

engineers | scientists | innovators

FINAL STORMWATER SOURCE CONTROL EVALUATION REPORT

Terminal 4 Slip 1

Prepared for

Port of Portland

11040 N Lombard Street Portland, OR 97203

Prepared by

Geosyntec Consultants, Inc. 920 SW Sixth Ave, Suite 600 Portland, OR 97204

Project PNW0524C

December 2024

FINAL STORMWATER SOURCE CONTROL EVALUATION REPORT

Terminal 4 Slip 1

Prepared for

Port of Portland 11040 N Lombard Street Portland, OR 97203

Prepared by

Geosyntec Consultants, Inc. 920 SW Sixth Ave, Suite 600 Portland, OR 97204

Project Number: PNW0524C

December 2024

TABLE OF CONTENTS

1.	INT	RODU	CTION	1
	1.1	Purpo	se	1
	1.2	Sourc	e Control Objective	1
	1.3	Regul	atory Framework	1
	1.4	Repor	t Organization	1
2.	SITI	E BACI	KGROUND	2
	2.1	Site D	Description	2
	2.2	Storm	water Conveyance System	
		2.2.1	Drainage Basins	
		2.2.2	Outfalls	3
	2.3	Site C	Ownership and Operating History	4
	2.4	Regul	atory History	5
	2.5	Previo	ous Investigations	5
		2.5.1	Basin L	7
		2.5.2	Basin M	8
		2.5.3	Basin N	10
		2.5.4	Basin O	11
		2.5.5	Basin P	12
		2.5.6	Basin Q	13
		2.5.7	Basin R	14
		2.5.8	Basin S	16
3.	POT	ENTIA	L SOURCES AND CONTAMINANTS OF INTEREST	16
	3.1	Poten	tial Contaminant Sources	16
	3.2	Outfal	ll Sediment Data	17
	3.3	Conta	minants of Interest	17
4.	ONO	GOING	STORMWATER MANAGEMENT MEASURES	17
5.	DAT	ΓA COI	LLECTION AND INTERPRETATION	18
	5.1		2024 Sampling	
	5.2	2023-	2024 Data Summary	20
	5.3	2023-	2024 Data Interpretation	21
		5.3.1	Method Detection Level and QA/QC Issues	21
		5.3.2	Comparisons to SLVs, CULs, and Knee of the Curve Plots	22
		5.3.3	Discussion	
6.	SOI	JRCE C	CONTROL MEASURES	
٥.		Basin		

	6.2	Basin	M	24
	6.3	Basin	O	24
	6.4	Basin	S	24
7.	SOU	RCE C	ONTROL EVALUATION	25
	7.1		Evaluation	
		7.1.1	Basin L	25
		7.1.2	Basin M	25
		7.1.3	Basin N	25
		7.1.4	Basin O	25
		7.1.5	Basin P	25
		7.1.6	Basin Q	26
		7.1.7	Basin R	26
		7.1.8	Basin S	26
	7.2	Other	Lines of Evidence	26
8.	FINI	DING A	ND CONCLUSIONS	26
9.	REF	ERENC	CES	28
LIS	т он	TABL	LES	
			1 Upland Facility Drainage Basins	
			Status of T4 Slip 1 Outfalls	
			le for Data Excluded from This Stormwater Source Control Evaluation fo	
			nchor QEA et al., 2022)	
			ry of Sampled Storm Events	
			ry of Storm Coverage for Time-Weighted Composite Samples	
			ry of Representative Data Collected for T4 Slip 1	
			024 Stormwater COI Data	
Tab	ole 8. 7	2023-20	024 Stormwater TSS Data	21
LIS	T OF	FIGU	RES	
	_		al 4 Slip 3 Upland Facility Location	32
			al 4 Slip 3 Upland Facility Stormwater Conveyance System	
			al 4 Slip 3 Upland Facility Leaseholds	
			Conditionally Controlled Riverbank Areas (Anchor QEA et al., 2022)	
			o 1 Stormwater Sampling Locations 2022-2024	
			o 1 Basin O Completed SCMs	
_		_	al 4 Slip 3 Upland Facility Current Basin Status	
	/ .	I I I I I	~p o o piuma i uvimi, oumem Duum Duum Duum Diiminiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	

LIST OF APPENDICES

Appendix A – T4 Slip 1 Stormwater Data Representative of Current Conditions

Appendix B – Rank Order Curves for Stormwater Data Representative of Current Conditions

iv

Appendix C – 2023-2024 Storm Hyetographs

Appendix D – 2023-2024 Autosampler Output Files

Appendix E – 2023-2024 Laboratory Data and Data Validation Reports

Appendix F – Comparison Tables for Recent Stormwater SCE Efforts (2020 – 2024)

ACRONYMS AND ABBREVIATIONS

BEHP Bis(2-ethylhexyl)phthalate

BES City of Portland Bureau of Environmental Services

BMP Best Management Practice

City CPD City of Portland Commission of Public Docks

COI Contaminant of Interest

CUL Portland Harbor Record of Decision Table 17 Cleanup Level (EPA, 2017)
DDx Dichlorodiphenyldichloro compounds, including DDT, DDE, and DDD

DEQ Oregon Department of Environmental Quality ECSI Environmental Cleanup Site Information

EF Exceedance Factor

EPA U.S. Environmental Protection Agency

Geosyntec Geosyntec Consultants, Inc.

JSCS Joint Source Control Strategy

KM Kinder Morgan Bulk Terminals, Inc.

MFA Maul Foster & Alongi, Inc.
MDL Method Detection Limit
MRL Method Reporting Limit

MS4 Municipal Separate Storm Sewer System

O&M Operations and Maintenance

PAHs Polycyclic Aromatic Hydrocarbons

PCB Polychlorinated Biphenyl

Port Port of Portland

PTW Principal Threat Waste

RCRA Resource Conservation and Recovery Act

RAL Remedial Action Level
RI Remedial Investigation
RD Remedial Design
ROD Record of Decision

SCE Source Control Evaluation SCM Source Control Measure

SER Stormwater Evaluation Report

SLV JSCS Screening Level Value (DEQ, 2005)

SMA Sediment Management Area

SW Stormwater

SWPCP Stormwater Pollution Control Plan SWMP Stormwater Management Plan

T4 Terminal 4

Toyota Toyota Motors USA, Inc.
TSS Total Suspended Solids
UPRR Union Pacific Railroad
VCP Voluntary Cleanup Program

1. INTRODUCTION

1.1 Purpose

This report presents the results of a stormwater Source Control Evaluation (SCE) for the Port of Portland's (Port's) Terminal 4 (T4) Slip 1 Upland Facility (Site; ECSI No. 2356). The Site is located at 11040 N Lombard St in Portland, Oregon, and is within the boundary of the Portland Harbor Superfund Site. Slip 1 is a channel inlet off the main Willamette River. Stormwater outfalls at the Site discharge to Slip 1, Wheeler Bay, or directly to the river.

This report presents and evaluates the observations documented during 2020-2024 (evaluation period) by stormwater basin, in accordance with Oregon Department of Environmental Quality's (DEQ's) *Guidance for Evaluating the Stormwater Pathway at Upland Sites* (DEQ, 2009). Findings and conclusions from historical reports (pre-2020) are also included where relevant.

1.2 Source Control Objective

The objective of this SCE is to demonstrate that existing and potential sources of contamination at the Site have been addressed and no additional stormwater characterization or source control measures (SCMs) are needed at the Site.

1.3 Regulatory Framework

This stormwater SCE has been completed pursuant to the following agreement with DEQ:

Terminal 4 Slip 1 Upland Facility – Voluntary Agreement for Remedial Investigation, Source Control Measures, and Feasibility Study (DEQ No. LQVC-NWR-03-18), December 4, 2003.

1.4 Report Organization

This report follows DEQ's Template for a Stormwater Source Control Evaluation Report, which is Appendix C of DEQ's Guidance for Evaluating the Stormwater Pathway at Upland Sites (DEQ, 2017).

- Section 1 introduces the purpose and objectives of this stormwater SCE report
- Section 2 presents a description of the Site, land uses, and previous investigations
- Section 3 describes the Site's potential sources of contaminants of interest (COIs)
- Section 4 presents ongoing management measures at the Site
- Section 5 summarizes recent data and observations
- Section 6 describes SCMs relevant to current-day conditions at the Site

- Section 7 evaluates existing information to determine the source control status of each drainage basin in Slip 3
- Section 8 presents the conclusions of this SCE
- Section 9 provides citations for documents referenced by this report

2. SITE BACKGROUND

2.1 Site Description

T4 occupies approximately 260 acres on the east bank of the lower Willamette River downstream from the St. Johns Bridge in north Portland, Oregon, between River Miles 4.2 and 5.5 (Figure 1). The land is zoned for industrial use. Surrounding areas are occupied by marine, industrial, and commercial operations, with a small residential zone of four tax lots located 200 feet east of the terminal.

The topography of T4 consists primarily of relatively flat areas close to the Willamette River with a steep hillside and bluff located on the east side of the Site. Lower portions of the Site are located approximately 35 feet above mean sea level (NAVD88 datum), while eastern portions of the terminal near Lombard Street are at an elevation of approximately 100 feet. The river water surface elevation is typically less than 10 feet, with a mean tidal range of about 2 feet. Depth to groundwater in the low-lying area of the site is around 15 to 20 feet. The land cover at T4 is a mixture of pervious open space, rail tracks, industrial buildings, and asphalt and concrete pavement.

For the purposes of DEQ oversight the T4 upland area was divided into three sections: Terminal 4 Slip 1 (ECSI No. 2356), Terminal 4 Slip 3 (ECSI No. 272), and the Terminal 4 Auto Storage Area (ECSI No. 172). These areas encompass approximately 98 acres, 27 acres, and 102 acres, respectively. This stormwater SCE is for the T4 Slip 1 Upland Facility.

Slip 1 is located at the northern end of the terminal and is bounded by Schnitzer Steel Products and Northwest Pipe Company on the north, N. Lombard Street and the Union Pacific Railroad right-of-way on the east, the T4 Slip 3 Upland Facility on the south, and the ordinary high water line of the Willamette River at Slip 1 on the west. The Port also owns submerged lands below ordinary high water located in Slip 1.

Three water-related areas within or near T4 Slip 1 are:

- Berth 401 This is an active berth in the main river north (downstream) of Slip 1.
- Slip 1 This has no existing water-dependent uses, and future uses are planned to be limited to barge use. Slip 1 contains two piers (Pier 1 and Pier 2) and three berths (405, 408, and 409).
- Wheeler Bay This is an inactive bay with no current water-dependent uses and no anticipated future uses.

2.2 Stormwater Conveyance System

Nearly all stormwater at the Site either infiltrates or reaches a conveyance system via overland flow and then discharges to the river through an outfall. The Site's stormwater conveyance system is shown in Figure 2.

2.2.1 Drainage Basins

T4 Slip 1 is divided into eight stormwater subbasins of various sizes and drainage characteristics (Table 1). Basin L is the southernmost basin at T4 Slip 1 which discharges to Wheeler Bay; Basins M, N, O, P, and Q are located north of Basin L and discharge to Slip 1; Basins R and S are located at the northern edge of Slip 1 and discharge to the Willamette River near Berth 401. A City of Portland-owned outfall, OF52C, also discharges to Slip 1 though is not discussed in this report as no stormwater from T4 Slip 1 discharges to this outfall.

Portions of the stormwater drainage area are not conveyed to outfalls, but instead are self-contained via secondary containment walls resulting in infiltration and evaporation, or are diverted to sanitary (Figure 3).

Approximate Percent Drainage Basin Total Area (ac) **Impervious** L 11.1 71 M 26.5 53 30 Ν 3.6 O 4.8 61 P 0.8 42 20.4 26 Q R 7.0 33 S 9.7 27 **Total** 83.9 44

Table 1. T4 Slip 1 Upland Facility Drainage Basins

2.2.2 Outfalls

There are nine active outfalls discharging from the Slip 1 upland facility (Figure 2, Table 2). Each drainage basin is associated with a single outfall, with the exception of Basin P, which consists of two catch basins which both discharge to Slip 1 through their own pipe.

The storm lines for Basins O, N, and S were videoed in 2021-2022 to verify connectivity and completion of storm line cleanouts in those basins. In Basin N, trench drains previously thought to drain to the storm system were found to drain to the sanitary system. In Basin S, the main pipe was found to be corroded and compromised; the pipe was replaced as described in Section 6.

Table 2. Current Status of T4 Slip 1 Outfalls

Drainage Basin	Port Asset ID	Outfall Location	Status
L	STSOUT267	Wheeler Bay	Active
M	STSOUT251	South side of Slip 1	Active
N	STSOUT252	Head of Slip 1	Active
0	STSOUT253	Head of Slip 1	Active
P	STSCB6061	Head of Slip 1	Active
r	STSCB6062	Head of Slip 1	Active
Q	STSOUT254	Head of Slip 1	Active
R	STSOUT1038	Willamette River near Berth 401	Active
S	STSOUT256	Willamette River near Berth 401	Active

2.3 Site Ownership and Operating History

An exhaustive description of Site ownership and historical land uses by stormwater basin was provided in the 2019 Stormwater Source Control Evaluation Work Plan (2019 Work Plan; Geosyntec, 2019). Additional information is available there, as well as the T4 Slip 1 Remedial Investigation Proposal (URS, 2004).

Initial development of T4 began in 1907 by the Union Pacific Railroad (UPRR) for an oil supply dock; the Site was then purchased in 1917 by the City of Portland Commission of Public Docks (City CPD). Construction was completed in 1919. The U.S. Army operated the terminal in the 1940s to serve as a port of embarkation and supply depot to support World War II. The Port of Portland (Port) acquired the terminal from the City CPD in 1971 and is the current owner of the Site. However, portions of the Site have been leased to various tenants since the early 1900s.

Historical operations at T4 as a whole have included loading, unloading, processing, and storage of grain; cold storage; fumigation of cotton and food products; liquid storage (*e.g.*, fertilizer, molasses, tallow, urea, caustic soda, petroleum products, and fats); container food freight; a gasoline station; a salvage yard; operation of a break-bulk berth; a fire boat moorage; importation of ore and ore concentrates, including alumina, bauxite, chromite, chrome ore, coal, copper ores/concentrates, ferro-phosphorous iron ore, manganese, lead concentrate, sulfur, tricaphos, and zinc; and importation of other products, including pencil pitch, soda ash, talc, bentonite clay, coal, coke, and live sheep (Ash Creek Associates, 2009). Handling of pencil pitch was discontinued in 1998 (DEQ, 2003).

T4 is currently used as a marine facility. Operations at the Site consist of ship and rail loading/unloading; bulk cargo, liquid, and grain handling and storage; and general equipment and operational maintenance. Portions of T4 Slip 1 are currently leased out to tenants Kinder Morgan

Bulk Terminals, Inc. (KM) for handling soda ash, International Raw Materials LLC (IRM) for handling liquid bulk materials, and Grain Craft for processing and shipment of grains (Figure 3).

In general, these current cargos do not include chemicals that are COIs in Portland Harbor sediments and are contained in such a manner that they have low risk of release. In addition, the cargo loading, unloading, and handling are conducted in accordance with Best Management Practices (BMPs) to reduce the risk of releases to the river.

Land uses at the Site have not substantially changed since the Site's original stormwater work plan was created in 2007 (2007 SW Work Plan; Ash Creek Associates, Inc./Newfields, 2007a).

2.4 Regulatory History

For the Slip 1 upland area, the Port entered into a Voluntary Cleanup Program (VCP) Agreement for Feasibility Study and Source Control Measures on December 4, 2003 (LQVC-NWR- 03-18). The bulk of the regulatory history at the Site is related to this VCP.

Stormwater discharges from T4 are permitted under the Port's Municipal Separate Storm Sewer System (MS4) Discharge Permit No. 101314 (for property and infrastructure owned by the Port), and KM's 1200-Z Industrial Stormwater Permit Facility No. 100025 (for infrastructure on KM's leasehold). KM also holds an industrial pretreatment permit issued by the City of Portland Bureau of Environmental Services (BES) for direct discharge of treated process and industrial exposure water to the sanitary system. KM is responsible for legal compliance under their operating agreements, including operational permits, implementation of a Spill Response Plan and a Stormwater Pollution Control Plan (SWPCP), and compliance with the Port's MS4 Discharge Permit. These permits authorize the release of stormwater to the river subject to specified terms and conditions and require the implementation of stormwater BMPs. As part of their SWPCP, KM is required to collect samples and provide discharge monitoring reports to BES as DEQ's authorized agent.

The Port currently has no regulated tanks at T4, and no current activities that qualify for Resource Conservation and Recovery Act (RCRA) generator status. From historical activities, Terminal 4 qualified for reporting (EPA ID number ORD981771546).

Additional historical information was summarized as part of the remedial investigation (Ash Creek Associates/Newfields, 2007b).

2.5 Previous Investigations

A comprehensive summary of previous investigations was provided in the 2019 Work Plan (Geosyntec, 2019). For reference purposes, completed milestone documents related to stormwater and stormwater source controls at T4 Slip 1 are as follows:

- Remedial Investigation (Ash Creek Associates/Newfields, 2007b)
- Stormwater Source Control Evaluation (2009 SW SCE; Ash Creek Associates, 2009)
- Source Control Completion Report (Ash Creek Associates, 2011)

- Additional Stormwater Sampling Memo (Ash Creek Associates, 2013)
- Additional Source Control Measures Memo (Apex, 2014)
- Source Control Decision Support Data Collection (Geosyntec and GS&P, 2016)
- Treatment Effectiveness Pilot Study (Geosyntec Consultants, 2018a)
- Soil Infiltration Testing Report (Geosyntec, 2018b)
- Stormwater Quality Assessment Work Plan (2019 Work Plan; Geosyntec, 2019)
- Stormwater Evaluation Report, Terminal 4 Slip 1 (Geosyntec, 2021)
- Stormwater Evaluation Report, Terminal 4 Slip 1 (Geosyntec, 2022a)
- Basin M Vegetated Infiltration Basin Year 1 Annual Summary Report (Geosyntec, 2022b)
- Basin M Vegetated Infiltration Basin Operational Year 2 Comprehensive Report (Geosyntec, 2024)
- Basin L Stormwater Treatment System Performance Verification Report (MFA, 2024)

Additional descriptions of the history of source controls activities and studies performed at the Site were also provided to DEQ in the Terminal 4 Sufficiency Assessment on March 4, 2022 (Anchor QEA et al. 2022).

Prior to 2020, stormwater from four of the Site's eight stormwater basins had been characterized (Basins L, M, Q, and R). Storm solids had also been previously characterized for Basins L, M, and Q, with limited analysis for Basins O and R. However, these storm solids data and much of the stormwater data were collected prior to completion of source control measures, and so are not representative of current conditions (Table 3). Pre-2020 stormwater data that may still be representative of current-day conditions are provided at the end of this report as Appendix A and are compared to data from other Portland Harbor industrial sites using the DEQ-provided rank order curves in Appendix B. Additional stormwater data have been collected in all eight basins since 2020, including data post-installation of new SCMs. These data are also included in Appendix A and Appendix B.

The following subsections present investigative history and results for each of the Slip 1 drainage basins up to 2022. Data are compared to Joint Source Control Strategy (JSCS) Screening Level Values (SLVs) for water for Portland Harbor (DEQ and EPA, 2005) as exceedance factors (EFs) calculated as the observed concentration divided by the applicable SLV. EFs are also presented for Portland Harbor Record of Decision (EPA, 2017) Cleanup Levels (CULs) for surface water. SLVs and CULs are provided as the first table in Appendix F. Data are also compared to rank order curves for stormwater developed by DEQ for the stormwater pathway in Portland Harbor (DEQ, 2024). Data collected from 2023-2024, which has not been presented in any previous report, are presented in Sections 5 and 6.

Table 3. Rationale for Data Excluded from This Stormwater Source Control Evaluation for Slip 1 (adapted from Anchor QEA et al., 2022)

Basin	Excluded Data	Rationale	Reference ¹
L	Data obtained before 2022	StormwateRx Aquip unit was added in 2022	1
M	Data obtained before 6/2010	Storm system was cleaned out in 6/2010	2
N	Data obtained before 2022	Storm system was cleaned out in late 2021	3
О	Data obtained before 2023	Additional SCMs were completed in Basin O in early 2023	This report
P	none	N/A	-
Q	Data from 2008 and earlier	Eight large grain tanks each with a footprint exceeding 20,000 square feet and containing paint with high PCB content were removed in 2008	2
R	Data obtained before 10/2007	Storm system was cleaned out in 10/2007	4
S	none	N/A	-

¹1 = MFA, 2024; 2 = Ash Creek Associates, Inc., 2011; 3 = Geosyntec, 2022a; 4 = Ash Creek Associates, Inc., 2009.

2.5.1 Basin L

The current land use for Basin L is soda ash loading operations under KM's leasehold. This land use has not changed since the 2007 SW Work Plan. The delineation of this basin has been modified since 2007 to reflect increased understanding of the contributing drainage area, including:

- removal of areas north of the rail tracks,
- addition of areas between the rail tracks and Basins K1, K2, and J, and
- removal of the dock area as the dock now drains to the onsite treatment facility, which discharges to the sanitary system.

A pH adjustment system with the addition of biochar was installed in 2018 to treat stormwater runoff from KM's leasehold; in 2022 a StormwateRx Aquip filtration unit was added to the treatment train.

In addition to the COIs discussed below, Basin L was historically sampled for other metals, pesticides, PCBs, and phthalates prior to implementation of source control measures. These parameters were removed from the list of COIs for this basin due to results that were either below the knee of the rank order curve or were less than 10 times their SLV.

2.5.1.1 Historical Uses

Basin L has historically been used for warehousing and rail and ship import and export of materials, including soda ash and pencil pitch.

2.5.1.2 Metals

Post-stormwater filter data obtained for Basin L performance monitoring (MFA, 2024 show that copper and zinc concentrations in Basin L stormwater are close to or below their SLVs (Cu EF <1-1.3; Zn EF all <1) and are well below the knee of the curve for Portland Harbor industrial sites (Appendix B). The SLV and CUL for both copper and zinc are nearly identical.

2.5.1.3 PAHs

Basin L was originally sampled for PAHs because of 1) historical activities, 2) it was a COI for Terminal 4 sediment, and 3) some PAHs were detected in surface soils during the initial site Remedial Investigation (RI; Ash Creek Associates, 2009). PAH remained a constituent of concern for Basin L stormwater as of 2020. Post-filtration data from the new StormwateRx Aquip unit installed in Basin L found five PAHs above SLVs (EF <1-3.4), but none above ten times their SLV, in four post-filter samples. All four samples were above the CUL for carcinogenic PAHs (cPAHs; EF 21-333), as were seven individual PAHs (EF<1-237). All post-filter samples were below the knee of the rank order curve.

2.5.1.4 Summary

- As of 2020, PAHs were the only constituents of concern remaining in Basin L.
- The current land use has not substantially changed since the 2007 SW Work Plan, except for modifications to the delineation of Basin L which have resulted in a smaller basin.
- A StormwateRx Aquip unit was added in 2022, and post-filter PAH concentrations in stormwater samples have been low (see Section 7).

2.5.2 Basin M

The current land use for Basin M is largely open space and is partially occupied by the IRM leasehold and a small portion of the KM leasehold. Activities conducted by IRM include storing, handling, and distributing bulk liquid and granular products. Activities conducted by KM in this area are limited to rail operations. These land uses have not changed since the SW SCE workplan was written in 2007. Changes to the delineation of this basin since 2007 have included removal of areas north of the railroad tracks and removal of an approximately 3.5-acre area surrounding the storage tanks on the IRM leasehold, as this area is isolated with a containment berm and all stormwater infiltrates or evaporates.

A conveyance system cleanout of Basin M was completed in June 2010. Since 2010, a bioswale and bioretention basin which treat 0.14 acres of impervious runoff were constructed as part of rehabilitation of the T4 entrance road project (2013), permeable pavement which treats runoff from 1 acre of roadway in Basins M, N, and O was added (2015), and a bioinfiltration basin that treats and infiltrates greater than 90 percent of average annual runoff from Basin M was constructed (2021; see Sections 6 and 7).

In addition to the COIs discussed below, Basin M was historically sampled for additional metals, pesticides, PCBs, and phthalates prior to implementation of source control measures. These

parameters were removed from the list of COIs for this basin due to results that were either below the knee of the rank order curve or were less than 10 times their SLV.

2.5.2.1 Historical Uses

Historically, land uses at Basin M have included vehicle parking, equipment storage, and rail import and export of materials, including caustic soda, non-organic fertilizer, magnesium chloride, lignin, lignon-sulfonate, molasses products, tallow, propylene glycol, and vegetable oil. H. N. Leckenby operated a fumigation plant just in front of the current IRM tanks beginning in 1923 where cotton, peanuts, rice, beans, and other foodstuffs were fumigated. The plant may have also been used by the U.S. Army during World War II to deinfestate soldiers and prisoners of war. Fumigation operations continued until the mid-1950s (Blasland, Bouck, and Lee, 2005). The exact chemicals used for fumigation are not known, however, according to the Remedial Investigation (Ash Creek Associates/Newfields, 2007b):

"Prior to the 1940s, pesticides were based on inorganic compounds, including arsenic, mercury, copper, or lead. DDT was invented in 1939, and became widely used after the 1940s. Fumigants used in the 1920s and 1940s include VOCs such as methyl bromide, ethylene dibromide (EDB), 1,3-dichloropropene, and 1,2-dibromo-3-chloropropene (DBCP)."

Portions of the pier were demolished in the 1990s, and most of the pavement was removed from this basin between late 2005 and early 2006.

2.5.2.2 Metals

Metals measured during studies completed after the storm system was last cleaned out have shown concentrations of As (EF 12.1-351), Cd (EF <1-3.2), Cu (EF 2.9-9.5), Pb (EF 6.7-60.7), and Zn (EF <1-3.2) to be occasionally above SLVs, but only As and Pb were above ten times the SLV in any sample. Of these, only As has a notably different CUL than SLV. As such, CUL exceedance factors were higher (EF 30-878). All metals concentrations except arsenic are below the knee of the rank order curve. Approximately 33% of the arsenic stormwater concentrations in Basin M were above the knee of the curve with the highest concentration exceeding the knee by a factor of 5.4. However, arsenic is naturally occurring in the Lower Willamette Valley and all but the highest of the twelve data points (15.8 μ g/L) fall within the concentration range of regional groundwaters (90th percentile 13 μ g/L, range 5 - 15 μ g/L; Anchor QEA et al., 2022).

2.5.2.3 PAHs

Since late 2010, fourteen PAH samples have been collected in Basin M. Out of these, 14 PAHs have been measured above their SLV (EF <1-146), and seven have been measured at greater than ten times the SLV. All samples have been above the CUL for cPAHs (EF 1467-22,000), as have seven individual PAHs (EF <1-15,083). Most of these samples are below the knee of the rank order curve, though the highest concentrations approach the knee of the curve.

2.5.2.4 PCBs

No PCB Aroclors were above SLVs; PCB Aroclors were all non-detect except for Aroclor 1254 and 1260, which were below the SLV. Total PCB congeners and Aroclors in stormwater were above SLVs (EF 131-688) and CULs (EF 1313-6875), but were below the knee of the curve for Portland Harbor sites (Appendix B).

2.5.2.5 Phthalates

Six phthalates were sampled in Basin M, with only BEHP and Di-n-octyl phthalate detected in one sample each. BEHP was detected below the SLV but above the CUL (EF 10); Di-n-octyl phthalate was detected above the SLV (EF 1.7) but does not have an associated CUL in surface water.

2.5.2.6 Summary

- The current land use has not substantially changed since the 2007 SW Work Plan, except for several modifications to the delineation of Basin M.
- The loading of COIs to Slip 1 has been greatly reduced by the installation of a bioinfiltration basin that infiltrates greater than 90 percent of long-term average annual runoff (see Section 7).

2.5.3 **Basin N**

The current land use in Basin N is mostly vacant, but includes access roads, rail spurs, and a portion of the IRM leasehold. This land use has not substantially changed since the 2007 SW Work Plan.

In 2015, permeable pavement which treats runoff from 1 acre of roadway in Basins M, N, and O was added as part of the T4 entrance road rehabilitation project. The Basin N storm drain network was cleaned out in fall of 2021, with lines videoed after completion to confirm the success of cleanout work; video inspection showed the active sections of piping to be competent and free from breaks (Geosyntec, 2022a).

Basin N was not sampled for stormwater prior to 2020.

2.5.3.1 Historical Uses

Basin N has historically contained a liquid bulk storage facility, which was operated by Pacific Molasses/PM-Ag, among others. The facility was constructed in 1919 and added to in 1931 to include a warehouse, tank car cleaning facility, and an edible-oil cleaning pit. Materials handled included liquid fertilizer, molasses and molasses products, tallow, urea, caustic soda, and fats. The original public storage tanks were removed in the 1990s, but five privately owned tanks remain in use. PM-Ag also used an 8,000-gallon underground storage tank for diesel, which was removed in 1991 (Blasland, Bouck, and Lee, 2005). A 3,000-gallon underground diesel storage tank was removed from the IRM leasehold in 1995 and was issued a No Further Action determination by DEQ (Blasland, Bouck, and Lee, 2005).

In addition, Basin N contained the historic Rogers Terminal and Shipping facility. Several of the Rogers Terminal and Shipping buildings were demolished between late 2004 and early 2005. The remaining buildings are used by Port Facility Maintenance.

2.5.3.2 Metals

Basin N was sampled for mercury in 2022 due to a somewhat elevated concentration of mercury noted in solids samples scraped from the pipe during disposal characterization sampling prior to full storm line cleanouts. No mercury was detected in any storm water sample post-line cleanout.

2.5.3.3 PAHs

The 2021 Stormwater Evaluation Report (SER) found somewhat elevated PAHs in two of four samples based on rank order curves. As such, the Basin N storm drain system was cleaned out in 2021 and re-sampled in 2022. The 2022 SER found five PAHs above the SLVs (EF <1-2.1). All samples were above the CUL for cPAHs (EF 175-385), as were six individual PAHs (EF <1-297). However, all samples were below the knee of the rank order curves (Appendix B).

2.5.3.4 Dioxins and Furans

Basin N stormwater was sampled for dioxins and furans as part of both the 2021 and 2022 SERs. In all samples, TCDD-TEQ was greater than ten times the SLV (EF 10.8-59.4), and 2,3,7,8-TCDD was not detected in any sample. All samples also exceeded the CUL for TCDD-TEQ (EF 110-606). All dioxin/furan congener results plot below the knee of the rank order curves (Appendix B).

2.5.3.5 Summary

- The 2022 SER concluded that Basin N is controlled for the stormwater pathway.
- The current land use has not substantially changed since the 2007 SW Work Plan.

2.5.4 **Basin O**

The current land use for Basin O is limited; it is vacant from operations except for IRM's above-ground liquid pipeline which was installed in 2010, and a parking area which is used by trucks and Port maintenance. The pipeline is used for liquid fertilizer UAN 32. The land uses have not changed since the SW SCE workplan was written in 2007. Changes to the delineation of this basin since 2007 consist mostly of the removal of a small area, now known as Basin P, surrounding the City of Portland Outfall 52C (see Section 2.5.5).

In 2015, permeable pavement which treats runoff from 1 acre of roadway in Basins M, N, and O was added as part of the T4 entrance road rehabilitation project. The Basin O storm drain network was cleaned out in fall of 2021, with lines videoed after completion to confirm the success of cleanout work; video inspections showed the pipes to be competent and free from breaks (Geosyntec, 2022a). Additional sampling was completed following the implementation of source controls in 2022 (see Sections 5 and 6).

In addition to the COIs discussed below, Basin O was sampled for BEHP prior to implementation of source control measures (Geosyntec, 2021). This parameter was removed from the list of COIs

for this basin due to results that were either below the knee of the rank order curve or were less than 10 times their SLV.

2.5.4.1 Historical Uses

Historic land uses in Basin O are limited and include ancillary areas to grain storage silos and possibly a disposal area for creosoted wood (Ash Creek Associates, Inc./Newfields, 2007b). The area was also used to store stockpiled soils excavated during the development of the Toyota leasehold.

2.5.4.2 PAHs

The 2021 SER found elevated PAHs in one of four samples based on rank order curves. As such, the Basin O storm drain system was cleaned out in 2021 and re-sampled in 2022. The 2022 SER again found elevated PAHs in one of three samples, with 10 PAHs above the SLV in at least one sample (EF <1-29.3). cPAHs were above the surface water CUL in all three samples (EF 356-3892), as were seven individual congeners (EF <1-2533) The elevated sample had concentrations that were on the knee of the rank order curve. In both the 2021 and 2022 report, the elevated PAH concentrations were associated with elevated TSS concentrations.

2.5.4.3 Dioxins and Furans

Basin O stormwater was sampled for dioxins and furans as part of both the 2021 and 2022 SERs. In all samples, TCDD-TEQ was greater than the SLV (EF 133-1596 for 2022), and CUL (EF 1359-16278 for 2022), though 2,3,7,8-TCDD was not detected in any sample. Dioxin and furan concentrations were highest during the events with elevated TSS. Rank order curves for dioxin/furan congeners were not available at the time the source control report associated with these sampling events were completed; as this data has been superseded by more recent data (see Section 5), this data has not been compared to the new rank order curves.

2.5.4.4 Summary

- Basin O has been a focus of source control since 2020; additional post-SCM data are presented later in this report.
- As of the 2022 SER, PAHs and dioxins and furans were the only remaining COIs in Basin O, and generally only when associated with elevated TSS (see Section 7).
- The current land use has not substantially changed since the 2007 SW Work Plan.

2.5.5 **Basin P**

Basin P did not exist in previous delineations of T4 stormwater basins but was primarily a portion of Basin O. Basin P was thought to contain no stormwater infrastructure (e.g., no catch basins or outfall) linked to the basin's runoff, and it was believed that runoff either infiltrated or sheet flowed off the end of the low dock which makes up much of the basin's drainage area. However, in 2021, two catch basins, each with their own outfall pipe, were discovered at the base of the ramp to the low dock. The low dock is not actively used.

The current land use for Basin P is very limited and is vacant from operations; the land use for this area has not changed since the 2007 SW Work Plan (see Section 4.3.7). The Basin P catch basins were cleaned out in fall of 2021, and visual inspection showed the catch basins and adjacent pipes to be competent and free from breaks.

2.5.5.1 PAHs

The 2022 SER found no PAHs above the SLVs. Two of the four samples were above the CUL for cPAHs (EF <1-92), and four individual PAHs were measured above their CUL at least once (EF <1-68). All samples were below the knee of the rank order curves (Appendix B).

2.5.5.2 Dioxins and Furans

TCDD-TEQ was greater than ten times the SLV in two of three samples (EF 1.6-65.9), and 2,3,7,8-TCDD was not detected in any sample. All samples exceeded the CUL for TCDD-TEQ (EF 16.7-672). All dioxin/furan congener results plot below the knee of the rank order curves (Appendix B).

2.5.5.3 **Summary**

- The 2022 SER concluded that Basin P is controlled for the stormwater pathway.
- The current land use has not substantially changed since the 2007 SW Work Plan.

2.5.6 **Basin Q**

The current land use for Basin Q is mostly vacant, but includes rail spurs servicing IRM, the facility entrance road, T4 guard station, and the Port's Marine Operations administrative building. Stormwater management and controls were expanded in 2013 to include a bioswale and bioretention basin that manage 3.32 acres of impervious runoff from Basin Q. The land use in Basin Q has not changed since the 2007 SW Work Plan, except for expanding the stormwater management and controls. Changes to the delineation of this basin have been minimal as well.

The 2009 SW SCE concluded that no further source controls were needed for this basin (Ash Creek Associates, 2009).

In addition to the COIs discussed below, Basin Q was historically sampled for other metals and pesticides prior to implementation of source control measures. These parameters were removed from the list of COIs for this basin due to results that were either below the knee of the rank order curve or were less than 10 times their SLV.

2.5.6.1 Historical Uses

Basin Q was historically used for grain storage and associated rail and ground support activities. This basin was mostly occupied by eight grain silos, which were demolished in 2008. IRM's above-ground liquid pipeline, which was constructed in 2010, runs along the southern edge of Basin Q.

2.5.6.2 PAHs

The 2021 SER found six PAHs above SLVs in stormwater (EF <1-6.5), none of which were above 10 times their SLV. Four of five samples were above the CUL for PAHs (EF <1-933), as were six individual PAHs (EF <1-748). Total PAH concentrations in stormwater and stormwater solids were below the knee of the curve for Portland Harbor sites (Appendix B).

2.5.6.3 PCBs

The 2011 Source Control Completion Report found one Aroclor minimally above its SLV (EF <1-1.2), but less than ten times its SLV. Total PCB congeners and Aroclors were also above ten times the SLV (EF <1-594) as well as CULs (EF 2799-5938) in three of four samples. However, concentrations were well below the knee of the curve for Portland Harbor sites (Appendix B).

2.5.6.4 Phthalates

BEHP was sampled in stormwater as part of the 2021 SER and was not detected in any sample.

2.5.6.5 Dioxins and Furans

TCDD-TEQ was greater than ten times the SLV in all samples (EF 175-435), and 2,3,7,8-TCDD was not detected in any sample. All samples exceeded the CUL for TCDD-TEQ (EF 1788-4440). All dioxin/furan congener results plot below the knee of the rank order curves (Appendix B), except for OCDD, which plots on the knee of the curve for several samples.

2.5.6.6 Summary

- The 2021 SER confirmed that Basin Q is controlled for the stormwater pathway.
- The current land use has not changed, and stormwater management and controls have been expanded since the 2007 SW Work Plan.

2.5.7 **Basin R**

The current land use for Basin R is mostly vacant, except for the area leased by Grain Craft who operates a flour mill. The land use in this basin has not substantially changed since the 2007 SW Work Plan, except for the construction of IRM's above-ground liquid pipeline and demolition of a grain conveyance bridge, both conducted in 2010. The pipeline is used for liquid fertilizer UAN 32.

The delineation of Basin R has changed since the 2007 SW Work Plan. The primary change is removal of a large area to the north of the basin, which has been added to the Basin S delineation. The new delineation depicts a more accurate drainage of the stormwater, with Basins R and S each having one outfall.

Basin R was sampled as a part of the 2009 SW SCE and it was concluded that no further source control measures were recommended for the basin.

2.5.7.1 Historical Uses

Similar to Basin Q, Basin R was historically used for ancillary activities to support grain import, export, and storage. The basin has served as a mill since the early 1900s, first operating as Eagle Flour, and then as Terminal Flour Mills for about 60 years (Port of Portland, 2010b). Terminal Flour Mills operated three underground storage tanks, including a 10,000-gallon fuel oil tank north of the flour mill, a 1,000-gallon diesel tank located south of the flour mill, and a 1,000-gallon fuel oil tank located south of the flour mill. All three tanks were removed, but the removal dates are unknown (Blasland, Bouck, and Lee, 2005). Portions of the pier within Slip 1 were demolished in the 1990s.

2.5.7.2 Metals

The SW SCE found As (EF 4-4.2), Cd (EF 4.4-5.7), Cu (EF 3.2-4.3), and Zn (EF 6.6-7.9) to be above SLVs in stormwater, but none were above ten times their SLVs. As is the only one of these metals with a CUL notably different than the SLV (EF 10-11). All values were below the knee of the curve for Portland Harbor industrial sites (Appendix B).

2.5.7.3 PAHs

The SW SCE noted 6 PAHs above SLVs in post-cleanout samples (EF <1-3.4), but none above ten times their SLV. Both samples were above the CUL for cPAHs (EF 26-385), as well as for six individual PAHs in at least one sample (EF <1-275). PAHs were also below the knee of the curve for Portland Harbor sites (Appendix A).

2.5.7.4 Pesticides

Pesticides were only sampled prior to a partial storm drain cleanout, so conditions have likely improved since the data were obtained. The pre-cleanout stormwater samples for the 2009 SW SCE noted four pesticides (DDx compounds) above their SLVs, but only two above ten times their SLV.

2.5.7.5 PCBs

No PCB Aroclors were above SLVs; PCB Aroclors were all non-detect except for Aroclor 1242, which was below the SLV. Total PCB congeners in stormwater were above SLVs (EF 234-545) and CULs (EF 2344-5453), but were generally similar in concentration to samples in Basin Q and were below the knee of the curve for Portland Harbor sites (Appendix B). PCB congeners were also detected in the method blank sample indicating high bias concentrations.

2.5.7.6 Phthalates

The SW SCE did not detect and phthalates above SLVs in Basin R.

2.5.7.7 Summary

• The 2009 SW SCE concluded that no further action was needed to control the stormwater pathway in Basin R based on the post-cleanout stormwater data.

• The current land use has not changed since the 2007 SW Work Plan work plan and the changes to the Basin R delineation have not affected the land use depiction.

2.5.8 **Basin S**

The current land use for Basin S is mostly vacant, except for the area leased by Grain Craft who operates a flour mill. The land use in this basin has not changed since the 2007 SW Work Plan. The delineation of Basin S has changed since the 2007 SW Work Plan with the addition of a large area to the west of the basin, which was removed from the Basin R delineation. The new delineation depicts a more accurate drainage of the stormwater, with Basins R and S each having one outfall. Two catch basins in the current delineation of Basin S drain to drywells, and the area is largely pervious. It is likely that most of the flow from this area infiltrates.

The Basin S storm drain network was cleaned out in 2022-2023, with lines videoed after completion to confirm the success of cleanout work. During the course of the cleanouts, a portion of the metal pipe collapsed, which caused a sink hole to form. The degraded metal pipe and most downstream manhole were excavated and replaced, and two cleanouts were added to the pipe to enable easier access in the future (see Section 6). Additional source controls were also completed in 2023 (see Section 6). The concrete section of pipe upstream of the degraded metal pipe was found to be competent and free from breaks.

This basin had not been sampled prior to 2023 but was included in the most recent round of sampling. These data are presented in Section 5.

2.5.8.1 Historical Uses

As with Basins Q and R, Basin S was historically used for grain import, export, and storage operations. The basin has served as a mill since the early 1900s, first operating as Eagle Flour, and then as Terminal Flour Mills for about 60 years (Port of Portland, 2010b).

2.5.8.2 Summary

- No water quality data are available for Basin S prior to 2023; data collected in 2023 and 2024 are presented later in this report.
- The current land use has not changed since the 2007 SW Work Plan, and the changes to the Basin S delineation have not affected the land use depiction or conclusions in the 2009 SW SCE.

3. POTENTIAL SOURCES AND CONTAMINANTS OF INTEREST

3.1 Potential Contaminant Sources

There are no known ongoing sources of contamination at the Site – all potential contaminant sources are from historical activities. Possible historical sources for COIs include historical handling of pencil pitch at Berth 411 (Basin L); historic storage tanks and pipelines, including diesel storage; a former boiler house; possible creosoted wood storage and waste areas; and a former gas fueling station. More detailed information on potential historical sources and remedial

actions is provided in the Site's remedial investigation report (Ash Creek Associates/Newfields, 2007b), feasibility study (Ash Creek Associates, 2011b), and other reports. Remaining known historical sources of PAHs in near-surface soils within the Slip 1 Upland Area include soil management areas on the north side of the Slip 1: Pier 1 Rail Area and Pier 1 Unpaved Area (Apex, 2019). These areas are located in Basins R and S and are managed to prevent worker exposure, control dust, prevent erosion from stormwater runoff, and prevent the spread of chemicals in soils through construction (Apex, 2019). The emergence of dioxins and furans as a focused COI in Portland Harbor as defined in the Portland Harbor Record of Decision (ROD; EPA, 2017) has been recent. The Port has not identified possible sources of this COI at the Site.

3.2 Outfall Sediment Data

Data summarized in the 2022 T4 Sufficiency Assessment (Anchor QEA, et al. 2022) show no exceedances of surface soil remedial action levels (RALs) or principal threat waste (PTW) thresholds near the Basin L, M, O, Q, or R outfalls (Figure 4). Near the Basin N outfall multiple exceedances of RALs were found for PAHs, PCBs, and dioxins and furans; as well as multiple exceedances of PTW thresholds for dioxins and furans and a single PTW exceedance for PCBs. Near the Basin S outfall, RAL exceedances were measured for PCBs and dioxins and furans in addition to a PTW threshold exceedance for PCBs. Furthermore, the Sufficiency Assessment Report (Anchor QEA, et al. 2022) found the congener fingerprint of dioxins and furans in stormwater is not similar to that found in T4 sediments.

Both areas are marked as conditionally controlled in the T4 Sufficiency Assessment (Figure 4). For the Basin N area, the bank is stabilized with riprap on the lower slope, and potential recontamination will be addressed alongside the adjacent sediment management area (SMA) during the remedial design (RD) process. For the Basin S area, the riverbank is stable except for two small areas of potential erosion, and potential recontamination from bank erosion will be addressed alongside the adjacent SMA during the RD process. Detailed information on the physical characteristics and current conditions of the riverbanks can be found in the T4 Riverbank Characterization Report (Apex 2021) and updates will be presented as part of the in-water RD activities.

3.3 Contaminants of Interest

Stormwater sampling that occurred between 2020 and 2022 confirmed that Basins N, P, and Q are controlled for all COIs. Remaining potential COIs at the Site for stormwater are PAHs and dioxins/furans in Basin O, and PCBs and dioxins/furans in Basin S.

4. ONGOING STORMWATER MANAGEMENT MEASURES

The Port has implemented numerous source control measures (SCMs) at the Site through various mechanisms, including tenant contracts, the Environmental Management System Program, continual improvement policy, Kinder Morgan's 1200-Z permit, and a Stormwater Master Plan. In addition, all stormwater outfalls not covered by a 1200-Z permit are covered by the Port's MS4 permit (i.e. all basins except Basin L) and are subject to the requirements of that permit. The Port's

Stormwater Management Plan (SWMP) describes the stormwater programs and BMPs that the Port implements to satisfy the requirements of the MS4 Permit and reduce stormwater pollution to the maximum extent practicable. Among the nine major stormwater program elements included in the SWMP, those most pertinent to the ongoing stormwater management measures at T4 include employee and tenant education and outreach, illicit discharge detection and elimination, construction site runoff control, and pollution prevention and good housekeeping.

As part of these programs and policies, the Port implements many non-structural BMPs including pavement sweeping, conveyance system cleaning, annual cleanout of catch basins, and regular inspections and maintenance of stormwater structures, catch basin inserts, and treatment facilities.

Ongoing structural SCMs implemented prior to this report include a pH adjustment system in Basin L, bioswales in Basin Q, and permeable pavement in portions of Basins M, N, and O, are summarized below.

- In 2018 a pH adjustment system was added to Basin L to treat runoff from Kinder Morgan's operations. It consists of a pump station, carbon dioxide, and two reaction tanks.
- In 2013 bioswales and a bioretention basin were constructed in association with rehabilitation of the T4 entrance road. The bioswale and the bioretention basin manage runoff from 0.14 acres of impervious surface in Basin M and 3.32 acres of impervious surface in Basin Q.
- In 2015 permeable pavement was installed as part of the second phase of the entrance road rehabilitation project. Approximately 0.67 acres of permeable pavement was installed to manage runoff from approximately 1 acre of roadway (total of permeable and standard pavement) in Basins M, N, and O. This pavement is swept annually with a regenerative air sweeper.

Additional SCMs have been implemented in Basins L, M, O, and S since 2021, and are described along with their maintenance requirement in Section 6.

5. DATA COLLECTION AND INTERPRETATION

5.1 2023-2024 Sampling

Stormwater sampling was conducted in accordance with the most recent DEQ-approved Work Plan (Geosyntec, 2022, Appendix F). Per Section 4 of the Work Plan, samples in Basins O and S were to be collected after additional source control measures were implemented. Samples were to consist of three storm events during the 2022/2023 wet season, collected as time-weighted composite samples for the locations nearest the Basins O and S outfalls, and grab samples for upstream manholes in Basin O. Samples in 2020 and 2022 had shown occasional elevated TSS concentrations in Basin O, so the additional grab samples were included to help narrow down the source of TSS.

Samples from two storm events were collected in spring of 2023. However, an unusually short rainy season and a supplier backorder issue prevented the third sample from being obtained that same season. After reviewing results and consulting with DEQ, additional SCMs were implemented in Basin S (see Section 6) and the third sample was obtained for all locations in January 2024 (Table 4). All samples met the total rainfall depth and rainfall duration targets. The first of the three storms slightly exceeded the antecedent rain depth target. However, all antecedent rainfall occurred 23 hours before the start of the sampled storm. The combination of the minor exceedance of target criteria (0.01 inches) and the duration of time prior to the start of the sampled storm suggest these samples are representative. The second and third storms met the antecedent depth target. All grab samples were obtained within the first three hours of runoff as specified in the Work Plan. Composite sample storm coverage ranged from approximately 75 to 100 percent of storm runoff duration (Table 5), and all composite samples were made up of at least 10 separate aliquots of approximately 250 mL each. These composite samples are therefore compliant with Washington Department of Ecology Guidance for Automatic Sampling, which recommends that at least 75% of the storm event be captured, each sample be a minimum of 200 mL, and at least 10 aliquots be collected (Ecology, 2018). Furthermore, autosamplers were always started within the first hour of runoff. Storm event hyetographs and autosampler output files can be found in Appendix C and D.

Table 4. Summary of Sampled Storm Events

Storm Start Date	Total Rain Depth (in)	Runoff Duration, Basin O (h)	Runoff Duration, Basin S (h)	24 h Antecedent Rain Depth (in)	Basins Sampled
3/31/2023	0.45	16	16	0.11	O, S
4/9/2023	1.75	< 24	< 24	0.00	O, S
1/26/2024	2.10	< 24	< 24	0.03	O, S
Target	> 0.20	> 3	> 3	< 0.10	O, S

Table 5. Summary of Storm Coverage for Time-Weighted Composite Samples

Sample Point	Approximate Autosampler Coverage of First 24 h of Storm ¹				
_	3/12/2022	4/3/2022	4/29/2022		
Basin O	75%	97%	97%		
Basin S	75%	94%	97%		

¹Shaded boxes indicate that at least one aliquot was obtained within the first 30 minutes of runoff.

5.2 2023-2024 Data Summary

Water quality data collected for this report are summarized in Table 6, with locations illustrated in Figure 5. Data are presented in Table 7 and Table 8 as well as Appendix A; original laboratory reports and data validation results are presented in Appendix E.

Table 6. Summary of Representative Data Collected for T4 Slip 1

		Sample Collection Method	Number of Samples ¹				
Basin	Sample ID		TSS	PAHs	Dioxins/Furans	PCBs	
24022	F		SM 2540D	<i>EPA</i> 8270E	EPA 1613B	<i>EPA</i> 8082A	
Basin S	STSMH1914	Time-weighted composite	3	-	3	3	
Basin O	STSMH2712	Time-weighted composite	3 (1)	3 (1)	3 (1)	-	
Basin O	STSMH2603	Grab	3	-	-	-	
Basin O	STSMH2615	Grab	3 (1)	-	-	-	
Basin O	STSMH2713	Grab	3	-	-	-	

¹Number of duplicates shown in parentheses

Table 7. 2023-2024 Stormwater COI Data

Date	Sample Name	Basin	Sample Type ¹	TCDD TEQ (pg/L)	Total PAHs (µg/L)	cPAHs (μg/L)	Total PCB Aroclors (µg/L)
4/1/2023	STSMH1914	S	TWC	1.84	-	-	< 0.00943
4/1/2023	STSMH2712	O	TWC	2.19	0.329	0.053	-
4/10/2023	STSMH1914	S	TWC	1.04	-	-	< 0.0102
4/10/2023	STSMH2712	O	TWC	0.781	0.307	0.036	-
4/10/2023	STSMH2712-DUP	O	TWC	0.674	0.282	0.032	-
1/27/2024	STSMH1914	S	TWC	0.369	-	-	< 0.0115
1/27/2024	STSMH2712	O	TWC	0	0.107	0.015	-

¹TWC = time-weighted composite

Table 8. 2023-2024 Stormwater TSS Data

Date	Sample Location	Basin	Sample Type	TSS Concentration (mg/L)
3/31/2023	STSMH2603	O	G	39
3/31/2023	STSMH2615	O	G	34
3/31/2023	STSMH2710	O	G	37
4/1/2023	STSMH2712	O	TWC	13
4/1/2023	STSMH1914	S	TWC	109
4/9/2023	STSMH2603	O	G	7
4/9/2023	STSMH2615	O	G	19
4/9/2023	STSMH2710	O	G	6
4/10/2023	STSMH2712	O	TWC	7
4/10/2023	STSMH2712-DUP	O	TWC	9
4/10/2023	STSMH1914	S	TWC	92
1/26/2024	STSMH2603	O	G	6
1/26/2024	STSMH2615	O	G	8
1/26/2024	STSMH2615-DUP	O	G	12
1/26/2024	STSMH2710	O	G	13
1/27/2024	STSMH2712	O	TWC	6
1/27/2024	STSMH1914	S	TWC	242

5.3 2023-2024 Data Interpretation

5.3.1 Method Detection Level and QA/QC Issues

Target method detection limits (MDLs) were specified in the Work Plan and were sometimes lower or higher than SLVs. The achieved MDLs were always equal to or less than the associated

SLV in all samples except for 2,3,7,8-TCDD, where MDLs were always above the SLV. However, the target MDL specified in the Work Plan for 2,3,7,8-TCDD was always met.

The target MDLs specified in the Work Plan for 7 of the PAH congeners and 3 of the dioxin/furan congeners were not always met.

For the 7 PAHs, the MDL was exceeded by less than ten percent. For the 3 dioxin/furan congeners, the MDL was exceeded by less than a factor of two, and the MRLs were always met. These slightly elevated detection limits are not considered impactful to the overall results.

In the STSMH2712 field duplicate sample, two PAHs were measured at concentrations between the MDL and MRL in one sample and were detected above the MRL in the other sample. As such, the RPD was incalculable, and a J-flag was added to each value. In the STSMH2615 duplicate the RPD for TSS was greater than 30%, so a J-flag was applied. As this was a field duplicate from a flowing pipe, and not a field split, this could be indicative of variability in water quality rather than an issue with repeatability of field methods.

5.3.2 Comparisons to SLVs, CULs, and Knee of the Curve Plots

To put the results within the context of the Portland Harbor Superfund Site, data are compared to JSCS SLVs for water for Portland Harbor (DEQ and EPA, 2005), Portland Harbor Record of Decision (ROD) Cleanup Levels (CULs) for surface water (EPA, 2017), and rank order curves for stormwater developed by DEQ for the stormwater pathway in Portland Harbor (DEQ, 2024).

5.3.2.1 Basin O

In Basin O, six PAHs were measured at levels greater than the associated SLVs in at least one representative sample (EF <1-3.5). However, no PAH was detected at greater than 3.5 times the SLV in any sample. All three samples were below the total PAHs knee of the curve. Six PAHs were detected in at least one sample above their CUL (EF <1-258); exceedance factors for cPAHs ranged from 125-442.

TCDD-TEQ was greater than the SLV (EF <1-429) and the CUL (EF <1-4380) for the first two samples; for the last sample, no dioxins or furans were detected. 2,3,7,8-TCDD was not detected in any sample, and all dioxin/furan congener results plot below the knee of the rank order curves (Appendix B).

TSS was consistently low in all samples – both upstream and near the outfall.

5.3.2.2 Basin S

No PCBs were detected in any sample from Basin S. TCDD-TEQ was greater than the SLV (EF 72-361) and the CUL (EF 738-3680). 2,3,7,8-TCDD was not detected in any sample. All dioxin/furan congener results plot below the knee of the rank order curves except for 1,2,3,4,6,7,8-HpCDF, which plots on the knee for one sample (Appendix B)

While TSS was elevated (over 100 mg/L in two of three samples), higher TSS did not correlate with higher COI concentrations in Basin S.

5.3.3 Discussion

COI concentrations were low in Basins O and S in relation to rank order plots, SLVs, and CULs. TCDD-TEQ concentrations were low in relation to other Portland Harbor industrial sites.

5.3.3.1 Dioxins and Furans

Issues related to the availability of dioxin and furan data in Portland Harbor stormwater were described in the 2021 T4 Stormwater Evaluation Report (Geosyntec, 2021). In summary, prior to publication of the Portland Harbor ROD, dioxin/furan data were not collected from Portland Harbor sites unless historical or current activities were associated with a potential source of dioxins/furans for the site. As a result, compared to other Portland Harbor COCs (e.g. PCBs and PAHs), limited data are available to support evaluations of dioxins/furans in stormwater versus concentrations typical of urban industrial sites; this includes a lack of dioxin/furan data available in previous source control decisions made by DEQ.

DEQ's stormwater guidance was updated to include a screening chart (commonly referred to as rank order curves or knee-of-the-curve plots) for dioxins/furans for Portland Harbor sites in July 2024. However, these curves consist of data from a limited number of sites, many of which have undergone some form of source control implementation since the original set of curves for other COIs was developed. In addition, these curves differ from the original curves in that they include non-detect values plotted at their detection limit, while the original curves include only detected data. For some curves, nearly 90% of the data is non-detect data. For these reasons, the new dioxin and furan curves are likely biased such that the knee of the curve occurs at a much lower concentration than it would if they had been created based on data obtained at the same time and from the same sites that were used to create the original curves for the other COIs.

6. SOURCE CONTROL MEASURES

SCMs implemented since 2021 and not described in the 2022 Stormwater Evaluation Report (Geosyntec, 2022a) are described below. Ongoing SCMs implemented prior to or as part of the 2022 report are described in Section 4.

6.1 Basin L

In May 2022, a StormwateRx Aquip treatment system was brought online to treat stormwater runoff from Basin L. The new treatment system is installed downstream of the existing pH adjustment system and is designed to treat up to Oregon's 1200Z Industrial Stormwater General Permit Tier 2 design storm (50% of the 2-year 24-hour storm). Additional information on the design of the system was provided to DEQ in an SCM Work Plan (MFA, 2022), and performance data were presented in a performance verification report (MFA, 2024). Data show the SCM is effective. Additional details are provided in Section 7.1.1, post-filter data are included in Appendix A and data are plotted on rank order curves in Appendix B.

Operation and maintenance (O&M) of the Basin L treatment unit includes monthly inspections. Regular maintenance includes scraping the media surface to remove accumulated solids.

6.2 Basin M

A vegetated bioinfiltration basin was brought online in Basin M in December 2021. The SCM is designed to capture and infiltrate greater than 90 percent of average annual runoff from Basin M. Hydraulic performance of the SCM was evaluated as part of the Comprehensive Report for Operational Year 2, and approved by DEQ (Geosyntec, 2024). Data show the SCM is performing as designed. Additional details are provided in Section 7.1.2.

Operation of the Basin M bioinfiltration basin is subject to the approved O&M manual. Routine maintenance includes vegetation maintenance (trimming, thinning, and summer irrigation as needed), removal of accumulated sediment from the basin forebay and intercept manhole, and raking and/or scraping of the media surface as needed to maintain infiltration rates. Annual and/or comprehensive reports have been submitted to DEQ documenting the first three years of operation, with reporting scheduled to last through operational year 5.

6.3 Basin O

Following the 2022 report, additional SCMs were added to Basin O (Figure 6). Specifically, the pavement was swept, gravel which covered some areas of pavement was removed, catch basin inserts were added, traffic control measures were added to reduce track-out, and a sediment trap was installed around the one catch basin located in a pervious area.

O&M of these SCMs includes periodic pavement sweeping and replacement of the sacrificial landscape fabric underlying the top layer of rocks as needed.

6.4 Basin S

Basin S was not sampled in 2022 as, during pipe cleanout work, it was discovered that the Basin S main pipe was degraded beyond the point of rehabilitation in one section. As such, the degraded section of pipe was replaced, a new manhole was installed, and two additional cleanouts were added to the line to enable future cleanout work if necessary. The rest of the pipe was then cleaned and CCTV inspected after the rehabilitation work was completed. Before the final Basin S sample was obtained in January 2024, the gravel around STSCB6036 was replaced, several of the catch basin inserts were modified to create a better fit to the non-standard catch basins in this area, and the paved areas in this basin were swept.

O&M of these SCMs includes replacement of the catch basin filters and pavement sweeping as necessary.

7. SOURCE CONTROL EVALUATION

7.1 Data Evaluation

7.1.1 **Basin L**

As presented in the Performance Verification Report (MFA, 2024), which has been accepted by DEQ, the Basin L StormwateRx Aquip treatment system is successfully reducing PAH concentrations. Average percent reduction for PAHs during four storms in 2022-2023 ranged from 71 to 81 percent depending on congener (see Appendix A). All post-filter concentrations were below 10 times the SLVs, and total PAHs were below the knee of the Portland Harbor rank order curve for all events (Appendix B). Given these data and Kinder Morgan's 1200-Z permit which requires ongoing management of stormwater quality, this basin can be considered controlled for the stormwater pathway.

7.1.2 Basin M

As presented in the Comprehensive Report for Operational Year 2 (Geosyntec, 2024), which has been accepted by DEQ, infiltration rates have remained relatively high at around 10 to 50 inches per hour depending on season and ponded water depth. The SCM achieved 84-87% capture of stormwater during its second operational year – a year in which both a 2- and a 5-year storm occurred. Both storms exceeded the design capacity of the SCM and were responsible for most of the uncaptured storm volume. In total, the SCM infiltrated nearly 4 million gallons of stormwater between July 2022 and June 2023. Hydraulic monitoring and reporting will continue through June 2026 and maintenance procedures detailed in the approved O&M Plan (Geosyntec and WHP, 2021) are expected to keep the SCM functioning well throughout its lifespan. Given these data and the plan in place, this basin can be considered controlled for the stormwater pathway.

7.1.3 Basin N

Basin N was concluded to be controlled following the 2022 Stormwater Evaluation Report (Geosyntec, 2022a) following post-storm line cleanouts and CCTV confirmation.

