Department of Environmental Quality

Memorandum

Date: December 10, 2024

To: FILE

Through: Brad Shultz, WR Cleanup Program Manager and

Bruce Scherzinger, WR Cleanup Program Lead Worker

From: Nancy Sawka, Project Manager, WR Cleanup Program

Subject: USA Mini Mart #1, LUST 22-98-4178; Staff Memorandum in support of a No

Further Action determination

This document presents the basis for the Oregon Department of Environmental Quality's (DEQ's) recommended No Further Action (NFA) determination for the USA Mini Mart #1 site in Sweet Home. As discussed in this report, contaminant concentrations in soil, groundwater and soil gas are below acceptable risk levels.

The proposed NFA determination meets the requirements of Oregon Administrative Rules Chapter 340, Division 122, Sections 0205 to 0360 and ORS 465.200 through 465.455.

The proposal is based on information documented in the administrative record for this site located at Your DEQ Online (YDO): https://ordeq.org/LUST22-98-4187.

1. BACKGROUND

Site location. (Figure 1)

The site's location can be described as follows:

- Address: 1306 Main Street, Sweet Home, Linn County, Oregon.
- Latitude 44°23'53.16" North, longitude 122° 43'42.96" West
- Tax lot 02600, Township 13 South, Range 1 East, Section 31 AD (Linn County Map Tax Lot 13S01E31AD 02600)

Site setting. (Figure 2)

- Site size: 0.44 acres
- Main structures include the service station building on the north side of the property with two dispenser islands to the south. One 15,000-gallon unleaded gasoline underground storage tank (UST) and one gasoline-diesel partitioned 8,000-gallon UST are located south of the station building and west of the dispenser islands under a concrete pad. The remainder of the site outside the building structure is covered with asphalt or concrete.
- Adjacent properties include residential properties to the north, residential and commercial properties to the northwest and southwest across 13th Avenue, respectively, commercial properties directly east and commercial properties to the south across Main Street.

USA Mini Mart #1, LUST #22-98-4187 Staff Memorandum December 10, 2024 Page 2 of 9

- Land use zoning of the site and surrounding properties is C-1, Central Commercial.

Physical setting.

- Topography of the site is generally flat with a slight downward slope to the northwest and an elevation about 542 feet above mean sea level (msl).
- Depth to groundwater ranged between about 7 and 16 feet below ground surface (bgs) during the site investigations.
- Geology, based on monitoring well logs, consists of brown sandy gravel with silt to about 20 feet bgs.
- Groundwater flow direction is to the northwest towards the South Santiam River.
- Distance to the nearest surface water body, Cotton Creek, is 400 feet north of the site. Cotton Creek is a small tributary of the South Santiam River located 1,700 feet northwest of the site.

Site history.

The site has operated as a gasoline service station since the late 1960's. Historical operations included three USTs; two 5,000 and one 8,000-gallon gasoline tanks. In November 1998, a release was reported when petroleum hydrocarbons were found in a nearby sanitary sewer and the site was assigned LUST 22-98-4187.

In January 2007, the three USTs and dispensers were decommissioned and removed and replaced with the current UST system discussed above (Site setting). Holes were observed in one of the USTs and petroleum contaminated soil (PCS) was encountered in the excavation. The tank pit was over-excavated and about 400 tons of PCS was removed and disposed of at Riverbend Landfill in McMinnville, Oregon. Two smaller USTs were found immediately south of the known USTs and were also removed during the same time. Confirmation soil and groundwater samples were collected from the final excavation. Low concentrations of gasoline (Gx) up to 121 milligram per kilogram (mg/Kg) and diesel (Dx) up to 90 mg/Kg was found in soil and up to 1,140 microgram per liter (ug/L) in groundwater from the tank excavation. Little to no petroleum contamination remained beneath the dispensers.

A warning letter for failure to investigate the extent and magnitude of the contamination from the releases was issued by DEQ in May 2011 to the former owners/operators, Mr. Yoon Suh (Santiam Stop and Shop) and Mr. Mike Armstrong (USA Mini Mart #1). Truax Corporation purchased the site in July 2011 and investigations of contamination in soil and groundwater continued in 2012 and is further discussed below.

2. BENEFICIAL LAND AND WATER USE DETERMINATIONS

Land use.

The site and adjacent properties are zoned C-1, Central Commercial by the City of Sweet Home. Although the adjacent properties north and northwest of the site are zoned C-1, nonconforming residential homes are present. Properties further north are zoned R2, High Density Residential. There are no current or anticipated future changes to the land use zoning in this area, based on information from the City Planning Department.

USA Mini Mart #1, LUST #22-98-4187 Staff Memorandum December 10, 2024 Page 3 of 9

Groundwater use.

There are no known private wells on the site or adjacent properties. The site and the surrounding area is supplied with municipal water from the City of Sweet Home that comes from Foster Reservoir about 3 miles to the east-northeast. There is one private well located at a small apartment complex (1240 Nandina Street, Linn 587373) approximately 420 feet northwest (downgradient) of the site and 285 feet from the northwestern boundary of the groundwater plume. The well was sampled five times during the groundwater investigations and petroleum contaminants were never detected. In addition, the furthest downgradient monitoring well MW-9, located about 230 feet upgradient from the private well, has had no detections of petroleum contaminants for the last eleven sampling quarters. Based on this information, groundwater contamination is not expected to reach this downgradient private well and it is not considered a potential receptor in the risk evaluation below.

Surface water use.

The nearest surface water body is Cotton Creek, a small tributary of the South Santiam River, located approximately 400 feet north of the site. Cotton Creek appears to be primarily contained in underground piping. The second closest body of surface water is Ames Creek, another tributary of the South Santiam River, located approximately 1,000 feet south-southwest of the site. The South Santiam River is located 1,700 feet northwest of the site. Due to the distance and/or location from the site and the limited extent of the groundwater plume, it is unlikely that contamination from the site reaches any of these surface water bodies.

There are three catch basins located beneath the canopy between the dispensers on the site that collect runoff from this area. These drain east to an oil-water separator that discharges to the sanitary sewer in the alley north of the site. There are two additional catch basins on the east and west ends of the property and several stormwater drains along the east side of 13th Avenue and north side of Main Street that also collect stormwater runoff from the site prior to discharging to the City's stormwater sewer.

3. INVESTIGATION AND CLEANUP WORK

Investigations and cleanup of contamination in soil, groundwater and/or soil vapor were completed at the site under the ownership of Truax between July 2012 and March 2024 by Martin S. Burck Associates, Inc. (MSBA). During this time, ten monitoring wells (MW-1 to MW-10), twelve soil borings (B1, B2 and borings from MW-1 to MW-10) and two temporary well points (TW-1 and TW-2) were installed and sampled. The location of borings and wells are shown in Figure 2 and Figure 3.

Soil sample results (July and September 2012).

Select soil samples were collected from various depths ranging between 0.5 to 19 feet bgs. Detections of Gx and Dx ranged between 6.8 and 544 mg/Kg. Little to no benzene was detected and ethylbenzene and naphthalene concentrations ranged between 0.388 to 2.980 mg/Kg and 0.887 to 3.310 mg/Kg, respectively. Other volatile organic compounds (VOCs) and polynuclear aromatic hydrocarbons (PAHs) were detected, but at low concentrations including toluene, xylenes, isopropylbenzene, 1,2,3-trimethylbenzene (TMB), 1,3,5-TMB, benzo(a)pyrene,

USA Mini Mart #1, LUST #22-98-4187 Staff Memorandum December 10, 2024 Page 4 of 9

benzo(a)anthracene, fluoranthene, fluorene and pyrene. Detected lead was below background levels for the area. The highest concentrations of petroleum contaminants were in soil from MW-2 located west-northwest of the USTs at 13 feet bgs, MW-4 north of the station building adjacent to the sewer lateral at 12 feet bgs and MW-5 northwest of the site and adjacent to the sewer manhole along alley at 14 feet bgs. Soil sample results are shown in Figure 3.

Discovery and removal of petroleum product.

Free floating petroleum product was discovered in MW-5 in December 2012, several months after the well was installed in July 2012. MSBA conducted free product removal from the well between January 2013 and July 2018 using both a skimmer and sorbent tubes. Product thickness ranged between less than 0.1 foot to 0.75 feet when present. Product was absent in MW-5 from October 2016 through July 2018, except for one time in October 2017 where it was measured at 0.04 foot. MSBA implemented four focused vacuum extraction events in August and September 2018 in an attempt to depress the groundwater table to expose and remove any residual product in the subsurface formation. No free product accumulated in MW-5 during the vacuum events or was found in subsequent sampling events. About 6.25 gallons of product was removed from MW-5 between 2013 and 2017. Free product was never observed in any of the other monitoring wells.

Groundwater monitoring results (MW-1 through MW-10).

Groundwater monitoring was completed from July 2012 through July 2019. Groundwater flow direction was consistently towards the northwest during the sampling events. Locations of the wells are shown in Figure 2 and include:

- MW-1 located onsite and upgradient from the USTs and dispenser island.
- MW-2 located onsite and downgradient from the USTs and dispenser island
- MW-3, 4, 5 and 7 located offsite and downgradient (MW-3 and 5) to cross-gradient from the site in the alleyway. MW-3, MW-5 and MW-7 are all located adjacent to the sewer line which flows west from MW-3 to MW-5 and then to MW-7. MW-4 is located adjacent to the sanitary sewer lateral from the station building.
- MW-8 and 9 and MW-10 are located further offsite and downgradient (northwest) from the site along Nandina Street and 13th Avenue, respectively. MW-9 is located between the site and the downgradient private well discussed above.
- MW-6 was installed onsite between the station building, USTs and dispensers.
- Temporary wells TW-1 and TW-2 were sampled once in July 2012. TW-1 was installed adjacent to a former small UST that was located east of the building and TW-2 was installed upgradient in the alleyway along the sanitary sewer.

