	ND		0.0100	mg/kg dry	1	04/23/24 22:29	EPA 8082A		
Aroclor 1260	0.297		0.0100	mg/kg dry	1	04/23/24 22:29	EPA 8082A		
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 96 %	Limits: 60-125 %	1	04/23/24 22:29	EPA 8082A		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

ANALYTICAL SAMPLE RESULTS

		•	`	Ms) by EPA 827	. (,		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
HA-1:0.5-1.5 (A4D1396-01)				Matrix: Soil		Batch:	24D1133	
Acenaphthene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Acenaphthylene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Anthracene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Benz(a)anthracene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Benzo(a)pyrene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Benzo(b)fluoranthene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Chrysene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Fluoranthene	0.102		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Fluorene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
1-Methylnaphthalene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
2-Methylnaphthalene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Naphthalene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Phenanthrene	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Pyrene	0.113		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Dibenzofuran	ND		0.0960	mg/kg dry	10	04/30/24 20:25	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recovery	y: 75 %	Limits: 44-120 %	10	04/30/24 20:25	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			69 %	54-127 %	10	04/30/24 20:25	EPA 8270E SIM	
HA-2:0.5-1.5 (A4D1396-02)				Matrix: Soil		Batch:	24D1133	
Acenaphthene	ND		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
Acenaphthylene	ND		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
Anthracene	ND		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
Benz(a)anthracene	0.0871		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
Benzo(a)pyrene	0.125		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
Benzo(b)fluoranthene	0.222		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
Benzo(k)fluoranthene	0.0702		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	M-05
Benzo(g,h,i)perylene	0.102		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
Chrysene	0.158		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRIProject:6909-A16520 SW Upper Boones Ferry Rd, Ste 100Project Number:6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
HA-2:0.5-1.5 (A4D1396-02)				Matrix: Soil		Batch:	24D1133	
Fluoranthene	0.134		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
Fluorene	ND		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	0.0986		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
l-Methylnaphthalene	ND		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
2-Methylnaphthalene	ND		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
Naphthalene	ND		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
Phenanthrene	0.0663		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
Pyrene	0.156		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
Dibenzofuran	ND		0.0383	mg/kg dry	4	04/30/24 20:51	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recover	ry: 75 %	Limits: 44-120 %	4	04/30/24 20:51	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			69 %	54-127 %	4	04/30/24 20:51	EPA 8270E SIM	
HA-2:4-4.5 (A4D1396-03)				Matrix: Soil		Batch:		
Acenaphthene	ND		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Acenaphthylene	0.103		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Anthracene	0.0801		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Benz(a)anthracene	0.499		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Benzo(a)pyrene	0.588		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Benzo(b)fluoranthene	0.670		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Benzo(k)fluoranthene	0.223		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	M-05
Benzo(g,h,i)perylene	0.307		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Chrysene	0.672		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Dibenz(a,h)anthracene	0.0990		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Fluoranthene	0.724		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Fluorene	ND		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	0.322		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
-Methylnaphthalene	ND		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
2-Methylnaphthalene	ND		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Naphthalene	0.0681		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Phenanthrene	0.241		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Pyrene	1.02		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Dibenzofuran	ND		0.0431	mg/kg dry	4	04/30/24 21:16	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recover	ry: 73 %	Limits: 44-120 %	4	04/30/24 21:16	EPA 8270E SIM	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

ANALYTICAL SAMPLE RESULTS

	Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)									
A 1.	Sample		Reporting	TT :	D'L d'	Date	Malanc	NT :		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
HA-2:4-4.5 (A4D1396-03)				Matrix: Soil		Batch:	24D1133			
Surrogate: p-Terphenyl-d14 (Surr)		Recovery:	66 %	Limits: 54-127 %	4	04/30/24 21:16	EPA 8270E SIM			
HA-3:0.5-1.5 (A4D1396-04)				Matrix: Soil		Batch:	24D1133			
Acenaphthene	ND		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Acenaphthylene	ND		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Anthracene	ND		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Benz(a)anthracene	ND		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Benzo(a)pyrene	0.0481		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Benzo(b)fluoranthene	0.0610		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Benzo(k)fluoranthene	ND		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Benzo(g,h,i)perylene	0.0663		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Chrysene	0.0536		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM	M-05		
Dibenz(a,h)anthracene	ND		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Fluoranthene	0.0497		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Fluorene	ND		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Indeno(1,2,3-cd)pyrene	ND		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
1-Methylnaphthalene	ND		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
2-Methylnaphthalene	ND		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Naphthalene	ND		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Phenanthrene	ND		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Pyrene	0.0637		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Dibenzofuran	ND		0.0457	mg/kg dry	5	04/30/24 21:41	EPA 8270E SIM			
Surrogate: 2-Fluorobiphenyl (Surr)		Recovery:	84 %	Limits: 44-120 %	5	04/30/24 21:41	EPA 8270E SIM			
p-Terphenyl-d14 (Surr)			76 %	54-127 %	5	04/30/24 21:41	EPA 8270E SIM			
HA-3:2-2.5 (A4D1396-05RE1)				Matrix: Soil		Batch:	24D1133			
Acenaphthene	ND		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM			
Acenaphthylene	0.174		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM			
Anthracene	0.146		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM			
Benz(a)anthracene	0.340		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM			
Benzo(a)pyrene	0.414		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM			
Benzo(b)fluoranthene	0.446		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM			
Benzo(k)fluoranthene	0.149		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM	M-05		
Benzo(g,h,i)perylene	0.423		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 GRI
 Project:
 6909-A

 16520 SW Upper Boones Ferry Rd, Ste 100
 Project Number:
 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

ANALYTICAL SAMPLE RESULTS

	Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
HA-3:2-2.5 (A4D1396-05RE1)				Matrix: Soil		Batch:	24D1133				
Chrysene	0.568		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM				
Dibenz(a,h)anthracene	0.0627		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM				
Fluoranthene	0.643		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM				
Fluorene	0.0451		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM				
Indeno(1,2,3-cd)pyrene	0.344		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM				
1-Methylnaphthalene	ND		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM				
2-Methylnaphthalene	ND		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM				
Naphthalene	ND		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM				
Phenanthrene	0.608		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM				
Pyrene	0.859		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM				
Dibenzofuran	ND		0.0404	mg/kg dry	4	05/01/24 11:55	EPA 8270E SIM				
Surrogate: 2-Fluorobiphenyl (Surr)		Recov	very: 79 %	Limits: 44-120 %	6 4	05/01/24 11:55	EPA 8270E SIM				
p-Terphenyl-d14 (Surr)			72 %	54-127 %	ó 4	05/01/24 11:55	EPA 8270E SIM				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
HA-1:0.5-1.5 (A4D1396-01)				Matrix: Soi	I			
Batch: 24D1084								
Arsenic	9.78		1.09	mg/kg dry	10	04/30/24 06:36	EPA 6020B	
Barium	123		1.09	mg/kg dry	10	04/30/24 06:36	EPA 6020B	
Cadmium	0.696		0.217	mg/kg dry	10	04/30/24 06:36	EPA 6020B	
Chromium	54.9		1.09	mg/kg dry	10	04/30/24 06:36	EPA 6020B	
Lead	182		0.217	mg/kg dry	10	04/30/24 06:36	EPA 6020B	
Mercury	ND		0.0869	mg/kg dry	10	04/30/24 06:36	EPA 6020B	
Selenium	ND		1.09	mg/kg dry	10	04/30/24 06:36	EPA 6020B	
Silver	ND		0.217	mg/kg dry	10	04/30/24 06:36	EPA 6020B	
HA-2:0.5-1.5 (A4D1396-02)				Matrix: Soi	I			
Batch: 24D1084								
Arsenic	8.40		1.22	mg/kg dry	10	04/30/24 06:42	EPA 6020B	
Barium	130		1.22	mg/kg dry	10	04/30/24 06:42	EPA 6020B	
Cadmium	0.568		0.243	mg/kg dry	10	04/30/24 06:42	EPA 6020B	
Chromium	118		1.22	mg/kg dry	10	04/30/24 06:42	EPA 6020B	
Lead	167		0.243	mg/kg dry	10	04/30/24 06:42	EPA 6020B	
Mercury	ND		0.0973	mg/kg dry	10	04/30/24 06:42	EPA 6020B	
Selenium	ND		1.22	mg/kg dry	10	04/30/24 06:42	EPA 6020B	
Silver	ND		0.243	mg/kg dry	10	04/30/24 06:42	EPA 6020B	
HA-2:4-4.5 (A4D1396-03)				Matrix: Soi	I			
Batch: 24D1084								
Arsenic	3.45		1.28	mg/kg dry	10	04/30/24 06:48	EPA 6020B	
Barium	117		1.28	mg/kg dry	10	04/30/24 06:48	EPA 6020B	
Cadmium	ND		0.255	mg/kg dry	10	04/30/24 06:48	EPA 6020B	
Chromium	11.0		1.28	mg/kg dry	10	04/30/24 06:48	EPA 6020B	
Lead	56.3		0.255	mg/kg dry	10	04/30/24 06:48	EPA 6020B	
Mercury	0.134		0.102	mg/kg dry	10	04/30/24 06:48	EPA 6020B	
Selenium	ND		1.28	mg/kg dry	10	04/30/24 06:48	EPA 6020B	
Silver	ND		0.255	mg/kg dry	10	04/30/24 06:48	EPA 6020B	
HA-3:0.5-1.5 (A4D1396-04)				Matrix: Soi	ı			

Batch: 24D1084

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
HA-3:0.5-1.5 (A4D1396-04)				Matrix: Soi	I			
Arsenic	2.82		1.16	mg/kg dry	10	04/30/24 06:54	EPA 6020B	
Barium	98.2		1.16	mg/kg dry	10	04/30/24 06:54	EPA 6020B	
Cadmium	ND		0.232	mg/kg dry	10	04/30/24 06:54	EPA 6020B	
Chromium	10.1		1.16	mg/kg dry	10	04/30/24 06:54	EPA 6020B	
Lead	50.2		0.232	mg/kg dry	10	04/30/24 06:54	EPA 6020B	
Mercury	ND		0.0926	mg/kg dry	10	04/30/24 06:54	EPA 6020B	
Selenium	ND		1.16	mg/kg dry			EPA 6020B	
Silver	ND		0.232	mg/kg dry	10	04/30/24 06:54	EPA 6020B	
HA-3:2-2.5 (A4D1396-05)				Matrix: Soi	I			
Batch: 24D1084								
Arsenic	3.58		1.14	mg/kg dry	10	04/30/24 07:00	EPA 6020B	
Barium	99.3		1.14	mg/kg dry	10	04/30/24 07:00	EPA 6020B	
Cadmium	0.603		0.229	mg/kg dry	10	04/30/24 07:00	EPA 6020B	
Chromium	11.6		1.14	mg/kg dry	10	04/30/24 07:00	EPA 6020B	
Lead	149		0.229	mg/kg dry			EPA 6020B	
Mercury	0.138		0.0915	mg/kg dry	10	04/30/24 07:00	EPA 6020B	
Selenium	ND		1.14	mg/kg dry	10	04/30/24 07:00	EPA 6020B	
Silver	ND		0.229	mg/kg dry	10	04/30/24 07:00	EPA 6020B	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

ANALYTICAL SAMPLE RESULTS

		TCLP Meta	als by EPA 60	20B (ICPMS	S)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
HA-1:0.5-1.5 (A4D1396-01)				Matrix: So	oil			
Batch: 24E0922								
Lead	0.0940		0.0500	mg/L	10	05/24/24 20:26	1311/6020B	
HA-2:0.5-1.5 (A4D1396-02)				Matrix: So	oil			
Batch: 24E0922								
Chromium	ND		0.100	mg/L	10	05/24/24 20:37	1311/6020B	
Lead	ND		0.0500	mg/L	10	05/24/24 20:37	1311/6020B	
HA-3:2-2.5 (A4D1396-05)				Matrix: So	oil			
Batch: 24E0922	_	·			•	_		•
Lead	ND		0.0500	mg/L	10	05/24/24 20:54	1311/6020B	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>GRI</u> Project: 16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A Tigard, OR 97224

Project Manager: Greg Martin

6909-A

Report ID: A4D1396 - 07 02 24 0825

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
HA-1:0.5-1.5 (A4D1396-01)				Matrix: So	oil	Batch:	24D0786		
% Solids	94.4		1.00	%	1	04/23/24 07:15	EPA 8000D		
HA-2:0.5-1.5 (A4D1396-02)				Matrix: So	oil	Batch:	24D0786		
% Solids	90.2		1.00	%	1	04/23/24 07:15	EPA 8000D		
HA-2:4-4.5 (A4D1396-03)				Matrix: So	oil	Batch:	24D0786		
% Solids	81.9		1.00	%	1	04/23/24 07:15	EPA 8000D		
HA-3:0.5-1.5 (A4D1396-04)				Matrix: So	oil	Batch:	24D0786		
% Solids	92.9		1.00	%	1	04/23/24 07:15	EPA 8000D		
HA-3:2-2.5 (A4D1396-05)				Matrix: Soil Batch: 24D0786					
% Solids	89.2		1.00	%	1	04/23/24 07:15	EPA 8000D		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

ANALYTICAL SAMPLE RESULTS

		TCLP E	Extraction by	EPA 1311							
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
HA-1:0.5-1.5 (A4D1396-01)				Matrix: Soil Batch: 24E0845							
TCLP Extraction	PREP			N/A	1	05/23/24 14:15	EPA 1311				
HA-2:0.5-1.5 (A4D1396-02)				Matrix: So	oil	Batch:	24E0845				
TCLP Extraction	PREP			N/A	1	05/23/24 14:15	EPA 1311				
HA-3:2-2.5 (A4D1396-05)				Matrix: So	oil	Batch:	24E0845				
TCLP Extraction	PREP			N/A	1	05/23/24 14:15	EPA 1311				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	or Oil Hyd	Irocarbon	s by NW	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D0881 - EPA 3546 (F	uels)						Soi	il				
Blank (24D0881-BLK1)			Prepared	1: 04/24/24	05:51 Anal	lyzed: 04/24	4/24 17:14					
NWTPH-Dx												
Diesel	ND		20.0	mg/kg w	et 1							
Oil	ND		40.0	mg/kg w	vet 1							
Surr: o-Terphenyl (Surr)		Rece	overy: 91 %	Limits: 50	0-150 %	Dil	lution: 1x					
LCS (24D0881-BS1)			Prepared	d: 04/24/24	05:51 Anal	lyzed: 04/24	4/24 17:35					
NWTPH-Dx												
Diesel	109		20.0	mg/kg w	et 1	125		87	38-132%			
Surr: o-Terphenyl (Surr)		Rece	overy: 89 %	Limits: 50	0-150 %	Dil	lution: 1x					
Duplicate (24D0881-DUP1)			Prepared	d: 04/24/24	05:51 Anal	lyzed: 04/24	4/24 18:17					
QC Source Sample: Non-SDG (A	4D1374-01)											
Diesel	ND		23.8	mg/kg d	ry 1		ND				30%	
Oil	120		47.6	mg/kg d			71.6			50	30%	Q-05
Surr: o-Terphenyl (Surr)		Reco	overy: 87 %	Limits: 50	0-150 %	Dil	lution: 1x					
Duplicate (24D0881-DUP2)			Prepared	1: 04/24/24	05:51 Anal	lyzed: 04/25	5/24 02:32					
OC Source Sample: Non-SDG (A	4D1441-05)											
Diesel	ND		18.9	mg/kg d	ry 1		ND				30%	
Oil	ND		37.8	mg/kg d	•		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 89 %	Limits: 50		Dil	lution: 1x					
Batch 24D1134 - EPA 3546 (F	uels)						Soi	 iI				
Blank (24D1134-BLK2)			Prepared	1: 04/30/24	10:13 Anal	lyzed: 05/01	1/24 08:22					
NWTPH-Dx			-									
Diesel	ND		20.0	mg/kg w	et 1							
Oil	ND		40.0	mg/kg w								
Surr: o-Terphenyl (Surr)		Reco	overy: 89 %	Limits: 50		Dil	lution: 1x					
LCS (24D1134-BS1)			Prepared	1: 04/30/24	10:13 Anal	lyzed: 04/30	0/24 23:08					
NWTPH-Dx												
Diesel	128		20.0	mg/kg w	et 1	125		102	38-132%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/d	or Oil Hyd	rocarbor	ns by NW	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D1134 - EPA 3546 (F	uels)						Soi	ı				
LCS (24D1134-BS1)			Prepared	d: 04/30/24	10:13 Ana	lyzed: 04/30	/24 23:08					
Surr: o-Terphenyl (Surr)		Reco	very: 107 %	Limits: 50	0-150 %	Dili	ution: 1x					
Duplicate (24D1134-DUP1)			Prepared	d: 04/30/24	10:13 Ana	lyzed: 04/30	/24 23:49					
QC Source Sample: Non-SDG (A	4D1363-01)											
Diesel	ND		20.6	mg/kg di	ry 1		13.9			***	30%	
Oil	97.7		41.1	mg/kg d	ry 1		82.6			17	30%	F-17
Surr: o-Terphenyl (Surr)		Reco	overy: 76 %	Limits: 50)-150 %	Dila	ution: 1x					
Duplicate (24D1134-DUP2)			Prepared	d: 04/30/24	10:13 Ana	lyzed: 05/01	/24 02:11					
OC Source Sample: Non-SDG (A	4D1673-02)											
Diesel	67.2		23.3	mg/kg di	ry 1		32.6			69	30%	Q-05
Oil	ND		46.7	mg/kg d	ry 1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 80 %	Limits: 50	0-150 %	Dili	ution: 1x					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>GRI</u> Project: <u>6909-A</u>

 16520 SW Upper Boones Ferry Rd, Ste 100
 Project Number: 6909-A
 Report ID:

 Tigard, OR 97224
 Project Manager: Greg Martin
 A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range H	ydrocarbo	ons (Ben	zene thro	igh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D0954 - EPA 5035A							Soi	I				
Blank (24D0954-BLK1)			Prepared	d: 04/25/24	10:38 Anal	yzed: 04/25	/24 12:40					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.00	mg/kg v	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 101 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			99 %	5	0-150 %		"					
LCS (24D0954-BS2)			Prepared	d: 04/25/24	10:38 Anal	yzed: 04/25	/24 12:15					
NWTPH-Gx (MS)												
Gasoline Range Organics	25.0		5.00	mg/kg v	vet 50	25.0		100	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 98 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			100 %	5	0-150 %		"					
Duplicate (24D0954-DUP1)			Prepared	d: 04/24/24	13:30 Anal	yzed: 04/25	/24 21:41					V-15
QC Source Sample: Non-SDG (A4	D1512-05)											
Gasoline Range Organics	272		6.22	mg/kg d	lry 50		295			8	30%	
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 104 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	5	0-150 %		"					
Duplicate (24D0954-DUP2)			Prepared	d: 04/24/24	13:30 Anal	yzed: 04/25	/24 22:33					V-15
QC Source Sample: Non-SDG (A4	D1512-06)											
Gasoline Range Organics	1900		122	mg/kg d	lry 1000		1830			4	30%	
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 98 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			96 %	5	0-150 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRIProject:6909-A16520 SW Upper Boones Ferry Rd, Ste 100Project Number:6909-ATigard, OR 97224Project Manager:Greg Martin