7.1.4 **Basin O**

At the beginning of the 2023-2024 sampling work, the only COIs remaining in Basin O were PAHs and dioxins and furans, particularly when correlated with high TSS. No high TSS events were observed following completion of the most recent SCMs described in Section 6.3. PAHs were low, with only minimal exceedances of SLVs and total PAHs well below the knee of the curve on the rank order plots. Dioxins and furans were also low compared to available data from other nearby Portland Harbor sites. Given these data, this basin can be considered controlled for the stormwater pathway.

7.1.5 **Basin P**

Basin P was concluded to be controlled following the 2022 Stormwater Evaluation Report (Geosyntec, 2022a) following catch basin cleanouts.

7.1.6 **Basin Q**

Basin Q was concluded to be controlled following the 2021 Stormwater Evaluation Report (Geosyntec, 2021).

7.1.7 **Basin R**

Basin R was concluded to be controlled following the 2009 Stormwater Source Control Evaluation (Ash Creek Associates, 2009).

7.1.8 Basin S

Basin S had never been sampled prior to implementation of this most recent work plan. PCBs were never detected in Basin S stormwater, and dioxins and furans were low compared to available data from other nearby Portland Harbor sites. Given these data, this basin can be considered controlled for the stormwater pathway.

7.2 Other Lines of Evidence

The Port's MS4 permit, tenant Kinder Morgan's 1200-Z permit, and the O&M manuals for the structural SCMs in Basins L and M require ongoing inspections and maintenance activities that will help to keep COI sources controlled and the existing SCMs functioning as intended (see Sections 4 and 6 for additional details on SCMs and maintenance). The Port also sweeps all pavement, including permeable pavement, at least annually with a regenerative air sweeper, and conducts annual catch basin insert changes and catch basin cleaning.

In addition, there are other lines of evidence that the stormwater pathway will continue to be controlled. For example, any redevelopment that occurs in the Slip 1 upland area will be subject to the City of Portland Stormwater Management Manual (SWMM), which requires the management of stormwater for any development or redevelopment that creates or replaces 500 sf or more of impervious area. The SWMM prioritizes onsite infiltration to the maximum extent practicable and requires treatment for stormwater not infiltrated prior to discharging offsite.

Overall, these programs and activities will help to keep the existing SCMs functioning as intended, ensure new SCMs are implemented when needed, and that the stormwater pathway remains controlled.

8. FINDING AND CONCLUSIONS

Based on DEQ guidance for presenting findings and conclusions, the following is summarized based on this investigation study (DEQ, 2017).

- 1. Existing and potential facility-related contaminant sources have been identified and characterized.
 - Previous studies over the past 20+ years established potential sources of contaminants. This is discussed extensively in the 2019 Work Plan.

- There have been no significant changes in land uses since investigations began at the Site 20+ years ago.
- There are no known significant ongoing sources of COIs to stormwater at the Site.
- Concentrations of COIs are not elevated compared to concentrations at other Portland Harbor industrial sites.
- 2. Contaminant sources are being controlled to the extent feasible.
 - Line cleanouts were conducted recently in Basins N, O, P, and S and historically in Basins L and R.
 - Structural SCMs are in place in Basins L, M, and O.
 - Routine inspections and non-structural BMPs (e.g., pavement sweeping) occur as part of normal facility operations and in accordance with the Port's MS4 permit and Kinder Morgan's 1200-Z permit.
 - Concentrations of COIs are not elevated compared to concentrations at other Portland Harbor industrial sites.
- 3. If pre- and post-SCM data was collected, post-SCM data supports the conclusion that the SCM is effective.
 - In previous reports, post-SCM data have shown that stormwater in Basins R (Ash Creek, 2009), Basin Q (Geosyntec, 2021), and Basins N and P (Geosyntec, 2022a) are controlled for the stormwater pathway.
 - Performance verification reports for Basin L (MFA, 2024) and Basin M (Geosyntec, 2024) have shown that the SCMs installed in these basins are performing as designed, and therefore these basins are controlled for the stormwater pathway.
 - Post-SCM data presented in this report show Basins O and S are now controlled for the stormwater pathway.
- 4. Adequate measures are in place to ensure source control and good stormwater management measures occur in the future.
 - Port outfalls are covered under the Port's MS4 permit. The Port will continue to follow the requirements of the permit and will continue to implement its maintenance and inspection program at the facility.
 - Basin L is covered under tenant Kinder Morgan's 1200Z permit, which will require ongoing sampling for required parameters.

- An approved O&M manual is in place for Basin M; data collection and reporting will continue through June 2026; O&M will continue indefinitely.
- 5. Contaminants in stormwater that continue to exceed SLVs and CULs in spite of SCMs and stormwater management measures are not likely to result in sediment contamination in the receiving waterbody or contribute to unacceptable risk.
 - SLV exceedances for most COIs are minimal (less than 10x).
 - For dioxins and furans, which have a particularly low SLV and CUL, concentrations are low compared to other Portland Harbor sites.
 - For cPAHs, which have particularly low CULs, concentrations of total PAHs are low compared to other Portland Harbor sites.
 - TSS is low (< 20 mg/L) in all basins except Basin S, where TSS has not been found to be correlated with COI concentrations.

The status of the T4 Slip 1 upland basins is summarized in Figure 7. The next step is for DEQ and the Portland Harbor Technical Coordinating Team to concur that T4 Slip 1 is controlled for the stormwater pathway.

9. REFERENCES

- Anchor QEA, Geosyntec, and Apex, 2022. Sufficiency Assessment: Terminal 4 Remedy. Prepared for US EPA on behalf of the Port of Portland. 4 March.
- Apex, 2019. Re: Final Interim Contaminated Media Management Plan Terminal 4 Slip 1 and Slip 3 Upland Facilities. Portland, Oregon. March 22.
- Apex, 2021. Riverbank Characterization Report, Terminal 4 Action Area. Prepared for US EPA on behalf of the Port of Portland. 9 December.
- Ash Creek Associates, Inc./Newfields, 2007a. Stom Water Evaluation Work Plan Terminal 4 Slip 1 and Slip 3 Upland Facilities. June.
- Ash Creek Associates, Inc./Newfields, 2007b. Remedial Investigation Report, Terminal 4 Slip 1 Upland Facility. August.
- Ash Creek Associates, Inc., 2009. Storm Water Source Control Evaluation Terminal 4 Slip 1 and Slip 3 Upland Facilities. Prepared for Port of Portland. September.
- Ash Creek Associates, Inc., 2011. Storm Water Source Control Completion Report Terminal 4 Slip 1 and Slip 3 Upland Facilities. Prepared for Port of Portland. September 28.
- Ash Creek Associates, 2013. Re: Storm Water Sampling Results Terminal 4 Slip 1 Upland Facility Portland Oregon 1267-12. Memorandum from Michael Pickering to Kelly Madalinski. April 18.

- Blasland, Bouck, and Lee (2005). Appendix A Summary of Area History and Current Uses. DRAFT. May. https://semspub.epa.gov/work/10/100007986.pdf
- DEQ, 2003. Remedial Action Recommendation Staff Report for Port of Portland Terminal 4, Slip 3 Upland Multnomah County, OR. January 2003. https://www.deq.state.or.us/Webdocs/Controls/Output/PdfHandler.ashx?p=8a77ea5a-c9e2-4aa2-8462-95c7d06c5435.pdf&s=No.272%20Staff%20Report.pdf
- DEQ and EPA, 2005. Portland harbor Joint Source Control Strategy. Final. December. https://www.oregon.gov/deq/FilterDocs/ph-JSCSFinal.pdf
- DEQ, 2017. Guidance for Evaluating the Stormwater Pathway at Upland Sites. Cleanup Program, originally published January 2009; updated October 2010; links updated July 2017. https://www.oregon.gov/deq/Hazards-and-Cleanup/env-cleanup/Pages/Stormwater-Guidance.aspx
- DEQ, 2024. Guidance for Evaluating the Stormwater Pathway at Upland Sites, Appendix E: Tool for Evaluating Stormwater Data. Updated July 2024. https://www.oregon.gov/deq/FilterDocs/cu-stormwatersitesAppE.pdf
- Ecology, 2018. Automated Sampling for Stormwater Monitoring: Standard Operating Procedure, Version 1.1. Publication 18-10-024. July.
- EPA, 2017. Record of Decision Portland Harbor Superfund. US EPA Region 10, Seattle. January. https://yosemite.epa.gov/OA/EAB_WEB_Docket.nsf/(Filings)/E86C35A417C9AA53852 5815C00479148/\$File/Portland%20Harbor%20ROD...12.pdf
- Geosyntec Consultants and Gresham Smith and Partners, 2016. Terminal 4 Source Control Decision Support Data Summary Report for Slips 1 and 3 Upland Facilities. Final. July 11.
- Geosyntec Consultants, 2018a. Terminal 4 Source Control for Slip 1 Upland Facility Stormwater Treatment Effectiveness Pilot Study Report. Final. September 21.
- Geosyntec Consultants, 2018b. Terminal 4 Source Control for Slips 1 and 3 Upland Facilities Soil Infiltration Testing Report. Final. September 21.
- Geosyntec Consultants, 2019. Terminal 4 Slip 1 and Slip 3 Stormwater Quality Assessment Work Plan, Final. Prepared for the Port of Portland. November.
- Geosyntec Consultants and WHPacific, 2021. Port of Portland Terminal 4 Operation & Maintenance Plan, Basin M Vegetated Infiltration Basin. February.
- Geosyntec Consultants, 2021. Stormwater Evaluation Report Terminal 4 Slip 1. Prepared for the Port of Portland. September.
- Geosyntec Consultants, 2022a. Stormwater Evaluation Report Terminal 4 Slip 1. Prepared for the Port of Portland. December.

- Geosyntec Consultants, 2022b. Basin M Vegetated Infiltration Basin Year 1 Annual Summary Report, Terminal 4 Slip 1. Prepared for the Port of Portland. December.
- Geosyntec Consultants, 2024. Basin M Vegetated Infiltration Basin Operational Year 2 Comprehensive Report, Terminal 4 Slip 1. Prepared for the Port of Portland. January.
- Maul Foster & Alongi, 2022. Source Control Measures Work Plan, Kinder Morgan Terminal 4 Basin L Stormwater Treatment System. Prepared for Kinder Morgan Bulk Terminals, Inc. 28 March.
- Maul Foster & Alongi, 2024. Basin L Stormwater Treatment System Performance Verification Report. Prepared for Kinder Morgan Bulk Terminals, Inc. 1 April.

FIGURES

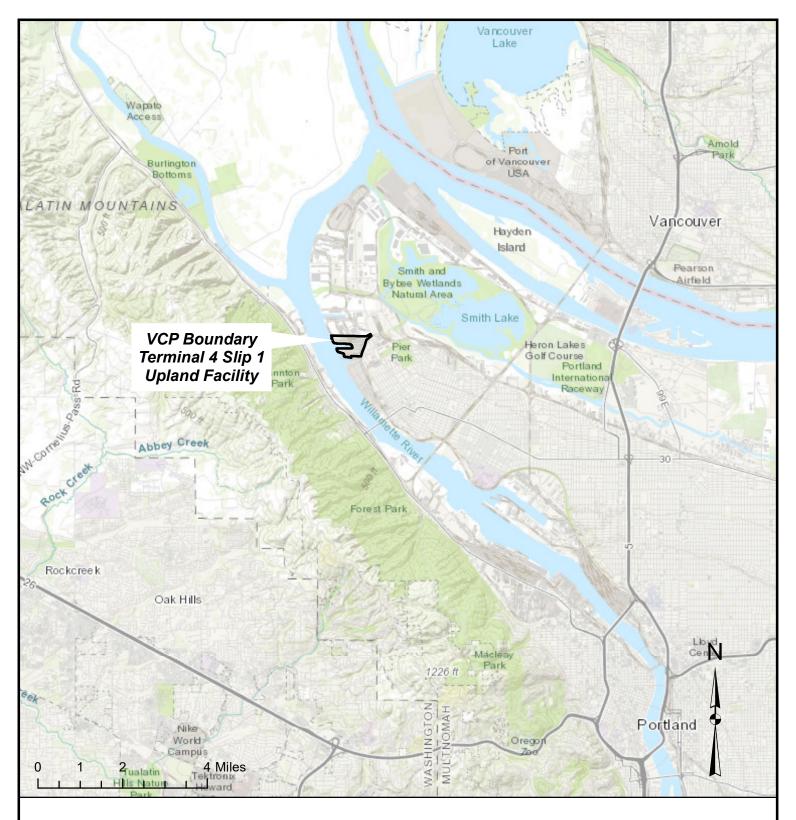
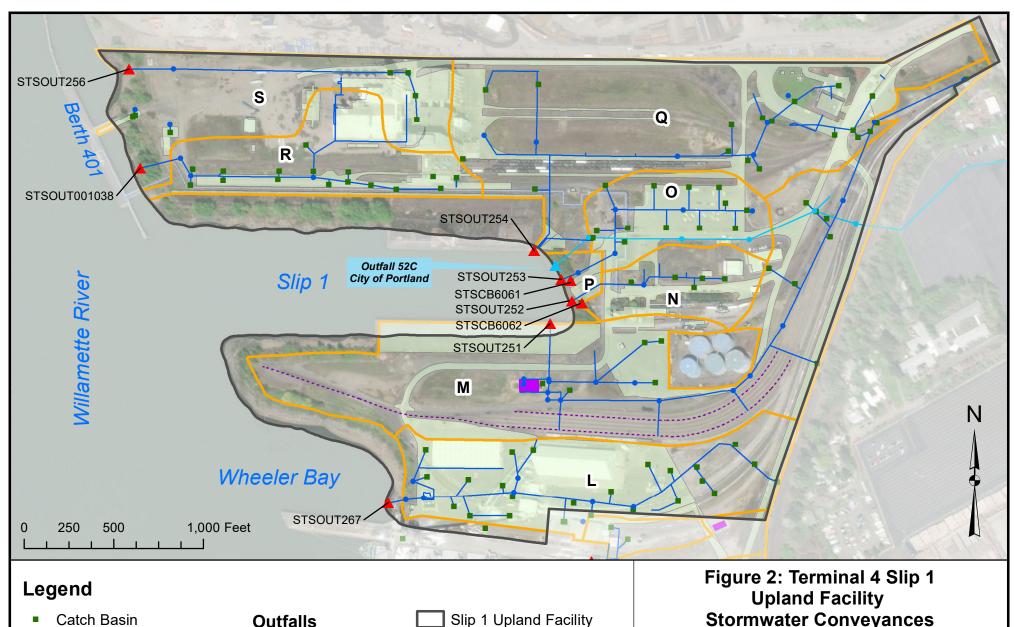



Figure 1: Terminal 4 Slip 1 Upland Facility Location

Terminal 4 Stormwater Source Control Evaluation - Final Update Portland, OR

December 2024

Storm Pipes

- Port-owned
- Port Ballast Subdrain
- City-owned

Outfalls

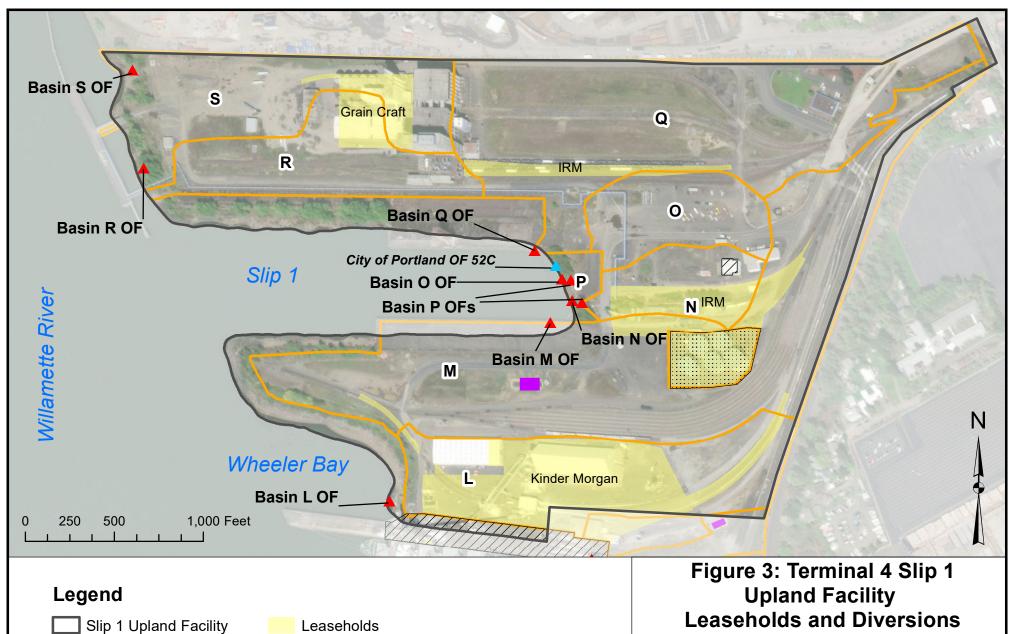
- Port-owned
- City-owned

Manholes

- Port-owned
- City-owned

Slip 1 Upland Facility

- Storm Basins
- Impervious Surface
- **Bioinfiltration Basin**


December 2024

Geosyntec[▶] consultants

Terminal 4 Stormwater Source Control

Evaluation - Final Update

Portland, OR

Storm Basins

Outfalls

Port-owned

City-owned

Bioinfiltration Basin

Diverted Stormwater

self-contained

drains to sanitary

Terminal 4 Stormwater Source Control Evaluation - Final Update Portland, OR

December 2024

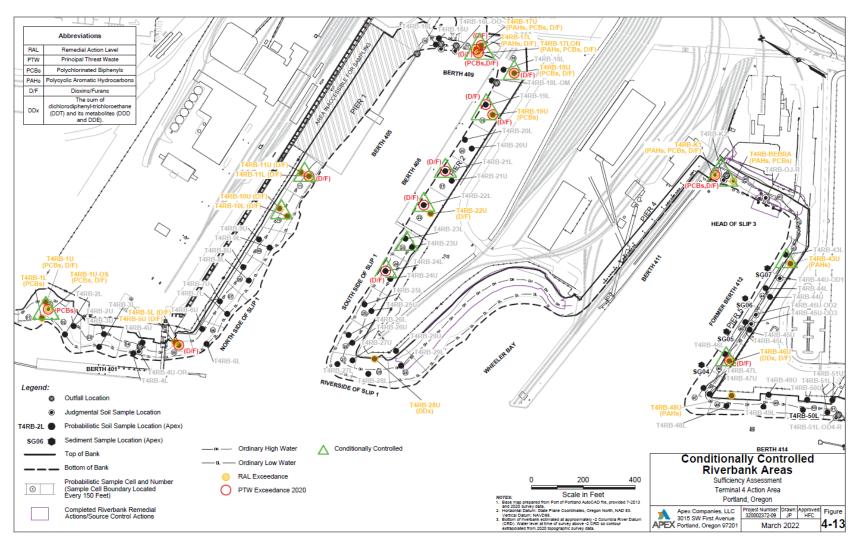
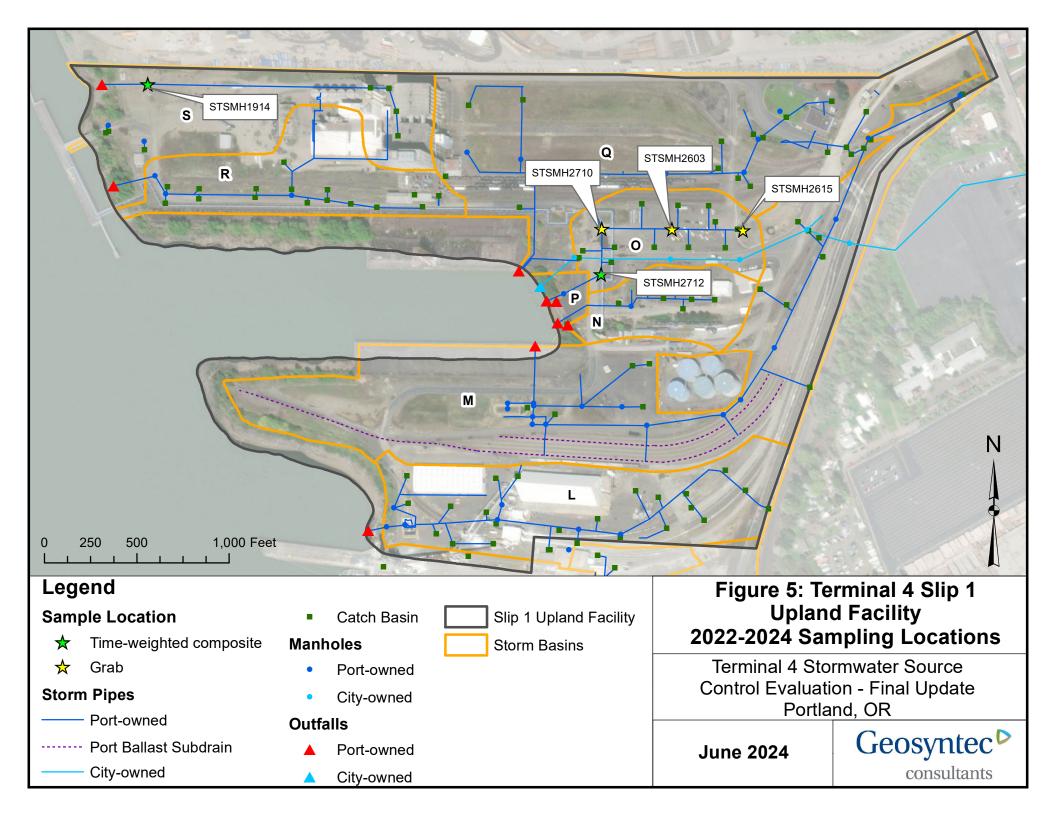
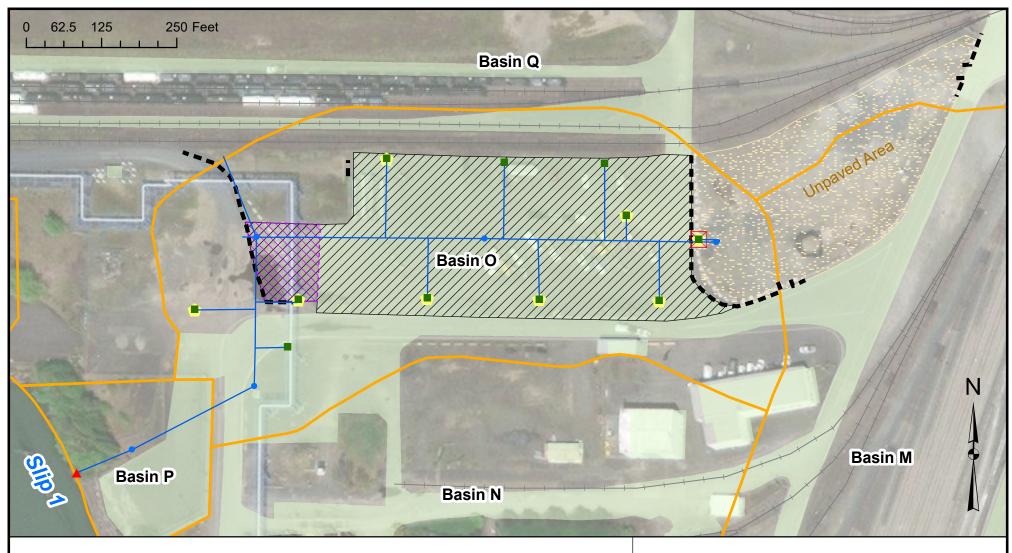




Figure 4. Slip 1 Conditionally Controlled Riverbank Areas (Anchor QEA et al., 2022)

Legend

- Impervious Surface
- Railroad
- Storm Line
- Catch Basin
- Manhole
- Outfall

Completed SCMs

Sweep Pavement

Remove Gravel

Install Infiltration Trench / Sediment Trap

Install Catch Basin Insert

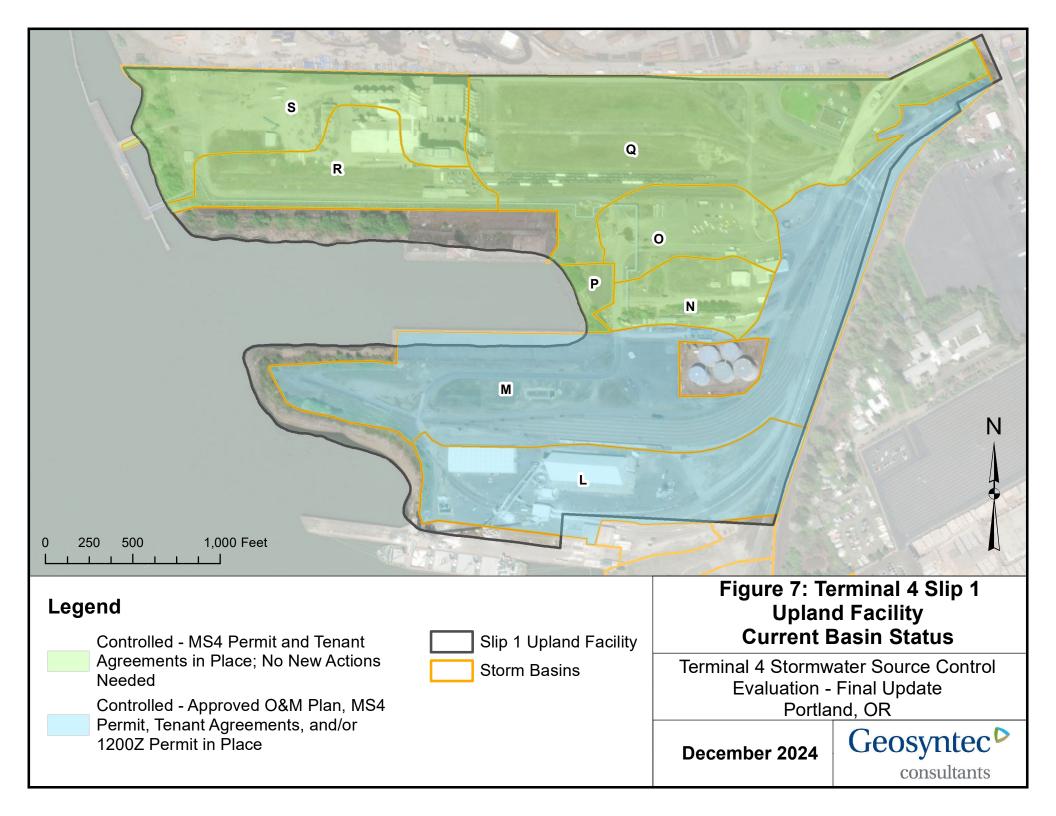

■ ■ Add Eco-Blocks

Figure 6: Terminal 4 Slip 1 Upland Facility Basin O Completed SCMs

Terminal 4 Stormwater Source Control Evaluation - Final Update Portland, OR

April 2024

APPENDIX A

T4 Slip 1 Stormwater Data Representative of Current Conditions

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	ND	pg/l	U	-	3.79
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	ND	pg/l	U	-	6.05
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	ND	pg/l	U	-	3.92
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	ND	pg/l	U	-	3.38
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	ND	pg/l	U	-	6.75
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	ND	pg/l	U	-	5.46
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	ND	pg/l	U	-	4.42
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	ND	pg/l	U	45.9	0.382
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	6.24	pg/l	J	50	4.2
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	6.33	pg/l	J	50.7	3.47
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	4.38	pg/l	J	54.7	1.44
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	5.79	pg/l	J	54.2	3.99
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	24.6	pg/l	J	-	-
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	ND	pg/l	U	-	7.22
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	24	pg/l	J	-	-
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	ND	pg/L	U	26.2605	7.31
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	ND	pg/l	U	-	7.84
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	ND	pg/l	U	-	7.64
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	26.3	pg/l	=	-	-
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	26	pg/l	=	-	-
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	51	pg/l	=	45.9	1.68
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	155	pg/l	=	50	20.6
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	146	pg/l	=	50.7	13.6
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	62.4	pg/l	=	54.7	3.02
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	164	pg/l	=	54.2	14.6
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	230	pg/L	=	26.0	7.31
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	ND	pg/L	U	26.2605	7.73
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	67.5	pg/L	=	26.0	7.73
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/l	U	-	4.71
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/l	U	-	7.37
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/l	U	-	5.03
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/l	U	-	4.35
Basin P		ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/l	U	-	7.74

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/l	U	-	6.39
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/l	U	-	5.97
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/l	U	45.9	0.527
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/l	U	50.7	6.31
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/l	U	50	8.04
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/l	U	54.7	1.92
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/l	U	54.2	5.53
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/L	U	26.2605	7.07
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/L	U	26.0	7.07
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/l	U	-	6.62
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/l	U	-	7.03
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/l	U	-	4.14
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/l	U	-	5.61
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/l	U	-	12.3
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/l	U	-	3.33
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/l	U	-	3.58
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	0.588	pg/I	J	45.9	0.373
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/l	U	50.7	2.58
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/l	U	50	2.36
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/l	U	54.7	1.59
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/l	U	54.2	2.47
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/l	U	-	4.86
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/l	U	-	12.1
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/l	U	-	4.63
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/l	U	-	6.88
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/l	U	-	10.8
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/l	U	-	3.77
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/l	U	-	8.15
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/l	U	45.9	0.988
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/l	U	50	6.02
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/l	U	50.7	5.21
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/l	U	54.7	1.77
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/l	U	54.2	4.81

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/L	U	26.2605	16.6
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/L	U	26.0	16.6
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/L	U	26.2605	8.38
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/L	U	26.0	8.38
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/l	U	-	5.92
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/l	U	-	6.16
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/l	U	-	3.66
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/l	U	-	4.67
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/l	U	-	10.8
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/l	U	-	3.08
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/l	U	-	3.34
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	0.367	pg/l	J	45.9	0.364
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/l	U	50	2.36
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/l	U	50.7	2.35
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/l	U	54.7	1.52
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/l	U	54.2	2.43
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/l	U	-	3.98
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/l	U	-	9.51
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/l	U	-	3.92
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/l	U	-	5.6
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/l	U	-	9.35
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/l	U	-	3.19
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/l	U	-	6.93
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	1.58	pg/l	J	45.9	0.973
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/l	U	50.7	4.77
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/l	U	50	5.64
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/l	U	54.7	1.86
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/l	U	54.2	4.94
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/L	U	26.2605	9.38
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/L	U	26.0	9.38
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/L	U	26.2605	8.04
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/L	U	26.0	8.04
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/l	U	-	6.42

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/l	U	-	6.81
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/l	U	-	3.84
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/l	U	-	5.73
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/l	U	-	11.9
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/l	U	-	3.25
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/l	U	-	3.78
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/l	U	45.9	0.549
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/l	U	50	4.12
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/l	U	50.7	4.34
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/l	U	54.7	2.13
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/l	U	54.2	3.06
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/l	U	-	4.38
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/l	U	-	10.5
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/l	U	-	4.33
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/l	U	-	6.18
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/l	U	-	10.3
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/l	U	-	3.52
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/l	U	-	7.64
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/l	U	45.9	0.995
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/l	U	50.7	5.03
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/l	U	50	5.88
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/l	U	54.7	1.84
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/l	U	54.2	4.94
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/L	U	26.2605	9.18
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/L	U	26.0	9.18
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/L	U	26.2605	7.81
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/L	U	26.0	7.81
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/L	U	26.2605	8.39
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/L	U	26.0	8.39
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/L	U	26.2605	6.86
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/L	U	26.0	6.86
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/l	U	-	6.76
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/l	U		3.54

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/l	U	-	5.67
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/l	U	-	5.89
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/l	U	-	6.28
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/l	U	-	3.99
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/l	U	-	5.74
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	0.973	pg/l	J	45.9	0.779
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/l	U	50.7	3
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/l	U	50	3.08
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/l	U	54.7	1.29
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/l	U	54.2	2.97
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/l	U	-	4.52
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/l	U	-	3.34
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/l	U	-	5.77
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/l	U	-	3.58
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/l	U	-	4.53
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/l	U	-	2.17
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/l	U	-	3.45
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	0.698	pg/l	J	45.9	0.454
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/l	U	50	2.98
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/l	U	50.7	2.23
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/l	U	54.7	1.17
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/l	U	54.2	2.11
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	183	pg/L	=	25	5.15
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	67.7	pg/L	=	25	5.15
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	56.3	pg/L	=	25	5.15
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	132	pg/L	=	25	5.15
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDD	88.4	pg/L	=	25	5.15
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	ND	pg/L	U	25	6.34
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	ND	pg/L	U	25	4.24
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	ND	pg/L	U	25	4.24
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	29.3	pg/L	=	25	4.24
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,6,7,8-HpCDF	ND	pg/L	U	25	4.24
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/L	U	25	6.22

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/L	U	25	5.74
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/L	U	25	5.74
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/L	U	25	7.51
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8,9-HpCDF	ND	pg/L	U	25	5.74
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/L	U	25	10.6
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/L	U	25	3.08
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/L	U	25	3.08
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/L	U	25	8.28
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDD	ND	pg/L	U	25	3.08
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/L	U	25	6.35
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/L	U	25	3.93
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/L	U	25	3.93
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/L	U	25	5.22
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,4,7,8-HxCDF	ND	pg/L	U	25	3.93
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/L	U	25	9.38
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/L	U	25	5.29
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/L	U	25	5.29
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/L	U	25	7.22
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDD	ND	pg/L	U	25	5.29
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/L	U	25	6.59
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/L	U	25	2.94
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/L	U	25	2.94
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/L	U	25	5.42
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,6,7,8-HxCDF	ND	pg/L	U	25	2.94
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/L	U	25	9.24
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/L	U	25	13.1
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/L	U	25	13.1
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/L	U	25	7.11
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDD	ND	pg/L	U	25	13.1
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/L	U	25	9.73
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/L	U	25	4.7
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/L	U	25	4.7
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/L	U	25	7.14

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8,9-HxCDF	ND	pg/L	U	25	4.7
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/L	U	25	6.41
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/L	U	25	2.56
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/L	U	25	2.56
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/L	U	25	4.63
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDD	ND	pg/L	U	25	2.56
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/L	U	25	3.9
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/L	U	25	2.96
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/L	U	25	2.96
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/L	U	25	2.64
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	1,2,3,7,8-PeCDF	ND	pg/L	U	25	2.96
Basin M	2/27/2018	Pumped Composite	PAHs	1-Methylnaphthalene	ND	μg/l	U	0.0377	0.0189
Basin M	3/14/2018	Pumped Composite	PAHs	1-Methylnaphthalene	0.0811	μg/l	=	0.0381	0.019
Basin M	3/26/2018	Pumped Composite	PAHs	1-Methylnaphthalene	ND	μg/l	U	0.0381	0.019
Basin Q	10/10/2020	ISCO TWC	PAHs	1-Methylnaphthalene	ND	μg/l	U	0.176	0.0879
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	1-Methylnaphthalene	ND	μg/l	U	0.168	0.0842
Basin Q	11/6/2020	ISCO TWC	PAHs	1-Methylnaphthalene	ND	μg/l	U	0.158	0.0792
Basin Q	11/13/2020	ISCO TWC	PAHs	1-Methylnaphthalene	ND	μg/l	U	0.158	0.0792
Basin Q	12/11/2020	ISCO TWC	PAHs	1-Methylnaphthalene	ND	μg/l	U	0.043	0.0215
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/l	U	-	5.92
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/l	U	-	6.97
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/l	U	-	4.04
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/l	U	-	5.23
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/l	U	-	12.5
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/l	U	-	3.55
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/l	U	-	3.8
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	0.533	pg/l	J	45.9	0.393
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/l	U	50.7	2.78
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/l	U	50	2.52
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/l	U	54.7	1.54
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/l	U	54.2	2.56
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/L	U	26.2605	6.88
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/L	U	26.0	6.88

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/L	U	26.2605	5.95
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/L	U	26.0	5.95
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/l	U	-	4.74
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/l	U	-	3.22
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/l	U	-	5.47
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/l	U	-	3.66
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/l	U	-	4.47
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/l	U	-	2.11
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/l	U	-	3.16
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	0.661	pg/l	J	45.9	0.424
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/l	U	50	2.66
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/l	U	50.7	2.17
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/l	U	54.7	1.18
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/l	U	54.2	2.04
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/L	U	5	3
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/L	U	5	0.887
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/L	U	5	0.887
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/L	U	5.2521	2.96
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/L	U	5	1.7
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/L	U	5	0.887
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/L	U	5.20833	2.96
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/L	U	5	2.97
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/L	U	5	0.733
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/L	U	5	0.733
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/L	U	5.2521	1.44
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/L	U	5	2.05
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/L	U	5	0.733
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/L	U	5.2	1.44
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/l	U	-	1.27
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/l	U	-	0.808
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/l	U	_	1.9
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/l	U	_	1.59
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/l	U		2.32

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/l	U	-	1.38
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/l	U	-	1.91
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/l	U	9.18	1.63
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/l	U	10.1	4
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/l	U	10	3.48
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/l	U	10.9	1.36
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDF	ND	pg/l	U	10.8	3.23
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/l	U	-	1.93
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/l	U	-	1.57
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/l	U	-	1.83
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/l	U	-	2.45
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/l	U	-	1.76
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/l	U	-	1.58
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/l	U	-	1.8
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/l	U	9.18	1.16
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/l	U	10	2.88
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/l	U	10.1	3.83
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/l	U	10.9	1.11
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	2,3,7,8-TCDD	ND	pg/l	U	10.8	2.82
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/L	U	25	8.32
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/L	U	25	4.32
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/L	U	25	4.32
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/L	U	25	6.15
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	2,3,4,6,7,8-HxCDF	ND	pg/L	U	25	4.32
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/L	U	25	3.52
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/L	U	25	5.4
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/L	U	25	5.4
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/L	U	25	2.59
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	2,3,4,7,8-PeCDF	ND	pg/L	U	25	5.4
Basin L	12/26/2022	Grab, Post-SCM	PAHs	2-Methylnaphthalene	ND	μg/l	U	-	0.0194
Basin L	1/13/2023	Grab, Post-SCM	PAHs	2-Methylnaphthalene	0.0294	μg/l	J	-	-
Basin L	2/13/2023	Grab, Post-SCM	PAHs	2-Methylnaphthalene	ND	μg/l	UJ	-	0.02
Basin L	3/13/2023	Grab, Post-SCM	PAHs	2-Methylnaphthalene	ND	μg/l	U	-	0.00952

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin M	10/23/2010	Grab	PAHs	2-Methylnaphthalene	ND	μg/l	U	-	0.012
Basin M	11/6/2010	Grab	PAHs	2-Methylnaphthalene	0.013	μg/l	J	-	-
Basin M	2/12/2011	Grab	PAHs	2-Methylnaphthalene	0.066	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	2-Methylnaphthalene	0.0071	μg/l	J	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	2-Methylnaphthalene	0.0072	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	2-Methylnaphthalene	0.0083	μg/l	J	0.02	0.0023
Basin M	12/3/2015	Composite Drum	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.0381	0.019
Basin M	12/17/2015	Composite Drum	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.0381	0.313
Basin M	1/25/2016	Composite Drum	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.0381	0.338
Basin M	2/27/2018	Pumped Composite	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.0377	0.0189
Basin M	3/14/2018	Pumped Composite	PAHs	2-Methylnaphthalene	0.146	μg/l	=	0.0381	0.019
Basin M	3/26/2018	Pumped Composite	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.0381	0.019
Basin N	3/13/2022	ISCO TWC	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.0713	0.0357
Basin N	4/4/2022	ISCO TWC	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.0412	0.0206
Basin N	4/30/2022	ISCO TWC	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.0639	0.0319
Basin O	4/1/2023	ISCO TWC	PAHs	2-Methylnaphthalene	ND	ug/L	U	0.0726	0.0363
Basin O	4/10/2023	ISCO TWC	PAHs	2-Methylnaphthalene	ND	ug/L	U	0.0639	0.032
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	2-Methylnaphthalene	ND	ug/L	U	0.0643	0.0322
Basin O	1/27/2024	ISCO TWC	PAHs	2-Methylnaphthalene	ND	ug/L	U	0.0762	0.0381
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.0656	0.0328
Basin P	3/12/2022	ISCO TWC	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.0665	0.0333
Basin P	4/3/2022	ISCO TWC	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.0738	0.0369
Basin P	4/29/2022	ISCO TWC	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.0634	0.0317
Basin Q	10/10/2020	ISCO TWC	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.176	0.0879
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.168	0.0842
Basin Q	11/6/2020	ISCO TWC	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.158	0.0792
Basin Q	11/13/2020	ISCO TWC	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.158	0.0792
Basin Q	12/11/2020	ISCO TWC	PAHs	2-Methylnaphthalene	ND	μg/l	U	0.043	0.0215
Basin R	11/16/2007	ISCO Composite	PAHs	2-Methylnaphthalene	ND	μg/l	U	-	0.0024
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	2-Methylnaphthalene	ND	μg/l	U	-	0.0024
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Acenaphthene	ND	μg/l	U	-	0.00971
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Acenaphthene	ND	μg/l	U	-	0.00962
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Acenaphthene	ND	μg/l	UJ	-	0.01

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Acenaphthene	ND	μg/l	U	-	0.00952
Basin M	10/23/2010	Grab	PAHs	Acenaphthene	0.017	μg/l	=	-	-
Basin M	11/6/2010	Grab	PAHs	Acenaphthene	0.014	μg/l	J	-	-
Basin M	2/12/2011	Grab	PAHs	Acenaphthene	0.093	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Acenaphthene	0.011	μg/l	J	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Acenaphthene	0.016	μg/l	=	1	-
Basin M	3/8/2014	Grab	PAHs	Acenaphthene	0.051	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Acenaphthene	0.088	μg/l	=	1	-
Basin M	4/13/2015	Composite Drum	PAHs	Acenaphthene	0.012	μg/l	J	0.02	0.0044
Basin M	12/3/2015	Composite Drum	PAHs	Acenaphthene	0.0428	μg/l	=	0.313	0.156
Basin M	12/17/2015	Composite Drum	PAHs	Acenaphthene	ND	μg/l	U	0.313	0.156
Basin M	1/25/2016	Composite Drum	PAHs	Acenaphthene	ND	μg/l	U	0.313	0.169
Basin M	2/27/2018	Pumped Composite	PAHs	Acenaphthene	0.0201	μg/l	=	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	Acenaphthene	ND	μg/l	U	0.019	0.0099
Basin M	3/26/2018	Pumped Composite	PAHs	Acenaphthene	0.0111	μg/l	J	0.019	0.00952
Basin N	3/13/2022	ISCO TWC	PAHs	Acenaphthene	ND	μg/l	U	0.0357	0.0357
Basin N	4/4/2022	ISCO TWC	PAHs	Acenaphthene	ND	μg/l	U	0.0206	0.0103
Basin N	4/30/2022	ISCO TWC	PAHs	Acenaphthene	ND	μg/l	U	0.0319	0.016
Basin O	4/1/2023	ISCO TWC	PAHs	Acenaphthene	ND	ug/L	U	0.0363	0.0182
Basin O	4/10/2023	ISCO TWC	PAHs	Acenaphthene	ND	ug/L	U	0.032	0.016
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Acenaphthene	ND	ug/L	U	0.0322	0.0161
Basin O	1/27/2024	ISCO TWC	PAHs	Acenaphthene	ND	ug/L	U	0.0381	0.0191
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Acenaphthene	ND	μg/l	U	0.0328	0.0164
Basin P	3/12/2022	ISCO TWC	PAHs	Acenaphthene	ND	μg/l	U	0.0333	0.0166
Basin P	4/3/2022	ISCO TWC	PAHs	Acenaphthene	ND	μg/l	U	0.0369	0.0185
Basin P	4/29/2022	ISCO TWC	PAHs	Acenaphthene	ND	μg/l	U	0.0317	0.0158
Basin Q	10/10/2020	ISCO TWC	PAHs	Acenaphthene	ND	μg/l	U	0.0879	0.044
Basin Q	11/6/2020	ISCO TWC	PAHs	Acenaphthene	ND	μg/l	U	0.0792	0.0396
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Acenaphthene	ND	μg/l	U	0.0842	0.0421
Basin Q	11/13/2020	ISCO TWC	PAHs	Acenaphthene	ND	μg/l	U	0.0792	0.0396
Basin Q	12/11/2020	ISCO TWC	PAHs	Acenaphthene	ND	μg/l	U	0.0215	0.0108
Basin R	11/16/2007	ISCO Composite	PAHs	Acenaphthene	ND	μg/l	U	-	0.0046
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Acenaphthene	ND	μg/l	U	_	0.0046

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Acenaphthylene	ND	μg/l	U	-	0.00971
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Acenaphthylene	ND	μg/l	U	-	0.00962
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Acenaphthylene	ND	μg/l	UJ	-	0.01
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Acenaphthylene	ND	μg/l	U	-	0.00952
Basin M	10/23/2010	Grab	PAHs	Acenaphthylene	0.033	μg/l	=	-	-
Basin M	11/6/2010	Grab	PAHs	Acenaphthylene	0.044	μg/l	=	-	-
Basin M	2/12/2011	Grab	PAHs	Acenaphthylene	0.1	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Acenaphthylene	0.032	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Acenaphthylene	0.047	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Acenaphthylene	0.13	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Acenaphthylene	0.2	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Acenaphthylene	0.096	μg/l	=	0.02	0.0034
Basin M	12/3/2015	Composite Drum	PAHs	Acenaphthylene	0.195	μg/l	=	0.338	0.169
Basin M	12/17/2015	Composite Drum	PAHs	Acenaphthylene	0.34	μg/l	=	0.338	0.169
Basin M	1/25/2016	Composite Drum	PAHs	Acenaphthylene	0.266	μg/l	=	0.338	0.169
Basin M	2/27/2018	Pumped Composite	PAHs	Acenaphthylene	0.0744	μg/l	=	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	Acenaphthylene	0.0344	μg/l	=	0.019	0.00952
Basin M	3/26/2018	Pumped Composite	PAHs	Acenaphthylene	0.0572	μg/l	=	0.019	0.00952
Basin N	3/13/2022	ISCO TWC	PAHs	Acenaphthylene	ND	μg/l	U	0.0357	0.0178
Basin N	4/4/2022	ISCO TWC	PAHs	Acenaphthylene	ND	μg/l	U	0.0206	0.0103
Basin N	4/30/2022	ISCO TWC	PAHs	Acenaphthylene	ND	μg/l	UJ	0.0319	0.016
Basin O	4/1/2023	ISCO TWC	PAHs	Acenaphthylene	ND	ug/L	U	0.0363	0.0182
Basin O	4/10/2023	ISCO TWC	PAHs	Acenaphthylene	ND	ug/L	U	0.032	0.016
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Acenaphthylene	ND	ug/L	U	0.0322	0.0161
Basin O	1/27/2024	ISCO TWC	PAHs	Acenaphthylene	ND	ug/L	U	0.0381	0.0191
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Acenaphthylene	ND	μg/l	UJ	0.0328	0.0164
Basin P	3/12/2022	ISCO TWC	PAHs	Acenaphthylene	ND	μg/l	U	0.0333	0.0166
Basin P	4/3/2022	ISCO TWC	PAHs	Acenaphthylene	ND	μg/l	UJ	0.0369	0.0185
Basin P	4/29/2022	ISCO TWC	PAHs	Acenaphthylene	ND	μg/l	UJ	0.0317	0.0158
Basin Q	10/10/2020	ISCO TWC	PAHs	Acenaphthylene	ND	μg/l	U	0.0879	0.044
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Acenaphthylene	ND	μg/l	U	0.0842	0.0421
Basin Q	11/6/2020	ISCO TWC	PAHs	Acenaphthylene	ND	μg/l	U	0.0792	0.0396
Basin Q	11/13/2020	ISCO TWC	PAHs	Acenaphthylene	ND	μg/l	U	0.0792	0.0396

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin Q	12/11/2020	ISCO TWC	PAHs	Acenaphthylene	ND	μg/l	U	0.0215	0.0108
Basin R	11/16/2007	ISCO Composite	PAHs	Acenaphthylene	ND	μg/l	U	-	0.0036
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Acenaphthylene	ND	μg/l	U	-	0.0036
Basin M	10/23/2010	Grab	Metals	Aluminum	1790	μg/l	=	-	-
Basin M	11/6/2010	Grab	Metals	Aluminum	2110	μg/l	=	-	-
Basin M	2/12/2011	Grab	Metals	Aluminum	3130	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	Metals	Aluminum	572	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	Metals	Aluminum	1510	μg/l	=	-	-
Basin M	2/27/2018	Pumped Composite	Metals	Aluminum	1450	μg/l	=	250	125
Basin M	3/14/2018	Pumped Composite	Metals	Aluminum	1870	μg/l	=	50	25
Basin M	3/26/2018	Pumped Composite	Metals	Aluminum	1010	μg/l	=	50	25
Basin R	11/16/2007	ISCO Composite	Metals	Aluminum	193	μg/l	J	-	-
Basin R	11/16/2007	ISCO Composite-DUP	Metals	Aluminum	89.5	μg/l	J	-	-
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Anthracene	ND	μg/l	U	-	0.00971
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Anthracene	ND	μg/l	U	-	0.00962
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Anthracene	ND	μg/l	U	-	0.01
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Anthracene	ND	μg/l	U	-	0.00952
Basin M	10/23/2010	Grab	PAHs	Anthracene	0.16	μg/l	=	-	-
Basin M	11/6/2010	Grab	PAHs	Anthracene	0.15	μg/l	=	-	-
Basin M	2/12/2011	Grab	PAHs	Anthracene	0.21	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Anthracene	0.07	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Anthracene	0.074	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Anthracene	0.27	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Anthracene	0.47	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Anthracene	0.25	μg/l	=	0.02	0.0036
Basin M	12/3/2015	Composite Drum	PAHs	Anthracene	0.638	μg/l	=	0.313	0.156
Basin M	12/17/2015	Composite Drum	PAHs	Anthracene	0.535	μg/l	=	0.313	0.156
Basin M	1/25/2016	Composite Drum	PAHs	Anthracene	0.389	μg/l	=	0.313	0.156
Basin M	2/27/2018	Pumped Composite	PAHs	Anthracene	0.249	μg/l	=	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	Anthracene	0.109	μg/l	=	0.019	0.00952
Basin M	3/26/2018	Pumped Composite	PAHs	Anthracene	0.205	μg/l	=	0.019	0.00952
Basin N	3/13/2022	ISCO TWC	PAHs	Anthracene	0.0374	μg/l	=	0.0357	0.0178
Basin N	4/4/2022	ISCO TWC	PAHs	Anthracene	ND	μg/l	U	0.0206	0.0103

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin N	4/30/2022	ISCO TWC	PAHs	Anthracene	0.0279	μg/l	J	0.0319	0.016
Basin O	4/1/2023	ISCO TWC	PAHs	Anthracene	0.03	ug/L	J	0.0363	0.0182
Basin O	4/10/2023	ISCO TWC	PAHs	Anthracene	0.0244	ug/L	J	0.032	0.016
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Anthracene	0.0225	ug/L	J	0.0322	0.0161
Basin O	1/27/2024	ISCO TWC	PAHs	Anthracene	ND	ug/L	U	0.0381	0.0191
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Anthracene	ND	μg/l	U	0.0328	0.0164
Basin P	3/12/2022	ISCO TWC	PAHs	Anthracene	ND	μg/l	U	0.0333	0.0166
Basin P	4/3/2022	ISCO TWC	PAHs	Anthracene	ND	μg/l	U	0.0369	0.0185
Basin P	4/29/2022	ISCO TWC	PAHs	Anthracene	ND	μg/l	U	0.0317	0.0158
Basin Q	10/10/2020	ISCO TWC	PAHs	Anthracene	0.0581	μg/l	J	0.0879	0.044
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Anthracene	0.101	μg/l	=	0.0842	0.0421
Basin Q	11/6/2020	ISCO TWC	PAHs	Anthracene	0.1	μg/l	=	0.0792	0.0396
Basin Q	11/13/2020	ISCO TWC	PAHs	Anthracene	ND	μg/l	U	0.0792	0.0396
Basin Q	12/11/2020	ISCO TWC	PAHs	Anthracene	0.0474	μg/l	=	0.0215	0.0108
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Anthracene	ND	μg/l	U	-	0.0038
Basin R	11/16/2007	ISCO Composite	PAHs	Anthracene	ND	μg/l	U	-	0.0038
Basin M	10/23/2010	Grab	Metals	Antimony	2.4	μg/l	=	-	-
Basin M	11/6/2010	Grab	Metals	Antimony	1.6	μg/l	=	-	-
Basin M	2/12/2011	Grab	Metals	Antimony	0.89	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	Metals	Antimony	0.49	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	Metals	Antimony	0.491	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite	Metals	Antimony	0.628	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite-DUP	Metals	Antimony	0.497	μg/l	=	-	-
Basin M	10/23/2010		PCBs	Aroclor 1016	ND	μg/l	U	-	0.01
Basin M	11/6/2010		PCBs	Aroclor 1016	ND	μg/l	U	-	0.01
Basin M	2/12/2011		PCBs	Aroclor 1016	ND	μg/l	U	-	0.01
Basin M	11/11/2012		PCBs	Aroclor 1016	ND	μg/l	U	-	0.00
Basin M	2/22/2013		PCBs	Aroclor 1016	ND	μg/l	U	-	0.011
Basin Q	10/23/2010		PCBs	Aroclor 1016	ND	μg/l	U	-	0.01
Basin Q	2/12/2011		PCBs	Aroclor 1016	ND	μg/l	U	-	0.01
Basin Q	5/11/2011		PCBs	Aroclor 1016	ND	μg/l	U	-	0.01
Basin R	11/16/2007	Dup1	PCBs	Aroclor 1016	ND	μg/l	U	-	0.001
Basin R	11/16/2007		PCBs	Aroclor 1016	ND	μg/l	U		0.0011

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin S	4/1/2023	ISCO TWC	PCBs	Aroclor 1016	ND	ug/L	U	0.0189	0.00943
Basin S	4/10/2023	ISCO TWC	PCBs	Aroclor 1016	ND	ug/L	U	0.0204	0.0102
Basin S	1/27/2024	ISCO TWC	PCBs	Aroclor 1016	ND	ug/L	U	0.023	0.0115
Basin M	10/23/2010		PCBs	Aroclor 1221	ND	μg/l	U	-	0.01
Basin M	11/6/2010		PCBs	Aroclor 1221	ND	μg/l	U	-	0.0
Basin M	2/12/2011		PCBs	Aroclor 1221	ND	μg/l	U	-	0.01
Basin M	11/11/2012		PCBs	Aroclor 1221	ND	μg/l	U	-	0.0023
Basin M	2/22/2013		PCBs	Aroclor 1221	ND	μg/l	U	-	0.0065
Basin Q	10/23/2010		PCBs	Aroclor 1221	ND	μg/l	U	-	0.01
Basin Q	2/12/2011		PCBs	Aroclor 1221	ND	μg/l	U	-	0.01
Basin Q	5/11/2011		PCBs	Aroclor 1221	ND	μg/l	U	-	0.01
Basin R	11/16/2007	Dup1	PCBs	Aroclor 1221	ND	μg/l	U	-	0.001
Basin R	11/16/2007		PCBs	Aroclor 1221	ND	μg/l	U	-	0.0011
Basin S	4/1/2023	ISCO TWC	PCBs	Aroclor 1221	ND	ug/L	U	0.0189	0.00943
Basin S	4/10/2023	ISCO TWC	PCBs	Aroclor 1221	ND	ug/L	U	0.0204	0.0102
Basin S	1/27/2024	ISCO TWC	PCBs	Aroclor 1221	ND	ug/L	U	0.023	0.0115
Basin M	10/23/2010		PCBs	Aroclor 1232	ND	μg/l	U	-	0.01
Basin M	11/6/2010		PCBs	Aroclor 1232	ND	μg/l	U	-	0.01
Basin M	2/12/2011		PCBs	Aroclor 1232	ND	μg/l	U	-	0.01
Basin M	11/11/2012		PCBs	Aroclor 1232	ND	μg/l	U	-	0.0023
Basin M	2/22/2013		PCBs	Aroclor 1232	ND	μg/l	U	-	0.02
Basin Q	10/23/2010		PCBs	Aroclor 1232	ND	μg/l	U	-	0.01
Basin Q	2/12/2011		PCBs	Aroclor 1232	ND	μg/l	U	-	0.01
Basin Q	5/11/2011		PCBs	Aroclor 1232	ND	μg/l	U	-	0.01
Basin R	11/16/2007		PCBs	Aroclor 1232	ND	μg/l	U	-	0.0011
Basin R	11/16/2007	Dup1	PCBs	Aroclor 1232	ND	μg/l	U	-	0.001
Basin S	4/1/2023	ISCO TWC	PCBs	Aroclor 1232	ND	ug/L	U	0.0189	0.00943
Basin S	4/10/2023	ISCO TWC	PCBs	Aroclor 1232	ND	ug/L	U	0.0204	0.0102
Basin S	1/27/2024	ISCO TWC	PCBs	Aroclor 1232	ND	ug/L	U	0.023	0.0115
Basin M	10/23/2010		PCBs	Aroclor 1242	ND	μg/l	U	-	0.01
Basin M	11/6/2010		PCBs	Aroclor 1242	ND	μg/l	U	-	0.01
Basin M	2/12/2011		PCBs	Aroclor 1242	ND	μg/l	U	-	0.01
Basin M	11/11/2012		PCBs	Aroclor 1242	ND	μg/l	U	-	0.0023

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin M	2/22/2013		PCBs	Aroclor 1242	ND	μg/l	U	-	0.017
Basin Q	10/23/2010		PCBs	Aroclor 1242	ND	μg/l	U	-	0.01
Basin Q	2/12/2011		PCBs	Aroclor 1242	ND	μg/l	U	-	0.01
Basin Q	5/11/2011		PCBs	Aroclor 1242	ND	μg/l	U	-	0.01
Basin R	11/16/2007		PCBs	Aroclor 1242	0.015	μg/l	=	-	-
Basin R	11/16/2007	Dup1	PCBs	Aroclor 1242	0.016	μg/l	=	-	-
Basin S	4/1/2023	ISCO TWC	PCBs	Aroclor 1242	ND	ug/L	U	0.0189	0.00943
Basin S	4/10/2023	ISCO TWC	PCBs	Aroclor 1242	ND	ug/L	U	0.0204	0.0102
Basin S	1/27/2024	ISCO TWC	PCBs	Aroclor 1242	ND	ug/L	U	0.023	0.0115
Basin M	10/23/2010		PCBs	Aroclor 1248	ND	μg/l	U	-	0.01
Basin M	11/6/2010		PCBs	Aroclor 1248	ND	μg/l	U	-	0.01
Basin M	2/12/2011		PCBs	Aroclor 1248	ND	μg/l	U	-	0.01
Basin M	11/11/2012		PCBs	Aroclor 1248	ND	μg/l	U	-	0.0023
Basin M	2/22/2013		PCBs	Aroclor 1248	ND	μg/l	U	-	0.011
Basin Q	10/23/2010		PCBs	Aroclor 1248	ND	μg/l	U	-	0.01
Basin Q	2/12/2011		PCBs	Aroclor 1248	0.013	μg/l	=	-	-
Basin Q	5/11/2011		PCBs	Aroclor 1248	ND	μg/l	UJ	-	0.02
Basin R	11/16/2007		PCBs	Aroclor 1248	ND	μg/l	U	-	0.0011
Basin R	11/16/2007	Dup1	PCBs	Aroclor 1248	ND	μg/l	U	-	0.001
Basin S	4/1/2023	ISCO TWC	PCBs	Aroclor 1248	ND	ug/L	U	0.0189	0.00943
Basin S	4/10/2023	ISCO TWC	PCBs	Aroclor 1248	ND	ug/L	U	0.0204	0.0102
Basin S	1/27/2024	ISCO TWC	PCBs	Aroclor 1248	ND	ug/L	U	0.023	0.0115
Basin M	10/23/2010		PCBs	Aroclor 1254	ND	μg/l	U	-	0.01
Basin M	11/6/2010		PCBs	Aroclor 1254	ND	μg/l	U	-	0.01
Basin M	2/12/2011		PCBs	Aroclor 1254	0.012	μg/l	=	-	-
Basin M	11/11/2012		PCBs	Aroclor 1254	ND	μg/l	U	-	0.0023
Basin M	2/22/2013		PCBs	Aroclor 1254	0.017	μg/l	=	-	-
Basin Q	10/23/2010		PCBs	Aroclor 1254	ND	μg/l	U	-	0.01
Basin Q	2/12/2011		PCBs	Aroclor 1254	0.012	μg/l	=	-	_
Basin Q	5/11/2011		PCBs	Aroclor 1254	0.038	μg/l	=	-	_
Basin R	11/16/2007	Dup1	PCBs	Aroclor 1254	ND	μg/l	U	-	0.001
Basin R	11/16/2007		PCBs	Aroclor 1254	ND	μg/l	U	-	0.0011
Basin S	4/1/2023	ISCO TWC	PCBs	Aroclor 1254	ND	ug/L	U	0.0189	0.00943

