

MEMO

ТО	Katie Daugherty, ODEQ
FROM	Brendan Robinson, PE, ERM; Todd Slater, LSS
DATE	15 December 2024
REFERENCE	0732445.204
SUBJECT	Groundwater Source Control Measure Monthly Performance Monitoring Report

1. INTRODUCTION

The Oregon Department of Environmental Quality (ODEQ), in its letter dated 31 May 2019 and in the subsequent meeting with Legacy Site Services LLC (LSS) and Environmental Resources Management, Inc. (ERM) on 2 July 2019, requested that LSS initiate monthly status reports associated with the onsite groundwater source control measure (GW SCM) at the Arkema site (Site) consistent with the Performance Monitoring Plan (PMP; ERM 2014¹) beginning July 2019. The 2014 PMP was prepared pursuant to the Order on Consent issued by ODEQ, signed on 31 October 2008 (ODEQ No. LQVC-NWR-08-04; Consent Order). The purpose of the PMP was to present the monitoring, reporting, and adaptive management processes used during implementation of the GW SCM. On 30 November 2021, ODEQ directed LSS that following the October 2021 Monthly Performance Monitoring Report (MPR), subsequent MPRs would be suspended pending the implementation of the Groundwater Extraction Enhancement (GEE) project in 2022. During that time, ODEQ requested monthly schedule updates in lieu of MPRs. The trench wells installed as part of the GEE project were started on 27 November 2022, and MPR writing restarted in December 2022. The purpose of the GEE project was to install new extraction capacity to achieve the Capture Zone Objectives.

On 6 June 2024, ODEQ requested that LSS and ERM reduce the scope of future MPRs to facilitate faster review. On 11 September 2024, ODEQ agreed for the first amended MPR to be the August 2024 MPR submitted in October 2024.

¹ ERM-West, Inc. 2014. Revised Final Performance Monitoring Plan – Groundwater Source Control Measure, Arkema Inc. Facility, Portland, Oregon. July 2014.

GWET SYSTEM PERFORMANCE

The average system influent flow rate was 24.37 gallons per minute (gpm) for the entire month of October 2024, including non-operational periods. The average operational influent flow during operational periods was 27.94 gpm.

Extraction pumps become fouled with accumulated solids over time. A proactive pump removal and maintenance program is in place to address fouling and maximize flow rates. Ongoing redevelopment is anticipated in November 2024 to maintain the productivity of the groundwater extraction trenches, and conveyance line cleaning will be conducted as needed based on analysis of backpressure.

The increase in average monthly groundwater extraction rate in October 2024 compared to September 2024 is believed to be a result of an increase in groundwater elevations onsite as shown on Attachments A-1 and A-2. This is likely due to groundwater migration from upgradient sources, since the river elevation is near a 5-year low.

LSS is continuing to optimize extraction rates within the system to increase flow rates at each operational well until either the extraction rates specified in the *Groundwater Extraction Enhancement Final Design Report* (ERM 2022²) are achieved, the wells are producing the maximum quantity of water possible, or until the Capture Zone Objectives are met.

2.1 GWET PLANT OPERATIONS

The groundwater extraction and treatment (GWET) plant operated within permit conditions during the reporting period. There were three shutdowns:

- 7 October 2024: The wellfield was shut down for 0.5-hours to due to pump P-1 faulting.
- 22 October 2024: The plant and wellfield was shut down for 1-hour due to a PLC program download.
- 28 October 2024: The wellfield was shut down for 25-hours due to drilling for ongoing PDI work and PLC troubleshooting.

² ERM-West, Inc. 2022. Final Design Report, Arkema Inc. Facility, Portland, Oregon. May 2022.

CAPTURE ZONE EVALUATION

As described in the PMP, the purpose of hydraulic monitoring (i.e., groundwater elevation data) is to provide sufficient data to demonstrate an inward hydraulic gradient across the groundwater barrier wall (GWBW) and to evaluate the effective hydraulic capture produced by the GW SCM.

3.1 GROUNDWATER ELEVATION MONITORING

Groundwater elevation monitoring was completed on 11 October 2024. The Serfes (1991)³ method was used to account for tidal variations as described in the PMP. Using Serfes corrected data, both horizontal and vertical gradients were calculated and plotted over time (Attachment B). Groundwater elevations, horizontal gradients, and vertical gradients from 11 October 2024 are shown in Attachment B-3 and Attachment B-4.

3.2 POTENTIOMETRIC SURFACE, GROUNDWATER ELEVATION DIFFERENCE MAPS, AND GROUNDWATER FLOW DIRECTIONS

Groundwater elevation data collected on 11 October 2024 was used to prepare potentiometric surface maps based on manual measurements and averaged transducer groundwater elevations (Figures 2 through 4) and vertical difference maps (Figures 5 and 6).

The generalized flow direction indicated by the potentiometric surface maps shows overall groundwater flow from upgradient toward the GWBW. Potentiometric maps (Figures 2, 3, and 4) indicate generalized groundwater movement to the extraction trenches in the Shallow, Intermediate, and Deep Zones due to GW SCM pumping, and cones of depression are apparent around each groundwater extraction trench primarily on the north end of the Site in the Shallow and Intermediate Zones. Horizontal gradients at gradient control clusters (GCCs) across the Site are generally outward, but the magnitude of horizontal gradients is approaching zero as shown in Attachments B-1 and B-2.