Report ID: A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	nds by E	PA 8260E)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D0954 - EPA 5035A							Soi	il				
Blank (24D0954-BLK1)			Prepared	l: 04/25/24 1	0:38 Ana	lyzed: 04/25	/24 12:40					
5035A/8260D												
Benzene	ND		0.0100	mg/kg we	et 50							
Toluene	ND		0.0500	mg/kg we	et 50							
Ethylbenzene	ND		0.0250	mg/kg we	et 50							
Xylenes, total	ND		0.0750	mg/kg we	et 50							
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-	120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			102 %	79-	120 %		"					
LCS (24D0954-BS1)			Prepared	l: 04/25/24 1	0:38 Ana	lyzed: 04/25	5/24 11:49					
5035A/8260D												
Benzene	1.01		0.0100	mg/kg we	et 50	1.00		101	80-120%			
Toluene	0.990		0.0500	mg/kg we	et 50	1.00		99	80-120%			
Ethylbenzene	1.02		0.0250	mg/kg we	et 50	1.00		102	80-120%			
Xylenes, total	3.09		0.0750	mg/kg we	et 50	3.00		103	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 102 %	Limits: 80-	120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			101 %	79-	120 %		"					
Duplicate (24D0954-DUP1)			Prepared	l: 04/24/24 1	3:30 Ana	lyzed: 04/25	/24 21:41					V-1:
QC Source Sample: Non-SDG (A4)	D1512-05)											
Benzene	0.0236		0.0124	mg/kg dr	y 50		0.0249			5	30%	
Toluene	1.57		0.0622	mg/kg dr			1.65			5	30%	
Ethylbenzene	1.01		0.0311	mg/kg dr			1.06			5	30%	
Xylenes, total	13.0		0.0933	mg/kg dr			13.8			6	30%	
Surr: 1,4-Difluorobenzene (Surr)		Recove	ery: 104 %	Limits: 80-	,	Dil	ution: 1x					
Toluene-d8 (Surr)			98 %		120 %		"					
4-Bromofluorobenzene (Surr)			102 %	79-	120 %		"					
Duplicate (24D0954-DUP2)			Prepared	l: 04/24/24 1	3:30 Ana	lyzed: 04/25	7/24 22:33					V-1:
QC Source Sample: Non-SDG (A4)	D1512-06)											
Benzene	ND		0.244	mg/kg dr	v 1000		ND				30%	
					y 1000		ND				3070	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRIProject:6909-A16520 SW Upper Boones Ferry Rd, Ste 100Project Number:6909-ATigard, OR 97224Project Manager:Greg Martin

Report ID: A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS

			ВТЕХ	Compou	nds by E	PA 8260D)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D0954 - EPA 5035A							Soi	il				
Duplicate (24D0954-DUP2)			Prepared	1: 04/24/24 1	3:30 Ana	lyzed: 04/25	/24 22:33					V-15
QC Source Sample: Non-SDG (A4	D1512-06)											
Ethylbenzene	5.19		0.609	mg/kg dr	y 1000		5.13			1	30%	
Xylenes, total	57.1		1.83	mg/kg dr	y 1000		55.7			2	30%	
Surr: 1,4-Difluorobenzene (Surr)		Recor	very: 104 %	Limits: 80-	120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			98 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			104 %	79-	120 %		"					
Matrix Spike (24D0954-MS1)			Prepared	d: 04/22/24 1	5:00 Ana	lyzed: 04/25	/24 18:41					
QC Source Sample: Non-SDG (A4	D1453-05)											
5035A/8260D												
Benzene	1.66		0.0154	mg/kg dr	y 50	1.54	ND	108	77-121%			
Toluene	1.65		0.0771	mg/kg dr	y 50	1.54	ND	107	77-121%			
Ethylbenzene	1.69		0.0386	mg/kg dr	y 50	1.54	ND	110	76-122%			
Xylenes, total	5.13		0.116	mg/kg dr	y 50	4.63	ND	111	78-124%			
Surr: 1,4-Difluorobenzene (Surr)		Recor	very: 100 %	Limits: 80-	120 %	Dila	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			100 %	79-	120 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRIProject:6909-A16520 SW Upper Boones Ferry Rd, Ste 100Project Number:6909-ATigard, OR 97224Project Manager:Greg Martin

Report ID: A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	inated Bi	phenyls	by EPA 80)82A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D0823 - EPA 3546							Soi	ı				
Blank (24D0823-BLK1)			Prepared	1: 04/23/24 (4:12 Anal	lyzed: 04/23	/24 16:00					C-07
EPA 8082A												
Aroclor 1016	ND		0.0100	mg/kg we	et 1							
Aroclor 1221	ND		0.0100	mg/kg we	et 1							
Aroclor 1232	ND		0.0100	mg/kg we	et 1							
Aroclor 1242	ND		0.0100	mg/kg we	et 1							
Aroclor 1248	ND		0.0100	mg/kg we	et 1							
Aroclor 1254	ND		0.0100	mg/kg we	et 1							
Aroclor 1260	ND		0.0100	mg/kg we	et 1							
Surr: Decachlorobiphenyl (Surr)		Recov	very: 102 %	Limits: 60	-125 %	Dill	ution: 1x					-
LCS (24D0823-BS1)			Prepared	l: 04/23/24 (4:12 Anal	lyzed: 04/23	/24 16:18					C-07
EPA 8082A						<u> </u>						
Aroclor 1016	0.203		0.0100	mg/kg we	et 1	0.250		81	47-134%			
Aroclor 1260	0.222		0.0100	mg/kg w		0.250		89	53-140%			
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 99 %	Limits: 60		Dill	ution: 1x					
Duplicate (24D0823-DUP1)			Prepared	l: 04/23/24 (4:12 Ana	lyzed: 04/23	/24 17:11					C-07
QC Source Sample: Non-SDG (A-	4D1186-01)											
Aroclor 1016	ND		0.00932	mg/kg dr	v 1		ND				30%	
Aroclor 1221	ND		0.00932	mg/kg dr			ND				30%	
Aroclor 1232	ND		0.00932	mg/kg dr			ND				30%	
Aroclor 1242	ND		0.00932	mg/kg dr			ND				30%	
Aroclor 1248	ND		0.00932	mg/kg dr			ND				30%	
Aroclor 1254	ND		0.00932	mg/kg dr			ND				30%	
Aroclor 1260	ND		0.00932	mg/kg dr			ND				30%	
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 99 %	Limits: 60		Dila	ution: 1x					
Matrix Spike (24D0823-MS1)			Prepared	l: 04/23/24 (4:12 Anal	lyzed: 04/23	/24 23:05					C-07
	A A D 1 2 0 C 0 E V		Trepared			-, -54. 0 ./23	20.00					
QC Source Sample: HA-3:2-2.5 (M4D1370-05	<u>.</u>										
EPA 8082A	0.200		0.0100	/1 1	. 1	0.250	NID	90	47 12 407			
Aroclor 1016	0.200		0.0100	mg/kg dr		0.250	ND	80	47-134%			
Aroclor 1260	0.479		0.0100	mg/kg dr	y 1	0.250	0.297	73	53-140%			

Apex Laboratories

Tigard, OR 97224

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

 GRI
 Project:
 6909-A

 16520 SW Upper Boones Ferry Rd, Ste 100
 Project Number:
 6909-A

Report ID: A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Greg Martin

Polychlorinated Biphenyls by EPA 8082A Detection Reporting Spike Source % REC RPD % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit Batch 24D0823 - EPA 3546 Soil

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRIProject:6909-A16520 SW Upper Boones Ferry Rd, Ste 100Project Number:6909-ATigard, OR 97224Project Manager:Greg Martin

Report ID: A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polyai	omatic Hy	drocarbo	ns (PAHs) by EPA	8270E (S	SIM)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D1133 - EPA 3546							So	il				
Blank (24D1133-BLK1)			Prepared	1: 04/30/24	10:11 Ana	lyzed: 04/30	/24 15:47					
EPA 8270E SIM												
Acenaphthene	ND		0.0100	mg/kg w	et 1							
Acenaphthylene	ND		0.0100	mg/kg w	et 1							
Anthracene	ND		0.0100	mg/kg w	et 1							
Benz(a)anthracene	ND		0.0100	mg/kg w	et 1							
Benzo(a)pyrene	ND		0.0100	mg/kg w	et 1							
Benzo(b)fluoranthene	ND		0.0100	mg/kg w	et 1							
Benzo(k)fluoranthene	ND		0.0100	mg/kg w	et 1							
Benzo(g,h,i)perylene	ND		0.0100	mg/kg w	et 1							
Chrysene	ND		0.0100	mg/kg w	et 1							
Dibenz(a,h)anthracene	ND		0.0100	mg/kg w	et 1							
Fluoranthene	ND		0.0100	mg/kg w	et 1							
Fluorene	ND		0.0100	mg/kg w	et 1							
Indeno(1,2,3-cd)pyrene	ND		0.0100	mg/kg w	et 1							
1-Methylnaphthalene	ND		0.0100	mg/kg w	et 1							
2-Methylnaphthalene	ND		0.0100	mg/kg w	et 1							
Naphthalene	ND		0.0100	mg/kg w								
Phenanthrene	ND		0.0100	mg/kg w	et 1							
Pyrene	ND		0.0100	mg/kg w								
Dibenzofuran	ND		0.0100	mg/kg w								
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 89 %	Limits: 44		Dil	ution: 1x					
p-Terphenyl-d14 (Surr)			79 %	54-	-127 %		"					
LCS (24D1133-BS1)			Prepared	1: 04/30/24 1	10:11 Ana	lyzed: 04/30	/24 16:12					
EPA 8270E SIM												
Acenaphthene	0.725		0.0100	mg/kg w	et 1	0.800		91	40-123%			
Acenaphthylene	0.720		0.0100	mg/kg w		0.800		90	32-132%			
Anthracene	0.707		0.0100	mg/kg w		0.800		88	47-123%			
Benz(a)anthracene	0.694		0.0100	mg/kg w		0.800		87	49-126%			
Benzo(a)pyrene	0.740		0.0100	mg/kg w		0.800		92	45-129%			
Benzo(b)fluoranthene	0.716		0.0100	mg/kg w		0.800		90	45-132%			
Benzo(k)fluoranthene	0.749		0.0100	mg/kg w		0.800		94	47-132%			
Benzo(g,h,i)perylene	0.638		0.0100	mg/kg w		0.800		80	43-134%			
Chrysene	0.771		0.0100	mg/kg w	•	0.000			.5 15 170			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRIProject:6909-A16520 SW Upper Boones Ferry Rd, Ste 100Project Number:6909-ATigard, OR 97224Project Manager:Greg Martin

Report ID: A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D1133 - EPA 3546							Soi	I				
LCS (24D1133-BS1)			Prepared	: 04/30/24 10	0:11 Anal	yzed: 04/30	/24 16:12					
Dibenz(a,h)anthracene	0.739		0.0100	mg/kg we	t 1	0.800		92	45-134%			
Fluoranthene	0.775		0.0100	mg/kg we	t 1	0.800		97	50-127%			
Fluorene	0.699		0.0100	mg/kg we	t 1	0.800		87	43-125%			
Indeno(1,2,3-cd)pyrene	0.706		0.0100	mg/kg we	t 1	0.800		88	45-133%			
1-Methylnaphthalene	0.685		0.0100	mg/kg we	t 1	0.800		86	40-120%			
2-Methylnaphthalene	0.700		0.0100	mg/kg we	t 1	0.800		87	38-122%			
Naphthalene	0.718		0.0100	mg/kg we	t 1	0.800		90	35-123%			
Phenanthrene	0.707		0.0100	mg/kg we	t 1	0.800		88	50-121%			
Pyrene	0.790		0.0100	mg/kg we	t 1	0.800		99	47-127%			
Dibenzofuran	0.706		0.0100	mg/kg we	t 1	0.800		88	44-120%			
Surr: 2-Fluorobiphenyl (Surr)		Rece	overy: 92 %	Limits: 44-	120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			79 %	54-	127 %		"					
Ouplicate (24D1133-DUP1) QC Source Sample: Non-SDG (A	A4D1379-01)		Frepared	: 04/30/24 10	U.11 Allai	yzeu. 04/30/	724 17.03					
Acenaphthene	ND		0.0115	mg/kg dry	7 1		ND				30%	
Acenaphthylene	ND		0.0115	mg/kg dry	7 1		ND				30%	
Anthracene	ND		0.0115	mg/kg dry	7 1		ND				30%	
Benz(a)anthracene	0.0139		0.0115	mg/kg dry	7 1		ND				30%	Q-0
Benzo(a)pyrene	0.0127		0.0115	mg/kg dry	7 1		ND				30%	Q-0
Benzo(b)fluoranthene	0.0157		0.0115	mg/kg dry	7 1		ND				30%	Q-0
Benzo(k)fluoranthene	ND		0.0115	mg/kg dry	7 1		ND				30%	
			0.0115	mg/kg dry	7 1		ND				30%	Q-0
Benzo(g,h,i)perylene	ND		0.0115		•						30%	
Benzo(g,h,i)perylene Chrysene	ND 0.0125		0.0115	mg/kg dry			ND					Q-0
·= ·= ·				mg/kg dry mg/kg dry	/ 1		ND ND				30%	Q-0
Chrysene	0.0125		0.0115		7 1 7 1							Q-0 Q-0
Chrysene Dibenz(a,h)anthracene	0.0125 ND		0.0115 0.0115	mg/kg dry mg/kg dry mg/kg dry	7 1 7 1 7 1 7 1		ND				30%	
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	0.0125 ND 0.0272	 	0.0115 0.0115 0.0115	mg/kg dry mg/kg dry	7 1 7 1 7 1 7 1	 	ND ND				30% 30%	
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene	0.0125 ND 0.0272 ND	 	0.0115 0.0115 0.0115 0.0115	mg/kg dry mg/kg dry mg/kg dry	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	ND ND ND		 		30% 30% 30%	Q-0
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	0.0125 ND 0.0272 ND ND	 	0.0115 0.0115 0.0115 0.0115 0.0115	mg/kg dry mg/kg dry mg/kg dry mg/kg dry	7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	 	ND ND ND ND		 		30% 30% 30% 30%	Q-0
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene	0.0125 ND 0.0272 ND ND ND	 	0.0115 0.0115 0.0115 0.0115 0.0115 0.0115	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	 	ND ND ND ND	 	 	 	30% 30% 30% 30% 30%	Q-0
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene	0.0125 ND 0.0272 ND ND ND ND	 	0.0115 0.0115 0.0115 0.0115 0.0115 0.0115	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1		ND ND ND ND ND	 	 	 	30% 30% 30% 30% 30% 30%	Q-0
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene	0.0125 ND 0.0272 ND ND ND ND ND	 	0.0115 0.0115 0.0115 0.0115 0.0115 0.0115 0.0115	mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1		ND ND ND ND ND ND ND ND	 	 	 	30% 30% 30% 30% 30% 30% 30%	Q-(

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRIProject:6909-A16520 SW Upper Boones Ferry Rd, Ste 100Project Number:6909-ATigard, OR 97224Project Manager:Greg Martin

Report ID: A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polyar	omatic Hy	drocarbor	ıs (PAHs) by EPA	8270E (S	SIM)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D1133 - EPA 3546							Soi	il				
Duplicate (24D1133-DUP1)			Prepared	: 04/30/24 1	0:11 Anal	yzed: 04/30	/24 17:03					
QC Source Sample: Non-SDG (A4	D1379-01)											
Surr: 2-Fluorobiphenyl (Surr)		Rece	overy: 74 %	Limits: 44-	120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			66 %	54-	127 %		"					
Matrix Spike (24D1133-MS1)			Prepared	: 04/30/24 1	0:11 Anal	yzed: 04/30	/24 17:53					
QC Source Sample: Non-SDG (A4	D1531-09)											
EPA 8270E SIM												
Acenaphthene	0.714		0.0106	mg/kg dr	y 1	0.845	ND	85	40-123%			
Acenaphthylene	0.706		0.0106	mg/kg dr	y 1	0.845	ND	84	32-132%			
Anthracene	0.688		0.0106	mg/kg dr	y 1	0.845	ND	81	47-123%			
Benz(a)anthracene	0.680		0.0106	mg/kg dr	y 1	0.845	ND	81	49-126%			
Benzo(a)pyrene	0.711		0.0106	mg/kg dr	y 1	0.845	ND	84	45-129%			
Benzo(b)fluoranthene	0.680		0.0106	mg/kg dr	y 1	0.845	ND	81	45-132%			
Benzo(k)fluoranthene	0.718		0.0106	mg/kg dr	y 1	0.845	ND	85	47-132%			
Benzo(g,h,i)perylene	0.609		0.0106	mg/kg dr	y 1	0.845	ND	72	43-134%			
Chrysene	0.747		0.0106	mg/kg dr	y 1	0.845	ND	88	50-124%			
Dibenz(a,h)anthracene	0.736		0.0106	mg/kg dr		0.845	ND	87	45-134%			
Fluoranthene	0.762		0.0106	mg/kg dr	y 1	0.845	ND	90	50-127%			
Fluorene	0.692		0.0106	mg/kg dr	y 1	0.845	ND	82	43-125%			
Indeno(1,2,3-cd)pyrene	0.680		0.0106	mg/kg dr	y 1	0.845	ND	80	45-133%			
1-Methylnaphthalene	0.677		0.0106	mg/kg dr		0.845	ND	80	40-120%			
2-Methylnaphthalene	0.689		0.0106	mg/kg dr		0.845	ND	82	38-122%			
Naphthalene	0.706		0.0106	mg/kg dr		0.845	ND	84	35-123%			
Phenanthrene	0.683		0.0106	mg/kg dr		0.845	ND	81	50-121%			
Pyrene	0.768		0.0106	mg/kg dr	y 1	0.845	ND	91	47-127%			
Dibenzofuran	0.683		0.0106	mg/kg dr		0.845	ND	81	44-120%			
Surr: 2-Fluorobiphenyl (Surr)		Rece	overy: 82 %	Limits: 44-			ution: 1x					
p-Terphenyl-d14 (Surr)			73 %	54-	127 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRIProject:6909-A16520 SW Upper Boones Ferry Rd, Ste 100Project Number:6909-ATigard, OR 97224Project Manager:Greg Martin

