

February 22, 2023

Kara Master Oregon Department of Environmental Quality Northwest Region 700 NE Multnomah Street, Suite 600 Portland, OR 97232

Dear Ms. Master:

Attached is a copy of the Annual Cap Inspection Report for The Fields Park (ESCI ID 5443). Please feel free to contact me if you have any questions.

Sincerely,

Alex Shook
Environmental Compliance Professional
Portland Parks and Recreation
6437 SE Division Street, Portland, OR 97206
Email: alex.shook@portlandoregon.gov

Phone: 503.250.0670

Site: The Fields Neighborhood Park

Inspection Date: <u>12/7/2022</u>

Background: The Fields Neighborhood Park (the Site) is a 3.3-acre municipal park located northeast of the intersection of NW Overton Street and NW 11th Avenue in Portland, Oregon. The Site is situated in a portion of the former 26-acre Hoyt Street Rail Yard (HSRY) and is listed on the Oregon Department of Environmental Quality (DEQ) Environmental Cleanup Site Information (ECSI) database as Hoyt St. Rail Yard - The Fields (ECSI Site ID: 5443). During historical HSRY operations, impacts to soil and groundwater occurred. Remaining impacts beneath the park include soils containing elevated concentrations of petroleum hydrocarbons, lead, and polynuclear aromatic hydrocarbons (PAHs).

In December 2000 a Record of Decision (ROD) was published by DEQ for the HSRY and in January 2011 an Explanation of Significant Difference (ESD) was published by the DEQ for the Site. In addition, an Inspection and Maintenance Plan was prepared and approved by DEQ [Inspection and Maintenance Plan, AMEC Environment and Infrastructure, July 2013]. The 2000 ROD, the 2011 ESD, and the 2013 Inspection and Maintenance Plan describe remedial action requirements for the Site.

The selected remedial action for The Fields Neighborhood Park is an engineered soil cap with an underlying demarcation layer (geotextile fabric marker). To meet this requirement a continuous soil cap was installed across the entire site. The soil cap consists of clean soil or concrete (e.g., structure foundations, pathways, and sidewalks) at a thickness of (2) feet in the greater park area and (3) feet in the children's play area as outlined in the ROD and ESD. The Inspection and Maintenance Plan states that "annual surface cap inspections shall be conducted followed by the submittal of inspection reports to DEQ. After 5 years of annual inspections, DEQ will review Site conditions in order to determine whether less frequent inspection intervals are warranted."

This inspection report was completed to assess the condition of the capped area which includes the entire park (*i.e.*, landscaped soil, structure foundations, perimeter sidewalks, internal pathways, and storm water drainage features) and to document any potential breaches to the cap. This inspection report fulfills the annual surface cap inspection requirement for 2022.

Location Description: (i.e., boundary streets)

NW 11th, NW Overton, and NW Naito (1N1E 34BB Lot 2629)

City blocks 18, 21, 22, and 25

Bethany Nabhan

John O'Donovan

Party Performing Inspection / Preparing Report:

Environmental Specialist / BES

Engineer III / BES 503-823-7881

Alex Shook Risk Specialist II / Portland Parks & Recreation

503-250-0670

Contact Numbers:

503-823-1144

012

OREGON

EXPIRES: 12 /24

CAP INSPECTION REPORT

2022

Inspection Performed For:

Portland Parks & Recreation 6437 SE Division St. Portland, OR 97206

Hardscape Areas: Inspect the concrete foundation, sidewalks, and pathways for evidence of cracks or unusual weathering that show the potential to allow soil to migrate through the cap or allow direct exposure to soils. List observations made and area(s) requiring maintenance.

Hardscaped areas are in good condition. Based on our assessment, the cap is not compromised

riardscaped areas are in good condition. based on our assessment, the cap is not compromise
in the hardscape areas of the park. See attached Figure 1 and Photo Log.
Cracks, Settlement? Yes X No
Location(s):
Only minor cracking and evidence of settling was observed in the concrete sidewalks and
structural foundations on the perimeter of the park (photo points 1-3, 6-13, and 18). These
minor cracks (generally <0.5 inches) have been observed in previous inspections and do no
appear to penetrate the cap. Separation at the cracks was not observed. One (1) brick pathwa
is separating slightly but the separation has not changed in the past few years (photo point #4
and does not appear to penetrate the cap. Two new photo monitoring points were added
during this year's inspection. Photo point 17 is described in the Holes, Breaches, Penetration
section below. Photo point 18 is an additional minor pavement crack at the E side of the park
Monitoring wells 2, 3, and 4 were also inspected for cracking, separation, and signs of damage
All monitoring well monuments were in good condition. See attached Photo Log for copies of
previous and current year inspection photos. BES will continue to monitor these locations in the
following years.
Maintenance required? Yes No <u>X</u>
Holes, Breaches, Penetrations? Yes No X
There were two observed utility potholes located on the W sidewalk of the park (photo poin
17). These potholes were identified as being completed as part of the upcoming Pacific Powe
Willamette River Crossing project. The objective of the potholing was to verify the depth of

existing utilities in the area and finalize design plans. According to the contractor the potholes were advanced to 29 inches below surface. No demarcation fabric was encountered, and the potholes were backfilled with 34-inch minus compact rock and patched with asphalt. No exposed subsurface soil was observed during the inspection. BES will continue to monitor these locations in the following years.

Maintenance required?	Yes	No	_X

Landscape Areas: Inspect landscape areas for evidence of holes, animal burrows, or cracks that could expose the underlying soil. List observations made and area(s) requiring maintenance.

Landscaped areas, including the central grass area, other areas with plantings, as well as the dog off-leash area in the northern end of the park and the children's playground in the southern end of the park, were inspected for holes, cracks, and visual evidence of exposed demarcation geotextile fabric. Two (2) previously filled holes were observed to be in the central grass area (photo point 14). These holes were approximately 0.5-1.5 ft in diameter and less than 1 ft deep. No other damage was observed in the landscaped areas. The dog off-leash area and the children's playground were both in excellent condition and no damage was observed. Evidence of animal burrows were not observed this year and Parks staff continues to control for rodents in the park (photo point 16). See attached Photo Log for copies of previous and current year inspection photos.