River elevations are shown over time on Attachments A-1 and A-2, and in an inset on the potentiometric surface maps (Figures 2 through 4). The river elevation in October 2024 had an average elevation of 7.18 feet North American Vertical Datum of 1988 (NAVD88) with a minimum elevation of 4.76 feet NAVD88 and a maximum elevation of 10.22 feet NAVD88, a decrease compared to September 2024, and the lowest elevation observed in the last two years. The average Shallow and the average Intermediate Zone groundwater elevation increased from September 2024. The river elevation has largely been trending downward since January 2024 but is anticipated to rise over the coming months as the seasonal rains begin. There was not as significant of a seasonal rise in Willamette River level this spring compared to previous years.

To increase the volume of water drawn from the lowest elevations onsite, a pass-through packer is being deployed at Trench 6. The packer will block the vertical portions of the well screen at Trench

³ Serfes, Michael. 1991. "Determining the Mean Hydraulic Gradient of Ground Water Affected by Tidal Fluctuations." *Groundwater* 29(4): July-August.

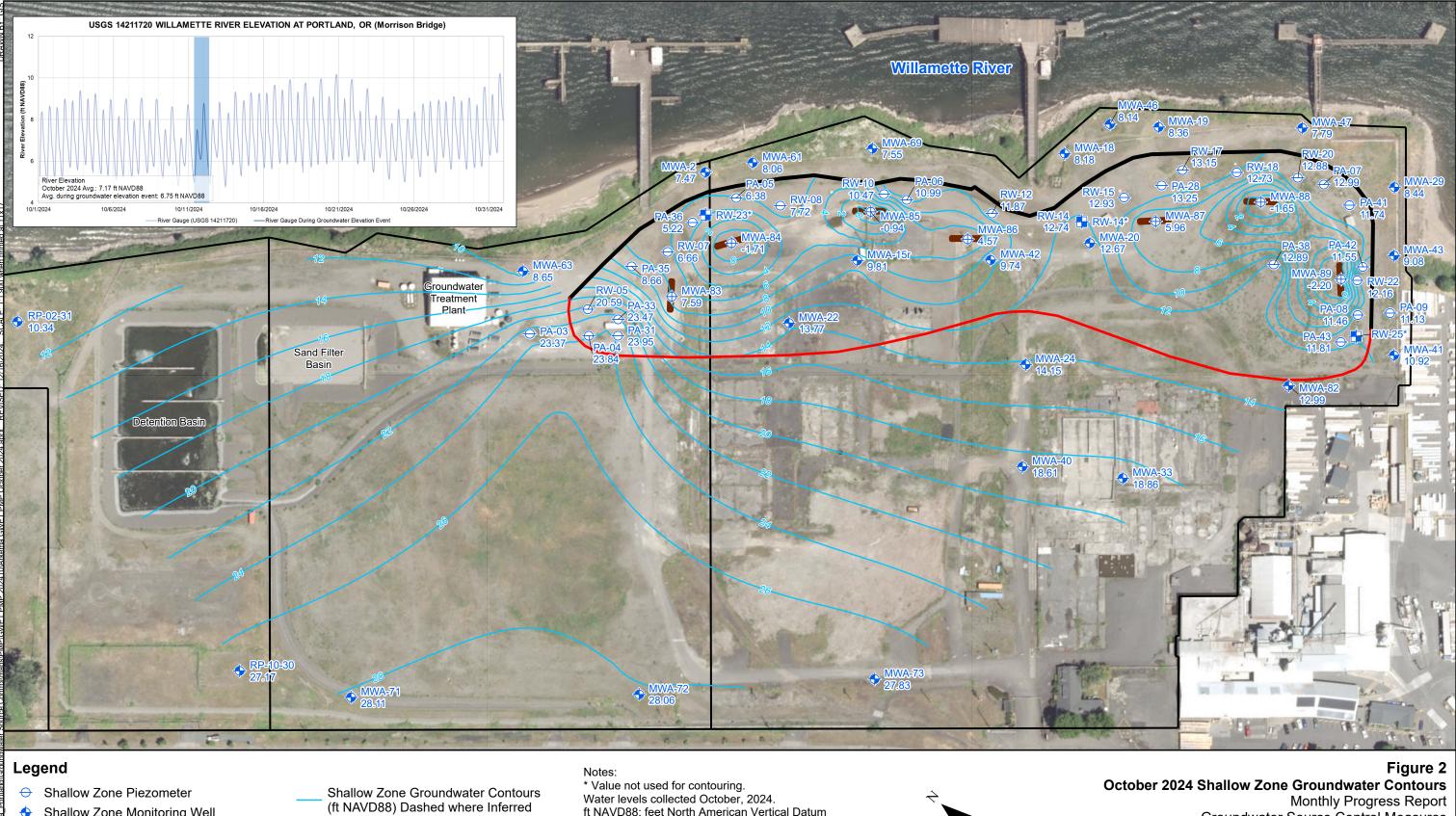
6 from being used and will force groundwater to be extracted in the horizontal sections of the pipe at the bottom of the extraction trench to enable water to be drawn down further.

Vertical gradients were calculated for each vertical well pair and are plotted on Figures 5 and 6. Vertical groundwater gradients and trend lines are shown in Attachments B-2 and B-4. Vertical groundwater gradients interior and exterior to the GWBW were primarily downward between the Shallow and Intermediate Zones and between the Intermediate and Deep Zones.