Report ID: A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D1084 - EPA 3051A							So	il				
Blank (24D1084-BLK1)			Prepared	: 04/29/24 1	1:31 Ana	lyzed: 04/30	/24 05:29					
EPA 6020B												
Arsenic	ND		1.00	mg/kg we	et 10							
Barium	ND		1.00	mg/kg we	et 10							
Cadmium	ND		0.200	mg/kg we	et 10							
Chromium	ND		1.00	mg/kg we	et 10							
Lead	ND		0.200	mg/kg we	et 10							
Mercury	ND		0.0800	mg/kg we	et 10							
Selenium	ND		1.00	mg/kg we	et 10							
Silver	ND		0.200	mg/kg we	et 10							
LCS (24D1084-BS1)			Prepared	: 04/29/24 1	1:31 Ana	lyzed: 04/30	/24 05:41					
EPA 6020B												
Arsenic	47.7		1.00	mg/kg we	et 10	50.0		95	80-120%			
Barium	50.7		1.00	mg/kg we	et 10	50.0		101	80-120%			
Cadmium	49.3		0.200	mg/kg we	et 10	50.0		99	80-120%			
Chromium	51.5		1.00	mg/kg we	et 10	50.0		103	80-120%			
Lead	51.7		0.200	mg/kg we	et 10	50.0		103	80-120%			
Mercury	1.04		0.0800	mg/kg we	et 10	1.00		104	80-120%			
Selenium	24.6		1.00	mg/kg we	et 10	25.0		98	80-120%			
Silver	26.4		0.200	mg/kg we	et 10	25.0		106	80-120%			
Duplicate (24D1084-DUP1)			Prepared	: 04/29/24 1	1:31 Ana	lyzed: 04/30	/24 05:53					
QC Source Sample: Non-SDG (A4	D1379-02)											
Arsenic	1.80		1.31	mg/kg dr	y 10		2.33			25	20%	Q-(
Barium	181		1.31	mg/kg dr	y 10		258			35	20%	Q-(
Cadmium	ND		0.262	mg/kg dr	y 10		ND				20%	
Chromium	8.63		1.31	mg/kg dr			7.92			9	20%	
Lead	9.18		0.262	mg/kg dr	-		13.2			36	20%	Q-(
Mercury	ND		0.105	mg/kg dr			ND				20%	
Selenium	ND		1.31	mg/kg dr	-		ND				20%	
Silver	ND		0.262	mg/kg dr			ND				20%	
Matrix Spike (24D1084-MS1)			Prepared	: 04/29/24 1	1:31 Anal	lyzed: 04/30	/24 05:59					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS

	Total Metals by EPA 6020B (ICPMS)														
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes			
Batch 24D1084 - EPA 3051A							So	il							
Matrix Spike (24D1084-MS1)			Prepared	: 04/29/24 11	:31 Ana	lyzed: 04/30	/24 05:59								
QC Source Sample: Non-SDG (A4	D1379-02)														
EPA 6020B															
Arsenic	60.7		1.29	mg/kg dry	10	64.3	2.33	91	75-125%						
Barium	255		1.29	mg/kg dry	10	64.3	258	-4	75-125%			Q-0			
Cadmium	61.7		0.257	mg/kg dry	10	64.3	ND	96	75-125%						
Chromium	74.0		1.29	mg/kg dry	10	64.3	7.92	103	75-125%						
Lead	74.0		0.257	mg/kg dry	10	64.3	13.2	95	75-125%						
Mercury	1.19		0.103	mg/kg dry	10	1.29	ND	92	75-125%						
Selenium	29.9		1.29	mg/kg dry	10	32.1	ND	93	75-125%						
Silver	31.1		0.257	mg/kg dry	10	32.1	ND	97	75-125%						

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	letals by	EPA 602	OB (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24E0922 - EPA 1311/3015	5A						Soi	il				
Blank (24E0922-BLK1)			Prepared	: 05/24/24	13:11 Anal	yzed: 05/24	/24 20:03					
1311/6020B												
Chromium	ND		0.100	mg/L	10							TCL
Lead	ND		0.0500	mg/L	10							TCL
LCS (24E0922-BS1)			Prepared	: 05/24/24	13:11 Anal	yzed: 05/24	/24 20:09					
1311/6020B												
Chromium	5.24		0.100	mg/L	10	5.00		105	80-120%			TCL
Lead	5.13		0.0500	mg/L	10	5.00		103	80-120%			TCL
Duplicate (24E0922-DUP1)			Prepared	: 05/24/24	13:11 Anal	yzed: 05/24	/24 20:20					
OC Source Sample: Non-SDG (A4I	01395-03)											
Chromium	ND		0.100	mg/L	10		ND				20%	
Lead	ND		0.0500	mg/L	10		0.0538			***	20%	
Matrix Spike (24E0922-MS1)			Prepared	: 05/24/24	13:11 Anal	yzed: 05/24	/24 20:31					
QC Source Sample: HA-1:0.5-1.5 (A4D1396-0	<u>)1)</u>										
Chromium	5.22		0.100	mg/L	10	5.00	ND	104	50-150%			
Lead	5.31		0.0500	mg/L	10	5.00	0.0940	104	50-150%			
Matrix Spike (24E0922-MS2)			Prepared	: 05/24/24	13:11 Anal	yzed: 05/24	/24 21:05					
QC Source Sample: Non-SDG (A4F	E1175-13)											
1311/6020B												
Chromium	5.31		0.100	mg/L	10	5.00	ND	106	50-150%			
Lead	5.39		0.0500	mg/L	10	5.00	0.0856	106	50-150%			
Matrix Spike (24E0922-MS3)			Prepared	: 05/24/24	13:11 Anal	yzed: 05/24	/24 21:39					
OC Source Sample: Non-SDG (A4E	E1499-01)											
Chromium	5.50		0.100	mg/L	10	5.00	ND	110	50-150%			
Lead	5.65		0.0500	mg/L	10	5.00	ND	113	50-150%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS

	TCLP Metals by EPA 6020B (ICPMS)														
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes			
Batch 24E0922 - EPA 1311/30	15A						Soi	I							
Matrix Spike (24E0922-MS4)			Prepared	: 05/24/24	13:11 Ana	lyzed: 05/24	/24 22:02								
QC Source Sample: Non-SDG (A	4E1500-01)														
<u>1311/6020B</u>															
Chromium	5.15		0.100	mg/L	10	5.00	ND	103	50-150%						
Lead	5.12		0.0500	mg/L	10	5.00	ND	102	50-150%						

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D0786 - Total Solids ((Dry Weigh	t) - 2022					Soil					
Duplicate (24D0786-DUP1)			Prepared	: 04/22/24	09:47 Anal	yzed: 04/23	/24 07:15					
QC Source Sample: HA-1:0.5-1.5 EPA 8000D	(A4D1396-01)										
% Solids	93.8		1.00	%	1		94.4			0.6	10%	
Duplicate (24D0786-DUP2)			Prepared	: 04/22/24	09:47 Anal	yzed: 04/23	/24 07:15					
QC Source Sample: HA-2:0.5-1.5	(A4D1396-02	<u>)</u>										
EPA 8000D % Solids	90.3		1.00	%	1		90.2			0.2	10%	
Duplicate (24D0786-DUP3)			Prepared	: 04/22/24	09:47 Anal	yzed: 04/23	/24 07:15					
QC Source Sample: HA-2:4-4.5 (A	A4D1396-03)											
% Solids	80.9		1.00	%	1		81.9			1	10%	
Duplicate (24D0786-DUP4)			Prepared	: 04/22/24	09:47 Anal	yzed: 04/23	/24 07:15					
QC Source Sample: HA-3:0.5-1.5	(A4D1396-04	<u>1)</u>										
<u>EPA 8000D</u> % Solids	94.0		1.00	%	1		92.9			1	10%	
Duplicate (24D0786-DUP5)			Prepared	: 04/22/24	09:47 Anal	yzed: 04/23	/24 07:15					
QC Source Sample: HA-3:2-2.5 (A	A4D1396-05)											
<u>EPA 8000D</u> % Solids	88.5		1.00	%	1		89.2			0.8	10%	
Duplicate (24D0786-DUP6)			Prepared	: 04/22/24	18:24 Anal	yzed: 04/23	/24 07:15					
QC Source Sample: Non-SDG (A4	4D1454-01)											
% Solids	83.1		1.00	%	1		81.3			2	10%	
Duplicate (24D0786-DUP7)			Prepared	: 04/22/24	18:24 Anal	yzed: 04/23	/24 07:15					
QC Source Sample: Non-SDG (A4	4D1455-01)											
% Solids	92.4		1.00	%	1		92.1			0.3	10%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24D0786 - Total Solids ((Dry Weigl	ht) - 2022					Soil					
Duplicate (24D0786-DUP8)			Prepared	: 04/22/24	18:24 Anal	yzed: 04/23/	/24 07:15					
QC Source Sample: Non-SDG (A4	4D1456-01)											
% Solids	79.3		1.00	%	1		79.4			0.06	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Tigard, OR 97224

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

SAMPLE PREPARATION INFORMATION

Prep: EPA 3546 (Fue	els)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24D0881							
A4D1396-01	Soil	NWTPH-Dx	04/17/24 15:44	04/24/24 05:51	11.11g/5mL	10g/5mL	0.90
A4D1396-03	Soil	NWTPH-Dx	04/17/24 13:45	04/24/24 05:51	11.33g/5mL	10g/5mL	0.88
A4D1396-04	Soil	NWTPH-Dx	04/17/24 14:34	04/24/24 05:51	11.41g/5mL	10g/5mL	0.88
A4D1396-05	Soil	NWTPH-Dx	04/17/24 15:07	04/24/24 05:51	11.02g/5mL	10g/5mL	0.91
Batch: 24D1134							
A4D1396-02RE1	Soil	NWTPH-Dx	04/17/24 12:56	04/30/24 10:13	11.53g/5mL	10g/5mL	0.87

	Gas	soline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24D0954							
A4D1396-02	Soil	NWTPH-Gx (MS)	04/17/24 12:56	04/17/24 12:56	7.47g/5mL	5g/5mL	0.67

		ВТ	EX Compounds by E	PA 8260D			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24D0954							
A4D1396-02	Soil	5035A/8260D	04/17/24 12:56	04/17/24 12:56	7.47g/5mL	5g/5mL	0.67

		Polycl	nlorinated Biphenyls	by EPA 8082A			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24D0823							
A4D1396-01	Soil	EPA 8082A	04/17/24 15:44	04/23/24 04:12	11.84g/5mL	10g/5mL	0.85
A4D1396-02	Soil	EPA 8082A	04/17/24 12:56	04/23/24 04:12	11.11g/5mL	10g/5mL	0.90
A4D1396-03	Soil	EPA 8082A	04/17/24 13:45	04/23/24 04:12	11.08g/5mL	10g/5mL	0.90
A4D1396-04	Soil	EPA 8082A	04/17/24 14:34	04/23/24 04:12	11.43g/5mL	10g/5mL	0.88
A4D1396-05	Soil	EPA 8082A	04/17/24 15:07	04/23/24 04:12	11.15g/5mL	10g/5mL	0.90

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRIProject:6909-A16520 SW Upper Boones Ferry Rd, Ste 100Project Number:6909-ATigard, OR 97224Project Manager:Greg Martin

Report ID: A4D1396 - 07 02 24 0825

SAMPLE PREPARATION INFORMATION

		Polyaromatic F	lydrocarbons (PAHs) by EPA 8270E (SII	M)		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24D1133							
A4D1396-01	Soil	EPA 8270E SIM	04/17/24 15:44	04/30/24 10:11	11.04g/5mL	10g/5mL	0.91
A4D1396-02	Soil	EPA 8270E SIM	04/17/24 12:56	04/30/24 10:11	11.59g/5mL	10g/5mL	0.86
A4D1396-03	Soil	EPA 8270E SIM	04/17/24 13:45	04/30/24 10:11	11.32g/5mL	10g/5mL	0.88
A4D1396-04	Soil	EPA 8270E SIM	04/17/24 14:34	04/30/24 10:11	11.79g/5mL	10g/5mL	0.85
A4D1396-05RE1	Soil	EPA 8270E SIM	04/17/24 15:07	04/30/24 10:11	11.1g/5mL	10g/5mL	0.90

		Tota	al Metals by EPA 602	0B (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24D1084							
A4D1396-01	Soil	EPA 6020B	04/17/24 15:44	04/29/24 11:31	0.488g/50mL	0.5g/50mL	1.02
A4D1396-02	Soil	EPA 6020B	04/17/24 12:56	04/29/24 11:31	0.456g/50mL	0.5g/50mL	1.10
A4D1396-03	Soil	EPA 6020B	04/17/24 13:45	04/29/24 11:31	0.478g/50mL	0.5g/50mL	1.05
A4D1396-04	Soil	EPA 6020B	04/17/24 14:34	04/29/24 11:31	0.465g/50mL	0.5g/50mL	1.08
A4D1396-05	Soil	EPA 6020B	04/17/24 15:07	04/29/24 11:31	0.49g/50mL	0.5g/50mL	1.02

		TCL	P Metals by EPA 602	OB (ICPMS)			
Prep: EPA 1311/301	<u>5A</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0922							
A4D1396-01	Soil	1311/6020B	04/17/24 15:44	05/24/24 13:11	10mL/50mL	10mL/50mL	1.00
A4D1396-02	Soil	1311/6020B	04/17/24 12:56	05/24/24 13:11	10mL/50mL	10mL/50mL	1.00
A4D1396-05	Soil	1311/6020B	04/17/24 15:07	05/24/24 13:11	10 mL / 50 mL	10 mL / 50 mL	1.00

			Percent Dry We	ight			
Prep: Total Solids ([<u> Dry Weight) - 2022</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24D0786							
A4D1396-01	Soil	EPA 8000D	04/17/24 15:44	04/22/24 09:47			NA
A4D1396-02	Soil	EPA 8000D	04/17/24 12:56	04/22/24 09:47			NA
A4D1396-03	Soil	EPA 8000D	04/17/24 13:45	04/22/24 09:47			NA
A4D1396-04	Soil	EPA 8000D	04/17/24 14:34	04/22/24 09:47			NA
A4D1396-05	Soil	EPA 8000D	04/17/24 15:07	04/22/24 09:47			NA

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A

 16520 SW Upper Boones Ferry Rd, Ste 100
 Project Number: 6909-A
 Report ID:

 Tigard, OR 97224
 Project Manager: Greg Martin
 A4D1396 - 07 02 24 0825

SAMPLE PREPARATION INFORMATION

Percent Dry Weight

			TCLP Extraction by E	PA 1311			
Prep: EPA 1311 (TC	LP)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24E0845							
A4D1396-01	Soil	EPA 1311	04/17/24 15:44	05/23/24 14:15	100g/2000g	100g/2000g	NA
A4D1396-02	Soil	EPA 1311	04/17/24 12:56	05/23/24 14:15	100g/2000g	100g/2000g	NA
A4D1396-05	Soil	EPA 1311	04/17/24 15:07	05/23/24 14:15	$100 \mathrm{g}/2000 \mathrm{g}$	100g/2000g	NA

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

C-07	Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order
	to minimize matrix interference.

- F-17 No fuel pattern detected. The Diesel result represents carbon range C10 to C25, and the Oil result represents >C25 to C40.
- M-05 Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
- P-12 Result estimated due to the presence of multiple PCB Aroclors and/or PCB congeners not defined as Aroclors.
- Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
- Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
- S-01 Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.
- S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
- TCLP This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 24E0845.
- V-15 Sample aliquot was subsampled from the sample container in the laboratory. The subsampled aliquot was preserved in the laboratory within 48 hours of sampling.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: 6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4D1396 - 07 02 24 0825

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"__" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

Tigard, OR 97224 Project Manager: Greg Martin

Report ID: A4D1396 - 07 02 24 0825

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL).

Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level.