Groundwater samples were analyzed for Gx, Dx, Oil, VOCs, PAHs and initially for dissolved lead. TW-1 was also analyzed for PCBs, cadmium and chromium. Some monitoring wells were eliminated from the monitoring program prior to 2017 after several rounds of samples exhibited a significant reduction in contaminants and/or low to no detections. Little or no contamination was found in groundwater samples collected from TW-1 and TW-2. The highest concentrations of petroleum contaminants were seen in downgradient monitoring well MW-5. However, contamination in the well exhibited a significant reduction over time as shown in the Table 1

USA Mini Mart #1, LUST #22-98-4187 Staff Memorandum December 10, 2024 Page 5 of 9

below which presents the highest and most recent concentration of the major constituents of concern detected in this well.

Table 1: Groundwater in MW-5 – Highest Detected versus Most Recent Results

Contaminant (ug/L)	MV	V-5
	Highest Concentration Detected	Most Recent Concentration
Gx	28,900	1,100
Dx	627,000 (free product present)	602
Benzene	18.4	2.67
Toluene	37	<1.00
Ethylbenzene	975	18.6
Xylenes	640	2.95
Naphthalene	481	8.12

All monitoring well data is summarized in attached Tables 2 and 3. In general, groundwater from all monitoring wells showed a decreasing trend over time. The furthest downgradient well, MW-9 has not had any detections of contamination since October 2016.

Soil vapor sample results.

MSBA installed two semi-permanent vapor points (SV-1 and SV-2) in December 2012 for the collection of soil vapor samples. SV-1 was installed in the area of highest contamination near MW-5 and the sanitary sewer line and SV-2 was installed north of MW-4 and the gravel alley way between the site and the residential home north. Soil gas samples were collected from both points in January and July 2013. Additional samples were collected from SV-2 in October 2016 and March 2024 (requested by DEQ before site closure). Samples were analyzed for Gx and petroleum related VOCs. Soil vapor results are shown in Table 4 and Figure 4 attached. No petroleum related contaminants were detected in SV-1. Gx, benzene, toluene and naphthalene were detected in SV-2, but all were below DEQ's RBC for residential and occupational soil vapors. Note that 1,2-dibromomethane (EDB) was not detected in any of the vapor samples, however, the laboratory was not able to achieve detection limits below the vapor RBCs for this constituent in the 2013 and 2016 sampling events. Detection limits were achieved in the March 2024 sampling event and the chemical was not detected.

Nature and extent of contamination.

Contaminants of interest (COIs) include Gx, Dx, VOCs and PAHs in soil, soil vapors groundwater. The source of this contamination is likely related to historical operations of the UST system and dispensers. Some contamination appears to have migrated through and along (east to west) the sanitary sewer line in the gravel alleyway to the north of the site. Free product that was present in downgradient well MW-5 near the sewer manhole has abated and is no longer present.

Most of the contaminated soil was removed during UST and dispenser decommissioning work in 2007. Little or no contamination is present in soil above 13 feet bgs.

USA Mini Mart #1, LUST #22-98-4187 Staff Memorandum December 10, 2024 Page 6 of 9

Depth to groundwater has ranged between 7 and 16 feet bgs during the investigations. The extent of remaining contamination in the groundwater is shown in Figure 5. The estimated groundwater plume measures approximately 225 feet long by 125 feet wide and begins just south of the UST pad onsite and extends offsite for about 135 feet to the northwest beneath 13th Avenue, the alleyway and the residents at 1324 and 1354 13th Avenue.

Conceptual site model.

Human exposure to site contamination depends on the extent of the contamination and media affected, the human receptors present within the contaminated area (property use and zoning) and the pathways in which a receptor could be exposed to the contaminants. There is little or no remaining contamination in soil and the estimated extent of remaining contamination in groundwater is shown in Figure 5. The Site and surrounding properties within the area of remaining contamination is zoned for commercial use. Two of the properties within this area and zoning are nonconforming residential homes. All of the properties use municipal water from the City and none of them are known to have or use private groundwater wells. Based on the extent of contamination and current and potential future property uses, the complete exposure pathways as summarized in the Table 5 below and include future exposure by occupational and construction/excavation workers to contaminants remaining in soil by contact, inhalation or ingestion; current or future exposure to residential and occupational workers to contaminant vapors in outdoor and indoor air resulting from contaminated groundwater or soil; and potential construction and excavations worker exposure to contaminated groundwater during subsurface excavation work within the water table.

Table 5. Potential Pathways and Receptors of Contamination

Pathway	Receptor	Is Pathway Complete?	Is RBC Exceeded?	Comment
		SOIL		
Ingestion,	Residential	No	No	No soil contamination extends
dermal contact, and	Urban residential	No	No	offsite.
inhalation	Occupational	No	No	Site is paved, so little or no exposure to soil is expected.
	Construction worker	Future	No	
	Excavation worker	Future	No	
Volatilization	Residential	Yes - offsite	No	
to Outdoor Air	Urban Residential	Yes - offsite	No	
	Occupational	Yes	No	
Vapor	Residential	Yes - offsite	No	
Intrusion Into Buildings	Urban Residential	Yes - offsite	No	

Pathway	Receptor	Is Pathway Complete?	Is RBC Exceeded?	Comment
	Occupational	Yes	No	
		GROUNDW	VATER	
Ingestion and	Residential	No	Yes	Beneficial use survey shows
inhalation	Urban	No	Yes	that City water is provided and
from tap water	residential			there are no current or likely
	Occupational	No	Yes	future uses of groundwater onsite or offsite within the area of contamination (Figure 5).
Volatilization	Residential	Yes - offsite	No	
to outdoor air	Urban	Yes - offsite	No	
	residential			
	Occupational	Yes	No	
Vapor	Residential	Yes - offsite	No	
intrusion into	Urban	Yes - offsite	No	
buildings	residential			
	Occupational	Yes	No	
Groundwater	Construction	Yes	No	
in excavation	and excavation			
	worker			
		SOIL G		
Vapor	Residential	Yes	No	Potential for future re-zoning
Intrusion into	Urban	Yes	No	to accommodate a variety of
buildings	residential			uses.
	Occupational	Yes	No	
		ECOLOG		
Ecological Rece	eptors	No	NA	Site is paved, so little to no
				soil exposure. Contamination
				does not reach Cotton Creek.

Contaminant concentrations and human health risk.

Attached Table 6 shows the maximum detected concentrations of COIs in the various media including surface soil, subsurface soil, groundwater and soil vapor, compared to the applicable risk-based screening concentrations for the receptors and pathways currently present and/or likely to be present in the future. Groundwater concentrations have reduced significantly over time, so concentrations used in the table are the highest detected over the last four sampling events. Based on a review of the table none of the COIs exceed any of the applicable pathways for the current and potential future uses of the site and surrounding area or the current or potential future beneficial uses of groundwater or surface water at the contaminant boundary.

Table 6 is based on DEQ Generic RBCs from May 2018. These were the most recent RBCs available at the time of the site investigations and proposed closure agreed to by DEQ and so were applied to evaluate the site risk. New DEQ RBCs were developed and implemented in June 2023 with major changes to how vapor intrusion risks are evaluated and to the groundwater and soil gas RBC values. Contaminants in soil are no longer used to screen for vapor intrusion potential. Although, the older, May 2018 RBCs were applied to closure for this site, soil gas

USA Mini Mart #1, LUST #22-98-4187 Staff Memorandum December 10, 2024 Page 8 of 9

results were also compared to the new June 2023 RBCs for soil vapors. Table 7 shows the results of the comparison. None of the detected contaminants in soil gas exceeded a residential or occupational soil vapor RBC.

Ecological risk.

The site is covered with structures, asphalt and concrete with little exposed soil. There is no surface water at the site and the nearest surface water body is the Cotton Creek located about 400 feet to the north and downgradient of the site. The Creek is outside the area of contamination, and it is unlikely that impacted groundwater will reach the Creek in the future. Due to the nature of the land use of the site and surrounding area it is unlikely that significant habitat is present or will develop. Therefore, no ecological risks were found to be associated with the site.

4. PUBLIC NOTICE

A 30-day public notice and opportunity to comment on the proposed site closure will be sent to adjacent and impacted properties, the City of Sweet Home, and interested parties. DEQ will consider and respond to all viable comments before issuing a conditional No Further Action determination.

5. RECOMMENDATION

Following remedial actions including the removal of PCS from the former tank pit and petroleum product in MW-5 contamination in soil, groundwater and soil gas have been reduced to below acceptable risk levels. The site no longer poses a risk to human health, or the environment and a No Further Action determination is recommended. The No Further Action only applies to the releases referenced in this report. The No Further Action determination The No Further Action determination will be recorded in the administrative record for LUST No. 22-98-4187.