4. CONCLUSIONS

Analysis of horizontal gradients over time indicate that the extraction wells (EWs) are performing better than the historical recovery wells (RWs) and outward horizontal gradients are decreasing. The extraction rates throughout the GWET system will continue to be optimized to meet Target Capture Objectives. Redevelopment of the trenches is planned for November 2024 to mitigate accumulation of silt in the filter pack in both the vertical and horizontal sections using impulse redevelopment techniques, and resonant technology. These efforts, as well as the packers discussed above, will be targeted at trenches that are currently underperforming, including Trenches 1, 4, 5, and 6. LSS will continue to optimize new EWs, including pump maintenance and upgrades. Additional modifications to the system, if needed to progress toward capture objectives, will be included in subsequent MPRs. The project schedule provided as Attachment C summarizes planned activities.

Regards,


Brendan Robinson, PE

Partner

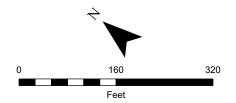
ATTACHMENTS

- FIGURE 1 SITE LAYOUT
- FIGURE 2 SHALLOW ZONE GROUNDWATER CONTOURS
- FIGURE 3 INTERMEDIATE ZONE GROUNDWATER CONTOURS
- FIGURE 4 DEEP ZONE GROUNDWATER CONTOURS
- FIGURE 5 SHALLOW TO INTERMEDIATE ZONE VERTICAL HEAD DIFFERENCE MAPS
- FIGURE 6 INTERMEDIATE TO DEEP ZONE VERTICAL HEAD DIFFERENCE MAPS
- ATTACHMENT A-1 OPERATIONAL PUMPING RATE GRAPH
- ATTACHMENT A-2 AVERAGE MONTHLY PUMPING RATE GRAPH
- ATTACHMENT A-3 GWET SYSTEM GROUNDWATER EXTRACTION RATES TABLE
- ATTACHMENT B-1 HORIZONTAL GRADIENTS SUMMARY GRAPH
- ATTACHMENT B-2 VERTICAL GRADIENTS SUMMARY GRAPH
- ATTACHMENT B-3 WATER LEVELS AND HORIZONTAL GRADIENTS TABLE
- ATTACHMENT B-4 WATER LEVELS AND VERTICAL GRADIENTS TABLE
- ATTACHMENT C PROJECT SCHEDULE

→ Shallow Zone Piezometer

Shallow Zone Monitoring Well

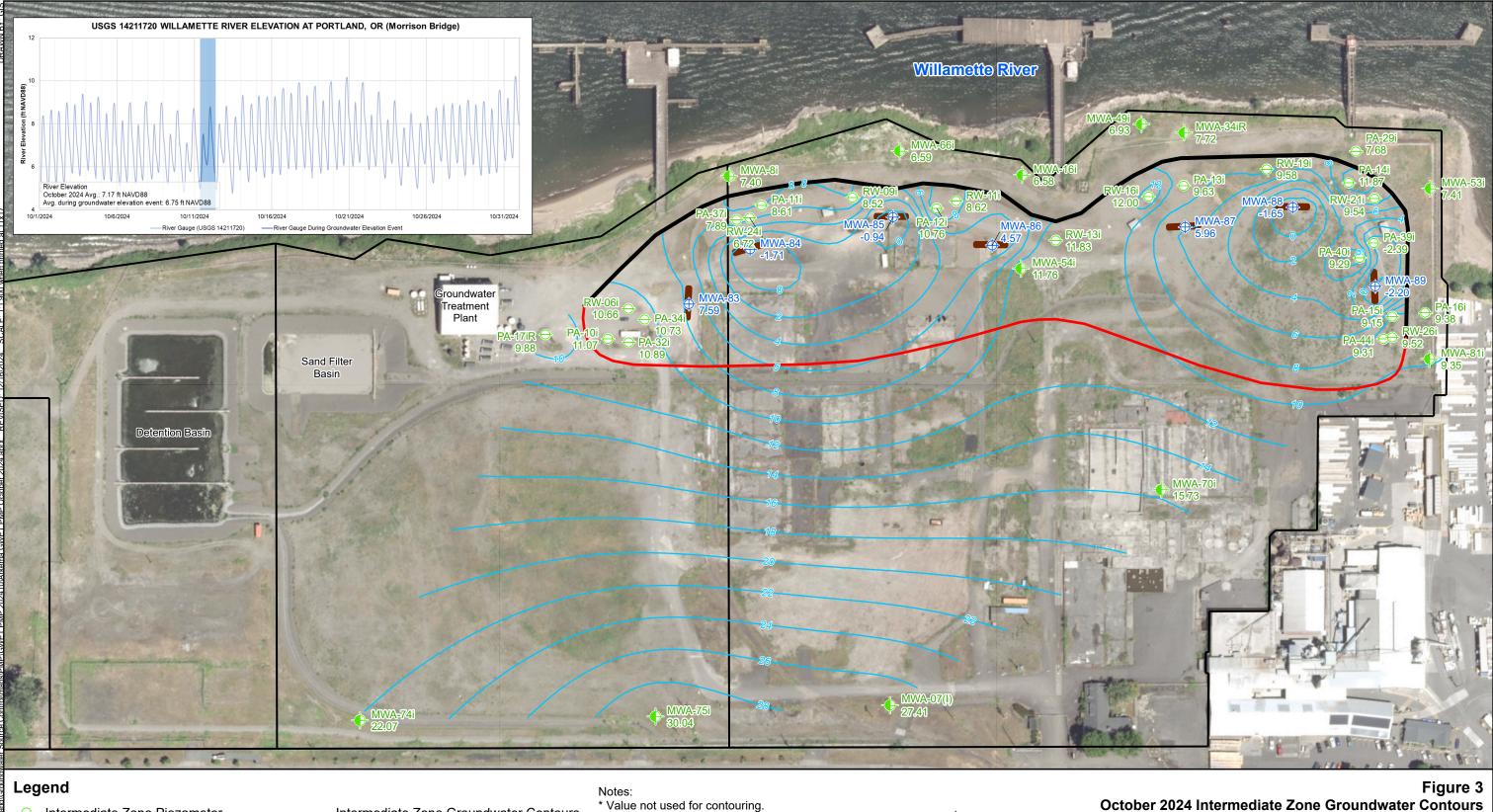
Active Recovery Well; Not Used During Contouring