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A
16520 SW Upper Boones Ferry Rd, Ste 100 Project Number: 6909-A

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: 6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4D1396 - 07 02 24 0825

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: 6909-A

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: 6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4D1396 - 07 02 24 0825

0100 SM Sandourg St., 11gara, OK 9/223 Fn: 303-/18-2323	7,007	:						-			ŀ		,		3					1	- 1
621		Project Mgr.	Mgr: G	G. Martin	F			P	Project Name:	me:	20	6909-A	4				Project #:		(409 - A		
Address: Switt 100 Tigard of 9724	Bord	SPE	THE	۔ ق	Pho	Be: 50	Phone: 503 - 6816-0487	0-D1	183	Email:	9.5	tan	ino	glei	Email: g. Martin 2 gri. Com		PO#	4-6039	4-6		
Sampled by: DBV / AEH / TEH	re'H						31111 5						ANA	LYSE	ANALYSIS REQUEST	H			i de la companya de La companya de la co		
Site Location:										7-7	386			'po	K' SP'	CF.					
OR WA CA				зиз			ار.•		kial		7 HD J		(8		Fe, 1 0, Ni, 7, Zn				-	•	
AK ID									HuA 20				etals (8		o, Cu, Ma, M a, Tl,					əle	
SAMPLE ID	DATE	TIME	XIATAM	# OF CON	HALMN	HALMN	TT# 0528 I## 0528	8260 Hal	OA 0978	MIS 0728	8085 PCE	1808 Pest	KCKV W	Priority M ALSB. A	AL SB, AS CR, Cr, C Hg, Mg, I Se, Ag, Ng TOTAL	TCLP M				ma2 bloH	
S11-510:1-₩	t1/h	15.4	8	7	×				Ĺ	×	X	_/	X	-		-					1
HA-2:0:5-1:5	4/14	9521	SS	J	1	×	X	-		4	×	, ,	×	-							
	25.61		M	ħ	-		-	_				_								-	
HA-2:4-4.5	HIT	1345 55	\$\$	ナ	×		-			1×		.,	X			ļ				-	
HA-3:0,5-1.5	비사	H34		3	×		 	-		V	<u> </u>		X			ļ				-	
											-										
HA-3: 2-2.5	4/4	1507 SS		7	×		-			×	×		X		٥						
										+											
Standard Tu	Standard Turn Around Time (TAT) = 10 Business Days	ime (TA1) = 10 Bu	sincss Day	- 32]	1	-	П	SPECL	SPECIAL INSTRUCTIONS:	TRUC	TIONS	-		-				+	7
TAT Requested (circle)	1 Day 5 Day	\cup	2 Day Standard	_	3 Day Other:			1			617	11.5	2	B	1 12	¥	R	Bill to GIRI-AP 2 GRI.Com	K K		
	SAMPLES ARE HELD FOR 30 DAYS	LD FOR	30 DAYS						П												
SEGNATION OF SEGNETIAL SEG	Date: 04 18 24	124	RECEIVED BY: Signature: My/	ED BY:		11/15	Date:	~	<i>U</i> 2	RELINQUISHED BY: Signature:	QUISH	ED BY.		Date:	joj		RECEIVED BY: Signature:	SD BY:	Date:		1
Jerdu	Time:			Myser Willy	1. K		Time:	8		Printed Name	Name:			Time:	:ii		Printed Name	ne:	Time:		
my:			Company:	<					Ť	Company:	3.						Company				1

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GRI Project: 6909-A

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: 6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4D1396 - 07 02 24 0825

	APEX LABS COOLER RECEIPT FORM
Client: GRI	Element WO#: A4\D\34\p
Project/Project #: 6909	1- A
Delivery Info:	
Date/time received: 41864	<u>@1430</u> ву: <u>AAW</u>
	SSFedEx_UPS_RadioMorganSDS_EvergreenOther
From USDA Regulated Origin?	
Cooler Inspection Date/tim	ne inspected: 4/18/14 @ 143D By: 1970
Chain of Custody included?	Yes _ > No
Signed/dated by client?	Yes No
Contains USDA Reg. Soils?	Yes No Unsure (email RegSoils)
Co	oler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	3
Custody seals? (Y/N)	\mathcal{N}
Received on ice? (Y/N)	9
Temp. blanks? (Y/N)	Y
Ice type: (Gel/Real/Other)	101
Condition (In/Out):	6)
	perature samples? Yes/N6
Bottle labels/COCs agree? Yes	No Comments:
COC/container discrepancies for	rm initiated? Yes No X
	propriate for analysis? Yes X No Comments:
Do VOA vials have visible head	space? Yes No NA
Comments	
Water samples: pH checked: Ye Comments:	sNoNA PH appropriate? YesNoNA PH ID:
Labeled by: AM N	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Tuesday, August 6, 2024
Greg Martin
GRI
16520 SW Upper Boones Ferry Rd, Ste 100
Tigard, OR 97224

RE: A4F1068 - OMSI - Crescent Parcel/6909-A

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4F1068, which was received by the laboratory on 6/11/2024 at 11:05:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: dthomas@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 4.8 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION				
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DP-1-2	A4F1068-01	Soil	06/10/24 09:20	06/11/24 11:05
DP-1-10	A4F1068-02	Soil	06/10/24 09:34	06/11/24 11:05
DP-1-20	A4F1068-03	Soil	06/10/24 09:50	06/11/24 11:05
DP-2-2	A4F1068-04	Soil	06/10/24 10:14	06/11/24 11:05
DP-2-9	A4F1068-05	Soil	06/10/24 10:31	06/11/24 11:05
DP-2-20	A4F1068-06	Soil	06/10/24 10:48	06/11/24 11:05
DP-3-10	A4F1068-07	Soil	06/10/24 11:14	06/11/24 11:05
DP-4-2	A4F1068-08	Soil	06/10/24 12:05	06/11/24 11:05
DP-4-9	A4F1068-09	Soil	06/10/24 12:11	06/11/24 11:05
DP-4-20	A4F1068-10	Soil	06/10/24 12:15	06/11/24 11:05
DP-5-10	A4F1068-11	Soil	06/10/24 11:30	06/11/24 11:05
DP-6-10	A4F1068-12	Soil	06/10/24 11:48	06/11/24 11:05

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection	Reporting	•••	D." .	Date		••
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DP-1-2 (A4F1068-01)				Matrix: Soil		Batch:	24F0439	
Diesel	ND		21.7	mg/kg dry	1	06/14/24 00:32	NWTPH-Dx	
Oil	452		43.5	mg/kg dry	1	06/14/24 00:32	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 86 %	Limits: 50-150 %	6 1	06/14/24 00:32	NWTPH-Dx	
DP-1-10 (A4F1068-02)				Matrix: Soil		Batch:	24F0439	
Diesel	ND		20.4	mg/kg dry	1	06/14/24 01:13	NWTPH-Dx	
Oil	145		40.9	mg/kg dry	1	06/14/24 01:13	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 74 %	Limits: 50-150 %	6 1	06/14/24 01:13	NWTPH-Dx	
DP-1-20 (A4F1068-03)				Matrix: Soil		Batch:	24F0681	
Diesel	ND		19.1	mg/kg dry	1	06/20/24 23:05	NWTPH-Dx	
Oil	ND		38.2	mg/kg dry	1	06/20/24 23:05	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 82 %	Limits: 50-150 %	6 I	06/20/24 23:05	NWTPH-Dx	
DP-2-2 (A4F1068-04RE1)				Matrix: Soil		Batch:	24F0439	
Diesel	ND		22.2	mg/kg dry	1	06/17/24 11:36	NWTPH-Dx	
Oil	ND		44.5	mg/kg dry	1	06/17/24 11:36	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 73 %	Limits: 50-150 %	6 1	06/17/24 11:36	NWTPH-Dx	
DP-2-9 (A4F1068-05)		-		Matrix: Soil		Batch:	24F0681	
Diesel	ND		19.9	mg/kg dry	1	06/20/24 23:45	NWTPH-Dx	
Oil	ND		39.9	mg/kg dry	1	06/20/24 23:45	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 80 %	Limits: 50-150 %	6 I	06/20/24 23:45	NWTPH-Dx	
DP-2-20 (A4F1068-06)				Matrix: Soil		Batch:	24F0439	
Diesel	ND		18.4	mg/kg dry	1	06/14/24 02:15	NWTPH-Dx	
Oil	ND		36.8	mg/kg dry	1	06/14/24 02:15	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 100 %	Limits: 50-150 %	6 I	06/14/24 02:15	NWTPH-Dx	
DP-3-10 (A4F1068-07RE1)		Matrix: Soil Batch:		24F0439				
Diesel	ND		43.3	mg/kg dry	2	06/14/24 09:15	NWTPH-Dx	
Oil	387		86.6	mg/kg dry	2	06/14/24 09:15	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 93 %	Limits: 50-150 %	6 2	06/14/24 09:15	NWTPH-Dx	S-05

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocar	bons by NWTPI	I-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DP-4-2 (A4F1068-08)				Matrix: Soil		Batch: 24F0439		
Diesel	ND		20.1	mg/kg dry	1	06/14/24 02:57	NWTPH-Dx	
Oil	399		40.1	mg/kg dry	1	06/14/24 02:57	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 91 %	Limits: 50-150 %	I	06/14/24 02:57	NWTPH-Dx	
DP-4-9 (A4F1068-09)		Matrix: Soil			Batch:	24F0439		
Diesel	ND		18.3	mg/kg dry	1	06/14/24 03:38	NWTPH-Dx	
Oil	ND		36.6	mg/kg dry	1	06/14/24 03:38	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 94 %	Limits: 50-150 %	1	06/14/24 03:38	NWTPH-Dx	
DP-4-20 (A4F1068-10)						Batch:	24F0439	
Diesel	ND		19.1	mg/kg dry	1	06/14/24 03:59	NWTPH-Dx	
Oil	ND		38.1	mg/kg dry	1	06/14/24 03:59	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 91 %	Limits: 50-150 %	1	06/14/24 03:59	NWTPH-Dx	
DP-5-10 (A4F1068-11)				Matrix: Soil		Batch:	24F0439	
Diesel	ND		213	mg/kg dry	10	06/14/24 04:19	NWTPH-Dx	
Oil	714		426	mg/kg dry	10	06/14/24 04:19	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 87 %	Limits: 50-150 %	10	06/14/24 04:19	NWTPH-Dx	S-05
DP-6-10 (A4F1068-12)		-		Matrix: Soil		Batch:	24F0439	
Diesel	ND		19.2	mg/kg dry	1	06/14/24 05:00	NWTPH-Dx	
Oil	149		38.4	mg/kg dry	1	06/14/24 05:00	NWTPH-Dx	Q-39, Q-42
Surrogate: o-Terphenyl (Surr)		Reco	very: 95 %	Limits: 50-150 %	I	06/14/24 05:00	NWTPH-Dx	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

Gasoli	ne Range Hy	drocarbons	(Benzene tl	hrough Naphtha	alene) by	NWTPH-Gx			
	Sample	Detection	Reporting	Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
DP-1-20 (A4F1068-03)				Matrix: Soil Batch: 24F0521					
Gasoline Range Organics	ND		5.00	mg/kg dry	50	06/15/24 12:24	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 95 %	Limits: 50-150 %	5 1	06/15/24 12:24	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			113 %	50-150 %	5 1	06/15/24 12:24	NWTPH-Gx (MS)		
DP-2-9 (A4F1068-05)				Matrix: Soil		Batch:	24F0521		
Gasoline Range Organics	ND		5.20	mg/kg dry	50	06/15/24 12:51	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 98 %	Limits: 50-150 %	5 1	06/15/24 12:51	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)			113 %	50-150 %	5 1	06/15/24 12:51	NWTPH-Gx (MS)		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

		BTEX Co	mpounds b	y EPA 8260D				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DP-1-20 (A4F1068-03)			Matrix: Soil Batch: 24F0521					
Benzene	ND		0.0100	mg/kg dry	50	06/15/24 12:24	5035A/8260D	
Toluene	ND		0.0500	mg/kg dry	50	06/15/24 12:24	5035A/8260D	
Ethylbenzene	ND		0.0250	mg/kg dry	50	06/15/24 12:24	5035A/8260D	
Xylenes, total	ND		0.0750	mg/kg dry	50	06/15/24 12:24	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 101 %	Limits: 80-120 %	5 1	06/15/24 12:24	5035A/8260D	
Toluene-d8 (Surr)			102 %	80-120 %	<i>I</i>	06/15/24 12:24	5035A/8260D	
4-Bromofluorobenzene (Surr)			99 %	79-120 %	1	06/15/24 12:24	5035A/8260D	
DP-2-9 (A4F1068-05)				Matrix: Soil		Batch:	24F0521	
Benzene	ND		0.0104	mg/kg dry	50	06/15/24 12:51	5035A/8260D	
Toluene	ND		0.0520	mg/kg dry	50	06/15/24 12:51	5035A/8260D	
Ethylbenzene	ND		0.0260	mg/kg dry	50	06/15/24 12:51	5035A/8260D	
Xylenes, total	ND		0.0780	mg/kg dry	50	06/15/24 12:51	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80-120 %	5 1	06/15/24 12:51	5035A/8260D	
Toluene-d8 (Surr)			102 %	80-120 %	<i>I</i>	06/15/24 12:51	5035A/8260D	
4-Bromofluorobenzene (Surr)			99 %	79-120 %	1	06/15/24 12:51	5035A/8260D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

		Polychlorinat	ted Bipheny	ls by EPA 8082	2A			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
DP-1-2 (A4F1068-01)				Matrix: Soil		Batch:	24F0733	C-07
Aroclor 1016	ND		0.0108	mg/kg dry	1	06/21/24 18:54	EPA 8082A	
Aroclor 1221	ND		0.0108	mg/kg dry	1	06/21/24 18:54	EPA 8082A	
Aroclor 1232	ND		0.0108	mg/kg dry	1	06/21/24 18:54	EPA 8082A	
Aroclor 1242	ND		0.0108	mg/kg dry	1	06/21/24 18:54	EPA 8082A	
Aroclor 1248	ND		0.0108	mg/kg dry	1	06/21/24 18:54	EPA 8082A	
Aroclor 1254	ND		0.0108	mg/kg dry	1	06/21/24 18:54	EPA 8082A	
Aroclor 1260	ND		0.0108	mg/kg dry	1	06/21/24 18:54	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 97 %	Limits: 60-125 %	<i>1</i>	06/21/24 18:54	EPA 8082A	
DP-1-10 (A4F1068-02)		Matrix:		Matrix: Soil		Batch:	24F0733	C-07
Aroclor 1016	ND		0.0102	mg/kg dry	1	06/21/24 20:05	EPA 8082A	
Aroclor 1221	ND		0.0102	mg/kg dry	1	06/21/24 20:05	EPA 8082A	
Aroclor 1232	ND		0.0102	mg/kg dry	1	06/21/24 20:05	EPA 8082A	
Aroclor 1242	ND		0.0102	mg/kg dry	1	06/21/24 20:05	EPA 8082A	
Aroclor 1248	ND		0.0102	mg/kg dry	1	06/21/24 20:05	EPA 8082A	
Aroclor 1254	0.0110		0.0102	mg/kg dry	1	06/21/24 20:05	EPA 8082A	P-12
Aroclor 1260	0.0171		0.0102	mg/kg dry	1	06/21/24 20:05	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 97 %	Limits: 60-125 %	1	06/21/24 20:05	EPA 8082A	
DP-1-20 (A4F1068-03)				Matrix: Soil		Batch:	24F0733	C-07
Aroclor 1016	ND		0.00950	mg/kg dry	1	06/21/24 20:41	EPA 8082A	
Aroclor 1221	ND		0.00950	mg/kg dry	1	06/21/24 20:41	EPA 8082A	
Aroclor 1232	ND		0.00950	mg/kg dry	1	06/21/24 20:41	EPA 8082A	
Aroclor 1242	ND		0.00950	mg/kg dry	1	06/21/24 20:41	EPA 8082A	
Aroclor 1248	ND		0.00950	mg/kg dry	1	06/21/24 20:41	EPA 8082A	
Aroclor 1254	ND		0.00950	mg/kg dry	1	06/21/24 20:41	EPA 8082A	
Aroclor 1260	ND		0.00950	mg/kg dry	1	06/21/24 20:41	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 104 %	Limits: 60-125 %	5 1	06/21/24 20:41	EPA 8082A	
DP-2-2 (A4F1068-04)		Matrix: Soil		Batch:	24F0733	C-07		
Aroclor 1016	ND		0.0110	mg/kg dry	1	06/21/24 21:16	EPA 8082A	
Aroclor 1221	ND		0.0110	mg/kg dry	1	06/21/24 21:16	EPA 8082A	
Aroclor 1232	ND		0.0110	mg/kg dry	1	06/21/24 21:16	EPA 8082A	
Aroclor 1242								

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

		Polychlorinated	d Bipheny	ls by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DP-2-2 (A4F1068-04)				Matrix: Soil		Batch: 24F0733		C-07
Aroclor 1248	ND		0.0110	mg/kg dry	1	06/21/24 21:16	EPA 8082A	
Aroclor 1254	ND		0.0110	mg/kg dry	1	06/21/24 21:16	EPA 8082A	
Aroclor 1260	0.0706		0.0110	mg/kg dry	1	06/21/24 21:16	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recovery	v: 92 %	Limits: 60-125 %	1	06/21/24 21:16	EPA 8082A	
DP-2-9 (A4F1068-05)				Matrix: Soil		Batch: 2	24F0733	C-07
Aroclor 1016	ND		0.00962	mg/kg dry	1	06/21/24 21:52	EPA 8082A	
Aroclor 1221	ND		0.00962	mg/kg dry	1	06/21/24 21:52	EPA 8082A	
Aroclor 1232	ND		0.00962	mg/kg dry	1	06/21/24 21:52	EPA 8082A	
Aroclor 1242	ND		0.00962	mg/kg dry	1	06/21/24 21:52	EPA 8082A	
Aroclor 1248	ND		0.00962	mg/kg dry	1	06/21/24 21:52	EPA 8082A	
Aroclor 1254	ND		0.00962	mg/kg dry	1	06/21/24 21:52	EPA 8082A	
Aroclor 1260	ND		0.00962	mg/kg dry	1	06/21/24 21:52	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recovery:	104 %	Limits: 60-125 %	1	06/21/24 21:52	EPA 8082A	
DP-2-20 (A4F1068-06)				Matrix: Soil		Batch: 2	24F0733	C-07
Aroclor 1016	ND		0.00938	mg/kg dry	1	06/21/24 18:18	EPA 8082A	
Aroclor 1221	ND		0.00938	mg/kg dry	1	06/21/24 18:18	EPA 8082A	
Aroclor 1232	ND		0.00938	mg/kg dry	1	06/21/24 18:18	EPA 8082A	
Aroclor 1242	ND		0.00938	mg/kg dry	1	06/21/24 18:18	EPA 8082A	
Aroclor 1248	ND		0.00938	mg/kg dry	1	06/21/24 18:18	EPA 8082A	
Aroclor 1254	ND		0.00938	mg/kg dry	1	06/21/24 18:18	EPA 8082A	
Aroclor 1260	ND		0.00938	mg/kg dry	1	06/21/24 18:18	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recovery	v: 95 %	Limits: 60-125 %	1	06/21/24 18:18	EPA 8082A	
DP-3-10 (A4F1068-07)				Matrix: Soil		Batch:	24F0733	C-07
Aroclor 1016	ND		0.0106	mg/kg dry	1	06/21/24 18:54	EPA 8082A	
Aroclor 1221	ND		0.0106	mg/kg dry	1	06/21/24 18:54	EPA 8082A	
Aroclor 1232	ND		0.0106	mg/kg dry	1	06/21/24 18:54	EPA 8082A	
Aroclor 1242	ND		0.0106	mg/kg dry	1	06/21/24 18:54	EPA 8082A	
Aroclor 1248	ND		0.0106	mg/kg dry	1	06/21/24 18:54	EPA 8082A	
Aroclor 1254	ND		0.0106	mg/kg dry	1	06/21/24 18:54	EPA 8082A	
Aroclor 1260	ND		0.0106	mg/kg dry	1	06/21/24 18:54	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recovery	v: 82 %	Limits: 60-125 %	1	06/21/24 18:54	EPA 8082A	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