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin S	4/10/2023	ISCO TWC	PCBs	Aroclor 1254	ND	ug/L	U	0.0204	0.0102
Basin S	1/27/2024	ISCO TWC	PCBs	Aroclor 1254	ND	ug/L	U	0.023	0.0115
Basin M	10/23/2010		PCBs	Aroclor 1260	0.026	μg/l	J	-	-
Basin M	11/6/2010		PCBs	Aroclor 1260	0.012	μg/l	=	-	-
Basin M	2/12/2011		PCBs	Aroclor 1260	0.021	μg/l	=	-	-
Basin M	11/11/2012		PCBs	Aroclor 1260	0.0084	μg/l	=	-	-
Basin M	2/22/2013		PCBs	Aroclor 1260	0.027	μg/l	=	-	-
Basin Q	10/23/2010		PCBs	Aroclor 1260	ND	μg/l	U	-	0.01
Basin Q	2/12/2011		PCBs	Aroclor 1260	ND	μg/l	U	-	0.01
Basin Q	5/11/2011		PCBs	Aroclor 1260	ND	μg/l	U	-	0.01
Basin R	11/16/2007		PCBs	Aroclor 1260	ND	μg/l	U	-	0.0011
Basin R	11/16/2007	Dup1	PCBs	Aroclor 1260	ND	μg/l	U	-	0.001
Basin S	4/1/2023	ISCO TWC	PCBs	Aroclor 1260	ND	ug/L	U	0.0189	0.00943
Basin S	4/10/2023	ISCO TWC	PCBs	Aroclor 1260	ND	ug/L	U	0.0204	0.0102
Basin S	1/27/2024	ISCO TWC	PCBs	Aroclor 1260	ND	ug/L	U	0.023	0.0115
Basin M	10/23/2010		PCBs	Aroclor 1262	ND	μg/l	U	-	0.01
Basin M	11/6/2010		PCBs	Aroclor 1262	ND	μg/l	U	-	0.01
Basin M	2/12/2011		PCBs	Aroclor 1262	ND	μg/l	U	-	0.01
Basin M	11/11/2012		PCBs	Aroclor 1262	ND	μg/l	U	-	0.0023
Basin M	2/22/2013		PCBs	Aroclor 1262	ND	μg/l	U	-	0.0022
Basin Q	10/23/2010		PCBs	Aroclor 1262	ND	μg/l	U	-	0.01
Basin Q	2/12/2011		PCBs	Aroclor 1262	ND	μg/l	U	-	0.01
Basin Q	5/11/2011		PCBs	Aroclor 1262	ND	μg/l	U	-	0.01
Basin R	11/16/2007	Dup1	PCBs	Aroclor 1262	ND	μg/l	U	-	0.001
Basin R	11/16/2007		PCBs	Aroclor 1262	ND	μg/l	U	-	0.0011
Basin S	4/1/2023	ISCO TWC	PCBs	Aroclor 1262	ND	ug/L	U	0.0189	0.00943
Basin S	4/10/2023	ISCO TWC	PCBs	Aroclor 1262	ND	ug/L	U	0.0204	0.0102
Basin S	1/27/2024	ISCO TWC	PCBs	Aroclor 1262	ND	ug/L	U	0.023	0.0115
Basin M	10/23/2010		PCBs	Aroclor 1268	ND	μg/l	U	-	0.01
Basin M	11/6/2010		PCBs	Aroclor 1268	ND	μg/l	U	-	0.01
Basin M	2/12/2011		PCBs	Aroclor 1268	ND	μg/l	U	-	0.01
Basin M	11/11/2012		PCBs	Aroclor 1268	ND	μg/l	U	-	0.0023
Basin M	2/22/2013		PCBs	Aroclor 1268	ND	μg/l	U	-	0.0022

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin Q	10/23/2010		PCBs	Aroclor 1268	ND	μg/l	U	-	0.01
Basin Q	2/12/2011		PCBs	Aroclor 1268	ND	μg/l	U	-	0.01
Basin Q	5/11/2011		PCBs	Aroclor 1268	ND	μg/l	U	-	0.01
Basin R	11/16/2007	Dup1	PCBs	Aroclor 1268	ND	μg/l	U	-	0.001
Basin R	11/16/2007		PCBs	Aroclor 1268	ND	μg/l	U	-	0.0011
Basin S	4/1/2023	ISCO TWC	PCBs	Aroclor 1268	ND	ug/L	U	0.0189	0.00943
Basin S	4/10/2023	ISCO TWC	PCBs	Aroclor 1268	ND	ug/L	U	0.0204	0.0102
Basin S	1/27/2024	ISCO TWC	PCBs	Aroclor 1268	ND	ug/L	U	0.023	0.0115
Basin M	10/23/2010	Grab	Metals	Arsenic	15.8	μg/l	=	-	-
Basin M	11/6/2010	Grab	Metals	Arsenic	6.9	μg/l	=	-	-
Basin M	2/12/2011	Grab	Metals	Arsenic	3.3	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	Metals	Arsenic	0.956	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	Metals	Arsenic	0.545	μg/l	=	-	-
Basin M	3/8/2014	Grab	Metals	Arsenic	0.695	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	Metals	Arsenic	1.18	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	Metals	Arsenic	1.99	μg/l	=	-	-
Basin M	6/25/2015	Composite Drum	Metals	Arsenic	2.36	μg/l	=	0.2	0.03
Basin M	12/3/2015	Compostie Drum	Metals	Arsenic	4.6	μg/l	=	-	-
Basin M	12/17/2015	Compostie Drum	Metals	Arsenic	1.8	μg/l	=	-	-
Basin M	1/25/2016	Composite Drum	Metals	Arsenic	1.8	μg/l	=	0.1	0.015
Basin R	11/16/2007	ISCO Composite	Metals	Arsenic	0.18	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite-DUP	Metals	Arsenic	0.19	μg/l	=	-	-
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Benz(a)anthracene	0.0185	μg/l	J	-	-
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Benz(a)anthracene	ND	μg/l	U	-	0.00962
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Benz(a)anthracene	0.015	μg/l	J	-	-
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Benz(a)anthracene	ND	μg/l	U	-	0.00952
Basin O	4/1/2023	ISCO TWC	PAHs	Benz(a)anthracene	0.0177	ug/L	J	0.0182	0.00908
Basin O	4/10/2023	ISCO TWC	PAHs	Benz(a)anthracene	0.0188	ug/L	J	0.016	0.00799
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Benz(a)anthracene	0.0153	ug/L	J	0.0161	0.00804
Basin O	1/27/2024	ISCO TWC	PAHs	Benz(a)anthracene	ND	ug/L	U	0.0191	0.00953
Basin M	10/23/2010	Grab	PAHs	Benz(a)anthracene	0.056	μg/l	=	-	-
Basin M	11/6/2010	Grab	PAHs	Benz(a)anthracene	0.087	μg/l	=	-	
Basin M	2/12/2011	Grab	PAHs	Benz(a)anthracene	0.45	μg/l	=	-	-

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin M	11/11/2012	ISCO Composite	PAHs	Benz(a)anthracene	0.066	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Benz(a)anthracene	0.15	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Benz(a)anthracene	0.34	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Benz(a)anthracene	0.81	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Benz(a)anthracene	0.14	μg/l	=	0.02	0.0026
Basin M	12/3/2015	Composite Drum	PAHs	Benz(a)anthracene	0.462	μg/l	J	0.156	0.0782
Basin M	12/17/2015	Composite Drum	PAHs	Benz(a)anthracene	1.23	μg/l	J	0.156	0.0782
Basin M	1/25/2016	Composite Drum	PAHs	Benz(a)anthracene	0.414	μg/l	J	0.156	0.0782
Basin M	2/27/2018	Pumped Composite	PAHs	Benz(a)anthracene	0.157	μg/l	J	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	Benz(a)anthracene	0.0603	μg/l	=	0.019	0.00952
Basin M	3/26/2018	Pumped Composite	PAHs	Benz(a)anthracene	0.0842	μg/l	J	0.019	0.00952
Basin N	3/13/2022	ISCO TWC	PAHs	Benz(a)anthracene	0.0169	μg/l	J	0.0178	0.00892
Basin N	4/4/2022	ISCO TWC	PAHs	Benz(a)anthracene	0.0158	μg/l	J	0.0206	0.0103
Basin N	4/30/2022	ISCO TWC	PAHs	Benz(a)anthracene	0.00838	μg/l	J	0.016	0.00799
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Benz(a)anthracene	0.0102	μg/l	J	0.0164	0.0082
Basin P	3/12/2022	ISCO TWC	PAHs	Benz(a)anthracene	ND	μg/l	U	0.0166	0.00831
Basin P	4/3/2022	ISCO TWC	PAHs	Benz(a)anthracene	ND	μg/l	U	0.0185	0.00923
Basin P	4/29/2022	ISCO TWC	PAHs	Benz(a)anthracene	ND	μg/l	UJ	0.0158	0.00792
Basin Q	10/10/2020	ISCO TWC	PAHs	Benz(a)anthracene	ND	μg/l	U	0.0879	0.044
Basin Q	11/6/2020	ISCO TWC	PAHs	Benz(a)anthracene	0.0546	μg/l	J	0.0792	0.0396
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Benz(a)anthracene	0.0559	μg/l	J	0.0842	0.0421
Basin Q	11/13/2020	ISCO TWC	PAHs	Benz(a)anthracene	ND	μg/l	U	0.0792	0.0396
Basin Q	12/11/2020	ISCO TWC	PAHs	Benz(a)anthracene	0.0312	μg/l	=	0.0215	0.0108
Basin R	11/16/2007	ISCO Composite	PAHs	Benz(a)anthracene	0.031	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Benz(a)anthracene	ND	μg/l	U	-	0.0027
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Benzo(a)pyrene	0.0284	μg/l	=	-	-
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Benzo(a)pyrene	ND	μg/l	U	-	0.00962
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Benzo(a)pyrene	0.0238	μg/l	=	-	-
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Benzo(a)pyrene	ND	μg/l	U	-	0.00952
Basin M	10/23/2010	Grab	PAHs	Benzo(a)pyrene	0.15	μg/l	=	-	_
Basin M	11/6/2010	Grab	PAHs	Benzo(a)pyrene	0.41	μg/l	=	-	-
Basin M	2/12/2011	Grab	PAHs	Benzo(a)pyrene	0.61	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Benzo(a)pyrene	0.12	μg/l	=	-	-

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin M	2/22/2013	ISCO Composite	PAHs	Benzo(a)pyrene	0.26	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Benzo(a)pyrene	0.39	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Benzo(a)pyrene	0.79	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Benzo(a)pyrene	0.51	μg/l	=	0.02	0.0043
Basin M	12/3/2015	Composite Drum	PAHs	Benzo(a)pyrene	1	μg/l	=	0.019	0.00952
Basin M	12/17/2015	Composite Drum	PAHs	Benzo(a)pyrene	1.81	μg/l	=	0.019	0.00952
Basin M	1/25/2016	Composite Drum	PAHs	Benzo(a)pyrene	1.08	μg/l	=	0.019	0.00952
Basin M	2/27/2018	Pumped Composite	PAHs	Benzo(a)pyrene	0.3	μg/l	=	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	Benzo(a)pyrene	0.112	μg/l	=	0.019	0.00952
Basin M	3/26/2018	Pumped Composite	PAHs	Benzo(a)pyrene	0.146	μg/l	=	0.019	0.00952
Basin N	3/13/2022	ISCO TWC	PAHs	Benzo(a)pyrene	0.016	μg/l	J	0.0178	0.00892
Basin N	4/4/2022	ISCO TWC	PAHs	Benzo(a)pyrene	0.0356	μg/l	=	0.0309	0.0155
Basin N	4/30/2022	ISCO TWC	PAHs	Benzo(a)pyrene	0.0156	μg/l	J	0.016	0.00799
Basin O	4/1/2023	ISCO TWC	PAHs	Benzo(a)pyrene	0.0309	ug/L	=	0.0182	0.00908
Basin O	4/10/2023	ISCO TWC	PAHs	Benzo(a)pyrene	0.0268	ug/L	=	0.016	0.00799
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Benzo(a)pyrene	0.0241	ug/L	=	0.0161	0.00804
Basin O	1/27/2024	ISCO TWC	PAHs	Benzo(a)pyrene	0.0133	ug/L	J	0.0191	0.00953
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Benzo(a)pyrene	0.0082	μg/l	J	0.0164	0.0082
Basin P	3/12/2022	ISCO TWC	PAHs	Benzo(a)pyrene	ND	μg/l	U	0.0166	0.00831
Basin P	4/3/2022	ISCO TWC	PAHs	Benzo(a)pyrene	ND	μg/l	U	0.0185	0.00923
Basin P	4/29/2022	ISCO TWC	PAHs	Benzo(a)pyrene	ND	μg/l	UJ	0.0158	0.00792
Basin Q	10/10/2020	ISCO TWC	PAHs	Benzo(a)pyrene	ND	μg/l	U	0.132	0.0659
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Benzo(a)pyrene	0.0863	μg/l	J	0.126	0.0632
Basin Q	11/6/2020	ISCO TWC	PAHs	Benzo(a)pyrene	0.0897	μg/l	J	0.119	0.0594
Basin Q	11/13/2020	ISCO TWC	PAHs	Benzo(a)pyrene	0.072	μg/l	J	0.119	0.0594
Basin Q	12/11/2020	ISCO TWC	PAHs	Benzo(a)pyrene	0.0564	μg/l	=	0.0323	0.0161
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Benzo(a)pyrene	ND	μg/l	U	-	0.0045
Basin R	11/16/2007	ISCO Composite	PAHs	Benzo(a)pyrene	0.033	μg/l	=	-	-
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Benzo(b)fluoranthene	0.0613	μg/l	=	-	-
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Benzo(b)fluoranthene	0.0202	μg/l	=	-	-
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Benzo(b)fluoranthene	0.061	μg/l	=	-	
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Benzo(b)fluoranthene	0.0119	μg/l	=	-	
Basin O	4/1/2023	ISCO TWC	PAHs	Benzo(b)fluoranthene	0.0626	ug/L	=	0.0182	0.00908

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin O	4/10/2023	ISCO TWC	PAHs	Benzo(b)fluoranthene	0.0467	ug/L	=	0.016	0.00799
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Benzo(b)fluoranthene	0.0418	ug/L	=	0.0161	0.00804
Basin O	1/27/2024	ISCO TWC	PAHs	Benzo(b,j)fluoranthene(s)	0.0219	ug/L	=	0.0191	0.00953
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Benzo(g,h,i)perylene	0.0299	μg/l	=	-	-
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Benzo(g,h,i)perylene	0.0121	μg/l	J	-	-
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Benzo(g,h,i)perylene	0.0247	μg/l	=	-	-
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Benzo(g,h,i)perylene	0.0106	μg/l	J	-	-
Basin M	10/23/2010	Grab	PAHs	Benzo(g,h,i)perylene	0.26	μg/l	=	-	-
Basin M	11/6/2010	Grab	PAHs	Benzo(g,h,i)perylene	0.42	μg/l	=	-	-
Basin M	2/12/2011	Grab	PAHs	Benzo(g,h,i)perylene	0.45	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Benzo(g,h,i)perylene	0.14	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Benzo(g,h,i)perylene	0.26	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Benzo(g,h,i)perylene	0.33	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Benzo(g,h,i)perylene	0.57	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Benzo(g,h,i)perylene	0.57	μg/l	=	0.02	0.0029
Basin M	12/3/2015	Composite Drum	PAHs	Benzo(g,h,i)perylene	0.71	μg/l	=	0.338	0.169
Basin M	12/17/2015	Composite Drum	PAHs	Benzo(g,h,i)perylene	1.65	μg/l	=	0.338	0.169
Basin M	1/25/2016	Composite Drum	PAHs	Benzo(g,h,i)perylene	1.16	μg/l	=	0.338	0.169
Basin M	2/27/2018	Pumped Composite	PAHs	Benzo(g,h,i)perylene	0.313	μg/l	=	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	Benzo(g,h,i)perylene	0.153	μg/l	=	0.019	0.00952
Basin M	3/26/2018	Pumped Composite	PAHs	Benzo(g,h,i)perylene	0.155	μg/l	=	0.019	0.00952
Basin N	3/13/2022	ISCO TWC	PAHs	Benzo(g,h,i)perylene	ND	μg/l	U	0.0357	0.0178
Basin N	4/4/2022	ISCO TWC	PAHs	Benzo(g,h,i)perylene	0.0202	μg/l	J	0.0206	0.0103
Basin N	4/30/2022	ISCO TWC	PAHs	Benzo(g,h,i)perylene	ND	μg/l	U	0.0319	0.016
Basin O	4/1/2023	ISCO TWC	PAHs	Benzo(g,h,i)perylene	0.034	ug/L	J	0.0363	0.0182
Basin O	4/10/2023	ISCO TWC	PAHs	Benzo(g,h,i)perylene	0.0244	ug/L	J	0.032	0.016
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Benzo(g,h,i)perylene	0.0225	ug/L	J	0.0322	0.0161
Basin O	1/27/2024	ISCO TWC	PAHs	Benzo(g,h,i)perylene	ND	ug/L	U	0.0381	0.0191
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Benzo(g,h,i)perylene	ND	μg/l	U	0.0328	0.0164
Basin P	3/12/2022	ISCO TWC	PAHs	Benzo(g,h,i)perylene	ND	μg/l	U	0.0333	0.0166
Basin P	4/3/2022	ISCO TWC	PAHs	Benzo(g,h,i)perylene	ND	μg/l	U	0.0369	0.0185
Basin P	4/29/2022	ISCO TWC	PAHs	Benzo(g,h,i)perylene	ND	μg/l	U	0.0317	0.0158
Basin Q	10/10/2020	ISCO TWC	PAHs	Benzo(g,h,i)perylene	ND	μg/l	U	0.0879	0.044

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Benzo(g,h,i)perylene	ND	μg/l	U	0.0842	0.0421
Basin Q	11/6/2020	ISCO TWC	PAHs	Benzo(g,h,i)perylene	ND	μg/l	U	0.0792	0.0396
Basin Q	11/13/2020	ISCO TWC	PAHs	Benzo(g,h,i)perylene	ND	μg/l	U	0.0792	0.0396
Basin Q	12/11/2020	ISCO TWC	PAHs	Benzo(g,h,i)perylene	0.0408	μg/l	=	0.0215	0.0108
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Benzo(g,h,i)perylene	ND	μg/l	U	-	0.003
Basin R	11/16/2007	ISCO Composite	PAHs	Benzo(g,h,i)perylene	0.036	μg/l	=	-	-
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Benzo(k)fluoranthene	0.0167	μg/l	J	-	-
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Benzo(k)fluoranthene	ND	μg/l	U	-	0.00962
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Benzo(k)fluoranthene	0.0178	μg/l	J	-	-
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Benzo(k)fluoranthene	ND	μg/l	U	-	0.00952
Basin O	4/1/2023	ISCO TWC	PAHs	Benzo(k)fluoranthene	0.0209	ug/L	J	0.0182	0.00908
Basin O	4/10/2023	ISCO TWC	PAHs	Benzo(k)fluoranthene	0.0164	ug/L	J	0.016	0.00799
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Benzo(k)fluoranthene	0.0137	ug/L	J	0.0161	0.00804
Basin O	1/27/2024	ISCO TWC	PAHs	Benzo(k)fluoranthene	ND	ug/L	U	0.0191	0.00953
Basin M	10/23/2010	Grab	PAHs	Benzo(b)fluoranthene	0.17	μg/l	=	-	-
Basin M	11/6/2010	Grab	PAHs	Benzo(b)fluoranthene	0.47	μg/l	=	-	-
Basin M	2/12/2011	Grab	PAHs	Benzo(b)fluoranthene	0.72	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Benzo(b)fluoranthene	0.17	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Benzo(b)fluoranthene	0.37	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Benzo(b)fluoranthene	0.63	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Benzo(b)fluoranthene	1.2	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Benzo(b)fluoranthene	0.73	μg/l	=	0.02	0.0041
Basin M	12/3/2015	Composite Drum	PAHs	Benzo(b)fluoranthene	1.58	μg/l	J	0.019	0.00952
Basin M	12/17/2015	Composite Drum	PAHs	Benzo(b)fluoranthene	2.62	μg/l	J	0.019	0.00952
Basin M	1/25/2016	Composite Drum	PAHs	Benzo(b)fluoranthene	1.52	μg/l	=	0.019	0.00952
Basin M	2/27/2018	Pumped Composite	PAHs	Benzo(b)fluoranthene	0.428	μg/l	J	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	Benzo(b)fluoranthene	0.186	μg/l	=	0.019	0.00952
Basin M	3/26/2018	Pumped Composite	PAHs	Benzo(b)fluoranthene	0.228	μg/l	J	0.019	0.00952
Basin N	3/13/2022	ISCO TWC	PAHs	Benzo(b)fluoranthene	0.0317	μg/l	=	0.0178	0.00892
Basin N	4/4/2022	ISCO TWC	PAHs	Benzo(b)fluoranthene	0.0376	μg/l	=	0.0309	0.0155
Basin N	4/30/2022	ISCO TWC	PAHs	Benzo(b)fluoranthene	0.0252	μg/l	=	0.016	0.00799
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Benzo(b)fluoranthene	0.0176	μg/l	J	0.0164	0.0082
Basin P	3/12/2022	ISCO TWC	PAHs	Benzo(b)fluoranthene	ND	μg/l	U	0.0166	0.00831

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin P	4/3/2022	ISCO TWC	PAHs	Benzo(b)fluoranthene	ND	μg/l	U	0.0185	0.00923
Basin P	4/29/2022	ISCO TWC	PAHs	Benzo(b)fluoranthene	0.0115	μg/l	J	0.0158	0.00792
Basin Q	10/10/2020	ISCO TWC	PAHs	Benzo(b)fluoranthene	ND	μg/l	U	0.132	0.0659
Basin Q	11/6/2020	ISCO TWC	PAHs	Benzo(b)fluoranthene	0.117	μg/l	J	0.119	0.0594
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Benzo(b)fluoranthene	0.109	μg/l	J	0.126	0.0632
Basin Q	11/13/2020	ISCO TWC	PAHs	Benzo(b)fluoranthene	0.0878	μg/l	J	0.119	0.0594
Basin Q	12/11/2020	ISCO TWC	PAHs	Benzo(b)fluoranthene	0.0877	μg/l	J	0.0323	0.0161
Basin R	11/16/2007	ISCO Composite	PAHs	Benzo(b)fluoranthene	0.061	μg/l	J	-	-
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Benzo(b)fluoranthene	0.031	μg/l	J	-	-
Basin M	10/23/2010	Grab	PAHs	Benzo(k)fluoranthene	0.13	μg/l	=	-	-
Basin M	11/6/2010	Grab	PAHs	Benzo(k)fluoranthene	0.28	μg/l	=	-	-
Basin M	2/12/2011	Grab	PAHs	Benzo(k)fluoranthene	0.58	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Benzo(k)fluoranthene	0.052	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Benzo(k)fluoranthene	0.12	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Benzo(k)fluoranthene	0.2	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Benzo(k)fluoranthene	0.41	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Benzo(k)fluoranthene	0.12	μg/l	=	0.02	0.003
Basin M	12/3/2015	Composite Drum	PAHs	Benzo(k)fluoranthene	0.38	μg/l	J	0.019	0.00952
Basin M	12/17/2015	Composite Drum	PAHs	Benzo(k)fluoranthene	0.762	μg/l	J	0.019	0.00952
Basin M	1/25/2016	Composite Drum	PAHs	Benzo(k)fluoranthene	0.477	μg/l	J	0.019	0.00952
Basin M	2/27/2018	Pumped Composite	PAHs	Benzo(k)fluoranthene	0.118	μg/l	J	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	Benzo(k)fluoranthene	0.0491	μg/l	=	0.019	0.00952
Basin M	3/26/2018	Pumped Composite	PAHs	Benzo(k)fluoranthene	0.0663	μg/l	J	0.019	0.00952
Basin N	3/13/2022	ISCO TWC	PAHs	Benzo(k)fluoranthene	ND	μg/l	U	0.0178	0.00892
Basin N	4/4/2022	ISCO TWC	PAHs	Benzo(k)fluoranthene	0.0183	μg/l	J	0.0309	0.0155
Basin N	4/30/2022	ISCO TWC	PAHs	Benzo(k)fluoranthene	0.00918	μg/l	J	0.016	0.00799
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Benzo(k)fluoranthene	ND	μg/l	U	0.0164	0.0082
Basin P	3/12/2022	ISCO TWC	PAHs	Benzo(k)fluoranthene	ND	μg/l	U	0.0166	0.00831
Basin P	4/3/2022	ISCO TWC	PAHs	Benzo(k)fluoranthene	ND	μg/l	U	0.0185	0.00923
Basin P	4/29/2022	ISCO TWC	PAHs	Benzo(k)fluoranthene	ND	μg/l	U	0.0158	0.00792
Basin Q	10/10/2020	ISCO TWC	PAHs	Benzo(k)fluoranthene	ND	μg/l	U	0.132	0.0659
Basin Q	11/6/2020	ISCO TWC	PAHs	Benzo(k)fluoranthene	0.064	μg/l	J	0.119	0.0594
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Benzo(k)fluoranthene	0.0638	μg/l	J	0.126	0.0632

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin Q	11/13/2020	ISCO TWC	PAHs	Benzo(k)fluoranthene	ND	μg/l	U	0.119	0.0594
Basin Q	12/11/2020	ISCO TWC	PAHs	Benzo(k)fluoranthene	0.0323	μg/l	J	0.0323	0.0161
Basin R	11/16/2007	ISCO Composite	PAHs	Benzo(k)fluoranthene	0.025	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Benzo(k)fluoranthene	ND	μg/l	U	-	0.0026
Basin M	10/23/2010		Phthalates	Benzyl butyl phthalate	ND	μg/l	U	-	0.43
Basin M	11/6/2010		Phthalates	Benzyl butyl phthalate	ND	μg/l	U	-	0.4
Basin M	2/12/2011		Phthalates	Benzyl butyl phthalate	ND	μg/l	U	-	0.5
Basin R	11/16/2007		Phthalates	Benzyl butyl phthalate	ND	μg/l	UJ	-	0.013
Basin M	10/23/2010		Phthalates	BEHP	2	μg/l	J	-	-
Basin M	11/6/2010		Phthalates	BEHP	ND	μg/l	U	-	0.96
Basin M	2/12/2011		Phthalates	BEHP	ND	μg/l	U	-	1.1
Basin Q	10/10/2020	ISCO TWC	Phthalates	BEHP	ND	μg/l	U	1.76	0.879
Basin Q	11/6/2020	ISCO TWC	Phthalates	BEHP	ND	μg/l	U	1.58	0.792
Basin Q	11/6/2020	ISCO TWC-DUP	Phthalates	BEHP	ND	μg/l	U	1.68	0.842
Basin Q	11/13/2020	ISCO TWC	Phthalates	BEHP	ND	μg/l	U	1.58	0.792
Basin Q	12/11/2020	ISCO TWC	Phthalates	BEHP	ND	μg/l	U	0.43	0.215
Basin R	11/16/2007		Phthalates	BEHP	1.7	μg/l	=	-	-
Basin M	10/23/2010	Grab	Metals	Cadmium	0.2	μg/l	=	-	-
Basin M	11/6/2010	Grab	Metals	Cadmium	0.24	μg/l	=	-	-
Basin M	2/12/2011	Grab	Metals	Cadmium	0.3	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	Metals	Cadmium	0.082	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	Metals	Cadmium	0.27	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite-DUP	Metals	Cadmium	0.416	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite	Metals	Cadmium	0.537	μg/l	=	-	-
Basin M	10/23/2010	Grab	Metals	Chromium	ND	μg/l	U	-	0.24
Basin M	11/6/2010	Grab	Metals	Chromium	4.1	μg/l	=	-	-
Basin M	2/12/2011	Grab	Metals	Chromium	6.4	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	Metals	Chromium	1.72	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	Metals	Chromium	3.29	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite-DUP	Metals	Chromium	0.88	μg/l	J	-	-
Basin R	11/16/2007	ISCO Composite	Metals	Chromium	1.86	μg/l	J	-	-
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Chrysene	0.0494	μg/l	=	-	-
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Chrysene	0.0165	μg/l	J	-	-

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Chrysene	0.0454	μg/l	=	-	-
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Chrysene	0.0152	μg/l	J	-	-
Basin M	10/23/2010	Grab	PAHs	Chrysene	0.11	μg/l	=	-	-
Basin M	11/6/2010	Grab	PAHs	Chrysene	0.26	μg/l	=	-	-
Basin M	2/12/2011	Grab	PAHs	Chrysene	0.63	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Chrysene	0.074	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Chrysene	0.24	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Chrysene	0.38	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Chrysene	1.3	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Chrysene	0.27	μg/l	=	0.02	0.0034
Basin M	12/3/2015	Composite Drum	PAHs	Chrysene	0.93	μg/l	J	0.019	0.00952
Basin M	12/17/2015	Composite Drum	PAHs	Chrysene	2.2	μg/l	J	0.019	0.00952
Basin M	1/25/2016	Composite Drum	PAHs	Chrysene	0.946	μg/l	J	0.019	0.00952
Basin M	2/27/2018	Pumped Composite	PAHs	Chrysene	0.255	μg/l	J	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	Chrysene	0.0847	μg/l	=	0.0198	0.0099
Basin M	3/26/2018	Pumped Composite	PAHs	Chrysene	0.126	μg/l	J	0.0198	0.0099
Basin N	3/13/2022	ISCO TWC	PAHs	Chrysene	0.0169	μg/l	J	0.0178	0.00892
Basin N	4/4/2022	ISCO TWC	PAHs	Chrysene	0.0201	μg/l	J	0.0206	0.0103
Basin N	4/30/2022	ISCO TWC	PAHs	Chrysene	0.0152	μg/l	J	0.016	0.00799
Basin O	4/1/2023	ISCO TWC	PAHs	Chrysene	0.025	ug/L	=	0.0182	0.00908
Basin O	4/10/2023	ISCO TWC	PAHs	Chrysene	0.024	ug/L	J	0.016	0.00799
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Chrysene	0.0217	ug/L	J	0.0161	0.00804
Basin O	1/27/2024	ISCO TWC	PAHs	Chrysene	0.0124	ug/L	J	0.0191	0.00953
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Chrysene	0.00943	μg/l	J	0.0164	0.0082
Basin P	3/12/2022	ISCO TWC	PAHs	Chrysene	ND	μg/l	U	0.0166	0.00831
Basin P	4/3/2022	ISCO TWC	PAHs	Chrysene	ND	μg/l	U	0.0185	0.00923
Basin P	4/29/2022	ISCO TWC	PAHs	Chrysene	ND	μg/l	UJ	0.0158	0.00792
Basin Q	10/10/2020	ISCO TWC	PAHs	Chrysene	ND	μg/l	U	0.0879	0.044
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Chrysene	ND	μg/l	U	0.0842	0.0421
Basin Q	11/6/2020	ISCO TWC	PAHs	Chrysene	0.051	μg/l	J	0.0792	0.0396
Basin Q	11/13/2020	ISCO TWC	PAHs	Chrysene	ND	μg/l	U	0.0792	0.0396
Basin Q	12/11/2020	ISCO TWC	PAHs	Chrysene	0.0484	μg/l	=	0.0215	0.0108
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Chrysene	0.029	μg/l	J	-	-

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin R	11/16/2007	ISCO Composite	PAHs	Chrysene	0.049	μg/l	J	-	-
Basin L	12/26/2022	Grab, Post-SCM	Metals	Copper	3.53	μg/l	=	-	-
Basin L	1/13/2023	Grab, Post-SCM	Metals	Copper	2.82	μg/l	=	-	-
Basin L	2/13/2023	Grab, Post-SCM	Metals	Copper	ND	μg/l	U	90	-
Basin L	3/13/2023	Grab, Post-SCM	Metals	Copper	2.26	μg/l	=	-	0.019
Basin M	10/23/2010	Grab	Metals	Copper	25.6	μg/l	=	-	-
Basin M	11/6/2010	Grab	Metals	Copper	20.7	μg/l	=	-	-
Basin M	2/12/2011	Grab	Metals	Copper	20.5	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	Metals	Copper	7.75	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	Metals	Copper	15.7	μg/l	=	-	-
Basin M	2/27/2018	Pumped Composite	Metals	Copper	14.2	μg/l	=	1	0.5
Basin M	3/14/2018	Pumped Composite	Metals	Copper	17.8	μg/l	=	1	0.5
Basin M	3/26/2018	Pumped Composite	Metals	Copper	11	μg/l	=	1	0.5
Basin R	11/16/2007	ISCO Composite	Metals	Copper	11.5	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite-DUP	Metals	Copper	8.94	μg/l	=	-	-
Basin L	12/26/2022	Grab, Post-SCM	PAHs	cPAH/BaPeq	0.0399	μg/l	=	-	-
Basin L	1/13/2023	Grab, Post-SCM	PAHs	cPAH/BaPeq	0.0034	μg/l	=	-	-
Basin L	2/13/2023	Grab, Post-SCM	PAHs	cPAH/BaPeq	0.0346	μg/l	=	-	-
Basin L	3/13/2023	Grab, Post-SCM	PAHs	cPAH/BaPeq	0.0025	μg/l	=	-	-
Basin M	10/23/2010	Grab	PAHs	cPAH/BaPeq	0.278	μg/l	=	-	-
Basin M	11/6/2010	Grab	PAHs	cPAH/BaPeq	0.63	μg/l	=	-	-
Basin M	2/12/2011	Grab	PAHs	cPAH/BaPeq	0.924	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	cPAH/BaPeq	0.192	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	cPAH/BaPeq	0.41	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	cPAH/BaPeq	0.608	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	cPAH/BaPeq	1.2	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	cPAH/BaPeq	0.775	μg/l	=	0.02	0.0043
Basin M	12/3/2015	Composite Drum	PAHs	cPAH/BaPeq	1.43	μg/l	=	0.338	0.169
Basin M	12/17/2015	Composite Drum	PAHs	cPAH/BaPeq	2.64	μg/l	=	0.338	0.169
Basin M	1/25/2016	Composite Drum	PAHs	cPAH/BaPeq	1.62	μg/l	=	0.338	0.169
Basin M	2/27/2018	Pumped Composite	PAHs	cPAH/BaPeq	0.438	μg/l	=	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	cPAH/BaPeq	0.176	μg/l	=	0.0198	0.0099
Basin M	3/26/2018	Pumped Composite	PAHs	cPAH/BaPeq	0.218	μg/l	=	0.0198	0.0099

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin N	3/13/2022	ISCO TWC	PAHs	cPAH/BaPeq	0.023	μg/l	=	0.0357	0.0178
Basin N	4/4/2022	ISCO TWC	PAHs	cPAH/BaPeq	0.043	μg/l	=	0.0309	0.0155
Basin N	4/30/2022	ISCO TWC	PAHs	cPAH/BaPeq	0.021	μg/l	=	0.0319	0.016
Basin O	4/1/2023	ISCO TWC	PAHs	cPAH/BaPeq	0.053	ug/L	=	-	-
Basin O	4/10/2023	ISCO TWC	PAHs	cPAH/BaPeq	0.036	ug/L	=	-	-
Basin O	1/27/2024	ISCO TWC	PAHs	cPAH/BaPeq	0.015	ug/L	=	-	-
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	cPAH/BaPeq	0.032	ug/L	=	-	-
Basin P	3/12/2022	ISCO TWC	PAHs	cPAH/BaPeq	0	μg/l	U	0.0333	0.0166
Basin P	4/3/2022	ISCO TWC	PAHs	cPAH/BaPeq	0	μg/l	U	0.0369	0.0185
Basin P	4/29/2022	ISCO TWC	PAHs	cPAH/BaPeq	0.001	μg/l	=	0.0317	0.0158
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	cPAH/BaPeq	0.011	μg/l	=	0.0328	0.0164
Basin Q	10/10/2020	ISCO TWC	PAHs	cPAH/BaPeq	0	μg/l	U	0.132	0.0659
Basin Q	11/6/2020	ISCO TWC	PAHs	cPAH/BaPeq	0.112	μg/l	=	0.119	0.0594
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	cPAH/BaPeq	0.103	μg/l	=	0.126	0.0632
Basin Q	11/13/2020	ISCO TWC	PAHs	cPAH/BaPeq	0.0808	μg/l	=	0.119	0.0594
Basin Q	12/11/2020	ISCO TWC	PAHs	cPAH/BaPeq	0.0728	μg/l	=	0.0323	0.0161
Basin R	11/16/2007	ISCO Composite	PAHs	cPAH/BaPeq	0.0462	μg/l	=	-	0.0026
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	cPAH/BaPeq	0.00313	μg/l	=	-	0.0045
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	0.303	pg/l	=	-	7.26
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	0.0552	pg/l	=	-	12.1
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	0.296	pg/l	=	-	6.33
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	2.19	pg/L	=	-	-
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	0.781	pg/L	=	-	-
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	0	pg/L	U	-	-
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	0.674	pg/L	=	-	-
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	0.00834	pg/l	=	-	7.84
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	0.0606	pg/l	=	-	12.5
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	0.336	pg/l	=	-	6.39
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	0.3	pg/l	=	-	8.15
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	2.19	pg/l	=	91.8	3.67
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	2.08	pg/l	=	101	31.2
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	2.15	pg/l	=	100	25
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	0.894	pg/l	=	109	5.14

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	2.22	pg/l	=	108	14.6
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	1.84	pg/L	=	-	-
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	1.04	pg/L	=	-	-
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	D/F TEQ (2,3,7,8-TCDD eq)	0.369	pg/L	=	-	-
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	-	0.00971
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	-	0.00962
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	-	0.01
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	-	0.00952
Basin O	4/1/2023	ISCO TWC	PAHs	Dibenz(a,h)anthracene	0.0104	ug/L	J	0.0182	0.00908
Basin O	4/10/2023	ISCO TWC	PAHs	Dibenz(a,h)anthracene	ND	ug/L	U	0.016	0.00799
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Dibenz(a,h)anthracene	ND	ug/L	U	0.0161	0.00804
Basin O	1/27/2024	ISCO TWC	PAHs	Dibenz(a,h)anthracene	ND	ug/L	U	0.0191	0.00953
Basin M	10/23/2010	Grab	PAHs	Dibenz(a,h)anthracene	0.085	μg/l	=	-	-
Basin M	11/6/2010	Grab	PAHs	Dibenz(a,h)anthracene	0.13	μg/l	=	-	-
Basin M	2/12/2011	Grab	PAHs	Dibenz(a,h)anthracene	0.15	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Dibenz(a,h)anthracene	0.033	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Dibenz(a,h)anthracene	0.064	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Dibenz(a,h)anthracene	0.085	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Dibenz(a,h)anthracene	0.15	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Dibenz(a,h)anthracene	0.13	μg/l	=	0.02	0.0025
Basin M	12/3/2015	Composite Drum	PAHs	Dibenz(a,h)anthracene	0.156	μg/l	=	0.169	0.0845
Basin M	12/17/2015	Composite Drum	PAHs	Dibenz(a,h)anthracene	0.289	μg/l	=	0.169	0.0845
Basin M	1/25/2016	Composite Drum	PAHs	Dibenz(a,h)anthracene	0.254	μg/l	=	0.169	0.0845
Basin M	2/27/2018	Pumped Composite	PAHs	Dibenz(a,h)anthracene	0.052	μg/l	=	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	Dibenz(a,h)anthracene	0.0251	μg/l	=	0.019	0.00952
Basin M	3/26/2018	Pumped Composite	PAHs	Dibenz(a,h)anthracene	0.0267	μg/l	=	0.019	0.00952
Basin N	3/13/2022	ISCO TWC	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	0.0178	0.00892
Basin N	4/4/2022	ISCO TWC	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	0.0206	0.0103
Basin N	4/30/2022	ISCO TWC	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	0.016	0.00799
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	0.0164	0.0082
Basin P	3/12/2022	ISCO TWC	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	0.0166	0.00831
Basin P	4/3/2022	ISCO TWC	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	0.0185	0.00923
Basin P	4/29/2022	ISCO TWC	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	0.0158	0.00792

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin Q	10/10/2020	ISCO TWC	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	0.0879	0.044
Basin Q	11/6/2020	ISCO TWC	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	0.0792	0.0396
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	0.0842	0.0421
Basin Q	11/13/2020	ISCO TWC	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	0.0792	0.0396
Basin Q	12/11/2020	ISCO TWC	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	0.0215	0.0108
Basin R	11/16/2007	ISCO Composite	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	-	0.0026
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Dibenz(a,h)anthracene	ND	μg/l	U	-	0.0026
Basin M	11/11/2012	ISCO Composite	PAHs	Dibenzofuran	0.0064	μg/l	J	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Dibenzofuran	0.008	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Dibenzofuran	ND	μg/l	U	0.02	0.0093
Basin M	12/3/2015	Composite Drum	PAHs	Dibenzofuran	0.0222	μg/l	=	0.338	0.169
Basin M	12/17/2015	Composite Drum	PAHs	Dibenzofuran	ND	μg/l	U	0.338	0.156
Basin M	1/25/2016	Composite Drum	PAHs	Dibenzofuran	ND	μg/l	U	0.338	0.169
Basin M	2/27/2018	Pumped Composite	PAHs	Dibenzofuran	0.0149	μg/l	J	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	Dibenzofuran	ND	μg/l	U	0.019	0.0099
Basin M	3/26/2018	Pumped Composite	PAHs	Dibenzofuran	ND	μg/l	U	0.019	0.00952
Basin M	10/23/2010		Phthalates	Dibutyl phthalate	ND	μg/l	U	-	0.45
Basin M	11/6/2010		Phthalates	Dibutyl phthalate	ND	μg/l	U	-	0.45
Basin M	2/12/2011		Phthalates	Dibutyl phthalate	ND	μg/l	U	-	0.5
Basin R	11/16/2007		Phthalates	Dibutyl phthalate	0.24	μg/l	J	-	-
Basin M	10/23/2010		Phthalates	Diethyl phthalate	ND	μg/l	U	-	0.41
Basin M	11/6/2010		Phthalates	Diethyl phthalate	ND	μg/l	U	-	0.41
Basin M	2/12/2011		Phthalates	Diethyl phthalate	ND	μg/l	U	-	0.47
Basin R	11/16/2007		Phthalates	Diethyl phthalate	0.11	μg/l	J	-	-
Basin M	10/23/2010		Phthalates	Dimethyl phthalate	ND	μg/l	U	-	0.26
Basin M	11/6/2010		Phthalates	Dimethyl phthalate	ND	μg/l	U	-	0.27
Basin M	2/12/2011		Phthalates	Dimethyl phthalate	ND	μg/l	U	-	0.3
Basin R	11/16/2007		Phthalates	Dimethyl phthalate	0.2	μg/l	J	-	-
Basin M	10/23/2010		Phthalates	Di-n-octyl phthalate	5.2	μg/l	=	-	-
Basin M	11/6/2010		Phthalates	Di-n-octyl phthalate	ND	μg/l	U	_	0.5
Basin M	2/12/2011		Phthalates	Di-n-octyl phthalate	ND	μg/l	U	-	0.54
Basin R	11/16/2007		Phthalates	Di-n-octyl phthalate	0.045	μg/l	J	-	-
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Fluoranthene	0.0507	μg/l	=		

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Fluoranthene	0.0179	μg/l	J	-	-
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Fluoranthene	0.0483	μg/l	=	-	-
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Fluoranthene	0.0159	μg/l	J	-	-
Basin M	10/23/2010	Grab	PAHs	Fluoranthene	0.096	μg/l	=	-	-
Basin M	11/6/2010	Grab	PAHs	Fluoranthene	0.14	μg/l	=	-	-
Basin M	2/12/2011	Grab	PAHs	Fluoranthene	0.8	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Fluoranthene	0.092	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Fluoranthene	0.22	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Fluoranthene	0.47	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Fluoranthene	1.1	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Fluoranthene	0.096	μg/l	=	0.02	0.01
Basin M	12/3/2015	Composite Drum	PAHs	Fluoranthene	0.511	μg/l	=	0.313	0.156
Basin M	12/17/2015	Composite Drum	PAHs	Fluoranthene	1.2	μg/l	=	0.313	0.156
Basin M	1/25/2016	Composite Drum	PAHs	Fluoranthene	0.435	μg/l	=	0.313	0.156
Basin M	2/27/2018	Pumped Composite	PAHs	Fluoranthene	0.275	μg/l	=	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	Fluoranthene	0.0877	μg/l	=	0.019	0.00952
Basin M	3/26/2018	Pumped Composite	PAHs	Fluoranthene	0.143	μg/l	=	0.019	0.00952
Basin N	3/13/2022	ISCO TWC	PAHs	Fluoranthene	0.0312	μg/l	J	0.0357	0.0178
Basin N	4/4/2022	ISCO TWC	PAHs	Fluoranthene	0.0255	μg/l	=	0.0206	0.0103
Basin N	4/30/2022	ISCO TWC	PAHs	Fluoranthene	0.0252	μg/l	J	0.0319	0.016
Basin O	4/1/2023	ISCO TWC	PAHs	Fluoranthene	0.034	ug/L	J	0.0363	0.0182
Basin O	4/10/2023	ISCO TWC	PAHs	Fluoranthene	0.0316	ug/L	J	0.032	0.016
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Fluoranthene	0.031	ug/L	J	0.0322	0.0161
Basin O	1/27/2024	ISCO TWC	PAHs	Fluoranthene	0.0214	ug/L	J	0.0381	0.0191
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Fluoranthene	0.018	μg/l	J	0.0328	0.0164
Basin P	3/12/2022	ISCO TWC	PAHs	Fluoranthene	ND	μg/l	U	0.0333	0.0166
Basin P	4/3/2022	ISCO TWC	PAHs	Fluoranthene	ND	μg/l	U	0.0369	0.0185
Basin P	4/29/2022	ISCO TWC	PAHs	Fluoranthene	0.0158	μg/l	J	0.0317	0.0158
Basin Q	10/10/2020	ISCO TWC	PAHs	Fluoranthene	ND	μg/l	U	0.0879	0.044
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Fluoranthene	0.0428	μg/l	J	0.0842	0.0421
Basin Q	11/6/2020	ISCO TWC	PAHs	Fluoranthene	0.0444	μg/l	J	0.0792	0.0396
Basin Q	11/13/2020	ISCO TWC	PAHs	Fluoranthene	0.0487	μg/l	J	0.0792	0.0396
Basin Q	12/11/2020	ISCO TWC	PAHs	Fluoranthene	0.0557	μg/l	=	0.0215	0.0108

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin R	11/16/2007	ISCO Composite	PAHs	Fluoranthene	0.096	μg/l	J	-	-
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Fluoranthene	0.063	μg/l	J	-	-
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Fluorene	ND	μg/l	U	-	0.00971
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Fluorene	ND	μg/l	U	-	0.00962
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Fluorene	ND	μg/l	UJ	-	0.01
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Fluorene	ND	μg/l	U	-	0.00952
Basin M	10/23/2010	Grab	PAHs	Fluorene	0.011	μg/l	J	-	-
Basin M	11/6/2010	Grab	PAHs	Fluorene	0.008	μg/l	J	-	-
Basin M	2/12/2011	Grab	PAHs	Fluorene	0.077	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Fluorene	0.0089	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Fluorene	0.014	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Fluorene	0.04	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Fluorene	0.098	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Fluorene	0.026	μg/l	=	0.02	0.0038
Basin M	12/3/2015	Composite Drum	PAHs	Fluorene	0.0384	μg/l	=	0.338	0.169
Basin M	12/17/2015	Composite Drum	PAHs	Fluorene	ND	μg/l	U	0.338	0.156
Basin M	1/25/2016	Composite Drum	PAHs	Fluorene	ND	μg/l	U	0.338	0.169
Basin M	2/27/2018	Pumped Composite	PAHs	Fluorene	0.022	μg/l	=	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	Fluorene	ND	μg/l	U	0.019	0.0099
Basin M	3/26/2018	Pumped Composite	PAHs	Fluorene	0.0142	μg/l	J	0.019	0.00952
Basin N	3/13/2022	ISCO TWC	PAHs	Fluorene	ND	μg/l	U	0.0357	0.0178
Basin N	4/4/2022	ISCO TWC	PAHs	Fluorene	ND	μg/l	U	0.0206	0.0103
Basin N	4/30/2022	ISCO TWC	PAHs	Fluorene	ND	μg/l	U	0.0319	0.016
Basin O	4/1/2023	ISCO TWC	PAHs	Fluorene	ND	ug/L	U	0.0363	0.0182
Basin O	4/10/2023	ISCO TWC	PAHs	Fluorene	ND	ug/L	U	0.032	0.016
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Fluorene	ND	ug/L	U	0.0322	0.0161
Basin O	1/27/2024	ISCO TWC	PAHs	Fluorene	ND	ug/L	U	0.0381	0.0191
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Fluorene	ND	μg/l	UJ	0.205	0.205
Basin P	3/12/2022	ISCO TWC	PAHs	Fluorene	0.0224	μg/l	J	0.0333	0.0166
Basin P	4/3/2022	ISCO TWC	PAHs	Fluorene	0.0226	μg/l	J	0.0369	0.0185
Basin P	4/29/2022	ISCO TWC	PAHs	Fluorene	ND	μg/l	U	0.0317	0.0317
Basin Q	10/10/2020	ISCO TWC	PAHs	Fluorene	ND	μg/l	U	0.0879	0.044
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Fluorene	ND	μg/l	U	0.0842	0.0421

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin Q	11/6/2020	ISCO TWC	PAHs	Fluorene	ND	μg/l	U	0.0792	0.0396
Basin Q	11/13/2020	ISCO TWC	PAHs	Fluorene	ND	μg/l	U	0.0792	0.0396
Basin Q	12/11/2020	ISCO TWC	PAHs	Fluorene	ND	μg/l	U	0.0215	0.0108
Basin R	11/16/2007	ISCO Composite	PAHs	Fluorene	ND	μg/l	U	-	0.004
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Fluorene	ND	μg/l	U	-	0.004
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Indeno(1,2,3-cd)pyrene	0.0305	μg/l	=	-	-
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Indeno(1,2,3-cd)pyrene	0.0124	μg/l	J	-	-
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Indeno(1,2,3-cd)pyrene	0.0268	μg/l	=	-	-
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Indeno(1,2,3-cd)pyrene	0.0121	μg/l	J	-	-
Basin M	10/23/2010	Grab	PAHs	Indeno(1,2,3-cd)pyrene	0.16	μg/l	=	-	-
Basin M	11/6/2010	Grab	PAHs	Indeno(1,2,3-cd)pyrene	0.27	μg/l	=	-	-
Basin M	2/12/2011	Grab	PAHs	Indeno(1,2,3-cd)pyrene	0.36	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Indeno(1,2,3-cd)pyrene	0.13	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Indeno(1,2,3-cd)pyrene	0.3	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Indeno(1,2,3-cd)pyrene	0.3	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Indeno(1,2,3-cd)pyrene	0.51	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Indeno(1,2,3-cd)pyrene	0.41	μg/l	=	0.02	0.0026
Basin M	12/3/2015	Composite Drum	PAHs	Indeno(1,2,3-cd)pyrene	0.625	μg/l	=	0.019	0.00952
Basin M	12/17/2015	Composite Drum	PAHs	Indeno(1,2,3-cd)pyrene	1.31	μg/l	=	0.019	0.00952
Basin M	1/25/2016	Composite Drum	PAHs	Indeno(1,2,3-cd)pyrene	0.799	μg/l	=	0.019	0.00952
Basin M	2/27/2018	Pumped Composite	PAHs	Indeno(1,2,3-cd)pyrene	0.233	μg/l	=	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	Indeno(1,2,3-cd)pyrene	0.119	μg/l	=	0.019	0.00952
Basin M	3/26/2018	Pumped Composite	PAHs	Indeno(1,2,3-cd)pyrene	0.122	μg/l	=	0.019	0.00952
Basin N	3/13/2022	ISCO TWC	PAHs	Indeno(1,2,3-cd)pyrene	0.0174	μg/l	J	0.0178	0.00892
Basin N	4/4/2022	ISCO TWC	PAHs	Indeno(1,2,3-cd)pyrene	0.0193	μg/l	J	0.0206	0.0103
Basin N	4/30/2022	ISCO TWC	PAHs	Indeno(1,2,3-cd)pyrene	0.0144	μg/l	J	0.016	0.00799
Basin O	4/1/2023	ISCO TWC	PAHs	Indeno(1,2,3-cd)pyrene	0.0322	ug/L	=	0.0182	0.00908
Basin O	4/10/2023	ISCO TWC	PAHs	Indeno(1,2,3-cd)pyrene	0.0232	ug/L	=	0.016	0.00799
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Indeno(1,2,3-cd)pyrene	0.0229	ug/L	=	0.0161	0.00804
Basin O	1/27/2024	ISCO TWC	PAHs	Indeno(1,2,3-cd)pyrene	0.0143	ug/L	J	0.0191	0.00953
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Indeno(1,2,3-cd)pyrene	ND	μg/l	U	0.0164	0.0082
Basin P	3/12/2022	ISCO TWC	PAHs	Indeno(1,2,3-cd)pyrene	ND	μg/l	U	0.0166	0.00831
Basin P	4/3/2022	ISCO TWC	PAHs	Indeno(1,2,3-cd)pyrene	ND	μg/l	U	0.0185	0.00923

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin P	4/29/2022	ISCO TWC	PAHs	Indeno(1,2,3-cd)pyrene	ND	μg/l	U	0.0158	0.00792
Basin Q	10/10/2020	ISCO TWC	PAHs	Indeno(1,2,3-cd)pyrene	ND	μg/l	U	0.0879	0.044
Basin Q	11/6/2020	ISCO TWC	PAHs	Indeno(1,2,3-cd)pyrene	0.0438	μg/l	J	0.0792	0.0396
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Indeno(1,2,3-cd)pyrene	ND	μg/l	U	0.0842	0.0421
Basin Q	11/13/2020	ISCO TWC	PAHs	Indeno(1,2,3-cd)pyrene	ND	μg/l	U	0.0792	0.0396
Basin Q	12/11/2020	ISCO TWC	PAHs	Indeno(1,2,3-cd)pyrene	0.0377	μg/l	=	0.0215	0.0108
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Indeno(1,2,3-cd)pyrene	ND	μg/l	U	-	0.0027
Basin R	11/16/2007	ISCO Composite	PAHs	Indeno(1,2,3-cd)pyrene	0.033	μg/l	=	-	-
Basin M	2/27/2018	Pumped Composite	Metals	Iron	4210	μg/l	=	50	25
Basin M	3/14/2018	Pumped Composite	Metals	Iron	4970	μg/l	=	50	25
Basin M	3/26/2018	Pumped Composite	Metals	Iron	2800	μg/l	=	50	25
Basin M	10/23/2010	Grab	Metals	Lead	32.3	μg/l	=	-	-
Basin M	11/6/2010	Grab	Metals	Lead	3.6	μg/l	=	-	-
Basin M	2/12/2011	Grab	Metals	Lead	25	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	Metals	Lead	9	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	Metals	Lead	32.8	μg/l	=	-	-
Basin M	2/27/2018	Pumped Composite	Metals	Lead	19	μg/l	=	0.2	0.1
Basin M	3/14/2018	Pumped Composite	Metals	Lead	30.2	μg/l	=	0.2	0.1
Basin M	3/26/2018	Pumped Composite	Metals	Lead	17.4	μg/l	=	0.2	0.1
Basin R	11/16/2007	ISCO Composite	Metals	Lead	13.8	μg/l	J	-	-
Basin R	11/16/2007	ISCO Composite-DUP	Metals	Lead	7.04	μg/l	J	-	-
Basin M	10/23/2010	Grab	Metals	Mercury	ND	μg/l	U	-	0.011
Basin M	11/6/2010	Grab	Metals	Mercury	ND	μg/l	U	-	0.011
Basin M	2/12/2011	Grab	Metals	Mercury	ND	μg/l	U	-	0.011
Basin M	11/11/2012	ISCO Composite	Metals	Mercury	ND	μg/l	U	-	0.02
Basin M	2/22/2013	ISCO Composite	Metals	Mercury	ND	μg/l	U	-	0.02
Basin N	3/13/2022	ISCO TWC	Metals	Mercury	ND	mg/l	U	0.0001	0.00005
Basin N	4/4/2022	ISCO TWC	Metals	Mercury	ND	mg/l	U	0.0001	0.00005
Basin N	4/30/2022	ISCO TWC	Metals	Mercury	ND	mg/l	U	0.00008	0.00004
Basin R	11/16/2007	ISCO Composite	Metals	Mercury	ND	μg/l	U	-	0.03
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Naphthalene	ND	μg/l	U	-	0.0194
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Naphthalene	0.0352	μg/l	J	-	_
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Naphthalene	ND	μg/l	UJ	-	0.02

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Naphthalene	ND	μg/l	U	-	0.019
Basin M	10/23/2010	Grab	PAHs	Naphthalene	0.01	μg/l	J	-	-
Basin M	11/6/2010	Grab	PAHs	Naphthalene	0.016	μg/l	J	-	-
Basin M	2/12/2011	Grab	PAHs	Naphthalene	0.057	μg/l	J	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Naphthalene	0.031	μg/l	J	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Naphthalene	0.013	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Naphthalene	0.015	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Naphthalene	0.021	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Naphthalene	0.11	μg/l	=	0.02	0.0038
Basin M	12/3/2015	Composite Drum	PAHs	Naphthalene	0.0227	μg/l	=	0.676	0.338
Basin M	12/17/2015	Composite Drum	PAHs	Naphthalene	ND	μg/l	U	0.676	0.313
Basin M	1/25/2016	Composite Drum	PAHs	Naphthalene	ND	μg/l	U	0.676	0.338
Basin M	2/27/2018	Pumped Composite	PAHs	Naphthalene	0.0435	μg/l	=	0.0377	0.0189
Basin M	3/14/2018	Pumped Composite	PAHs	Naphthalene	0.219	μg/l	=	0.0396	0.0198
Basin M	3/26/2018	Pumped Composite	PAHs	Naphthalene	0.0281	μg/l	J	0.0396	0.0198
Basin N	3/13/2022	ISCO TWC	PAHs	Naphthalene	ND	μg/l	U	0.0713	0.0357
Basin N	4/4/2022	ISCO TWC	PAHs	Naphthalene	ND	μg/l	U	0.0412	0.0206
Basin N	4/30/2022	ISCO TWC	PAHs	Naphthalene	ND	μg/l	U	0.0639	0.0319
Basin O	4/1/2023	ISCO TWC	PAHs	Naphthalene	ND	ug/L	U	0.0726	0.0363
Basin O	4/10/2023	ISCO TWC	PAHs	Naphthalene	0.0427	ug/L	J	0.0639	0.032
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Naphthalene	0.0402	ug/L	J	0.0643	0.0322
Basin O	1/27/2024	ISCO TWC	PAHs	Naphthalene	ND	ug/L	U	0.0762	0.0381
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Naphthalene	0.0414	μg/l	J	0.0656	0.0328
Basin P	3/12/2022	ISCO TWC	PAHs	Naphthalene	0.0461	μg/l	J	0.0665	0.0333
Basin P	4/3/2022	ISCO TWC	PAHs	Naphthalene	0.0595	μg/l	J	0.0738	0.0369
Basin P	4/29/2022	ISCO TWC	PAHs	Naphthalene	0.0459	μg/l	J	0.0634	0.0317
Basin Q	10/10/2020	ISCO TWC	PAHs	Naphthalene	ND	μg/l	U	0.176	0.0879
Basin Q	11/6/2020	ISCO TWC	PAHs	Naphthalene	ND	μg/l	U	0.158	0.0792
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Naphthalene	ND	μg/l	U	0.168	0.0842
Basin Q	11/13/2020	ISCO TWC	PAHs	Naphthalene	ND	μg/l	U	0.158	0.1
Basin Q	12/11/2020	ISCO TWC	PAHs	Naphthalene	ND	μg/l	U	0.043	0.0215
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Naphthalene	0.024	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite	PAHs	Naphthalene	0.027	μg/l	=	-	-

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin M	10/23/2010	Grab	Metals	Nickel	4	μg/l	=	-	-
Basin M	11/6/2010	Grab	Metals	Nickel	3.9	μg/l	=	-	-
Basin M	2/12/2011	Grab	Metals	Nickel	4.5	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	Metals	Nickel	1.04	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	Metals	Nickel	2.48	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite	Metals	Nickel	2.13	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite-DUP	Metals	Nickel	1.63	μg/l	=	-	-
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	OCDD	1210	pg/L	=	50	8.5
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	OCDD	346	pg/L	=	50	8.5
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	OCDD	369	pg/L	=	50	8.5
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	OCDD	ND	pg/L	U	52.521	22.2
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	OCDD	699	pg/L	=	50	8.5
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	OCDD	521	pg/L	=	50	8.5
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	OCDD	1130	pg/L	=	52.1	22.2
Basin O	4/1/2023	ISCO TWC	Dioxins/Furans	OCDF	ND	pg/L	U	50	13.6
Basin O	4/10/2023	ISCO TWC	Dioxins/Furans	OCDF	ND	pg/L	U	50	11.7
Basin O	4/10/2023	ISCO TWC-DUP	Dioxins/Furans	OCDF	ND	pg/L	U	50	11.7
Basin O	1/27/2024	ISCO TWC	Dioxins/Furans	OCDF	ND	pg/L	U	52.521	9.32
Basin S	4/1/2023	ISCO TWC	Dioxins/Furans	OCDF	43.4	pg/L	J	50	43.4
Basin S	4/10/2023	ISCO TWC	Dioxins/Furans	OCDF	ND	pg/L	U	50	11.7
Basin S	1/27/2024	ISCO TWC	Dioxins/Furans	OCDF	99.9	pg/L	=	52.1	9.32
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	OCDF	ND	pg/l	U	-	7.26
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	OCDF	ND	pg/l	U	-	5.37
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	OCDF	ND	pg/l	U	-	6.33
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	OCDF	ND	pg/l	U	-	6.13
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	OCDF	ND	pg/l	U	-	10.4
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	OCDF	35.1	pg/l	J	-	-
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	OCDF	ND	pg/l	UJ	-	7.32
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	OCDF	7.44	pg/l	J	91.8	1.63
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	OCDF	20.7	pg/l	J	100	11.4
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	OCDF	21.1	pg/l	J	101	13.3
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	OCDF	11.6	pg/l	J	109	3.33
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	OCDF	22.3	pg/l	J	108	7.02