Exposed Soil or Fabric?	Yes	No <u>X</u>
Maintenance required?	Yes X	No

The two holes noted above were backfilled by Parks staff to maintain the two (2) foot cap prior to the cap inspection. Laboratory data from BES's Water Pollution Control Lab demonstrating the soil used as backfill is free of contaminants of concern for the site are attached. The soil that was used as backfill was surplus clean fill from the South Waterfront Greenway project.

Surface Water Drainage Features: Inspect storm water drainage paths and catch basins for evidence of blockage by debris or erosion damage caused by inadequate drainage control. List observations made and area(s) requiring maintenance.

Storm water drainage paths and catch basins were clear and functional during the inspection.

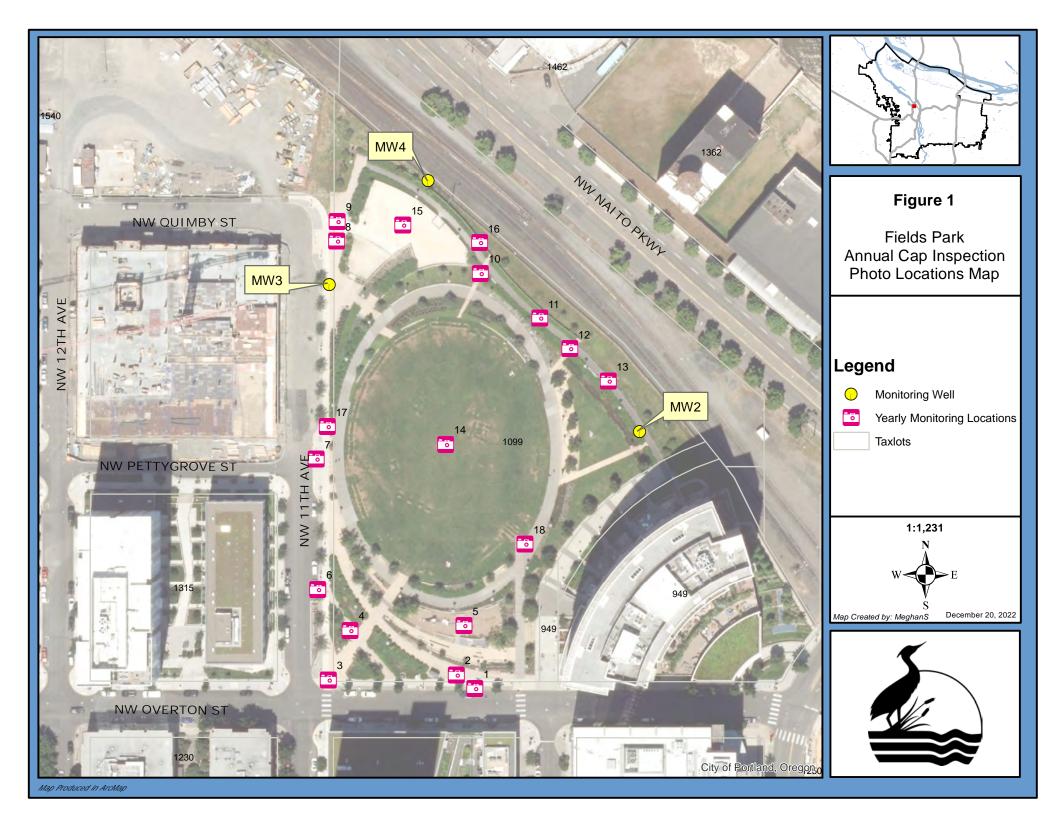
Groundwater Seepage Areas: Note any evidence of groundwater seepage areas and associated problems.

No groundwater seepage areas were observed during the inspection.

Additional Comments:

Photographs have been taken of all areas of concern to document the condition of the cap. Photographic evidence includes pictures of any damage and repairs performed.

Please see the attached Photo Locations Map and Photo Log.


Send one copy of completed Inspection Report, with supporting documentation including photographs and maintenance and repair records to:

Oregon Department of Environmental Quality NW Region UST Cleanups & Environmental Cleanup Programs 700 NE Multnomah St., Suite #600 Portland, OR 97232

ATTN: Kara Master

Figure 1

Map of Photo Inspection Points

Attachment 1

Photo Log

Photo Point #1

• 2020 inspection photo:

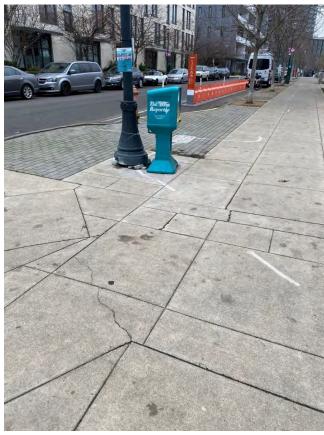
• 2021 inspection photo:

Photo Point #2

• 2020 inspection photo:

• 2021 inspection photo:

Photo Point #3



• 2019 inspection photo:

• 2020 inspection photo:

• 2022 inspection photo:

Photo Point #4

• 2020 inspection photo:

2022 inspection photo:

Photo Point #5

• 2020 inspection photo:

2021 inspection photo:

2022 inspection photo:

Photo Point #6

2020 inspection photo:

• 2021 inspection photo:

Photo Point #7

• 2019 inspection photo:

• 2020 inspection photo:

• 2022 inspection photo:

Photo Point #8

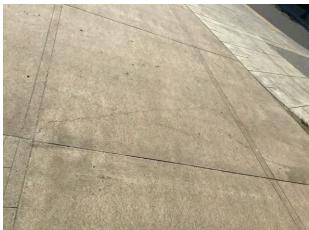
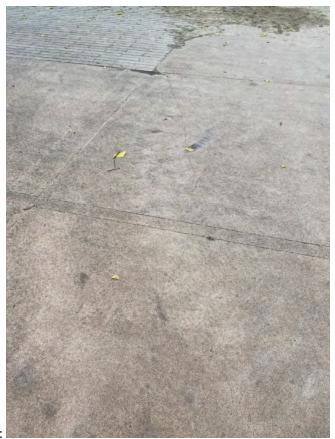

• 2021 inspection photo:


Photo Point #9



• 2019 inspection photo:

• 2020 inspection photo:

• 2022 inspection photo:

Photo Point #10

2020 inspection photo:

• 2022 inspection photo:

Photo Point #11

• 2020 inspection photo:

• 2021 inspection photo:

Photo Point #12

• 2020 inspection photo:

2022 inspection photo:

Photo Point #13

• 2020 inspection photo:

• 2021 inspection photo:

2022 inspection photo:

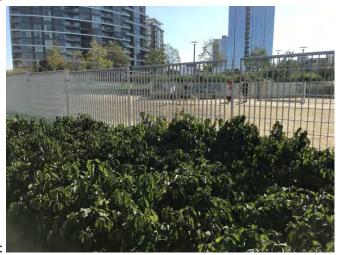
Photo Point #14 (center grassy area)

• 2022 hole #1 prior to inspection:

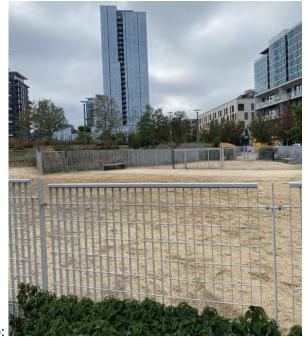
• 2022 hole #2 prior to inspection:

Hole #2 pre-fill

• 2022 inspection photo 1: Hole #1 filled



2022 inspection photo 2: Hole #2 filled


Photo Point #15 (off-leash dog park area)

• 2019 inspection photo:

• 2020 inspection photo:

• 2022 inspection photo:

Photo Point #16 (rodent hole monitoring/vector control, many located around park)

2020 inspection photo:

• 2021 inspection photo:

Photo Point #17

• 2022 inspection photo:

Photo Point #18

Monitoring Well #2

• 2019 inspection photo:

2022 inspection photo:

Monitoring Well #3

• 2018 inspection photo:

• 2019 inspection photo:

The Fields Park Annual Cap Inspection Photo Log

Monitoring Well #4

• 2018 inspection photo:

2022 inspection photo:

Attachment 2

Lab Data

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656 ORELAP Certification ID 4023

LABORATORY ANALYSIS REPORT

Project: South Waterfront Greenway Park

W22K033

Received: 11/2/22 14:42

Submitted By: CSA

Client: Coordinated Site Analysis

Project Mgr: John O'Donovan

				Sample Coll		
Sample	Laboratory ID	Matrix	Туре	Start	End	Qualifier
Comp-1	W22K033-01	Soil	Composite	11/02/22 13:30	11/02/22 13:30	
Comp-2	W22K033-02	Soil	Composite	11/02/22 13:35	11/02/22 13:35	

Analyte	Result Units	MRL	MDL	Dil.	Batch	Prepared	Analyzed	Method	Qualifier
General Chemistry									
Total Solids									
Comp-1: W22K033-01									
Total solids	67.6 % W/W	0.01			B22K074	11/03/22	11/04/22	SM 2540G	
Comp-2: W22K033-02									
Total solids	68.2 % W/W	0.01			B22K074	11/03/22	11/04/22	SM 2540G	
Total Metals									
Total Metals by ICPMS									
Comp-1: W22K033-01									
Arsenic	4.42 mg/kg dry	0.082		20	B22K068	11/03/22	11/03/22	EPA 6020	
Barium	154 mg/kg dry	1.63		20	B22K068	11/03/22	11/03/22	EPA 6020	
Cadmium	0.262 mg/kg dry	0.082		20	B22K068	11/03/22	11/03/22	EPA 6020	
Chromium	22.1 mg/kg dry	0.163		20	B22K068	11/03/22	11/03/22	EPA 6020	
Lead	11.9 mg/kg dry	0.327		20	B22K068	11/03/22	11/03/22	EPA 6020	
Mercury	0.0383 mg/kg dry	0.0123		20	B22K068	11/03/22	11/03/22	EPA 6020	
Selenium	ND mg/kg dry	1.63		20	B22K068	11/03/22	11/03/22	EPA 6020	
Silver	ND mg/kg dry	0.082		20	B22K068	11/03/22	11/03/22	EPA 6020	
Comp-2: W22K033-02									
Arsenic	4.79 mg/kg dry	0.081		20	B22K068	11/03/22	11/03/22	EPA 6020	
Barium	169 mg/kg dry	1.63		20	B22K068	11/03/22	11/03/22	EPA 6020	
Cadmium	0.251 mg/kg dry	0.081		20	B22K068	11/03/22	11/03/22	EPA 6020	
Chromium	25.5 mg/kg dry	0.163		20	B22K068	11/03/22	11/03/22	EPA 6020	
Lead	11.3 mg/kg dry	0.326		20	B22K068	11/03/22	11/03/22	EPA 6020	
Mercury	0.0364 mg/kg dry	0.0122		20	B22K068	11/03/22	11/03/22	EPA 6020	
Selenium	ND mg/kg dry	1.63		20	B22K068	11/03/22	11/03/22	EPA 6020	
Silver	ND mg/kg dry	0.081		20	B22K068	11/03/22	11/03/22	EPA 6020	

Reported: 11/09/22 06:58

Jennifer Shackelford

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Jennifer Shackelford, Laboratory Manager

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656 ORELAP Certification ID 4023

Project: South Waterfront Greenway Park Client: Coordinated Site Analysis

Work Order: **W22K033** Received: 11/02/22 14:42

Analyte	Result Units	MRL	MDL	Dil.	Batch	Prepared	Analyzed	Method	Qualifier
<u>Fuels</u>									
Hydrocarbon Scan by GC-FID									
Comp-1: W22K033-01									
Gasoline	ND mg/kg dry	27		1	B22K062	11/03/22	11/03/22	NWTPH-HCID	
Diesel	ND mg/kg dry	68		1	B22K062	11/03/22	11/03/22	NWTPH-HCID	
Lube oil	ND mg/kg dry	136		1	B22K062	11/03/22	11/03/22	NWTPH-HCID	
Surrogate	Result	Expected	%Rec	Limits(%	6)				
o-Terphenyl	14.3 mg/kg dry	13.6	106%	50-150	B22K062	11/03/22	11/03/22	NWTPH-HCID	
Comp-2: W22K033-02									
Gasoline	ND mg/kg dry	26		1	B22K062	11/03/22	11/03/22	NWTPH-HCID	
Diesel	ND mg/kg dry	65		1	B22K062	11/03/22	11/03/22	NWTPH-HCID	
Lube oil	ND mg/kg dry	131		1	B22K062	11/03/22	11/03/22	NWTPH-HCID	
Surrogate	Result	Expected	%Rec	Limits(%	6)				
o-Terphenyl	13.1 mg/kg dry	13.1	100%	50-150	B22K062	11/03/22	11/03/22	NWTPH-HCID	