		Polychlorinated	d Bipheny	ls by EPA 8082	<u> </u>			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
DP-4-2 (A4F1068-08)				Matrix: Soil		Batch: 2	Batch: 24F0733	
Aroclor 1016	ND		0.00995	mg/kg dry	1	06/21/24 19:30	EPA 8082A	
Aroclor 1221	ND		0.00995	mg/kg dry	1	06/21/24 19:30	EPA 8082A	
Aroclor 1232	ND		0.00995	mg/kg dry	1	06/21/24 19:30	EPA 8082A	
Aroclor 1242	ND		0.00995	mg/kg dry	1	06/21/24 19:30	EPA 8082A	
Aroclor 1248	ND		0.00995	mg/kg dry	1	06/21/24 19:30	EPA 8082A	
Aroclor 1254	ND		0.00995	mg/kg dry	1	06/21/24 19:30	EPA 8082A	
Aroclor 1260	ND		0.00995	mg/kg dry	1	06/21/24 19:30	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recover	v: 94 %	Limits: 60-125 %	1	06/21/24 19:30	EPA 8082A	
DP-4-9 (A4F1068-09)				Matrix: Soil		Batch: 2	24F0733	C-07
Aroclor 1016	ND		0.00924	mg/kg dry	1	06/21/24 20:05	EPA 8082A	
Aroclor 1221	ND		0.00924	mg/kg dry	1	06/21/24 20:05	EPA 8082A	
Aroclor 1232	ND		0.00924	mg/kg dry	1	06/21/24 20:05	EPA 8082A	
Aroclor 1242	ND		0.00924	mg/kg dry	1	06/21/24 20:05	EPA 8082A	
Aroclor 1248	ND		0.00924	mg/kg dry	1	06/21/24 20:05	EPA 8082A	
Aroclor 1254	ND		0.00924	mg/kg dry	1	06/21/24 20:05	EPA 8082A	
Aroclor 1260	ND		0.00924	mg/kg dry	1	06/21/24 20:05	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recovery	v: 98 %	Limits: 60-125 %	1	06/21/24 20:05	EPA 8082A	
DP-4-20 (A4F1068-10)				Matrix: Soil		Batch: 2	24F0733	C-07
Aroclor 1016	ND		0.00942	mg/kg dry	1	06/21/24 20:41	EPA 8082A	
Aroclor 1221	ND		0.00942	mg/kg dry	1	06/21/24 20:41	EPA 8082A	
Aroclor 1232	ND		0.00942	mg/kg dry	1	06/21/24 20:41	EPA 8082A	
Aroclor 1242	ND		0.00942	mg/kg dry	1	06/21/24 20:41	EPA 8082A	
Aroclor 1248	ND		0.00942	mg/kg dry	1	06/21/24 20:41	EPA 8082A	
Aroclor 1254	ND		0.00942	mg/kg dry	1	06/21/24 20:41	EPA 8082A	
Aroclor 1260	0.0102		0.00942	mg/kg dry	1	06/21/24 20:41	EPA 8082A	P-09
Surrogate: Decachlorobiphenyl (Surr)		Recover	v: 96 %	Limits: 60-125 %	1	06/21/24 20:41	EPA 8082A	
DP-5-10 (A4F1068-11)				Matrix: Soil		Batch: 24F0733		C-07
Aroclor 1016	ND		0.0106	mg/kg dry	1	06/21/24 21:16	EPA 8082A	
Aroclor 1221	ND		0.0106	mg/kg dry	1	06/21/24 21:16	EPA 8082A	
Aroclor 1232	ND		0.0106	mg/kg dry	1	06/21/24 21:16	EPA 8082A	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	ls by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DP-5-10 (A4F1068-11)		Matrix: Soil				Batch: 2	Batch: 24F0733	
Aroclor 1242	ND		0.0106	mg/kg dry	1	06/21/24 21:16	EPA 8082A	
Aroclor 1248	ND		0.0106	mg/kg dry	1	06/21/24 21:16	EPA 8082A	
Aroclor 1254	ND		0.0106	mg/kg dry	1	06/21/24 21:16	EPA 8082A	
Aroclor 1260	ND		0.0106	mg/kg dry	1	06/21/24 21:16	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 85 %	Limits: 60-125 %	6 I	06/21/24 21:16	EPA 8082A	
DP-6-10 (A4F1068-12)				Matrix: Soil		Batch: 2	24F0733	C-07
Aroclor 1016	ND		0.00976	mg/kg dry	1	06/21/24 21:52	EPA 8082A	
Aroclor 1221	ND		0.00976	mg/kg dry	1	06/21/24 21:52	EPA 8082A	
Aroclor 1232	ND		0.00976	mg/kg dry	1	06/21/24 21:52	EPA 8082A	
Aroclor 1242	ND		0.00976	mg/kg dry	1	06/21/24 21:52	EPA 8082A	
Aroclor 1248	ND		0.00976	mg/kg dry	1	06/21/24 21:52	EPA 8082A	
Aroclor 1254	ND		0.00976	mg/kg dry	1	06/21/24 21:52	EPA 8082A	
Aroclor 1260	0.0458		0.00976	mg/kg dry	1	06/21/24 21:52	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 94 %	Limits: 60-125 %	6 I	06/21/24 21:52	EPA 8082A	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

	Polyaro	matic Hydro	carbons (PA	Hs) by EPA 827	UE (SIM)		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DP-1-20 (A4F1068-03)				Matrix: Soil		Batch:	24F0387	
Acenaphthene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Acenaphthylene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Anthracene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Benz(a)anthracene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Benzo(a)pyrene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Benzo(b)fluoranthene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Chrysene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Fluoranthene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Fluorene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
ndeno(1,2,3-cd)pyrene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
l-Methylnaphthalene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
2-Methylnaphthalene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Naphthalene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Phenanthrene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Pyrene	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Dibenzofuran	ND		0.00918	mg/kg dry	1	06/12/24 13:00	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recon	very: 88 %	Limits: 44-120 %	1	06/12/24 13:00	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			88 %	54-127 %	1	06/12/24 13:00	EPA 8270E SIM	
DP-2-9 (A4F1068-05)				Matrix: Soil		Batch:	24F0387	
Acenaphthene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM	
Acenaphthylene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM	
Anthracene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM	
Benz(a)anthracene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM	
Benzo(a)pyrene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM	
Benzo(b)fluoranthene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM	
Chrysene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

	Polyaro	matic Hydro	carbons (PA	Hs) by EPA 82	70E (SIM)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
DP-2-9 (A4F1068-05)				Matrix: Soil		Batch:	h: 24F0387			
Fluoranthene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM			
Fluorene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM			
Indeno(1,2,3-cd)pyrene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM			
1-Methylnaphthalene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM			
2-Methylnaphthalene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM			
Naphthalene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM			
Phenanthrene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM			
Pyrene	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM			
Dibenzofuran	ND		0.00943	mg/kg dry	1	06/12/24 12:09	EPA 8270E SIM			
Surrogate: 2-Fluorobiphenyl (Surr)		Recon	very: 82 %	Limits: 44-120 %	6 1	06/12/24 12:09	EPA 8270E SIM			
p-Terphenyl-d14 (Surr)			83 %	54-127 %	6 I	06/12/24 12:09	EPA 8270E SIM			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DP-1-2 (A4F1068-01)				Matrix: Soi	I			
Batch: 24F0691								
Cadmium	0.386		0.253	mg/kg dry	10	06/20/24 19:11	EPA 6020B	
Chromium	8.37		1.27	mg/kg dry	10	06/20/24 19:11	EPA 6020B	Q-42
Lead	140		0.253	mg/kg dry	10	06/20/24 19:11	EPA 6020B	Q-42
DP-1-10 (A4F1068-02)				Matrix: Soi	I			
Batch: 24F0691								
Cadmium	ND		0.222	mg/kg dry	10	06/20/24 19:38	EPA 6020B	
Chromium	8.49		1.11	mg/kg dry	10	06/20/24 19:38	EPA 6020B	
Lead	5.21		0.222	mg/kg dry	10	06/20/24 19:38	EPA 6020B	
DP-1-20 (A4F1068-03)				Matrix: Soi	I			
Batch: 24F0691								
Arsenic	2.61		1.06	mg/kg dry	10	06/20/24 19:43	EPA 6020B	
Barium	53.3		1.06	mg/kg dry	10	06/20/24 19:43	EPA 6020B	
Cadmium	ND		0.212	mg/kg dry	10	06/20/24 19:43	EPA 6020B	
Chromium	8.68		1.06	mg/kg dry	10	06/20/24 19:43	EPA 6020B	
Lead	2.00		0.212	mg/kg dry	10	06/20/24 19:43	EPA 6020B	
Mercury	ND		0.0849	mg/kg dry	10	06/20/24 19:43	EPA 6020B	
Selenium	ND		1.06	mg/kg dry	10	06/20/24 19:43	EPA 6020B	
Silver	ND		0.212	mg/kg dry	10	06/20/24 19:43	EPA 6020B	
DP-2-2 (A4F1068-04)				Matrix: Soi	I			
Batch: 24F0691								
Cadmium	ND		0.247	mg/kg dry	10	06/20/24 19:49	EPA 6020B	
Chromium	30.5		1.24	mg/kg dry	10	06/20/24 19:49	EPA 6020B	
Lead	25.9		0.247	mg/kg dry	10	06/20/24 19:49	EPA 6020B	
DP-2-9 (A4F1068-05)				Matrix: Soi	I			
Batch: 24F0691								
Arsenic	2.66		1.16	mg/kg dry	10	06/20/24 19:54	EPA 6020B	
Barium	79.2		1.16	mg/kg dry	10	06/20/24 19:54	EPA 6020B	
Cadmium	ND		0.232	mg/kg dry	10	06/20/24 19:54	EPA 6020B	
Chromium	10.9		1.16	mg/kg dry	10	06/20/24 19:54	EPA 6020B	
Lead	17.7		0.232	mg/kg dry	10	06/20/24 19:54	EPA 6020B	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20B (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DP-2-9 (A4F1068-05)				Matrix: Soi	l			
Mercury	ND		0.0930	mg/kg dry	10	06/20/24 19:54	EPA 6020B	
Selenium	ND		1.16	mg/kg dry	10	06/20/24 19:54	EPA 6020B	
Silver	ND		0.232	mg/kg dry	10	06/20/24 19:54	EPA 6020B	
DP-2-20 (A4F1068-06)				Matrix: Soi	I			
Batch: 24F0691								
Cadmium	ND		0.225	mg/kg dry	10	06/20/24 19:59	EPA 6020B	
Chromium	7.75		1.13	mg/kg dry	10	06/20/24 19:59	EPA 6020B	
Lead	2.83		0.225	mg/kg dry	10	06/20/24 19:59	EPA 6020B	
DP-3-10 (A4F1068-07)				Matrix: Soi	l			
Batch: 24F0691								
Cadmium	0.496		0.243	mg/kg dry	10	06/20/24 20:05	EPA 6020B	
Chromium	31.8		1.21	mg/kg dry	10	06/20/24 20:05	EPA 6020B	
DP-3-10 (A4F1068-07RE1)				Matrix: Soi	I			
Batch: 24F0691								
Lead	13500		24.3	mg/kg dry	1000	06/21/24 17:25	EPA 6020B	
DP-4-2 (A4F1068-08)				Matrix: Soi	l			
Batch: 24F0691								
Cadmium	ND		0.227	mg/kg dry	10	06/20/24 20:11	EPA 6020B	
Chromium	8.63		1.13	mg/kg dry	10	06/20/24 20:11	EPA 6020B	
DP-4-2 (A4F1068-08RE1)				Matrix: Soi	I			
Batch: 24F0691								
Lead	11.8		0.227	mg/kg dry	10	06/21/24 17:30	EPA 6020B	
DP-4-9 (A4F1068-09)				Matrix: Soi	I			
Batch: 24F0691								
Cadmium	ND		0.206	mg/kg dry	10	06/20/24 20:18	EPA 6020B	
Chromium	10.1		1.03	mg/kg dry	10	06/20/24 20:18	EPA 6020B	
DP-4-9 (A4F1068-09RE1)				Matrix: Soi	l			
Batch: 24F0691								
Lead	2.45		0.206	mg/kg dry	10	06/21/24 17:35	EPA 6020B	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

		Total Meta	ils by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DP-4-20 (A4F1068-10)				Matrix: Soi	I			
Batch: 24F0691								
Cadmium	ND		0.222	mg/kg dry	10	06/20/24 20:23	EPA 6020B	
Chromium	9.93		1.11	mg/kg dry	10	06/20/24 20:23	EPA 6020B	
DP-4-20 (A4F1068-10RE1)				Matrix: Soi	I			
Batch: 24F0691								
Lead	2.04		0.222	mg/kg dry	10	06/21/24 17:43	EPA 6020B	
DP-5-10 (A4F1068-11)				Matrix: Soi	I			
Batch: 24F0691								
Cadmium	1.82		0.249	mg/kg dry	10	06/20/24 20:29	EPA 6020B	
Chromium	176		1.24	mg/kg dry	10	06/20/24 20:29	EPA 6020B	
Lead	398		0.249	mg/kg dry	10	06/20/24 20:29	EPA 6020B	
DP-6-10 (A4F1068-12)				Matrix: Soi	ı			
Batch: 24F0691								
Cadmium	0.310		0.239	mg/kg dry	10	06/20/24 20:46	EPA 6020B	
Chromium	24.0		1.20	mg/kg dry	10	06/20/24 20:46	EPA 6020B	
Lead	167		0.239	mg/kg dry	10	06/20/24 20:46	EPA 6020B	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

		TCLP Meta	als by EPA 60	20B (ICPMS	S)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DP-1-2 (A4F1068-01)				Matrix: So	oil			
Batch: 24G0336								
Lead	ND		0.0500	mg/L	10	07/11/24 19:39	1311/6020B	
DP-3-10 (A4F1068-07RE1)				Matrix: So	oil			
Batch: 24G0336								
Lead	168		0.500	mg/L	100	07/12/24 13:03	1311/6020B	
DP-5-10 (A4F1068-11)				Matrix: So	oil			
Batch: 24G0336								
Chromium	ND		0.100	mg/L	10	07/11/24 20:01	1311/6020B	
DP-5-10 (A4F1068-11RE1)				Matrix: So	oil			
Batch: 24G0336								
Lead	ND		0.0500	mg/L	10	07/12/24 13:10	1311/6020B	
DP-6-10 (A4F1068-12)				Matrix: So	oil			
Batch: 24G0336								
Lead	ND		0.0500	mg/L	10	07/11/24 20:07	1311/6020B	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
DP-1-2 (A4F1068-01)				Matrix: Soi	I	Batch:	24F0402		
% Solids	83.1		1.00	%	1	06/13/24 07:29	EPA 8000D		
DP-1-10 (A4F1068-02)				Matrix: Soi	I	Batch:	24F0402		
% Solids	88.5		1.00	%	1	06/13/24 07:29	EPA 8000D		
DP-1-20 (A4F1068-03)				Matrix: Soi	I	Batch:	24F0402		
% Solids	94.4		1.00	%	1	06/13/24 07:29	EPA 8000D		
DP-2-2 (A4F1068-04)				Matrix: Soi	I	Batch:	24F0402		
% Solids	81.1		1.00	%	1	06/13/24 07:29	EPA 8000D		
DP-2-9 (A4F1068-05)				Matrix: Soi	I	Batch:	24F0402		
% Solids	90.7		1.00	%	1	06/13/24 07:29	EPA 8000D		
DP-2-20 (A4F1068-06)				Matrix: Soi	I	Batch:	24F0402		
% Solids	94.4		1.00	%	1	06/13/24 07:29	EPA 8000D		
DP-3-10 (A4F1068-07)				Matrix: Soi	I	Batch:	24F0402		
% Solids	82.4		1.00	%	1	06/13/24 07:29	EPA 8000D		
DP-4-2 (A4F1068-08)				Matrix: Soi	I	Batch:	24F0402		
% Solids	88.5		1.00	%	1	06/13/24 07:29	EPA 8000D		
DP-4-9 (A4F1068-09)				Matrix: Soi	I	Batch:	24F0402		
% Solids	95.4		1.00	%	1	06/13/24 07:29	EPA 8000D		
DP-4-20 (A4F1068-10)				Matrix: Soi	I	Batch:	24F0402		
% Solids	93.1		1.00	%	1	06/13/24 07:29	EPA 8000D		
DP-5-10 (A4F1068-11)		•		Matrix: Soi	I	Batch: 24F0402			
% Solids	83.8		1.00	%	1	06/13/24 07:29	EPA 8000D		
DP-6-10 (A4F1068-12)				Matrix: Soi	I	Batch:	24F0402		
% Solids	90.6		1.00	%	1	06/13/24 07:29	EPA 8000D		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

ANALYTICAL SAMPLE RESULTS

		TCLP E	xtraction by	EPA 1311				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DP-1-2 (A4F1068-01)				Matrix: So	oil	Batch:	24G0243	
TCLP Extraction	PREP			N/A	1	07/09/24 16:13	EPA 1311	
DP-3-10 (A4F1068-07)				Matrix: So	oil	Batch:	24G0243	
TCLP Extraction	PREP			N/A	1	07/09/24 16:13	EPA 1311	
DP-5-10 (A4F1068-11)				Matrix: So	oil	Batch:	24G0243	
TCLP Extraction	PREP			N/A	1	07/09/24 16:13	EPA 1311	
DP-6-10 (A4F1068-12)				Matrix: So	oil	Batch:	24G0243	
TCLP Extraction	PREP			N/A	1	07/09/24 16:13	EPA 1311	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24F0439 - EPA 3546 (F	uels)						So	il				
Blank (24F0439-BLK1)	•		Prepared	1: 06/13/24 ()4:57 Anal	yzed: 06/13	/24 08:00					
NWTPH-Dx						<u> </u>						
Diesel	ND		20.0	mg/kg w	et 1							
Oil	ND		40.0	mg/kg w	et 1							
Surr: o-Terphenyl (Surr)		Reco	overy: 89 %	Limits: 50	-150 %	Dilı	ution: 1x					
LCS (24F0439-BS1)			Prepared	1: 06/13/24 ()4:57 Anal	yzed: 06/13	/24 08:23					
NWTPH-Dx												
Diesel	109		20.0	mg/kg w	et 1	125		87	38-132%			
Surr: o-Terphenyl (Surr)		Reco	overy: 93 %	Limits: 50	-150 %	Dilı	ution: 1x					
Duplicate (24F0439-DUP1)			Prepared	1: 06/13/24 ()4:57 Anal	yzed: 06/13	/24 09:10					
QC Source Sample: Non-SDG (A	4F1143-01)											
Diesel	ND		19.8	mg/kg dr	y 1		44.7			***	30%	Q-(
Oil	ND		39.6	mg/kg dr	y 1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 79 %	Limits: 50	-150 %	Dilı	ution: 1x					
Duplicate (24F0439-DUP2)			Prepared	1: 06/13/24 ()9:02 Anal	yzed: 06/14	/24 05:42					
OC Source Sample: DP-6-10 (A4	IF1068-12)											
NWTPH-Dx												
Diesel	ND		19.8	mg/kg dr	y 1		ND				30%	
Oil	411		39.5	mg/kg dr	y 1		149			94	30%	Q-(
Surr: o-Terphenyl (Surr)		Reco	overy: 93 %	Limits: 50	-150 %	Dilı	ution: 1x					
Batch 24F0681 - EPA 3546 (F	uels)						So	il				
Blank (24F0681-BLK1)			Prepared	l: 06/20/24 ()7:11 Anal	yzed: 06/20/	/24 20:22					
NWTPH-Dx			*			-						
Diesel	ND		20.0	mg/kg w	et 1							
Oil	ND		40.0	mg/kg w								
			overy: 79 %	Limits: 50	150.07	D:1	ution: 1x					