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin N	3/13/2022	ISCO TWC	Dioxins/Furans	OCDD	189	pg/l	=	-	-
Basin N	4/4/2022	ISCO TWC	Dioxins/Furans	OCDD	184	pg/l	=	-	-
Basin N	4/29/2022	ISCO TWC	Dioxins/Furans	OCDD	186	pg/l	=	-	-
Basin P	3/12/2022	ISCO TWC	Dioxins/Furans	OCDD	27.8	pg/l	J	-	-
Basin P	4/3/2022	ISCO TWC	Dioxins/Furans	OCDD	202	pg/l	=	-	-
Basin P	4/29/2022	ISCO TWC	Dioxins/Furans	OCDD	209	pg/l	J	-	-
Basin P	4/29/2022	ISCO TWC-DUP	Dioxins/Furans	OCDD	133	pg/l	J	-	-
Basin Q	10/10/2020	ISCO TWC	Dioxins/Furans	OCDD	603	pg/l	=	91.8	3.67
Basin Q	11/6/2020	ISCO TWC-DUP	Dioxins/Furans	OCDD	1780	pg/l	=	100	25
Basin Q	11/6/2020	ISCO TWC	Dioxins/Furans	OCDD	1840	pg/l	=	101	31.2
Basin Q	11/13/2020	ISCO TWC	Dioxins/Furans	OCDD	742	pg/l	=	109	5.1
Basin Q	12/11/2020	ISCO TWC	Dioxins/Furans	OCDD	1720	pg/l	=	108	9.47
Basin M	10/23/2010		PCBs	PCBs, Total congeners	0.0276	μg/l	J	-	-
Basin M	11/6/2010		PCBs	PCBs, Total congeners	0.0174	μg/l	J	-	-
Basin M	2/12/2011		PCBs	PCBs, Total congeners	0.0331	μg/l	J	-	-
Basin Q	10/23/2010		PCBs	PCBs, Total congeners	0.0177	μg/l	J	-	-
Basin R	11/16/2007		PCBs	PCBs, Total congeners	0.0349	μg/l	J	-	-
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Phenanthrene	0.0231	μg/l	=	-	-
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Phenanthrene	ND	μg/l	U	-	0.00962
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Phenanthrene	0.0262	μg/l	=	-	-
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Phenanthrene	ND	μg/l	U	-	0.00952
Basin M	10/23/2010	Grab	PAHs	Phenanthrene	0.031	μg/l	=	-	-
Basin M	11/6/2010	Grab	PAHs	Phenanthrene	0.049	μg/l	=	-	-
Basin M	2/12/2011	Grab	PAHs	Phenanthrene	0.27	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Phenanthrene	0.033	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Phenanthrene	0.082	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Phenanthrene	0.081	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Phenanthrene	0.13	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Phenanthrene	0.042	μg/l	=	0.02	0.005
Basin M	12/3/2015	Composite Drum	PAHs	Phenanthrene	0.131	μg/l	=	0.676	0.338
Basin M	12/17/2015	Composite Drum	PAHs	Phenanthrene	ND	μg/l	U	0.676	0.313
Basin M	1/25/2016	Composite Drum	PAHs	Phenanthrene	ND	μg/l	U	0.676	0.338
Basin M	2/27/2018	Pumped Composite	PAHs	Phenanthrene	0.061	μg/l	=	0.0189	0.00943

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin M	3/14/2018	Pumped Composite	PAHs	Phenanthrene	0.0307	μg/l	=	0.019	0.00952
Basin M	3/26/2018	Pumped Composite	PAHs	Phenanthrene	0.0359	μg/l	=	0.019	0.00952
Basin N	3/13/2022	ISCO TWC	PAHs	Phenanthrene	ND	μg/l	U	0.0713	0.0357
Basin N	4/4/2022	ISCO TWC	PAHs	Phenanthrene	0.0119	μg/l	J	0.0206	0.0103
Basin N	4/30/2022	ISCO TWC	PAHs	Phenanthrene	ND	μg/l	U	0.0639	0.0319
Basin O	4/1/2023	ISCO TWC	PAHs	Phenanthrene	ND	ug/L	U	0.0726	0.0363
Basin O	4/10/2023	ISCO TWC	PAHs	Phenanthrene	ND	ug/L	U	0.0639	0.032
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Phenanthrene	ND	ug/L	U	0.0643	0.0322
Basin O	1/27/2024	ISCO TWC	PAHs	Phenanthrene	ND	ug/L	U	0.0762	0.0381
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Phenanthrene	0.0344	μg/l	J	0.0656	0.0328
Basin P	3/12/2022	ISCO TWC	PAHs	Phenanthrene	ND	μg/l	U	0.0665	0.0333
Basin P	4/3/2022	ISCO TWC	PAHs	Phenanthrene	0.0392	μg/l	J	0.0738	0.0369
Basin P	4/29/2022	ISCO TWC	PAHs	Phenanthrene	0.0337	μg/l	J	0.0634	0.0317
Basin Q	10/10/2020	ISCO TWC	PAHs	Phenanthrene	ND	μg/l	U	0.0879	0.044
Basin Q	11/6/2020	ISCO TWC	PAHs	Phenanthrene	ND	μg/l	U	0.0792	0.0396
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Phenanthrene	ND	μg/l	U	0.0842	0.0421
Basin Q	11/13/2020	ISCO TWC	PAHs	Phenanthrene	ND	μg/l	U	0.0792	0.0396
Basin Q	12/11/2020	ISCO TWC	PAHs	Phenanthrene	0.0206	μg/l	J	0.0215	0.0108
Basin R	11/16/2007	ISCO Composite	PAHs	Phenanthrene	0.089	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Phenanthrene	0.076	μg/l	=	-	-
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Pyrene	0.0467	μg/l	=	-	-
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Pyrene	0.017	μg/l	J	-	-
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Pyrene	0.0441	μg/l	=	-	-
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Pyrene	0.0152	μg/l	J	-	-
Basin M	10/23/2010	Grab	PAHs	Pyrene	0.1	μg/l	=	-	-
Basin M	11/6/2010	Grab	PAHs	Pyrene	0.16	μg/l	=	-	-
Basin M	2/12/2011	Grab	PAHs	Pyrene	0.71	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Pyrene	0.094	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Pyrene	0.24	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Pyrene	0.56	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Pyrene	1.3	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Pyrene	0.14	μg/l	=	0.02	0.0053
Basin M	12/3/2015	Composite Drum	PAHs	Pyrene	0.499	μg/l	=	0.019	0.00952

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin M	12/17/2015	Composite Drum	PAHs	Pyrene	1.43	μg/l	=	0.019	0.00952
Basin M	1/25/2016	Composite Drum	PAHs	Pyrene	0.515	μg/l	=	0.019	0.00952
Basin M	2/27/2018	Pumped Composite	PAHs	Pyrene	0.256	μg/l	=	0.0189	0.00943
Basin M	3/14/2018	Pumped Composite	PAHs	Pyrene	0.0894	μg/l	=	0.019	0.00952
Basin M	3/26/2018	Pumped Composite	PAHs	Pyrene	0.131	μg/l	=	0.019	0.00952
Basin N	3/13/2022	ISCO TWC	PAHs	Pyrene	0.0236	μg/l	J	0.0357	0.0178
Basin N	4/4/2022	ISCO TWC	PAHs	Pyrene	0.0212	μg/l	=	0.0206	0.0103
Basin N	4/30/2022	ISCO TWC	PAHs	Pyrene	0.0196	μg/l	J	0.0319	0.016
Basin O	4/1/2023	ISCO TWC	PAHs	Pyrene	0.0313	ug/L	J	0.0363	0.0182
Basin O	4/10/2023	ISCO TWC	PAHs	Pyrene	0.0276	ug/L	J	0.032	0.016
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Pyrene	0.0261	ug/L	J	0.0322	0.0161
Basin O	1/27/2024	ISCO TWC	PAHs	Pyrene	0.0238	ug/L	J	0.0381	0.0191
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Pyrene	ND	μg/l	U	0.0328	0.0164
Basin P	3/12/2022	ISCO TWC	PAHs	Pyrene	ND	μg/l	U	0.0333	0.0166
Basin P	4/3/2022	ISCO TWC	PAHs	Pyrene	ND	μg/l	U	0.0369	0.0185
Basin P	4/29/2022	ISCO TWC	PAHs	Pyrene	ND	μg/l	U	0.0317	0.0158
Basin Q	10/10/2020	ISCO TWC	PAHs	Pyrene	ND	μg/l	U	0.0879	0.044
Basin Q	11/6/2020	ISCO TWC	PAHs	Pyrene	0.0451	μg/l	J	0.0792	0.0396
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Pyrene	0.0472	μg/l	J	0.0842	0.0421
Basin Q	11/13/2020	ISCO TWC	PAHs	Pyrene	0.0507	μg/l	J	0.0792	0.0396
Basin Q	12/11/2020	ISCO TWC	PAHs	Pyrene	0.0556	μg/l	=	0.0215	0.0108
Basin R	11/16/2007	ISCO Composite	PAHs	Pyrene	0.065	μg/l	J	-	-
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Pyrene	0.041	μg/l	J	-	-
Basin M	10/23/2010	Grab	Metals	Selenium	0.7	μg/l	=	1	-
Basin M	11/6/2010	Grab	Metals	Selenium	0.46	μg/l	J	-	-
Basin M	2/12/2011	Grab	Metals	Selenium	0.25	μg/l	J	-	-
Basin M	11/11/2012	ISCO Composite	Metals	Selenium	ND	μg/l	U	-	0.3
Basin M	2/22/2013	ISCO Composite	Metals	Selenium	ND	μg/l	U	-	0.3
Basin R	11/16/2007	ISCO Composite	Metals	Selenium	ND	μg/l	U	-	0.4
Basin R	11/16/2007	ISCO Composite-DUP	Metals	Selenium	ND	μg/l	U	-	0.4
Basin M	10/23/2010	Grab	Metals	Silver	0.092	μg/l	J	-	
Basin M	11/6/2010	Grab	Metals	Silver	ND	μg/l	U	-	0.071
Basin M	2/12/2011	Grab	Metals	Silver	ND	μg/l	U	-	0.071

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin M	11/11/2012	ISCO Composite	Metals	Silver	0.039	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	Metals	Silver	0.075	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite	Metals	Silver	0.036	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite-DUP	Metals	Silver	0.032	μg/l	=	-	-
Basin R	11/16/2007		Misc	Total Organic Carbon	5.3	mg/l	=	-	-
Basin L	12/26/2022	Grab, Post-SCM	PAHs	Total PAHs	0.355	μg/l	=	-	-
Basin L	1/13/2023	Grab, Post-SCM	PAHs	Total PAHs	0.161	μg/l	=	-	-
Basin L	2/13/2023	Grab, Post-SCM	PAHs	Total PAHs	0.333	μg/l	=	-	-
Basin L	3/13/2023	Grab, Post-SCM	PAHs	Total PAHs	0.0809	μg/l	=	-	-
Basin M	10/23/2010	Grab	PAHs	Total PAHs	1.58	μg/l	=	-	0.012
Basin M	11/6/2010	Grab	PAHs	Total PAHs	2.92	μg/l	=	-	-
Basin M	2/12/2011	Grab	PAHs	Total PAHs	6.33	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	PAHs	Total PAHs	1.17	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	PAHs	Total PAHs	2.49	μg/l	=	-	-
Basin M	3/8/2014	Grab	PAHs	Total PAHs	4.27	μg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	PAHs	Total PAHs	9.15	μg/l	=	-	-
Basin M	4/13/2015	Composite Drum	PAHs	Total PAHs	3.66	μg/l	=	0.02	0.01
Basin M	12/3/2015	Composite Drum	PAHs	Total PAHs	7.94	μg/l	=	0.676	0.338
Basin M	12/17/2015	Composite Drum	PAHs	Total PAHs	15.4	μg/l	=	0.676	0.313
Basin M	1/25/2016	Composite Drum	PAHs	Total PAHs	8.26	μg/l	=	0.676	0.338
Basin M	2/27/2018	Pumped Composite	PAHs	Total PAHs	2.87	μg/l	=	0.0377	0.0189
Basin M	3/14/2018	Pumped Composite	PAHs	Total PAHs	1.59	μg/l	=	0.0396	0.0198
Basin M	3/26/2018	Pumped Composite	PAHs	Total PAHs	1.58	μg/l	=	0.0396	0.0198
Basin N	3/13/2022	ISCO TWC	PAHs	Total PAHs	0.191	μg/l	=	0.0713	0.0357
Basin N	4/4/2022	ISCO TWC	PAHs	Total PAHs	0.226	μg/l	=	0.0412	0.0206
Basin N	4/30/2022	ISCO TWC	PAHs	Total PAHs	0.161	μg/l	=	0.0639	0.0319
Basin O	4/1/2023	ISCO TWC	PAHs	Total PAHs	0.329	ug/L	=	-	-
Basin O	4/10/2023	ISCO TWC	PAHs	Total PAHs	0.3066	ug/L	=	-	-
Basin O	1/27/2024	ISCO TWC	PAHs	Total PAHs	0.1071	ug/L	=	-	-
Basin O	4/10/2023	ISCO TWC-DUP	PAHs	Total PAHs	0.032	ug/L	=	_	-
Basin P	4/29/2022	ISCO TWC	PAHs	Total PAHs	0.107	μg/l	=	0.205	0.205
Basin P	3/12/2022	ISCO TWC	PAHs	Total PAHs	0.069	μg/l	=	0.0665	0.0333
Basin P	4/3/2022	ISCO TWC	PAHs	Total PAHs	0.121	μg/l	=	0.0738	0.0369

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin P	4/29/2022	ISCO TWC-DUP	PAHs	Total PAHs	0.139	μg/l	=	0.0634	0.0317
Basin Q	10/10/2020	ISCO TWC	PAHs	Total PAHs	0.0581	μg/l	=	0.176	0.0879
Basin Q	11/6/2020	ISCO TWC	PAHs	Total PAHs	0.61	μg/l	=	0.158	0.0792
Basin Q	11/6/2020	ISCO TWC-DUP	PAHs	Total PAHs	0.506	μg/l	=	0.168	0.0842
Basin Q	11/13/2020	ISCO TWC	PAHs	Total PAHs	0.259	μg/l	=	0.158	0.0792
Basin Q	12/11/2020	ISCO TWC	PAHs	Total PAHs	0.514	μg/l	=	0.043	0.0215
Basin R	11/16/2007	ISCO Composite-DUP	PAHs	Total PAHs	0.264	μg/l	=	-	0.0046
Basin R	11/16/2007	ISCO Composite	PAHs	Total PAHs	0.545	μg/l	=	-	0.0046
Basin M	10/23/2010		PCBs	Total PCB Aroclors	0.026	μg/l	=	-	0.01
Basin M	11/6/2010		PCBs	Total PCB Aroclors	0.012	μg/l	=	-	0.01
Basin M	2/12/2011		PCBs	Total PCB Aroclors	0.033	μg/l	=	-	0.01
Basin M	11/11/2012		PCBs	Total PCB Aroclors	0.0084	μg/l	=	-	0.0023
Basin M	2/22/2013		PCBs	Total PCB Aroclors	0.044	μg/l	=	-	0.02
Basin Q	10/23/2010		PCBs	Total PCB Aroclors	ND	μg/l	U	-	0.01
Basin Q	2/12/2011		PCBs	Total PCB Aroclors	0.025	μg/l	=	-	0.01
Basin Q	5/11/2011		PCBs	Total PCB Aroclors	0.038	μg/l	=	-	0.02
Basin R	11/16/2007	Dup1	PCBs	Total PCB Aroclors	0.016	μg/l	=	-	0.001
Basin R	11/16/2007		PCBs	Total PCB Aroclors	0.015	μg/l	=	-	0.0011
Basin S	4/1/2023	ISCO TWC	PCBs	Total PCB Aroclors	ND	ug/L	U	-	-
Basin S	4/10/2023	ISCO TWC	PCBs	Total PCB Aroclors	ND	ug/L	U	-	-
Basin S	1/27/2024	ISCO TWC	PCBs	Total PCB Aroclors	ND	ug/L	U	-	-
Basin L	12/26/2022	Grab, Post-SCM	Misc	Total Suspended Solids	6	mg/L	=	-	-
Basin L	1/13/2023	Grab, Post-SCM	Misc	Total Suspended Solids	ND	mg/L	U	-	5
Basin L	2/13/2023	Grab, Post-SCM	Misc	Total Suspended Solids	11	mg/L	=	-	-
Basin L	3/13/2023	Grab, Post-SCM	Misc	Total Suspended Solids	ND	mg/L	U	-	5
Basin M	10/23/2010	Grab	Misc	Total Suspended Solids	4	mg/l	=	-	-
Basin M	11/6/2010	Grab	Misc	Total Suspended Solids	ND	mg/l	U	-	1
Basin M	2/12/2011	Grab	Misc	Total Suspended Solids	9	mg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	Misc	Total Suspended Solids	13.5	mg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	Misc	Total Suspended Solids	75.5	mg/l	=	-	-
Basin M	3/8/2014	Grab	Misc	Total Suspended Solids	20.8	mg/l	=	-	-
Basin M	3/9/2014	ISCO Composite	Misc	Total Suspended Solids	24	mg/l	=	-	-
Basin M	4/13/2015	Composite Drum	Misc	Total Suspended Solids	17	mg/l	=	5	-

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin M	4/13/2015	Composite Drum	Misc	Total Suspended Solids	17	mg/l	=	-	-
Basin M	6/25/2015	Composite Drum	Misc	Total Suspended Solids	466	mg/l	=	-	-
Basin M	12/3/2015	Compostie Drum	Misc	Total Suspended Solids	47.6	mg/l	=	2	2
Basin M	12/17/2015	Composite Drum	Misc	Total Suspended Solids	27.6	mg/l	=	2	2
Basin M	1/25/2016	Composite Drum	Misc	Total Suspended Solids	16	mg/l	=	2	2
Basin M	2/27/2018	Pumped Composite	Misc	Total Suspended Solids	6	mg/l	=	5	5
Basin M	3/14/2018	Pumped Composite	Misc	Total Suspended Solids	15	mg/l	=	5	5
Basin M	3/26/2018	Pumped Composite	Misc	Total Suspended Solids	ND	mg/l	U	5	5
Basin N	3/13/2022	ISCO TWC	Misc	Total Suspended Solids	9	mg/l	=	5	5
Basin N	4/4/2022	ISCO TWC	Misc	Total Suspended Solids	ND	mg/l	UJ	5	5
Basin N	4/30/2022	ISCO TWC	Misc	Total Suspended Solids	5.6	mg/l	=	5	5
Basin O	4/1/2023	ISCO TWC	Misc	Total Suspended Solids	13	mg/L	J	5	5
Basin O	4/10/2023	ISCO TWC	Misc	Total Suspended Solids	7	mg/L	J	5	5
Basin O	4/10/2023	ISCO TWC-DUP	Misc	Total Suspended Solids	9	mg/L	J	5	5
Basin O	1/27/2024	ISCO TWC	Misc	Total Suspended Solids	6	mg/L	J	5	5
Basin P	4/29/2022	ISCO TWC-DUP	Misc	Total Suspended Solids	18.8	mg/l	=	10	10
Basin P	3/12/2022	ISCO TWC	Misc	Total Suspended Solids	ND	mg/l	UJ	9.09	9.09
Basin P	4/3/2022	ISCO TWC	Misc	Total Suspended Solids	20.8	mg/l	=	20	20
Basin P	4/29/2022	ISCO TWC	Misc	Total Suspended Solids	16.4	mg/l	=	10	10
Basin Q	10/10/2020	ISCO TWC	Misc	Total Suspended Solids	ND	mg/l	U	5	5
Basin Q	11/6/2020	ISCO TWC-DUP	Misc	Total Suspended Solids	ND	mg/l	U	5	5
Basin Q	11/6/2020	ISCO TWC	Misc	Total Suspended Solids	ND	mg/l	U	5	5
Basin Q	11/13/2020	ISCO TWC	Misc	Total Suspended Solids	ND	mg/l	U	5	5
Basin Q	12/11/2020	ISCO TWC	Misc	Total Suspended Solids	9	mg/l	=	5	5
Basin R	11/16/2007	ISCO Composite	Misc	Total Suspended Solids	15	mg/l	=	-	-
Basin R	11/16/2007	ISCO Composite-DUP	Misc	Total Suspended Solids	15	mg/l	=	-	-
Basin S	4/1/2023	ISCO TWC	Misc	Total Suspended Solids	109	mg/L	=	5	5
Basin S	4/10/2023	ISCO TWC	Misc	Total Suspended Solids	92	mg/L	=	5	5
Basin S	1/27/2024	ISCO TWC	Misc	Total Suspended Solids	242	mg/L	=	10	10
Basin R	11/16/2007		Misc	Turbidity	4.9	NTU	=	-	-
Basin L	12/26/2022	Grab, Post-SCM	Metals	Zinc	31.8	μg/l	=	-	-
Basin L	1/13/2023	Grab, Post-SCM	Metals	Zinc	26.4	μg/l	=	-	-
Basin L	2/13/2023	Grab, Post-SCM	Metals	Zinc	ND	μg/l	U	180	-

Location	Date Sampled	SampleType	Category	Analyte	Result	Units	Qualifier ¹	MRL	MDL
Basin L	3/13/2023	Grab, Post-SCM	Metals	Zinc	19	μg/l	=	-	-
Basin M	10/23/2010	Grab	Metals	Zinc	42	μg/l	=	-	-
Basin M	11/6/2010	Grab	Metals	Zinc	49	μg/l	=	-	-
Basin M	2/12/2011	Grab	Metals	Zinc	116	μg/l	=	-	-
Basin M	11/11/2012	ISCO Composite	Metals	Zinc	30.3	μg/l	=	-	-
Basin M	2/22/2013	ISCO Composite	Metals	Zinc	76.6	μg/l	=	-	-
Basin M	2/27/2018	Pumped Composite	Metals	Zinc	39.3	μg/l	=	4	2
Basin M	3/14/2018	Pumped Composite	Metals	Zinc	66.3	μg/l	=	4	2
Basin M	3/26/2018	Pumped Composite	Metals	Zinc	32.1	μg/l	=	4	2
Basin R	11/16/2007	ISCO Composite	Metals	Zinc	285	μg/l	=	-	-
Basin R	11/16/2007	ISCO Composite-DUP	Metals	Zinc	236	μg/l	=	-	-

¹Qualifiers are as follows:

^{= =} Analyte is detected at the reported concentration

J = The result is an estimated concentration that is below the Method Reporting Limit (MRL) and above the Method Detection Limit (MDL)

U = The analyte is not detected at or above the reported MDL

UJ = This anlayte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

APPENDIX B

Rank Order Curves for Stormwater Data Representative of Current Conditions

B.1. METHODS

These rank order curves represent the most recent post-SCM data for each stormwater basin. The data is included in Appendix A. The sources of data for each basin are:

- Basin L 2024 Stormwater Treatment System Performance Verification Report (MFA, 2024)
- Basin M 2011 Source Control Completion Report, 2013 Additional Stormwater Sampling Memo, 2014 Additional Source Control Measures Memo, 2016 Source Control Decision Support Data Collection (Geosyntec and GS&P, 2016), 2018 Treatment
- Basin N 2022 Stormwater Evaluation Report (Geosyntec, 2022)
- Basin O 2023-2024 data presented in this report
- Basin P 2022 Stormwater Evaluation Report (Geosyntec, 2022)
- Basin Q 2021 Stormwater Source Control Evaluation (Geosyntec, 2021)
- Basin R 2009 Stormwater Source Control Evaluation (Ash Creek, 2009)
- Basin S -2023-2024 data presented in this report

For the original rank order curves, non-detects are plotted as zero. For the newer dioxin/furan rank order curves, non-detects are excluded due to the large number of non-detects. Curves for the following dioxin/furan congeners have no T4 data plotted, as all representative data were below the detection limit:

- 2,3,7,8-TCDD
- 1,2,3,4,7,8,-HxCDD
- 1,2,3,7,8,9-HxCDD
- 2,3,7,8-TCDF
- 1,2,3,7,8,9-HxCDF
- 1,2,3,4,7,8,9-HpCDF

B.2. STORMWATER PLOTS

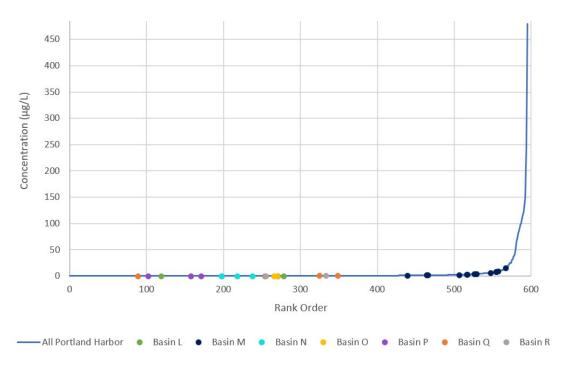


Figure B - 1. Total PAHs in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

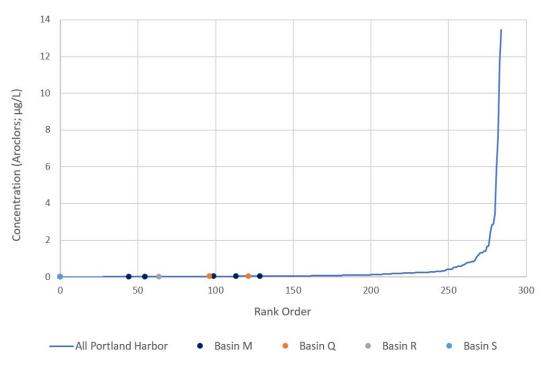


Figure B - 2. Total PCB Aroclors in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

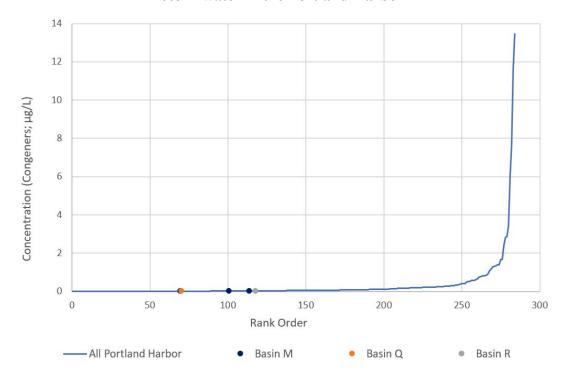


Figure B - 3. Total PCB Congeners in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

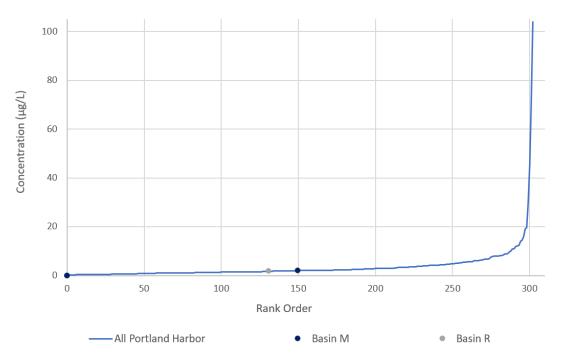


Figure B - 4. BEHP in Stormwater at T4 Compared to "Typical" Industrial Stormwater in

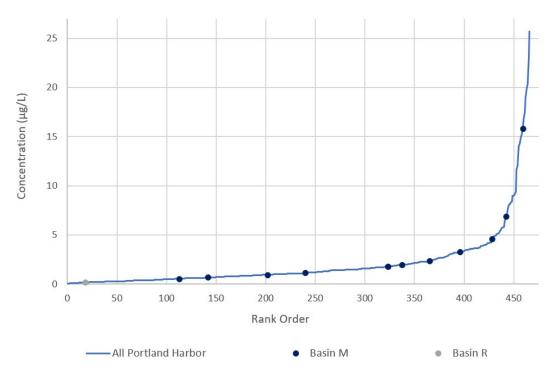


Figure B - 5. Arsenic in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

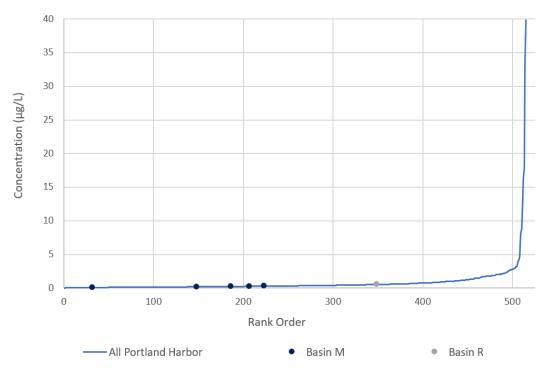


Figure B - 6. Cadmium in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

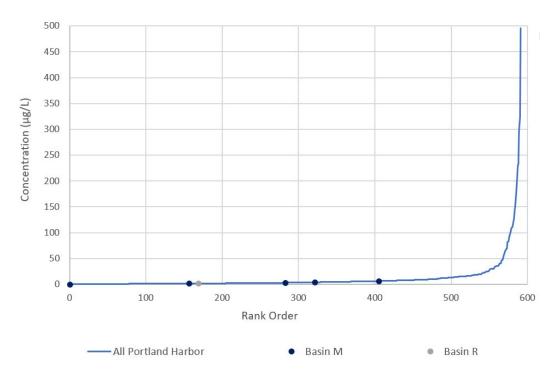


Figure B - 7. Chromium in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

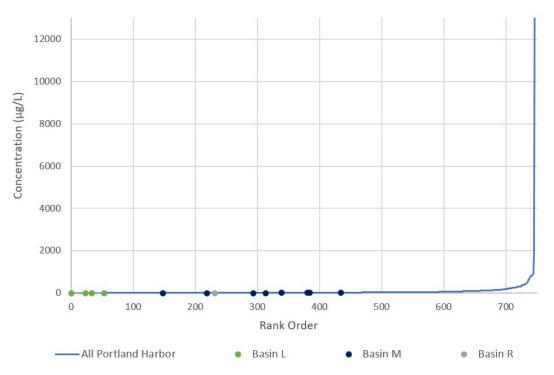


Figure B - 8. Copper in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

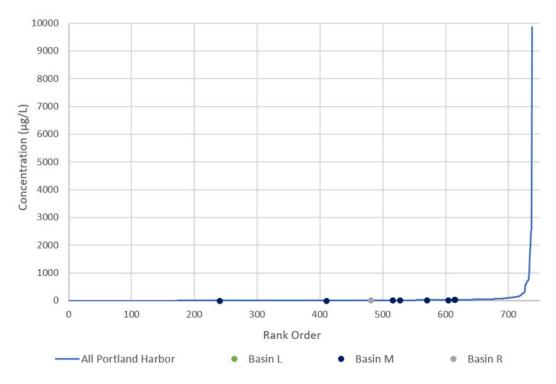


Figure B - 9. Lead in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

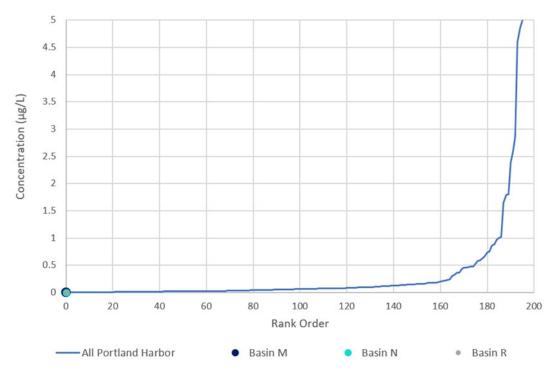


Figure B - 10. Mercury in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

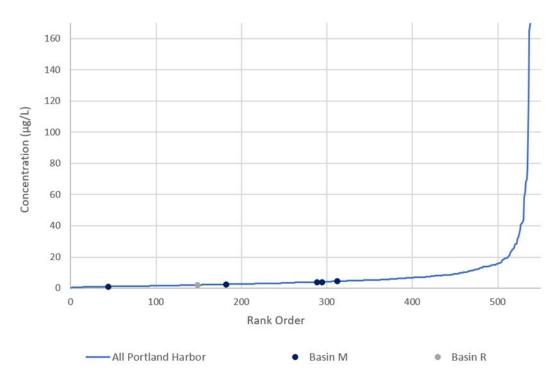


Figure B - 11. Nickel in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

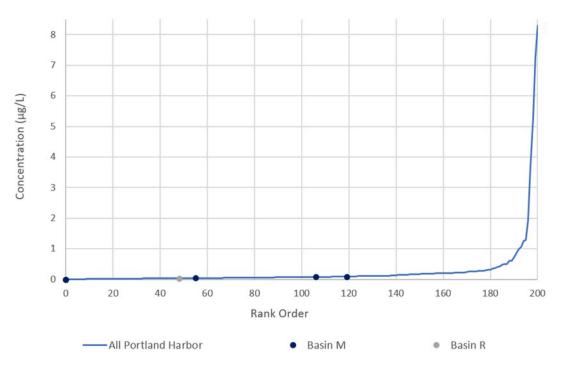


Figure B - 12. Silver in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

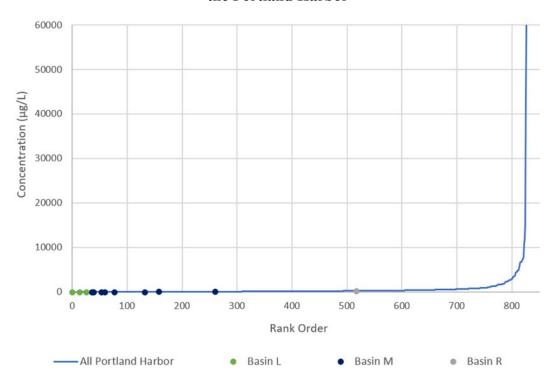


Figure B - 13. Zinc in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

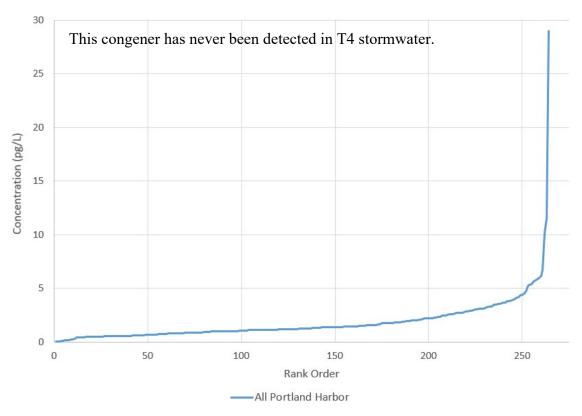


Figure B - 14. 2,3,7,8-TCDD in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

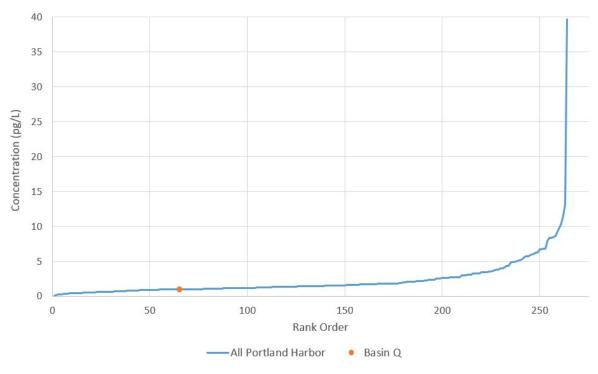


Figure B - 15. 1,2,3,7,8-PeCDD in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

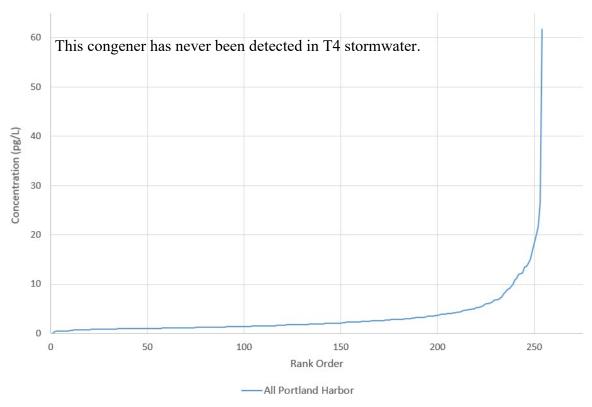


Figure B - 16. 1,2,3,4,7,8-HxCDD in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

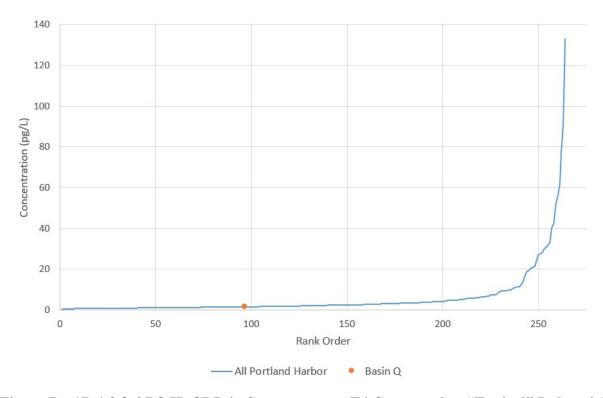


Figure B - 17. 1,2,3,6,7,8-HxCDD in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

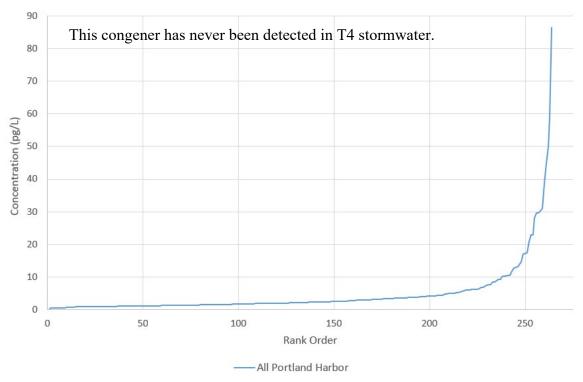


Figure B - 18. 1,2,3,7,8,9-HxCDD in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

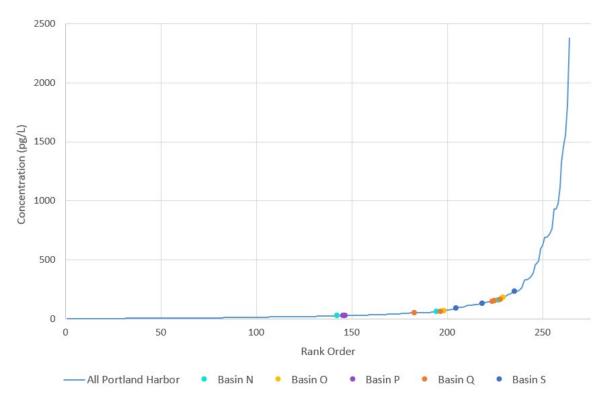


Figure B - 19. 1,2,3,4,6,7,8-HpCDD in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

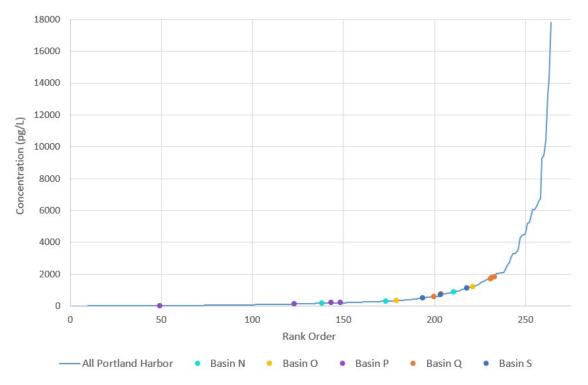


Figure B - 20. OCDD in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

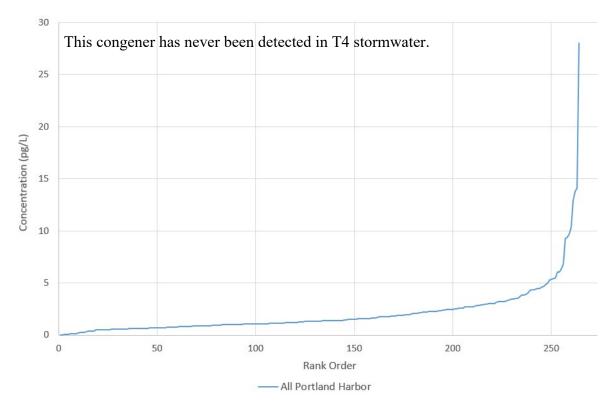


Figure B - 21. 2,3,7,8-TCDF in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

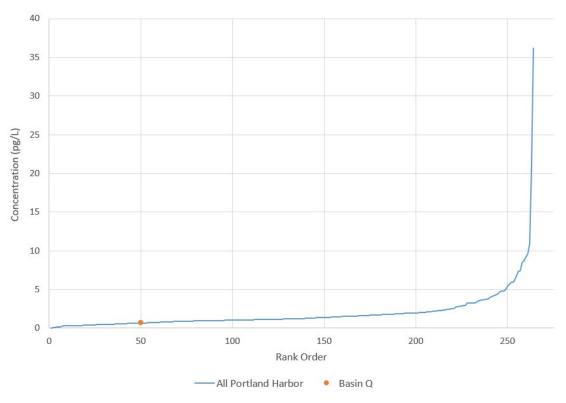


Figure B - 22. 2,3,4,7,8-PeCDF in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

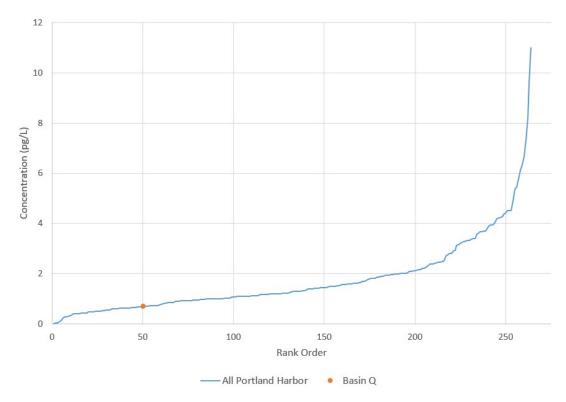


Figure B - 23. 1,2,3,7,8-PeCDF in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

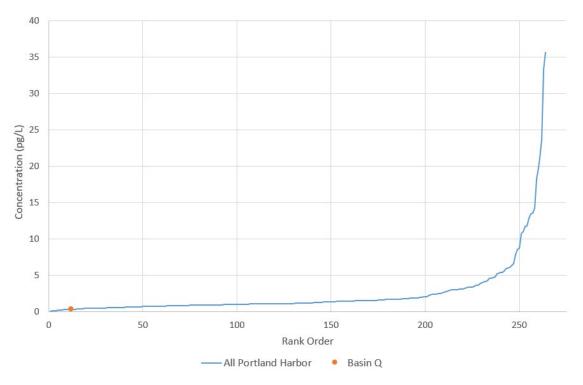


Figure B - 24. 1,2,3,6,7,8-HxCDF in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

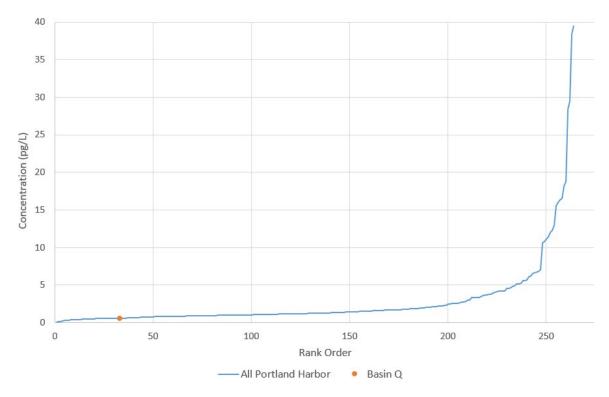


Figure B - 25. 1,2,3,4,7,8-HxCDF in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

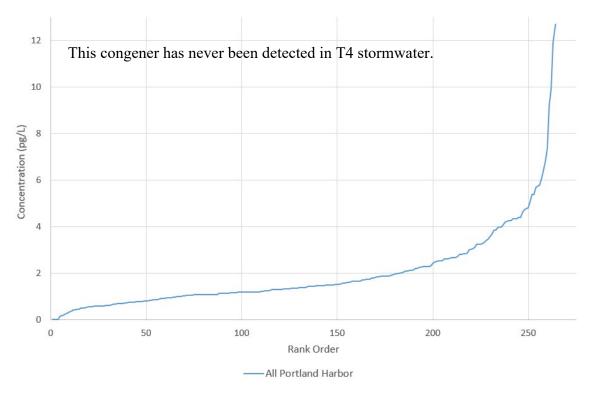


Figure B - 26. 1,2,3,7,8,9-HxCDF in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

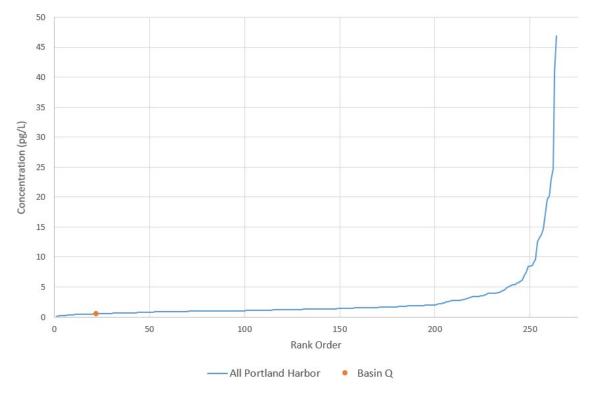


Figure B - 27. 2,3,4,6,7,8-HxCDF in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

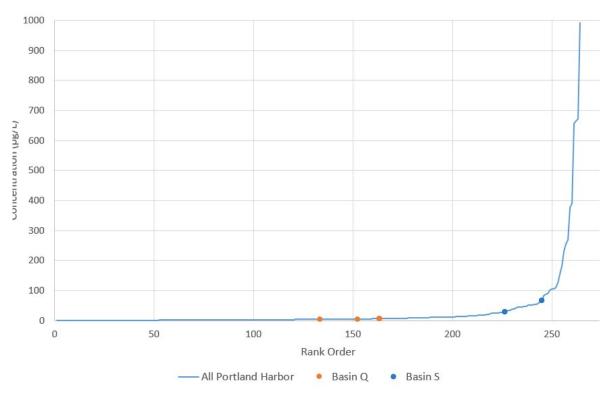


Figure B - 28. 1,2,3,4,6,7,8-HpCDF in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

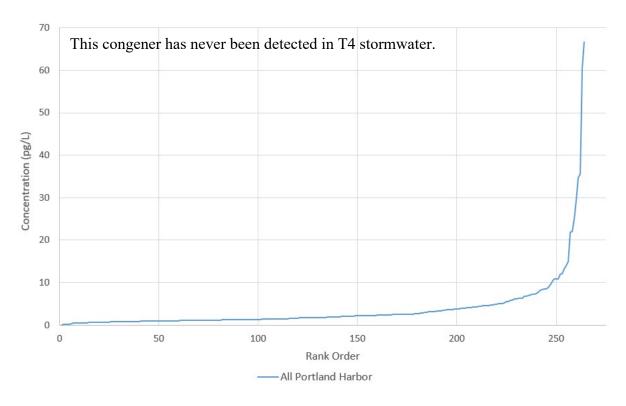


Figure B - 29. 1,2,3,4,7,8,9-HpCDF in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

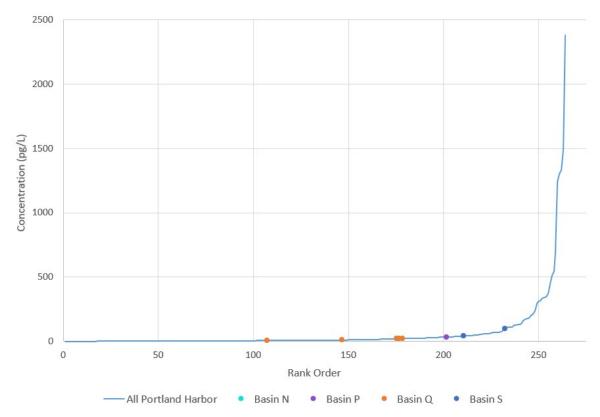


Figure B - 30. OCDF in Stormwater at T4 Compared to "Typical" Industrial Stormwater in the Portland Harbor

APPENDIX C 2023-2024 Storm Hyetographs

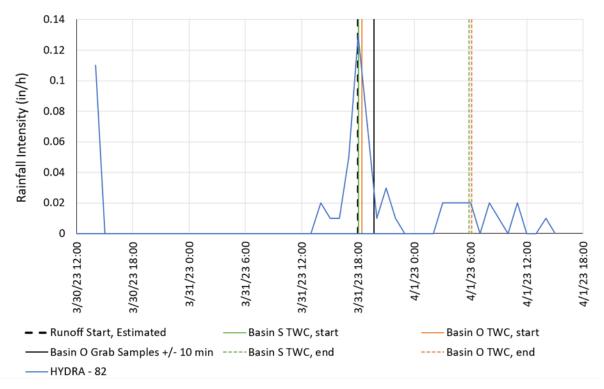


Figure C - 1. Storm Event Hyetograph for 3-31-2023 Sampling Event

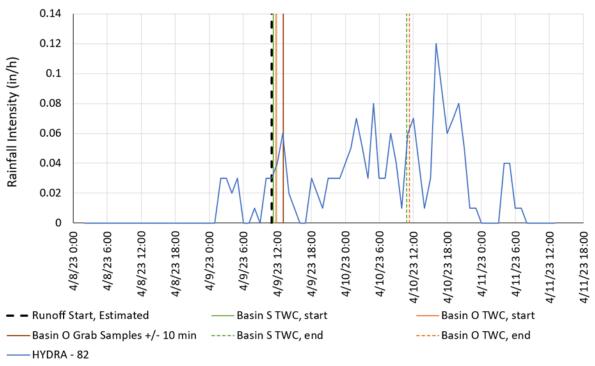


Figure C - 2. Storm Event Hyetograph for 4-9-2023 Sampling Event

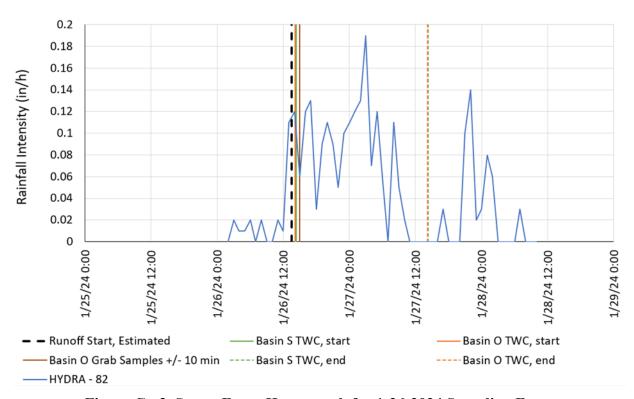


Figure C - 3. Storm Event Hyetograph for 1-26-2024 Sampling Event

APPENDIX D 2023-2024 Autosampler Output Files

D.1. MARCH 31, 2023
BASIN O
****** PROGRAM SETTINGS *******
TIME MODE
250 ml SAMPLES
FIRST SAMPLE AT
* START TIME *
THEN SAMPLE EVERY
0 HOURS, 15 MINUTES
2 SAMPLES / BOTTLE
8 FOOT SUCTION HEAD
******* SAMPLING RESULTS *******
Program Started at: 18:23 31-MAR-23
Nominal Sample Volume = 250 ml
S

O E

U R

R R **COUNT**

C O TO

SAMPLE BOTTLE E R TIME DATE LIQUID

- 1, 2 1 S 18:23 31-MAR 449
- 2, 2 T 18:38 31-MAR 437
- 1, 2 2 T 18:53 31-MAR 437
- 2, 2 2 T 19:08 31-MAR 442
- 1, 2 3 T 19:23 31-MAR 438
- 2, 2 3 T 19:38 31-MAR 437
- 1. 2 19:53 31-MAR 437 4 T
- 2, 2 T 20:08 31-MAR 437
- 1, 2 5 Τ 20:23 31-MAR 438
- 2, 2 5 Τ 20:38 31-MAR 440
- 1, 2 T 20:53 31-MAR 438
- 2, 2 6 T 21:08 31-MAR 470
- 1, 2 7 T NL 21:23 31-MAR 0
- 2, 2 7 T NL 21:38 31-MAR 0
- 1, 2 8 T NL 21:53 31-MAR 0
- 2, 2 T NL 22:08 31-MAR 0
- 1, 2 22:23 31-MAR 451
- 2, 2 22:38 31-MAR 470
- 1, 2 10 T NL 22:53 31-MAR 0
- 2, 2 T NL 23:08 31-MAR 0
- 1, 2 11 T NL 23:23 31-MAR 0

- 2, 2 11 T NL 23:38 31-MAR 0
- 1, 2 12 T NL 23:53 31-MAR 0
- 2, 2 12 T NL 0:08 1-APR 0
- 1, 2 13 T NL 0:23 1-APR 0
- 2, 2 13 T NL 0:38 1-APR 0
- 1, 2 14 T NL 0:53 1-APR 0
- 2, 2 14 T NL 1:08 1-APR 0
- 1, 2 15 T NL 1:23 1-APR 0
- 2, 2 15 T NL 1:38 1-APR 0
- 1, 2 16 T NL 1:53 1-APR 0
- 2, 2 16 T NL 2:08 1-APR 0
- 1, 2 17 T NL 2:23 1-APR 0
- 2, 2 17 T NL 2:38 1-APR 0
- 1, 2 18 T NL 2:53 1-APR 0
- 2, 2 18 T NL 3:08 1-APR 0
- 1, 2 19 T NL 3:23 1-APR (
- 2, 2 19 T NL 3:38 1-APR (
- 1, 2 20 T NL 3:53 1-APR 0
- 2, 2 20 T NL 4:08 1-APR 0
- 1, 2 21 T NL 4:23 1-APR 0
- 2, 2 21 T NL 4:38 1-APR 0
- 1, 2 22 T NL 4:53 1-APR 0
- 2, 2 22 T NL 5:08 1-APR 1866
- 1, 2 23 T NL 5:23 1-APR 0
- 2, 2 23 T NL 5:38 1-APR 0
- 1, 2 24 T NL 5:53 1-APR 1879

2, 2 24 T NL 6:08 1-APR 0 Program Finished at: 6:09 1-APR
SOURCE: T ==> TIME SOURCE: S ==> START
ERROR: NL ==> NO LIQUID DETECTED! BASIN S
****** PROGRAM SETTINGS *******
TIME MODE 250 ml SAMPLES
FIRST SAMPLE AT * START TIME *
THEN SAMPLE EVERY 0 HOURS, 15 MINUTES
2 SAMPLES / BOTTLE
10 FOOT SUCTION HEAD

***** SAMPLING RESULTS *******

Program Started at: 18:04 31-MAR-23

Nominal Sample Volume = 250 ml

S

O E

U R

R R **COUNT**

C O TO

SAMPLE BOTTLE E R TIME DATE LIQUID

1, 2 1 S 18:04 31-MAR 679

- 2, 2 18:19 31-MAR 809 1 Τ
- 1, 2 T 18:34 31-MAR 706 2
- 2, 2 2 T 18:49 31-MAR 688
- 1, 2 3 Τ 19:04 31-MAR 694
- 2, 2 3 T 19:19 31-MAR 688
- 1, 2 4 T 19:34 31-MAR 689
- 2, 2 T 19:49 31-MAR 689 4
- 1, 2 5 T 20:04 31-MAR 689
- 2, 2 5 T 20:19 31-MAR 695
- 1, 2 6 T 20:34 31-MAR 695
- 2, 2 T 20:49 31-MAR 682
- 1, 2 7 T 21:04 31-MAR 689
- 2, 2 7 T 21:19 31-MAR 689
- 1, 2 T 21:34 31-MAR 695
- 2, 2 8 T 21:49 31-MAR 700

- 1, 2 9 T 22:04 31-MAR 695
- 2, 2 9 T 22:19 31-MAR 682
- 1, 2 10 T 22:34 31-MAR 685
- 2, 2 10 T 22:49 31-MAR 683
- 1, 2 11 T 23:04 31-MAR 695
- 2, 2 11 T 23:19 31-MAR 689
- 1, 2 12 T 23:34 31-MAR 688
- 2, 2 12 T 23:49 31-MAR 683
- 1, 2 13 T 0:04 1-APR 683
- 2, 2 13 T 0:19 1-APR 684
- 1, 2 14 T 0:34 1-APR 665
- 2, 2 14 T NM 0:49 1-APR 758
- 1, 2 15 T NL 1:04 1-APR 0
- 2, 2 15 T NL 1:19 1-APR 0
- 1, 2 16 T NL 1:34 1-APR 1877
- 2, 2 16 T NL 1:49 1-APR 0
- 1, 2 17 T NL 2:04 1-APR 0
- 2, 2 17 T NL 2:19 1-APR 0
- 1, 2 18 T NL 2:34 1-APR 0
- 2, 2 18 T NL 2:49 1-APR 0
- 1, 2 19 T NL 3:04 1-APR 0
- 2, 2 19 T NL 3:19 1-APR 0
- 1, 2 20 T NL 3:34 1-APR 0
- 2, 2 20 T NL 3:49 1-APR 0
- 1, 2 21 T 4:04 1-APR 695
- 2, 2 21 T 4:19 1-APR 688

- 1, 2 22 T 4:34 1-APR 685
- 2, 2 22 T 4:49 1-APR 690
- 1, 2 23 T 5:04 1-APR 685
- 2, 2 23 T 5:19 1-APR 684
- 1, 2 24 T 5:34 1-APR 700
- 2, 2 24 T 5:49 1-APR 718

Program Finished at: 5:50 1-APR

SOURCE: $T \Longrightarrow TIME$

SOURCE: S ==> START

ERROR: NL ==> NO LIQUID DETECTED!

ERROR: NM ==> NO MORE LIQUID!

D.2. APRIL 9, 2023

BASIN O

****** PROGRAM SETTINGS *******

TIME MODE

250 ml SAMPLES

FIRST SAMPLE AT

* START TIME *

THEN SAMPLE EVERY

0 HOURS, 30 MINUTES

2 SAMPLES / BOTTLE

8 FOOT SUCTION HEAD

****** SAMPLING RESULTS *******

Program Started at: 11:49 9-APR-23

Nominal Sample Volume = 250 ml

S

O E

U R

R R COUNT

C O TO

SAMPLE BOTTLE E R TIME DATE LIQUID

1, 2 1 S 11:49 9-APR 551

2, 2 1 T 12:19 9-APR 546

1, 2 2 T 12:49 9-APR 552

2, 2 2 T 13:19 9-APR 551

1, 2 3 T 13:49 9-APR 540

2, 2 3 T 14:19 9-APR 544

1, 2 4 T 14:49 9-APR 546

- 2, 2 4 T 15:19 9-APR 566
- 1, 2 5 T 15:49 9-APR 540
- 2, 2 5 T 16:19 9-APR 534
- 1, 2 6 T 16:49 9-APR 532
- 2, 2 6 T 17:19 9-APR 556
- 1, 2 7 T NL 17:49 9-APR 0
- 2, 2 7 T NL 18:19 9-APR 0
- 1, 2 8 T NL 18:49 9-APR 0
- 2, 2 8 T 19:19 9-APR 551
- 1, 2 9 T 19:49 9-APR 540
- 2, 2 9 T 20:19 9-APR 539
- 1, 2 10 T 20:49 9-APR 521
- 2, 2 10 T 21:19 9-APR 545
- 1, 2 11 T 21:49 9-APR 552
- 2, 2 11 T 22:19 9-APR 548
- 1, 2 12 T 22:49 9-APR 546
- 2, 2 12 T 23:19 9-APR 546
- 1, 2 13 T 23:49 9-APR 547
- 2, 2 13 T 0:19 10-APR 552
- 1, 2 14 T 0:49 10-APR 552
- 2, 2 14 T 1:19 10-APR 551
- 1, 2 15 T 1:49 10-APR 539
- 2, 2 15 T 2:19 10-APR 546
- 1, 2 16 T 2:49 10-APR 557
- 2, 2 16 T 3:19 10-APR 551
- 1, 2 17 T 3:49 10-APR 540

- 2, 2 17 T 4:19 10-APR 557
- 1, 2 18 T 4:49 10-APR 557
- 2, 2 18 T 5:19 10-APR 558
- 1, 2 19 T 5:49 10-APR 557
- 2, 2 19 T 6:19 10-APR 559
- 1, 2 20 T 6:49 10-APR 557
- 2, 2 20 T 7:19 10-APR 560
- 1, 2 21 T 7:49 10-APR 539
- 2, 2 21 T 8:19 10-APR 548
- 1, 2 22 T 8:49 10-APR 542
- 2, 2 22 T 9:19 10-APR 554
- 1, 2 23 T 9:49 10-APR 547
- 2, 2 23 T 10:19 10-APR 546
- 1, 2 24 T 10:49 10-APR 590
- 2, 2 24 T 11:19 10-APR 532

Program Finished at: 11:20 10-APR

SOURCE: T ==> TIME

SOURCE: $S \Longrightarrow START$

ERROR: NL ==> NO LIQUID DETECTED!