6. ATTACHMENTS

Figures:

Figure 1: Site Location Map

Figure 2: Site Map

Figure 3: MSBA Soil Data Map (2012)

Figure 4: Soil Vapor Data Map

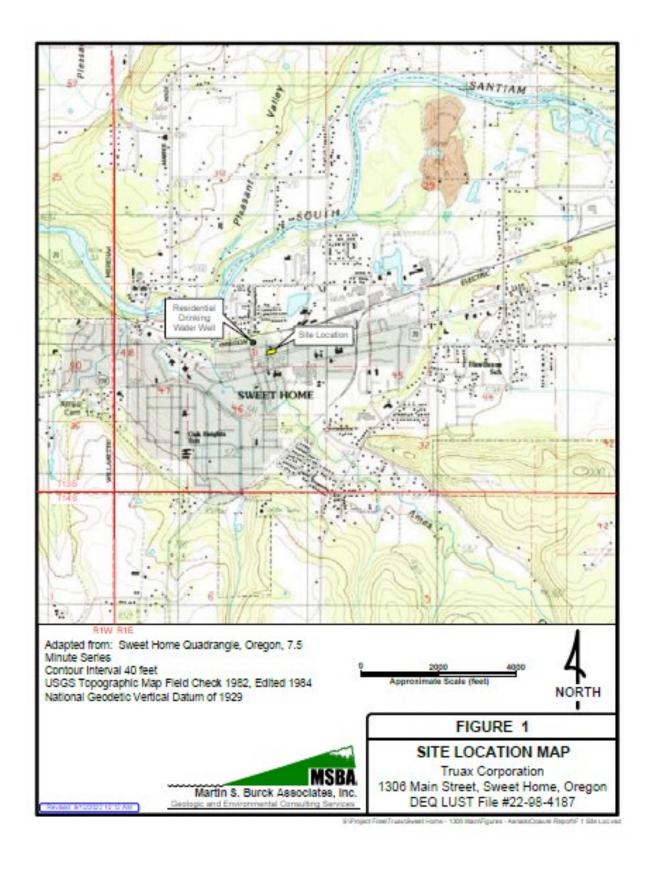
Figure 5: Door-to-Door Well Survey Map and Extent of Groundwater Contamination

Tables:

Table 1: Groundwater in MW-5 – Highest Detected versus Most Recent Results

Table 2: Groundwater Sample Analytical Data – PHCs, VOCs, and PAHs

Table 3: Groundwater Sample Analytical Data – Metals and PCBs


Table 4: Soil Vapor Sample Analytical Data

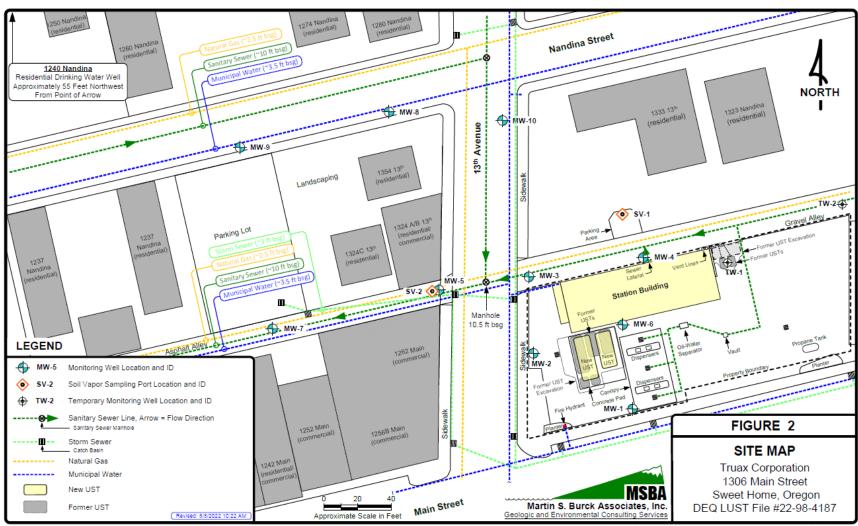

USA Mini Mart #1, LUST #22-98-4187 Staff Memorandum December 10, 2024 Page 9 of 9

Table 5: Potential Pathways and Receptors of Contamination

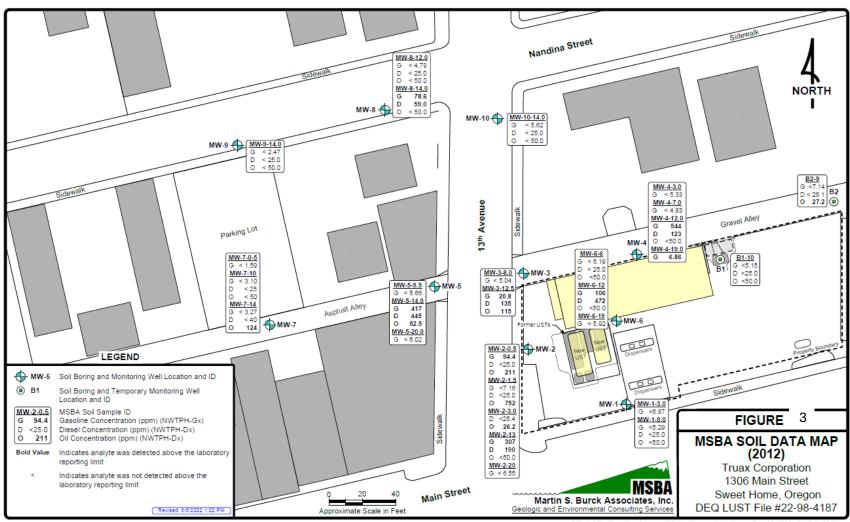
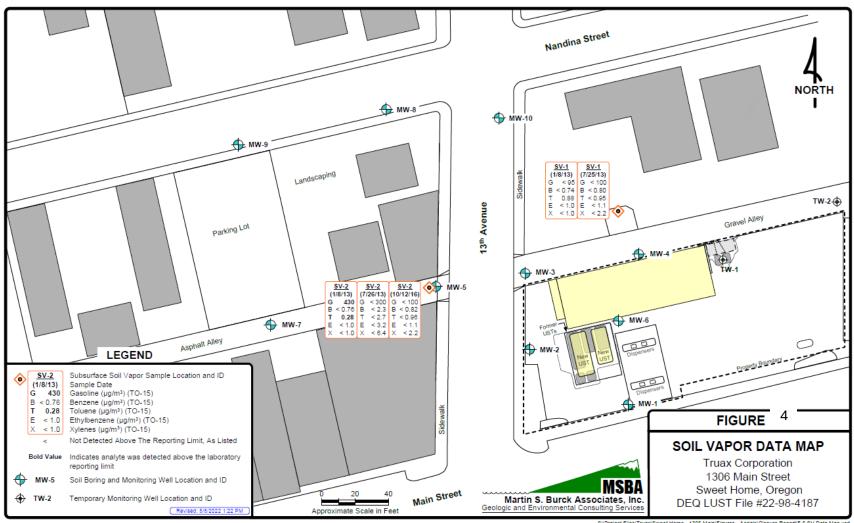
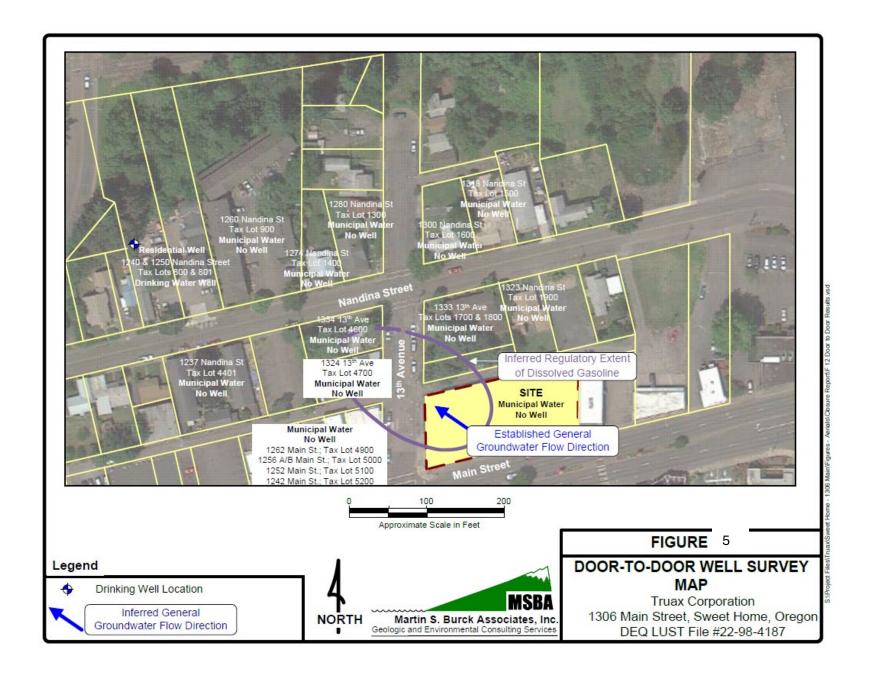

Table 6: Maximum Detected Concentrations Compared to Applicable RBCs (May 2018)

Table 7: Maximum Concentrations and Updated Soil Vapor Intrusion RBCs from June 2023




S:\Project Files\Truax\Sweet Home - 1306 Main\Figures - Aerials\Closure Report\F 2 Site Map.vsd

S:\Project Files\Truax\Sweet Home - 1306 Main\Figures - Aerials\Closure Report\F 4 MSBA Soli Data (2012).vsd

S:\Project Files\Truax\Sweet Home - 1306 Main\Figures - Aerials\Closure Report\F 5 SV Data Map.vsd

TABLE 2 GROUNDWATER SAMPLE ANALYTICAL DATA - PHCs, VOCs, and PAHs

Truax Sweet Home 1306 Main Street, Sweet Home, Oregon DEO File No. 22-98-4187

												DEQ Fi	le No.	22-98-	4187														
		Petrole	um Hydro	ocarbons '	(ppb) b				Vola	tile Orga	nic Comp	ounds ° (ppb)								Polynucl	ear Aron	natic Hyd	rocarbon	s ^d (ppb)				
Sample ID	Sample Date	HCID (see key)	Gasoline	Diesel	Oil	Benzene	Toluene	Ethylberzene	Xylenes	1,2-Dibromoethane	1,2-Dichloroethane	Methyl tert-butyl ether	Isopropylbenzene	Naphthalene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Acenaphthene	Anthracene	Berrzo(a)anthracene	Berrz o(a)pyrene	Berrz o(b)fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h)anfhracene	Fluoranthene	Fluorene	Naphthalene	Indeno(1,2,3-cd)pyrene	Pyrene
Decommissioni	ing UST Cavity	- CAESC	0																										
PW °	01/30/07	nd f	- 9	-	-	3,120 h	8,830	1,020	5,860	-	-	-	-	-	-	-	1.20	1.3	0.3	0.1	0.2	< 0.1 ^j	0.2	< 0.1	0.4	2.9	388	0.1	0.6
Monitoring Well	ls - MSBA																												
MW-1	07/19/12	-	< 100	< 74.8	< 150	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500 °	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0748	< 0.0374	< 0.0374
	09/24/12	-	< 100	309	< 374	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	10/18/12	-	-	-	-		-	-	-	-	-	-		-		-	-	-	-		-	-	-	-	-	-	-	-	-
	12/18/12	-	< 100	< 74.8	< 150	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0748	< 0.0374	< 0.0374
	04/10/13	-	< 100	< 75.5	< 151	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0748	< 0.0374	< 0.0374
MW-2	07/19/12	-	2,520	728	< 155	3.22	2.21	73.2	117	< 0.500	< 0.500	< 1.00	12.6	33.7	103	33.6	< 0.187	< 0.0374	< 0.0374		< 0.0748	< 0.0748	< 0.0374	< 0.0374	0.0577	0.459	23.3	0.0498	
	09/25/12	-	3,120	674	< 374	48.4	5.60	56.6	94.3	< 0.500	< 0.500	< 1.00	10.7	31.4	110	43.4	< 0.374	< 0.374	< 0.374		< 0.374	< 0.374	< 0.374	< 0.374	< 0.374	< 0.374	11.8	< 0.374	< 0.374
	10/18/12	-	-	-	-		-	-	-	-	-			-		-					-		-	-		-	-		
	12/19/12	-	764	496	221	9.31	< 1.00	5.20	7.00	< 0.500	< 0.500	< 1.00	3.36	5.83	15.6	10.6	0.0635	< 0.0374	< 0.0374		< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	0.156	4.26	< 0.374	0.0390
	04/10/13	-	2,250	178	< 151	68.0	6.98	29.4	44.1	< 0.500	< 0.500	< 1.00	8.44	18.5	42.2	8.67	< 0.189	< 0.189	< 0.189	-	< 0.189	< 0.189	< 0.189	< 0.189	< 0.189	0.287	6.34	< 0.189	< 0.189
	07/25/13	-	-		-			-	-		-	-	-	-	•	-	-						-	-	-	-		ļ .	ļ ·
	09/18/13	-		-	-			-				-			-							l :	-		- :	-			
	12/05/13	-	2,730	214 < 76.9	< 162 < 154	114	16.5	84.3	27.7	< 0.500 < 0.500	< 0.500	< 1.00 < 1.00	18.3	31.8	54.9	2.13 < 1.00	- :		- :	- :	- :	- :		-	- :			1	1
	04/15/14 07/23/14		746 944	< 78.4		34.8	3.76 5.75	6.20 23.8	2.35			< 1.00	1.58	3.55	8.41 6.91	< 1.00					-					-		<u> </u>	H :-
					< 157	47.7			3.52	< 0.500	< 0.500		6.60	3.73		< 1.00						-			-	-			H :-
	10/09/14 07/14/15	-	956 2,570	393	154	32.4 91.0	4.07 5.68	23.9 37.7	3.83 4.10	< 0.500	< 0.500	< 1.00	8.06	2.53	3.59	< 1.00	- :	l :	l :	- :	- :	l :	l :		- :	- :	l :	1 :	H :
	10/14/15	- :	3.360	-:-	-	66.4	4.52	88.5	7.89	< 0.500	< 0.500	< 1.00	20.9	5.64	< 1.00	< 1.00								-				H :	-
	12/16/15		233	-:-		1.52	< 1.00	< 0.500	< 1.50	- 0.500	< 0.500	4 1.00	20.0	3.04	- 1.00	- 1.00		<u> </u>	-:-	⊢ :−	-:-	⊢ :−			-:-		<u> </u>	- : -	 :
	04/06/16		853	- :	- :	30.7	2.68	2.84	2.53					2.60															
	07/14/16		1,270	-:-		36.6	3.91	25.3	2.74					< 2.00			-			-					-	-		١.	٠.
	10/12/16	-	879		-	19.4	2.00	9.47	2.86		-			< 2.00							-		-	-				٠.	٠.
	01/05/17	-	334		-	9.87	< 1.00	5.67	< 1.50	-	-	-	-	< 2.00	-	-	-	-	-		-		-	-	-	-	-		
	04/20/17	-	250		-	10.0	< 1.00	3.68	< 1.50	-	-		-	< 2.00	-		-			-	-		-	-	-	-			
	07/25/17	-	531		-	17.7	1.90	15.3	< 1.50	-	-	-		< 2.00	-	-	-	-	-		-		-	-	-	-	-	-	٠.
	10/09/17	-	447			8.73	< 1.00	6.62	< 1.50	-	-	-	-	< 2.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	01/23/18	-	688		-	13.4	1.64	6.88	1.78	-	-	-	-	< 2.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	07/18/18	-	812	-	-	16.4	1.55	4.78	1.69	-	-	-	-	< 2.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	10/12/18	-	1,270	3,370	-	19.0	2.29	17.8	3.03		-	-	-	< 2.00	-	-	-	-			-	-	-	-	-	-	-		-
	01/01/19	-	1,330	-	-	41.3	5.08	18.8	4.02	-	-	-	-	2.80	-	-	-	-	-		-		-	-	-	-	-	-	-
	04/09/19	-	< 100	-		0.768	< 1.00	0.583	< 1.50	-	-	-	-	< 2.00	-	-	-	-				-	-		-	-	-		-
MW-3	07/01/19		658	-	-	12.3	1.78	8.64	1.77			-	-	< 2.00		-	-	-	-				-	-	-			-	-
M W-3	07/20/12	-	4,510	2,160	< 302	0.590	2.95	88.7	113	< 0.500	< 0.500	< 1.00	35.8	70.8	189	33.7	< 0.411	_	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	0.966	27.7	< 0.0374	_
	09/25/12	-	1,640	1,450	< 374	0.270	< 1.00	9.49	5.84	< 0.500	< 0.500	< 1.00	12.5	10.8	44.3	1.26	< 0.374	< 0.374	< 0.374	< 0.374	< 0.374	< 0.374	< 0.374	< 0.374	< 0.374	< 0.374	3.58	< 0.374	< 0.374
	12/19/12	-	928	1,010	< 299 < 190	< 0.250	< 1.00 < 1.00	< 0.500 < 0.500	< 1.50	< 0.500	< 0.500 < 0.500	< 1.00	4.18 4.62	6.57 < 2.00	37.2	1.38	< 0.112 < 0.0566	< 0.0374	< 0.0374 < 0.0377	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	0.192	4.23 < 0.189	< 0.0374	< 0.0374
1	04/10/13	-	423	261	< 190	< 0.250	< 1.00	< u.500	< 1.50	< 0.500	< 0.500	< 1.00	4.b/	< 2.00	3.41	< 1.00	< U.U000	< 0.0377	■ U.U3///	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377		< U.109	< 0.0377	< U.U3//

													E 2 (,														
							GF	ROUN	DWAT	ER S	AMPL		ALYTIC			PHC	s, VOC	S, and	d PAH	s									
												Tru	ax Swe	et Hon	1e														
l		Petrole	um Hydr	ocarbons	a (ppb) b				Vola	tile Orga	nic Com	ounds °	(ppb)								Polynuc	lear Aron	natic Hyd	irocarbon	s ^d (ppb))			
Sample ID	Sample Date	HCID (see key) *	Gasoline	Diesel	DII.	Benzene	Toluene	Ethylbenzene	Xylenes	1,2-Dibromoethane	1,2-Dichloroethane	Methyl tert-butyl ether	Isopropylbenzene	Naphthalene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Acenaphthene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Naphthalene	Indeno(1,2,3-cd)pyrene	Pyrene
MW-3 (cont)	07/25/13	-	147	428	< 152	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	1.71	< 2.00	< 1.00	< 1.00	-	-	-	-	-	-	-	-	-	-	-	-	-
1	09/18/13	-	< 100	792	< 1,070	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0769	< 0.0385	< 0.0385
1	12/05/13	-	358	374	< 158	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	1.32	2.58	19.9	< 1.00	-			-	-	-	-	-	-	-	-	-	-
1	04/15/14	-	< 100	157	< 154	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	-			-	-	-	-	-	-	-	-	-	-
1	07/23/14	-	< 100	569	< 762	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00				-	-	-	-	-	-	-	< 0.0784		
MW-4	10/09/14	-	< 100	124 641	< 152 < 150	< 0.250	< 1.00 < 1.00	< 0.500 117	< 1.50 32.3	< 0.500	< 0.500	< 1.00 < 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.178	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	0.246	19.4	< 0.0374	< 0.0374
MVV-4	07/20/12 09/25/12	-	1,860	197	< 374	1.59	< 1.00	0.900	< 1.50	< 0.500	< 0.500	< 1.00	15.0	73.4 < 2.00	93.8	8.71 < 1.00	< 0.0935	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	0.246	0.524	< 0.0374	< 0.0374
l	12/19/12	-	413	307	< 150	3.60	< 1.00	1.78	1.57	< 0.500	< 0.500	< 1.00	12.1	2.52	3.26	< 1.00	0.155	< 0.0936	< 0.0374	< 0.0374	< 0.0935	< 0.0374	< 0.0374	< 0.0938	< 0.0938	0.125	1.37	< 0.0935	< 0.0936
l	04/10/13		399	90.8	< 154	3.52	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	8.89	< 2.00	< 1.00	< 1.00	0.105	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377	0.188	< 0.123	< 0.0377	< 0.0377
l	12/05/13		211	111	< 162	1.06	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	2.94	< 2.00	< 1.00	< 1.00	0.103	0.0077	- 0.0077	C 0.0077	C 0.0077	C 0.0077	C 0.0011	C 0.0077	C 0.0077	0.100	0.153	C 0.03/1	- 0.03//
l	04/15/14	-	209	152	< 162	1.10	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	2.72	< 2.00	< 1.00	< 1.00	-	<u> </u>	H :	H:-		-	-	H :-	-	-	< 0.219		
l	07/23/14		119	123	< 155	0.460	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00		1						-	-		0.212		
l	10/09/14		< 100	< 75.2	< 152	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	-					-	-	-		-			
MW-5	07/20/12	-	5,350	2,340	< 150	12.6	9.24	336	122	< 0.500	< 0.500	< 1.00	46.1	145	182	82.0	< 0.579	< 0.0467	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	1.83	97.4	< 0.0374	< 0.0374
l	09/25/12	-	8,090	1,830	< 374	18.4	12.5	368	212	< 1.00	< 1.00	< 2.00	46.7	229	367	125	< 0.935	< 0.935	< 0.935	< 0.935	< 0.935	< 0.935	< 0.935	< 0.935	< 0.935	1.27	75.1	< 0.935	< 0.935
l	12/19/12	-	5,220	627,000	< 15,100	1.26	< 2.00	83.2	78.9	< 1.00	< 1.00	< 2.00	23.0	107	348	128	< 1.20	< 0.187	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.935	< 0.0374	< 0.131	3.75	59.1	< 0.0374	0.121
l	04/10/13	-	2,740	1,250	< 158	10.2	< 5.00	86	37.8	< 2.50	< 2.50	< 5.00	15.9	43.4	139	51.1	< 1.87	< 1.87	< 1.87	< 1.87	< 1.87	< 1.87	< 1.87	< 1.87	< 1.87	< 1.87	32.8	< 1.87	< 1.87
l	07/26/13	-	3,560	802	< 151	10.1	5.96	98.8	44.9	< 1.00	< 1.00	< 2.00	19.3	48.6	128	49.0	-	-	-	-	-	-	-	-	-	-	-	-	-
l	09/18/13		3,890	690	< 755	11.1	< 10.0	218	96.3	< 5.00	< 5.00	< 10.0	21.4	106	243	62.8	0.293	< 0.0485	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0388	1.13	46.7	< 0.0388	< 0.0388
l	12/05/13	-	3,880	659	< 155	8.55	7.75	214	116	< 2.50	< 2.50	< 5.00	20.2	119	273	72.2	< 0.425	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377	1.30	71.1	< 0.0377	< 0.0377
l	04/15/14	-	1,430	2,050	< 154	3.47	2.04	43.0	24.0	< 0.500	< 0.500	< 1.00	10.4	24.4	63.9	24.3	< 200	< 0.0381	< 0.0381	< 0.0381	< 0.0381	< 0.0381	< 0.0381	< 0.0381	< 0.0381	0.448	10.4	< 0.0381	< 0.0381
l	07/23/14	-	3,120	328	< 154	17.1	7.46	137	71.7	< 0.500	< 0.500	< 1.00	17.1	85.8	147	37.8	< 0.350	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	< 0.0400	0.918	44.3	< 0.0400	< 0.0400
	10/09/14 01/14/15	-	2,810	601	< 777	8.55	5.16 7.92	150	79.1 164	< 0.500	< 0.500	< 1.00	12.2	87.3	155	36.9	0.292	< 0.194	< 0.194	< 0.194	< 0.194	< 0.194	< 0.194	< 0.194	< 0.194	1.04	50.5	< 0.194	< 0.194
l	04/29/15	-	5,400 3,480	- :	- :	6.44 10.3	5.16	262 132	65.4		:		1			l :		- :	H :	ļ .					-			- :	
1	07/14/15	+ :-	6,180	<u> </u>	- :	19.5	9.75	200	95.2		H :	-	1					H :	<u> </u>										
l	10/14/15		28,900			45.1	37.0	975	640	< 5.00	< 5.00	< 10.0	89.0	481	1,420	238							-						
l	12/16/15	-	13,600			13.7	19.2	440	364	-	-			-	.,420		-					-	-	-	-	-			
l	04/06/16	-	5,740			4.91	6.32	111	135	-	-		-	74.3	-	-	-			-	-	-	-	-	-	-	-	-	-
1	07/14/16	-	3,020	-	-	6.30	< 10.0	94.6	73.6	-	-	-	-	46.6	-	-	-			-	-	-	-	-	-	-	-	-	-
1	10/12/16	-	6,070	-	-	12.0	14.8	324	200	-	-	-	-	154	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	01/05/17	-	4,760	-	-	4.87	6.06	155	114	-	-		-	93.0	-	-	-			-	-		-	-	-	-	-	-	-
1	04/20/17	-	1,720	-	-	1.53	1.20	24.1	21.1	-	-	-	-	18.6	-	-	-	-	-	-	-	-	-	-	-	-	-		-
1	07/25/17	-	2,050			9.21	4.12	48.3	26.6	-			-	29.1	-						-	-	-	-	-	-			-
1	10/09/17		2,040	· ·		1.98	2.03	42.2	25.4	-	-	-	-	35.5	-	-	-	ļ ·		-	-	-	-	-	-	-	-	-	-
	01/23/18 07/18/18	-	3,590	- :-	- :	4.26 11.7	< 5.00 6.60	107 78.0	47.0 29.1	-	1	- :		71.7 39.3			1	:	1	-	-	-	-	-	-			- :	
l	08/02/18		2,980	-	Focused							<u> </u>		35.3	<u> </u>	_						<u> </u>	<u> </u>			<u> </u>	_		
l			2,360		-	9.11	5.04	51.4	19.8	-		-		34.2	-							-	-						
l	08/16/18				Focused		Removal																						
I		-	4,040	-	-	5.44	4.44	93.2	36.8	-	-	-	-	67.5	-	-	-				-	-	-	-	-	-			-
1	08/30/18						Removal																						
			3,830			7.97	6.85	127	49.7	-	-	<u> </u>	-	43.6	-					-	-	-	-	-	-	-			-
												T/	ABLE 2 (c	ontinued)															

							C																						
	T T						Gr	KOUNI	DWAT	ER S	AMPL	E ANA				PHCs	s, VOC	s, and	I PAH	S									
		T			h	Т							ax Swe	et Hon	ne		T								d				
		Petrole	um Hydn	ocarbons	(ppb)	<u> </u>			Vola	tile Orga	nic Comp	ounds °	(ppb)				<u> </u>				Polynuc	lear Aron	natic Hyd	rocarbon	s " (ppb)				_
Sample ID	Sample Date	HCID (see key) *	Gasoline	Diesel	_	enzene	oluene	Ethylbenzene	/lenes	2-Dibromoethane	2-Dichloroethane	ethyl tert-butyl ether	opropylbenzene	Naphthalene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	cenaphthene	nthracene	enz(a)anthracene	enzo(a)pyrene	enzo(b)fluoranthene	enzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	uoranthene	Fluorene	Naphthalene	Indeno(1,2,3-od)pyrene	Pyrene
MIN 5 (seet)	00/42/40	Ĩ	Ø	ā	Ö	m	F		× ×	+	4.	2	<u>ø</u>	ž	-	+-	ĕ	₹	ă	ď	ď	ď	Ö	ă	Œ	Œ	ž	=	<u> </u>
MW-5 (cont)	09/13/18		3,940		Focused -	Vacuum 9.01	7.68	Event (M 125	W-5) " 52.9	-				39.8	-		ι.												
	10/12/18	-	3,340	-		3.40	3.21	65.9	16.6	-	-	-	-	26.5	-	-			-		-	-	-	-	-	-	-	-	<u> </u>
ŀ	01/01/19	-	2,440	-	-	3.66	2.87	57.6	19.6	-	-		-	38.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	04/09/19	-	< 100	-	-	< 0.200	< 1.00	< 0.500	< 1.50	-	-	-	-	< 2.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	07/01/19	-	1,100	-	-	2.67	< 1.00	18.6	2.95	-	-	-	-	8.12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
MW-6	07/19/12	-	2,790	1,440	< 157	12.4	1.47	159	115	< 0.500	< 0.500	< 1.00	17.9	71.4	143	22.3	< 0.738	< 0.0561	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	1.40	44.8	< 0.0374	0.04
	09/25/12 10/18/12	-	< 100	243	< 374	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0280	< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	0.0544	0.330	< 0.0187	< 0.01
	12/19/12		< 100	< 74.8	< 150	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0748	< 0.0374	< 0.03
	04/10/13		< 100	< 75.5	< 151	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0377	< 0.0755	< 0.0377	< 0.03
	07/25/13	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
	09/18/13	-	-		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-
	12/05/13	-	< 100	< 77.7 < 80.0	< 155	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	-	- :	- :	- :		- :	-		-	-	< 0.0816	-	1
	04/15/14 07/23/14	- :	< 100 < 100	< 76.9	< 160 < 154	< 0.250 < 0.250	< 1.00	< 0.500 < 0.500	< 1.50 < 1.50	< 0.500	< 0.500 < 0.500	< 1.00	< 1.00 < 1.00	< 2.00	< 1.00 < 1.00	< 1.00 < 1.00	1 :	- : -	- :	- : -	- :		- :	- :	- :		< 0.0777	- :	H:
MW-7	09/25/12	-	< 100	< 187	< 374	0.320	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	0.0849	< 0.0187	< 0.01
	10/18/12	-	-	-	-	-	-	-	-	-	-	-	-	-	٠.	-	-	-	-	-	-	-	-	-	-	-	-		-
	12/18/12 04/10/13	-	< 100 < 100	< 74.8 < 75.5	< 150 < 151	< 0.250 < 0.250	< 1.00 < 1.00	< 0.500	< 1.50 < 1.50	< 0.500	< 0.500	< 1.00 < 1.00	< 1.00 < 1.00	< 2.00	< 1.00 < 1.00	< 1.00	< 0.0374 < 0.0374	< 0.0374 < 0.0374	< 0.0374 < 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0748 < 0.0748	< 0.0374	< 0.037
	07/25/13		< 100	< 75.5	< 151	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0374	- 0.03/4	- 0.05/4	- 0.0374	- 0.0374	- 0.0574	- 0.0374	- 0.0374	- 0.0374	- 0.0374	- 0.0740	- 0.03/4	- 0.03
	10/09/14	-	< 100	- 10.0	-	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	-		-			-	-	-	-	-		-	
	10/12/16	-	< 100	-	-	< 0.200	< 1.00	< 0.500	< 1.50	-	-	-	-	< 2.00	-	-	-	-	-	-		-	-	-	-	-	-	-	
MW-8	09/26/12	-	157	269	< 374	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0280		< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	< 0.0187	0.0413	< 0.0187	< 0.01
	10/18/12 12/18/12	-	< 100 < 100	< 187 < 75.5	< 374 < 151	< 0.250 < 0.250	< 1.00	< 0.500	< 1.50 < 1.50	< 0.500	< 0.500	< 1.00	< 1.00 < 1.00	< 2.00	< 1.00 < 1.00	< 1.00	< 0.0374 < 0.0374	< 0.0374 < 0.0374	< 0.0374 < 0.0374	< 0.0748 < 0.0748	< 0.0374	< 0.037							
	04/10/13	-	< 100	< 75.5	< 151	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0374		< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0748	< 0.0374	< 0.03
	07/25/13	-	< 100	< 76.2	< 152	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	-		-		-	-	-	-	-	-		-	-
	09/18/13	-	< 100	< 76.9	< 154	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	-		-	-		-		-	-	-	< 0.0792	-	-
MW-9	09/27/12	-	1,340	705	< 374	7.05	19.2	31.1	43.0	< 0.500	< 0.500	< 1.00	10.3	23.1	4.14	3.15	< 0.374		< 0.374	< 0.374	< 0.374	< 0.374	< 0.374	< 0.374	< 0.374	< 0.374	3.98	< 0.374	< 0.37
	10/18/12	-	< 100	439 < 74.8	< 374 < 150	2.55 < 0.250	5.40 < 1.00	< 0.500	15.7 < 1.50	< 0.500	< 0.500	< 1.00 < 1.00	< 1.00 < 1.00	3.54 < 2.00	1.80 < 1.00	1.68 < 1.00	< 0.374 < 0.0374	< 0.374	< 0.374 < 0.0374	< 0.374 < 0.0374	< 0.374	< 0.374 < 0.0374	< 0.374 < 0.0374	< 0.374 < 0.0374	< 0.374	< 0.374 < 0.0374	1.16 < 0.0748	< 0.374	< 0.37
	12/19/12 04/10/13		< 100	< 75.5	< 150	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0374	< 0.0748	< 0.0374	< 0.03
ŀ	07/25/13		< 100	< 76.2	< 152	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	- 0.0377	- 0.03//	- 0.03//	- 0.0377	- 0.0377	- 0.0377	- 0.0377	- 0.03//	- 0.0377	- 0.0077	- 0.0733	- 0.0377	- 0.00
ŀ	09/18/13		< 100	< 76.9	< 154	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00					-	-			-	-	< 0.0769	-	
ŀ	10/09/14	-	< 100	< 192	< 385	0.300	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0769	< 0.0385	< 0.03
	01/14/15	-	< 100	-	-	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0777	< 0.0388	< 0.03
	04/29/15	-	< 100	-	-	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0769	< 0.0385	< 0.03
ŀ	07/14/15	-	< 100	-	-	< 0.250	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0392	< 0.0392	< 0.0392	< 0.0392	< 0.0392	< 0.0392	< 0.0392	< 0.0392	< 0.0392	< 0.0392	< 0.0784	< 0.0392	< 0.03
ŀ	10/14/15	-	< 100	-	-	< 0.200	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	-	-	-	-	-	-	-	-	-	-	< 0.0777	-	-
ŀ	12/16/15	-	< 100	< 76.9	< 154	< 0.200	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0388	< 0.0777	< 0.0388	< 0.03
ŀ	4/8/2016	-	< 100	< 76.9	< 154	< 0.200	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0385	< 0.0769	< 0.0385	< 0.03
ŀ	07/14/16	-	< 100	< 190	870 / < 381 ^m	< 0.200	< 1.00	< 0.500	< 1.50	< 0.500	< 0.500	< 1.00	< 1.00	< 2.00	< 1.00	< 1.00					-				-	-	0.109		-

TABLE 2 (continued) GROUNDWATER SAMPLE ANALYTICAL DATA - PHCs. VOCs. and PAHs Truax Sweet Home Petroleum Hydrocarbons a (ppb) Volatile Organic Compounds (ppb) Polynuclear Aromatic Hydrocarbons d (ppb) Sample Sample ID Date 1,2-Dibro 유 MW-9 (cont) < 0.200 < 1.00 < 0.500 < 0.500 < 1.00 < 1.00 < 1.00 < 0.0392 < 0.0392 < 0.0392 < 0.0392 < 0.0392 < 0.0392 < 0.0392 < 0.0392 < 0.0392 < 0.0392 0.933 < 0.0392 | < 0.0392 < 100 < 192 < 2.00 01/05/17 < 100 < 190 < 381 < 1.00 < 0.500 < 1.50 0.500 < 0.500 < 1.00 < 1.00 < 1.00 < 1.00 04/20/17 < 100 < 75.5 < 151 < 0.200 < 1.00 < 0.500 < 1.50 0.500 < 0.500 < 1.00 < 1.00 < 2.00 < 1.00 < 1.00 0.0769 07/25/17 < 100 < 78.4 < 157 < 0.200 < 1.00 < 0.500 0.500 < 0.500 < 1.00 < 1.00 < 0.0792 < 1.50 < 1.00 < 2.00 < 1.00 < 100 < 75.2 < 152 < 0.500 < 0.500 < 1.00 < 2.00 10/09/17 < 0.200 < 1.00 < 0.500 < 1.50 < 1.00 < 1.00 < 1.00 < 0.0800 01/23/18 < 100 < 76.9 < 154 < 0.200 < 1.00 < 0.500 < 1.50 0.500 < 0.500 < 1.00 < 1.00 < 2.00 < 1.00 < 1.00 < 0.0769 07/18/18 < 100 < 79.2 e 158 < 0.200 < 1.00 < 0.500 e 1.50 0.500 < 0.500 < 1.00 < 1.00 < 2.00 < 1.00 < 1.00 < 0.0762 10/12/18 < 100 < 85.1 < 170 0.310 < 1.00 < 0.500 < 1.50 0.500 < 0.500 < 1.00 < 1.00 < 2.00 < 1.00 < 1.00 < 0.0800 01/01/19 < 100 e 76.2 e 152 < 0.200 < 1.00 < 0.500 e 1.50 < 0.500 < 0.500 < 1.00 < 1.00 < 2.00 < 1.00 < 1.00 < 0.0889 04/09/19 < 100 < 76.9 < 154 < 0.200 < 1.00 < 0.500 < 1.50 0.500 < 0.500 < 1.00 < 1.00 < 2.00 < 1.00 < 1.00 < 0.137 07/01/19 < 100 < 76.9 < 154 < 0.200 < 1.00 < 0.500 < 1.50 0.500 < 0.500 < 1.00 < 1.00 < 1.00 < 1.00 < 0.0784 MW-10 09/27/12 107 267 0.320 < 1.00 < 0.500 < 1.50 0.500 < 0.500 < 1.00 < 1.00 < 2.00 < 1.00 < 1.00 < 0.589 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0748 < 0.0374 < 0.0374 10/18/12 < 100 < 211 < 0.250 < 1.00 1.25 < 1.50 0.500 < 0.500 < 1.00 < 1.00 < 2.00 4.76 1.35 < 0.0421 < 0.0421 < 0.0421 < 0.0421 < 0.0421 < 0.0421 < 0.0421 < 0.0421 < 0.0421 < 0.0421 < 0.0421 < 0.0421 12/19/12 < 100 < 74.8 < 150 < 0.250 < 1.00 < 0.500 < 1.50 0.500 < 0.500 < 1.00 < 1.00 < 2.00 < 1.00 < 1.00 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 0.0374 0.0374 < 0.0374 < 0.0374 < 0.0748 < 0.0374 < 0.0374 04/10/13 < 0.500 < 100 < 76.9 < 154 < 0.250 < 1.00 < 0.500 < 1.50 < 0.500 < 1.00 < 1.00 < 2.00 < 1.00 < 1.00 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0748 < 0.0374 < 0.0374 < 0.250 < 0.500 < 0.500 < 100 < 76.2 < 0.500 < 1.50 < 1.00 < 1.00 < 1.00 07/25/13 < 152 < 1.00 < 2.00 < 1.00 < 1.00 10/09/14 < 1.00 < 1.00 Temporary Wells - MSBA <0.500</p> <0.500</p> <1.00</p> <1.00</p> <2.00</p> <1.00</p> <75.5 433 < 0.250 < 1.00 < 0.500 < 1.50 TW-2 < 75.5 < 151 < 0.250 < 1.00 < 0.500 < 1.50 Residential Well (Pre-filter) - MSBA 1240 Nandina 12/19/12 < 74.8 < 150 < 0.250 < 1.00 < 0.500 < 1.00 < 1.00 < 1.00 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 0.0374 < 100 < 75.5 < 0.250 < 1.00 < 0.500 < 1.50 < 0.500 < 0.500 < 1.00 < 2.00 < 1.00 07/25/13 < 151 < 1.00 < 1.00 < 100 < 77.7 < 155 < 0.250 < 1.00 < 0.500 < 1.50 < 0.500 < 0.500 < 1.00 < 1.00 < 2.00 < 1.00 < 1.00 0.0842 09/18/13 12/05/13 < 100 < 79.2 < 158 < 0.500 < 1.50 < 0.500 < 0.500 < 1.00 < 1.00 < 2.00 < 1.00 < 0.0816 < 0.250 < 1.00 < 1.00 04/20/17 < 100 < 75.5 < 151 < 0.200 < 1.00 < 0.500 < 1.50 < 0.500 < 0.500 < 1.00 < 1.00 < 2.00 < 1.00 < 1.00 < 0.0769 Quality Assurance/Quality Control Sample Equipment Blank " 12/05/13 <100 < 79.2 < 158 < 0.250 < 1.00 < 0.500 < 1.50 < 0.500 < 0.500 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.00 < 1.0 < 0.0769 DEQ Goundwater Risk-Based Concentrations (RBCs) - Revised May 2018 Ingestion & 1,100 0.0075 440 390 110 100 100 0.46 1.5 190 14 54 59 510 > S P 0.030 0.025 0.25 > S > S 0.025 > S > S 110 na ° halation from na 450 430 430 6,300 6.4 830 0.034 0.78 68 2,000 0.72 250 280 2,500 > S 0.38 0.47 > S > S > S 0.47 > S 1,300 0.72 > S > S 300 /apor Intrusion Residential na > S > S 86,000 45 67.000 > S > S 840 50,000 36,000 > S > S NV 9 NV NV NV NV 840 > S > S into Buildings > S > S 8 200 3,900 870,000 > S NV NV NV > S 11 000 NV cupational Worke na 2.800 > S > S 590 11 000 > S > S > S NV NV Volatilization Residential na > S > S > S 9.900 > S 180 2,100 > S > S > S > S > S NV NV NV NV NV NV > S NV > S 1.500.000 to Outdoor Air Occupational Worker > S > S > S > S 790 9,000 > S > S > S NV NV NV NV NV NV > S 16,000 NV na Groundwater Construction and 14,000 > S > S 1,800 220,000 4,500 23,000 27 630 63,000 51,000 500 63,000 7,500 > S > S > S > S > S > S > S > S > S > S 500 > S > S na in Excavation Excavation Worker

							GF	ROUNI	DWAT	ER S	AMPL	E ANA	LE 2 (ALYTIC lax Swe	CAL D	ATÁ -	PHCs	s, VOC	s, and	I PAH	s									
		Petrole	um Hydr	ocarbons	a (ppb) b				Vola	tile Orga	nic Comp	oounds °	(ppb)								Polynuc	lear Aron	natic Hyd	rocarbon	s ^d (ppb))			
Sample ID	Sample Date	HCID (see key) *	Gasoline	Diesel	lio	Benzene	Toluene	Ethylbenzene	Xylenes	1,2-Dibromoethane	1,2-Dichloroethane	Methyl tert-butyl ether	Isopropylbenzene	Naphthalene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Acenaphthene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Naphthalene	Indeno(1,2,3-od)pyrene	Pyrene
a Petroleum hydroca Hydrocarbon Ident b Analytical results in c Volatile organic oc d Polynuclear Arom. e Brown text indicat f (nd) Not Detected g (-) Not analyzed h Bold value indicat i Yellow shading j (<) Analyte conce k A focused vacuum l Results reported a m Represents the an n An equipment blar o (na) Not applicabl p (> \$) This groun g (NY) 'This chemi	ification Key: "G" reported in parts j mpounds (VOCs) atic Hydrocarbons es the sample is r 1. Lab Qualifier sp es analyte concen indicates analyte on extraction event is estimated value alytical result foll ki was collected file led water RBC excer	denotes goer billion were anal (in PAHs) who trepress decifies the tration exit concentrated above was performed a correct or a cera deds the sole decifies the sole decifies the tration exit concentrated above was performed a cera deds the sole decifies the sole d	pasoline hy (ppb) yzed using ere analyzentative of at the samp eeeded lab ation (or on the labora rmed at Mi mited sam d'Silica Ge mic conta	drocarbor g EPA meth ged using E static grou ple was run oratory rep ne-half the tatory repor N-5 to proi ple volume i cleanup iner used t it" (Appeni	n detection, hod 8260B, EPA methor undwater on from the porting limit, a mote recove e and limite to collect will display to dix A, RBD	"D" deno 8260C, or 18270D SI onditions PAH prep. it reporting is listed ery of any d QC data ater from M, 2018)	tes diesel l 8270D M Surrogate limit) exce residual fr	was BFB eds an RB ee produc use spigo	and not H C. The ex t, if preser	CID surro ceeded le nt beneath	gate vel is also	shaded al seasona	drocarbon o	detection,	and "ND"	denotes n	one detect	ed			el and oil)								

- q (NV) "This chemical is considered "nonvolatile" for the purposes of the exposure calculations" (Appendix A, RBDM, 2018)

TABLE 3 GROUNDWATER SAMPLE ANALYTICAL DATA -**METALS AND PCBs**

Truax Sweet Home 1306 Main Street, Sweet Home, Oregon DEQ File No. 22-98-4187

Sample ID	Sample Date	Dissolv	ed Metals a ((ppb) b	PCBs °
Sample ID	Sample Date	Cadmium	Chromium	Lead	(ppb)
Samples from Mo	onitoring Well Installat	tion and Ass	essment Act	ivities - MSB	Α
MW-3	7/20/12	- ^d	-	< 1.00 °	-
MW-4	12/19/12	-	-	< 1.00	
MW-5	9/25/12	-	-	4.28 1	
	12/19/12	-	-	2.42	-
TW-1	7/19/12	< 1.12	< 2.25	< 1.12	< 0.0943 ⁰
Residential Well	(Pre Filter)				
1240 Nandina	12/19/12	-	-	< 1.00	-
DEQ Groun	dwater Risk-Based Co	oncentration	s (RBCs) - U	pdated May	2018
Ingestion and Inhalation from	Residential	20	30,000	15	0.006
Tapwater	Occupational	160	250,000	15	0.028
Vapor Intrusion	Residential	nv ^h	nv	nv	> S ¹
Into Buildings	Occupational	nv	nv	nv	> S
Volatilization to	Residential	nv	nv	nv	> S
Outdoor Air	Occupational	nv	nv	nv	> S
Groundwater in	Construction Worker	130,000	> S	> S	30
Excavation	Excavation Worker				

- a Dissolved metals analyzed using Environmental Protection Agency (EPA) method 6020
- b Analytical results reported in parts per billion (ppb)
- c Polychlorinated Biphenyls (PCBs) analyzed using EPA method 8082A
- d Not analyzed
- e Analyte concentration not detected above the laboratory reporting limit, as listed (<)
- f Bold value indicates analyte concentration exceeds the laboratory reporting limit
- g Yellow shading indicates one-half the laboratory reporting limit exceeds an RBC. The exceeded RBC is also shaded
- h This analyte is considered nonvolatile for purposes of the exposure pathway (nv)

i The groundwater RBC exceeds the solubility limit (> S)

8:Project Flest/Tuax/Sueet Home - 1308 Main/Tables Closure Report [T 3 GW Metas and PCBs.xis]T 3

Table 4

SOIL VAPOR SAMPLE ANALYTICAL DATA

Truax Sweet Home
1306 Main Street, Sweet Home, Oregon
DEQ File No. 22-98-4187

					ı	PHCs an	d RBDM	I VOCs a	(µg/m³) b								
Sample ID	Date	Generic Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Methyl tert-butyl ether	1,2-Dibromoethane	1,2-Dichloroethane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Isopropylbenzene	Helium ° (%)	2-Propanol (μg/m³) ^d		
SV-1	1/8/13	< 95 ^e	< 0.74	< 0.88	< 1.0	< 2.0	< 6.1	< 0.84	< 1.8	< 0.94	< 1.1	< 1.1	< 1.1	< 0.12%	_f		
	7/25/13	< 100	< 0.80	< 0.95	< 1.1	< 2.2	< 6.6	< 0.91	< 1.9 ^g	< 1.0	< 1.2	< 1.2	< 1.2	-	70 ^h		
SV-2	1/8/13	1,800	< 0.76	1.0	< 1.0	< 1.0	< 6.2	< 0.86	< 1.8	< 0.96	< 1.2	< 1.2	< 1.2	< 0.12%	-		
	7/26/13	< 300	< 2.3	< 2.7	< 3.2	< 6.4	< 19	< 2.6	< 5.6	< 2.9	< 3.6	< 3.6	< 3.6	-	380		
	10/12/16	< 100	< 0.82	< 0.96	< 1.1	< 2.2	< 6.7	< 0.92	< 2.0	< 1.0	< 1.2	< 1.2	< 1.2	-	SV-2: < 3.1 SV2-Shroud ⁱ : 300,000		
	3/18/24	897	0.200	4.04	< 2.61	< 6.95	0.461	< 0.721	< 0.00612 ^j	< 0.162	< 2.95	< 1.97	< 1.97	-	SV-2: 11.7 SV2-Shroud: 70,900		
						Soil Va	por RB	Cs - Re	vised Marc	ch 2024							
Soil Vapor	Residential	10,000	12	170,000	37	3,500	2.8	360	0.16	3.6	2,100	2,100	14,000	N/A ^k			
Son Vapor	Occupational	40,000	52	730,000	160	15,000	12	1,600	0.68	16	8,800	8,800	58,000		N/A		

		,		,		,		.,	 	-,	-,	,		
- Detrolou	una huvdua aarkan	e (DUCe)	and via	le bassal a	daaiaian	mankina /	DDDM) v	alatila ar	 naumala i	(\((\)(\)(\)(\)(\)	malvæsd	lasz magéle	ad TO 15	or TO 17

- b Analytical results reported in micrograms per cubic meter (µg/m³)
- c Helium was analyzed as a leak detection gas
- d 2-Propanol was analyzed as a leak detection gas
- e (<) Analyte concentration not detected above the laboratory reporting limit, as listed
- f (-) Not analyzed
- g Yellow shading indicates analyte concentration (or one-half the laboratory reporting limit) exceeds an RBC. The exceeded RBC is also shaded
- h Bold value indicates analyte concentration detected above the laboratory reporting limit
- i Represents the shroud placed around the sample that was spiked with 2-propanol for leak testing
- j Laboratory Narrative: "reporting Limit noted is the Method Detection Limit (MDL)"
- k (N/A) Not Applicable

Table 6: Maximum Detected Concentrations Compared to Applicable RBCs (May 2018)

	1							SOI	1	so		so	u I	SOII		SOIL		GROUNDWA	TER	GROUNDW	ATER	GROUNDW	ATER	GROUNDY	MATER	GROUNDW	ATER	GROUNDY	ATER	GROUNDW	ATER	SOILG	as I	SOILGAS		SOIL GAS
						Contaminated f	Vledium	mg/Kg I		mg/Kg		mg/Kg		mg/Kg (_	mg/Kg (µg/L (ppt		µg/L (pp		µg/L (p		µq/L (p		µg/L (p		µg/L (p		µg/L (p		ua/m		u.a/m³	+	µq/m³
	Appli	icable Ri n Concer				Exposure P	athway	Soil Ingo Dermal C and Inha	estion, ontact, alation	Soil Ing Dermal C and Inh	estion, Contact, alation	Soil Ing Dermal C and Inh	jestion, Contact, alation	Volatiliza Outdoo	tion to r Air	Vapor Int into Buil RBC	trusion Idings	Volatilizatio Outdoor /	on to Air	Volatilizati Outdoor	ion to Air	Volatilizat Outdoor	ion to r Air	Vapor Int into Buil- RBC	rusion dings	Vapor Into into Build	rusion dings	Vapor Inti into Build	rusion dings	GW in Exce	avation	Vapor Intr into Build	rusion dings	Vapor Intrus into Buildin	sion \	Vapor Intrusion into Buildings
						Receptor S	cenario	0	lissal	Canalinatio	Waster	Enzadia	Waster	Onnegali		Onnegali		Residential		Urban Reside	relial	Onnyalia		Resides	iai	Uekas Resid	relial	Onnyali	ne al	Construct Engaglish		Resident	iai -	Urkan Renidenti	iiai -	Occupational
	Seil					Direct or Indirect P	athway	DC	5	DC	s	0.0	3	IVS		IVS		IW		1997		1997		1997		1997		1997		DOW		ICA		ICA		ICA
Surface	SubSurface	Graundweter	Sail Gar	Air	CAS.	Chronical II	Hale		Hale		Hale		Hale		Hale		Hale		Hale		Hale		Hele		Hale		Hale		Hale		Hale	- 1	Hale	1 /	Hale	1 84
94.4	544	1,100	1,800			Generic Garaline	nc,v	20000		9700		>Max		69000		»Max		>S		»S		,s		22000		22000		>S		14000		79000		79000		1700000
752	472	3,700				Generic Diezel/Heating Oil	ne,v	14000		4600		>Max		»Max		»Max		>S		>S		۶S		>S		۶S		۶S		>S		21000		21000		440000
0	0.06	12.32	0.2		71-43-2	Benzene	6,0	37	П	380	Т	11000	>Crat	50	ПΠ	2.1	ПΠ	3100	ПП	7400		14000		210		510		2800		1800		72	\Box	170		1600
0	0.93	1.78	4.04		108-88-3	Taluene	ne, v	88000	»Crat	28000	>Crat	770000	>Crat	-	>Crat	-	>Crat	-	»S		>S		>S		>S		>S		۶S	220000		1000000		1000000		21900000
0	4.6	8.4	0		100-41-4	Ethylbonzono	6,0	150		1700	>Crat	49000	>Crat	160		17		9900		23000		43000		620		1500		8200		4500		220		530		4900
0	57.9	2.95	0		1330-20-7	Xylener	ne,v	25000	>Crat	20000	>Crat	560000	>Crat	-	>Carat	-	>Carat		»S		>S		»S	86000		86000		-	۶S	23000		21000		21000		440000
0	0	0	0		1634-04-4	MTBE (mothylt-butylothor)	6,0	1100		12000	>Crat	320000	>Crat	1500		110		350000		830000		1500000		67000		160000		870000		63000		2200		5100		47000
0.0887	3.31	39.3	0.461		91-20-3	Naphthalono	6,0	23		580	>Carat	16000	>Carat	83		83		3600		8500		16000		840		2000		11000		500		17		39		360
0.0797	27.4	1420	0		95-63-6	1,2,4-Trimothylbonzono	ne, o	6900	»Crat	2900	>Crat	81000	>Crat	-	>Crat		>Crat	-	»S		>S		>S	50000		50000		-	۶S	6300		13000		13000		260000
0	96	238	0		108-67-8	1,3,5-Trimothylbonzono	ne, v	6900	>Crat	2900	>Crat	81000	>Crat		>Carat		>Carat	-	»S		>S		>S	36000		36000			»S	7500		13000		13000		260000
0	1.2	89	0		98-82-8	ira-Prapylbonzono (cumono)	ne, v	57000	»Crat	27000	>Crat	750000	>Crat	-	>Crat	-	>Crat	-	۶S		>S		»S		>S		>S	-	۶S	51000		83000		83000		1800000
0	0	0	0		106-93-4	EDB (1,2-dibramaethane)	6,0	0.73		9		250		0.65		0.16		180		430		790		45		110		590		27		0.94		2.2		20
0	0	0	0		107-06-2	EDC (1,2-dichlaraethane)	6,0	16		200		5600	>Crat	15		1		2100		4900		9000		300		700		3900		630		22		51		470
0	0	0.292			83-32-9	Aconaphthono	no, v	70000	>Crat	21000	>Crat		>Crat		>Max	-	>Max		»S		>S	-	>S		»S		»S		»S		»S		»Po		»Pν	- ,P
0	0	0			120-12-7	Anthracono	ne,v	350000	>Crat	110000	>Crat		>Max	-	>Max	-	>Max		»S		»S	-	۶S	-	»S		»S	-	۶S		»S	-	>Pv		»Pv	- ,P
0	0.00593	0			56-55-3	Bonz[a]anthracono	6,0	21	>Crat	170	>Crat	4800	>Crat		>Crat		>Carat	-	۶S		>S		»S		»S		»S		۶S		»S		>Pv		>P⊎	- ,P
0	0.0116	0			50-32-8	Bonza[a]pyrono (BaP oquivale	c, no	2.1		17	>Crat		>Crat	-	NV	-	NV	-	NV		NV		NV		NV		NV	-	NV		»S		NV		NV	- N
0	0	0			205-99-2	Bonza[b]fluaranthono	c, no	21	»Crat	170	>Crat	_	>Crat	-	NV	-	NV		NV		NV	-	NV		NV		NV	-	NV		۶S		NV		NV	- N
0	0	0			207-08-9	Benza[k]fluaranthene	c, no	210	>Crat	1700	>Carat		>Carat	-	NV	-	NV		NV	•	NV	-	NV		NV	•	NV	-	NV		»S	•	NV		NV	- N
0	0	0			218-01-9	Chrysono	c, no	2100	»Crat	17000	>Crat	_	>Crat	-	NV	-	NV		NV		NV	-	NV	-	NV		NV	-	NV		۶S	-	NV		NV	- N
0	0	0			53-70-3	Dibonz[a,h]anthracono	c, no	2.1	\perp	17	>Crat		>Crat	-	NV	-	NV		NV		NV	-	NV		NV	•	NV	-	NV		»S		NV		NV	- N
0	0.0544	0			206-44-0	Fluoranthono	no,nv	30000	>Crat		>Crat	_	>Crat	-	NV	-	NV		NV		NV	-	NV	-	NV		NV	-	NV		»S	-	NV		NV	- N
0	0.0858	1.04			86-73-7	Fluorene	nc,v	47000	>Crat	14000	>Crat	_	>Crat	•	>Max		>Max		>S		>S	-	»S		>S		>S	•	»S		»S	-	>Pv		»Po	- ,P
0	0	0			193-39-5	Indonu[1,2,3-cd]pyrono	c, no	21	»Crat		>Crat		>Crat	-	NV	-	NV		NV		NV	-	NV		NV		NV	-	NV		»S	•	NV		NV	- N
0.00739	0.00717	0			129-00-0	Pyrono	nc,v	23000	>Crat		>Crat	_	>Crat	-	>Max		>Max	•	>S		>S	-	>S		>S		>S	-	»S		>S	-	>Po		»Pυ	- ,P
Motoc.	9	4.28			7439-92-1	Load	NA, no	800	L	800	L	800	1 1	-	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	NV	-	»S	-	NV	- 1	NV	- N

Notes:

- 1. A zero (0) for the maximum concentration means the constituent was tested for but was not detected in any sample.
- 2. If the maximum concentration is blank, no samples were analized for that constituent in its respective media.
- 3 RBCs Updated May 2018
- 4 Direct or Indirect Pathway Codes have the following meanings: DC means it is a direct contact pathway with a limiting value of Csat. IVS means it is an indirect pathway with a limiting value of Csat. DS means it is a
- indirect pathway with a limiting value equal to the solubility. S.DCA means it is a direct contact pathway with a limiting value equal to the vapor pressure. c This chemical is a known or suspected carcinogen. The RBCs in this row were calculated using equations for carcinogens.
- of The RBCs in this row were calculated using equations for both carcinogens and noncarcinogens (where lower). For some scenarios the RBCs based on non-carcinogenic effects are lower than RBCs based on cancer effects for these chemicals. You should use the lower of the calculated RBCs for each
- >Csat This soil RBC exceeds the limit of three-phase equilibrium partitioning. Refer to "ChemData" page for the corresponding value of Csat. Soil
 - concentrations in excess of Csat indicate that free product might be present. See Section B.2.1.4 for additional information.
- L. The values for lead reported in this table are not calculated. See Section B.3.4 for the source of the lead numbers and information on applying them.
- >Max The constituent RBC for this pathway is calculated as greater than 1,000,000 mg/kg or 1,000,000 mg/L. Therefore, this substance is deemed not to pose risks in this scenario.
- BG. The standard RBC value has been replaced with the background value from the physiographic region of the site.

Table 7: Maximum Concentrations and Updated Soil Vapor Intrusion RBCs from June 2023

Max Soil Gas	Contaminant	Soil Vapor Intrusion RE	3C (ug/m³)
Concentration (ug/m³)			
		Residential	Occupational
1,800	Gx	10,000	40,000
0.2	Benzene	12	52
4.04	Toluene	170,000	730,000
ND	Ethylbenzene	37	160
ND	Xylenes	3,500	15,000
ND	MTBE	360	1,600
0.461	Naphthalene	2.8	12
ND	1,2,3-TMB	2,100	8,800
ND	1,3,5-TMB	2,100	8,800
ND	Iso-Propylbenzene	14,000	58,000
ND	EDB	0.16	0.68
ND	EDC	3.6	16