NWTPH-Dx

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/d	or Oil Hyd	rocarbor	s by NW	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24F0681 - EPA 3546 (F	uels)						Soi	I				
LCS (24F0681-BS1)			Prepare	d: 06/20/24 (07:11 Ana	lyzed: 06/20	/24 20:42					
Diesel	106		20.0	mg/kg w	et 1	125		85	38-132%			
Surr: o-Terphenyl (Surr)		Reco	overy: 82 %	Limits: 50	-150 %	Dilt	ution: 1x					
Duplicate (24F0681-DUP1)			Prepare	d: 06/20/24 (07:11 Ana	lyzed: 06/20	/24 23:25					
QC Source Sample: DP-1-20 (A4	F1068-03)											
NWTPH-Dx												
Diesel	ND		19.2	mg/kg dr	y 1		ND				30%	
Oil	ND		38.4	mg/kg dr	y 1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 65 %	Limits: 50	-150 %	Dili	ution: 1x					
Duplicate (24F0681-DUP2)			Prepare	d: 06/20/24 ()7:11 Ana	lyzed: 06/21	/24 05:10					
QC Source Sample: Non-SDG (A	4F1346-01)											
Diesel	ND		19.5	mg/kg dr	y 1		ND				30%	Q-05
Oil	ND		39.0	mg/kg dr	y 1		ND				30%	
Surr: o-Terphenyl (Surr)		Rece	overy: 77 %	Limits: 50	-150 %	Dilt	ution: 1x					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	ydrocarbo	ons (Ben	zene thro	igh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24F0521 - EPA 5035A							Soi	il				
Blank (24F0521-BLK1)			Prepared	d: 06/14/24	12:00 Anal	yzed: 06/15	/24 07:53					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.00	mg/kg v	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 94 %	Limits: 5	0-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			107 %	50	0-150 %		"					
LCS (24F0521-BS2)			Prepared	d: 06/14/24	12:00 Anal	yzed: 06/15	/24 07:26					
NWTPH-Gx (MS)												
Gasoline Range Organics	23.9		5.00	mg/kg v	vet 50	25.0		95	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 92 %	Limits: 5	0-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			106 %	50	0-150 %		"					
Duplicate (24F0521-DUP1)			Prepared	d: 06/13/24	15:28 Anal	yzed: 06/15	/24 17:49					
QC Source Sample: Non-SDG (A4	F1163-02)											
Gasoline Range Organics	ND		43.8	mg/kg d	lry 100		36.0			***	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 96 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			113 %	50	0-150 %		"					
Duplicate (24F0521-DUP2)			Prepared	d: 06/10/24	12:30 Anal	yzed: 06/15	/24 18:44					
QC Source Sample: Non-SDG (A4	F1137-04)											
Gasoline Range Organics	904		48.4	mg/kg d	lry 500		857			5	30%	
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 105 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			112 %	5	0-150 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	nds by E	PA 8260D						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24F0521 - EPA 5035A							So	il				
Blank (24F0521-BLK1)			Prepared	1: 06/14/24 1	2:00 Ana	lyzed: 06/15	/24 07:53					
5035A/8260D												
Benzene	ND		0.0100	mg/kg we	et 50							
Toluene	ND		0.0500	mg/kg we	et 50							
Ethylbenzene	ND		0.0250	mg/kg we	et 50							
Xylenes, total	ND		0.0750	mg/kg we	et 50							
Surr: 1,4-Difluorobenzene (Surr)		Recove	ry: 101 %	Limits: 80-	120 %	Dila	ution: 1x					
Toluene-d8 (Surr)			102 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			99 %	79-	120 %		"					
LCS (24F0521-BS1)			Prepared	l: 06/14/24 1	2:00 Ana	lyzed: 06/15	/24 06:59					
5035A/8260D												
Benzene	1.06		0.0100	mg/kg we	et 50	1.00		106	80-120%			
Toluene	0.960		0.0500	mg/kg we	et 50	1.00		96	80-120%			
Ethylbenzene	1.01		0.0250	mg/kg we	et 50	1.00		101	80-120%			
Xylenes, total	3.01		0.0750	mg/kg we	et 50	3.00		100	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recove	ry: 102 %	Limits: 80-	120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			101 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			96 %	79-	120 %		"					
Duplicate (24F0521-DUP1)			Prepared	l: 06/13/24 1	5:28 Ana	lyzed: 06/15	/24 17:49					
QC Source Sample: Non-SDG (A4)	F1163-02)											
Benzene	ND		0.0876	mg/kg dr	y 100		ND				30%	
Toluene	ND		0.438	mg/kg dr			ND				30%	
Ethylbenzene	ND		0.219	mg/kg dr			0.145			***	30%	
Xylenes, total	0.788		0.657	mg/kg dr			0.758			4	30%	
Surr: 1,4-Difluorobenzene (Surr)		Recove	ry: 102 %	Limits: 80-	•	Dilt	ution: 1x					
Toluene-d8 (Surr)			103 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			99 %	79-	120 %		"					
Duplicate (24F0521-DUP2)			Prepared	1: 06/10/24 1	2:30 Ana	lyzed: 06/15	/24 18:44					
QC Source Sample: Non-SDG (A4)	F1137-04)											
Benzene	ND		0.0968	mg/kg dr	y 500		ND				30%	
Toluene	ND		0.484	mg/kg dr							30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	nds by E	PA 8260D)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24F0521 - EPA 5035A							Soi	il				
Duplicate (24F0521-DUP2)			Prepared	1: 06/10/24 1	2:30 Ana	lyzed: 06/15	/24 18:44					
QC Source Sample: Non-SDG (A4	F1137-04)											
Ethylbenzene	0.271		0.242	mg/kg dr	y 500		0.271			0	30%	
Xylenes, total	1.66		0.726	mg/kg dr	y 500		1.54			8	30%	
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 101 %	Limits: 80-	120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			98 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			96 %	79-	120 %		"					
Matrix Spike (24F0521-MS1)			Prepared	l: 06/10/24 1	3:40 Ana	lyzed: 06/15	/24 16:01					
QC Source Sample: Non-SDG (A4	F1137-08)											
5035A/8260D												
Benzene	1.16		0.0100	mg/kg dr	y 50	1.00	ND	115	77-121%			
Toluene	1.05		0.0502	mg/kg dr	y 50	1.00	ND	104	77-121%			
Ethylbenzene	1.09		0.0251	mg/kg dr	y 50	1.00	ND	109	76-122%			
Xylenes, total	3.18		0.0753	mg/kg dr	y 50	3.01	ND	105	78-124%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	very: 100 %	Limits: 80-	120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			104 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			91 %	79-	120 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	inated Bip	ohenyls	by EPA 8	082A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24F0733 - EPA 3546							Soi	il				
Blank (24F0733-BLK1)			Prepared	1: 06/21/24 1	0:08 Ana	lyzed: 06/2	1/24 18:18					C-07
EPA 8082A												
Aroclor 1016	ND		0.0100	mg/kg we	t 1							
Aroclor 1221	ND		0.0100	mg/kg we	t 1							
Aroclor 1232	ND		0.0100	mg/kg we	t 1							
Aroclor 1242	ND		0.0100	mg/kg we	t 1							
Aroclor 1248	ND		0.0100	mg/kg we	t 1							
Aroclor 1254	ND		0.0100	mg/kg we	t 1							
Aroclor 1260	ND		0.0100	mg/kg we	t 1							
Surr: Decachlorobiphenyl (Surr)		Recover	ry: 102 %	Limits: 60-	125 %	Di	lution: 1x					
LCS (24F0733-BS1)			Prepared	1: 06/21/24 1	0:08 Ana	lyzed: 06/2	1/24 18:36					C-07
EPA 8082A												
Aroclor 1016	0.185		0.0100	mg/kg we	t 1	0.250		74	47-134%			
Aroclor 1260	0.209		0.0100	mg/kg we		0.250		84	53-140%			
Surr: Decachlorobiphenyl (Surr)		Recover	ry: 104 %	Limits: 60-		Di	lution: 1x					_
Duplicate (24F0733-DUP1)			Prepared	1: 06/21/24 1	0:08 Ana	lyzed: 06/2	1/24 19:30					C-07
QC Source Sample: DP-1-2 (A4F1	1068-01)											
EPA 8082A												
Aroclor 1016	ND		0.0107	mg/kg dr	y 1		ND				30%	
Aroclor 1221	ND		0.0107	mg/kg dr	y 1		ND				30%	
Aroclor 1232	ND		0.0107	mg/kg dr	y 1		ND				30%	
Aroclor 1242	ND		0.0107	mg/kg dr	y 1		ND				30%	
Aroclor 1248	ND		0.0107	mg/kg dr			ND				30%	
Aroclor 1254	ND		0.0107	mg/kg dr			ND				30%	
Aroclor 1260	ND		0.0107	mg/kg dr			0.00675			***	30%	
Surr: Decachlorobiphenyl (Surr)		Recov	ery: 92 %	Limits: 60-		Di	lution: 1x					
Matrix Spike (24F0733-MS1)			Prepared	1: 06/21/24 1	0:08 Ana	lyzed: 06/2	1/24 22:27					C-0'
Matrix Spike (241.0755-14151)												
	F1068-12)											
OC Source Sample: DP-6-10 (A4F	F1068-12)											
	71068-12) 0.167		0.00955	mg/kg dr	y 1	0.239	ND	70	47-134%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALITY CONTROL (QC) SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A Detection Reporting Spike Source % REC RPD Dilution Analyte Result Ĺimit Units Result % REC Limits RPD Limit Notes Limit Amount Batch 24F0733 - EPA 3546 Soil Matrix Spike (24F0733-MS1) Prepared: 06/21/24 10:08 Analyzed: 06/21/24 22:27 C-07 QC Source Sample: DP-6-10 (A4F1068-12) Surr: Decachlorobiphenyl (Surr) Recovery: 93 % Limits: 60-125 % Dilution: 1x

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ns (PAHs) by EPA	8270E (S	SIM)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24F0387 - EPA 3546							So	il				
Blank (24F0387-BLK1)			Prepared	1: 06/12/24 ()5:59 Ana	lyzed: 06/12	/24 10:29					
EPA 8270E SIM												
Acenaphthene	ND		0.0100	mg/kg w	et 1							
Acenaphthylene	ND		0.0100	mg/kg w	et 1							
Anthracene	ND		0.0100	mg/kg w	et 1							
Benz(a)anthracene	ND		0.0100	mg/kg w	et 1							
Benzo(a)pyrene	ND		0.0100	mg/kg w	et 1							
Benzo(b)fluoranthene	ND		0.0100	mg/kg w	et 1							
Benzo(k)fluoranthene	ND		0.0100	mg/kg w	et 1							
Benzo(g,h,i)perylene	ND		0.0100	mg/kg w	et 1							
Chrysene	ND		0.0100	mg/kg w	et 1							
Dibenz(a,h)anthracene	ND		0.0100	mg/kg w	et 1							
Fluoranthene	ND		0.0100	mg/kg w	et 1							
Fluorene	ND		0.0100	mg/kg w	et 1							
Indeno(1,2,3-cd)pyrene	ND		0.0100	mg/kg w	et 1							
1-Methylnaphthalene	ND		0.0100	mg/kg w	et 1							
2-Methylnaphthalene	ND		0.0100	mg/kg w	et 1							
Naphthalene	ND		0.0100	mg/kg w	et 1							
Phenanthrene	ND		0.0100	mg/kg w	et 1							
Pyrene	ND		0.0100	mg/kg w	et 1							
Dibenzofuran	ND		0.0100	mg/kg w	et 1							
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 85 %	Limits: 44	-120 %	Dili	ution: 1x					
p-Terphenyl-d14 (Surr)			86 %	54-	-127 %		"					
LCS (24F0387-BS1)			Prepared	l: 06/12/24 ()5:59 Ana	lyzed: 06/12	/24 10:54					
EPA 8270E SIM			<u> </u>									
Acenaphthene	0.797		0.0100	mg/kg w	et 1	0.800		100	40-123%			
Acenaphthylene	0.728		0.0100	mg/kg w	et 1	0.800		91	32-132%			
Anthracene	0.747		0.0100	mg/kg w	et 1	0.800		93	47-123%			
Benz(a)anthracene	0.718		0.0100	mg/kg w	et 1	0.800		90	49-126%			
Benzo(a)pyrene	0.754		0.0100	mg/kg w	et 1	0.800		94	45-129%			
Benzo(b)fluoranthene	0.715		0.0100	mg/kg w	et 1	0.800		89	45-132%			
Benzo(k)fluoranthene	0.805		0.0100	mg/kg w	et 1	0.800		101	47-132%			
Benzo(g,h,i)perylene	0.765		0.0100	mg/kg w	et 1	0.800		96	43-134%			
Chrysene	0.795		0.0100	mg/kg w	et 1	0.800		99	50-124%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarboi	ns (PAHs) by EPA	8270E (S	SIM)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24F0387 - EPA 3546							Soi	I				
LCS (24F0387-BS1)			Prepared	: 06/12/24 0	5:59 Ana	lyzed: 06/12	/24 10:54					
Dibenz(a,h)anthracene	0.821		0.0100	mg/kg we	et 1	0.800		103	45-134%			
Fluoranthene	0.779		0.0100	mg/kg we	et 1	0.800		97	50-127%			
Fluorene	0.727		0.0100	mg/kg we	et 1	0.800		91	43-125%			
Indeno(1,2,3-cd)pyrene	0.802		0.0100	mg/kg we	et 1	0.800		100	45-133%			
1-Methylnaphthalene	0.725		0.0100	mg/kg we	et 1	0.800		91	40-120%			
2-Methylnaphthalene	0.744		0.0100	mg/kg we	et 1	0.800		93	38-122%			
Naphthalene	0.736		0.0100	mg/kg we	et 1	0.800		92	35-123%			
Phenanthrene	0.758		0.0100	mg/kg we	et 1	0.800		95	50-121%			
Pyrene	0.798		0.0100	mg/kg we	et 1	0.800		100	47-127%			
Dibenzofuran	0.730		0.0100	mg/kg we	et 1	0.800		91	44-120%			
urr: 2-Fluorobiphenyl (Surr)		Rec	overy: 89 %	Limits: 44	-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			89 %	54-	127 %		"					
QC Source Sample: Non-SDG (A Acenaphthene	<u>4F0982-01)</u> ND		0.136	mg/kg dr	v 1		ND				30%	
			0.126	ma/lea de	v, 1		ND				200/	
Acenaphthylene	ND		0.136	mg/kg dr	-		ND				30%	
Anthracene	ND		0.136	mg/kg dr	•		ND				30%	
Benz(a)anthracene	ND		0.136	mg/kg dr			ND				30%	
Benzo(a)pyrene	ND		0.136	mg/kg dr	-		ND				30%	
Benzo(b)fluoranthene	ND		0.136	mg/kg dr	-		ND				30%	
Benzo(k)fluoranthene	ND		0.136	mg/kg dr	-		ND				30%	
Benzo(g,h,i)perylene	ND		0.136	mg/kg dr	•		ND				30%	
Chrysene	ND		0.136	mg/kg dr	y 1		ND				30%	
Dibenz(a,h)anthracene	ND		0.136	mg/kg dr			ND				30%	
Fluoranthene	ND		0.136	mg/kg dr	•		ND				30%	
Fluorene	ND		0.136	mg/kg dr			ND				30%	
Indeno(1,2,3-cd)pyrene	ND		0.136	mg/kg dr	•		ND				30%	
1-Methylnaphthalene	ND		0.136	mg/kg dr	y 1		ND				30%	
• •	ND		0.136	mg/kg dr	•		ND				30%	
2-Methylnaphthalene	ND				-							
2-Methylnaphthalene Naphthalene	ND ND		0.136	mg/kg dr	y 1		ND				30%	
· -			0.136 0.136	mg/kg dr mg/kg dr	,		ND ND				30% 30%	
Naphthalene	ND				y 1							