BASIN S

****** PROGRAM SETTINGS *******

TIME MODE

250 ml SAMPLES
FIRST SAMPLE AT * START TIME *
THEN SAMPLE EVERY 0 HOURS, 30 MINUTES
2 SAMPLES / BOTTLE
10 FOOT SUCTION HEAD
****** SAMPLING RESULTS *******
Program Started at: 11:20 9-APR-23
Nominal Sample Volume = 250 ml
S O E U R
R R COUNT
СОТО
SAMPLE BOTTLE E R TIME DATE LIQUID
1. 2. 1. S. 11:20 9-APR 698

11:50 9-APR 703

2, 2

1 T

- 1, 2 2 T 12:20 9-APR 714
- 2, 2 2 T 12:50 9-APR 698
- 1, 2 3 T 13:20 9-APR 699
- 2, 2 3 T 13:50 9-APR 701
- 1, 2 4 T 14:20 9-APR 705
- 2, 2 4 T 14:50 9-APR 698
- 1, 2 5 T 15:20 9-APR 690
- 2, 2 5 T 15:50 9-APR 694
- 1, 2 6 T 16:20 9-APR 714
- 2, 2 6 T 16:50 9-APR 690
- 1, 2 7 T 17:20 9-APR 696
- 2, 2 7 T NL 17:50 9-APR 1867
- 1, 2 8 T NL 18:20 9-APR 1867
- 2, 2 8 T 18:50 9-APR 703
- 1, 2 9 T 19:20 9-APR 697
- 2, 2 9 T 19:50 9-APR 697
- 1, 2 10 T 20:20 9-APR 688
- 2, 2 10 T 20:50 9-APR 699
- 1, 2 11 T 21:20 9-APR 706
- 2, 2 11 T 21:50 9-APR 689
- 1, 2 12 T 22:20 9-APR 682
- 2, 2 12 T 22:50 9-APR 703
- 1, 2 13 T 23:20 9-APR 690
- 2, 2 13 T 23:50 9-APR 688
- 1, 2 14 T 0:20 10-APR 696
- 2, 2 14 T 0:50 10-APR 680

- 1, 2 15 T 1:20 10-APR 678
- 2, 2 15 T 1:50 10-APR 688
- 1, 2 16 T 2:20 10-APR 689
- 2, 2 16 T 2:50 10-APR 702
- 1, 2 17 T 3:20 10-APR 692
- 2, 2 17 T 3:50 10-APR 682
- 1, 2 18 T 4:20 10-APR 688
- 2, 2 18 T 4:50 10-APR 695
- 1, 2 19 T 5:20 10-APR 677
- 2, 2 19 T 5:50 10-APR 683
- 1, 2 20 T 6:20 10-APR 671
- 2, 2 20 T 6:50 10-APR 694
- 1, 2 21 T 7:20 10-APR 688
- 2, 2 21 T 7:50 10-APR 683
- 1, 2 22 T 8:20 10-APR 697
- 2, 2 22 T 8:50 10-APR 689
- 1, 2 23 T 9:20 10-APR 689
- 2, 2 23 T 9:50 10-APR 690
- 1, 2 24 T 10:20 10-APR 712
- 2, 2 24 T 10:50 10-APR 676

Program Finished at: 10:51 10-APR

SOURCE: T ==> TIME

SOURCE: $S \Longrightarrow START$

ERROR: NL ==> NO LIQUID DETECTED!

D.3. JANUARY 26, 2024

BASIN O
****** PROGRAM SETTINGS *******
TIME MODE
250 ml SAMPLES
FIRST SAMPLE AT
* START TIME *
THEN SAMPLE EVERY
0 HOURS, 30 MINUTES
2 SAMPLES / BOTTLE
8 FOOT SUCTION HEAD
****** SAMPLING RESULTS *******
D C 1 1 1 14 00 26 14 N 24
Program Started at: 14:09 26-JAN-24
Nominal Sample Volume = 250 ml

S

O E

U R

R R **COUNT**

C O TO

SAMPLE BOTTLE E R TIME DATE LIQUID

- 1, 2 14:09 26-JAN 486 1 S
- 2, 2 14:39 26-JAN 486 1 T
- 1, 2 2 T 15:09 26-JAN 485
- 2, 2 2 T 15:39 26-JAN 488
- 1, 2 3 T 16:09 26-JAN 482
- 2, 2 16:39 26-JAN 480 3 Τ
- 1, 2 T 17:09 26-JAN 484 4
- 2, 2 4 T 17:39 26-JAN 486
- 1, 2 5 Τ 18:09 26-JAN 480
- 2, 2 5 T 18:39 26-JAN 484
- 1, 2 19:09 26-JAN 480 6 T
- 2, 2 T 19:39 26-JAN 480 6
- 1, 2 T 20:09 26-JAN 481 7
- 2, 2 7 T 20:39 26-JAN 480
- 1, 2 T 21:09 26-JAN 481 8
- 2, 2 8 T 21:39 26-JAN 480
- 1, 2 22:09 26-JAN 485 9 T
- 2, 2 9 T 22:39 26-JAN 480
- 1, 2 10 T 23:09 26-JAN 480
- 2, 2 10 Τ 23:39 26-JAN 479

- 1, 2 11 T 0:09 27-JAN 480
- 2, 2 11 T 0:39 27-JAN 480
- 1, 2 12 T 1:09 27-JAN 479
- 2, 2 12 T 1:39 27-JAN 479
- 1, 2 13 T 2:09 27-JAN 480
- 2, 2 13 T 2:39 27-JAN 486
- 1, 2 14 T 3:09 27-JAN 479
- 2, 2 14 T 3:39 27-JAN 476
- 1, 2 15 T 4:09 27-JAN 480
- 2, 2 15 T 4:39 27-JAN 482
- 1, 2 16 T 5:09 27-JAN 482
- 2, 2 16 T 5:39 27-JAN 480
- 1, 2 17 T 6:09 27-JAN 479
- 2, 2 17 T 6:39 27-JAN 480
- 1, 2 18 T 7:09 27-JAN 482
- 2, 2 18 T 7:39 27-JAN 492
- 1, 2 19 T 8:09 27-JAN 599
- 2, 2 19 T 8:39 27-JAN 480
- 1, 2 20 T 9:09 27-JAN 479
- 2, 2 20 T 9:39 27-JAN 480
- 1, 2 21 T 10:09 27-JAN 480
- 2, 2 21 T 10:39 27-JAN 480
- 1, 2 22 T 11:09 27-JAN 480
- 2, 2 22 T NL 11:39 27-JAN 1864
- 1, 2 23 T NL 12:09 27-JAN 0
- 2, 2 23 T NL 12:39 27-JAN 0

1, 2 24 T NL 13:09 27-JAN 0 2, 2 24 T NL 13:39 27-JAN 0 Program Finished at: 13:40 27-JAN SOURCE: T ==> TIME SOURCE: S ==> START ERROR: NL ==> NO LIQUID DETECTED! **BASIN S** ****** PROGRAM SETTINGS ******* TIME MODE 250 ml SAMPLES FIRST SAMPLE AT * START TIME * THEN SAMPLE EVERY 0 HOURS, 30 MINUTES 2 SAMPLES / BOTTLE 10 FOOT SUCTION HEAD

****** SAMPLING RESULTS *******

Program Started at: 14:02 26-JAN-24

Nominal Sample Volume = 250 ml

S

O E

U R

R R COUNT

C O TO

SAMPLE BOTTLE E R TIME DATE LIQUID

1 2 1 0 140226 1431 751

- 1, 2 1 S 14:02 26-JAN 751
- 2, 2 1 T 14:32 26-JAN 695
- 1, 2 2 T 15:02 26-JAN 685
- 2, 2 2 T 15:32 26-JAN 691
- 1, 2 3 T 16:02 26-JAN 688
- 2, 2 3 T 16:32 26-JAN 689
- 1, 2 4 T 17:02 26-JAN 685
- 2, 2 4 T 17:32 26-JAN 689
- 1, 2 5 T 18:02 26-JAN 690
- 2, 2 5 T 18:32 26-JAN 689
- 1, 2 6 T 19:02 26-JAN 688
- 2, 2 6 T 19:32 26-JAN 688
- 1, 2 7 T 20:02 26-JAN 684
- 2, 2 7 T 20:32 26-JAN 689
- 1, 2 8 T 21:02 26-JAN 683

- 2, 2 8 T 21:32 26-JAN 681
- 1, 2 9 T 22:02 26-JAN 689
- 2, 2 9 T 22:32 26-JAN 674
- 1, 2 10 T 23:02 26-JAN 681
- 2, 2 10 T 23:32 26-JAN 689
- 1, 2 11 T 0:02 27-JAN 670
- 2, 2 11 T 0:32 27-JAN 688
- 1, 2 12 T 1:02 27-JAN 681
- 2, 2 12 T 1:32 27-JAN 684
- 1, 2 13 T 2:02 27-JAN 670
- 2, 2 13 T 2:32 27-JAN 678
- 1, 2 14 T 3:02 27-JAN 674
- 2, 2 14 T 3:32 27-JAN 682
- 1, 2 15 T 4:02 27-JAN 685
- 2, 2 15 T 4:32 27-JAN 677
- 1, 2 16 T 5:02 27-JAN 679
- 2, 2 16 T 5:32 27-JAN 678
- 1, 2 17 T 6:02 27-JAN 682
- 2, 2 17 T 6:32 27-JAN 680
- 1, 2 18 T NL 7:02 27-JAN 1865
- 2, 2 18 T NL 7:32 27-JAN 0
- 1, 2 19 T NL 8:02 27-JAN 0
- 2, 2 19 T 8:32 27-JAN 679
- 1, 2 20 T 9:02 27-JAN 685
- 2, 2 20 T NL 9:32 27-JAN 1877
- 1, 2 21 T 10:02 27-JAN 685

- 2, 2 21 T 10:32 27-JAN 688
- 1, 2 22 T NL 11:02 27-JAN 0
- 2, 2 22 T NL 11:32 27-JAN 0
- 1, 2 23 T NL 12:02 27-JAN 0
- 2, 2 23 T NL 12:32 27-JAN 0
- 1, 2 24 T NL 13:02 27-JAN 0
- 2, 2 24 T NL 13:32 27-JAN 0

Program Finished at: 13:34 27-JAN

SOURCE: T ==> TIME

SOURCE: S ==> START

ERROR: NL ==> NO LIQUID DETECTED!

APPENDIX E

2023-2024 Laboratory Data and Data Validation Reports

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Tuesday, April 18, 2023
Ariel Mosbrucker
Geosyntec Consultants, Inc
920 SW Sixth Avenue, Suite 600
Portland, OR 97204

RE: A3D0709 - POP - T4 Stormwater - PNW0319AR

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3D0709, which was received by the laboratory on 4/1/2023 at 10:05:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Default Cooler 2.3 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number: PNW0319ARReport ID:Portland, OR 97204Project Manager: Ariel MosbruckerA3D0709 - 04 18 23 1649

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
STSMH2710	A3D0709-01	Water	03/31/23 19:37	04/01/23 10:05
STSMH2603	A3D0709-02	Water	03/31/23 19:40	04/01/23 10:05
STSMH2615	A3D0709-03	Water	03/31/23 19:46	04/01/23 10:05
STSMH2712	A3D0709-04	Water	04/01/23 07:30	04/01/23 10:05
STSMH1914	A3D0709-05	Water	04/01/23 07:30	04/01/23 10:05

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc

Project:

POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project Number: **PNW0319AR**Project Manager: **Ariel Mosbrucker**

Report ID: A3D0709 - 04 18 23 1649

ANALYTICAL SAMPLE RESULTS

	Polychlorinated Biphenyls by EPA 8082A												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
STSMH1914 (A3D0709-05)				Matrix: Wate	rix: Water Batch: 23D0533								
Aroclor 1016	ND	0.00943	0.0189	ug/L	1	04/14/23 09:40	EPA 8082A						
Aroclor 1221	ND	0.00943	0.0189	ug/L	1	04/14/23 09:40	EPA 8082A						
Aroclor 1232	ND	0.00943	0.0189	ug/L	1	04/14/23 09:40	EPA 8082A						
Aroclor 1242	ND	0.00943	0.0189	ug/L	1	04/14/23 09:40	EPA 8082A						
Aroclor 1248	ND	0.00943	0.0189	ug/L	1	04/14/23 09:40	EPA 8082A						
Aroclor 1254	ND	0.00943	0.0189	ug/L	1	04/14/23 09:40	EPA 8082A						
Aroclor 1260	ND	0.00943	0.0189	ug/L	1	04/14/23 09:40	EPA 8082A						
Aroclor 1262	ND	0.00943	0.0189	ug/L	1	04/14/23 09:40	EPA 8082A						
Aroclor 1268	ND	0.00943	0.0189	ug/L	1	04/14/23 09:40	EPA 8082A						
Surrogate: Decachlorobiphenyl (Surr)		Recon	very: 55 %	Limits: 40-135 %	6 1	04/14/23 09:40	EPA 8082A						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600

Portland, OR 97204

Project: Project Number: PNW0319AR

Project Manager: Ariel Mosbrucker

Report ID: A3D0709 - 04 18 23 1649

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting	A 8270E (Large		Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
STSMH2712 (A3D0709-04)	,			Matrix: Wate	er	Batch:		
Acenaphthene	ND	0.0182	0.0363	ug/L	1	04/03/23 19:13	EPA 8270E LVI	
Acenaphthylene	ND	0.0182	0.0363	ug/L	1	04/03/23 19:13	EPA 8270E LVI	
Anthracene	0.0300	0.0182	0.0363	ug/L	1	04/03/23 19:13	EPA 8270E LVI	J
Benz(a)anthracene	0.0177	0.00908	0.0182	ug/L	1	04/03/23 19:13	EPA 8270E LVI	J
Benzo(a)pyrene	0.0309	0.00908	0.0182	ug/L	1	04/03/23 19:13	EPA 8270E LVI	
Benzo(b)fluoranthene	0.0626	0.00908	0.0182	ug/L	1	04/03/23 19:13	EPA 8270E LVI	
Benzo(k)fluoranthene	0.0209	0.00908	0.0182	ug/L	1	04/03/23 19:13	EPA 8270E LVI	M-05
Benzo(g,h,i)perylene	0.0340	0.0182	0.0363	ug/L	1	04/03/23 19:13	EPA 8270E LVI	J
Chrysene	0.0250	0.00908	0.0182	ug/L	1	04/03/23 19:13	EPA 8270E LVI	
Dibenz(a,h)anthracene	0.0104	0.00908	0.0182	ug/L	1	04/03/23 19:13	EPA 8270E LVI	J
Fluoranthene	0.0340	0.0182	0.0363	ug/L	1	04/03/23 19:13	EPA 8270E LVI	J
Fluorene	ND	0.0182	0.0363	ug/L	1	04/03/23 19:13	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	0.0322	0.00908	0.0182	ug/L	1	04/03/23 19:13	EPA 8270E LVI	
2-Methylnaphthalene	ND	0.0363	0.0726	ug/L	1	04/03/23 19:13	EPA 8270E LVI	
Naphthalene	ND	0.0363	0.0726	ug/L	1	04/03/23 19:13	EPA 8270E LVI	
Phenanthrene	ND	0.0363	0.0726	ug/L	1	04/03/23 19:13	EPA 8270E LVI	
Pyrene	0.0313	0.0182	0.0363	ug/L	1	04/03/23 19:13	EPA 8270E LVI	J
Surrogate: Acenaphthylene-d8 (Surr)		Recove	ery: 128 %	Limits: 78-134 %	6 I	04/03/23 19:13	EPA 8270E LVI	Q-41
Benzo(a)pyrene-d12 (Surr)			127 %	80-132 %	5 I	04/03/23 19:13	EPA 8270E LVI	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project: POP - T4 Stormwater
Project Number: PNW0319AR
Project Manager: Ariel Mosbrucker

Report ID: A3D0709 - 04 18 23 1649

ANALYTICAL SAMPLE RESULTS

	Solid and Moisture Determinations											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
STSMH2710 (A3D0709-01)	-			Matrix: Water								
Batch: 23D0068												
Total Suspended Solids	37.0		5.00	mg/L	1	1 04/03/23 17:22 SM 2540 D						
STSMH2603 (A3D0709-02)				Matrix: Wa	ater							
Batch: 23D0068												
Total Suspended Solids	39.0		5.00	mg/L	1	04/03/23 17:22	SM 2540 D					
STSMH2615 (A3D0709-03)				Matrix: W	ater							
Batch: 23D0068												
Total Suspended Solids	34.0		5.00	mg/L	1	04/03/23 17:22	SM 2540 D					
STSMH2712 (A3D0709-04)				Matrix: W	ater							
Batch: 23D0136												
Total Suspended Solids	13.0		5.00	mg/L	1	04/05/23 10:52	SM 2540 D	EST_s				
STSMH1914 (A3D0709-05)				Matrix: W	ater							
Batch: 23D0136			<u> </u>									
Total Suspended Solids	109		5.00	mg/L	1	04/05/23 10:52	SM 2540 D					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project: PNW0319AR
Project Manager: Ariel Mosbrucker

Report ID: A3D0709 - 04 18 23 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	inated B	iphenyls	by EPA 80)82A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0533 - EPA 3510C	(Neutral pl	- I)					Wa	ter				
Blank (23D0533-BLK1)			Prepared	: 04/13/23	12:06 Anal	lyzed: 04/14	/23 08:47					C-0
EPA 8082A												
Aroclor 1016	ND	0.0100	0.0200	ug/L	1							
Aroclor 1221	ND	0.0100	0.0200	ug/L	1							
Aroclor 1232	ND	0.0100	0.0200	ug/L	1							
Aroclor 1242	ND	0.0100	0.0200	ug/L	1							
Aroclor 1248	ND	0.0100	0.0200	ug/L	1							
Aroclor 1254	ND	0.0100	0.0200	ug/L	1							
Aroclor 1260	ND	0.0100	0.0200	ug/L	1							
Aroclor 1262	ND	0.0100	0.0200	ug/L	1							
Aroclor 1268	ND	0.0100	0.0200	ug/L	1							
Surr: Decachlorobiphenyl (Surr)		Reco	very: 75 %	Limits: 40	0-135 %	Dilı	ution: 1x					
LCS (23D0533-BS1)			Prepared	: 04/13/23	12:06 Ana	lyzed: 04/14	/23 09:05					C-0
EPA 8082A												
Aroclor 1016	0.674	0.0100	0.0200	ug/L	1	1.25		54	46-129%			
Aroclor 1260	0.936	0.0100	0.0200	ug/L	1	1.25		75	45-134%			
Surr: Decachlorobiphenyl (Surr)		Reco	very: 70 %	Limits: 40	0-135 %	Dilt	ution: 1x					
LCS Dup (23D0533-BSD1)			Prepared	: 04/13/23	12:06 Anal	lyzed: 04/14	/23 09:22					C-07, Q-1
EPA 8082A												
Aroclor 1016	0.660	0.0100	0.0200	ug/L	1	1.25		53	46-129%	2	30%	
Aroclor 1260	0.977	0.0100	0.0200	ug/L	1	1.25		78	45-134%	4	30%	
Surr: Decachlorobiphenyl (Surr)		Reco	very: 77 %	Limits: 40	0-135 %	Dilt	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number:PNW0319ARReport ID:Portland, OR 97204Project Manager:Ariel MosbruckerA3D0709 - 04 18 23 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polya	romatic Hy	drocarbon	s (PAHs)	by EPA 8	3270E (La	rge Volu	me Injecti	on)			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0030 - EPA 3511 (B	ottle Extra	ction)					Wa	ter				
Blank (23D0030-BLK1)			Prepared	: 04/03/23	09:55 Anal	yzed: 04/03/	/23 13:44					
EPA 8270E LVI												
Acenaphthene	ND	0.0160	0.0320	ug/L	1							
Acenaphthylene	ND	0.0160	0.0320	ug/L	1							
Anthracene	ND	0.0160	0.0320	ug/L	1							
Benz(a)anthracene	ND	0.00800	0.0160	ug/L	1							
Benzo(a)pyrene	ND	0.00800	0.0160	ug/L	1							
Benzo(b)fluoranthene	ND	0.00800	0.0160	ug/L	1							
Benzo(k)fluoranthene	ND	0.00800	0.0160	ug/L	1							
Benzo(g,h,i)perylene	ND	0.0160	0.0320	ug/L	1							
Chrysene	ND	0.00800	0.0160	ug/L	1							
Dibenz(a,h)anthracene	ND	0.00800	0.0160	ug/L	1							
Fluoranthene	ND	0.0160	0.0320	ug/L	1							
Fluorene	ND	0.0160	0.0320	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND	0.00800	0.0160	ug/L	1							
l-Methylnaphthalene	ND	0.0320	0.0640	ug/L	1							
2-Methylnaphthalene	ND	0.0320	0.0640	ug/L	1							
Naphthalene	ND	0.0320	0.0640	ug/L	1							
Phenanthrene	ND	0.0320	0.0640	ug/L	1							
Pyrene	ND	0.0160	0.0320	ug/L	1							
Carbazole	ND	0.0160	0.0320	ug/L	1							
Dibenzofuran	ND	0.0160	0.0320	ug/L	1							
Surr: Acenaphthylene-d8 (Surr)			ery: 125 %	Limits: 78		Dilı	ution: 1x					Q-41
Benzo(a)pyrene-d12 (Surr)			122 %)-132 %		"					× ''1
LCS (23D0030-BS1)			Prepared	: 04/03/23	09:55 Anal	yzed: 04/03/	/23 14:17					
EPA 8270E LVI												
Acenaphthene	1.51	0.0160	0.0320	ug/L	1	1.60		95	80-120%			
Acenaphthylene	1.78	0.0160	0.0320	ug/L	1	1.60		111	80-124%			
Anthracene	1.71	0.0160	0.0320	ug/L	1	1.60		107	80-123%			
Benz(a)anthracene	1.78	0.00800	0.0160	ug/L	1	1.60		111	80-122%			
Benzo(a)pyrene	2.00	0.00800	0.0160	ug/L	1	1.60		125	80-129%			
Benzo(b)fluoranthene	1.85	0.00800	0.0160	ug/L	1	1.60		116	80-124%			
Benzo(k)fluoranthene	1.91	0.00800	0.0160	ug/L	1	1.60		120	80-125%			
Benzo(g,h,i)perylene	1.61	0.0160	0.0320	ug/L	1	1.60		101	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

04/18/2023

Commel to Smil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, IncProject:POP - T4 Stormwater920 SW Sixth Avenue, Suite 600Project Number:PNW0319AR

920 SW Sixth Avenue, Suite 600Project Number:PNW0319ARReport ID:Portland, OR 97204Project Manager:Ariel MosbruckerA3D0709 - 04 18 23 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0030 - EPA 3511 (B	ottle Extra	ction)					Wa	ter				
LCS (23D0030-BS1)			Prepared	04/03/23	09:55 Anal	yzed: 04/03/	/23 14:17					
Chrysene	1.65	0.00800	0.0160	ug/L	1	1.60		103	80-120%			
Dibenz(a,h)anthracene	1.58	0.00800	0.0160	ug/L	1	1.60		99	80-120%			
Fluoranthene	1.72	0.0160	0.0320	ug/L	1	1.60		108	80-126%			
Fluorene	1.59	0.0160	0.0320	ug/L	1	1.60		100	77-127%			
Indeno(1,2,3-cd)pyrene	1.53	0.00800	0.0160	ug/L	1	1.60		95	80-121%			
l-Methylnaphthalene	1.40	0.0320	0.0640	ug/L	1	1.60		87	53-148%			
2-Methylnaphthalene	1.37	0.0320	0.0640	ug/L	1	1.60		86	48-150%			
Naphthalene	1.58	0.0320	0.0640	ug/L	1	1.60		99	78-120%			
Phenanthrene	1.54	0.0320	0.0640	ug/L	1	1.60		96	80-120%			
Pyrene	1.71	0.0160	0.0320	ug/L	1	1.60		107	80-125%			
Carbazole	1.98	0.0160	0.0320	ug/L	1	1.60		124	65-141%			
Dibenzofuran	1.63	0.0160	0.0320	ug/L	1	1.60		102	76-121%			
Surr: Acenaphthylene-d8 (Surr)		Recove	ery: 125 %	Limits: 78	8-134 %	Dilu	ıtion: 1x					Q-41
Benzo(a)pyrene-d12 (Surr)			126 %		0-132 %		"					
LCS Dup (23D0030-BSD1) EPA 8270E LVI			Prepared	04/03/23	09:55 Anal	yzed: 04/03/	/23 14:50					Q-
Acenaphthene	1.60	0.0160	0.0320	ug/L	1	1.60		100	80-120%	5	30%	
Acenaphthylene	1.84	0.0160	0.0320	ug/L	1	1.60		115	80-124%	3	30%	
Anthracene	1.72	0.0160	0.0320	ug/L	1	1.60		108	80-123%	0.9	30%	
Benz(a)anthracene	1.84	0.00800	0.0160	ug/L	1	1.60		115	80-122%	3	30%	
Benzo(a)pyrene	2.02	0.00800	0.0160	ug/L	1	1.60		126	80-129%	0.7	30%	
Benzo(b)fluoranthene	1.86	0.00800	0.0160	ug/L	1	1.60		117	80-124%	0.6	30%	
Benzo(k)fluoranthene	1.96	0.00800	0.0160	ug/L	1	1.60		122	80-125%	2	30%	
Benzo(g,h,i)perylene	1.66	0.0160	0.0320	ug/L	1	1.60		104	80-120%	3	30%	
Chrysene	1.72	0.00800	0.0160	ug/L	1	1.60		107	80-120%	4	30%	
Dibenz(a,h)anthracene	1.58	0.00800	0.0160	ug/L	1	1.60		99	80-120%	0.03	30%	
Fluoranthene	1.76	0.0160	0.0320	ug/L	1	1.60		110	80-126%	2	30%	
Fluorene	1.67	0.0160	0.0320	ug/L	1	1.60		104	77-127%	5	30%	
Indeno(1,2,3-cd)pyrene	1.57	0.00800	0.0160	ug/L	1	1.60		98	80-121%	3	30%	
1-Methylnaphthalene	1.52	0.0320	0.0640	ug/L	1	1.60		95	53-148%	8	30%	
2-Methylnaphthalene	1.48	0.0320	0.0640	ug/L	1	1.60		92	48-150%	7	30%	
Naphthalene	1.61	0.0320	0.0640	ug/L	1	1.60		101	78-120%	2	30%	

1

1.60

ug/L

Apex Laboratories

Phenanthrene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

100

80-120%

30%

3

Dund to hail

1.60

0.0640

0.0320

Surr: Acenaphthylene-d8 (Surr)

Benzo(a)pyrene-d12 (Surr)

ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Q-41

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

Recovery: 126 %

125 %

920 SW Sixth Avenue, Suite 600Project Number:PNW0319ARReport ID:Portland, OR 97204Project Manager:Ariel MosbruckerA3D0709 - 04 18 23 1649

QUALITY CONTROL (QC) SAMPLE RESULTS Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (Large Volume Injection)

Detection Reporting Spike Source % REC **RPD** Limits RPD Analyte Result Limit Units Dilution Amount Result % REC Limit Limit Notes Batch 23D0030 - EPA 3511 (Bottle Extraction) Water LCS Dup (23D0030-BSD1) Prepared: 04/03/23 09:55 Analyzed: 04/03/23 14:50 Q-19 Pyrene 1.73 0.0160 0.0320 ug/L 1.60 108 80-125% 30% 1 Carbazole 1.98 0.0160 0.0320 1.60 65-141% 30% ug/L 1 124 0.1 Dibenzofuran 0.0160 ug/L 1.72 0.03201 1.60 107 76-121% 5 30%

Dilution: 1x

Limits: 78-134 %

80-132 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Winnell Or June

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project Number: PNW0319AR
Project Manager: Ariel Mosbrucker

Report ID: A3D0709 - 04 18 23 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Solid a	nd Moist	ture Dete	rmination	s					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0068 - Total Suspen	ded Solid	s - 2022					Wat	ter				
Blank (23D0068-BLK1)			Prepared	: 04/03/23	17:22 Ana	lyzed: 04/03	/23 17:22					
SM 2540 D Total Suspended Solids	ND		5.00	mg/L	1							
Duplicate (23D0068-DUP1)			Prepared	: 04/03/23	17:22 Anal	lyzed: 04/03	/23 17:22					
QC Source Sample: Non-SDG (A3	3D0715-01)											
Total Suspended Solids	ND		5.00	mg/L	1		ND				10%	EST_
Duplicate (23D0068-DUP2)			Prepared	: 04/03/23	17:22 Anal	lyzed: 04/03	/23 17:22					
QC Source Sample: Non-SDG (A3	3D0715-03)											
Total Suspended Solids	237		5.00	mg/L	1		236			0.423	10%	
Reference (23D0068-SRM1)			Prepared	: 04/03/23	17:22 Ana	lyzed: 04/03	/23 17:22					
SM 2540 D												
Total Suspended Solids	963			mg/L	1	926		104	85-116%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project: POP - T4 Stormwater
Project Number: PNW0319AR
Project Manager: Ariel Mosbrucker

Report ID: A3D0709 - 04 18 23 1649

QUALITY CONTROL (QC) SAMPLE RESULTS

			Solid a	nd Moist	ture Dete	rmination	S					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0136 - Total Suspen	ded Solid	s - 2022					Wa	ter				
Blank (23D0136-BLK1)			Prepared	: 04/05/23	10:52 Ana	lyzed: 04/05	/23 10:52					
SM 2540 D Total Suspended Solids	ND		5.00	mg/L	1							
Duplicate (23D0136-DUP1)			Prepared	: 04/05/23	10:52 Anal	lyzed: 04/05	/23 10:52					
QC Source Sample: Non-SDG (A3	BC1157-01)											
Total Suspended Solids	ND		5.00	mg/L	1		ND				10%	EST_
Duplicate (23D0136-DUP2)			Prepared	: 04/05/23	10:52 Ana	lyzed: 04/05	/23 10:52					
QC Source Sample: Non-SDG (A3	3D0721-01)											
Total Suspended Solids	5.00		5.00	mg/L	1		5.00			0.00	10%	EST_
Reference (23D0136-SRM1)			Prepared	: 04/05/23	10:52 Ana	lyzed: 04/05	/23 10:52					
SM 2540 D												
Total Suspended Solids	920			mg/L	1	926		99.4	85-116%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project: POP - T4 Stormwater
Project Number: PNW0319AR
Project Manager: Ariel Mosbrucker

Report ID: A3D0709 - 04 18 23 1649

SAMPLE PREPARATION INFORMATION

		Polych	lorinated Biphenyls l	by EPA 8082A			
Prep: EPA 3510C (Ne	Sample	Default	RL Prep				
Lab Number Matrix		Method	Method Sampled		Initial/Final	Initial/Final	Factor
Batch: 23D0533							
A3D0709-05	Water	EPA 8082A	04/01/23 07:30	04/13/23 12:06	1060 mL/1 mL	1000 mL/1 mL	0.94
ï							
	Po	lyaromatic Hydrocarb	ons (PAHs) by EPA	8270E (Large Volur	ne Injection)		
Prep: EPA 3511 (Bottle Extraction)					Sample	Default	RL Prep
Lab Number	Jumber Matrix Method		Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23D0030							
A3D0709-04	Water	EPA 8270E LVI	04/01/23 07:30	04/03/23 09:55	110.14mL/5mL	125mL/5mL	1.13

Solid and Moisture Determinations									
Prep: Total Suspen	ded Solids - 2022				Sample	Default	RL Prep		
Lab Number	Matrix	Matrix Method		Prepared	Initial/Final	Initial/Final	Factor		
Batch: 23D0068									
A3D0709-01	Water	SM 2540 D	03/31/23 19:37	04/03/23 17:22			NA		
A3D0709-02	Water	SM 2540 D	03/31/23 19:40	04/03/23 17:22			NA		
A3D0709-03	Water	SM 2540 D	03/31/23 19:46	04/03/23 17:22			NA		
Batch: 23D0136									
A3D0709-04	Water	SM 2540 D	04/01/23 07:30	04/05/23 10:52			NA		
A3D0709-05	Water	SM 2540 D	04/01/23 07:30	04/05/23 10:52			NA		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number:PNW0319ARReport ID:Portland, OR 97204Project Manager:Ariel MosbruckerA3D0709 - 04 18 23 1649

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
- EST_s Solids results are reported as estimates when less than 2.5 mg residue is recovered during analysis. All method QC requirements have been met for samples, and reporting levels are adjusted based on volume filtered. Results meet regulatory requirements.
 - J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- M-05 Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

mul la fimil

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, IncProject:POP - T4 Stormwater920 SW Sixth Avenue, Suite 600Project Number:PNW0319AR

920 SW Sixth Avenue, Suite 600Project Number: PNW0319ARReport ID:Portland, OR 97204Project Manager: Ariel MosbruckerA3D0709 - 04 18 23 1649

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

mund la fimile

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project Number: PNW0319AR
Project Manager: Ariel Mosbrucker

Report ID: A3D0709 - 04 18 23 1649

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

04/18/2023

Darrell Auvil, Client Services Manager

mund la fimile

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, IncProject:POP - T4 Stormwater920 SW Sixth Avenue, Suite 600Project Number:PNW0319AR

Portland, OR 97204 Project Manager: Ariel Mosbrucker

Report ID: A3D0709 - 04 18 23 1649

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

mull by finish

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc
920 SW Sixth Avenue, Suite 600

Portland, OR 97204

Project: POP - T4 Stormwater

Project Number: **PNW0319AR**Project Manager: **Ariel Mosbrucker**

Report ID: A3D0709 - 04 18 23 1649

								-								ŀ					
Company: (JPNSVN1PC		Project A	Project Mgr. Arie Misbi ucker	1	3105	Ja G	707	귀	roject	Project Name: 74 SUV AUA	工	3	0	8	5	Ĕ	Project #:	337	PNWOSIGAR		
Address: 926 Sus SIAHN SWINE COCO	R 600		Pertland, OR	8	훈	Phone: 971-271-5962	F7-1F	1-50	23	Emai	i: ON	S	S.	Š	Email: CAMOSDY WCJQY EROPONIME CO	Can PO#	*				
Sampled by: AVN -1 7 L														NA	ANALYSIS REQUEST						
					-						38				CITS R? SP? SQ?		5.				
State											Ean Li				, Be, C , Fe, I Mo, Ni, V, Z ₀ S, T						
County IMULETIN.											sioV-in			-	78' B3 (9' C4 (8' T') (8, T')					əjdi	rehive
SAMPLE ID	atao	TIME	XIATAN	OE CO	HATWN	HALMN	T8 0928	8X 09Z8	87e0 A8	VIS 0718	as 0718	8087 BC	8081 Pes	RCRA I	ig, Mg, e, Ag, ^N OTAL	LCLP N	(191¥d			ms2 blot	A nozer
STCM H 2710	313.123	9	03		+	-		+	\vdash			1	+	-	S H O	7				ĭ	1
STSMH2663	3/31/23 1946	子	3									-				*					
STSMH2615	3/3.123	340	3	-	-	-		\vdash	-							×					ļ
CHAPT-	Bist mm	Munik	1	$\dagger \dagger$	+	-		††	H	П		H	$\dagger \dagger$	\vdash		\forall					
STSMH2712	4 Jac 10 30	230	30	S		ļ				×			<u> </u>			×	×				
SISMHIGH	16 kg 670	8	3	S	_				_			×				×	×				
	intege .																				
												:	-								
						-													,		
				-			1														
Standard Turn Around Time (TAT) = 10 Business Days	n Around Ti	ne (TAT)) = 10 Bus	siness Da	ıys		1			SPB	SPECIAL INSTRUCTIONS:	NSTR	UCTI	NS:		1.10		i c			
	1 Day		2 Day		3 Day	b ~				É	pion	ē	1x7	£	Aveid Dilution when possible	2101					
TAT Requested (circle)	5 Day	(e)	Standard		Other:	إ				·					*						
SAMPLE	SAMPLES ARE HELD FOR 30 DAYS	D FOR 3	0 DAYS		1					- ₁											
Signature.	3	10	RECEIVED BY: Signature:	ED BY:	A.J	1	Date: 4	12	23		RELINQUISHED BY.	SHED	BY:		Date:	S S	RECEIVED BY: Signature:	17:	Date:		
Printed Name: ACK Lissin		$\tilde{\kappa}$	Printed Name	led Name	1	19091	2001 mm	8	0.	¥i.	Printed Name	, , , , , , , , , , , , , , , , , , ,		1.07	Time:	E -	Printed Name:		Time:		
Company:	4		Company	I	6	L ×			8.0	Соптрапу:	pany:					ŏ	Сотрану:				
					1	1		١		-	l		l	1		-					l

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204

Project: POP - T4 Stormwater Project Number: PNW0319AR Project Manager: Ariel Mosbrucker

Report ID: A3D0709 - 04 18 23 1649

APEX LABS COOLER RECEIPT FORM Client: Geosyntec Element WO#: A3 Project/Project #: 74 SW 2023 / PNW 0319 AR **Delivery Info:** Date/time received: 4/1/23 @ 1005 By: ATM __Client__ESS__FedEx_UPS_Radio__Morgan__SDS__Evergreen__Other___ Date/time inspected: 4/1/23@10000 By: AJM Yes No Chain of Custody included? Yes ____ No __ Signed/dated by client? Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Temperature (°C) Custody seals? (Y(N)) N _____ Received on ice? (Y)N) Temp. blanks?(Y)N) Ice type: (Gel/Real/Other) Condition (In Out): Cooler out of temp? (Y(N))Possible reason why:_ Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes No. Sample Inspection: Date/time inspected: Ase 41.153 @ 10:18 By: All samples intact? Yes \(\sum \) No Comments: Bottle labels/COCs agree? Yes V No Comments: COC/container discrepancies form initiated? Yes ____ No ✓ Containers/volumes received appropriate for analysis? Yes V No Comments: Do VOA vials have visible headspace? Yes ___ No ___ NA <__ Water samples: pH checked: Yes__No__NA__ pH appropriate? Yes__No__NA__ (Additional information: Labeled by: Witness: Cooler Inspected by: Form Y-003 R-00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

April 14, 2023 Ceres ID: 16230

Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223

The following report contains the results for the two aqueous samples received on April 4, 2023. These samples were analyzed for tetra through octa chlorinated dioxins and dibenzofurans by EPA method 1613. Standard 2-week turn-around time was provided for this work.

This work was authorized under Apex Laboratories' Project # A3D0709.

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

The report consists of a Cover Letter, Sample Inventory (Section I), Data Summary (Section II), Sample Tracking (Section VI), and Qualifiers/Abbreviations (Section VII). Raw Data (Section III), Continuing Calibration (Section IV), and Initial Calibration (Section V) are available in a full report (.pdf format) upon request.

If you have any questions regarding this report, please feel free to contact me at (916)932-5011.

Sincerely,

James M. Hedin

Director of Operations/CEO

jhedin@ceres-lab.com

Section I: Sample Inventory

Ceres Sample ID:	Sample ID	Date Received	Collection Date &Time
16230-001	STSMH2712	4/4/2023	4/1/2023 7:30
	(A3D0709-04)		
16230-002	STSMH1914	4/4/2023	4/1/2023 7:30
10250 002	(A3D0709-05)	., ., 2023	1, 1, 2023 1.30

Section II: Data Summary

Quality Assurance Sample
Method BlankQC Batch #: 2844
QC Batch #: 2844Date Received: NA
Date Extracted: 4/11/2023Matrix: AqueousDate Analyzed: 4/12/2023Project ID: A3D0709Sample Size: 1.000 L

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 3.85	0.887	5.00		13C-2378-TCDD	81.0	25-164	
12378-PeCDD	DL= 14.8	2.56	25.0		13C-12378-PeCDD	89.3	25-181	
123478-HxCDD	DL= 13.7	3.08	25.0		13C-123478-HxCDD	88.3	32-141	
123678-HxCDD	DL= 12.9	5.29	25.0		13C-123678-HxCDD	97.1	28-130	
123789-HxCDD	DL= 12.8	13.1	25.0		13C-1234678-HpCDD	68.0	23-140	
1234678-HpCDD	DL= 9.16	5.15	25.0		13C-OCDD	71.6	17-157	
OCDD	DL= 18.4	8.50	50.0		13C-2378-TCDF	74.6	24-169	
2,3,7,8-TCDF	DL= 2.73	0.733	5.00		13C-12378-PeCDF	961	24-185	
12378-PeCDF	DL= 4.81	2.96	25.0		13C-23478-PeCDF	89.0	21-178	
23478-PeCDF	DL= 4.81	5.40	25.0		13C-123478-HxCDF	96.8	26-152	
123478-HxCDF	DL= 7.44	3.93	25.0		13C-123678-HxCDF	101	26-123	
123678-HxCDF	DL= 7.89	2.94	25.0		13C-234678-HxCDF	99.9	28-136	
234678-HxCDF	DL= 9.46	4.32	25.0		13C-123789-HxCDF	105	29-147	
123789-HxCDF	DL= 11.0	4.70	25.0		13C-1234678-HpCDF	79.7	28-143	
1234678-HpCDF	DL= 12.9	4.24	25.0		13C-1234789-HpCDF	92.1	26-138	
1234789-HpCDF	DL= 13.2	5.74	25.0					
OCDF	DL= 15.4	11.7	50.0					
Totals	Conc. (pg/L)	EMPC			CRS			
Total TCDD	DL= 3.85				37Cl4-2378-TCDD	128	35-197	
Total PeCDD	DL= 14.8							
Total HxCDD	DL= 13.7				DL - Signifies Non-Detect	(ND<) sample	e specific detection li	mit.
Total HpCDD	DL= 9.16				EMPC - Estimated Maximi	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 2.73				ratio failure.			
Total PeCDF	DL= 4.81				(a) - Lower control limit - U	Jpper control I	imit	
Total HxCDF	DL= 11.0				(b) - TEQ based on (2005)) World Health	n Organization (WHC) Toxic
Total HpCDF	DL= 13.2				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/L

Quality Assurance SampleDate Received: NAOngoing Precision and RecoveryQC Batch #: 2844Date Extracted: 4/11/2023Matrix: AqueousDate Analyzed: 4/12/2023Project ID: A3D0709Sample Size: 1.000 L

2,3,7,8-TCDD	Conc. (ng/mL)	Limits (a)	Labeled Standards	% Rec.	Limits (a)
2,0,1,0 . 000	9.89	6.7-15.8	13C-2378-TCDD	84.6	20-175
12378-PeCDD	58.8	35-71	13C-12378-PeCDD	95.3	21-227
123478-HxCDD	57.2	35-82	13C-123478-HxCDD	86.8	21-193
123678-HxCDD	45.3	38-67	13C-123678-HxCDD	85.6	25-163
123789-HxCDD	49.0	32-81	13C-1234678-HpCDD	68.1	26-166
1234678-HpCDD	58.8	35-70	13C-OCDD	73.9	13-198
OCDD	110	78-144	13C-2378-TCDF	75.0	22-152
2,3,7,8-TCDF	10.6	7.5-15.8	13C-12378-PeCDF	102	21-192
12378-PeCDF	57.8	40-67	13C-23478-PeCDF	96.2	13-328
23478-PeCDF	59.5	34-80	13C-123478-HxCDF	85.9	19-202
123478-HxCDF	50.6	36-67	13C-123678-HxCDF	93.1	21-159
123678-HxCDF	50.2	42-65	13C-234678-HxCDF	95.1	22-176
234678-HxCDF	50.7	35-78	13C-123789-HxCDF	105	17-205
123789-HxCDF	49.3	39-65	13C-1234678-HpCDF	76.4	21-158
1234678-HpCDF	59.1	41-61	13C-1234789-HpCDF	86.8	20-186
1234789-HpCDF	58.9	39-69			
OCDF	123	63-170			
			CRS		
			37Cl4-2378-TCDD	128	31-191

 Client Sample ID: STSMH2712 (A3D0709-04)

 Project ID:
 A3D0709
 Ceres Sample ID: 16230-001
 Date Received: 4/4/2023

 QC Batch #: 2844
 Date Extracted: 4/11/2023

 Date Collected: 4/1/2023
 Matrix: Aqueous
 Date Analyzed: 4/13/2023

Time Collected: 7:30 Sample Size: 1.014 L

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 3.00	0.887	4.93		13C-2378-TCDD	82.9	25-164	
12378-PeCDD	DL= 6.41	2.56	24.7		13C-12378-PeCDD	89.5	25-181	
123478-HxCDD	DL= 10.6	3.08	24.7		13C-123478-HxCDD	76.7	32-141	
123678-HxCDD	DL= 9.38	5.29	24.7		13C-123678-HxCDD	89.1	28-130	
123789-HxCDD	DL= 9.24	13.1	24.7		13C-1234678-HpCDD	52.2	23-140	
1234678-HpCDD	183	5.15	24.7		13C-OCDD	44.3	17-157	
OCDD	1,210	8.50	49.3		13C-2378-TCDF	72.5	24-169	
2,3,7,8-TCDF	DL= 2.97	0.733	4.93		13C-12378-PeCDF	96.5	24-185	
12378-PeCDF	DL= 3.90	2.96	24.7		13C-23478-PeCDF	89.1	21-178	
23478-PeCDF	DL= 3.52	5.40	24.7		13C-123478-HxCDF	95.5	26-152	
123478-HxCDF	DL= 6.35	3.93	24.7		13C-123678-HxCDF	98.7	26-123	
123678-HxCDF	DL= 6.59	2.94	24.7		13C-234678-HxCDF	96.4	28-136	
234678-HxCDF	DL= 8.32	4.32	24.7		13C-123789-HxCDF	98.6	29-147	
123789-HxCDF	DL= 9.73	4.70	24.7		13C-1234678-HpCDF	60.6	28-143	
1234678-HpCDF	DL= 6.34	4.24	24.7		13C-1234789-HpCDF	70.4	26-138	
1234789-HpCDF	DL= 6.22	5.74	24.7					
OCDF	DL= 13.6	11.7	49.3					
Totals	Conc. (pg/L)	EMPC			CRS			
Total TCDD	DL= 3.00				37Cl4-2378-TCDD	126	35-197	
Total PeCDD	DL= 6.41							
Total HxCDD	DL= 10.6				DL - Signifies Non-Detect	(ND<) sample	specific detection lin	nit.
Total HpCDD	463				EMPC - Estimated Maximi	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 2.97				ratio failure.			
Total PeCDF	DL= 3.90				(a) - Lower control limit - U	Ipper control I	imit	
Total HxCDF	DL= 9.73				(b) - TEQ based on (2005)	World Health	o Organization (WHO) Toxic
Total HpCDF	DL= 6.34				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 2.19 pg/L

 Client Sample ID: STSMH1914 (A3D0709-05)

 Project ID:
 A3D0709
 Ceres Sample ID: 16230-002
 Date Received: 4/4/2023

 QC Batch #: 2844
 Date Extracted: 4/11/2023

 Date Collected: 4/1/2023
 Matrix: Aqueous
 Date Analyzed: 4/13/2023

 Time Collected: 7:30
 Sample Size: 1.023 L
 1.023 L

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	DL= 1.70	0.887	4.89		13C-2378-TCDD	87.9	25-164	
12378-PeCDD	DL= 4.63	2.56	24.4		13C-12378-PeCDD	92.5	25-181	
123478-HxCDD	DL= 8.28	3.08	24.4		13C-123478-HxCDD	86.1	32-141	
123678-HxCDD	DL= 7.22	5.29	24.4		13C-123678-HxCDD	99.2	28-130	
123789-HxCDD	DL= 7.11	13.1	24.4		13C-1234678-HpCDD	60.4	23-140	
1234678-HpCDD	132	5.15	24.4		13C-OCDD	53.5	17-157	
OCDD	699	8.50	48.9		13C-2378-TCDF	76.7	24-169	
2,3,7,8-TCDF	DL= 2.05	0.733	4.89		13C-12378-PeCDF	97.4	24-185	
12378-PeCDF	DL= 2.64	2.96	24.4		13C-23478-PeCDF	90.5	21-178	
23478-PeCDF	DL= 2.59	5.40	24.4		13C-123478-HxCDF	104	26-152	
123478-HxCDF	DL= 5.22	3.93	24.4		13C-123678-HxCDF	106	26-123	
123678-HxCDF	DL= 5.42	2.94	24.4		13C-234678-HxCDF	107	28-136	
234678-HxCDF	DL= 6.15	4.32	24.4		13C-123789-HxCDF	117	29-147	
123789-HxCDF	DL= 7.14	4.70	24.4		13C-1234678-HpCDF	69.9	28-143	
1234678-HpCDF	29.3	4.24	24.4		13C-1234789-HpCDF	81.9	26-138	
1234789-HpCDF	DL= 7.51	5.74	24.4					
OCDF	43.4	11.7	48.9	J				
Totals	Conc. (pg/L)	EMPC			CRS			
Total TCDD	DL= 1.70				37Cl4-2378-TCDD	125	35-197	
Total PeCDD	DL= 4.63							
Total HxCDD	DL= 8.28				DL - Signifies Non-Detect	(ND<) sample	e specific detection lin	nit.
Total HpCDD	262				EMPC - Estimated Maxim	um Possible (Concentration due to	ion abundance
Total TCDF	DL= 2.05				ratio failure.			
Total PeCDF	DL= 2.64				(a) - Lower control limit - L	Ipper control I	imit	
Total HxCDF	23.9				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	69.2				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 1.84 pg/L

Section VI: Sample Tracking

SUBCONTRACT ORDER

Apex Laboratories

A3D0709

SENDING LABORATORY: 443/23

Apex Laboratories

6700 S.W. Sandburg Street

1613B Dioxins and Furans (SUB)

(D) L Amber Glass - Non Preserved (E) L Amber Glass - Non Preserved

Containers Supplied:

Tigard, OR 97223

Phone: (503) 718-2323 Fax: (503) 336-0745

Project Manager:

Darrell Auvil

AKUC # 413/23

RECEIVING LABORATORY:

Ceres Analytical Laboratory, Inc 4919 Windplay Drive, Suite 1

El Dorado Hills, CA 95762

Phone: (916) 932-5011

Fax: -9

Sample Name: STSMH2712		Water	Sampled: 04/01/23 07:30	(A3D0709-04) /
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (D)1-L Amber Glass - Non Preserved (E)1 L Amber Glass - Non Preserved	04/14/23 17:00	03/31/24 07:30	Ceres	
Sample Name: STSMH1914		Water	Sampled: 04/01/23 07:30	(A3D0709-05)
Analysis	Due	Expires	Comments	

03/31/24 07:30

Ceres

Standard TAT

04/14/23 17:00

	4.3.23	UPS (Shipper)	
Released By UPS (Shipper)	. Date	Received By Date	
Released By	Date	Received By Date	-

Ceres ID: (2.30)		Date/Time: 4/4/73 11'
Client Project ID: A 300709		Received Temp: 2.6 °C Acceptable: 0/N
Chain of Custody Relinquished by signed?		Ø/ N
Chain of Custody Received by signed?		⟨ V)/ N
Custody Seals?	Present?	Y/N
	Intact?	Y/N
	NA:	RA
Unlabeled / Illegible Samples		A.(A)
Proper Containers:		Ø/ N
Preservation Acceptable (Chemical or Temperat	ure)?	♥ / N
Drinking Water, Sodium Thiosulfate present? Residual Cl? Aqueous sample pH:		Y / N (NA Y / N) NA NA
List COC discrepancies:		
List Damaged Samples:		

Rev 9

Form A5.0

Effective Date: 3/19/18

Section VII: Qualifiers/Abbreviations

J Concentration found below the lower quantitation limit but greater

than zero.

B Analyte present in the associated Method Blank.

E Concentration found exceeds the Calibration range of the

HRGC/HRMS.

D This analyte concentration was calculated from a dilution.

X The concentration found is the estimated maximum possible

concentration due to chlorinated diphenyl ethers present in the

sample.

H Recovery limits exceeded. See cover letter.

* Results taken from dilution.

I Interference. See cover letter.

Conc. Concentration Found

DL Calculated Detection Limit

ND Non-Detect

% Rec. Percent Recovery

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Tuesday, April 25, 2023
Ariel Mosbrucker
Geosyntec Consultants, Inc
920 SW Sixth Avenue, Suite 600
Portland, OR 97204

RE: A3D1042 - POP - T4 Stormwater - PNW0319AR

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3D1042, which was received by the laboratory on 4/10/2023 at 3:54:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Default Cooler

1.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number:PNW0319ARReport ID:Portland, OR 97204Project Manager:Ariel MosbruckerA3D1042 - 04 25 23 1720

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
STSMH2710	A3D1042-01	Water	04/09/23 13:01	04/10/23 15:54
STSMH2603	A3D1042-02	Water	04/09/23 13:05	04/10/23 15:54
STSMH2615	A3D1042-03	Water	04/09/23 13:12	04/10/23 15:54
STSMH2712	A3D1042-04	Water	04/10/23 12:30	04/10/23 15:54
STSMH1914	A3D1042-05	Water	04/10/23 12:42	04/10/23 15:54
STSMH2712-DUP	A3D1042-06	Water	04/10/23 12:30	04/10/23 15:54

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600

Project: POP - T4 Stormwater Project Number: PNW0319AR

Portland, OR 97204

Project Manager: Ariel Mosbrucker

Report ID: A3D1042 - 04 25 23 1720

ANALYTICAL SAMPLE RESULTS

		Polychlorinat	ed Bipheny	is by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
STSMH1914 (A3D1042-05)				Matrix: Wate	ər	Batch:	23D0824	C-07
Aroclor 1016	ND	0.0102	0.0204	ug/L	1	04/21/23 10:38	EPA 8082A	
Aroclor 1221	ND	0.0102	0.0204	ug/L	1	04/21/23 10:38	EPA 8082A	
Aroclor 1232	ND	0.0102	0.0204	ug/L	1	04/21/23 10:38	EPA 8082A	
Aroclor 1242	ND	0.0102	0.0204	ug/L	1	04/21/23 10:38	EPA 8082A	
Aroclor 1248	ND	0.0102	0.0204	ug/L	1	04/21/23 10:38	EPA 8082A	
Aroclor 1254	ND	0.0102	0.0204	ug/L	1	04/21/23 10:38	EPA 8082A	
Aroclor 1260	ND	0.0102	0.0204	ug/L	1	04/21/23 10:38	EPA 8082A	
Aroclor 1262	ND	0.0102	0.0204	ug/L	1	04/21/23 10:38	EPA 8082A	
Aroclor 1268	ND	0.0102	0.0204	ug/L	1	04/21/23 10:38	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Recov	very: 70 %	Limits: 40-135 %	6 I	04/21/23 10:38	EPA 8082A	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Geosyntec Consultants, Inc</u> 920 SW Sixth Avenue, Suite 600

Portland, OR 97204

Project: POP - T4 Stormwater
Project Number: PNW0319AR
Project Manager: Ariel Mosbrucker

Report ID: A3D1042 - 04 25 23 1720

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Analyte STSMH2712 (A3D1042-04RE1)	Result	Liillt	Pillit	Matrix: Wate		•	23D0567	notes
•								
Acenaphthene	ND	0.0160	0.0320	ug/L	1	04/14/23 15:00	EPA 8270E LVI	
Acenaphthylene	ND	0.0160	0.0320	ug/L	1	04/14/23 15:00	EPA 8270E LVI	
Anthracene	0.0244	0.0160	0.0320	ug/L	1	04/14/23 15:00	EPA 8270E LVI	J
Benz(a)anthracene	0.0188	0.00799	0.0160	ug/L	1	04/14/23 15:00	EPA 8270E LVI	M-05
Benzo(a)pyrene	0.0268	0.00799	0.0160	ug/L	1	04/14/23 15:00	EPA 8270E LVI	
Benzo(b)fluoranthene	0.0467	0.00799	0.0160	ug/L	1	04/14/23 15:00	EPA 8270E LVI	
Benzo(k)fluoranthene	0.0164	0.00799	0.0160	ug/L	1	04/14/23 15:00	EPA 8270E LVI	M-05
Benzo(g,h,i)perylene	0.0244	0.0160	0.0320	ug/L	1	04/14/23 15:00	EPA 8270E LVI	J
Chrysene	0.0240	0.00799	0.0160	ug/L	1	04/14/23 15:00	EPA 8270E LVI	M-05
Dibenz(a,h)anthracene	ND	0.00799	0.0160	ug/L	1	04/14/23 15:00	EPA 8270E LVI	
Fluoranthene	0.0316	0.0160	0.0320	ug/L	1	04/14/23 15:00	EPA 8270E LVI	J
Fluorene	ND	0.0160	0.0320	ug/L	1	04/14/23 15:00	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	0.0232	0.00799	0.0160	ug/L	1	04/14/23 15:00	EPA 8270E LVI	
2-Methylnaphthalene	ND	0.0320	0.0639	ug/L	1	04/14/23 15:00	EPA 8270E LVI	
Naphthalene	0.0427	0.0320	0.0639	ug/L	1	04/14/23 15:00	EPA 8270E LVI	J
Phenanthrene	ND	0.0320	0.0639	ug/L	1	04/14/23 15:00	EPA 8270E LVI	
Pyrene	0.0276	0.0160	0.0320	ug/L	1	04/14/23 15:00	EPA 8270E LVI	J
Surrogate: Acenaphthylene-d8 (Surr)		Recovery:	125 %	Limits: 78-134 %	1	04/14/23 15:00	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			127 %	80-132 %	1	04/14/23 15:00	EPA 8270E LVI	
STSMH2712-DUP (A3D1042-06RE1)				Matrix: Wate	r	Batch:	23D0567	
Acenaphthene	ND	0.0161	0.0322	ug/L	1	04/14/23 15:33	EPA 8270E LVI	
Acenaphthylene	ND	0.0161	0.0322	ug/L	1	04/14/23 15:33	EPA 8270E LVI	
Anthracene	0.0225	0.0161	0.0322	ug/L	1	04/14/23 15:33	EPA 8270E LVI	J
Benz(a)anthracene	0.0153	0.00804	0.0161	ug/L	1	04/14/23 15:33	EPA 8270E LVI	J
Benzo(a)pyrene	0.0241	0.00804	0.0161	ug/L	1	04/14/23 15:33	EPA 8270E LVI	
Benzo(b)fluoranthene	0.0418	0.00804	0.0161	ug/L	1	04/14/23 15:33	EPA 8270E LVI	
Benzo(k)fluoranthene	0.0137	0.00804	0.0161	ug/L	1	04/14/23 15:33	EPA 8270E LVI	J
Benzo(g,h,i)perylene	0.0225	0.0161	0.0322	ug/L	1	04/14/23 15:33	EPA 8270E LVI	J
Chrysene	0.0217	0.00804	0.0161	ug/L	1	04/14/23 15:33	EPA 8270E LVI	M-05
Dibenz(a,h)anthracene	ND	0.00804	0.0161	ug/L ug/L	1	04/14/23 15:33	EPA 8270E LVI	00
	. 10	0.0000	0.0101	 Ε/ L .				
Fluoranthene	0.0310	0.0161	0.0322	ug/L	1	04/14/23 15:33	EPA 8270E LVI	J

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Commel to Small

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: **POP - T4 Stormwater**

920 SW Sixth Avenue, Suite 600Project Number: PNW0319ARReport ID:Portland, OR 97204Project Manager: Ariel MosbruckerA3D1042 - 04 25 23 1720

ANALYTICAL SAMPLE RESULTS

Polya	romatic Hyd	Irocarbons (F	PAHs) by EF	PA 8270E (Larg	e Volume	Injection)		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
STSMH2712-DUP (A3D1042-06RE1)	Result	Limit	Limit	Matrix: Wate			23D0567	TVOICS
Indeno(1,2,3-cd)pyrene	0.0229	0.00804	0.0161	ug/L	1	04/14/23 15:33	EPA 8270E LVI	
2-Methylnaphthalene	ND	0.0322	0.0643	ug/L	1	04/14/23 15:33	EPA 8270E LVI	
Naphthalene	0.0402	0.0322	0.0643	ug/L	1	04/14/23 15:33	EPA 8270E LVI	J
Phenanthrene	ND	0.0322	0.0643	ug/L	1	04/14/23 15:33	EPA 8270E LVI	
Pyrene	0.0261	0.0161	0.0322	ug/L	1	04/14/23 15:33	EPA 8270E LVI	J
Surrogate: Acenaphthylene-d8 (Surr)		Recove	ery: 125 %	Limits: 78-134 %	6 I	04/14/23 15:33	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			128 %	80-132 %	6 I	04/14/23 15:33	EPA 8270E LVI	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Winney Or Minney

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204

Project: POP - T4 Stormwater Project Number: PNW0319AR Project Manager: Ariel Mosbrucker

Report ID: A3D1042 - 04 25 23 1720

ANALYTICAL SAMPLE RESULTS

		Solid and	Moisture De	termination	S			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
STSMH2710 (A3D1042-01)				Matrix: W	ater			
Batch: 23D0496								
Total Suspended Solids	6.00		5.00	mg/L	1	04/12/23 19:11	SM 2540 D	EST_s
STSMH2603 (A3D1042-02)				Matrix: W	ater			
Batch: 23D0496								
Total Suspended Solids	7.00		5.00	mg/L	1	04/12/23 19:11	SM 2540 D	EST_s
STSMH2615 (A3D1042-03)				Matrix: W	ater			
Batch: 23D0496								
Total Suspended Solids	19.0		5.00	mg/L	1	04/12/23 19:11	SM 2540 D	EST_s
STSMH2712 (A3D1042-04)				Matrix: W	ater			
Batch: 23D0496								
Total Suspended Solids	7.00		5.00	mg/L	1	04/12/23 19:11	SM 2540 D	EST_s
STSMH1914 (A3D1042-05)				Matrix: W	ater			
Batch: 23D0496								
Total Suspended Solids	92.0		5.00	mg/L	1	04/12/23 19:11	SM 2540 D	
STSMH2712-DUP (A3D1042-06)				Matrix: W	ater			
Batch: 23D0496								
Total Suspended Solids	9.00		5.00	mg/L	1	04/12/23 19:11	SM 2540 D	EST_s

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project: PNW0319AR
Project Manager: Ariel Mosbrucker