◆ Shallow-Intermediate Zone Monitoring Well Extraction Trench (Not To Scale)

Target Capture Zone

Barrier Wall Alignment

27.70 Groundwater Elevation (ft NAVD88)

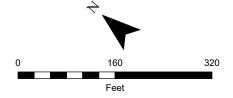

* Value not used for contouring. Water levels collected October, 2024. ft NAVD88: feet North American Vertical Datum of 1988. Aerial Photo: City of Portland, Summer 2017.

October 2024 Shallow Zone Groundwater Contours

Monthly Progress Report Groundwater Source Control Measures Arkema Inc. Portland, Oregon

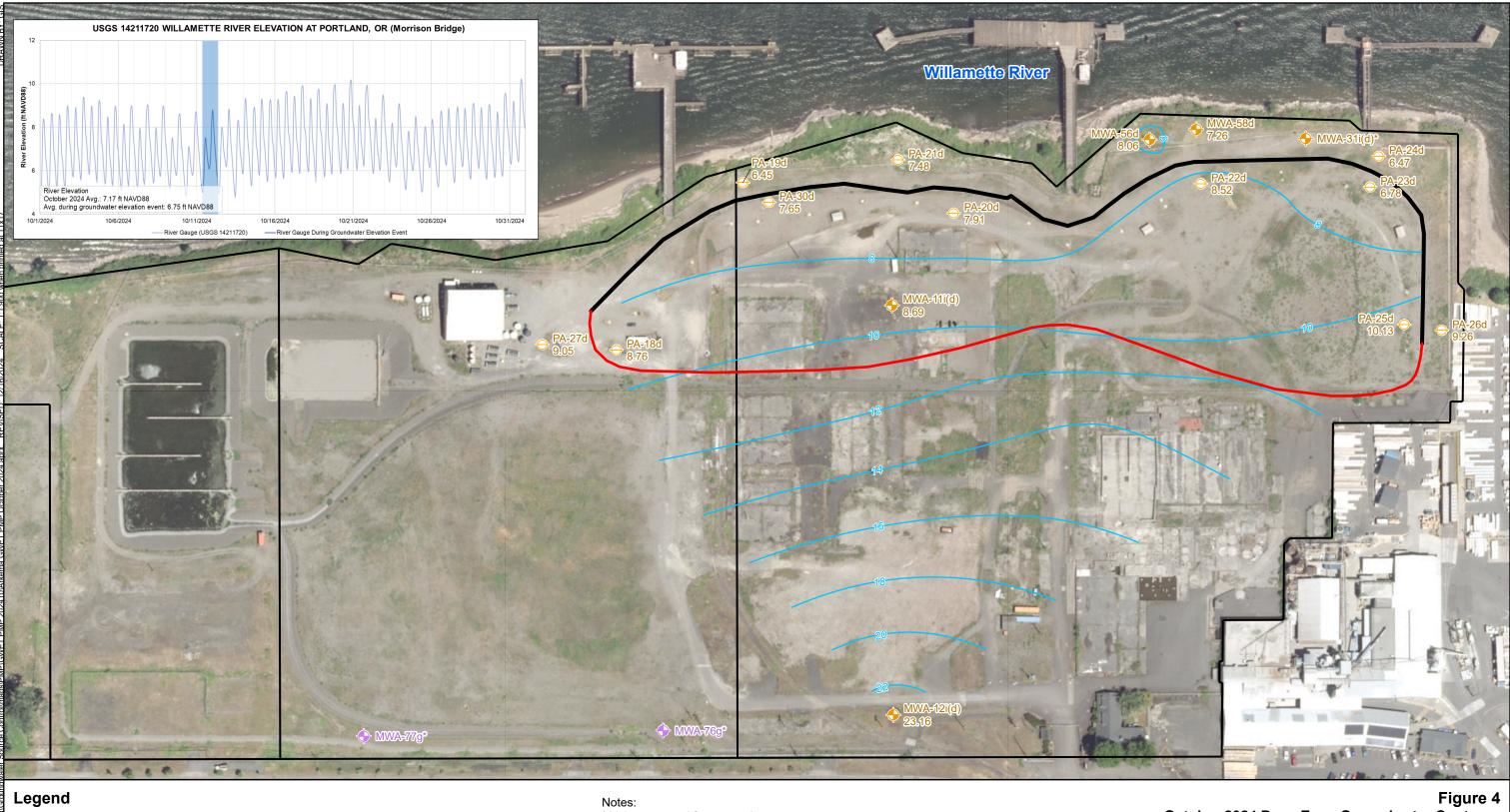
Intermediate Zone Piezometer

Intermediate Zone Monitoring Well


Shallow-Intermediate Zone Monitoring Well

27.70 Groundwater Elevation (ft NAVD88)

Intermediate Zone Groundwater Contours (ft NAVD88) Dashed where Inferred


Target Capture Zone

 Barrier Wall Alignment Extraction Trench (Not To Scale) * Value not used for contouring. Water levels collected October, 2024. ft NAVD88: feet North American Vertical Datum of 1988. Aerial Photo: City of Portland, Summer 2017.

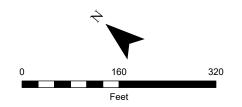
Monthly Progress Report Groundwater Source Control Measures Arkema Inc. Portland, Oregon

Oeep Zone Piezometer

Deep Zone Monitoring Well

Gravel Zone Monitoring Well

27.70 Groundwater Elevation (ft NAVD88)


Deep Zone Groundwater Contours (ft NAVD88)

Dashed where Inferred

Target Capture Zone

Barrier Wall Alignment

* Value not used for contouring.
Gravel zone wells not used in contouring.
Water levels collected October, 2024.
ft NAVD88: feet North American Vertical Datum of 1988.
Aerial Photo: City of Portland, Summer 2017.

October 2024 Deep Zone Groundwater Contours

Monthly Progress Report
Groundwater Source Control Measures
Arkema Inc.
Portland, Oregon

Environmental Resources Management www.erm.com

Legend

Shallow Zone Monitoring Well

• Intermediate Zone Monitoring Well

Shallow Zone Piezometer

Intermediate Zone Piezometer

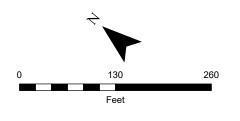
Shallow Zone Recovery Well

Trench Extraction Well

Active Recovery Well

Downward Gradient

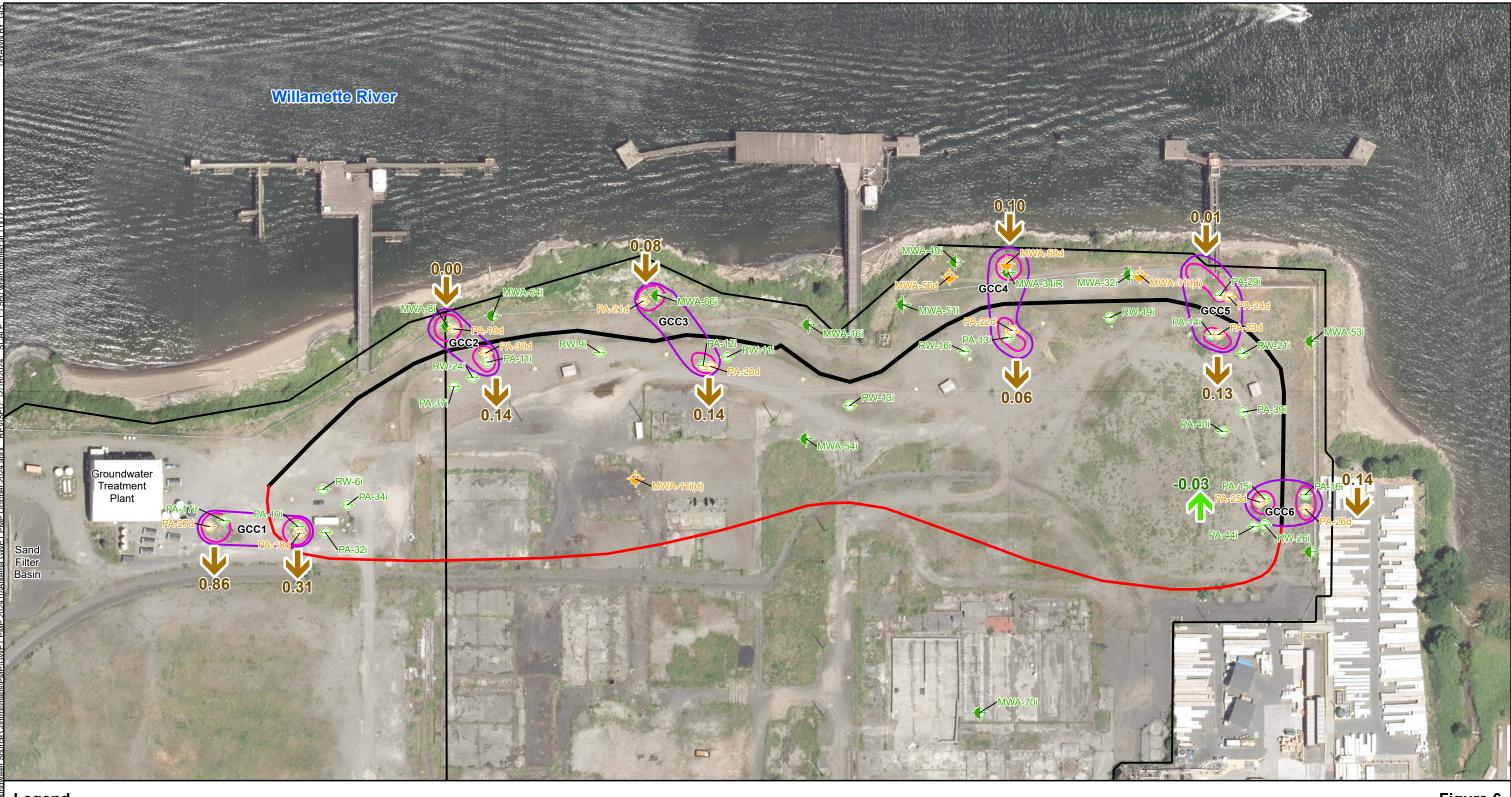
Upward Gradient


Trench Extraction Well

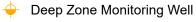
Target Capture Zone Barrier Wall Alignment

Extraction Trench

Gradient Control Cluster Vertical Flow Cluster


Brown gradient: Downward gradient.
Green gradient: Upward gradient.
Vertical gradient calculated as shallow zone minus intermediate zone potentiometric surfaces. Water levels collected October, 2024. Aerial Photo: City of Portland, Summer 2017.

October 2024 Shallow to Intermediate Zone **Vertical Head Difference**


Monthly Progress Report Groundwater Source Control Measures Arkema Inc. Portland, Oregon

Legend

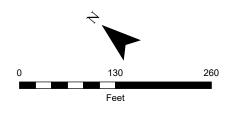
• Intermediate Zone Monitoring Well

→ Intermediate Zone Piezometer

→ Deep Zone Piezometer

Shallow-Intermediate Zone Monitoring Well Trench Extraction Well

Active Recovery WellTarget Capture Zone


Barrier Wall AlignmentExtraction Trench

Downward Gradient

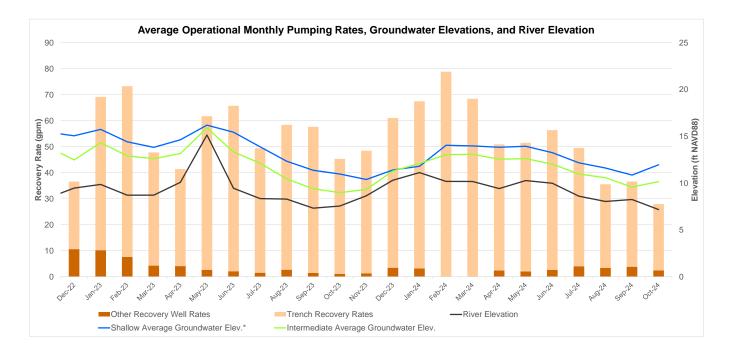
↑ Upward Gradient

Note

Brown gradient: Downward gradient.
Green gradient: Upward gradient.
Vertical gradient calculated as
intermediate zone minus deep zone
potentiometric surfaces.
Water levels collected October, 2024.
Aerial Photo: City of Portland, Summer
2017.

Figure 6 October 2024 Intermediate to Deep Zone Vertical Head Difference

Monthly Progress Report Groundwater Source Control Measures Arkema Inc. Portland, Oregon

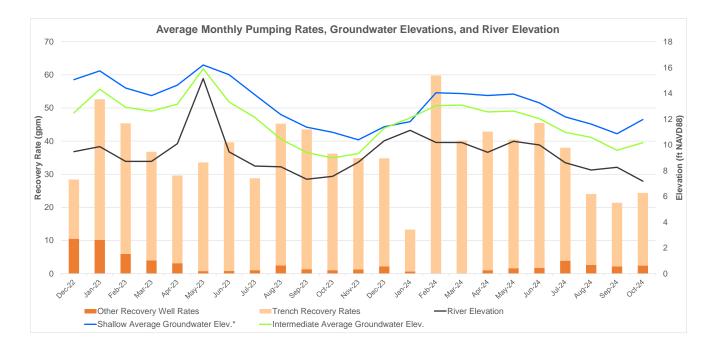


ATTACHMENT A-1

OPERATIONAL PUMPING RATE GRAPH

Attachment A-1

Operational Pumping Rate Graph Arkema Inc. Facility Portland, Oregon



ATTACHMENT A-2

AVERAGE MONTHLY PUMPING RATE GRAPH

Attachment A-2

Average Monthly Pumping Rate Graph Arkema Inc. Facility Portland, Oregon

ATTACHMENT A-3

GWET SYSTEM GROUNDWATER EXTRACTION RATES TABLE

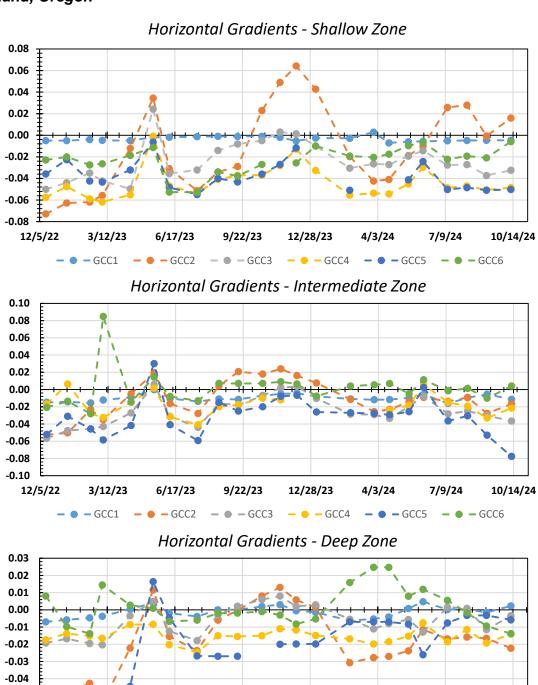
Attachment A-3

GWET System Groundwater Extraction Rates Table Arkema Inc. Facility Portland, Oregon

Recovery Well	October 2024 Average Operational Pumping Rate (gpm)	October 2024 Average Monthly Pumping Rate (gpm)		
RW-14	0.91	0.91		
RW-22*	0.00	0.00		
RW-23	0.28	0.28		
RW-25	1.26	1.22		
EW-01	0.61	0.43		
EW-02*	0.00	0.00		
EW-03	8.71	8.71		
EW-04*	0.00	0.00		
EW-05	2.64	0.26		
EW-06	4.55	4.26		
EW-07*	0.00	0.00		
EW-08	0.88	0.71		
EW-09	1.42	1.15		
EW-10*	0.00	0.00		
EW-11	1.22	0.98		
EW-12*	0.00	0.00		
EW-13	5.47	5.47		
EW-14*	0.00	0.00		
Total	27.94	24.37		

^{* =} Recovery well not in service during reporting period gpm = gallon per minute

ATTACHMENT B-1


HORIZONTAL GRADIENTS SUMMARY GRAPH

Attachment B-1

-0.05 -0.06 -0.07

3/12/23

Horizontal Gradients Summary: October 2024 Arkema Inc. Facility Portland, Oregon

Positive horizontal gradient indicates an inward hydraulic gradient across the GWBW.

9/22/23

12/28/23

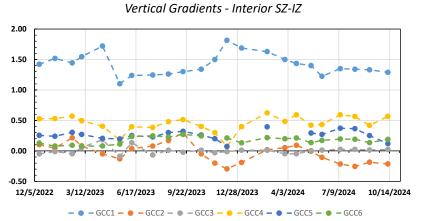
- • - GCC1 - • - GCC2 - • - GCC3 - • - GCC4 - • - GCC5 - • - GCC6

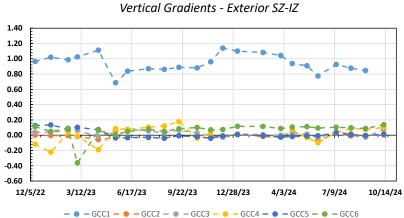
4/3/24

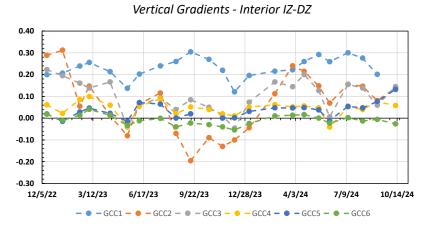
7/9/24

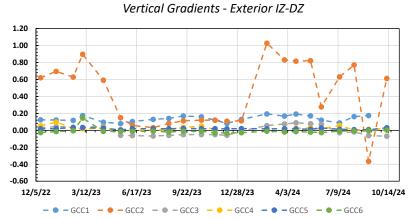
10/14/24

6/17/23


ATTACHMENT B-2


VERTICAL GRADIENTS SUMMARY GRAPH


Attachment B-2


Vertical Gradients Summary: October 2024

Arkema Inc. Facility
Portland, Oregon

ATTACHMENT B-3

WATER LEVELS AND HORIZONTAL GRADIENTS TABLE

Attachment B-3

Water Levels and Horizontal Gradients Table Arkema Inc. Facility Portland, Oregon

Gradient Cluster	Well Pair Zone	Exterior Well	Water Elevation (ft NAVD88)	Interior Well	Water Elevation (ft NAVD88)	Horizontal Gradient (ft/ft)
GCC1	Shallow	PA-03	23.37	PA-04	23.84	-0.005
	Intermediate	PA-17iR	9.88	PA-10i	11.07	-0.011
	Deep	PA-27d	9.05	PA-18d	8.76	0.002
GCC2	Shallow	MWA-2	7.47	PA-05	6.38	0.016
	Intermediate	MWA-8i	7.40	PA-11i	8.61	-0.017
	Deep	PA-19d	6.45	PA-30d	7.65	-0.022
GCC3	Shallow	MWA-69	7.55	PA-06	10.99	-0.032
	Intermediate	MWA-66i	6.59	PA-12i	10.76	-0.037
	Deep	PA-21d	7.48	PA-20d	7.91	-0.003
GCC4	Shallow	MWA-19	8.36	PA-28	13.25	-0.048
	Intermediate	MWA-34iR	7.72	PA-13i	9.63	-0.022
	Deep	MWA-58d	7.26	PA-22d	8.52	-0.014
GCC5	Shallow	MWA-47	7.79	PA-07	12.99	-0.050
	Intermediate	PA-29i	7.68	PA-14i	11.87	-0.078
	Deep	PA-24d	6.47	PA-23d	6.78	-0.006
GCC6	Shallow	PA-09	11.13	PA-08	11.46	-0.006
	Intermediate	PA-16i	9.38	PA-15i	9.15	0.004
	Deep	PA-26d	9.26	PA-25d	10.13	-0.014

Positive horizontal gradient indicates an inward hydraulic gradient across the GWBW.

Horizontal gradient calculated as (Exterior Elevation – Interior Elevation) / Horizontal distance.

ft NAVD88 = feet North American Vertical Datum of 1988

^{* =} anonalous groundwater elevation

^{** =} horizontal gradient cannot be calculated due to anomalous elevation reading

^M = manual groundwater elevation measurement

ATTACHMENT B-4

WATER LEVELS AND VERTICAL GRADIENTS TABLE

Attachment B-4

Water Levels and Vertical Gradients Table Arkema Inc. Facility Portland, Oregon

Region	Pair	Gradient Cluster	Upper Well	Water Elevation (ft NAVD88)	Lower Well	Water Elevation (ft NAVD88)	Vertical Gradient (ft/ft)
		GCC1	PA-04	23.84	PA-10i	11.07	1.29
		GCC2	PA-05	6.38	PA-11i	8.61	-0.21
	SZ-IZ	GCC3	PA-06	10.99	PA-12i	10.76	0.02
	ZS	GCC4	PA-28	13.25	PA-13i	9.63	0.57
_		GCC5	PA-07	12.99	PA-14i	11.87	0.12
rio		GCC6	PA-08	11.46	PA-15i	9.15	0.19
Interior	ZG-ZI	GCC1	PA-10i	11.07	PA-18d	8.76	0.31
_		GCC2	PA-11i	8.61	PA-30d	7.65	0.14
		GCC3	PA-12i	10.76	PA-20d	7.91	0.14
		GCC4	PA-13i	9.63	PA-22d	8.52	0.06
		GCC5	PA-14i	11.87	PA-23d	6.78	0.13
		GCC6	PA-15i	9.15	PA-25d	10.13	-0.03
	ZI-ZS	GCC1	PA-03	23.37	PA-17iR ^M	9.88	0.86
		GCC2	MWA-2	7.47	MWA-8i	7.40	0.00
		GCC3	MWA-69	7.55	MWA-66i	6.59	0.08
		GCC4	MWA-19	8.36	MWA-34iR	7.72	0.10
		GCC5	MWA-47	7.79	PA-29i	7.68	0.01
irio		GCC6	PA-09	11.13	PA-16i	9.38	0.14
Exterior	ZG-ZI	GCC1	PA-17iR ^M	9.88	PA-27d	9.05	0.13
		GCC2	MWA-8i	7.40	PA-19d	6.45	0.61
		GCC3	MWA-66i	6.59	PA-21d	7.48	-0.07
		GCC4	MWA-34iR	7.72	MWA-58d	7.26	0.02
		GCC5	PA-29i	7.68	PA-24d	6.47	0.03
		GCC6	PA-16i	9.38	PA-26d	9.26	0.00

Positive vertical gradient indicates an donward hydraulic gradient.

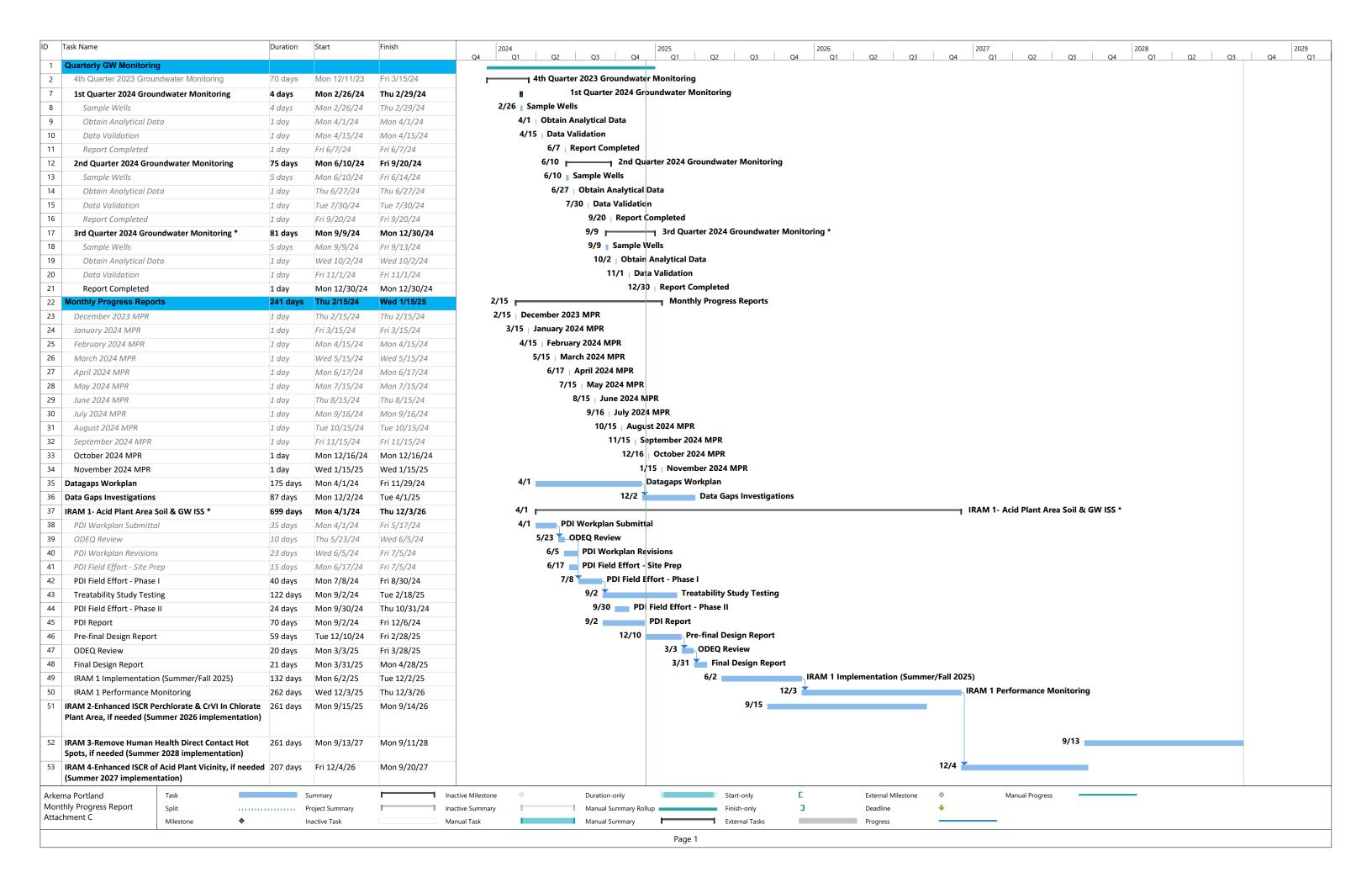
Vertical gradient calculated as (Upper Elevation – Lower Elevation) / Screen Midpoint distance.

DZ = Deep Zone

ft NAVD88 = feet North American Vertical Datum of 1988

IZ = Intermediate Zone

SZ = Shallow Zone


^{* =} anonalous groundwater elevation

^{** =} vertical gradient cannot be calculated due to anomalous elevation reading

 $^{^{\}rm M}$ = manual groundwater elevation measurement

ATTACHMENT C PROJECT SCHEDULE