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polyar	omatic Hy	drocarboi	ns (PAHs) by EPA	8270E (S	SIM)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24F0387 - EPA 3546							So	il				
Duplicate (24F0387-DUP1)			Prepared	: 06/12/24 0	5:59 Ana	lyzed: 06/12	/24 11:44					
QC Source Sample: Non-SDG (A4	F0982-01)											
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 85 %	Limits: 44	-120 %	Dilı	ıtion: 1x					
p-Terphenyl-d14 (Surr)			86 %	54-	127 %		"					
Matrix Spike (24F0387-MS1)			Prepared	: 06/12/24 0	05:59 Ana	lyzed: 06/12	/24 12:35					
QC Source Sample: DP-2-9 (A4F1	068-05)											
EPA 8270E SIM												
Acenaphthene	0.733		0.00966	mg/kg dr	y 1	0.773	ND	95	40-123%			
Acenaphthylene	0.675		0.00966	mg/kg dr	y 1	0.773	ND	87	32-132%			
Anthracene	0.697		0.00966	mg/kg dr	y 1	0.773	ND	90	47-123%			
Benz(a)anthracene	0.656		0.00966	mg/kg dr	y 1	0.773	ND	85	49-126%			
Benzo(a)pyrene	0.697		0.00966	mg/kg dr	y 1	0.773	ND	90	45-129%			
Benzo(b)fluoranthene	0.668		0.00966	mg/kg dr	y 1	0.773	ND	86	45-132%			
Benzo(k)fluoranthene	0.709		0.00966	mg/kg dr	y 1	0.773	ND	92	47-132%			
Benzo(g,h,i)perylene	0.675		0.00966	mg/kg dr	y 1	0.773	ND	87	43-134%			
Chrysene	0.724		0.00966	mg/kg dr	y 1	0.773	ND	94	50-124%			
Dibenz(a,h)anthracene	0.728		0.00966	mg/kg dr	y 1	0.773	ND	94	45-134%			
Fluoranthene	0.738		0.00966	mg/kg dr	y 1	0.773	ND	96	50-127%			
Fluorene	0.675		0.00966	mg/kg dr	y 1	0.773	ND	87	43-125%			
Indeno(1,2,3-cd)pyrene	0.712		0.00966	mg/kg dr	y 1	0.773	ND	92	45-133%			
1-Methylnaphthalene	0.666		0.00966	mg/kg dr	y 1	0.773	ND	86	40-120%			
2-Methylnaphthalene	0.685		0.00966	mg/kg dr	y 1	0.773	ND	89	38-122%			
Naphthalene	0.683		0.00966	mg/kg dr	y 1	0.773	ND	88	35-123%			
Phenanthrene	0.700		0.00966	mg/kg dr	y 1	0.773	ND	91	50-121%			
Pyrene	0.741		0.00966	mg/kg dr	y 1	0.773	ND	96	47-127%			
Dibenzofuran	0.674		0.00966	mg/kg dr	y 1	0.773	ND	87	44-120%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 85 %	Limits: 44	-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			82 %	54-	127 %		"					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24F0691 - EPA 3051A							Soi	I				
Blank (24F0691-BLK1)			Prepared	: 06/20/24 1	0:36 Anal	yzed: 06/20	/24 18:55					
EPA 6020B												
Arsenic	ND		1.00	mg/kg we	et 10							
Barium	ND		1.00	mg/kg we	et 10							
Cadmium	ND		0.200	mg/kg we	et 10							
Chromium	ND		1.00	mg/kg we	et 10							
Lead	ND		0.200	mg/kg we	et 10							
Mercury	ND		0.0800	mg/kg we	et 10							
Selenium	ND		1.00	mg/kg we	et 10							
Silver	ND		0.200	mg/kg we	et 10							
LCS (24F0691-BS1)			Prepared	: 06/20/24 1	0:36 Anal	yzed: 06/20	/24 19:05					
EPA 6020B						-						
Arsenic	52.5		1.00	mg/kg we	et 10	50.0		105	80-120%			
Barium	54.2		1.00	mg/kg we	et 10	50.0		108	80-120%			
Cadmium	53.6		0.200	mg/kg we	et 10	50.0		107	80-120%			
Chromium	51.6		1.00	mg/kg we	et 10	50.0		103	80-120%			
Lead	55.9		0.200	mg/kg we	et 10	50.0		112	80-120%			
Mercury	1.11		0.0800	mg/kg we	et 10	1.00		111	80-120%			
Selenium	26.1		1.00	mg/kg we	et 10	25.0		105	80-120%			
Silver	26.2		0.200	mg/kg we	et 10	25.0		105	80-120%			
Ouplicate (24F0691-DUP1)			Prepared	: 06/20/24 1	0:36 Anal	yzed: 06/20	/24 19:16					
QC Source Sample: DP-1-2 (A4F	1068-01)											
EPA 6020B												
Arsenic	1.86		1.33	mg/kg dr	y 10		3.67			65	20%	Q-
Barium	51.8		1.33	mg/kg dr			72.4			33	20%	Q-(
Cadmium	ND		0.266	mg/kg dr	y 10		0.386			***	20%	Q-
Chromium	4.06		1.33	mg/kg dr	y 10		8.37			69	20%	Q-(
Lead	61.6		0.266	mg/kg dr	y 10		140			78	20%	Q-(
Mercury	ND		0.106	mg/kg dr			0.151			***	20%	Q-(
Selenium	ND		1.33	mg/kg dr			ND				20%	
Silver	ND		0.266	mg/kg dr			ND				20%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALITY CONTROL (QC) SAMPLE RESULTS

	Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 24F0691 - EPA 3051A							Soi	il					
Matrix Spike (24F0691-MS1)			Prepared	: 06/20/24 10	0:36 Ana	lyzed: 06/20	/24 19:22						
QC Source Sample: DP-1-2 (A4F1	<u>068-01)</u>												
EPA 6020B													
Arsenic	67.5		1.22	mg/kg dry	7 10	60.9	3.67	105	75-125%				
Barium	142		1.22	mg/kg dry	7 10	60.9	72.4	114	75-125%				
Cadmium	66.1		0.244	mg/kg dry	7 10	60.9	0.386	108	75-125%				
Chromium	72.6		1.22	mg/kg dry	7 10	60.9	8.37	106	75-125%				
Lead	193		0.244	mg/kg dry	7 10	60.9	140	88	75-125%				
Mercury	1.45		0.0974	mg/kg dry	7 10	1.22	0.151	107	75-125%				
Selenium	30.9		1.22	mg/kg dry	7 10	30.4	ND	102	75-125%				
Silver	32.4		0.244	mg/kg dry	7 10	30.4	ND	106	75-125%				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALITY CONTROL (QC) SAMPLE RESULTS

	TCLP Metals by EPA 6020B (ICPMS)											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24G0336 - EPA 1311/301	15A						Soi	il				
Blank (24G0336-BLK1)			Prepared	: 07/11/24	11:11 Anal	yzed: 07/11	/24 19:28					
1311/6020B												
Chromium	ND		0.100	mg/L	10							TCLI
Lead	ND		0.0500	mg/L	10							TCLI
LCS (24G0336-BS1)			Prepared	: 07/11/24	11:11 Anal	yzed: 07/11	/24 19:33					
1311/6020B												
Chromium	5.26		0.100	mg/L	10	5.00		105	80-120%			TCLI
Lead	5.24		0.0500	mg/L	10	5.00		105	80-120%			TCLI
Duplicate (24G0336-DUP1)			Prepared	: 07/11/24	11:11 Anal	yzed: 07/11	/24 19:44					
OC Source Sample: DP-1-2 (A4F)	<u>1068-01)</u>											
Chromium	ND		0.100	mg/L	10		ND				20%	
Lead	ND		0.0500	mg/L	10		ND				20%	
Matrix Spike (24G0336-MS1)			Prepared	: 07/11/24	11:11 Anal	yzed: 07/11	/24 19:49					
QC Source Sample: DP-1-2 (A4F)	1068-01)											
<u>1311/6020B</u> Chromium	5.33		0.100	mg/L	10	5.00	ND	107	50-150%			
Lead	5.56		0.0500	mg/L	10	5.00	ND	111	50-150%			
Matrix Spike (24G0336-MS2)			Prepared	: 07/11/24	11:11 Anal	yzed: 07/11	/24 20:28					
QC Source Sample: Non-SDG (A4	G0917-02)											
1311/6020B												
Chromium	5.52		0.100	mg/L	10	5.00	ND	110	50-150%			
Lead	5.89		0.0500	mg/L	10	5.00	ND	118	50-150%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24F0402 - Total Solids (Dry Weigh	nt) - 2022					Soi	1				
Duplicate (24F0402-DUP1)			Prepared	: 06/12/24	09:07 Anal	yzed: 06/13/	/24 07:29					
QC Source Sample: DP-1-2 (A4F)	1068-01)											
EPA 8000D												
% Solids	91.3		1.00	%	1		83.1			9	10%	
Duplicate (24F0402-DUP2)			Prepared	: 06/12/24	09:07 Anal	yzed: 06/13	/24 07:29					
QC Source Sample: DP-1-10 (A4F	F1068-02)											
EPA 8000D												
% Solids	88.2		1.00	%	1		88.5			0.4	10%	
Duplicate (24F0402-DUP3)			Prepared	: 06/12/24	09:07 Anal	yzed: 06/13/	/24 07:29					
QC Source Sample: DP-1-20 (A4F	F1068-03)											
EPA 8000D												
% Solids	94.1		1.00	%	1		94.4			0.3	10%	
Duplicate (24F0402-DUP4)			Prepared	: 06/12/24	09:07 Anal	yzed: 06/13	/24 07:29					
QC Source Sample: DP-2-2 (A4F1	1068-04)											
EPA 8000D												
% Solids	81.0		1.00	%	1		81.1			0.2	10%	
Duplicate (24F0402-DUP5)			Prepared	: 06/12/24	09:07 Anal	yzed: 06/13	/24 07:29					
QC Source Sample: DP-2-9 (A4F)	1068-05)											
EPA 8000D												
% Solids	87.7		1.00	%	1		90.7			3	10%	
Duplicate (24F0402-DUP6)			Prepared	: 06/12/24	19:11 Anal	yzed: 06/13/	/24 07:29					
QC Source Sample: Non-SDG (A4	F1143-01)											
% Solids	91.0		1.00	%	1		91.1			0.2	10%	
Duplicate (24F0402-DUP7)			Prepared	: 06/12/24	19:11 Anal	yzed: 06/13/	/24 07:29					
QC Source Sample: Non-SDG (A4	F1144-02)					-						
% Solids	78.4		1.00	%	1		76.6			2	10%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight

Detection Reporting Spike Source % REC RPD % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

SAMPLE PREPARATION INFORMATION

		Diesel and	d/or Oil Hydrocarbor	ns by NWTPH-Dx			
Prep: EPA 3546 (Fue	els)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24F0439			*	*			
A4F1068-01	Soil	NWTPH-Dx	06/10/24 09:20	06/13/24 09:02	11.07g/5mL	10g/5mL	0.90
A4F1068-02	Soil	NWTPH-Dx	06/10/24 09:34	06/13/24 09:02	11.05g/5mL	10g/5mL	0.91
A4F1068-04RE1	Soil	NWTPH-Dx	06/10/24 10:14	06/13/24 09:02	11.09g/5mL	10g/5mL	0.90
A4F1068-06	Soil	NWTPH-Dx	06/10/24 10:48	06/13/24 09:02	11.53g/5mL	10g/5mL	0.87
A4F1068-07RE1	Soil	NWTPH-Dx	06/10/24 11:14	06/13/24 09:02	11.22g/5mL	10g/5mL	0.89
A4F1068-08	Soil	NWTPH-Dx	06/10/24 12:05	06/13/24 09:02	11.27g/5mL	10g/5mL	0.89
A4F1068-09	Soil	NWTPH-Dx	06/10/24 12:11	06/13/24 09:02	11.44g/5mL	10g/5mL	0.87
A4F1068-10	Soil	NWTPH-Dx	06/10/24 12:15	06/13/24 09:02	11.28g/5mL	10g/5mL	0.89
A4F1068-11	Soil	NWTPH-Dx	06/10/24 11:30	06/13/24 09:02	11.19g/5mL	10g/5mL	0.89
A4F1068-12	Soil	NWTPH-Dx	06/10/24 11:48	06/13/24 09:02	11.5g/5mL	10g/5mL	0.87
Batch: 24F0681					-	-	
A4F1068-03	Soil	NWTPH-Dx	06/10/24 09:50	06/20/24 07:11	11.09g/5mL	10g/5mL	0.90
A4F1068-05	Soil	NWTPH-Dx	06/10/24 10:31	06/20/24 07:11	11.06g/5mL	10g/5mL	0.90
Prep: EPA 5035A	Gas	soline Range Hydrocarl	oons (benzene inro	ugn Naphthalene) b	Sample	Default	RL Prep
Lab Number	Matrix	Method	Commission	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24F0521	Mauix	Method	Sampled	Frepared	111111111111111111111111111111111111111		1 44401
A4F1068-03	Soil	NWTPH-Gx (MS)	06/10/24 09:50	06/10/24 09:50	16.89g/15mL	5 ~ /5 ··· T	0.89
A4F1068-05	Soil	NWTPH-Gx (MS)	06/10/24 10:31	06/10/24 10:31	11.74g/10mL	5g/5mL 5g/5mL	0.85
A41 1000-03	5011	1(W 1111-Ox (WIS)	00/10/24 10.31	00/10/24 10.31	11.74g/10IIIL	Jg/JIIIL	0.83
		ВТЕ	EX Compounds by E	EPA 8260D			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24F0521			*	*			
A4F1068-03	Soil	5035A/8260D	06/10/24 09:50	06/10/24 09:50	16.89g/15mL	5g/5mL	0.89
A4F1068-05	Soil	5035A/8260D	06/10/24 10:31	06/10/24 10:31	11.74g/10mL	5g/5mL	0.85
						-	
		Polychl	orinated Biphenyls	by EPA 8082A			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24F0733							
A4F1068-01	Soil	EPA 8082A	06/10/24 09:20	06/21/24 10:08	11.19g/5mL	10g/5mL	0.89

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

SAMPLE PREPARATION INFORMATION

	Polychlorinated Biphenyls by EPA 8082A											
Prep: EPA 3546					Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
A4F1068-02	Soil	EPA 8082A	06/10/24 09:34	06/21/24 10:08	11.13g/5mL	10g/5mL	0.90					
A4F1068-03	Soil	EPA 8082A	06/10/24 09:50	06/21/24 10:08	11.15g/5mL	10g/5mL	0.90					
A4F1068-04	Soil	EPA 8082A	06/10/24 10:14	06/21/24 10:08	11.25g/5mL	10g/5mL	0.89					
A4F1068-05	Soil	EPA 8082A	06/10/24 10:31	06/21/24 10:08	11.46g/5mL	10g/5mL	0.87					
A4F1068-06	Soil	EPA 8082A	06/10/24 10:48	06/21/24 10:08	11.3g/5mL	10g/5mL	0.89					
A4F1068-07	Soil	EPA 8082A	06/10/24 11:14	06/21/24 10:08	11.43g/5mL	10g/5mL	0.88					
A4F1068-08	Soil	EPA 8082A	06/10/24 12:05	06/21/24 10:08	11.36g/5mL	10g/5mL	0.88					
A4F1068-09	Soil	EPA 8082A	06/10/24 12:11	06/21/24 10:08	11.34g/5mL	10g/5mL	0.88					
A4F1068-10	Soil	EPA 8082A	06/10/24 12:15	06/21/24 10:08	11.41g/5mL	10g/5mL	0.88					
A4F1068-11	Soil	EPA 8082A	06/10/24 11:30	06/21/24 10:08	11.29g/5mL	10g/5mL	0.89					
A4F1068-12	Soil	EPA 8082A	06/10/24 11:48	06/21/24 10:08	11.31g/5mL	10g/5mL	0.88					

	Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)												
Prep: EPA 3546					Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
Batch: 24F0387													
A4F1068-03	Soil	EPA 8270E SIM	06/10/24 09:50	06/12/24 05:59	11.54g/5mL	10g/5mL	0.87						
A4F1068-05	Soil	EPA 8270E SIM	06/10/24 10:31	06/12/24 05:59	11.68g/5mL	10g/5mL	0.86						

Total Metals by EPA 6020B (ICPMS)											
<u>Prep: EPA 3051A</u>					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 24F0691											
A4F1068-01	Soil	EPA 6020B	06/10/24 09:20	06/20/24 10:36	0.475g/50mL	0.5g/50mL	1.05				
A4F1068-02	Soil	EPA 6020B	06/10/24 09:34	06/20/24 10:36	0.51g/50mL	0.5g/50mL	0.98				
A4F1068-03	Soil	EPA 6020B	06/10/24 09:50	06/20/24 10:36	0.499g/50mL	0.5g/50mL	1.00				
A4F1068-04	Soil	EPA 6020B	06/10/24 10:14	06/20/24 10:36	0.499g/50mL	0.5g/50mL	1.00				
A4F1068-05	Soil	EPA 6020B	06/10/24 10:31	06/20/24 10:36	0.474g/50mL	0.5g/50mL	1.05				
A4F1068-06	Soil	EPA 6020B	06/10/24 10:48	06/20/24 10:36	0.47g/50mL	0.5g/50mL	1.06				
A4F1068-07	Soil	EPA 6020B	06/10/24 11:14	06/20/24 10:36	0.5g/50mL	0.5g/50mL	1.00				
A4F1068-07RE1	Soil	EPA 6020B	06/10/24 11:14	06/20/24 10:36	0.5g/50mL	0.5g/50mL	1.00				
A4F1068-08	Soil	EPA 6020B	06/10/24 12:05	06/20/24 10:36	0.498g/50mL	0.5g/50mL	1.00				
A4F1068-08RE1	Soil	EPA 6020B	06/10/24 12:05	06/20/24 10:36	0.498g/50mL	0.5g/50mL	1.00				
A4F1068-09	Soil	EPA 6020B	06/10/24 12:11	06/20/24 10:36	0.51g/50mL	0.5g/50mL	0.98				
A4F1068-09RE1	Soil	EPA 6020B	06/10/24 12:11	06/20/24 10:36	0.51g/50mL	0.5g/50mL	0.98				

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

SAMPLE PREPARATION INFORMATION

	Total Metals by EPA 6020B (ICPMS)											
Prep: EPA 3051A					Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
A4F1068-10	Soil	EPA 6020B	06/10/24 12:15	06/20/24 10:36	0.485g/50mL	0.5g/50mL	1.03					
A4F1068-10RE1	Soil	EPA 6020B	06/10/24 12:15	06/20/24 10:36	0.485g/50mL	0.5g/50mL	1.03					
A4F1068-11	Soil	EPA 6020B	06/10/24 11:30	06/20/24 10:36	0.48g/50mL	0.5g/50mL	1.04					
A4F1068-12	Soil	EPA 6020B	06/10/24 11:48	06/20/24 10:36	0.461 g/50 mL	0.5g/50mL	1.08					

TCLP Metals by EPA 6020B (ICPMS)											
Prep: EPA 1311/3015	<u>5A</u>				Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 24G0336											
A4F1068-01	Soil	1311/6020B	06/10/24 09:20	07/11/24 11:11	10mL/50mL	10mL/50mL	1.00				
A4F1068-07RE1	Soil	1311/6020B	06/10/24 11:14	07/11/24 11:11	10mL/50mL	10mL/50mL	1.00				
A4F1068-11	Soil	1311/6020B	06/10/24 11:30	07/11/24 11:11	10mL/50mL	10mL/50mL	1.00				
A4F1068-11RE1	Soil	1311/6020B	06/10/24 11:30	07/11/24 11:11	10mL/50mL	10mL/50mL	1.00				
A4F1068-12	Soil	1311/6020B	06/10/24 11:48	07/11/24 11:11	10mL/50mL	10mL/50mL	1.00				

			Percent Dry We	ght			
Prep: Total Solids (D	ry Weight) - 2022				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24F0402							
A4F1068-01	Soil	EPA 8000D	06/10/24 09:20	06/12/24 09:07			NA
A4F1068-02	Soil	EPA 8000D	06/10/24 09:34	06/12/24 09:07			NA
A4F1068-03	Soil	EPA 8000D	06/10/24 09:50	06/12/24 09:07			NA
A4F1068-04	Soil	EPA 8000D	06/10/24 10:14	06/12/24 09:07			NA
A4F1068-05	Soil	EPA 8000D	06/10/24 10:31	06/12/24 09:07			NA
A4F1068-06	Soil	EPA 8000D	06/10/24 10:48	06/12/24 09:07			NA
A4F1068-07	Soil	EPA 8000D	06/10/24 11:14	06/12/24 09:07			NA
A4F1068-08	Soil	EPA 8000D	06/10/24 12:05	06/12/24 09:07			NA
A4F1068-09	Soil	EPA 8000D	06/10/24 12:11	06/12/24 09:07			NA
A4F1068-10	Soil	EPA 8000D	06/10/24 12:15	06/12/24 09:07			NA
A4F1068-11	Soil	EPA 8000D	06/10/24 11:30	06/12/24 09:07			NA
A4F1068-12	Soil	EPA 8000D	06/10/24 11:48	06/12/24 09:07			NA

TCLP Extraction by EPA 1311

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

SAMPLE PREPARATION INFORMATION

			TCLP Extraction by E	PA 1311						
Prep: EPA 1311 (TO	CLP)				Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
Batch: 24G0243	Batch: 24G0243									
A4F1068-01	Soil	EPA 1311	06/10/24 09:20	07/09/24 16:13	100.1g/2019g	100g/2000g	NA			
A4F1068-07	Soil	EPA 1311	06/10/24 11:14	07/09/24 16:13	100.3g/2007g	100g/2000g	NA			
A4F1068-11	Soil	EPA 1311	06/10/24 11:30	07/09/24 16:13	100.2g/2009g	100g/2000g	NA			
A4F1068-12	Soil	EPA 1311	06/10/24 11:48	07/09/24 16:13	100.5g/2010g	100g/2000g	NA			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
- P-09 Due to weathering and/or the presence of an unknown mixture of PCB Congeners, the pattern does not match the standard used for calibration. Results are Estimated and based on the closest matching Aroclor.
- P-12 Result estimated due to the presence of multiple PCB Aroclors and/or PCB congeners not defined as Aroclors.
- Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
- Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
- Q-39 Results for sample duplicate are higher than the sample results. See duplicate results in QC section of the report.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
- S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
- TCLP This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 24G0243.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL).

Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level.

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

Color Colo	TOTAL DISS. TCLP TOTAL DISS.
Car - AP 220 sin pale Car	3
S	
Light Metals (13)	TCLP Metals (8)
	TCLP Metals (8)
	TCLP Metals (8
E C C C C C C C C C	LCLP M
10	or
4/10 8/120 55 2 X X X X X X X X X X X X X X X X X	× × ×
610 6950 55 4 × × × × × × × × × × × × × × × × ×	××
S S S S S S S S S S	×
19/10 1014 55 7 X X X X X X X X X X X X X X X X X	×
19/10 [103] SS 4 X X X X X X X X X X X X X X X X X	
x 7 55 840 01/8	
	×
X 2 55 MI 01/4	×
8	X
1 X Z S X X	×
1 WW 125 SS 2 X	X
Standard Turn Around Time (TAT) = 10 Business Days STRUCTIONS:	
1 Day 2 Day 3 Day Pry Stud (4520 5W	in upper paomes
CT,	2
	04 - 4+22-
Date: Signature: Signature: Signature: Signature: Date: Signature: Signature: Date:	RECEIVED BY: Signature: Date:
MARKA UNIVER ON STREET Time: T	Printed Name: Time:
	Сопрапу:

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

	0/00 SW Sanaburg St., 11gara, OK 9/225 Fn: 503-/18-2323	03-/18	-2523										5	e S	1	Cres of the control o		1k							
1261		Project Mer:		C Mark	100	7			<u> </u>	Project Name	me.	15	Anne	*	M	H	1		Droiset #.	#	1	A-PND	1	1	
Address: Bill to: 6121-AP 29 gri, com	COH-	qri	00,	3 &	3	Phone:	3-65	Sc3-684-0484	\$		Email:		6. 20 th	172	1 2 2	n _o	10.2	55	المرا ، دوسا	Ė	3 6	4-6060	1	۔ ا	
Sampled by: DBV / MJM	_						120165			181	60.00	pull.	Mary Mary		NAL			JS.			3				
e G								-				ıs			<u> </u>	, bo	'ж	CLP							
				ЕВВ				OC*		isi.I I	s	Full L					Be, Fe, 10, Ni, V, Zn	T .	19.				****	-	
				MIATA	пэн-			A WO	OOA 9	Cs Ful	HVA			icides etals (sletals		LL 'uw	SSIG () slate	<i>X</i> 0						
And the same of th	BJ	я	TRIX	COP	HqT	нат	HTT.			юл е	WIS 0		5 bCE				"BM BJ "B	TE M		-			2 3		Samp
SAMPLE ID	DVJ	MIT	.vw	Ю#	MN					978	278				-		Hg, Se, A	TOT	D.						
DD-5-00	01/10	1130	%	2		X			_				Z					-	×	-	-				-
DD-10	01/50	1148	88	7	•	7			ļ									-	×			ļ			-
						-	-	_																	-
												1						-			-	1		-	-
							-	-					ļ					ļ			 			<u> </u>	-
						 		ļ					 	-	ļ	ļ.,.	ń	-		 	-			Ī	
							\vdash										i i								
							-	-				-+						\dashv							-
					+	+	+	-					-	-	-			+		1					
Standard Turi	Standard Turn Around Time (TAT) = 10 Business Days	(TAT)	≈ 10 Bu	isiness I	Jays		+	-	_		SPEC	SPECIAL INSTRUCTIONS:	STR		SS			+		-	-	_		-	-
	1 Day	,,	2 Day		3 Day	ay					0	Dhysical	Sica												
TAT Requested (circle)	5 Day	A R	Standard	(_)	Other:	 			ï		-	¥.	Address	8 3		16520 SW	2 %	まき	the suite (no traced or	\$ 5		upper Boones	S B		1274P
	SAMPLES ARE HELD FOR 30 DAYS	FOR 30	DAYS							Τ)	r -			es.					~			
RELINQUISHED BY:	Date:	<i></i>	RECEN Signature:	RECEIVED BY:	l)	Dad /	Z _{ii}	_		RELINQUISHED BY: Signature:	vQUIS.	HED B	ä		Date:			RECE	RECEIVED BY: Signature:	 %		Date:		
Animes of Michigan			對美	A K CA	, -	<u>\$</u>	1		1		Printed Name	Name:				Time:			Printex	Printed Name:			Time:		
らて			Company		X 9 CK						Company	ny:							Company.	in in					
				5	_					1							ĺ						Γ		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GRI Project: OMSI

16520 SW Upper Boones Ferry Rd, Ste 100Project Number: Crescent Parcel/6909-AReport ID:Tigard, OR 97224Project Manager: Greg MartinA4F1068 - 08 06 24 1656

0.0=	APEX LABS COOLER R	
Client: GBI		Element WO#: A4 [\old \old \old \old \old \old \old \old
Project/Project #: OMST	Crescent Parce	(p909-A
Delivery Info:		
Date/time received: 6/11/71	@ 1105 By: _	HW
Delivered by: Apex_Client_	SSFedEx_UPS_Radio	MorganSDSEvergreenOther
From USDA Regulated Origin?	Yes No No	
Cooler Inspection Date/time		1105 By: ADW
Chain of Custody included?	Yes No	_
Signed/dated by client?	Yes No	-
Contains USDA Reg. Soils?	Yes No	Unsure (email RegSoils)
Temperature (°C) $\frac{Co}{4}$	∇	3 <u>Cooler #4 Cooler #5 Cooler #6 Cooler #7</u>
Custody seals? (Y/N)	<u> </u>	
Received on ice? (Y/N)	\	
Temp. blanks? (Y/N)	<u> </u>	
Ice type: (Gel/Real/Other)	real	
Condition (In/Out):	<u> </u>	
Cooler out of temp? (Y/N) Poss Green dots applied to out of ten Out of temperature samples for Sample Inspection: Date/tim All samples intact? Yes X N	nperature samples? Yes/No m initiated? Yes/No ne inspected: //// @@	247 By: 19W
Bottle labels/COCs agree? Yes	No Comments:	
COC/container discrepancies fo	orm initiated? Yes No	×
		No Comments: DD-Z-9 1/2 Meo H
VOAs have no Meath.		
Do VOA vials have visible head	dspace? Yes No	NA 🔀
Comments		
Water samples: pH checked: Ye Comments:	esNoNApH appro	priate? YesNoNApH ID:

Apex Laboratories

Δ	D	D	F	N		IX	
н	_	г	C	IV	u	IA	L

Geoprofessional Business Association Guidance Document

Important Information about This

Geoenvironmental Report

Geoenvironmental studies are commissioned to gain information about environmental conditions on and beneath the surface of a site. The more comprehensive the study, the more reliable the assessment is likely to be. But remember: Any such assessment is to a greater or lesser extent based on professional opinions about conditions that cannot be seen or tested. Accordingly, no matter how many data are developed, risks created by unanticipated conditions will always remain. Have realistic expectations. Work with your geoenvironmental consultant to manage known and unknown risks. Part of that process should already have been accomplished, through the risk allocation provisions you and your geoenvironmental professional discussed and included in your contract's general terms and conditions. This document is intended to explain some of the concepts that may be included in your agreement, and to pass along information and suggestions to help you manage your risk.

Beware of Change; Keep Your Geoenvironmental Professional Advised

The design of a geoenvironmental study considers a variety of factors that are subject to change. Changes can undermine the applicability of a report's findings, conclusions, and recommendations. *Advise your geoenvironmental professional about any changes you become aware of.* Geoenvironmental professionals cannot accept responsibility or liability for problems that occur because a report fails to consider conditions that did not exist when the study was designed. Ask your geoenvironmental professional about the types of changes you should be particularly alert to. Some of the most common include:

- modification of the proposed development or ownership group,
- sale or other property transfer,
- · replacement of or additions to the financing entity,

- amendment of existing regulations or introduction of new ones, or
- changes in the use or condition of adjacent property.

Should you become aware of any change, *do not rely on a geoenvironmental report*. Advise your geoenvironmental professional immediately; follow the professional's advice.

Recognize the Impact of Time

A geoenvironmental professional's findings, recommendations, and conclusions cannot remain valid indefinitely. The more time that passes, the more likely it is that important latent changes will occur. *Do not rely on a geoenvironmental report if too much time has elapsed since it was completed.* Ask your environmental professional to define "too much time." In the case of Phase I Environmental Site Assessments (ESAs), for example, more than 180 days after submission is generally considered "too much."

Prepare To Deal with Unanticipated Conditions

The findings, recommendations, and conclusions of a Phase I ESA report typically are based on a review of historical information, interviews, a site "walkover," and other forms of noninvasive research. When site subsurface conditions are not sampled in any way, the risk of unanticipated conditions is higher than it would otherwise be.

While borings, installation of monitoring wells, and similar invasive test methods can help reduce the risk of unanticipated conditions, *do not overvalue the effectiveness of testing*. Testing provides information about actual conditions only at the precise locations where samples are taken, and only when they are taken. Your geoenvironmental

professional has applied that specific information to develop a general opinion about environmental conditions. Actual conditions in areas not sampled may differ (sometimes sharply) from those predicted in a report. For example, a site may contain an unregistered underground storage tank that shows no surface trace of its existence. Even conditions in areas that were tested can change, sometimes suddenly, due to any number of events, not the least of which include occurrences at adjacent sites. Recognize, too, that even some conditions in tested areas may go undiscovered, because the tests or analytical methods used were designed to detect only those conditions assumed to exist.

Manage your risks by retaining your geoenvironmental professional to work with you as the project proceeds. Establish a contingency fund or other means to enable your geoenvironmental professional to respond rapidly, in order to limit the impact of unforeseen conditions. And to help prevent any misunderstanding, identify those empowered to authorize changes and the administrative procedures that should be followed.

Do Not Permit Any Other Party To Rely on the Report

Geoenvironmental professionals design their studies and prepare their reports to meet the specific needs of the clients who retain them, in light of the risk management methods that the client and geoenvironmental professional agree to, and the statutory, regulatory, or other requirements that apply. The study designed for a developer may differ sharply from one designed for a lender, insurer, public agency...or even another developer. Unless the report specifically states otherwise, it was developed for you and only you. Do not unilaterally permit any other party to rely on it. The report and the study underlying it may not be adequate for another party's needs, and you could be held liable for shortcomings your geoenvironmental professional was powerless to prevent or anticipate. Inform your geoenvironmental professional when you know or expect that someone else a third-party—will want to use or rely on the report. Do not permit third-party use or reliance until you first confer with the geoenvironmental professional who prepared the report. Additional testing, analysis, or study may be required and, in any event, appropriate terms and conditions should be agreed to so both you and your geoenvironmental professional are protected from third-party risks. Any party who relies on a geoenvironmental report without the express written permission of the professional who prepared it and the client for whom it was prepared may be solely liable for any problems that arise.

Avoid Misinterpretation of the Report

Design professionals and other parties may want to rely on the report in developing plans and specifications. They need to be advised, in writing, that their needs may not have been considered when the study's scope was developed, and, even if their needs were considered, they might misinterpret geoenvironmental findings, conclusions, and recommendations. Commission your geoenvironmental professional to explain pertinent elements of the report to others who are permitted to rely on it, and to review any plans, specifications or other instruments of professional service that incorporate any of the report's findings, conclusions, or recommendations. Your geoenvironmental professional has the best understanding of the issues involved, including the fundamental assumptions that underpinned the study's scope.

Give Contractors Access to the Report

Reduce the risk of delays, claims, and disputes by giving contractors access to the full report, providing that it is accompanied by a letter of transmittal that can protect you by making it unquestionably clear that: 1) the study was not conducted and the report was not prepared for purposes of bid development, and 2) the findings, conclusions, and recommendations included in the report are based on a variety of opinions, inferences, and assumptions and are subject to interpretation. Use the letter to also advise contractors to consult with your geoenvironmental professional to obtain clarifications, interpretations, and guidance (a fee may be required for this service), and that—in any event—they should conduct additional studies to obtain the specific type and extent of information each prefers for preparing a bid or cost estimate. Providing access to the full report, with the appropriate caveats, helps prevent formation of adversarial attitudes and claims of concealed or differing conditions. If a contractor elects to ignore the warnings and advice in the letter of transmittal, it would do so at its own risk. Your geoenvironmental professional should be able to help you prepare an effective letter.

Do Not Separate Documentation from the Report

Geoenvironmental reports often include supplemental documentation, such as maps and copies of regulatory files, permits, registrations, citations, and correspondence with regulatory agencies. If subsurface explorations were performed, the report may contain final boring logs and copies of laboratory data. If remediation activities occurred on site, the report may include: copies of daily field reports; waste manifests; and information about the disturbance of subsurface materials, the type and thickness of any fill placed on site, and fill placement practices, among other types of documentation. Do not separate supplemental documentation from the report. Do not, and do not permit any other party to redraw or modify any of the supplemental documentation for incorporation into other professionals' instruments of service.

Understand the Role of Standards

Unless they are incorporated into statutes or regulations, standard practices and standard guides developed by the American Society for Testing and Materials (ASTM) and other recognized standards-developing organizations (SDOs) are little more than aspirational methods agreed to by a consensus of a committee. The committees that develop standards may not comprise those best-qualified to establish methods and, no matter what, no standard method can possibly consider the infinite client- and project-specific variables that fly in the face of the theoretical "standard conditions" to which standard practices and standard guides apply. In fact, these variables can be so pronounced that geoenvironmental professionals who comply with every directive of an ASTM or other standard procedure could run afoul of local custom and practice, thus violating the standard of care. Accordingly, when geoenvironmental professionals indicate in their reports that they have performed a service "in general compliance" with one standard or another, it means they have applied professional judgement in creating and implementing a scope of service designed for the specific client and project involved, and which follows some of the general precepts laid out in the referenced standard. To the extent that a report indicates "general compliance" with a standard, you may wish to speak with your geoenvironmental professional to learn more about what was and was not done. Do not assume a given standard was followed to the letter. Research indicates that that seldom is the case.

Realize That Recommendations May Not Be Final

The technical recommendations included in a geoenvironmental report are based on assumptions about actual conditions, and so are preliminary or tentative. Final recommendations can be prepared only by observing actual conditions as they are exposed. For that reason, you should retain the geoenvironmental professional of record to observe construction and/or remediation activities on site, to permit rapid response to unanticipated conditions. The geoenvironmental professional who prepared the report cannot assume responsibility or liability for the report's recommendations if that professional is not retained to observe relevant site operations.

Understand That Geotechnical Issues Have Not Been Addressed

Unless geotechnical engineering was specifically included in the scope of professional service, a report is not likely to relate any findings, conclusions, or recommendations about the suitability of subsurface materials for construction purposes, especially when site remediation has been accomplished through the removal, replacement, encapsulation, or chemical treatment of on-site soils. The equipment, techniques, and testing used by geotechnical engineers differ markedly from those used by geoenvironmental professionals; their education, training, and experience are also significantly different. If you plan to build on the subject site, but have not yet had a geotechnical engineering study conducted, your geoenvironmental professional should be able to provide guidance about the next steps you should take. The same firm may provide the services you need.

Read Responsibility Provisions Closely

Geoenvironmental studies cannot be exact; they are based on professional judgement and opinion. Nonetheless, some clients, contractors, and others assume geoenvironmental reports are or certainly should be unerringly precise. Such assumptions have created unrealistic expectations that have led to wholly unwarranted claims and disputes. To help prevent such problems, geoenvironmental professionals have developed a number of report provisions and contract terms that explain who is responsible for what, and how risks are to be allocated. Some people mistake these for "exculpatory clauses," that is, provisions whose purpose is to transfer one party's rightful responsibilities and liabilities to someone else. Read the responsibility provisions included in a report and in the contract you and your geoenvironmental professional agreed to. Responsibility provisions are not "boilerplate." They are important.

Rely on Your Geoenvironmental Professional for Additional Assistance

Membership in the Geoprofessional Business Association exposes geoenvironmental professionals to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a geoenvironmental project. Confer with your GBA-member geoenvironmental professional for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2015 by the Geoprofessional Business Association (GBA). Duplication, reproduction, copying, or storage of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only GBA-Member Firms may use this document as a complement to or as an element of a geoenvironmental report. Any other firm, individual, or entity that so uses this document without being a GBA-Member Firm could be committing negligent or intentional (fraudulent) misrepresentation.