Report ID: A3D1042 - 04 25 23 1720

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	inated B	iphenyls	by EPA 80)82A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0824 - EPA 3510C	(Neutral pl	- I)					Wa	ter				
Blank (23D0824-BLK1)			Prepared	: 04/20/23	11:24 Anal	lyzed: 04/21	/23 09:44					C-0
EPA 8082A												
Aroclor 1016	ND	0.0100	0.0200	ug/L	1							
Aroclor 1221	ND	0.0100	0.0200	ug/L	1							
Aroclor 1232	ND	0.0100	0.0200	ug/L	1							
Aroclor 1242	ND	0.0100	0.0200	ug/L	1							
Aroclor 1248	ND	0.0100	0.0200	ug/L	1							
Aroclor 1254	ND	0.0100	0.0200	ug/L	1							
Aroclor 1260	ND	0.0100	0.0200	ug/L	1							
Aroclor 1262	ND	0.0100	0.0200	ug/L	1							
Aroclor 1268	ND	0.0100	0.0200	ug/L	1							
Surr: Decachlorobiphenyl (Surr)		Reco	very: 89 %	Limits: 40	0-135 %	Dilt	ution: 1x					
LCS (23D0824-BS1)			Prepared	: 04/20/23	11:24 Anal	lyzed: 04/21	/23 10:02					C-0
EPA 8082A												
Aroclor 1016	0.659	0.0100	0.0200	ug/L	1	1.25		53	46-129%			
Aroclor 1260	0.986	0.0100	0.0200	ug/L	1	1.25		79	45-134%			
Surr: Decachlorobiphenyl (Surr)		Reco	very: 85 %	Limits: 40	0-135 %	Dilt	ution: 1x					
LCS Dup (23D0824-BSD1)			Prepared	: 04/20/23	11:24 Anal	lyzed: 04/21	/23 10:20					C-07, Q-1
EPA 8082A												
Aroclor 1016	0.666	0.0100	0.0200	ug/L	1	1.25		53	46-129%	1	30%	
Aroclor 1260	0.944	0.0100	0.0200	ug/L	1	1.25		76	45-134%	4	30%	
Surr: Decachlorobiphenyl (Surr)		Reco	very: 84 %	Limits: 40	0-135 %	Dilı	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number: PNW0319ARReport ID:Portland, OR 97204Project Manager: Ariel MosbruckerA3D1042 - 04 25 23 1720

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0429 - EPA 3511 (B	ottle Extra	ction)					Wa	ter				
Blank (23D0429-BLK1)			Prepared	: 04/12/23	06:39 Anal	yzed: 04/12/	/23 12:12					
EPA 8270E LVI												
Acenaphthene	ND	0.0160	0.0320	ug/L	1							
Acenaphthylene	ND	0.0160	0.0320	ug/L	1							
Anthracene	ND	0.0160	0.0320	ug/L	1							
Benz(a)anthracene	ND	0.00800	0.0160	ug/L	1							
Benzo(a)pyrene	ND	0.00800	0.0160	ug/L	1							
Benzo(b)fluoranthene	ND	0.00800	0.0160	ug/L	1							
Benzo(k)fluoranthene	ND	0.00800	0.0160	ug/L	1							
Benzo(g,h,i)perylene	ND	0.0160	0.0320	ug/L	1							
Chrysene	ND	0.00800	0.0160	ug/L	1							
Dibenz(a,h)anthracene	ND	0.00800	0.0160	ug/L	1							
Fluoranthene	ND	0.0160	0.0320	ug/L	1							
Fluorene	ND	0.0160	0.0320	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND	0.00800	0.0160	ug/L	1							
l-Methylnaphthalene	ND	0.0320	0.0640	ug/L	1							
2-Methylnaphthalene	ND	0.0320	0.0640	ug/L	1							
Naphthalene	ND	0.0320	0.0640	ug/L	1							
Phenanthrene	ND	0.0320	0.0640	ug/L	1							
Pyrene	ND	0.0160	0.0320	ug/L	1							
Carbazole	ND	0.0160	0.0320	ug/L	1							
Dibenzofuran	ND	0.0160	0.0320	ug/L	1							
Surr: Acenaphthylene-d8 (Surr)		Recove	ery: 116 %	Limits: 78	3-134 %	Dilı	ıtion: 1x					
Benzo(a)pyrene-d12 (Surr)			122 %	80	-132 %		"					
LCS (23D0429-BS1)			Prepared	: 04/12/23	06:39 Anal	yzed: 04/12/	/23 12:45					
EPA 8270E LVI												
Acenaphthene	1.65	0.0160	0.0320	ug/L	1	1.60		103	80-120%			
Acenaphthylene	1.82	0.0160	0.0320	ug/L	1	1.60		114	80-124%			
Anthracene	1.72	0.0160	0.0320	ug/L	1	1.60		108	80-123%			
Benz(a)anthracene	1.89	0.00800	0.0160	ug/L	1	1.60		118	80-122%			
Benzo(a)pyrene	2.08	0.00800	0.0160	ug/L	1	1.60		130	80-129%			
Benzo(b)fluoranthene	2.03	0.00800	0.0160	ug/L	1	1.60		127	80-124%			
Benzo(k)fluoranthene	2.01	0.00800	0.0160	ug/L	1	1.60		125	80-125%			
Benzo(g,h,i)perylene	1.75	0.0160	0.0320	ug/L	1	1.60		109	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Quand la fraid

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number: PNW0319ARReport ID:Portland, OR 97204Project Manager: Ariel MosbruckerA3D1042 - 04 25 23 1720

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0429 - EPA 3511 (B	ottle Extra	ction)					Wa	ter				
LCS (23D0429-BS1)			Prepared	: 04/12/23	06:39 Anal	lyzed: 04/12/	/23 12:45					
Chrysene	1.73	0.00800	0.0160	ug/L	1	1.60		108	80-120%			
Dibenz(a,h)anthracene	1.64	0.00800	0.0160	ug/L	1	1.60		103	80-120%			
Fluoranthene	1.69	0.0160	0.0320	ug/L	1	1.60		105	80-126%			
Fluorene	1.68	0.0160	0.0320	ug/L	1	1.60		105	77-127%			
Indeno(1,2,3-cd)pyrene	1.64	0.00800	0.0160	ug/L	1	1.60		102	80-121%			
l-Methylnaphthalene	1.45	0.0320	0.0640	ug/L	1	1.60		90	53-148%			
2-Methylnaphthalene	1.43	0.0320	0.0640	ug/L	1	1.60		89	48-150%			
Naphthalene	1.69	0.0320	0.0640	ug/L	1	1.60		106	78-120%			
Phenanthrene	1.64	0.0320	0.0640	ug/L	1	1.60		103	80-120%			
Pyrene	1.69	0.0160	0.0320	ug/L	1	1.60		106	80-125%			
Carbazole	1.97	0.0160	0.0320	ug/L	1	1.60		123	65-141%			
Dibenzofuran	1.73	0.0160	0.0320	ug/L	1	1.60		108	76-121%			
Surr: Acenaphthylene-d8 (Surr)		Recov	ery: 120 %	Limits: 78	8-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			125 %	80	0-132 %		"					
LCS Dup (23D0429-BSD1) EPA 8270E LVI			Prepared	: 04/12/23	06:39 Anal	lyzed: 04/12/	/23 13:18					Q-19
Acenaphthene	1.69	0.0160	0.0320	ug/L	1	1.60		105	80-120%	2	30%	
Acenaphthylene	1.88	0.0160	0.0320	ug/L ug/L	1	1.60		118	80-120%	3	30%	
Anthracene	1.75	0.0160	0.0320	ug/L ug/L	1	1.60		109	80-124%	1	30%	
Benz(a)anthracene	1.89	0.00800	0.0320	ug/L ug/L	1	1.60		118	80-122%	0.02	30%	
Benzo(a)pyrene	2.08	0.00800	0.0160	ug/L ug/L	1	1.60		130	80-129%	0.02	30%	Q-2
Benzo(b)fluoranthene	2.02	0.00800	0.0160	ug/L ug/L	1	1.60		126	80-124%	0.2	30%	Q-2
Benzo(k)fluoranthene	2.02	0.00800	0.0160	ug/L ug/L	1	1.60		125	80-125%	0.4	30%	Q 2
Benzo(g,h,i)perylene	1.73	0.0160	0.0320	ug/L ug/L	1	1.60		108	80-120%	1	30%	
Chrysene	1.77	0.00800	0.0320	ug/L ug/L	1	1.60		111	80-120%	2	30%	
Dibenz(a,h)anthracene	1.67	0.00800	0.0160	ug/L ug/L	1	1.60		104	80-120%	2	30%	
Fluoranthene	1.71	0.0160	0.0100	ug/L ug/L	1	1.60		107	80-126%	1	30%	
Fluorene	1.74	0.0160	0.0320	ug/L ug/L	1	1.60		107	77-127%	4	30%	
i idorene	1.62	0.00800	0.0320	ug/L ug/L	1	1.60		101	80-121%	0.9	30%	
ndeno(1.2.3-cd)nyrene				42/L	1	1.00		101	00-141/0	0.7	20/0	
Indeno(1,2,3-cd)pyrene				_	1	1.60		03	53_148%	2	30%	
Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene	1.48 1.49	0.0320 0.0320	0.0640 0.0640	ug/L ug/L	1	1.60 1.60		93 93	53-148% 48-150%	2	30% 30%	

Apex Laboratories

Phenanthrene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

80-120%

30%

2

101

Quand la fraid

1.62

0.0320

0.0640

ug/L

1

1.60

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number:PNW0319ARReport ID:Portland, OR 97204Project Manager:Ariel MosbruckerA3D1042 - 04 25 23 1720

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (Large Volume Injection) Detection Reporting Spike Source % REC **RPD** Limits RPD Analyte Result Limit Units Dilution Amount Result % REC Limit Limit Notes Batch 23D0429 - EPA 3511 (Bottle Extraction) Water LCS Dup (23D0429-BSD1) Prepared: 04/12/23 06:39 Analyzed: 04/12/23 13:18 Q-19 Pyrene 1.71 0.0160 0.0320 ug/L 1.60 107 80-125% 0.8 30% Carbazole 1.98 0.0160 0.0320 1.60 30% ug/L 1 124 65-141% 0.6 Dibenzofuran 0.0160 1.78 0.0320ug/L 1 1.60 111 76-121% 3 30% Surr: Acenaphthylene-d8 (Surr) Recovery: 121 % Limits: 78-134 % Dilution: 1x Benzo(a)pyrene-d12 (Surr) 123 % 80-132 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project: POP - T4 Stormwater

Project Number: PNW0319AR
Project Manager: Ariel Mosbrucker

Report ID: A3D1042 - 04 25 23 1720

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polya	aromatic Hyd	drocarbon	s (PAHs)	by EPA	3270E (La	rge Volu	me Injecti	on)			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0567 - EPA 3511 (Bo	ottle Extra	ction)					Wa	ter				
Blank (23D0567-BLK1)			Prepared	: 04/14/23	06:05 Anal	lyzed: 04/14	/23 12:47					
EPA 8270E LVI												
Acenaphthene	ND	0.0160	0.0320	ug/L	1							
Acenaphthylene	ND	0.0160	0.0320	ug/L	1							
Anthracene	ND	0.0160	0.0320	ug/L	1							
Benz(a)anthracene	ND	0.00800	0.0160	ug/L	1							
Benzo(a)pyrene	ND	0.00800	0.0160	ug/L	1							
Benzo(b)fluoranthene	ND	0.00800	0.0160	ug/L	1							
Benzo(k)fluoranthene	ND	0.00800	0.0160	ug/L	1							
Benzo(g,h,i)perylene	ND	0.0160	0.0320	ug/L	1							
Chrysene	ND	0.00800	0.0160	ug/L	1							
Dibenz(a,h)anthracene	ND	0.00800	0.0160	ug/L	1							
Fluoranthene	ND	0.0160	0.0320	ug/L	1							
Fluorene	ND	0.0160	0.0320	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND	0.00800	0.0160	ug/L	1							
1-Methylnaphthalene	ND	0.0320	0.0640	ug/L	1							
2-Methylnaphthalene	ND	0.0320	0.0640	ug/L	1							
Naphthalene	ND	0.0320	0.0640	ug/L	1							
Phenanthrene	ND	0.0320	0.0640	ug/L	1							
Pyrene	ND	0.0160	0.0320	ug/L	1							
Carbazole	ND	0.0160	0.0320	ug/L	1							
Dibenzofuran	ND	0.0160	0.0320	ug/L	1							
Surr: Acenaphthylene-d8 (Surr)		Recove	ry: 122 %	Limits: 78	3-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			122 %)-132 %		"					
LCS (23D0567-BS1)			Prepared	: 04/14/23	06:05 Anal	lyzed: 04/14	/23 13:20					
EPA 8270E LVI												
Acenaphthene	1.55	0.0160	0.0320	ug/L	1	1.60		97	80-120%			
Acenaphthylene	1.77	0.0160	0.0320	ug/L	1	1.60		110	80-124%			
Anthracene	1.67	0.0160	0.0320	ug/L	1	1.60		105	80-123%			
Benz(a)anthracene	1.77	0.00800	0.0160	ug/L	1	1.60		111	80-122%			
Benzo(a)pyrene	1.94	0.00800	0.0160	ug/L	1	1.60		121	80-129%			
Benzo(b)fluoranthene	1.84	0.00800	0.0160	ug/L	1	1.60		115	80-124%			
Benzo(k)fluoranthene	1.82	0.00800	0.0160	ug/L	1	1.60		113	80-125%			
Benzo(g,h,i)perylene	1.52	0.0160	0.0320	ug/L	1	1.60		95	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc
920 SW Sixth Avenue, Suite 600

Portland, OR 97204

Project: POP - T4 Stormwater

Project Number: **PNW0319AR**Project Manager: **Ariel Mosbrucker**

Report ID:
A3D1042 - 04 25 23 1720

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polya	romatic Hy	drocarbon	s (PAHs	by EPA	8270E (La	rge Volu	me Injecti	ion)			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0567 - EPA 3511 (B	ottle Extra	ction)					Wa	ter				
LCS (23D0567-BS1)			Prepared	: 04/14/23	06:05 Ana	lyzed: 04/14	/23 13:20					
Chrysene	1.62	0.00800	0.0160	ug/L	1	1.60		101	80-120%			
Dibenz(a,h)anthracene	1.55	0.00800	0.0160	ug/L	1	1.60		97	80-120%			
Fluoranthene	1.65	0.0160	0.0320	ug/L	1	1.60		103	80-126%			
Fluorene	1.65	0.0160	0.0320	ug/L	1	1.60		103	77-127%			
Indeno(1,2,3-cd)pyrene	1.46	0.00800	0.0160	ug/L	1	1.60		91	80-121%			
1-Methylnaphthalene	1.50	0.0320	0.0640	ug/L	1	1.60		94	53-148%			
2-Methylnaphthalene	1.49	0.0320	0.0640	ug/L	1	1.60		93	48-150%			
Naphthalene	1.62	0.0320	0.0640	ug/L	1	1.60		101	78-120%			
Phenanthrene	1.51	0.0320	0.0640	ug/L	1	1.60		95	80-120%			
Pyrene	1.63	0.0160	0.0320	ug/L	1	1.60		102	80-125%			
Carbazole	1.96	0.0160	0.0320	ug/L	1	1.60		123	65-141%			
Dibenzofuran	1.70	0.0160	0.0320	ug/L	1	1.60		106	76-121%			
Surr: Acenaphthylene-d8 (Surr)		Recove	ery: 124 %	Limits: 78	8-134 %	Dilt	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			124 %	80	0-132 %		"					
LCS Dup (23D0567-BSD1)			Prepared	: 04/14/23	06:05 Ana	lyzed: 04/14	/23 13:54					Q-:
EPA 8270E LVI	1.57	0.0160	0.0220	/T	1	1.60		00	00.1200/	2	200/	
Acenaphthene	1.57	0.0160 0.0160	0.0320	ug/L	1	1.60 1.60		98 114	80-120% 80-124%		30% 30%	
Acenaphthylene	1.82		0.0320	ug/L	1							
Anthracene	1.68	0.0160	0.0320 0.0160	ug/L	1	1.60		105	80-123%		30%	
Benz(a)anthracene	1.77 1.98	0.00800 0.00800		ug/L	1 1	1.60 1.60		110 124	80-122% 80-129%		30% 30%	
Benzo(a)pyrene Benzo(b)fluoranthene	1.98	0.00800		ug/L	1	1.60		116	80-129% 80-124%		30%	
Benzo(b)fluoranthene Benzo(k)fluoranthene	1.86	0.00800		ug/L ug/L	1	1.60		116	80-124% 80-125%		30%	
Benzo(g,h,i)perylene	1.53	0.00800	0.0160	ug/L ug/L	1	1.60		96	80-120%		30%	
Chrysene	1.64	0.0180		ug/L ug/L	1	1.60		102	80-120%		30%	
Cnrysene Dibenz(a,h)anthracene	1.64	0.00800		ug/L ug/L	1	1.60		98	80-120% 80-120%		30%	
Fluoranthene	1.64	0.00800	0.0100	_	1	1.60		103	80-120%		30%	
Fluorantnene Fluorene	1.64	0.0160	0.0320	ug/L	1	1.60		103	77-127%		30%	
				ug/L	1							
Indeno(1,2,3-cd)pyrene	1.47	0.00800 0.0320	0.0160 0.0640	ug/L	1	1.60		92	80-121%		30% 30%	
1-Methylnaphthalene 2-Methylnaphthalene	1.62 1.57	0.0320	0.0640	ug/L	1	1.60 1.60		101 98	53-148%		30%	
2-ivicinymaphinalene	1.3/	0.0320	0.0040	ug/L	1	1.00		70	48-150%	<i>3</i>	3070	

Apex Laboratories

Naphthalene

Phenanthrene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

102

93

78-120%

80-120%

0.5

1

30%

30%

1.63

1.50

0.0320

0.0320

0.0640

0.0640

ug/L

ug/L

1

1

1.60

1.60

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number: PNW0319ARReport ID:Portland, OR 97204Project Manager: Ariel MosbruckerA3D1042 - 04 25 23 1720

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (Large Volume Injection) Detection Reporting Spike Source % REC RPD

Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 23D0567 - EPA 3511 (Be	ottle Extra	ction)					Wa	ter				
LCS Dup (23D0567-BSD1)			Prepared	: 04/14/23	06:05 Ana	lyzed: 04/14/	23 13:54					Q-19
Pyrene	1.65	0.0160	0.0320	ug/L	1	1.60		103	80-125%	1	30%	
Carbazole	1.95	0.0160	0.0320	ug/L	1	1.60		122	65-141%	0.4	30%	
Dibenzofuran	1.71	0.0160	0.0320	ug/L	1	1.60		107	76-121%	1	30%	
Surr: Acenaphthylene-d8 (Surr)		Recov	ery: 124 %	Limits: 78	8-134 %	Dilu	tion: 1x					
Benzo(a)pyrene-d12 (Surr)			126 %	80	0-132 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project: PNW0319AR
Project Manager: Ariel Mosbrucker

Report ID: A3D1042 - 04 25 23 1720

QUALITY CONTROL (QC) SAMPLE RESULTS

			Solid a	nd Mois	ture Dete	rmination	s					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23D0496 - Total Suspen	ded Solid	ls - 2022					Wat	er				
Blank (23D0496-BLK1)			Prepared	: 04/12/23	19:11 Ana	yzed: 04/12	/23 19:11					
SM 2540 D												
Total Suspended Solids	ND		5.00	mg/L	1							
Duplicate (23D0496-DUP1)			Prepared	: 04/12/23	19:11 Anal	yzed: 04/12	/23 19:11					
QC Source Sample: Non-SDG (A3	BD1061-01)											
Total Suspended Solids	12.0		5.00	mg/L	1		10.0			18.2	10%	EST_s, Q-0
Reference (23D0496-SRM1)			Prepared	: 04/12/23	19:11 Ana	yzed: 04/12	/23 19:11					
SM 2540 D												
Total Suspended Solids	944			mg/L	1	926		102	85-116%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project: POP - T4 Stormwater
Project Number: PNW0319AR
Project Manager: Ariel Mosbrucker

Report ID: A3D1042 - 04 25 23 1720

SAMPLE PREPARATION INFORMATION

		Polych	nlorinated Biphenyls l	by EPA 8082A			
Prep: EPA 3510C (Neutral pH)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23D0824 A3D1042-05	Water	EPA 8082A	04/10/23 12:42	04/20/23 11:24	980mL/1mL	1000mL/1mL	1.02

	Po	lyaromatic Hydrocarbo	ons (PAHs) by EPA	8270E (Large Volur	ne Injection)		
Prep: EPA 3511 (Bottl	le Extraction)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23D0567							
A3D1042-04RE1	Water	EPA 8270E LVI	04/10/23 12:30	04/14/23 06:05	125.19mL/5mL	125mL/5mL	1.00
A3D1042-06RE1	Water	EPA 8270E LVI	04/10/23 12:30	04/14/23 06:05	124.35mL/5mL	125mL/5mL	1.01

		So	lid and Moisture Dete	erminations			
Prep: Total Suspend	ed Solids - 2022				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23D0496							
A3D1042-01	Water	SM 2540 D	04/09/23 13:01	04/12/23 19:11			NA
A3D1042-02	Water	SM 2540 D	04/09/23 13:05	04/12/23 19:11			NA
A3D1042-03	Water	SM 2540 D	04/09/23 13:12	04/12/23 19:11			NA
A3D1042-04	Water	SM 2540 D	04/10/23 12:30	04/12/23 19:11			NA
A3D1042-05	Water	SM 2540 D	04/10/23 12:42	04/12/23 19:11			NA
A3D1042-06	Water	SM 2540 D	04/10/23 12:30	04/12/23 19:11			NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

POP - T4 Stormwater Geosyntec Consultants, Inc Project:

920 SW Sixth Avenue, Suite 600 Project Number: PNW0319AR Portland, OR 97204 Project Manager: Ariel Mosbrucker A3D1042 - 04 25 23 1720

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
- EST s Solids results are reported as estimates when less than 2.5 mg residue is recovered during analysis. All method QC requirements have been met for samples, and reporting levels are adjusted based on volume filtered. Results meet regulatory requirements.
 - J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- M-05 Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
- Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- O-29 Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, IncProject:POP - T4 Stormwater920 SW Sixth Avenue, Suite 600Project Number:PNW0319AR

920 SW Sixth Avenue, Suite 600Project Number: PNW0319ARReport ID:Portland, OR 97204Project Manager: Ariel MosbruckerA3D1042 - 04 25 23 1720

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

mund la fimile

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc
920 SW Sixth Avenue, Suite 600

Project Number: PNW0319AR
Project Manager: Ariel Mosbrucker

POP - T4 Stormwater

Report ID: A3D1042 - 04 25 23 1720

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Portland, OR 97204

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

Project:

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

mund la fimile

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number:PNW0319ARReport ID:Portland, OR 97204Project Manager:Ariel MosbruckerA3D1042 - 04 25 23 1720

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

mull by finish

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc

920 SW Sixth Avenue, Suite 600

Portland, OR 97204

Project: POP - T4 Stormwater

Project Number: PNW0319AR

Project Manager: Ariel Mosbrucker

Report ID: A3D1042 - 04 25 23 1720

6700 SW Sandburg St., Tigard, OR 97223 Ph. 503-718-2323	7223 Ph.	503-718	-2323		•			5			2	3					Lab#	<u> </u>	<u> </u>	Lab # #3 UIO TX COC \ of	-	
Company: (7POSYNTPC		Project Mgr. Artel Mosbruc Pev	fg:	riel	MOS	DIC	8		Project	Project Name:		Pop	巨	1	32			Project #:		PN WO319AR	AR	1
Address: 920 SW SIXTM Me		Suite 600, Portland, OK	ortto	5/0		none:	Phone: 971-271-5702	5-1	70	Em	ui:	(Sour) J	à,	Email: ONTOS Brucher @opensynher control	7 76	3	# 0				
Sampled by: AM, MDB, JL								100						ANA	ANALYSIS REQUEST	LEST						
Site Location: State OR County Muult.			XI	ONTAINERS	ьн-нст	ьн-С х ьн-Сх	BLEX	SBDW AOC?	OCs Full List	→ J ~ SHV4 WIS	emi-Vols Full List	77 - 880	seticides	Metals (8)	As, Ba, Be, Cd, Co, Cu, Fe, Pb,	" DISS LCLP Na, TL V, Zn Na, TL V, Zn	Metals (8)	SST-GONG CADANA - GGR	Guard		upple	Агсвіче
SAMPLE ID	DATE	TIME	ATAM	# OE C			H 0978	H 0978				¶ 2808	4 1808		AL, Sb, Ca, Cr,	Se, Ag, TATOT					ise bloH	Frozen A
STSMH2710	17/b/p	8	3	_					-									 ×				ď
STSMH 2603	419/1305	1305	335							_								 ><				
STSMH 2615	4/0123	49123 1312 SW	3	_					.	-							Ť	\ \ >				
STSMHZFIL	4/103 1230 SW	1230	3	S						×				-				×				
STSMHIPIH	4 lots 1242 SW	242	3	5								×						×				
STSM#2712-DIP	4/10/23 1230 SM	12.30	3	J.						X				-			Ĺ,	×				
				1		_								\vdash								
						_																
						-			-	+				+			\top	+				1
Standard Turn Around Time (TAT) = 10 Business Days	Around Tim	De (TAT)	= 10 Bus	iness D	ays			1		SP	SPECIAL INSTRUCTIONS	INST		SNS		1	1		_			
TAT Bornseted (circle)	1 Day		2 Day		3 Day						Aveid dilution	ಶ	<u> </u>	E E	when possible	چ	Sog	S De	_1			
(an iiv) nateanhay 1771	5 Day	(3)	Standard		Other:																	
	SAMPLES ARE HELD FOR 30 DAYS	D FOR 30	DAYS									- 8										
RELINGUISHED BY; signaling White the second	Date 10 (5) Signature:	<u>B</u>		Z Sp BK:	3	*	Date: 4/10/23	133		REI Signa	RELINQUISHED BY: Signature:	SHED	BY:		Date:		- 52	RECEIVED BY: Signature:	D BY:	Date:		
Print Name OCK (1510	Time: PSS/Kathine. Mariossia	1554	Kathiri	Fe ee	3	Ś	The:	E		E	Printed Name				Time:		-	Printed Name		Time;		
Company: Cheo SylviPC		-	Company:	AZX	-					S	Company:							Сопрапу:		The state of the s		
			-										l				1					8

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project: Project Number: PNW0319AR

Project Manager: Ariel Mosbrucker

Report ID: A3D1042 - 04 25 23 1720

	APEX LABS COOLER RECEIPT FORM
Client: Geosya	Element WO#: A3D1042
Project/Project #: Po	PT4SW/PNW0319AR
Delivery Info:	
Date/time received: 4/10	23 @15.54 By ZAM
Delivered by: Apex_Clie	ent XESS FedEx UPS Radio Morgan CDS F
Cooler Inspection Da	ate/time inspected: 4/10/23 @ 15.55 By 274
Chain of Custody include	d? Yes × No
Signed/dated by client?	Yes X No
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	1.4 Cooler #5 Cooler #6 Cooler #7
Custody seals? (Y/N)	N
Received on ice? (Y/N)	У
Temp. blanks? (Y/N)	N
Ice type: (Gel/Real/Other)	Rea)
Condition (In/Out):	10
All samples intact? Yes	No Comments:
Bottle labels/COCs agree?	Yes \nearrow No Comments:
COC/container discrepancie	es form initiated? Yes No $\frac{\mathcal{X}}{}$ d appropriate for analysis? Yes $\frac{1}{}$ No Comments:
	neadspace? Yes No NA
Water samples: pH checked: Comments:	YesNoNA_X_pH appropriate? YesNoNA_X
Water samples: pH checked: Comments:	
Comments:	W
Additional information:	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chund of france

April 20, 2023 Ceres ID: 16252

Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223

The following report contains the results for the three aqueous samples received on April 12, 2023. These samples were analyzed for tetra through octa chlorinated dioxins and dibenzofurans by EPA method 1613. Standard 2-week turn-around time was provided for this work.

This work was authorized under Apex Laboratories' Project # A3D1042.

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

The report consists of a Cover Letter, Sample Inventory (Section I), Data Summary (Section II), Sample Tracking (Section VI), and Qualifiers/Abbreviations (Section VII). Raw Data (Section III), Continuing Calibration (Section IV), and Initial Calibration (Section V) are available in a full report (.pdf format) upon request.

If you have any questions regarding this report, please feel free to contact me at (916)932-5011.

Sincerely,

James M. Hedin

Director of Operations/CEO

jhedin@ceres-lab.com

Section I: Sample Inventory

Ceres Sample ID: 16252-001	Sample ID STSMH2712 (A3D1042-04)	Date Received 4/12/2023	Collection Date & Time 4/10/2023 12:30
16252-002	STSMH1914 (A3D1042-05)	4/12/2023	4/10/2023 12:42
16252-003	STSMH2712-Dup (A3D1042-06)	4/12/2023	4/10/2023 12:30

Section II: Data Summary

 Quality Assurance Sample
 Date Received: NA

 Method Blank
 QC Batch #: 2848
 Date Extracted: 4/17/2023

 Matrix: Aqueous
 Date Analyzed: 4/18/2023

 Project ID:
 A3D1042
 Sample Size: 1.000 L

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 3.18	0.887	5.00		13C-2378-TCDD	83.7	25-164		
12378-PeCDD	DL= 6.55	2.56	25.0		13C-12378-PeCDD	99.5	25-181		
123478-HxCDD	DL= 6.09	3.08	25.0		13C-123478-HxCDD	71.5	32-141		
123678-HxCDD	DL= 5.71	5.29	25.0		13C-123678-HxCDD	91.5	28-130		
123789-HxCDD	DL= 5.62	13.1	25.0		13C-1234678-HpCDD	55.6	23-140		
1234678-HpCDD	DL= 8.94	5.15	25.0		13C-OCDD	50.4	17-157		
OCDD	DL= 15.1	8.50	50.0		13C-2378-TCDF	69.4	24-169		
2,3,7,8-TCDF	DL= 2.85	0.733	5.00		13C-12378-PeCDF	101	24-185		
12378-PeCDF	DL= 3.86	2.96	25.0		13C-23478-PeCDF	92.6	21-178		
23478-PeCDF	DL= 3.64	5.40	25.0		13C-123478-HxCDF	93.1	26-152		
123478-HxCDF	DL= 2.47	3.93	25.0		13C-123678-HxCDF	94.7	26-123		
123678-HxCDF	DL= 2.44	2.94	25.0		13C-234678-HxCDF	101	28-136		
234678-HxCDF	DL= 2.72	4.32	25.0		13C-123789-HxCDF	102	29-147		
123789-HxCDF	DL= 3.60	4.70	25.0		13C-1234678-HpCDF	66.3	28-143		
1234678-HpCDF	DL= 6.04	4.24	25.0		13C-1234789-HpCDF	68.4	26-138		
1234789-HpCDF	DL= 7.38	5.74	25.0						
OCDF	DL= 13.9	11.7	50.0						
Totals	Conc. (pg/L)	EMPC			CRS				
Total TCDD	DL= 3.18				37Cl4-2378-TCDD	105	35-197		
Total PeCDD	DL= 6.55								
Total HxCDD	DL= 6.09				DL - Signifies Non-Detect	(ND<) sample	e specific detection li	nit.	
Total HpCDD	DL= 8.94				EMPC - Estimated Maximi	um Possible (Concentration due to	ion abundance	
Total TCDF	DL= 2.85				ratio failure.				
Total PeCDF	DL= 3.86				(a) - Lower control limit - Upper control limit				
Total HxCDF	DL= 3.60				(b) - TEQ based on (2005)	World Health	n Organization (WHC) Toxic	
Total HpCDF	DL= 7.38				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/L

Quality Assurance SampleDate Received: NAOngoing Precision and RecoveryQC Batch #: 2848Date Extracted: 4/17/2023Matrix: AqueousDate Analyzed: 4/18/2023Project ID: A3D1042Sample Size: 1.000 L

Analyte	Conc. (ng/mL)	Limits (a)	Labeled Standards	% Rec.	Limits (a)
2,3,7,8-TCDD	9.19	6.7-15.8	13C-2378-TCDD	80.1	20-175
12378-PeCDD	57.0	35-71	13C-12378-PeCDD	92.7	21-227
123478-HxCDD	55.7	35-82	13C-123478-HxCDD	70.5	21-193
123678-HxCDD	56.7	38-67	13C-123678-HxCDD	79.4	25-163
123789-HxCDD	51.4	32-81	13C-1234678-HpCDD	53.2	26-166
1234678-HpCDD	56.6	35-70	13C-OCDD	51.9	13-198
OCDD	107	78-144	13C-2378-TCDF	67.4	22-152
2,3,7,8-TCDF	9.64	7.5-15.8	13C-12378-PeCDF	98.3	21-192
12378-PeCDF	51.1	40-67	13C-23478-PeCDF	90.9	13-328
23478-PeCDF	54.1	34-80	13C-123478-HxCDF	87.5	19-202
123478-HxCDF	48.8	36-67	13C-123678-HxCDF	88.7	21-159
123678-HxCDF	52.7	42-65	13C-234678-HxCDF	93.7	22-176
234678-HxCDF	50.3	35-78	13C-123789-HxCDF	97.6	17-205
123789-HxCDF	51.7	39-65	13C-1234678-HpCDF	62.8	21-158
1234678-HpCDF	55.9	41-61	13C-1234789-HpCDF	64.6	20-186
1234789-HpCDF	56.1	39-69			
OCDF	122	63-170			
			<u>CRS</u>		
			37Cl4-2378-TCDD	114	31-191
			(a) Limits based on method	acceptance criteria.	

 Client Sample ID: STSMH2712 (A3D1042-04)

 Project ID:
 A3D1042
 Ceres Sample ID: 16252-001
 Date Received: 4/12/2023

 QC Batch #: 2848
 Date Extracted: 4/17/2023

 Date Collected: 4/10/2023
 Matrix: Aqueous
 Date Analyzed: 4/18/2023

Time Collected: 12:30 Sample Size: 1.012 L

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 4.04	0.887	4.94		13C-2378-TCDD	67.1	25-164		
12378-PeCDD	DL= 11.4	2.56	24.7		13C-12378-PeCDD	85.4	25-181		
123478-HxCDD	DL= 14.5	3.08	24.7		13C-123478-HxCDD	59.0	32-141		
123678-HxCDD	DL= 14.0	5.29	24.7		13C-123678-HxCDD	68.4	28-130		
123789-HxCDD	DL= 13.8	13.1	24.7		13C-1234678-HpCDD	41.6	23-140		
1234678-HpCDD	67.7	5.15	24.7		13C-OCDD	31.2	17-157		
OCDD	346	8.50	49.4		13C-2378-TCDF	51.4	24-169		
2,3,7,8-TCDF	DL= 4.26	0.733	4.94		13C-12378-PeCDF	81.6	24-185		
12378-PeCDF	DL= 7.26	2.96	24.7		13C-23478-PeCDF	76.8	21-178		
23478-PeCDF	DL= 6.41	5.40	24.7		13C-123478-HxCDF	68.8	26-152		
123478-HxCDF	DL= 6.74	3.93	24.7		13C-123678-HxCDF	69.7	26-123		
123678-HxCDF	DL= 6.55	2.94	24.7		13C-234678-HxCDF	72.8	28-136		
234678-HxCDF	DL= 7.30	4.32	24.7		13C-123789-HxCDF	78.6	29-147		
123789-HxCDF	DL= 8.99	4.70	24.7		13C-1234678-HpCDF	47.7	28-143		
1234678-HpCDF	DL= 11.0	4.24	24.7		13C-1234789-HpCDF	52.7	26-138		
1234789-HpCDF	DL= 11.2	5.74	24.7						
OCDF	DL= 13.0	11.7	49.4						
Totals	Conc. (pg/L)	EMPC			CRS				
Total TCDD	DL= 4.04				37Cl4-2378-TCDD	90.6	35-197		
Total PeCDD	DL= 11.4								
Total HxCDD	DL= 14.5				DL - Signifies Non-Detect	(ND<) sample	specific detection lin	nit.	
Total HpCDD	155				EMPC - Estimated Maximum Possible Concentration due to ion abundance				
Total TCDF	DL= 4.26				ratio failure.				
Total PeCDF	DL= 7.26				(a) - Lower control limit - Upper control limit				
Total HxCDF	DL= 8.99				(b) - TEQ based on (2005)	World Health	o Organization (WHO) Toxic	
Total HpCDF	DL= 11.2				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b): 0.781 pg/L

Date Collected: 4/10/2023

EPA Method 1613B

Client Sample ID: STSMH1914 (A3D1042-05) Project ID: A3D1042 **Ceres Sample ID:** 16252-002 Date Received: 4/12/2023 QC Batch #: 2848 Date Extracted: 4/17/2023

Matrix: Aqueous Time Collected: 12:42 Sample Size: 1.014 L

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 4.52	0.887	4.93		13C-2378-TCDD	77.4	25-164		
12378-PeCDD	DL= 11.6	2.56	24.7		13C-12378-PeCDD	89.2	25-181		
123478-HxCDD	DL= 9.31	3.08	24.7		13C-123478-HxCDD	70.2	32-141		
123678-HxCDD	DL= 8.75	5.29	24.7		13C-123678-HxCDD	80.8	28-130		
123789-HxCDD	DL= 8.62	13.1	24.7		13C-1234678-HpCDD	46.0	23-140		
1234678-HpCDD	88.4	5.15	24.7		13C-OCDD	34.5	17-157		
OCDD	521	8.50	49.3		13C-2378-TCDF	57.6	24-169		
2,3,7,8-TCDF	DL= 4.02	0.733	4.93		13C-12378-PeCDF	86.3	24-185		
12378-PeCDF	DL= 7.09	2.96	24.7		13C-23478-PeCDF	82.1	21-178		
23478-PeCDF	DL= 6.24	5.40	24.7		13C-123478-HxCDF	81.8	26-152		
123478-HxCDF	DL= 7.02	3.93	24.7		13C-123678-HxCDF	87.8	26-123		
123678-HxCDF	DL= 6.69	2.94	24.7		13C-234678-HxCDF	85.7	28-136		
234678-HxCDF	DL= 7.28	4.32	24.7		13C-123789-HxCDF	91.9	29-147		
123789-HxCDF	DL= 9.15	4.70	24.7		13C-1234678-HpCDF	54.0	28-143		
1234678-HpCDF	DL= 11.4	4.24	24.7		13C-1234789-HpCDF	56.3	26-138		
1234789-HpCDF	DL= 12.7	5.74	24.7						
OCDF	DL= 19.5	11.7	49.3						
Totals	Conc. (pg/L)	EMPC			CRS				
Total TCDD	DL= 4.52				37Cl4-2378-TCDD	92.2	35-197		
Total PeCDD	DL= 11.6								
Total HxCDD	DL= 9.31				DL - Signifies Non-Detect	(ND<) sample	specific detection lin	nit.	
Total HpCDD	192				EMPC - Estimated Maximum Possible Concentration due to ion abundance				
Total TCDF	DL= 4.02				ratio failure.				
Total PeCDF	DL= 7.09				(a) - Lower control limit - Upper control limit				
Total HxCDF	DL= 9.15				(b) - TEQ based on (2005)	World Health	o Organization (WHO) Toxic	
Total HpCDF	DL= 12.7				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b): 1.04 pg/L

> Analyst: JMH Reviewed by: BS

Date Analyzed: 4/18/2023

Client Sample ID: STSMH2712-Dup (A3D1042-06)

 Project ID:
 A3D1042
 Ceres Sample ID: 16252-003
 Date Received: 4/12/2023

 QC Batch #: 2848
 Date Extracted: 4/17/2023

 QC Batch #: 2848
 Date Extracted: 4/17/2023

 Date Collected: 4/10/2023
 Matrix: Aqueous
 Date Analyzed: 4/19/2023

Time Collected: 12:30 Sample Size: 1.010 L

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers	
2,3,7,8-TCDD	DL= 3.82	0.887	4.95		13C-2378-TCDD	65.7	25-164		
12378-PeCDD	DL= 7.69	2.56	24.8		13C-12378-PeCDD	82.1	25-181		
123478-HxCDD	DL= 11.9	3.08	24.8		13C-123478-HxCDD	63.1	32-141		
123678-HxCDD	DL= 10.4	5.29	24.8		13C-123678-HxCDD	71.4	28-130		
123789-HxCDD	DL= 10.2	13.1	24.8		13C-1234678-HpCDD	43.3	23-140		
1234678-HpCDD	56.3	5.15	24.8		13C-OCDD	34.5	17-157		
OCDD	369	8.50	49.5		13C-2378-TCDF	50.4	24-169		
2,3,7,8-TCDF	DL= 4.21	0.733	4.95		13C-12378-PeCDF	75.0	24-185		
12378-PeCDF	DL= 5.80	2.96	24.8		13C-23478-PeCDF	69.4	21-178		
23478-PeCDF	DL= 5.78	5.40	24.8		13C-123478-HxCDF	68.6	26-152		
123478-HxCDF	DL= 3.34	3.93	24.8		13C-123678-HxCDF	73.4	26-123		
123678-HxCDF	DL= 3.28	2.94	24.8		13C-234678-HxCDF	78.8	28-136		
234678-HxCDF	DL= 3.44	4.32	24.8		13C-123789-HxCDF	84.3	29-147		
123789-HxCDF	DL= 4.32	4.70	24.8		13C-1234678-HpCDF	47.5	28-143		
1234678-HpCDF	DL= 16.8	4.24	24.8		13C-1234789-HpCDF	59.0	26-138		
1234789-HpCDF	DL= 17.0	5.74	24.8						
OCDF	DL= 19.7	11.7	49.5						
Totals	Conc. (pg/L)	EMPC			CRS				
Total TCDD	DL= 3.82				37Cl4-2378-TCDD	80.9	35-197		
Total PeCDD	DL= 7.69								
Total HxCDD	DL= 11.9				DL - Signifies Non-Detect	(ND<) sample	specific detection lin	nit.	
Total HpCDD	139				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance	
Total TCDF	DL= 4.21				ratio failure.				
Total PeCDF	DL= 5.80				(a) - Lower control limit - Upper control limit				
Total HxCDF	DL= 4.32				(b) - TEQ based on (2005)	World Health	Organization (WHO) Toxic	
Total HpCDF	DL= 17.0				Equivalent Factors.				

Total Toxic Equivalency (TEQ min.) (b): 0.674 pg/L

Section VI: Sample Tracking

SUBCONTRACT ORDER

Apex Laboratories
A3D1042

M

Alac 4/10/29

SENDING LABORATORY:

Apex Laboratories

6700 S.W. Sandburg Street

Tigard, OR 97223

Phone: (503) 718-2323

Fax: (503) 336-0745

Project Manager: Darrell Auvil

RECEIVING LABORATORY:

Ceres Analytical Laboratory, Inc 4919 Windplay Drive, Suite 1 El Dorado Hills, CA 95762 Phone: (916) 932-5011

Fax: -9

Sample Name: STSMH2712		Water	Sampled: 04/10/23 12:30	(A3D1042-04) /
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (D)L Amber Glass - Non Preserved (E)L Amber Glass - Non Preserved	04/21/23 17:00	04/09/24 12:30	Ceres Lab	
Sample Name: STSMH1914		Water	Sampled: 04/10/23 12:42	(A3D1042-05)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (D) L Amber Glass - Non Preserved (E) L Amber Glass - Non Preserved	04/21/23 17:00	04/09/24 12:42	Ceres Lab	
Sample Name: STSMH2712-Dup		Water	Sampled: 04/10/23 12:30	(A3D1042-06) /
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (D) L Amber Glass - Non Preserved (E) L Amber Glass - Non Preserved	04/21/23 17:00	04/09/24 12:30	Ceres Lab	

Standard TAT

Designation of the second seco	4-11-23	UPS (Shipper)	
Released By	Date	Received By	Date /
UPS (Shipper)		14 A	7/12/27
Released By	Date	Received By	Date

Ceres ID: 16252	2001	Date/Time: 4/17/23 11.0
Client Project ID: A 3 01042		Received Temp: 2 // °C Acceptable: 6 // N
Chain of Custody Relinquished by signed?		Ø/N
Chain of Custody Received by signed?		Ø /N
Custody Seals?	Present?	Y / N
	Intact?	Y/N
	NA:	
Unlabeled / Illegible Samples		Y / 🕅
Proper Containers:	***************************************	∅/ N
Preservation Acceptable (Chemical or Temperatu	re)?	Ø/ N
Drinking Water, Sodium Thiosulfate present? Residual Cl? Aqueous sample pH:		Y / N / NA Y / Ø / NA NA
List Damaged/Samples:		

Rev 9

Page 11 of 12

Section VII: Qualifiers/Abbreviations

J Concentration found below the lower quantitation limit but greater

than zero.

B Analyte present in the associated Method Blank.

E Concentration found exceeds the Calibration range of the

HRGC/HRMS.

D This analyte concentration was calculated from a dilution.

X The concentration found is the estimated maximum possible

concentration due to chlorinated diphenyl ethers present in the

sample.

H Recovery limits exceeded. See cover letter.

* Results taken from dilution.

I Interference. See cover letter.

Conc. Concentration Found

DL Calculated Detection Limit

ND Non-Detect

% Rec. Percent Recovery

Project: PNW0319AR- Port of Portland Terminal	Completed by: Anya Epstein	Reviewed by: Todd Olsen
4 Stormwater Sampling		
Laboratory Report IDs/Laboratory: A3D0709 and	Date: 7/20/2023	Date: 7/31/2023
A3D01042/ Apex Laboratories, Tigard, OR		

Item	Yes	No	NA	Comments
A. Validation Summary				
1. Were data qualified as a result of the validation?		X		
a. Were any data rejected?		X		
2. Were the qualifications added to the appropriate Excel file (e.g., EDD with qualifiers file or flat file)?			X	
B. Package Completeness				
1. Have the data been provided in a Level II deliverable?	X			
2. Is a laboratory narrative or cover letter present?	X			
3. Has the correct compound list been reported?	X			
4. Are the reporting limits appropriate in order to support the project action limits?		X		The laboratory MDL for 2,3,7,8-TCDD did not meet the SLV stated in the project work plan.
C. Preservation/Lab Receipt/Analysis				
1. Were the samples properly preserved (Aqueous & solid: 0-6°C)?	X			
2. Were the holding times met (1 year from collection to extraction; 40 days from extraction to analysis)	X			
3. For sediment is the % moisture >70% for any of the samples?			X	

Page 1 of 6

Item	Yes	No	NA	Comments
4. For sediments, is the % moisture >90% for any of the samples?			X	
5. Were any data qualified based on the responses for this section?		X		
D. Blanks				
1. Was a method blank analyzed at the proper frequency?	X			
a. Were analytes detected in the method blank?		X		
2. Were source blanks analyzed?		X		
a. Were analytes detected in the source blank?			X	
3. Were equipment blanks analyzed?		X		
a. Were analytes detected in the equipment blank?			X	
4. Were any data qualified based on the responses for this		X		
section?		Λ		
E. Quality Control Checks				
Internal Standards				
1. Were the appropriate internal standards listed?	X			
2. Are the recoveries within the laboratory limits?	X			
MS/MSD				
				No MS/MSD pairs were reported. OPR samples
3. Frequency of 1/20 samples?		X		were used to assess accuracy, and batch-specific
				precision was not assessed.
4. Were full analyte spikes used for the MS/MSD?			X	
5. Spike recoveries within limits?			X	
6. RPD within limits?			X	

Page 2of 6

Item	Yes	No	NA	Comments
OPR		I.	II.	
7. Was an OPR sample analyzed with each analytical batch?	X			
8. Were full analyte spikes used for the OPR?	X			
9. Were recoveries within the laboratory limits?	X			
10. Were any data qualified based on the responses for this section?		X		
F. Compound Identification and Quantitation				
1. Were samples analyzed at a dilution?		X		
a. Were reporting limits adjusted for dilution?			X	
2. Were any data qualified based on the responses for this		X		
section?		Λ		
G. Field Duplicate				
1. Were field duplicates collected?	X			One field duplicate, STSMH2712-DUP, was collected with the sample set, associated with parent sample STSMH2712.
2. Were they within the QAPP or validation acceptance criteria (≤30% RPD for aqueous and ≤50% RPD for solid)?	X			
3. Were any data qualified based on the responses for this section?		X		

Comments: The OCDF result for sample STSMH1914 was J flagged in the level II laboratory report due to the sample result being greater than the MDL but less than the RL; however, the J flag was not included for this result in the EDD. A J qualifier was added to the validation EDD for consistency with the laboratory report.

Page 3of 6

INSTRUCTIONS

- 1. Data shall be qualified using professional judgment along with Method 1613B and the guidance provided in the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, November 2020 (EPA 540-R-20-005).
- 2. Data qualifiers which will be applied to the data as applicable are as follows:
 - U: The analyte was analyzed for, but was not detected at or above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
 - J: The analyte was positively identified; the associated numerical value is an estimated concentration of the analyte in the sample.
 - J-: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased low.
 - J+: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased high.
 - UJ: The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
 - R: The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ACRONYMS

EDD Electronic Data Deliverable

EPA Environmental Protection Agency

ID Identification

MDL Method Detection Limit

MS/MSD Matrix Spike/Matrix spike duplicate

NA Not applicable

OPR Ongoing Precision and Recovery

RPD Relative percent difference

SLV Surface Water Screening Level Values from Table 3-1 of the Portland Harbor Joint Source Control Strategy (DEQ and

EPA, 2005).

USEPA United States Environmental Protection Agency

DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS recovery outside limits and RPD outside limits
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed; no validation qualification required

Project: PNW0319AR- Port of Portland Terminal	Completed by: Anya Epstein	Reviewed by: Todd Olsen
4 Stormwater Sampling		
Laboratory Report IDs/ Laboratory: A3D0709	Date: 7/20/2023	Date: 7/31/2023
and A3D01042/ Apex Laboratories, Tigard, OR		

Item	Yes	No	NA	Comments
		<u>'</u>		
A. Validation Summary				
1. Were data qualified as a result of the validation?	X			Refer to the comments section at the end of this checklist.
a. Were any data rejected?		X		
2. Were the qualifications added to the appropriate Excel file (e.g., EDD with qualifiers file or flat file)?	X			
B. Package Completeness				
1. Have the data been provided in a Level II deliverable?	X			
2. Is a laboratory narrative or cover letter present?	X			
3. Has the correct compound list been reported?	X			
4. Are the reporting limits appropriate in order to support the project action limits?			X	
C. Preservation/Lab Receipt/Analysis				
1. Were the samples properly preserved (Aqueous & solid: 0-6°C)?	X			
2. Were the holding times met (7 days from sampling to analysis for both aqueous and solid samples)?	X			

Page 1 of 7

Item	Yes	No	NA	Comments
5. Were any data qualified based on the responses for this		V		
section?		X		
D. Blanks				
1. Was a method blank analyzed at the proper frequency?	X			
a. Were analytes detected in the method blank?		X		
2. Were source blanks analyzed?		X		
a. Were analytes detected in the source blank?			X	
3. Were equipment blanks analyzed?		X		
a. Were analytes detected in the equipment blank?			X	
4. Were any data qualified based on the responses for this		X		
section?		A		
E. Quality Control Checks				
MS/MSD				
				No MS/MSD pairs were reported. SRM samples
1. Frequency of 1/20 samples?		X		were used to assess accuracy, and laboratory
				duplicate samples were used to assess precision.
2. Were full analyte spikes used for the MS/MSD?			X	
3. Spike recoveries within limits?			X	
4. RPD within limits?			X	
SRM				
5. Was an SRM sample analyzed with each analytical	X			
batch?	Λ			
6. Were full analyte spikes used for the SRM?	X			
7. Were recoveries within the laboratory limits?	X			

Page 2 of 7

Item	Yes	No	NA	Comments
10. Were any data qualified based on the responses for this section?		X		
F. Compound Identification and Quantitation				
1. Were samples analyzed at a dilution?		X		
a. Were reporting limits adjusted for dilution?			X	
2. Were any data qualified based on the responses for this section?		X		
G. Laboratory Duplicate				
1. Were laboratory duplicates analyzed with each analytical batch?	X			
2. Were they within the QAPP or validation acceptance criteria (≤30% RPD for aqueous and ≤50% RPD for solid)?	X			
3. Were any data qualified based on the responses for this section?		X		

Comments:

• The TSS concentrations in samples STSMH2712 collected on 4/1/2023, STSMH2712 collected on 4/10/2023, STSMH2710, STSMH2603, STSMH2615, and STSMH2712-DUP were flagged by the laboratory with "EST_s", indicating solids results are reported as estimates when less than 2.5 mg residue is recovered during analysis; all method QC requirements have been met for samples, and reporting levels are adjusted based on volume filtered. Therefore, the TSS concentrations in the associated samples were J flagged as estimated.

Sample ID	Compound	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
STSMH2712	Total Suspended Solids	13	EST_s	13	J	13
STSMH2710	Total Suspended Solids	6.0	EST_s	6.0	J	13
STSMH2603	Total Suspended Solids	7.0	EST_s	7.0	J	13
STSMH2615	Total Suspended Solids	19	EST_s	19	J	13
STSMH2712	Total Suspended Solids	7.0	EST_s	7.0	J	13
STSMH2712-DUP	Total Suspended Solids	9.0	EST_s	9.0	J	13

mg/L - Milligram per liter

EST_s - Laboratory flag indicating solids results are reported as estimates when less than 2.5 mg residue is recovered during analysis. All method QC requirements have been met for samples, and reporting levels are adjusted based on volume filtered.

INSTRUCTIONS

- 1. Data shall be qualified using professional judgment along with Standard Method 2540D and the guidance provided in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, November 2020 (EPA 542-R-20-006).
- 2. Data qualifiers which will be applied to the data as applicable are as follows:
 - U: The analyte was analyzed for, but was not detected at or above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
 - J: The analyte was positively identified; the associated numerical value is an estimated concentration of the analyte in the sample.
 - J-: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased low.
 - J+: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased high.
 - UJ: The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
 - R: The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ACRONYMS

EDD Electronic Data Deliverable

ID Identification

MS/MSD Matrix Spike/Matrix spike duplicate

NA Not applicable

RPD Relative percent difference SRM Standard Reference Material TSS Total Suspended Solids

USEPA United States Environmental Protection Agency

DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS recovery outside limits and RPD outside limits
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed; no validation qualification required

Project: PNW0319AR- Port of Portland Terminal	Completed by: Anya Epstein	Reviewed by: Todd Olsen
4 Stormwater Sampling		
Laboratory Report IDs/Laboratory: A3D0709 and	Date: 7/20/2023	Date: 7/31/2023
A3D01042/ Apex Laboratories, Tigard, OR		

Item	Yes	No	NA	Comments
Tem .	105	110	1111	Continents
A. Validation Summary				
1. Were data qualified as a result of the validation?		X		
a. Were any data rejected?		X		
2. Were the qualifications added to the appropriate Excel file (e.g., EDD with qualifiers file or flat file)?			X	
B. Package Completeness				
1. Have the data been provided in a Level II deliverable?	X			
2. Is a laboratory narrative or cover letter present?	X			
3. Has the correct compound list been reported?	X			
4. Are the reporting limits appropriate in order to support the project action limits?	X			
C. Preservation/Lab Receipt/Analysis				
1. Were the samples properly preserved (Aqueous & solid: 0-6°C)?	X			
2. Were the holding times met (1 year from collection to extraction; 40 days from extraction to analysis)	X			
3. For sediment is the % moisture >70% for any of the samples?			X	

Page 1of 6

Data Validation Checklist - USEPA Method 8082 Polychlorinated Biphenyl Data Review

Item	Yes	No	NA	Comments
4. For sediments, is the % moisture >90% for any of the samples?			X	
5. Were any data qualified based on the responses for this section?		X		
D. Blanks				
1. Was a method blank analyzed at the proper frequency?	X			
a. Were analytes detected in the method blank?		X		
2. Were source blanks analyzed?		X		
a. Were analytes detected in the source blank?			X	
3. Were equipment blanks analyzed?		X		
a. Were analytes detected in the equipment blank?			X	
4. Were any data qualified based on the responses for this		X		
section?		Λ		
E. Quality Control Checks				
Surrogates				
1. Were the appropriate surrogates listed?	X			
2. Are the recoveries within the laboratory limits?	X			
MS/MSD	Λ			
TION TION				No MS/MSD pairs were reported. LCS/ LCSD
3. Frequency of 1/20 samples?		X		pairs were used to assess precision and accuracy.
4. Were full analyte spikes used for the MS/MSD?			X	
5. Spike recoveries within limits?			X	
6. RPD within limits?			X	
LCS/ LCSD		1	·I	•

Page 2of 6

Item	Yes	No	NA	Comments
7. Was an LCS/LCSD pair analyzed with each analytical batch?	X			
8. Were full analyte spikes used for the LCS and LCSD?	X			
9. Were recoveries within the laboratory limits?	X			
10. RPD within limits?	X			
11. Were any data qualified based on the responses for this section?		X		
F. Compound Identification and Quantitation				
1. Were samples analyzed at a dilution?		X		
a. Were reporting limits adjusted for dilution?			X	
2. Were any data qualified based on the responses for this section?		X		
G. Field Duplicate				
1. Were field duplicates collected?		X		
2. Were they within the QAPP or validation acceptance				
criteria (≤30% RPD for aqueous and ≤50% RPD for			X	
solid)?				
3. Were any data qualified based on the responses for this section?		X		

Comments:

• All PCB results were flagged by the laboratory with "C-07", indicating the sample extracts underwent sulfuric acid cleanup by EPA method 3665A, sulfur cleanup by EPA method 3660B, and Florisil cleanup by EPA method 3620B in order to minimize matrix interference. Since the batch quality control samples also underwent these cleanup procedures, and based on professional and technical judgement, data quality was not considered affected and no qualifications were applied to the data.

Page 3of 6

INSTRUCTIONS

- 1. Data shall be qualified using professional judgment along with Method 8082 and the guidance provided in the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, November 2020 (EPA 540-R-20-005).
- 2. Data qualifiers which will be applied to the data as applicable are as follows:
 - U: The analyte was analyzed for, but was not detected at or above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
 - J: The analyte was positively identified; the associated numerical value is an estimated concentration of the analyte in the sample.
 - J-: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased low.
 - J+: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased high.
 - UJ: The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
 - R: The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ACRONYMS

EDD Electronic Data Deliverable

ID Identification

LCS/LCSD Laboratory control spike/Laboratory control spike duplicate

MDL Method Detection Limit

MS/MSD Matrix Spike/Matrix spike duplicate

NA Not applicable

PCB Polychlorinated Biphenyls RPD Relative percent difference

USEPA United States Environmental Protection Agency

Page 5of 6

DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS recovery outside limits and RPD outside limits
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed; no validation qualification required

Project: PNW0319AR- Port of Portland Terminal	Completed by: Anya Epstein	Reviewed by: Todd Olsen
4 Stormwater Sampling		
Laboratory Report IDs/Laboratory: A3D0709 and	Date: 7/20/2023	Date: 7/31/2023
A3D01042/ Apex Laboratories, Tigard, OR		

Item	Yes	No	NA	Comments			
A. Validation Summary							
1. Were data qualified as a result of the Stage 2A validation?	X			Refer to section G2 and the comments section at the end of this checklist.			
a. Were any data rejected?		X					
2. Were the qualifications added to the appropriate Excel file (e.g., EDD with qualifiers file or flat file)?							
B. Package Completeness							
1. Have the data been provided in a Level II deliverable?	X						
2. Is a laboratory narrative or cover letter present?	X						
3. Has the correct compound list been reported?	X						
4. Are the reporting limits appropriate in order to support the project action limits?		X		The laboratory MDLs for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene did not meet CULs stated in the project work plan.			
C. Preservation/Lab Receipt/Analysis							
1. Were the samples properly preserved (Aqueous & solid: 0-6°C)?	X						

Page 1 of 7

Item	Yes	No	NA	Comments
2. Were the holding times met (Aqueous samples- 7 days from collection to extraction, solid samples- 14 days from collection to extraction; analysis- 40 days from extraction to analysis for both aqueous and solid)	X			
3. Were any data qualified based on the responses for this section?		X		
D. Di. J.				
D. Blanks	37		1	T
1. Was a method blank analyzed at the proper frequency?	X	V		
a. Were analytes detected in the method blank?		X		
2. Were source blanks analyzed?		Λ	X	
a. Were analytes detected in the source blank?		X	Λ	
3. Were equipment blanks analyzed?		Λ	X	
a. Were analytes detected in the equipment blank?4. Were any data qualified based on the responses for this			Λ	
4. Were any data quantied based on the responses for this section?		X		
E. Quality Control Checks				
Surrogates				
1. Were the appropriate surrogates listed?	X			
2. Are the recoveries within the laboratory limits?	X			
MS/MSD				
3. Frequency of 1/20 samples?		X		No MS/MSD pairs were reported. LCS/ LCSD pairs
1				were used to assess precision and accuracy.
4. Were full analyte spikes used for the MS/MSD?			X	
5. Spike recoveries within limits?			X	
6. RPD within limits?			X	
LCS/ LCSD				

Page 2 of 7

Item	Yes	No	NA	Comments
7. Was an LCS/ LCSD pair analyzed with each analytical batch?	X			
8. Were full analyte spikes used for the LCS and LCSD?	X			
9. Were recoveries within the laboratory limits?	X			
10. RPD within limits?	X			
11. Were any data qualified based on the responses for this section?		X		
F. Compound Identification and Quantitation	ı	_	T	T
1. Were samples analyzed at a dilution?		X		
a. Were reporting limits adjusted for dilution?			X	
2. Were any data qualified based on the responses for this section?		X		
	<u>'</u>			
G. Field Duplicate				
1. Were field duplicates collected?	X			One field duplicate, STSMH2712-DUP, was collected with the sample set, associated with parent sample STSMH2712.
2. Were they within the validation acceptance criteria (≤30% RPD for aqueous and ≤50% RPD for solid)?		X		Benz(a)anthracene and benzo(k)fluoranthene were detected at estimated concentrations greater than the MDLs and less than the RLs in field duplicate STSMH2712-DUP and detected at concentrations greater than the RLs in sample STSMH2712, resulting in a noncalculable RPDs between the results. Therefore, the benz(a)anthracene and benzo(k)fluoranthene concentrations in the field duplicate pair were J qualified as estimated.
3. Were any data qualified based on the responses for this section?	X			

Comments:

Page 3 of 7

- The following sample concentrations were flagged by the laboratory with "M-05", indicating estimated results due to peak separation for structural isomers being insufficient for accurate quantification; therefore, the benzo(k)fluoranthene, benz(a)anthracene, and chrysene concentrations in the associated samples were J flagged as estimated.
 - o Benzo(k)fluoranthene concentrations in samples STSMH2712 collected on 4/1/2023 and STSMH2712 collected on 4/10/2023
 - o Benz(a)anthracene concentration in sample STSMH2712 collected on 4/10/2023
 - o Chrysene concentrations in samples STSMH2712 & STSMH2712-DUP collected on 4/10/2023

Sample ID	Compound	Laboratory Result (µg/L)	Laboratory Flag	Validation Result (μg/L)	Validation Qualifier	Reason Code
STSMH2712	Benz(a)anthracene	0.0188	M-05	0.0188	J	7
STSMH2712-DUP	Benz(a)anthracene	0.0153	J	0.0153	J	7
STSMH2712	Benzo(k)fluoranthene	0.0164	M-05	0.0164	J	7
STSMH2712-DUP	Benzo(k)fluoranthene	0.0137	J	0.0137	J	7

Sample ID	Compound	Laboratory Result (µg/L)	Laboratory Flag	Validation Result (μg/L)	Validation Qualifier	Reason Code
STSMH2712	Benzo(k)fluoranthene	0.0209	M-05	0.0209	J	13
STSMH2712	Benz(a)anthracene	0.0188	M-05	0.0188	J	13
STSMH2712	Benzo(k)fluoranthene	0.0164	M-05	0.0164	J	13
STSMH2712	Chrysene	0.024	M-05	0.024	J	13
STSMH2712-DUP	Chrysene	0.0217	M-05	0.0217	J	13

μg/L - Microgram per liter

M-05 – Laboratory flag indicating estimated results. Peak separation for structural isomers is insufficient for accurate quantification.