Reported: 11/09/22 06:58

Jennifer Shackelford, Laboratory Manager

W22K033

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656 ORELAP Certification ID 4023

Received:

11/02/22 14:42

Project: South Waterfront Greenway Park Client: Coordinated Site Analysis

Analyte	Result Units	MRL	MDL	_ Dil.	Batch	Prepared	Analyzed	Method	Qualifier
Semivolatile Organics - S	IM								
Polynuclear Aromatic Hydrocarb	ons by GCMS-SIM								
Comp-1 : W22K033-01									
Acenaphthene	ND ug/kg dry	25		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Acenaphthylene	ND ug/kg dry	25		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Anthracene	ND ug/kg dry	25		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Benzo(a)anthracene	ND ug/kg dry	12		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Benzo(a)pyrene	ND ug/kg dry	12		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Benzo(b)fluoranthene	ND ug/kg dry	12		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Benzo(g,h,i)perylene	ND ug/kg dry	12		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Benzo(k)fluoranthene	ND ug/kg dry	12		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Chrysene	ND ug/kg dry	12		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Dibenzo(a,h)anthracene	ND ug/kg dry	12		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Fluoranthene	30 ug/kg dry	12		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Fluorene	ND ug/kg dry	25		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Indeno(1,2,3-cd)pyrene	ND ug/kg dry	12		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Naphthalene	ND ug/kg dry	50		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Phenanthrene	ND ug/kg dry	25		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Pyrene	21 ug/kg dry	12		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Surrogate	Result	Expected	d %Rec	Limits(%	6)				
2-Methylnaphthalene-d10	110 ug/kg dry	125	88%	31-129	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Fluoranthene-d10	91 ug/kg dry	125	73%	63-132	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Comp-2: W22K033-02									
Acenaphthene	ND ug/kg dry	25		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Acenaphthylene	ND ug/kg dry	25		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Anthracene	ND ug/kg dry	25		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Benzo(a)anthracene	ND ug/kg dry	13		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Benzo(a)pyrene	ND ug/kg dry	13		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Benzo(b)fluoranthene	ND ug/kg dry	13		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Benzo(g,h,i)perylene	ND ug/kg dry	13		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Benzo(k)fluoranthene	ND ug/kg dry	13		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Chrysene	ND ug/kg dry	13		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Dibenzo(a,h)anthracene	ND ug/kg dry	13		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Fluoranthene	35 ug/kg dry	13		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Fluorene	ND ug/kg dry	25		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Indeno(1,2,3-cd)pyrene	ND ug/kg dry	13		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Naphthalene	ND ug/kg dry	50		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Phenanthrene	ND ug/kg dry	25		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Pyrene	29 ug/kg dry	13		10	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Surrogate	Result	Expected	d %Rec	Limits(%	6)				
2-Methylnaphthalene-d10	110 ug/kg dry	126	87%	31-129	B22K077	11/03/22	11/03/22	EPA 8270-SIM	
Fluoranthene-d10	120 ug/kg dry	126	94%	63-132	B22K077	11/03/22	11/03/22	EPA 8270-SIM	

Reported: 11/09/22 06:58

Jennifer Shackelford

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656 ORELAP Certification ID 4023

Project: South Waterfront Greenway Park Client: Coordinated Site Analysis

Work Order: **W22K033** Received: 11/02/22 14:42

Analyte	Result Units	MRL	MDL	. Dil.	Batch	Prepared	Analyzed	Method	Qualifier
Polychlorinated Biphenyls	s (PCBs)								
PCB Aroclors by GC-ECD									
Comp-1: W22K033-01									
Aroclor 1016/1242	ND ug/kg dry	7.04	3.52	1	B22K063	11/03/22	11/03/22	EPA 8082	
Aroclor 1221	ND ug/kg dry	14.1	7.04	1	B22K063	11/03/22	11/03/22	EPA 8082	
Aroclor 1232	ND ug/kg dry	7.04	3.52	1	B22K063	11/03/22	11/03/22	EPA 8082	
Aroclor 1248	ND ug/kg dry	7.04	3.52	1	B22K063	11/03/22	11/03/22	EPA 8082	
Aroclor 1254	ND ug/kg dry	7.04	3.52	1	B22K063	11/03/22	11/03/22	EPA 8082	
Aroclor 1260	ND ug/kg dry	7.04	3.52	1	B22K063	11/03/22	11/03/22	EPA 8082	
Surrogate	Result	Expected	1 %Rec	Limits(%	5)				
Tetrachloro-m-xylene	5.44 ug/kg dry	7.04	77%	47.8-143	B22K063	11/03/22	11/03/22	EPA 8082	
Decachlorobiphenyl	2.95 ug/kg dry	7.04	42%	32.8-169	B22K063	11/03/22	11/03/22	EPA 8082	
Comp-2: W22K033-02									
Aroclor 1016/1242	ND ug/kg dry	6.95	3.47	1	B22K063	11/03/22	11/03/22	EPA 8082	
Aroclor 1221	ND ug/kg dry	13.9	6.95	1	B22K063	11/03/22	11/03/22	EPA 8082	
Aroclor 1232	ND ug/kg dry	6.95	3.47	1	B22K063	11/03/22	11/03/22	EPA 8082	
Aroclor 1248	ND ug/kg dry	6.95	3.47	1	B22K063	11/03/22	11/03/22	EPA 8082	
Aroclor 1254	ND ug/kg dry	6.95	3.47	1	B22K063	11/03/22	11/03/22	EPA 8082	
Aroclor 1260	ND ug/kg dry	6.95	3.47	1	B22K063	11/03/22	11/03/22	EPA 8082	
Surrogate	Result	Expected	1 %Rec	Limits(%	5)				
Tetrachloro-m-xylene	5.39 ug/kg dry	6.95	78%	47.8-143	B22K063	11/03/22	11/03/22	EPA 8082	
Decachlorobiphenyl	3.08 ug/kg dry	6.95	44%	32.8-169	B22K063	11/03/22	11/03/22	EPA 8082	

Reported: 11/09/22 06:58

Jennifer Shackelford, Laboratory Manager

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656 **ORELAP Certification ID 4023**

Project: **South Waterfront Greenway Park** Work Order:

Client:

Coordinated Site Analysis

11/02/22 14:42

W22K033 Received:

Quality Control Report

General Chemistry - QC

Analyte	Result Units	MRL MDL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
Total Solids - Batch B22K074								
Blank (B22K074-BLK1)								
Total solids	ND % W/W	0.01					11/03/22 :11/04/22	
Duplicate (B22K074-DUP1)		Source: W22K033-0	1					
Total solids	68.6 % W/W	0.01		67.6		2 (5)	11/03/22 :11/04/22	

Total Metals - QC

Analyte	Result Units	MRL	MDL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifie
Гotal Metals by ICPMS - I	Batch B22K068								
Blank (B22K068-BLK1)									
Arsenic	ND mg/kg wet	0.025						11/03/22 :11/03/22	
Barium	ND mg/kg wet	0.500						11/03/22 :11/03/22	
Cadmium	ND mg/kg wet	0.025						11/03/22 :11/03/22	
Chromium	ND mg/kg wet	0.050						11/03/22 :11/03/22	
Lead	ND mg/kg wet	0.100						11/03/22 :11/03/22	B2
Mercury	ND mg/kg wet	0.00375						11/03/22 :11/03/22	
Selenium	ND mg/kg wet	0.500						11/03/22 :11/03/22	
Silver	ND mg/kg wet	0.025						11/03/22 :11/03/22	
Standard Reference Materia	al (B22K068-SRM1)								
Arsenic	90.8 mg/kg wet	1.02		102		89% (75-125)		11/03/22 :11/03/22	
Barium	307 mg/kg wet	20.3		341		90% (75-125)		11/03/22 :11/03/22	
Cadmium	116 mg/kg wet	1.02		112		103% (75-125)		11/03/22 :11/03/22	
Chromium	147 mg/kg wet	2.03		166		88% (75-125)		11/03/22 :11/03/22	
Lead	95.0 mg/kg wet	4.06		114		83% (75-125)		11/03/22 :11/03/22	
Mercury	5.33 mg/kg wet	0.152		6.25		85% (75-125)		11/03/22 :11/03/22	
Selenium	98.4 mg/kg wet	20.3		99.4		99% (75-125)		11/03/22 :11/03/22	
Silver	30.6 mg/kg wet	1.02		34.9		88% (75-125)		11/03/22 :11/03/22	
Ouplicate (B22K068-DUP1)		Source: W22	K033-01						
Arsenic	4.38 mg/kg dry	0.082			4.42		1 (20)	11/03/22 :11/03/22	
Barium	149 mg/kg dry	1.64			154		4 (20)	11/03/22 :11/03/22	
Cadmium	0.260 mg/kg dry	0.082			0.262		0.5 (20)	11/03/22 :11/03/22	
Chromium	23.8 mg/kg dry	0.164			22.1		8 (20)	11/03/22 :11/03/22	
Lead	10.5 mg/kg dry	0.328			11.9		13 (20)	11/03/22 :11/03/22	
Mercury	0.0306 mg/kg dry	0.0123			0.0383		22 (20)	11/03/22 :11/03/22	M8
Selenium	ND mg/kg dry	1.64			ND		(20)	11/03/22 :11/03/22	

Reported: 11/09/22 06:58

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Jennifer Shackelford

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656 ORELAP Certification ID 4023

Project: South Waterfront Greenway Park

W22K033

Client: Co

Coordinated Site Analysis

Received: 11/02/22 14:42

Total Metals - QC

Analyte	Result	Units	MRL	MDL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
Total Metals by ICPMS - Batch B22	2K068									
Duplicate (B22K068-DUP1)			Source: W22l	K033-0 1						
Silver	ND mg/l	kg dry	0.082			ND		(20)	11/03/22 :11/03/22	
Matrix Spike (B22K068-MS1)			Source: W22	< 033-01						
Arsenic	18.8 mg/l	kg dry	0.199		15.9	4.42	90% (75-125)		11/03/22 :11/03/22	
Barium	362 mg/l	kg dry	3.98		239	154	87% (75-125)		11/03/22 :11/03/22	
Cadmium	15.2 mg/l	kg dry	0.199		15.9	0.262	94% (75-125)		11/03/22 :11/03/22	
Chromium	63.9 mg/l	kg dry	0.398		47.7	22.1	88% (75-125)		11/03/22 :11/03/22	
Lead	84.5 mg/l	kg dry	0.795		79.5	11.9	91% <i>(75-125)</i>		11/03/22 :11/03/22	
Mercury	0.781 mg/l	kg dry	0.0298		0.795	0.0383	93% (75-125)		11/03/22 :11/03/22	
Selenium	75.0 mg/l	kg dry	3.98		79.5	ND	94% (75-125)		11/03/22 :11/03/22	
Silver	14.7 mg/l	kg dry	0.199		15.9	ND	92% (75-125)		11/03/22 :11/03/22	

Fuels - QC

Spike

Source

%Rec

RPD

Prepared:

Analyte	Result Units	MRL	MDL Level	Result	(Limits)	(Limit)	Analyzed	Qualifier
Hydrocarbon Scan by GC-F	ID - Batch B22K062							
Blank (B22K062-BLK1)								
Gasoline	ND mg/kg wet	17					11/03/22 :11/03/22	
Diesel	ND mg/kg wet	42					11/03/22 :11/03/22	
Lube oil	ND mg/kg wet	83					11/03/22 :11/03/22	
Surrogate								
o-Terphenyl	7.89 mg/kg wet		8.33		95% (50-150)		11/03/22 :11/03/22	
Duplicate (B22K062-DUP1)		Source: W22	K033-01					
Gasoline	ND mg/kg dry	26		ND			11/03/22 :11/03/22	
Diesel	ND mg/kg dry	66		ND			11/03/22 :11/03/22	
Lube oil	ND mg/kg dry	132		ND			11/03/22 :11/03/22	
Surrogate								
o-Terphenyl	13.3 mg/kg dry		13.2		101% (50-150)		11/03/22 :11/03/22	

Reported: 11/09/22 06:58

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Jennifer Shackelford, Laboratory Manager

Jennifer Shackelford

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656 ORELAP Certification ID 4023

Project: South Waterfront Greenway Park

W22K033

: Greenway Park Client:

Coordinated Site Analysis

Received: 11/02/22 14:42

Semivolatile Organics - SIM - QC

Analyte	Result	Units	MRL	MDL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifie
Polynuclear Aromatic Hydroca	arbons by GCMS	-SIM - E	Batch B22K077							
Blank (B22K077-BLK1)										
Acenaphthene	ND ug/k	g wet	17						11/03/22 :11/03/22	
Acenaphthylene	ND ug/k	g wet	17						11/03/22 :11/03/22	
Anthracene	ND ug/k	g wet	17						11/03/22 :11/03/22	
Benzo(a)anthracene	ND ug/k	g wet	8.3						11/03/22 :11/03/22	
Benzo(a)pyrene	ND ug/k	g wet	8.3						11/03/22 :11/03/22	
Benzo(b)fluoranthene	ND ug/k	g wet	8.3						11/03/22 :11/03/22	
Benzo(g,h,i)perylene	ND ug/k	g wet	8.3						11/03/22 :11/03/22	
Benzo(k)fluoranthene	ND ug/k	g wet	8.3						11/03/22 :11/03/22	
Chrysene	ND ug/k	g wet	8.3						11/03/22 :11/03/22	
Dibenzo(a,h)anthracene	ND ug/k	g wet	8.3						11/03/22 :11/03/22	
Fluoranthene	ND ug/k	g wet	8.3						11/03/22 :11/03/22	
Fluorene	ND ug/k	g wet	17						11/03/22 :11/03/22	
Indeno(1,2,3-cd)pyrene	ND ug/k	g wet	8.3						11/03/22 :11/03/22	
Naphthalene	ND ug/k	g wet	33						11/03/22 :11/03/22	
Phenanthrene	ND ug/k	g wet	17						11/03/22 :11/03/22	
Pyrene	ND ug/k	g wet	8.3						11/03/22 :11/03/22	
Surrogate										
2-Methylnaphthalene-d10	69 ug/k	g wet			83.3		82% (31-129)		11/03/22 :11/03/22	
Fluoranthene-d10	73 ug/k	g wet			83.3		87% (63-132)		11/03/22 :11/03/22	
LCS (B22K077-BS1)										
Acenaphthene	70.4 ug/k	g wet	20		80.0		88% (49-122)		11/03/22 :11/03/22	
Acenaphthylene	76.0 ug/k		20		80.0		95% (51-123)		11/03/22 :11/03/22	
Anthracene	66.0 ug/k		20		80.0		82% (62-115)		11/03/22 :11/03/22	
Benzo(a)anthracene	68.0 ug/k		10		80.0		85% (63-112)		11/03/22 :11/03/22	
Benzo(a)pyrene	76.4 ug/k		10		80.0		96% (62-117)		11/03/22 :11/03/22	
Benzo(b)fluoranthene	80.8 ug/k		10		80.0		101% (53-117)		11/03/22 :11/03/22	V
Benzo(g,h,i)perylene	76.4 ug/k		10		80.0		96% (42-128)		11/03/22 :11/03/22	
Benzo(k)fluoranthene	75.2 ug/k		10		80.0		94% (53-124)		11/03/22 :11/03/22	
Chrysene	70.4 ug/k		10		80.0		88% (63-119)		11/03/22 :11/03/22	
Dibenzo(a,h)anthracene	65.2 ug/k	g wet	10		80.0		82% (44-129)		11/03/22 :11/03/22	
Fluoranthene	77.6 ug/k		10		80.0		97% (63-115)		11/03/22 :11/03/22	
Fluorene	73.2 ug/k		20		80.0		92% (58-113)		11/03/22 :11/03/22	
Indeno(1,2,3-cd)pyrene	70.8 ug/k		10		80.0		88% (46-127)		11/03/22 :11/03/22	
Naphthalene	70.8 ug/k	•	40		80.0		88% (37-118)		11/03/22 :11/03/22	
Phenanthrene	72.4 ug/k		20		80.0		90% (49-119)		11/03/22 :11/03/22	
Pyrene	79.6 ug/k		10		80.0		100% (63-117)		11/03/22 :11/03/22	
Surrogate							. ,			
2-Methylnaphthalene-d10	96 ug/k	g wet			100		96% (31-129)		11/03/22 :11/03/22	
Fluoranthene-d10	100 ug/k	-			100		102% (63-132)		11/03/22 :11/03/22	
Duplicate (B22K077-DUP1)	· ·						. ,			

Reported: 11/09/22 06:58

Jennifer Shackelford

W22K033

City of Portland Water Pollution Control Laboratory

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656 **ORELAP Certification ID 4023**

Received:

Project: **South Waterfront Greenway Park** Coordinated Site Analysis Client: Work Order: 11/02/22 14:42

Semivolatile Organics - SIM - QC

Analyte	Result U	nits MRL	MDL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifie
Polynuclear Aromatic Hydrocart	oons by GCMS-S	IM - Batch B22K077	,						
ouplicate (B22K077-DUP1)		Source: W22	K033-01						
Acenaphthene	ND ug/kg di	ry 28			ND		(30)	11/03/22 :11/03/22	
Acenaphthylene	ND ug/kg di	ry 28			ND		(30)	11/03/22 :11/03/22	
Anthracene	ND ug/kg di	ry 28			ND		(30)	11/03/22 :11/03/22	
Benzo(a)anthracene	ND ug/kg di	ry 14			ND		(30)	11/03/22 :11/03/22	
Benzo(a)pyrene	ND ug/kg di	ry 14			ND		(30)	11/03/22 :11/03/22	
Benzo(b)fluoranthene	ND ug/kg di	ry 14			ND		(30)	11/03/22 :11/03/22	
Benzo(g,h,i)perylene	ND ug/kg di	ry 14			ND		(30)	11/03/22 :11/03/22	
Benzo(k)fluoranthene	ND ug/kg di	ry 14			ND		(30)	11/03/22 :11/03/22	
Chrysene	ND ug/kg di	ry 14			ND		(30)	11/03/22 :11/03/22	
Dibenzo(a,h)anthracene	ND ug/kg di	ry 14			ND		(30)	11/03/22 :11/03/22	
Fluoranthene	30.9 ug/kg di	ry 14			30.5		1 (30)	11/03/22 :11/03/22	
Fluorene	ND ug/kg di	ry 28			ND		(30)	11/03/22 :11/03/22	
Indeno(1,2,3-cd)pyrene	ND ug/kg di	ry 14			ND		(30)	11/03/22 :11/03/22	
Naphthalene	ND ug/kg di	ry 56			ND		(30)	11/03/22 :11/03/22	
Phenanthrene	ND ug/kg di	ry 28			ND		(30)	11/03/22 :11/03/22	
Pyrene	20.8 ug/kg di	ry 14			21.0		1 (30)	11/03/22 :11/03/22	
Surrogate									
2-Methylnaphthalene-d10	110 ug/kg di	ry		140		81% (31-129)		11/03/22 :11/03/22	
Fluoranthene-d10	100 ug/kg di	ry		140		72% (63-132)		11/03/22 :11/03/22	
Matrix Spike (B22K077-MS1)		Source: W22	K033-01						
Acenaphthene	232 ug/kg di	ry 29		291	ND	80% (49-122)		11/03/22 :11/03/22	
Acenaphthylene	256 ug/kg di			291	ND	88% (51-123)		11/03/22 :11/03/22	
Anthracene	210 ug/kg di	ry 29		291	ND	72% (62-115)		11/03/22 :11/03/22	
Benzo(a)anthracene	211 ug/kg di	ry 15		291	ND	73% (63-112)		11/03/22 :11/03/22	
Benzo(a)pyrene	209 ug/kg di	ry 15		291	ND	72% (62-117)		11/03/22 :11/03/22	
Benzo(b)fluoranthene	222 ug/kg di	ry 15		291	ND	76% (53-117)		11/03/22 :11/03/22	V
Benzo(g,h,i)perylene	195 ug/kg di	ry 15		291	ND	67% (42-128)		11/03/22 :11/03/22	
Benzo(k)fluoranthene	212 ug/kg di	ry 15		291	ND	73% (53-124)		11/03/22 :11/03/22	
Chrysene	222 ug/kg di	ry 15		291	ND	76% (63-119)		11/03/22 :11/03/22	
Dibenzo(a,h)anthracene	191 ug/kg di	ry 15		291	ND	66% (44-129)		11/03/22 :11/03/22	
Fluoranthene	282 ug/kg di	ry 15		291	30.5	87% (63-115)		11/03/22 :11/03/22	
Fluorene	235 ug/kg di			291	ND	81% (58-113)		11/03/22 :11/03/22	
Indeno(1,2,3-cd)pyrene	196 ug/kg di			291	ND	67% (46-127)		11/03/22 :11/03/22	
Naphthalene	252 ug/kg di			291	ND	87% (37-118)		11/03/22 :11/03/22	
Phenanthrene	239 ug/kg di			291	ND	82% (49-119)		11/03/22 :11/03/22	
Pyrene	272 ug/kg di	•		291	21.0	86% (63-117)		11/03/22 :11/03/22	
Surrogate	J. 19 -1	· ·				,/			
2-Methylnaphthalene-d10	<i>110</i> ug/kg di	rv		145		77% (31-129)		11/03/22 :11/03/22	
Fluoranthene-d10	100 ug/kg di			145		71% (63-132)		11/03/22 :11/03/22	

Reported: 11/09/22 06:58

Jennifer Shackelford

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656 ORELAP Certification ID 4023

Project: South Waterfront Greenway Park Client: Coordinated Site Analysis

Work Order: **W22K033** Received: 11/02/22 14:42

Polychlorinated Biphenyls (PCBs) - QC

Analyte	Result Units	MRL	MDL	Spike Level	Source Result	%Rec (Limits)	RPD (Limit)	Prepared: Analyzed	Qualifier
PCB Aroclors by GC-ECD - Bat	ch B22K063								
Blank (B22K063-BLK1)									
Aroclor 1016/1242	ND ug/kg wet	4.76	2.38					11/03/22 :11/03/22	
Aroclor 1221	ND ug/kg wet	9.52	4.76					11/03/22 :11/03/22	
Aroclor 1232	ND ug/kg wet	4.76	2.38					11/03/22 :11/03/22	
Aroclor 1248	ND ug/kg wet	4.76	2.38					11/03/22 :11/03/22	
Aroclor 1254	ND ug/kg wet	4.76	2.38					11/03/22 :11/03/22	
Aroclor 1260	ND ug/kg wet	4.76	2.38					11/03/22 :11/03/22	
Surrogate									
Tetrachloro-m-xylene	4.32 ug/kg wet			4.76		91% (47.8-143)		11/03/22 :11/03/22	
Decachlorobiphenyl	4.15 ug/kg wet			4.76		87% (32.8-169)		11/03/22 :11/03/22	
LCS (B22K063-BS1)									
Aroclor 1254	101.1 ug/kg wet	10.0	5.00	100		101% <i>(70-130)</i>		11/03/22 :11/03/22	
Surrogate									
Tetrachloro-m-xylene	8.99 ug/kg wet			10.0		90% (47.8-143)		11/03/22 :11/03/22	
Decachlorobiphenyl	8.20 ug/kg wet			10.0		82% (32.8-169)		11/03/22 :11/03/22	
Duplicate (B22K063-DUP1)		Source: W22	K033-01						
Aroclor 1016/1242	ND ug/kg dry	6.95	3.48		ND		(20)	11/03/22 :11/03/22	
Aroclor 1221	ND ug/kg dry	13.9	6.95		ND		(20)	11/03/22 :11/03/22	
Aroclor 1232	ND ug/kg dry	6.95	3.48		ND		(20)	11/03/22 :11/03/22	
Aroclor 1248	ND ug/kg dry	6.95	3.48		ND		(20)	11/03/22 :11/03/22	
Aroclor 1254	ND ug/kg dry	6.95	3.48		ND		(20)	11/03/22 :11/03/22	
Aroclor 1260	ND ug/kg dry	6.95	3.48		ND		(20)	11/03/22 :11/03/22	
Surrogate									
Tetrachloro-m-xylene	4.61 ug/kg dry			6.95		66% (47.8-143)		11/03/22 :11/03/22	
Decachlorobiphenyl	2.25 ug/kg dry			6.95		32% (32.8-169)		11/03/22 :11/03/22	SU1
Matrix Spike (B22K063-MS1)		Source: W22	K033-01						
Aroclor 1254	48.29 ug/kg dry	7.33	3.67	73.3	ND	66% (55.8-122)		11/03/22 :11/03/22	
Surrogate									
Tetrachloro-m-xylene	4.91 ug/kg dry			7.33		67% (47.8-143)		11/03/22 :11/03/22	
Decachlorobiphenyl	2.47 ug/kg dry			7.33		34% (32.8-169)		11/03/22 :11/03/22	

Reported: 11/09/22 06:58

Jennifer Shackelford

6543 N. Burlington Ave. / Portland OR 97203 (503) 823-5600 fax (503) 823-5656 ORELAP Certification ID 4023

Project: South Waterfront Greenway Park Client: Coordinated Site Analysis

Work Order: **W22K033** Received: 11/02/22 14:42

Qualifiers

B2	Analyte was detected in the Method Blank, but at a concentration less than one tenth the amount in the sample(s).
----	---

M8 The matrix duplicate control limit is not applicable at concentrations less than 5 times the reporting limit.

SU1 Recovery for one or more surrogate compounds was outside the acceptance range (low). Sample results may be low

estimates.

V1 Continuing calibration verification was high; sample results for this analyte may be high estimates.

Definitions

DET	Analyte Detected	ND	Analyte Not Detected at or above the reporting limit
MRL	Method Reporting Limit	MDL	Method Detection Limit
NR	Not Reportable	dry	Sample results reported on a dry weight basis
% Rec.	Percent Recovery	RPD	Relative Percent Difference

* This analyte is not certified under NELAP

Reported: 11/09/22 06:58

Jennifer Shackelfo

The results in this report apply only to the samples analyzed. Qualifiers and case narrative comments are essential to interpretation of the analytical results. Report reproductions and/or data summaries without qualifiers and comments are incomplete.

Jennifer Shackelford, Laboratory Manager

Page 10 of 12

Date: 11-2-2022

Water Pollution Control Laboratory 6543 N. Burlington Ave. Portland, Oregon 97203-4552 Sample Custodian: (503) 823-5696 General Lab: (503) 823-5681

Lab Work Order #: W22K033

Collected By: 8. Maram

Contact Info: 303-823-8672

	Client Name: 0	Coordin	ated Site	e Assess	ment 🥱	11/8/22								Pro	ject	Nur	nbe	r (if a	pplic	able):				
	Project Name:	South	Way.	er front	Gale	and any	Pa	rk								CS	A C	Conta	act N	ame:	В	(io	n Marc	um
					GREEN	WAY						R	equ	ıest	ed	An	aly	/ses	;					
	Follow-up Tests: Run TCLP metals if limit exceeded Run NWTPH-Dx and NWTPH-Gx if detects on NWTPH-HCID Run PAHs if detects on NWTPH-Dx Run VOCs if detects on NWTPH-Gx					+HCID	×Q-+	I-Gx	PCB Aroclors (low-level)		Priority Pollutant 13 Metals	RCRA 8 Metals Total Metals As Cd Cr Cu Ph Ha Zn)	(As, Cd, Cr, Cu, Pb, Hg, Zn)	Total Metals (Cd, Cr, Pb)							Turn-Around-Time Request: Need by Date: Standard (10 business days) Rush (5 business days) Other:			
	Sample Name		Sample Date	Sample Time	Sample Type	Sample Matrix	NWTPH-HCID	NWTPH-Dx	NWTPH-Gx	PCB Ar	PAHS	Priority	RCRA 8	Total Metals	(As, Cd	Total M	VOCs	100				HOLD	# of Containers	Remarks
	Comp-1		11-2-22	13:30	C	SL	χ			X	X		X										4	
レ	Comp-1		11-2-22	13:35	С	54	X			X	X		X										4	
					-// •					-							1000							
,																								
,																								
e	Type - G=Grab, C=Comp Matrix - DI = DI Water, G	osite, FD=F = Gas, GW	Field Duplicat = Groundwa	e, FDB=Field iter, IWW = Ind	Decon Blank dustrial Wast	, EQB=Equip ewater, MWW	ment E	Blank, nicipa	TB=T I Was	np Blatewate	ink er, PC	= Pai	nt Chi	ps, SE	D = \$	Sedim	ent, S	SL = Sc	oil, STV	V = Storm	nwater, Sf	-W = :	Surface water	
	Relinquished By: Signature:	,	Detail	11-2-22	Received By	_				D-4-			Relino Signatu	quishe	d By	<u>-</u>				rte:		Rec	eived By:	Date:

Printed Name:

1442

Eleni Alexandron

Time:

Printed Name:

Printed Name

Time:

WPCL Cooler Receipt Form

Work (Order Number	r: <u>WZZ</u> K	5 Ny/22 (cle one) [If direct	ooler Receipt ⊷	Form Fil	led Out By:	EA							
Projec	: Sorth	Water fre	out Gater	ay Park										
Receiv	ed on ice: /Y	ES NO (cir	יים אין 5 אין 5 rcle one) [If dired	ctly from field, i	indicate h	ere:]								
Sample	e(s) Received	HFrom: CBW	/TP fridge	Client	Courier_	SR	fridge							
Tempe	rature (°C): _	13												
•	· / <u>-</u>													
						Yes	No	N/A						
Is the C	OC present a	ind signed?				· /								
	nple bottles in	,				✓								
		ple labels ma			·	V								
		ontainers use				7								
		iately preserve						<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>						
			o Headspace)? ed (zero Headspac	a)2 Note if filler	d in lab			V						
	<u> </u>		g times (except for			e)? 🗸								
AIC Sai	ilpies received	a within Holding	g times (except ioi	pri and residu	al Cilionile	e)! \	<u></u>							
Pres. #	Preservative		LIMS ID	Standard Pres	servation A	Amounts								
1	HNO₃ (1:1) to	pH <2		0.5mL/250mL;	1.0mL/500	0mL; 4-5 drop	s/50mL cen	trifuge tube						
2	H₂SO₄ (18N) t	·		0mL; 1.6mL/1000mL										
3	HCI (1:1) to p	H <2		2.0mL/500mL;										
4	HCI (1:1) to p	H 2-3		For TOC: 2-5 d	lrops/250n	nL								
5	NaOH to pH >	>12		4-10 pellets/500mL; 4 mL 10N/1000mL										
			-											
Date	Time	Analyst	Sample LIMS ID	Bottle ID	Comments	,								
	ļ													
							r <u></u>							
					•									
Comm	ents:					···								
								· - · · · · · · · · · · · · · · · · · ·						
								· · · · · · · · · · · · · · · · · · ·						