INSTRUCTIONS

- 1. Data shall be qualified using professional judgment along with the analytical method USEPA 8270E, the USEPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Data Review, November 2020 (EPA 540-R-20-005).
- 2. Data qualifiers which will be applied to the data as applicable are as follows:
 - U: The analyte was analyzed for, but was not detected at or above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
 - J: The analyte was positively identified; the associated numerical value is an estimated concentration of the analyte in the sample.
 - J-: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased low.
 - J+: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased high.
 - UJ: The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
 - R: The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Geosyntec Consultants Sacramento Stage 2A Data Review Data Validation Checklist - USEPA Method 8270E Semi-Volatiles Data Review

ACRONYMS

CUL Surface Water Cleanup Levels from Table 17 of the Portland Harbor Record of Decision (EPA, 2017).

EDD Electronic Data Deliverable

ID Identification

LCS Laboratory Control Spike MDL Method Detection Limit

MS/MSD Matrix Spike/Matrix Spike Duplicate

NA Not Applicable
QC Quality Control
RL Reporting Limit

RPD Relative Percent Difference

USEPA United States Environmental Protection Agency

Laboratory Report IDs: A3D0709 and A3D01042

Geosyntec Consultants Sacramento Stage 2A Data Review Data Validation Checklist - USEPA Method 8270E Semi-Volatiles Data Review

DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS recovery outside limits and RPD outside limits
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed; no validation qualification required

Laboratory Report IDs: A3D0709 and A3D01042

Geosyntec Consultants Sacramento Stage 2A Data Review Data Validation Checklist - Completeness Review

Project: PNW0319AR- Port of Portland Terminal 4 Stormwater Sampling	Completed by: Anya Epstein	Reviewed by: Todd Olsen
Laboratory Report IDs/ Laboratory: A3D0709 and A3D01042/ Apex Laboratories, Tigard, OR	Date: 7/20/2023	Date: 7/31/2023

Item	Yes	No	NA	Comments
A. Completeness/Lab Receipt/Analysis				
1. Is the project name listed on COCs?	X			
2. Are the client IDs listed?	X			
3. IDs match those listed on COC and in the report?	X			
4. Are the sample collection date & time listed for each sample?	X			
5. Is the sample matrix listed?	X			
6. Is the sample preservation noted?			X	
7. Are the requested analyses noted?	X			
8. Were the samples properly relinquished and received?	X			
a. Proper documentation of dates and times?	X			
9. Date & time of lab receipt noted?	X			
10. Lab completed analyses for all samples collected?	X			
11. Sample receipt issues noted/described?			X	
12. Were any data qualified based on the responses for this section?		X		

Comments:

- Incorrect error corrections were observed on the COCs included in all reports, instead of the proper procedure of a single strike through, correction, and initials and date of person making the corrections.
- The 1613B samples were subcontracted to CERES Analytical Laboratory. The subcontracted laboratory reports were included as part of the in the Apex laboratory reports.

Page 1 of 2

Laboratory Report IDs: A3D0709 and A3D01042

Geosyntec Consultants Sacramento Stage 2A Data Review Data Validation Checklist - Completeness Review

• Surrogates were reported as percent recovery in the laboratory report, but reported as concentrations in micrograms per liter in the EDDs for methods 8082, 1613B, and 8270E.

ACRONYMS

COC	Chain of Custody
ID	Identification
NA	Not applicable

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Monday, February 12, 2024
Ariel Mosbrucker
Geosyntec Consultants, Inc
920 SW Sixth Avenue, Suite 600
Portland, OR 97204

RE: A4A1516 - POP - T4 Stormwater - PNW0524C

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4A1516, which was received by the laboratory on 1/29/2024 at 9:21:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: DAuvil@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 2.5 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

 920 SW Sixth Avenue, Suite 600
 Project Number:
 PNW0524C
 Report ID:

 Portland, OR 97204
 Project Manager:
 Ariel Mosbrucker
 A4A1516 - 02 12 24 1511

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION											
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received							
STSMH2710	A4A1516-01	Water	01/26/24 14:50	01/29/24 09:21							
STSMH2603	A4A1516-02	Water	01/26/24 14:53	01/29/24 09:21							
STSMH2615	A4A1516-03	Water	01/26/24 14:56	01/29/24 09:21							
STSMH2615-DUP	A4A1516-04	Water	01/26/24 15:10	01/29/24 09:21							
STSMH2712	A4A1516-05	Water	01/27/24 14:10	01/29/24 09:21							
STSMH1914	A4A1516-06	Water	01/27/24 14:20	01/29/24 09:21							

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc

Project:

POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project Number: PNW0524C
Project Manager: Ariel Mosbrucker

Report ID: A4A1516 - 02 12 24 1511

ANALYTICAL SAMPLE RESULTS

	Polychlorinated Biphenyls by EPA 8082A												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes					
STSMH1914 (A4A1516-06)				Matrix: Wate	er	Batch:	24B0262	C-09, DCNT					
Aroclor 1016	ND	0.0115	0.0230	ug/L	1	02/09/24 10:27	EPA 8082A						
Aroclor 1221	ND	0.0115	0.0230	ug/L	1	02/09/24 10:27	EPA 8082A						
Aroclor 1232	ND	0.0115	0.0230	ug/L	1	02/09/24 10:27	EPA 8082A						
Aroclor 1242	ND	0.0115	0.0230	ug/L	1	02/09/24 10:27	EPA 8082A						
Aroclor 1248	ND	0.0115	0.0230	ug/L	1	02/09/24 10:27	EPA 8082A						
Aroclor 1254	ND	0.0115	0.0230	ug/L	1	02/09/24 10:27	EPA 8082A						
Aroclor 1260	ND	0.0115	0.0230	ug/L	1	02/09/24 10:27	EPA 8082A						
Aroclor 1262	ND	0.0115	0.0230	ug/L	1	02/09/24 10:27	EPA 8082A						
Aroclor 1268	ND	0.0115	0.0230	ug/L	1	02/09/24 10:27	EPA 8082A						
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 75 %	Limits: 40-135 %	ó 1	02/09/24 10:27	EPA 8082A						

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc

920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project: POP - T4 Stormwater

Project Number: PNW0524C
Project Manager: Ariel Mosbrucker

Report ID: A4A1516 - 02 12 24 1511

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
STSMH2712 (A4A1516-05)				Matrix: Wate)r	Batch:	24A0985	
Acenaphthene	ND	0.0191	0.0381	ug/L	1	01/31/24 12:57	EPA 8270E LVI	
Acenaphthylene	ND	0.0191	0.0381	ug/L	1	01/31/24 12:57	EPA 8270E LVI	
Anthracene	ND	0.0191	0.0381	ug/L	1	01/31/24 12:57	EPA 8270E LVI	
Benz(a)anthracene	ND	0.00953	0.0191	ug/L	1	01/31/24 12:57	EPA 8270E LVI	
Benzo(a)pyrene	0.0133	0.00953	0.0191	ug/L	1	01/31/24 12:57	EPA 8270E LVI	J
Benzo(b)fluoranthene	0.0219	0.00953	0.0191	ug/L	1	01/31/24 12:57	EPA 8270E LVI	
Benzo(k)fluoranthene	ND	0.00953	0.0191	ug/L	1	01/31/24 12:57	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND	0.0191	0.0381	ug/L	1	01/31/24 12:57	EPA 8270E LVI	
Chrysene	0.0124	0.00953	0.0191	ug/L	1	01/31/24 12:57	EPA 8270E LVI	J
Dibenz(a,h)anthracene	ND	0.00953	0.0191	ug/L	1	01/31/24 12:57	EPA 8270E LVI	
Fluoranthene	0.0214	0.0191	0.0381	ug/L	1	01/31/24 12:57	EPA 8270E LVI	J
Fluorene	ND	0.0191	0.0381	ug/L	1	01/31/24 12:57	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	0.0143	0.00953	0.0191	ug/L	1	01/31/24 12:57	EPA 8270E LVI	J
2-Methylnaphthalene	ND	0.0381	0.0762	ug/L	1	01/31/24 12:57	EPA 8270E LVI	
Naphthalene	ND	0.0381	0.0762	ug/L	1	01/31/24 12:57	EPA 8270E LVI	
Phenanthrene	ND	0.0381	0.0762	ug/L	1	01/31/24 12:57	EPA 8270E LVI	
Pyrene	0.0238	0.0191	0.0381	ug/L	1	01/31/24 12:57	EPA 8270E LVI	J
Surrogate: Acenaphthylene-d8 (Surr)		Recove	ery: 110 %	Limits: 78-134 %	6 I	01/31/24 12:57	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			117 %	80-132 %	6 I	01/31/24 12:57	EPA 8270E LVI	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project: Project Number: PNW0524C

Project Number: PNW0524C Report ID:
Project Manager: Ariel Mosbrucker A4A1516 - 02 12 24 1511

ANALYTICAL SAMPLE RESULTS

Solid and Moisture Determinations												
	Sample	Detection	Reporting			Date						
Analyte	Result	Limit	Limit	Units Dilution		Analyzed	Method Ref.	Notes				
STSMH2710 (A4A1516-01)				Matrix: Wa	ater							
Batch: 24A0938												
Total Suspended Solids	13.0		5.00	mg/L	SM 2540 D	CONT,TS						
STSMH2603 (A4A1516-02)				Matrix: Wa	ater							
Batch: 24A0938												
Total Suspended Solids	6.00		5.00	mg/L	1	01/30/24 14:50	SM 2540 D	CONT,TS				
STSMH2615 (A4A1516-03)		Matrix: Water										
Batch: 24A0938												
Total Suspended Solids	8.00		5.00	mg/L	1	01/30/24 14:50	SM 2540 D	CONT,TSS				
STSMH2615-DUP (A4A1516-04)				Matrix: Wa	ater							
Batch: 24A0938	 _					 _	 _					
Total Suspended Solids	12.0		5.00	mg/L	1	01/30/24 14:50	SM 2540 D	CONT,TSS				
STSMH2712 (A4A1516-05)				Matrix: Wa	ater							
Batch: 24B0056	 _						 _					
Total Suspended Solids	6.00		5.00	mg/L	1	02/05/24 14:15	SM 2540 D	TSS				
STSMH1914 (A4A1516-06)				Matrix: Wa	ater							
Batch: 24B0056												
Total Suspended Solids	242		10.0	mg/L	1	02/05/24 14:15	SM 2540 D					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

 920 SW Sixth Avenue, Suite 600
 Project Number:
 PNW0524C
 Report ID:

 Portland, OR 97204
 Project Manager:
 Ariel Mosbrucker
 A4A1516 - 02 12 24 1511

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	inated B	iphenyls l	by EPA 80)82A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24B0262 - EPA 3510C	(Neutral pl	l)					Wa	ter				
Blank (24B0262-BLK1)			Prepared	: 02/08/24	06:06 Anal	yzed: 02/09	/24 09:34					C-09
EPA 8082A												
Aroclor 1016	ND	0.0100	0.0200	ug/L	1							
Aroclor 1221	ND	0.0100	0.0200	ug/L	1							
Aroclor 1232	ND	0.0100	0.0200	ug/L	1							
Aroclor 1242	ND	0.0100	0.0200	ug/L	1							
Aroclor 1248	ND	0.0100	0.0200	ug/L	1							
Aroclor 1254	ND	0.0100	0.0200	ug/L	1							
Aroclor 1260	ND	0.0100	0.0200	ug/L	1							
Aroclor 1262	ND	0.0100	0.0200	ug/L	1							
Aroclor 1268	ND	0.0100	0.0200	ug/L	1							
Surr: Decachlorobiphenyl (Surr)		Reco	very: 79 %	Limits: 40)-135 %	Dilt	ution: 1x					
LCS (24B0262-BS1)			Prepared	: 02/08/24	06:06 Anal	yzed: 02/09	/24 09:52					C-09
EPA 8082A												
Aroclor 1016	0.728	0.0100	0.0200	ug/L	1	1.25		58	46-129%			
Aroclor 1260	0.949	0.0100	0.0200	ug/L	1	1.25		76	45-134%			
Surr: Decachlorobiphenyl (Surr)		Reco	very: 73 %	Limits: 40	0-135 %	Dilt	ution: 1x					
LCS Dup (24B0262-BSD1)			Prepared	: 02/08/24	06:06 Anal	yzed: 02/09	/24 10:10					C-09, Q-19
EPA 8082A												
Aroclor 1016	0.747	0.0100	0.0200	ug/L	1	1.25		60	46-129%	3	30%	
Aroclor 1260	0.980	0.0100	0.0200	ug/L	1	1.25		78	45-134%	3	30%	
Surr: Decachlorobiphenyl (Surr)		Reco	very: 78 %	Limits: 40	0-135 %	Dilt	ution: 1x					

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number:PNW0524CReport ID:Portland, OR 97204Project Manager:Ariel MosbruckerA4A1516 - 02 12 24 1511

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polya	omatic Hydrocarbons (PAHs) by EPA 8270E (Large Volume Injection)											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 24A0985 - EPA 3511 (B	ottle Extra	ction)					Wa	ter					
Blank (24A0985-BLK1)			Prepared	: 01/31/24	07:37 Anal	yzed: 01/31/	/24 10:15						
EPA 8270E LVI													
Acenaphthene	ND	0.0160	0.0320	ug/L	1								
Acenaphthylene	ND	0.0160	0.0320	ug/L	1								
Anthracene	ND	0.0160	0.0320	ug/L	1								
Benz(a)anthracene	ND	0.00800	0.0160	ug/L	1								
Benzo(a)pyrene	ND	0.00800	0.0160	ug/L	1								
Benzo(b)fluoranthene	ND	0.00800	0.0160	ug/L	1								
Benzo(k)fluoranthene	ND	0.00800	0.0160	ug/L	1								
Benzo(g,h,i)perylene	ND	0.0160	0.0320	ug/L	1								
Chrysene	ND	0.00800	0.0160	ug/L	1								
Dibenz(a,h)anthracene	ND	0.00800	0.0160	ug/L	1								
Fluoranthene	ND	0.0160	0.0320	ug/L	1								
Fluorene	ND	0.0160	0.0320	ug/L	1								
Indeno(1,2,3-cd)pyrene	ND	0.00800	0.0160	ug/L	1								
1-Methylnaphthalene	ND	0.0320	0.0640	ug/L	1								
2-Methylnaphthalene	ND	0.0320	0.0640	ug/L	1								
Naphthalene	ND	0.0320	0.0640	ug/L	1								
Phenanthrene	ND	0.0320	0.0640	ug/L	1								
Pyrene	ND	0.0160	0.0320	ug/L	1								
Carbazole	ND	0.0160	0.0320	ug/L	1								
Dibenzofuran	ND	0.0160	0.0320	ug/L	1								
Surr: Acenaphthylene-d8 (Surr)		Recove	ery: 105 %	Limits: 78	3-134 %	Dilı	ution: 1x						
Benzo(a)pyrene-d12 (Surr)			117 %	80	-132 %		"						
LCS (24A0985-BS1)			Prepared	: 01/31/24	07:37 Anal	yzed: 01/31/	/24 10:47						
EPA 8270E LVI													
Acenaphthene	1.50	0.0160	0.0320	ug/L	1	1.60		94	80-120%				
Acenaphthylene	1.58	0.0160	0.0320	ug/L	1	1.60		99	80-124%				
Anthracene	1.58	0.0160	0.0320	ug/L	1	1.60		99	80-123%				
Benz(a)anthracene	1.65	0.00800	0.0160	ug/L	1	1.60		103	80-122%				
Benzo(a)pyrene	1.76	0.00800	0.0160	ug/L	1	1.60		110	80-129%				
Benzo(b)fluoranthene	1.64	0.00800	0.0160	ug/L	1	1.60		102	80-124%				
Benzo(k)fluoranthene	1.68	0.00800	0.0160	ug/L	1	1.60		105	80-125%				
Benzo(g,h,i)perylene	1.55	0.0160	0.0320	ug/L	1	1.60		97	80-120%				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number:PNW0524CReport ID:Portland, OR 97204Project Manager:Ariel MosbruckerA4A1516 - 02 12 24 1511

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24A0985 - EPA 3511 (B	ottle Extra	ction)					Wa	ter				
LCS (24A0985-BS1)			Prepared	: 01/31/24	07:37 Anal	lyzed: 01/31/	/24 10:47					
Chrysene	1.57	0.00800	0.0160	ug/L	1	1.60		98	80-120%			
Dibenz(a,h)anthracene	1.54	0.00800	0.0160	ug/L	1	1.60		96	80-120%			
Fluoranthene	1.89	0.0160	0.0320	ug/L	1	1.60		118	80-126%			
Fluorene	1.65	0.0160	0.0320	ug/L	1	1.60		103	77-127%			
Indeno(1,2,3-cd)pyrene	1.47	0.00800	0.0160	ug/L	1	1.60		92	80-121%			
1-Methylnaphthalene	1.77	0.0320	0.0640	ug/L	1	1.60		111	53-148%			
2-Methylnaphthalene	1.68	0.0320	0.0640	ug/L	1	1.60		105	48-150%			
Naphthalene	1.47	0.0320	0.0640	ug/L	1	1.60		92	78-120%			
Phenanthrene	1.47	0.0320	0.0640	ug/L	1	1.60		92	80-120%			
Pyrene	1.89	0.0160	0.0320	ug/L	1	1.60		118	80-125%			
Carbazole	1.79	0.0160	0.0320	ug/L	1	1.60		112	65-141%			
Dibenzofuran	1.50	0.0160	0.0320	ug/L	1	1.60		94	76-121%			
Surr: Acenaphthylene-d8 (Surr)		Recove	ery: 109 %	Limits: 78	8-134 %	Dilu	tion: 1x					
Benzo(a)pyrene-d12 (Surr)			117 %	80	-132 %		"					
CCS Dup (24A0985-BSD1) <u>EPA 8270E LVI</u>			Prepared	: 01/31/24	07:37 Anal	lyzed: 01/31/	/24 11:20					Q
Acenaphthene	1.52	0.0160	0.0320	ug/L	1	1.60		95	80-120%	1	30%	
Acenaphthylene	1.57	0.0160	0.0320	ug/L	1	1.60		98	80-124%	1	30%	
Anthracene	1.61	0.0160	0.0320	ug/L	1	1.60		101	80-123%	2	30%	
Benz(a)anthracene	1.61	0.00800	0.0160	ug/L	1	1.60		100	80-122%	3	30%	
Benzo(a)pyrene	1.77	0.00800	0.0160	ug/L	1	1.60		111	80-129%	0.5	30%	
Benzo(b)fluoranthene	1.68	0.00800	0.0160	ug/L	1	1.60		105	80-124%	3	30%	
Benzo(k)fluoranthene	1.68	0.00800	0.0160	ug/L	1	1.60		105	80-125%	0.5	30%	
Benzo(g,h,i)perylene	1.57	0.0160	0.0320	ug/L	1	1.60		98	80-120%	1	30%	
Chrysene	1.56	0.00800	0.0160	ug/L	1	1.60		97	80-120%	0.4	30%	
Dibenz(a,h)anthracene	1.54	0.00800	0.0160	ug/L	1	1.60		96	80-120%	0.1	30%	
Fluoranthene	1.90	0.0160	0.0320	ug/L	1	1.60		119	80-126%	0.8	30%	
Fluorene	1.66	0.0160	0.0320	ug/L	1	1.60		104	77-127%	0.6	30%	
Indeno(1,2,3-cd)pyrene	1.47	0.00800	0.0160	ug/L	1	1.60		92	80-121%	0.03	30%	
1-Methylnaphthalene	1.79	0.0320	0.0640	ug/L	1	1.60		112	53-148%	1	30%	
, i			0.0640	110×/T	1	1.60		106	48-150%	1	30%	
2-Methylnaphthalene	1.70	0.0320	0.0640	ug/L	1	1.00		100	40-13070	1	3070	
• •	1.70 1.49	0.0320 0.0320	0.0640	ug/L ug/L	1	1.60		93	78-120%	1	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number:PNW0524CReport ID:Portland, OR 97204Project Manager:Ariel MosbruckerA4A1516 - 02 12 24 1511

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (Large Volume Injection) Spike Detection Reporting Source % REC **RPD** Limits RPD Analyte Result Limit Units Dilution Amount Result % REC Limit Limit Notes Batch 24A0985 - EPA 3511 (Bottle Extraction) Water LCS Dup (24A0985-BSD1) Prepared: 01/31/24 07:37 Analyzed: 01/31/24 11:20 Q-19 Pyrene 1.90 0.0160 0.0320 ug/L 1.60 119 80-125% 30% 0.4 Carbazole 0.0160 0.0320 1.60 1.80 ug/L 1 112 65-141% 0.3 30% 0.0160 Dibenzofuran 1.51 0.0320 ug/L 1 1.60 95 76-121% 1 30% Surr: Acenaphthylene-d8 (Surr) Recovery: 108 % 78-134 % Limits: Dilution: 1x Benzo(a)pyrene-d12 (Surr) 118 % 80-132 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Geosyntec Consultants, Inc</u> 920 SW Sixth Avenue, Suite 600

Portland, OR 97204

Project: POP - T4 Stormwater

Project Number: PNW0524C
Project Manager: Ariel Mosbrucker

Report ID: A4A1516 - 02 12 24 1511

QUALITY CONTROL (QC) SAMPLE RESULTS

			Solid a	nd Moist	ture Dete	rmination	s					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24A0938 - Total Susper	ded Solid	s - 2022					Wat	ter				
Blank (24A0938-BLK1)			Prepared	: 01/30/24	12:33 Ana	lyzed: 01/30	/24 14:50					
SM 2540 D Total Suspended Solids	ND		5.00	mg/L	1							
Duplicate (24A0938-DUP1)			Prepared	: 01/30/24	12:33 Ana	lyzed: 01/30	/24 14:50					
QC Source Sample: Non-SDG (A4	IA1442-05)											
Total Suspended Solids	ND		5.00	mg/L	1		ND				10%	TSS
Duplicate (24A0938-DUP2)			Prepared	: 01/30/24	12:33 Ana	lyzed: 01/30	/24 14:50					
QC Source Sample: Non-SDG (A4	IA1501-02)											
Total Suspended Solids	17.0		5.00	mg/L	1		9.00			61.5	10%	Q-05, TSS
Reference (24A0938-SRM1)			Prepared	: 01/30/24	12:33 Ana	lyzed: 01/30	/24 14:50					
SM 2540 D	010			~		000		00.2	0.5.44.507			
Total Suspended Solids	819			mg/L	1	928		88.3	85-115%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project: POP - T4 Stormwater

Project Number: PNW0524C
Project Manager: Ariel Mosbrucker

Report ID: A4A1516 - 02 12 24 1511

QUALITY CONTROL (QC) SAMPLE RESULTS

			Solid a	nd Moist	ure Dete	rmination	s					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24B0056 - Total Suspen	ded Solid	s - 2022					Wat	ter				
Blank (24B0056-BLK1)			Prepared	: 02/02/24	14:05 Ana	lyzed: 02/05	/24 14:15					
SM 2540 D Total Suspended Solids	ND		5.00	mg/L	1							
Duplicate (24B0056-DUP1)			Prepared	: 02/02/24	14:05 Anal	lyzed: 02/05	/24 14:15					
QC Source Sample: Non-SDG (A4	A1500-02)											
Total Suspended Solids	ND		5.00	mg/L	1		ND				10%	TS
Duplicate (24B0056-DUP2)			Prepared	: 02/02/24	14:05 Ana	lyzed: 02/05	/24 14:15					
QC Source Sample: Non-SDG (A4	A1559-01)				·		·					
Total Suspended Solids	214		10.0	mg/L	1		216			0.930	10%	
Reference (24B0056-SRM1)			Prepared	: 02/02/24	14:05 Ana	lyzed: 02/05	/24 14:15					
SM 2540 D												
Total Suspended Solids	911			mg/L	1	928		98.2	85-115%			

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600

Portland, OR 97204

Project: POP - T4 Stormwater

Project Number: PNW0524C
Project Manager: Ariel Mosbrucker

Report ID: A4A1516 - 02 12 24 1511

SAMPLE PREPARATION INFORMATION

		Polych	nlorinated Biphenyls l	by EPA 8082A			
Prep: EPA 3510C (Neutral pH)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24B0262							
A4A1516-06	Water	EPA 8082A	01/27/24 14:20	02/08/24 06:06	870mL/1mL	1000 mL/1 mL	1.15

	Po	lyaromatic Hydrocarbo	ons (PAHs) by EPA	8270E (Large Volur	ne Injection)		
Prep: EPA 3511 (Bottl	le Extraction)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24A0985							
A4A1516-05	Water	EPA 8270E LVI	01/27/24 14:10	01/31/24 07:37	104.93mL/5mL	125mL/5mL	1.19

Prep: Total Suspend	ded Solids - 2022				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24A0938							
A4A1516-01	Water	SM 2540 D	01/26/24 14:50	01/30/24 12:33			NA
A4A1516-02	Water	SM 2540 D	01/26/24 14:53	01/30/24 12:33			NA
A4A1516-03	Water	SM 2540 D	01/26/24 14:56	01/30/24 12:33			NA
A4A1516-04	Water	SM 2540 D	01/26/24 15:10	01/30/24 12:33			NA
Batch: 24B0056							
A4A1516-05	Water	SM 2540 D	01/27/24 14:10	02/02/24 14:05			NA
A4A1516-06	Water	SM 2540 D	01/27/24 14:20	02/02/24 14:05			NA

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number:PNW0524CReport ID:Portland, OR 97204Project Manager:Ariel MosbruckerA4A1516 - 02 12 24 1511

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

C-09 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.

CONT The Sample Container provided for this analysis was not provided by Apex Laboratories, and has not been verified as part of the Apex Quality System.

DCNT Sample decanted due to the presence of sediment. Sample bottle not rinsed with solvent.

J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.

Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.

Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.

TSS Dried residue was less than 2.5mg as specified in the method. Results meet regulatory requirements.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

mull be finish

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number:PNW0524CReport ID:Portland, OR 97204Project Manager:Ariel MosbruckerA4A1516 - 02 12 24 1511

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

mul la finish

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number:PNW0524CReport ID:Portland, OR 97204Project Manager:Ariel MosbruckerA4A1516 - 02 12 24 1511

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

- Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).
- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Darrell Auvil, Client Services Manager

mund la fimile

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number:PNW0524CReport ID:Portland, OR 97204Project Manager:Ariel MosbruckerA4A1516 - 02 12 24 1511

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

much by finish

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc Project: POP - T4 Stormwater

920 SW Sixth Avenue, Suite 600Project Number: PNW0524CReport ID:Portland, OR 97204Project Manager: Ariel MosbruckerA4A1516 - 02 12 24 1511

Company: CTEOSYINTEC		roject N	Project Mgr. Ayre MGSJOYUCKEY Project Name: TL	يو	Ĕ	Ŝ	200	के	Projec	t Name	F		3	જ	aoau			Po	Project # PNWOSAU	MOS	SAUC		3
Address: 920 SW Sixth Ave Swipe 6000 Permand O'R phone: 971-271-5902	Ave Suik	3	C. Perm	Crock (84	5 aug	7-1-	3-1-	107	围	ail: C	W	\ass	Z Z	Email: CXVVI & S by LL CKPY @ OPE CLY 17PP C. (G) PRO	ACS.V	\$ C.	8					1 1
Sampled by: ATM + MDB														Ž	ANALYSIS REOUEST	ROU	55						
Site Location:				_							35				'p;	K' p'	dTa	L	ru t				
State G.R.								920						(8)	Be, C	1, Fe, 1 Mo, Mi, V. Zn	NI 'S		FURG				
County Multhemah								A WG					səpiəin	sletal/	84 ,8A	1.0 , 6.1 I ,nM III ,6	nis		1-86			əjd	
SAMPLE ID	DATE	TIME	XIXIAM	# OE CO	HALMN	HALMN	LH 0978	8260 RB	вН 0928	OA 0978	19S 0728	8087 PC	8081 Pes	KCKA 1	Priority I	(a, Cr. (lg, Mg, 6, Ag, N	OTAL TCLP IV	nsows	EPAILE			ma2 bloi	
STSVIH2710	1 14/24	RE	3	-	\vdash	-	<u> </u>		\dagger	+-		<u> </u>			7	S I	_	<u> </u> ~				I	+
STSMH2603	पिलाय प्रि	433	3	_						_		ļ										ļ	
STSMH ZOIT	1/26/24/456		3								-	ļ					-	×				-	•
STSMHZG15-DUP	1/20/24 1510	1	3	_	-				<u> </u>	-	-	<u></u>					-	×					+
STSM H2712	ומונון,	1410	3	S						×	_						-	×	×				
SISM HIGH	02 m147/E2/	d 20	3	N								×						×	×				
		7	_/													٢	7.14	-1	\pm			1	-
-			/-											3	\ \Z		ackslash						
					+	1	_/						1	=	\setminus		-						-
/									-	-	1	_					-						
Standard Tur	Standard Turn Around Time (TAT) = 10 Business Days	(TAT)	= 10 Bus	ness Da	82	$\ \ $			i	B	ECIA	SPECIAL INSTRUCTIONS	RUCT	IONS			1						1
6	1 Day		2 Day		3 Day	>					A	ğ	$\frac{2}{3}$	F	Avoid dilluthon when possible	ğ	87	SS	نو				
IAI Requested (circle)	5 Day	(§)	Standard	\sim	Other:																		
	SAMPLES ARE HELD FOR 30 DAYS	FOR 39	, DAYS				L			Т													
SERRINGUISHED BY: MILE DUBING MANGHALES	Date: 1/29/24 Signaptre:	100	RECEIVE Signature:	ii d	De		Date:	1	1	S is	LINQI arture:	RELINQUISHED BY: Signature:	BY:		Date:			Signs	RECEIVED BY: Signature:		Date:		1
Printed Name: M. Le Du Boge	Time: 9 : 7	7	Printed Name:	1/2	1 3		įį V	100	} \	i.F	Printed Name				Time:			提	Printed Name:		Time:		1
Company			Сотрапу:	1	w	4				ථි	Company:	.						Com	Сотрапу:				1

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Geosyntec Consultants, Inc 920 SW Sixth Avenue, Suite 600 Portland, OR 97204 Project: POP - T4 Stormwater

Project Number: **PNW0524**C Project Manager: **Ariel Mosbrucker**

Report ID: A4A1516 - 02 12 24 1511

	APEX LABS COOLER RECEIPT FORM
Client: <u>Geos</u> i	Element WO#: A4 A/6/6
Project/Project #:	TY SW 2024 PNW0524C
	anc for the 11-2014
Delivery Info:	14 @ 921 By:
	ent ESS FedEx_UPS Radio Morgan SDS Evergreen_Other
	ate/time inspected: M W @ 92/ By: //
Chain of Custody include	
Signed/dated by client?	Yes No
organica dates of succession	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler
Temperature (°C)	2.5
Custody seals? (Y/N)	/V
Received on ice? (Y/N)	<u>'</u>
Temp. blanks? (Y/N)	<u> </u>
Ice type: (Gel/Real/Other	2 /
Condition (In/Out):	In
Sample Inspection: Da	te/time inspected: 1/2/14 @ 937 By: My
	No Comments:
All samples intact? Yes	
All samples intact? Yes Bottle labels/COCs agree	No Comments:
All samples intact? Yes Bottle labels/COCs agree	No Comments:
All samples intact? Yes Bottle labels/COCs agree COC/container discrepan Containers/volumes recei Do VOA vials have visib	No Comments:
All samples intact? Yes Bottle labels/COCs agree COC/container discrepan Containers/volumes recei Do VOA vials have visib	NoComments:
All samples intact? Yes Bottle labels/COCs agree COC/container discrepan Containers/volumes recei Do VOA vials have visib Comments Water samples: pH check	NoComments:
All samples intact? Yes Bottle labels/COCs agree COC/container discrepan Containers/volumes recei Do VOA vials have visib Comments Water samples: pH check	NoComments:
All samples intact? Yes Bottle labels/COCs agree COC/container discrepan Containers/volumes recei Do VOA vials have visib Comments Water samples: pH check	NoComments:
All samples intact? Yes_ Bottle labels/COCs agree COC/container discrepan Containers/volumes recei Do VOA vials have visib Comments_ Water samples: pH check Comments:	NoComments:
All samples intact? Yes Bottle labels/COCs agree COC/container discrepan Containers/volumes recei Do VOA vials have visib Comments Water samples: pH check Comments:	NoComments:

Apex Laboratories

Ceres ID: 17474

February 6, 2024

Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223

The following report contains the results for the two aqueous samples received on January 31, 2024. These samples were analyzed for tetra through octa chlorinated dioxins and dibenzofurans by EPA method 1613. Standard 2-week turn-around time was provided for this work.

This work was authorized under Apex Laboratories' Project # A4A1516.

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

The report consists of a Cover Letter, Sample Inventory (Section I), Data Summary (Section II), Sample Tracking (Section VI), and Qualifiers/Abbreviations (Section VII). Raw Data (Section III), Continuing Calibration (Section IV), and Initial Calibration (Section V) are available in a full report (.pdf format) upon request.

If you have any questions regarding this report, please feel free to contact me at (916)932-5011.

Sincerely,

James M. Hedin

Director of Operations/CEO

jhedin@ceres-lab.com

Section I: Sample Inventory

Ceres Sample ID:	Sample ID	Date Received	Collection Date & Time
17474-001	STSMH2712	1/31/2024	1/27/2024 14:10
	(A4A1516-05)		
17474-002	STSMH1914	1/31/2024	1/27/2024 14:20
	(A4A1516-06)		

Section II: Data Summary

Quality Assurance Sample
Method Blank
QC Batch #: 3072
Matrix: Aqueous
Project ID: A4A1516
Date Received: NA
Date Extracted: 2/4/2024
Date Analyzed: 2/5/2024

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	ND< 1.56	2.96	5.00		13C-2378-TCDD	77.5	25-164	
12378-PeCDD	ND< 6.21	8.39	25.0		13C-12378-PeCDD	90.1	25-181	
123478-HxCDD	ND< 5.61	16.6	25.0		13C-123478-HxCDD	65.6	32-141	
123678-HxCDD	ND< 4.78	9.38	25.0		13C-123678-HxCDD	70.6	28-130	
123789-HxCDD	ND< 5.54	9.18	25.0		13C-1234678-HpCDD	65.9	23-140	
1234678-HpCDD	ND< 5.53	7.31	25.0		13C-OCDD	95.6	17-157	
OCDD	ND< 9.77	22.2	50.0		13C-2378-TCDF	65.2	24-169	
2,3,7,8-TCDF	ND< 3.07	1.44	5.00		13C-12378-PeCDF	99.7	24-185	
12378-PeCDF	ND< 8.02	6.86	25.0		13C-23478-PeCDF	99.5	21-178	
23478-PeCDF	ND< 7.57	5.95	25.0		13C-123478-HxCDF	93.9	26-152	
123478-HxCDF	ND< 3.98	8.38	25.0		13C-123678-HxCDF	93.0	26-123	
123678-HxCDF	ND< 3.72	8.04	25.0		13C-234678-HxCDF	90.7	28-136	
234678-HxCDF	ND< 4.75	6.88	25.0		13C-123789-HxCDF	81.4	29-147	
123789-HxCDF	ND< 7.95	7.81	25.0		13C-1234678-HpCDF	75.4	28-143	
1234678-HpCDF	ND< 4.34	7.73	25.0		13C-1234789-HpCDF	73.9	26-138	
1234789-HpCDF	ND< 6.45	7.07	25.0					
OCDF	ND< 9.05	9.32	50.0					
Totals	Conc. (pg/L)	EMPC			CRS			
Total TCDD	ND< 1.56				37Cl4-2378-TCDD	91.1	35-197	
Total PeCDD	ND< 6.21							
Total HxCDD	ND< 5.61				DL - Signifies Non-Detect	(ND<) sample	e specific detection lin	nit.
Total HpCDD	ND< 5.53				EMPC - Estimated Maximu	um Possible (Concentration due to	ion abundance
Total TCDF	ND< 3.07				ratio failure.			
Total PeCDF	ND< 8.02				(a) - Lower control limit - U	pper control	imit	
Total HxCDF	ND< 7.95				(b) - TEQ based on (2005)	World Health	n Organization (WHO) Toxic
Total HpCDF	ND< 6.45				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 0.0 pg/L

Quality Assurance SampleDate Received: NAOngoing Precision and RecoveryQC Batch #: 3072Date Extracted: 2/4/2024Matrix: AqueousDate Analyzed: 2/5/2024Project ID: A4A1516Sample Size: 1.000 L

Analyte	Conc. (ng/mL)	Limits (a)	Labeled Standards	% Rec.	Limits (a)
2,3,7,8-TCDD	9.02	6.7-15.8	13C-2378-TCDD	72.8	20-175
12378-PeCDD	54.1	35-71	13C-12378-PeCDD	105	21-227
123478-HxCDD	46.5	35-82	13C-123478-HxCDD	62.9	21-193
123678-HxCDD	56.0	38-67	13C-123678-HxCDD	70.8	25-163
123789-HxCDD	45.9	32-81	13C-1234678-HpCDD	62.6	26-166
1234678-HpCDD	57.7	35-70	13C-OCDD	105	13-198
OCDD	97.1	78-144	13C-2378-TCDF	61.1	22-152
2,3,7,8-TCDF	10.1	7.5-15.8	13C-12378-PeCDF	92.8	21-192
12378-PeCDF	53.3	40-67	13C-23478-PeCDF	103	13-328
23478-PeCDF	56.3	34-80	13C-123478-HxCDF	94.4	19-202
123478-HxCDF	46.2	36-67	13C-123678-HxCDF	101	21-159
123678-HxCDF	54.0	42-65	13C-234678-HxCDF	93.3	22-176
234678-HxCDF	50.1	35-78	13C-123789-HxCDF	92.2	17-205
123789-HxCDF	51.5	39-65	13C-1234678-HpCDF	83.1	21-158
1234678-HpCDF	57.0	41-61	13C-1234789-HpCDF	92.6	20-186
1234789-HpCDF	54.0	39-69			
OCDF	112	63-170			
			<u>CRS</u>		
			37Cl4-2378-TCDD	101	31-191
			(a) Limits based on method	acceptance criteria.	

 Client Sample ID: STSMH2712 (A4A1516-05)

 Project ID: A4A1516
 Ceres Sample ID: 17474-001
 Date Received: 1/31/2024

 QC Batch #: 3072
 Date Extracted: 2/4/2024

 Date Collected: 1/27/2024
 Matrix: Aqueous
 Date Analyzed: 2/5/2024

 Time Collected: 14:10
 Sample Size: 0.952 L
 0.952 L

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	ND< 2.11	2.96	5.25		13C-2378-TCDD	103	25-164	
12378-PeCDD	ND< 11.0	8.39	26.3		13C-12378-PeCDD	116	25-181	
123478-HxCDD	ND< 5.78	16.6	26.3		13C-123478-HxCDD	83.8	32-141	
123678-HxCDD	ND< 4.72	9.38	26.3		13C-123678-HxCDD	87.7	28-130	
123789-HxCDD	ND< 5.47	9.18	26.3		13C-1234678-HpCDD	99.5	23-140	
1234678-HpCDD	ND< 6.81	7.31	26.3		13C-OCDD	132	17-157	
OCDD	ND< 7.55	22.2	52.5		13C-2378-TCDF	89.3	24-169	
2,3,7,8-TCDF	ND< 2.58	1.44	5.25		13C-12378-PeCDF	116	24-185	
12378-PeCDF	ND< 7.56	6.86	26.3		13C-23478-PeCDF	118	21-178	
23478-PeCDF	ND< 7.11	5.95	26.3		13C-123478-HxCDF	129	26-152	
123478-HxCDF	ND< 5.19	8.38	26.3		13C-123678-HxCDF	118	26-123	
123678-HxCDF	ND< 5.31	8.04	26.3		13C-234678-HxCDF	128	28-136	
234678-HxCDF	ND< 6.00	6.88	26.3		13C-123789-HxCDF	112	29-147	
123789-HxCDF	ND< 10.5	7.81	26.3		13C-1234678-HpCDF	130	28-143	
1234678-HpCDF	ND< 4.48	7.73	26.3		13C-1234789-HpCDF	127	26-138	
1234789-HpCDF	ND< 7.10	7.07	26.3					
OCDF	ND< 8.17	9.32	52.5					
Totals	Conc. (pg/L)	EMPC			CRS			
Total TCDD	ND< 2.11				37CI4-2378-TCDD	100	35-197	
Total PeCDD	ND< 11.0							
Total HxCDD	ND< 5.78				DL - Signifies Non-Detect	(ND<) samp	ole specific detection	imit.
Total HpCDD	ND< 6.81				EMPC - Estimated Maxim	num Possible	e Concentration due to	ion abundance
Total TCDF	ND< 2.58				ratio failure.			
Total PeCDF	ND< 7.56				(a) - Lower control limit - I	Jpper contro	ol limit	
Total HxCDF	ND< 10.5				(b) - TEQ based on (2005	i) World Hea	lth Organization (WH	O) Toxic
Total HpCDF	ND< 7.10				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b):	0.0	pg/L
Total Toxic Equivalency (TEQ min.) (b):	0.0	pg/L

 Client Sample ID: STSMH1914 (A4A1516-06)

 Project ID: A4A1516
 Ceres Sample ID: 17474-002
 Date Received: 1/31/2024

 QC Batch #: 3072
 Date Extracted: 2/4/2024

 Date Collected: 1/27/2024
 Matrix: Aqueous
 Date Analyzed: 2/5/2024

 Time Collected: 14:20
 Sample Size: 0.960 L
 0.960 L

Analyte	Conc. (pg/L)	MDL	RL	Qual.	Labeled Standards	% R	LCL-UCL (a)	Qualifiers
2,3,7,8-TCDD	ND< 2.27	2.96	5.21		13C-2378-TCDD	100	25-164	
12378-PeCDD	ND< 9.53	8.39	26.0		13C-12378-PeCDD	114	25-181	
123478-HxCDD	ND< 7.75	16.6	26.0		13C-123478-HxCDD	84.5	32-141	
123678-HxCDD	ND< 6.98	9.38	26.0		13C-123678-HxCDD	85.0	28-130	
123789-HxCDD	ND< 8.10	9.18	26.0		13C-1234678-HpCDD	94.1	23-140	
1234678-HpCDD	230	7.31	26.0		13C-OCDD	129	17-157	
OCDD	1130	22.2	52.1		13C-2378-TCDF	93.7	24-169	
2,3,7,8-TCDF	ND< 2.72	1.44	5.21		13C-12378-PeCDF	130	24-185	
12378-PeCDF	ND< 7.22	6.86	26.0		13C-23478-PeCDF	123	21-178	
23478-PeCDF	ND< 6.50	5.95	26.0		13C-123478-HxCDF	116	26-152	
123478-HxCDF	ND< 3.73	8.38	26.0		13C-123678-HxCDF	101	26-123	
123678-HxCDF	ND< 3.71	8.04	26.0		13C-234678-HxCDF	111	28-136	
234678-HxCDF	ND< 4.15	6.88	26.0		13C-123789-HxCDF	106	29-147	
123789-HxCDF	ND< 6.05	7.81	26.0		13C-1234678-HpCDF	105	28-143	
1234678-HpCDF	67.5	7.73	26.0		13C-1234789-HpCDF	106	26-138	
1234789-HpCDF	ND< 4.37	7.07	26.0					
OCDF	99.9	9.32	52.1					
Totals	Conc. (pg/L)	EMPC			CRS			
Total TCDD	ND< 2.27				37CI4-2378-TCDD	102	35-197	
Total PeCDD	ND< 9.5							
Total HxCDD	23.3				DL - Signifies Non-Detect	(ND<) samp	ole specific detection	limit.
Total HpCDD	428				EMPC - Estimated Maxim	num Possible	e Concentration due to	o ion abundance
Total TCDF	ND< 2.72				ratio failure.			
Total PeCDF	ND< 7.22				(a) - Lower control limit -	Upper contro	l limit	
Total HxCDF	59.7				(b) - TEQ based on (2005	i) World Hea	lth Organization (WH	O) Toxic
Total HpCDF	129				Equivalent Factors.			

Total Toxic Equivalency (TEQ min.) (b): 3.34 pg/L

Section VI: Sample Tracking

SUBCONTRACT ORDER

Apex Laboratories

ALCK 1/29/24

A4A1516

222

SENDING LABORATORY:

Apex Laboratories

6700 S.W. Sandburg Street

Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 336-0745

Project Manager: Darrell Auvil

RECEIVING LABORATORY:

Ceres Analytical Laboratory, Inc 4919 Windplay Drive, Suite 1 El Dorado Hills, CA 95762 Phone: (916) 932-5011

F 0

Fax: -9

Sample Name: STSMH2712		Water	Sampled: 01/27/24 14:10	(A4A1516-05)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) Containers Supplied: (D)1 L Amber Glass - Non Preserved (E)1 L Amber Glass - Non Preserved	02/09/24 17:00	01/26/25 14:10	Ceres	
Sample Name: STSMH1914		Water	Sampled: 01/27/24 14:20	(A4A1516-06)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB) Containers Supplied:	02/09/24 17:00	01/26/25 14:20	Ceres	

Standard TAT

Released By
Date

Date

Date

Received By

Received By

Date

Received By

Date

Date

Date

Date

02/12/2024

Sample Receipt Check List Logged by:__ ___(initials)

Date/Time:
Acceptable: \(\forall / \ \ \forall / \ \ \ \ \forall / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
resent? Y/N ntact? Y/N
resent? Y/N ntact? Y/N
ntact? Y/N
NA:
Y (N)
(Y)/ N
Y) N
Y / (Q)/ NA Y / (Q)/ NA
NA

Rev 9

Form A5.0

Effective Date: 3/19/18

Section VII: Qualifiers/Abbreviations

J Concentration found below the lower quantitation limit but greater

than zero.

B Analyte present in the associated Method Blank.

E Concentration found exceeds the Calibration range of the

HRGC/HRMS.

D This analyte concentration was calculated from a dilution.

X The concentration found is the estimated maximum possible

concentration due to chlorinated diphenyl ethers present in the

sample.

H Recovery limits exceeded. See cover letter.

* Results taken from dilution.

I Interference. See cover letter.

Conc. Concentration Found

DL Calculated Detection Limit

ND Non-Detect

% Rec. Percent Recovery

Geosyntec Consultants Sacramento Stage 2A Data Review Data Validation Checklist - USEPA Method 1613B Dioxin/ Furan Data Review

Project: PNW0524C- Port of Portland Terminal 4	Completed by: Bernave Tinajero	Reviewed by: Todd Olsen
Stormwater Sampling		
Laboratory Report IDs/Laboratory: A4A1516/	Date: 3/1/2024	Date: 3/3/2024
Apex Laboratories, Tigard, OR		

Item	Yes	No	NA	Comments
A. Validation Summary				
1. Were data qualified as a result of the validation?		X		
a. Were any data rejected?		X		
2. Were the qualifications added to the appropriate Excel			X	
file (e.g., EDD with qualifiers file or flat file)?			71	
B. Package Completeness				
1. Have the data been provided in a Level II deliverable?	X			
2. Is a laboratory narrative or cover letter present?	X			
3. Has the correct compound list been reported?	X			
4. Are the reporting limits appropriate in order to support		X		The laboratory EDL for 2,3,7,8-TCDD did not
the project action limits?		7.		meet the SLV stated in the project work plan.
C. Preservation/Lab Receipt/Analysis				
1. Were the samples properly preserved (Aqueous &	X			
solid: 0-6°C)?	71			
2. Were the holding times met (1 year from collection to	X			
extraction; 40 days from extraction to analysis)	21			
3. For sediment is the % moisture >70% for any of the			X	
samples?			71	

Page 1of 6

Laboratory Report IDs: A4A1516

Geosyntec Consultants Sacramento Stage 2A Data Review Data Validation Checklist - USEPA Method 1613B Dioxin/ Furan Data Review

Item	Yes	No	NA	Comments
4. For sediments, is the % moisture >90% for any of the samples?			X	
5. Were any data qualified based on the responses for this section?		X		
D. Blanks				
1. Was a method blank analyzed at the proper frequency?	X			
a. Were analytes detected in the method blank?		X		
2. Were source blanks analyzed?		X		
a. Were analytes detected in the source blank?			X	
3. Were equipment blanks analyzed?		X		
a. Were analytes detected in the equipment blank?			X	
4. Were any data qualified based on the responses for this		X		
section?		Λ		
E. Quality Control Checks				
Internal Standards				
1. Were the appropriate internal standards listed?	X			
2. Are the recoveries within the laboratory limits?	X			
MS/MSD				
3. Frequency of 1/20 samples?		X		No MS/MSD pairs were reported. OPR samples were used to assess accuracy, and batch-specific precision was not assessed.
4. Were full analyte spikes used for the MS/MSD?			X	
5. Spike recoveries within limits?			X	
6. RPD within limits?			X	

Page 2of 6

Laboratory Report IDs: A4A1516

Geosyntec Consultants Sacramento Stage 2A Data Review Data Validation Checklist - USEPA Method 1613B Dioxin/ Furan Data Review

Item	Yes	No	NA	Comments	
OPR					
7. Was an OPR sample analyzed with each analytical batch?	X				
8. Were full analyte spikes used for the OPR?	X				
9. Were recoveries within the laboratory limits?	X				
10. Were any data qualified based on the responses for this section?		X			
F. Compound Identification and Quantitation					
1. Were samples analyzed at a dilution?		X			
a. Were reporting limits adjusted for dilution?			X		
2. Were any data qualified based on the responses for this section?		X			
G. Field Duplicate					
1. Were field duplicates collected?		X			
2. Were they within the QAPP or validation acceptance					
criteria (≤30% RPD for aqueous and ≤50% RPD for			X		
solid)?					
3. Were any data qualified based on the responses for this section?		X			

Page 3of 6

Laboratory Report IDs: A4A1516

Geosyntec Consultants Sacramento Stage 2A Data Review Data Validation Checklist - USEPA Method 1613B Dioxin/ Furan Data Review

INSTRUCTIONS

- 1. Data shall be qualified using professional judgment along with Method 1613B and the guidance provided in the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, November 2020 (EPA 540-R-20-005).
- 2. Data qualifiers which will be applied to the data as applicable are as follows:
 - U: The analyte was analyzed for, but was not detected at or above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
 - J: The analyte was positively identified; the associated numerical value is an estimated concentration of the analyte in the sample.
 - J-: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased low.
 - J+: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased high.
 - UJ: The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
 - R: The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Geosyntec Consultants Sacramento Stage 2A Data Review Data Validation Checklist - USEPA Method 1613B Dioxin/ Furan Data Review

ACRONYMS

EDD Electronic Data Deliverable EDL Estimated Detection Limit

ID Identification

MDL Method Detection Limit

MS/MSD Matrix Spike/Matrix spike duplicate

NA Not applicable

OPR Ongoing Precision and Recovery

RPD Relative percent difference

SLV Surface Water Screening Level Values from Table 3-1 of the Portland Harbor Joint Source Control Strategy (DEQ and

EPA, 2005).

USEPA United States Environmental Protection Agency

Page 5of 6

Geosyntec Consultants Sacramento Stage 2A Data Review Data Validation Checklist - USEPA Method 1613B Dioxin/ Furan Data Review

DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS recovery outside limits and RPD outside limits
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed; no validation qualification required

Project: PNW0524C- Port of Portland Terminal 4	Completed by: Bernave Tinajero	Reviewed by: Todd Olsen
Stormwater Sampling		
Laboratory Report IDs/ Laboratory: A4A1516/	Date: 3/1/2024	Date: 3/3/2024
Apex Laboratories, Tigard, OR		

Item	Yes	No	NA	Comments
A. Validation Summary				
1. Were data qualified as a result of the validation?	X			Refer to the comments section at the end of this checklist.
a. Were any data rejected?		X		
2. Were the qualifications added to the appropriate Excel file (e.g., EDD with qualifiers file or flat file)?	X			
B. Package Completeness				
1. Have the data been provided in a Level II deliverable?	X			
2. Is a laboratory narrative or cover letter present?	X			
3. Has the correct compound list been reported?	X			
4. Are the reporting limits appropriate in order to support the project action limits?			X	
C. Preservation/Lab Receipt/Analysis				
1. Were the samples properly preserved (Aqueous & solid: 0-6°C)?	X			
2. Were the holding times met (7 days from sampling to analysis for both aqueous and solid samples)?	X			

Page 1 of 7

Item	Yes	No	NA	Comments
5. Were any data qualified based on the responses for this		X		
section?		A		
D. Blanks				
1. Was a method blank analyzed at the proper frequency?	X			
a. Were analytes detected in the method blank?		X		
2. Were source blanks analyzed?		X		
a. Were analytes detected in the source blank?			X	
3. Were equipment blanks analyzed?		X		
a. Were analytes detected in the equipment blank?			X	
4. Were any data qualified based on the responses for this		X		
section?		A		
E. Quality Control Checks				
MS/MSD				
				No MS/MSD pairs were reported. SRM samples
1. Frequency of 1/20 samples?		X		were used to assess accuracy, and laboratory
				duplicate samples were used to assess precision.
2. Were full analyte spikes used for the MS/MSD?			X	
3. Spike recoveries within limits?			X	
4. RPD within limits?			X	
SRM		•	•	
5. Was an SRM sample analyzed with each analytical	X			
batch?	A			
6. Were full analyte spikes used for the SRM?	X			
7. Were recoveries within the laboratory limits?	X			

Page 2 of 7

Geosyntec Consultants Sacramento Stage 2A Data Review

Data Validation Checklist - Standard Method 2540D Total Suspended Solids Data Review

Item	Yes	No	NA	Comments
10. Were any data qualified based on the responses for		X		
this section?		71		
F. Compound Identification and Quantitation				
1. Were samples analyzed at a dilution?		X		
a. Were reporting limits adjusted for dilution?			X	
2. Were any data qualified based on the responses for this		X		
section?		Λ		
G. Laboratory Duplicate				
1. Were laboratory duplicates analyzed with each	X			
analytical batch?	Λ			
2. Were they within the QAPP or validation acceptance				
criteria (≤30% RPD for aqueous and ≤50% RPD for	X			
solid)?				
3. Were any data qualified based on the responses for this		X		
section?		Λ		

Comments:

- The TSS concentrations in samples STSMH2710, STSMH2603, STSMH2615, STSMH2615-DUP, and STSMH2712 were flagged by the laboratory with "TSS", indicating solids results are reported as estimates when less than 2.5 mg residue is recovered during analysis; all method QC requirements have been met for samples, and reporting levels are adjusted based on volume filtered. Therefore, the TSS concentrations in the associated samples were J flagged as estimated.
- The RPD for TSS was greater than 30% for FD pair STSMH2615/STSMH2615-DUP. Therefore, the TSS concentrations in the field duplicate pair were J qualified as estimated.

Page 3 of 7

Sample ID	Compound	Laboratory Result (mg/L)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
STSMH2710	Total Suspended Solids	13.0	TSS	13.0	J	13
STSMH2603	Total Suspended Solids	6.00	TSS	6.00	J	13
STSMH2615	Total Suspended Solids	8.00	TSS	8.00	J	13
STSMH2615-DUP	Total Suspended Solids	12.0	TSS	12.0	J	13
STSMH2712	Total Suspended Solids	6.00	TSS	6.00	J	13

mg/L - Milligram per liter

TSS - Laboratory flag indicating dried residue was less than 2.5mg as specified in the method. Results meet regulatory requirements.

Sample ID	Compound	Laboratory Result (mg/L)	RPD (%)	Laboratory Flag	Validation Result (mg/L)	Validation Qualifier	Reason Code
STSMH2615	Total Suspended Solids	8.00	40	TSS	8.00	J	7
STSMH2615-DUP	Total Suspended Solids	12.0	40	TSS	12.0	J	7

mg/L - Milligram per liter

TSS - Laboratory flag indicating dried residue was less than 2.5mg as specified in the method. Results meet regulatory requirements.

INSTRUCTIONS

- 1. Data shall be qualified using professional judgment along with Standard Method 2540D and the guidance provided in the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, November 2020 (EPA 542-R-20-006).
- 2. Data qualifiers which will be applied to the data as applicable are as follows:
 - U: The analyte was analyzed for, but was not detected at or above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
 - J: The analyte was positively identified; the associated numerical value is an estimated concentration of the analyte in the sample.
 - J-: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased low.
 - J+: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased high.
 - UJ: The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
 - R: The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ACRONYMS

EDD Electronic Data Deliverable

ID Identification

MS/MSD Matrix Spike/Matrix spike duplicate

NA Not applicable

RPD Relative percent difference SRM Standard Reference Material TSS Total Suspended Solids

USEPA United States Environmental Protection Agency

Page 6 of 7

DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description
1	Preservation requirement not met
2	Analysis holding time exceeded
3	Blank contamination (i.e., method, trip, equipment, etc.)
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits
5	LCS recovery outside limits and RPD outside limits
6	Surrogate recovery outside limits
7	Field Duplicate RPD exceeded
8	Serial dilution percent difference exceeded
9	Calibration criteria not met
10	Linear range exceeded
11	Internal standard criteria not met
12	Lab duplicates RPD exceeded
13	Other
14	Lab flag removed; no validation qualification required

Project: PNW0524C - Port of Portland Terminal	Completed by: Bernave Tinajero	Reviewed by: Todd Olsen
4 Stormwater Sampling		
Laboratory Report IDs/Laboratory: A4A1516/	Date: 3/1/2024	Date: 3/3/2024
Apex Laboratories, Tigard, OR		

Item	Yes	No	NA	Comments
A. Validation Summary				
1. Were data qualified as a result of the validation?		X		
a. Were any data rejected?		X		
2. Were the qualifications added to the appropriate Excel file (e.g., EDD with qualifiers file or flat file)?			X	
B. Package Completeness				
1. Have the data been provided in a Level II deliverable?	X			
2. Is a laboratory narrative or cover letter present?	X			
3. Has the correct compound list been reported?	X			
4. Are the reporting limits appropriate in order to support the project action limits?	X			
C. Preservation/Lab Receipt/Analysis				
1. Were the samples properly preserved (Aqueous & solid: 0-6°C)?	X			
2. Were the holding times met (1 year from collection to extraction; 40 days from extraction to analysis)	X			
3. For sediment is the % moisture >70% for any of the samples?			X	

Page 1of 6

Item	Yes	No	NA	Comments
4. For sediments, is the % moisture >90% for any of the samples?			X	
5. Were any data qualified based on the responses for this section?		X		
D. Blanks				
1. Was a method blank analyzed at the proper frequency?	X			
a. Were analytes detected in the method blank?		X		
2. Were source blanks analyzed?		X		
a. Were analytes detected in the source blank?			X	
3. Were equipment blanks analyzed?		X		
a. Were analytes detected in the equipment blank?			X	
4. Were any data qualified based on the responses for this		X		
section?		Λ		
E. Quality Control Checks				
Surrogates				
1. Were the appropriate surrogates listed?	X			
2. Are the recoveries within the laboratory limits?	X			
MS/MSD			1	
3. Frequency of 1/20 samples?		X		No MS/MSD pairs were reported. LCS/ LCSD pairs were used to assess precision and accuracy.
4. Were full analyte spikes used for the MS/MSD?			X	
5. Spike recoveries within limits?			X	
6. RPD within limits?			X	
LCS/ LCSD		ı	1	•

Page 2of 6

Item	Yes	No	NA	Comments
7. Was an LCS/LCSD pair analyzed with each analytical batch?	X			
8. Were full analyte spikes used for the LCS and LCSD?	X			
9. Were recoveries within the laboratory limits?	X			
10. RPD within limits?	X			
11. Were any data qualified based on the responses for this section?		X		
F. Compound Identification and Quantitation				
1. Were samples analyzed at a dilution?		X		
a. Were reporting limits adjusted for dilution?			X	
2. Were any data qualified based on the responses for this section?		X		
G. Field Duplicate				
1. Were field duplicates collected?		X		
2. Were they within the QAPP or validation acceptance				
criteria (≤30% RPD for aqueous and ≤50% RPD for			X	
solid)?				
3. Were any data qualified based on the responses for this section?		X		

Comments:

• All PCB results were flagged by the laboratory with "C-07", indicating the sample extracts underwent sulfuric acid cleanup by USEPA method 3665A, sulfur cleanup by USEPA method 3660B, and Florisil cleanup by USEPA method 3620B in order to minimize matrix interference. Since the batch quality control samples also underwent these cleanup procedures, and based on professional and technical judgement, data quality was not considered affected and no qualifications were applied to the data.

Page 3of 6

INSTRUCTIONS

- 1. Data shall be qualified using professional judgment along with Method 8082 and the guidance provided in the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, November 2020 (EPA 540-R-20-005).
- 2. Data qualifiers which will be applied to the data as applicable are as follows:
 - U: The analyte was analyzed for, but was not detected at or above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
 - J: The analyte was positively identified; the associated numerical value is an estimated concentration of the analyte in the sample.
 - J-: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased low.
 - J+: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased high.
 - UJ: The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
 - R: The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ACRONYMS

EDD Electronic Data Deliverable

ID Identification

LCS/LCSD Laboratory control spike/Laboratory control spike duplicate

MDL Method Detection Limit

MS/MSD Matrix Spike/Matrix spike duplicate

NA Not applicable

PCB Polychlorinated Biphenyls RPD Relative percent difference

USEPA United States Environmental Protection Agency

Page 5of 6

DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description		
1	Preservation requirement not met		
2	Analysis holding time exceeded		
3	Blank contamination (i.e., method, trip, equipment, etc.)		
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits		
5	LCS recovery outside limits and RPD outside limits		
6	Surrogate recovery outside limits		
7	Field Duplicate RPD exceeded		
8	Serial dilution percent difference exceeded		
9	Calibration criteria not met		
10	Linear range exceeded		
11	Internal standard criteria not met		
12	Lab duplicates RPD exceeded		
13	Other		
14	Lab flag removed; no validation qualification required		

Project: PNW0524C- Port of Portland Terminal 4	Completed by: Bernave Tinajero	Reviewed by: Todd Olsen
Stormwater Sampling		
Laboratory Report IDs/Laboratory: A4A1516/	Date: 3/1/2024	Date: 3/3/2024
Apex Laboratories, Tigard, OR		

Item	Yes	No	NA	Comments	
A. Validation Summary					
1. Were data qualified as a result of the Stage 2A validation?		X			
a. Were any data rejected?		X			
2. Were the qualifications added to the appropriate Excel file (e.g., EDD with qualifiers file or flat file)?			X		
B. Package Completeness					
1. Have the data been provided in a Level II deliverable?	X				
2. Is a laboratory narrative or cover letter present?	X				
3. Has the correct compound list been reported?	X				
4. Are the reporting limits appropriate in order to support the project action limits?		X		The laboratory MDLs for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene did not meet CULs stated in the project work plan.	
C. Preservation/Lab Receipt/Analysis					
1. Were the samples properly preserved (Aqueous & solid: 0-6°C)?	X				

Page 1 of 6

2. Were the holding times met (Aqueous samples- 7 days from collection to extraction, solid samples- 14 days from collection to extraction, solid samples- 14 days from extraction to analysis for both aqueous and solid) 3. Were any data qualified based on the responses for this section? D. Blanks	Item	Yes	No	NA	Comments
from collection to extraction; analysis- 40 days from extraction to analysis for both aqueous and solid) 3. Were any data qualified based on the responses for this section? D. Blanks	2. Were the holding times met (Aqueous samples- 7 days				
from collection to extraction; analysis- 40 days from extraction to analysis for both aqueous and solid) 3. Were any data qualified based on the responses for this section? Name	from collection to extraction, solid samples- 14 days	v			
3. Were any data qualified based on the responses for this section? Nation	from collection to extraction; analysis- 40 days from	Λ			
D. Blanks 1. Was a method blank analyzed at the proper frequency? X a. Were analytes detected in the method blank? X 2. Were source blanks analyzed? A X a. Were analytes detected in the source blank? X 3. Were equipment blanks analyzed? A X a. Were analytes detected in the equipment blank? X 3. Were equipment blanks analyzed? X X a. Were analytes detected in the equipment blank? X X A X A X A X A X A X A X A X A X A	extraction to analysis for both aqueous and solid)				
D. Blanks 1. Was a method blank analyzed at the proper frequency? X a. Were analytes detected in the method blank? X a. Were analytes detected in the source blank? X a. Were analytes detected in the source blank? X a. Were equipment blanks analyzed? A. Were equipment blanks analyzed? A. Were analytes detected in the equipment blank? A. Were any data qualified based on the responses for this section? E. Quality Control Checks Surrogates 1. Were the appropriate surrogates listed? X A.	3. Were any data qualified based on the responses for this		v		
1. Was a method blank analyzed at the proper frequency? X a. Were analytes detected in the method blank? X 2. Were source blanks analyzed? X a. Were analytes detected in the source blank? X 3. Were equipment blanks analyzed? X a. Were analytes detected in the equipment blank? X 4. Were any data qualified based on the responses for this section? X E. Quality Control Checks Surrogates 1. Were the appropriate surrogates listed? X 2. Are the recoveries within the laboratory limits? X MS/MSD 3. Frequency of 1/20 samples? X 4. Were full analyte spikes used for the MS/MSD? X 5. Spike recoveries within limits? X 5. Spike recoveries within limits? X 6. RPD within limits? X A A A A A A A A A	section?		Λ		
1. Was a method blank analyzed at the proper frequency? X a. Were analytes detected in the method blank? X 2. Were source blanks analyzed? X a. Were analytes detected in the source blank? X 3. Were equipment blanks analyzed? X a. Were analytes detected in the equipment blank? X 4. Were any data qualified based on the responses for this section? X E. Quality Control Checks Surrogates 1. Were the appropriate surrogates listed? X 2. Are the recoveries within the laboratory limits? X MS/MSD 3. Frequency of 1/20 samples? X 4. Were full analyte spikes used for the MS/MSD? X 5. Spike recoveries within limits? X 5. Spike recoveries within limits? X 6. RPD within limits? X A A A A A A A A A					
a. Were analytes detected in the method blank? 2. Were source blanks analyzed? 3. Were equipment blanks analyzed? 4. Were analytes detected in the source blank? 5. Were analytes detected in the equipment blank? 6. RPD within limits? X X X X X X X X X X X X X	D. Blanks				
2. Were source blanks analyzed? a. Were analytes detected in the source blank? 3. Were equipment blanks analyzed? a. Were analytes detected in the equipment blank? 4. Were any data qualified based on the responses for this section? E. Quality Control Checks Surrogates 1. Were the appropriate surrogates listed? 2. Are the recoveries within the laboratory limits? MS/MSD 3. Frequency of 1/20 samples? 4. Were full analyte spikes used for the MS/MSD? 5. Spike recoveries within limits? X X X X X X X X X X X X X	1. Was a method blank analyzed at the proper frequency?	X			
a. Were analytes detected in the source blank? 3. Were equipment blanks analyzed? a. Were analytes detected in the equipment blank? 4. Were any data qualified based on the responses for this section? E. Quality Control Checks Surrogates 1. Were the appropriate surrogates listed? 2. Are the recoveries within the laboratory limits? MS/MSD 3. Frequency of 1/20 samples? 4. Were full analyte spikes used for the MS/MSD? 5. Spike recoveries within limits? K. X X. V X.	a. Were analytes detected in the method blank?		X		
3. Were equipment blanks analyzed? a. Were analytes detected in the equipment blank? 4. Were any data qualified based on the responses for this section? E. Quality Control Checks Surrogates 1. Were the appropriate surrogates listed? 2. Are the recoveries within the laboratory limits? MS/MSD 3. Frequency of 1/20 samples? 4. Were full analyte spikes used for the MS/MSD? 5. Spike recoveries within limits? K. X. V.	2. Were source blanks analyzed?		X		
a. Were analytes detected in the equipment blank? 4. Were any data qualified based on the responses for this section? E. Quality Control Checks Surrogates 1. Were the appropriate surrogates listed? 2. Are the recoveries within the laboratory limits? MS/MSD 3. Frequency of 1/20 samples? 4. Were full analyte spikes used for the MS/MSD? 5. Spike recoveries within limits? K. X. No MS/MSD pairs were reported. LCS/ LCSD pairs were used to assess precision and accuracy. X. X. No MS/MSD pairs were reported. LCS/ LCSD pairs were used to assess precision and accuracy. X. Spike recoveries within limits? X. X. No MS/MSD pairs were reported. LCS/ LCSD pairs were used to assess precision and accuracy.	a. Were analytes detected in the source blank?			X	
4. Were any data qualified based on the responses for this section? E. Quality Control Checks Surrogates 1. Were the appropriate surrogates listed? 2. Are the recoveries within the laboratory limits? MS/MSD 3. Frequency of 1/20 samples? 4. Were full analyte spikes used for the MS/MSD? 5. Spike recoveries within limits? K. X. S. Spike recoveries within limits? X. Spike recoveries within limits?	3. Were equipment blanks analyzed?		X		
4. Were any data qualified based on the responses for this section? E. Quality Control Checks Surrogates 1. Were the appropriate surrogates listed? 2. Are the recoveries within the laboratory limits? MS/MSD 3. Frequency of 1/20 samples? 4. Were full analyte spikes used for the MS/MSD? 5. Spike recoveries within limits? K. X. S. Spike recoveries within limits? X. Spike recoveries within limits?	a. Were analytes detected in the equipment blank?			X	
E. Quality Control Checks Surrogates 1. Were the appropriate surrogates listed? X 2. Are the recoveries within the laboratory limits? X MS/MSD 3. Frequency of 1/20 samples? X 4. Were full analyte spikes used for the MS/MSD? X 5. Spike recoveries within limits? X 6. RPD within limits? X E. Quality Control Checks X No MS/MSD pairs were reported. LCS/ LCSD pairs were used to assess precision and accuracy.			v		
Surrogates 1. Were the appropriate surrogates listed? 2. Are the recoveries within the laboratory limits? MS/MSD 3. Frequency of 1/20 samples? 4. Were full analyte spikes used for the MS/MSD? 5. Spike recoveries within limits? 6. RPD within limits? X X	section?		Λ		
Surrogates 1. Were the appropriate surrogates listed? 2. Are the recoveries within the laboratory limits? MS/MSD 3. Frequency of 1/20 samples? 4. Were full analyte spikes used for the MS/MSD? 5. Spike recoveries within limits? 6. RPD within limits? X X					
1. Were the appropriate surrogates listed? 2. Are the recoveries within the laboratory limits? MS/MSD 3. Frequency of 1/20 samples? 4. Were full analyte spikes used for the MS/MSD? 5. Spike recoveries within limits? K	E. Quality Control Checks				
2. Are the recoveries within the laboratory limits? MS/MSD 3. Frequency of 1/20 samples? X No MS/MSD pairs were reported. LCS/ LCSD pairs were used to assess precision and accuracy. 4. Were full analyte spikes used for the MS/MSD? 5. Spike recoveries within limits? X Comparison of 1/20 samples? X X X X X X X X X X X X X	Surrogates				
MS/MSD 3. Frequency of 1/20 samples? X No MS/MSD pairs were reported. LCS/ LCSD pairs were used to assess precision and accuracy. 4. Were full analyte spikes used for the MS/MSD? 5. Spike recoveries within limits? X 6. RPD within limits? X	1. Were the appropriate surrogates listed?	X			
3. Frequency of 1/20 samples? X No MS/MSD pairs were reported. LCS/ LCSD pairs were used to assess precision and accuracy. 4. Were full analyte spikes used for the MS/MSD? Spike recoveries within limits? X 6. RPD within limits? X No MS/MSD pairs were reported. LCS/ LCSD pairs were used to assess precision and accuracy. X X	2. Are the recoveries within the laboratory limits?	X			
3. Frequency of 1/20 samples? 4. Were full analyte spikes used for the MS/MSD? 5. Spike recoveries within limits? 6. RPD within limits? X were used to assess precision and accuracy. X X X X	MS/MSD				
4. Were full analyte spikes used for the MS/MSD? 5. Spike recoveries within limits? 6. RPD within limits? X X X X	2.7				No MS/MSD pairs were reported. LCS/ LCSD pairs
4. Were full analyte spikes used for the MS/MSD? 5. Spike recoveries within limits? K CRPD within limits? X X	3. Frequency of 1/20 samples?		X		were used to assess precision and accuracy.
5. Spike recoveries within limits? K PD within limits? X X	4. Were full analyte spikes used for the MS/MSD?			X	1 ,
6. RPD within limits? X					
	1				
	LCS/ LCSD	l	1		1

Page 2 of 6

Item	Yes	No	NA	Comments
7. Was an LCS/ LCSD pair analyzed with each analytical batch?	X			
8. Were full analyte spikes used for the LCS and LCSD?	X			
9. Were recoveries within the laboratory limits?	X			
10. RPD within limits?	X			
11. Were any data qualified based on the responses for this section?		X		
F. Compound Identification and Quantitation				
1. Were samples analyzed at a dilution?		X		
a. Were reporting limits adjusted for dilution?			X	
2. Were any data qualified based on the responses for this section?		X		
G. Field Duplicate				
1. Were field duplicates collected?		X		
2. Were they within the validation acceptance criteria (≤30% RPD for aqueous and ≤50% RPD for solid)?			X	
3. Were any data qualified based on the responses for this section?		X		

INSTRUCTIONS

- 1. Data shall be qualified using professional judgment along with the analytical method USEPA 8270E, the USEPA Contract Laboratory Program National Functional Guidelines for Organic Superfund Data Review, November 2020 (EPA 540-R-20-005).
- 2. Data qualifiers which will be applied to the data as applicable are as follows:
 - U: The analyte was analyzed for, but was not detected at or above the reported sample quantitation limit. Upon application of the U qualifier to a reported result, the definition changes to "not detected at or above the reported result".
 - J: The analyte was positively identified; the associated numerical value is an estimated concentration of the analyte in the sample.
 - J-: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased low.
 - J+: The analyte was positively identified; the associated numerical value is an estimated concentration, the result may be biased high.
 - UJ: The analyte was not detected at or above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
 - R: The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

ACRONYMS

CUL Surface Water Cleanup Levels from Table 17 of the Portland Harbor Record of Decision (EPA, 2017).

EDD Electronic Data Deliverable

ID Identification

LCS Laboratory Control Spike MDL Method Detection Limit

MS/MSD Matrix Spike/Matrix Spike Duplicate

NA Not Applicable
QC Quality Control
RL Reporting Limit

RPD Relative Percent Difference

SLV Surface Water Screening Level Values from Table 3-1 of the Portland Harbor Joint Source Control Strategy (DEQ and

EPA, 2005).

USEPA United States Environmental Protection Agency

Page 5 of 6

DATA VALIDATION REASON CODES Assigned by Geosyntec's Data Validation Team

Valid Value	Description		
1	Preservation requirement not met		
2	Analysis holding time exceeded		
3	Blank contamination (i.e., method, trip, equipment, etc.)		
4	Matrix spike/matrix spike duplicate recovery or RPD outside limits		
5	LCS recovery outside limits and RPD outside limits		
6	Surrogate recovery outside limits		
7	Field Duplicate RPD exceeded		
8	Serial dilution percent difference exceeded		
9	Calibration criteria not met		
10	Linear range exceeded		
11	Internal standard criteria not met		
12	Lab duplicates RPD exceeded		
13	Other		
14	Lab flag removed; no validation qualification required		

Geosyntec Consultants Sacramento Stage 2A Data Review Data Validation Checklist - Completeness Review

Project: PNW0524C - Port of Portland Terminal 4 Stormwater Sampling	Completed by: Bernave Tinajero	Reviewed by: Todd Olsen
Laboratory Report IDs/ Laboratory: A4A1516/ Apex Laboratories, Tigard, OR	Date: 3/1/2024	Date: 3/3/2024

Item	Yes	No	NA	Comments
A. Completeness/Lab Receipt/Analysis				
1. Is the project name listed on COCs?	X			
2. Are the client IDs listed?	X			
3. IDs match those listed on COC and in the report?	X			
4. Are the sample collection date & time listed for each sample?	X			
5. Is the sample matrix listed?	X			
6. Is the sample preservation noted?			X	
7. Are the requested analyses noted?	X			
8. Were the samples properly relinquished and received?	X			
a. Proper documentation of dates and times?	X			
9. Date & time of lab receipt noted?	X			
10. Lab completed analyses for all samples collected?	X			
11. Sample receipt issues noted/described?			X	
12. Were any data qualified based on the responses for this section?		X		

Comments:

- The USEPA 1613B samples were subcontracted to CERES Analytical Laboratory. The subcontracted laboratory reports were included as part of the in the Apex laboratory reports.
- Surrogates were reported as percent recovery in the laboratory report, but reported as concentrations in micrograms per liter in the EDDs for USEPA methods 8082, 1613B, and 8270E.

Page 1 of 2 Laboratory Report IDs: A4A1516

Geosyntec Consultants Sacramento Stage 2A Data Review Data Validation Checklist - Completeness Review

ACRONYMS

EDD Electronic Data Deliverable

ID Identification NA Not applicable

USEPA United States Environmental Protection Agency

APPENDIX F

Comparison Tables for Recent Stormwater SCE Efforts (2020 – 2024)

F.1. SUMMARY TABLES

Table F - 1: JSCS SLVs and CULs Used for Stormwater Comparisons

Category	Constituent	SLV (μg/L)	10x SLV (μg/L)	Surface Water CUL (µg/L)	10x Surface Water CUL (μg/L)
Dioxins/	2,3,7,8-TCDD TEQ	5.1E-9	5.1E-8	5E-10	5E-9
Furans	2,3,7,8-TCDD	5.1E-9	5.1E-8	-	-
	Aluminum	50-200 ¹	500-2000 ¹	-	-
	Antimony	6	60	-	-
	Arsenic	0.045	0.45	0.018	0.18
	Cadmium	0.094	0.94	-	-
	Chromium	100	1000	100	1000
N. (1	Copper	2.7	27	2.74	27.4
Metals	Lead	0.54	5.4	-	-
	Mercury	0.77	7.7	-	-
	Nickel	16	160	-	-
	Selenium	5	50	-	-
	Silver	0.12	1.2	-	-
	Zinc	36	360	36.5	365
	Naphthalene	0.2	2	12	120
	2-Methylnaphthalene	0.2	2	-	-
	Acenaphthylene	0.2	2	-	-
	Acenaphthene	0.2	2	-	-
	Fluorene	0.2	2	-	-
	Phenanthrene	0.2	2	-	-
	Anthracene	0.2	2	-	-
	Fluoranthene	0.2	2	-	-
PAHs	Pyrene	0.2	2	-	-
PAHS	Benzo(a)anthracene	0.018	0.18	0.0012	0.012
	Chrysene	0.018	0.18	0.0013	0.013
	Benzo(b)fluoranthene	0.018	0.18	0.0012	0.012
	Benzo(k)fluoranthene	0.018	0.18	0.0013	0.013
	Benzo(a)pyrene	0.018	0.18	0.00012	0.0012
	Indeno(1,2,3-cd)pyrene	0.018	0.18	0.0012	0.012
	Dibenz(a,h)anthracene	0.018	0.18	0.00012	0.0012
	Benzo(g,h,i)perylene	0.2	2	-	-
	cPAHs (BaP equivalent)	-	-	0.00012	0.0012
DCD :	Aroclor 1016	0.96	9.6	-	-
PCBs	Aroclor 1221	0.034	0.34	-	-

Category	Constituent	SLV (μg/L)	10x SLV (μg/L)	Surface Water CUL (µg/L)	10x Surface Water CUL (μg/L)
	Aroclor 1232	0.034	0.34	-	-
	Aroclor 1242	0.034	0.34	-	-
	Aroclor 1248	0.034	0.34	-	-
	Aroclor 1254	0.033	0.33	-	-
	Aroclor 1260	0.034	0.34	-	-
	Total PCBs	0.00064	0.0064	0.0000064	0.000064
	Bis(2-ethylhexyl) phthalate	2.2	22	0.2	20
	Benzyl butyl phthalate	3	30	-	-
Phthalates	Diethyl phthalate	3	30	-	-
	Dimethyl phthalate	3	30	-	-
	Di-n-octyl phthalate	3	30	-	-

¹The aluminum criteria are pH-dependent. As pH was not measured for the samples described in this report, aluminum results were not compared to SLVs.

Table F - 2: Sampling Effort and SCM Summary for T4 Stormwater (2020 – 2024)

	2020-2021	2022	2023-2024
Basin L	Baseline for recent SCM effort	-	Post-installation of StormwateRx Aquip; representative of current discharge of treated water
Basin N	Baseline for recent SCM effort	Post-storm line cleanout; representative of current day discharge	-
Basin O	Baseline for recent SCM effort	Post-storm line cleanout	Post-storm line cleanout and additional sediment control BMPs; representative of current discharge
Basin P	-	Post-catch basin cleaning; representative of current discharge	-
Basin Q	Baseline for recent SCM effort; representative of current discharge	-	-
Basin S	-	-	Post-storm line cleanout and repair; representative of current discharge

F.2. 2020-2024 DATA TABLES

Table F - 3: TSS in T4 Stormwater (2020 – 2024)

Location	Date Sampled	Total Suspended Solids (mg/L)
	02/15/2020	20
	10/10/2020	165
	11/05/2020	21
Basin L	11/12/2020	10
Dasiii L	12/26/2022	6
	01/13/2023	< 5
	02/13/2023	11
	03/13/2023	< 5
	02/15/2020	5
	10/10/2020	14
	11/06/2020	13
Basin N	11/13/2020	17
	03/13/2022	9
	04/04/2022	< 5 J
	04/30/2022	5.6
	02/15/2020	5
	10/10/2020	19
	12/11/2020	210
	12/11/2020 - DUP	198
	03/22/2021	7
	04/04/2022	16
Basin O	04/30/2022	7.6
	05/05/2022	51.2
	04/01/2023	13 J
	04/10/2023	7 J
	04/10/2023 - DUP	9 J
	01/27/2024	6 J

Location	Date Sampled	Total Suspended Solids (mg/L)
	03/12/2022	< 9.09 J
	04/03/2022	20.8
Basin P	04/29/2022	16.4
	04/29/2022 - DUP	18.8
	10/10/2020	< 5
	11/06/2020	< 5
Basin Q	11/06/2020 - DUP	< 5
	11/13/2020	< 5
	12/11/2020	9
	04/01/2023	109
Basin S	04/10/2023	92
	01/27/2024	242

Table Notes:

Grey text indicates a pre-SCM sample not representative of 2024 conditions

Shaded boxes indicate a detected value above the JSCS SLV for stormwater

Bolded values indicate a detected value above the ROD CUL for surface water

¹Qualifiers are as follows:

J = The result is an estimated concentration that is below the Method Reporting Limit (MRL) and above the Method Detection Limit (MDL), or the reported quantitation limit is an estimate

Table F - 4: PAHs in T4 Stormwater (2020 – 2024)

Location	Date Sampled	1-Methylnaphthalene (ug/L)	2-Methylnaphthalene (ug/L)	Acenaphthene (ug/L)	Acenaphthylene (ug/L)	Anthracene (ug/L)	Benzo(g,h,i)perylene (ug/L)	Fluoranthene (ug/L)	Fluorene (ug/L)	Phenanthrene (ug/L)	Pyrene (ug/L)
	02/15/2020	< 0.206	< 0.206	< 0.103	< 0.103	< 0.103	0.271	0.283	< 0.103	0.169 J	0.252
	10/10/2020	< 0.777	< 0.777	< 0.388	< 0.388	< 0.388	0.746 J	1.02	< 0.388	0.479 J	0.951
	11/05/2020	< 0.22	< 0.22	< 0.11	< 0.11	< 0.11	0.154 J	0.194 J	< 0.11	< 0.11	0.192 J
Basin L	11/12/2020	< 0.204	< 0.204	< 0.102	< 0.102	0.116 J	0.107 J	0.124 J	< 0.102	< 0.102	0.124 J
Dasin L	12/26/2022	ı	< 0.0194	< 0.00971	< 0.00971	< 0.00971	0.0299	0.0507	< 0.00971	0.0231	0.0467
	01/13/2023	ı	0.0294 J	< 0.00962	< 0.00962	< 0.00962	0.0121 J	0.0179 J	< 0.00962	< 0.00962	0.017 J
	02/13/2023	1	< 0.02 J	< 0.01 J	< 0.01 J	< 0.01	0.0247	0.0483	< 0.01 J	0.0262	0.0441
	03/13/2023	-	< 0.00952	< 0.00952	< 0.00952	< 0.00952	0.0106 J	0.0159 J	< 0.00952	< 0.00952	0.0152 J
	02/15/2020	< 0.0204	< 0.0204	< 0.0102	< 0.0102	0.0202 J	0.0467	0.105	< 0.0102	0.0255	0.0847
	10/10/2020	< 0.0889	< 0.0889	< 0.0444	< 0.0444	0.058 J	0.163	0.642	< 0.0444	0.153	0.47
	11/06/2020	< 0.0769	< 0.0769	< 0.0385	< 0.0385	< 0.0385	0.0757 J	0.173	< 0.0385	0.0542 J	0.14
	11/13/2020	< 0.0833	< 0.0833	< 0.0417	< 0.0417	< 0.0417	0.258	0.626 J	< 0.0417	0.166	0.507
Basin N	11/13/2020 - DUP	< 0.182	< 0.182	< 0.0909	< 0.0909	< 0.0909	0.279	0.858 J	< 0.0909	0.18 J	0.677
	03/13/2022	-	< 0.0357	< 0.0357	< 0.0178	0.0374	< 0.0178	0.0312 J	< 0.0178	< 0.0357	0.0236 J
	04/04/2022	-	< 0.0206	< 0.0103	< 0.0103	< 0.0103	0.0202 J	0.0255	< 0.0103	0.0119 J	0.0212
	04/30/2022	-	< 0.0319	< 0.016	< 0.016 J	0.0279 J	< 0.016	0.0252 J	< 0.016	< 0.0319	0.0196 J
	JSCS SLV	-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	ROD CUL	-	-	-	-	-	-	-	-	-	-

Table F - 4: PAHs in T4 Stormwater (2020 – 2024)

Location	Date Sampled	1-Methylnaphthalene (ug/L)	2-Methylnaphthalene (ug/L)	Acenaphthene (ug/L)	Acenaphthylene (ug/L)	Anthracene (ug/L)	Benzo(g,h,i)perylene (ug/L)	Fluoranthene (ug/L)	Fluorene (ug/L)	Phenanthrene (ug/L)	Pyrene (ug/L)
	02/15/2020	< 0.0202	< 0.0202	< 0.0101	< 0.0101	< 0.0101	0.0291	0.0203	< 0.0101	0.0156 J	0.0214
	10/10/2020	< 0.0833	< 0.0833	< 0.0417	< 0.0417	< 0.0417	0.104	0.123	< 0.0417	0.0528 J	0.128
	12/11/2020	< 0.087	< 0.087	0.319	0.0536 J	0.137	0.463	1.53	0.129	0.213	1.45
	12/11/2020 - DUP	< 0.086	< 0.086	0.301	0.0539 J	0.13	0.432	1.45	0.124	0.216	1.38
	03/22/2021	0.0257 J	0.0315 J	0.0238	< 0.011	0.021 J	0.0453	0.0671	0.0134 J	0.031	0.0614
Basin O	04/04/2022	-	< 0.0343	< 0.0535	< 0.0171 J	0.0248 J	0.0707	0.0728	< 0.0171	0.0343 J	0.0685
Dasiii O	04/30/2022	-	< 0.0318	< 0.0318	< 0.0159 J	0.0183 J	0.0274 J	0.033	< 0.0159	< 0.0318	0.0314 J
	05/05/2022	-	< 0.034	0.0391 J	0.0476	0.0876	0.288	0.338	0.0408	0.139	0.304
	04/01/2023	-	< 0.0363	< 0.0182	< 0.0182	0.03 J	0.034 J	0.034 J	< 0.0182	< 0.0363	0.0313 J
	04/10/2023	-	< 0.032	< 0.016	< 0.016	0.0244 J	0.0244 J	0.0316 J	< 0.016	< 0.032	0.0276 J
	04/10/2023 - DUP	-	< 0.0322	< 0.0161	< 0.0161	0.0225 J	0.0225 J	0.031 J	< 0.0161	< 0.0322	0.0261 J
	01/27/2024	-	< 0.0381	< 0.0191	< 0.0191	< 0.0191	< 0.0191	0.0214 J	< 0.0191	< 0.0381	0.0238 J
	03/12/2022	-	< 0.0333	< 0.0166	< 0.0166	< 0.0166	< 0.0166	< 0.0166	0.0224 J	< 0.0333	< 0.0166
Dasin D	04/03/2022	-	< 0.0369	< 0.0185	< 0.0185 J	< 0.0185	< 0.0185	< 0.0185	0.0226 J	0.0392 J	< 0.0185
Basin P	04/29/2022	-	< 0.0317	< 0.0158	< 0.0158 J	< 0.0158	< 0.0158	0.0158 J	< 0.0317	0.0337 J	< 0.0158
	04/29/2022 - DUP	-	< 0.0328	< 0.0164	< 0.0164 J	< 0.0164	< 0.0164	0.018 J	< 0.205 J	0.0344 J	< 0.0164
	10/10/2020	< 0.0879	< 0.0879	< 0.044	< 0.044	0.0581 J	< 0.044	< 0.044	< 0.044	< 0.044	< 0.044
	11/06/2020	< 0.0792	< 0.0792	< 0.0396	< 0.0396	0.1	< 0.0396	0.0444 J	< 0.0396	< 0.0396	0.0451 J
Basin Q	11/06/2020 - DUP	< 0.0842	< 0.0842	< 0.0421	< 0.0421	0.101	< 0.0421	0.0428 J	< 0.0421	< 0.0421	0.0472 J
	11/13/2020	< 0.0792	< 0.0792	< 0.0396	< 0.0396	< 0.0396	< 0.0396	0.0487 J	< 0.0396	< 0.0396	0.0507 J
	12/11/2020	< 0.0215	< 0.0215	< 0.0108	< 0.0108	0.0474	0.0408	0.0557	< 0.0108	0.0206 J	0.0556
	JSCS SLV	-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	ROD CUL	-	-	-	-	-	-	-	-		-

Table F - 4: PAHs in T4 Stormwater (2020 – 2024)

Location	Date Sampled	Naphthalene (ug/L)	Benz(a)anthracene (ug/L)	Benzo(a)pyrene (ug/L)	Benzo(b)fluoranthene (ug/L)	Benzo(k)fluoranthene (ug/L)	Chrysene (ug/L)	Dibenz(a,h)anthracene (ug/L)	Indeno(1,2,3-cd)pyrene (ug/L)	Total PAHs (ug/L)	cPAH/BaPeq (ug/L)
	02/15/2020	< 0.206	0.117 J	0.319	0.439	0.228 J	0.255	< 0.103	0.152 J	2.49	0.395
	10/10/2020	< 0.777	0.562 J	1.2	1.7	0.758 J	1.06	< 0.388	0.75 J	9.23	1.52
	11/05/2020	< 0.22	< 0.11	0.23 J	0.339	0.184 J	0.204 J	< 0.11	0.132 J	1.63	0.281
Basin L	11/12/2020	< 0.204	< 0.102	0.167 J	0.228 J	< 0.153	0.11 J	< 0.102	< 0.102	0.976	0.191
Dasin L	12/26/2022	< 0.0194	0.0185 J	0.0284	0.0613	0.0167 J	0.0494	< 0.00971	0.0305	0.355	0.0399
	01/13/2023	0.0352 J	< 0.00962	< 0.00962	0.0202	< 0.00962	0.0165 J	< 0.00962	0.0124 J	0.161	0.00340
	02/13/2023	< 0.02 J	0.015 J	0.0238	0.061	0.0178 J	0.0454	< 0.01	0.0268	0.333	0.0346
	03/13/2023	< 0.019	< 0.00952	< 0.00952	0.0119	< 0.00952	0.0152 J	< 0.00952	0.0121 J	0.0809	0.00250
	02/15/2020	< 0.0204	0.0392	0.0666	0.111 J	0.0403 J	0.07	0.0124 J	0.0447	0.666	0.0994
	10/10/2020	< 0.0889	0.139	0.242	0.475 J	0.185 J	0.5	< 0.0444	0.161	3.19	0.323
	11/06/2020	< 0.0769	0.0656 J	0.123	0.183	0.0727 J	0.124	< 0.0385	0.0743 J	1.09	0.157
	11/13/2020	< 0.0833	0.186	0.311	0.545 J	0.185 J	0.463 J	0.0465 J	0.245	3.54	0.460
Basin N	11/13/2020 - DUP	< 0.182	0.241	0.401	0.691 J	0.279 J	0.648 J	< 0.0909	0.259	4.51	0.526
	03/13/2022	< 0.0357	0.0169 J	0.016 J	0.0317	< 0.00892	0.0169 J	< 0.00892	0.0174 J	0.191	0.0230
	04/04/2022	< 0.0206	0.0158 J	0.0356	0.0376	0.0183 J	0.0201 J	< 0.0103	0.0193 J	0.226	0.0430
	04/30/2022	< 0.0319	0.00838 J	0.0156 J	0.0252	0.00918 J	0.0152 J	< 0.00799	0.0144 J	0.161	0.0210
	JSCS SLV	0.2	0.018	0.018	0.018	0.018	0.018	0.018	0.018	-	-
	ROD CUL	12	0.0012	0.00012	0.0012	0.0013	0.0013	0.00012	0.0012	-	0.00012

Table F - 4: PAHs in T4 Stormwater (2020 – 2024)

Location	Date Sampled	Naphthalene (ug/L)	Benz(a)anthracene (ug/L)	Benzo(a)pyrene (ug/L)	Benzo(b)fluoranthene (ug/L)	Benzo(k)fluoranthene (ug/L)	Chrysene (ug/L)	Dibenz(a,h)anthracene (ug/L)	Indeno(1,2,3-cd)pyrene (ug/L)	Total PAHs (ug/L)	cPAH/BaPeq (ug/L)
	02/15/2020	< 0.0202	0.017 J	0.0353	0.0446	0.0216 J	0.0202	< 0.0101	0.0221	0.247	0.0442
	10/10/2020	< 0.0833	0.0806 J	0.154	0.204	0.0911 J	0.0988	< 0.0417	0.0951	1.13	0.194
	12/11/2020	< 0.087	0.458	0.613	0.966 J	0.299 J	0.713	0.0939	0.42	7.86	0.900
	12/11/2020 - DUP	< 0.086	0.408	0.541	0.881 J	0.295 J	0.638	0.0933	0.399	7.34	0.811
	03/22/2021	0.205	0.0275	0.0551	0.0731	0.03 J	0.0511	< 0.011	0.0429	0.805	0.0703
Basin O	04/04/2022	< 0.0343	0.0441	0.0852	0.123 J	0.042 J	0.0651	0.0137 J	0.0715	0.716	0.124
Dasiii O	04/30/2022	< 0.0318	0.0199 J	0.0322	0.0524 J	0.0191 J	0.0306	< 0.00794	0.0278	0.292	0.0427
	05/05/2022	0.0408 J	0.198	0.304	0.528 J	0.158 J	0.27	0.0587	0.27	3.11	0.467
	04/01/2023	< 0.0363	0.0177 J	0.0309	0.0626	0.0209 J	0.025	0.0104 J	0.0322	0.329	0.0530
	04/10/2023	0.0427 J	0.0188 J	0.0268	0.0467	0.0164 J	0.024 J	< 0.00799	0.0232	0.307	0.0360
	04/10/2023 - DUP	0.0402 J	0.0153 J	0.0241	0.0418	0.0137 J	0.0217 J	< 0.00804	0.0229	0.0320	0.0320
	01/27/2024	< 0.0381	< 0.00953	0.0133 J	0.0219 A	< 0.00953	0.0124 J	< 0.00953	0.0143 J	0.107	0.0150
	03/12/2022	0.0461 J	< 0.00831	< 0.00831	< 0.00831	< 0.00831	< 0.00831	< 0.00831	< 0.00831	0.0690	0
Docin D	04/03/2022	0.0595 J	< 0.00923	< 0.00923	< 0.00923	< 0.00923	< 0.00923	< 0.00923	< 0.00923	0.121	0
Basin P	04/29/2022	0.0459 J	< 0.00792 J	< 0.00792 J	0.0115 J	< 0.00792	< 0.00792 J	< 0.00792	< 0.00792	0.107	0.00100
	04/29/2022 - DUP	0.0414 J	0.0102 J	0.0082 J	0.0176 J	< 0.0082	0.00943 J	< 0.0082	< 0.0082	0.139	0.0110
	10/10/2020	< 0.0879	< 0.044	< 0.0659	< 0.0659	< 0.0659	< 0.044	< 0.044	< 0.044	0.0581	0
	11/06/2020	< 0.0792	0.0546 J	0.0897 J	0.117 J	0.064 J	0.051 J	< 0.0396	0.0438 J	0.610	0.112
Basin Q	11/06/2020 - DUP	< 0.0842	0.0559 J	0.0863 J	0.109 J	0.0638 J	< 0.0421	< 0.0421	< 0.0421	0.506	0.103
	11/13/2020	< 0.0792	< 0.0396	0.072 J	0.0878 J	< 0.0594	< 0.0396	< 0.0396	< 0.0396	0.259	0.0808
	12/11/2020	< 0.0215	0.0312	0.0564	0.0877 J	0.0323 J	0.0484	< 0.0108	0.0377	0.514	0.0728
	JSCS SLV	0.2	0.018	0.018	0.018	0.018	0.018	0.018	0.018	-	-
	ROD CUL	12	0.0012	0.00012	0.0012	0.0013	0.0013	0.00012	0.0012	-	0.00012

Table Notes:

Grey text indicates a pre-SCM sample not representative of 2024 conditions Shaded boxes indicate a detected value above the JSCS SLV for stormwater Bolded values indicate a detected value above the ROD CUL for surface water

¹Qualifiers are as follows:

- A = Reported as benzo(b,j)fluoranthene(s) (ug/L)
- J = The result is an estimated concentration that is below the Method Reporting Limit (MRL) and above the Method Detection Limit (MDL), or the reported quantitation limit is an estimate

Table F - 5: Dioxins and Furans in T4 Stormwater (2020 – 2024)

Location	Date Sampled	1,2,3,4,6,7,8- HpCDD (pg/L)	1,2,3,4,6,7,8- HpCDF (pg/L)	1,2,3,4,7,8,9- HpCDF (pg/L)	1,2,3,4,7,8- HxCDD (pg/L)	1,2,3,4,7,8- HxCDF (pg/L)	1,2,3,6,7,8- HxCDD (pg/L)	1,2,3,6,7,8- HxCDF (pg/L)	1,2,3,7,8,9- HxCDD (pg/L)	1,2,3,7,8,9- HxCDF (pg/L)
	02/15/2020	34.6 J	< 1.02	< 1.25	< 1.51	< 1.03	< 1.42	< 1.0	< 1.48	< 1.37
	10/10/2020	54.5	< 0.668	< 1.03	< 1.01	< 0.753	1.69 J	< 0.734	1.13 J	< 1.13
	11/06/2020	55.9 J	< 3.66	< 6.9	< 4.01	< 3.37	< 3.68	< 3.1	< 3.87	< 6.07
Basin N	11/13/2020	113	7.65 J	< 1.41	2.07 J	< 1.1	3.22 J	< 1.12	2.95 J	< 1.45
	03/13/2022	24.6 J	< 3.79	< 4.71	< 4.86	< 6.62	< 3.98	< 5.92	< 4.38	< 6.42
	04/04/2022	< 7.22	< 6.05	< 7.37	< 12.1	< 7.03	< 9.51	< 6.16	< 10.5	< 6.81
	04/29/2022	24 J	< 3.92	< 5.03	< 4.63	< 4.14	< 3.92	< 3.66	< 4.33	< 3.84
	02/15/2020	23.6 J	< 0.696	< 0.892	< 1.5	< 0.913	< 1.4	< 0.831	< 1.47	< 1.14
	10/10/2020	51.5 J	< 0.444	< 0.693	< 1.06	0.824 J	< 1.09	0.718 J	1.48 J	< 0.608
	12/11/2020	1120	53.8 J	< 14.9	9.81 J	6.54 J	30.8 J	< 4.73	13.8 J	< 7.35
	12/11/2020 - DUP	1510	76 J	7.95 J	15.8 J	13.2 J	36.6 J	< 4.41	15.7 J	< 6.14
	03/22/2021	359	< 1.66	< 2.48	7.41 J	< 1.15	20.8 J	< 1.11	12.8 J	< 1.61
Basin O	04/04/2022	160	< 12.8	< 14	< 7.98	< 4.65	< 6.84	< 4.14	< 7.54	< 4.4
basin O	04/30/2022	58.7	< 5.94	< 7.3	< 9.04	< 4.18	< 7.57	< 3.68	< 8.34	< 4.11
	05/05/2022	390	27.4	< 3.21	< 9.64	< 3.54	21.6 J	< 2.97	10.1 J	< 3.26
	04/01/2023	183	< 6.34	< 6.22	< 10.6	< 6.35	< 9.38	< 6.59	< 9.24	< 9.73
	04/10/2023	67.7	< 4.24	< 5.74	< 3.08	< 3.93	< 5.29	< 2.94	< 13.1	< 4.7
	04/10/2023 - DUP	56.3	< 4.24	< 5.74	< 3.08	< 3.93	< 5.29	< 2.94	< 13.1	< 4.7
	01/27/2024	< 7.31	< 7.73	< 7.07	< 16.6	< 8.38	< 9.38	< 8.04	< 9.18	< 7.81
	JSCS SLV	-	-	-	-	-	-	-	-	-
	ROD CUL		_	-	1	-	-	-	-	-

Table F - 5: Dioxins and Furans in T4 Stormwater (2020 – 2024)

Location	Date Sampled	1,2,3,4,6,7,8- HpCDD (pg/L)	1,2,3,4,6,7,8- HpCDF (pg/L)	1,2,3,4,7,8,9- HpCDF (pg/L)	1,2,3,4,7,8- HxCDD (pg/L)	1,2,3,4,7,8- HxCDF (pg/L)	1,2,3,6,7,8- HxCDD (pg/L)	1,2,3,6,7,8- HxCDF (pg/L)	1,2,3,7,8,9- HxCDD (pg/L)	1,2,3,7,8,9- HxCDF (pg/L)
	03/12/2022	< 7.84	< 3.38	< 4.35	< 6.88	< 5.61	< 5.6	< 4.67	< 6.18	< 5.73
Daein D	04/03/2022	< 7.64	< 6.75	< 7.74	< 10.8	< 12.3	< 9.35	< 10.8	< 10.3	< 11.9
Basin P	04/29/2022	26.3	< 5.46	< 6.39	< 3.77	< 3.33	< 3.19	< 3.08	< 3.52	< 3.25
	04/29/2022 - DUP	26	< 4.42	< 5.97	< 8.15	< 3.58	< 6.93	< 3.34	< 7.64	< 3.78
	10/10/2020	51	< 0.382	< 0.527	< 0.988	0.588 J	1.58 J	0.367 J	< 0.995	< 0.549
	11/06/2020	146	6.33 J	< 6.31	< 5.21	< 2.58	< 4.77	< 2.35	< 5.03	< 4.34
Basin Q	11/06/2020 - DUP	155	6.24 J	< 8.04	< 6.02	< 2.36	< 5.64	< 2.36	< 5.88	< 4.12
	11/13/2020	62.4	4.38 J	< 1.92	< 1.77	< 1.59	< 1.86	< 1.52	< 1.84	< 2.13
	12/11/2020	164	5.79 J	< 5.53	< 4.81	< 2.47	< 4.94	< 2.43	< 4.94	< 3.06
	04/01/2023	132	29.3	< 7.51	< 8.28	< 5.22	< 7.22	< 5.42	< 7.11	< 7.14
Basin S	04/10/2023	88.4	< 4.24	< 5.74	< 3.08	< 3.93	< 5.29	< 2.94	< 13.1	< 4.7
	01/27/2024	230	67.5	< 7.07	< 16.6	< 8.38	< 9.38	< 8.04	< 9.18	< 7.81
	JSCS SLV	-	-	-	-	-	-	-	-	-
	ROD CUL	-	-	-	-	-	-	-	_	-

Table F - 5: Dioxins and Furans in T4 Stormwater (2020 – 2024)

Location	Date Sampled	1,2,3,7,8-PeCDD (pg/L)	1,2,3,7,8-PeCDF (pg/L)	2,3,4,6,7,8-HxCDF (pg/L)	2,3,4,7,8-PeCDF (pg/L)	2,3,7,8-TCDD (pg/L)	2,3,7,8-TCDF (pg/L)	OCDD (pg/L)	OCDF (pg/L)	D/F TEQ (2,3,7,8-TCDD eq) (pg/L)
	02/15/2020	< 1.06	< 1.4	< 1.0	< 1.1	< 1.37	< 0.868	268	11.3 J	0.430
	10/10/2020	< 0.912	< 0.648	< 0.769	< 0.619	< 1.04	< 0.942	478	11.1 J	0.974
	11/06/2020	< 3.24	< 1.82	< 3.93	< 1.86	< 3.37	< 3.33	365	< 11.5	0.669
Basin N	11/13/2020	2.31 J	< 0.963	1.24 J	1.71 J	< 1.04	< 1.05	923	25.4 J	5.26
	03/13/2022	< 6.76	< 4.52	< 5.92	< 4.74	< 1.93	< 1.27	189	< 7.26	0.303
	04/04/2022	< 3.54	< 3.34	< 6.97	< 3.22	< 1.57	< 0.808	184	< 5.37	0.0552
	04/29/2022	< 5.67	< 5.77	< 4.04	< 5.47	< 1.83	< 1.9	186	< 6.33	0.296
	02/15/2020	< 0.947	< 1.17	< 0.853	< 0.9	< 1.25	< 0.761	183	5.39 J	0.293
	10/10/2020	< 0.902	< 0.731	0.718 J	< 0.689	< 1.03	< 0.978	408	11.6 J	1.01
	12/11/2020	5.28 J	6.13 J	5.65 J	6.17 J	< 2.7	< 4.45	9460	130 J	28.6
	12/11/2020 - DUP	8.39 J	6.2 J	7.71 J	8.91 J	< 2.71	< 5.04	12800	186 J	40.0
	03/22/2021	< 1.58	< 0.986	< 1.18	< 0.946	< 0.876	< 1.17	1660	< 4.77	8.19
Basin O	04/04/2022	< 5.69	< 3.92	< 4.62	< 3.7	< 1.96	< 1.07	886	43.5	1.88
Dasiii O	04/30/2022	< 3.97	< 3.4	< 4.24	< 3.26	< 1.21	< 1.36	309	< 6.82	0.680
	05/05/2022	< 4.86	< 3.38	< 3.57	< 3.34	< 1.38	< 1.2	2600	50.4 J	8.14
	04/01/2023	< 6.41	< 3.9	< 8.32	< 3.52	< 3	< 2.97	1210	< 13.6	2.19
	04/10/2023	< 2.56	< 2.96	< 4.32	< 5.4	< 0.887	< 0.733	346	< 11.7	0.781
	04/10/2023 - DUP	< 2.56	< 2.96	< 4.32	< 5.4	< 0.887	< 0.733	369	< 11.7	0.674
	01/27/2024	< 8.39	< 6.86	< 6.88	< 5.95	< 2.96	< 1.44	< 22.2	< 9.32	0
	JSCS SLV	-	-	-	-	0.0051	-	-	-	0.0051
	ROD CUL	-	-	-	-	-	-	-	-	0.0005

Table F - 5: Dioxins and Furans in T4 Stormwater (2020 – 2024)

Location	Date Sampled	1,2,3,7,8-PeCDD (pg/L)	1,2,3,7,8-PeCDF (pg/L)	2,3,4,6,7,8-HxCDF (pg/L)	2,3,4,7,8-PeCDF (pg/L)	2,3,7,8-TCDD (pg/L)	2,3,7,8-TCDF (pg/L)	OCDD (bg/L)	OCDF (pg/L)	D/F TEQ (2,3,7,8-TCDD eq) (pg/L)
	03/12/2022	< 5.89	< 3.58	< 5.23	< 3.66	< 2.45	< 1.59	27.8 J	< 6.13	0.00834
Basin P	04/03/2022	< 6.28	< 4.53	< 12.5	< 4.47	< 1.76	< 2.32	202	< 10.4	0.0606
Dasili F	04/29/2022	< 3.99	< 2.17	< 3.55	< 2.11	< 1.58	< 1.38	209 J	35.1 J	0.336
	04/29/2022 - DUP	< 5.74	< 3.45	< 3.8	< 3.16	< 1.8	< 1.91	133 J	< 7.32 J	0.300
	10/10/2020	0.973 J	0.698 J	0.533 J	0.661 J	< 1.16	< 1.63	603	7.44 J	2.19
	11/06/2020	< 3	< 2.23	< 2.78	< 2.17	< 3.83	< 4	1840	21.1 J	2.08
Basin Q	11/06/2020 - DUP	< 3.08	< 2.98	< 2.52	< 2.66	< 2.88	< 3.48	1780	20.7 J	2.15
	11/13/2020	< 1.29	< 1.17	< 1.54	< 1.18	< 1.11	< 1.36	742	11.6 J	0.894
	12/11/2020	< 2.97	< 2.11	< 2.56	< 2.04	< 2.82	< 3.23	1720	22.3 J	2.22
	04/01/2023	< 4.63	< 2.64	< 6.15	< 2.59	< 1.7	< 2.05	699	43.4 J	1.84
Basin S	04/10/2023	< 2.56	< 2.96	< 4.32	< 5.4	< 0.887	< 0.733	521	< 11.7	1.04
	01/27/2024	< 8.39	< 6.86	< 6.88	< 5.95	< 2.27	< 1.44	1130	99.9	0.369
	JSCS SLV	-	-	-	-	0.0051	-	-	-	0.0051
	ROD CUL	-	-	-	-	-	-	-	-	0.0005

Grey text indicates a pre-SCM sample not representative of 2024 conditions Shaded boxes indicate a detected value above the JSCS SLV for stormwater Bolded values indicate a detected value above the ROD CUL for surface water

¹Qualifiers are as follows:

J = The result is an estimated concentration that is below the Method Reporting Limit (MRL) and above the Method Detection Limit (MDL), or the reported quantitation limit is an estimate

Table F - 6: Phthalates in T4 Stormwater (2020 – 2024)

Location	Date Sampled	BEHP (ug/L)
	02/15/2020	0.212 J
	10/10/2020	< 0.833
Basin O	12/11/2020	< 0.87
	12/11/2020 - DUP	< 0.86
	03/22/2021	0.268 J
	10/10/2020	< 0.879
	11/06/2020	< 0.792
Basin Q	11/06/2020 - DUP	< 0.842
	11/13/2020	< 0.792
	12/11/2020	< 0.215
	JSCS SLV	2.2
	ROD CUL	0.2

Grey text indicates a pre-SCM sample not representative of 2024 conditions Shaded boxes indicate a detected value above the JSCS SLV for stormwater Bolded values indicate a detected value above the ROD CUL for surface water

¹Qualifiers are as follows:

J =
The result is an estimated concentration that is below the Method Reporting
Limit (MRL) and above the Method Detection Limit (MDL), or the reported
quantitation limit is an estimate

Table F - 7: Metals in T4 Stormwater (2020 – 2024)

Location	Date Sampled	Copper (ug/L)	Mercury (ug/L)	Zinc (ug/L)
	12/26/2022	3.53	-	31.8
Basin I	01/13/2023	2.82	-	26.4
Basin L	02/13/2023	< 90	-	< 180
	03/13/2023	2.26	-	19
	03/13/2022	-	< 0.05	-
Basin N	04/04/2022	-	< 0.05	-
	04/30/2022	-	< 0.04	-
JSCS SLV		2.7	0.77	36
R	OD CUL	2.74	-	36.5

Shaded boxes indicate a detected value above the JSCS SLV for stormwater Bolded values indicate a detected value above the ROD CUL for surface water

¹Qualifiers are as follows:

J = The result is an estimated concentration that is below the Method Reporting Limit (MRL) and above the Method Detection Limit (MDL), or the reported quantitation limit is an estimate

Table F - 8: PCBs in T4 Stormwater (2020 – 2024)

Location	Date Sampled	Aroclor 1016 (ug/L)	Aroclor 1221 (ug/L)	Aroclor 1232 (ug/L)	Aroclor 1242 (ug/L)	Aroclor 1248 (ug/L)	Aroclor 1254 (ug/L)	Aroclor 1260 (ug/L)	Aroclor 1262 (ug/L)	Aroclor 1268 (ug/L)	Total PCB Aroclors (ug/L)
	04/01/2023	< 0.00943	< 0.00943	< 0.00943	< 0.00943	< 0.00943	< 0.00943	< 0.00943	< 0.00943	< 0.00943	< 0.00943
Basin S	04/10/2023	< 0.0102	< 0.0102	< 0.0102	< 0.0102	< 0.0102	< 0.0102	< 0.0102	< 0.0102	< 0.0102	< 0.0102
	01/27/2024	< 0.0115	< 0.0115	< 0.0115	< 0.0115	< 0.0115	< 0.0115	< 0.0115	< 0.0115	< 0.0115	< 0.0115
J.	SCS SLV	0.96	0.034	0.034	0.034	0.034	0.033	0.034	-	-	0.000064
ROD CUL		-	ı	-	1	ı	-	ı	-	-	0.0000064

Shaded boxes indicate a detected value above the JSCS SLV for stormwater Bolded values indicate a detected value above the ROD CUL for surface water

The result is an estimated concentration that is below the Method Reporting Limit (MRL) and above the Method Detection Limit (MDL), or the reported quantitation limit is an estimate

¹Qualifiers are as follows:

F.3. 2020-2024 JSCS SLV EXCEEDANCE FACTORS

Table F - 9: JSCS SLV Exceedance Factors for PAHs (2020 – 2024)

Location	Date Sampled	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene
Dosin I	2020	<1	<1	<1	<1	<1 - 3.7	<1 - 5.1	<1	<1 - 2.4	<1 - 4.8
Basin L	2022-2023	<1	<1	<1	<1	<1	<1	<1	<1	<1
De sim N	2020	<1	<1	<1	<1	<1 - 1.4	<1 - 4.3	<1	<1	<1 - 3.4
Basin N	2022	<1	<1	<1	<1	<1	<1	<1	<1	<1
	2020-2021	<1	<1 - 1.6	<1	<1	<1 - 2.3	<1 - 7.7	<1	<1 - 1.1	<1 - 7.3
Basin O	2022	<1	<1	<1	<1	<1 - 1.4	<1 - 1.7	<1	<1	<1 -1.5
	2023-2024	<1	<1	<1	<1	<1	<1	<1	<1	<1
Basin P	2022	<1	<1	<1	<1	<1	<1	<1	<1	<1
Basin Q	2020	<1	<1	<1	<1	<1	<1	<1	<1	<1
JSCS .	SLV (ug/L)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2

Table F - 9: JSCS SLV Exceedance Factors for PAHs (2020 – 2024)

Location	Date Sampled	Naphthalene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene
Basin L	2020	<1	<1 - 31.2	9.3 - 67	13 - 94	<1 - 42	6.1 - 59	<1	<1 - 42
Dasiii L	2022-2023	<1	<1 - 1.0	<1 - 1.6	<1 - 3.4	<1	<1 - 2.7	<1	<1 - 1.7
Docin N	2020	<1	3.3 - 13	3.7 - 22	6.2 - 38	2.2 - 16	3.9 - 36	<1 - 2.6	2.5 - 14
Basin N	2022	<1	<1	<1 - 2.0	1.4 - 2.1	<1 - 1.0	<1 - 1.1	<1	<1 - 1.1
	2020-2021	<1 - 1.0	<1 - 25	2.0 - 34	2.5 - 49	1.2 - 17	1.1 - 40	<1 - 5.2	1.2 - 23
Basin O	2022	<1	1.1 - 11	1.8 - 17	2.9 - 29	1.1 - 8.8	1.7 - 3.6	<1 - 3.3	1.5 - 15
	2023-2024	<1	<1 - 1.0	<1 - 1.7	1.2 - 3.5	<1 - 1.2	<1 - 1.4	<1	<1 - 1.8
Basin P	2022	<1	<1	<1	<1	<1	<1	<1	<1
Basin Q	2020	<1	<1 - 3.1	<1 - 5.0	<1 -6.5	<1 - 3.5	<1 - 3.6	<1	<1 - 2.4
JSCS SI	LV (ug/L)	0.2	0.018	0.018	0.018	0.018	0.018	0.018	0.018

Table F - 10: JSCS SLV Exceedance Factors for Dioxins and Furans (2020 – 2024)

Location	Date Sampled	2,3,7,8-TCDD	D/F TEQ (2,3,7,8-TCDD eq)
Basin N	2020	<1	84 - 1031
Dasiii IN	2022	<1	11 - 59
	2020-2021	<1	57 - 7843
Basin O	2022	<1	133 - 1596
	2023-2024	<1	<1 - 410
Basin P	2022	<1	1.6 - 66
Basin Q	2020	<1	175 - 435
Basin S	2023-2024	<1	72 - 361
JSCS SLV	(pg/L)	0.0051	0.0051

Grey text indicates a pre-SCM sample not representative of 2024 conditions

Table F - 11: JSCS SLV Exceedance Factors for Phthalates (2020 – 2024)

Location	Date Sampled	ВЕНР
Basin O	2020-2021	<1
Basin Q	2020	<1
JSCS SL	/ (ug/L)	2.2

Table Notes:

Table F - 12: JSCS SLV Exceedance Factors for Metals (2020 – 2024)

Location	Date Sampled	Copper	Mercury	Zinc
Basin L	2022-2023	<1 - 1.3	-	<1
Basin N	2022	-	<1	-
JSCS :	SLV (ug/L)	2.7	0.77	36

Grey text indicates a pre-SCM sample not representative of 2024 conditions

Table F - 13: JSCS SLV Exceedance Factors for PCBs (2020 – 2024)

Location	Date Sampled	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCB Aroclors
Basin L	2022-2023	<1	<1	<1	<1	<1	<1	<1	<1
JSCS SL	.V (ug/L)	0.96	0.034	0.034	0.034	0.034	0.033	0.034	0.000064

Table Notes:

F.4. 2020-2024 ROD CUL EXCEEDANCE FACTORS

Table F - 13: ROD CUL Exceedance Factors for PAHs (2020 – 2024)

Location	Date Sampled	Naphthalene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	cPAH/BaPeq
Basin L	2020	<1	<1 - 468	1392 - 10000	190 - 1417	<1 - 583	85 - 815	<1	<1 - 625	1592 - 12667
DdSIII L	2022-2023	<1	<1 - 15	<1-237	9.9 - 51	<1 - 14	12 - 38	<1	10 - 25	21 - 333
Danie N	2020	<1	33 - 201	555 - 3342	93 - 576	31 - 215	54 - 498	<1 - 388	37 - 216	828 - 4383
Basin N	2022	<1	7.0 - 14	130 - 297	21 - 31	<1 - 14	12 - 17	<1	12 - 16	175 - 358
	2020-2021	<1	14 - 382	294 - 5108	37 - 805	17 - 230	16 - 548	<1 - 783	18 - 350	368 - 7500
Basin O	2022	<1	17 - 365	268 - 2533	44 - 440	15 - 122	24 - 208	<1 - 489	23 - 225	356 - 3892
	2023-2024	<1	<1 - 16	111 - 258	18 - 52	<1 - 16	10 - 19	<1 - 87	12 - 27	125 - 442
Basin P	2022	<1	<1-9	<1 - 68	<1 - 15	<1	<1-7	<1	<1	<1-92
Basin Q	2020	<1	<1 - 47	<1 - 748	<1 - 98	<1 - 49	<1-37	<1	<1-37	<1 - 933
ROD C	UL (ug/L)	12	0.0012	0.00012	0.0012	0.0013	0.0013	0.00012	0.0012	0.00012

Table Notes:

Table F - 14: ROD CUL Exceedance Factors for Dioxins and Furans (2020 – 2024)

Location	Date Sampled	D/F TEQ (2,3,7,8-TCDD eq)	
Basin N	2020	860 - 10520	
	2022	110 - 606	
Basin O	2020-2021	586 - 80000	
	2022	1360 - 16280	
	2023-2024	<1 - 4380	
Basin P	2022	17 - 672	
Basin Q	2020	1788 - 4440	
Basin S	2023-2024	738 - 3680	
ROD CUL (pg/L)		0.0005	

Grey text indicates a pre-SCM sample not representative of 2024 conditions

Table F - 15: ROD CUL Exceedance Factors for Phthalates (2020 – 2024)

Location	Date Sampled	ВЕНР
Basin O	2020-2021	<1- 1.3
Basin Q	2020	<1
ROD CUL (ug/L)		0.2

Table Notes:

Table F - 16: ROD CUL Exceedance Factors for Metals (2020 – 2024)

Location	Date Sampled	Copper	Zinc
Basin L	2022-2023	<1 - 1.3	<1
ROD CUL (ug/L)		2.74	36.5

Grey text indicates a pre-SCM sample not representative of 2024 conditions

Table F - 17: ROD CUL Exceedance Factors for PCBs (2020 - 2024)

Location	Date Sampled	Total PCB Aroclors
Basin L	2022-2023	<1
ROD CUL (ug/L)		6.4E-06

Table Notes: