February 28, 2018 Project No. 6-61M-13317-0

Oregon Department of Environmental Quality 700 NE Multnomah Street, Suite 600 Portland, OR 97232

Attention: Ken Thiessen

Subject: Closure Report Addendum

American Industries

4000 NW St Helens Road, Portland, Oregon

ECSI File #6148

Dear Mr. Thiessen:

On behalf of American Industries, Inc. (American Industries), Amec Foster Wheeler is submitting this report summarizing limited subsurface investigation activities completed at the American Industries property (DEQ ECSI #6148) located at 4000 NW St Helens Road, Portland, Oregon (herein after referred to as the "subject site", Figure 1). The investigation activities summarized in this report were completed in accordance with the December 4, 2017 Limited Subsurface Investigation Work Plan (Amec Foster Wheeler, 2017b), approved by Ken Thiessen of Oregon Department of Environmental Quality (DEQ) on December 11, 2017. This report is an addendum to Amec Foster Wheeler's March 22, 2017 Closure Report for the subject site (Amec Foster Wheeler, 2017a).

INVESTIGATION PURPOSE AND OBJECTIVES

The purpose of the investigation activities summarized in this addendum was to address concerns and data gaps identified in DEQ's May 31, 2017 letter regarding the Closure Report (DEQ, 2017: Comments 1 to 3). The specific objectives of the investigation activities were to complete the characterization of the nature and extent of soil and groundwater contaminants of interest (COIs) related to: (a) the former on-site diesel underground storage tank (UST) release and (b) historical operations on the subject site, including the former foundry and plating shop operations.

PRE-INVESTIGATION ACTIVITIES

As required by the Occupational Safety and Health Administration (OSHA), a site-specific Health and Safety Plan was prepared to cover field safety protocol for Amec Foster Wheeler employees and subcontractors conducting the investigation.

Amec Foster Wheeler Environment & Infrastructure, Inc. 7376 SW Durham Road
Portland, Oregon
USA 97224
Tel+1 (503) 639-3400
Fax+1 (503) 620-7892
www.amecfw.com

Prior to conducting the subsurface exploration, Amec Foster Wheeler personnel contacted local public utilities using the Oregon Utility Notification Service to field-mark any underground utility lines in the vicinity of the proposed sampling locations. In addition, Amec Foster Wheeler subcontracted a private utility locating service to locate utilities in the vicinity of sampling locations (Applied Professional Services – North Bend, Washington).

Amec Foster Wheeler obtained the following permits required by the City of Portland Bureau of Transportation to complete investigation work within the City of Portland right-of-way in the road shoulder and parking spaces adjacent to NW Express Avenue:

- Temporary Street Use Permit #10628900000 SS
- Test Bore Permit #TR 18 006.

INVESTIGATION FIELD WORK

Amec Foster Wheeler field personnel conducted field work on the subject site on January 29, 2018, in accordance with the Limited Subsurface Investigation Work Plan (Investigation Work Plan), as described in the following sections.

Six temporary borings were installed using a direct-push drilling method for soil and shallow groundwater sample collection (locations AB-01 to AB-06, Figure 2). Due to drill rig access limitations in the subject site warehouse building, boring AB-06 had to be installed approximately 100 feet to the southeast of the location initially proposed in the Investigation Work Plan. It is Amec Foster Wheeler's opinion that the final AB-06 location is suitable to evaluate potential subsurface soil and groundwater contamination related to the historical site foundry and plating activities.

Drilling was performed by Stratus Corporation (Stratus) of Gaston, Oregon, an Oregon-licensed well driller. An Amec Foster Wheeler scientist classified the soils encountered according to the Unified Soil Classification System, field screened soils for the presence of volatile organic compounds (VOCs) using a photoionization detector (PID), and recorded observations (i.e., staining, odors, or elevated field screening readings) in soil boring logs (Attachment A). Photographs of the boring locations are included in Attachment B.

Each of the soil borings was completed to a depth of 15 feet below ground surface (bgs). Subsurface conditions encountered in the borings beneath ground surface pavement generally consisted of 2 to 6 feet of silty, sandy, fine to coarse gravel fill material, underlain by up to 10 feet of fine to medium sand. Underlying the gravel and sand, silt was encountered in the borings beginning at depths ranging from 5.5 to 13 feet bgs to the end of the borings at 15 feet bgs. No evidence of contamination (odor, sheen, or elevated PID headspace readings) was observed in the borings. One soil sample was collected

Amec Foster Wheeler Environment & Infrastructure, Inc.

February 28, 2018

from each boring for laboratory analysis. Due to the absence of field evidence of impact, soil samples were collected from the depth interval just below first encountered groundwater.

Groundwater samples were collected from each boring using a dedicated temporary well point installed by Stratus consisting of ¾ -inch inside diameter (ID) Schedule 40 polyvinyl chloride (PVC) temporary casing with 5 feet of 0.01-inch slot size PVC screen. Temporary wells were screened from 10 to 15 feet bgs in borings AB-01 to AB-05 and from 5 to 10 feet bgs in boring AB-06. Shallow groundwater was measured in the temporary wells as depths ranging from 5 to 6.5 approximate feet bgs. Groundwater samples were collected with a peristaltic pump using dedicated disposable sample tubing into new, laboratory-supplied sample containers. Samples collected for dissolved metals analyses were field filtered with dedicated, disposable 0.45 micron filters.

After completion of sampling activities, all the borings were abandoned in accordance with applicable Oregon Water Resources Department (OWRD) regulations. An asphalt or concrete patch was applied to restore surface pavement, if present, to the match original grade.

INVESTIGATION-DERIVED WASTE

Investigation derived waste (IDW) consisting of soil, decontamination wash water, and purged groundwater generated during sampling activities was containerized in 55-gallon drums, labeled, and staged on-site pending laboratory results. Based on laboratory results, American Industries will dispose of the IDW in accordance with applicable regulatory standards.

ANALYTICAL RESULTS

Each of the six subsurface soil samples were submitted to Apex Laboratories (Tigard, Oregon) for one or more the following analyses:

- Diesel and Oil-range petroleum hydrocarbons by method NWTPH-Dx;
- Polycyclic aromatic hydrocarbons (PAHs) by United States Environmental Protection Agency (EPA) Method 8270 (samples with diesel detections, only); and
- Resource Conservation and Recovery Act (RCRA 8) metals by EPA Method 6000.

Each of the six groundwater samples were analyzed by Apex Laboratories for one or more the following analyses:

- Diesel and Oil-range petroleum hydrocarbons by Method NWTPH-Dx;
- Dissolved RCRA 8 metals by EPA Method 6000; and
- Dissolved Hexavalent Chromium by Method SM3500-Cr B.

Amec Foster Wheeler Environment & Infrastructure, Inc.

Copies of analytical laboratory report and chain-of-custody documentation are included in Attachment C. A summary of sample results from the 2018 and previous investigation activities is provided in Tables 1 to 4, along with applicable DEQ risk-based concentrations (RBCs) for occupational, construction worker, and excavation worker receptors (DEQ, 2015) and DEQ soil metals background concentrations (DEQ, 2013).

SOIL RESULTS

Diesel-range hydrocarbons were not detected in any of the soil samples. Oil-range petroleum hydrocarbons were detected in the 5.5 to 6.5 feet bgs soil samples collected from borings AB-01, AB-02, and AB-05 at 314, 107, and 488 milligrams per kilogram (mg/kg), respectively (Table 1). These soil samples with oil detections were also analyzed for PAHs (Table 2). Various PAHs were detected in the soil sample from on-site boring AB-05. Benzo(g.h.i)perylene was the only PAH detected in the AB-01 sample. Fluoranthene and pyrene were the only PAHs detected in the AB-02 soil sample. All concentrations of oil-range petroleum hydrocarbons and PAHs detected in soil were substantially lower than DEQ direct soil contact RBCs for occupational, construction, and excavation workers (Tables 1 and 2).

Total metals concentrations detected in soil samples collected from on-site borings AB-05 and AB-06 were less than their respective DEQ background concentrations (Table 3).

GROUNDWATER RESULTS

No diesel-range or oil-range petroleum hydrocarbons were detected in the shallow groundwater samples. All concentrations of dissolved metals detected in shallow groundwater were substantially lower than DEQ RBCs for the groundwater in excavation exposure scenario for construction and excavation workers (Table 4). Hexavalent chromium was not detected in shallow groundwater samples.

CONCLUSIONS

Based on the results of the limited subsurface investigation, Amec Foster Wheeler offers the following updates to the previous findings of the Closure Report.

NATURE AND EXTENT OF CONTAMINATION UPDATE

Diesel UST Release

Soil and groundwater samples were collected from temporary borings AB-01 to AB-05 in presumed down-to cross gradient locations to the north and east of the former diesel UST. Sample results indicate the following regarding the extent of subsurface soil and groundwater contamination related to the former diesel UST release:

Amec Foster Wheeler Environment & Infrastructure, Inc.

- Diesel-range petroleum hydrocarbons decrease to below detection limits in subsurface soil and shallow groundwater within approximately 75 feet, or less, down-gradient from the former UST location (boring locations AB-01, AB-02, and AB-05, Figures 2 and 3).
- Oil-range petroleum hydrocarbon concentrations in subsurface soil samples collected in the vicinity of the former diesel UST location ranged from non-detect to 488 mg/kg. Oil-range petroleum hydrocarbons were detected in subsurface soil samples in presumed down-gradient locations AB-01 and AB-02 in the City of Portland right-of-way, and at down- to cross-gradient on-site location AB-05. All detected soil oil-range petroleum hydrocarbon concentrations were lower than direct soil contact RBCs (Table 1).
 - The absence of oil-range hydrocarbon detections in soil samples with the highest concentrations of diesel-range petroleum hydrocarbons from previous borings located nearest to the former diesel UST location (GP-1, GP-12, and GP-13, Figures 2 and 3) indicates that oil-range hydrocarbons detected in soil are not related to the former diesel UST release. In addition, oil-range petroleum hydrocarbons have not been detected in any shallow groundwater samples on or adjacent to the subject site, indicating that the low concentrations of oil-range hydrocarbons detected in subsurface soil do not appear to be associated with a groundwater contaminant plume. For these reasons, no future evaluation or investigation of oil-range hydrocarbons in subsurface soil appears warranted.
- Low concentrations of three PAH compounds were detected in subsurface soil samples in presumed down-gradient locations AB-01 and AB-02. The lower magnitude of the off-site PAH soil detections, relative to the PAHs detections at on-site locations GP-1, GP-12, and GP-18, indicates that PAH concentrations in soil decrease significantly with distance from the former UST location. All detected soil PAH concentrations on the subject site and adjacent City of Portland right-of-way were lower than their respective direct soil contact RBCs (Table 2).

Potential Historical Foundry and Plating Contaminants

Soil and groundwater samples were collected from temporary borings AB-05 and AB-06 in downgradient locations relative to the former foundry and plating shop locations on the subject site, to further evaluate the potential for metals impact related to these historical activities. The absence of elevated metals concentrations or hexavalent chromium detections in soil and groundwater samples at these locations indicates that historical site foundry and plating operations do not appear to have resulted in significant or widespread impact to soil and groundwater beneath the subject site. Thus, no additional investigation of subsurface contamination related to historical foundry and plating activities appears warranted.

LOCALITY OF FACILITY (LOF) UPDATE

Subsurface investigation activities completed by Amec Foster Wheeler in 2018 indicate that the lateral extent of residual diesel-range petroleum hydrocarbons in shallow groundwater related to the former

Amec Foster Wheeler Environment & Infrastructure, Inc.

Page 5

leaking UST decrease to below detection limits within approximately 75 feet, or less, in presumed down-gradient locations in the City of Portland right-of-way. These data indicate that the LOF does not appear to extend beyond the City of Portland right-of-way and does not appear to extend as far down-gradient as was previously estimated. The updated lateral extent of the LOF in shallow groundwater is provided in Figures 2 and 3. Vertically, the LOF is limited to the shallow water-bearing zone (less than 20 feet bgs).

Due to the age of the release, the relatively low concentrations of COIs detected in groundwater on the subject site, and the absence of detections in downgradient sampling locations, it is expected that the groundwater contaminant plume would remain stable or decline over time and that expansion of the plume beyond the NW Express Avenue right-of-way is unlikely.

HUMAN HEALTH RISK EVALUATION UPDATE

In the Closure Report (Amec Foster Wheeler, 2017a), Amec Foster Wheeler completed a screening-level human health risk assessment (HHRA) with available data to evaluate if site COIs posed potential risk to current and future receptors. The Closure Report's human health risk screening tables have been updated to include soil and groundwater collected in the January 2018 subsurface investigation (Tables 1 to 4, attached). The updated Tables 1 to 4 include a summary of compounds detected during all environmental investigation activities completed to date, along with DEQ RBCs for potentially complete exposure pathways previously identified in the Conceptual Site Model for occupational, construction worker, and excavation worker receptors.

Table 2 also includes updated soil RBCs for benzo(a)pyrene. DEQ is currently in the process of revising RBCs for benzo(a)pyrene to be consistent with current EPA Regional Screening Levels (RSLs) published in November 2017 (EPA, 2017). The updated RBCs for benzo(a)pyrene listed in Table 2 were obtained from Amec Foster Wheeler's recent correspondence with DEQ (Amec Foster Wheeler email correspondence, December 14, 2017 and February 23, 2018).

None of the COIs detected in the January 2018 samples exceeded RBCs for applicable and complete exposure pathways. Thus, Amec Foster Wheeler's original human health risk assessment findings remain unchanged: COIs in soil and groundwater do not pose unacceptable risk to current and future human receptors.

RECOMMENDATIONS

Based on the investigation findings and lines of evidence discussed above, Amec Foster Wheeler believes that a "no further action" determination is appropriate for the subsurface contamination concerns identified by DEQ in the May 31, 2017 comment letter (DEQ, 2017: Comments 1 to 3).

Amec Foster Wheeler Environment & Infrastructure, Inc.

CLOSING

If you have any questions or require additional information, please feel free to contact the undersigned at (503) 639-3400.

Sincerely,

Amec Foster Wheeler

Environment & Infrastructure, Inc.

Reviewed by:

Joel L. Eledge, CHMM

Senior Environmental Scientist

Dan Schall, PE

Senior Engineer

Attachments:

Figure 1 - Site Location Map

Figure 2 – Site Plan and Sample Locations

Figure 3 – Petroleum Hydrocarbons in Soil and Groundwater

Table 1 - Petroleum Hydrocarbons and Volatile Organic Compounds Detected In Soil

Table 2 – Polynuclear Aromatic Hydrocarbons Detected In Soil

Table 3 - Metals Analytical Results in Soil

Table 4 – Groundwater Analytical Summary

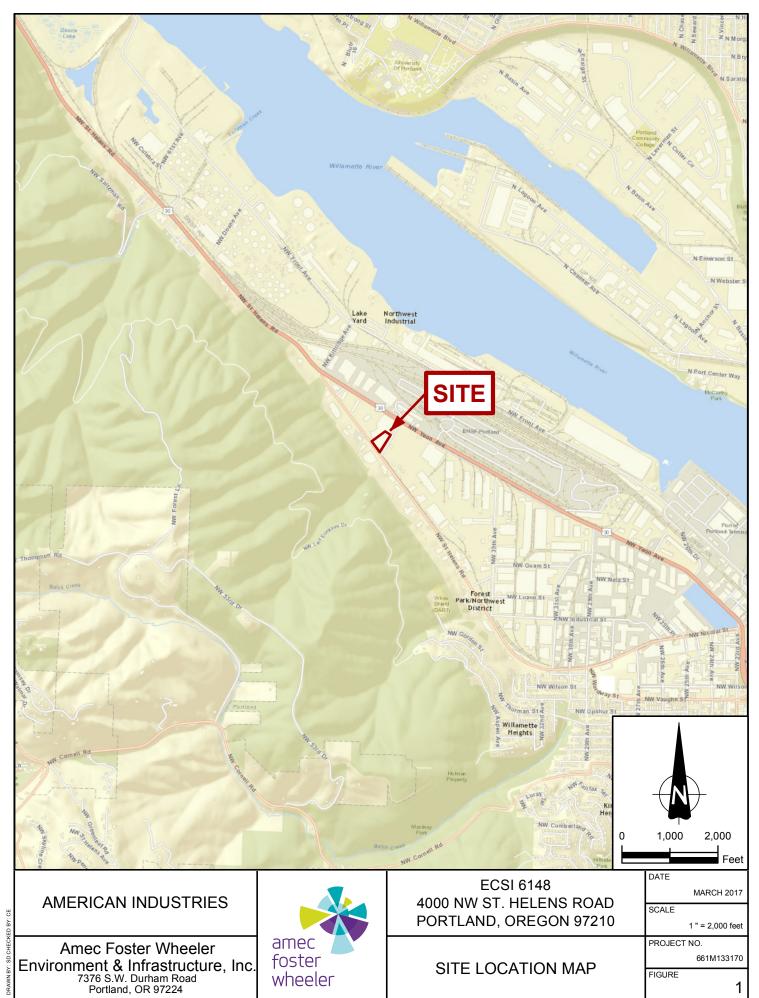
Attachment A – Soil Boring Logs

Attachment B - Photographs

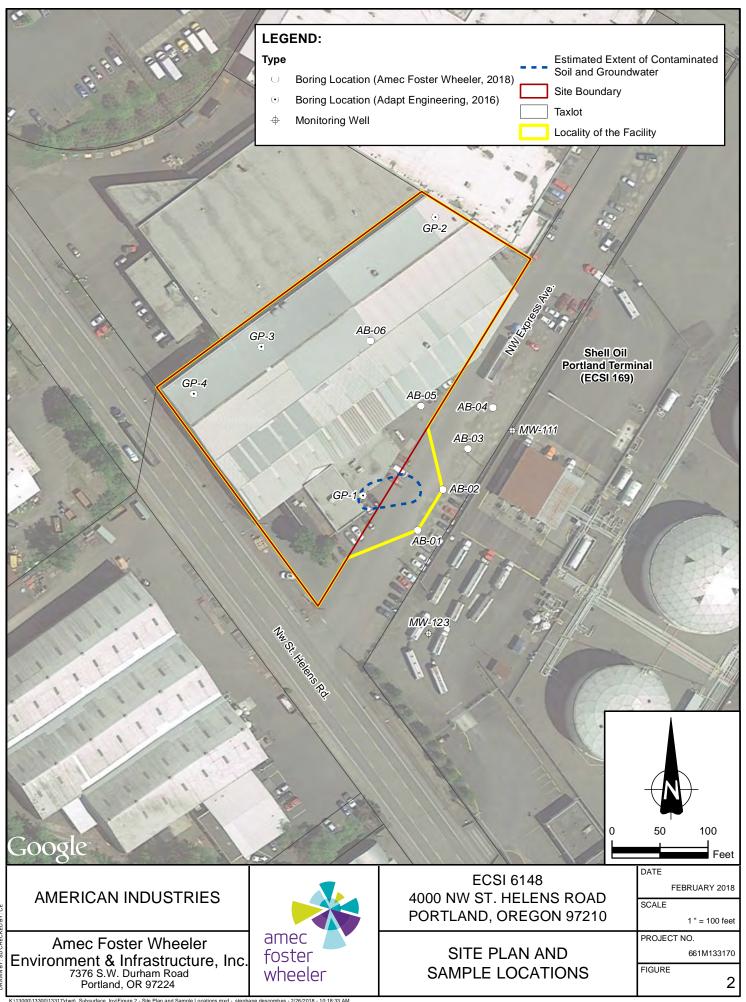
Attachment C – Laboratory Report

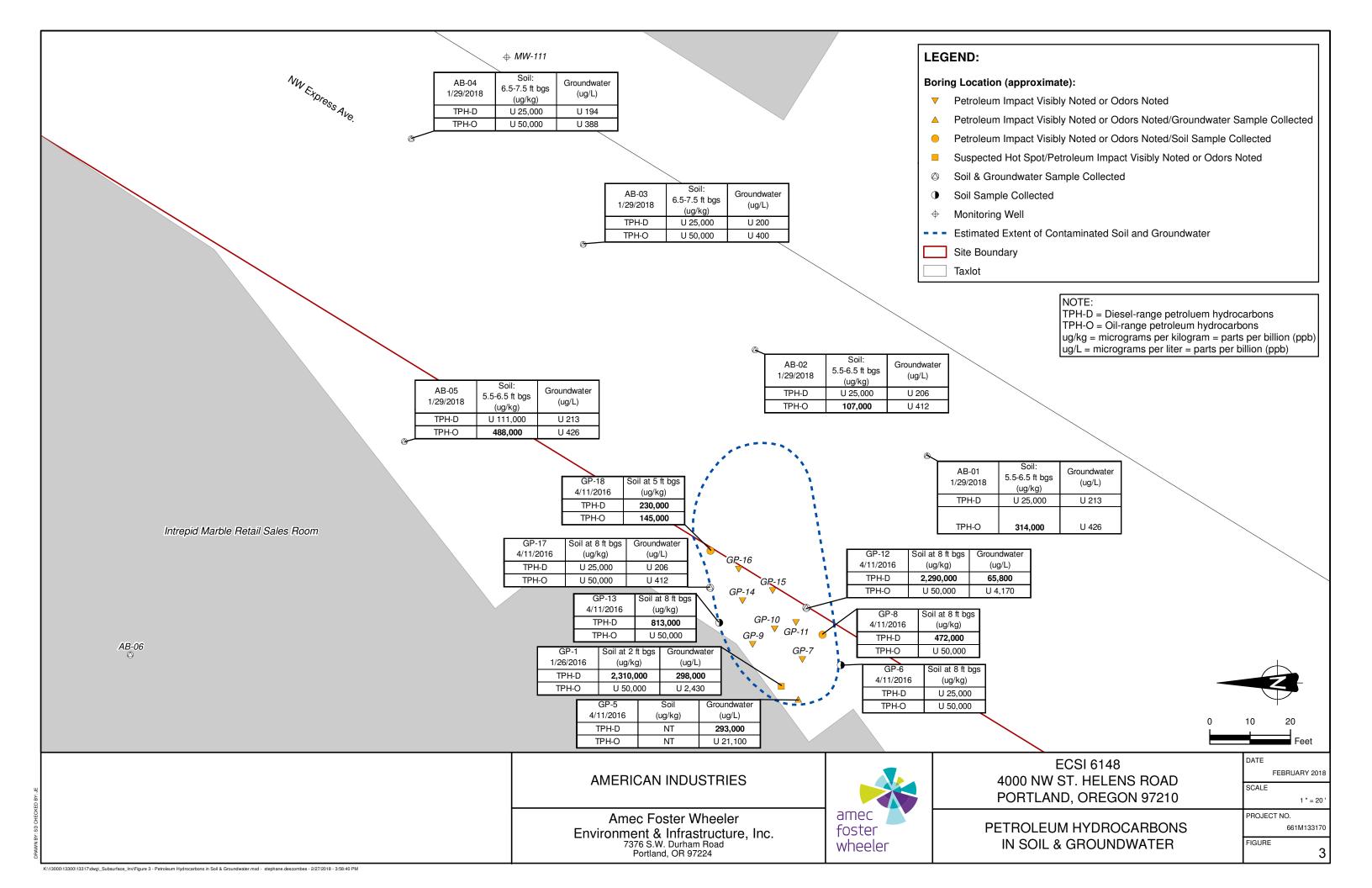
JE/JK/DS/lp

c: John Dempsey, American Industries


REFERENCES

- Adapt Engineering (Adapt), 2015. Phase I Environmental Site Assessment, American Industries, 4000 NW St Helens Road, Portland, Oregon, prepared for U.S. Bank Real Estate Technical Services. December 16, 2015.
- Adapt, 2016a. Limited Phase II Environmental Site Assessment, Intrepid Marble and Granite, 4000 NW St Helens Road, Portland, Oregon 97216. Prepared for American Industries, Inc. February 17, 2016.
- Adapt, 2016b. Extended Phase II Environmental Site Assessment, Intrepid Marble and Granite, 4000 NW St Helens Road, Portland, Oregon 97216. Prepared for American Industries, Inc. June 13, 2016.
- Amec Foster Wheeler, 2017a. Closure Report, 1.77-acre Commercial/Industrial Property, 4000 NW St Helens Road, Portland, Oregon, DEQ ECSI File # 6148. March 27, 2017.
- Amec Foster Wheeler, 2017b. Limited Subsurface Investigation Work Plan, American Industries, Inc., 4000 NW St Helens Road, Portland, Oregon, ECSI File # 6148. December 4, 2017.
- Amec Foster Wheeler, 2017c. Email Correspondence: John Kuiper (Amec Foster Wheeler) and Mark Pugh (Oregon DEQ), December 14, 2017.
- Amec Foster Wheeler, 2017d. Email Correspondence: Joel Eledge (Amec Foster Wheeler) and Ken Thiessen (Oregon DEQ), February 23, 2018.
- Oregon Department of Environmental Quality (DEQ), 2013. Technical Report: Development of Oregon Background Metals Concentrations in Soil. March 2013.
- DEQ, 2015. Risk-Based Concentrations for Individual Chemicals, Environmental Cleanup and Tanks Program. Revised November 1, 2015.
- DEQ, 2017. Letter from Matt McClincy to John Dempsey Re: American Industries Site, DEQ Cleanup Program Status, ECSI# 6148. May 31, 2017.
- United States Environmental Protection Agency (EPA), 2017. Regional Screening Levels for Chemical Contaminants at Superfund Sites. November 30, 2017.


Amec Foster Wheeler Environment & Infrastructure, Inc.



FIGURES

K*13000\13300\13317\dwg\Figure 1 - Site Location Man myd - stenhane descembes - 3/2/2017 - 11/39/47 A

TABLES

TABLE 1 Petroleum Hydrocarbons and Volatile Organic Compounds Detected In Soil 4000 NW St Helens Road, Portland, Oregon ECSI 6148

					NWTP	H-Dx		Vo	latile Organic (Compounds by E	PA Method 826	0B	
Location	Sample ID	Consultant	Date	Depth (ft. bgs)	Diesel-Range Organics	Oil-Range Organics	Benzene	Ethylbenzene	Toluene	Total Xylenes	n-Butyl- benzene	sec-Butyl- benzene	Naphthalene
								Anal	ytical Results (į	μg/kg)			
GP-1	GP1-1216,2'	Adapt Engineering	1/26/2016	2	2,310,000	U 50,000	U 14.5	U 36.3	U 72.6	U 36.3	U 72.6	U 72.6	U 145
GP-1	GP1-1216,20'	Adapt Engineering	1/26/196	20	U 26,400	U 52,800	NA	NA	NA	NA	NA	NA	NA
GP-4	GP4-12616, 2'	Adapt Engineering	1/26/2016	2	U 25,000	205,000	U 10.9	U 27.3	U 54.5	U 54.5	U 54.5	U 54.5	U 109
GP-4	GP4-12616, 11'	Adapt Engineering	1/26/2016	11	U 25,800	U 51,500	NA	NA	NA	NA	NA	NA	NA
GP-6	GP6-41116,8'	Adapt Engineering	4/11/2016	8	U 25,000	U 50,000	U 14.3	U 35.6	U 71.3	U 35.6	U 71.3	U 71.3	U 143
GP-8	GP8-41116,8'	Adapt Engineering	4/11/2016	8	472,000	U 50,000	U 13.9	U 34.9	U 69.7	U 34.9	U 69.7	U 69.7	U 139
GP-12	GP12-41116,8'	Adapt Engineering	4/11/2016	8	2,290,000	U 50,000	U 21.1	U 52.8	U 106	U 52.8	379	310	U 211
GP-12	GP12-41116,15'	Adapt Engineering	4/11/2016	15	U 25,000	U 50,000	NA	NA	NA	NA	NA	NA	NA
GP-13	GP13-41116,8'	Adapt Engineering	4/11/2016	8	813,000	U 50,000	U 11.7	U 29.4	U 58.7	U 29.4	U 58.7	U 58.7	U 117
GP-13	GP13-41116,15'	Adapt Engineering	4/11/2016	15	U 25,000	U 50,000	NA	NA	NA	NA	NA	NA	NA
GP-17	GP17-41116,8'	Adapt Engineering	4/11/2016	8	U 25,000	U 50,000	U 13.0	U 32.5	U 65.0	U 32.5	U 65.0	U 65.0	U 130
GP-18	GP18-41116,5'	Adapt Engineering	4/11/2016	5	230,000	145,000	U 15.1	U 37.8	U 57.7	U 37.8	U 75.7	U 75.7	U 151
AB-01	AB-01 5.5-6.5 ft	Amec Foster Wheeler	1/29/2018	5.5 - 6.5	U 25,000	314,000	NA	NA	NA	NA	NA	NA	NA
AB-02	AB-02-5.5-6.5 ft	Amec Foster Wheeler	1/29/2018	5.5 - 6.5	U 25,000	107,000	NA	NA	NA	NA	NA	NA	NA
AB-03	AB-03-6.5-7.5 ft	Amec Foster Wheeler	1/29/2018	6.5 - 7.5	U 25,000	U 50,000	NA	NA	NA	NA	NA	NA	NA
AB-04	AB-04-6.5-7.5 ft	Amec Foster Wheeler	1/29/2018	6.5 - 7.5	U 25,000	U 50,000	NA	NA	NA	NA	NA	NA	NA
AB-05	AB-05-5.5-6.5 ft	Amec Foster Wheeler	1/29/2018	5.5 - 6.5	U 111,000	488,000	NA	NA	NA	NA	NA	NA	NA
AB-06	AB-06-6.5-7.5 ft	Amec Foster Wheeler	1/29/2018	6.5 - 7.5	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oregon Depart	ment of Environmental Qua	lity Risk-Based Concentratio	ns ₁										
Ingestion, Derm	nal Contact, and Inhalation - Occu	pational			14,000,000	36,000,000	37,000	150,000	88,000,000	25,000,000	NL	NL	23,000
Ingestion, Derm	nal Contact, and Inhalation - Cons	truction Worker			4,600,000	11,000,000	380,000	17,000,000	28,000,000	20,000,000	NL	NL	580,000
Ingestion, Derm	nal Contact, and Inhalation - Exca	vation Worker		>Max	> Max	11,000,000	49,000,000	770,000,000	560,000,000	NL	NL	16,000,000	
Vapor Intrusion	into Buildings - Occupational				>Max	> Max	2,100	17,000	> Csat	> Csat	NL	NL	83,000
Volatilization to	Outdoor Air - Occupational				>Max	> Max	50,000	160,000	> Csat	> Csat	NL	NL	83,000

Notes:

μg/L = micrograms per liter

Bold = Indicates analyte was detected above method detection limit.

U = Indicates analyte was not detected at or above method reporting limit shown.

NA = Parameter was not analyzed in the sample.

- 1 = Oregon Department of Environmental Quality Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites, September 22, 2003. Revision: November 1, 2015.
- >Max = The constituent RBC for this pathway is calculated as greater than 1,000,000 mg/kg. Sustance is deemed not to pose risks in this scenario.

>Csat = The soil RBC exceeds the limit of three-phase equilbrium partitioning. Free Product may be present.

NL = No Risk-Based Concentration (RBC) listed by DEQ.

Shaded indicates RBC(s) exceeded in sample.

TABLE 2 Polynuclear Aromatic Hydrocarbons Detected In Soil 4000 NW St Helens Road, Portland, Oregon ECSI 6148

									Polynucle	ar Aromatic H	ydrocarbons	by Method El	PA 8270SIN						
Location	Sample ID	Depth (ft. bgs)	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenanthrene	Pyrene
										Analy	tical Result ((µg/kg)							
GP-1	GP1-1216,2'	2	U 88.5	U 42.3	U 12.8	U 12.8	U 12.8	U 12.8	U 12.8	U 12.8	U 12.8	U 19.2	593	U 12.8	U 41.0	U 26.9	U 29.5	351	23.6
GP-1	GP1-1216,20'	20	U 12.7	U 12.7	U 12.7	U 12.7	U 12.7	U 12.7	U 12.7	U 12.7	U 12.7	U 12.7	U 12.7	U 12.7	U 12.7	U 12.7	U 12.7	U 12.7	U 12.7
GP-6	GP6-41116,8'	8	U 10.8	U 10.8	U 10.8	U 10.8	U 10.8	U 10.8	U 10.8	U 10.8	U 10.8	U 10.8	U 10.8	U 10.8	U 10.8	U 10.8	U 10.8	U 10.8	U 10.8
GP-8	GP8-41116,8'	8	U 11.9	U 15.5	U 11.9	U 11.9	U 11.9	U 11.9	U 11.9	U 11.9	U 11.9	U 11.9	U 11.9	U 11.9	U 11.9	U 11.9	U 11.9	U 11.9	U 11.9
GP-12	GP12-41116,8'	8	U 122	U 101	U 11.1	U 11.1	U 11.1	U 11.1	U 11.1	U 41.0	U 11.1	48.5	604	U 11.1	U 57.6	U 23.2	U 44.3	984	65.8
GP-13	GP13-41116,8'	8	U 10.6	U 17.9	U 12.7	U 10.6	U 10.6	U 10.6	U 10.6	U 12.7	U 10.6	U 10.6	U 10.6	U 10.6	U 10.6	U 10.6	U 10.6	U 10.6	14.3
GP-17	GP17-41116,8'	8	U 12.2	U 12.2	U 12.2	U 12.2	U 12.2	U 12.2	U 12.2	U 12.2	U 12.2	U 12.2	U 12.2	U 12.2	U 12.2	U 12.2	U 12.2	U 12.2	U 12.2
GP-18	GP18-41116,5'	5	57.5	U 50.1	222	500	471	149	627	349	54.7	467	76.3	494	92.5	146	147	194	702
AB-01	AB-01 5.5-6.5 ft	5.5 - 6.5	U 11.8	U 11.8	U 11.8	U 11.8	U 11.8	U 11.8	16.3	U 18.9	U 11.8	U 11.8	U 11.8	U 11.8	U 11.8	U 11.8	U 11.8	U 11.8	U 11.8
AB-02	AB-02-5.5-6.5 ft	5.5 - 6.5	U 12.1	U 12.1	U 12.1	U 12.1	U 12.1	U 12.1	U 12.1	U 12.1	U 12.1	14.9	U 12.1	U 12.1	U 12.1	U 12.1	U 12.1	U 12.1	19.5
AB-05	AB-05-6.5-7.5 ft	6.5 - 7.5	U 10.8	22.2	117	94.0	133	56.3	63.7	127	14.6	244	U 10.8	69.0	U 10.8	U 10.8	U 10.8	112	205
Oregon Departmen	nt of Environmental Qu	ality Risk-Base	d Concentrat	tions ₁															
Ingestion, Dermal Co	contact, and Inhalation - Occ	cupational	NL	350,000,000	2,900 _B	2,100	2,900	29,000	NL	290,000	290	30,000,000	47,000,000	2,900	NL	NL	23,000	NL	23,000,000
Ingestion, Dermal Co	contact, and Inhalation - Col	nstruction Worker	NL	110,000,000	24,000 _B	17,000	24,000	240,000	NL	2,400,000	2,400	10,000,000	14,000,000	24,000	NL	NL	580,000	NL	7,500,000
Ingestion, Dermal Co	contact, and Inhalation - Exc	cavation Worker	NL	> Max	660,000 _B	490,000	670,000	6,700,000	NL	67,000,000	67,000	280,000,000	390,000,000	670,000	NL	NL	16,000,000	NL	210,000,000
Vapor Intrusion into	Buildings - Occupational		NL	> Max	NV	NV	NV	NV	NL	NV	NV	NV	>Max	NV	NL	NL	83,000	NL	>Csat
Volatilization to Outo	door Air - Occupational		NL	> Max	NV	NV	NV	NV	NL	NV	NV	NV	>Max	NV	NL	NL	83,000	NL	>Csat

Notes:

μg/L = micrograms per liter

Bold = Indicates analyte was detected above method detection limit.

U = Indicates analyte was not detected at or above method reporting limit shown.

1 = Oregon Department of Environmental Quality Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites, September 22, 2003. Revision: November 1, 2015.

B Oregon Department of Environmental Quality updated Risk-Based Concentrations for benzo(a)pyrene (revision based on November 2017 US EPA Regional Screening Levels, to be published in 2018).

>Max = The constituent RBC for this pathway is calculated as greater than 1,000,000 mg/kg. Sustance is deemed not to pose risks in this scenario.

NV = nonvolatile

NL = No Risk-Based Concentration (RBC) listed by DEQ.

>Csat = The soil RBC exceeds the limit of three-phase equilbrium partitioning. Free Product may be present.

Shaded indicates RBC(s) exceeded in sample.

TABLE 3 Metals Analytical Results in Soil 4000 NW St Helens Road, Portland, Oregon ECSI 6148

								Total Met	als by Method I	EPA 6020	_	
Location	Sample ID	Consultant	Date	Depth (ft. bgs)	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
						•	•	Analytical Res	sult (mg/kg)			
GP-1	GP1-12616, 2'	Adapt Engineering	1/26/2016	2	1.46	119	0.351	18.0	27.8	U 0.108	U 1.35	U 0.270
GP-2	GP2-12616, 7'	Adapt Engineering	1/26/2016	7	1.89	82.0	U 0.250	11.3	2.39	U 0.0999	U 1.25	U 0.250
GP-3	GP3-12616, 2'	Adapt Engineering	1/26/2016	2	5.43	107	0.353	15.0	45.6	U 0.101	U 1.26	U 0.252
GP-4	GP4-12616, 2'	Adapt Engineering	1/26/2016	2	9.01	105	0.707	16.7	20.3	U 0.101	U 1.26	0.897
AB-05	AB-05-5.5-6.5 ft	Amec Foster Wheeler	1/29/2018	5.5 - 6.5	5.95	84.5	0.288	19.2	18.4	U 0.100	U 1.25	U 0.251
AB-06	AB-06-6.5-7.5 ft	Amec Foster Wheeler	1/29/2018	6.5 - 7.5	2.48	83.9	0.233	15.5	4.89	U 0.0890	U 1.11	0.523
Oregon Depart	tment of Environmental Qua	ality Risk-Based Concentration	ons ¹									
Ingestion, Derm	nal Contact, and Inhalation - Occ	upational			1.9	220,000	1,100	> Max	800	350	NL	5,800
Ingestion, Derm	nal Contact, and Inhalation - Con	struction Worker			15	29,000	350	530,000	800	110	NL	1,800
Ingestion, Derm	nal Contact, and Inhalation - Exc	avation Worker		420	> Max	9,700	> Max	800	2,900	NL	49,000	
	tment of Environmental Quality				8.8	790	0.63	76	79	0.23	0.71	0.82

Notes:

mg/kg = milligrams per kilogram

Bold = Indicates analyte was detected above method detection limit.

U = Indicates analyte was not detected at or above method reporting limit shown.

NL = No Risk-Based Concentration (RBC) listed by DEQ.

Shaded indicates Background Level and RBC(s) exceeded in sample.

¹ g Oregon Department of Environmental Quality Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites, September 22, 2003. Revision: November 1, 2015.

² = Oregon Department of Environmental Quality Development of OregonBackground Metals Concentrations in Soil Technical Report (March 2013).

>Max = The constituent RBC for this pathway is calculated as greater than 1,000,000 mg/kg. Sustance is deemed not to pose risks in this scenario.

TABLE 4
Groundwater Analytical Summary
4000 NW St Helens Road, Portland, Oregon
ECSI 6148

						NWTPH-HCIE		NWTPH-Gx	NWTP	H-Dx
Location	Sample ID	Consultant	Date	Depth (ft. bgs)	Gasoline- Range Organics	Diesel- Range Organics	Oil-Range Organics	Gasoline- Range Organics	Diesel-Range Organics	Oil-Range Organics
							Analytica	ıl Result (μg/L)		
Site Tempor	rary Well Points - 4000 NW	St Helens Rd								
GP-1	GP1-GW1	Adapt Engineering	1/26/2016	5 - 10	DET F-09	DET	U 2,430	NA	298,000	U 19,400
GP-2	GP2-GW2	Adapt Engineering	1/26/2016	7 -12	DET	U 243	U 243	U 100	NA	NA
GP-3	GP3-GW3	Adapt Engineering	1/26/2016	9 - 14	U 108	U 269	U 269	NA	NA	NA
GP-5	GW-GP5	Adapt Engineering	4/11/2016	10	NA	NA	NA	NA	293,000	U 21,100
GP-12	GW-GP12	Adapt Engineering	4/11/2016	10	NA	NA	NA	NA	68,500	U 4,170
GP-17	GW-GP17	Adapt Engineering	4/11/2016	10	NA	NA	NA	NA	U 206	U 412
AB-01	AB-01 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	U 213	U 426
AB-02	AB-02 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	U 206	U 412
AB-03	AB-03 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	U 200	U 400
AB-04	AB-04 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	U 194	U 388
AB-05	AB-05 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	U 213	U 426
AB-06	AB-06 GW	Amec Foster Wheeler	1/29/2018	5 - 10	NA	NA	NA	NA	NA	NA
Off-site Mon	nitoring Wells - Texaco Bul	k Terminal (ECSI 169)								
MW-111			2/23/2012	5.5 - 20.5	NA	NA	NA	U 200	U 950	U 190
MW-123			2/23/2012	5.5 - 20.5	NA	NA	NA	U 200	U 950	U 190
Oregon Dep	artment of Environmental	Quality Risk-Based Concent	rations ₁						•	
/apor Intrusio	n into Buildings—Occupational			> S	> S	> S	> S	> S	> S	
/olatilization to	o Outdoor Air—Occupational				> S	> S	> S	> S	> S	> S
Groundwater i	in an Excavation				14,000	> S	> S	14,000	> S	> S

μg/L = micrograms per liter

Bold = Indicates analyte was detected above method detection limit.

DET = analyte detected

U = Indicates analyte was not detected at or above method reporting limit shown.

NA = Parameter was not analyzed in the sample.

NT = not tested

F-09 = Results in the Gasoline Range are primarily due to overlap from a heavier fuel hydrocarbon product

1= Oregon Department of Environmental Quality Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites, September 22, 2003. Revision: November 1, 2015.

NL = No Risk-Based Concentration (RBC) listed by DEQ.

> S = The calculated RBC exceeds the constituent's water solubility limit

TABLE 4
Groundwater Analytical Summary
4000 NW St Helens Road, Portland, Oregon
ECSI 6148

							Volatile O	rganic Compou	nds by Method	EPA 8260B		_
Location	Sample ID	Consultant	Date	Depth (ft. bgs)	Benzene	Toluene	Ethyl- benzene	Xylenes	n-Butyl- benzene	sec-Butyl- benzene	n-propyl- benzene	Naphthalene
						I		Analytical F	Result (µg/L)			1
Site Tempora	ary Well Points - 4000 NW	St Helens Rd										
GP-1	GP1-GW1	Adapt Engineering	1/26/2016	5 - 10	U 0.200	U 1.00	U 0.500	U 0.500	1.37	1.48	0.600	U 2.00
GP-2	GP2-GW2	Adapt Engineering	1/26/2016	7 -12	U 0.200	U 1.00	U 0.500	U 0.500	U 1.00	U 1.00	U 0.500	U 2.00
GP-3	GP3-GW3	Adapt Engineering	1/26/2016	9 - 14	U 0.200	U 1.00	U 0.500	U 0.500	U 1.00	U 1.00	U 0.500	U 2.00
GP-5	GW-GP5	Adapt Engineering	4/11/2016	10	U 0.200	U 1.00	U 0.500	U 0.500	U 1.00	U 1.00	U 0.500	U 2.00
GP-12	GW-GP12	Adapt Engineering	4/11/2016	10	U 0.200	U 1.00	U 0.500	U 0.500	U 1.00	U 1.00	U 0.500	U 2.00
GP-17	GW-GP17	Adapt Engineering	4/11/2016	10	U 0.200	U 1.00	U 0.500	U 0.500	U 1.00	U 1.00	U 0.500	U 2.00
AB-01	AB-01 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	NA	NA	NA	NA
AB-02	AB-02 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	NA	NA	NA	NA
AB-03	AB-03 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	NA	NA	NA	NA
AB-04	AB-04 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	NA	NA	NA	NA
AB-05	AB-05 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	NA	NA	NA	NA
AB-06	AB-06 GW	Amec Foster Wheeler	1/29/2018	5 - 10	NA	NA	NA	NA	NA	NA	NA	NA
Off-site Moni	itoring Wells - Texaco Bulk	Terminal (ECSI 169)					•					
MW-111			2/23/2012	5.5 - 20.5	U 1.00	U 1.00	U 1.00	U 2.00	NA	NA	NA	U 5.00
MW-123			2/23/2012	5.5 - 20.5	U 1.00	U 1.00	U 1.00	U 2.00	NA	NA	NA	U 5.00
Oregon Depa	artment of Environmental (Quality Risk-Based Concentr	ations ₁									
Vapor Intrusion	n into Buildings—Occupational				2,800	210,000	7,400	> S	NL	NL	NL	10,000
Volatilization to	Outdoor Air—Occupational				14,000	> S	41,000	> S	NL	NL	NL	16,000
Groundwater in	n an Excavation				1,800	> S	4,400	23,000	NL	NL	NL	500

μg/L = micrograms per liter

Bold = Indicates analyte was detected above method detection limit.

DET = analyte detected

U = Indicates analyte was not detected at or above method reporting limit shown.

NA = Parameter was not analyzed in the sample.

NT = not tested

F-09 = Results in the Gasoline Range are primarily due to overlap from a heavier fuel hydrocarbon product

₁₌ Oregon Department of Environmental Quality Risk-Based Decision Making for the Remediation of Petroleum-Contam

NL = No Risk-Based Concentration (RBC) listed by DEQ.

> S = The calculated RBC exceeds the constituent's water solubility limit

TABLE 4
Groundwater Analytical Summary
4000 NW St Helens Road, Portland, Oregon
ECSI 6148

							Polyaromat	ic Hydrocarbon	s by Method E	PA 8270SIM		
Location	Sample ID	Consultant	Date	Depth (ft. bgs)	Benz(a)- athracene	Chrysene	Dibenzofuran	Fluoranthene	Fluorene	1-Methyl- naphthalene	Phenanthrene	Pyrene
							1	Analytical R	esult (µg/L)	•		
Site Tempor	ary Well Points - 4000 NW S	St Helens Rd										
GP-1	GP1-GW1	Adapt Engineering	1/26/2016	5 - 10	0.518	3.49	17.5	U 0.850	79.2	57.1	116	4.77
GP-2	GP2-GW2	Adapt Engineering	1/26/2016	7 -12	NA	NA	NA	NA	NA	NA	NA	NA
GP-3	GP3-GW3	Adapt Engineering	1/26/2016	9 - 14	NA	NA	NA	NA	NA	NA	NA	NA
GP-5	GW-GP5	Adapt Engineering	4/11/2016	10	U 1.65	U 1.88	U 2.12	1.5	8.85	U 2.12	11.1	1.78
GP-12	GW-GP12	Adapt Engineering	4/11/2016	10	U 0.0465	U 0.0581	U 0.256	0.0747	3.45	U 0.151	3.05	0.109
GP-17	GW-GP17	Adapt Engineering	4/11/2016	10	U 0.0449	U 0.0449	U 0.0449	U 0.0449	U 0.0449	U 0.0889	U 0.0449	U 0.0449
AB-01	AB-01 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	NA	NA	NA	NA
AB-02	AB-02 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	NA	NA	NA	NA
AB-03	AB-03 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	NA	NA	NA	NA
AB-04	AB-04 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	NA	NA	NA	NA
AB-05	AB-05 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	NA	NA	NA	NA
AB-06	AB-06 GW	Amec Foster Wheeler	1/29/2018	5 - 10	NA	NA	NA	NA	NA	NA	NA	NA
Off-site Mon	itoring Wells - Texaco Bulk	Terminal (ECSI 169)										
MW-111			2/23/2012	5.5 - 20.5	NA	NA	NA	NA	NA	NA	NA	NA
MW-123			2/23/2012	5.5 - 20.5	NA	NA	NA	NA	NA	NA	NA	NA
Oregon Dep	artment of Environmental (Quality Risk-Based Concent	rations ₁									
Vapor Intrusion	n into Buildings—Occupational				> S	NV	NL	NV	> S	NL	NL	> S
Volatilization to	Outdoor Air—Occupational				> S	NV	NL	NV	> S	NL	NL	> S
Groundwater in	n an Excavation				> S	> S	NL	> S	> S	NL	NL	> S

μg/L = micrograms per liter

Bold = Indicates analyte was detected above method detection limit.

DET = analyte detected

U = Indicates analyte was not detected at or above method reporting limit shown.

NA = Parameter was not analyzed in the sample.

NT = not tested

F-09 = Results in the Gasoline Range are primarily due to overlap from a heavier fuel hydrocarbon product

₁₌ Oregon Department of Environmental Quality Risk-Based Decision Making for the Remediation of Petroleum-Contam

NL = No Risk-Based Concentration (RBC) listed by DEQ.

> S = The calculated RBC exceeds the constituent's water solubility limit

TABLE 4
Groundwater Analytical Summary
4000 NW St Helens Road, Portland, Oregon
ECSI 6148

							Di	ssolved Meta	ls by EPA 60)20			SM3500-Cr B
Location	Sample ID	Consultant	Date	Depth (ft. bgs)	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Dissolved Hexavalent Chromium
								Aı	nalytical Res	ult (µg/L)			
Site Tempor	ary Well Points - 4000 NW S	St Helens Rd											
GP-1	GP1-GW1	Adapt Engineering	1/26/2016	5 - 10	NA	NA	NA	NA	NA	NA	NA	NA	
GP-2	GP2-GW2	Adapt Engineering	1/26/2016	7 -12	NA	NA	NA	NA	NA	NA	NA	NA	NA
GP-3	GP3-GW3	Adapt Engineering	1/26/2016	9 - 14	NA	NA	NA	NA	NA	NA	NA	NA	NA
GP-5	GW-GP5	Adapt Engineering	4/11/2016	10	NA	NA	NA	NA	NA	NA	NA	NA	NA
GP-12	GW-GP12	Adapt Engineering	4/11/2016	10	NA	NA	NA	NA	NA	NA	NA	NA	NA
GP-17	GW-GP17	Adapt Engineering	4/11/2016	10	NA	NA	NA	NA	NA	NA	NA	NA	NA
AB-01	AB-01 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	NA	NA	NA	NA	NA
AB-02	AB-02 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	NA	NA	NA	NA	NA
AB-03	AB-03 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	NA	NA	NA	NA	NA
AB-04	AB-04 GW	Amec Foster Wheeler	1/29/2018	10 - 15	NA	NA	NA	NA	NA	NA	NA	NA	NA
AB-05	AB-05 GW	Amec Foster Wheeler	1/29/2018	10 - 15	4.45	66.9	U 0.200	U 1.00	U 0.200	U 0.0800	U 1.00	U 0.200	U 5.00
AB-06	AB-06 GW	Amec Foster Wheeler	1/29/2018	5 - 10	U 1.00	19.7	U 0.200	U 1.00	U 0.200	U 0.0800	U 1.00	U 0.200	U 5.00
Off-site Mon	itoring Wells - Texaco Bulk	Terminal (ECSI 169)											
MW-111			2/23/2012	5.5 - 20.5	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-123			2/23/2012	5.5 - 20.5	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oregon Depa	artment of Environmental C	Quality Risk-Based Concenti	rations ₁									•	
Vapor Intrusior	n into Buildings—Occupational				NV	NV	NV	NV	NV	NV	NV	NV	NV
Volatilization to	Outdoor Air—Occupational				NV	NV	NV	NV	NV	NV	NV	NV	NV
Groundwater in	n an Excavation				6,300	> S	130,000	> S	> S	> S	NL	1,100,000	9,400

μg/L = micrograms per liter

Bold = Indicates analyte was detected above method detection limit.

DET = analyte detected

U = Indicates analyte was not detected at or above method reporting limit shown.

NA = Parameter was not analyzed in the sample.

NT = not tested

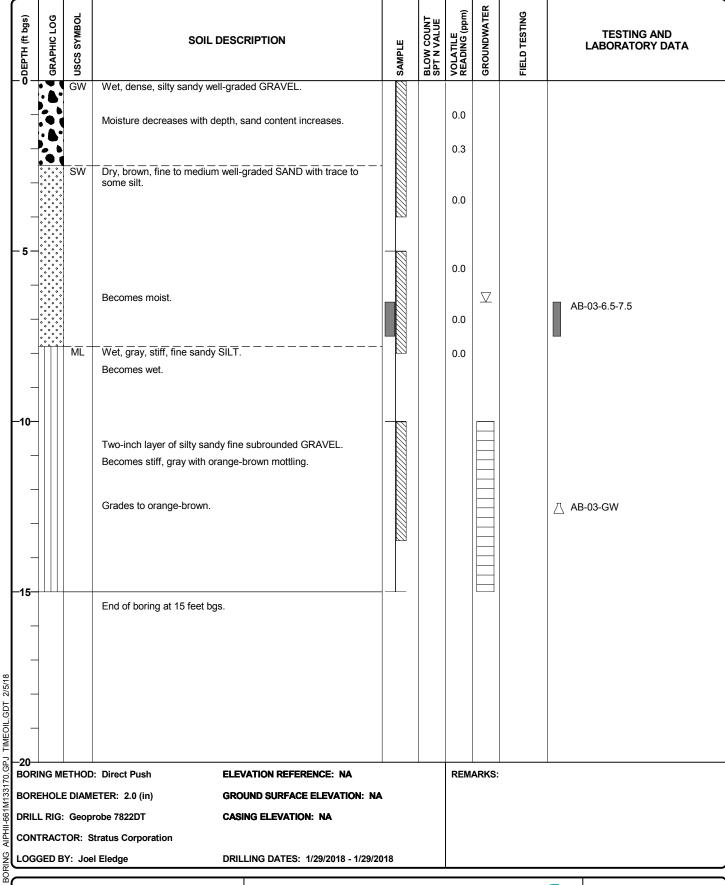
F-09 = Results in the Gasoline Range are primarily due to overlap from a heavier fuel hydrocarbon product

₁₌Oregon Department of Environmental Quality Risk-Based Decision Making for the Remediation of Petroleum-Contam

NL = No Risk-Based Concentration (RBC) listed by DEQ.

> S = The calculated RBC exceeds the constituent's water solubility limit

ATTACHMENT A


Soil Boring Logs

ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DESC	RIPTION	SAMPLE	BLOW COUNT SPT N VALUE	VOLATILE READING (ppm)	GROUNDWATER	FIELD TESTING		TESTING AND LABORATORY DATA
-0		GW ML	3-inch asphalt on surface. Dry, gray, dense, sandy, fine to r GRAVEL, subangular, trace to so Increased silt content. Brick fragment at 3 feet bgs. Wood fragment with strong decafeet bgs. No odor observed in so Wet, gray, medium stiff, fine san organic material.	ome silt (fill). yed, organic-like odor at 3.2 il below wood fragment.	\$ (2111111111111111111111111111111111111		0.1 0.2 34.1 0.3 0.2 0.0		<u></u>	AE	3-01-5.5-6.5
_ _ _ _15			Becomes stiff, moisture content obrown mottling. Grades to orange-brown. End of boring at 15 feet bgs.	decreases, trace orange-			0.0			<u> </u>	3-01-GW
-											
-20- BORI	ING MF	THOD	: Direct Push ELEV	/ATION REFERENCE: NA			REM	ARKS:			
				UND SURFACE ELEVATION: NA	4						
				ING ELEVATION: NA							
CON	TRACT	OR: S	tratus Corporation								
LOG	GED B	Y: Joe	I Eledge DRIL	LING DATES: 1/29/2018 - 1/29/2	018						
Hele		oad, l	estries, 4000 NW St Phase II ESA	Amec Foster Wheeler Environment & Infrastruct 7376 SW Durham Road USA 97224 Tel (503)639-3400	ure, Inc.				amec foster		LOG OF BORIN AB-01
									wheele	:1	I AGE I OF I

 O DEPTH (ft bgs) 	GRAPHIC LOG	USCS SYMBOL	SOIL DESC	RIPTION	SAMPLE	BLOW COUNT SPT N VALUE	VOLATILE READING (ppm)	GROUNDWATER	FIELD TESTING		TESTING AND LABORATORY DATA
- 0 -		GW	Moist, brown-gray, silty sandy fin GRAVEL.	e to medium well-graded			0.0				
_		SW	Dry, black, fine to medium well-g some silt. Becomes brown.	raded SAND with trace to			0.0				
- 5 — _		ML	Becomes wet at 5.2 feet bgs. Wet, gray, stiff, fine sandy SILT waterial.	with some fibrous organic			0.0	∇		AE	3-02-5.5-6.5
_	-		Becomes medium stiff, increased	d sand content.			0.0			_	
_			Becomes stiff.				0.0				
-10- -			Becomes soft. 3-inch layer of gray, silty, subrout Wet, stiff fine sandy SILT continu				0.0				
_	-		Grades to orange-brown.				0.0			∐ AE	3-02-GW
_ -15-	-		Very stiff from 13.5 to 14.5 feet b	gs. 			0.0				
_			End of boring at 15 feet bgs.								
_											
-20- BORI	ING ME	THOD	: Direct Push ELEV	ATION REFERENCE: NA	1		REM	ARKS:		I	
			. ,	UND SURFACE ELEVATION: NA	\						
		-	robe 7822DT CASI tratus Corporation	NG ELEVATION: NA							
				LING DATES: 1/29/2018 - 1/29/2	018						
Hele		oad,	istries, 4000 NW St Phase II ESA	Amec Foster Wheeler Environment & Infrastructor 7376 SW Durham Road USA 97224 Tel (503)639-3400	ure, Inc.				amec foster		LOG OF BORING
				i ei (อบอ)639-3400					wheele	er	PAGE 1 OF 1

American Industries, 4000 NW St Helens Road, Phase II ESA

6-61M-133170

Amec Foster Wheeler Environment & Infrastructure, Inc. 7376 SW Durham Road USA 97224 Tel (503)639-3400

LOG OF BORING AB-03

ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DESC		SAMPLE	BLOW COUNT SPT N VALUE	VOLATILE READING (ppm)	GROUNDWATER	FIELD TESTING		TESTING AND LABORATORY DATA
		ML SW	Moist, gray, silty sandy well-grad Dry, stiff, gray, sandy SILT. Dry, brown, fine to medium well-				0.0 0.0 0.0				
- 5			Becomes moist. Becomes wet.				0.0	abla		AE	3-04-6.5-7.5
		ML	Two-inch layer of silty sandy fine Well-graded SAND continued. Becomes dark gray. Wet, gray, stiff, fine sandy SILT of mottles.				0.0			<u> </u>	3-04-GW
-15- - - -			End of boring at 15 feet bgs.								
BORE DRILL	EHOLE L RIG: TRACT	Geop	ETER: 2.0 (in) GRO robe 7822DT CASI stratus Corporation	/ATION REFERENCE: NA UND SURFACE ELEVATION: NA ING ELEVATION: NA LING DATES: 1/29/2018 - 1/29/2			REM	ARKS:			
Hele	ens R		ustries, 4000 NW St Phase II ESA	Amec Foster Wheeler Environment & Infrastruct 7376 SW Durham Road USA 97224 Tel (503)639-3400	ure, Inc.				amec foster wheele	25	LOG OF BORING AB-04 PAGE 1 OF 1

DEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DESC	RIPTION	SAMPLE	BLOW COUNT SPT N VALUE	VOLATILE READING (ppm)	GROUNDWATER	FIELD TESTING		TESTING AND LABORATORY DATA
-0		GW	3-inch asphalt on surface. Dry, gray-brown, silty sandy, well subangular.	-graded GRAVEL,							
-		SW	Dry, brown, fine to medium well-								
- 5 - - -			Three-inch layer of silty sandy we subrounded. Continued well-graded SAND as dense.					abla		AB	-05-5.5-6.5
-10- - - -		ML T	Two-inch layer of silty, sandy, fin Loose, gray-brown, fine to medius some silt. Wet, gray, soft, fine to medium s Becomes medium stiff, gray with Decreased moisture content, becomes	m well-graded SAND with andy SILT. orange-brown mottling.						∐ AB	-05-GW
-15- - - -	-		End of boring at 15 feet bgs.								
AIDHII-661M133170.GPJ TIMEOIL.GDT 2/5/18 TOO BOB BOB IIIMEOIL.GDT 2/5/18 TOO IIIMEOIL.GDT 2/5/18	-										
9.0 BOR				ATION REFERENCE: NA			REM	ARKS:			
BOR BOR			` '	UND SURFACE ELEVATION: NA NG ELEVATION: NA	L						
CON		-	etratus Corporation	TO SECTION IN							
			·	LING DATES: 1/29/2018 - 1/29/20	018						
Am Hel		oad,	ustries, 4000 NW St Phase II ESA	Amec Foster Wheeler Environment & Infrastructu 7376 SW Durham Road USA 97224 Tel (503)639-3400	ure, Inc.				amec foster wheel	er	LOG OF BORING AB-05 PAGE 1 OF 1

ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DESC		SAMPLE	BLOW COUNT SPT N VALUE	VOLATILE READING (ppm)	GROUNDWATER	FIELD TESTING		TESTING AND LABORATORY DATA
-		GW	Dry, gray, silty sandy well-graded No recovery below 2 feet bgs.								
- 5 - 		sw	Dry, brown, medium dense, fine SAND with trace silt. Becomes moist. Two-inch layer of gray, silty sand Becomes wet.							AB-	-06-6.5-7.5 -06-GW
-10- - - -		ML	Becomes loose. Becomes medium dense, gray. Wet, gray, soft, fine sandy SILT. Two-inch layer of medium dense Becomes stiff.								
FEOIL.GDT 2/5/18			End of boring at 15 feet bgs.								
BOR DRIL	EHOLE L RIG: TRAC1	Geopi	ETER: 2.0 (in) GRO robe 7822DT CASI stratus Corporation	VATION REFERENCE: NA UND SURFACE ELEVATION: NA ING ELEVATION: NA LING DATES: 1/29/2018 - 1/29/20			REMA	ARKS:			
Amendaria Held	ens R		ıstries, 4000 NW St Phase II ESA	Amec Foster Wheeler Environment & Infrastructu 7376 SW Durham Road USA 97224 Tel (503)639-3400	ure, Inc.				amec foster wheele	er	LOG OF BORING AB-06 PAGE 1 OF 1

ATTACHMENT B

Photographs

Photo 1

Temporary boring and groundwater monitoring point AB-01, view to the northwest.
January 29, 2018

Photo 2

Temporary boring AB-02 location (after completion of sampling and abandonment), view to the west.
January 29, 2018

PROJECT 661M133170
PROCESSED JE
DATE February 2018
PAGE 1

Limited Subsurface Investigation 4000 NW St Helens Road ECSI 6148 Portland, Oregon

PHOTOGRAPH LOG

Photo 3

Temporary boring AB-03 location (after completion of sampling, during abandonment), view to the northwest.
January 29, 2018

Photo 4

Temporary boring AB-04 location (after completion of sampling and abandonment), view to the west-southwest.
January 29, 2018

PROJECT 661M133170
PROCESSED JE
DATE February 2018

2

PAGE

Limited Subsurface Investigation 4000 NW St Helens Road ECSI 6148 Portland, Oregon

PHOTOGRAPH LOG

Photo 5

Temporary boring AB-05 location (during drilling), view to the southwest. January 29, 2018

Photo 6

Temporary boring AB-06 location (during drilling), view to the south-southeast.
January 29, 2018

PROJECT 661M133170
PROCESSED JE
DATE February 2018

3

PAGE

Limited Subsurface Investigation 4000 NW St Helens Road ECSI 6148 Portland, Oregon

PHOTOGRAPH LOG

ATTACHMENT C

Laboratory Report

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Tuesday, February 13, 2018

Joel Eledge AMEC Foster Wheeler 7376 SW Durham Road Portland, OR 97224

RE: American Industries / 661M133170

Enclosed are the results of analyses for work order <u>A8A0918</u>, which was received by the laboratory on 1/29/2018 at 4:09:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries
7376 SW Durham Road Project Number: 661M133170

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION Sample ID Laboratory ID Matrix **Date Sampled Date Received** AB-01 5.5-6.5 ft A8A0918-01 Soil 01/29/18 09:15 01/29/18 16:09 **AB-01 GW** A8A0918-02 Water 01/29/18 09:30 01/29/18 16:09 AB-02-5.5-6.5 ft A8A0918-03 Soil 01/29/18 10:00 01/29/18 16:09 **AB-02 GW** A8A0918-04 Water 01/29/18 10:10 01/29/18 16:09 AB-03-6.5-7.5 ft A8A0918-05 Soil 01/29/18 10:45 01/29/18 16:09 **AB-03 GW** A8A0918-06 Water 01/29/18 10:55 01/29/18 16:09 AB-05-5.5-6.5 ft A8A0918-07 Soil 01/29/18 11:20 01/29/18 16:09 **AB-05 GW** A8A0918-08 Water 01/29/18 11:30 01/29/18 16:09 AB-04-6.5-7.5 ft A8A0918-09 Soil 01/29/18 12:40 01/29/18 16:09 **AB-04 GW** A8A0918-10 Water 01/29/18 12:45 01/29/18 16:09 AB-06-6.5-7.5 ft A8A0918-11 Soil 01/29/18 14:40 01/29/18 16:09 **AB-06 GW** A8A0918-12 Water 01/29/18 14:50 01/29/18 16:09

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

ANALYTICAL SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx											
Amalasta	Result	MDL	Reporting		Dib-ti	Data Andread	Method	Notes			
Analyte	Resuit	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes			
AB-01 5.5-6.5 ft (A8A0918-01) Diesel	ND		Matrix: Soi		tch: 802029	02/01/18 23:11	NWTPH-Dx				
Oil	314		25.0 50.0	mg/kg dry	1 "	02/01/18 23.11	NWIPH-DX				
Surrogate: o-Terphenyl (Surr)	314		Recovery: 96 %	Limits: 50-150 %	"	"	"				
			•								
AB-01 GW (A8A0918-02)	NID		Matrix: Wa		tch: 80203		MWTDH D				
Diesel	ND		0.213	mg/L	1	02/02/18 22:29	NWTPH-Dx				
Oil	ND		0.426		-						
Surrogate: o-Terphenyl (Surr)		-	Recovery: 98 %	Limits: 50-150 %	"	"	"				
AB-02-5.5-6.5 ft (A8A0918-03)			Matrix: So	il Ba	tch: 802029	98					
Diesel	ND		25.0	mg/kg dry	1	02/01/18 23:31	NWTPH-Dx				
Oil	107		50.0	"	"	"	"	F-03			
Surrogate: o-Terphenyl (Surr)			Recovery: 96 %	Limits: 50-150 %	"	"	"				
AB-02 GW (A8A0918-04)			Matrix: Wa	ter Ba	tch: 80203	38					
Diesel	ND		0.206	mg/L	1	02/02/18 22:52	NWTPH-Dx				
Oil	ND		0.412	"	"	"	"				
Surrogate: o-Terphenyl (Surr)			Recovery: 98 %	Limits: 50-150 %	"	"	"				
AB-03-6.5-7.5 ft (A8A0918-05)			Matrix: So	il Ba	tch: 802029	98					
Diesel	ND		25.0	mg/kg dry	1	02/01/18 23:51	NWTPH-Dx				
Oil	ND		50.0	"	"	"	"				
Surrogate: o-Terphenyl (Surr)			Recovery: 97 %	Limits: 50-150 %	"	"	"				
AB-03 GW (A8A0918-06)		Matrix: Water Ba			atch: 8020338						
Diesel	ND		0.200	mg/L	1	02/02/18 23:15	NWTPH-Dx				
Oil	ND		0.400	"	"	"	"				
Surrogate: o-Terphenyl (Surr)			Recovery: 98 %	Limits: 50-150 %	"	"	"				
AB-05-5.5-6.5 ft (A8A0918-07RE1)	Matrix: Soil Batch: 8020298										
Diesel	ND		111	mg/kg dry	5	02/02/18 08:57	NWTPH-Dx				
Oil	488		221	"	"	"	"				
Surrogate: o-Terphenyl (Surr)			Recovery: 94 %	Limits: 50-150 %	"	n .	"	S-05			
AB-05 GW (A8A0918-08)			Matrix: Wa	ter Ba	tch: 802029	97					
Diesel	ND		0.213	mg/L	1	02/01/18 22:18	NWTPH-Dx				
Oil	ND		0.426	"	"	"	"				
Surrogate: o-Terphenyl (Surr)			Recovery: 93 %	Limits: 50-150 %	"	"	"				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

ANALYTICAL SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx													
			Reporting										
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes					
AB-04-6.5-7.5 ft (A8A0918-09)			Matrix: Soi	l Ba	atch: 8020298								
Diesel	ND		25.0	mg/kg dry	1	02/02/18 00:50	NWTPH-Dx						
Oil	ND		50.0	"	"	"	"						
Surrogate: o-Terphenyl (Surr)		R	ecovery: 95 %	Limits: 50-150 %	"	п	"						
AB-04 GW (A8A0918-10)			Matrix: Wa	ter Ba	97								
Diesel	ND		0.194	mg/L	1	02/01/18 22:41	NWTPH-Dx						
Oil	ND		0.388	"	"	"	"						
Surrogate: o-Terphenyl (Surr)		R	ecovery: 95 %	Limits: 50-150 %	"	"	"						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM Reporting												
A 1 4 -	D 201-14	MDI	Reporting		Dil e	D-/ A 1 1	N d - 4 l - 1	NT-4				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
AB-01 5.5-6.5 ft (A8A0918-01RE1)			Matrix: Soil	В.	atch: 80205	52						
Acenaphthene	ND		11.8	ug/kg dry	1	02/12/18 14:09	EPA 8270D (SIM)					
Acenaphthylene	ND		11.8	"	"	"	"					
Anthracene	ND		11.8	"	"	"	"					
Benz(a)anthracene	ND		16.6	"	"	"	"	R-02				
Benzo(a)pyrene	ND		11.8	"	"	"	"					
Benzo(b)fluoranthene	ND		11.8	"	"	"	"					
Benzo(k)fluoranthene	ND		11.8	"	"	"	"					
Benzo(g,h,i)perylene	16.3		11.8	"	"	"	"					
Chrysene	ND		18.9	"	"	"	"	R-02				
Dibenz(a,h)anthracene	ND		11.8	"	"	"	"					
Dibenzofuran	ND		11.8	"	"	"	"					
Fluoranthene	ND		11.8	"	"	"	"					
Fluorene	ND		11.8	"	"	"	"					
Indeno(1,2,3-cd)pyrene	ND		11.8	"	"	"	"					
1-Methylnaphthalene	ND		11.8	"	"	"	"					
2-Methylnaphthalene	ND		11.8	"	"	"	"					
Naphthalene	ND		11.8	"	"	"	"					
Phenanthrene	ND		11.8	"	"	"	"					
Pyrene	ND		11.8	"	"	"	"					
Surrogate: 2-Fluorobiphenyl (Surr)		Re	Recovery: 74 %	Limits: 44-120 %	"	"	"					

Limits: 54-127 %

83 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

p-Terphenyl-d14 (Surr)

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

ANALYTICAL SAMPLE RESULTS

	Pol	yaromatic	: Hydrocarbor	ıs (PAHs) by	EPA 8270D	SIM				
			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes		
AB-02-5.5-6.5 ft (A8A0918-03)			Matrix: Soil	В	Batch: 8020552					
Acenaphthene	ND		12.1	ug/kg dry	1	02/09/18 18:32	EPA 8270D (SIM)			
Acenaphthylene	ND		12.1	"	"	"	"			
Anthracene	ND		12.1	"	"	"	"			
Benz(a)anthracene	ND		12.1	"	"	"	"			
Benzo(a)pyrene	ND		12.1	"	"	"	"			
Benzo(b)fluoranthene	ND		12.1	"	"	"	"			
Benzo(k)fluoranthene	ND		12.1	"	"	"	"			
Benzo(g,h,i)perylene	ND		12.1	"	"	"	"			
Chrysene	ND		12.1	"	"	"	"			
Dibenz(a,h)anthracene	ND		12.1	"	"	"	"			
Dibenzofuran	ND		12.1	"	"	"	"			
Fluoranthene	14.9		12.1	"	"	"	"			
Fluorene	ND		12.1	"	"	"	"			
Indeno(1,2,3-cd)pyrene	ND		12.1	"	"	"	"			
1-Methylnaphthalene	ND		12.1	"	"	"	"			
2-Methylnaphthalene	ND		12.1	"	"	"	"			
Naphthalene	ND		12.1	"	"	"	"			
Phenanthrene	ND		12.1	"	"	"	"			
Pyrene	19.5		12.1	"	"	"	"			
Surrogate: 2-Fluorobiphenyl (Surr)		Re	ecovery: 61 % I	Limits: 44-120 %	"	"	"	_		

Limits: 54-127 %

65 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

p-Terphenyl-d14 (Surr)

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

ANALYTICAL SAMPLE RESULTS

			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
AB-05-5.5-6.5 ft (A8A0918-07)			Matrix: Soil	В	Batch: 80205	52		
Acenaphthene	ND		10.8	ug/kg dry	1	02/09/18 18:58	EPA 8270D (SIM)	
Acenaphthylene	ND		10.8	"	"	"	"	
Anthracene	22.2		10.8	"	"	"	"	
Benz(a)anthracene	117		10.8	"	"	"	"	M-0
Benzo(a)pyrene	94.0		10.8	"	"	"	"	
Benzo(b)fluoranthene	133		10.8	"	"	"	"	M-0
Benzo(k)fluoranthene	56.3		10.8	"	"	"	"	M-0
Benzo(g,h,i)perylene	63.7		10.8	"	"	"	"	
Chrysene	127		10.8	"	"	"	"	M-0
Dibenz(a,h)anthracene	14.6		10.8	"	"	"	"	
Dibenzofuran	ND		10.8	"	"	"	"	
Fluoranthene	244		10.8	"	"	"	"	
Fluorene	ND		10.8	"	"	"	"	
Indeno(1,2,3-cd)pyrene	69.0		10.8	"	"	"	"	
1-Methylnaphthalene	ND		10.8	"	"	"	"	
2-Methylnaphthalene	ND		10.8	"	"	"	"	
Naphthalene	ND		10.8	"	"	"	"	
Phenanthrene	112		10.8	"	n .	"	"	
Pyrene	205		10.8	"	"	"	"	
Surrogate: 2-Fluorobiphenyl (Surr)		P.	Recovery: 74 %	Limits: 44-120 %	"	"	"	

82 %

Limits: 54-127 %

Apex Laboratories

Philip Newsberg

p-Terphenyl-d14 (Surr)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 7 of 26

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

ANALYTICAL SAMPLE RESULTS

Dissolved Hexavalent Chromium by SM3500-Cr B												
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes				
AB-05 GW (A8A0918-08)			Matrix: Water		Batch: 801117	71						
Hexavalent Chromium	ND		0.00500	mg/L	1	01/30/18 10:19	SM 3500-Cr B (Diss)					
AB-06 GW (A8A0918-12)			Matrix: Water		Batch: 801117	71						
Hexavalent Chromium	ND		0.00500	mg/L	1	01/30/18 10:19	SM 3500-Cr B (Diss)					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)												
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Note				
AB-05-5.5-6.5 ft (A8A0918-07)			Matrix: Soil									
Batch: 8020424												
Arsenic	5.95		1.25	mg/kg dry	10	02/06/18 17:34	EPA 6020A					
Barium	84.5		1.25	"	"	"	"					
Cadmium	0.288		0.251	"	"	"	"					
Chromium	19.2		1.25	"	"	"	"					
Lead	18.4		0.251	"	"	"	"					
Mercury	ND		0.100	"	"	"	"					
Selenium	ND		1.25	"	"	"	"					
Silver	ND		0.251	"	"	"	"					
AB-06-6.5-7.5 ft (A8A0918-11)			Matrix: Soil									
Batch: 8020424												
Arsenic	2.48		1.11	mg/kg dry	10	02/06/18 17:37	EPA 6020A					
Barium	83.9		1.11	"	"	"	"					
Cadmium	0.223		0.223	"	"	"	"					
Chromium	15.5		1.11	"	"	"	"					
Lead	4.89		0.223	"	"	"	"					
Mercury	ND		0.0890	"	"	"	"					
Selenium	ND		1.11	"	"	"	"					
Silver	0.523		0.223	"	"	"	"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

ANALYTICAL SAMPLE RESULTS

Dissolved Metals by EPA 6020 (ICPMS)												
			Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
AB-05 GW (A8A0918-08RE1)			Matrix: Water	•								
Batch: 8020389												
Arsenic	4.45		1.00	ug/L	1	02/06/18 16:04	EPA 6020A (Diss)					
Barium	66.9		1.00	"	"	"	"					
Cadmium	ND		0.200	"	"	"	"					
Chromium	ND		1.00	"	"	"	"					
Lead	ND		0.200	"	"	"	"					
Mercury	ND		0.0800	"	"	"	"					
Selenium	ND		1.00	"	"	"	"					
Silver	ND		0.200	"	"	"	"					
AB-06 GW (A8A0918-12RE1)			Matrix: Water	•								
Batch: 8020389												
Arsenic	ND		1.00	ug/L	1	02/06/18 16:09	EPA 6020A (Diss)					
Barium	19.7		1.00	"	"	"	"					
Cadmium	ND		0.200	"	"	"	"					
Chromium	ND		1.00	"	"	"	"					
Lead	ND		0.200	"	"	"	II .					
Mercury	ND		0.0800	"	"	"	II .					
Selenium	ND		1.00	"	"	"	"					
Silver	ND		0.200	"	"	"	"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Marenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

ANALYTICAL SAMPLE RESULTS

			Percent	Dry Weight				
	D. II) (D)	Reporting					NY .
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
AB-01 5.5-6.5 ft (A8A0918-01)			Matrix: Soil	Ва	atch: 80112	36		
% Solids	81.6		1.00	% by Weight	1	02/01/18 08:06	EPA 8000C	
AB-02-5.5-6.5 ft (A8A0918-03)			Matrix: Soil	Ва	atch: 80112	36		
% Solids	79.2		1.00	% by Weight	1	02/01/18 08:06	EPA 8000C	
AB-03-6.5-7.5 ft (A8A0918-05)			Matrix: Soil	Ва	atch: 80112	36		
% Solids	90.9		1.00	% by Weight	1	02/01/18 08:06	EPA 8000C	
AB-05-5.5-6.5 ft (A8A0918-07)			Matrix: Soil	Ва	atch: 80112	36		
% Solids	86.5		1.00	% by Weight	1	02/01/18 08:06	EPA 8000C	
AB-04-6.5-7.5 ft (A8A0918-09)			Matrix: Soil	Ва	atch: 80112	36		
% Solids	93.3		1.00	% by Weight	1	02/01/18 08:06	EPA 8000C	
AB-06-6.5-7.5 ft (A8A0918-11)			Matrix: Soil	Ва	atch: 80112	36		
% Solids	87.2		1.00	% by Weight	1	02/01/18 08:06	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 8020297 - EPA 3510	C (Fuels/A	cid Ext.)	1				Wat	ter					
Blank (8020297-BLK1)				Prep	ared: 02/	01/18 12:46	Analyzed:	02/01/18 21	1:09				
NWTPH-Dx													
Diesel	ND		0.182	mg/L	1								
Oil	ND		0.364	"	"								
Surr: o-Terphenyl (Surr)		Re	ecovery: 99 %	Limits: 50-	150 %	Dilu	tion: Ix						
LCS (8020297-BS1)				Prep	ared: 02/	01/18 12:46	Analyzed:	02/01/18 21	1:32				
NWTPH-Dx													
Diesel	1.15		0.200	mg/L	1	1.25		92	58-115%				
Surr: o-Terphenyl (Surr)		Rec	overy: 103 %	Limits: 50-	150 %	Dilu	ution: 1x						
LCS Dup (8020297-BSD1)				Prep	ared: 02/	01/18 12:46	Analyzed:	02/01/18 21	1:55			Q-19	
NWTPH-Dx													
Diesel	1.10		0.200	mg/L	1	1.25		88	58-115%	5	20%		
Surr: o-Terphenyl (Surr)		Re	ecovery: 96 %	Limits: 50-	150 %	Dilu	ution: 1x						
Batch 8020298 - EPA 3546	(Fuels)						Soi	I					
Blank (8020298-BLK1)				Prep	ared: 02/	01/18 12:51	Analyzed:	02/01/18 21	1:13				
NWTPH-Dx													
Diesel	ND		25.0	mg/kg wet	1								
Oil	ND		50.0	"	"								
Surr: o-Terphenyl (Surr)		Rec	covery: 111 %	Limits: 50-	150 %	Dilu	tion: 1x						
LCS (8020298-BS1)				Prep	ared: 02/	01/18 12:51	Analyzed:	02/01/18 21	1:33				
NWTPH-Dx													
Diesel	125		25.0	mg/kg wet	1	125		100	76-115%				
Surr: o-Terphenyl (Surr)		Rec	overy: 107 %	Limits: 50-	150 %	Dilu	tion: 1x						

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

QUALITY CONTROL (QC) SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020338 - EPA 3510	C (Fuels/A	cid Ext.))				Wat	ter				
Blank (8020338-BLK1)				Pre	epared: 02/	02/18 10:26	Analyzed:	02/02/18 2	1:21			
NWTPH-Dx												
Diesel	ND		0.182	mg/L	1							
Oil	ND		0.364	"	"							
Surr: o-Terphenyl (Surr)		Re	ecovery: 92 %	Limits: 50)-150 %	Dilı	ution: 1x					
LCS (8020338-BS1)				Pre	epared: 02/	02/18 10:26	Analyzed:	02/02/18 2	1:43			
NWTPH-Dx												
Diesel	1.12		0.200	mg/L	1	1.25		89	58-115%			
Surr: o-Terphenyl (Surr)		Re	ecovery: 98 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS Dup (8020338-BSD1)				Pre	epared: 02/	02/18 10:26	Analyzed:	02/02/18 2	2:06			Q-19
NWTPH-Dx												
Diesel	1.09		0.200	mg/L	1	1.25		87	58-115%	2	20%	
Surr: o-Terphenyl (Surr)		Re	ecovery: 98 %	Limits: 50	0-150 %	Dilı	ıtion: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Newsberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

QUALITY CONTROL (QC) SAMPLE RESULTS

			Reporting			Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Dil.	Amount	Result	%REC	Limits	RPD	Limit	Note
Batch 8020552 - EPA 3546							Soil					
Blank (8020552-BLK1)				Prep	oared: 02/	09/18 10:46	Analyzed:	02/09/18 16	5:46			
EPA 8270D (SIM)												
Acenaphthene	ND		9.09	ug/kg wet	1							
Acenaphthylene	ND		9.09	"	"							
Anthracene	ND		9.09	"	"							
Benz(a)anthracene	ND		9.09	"	"							
Benzo(a)pyrene	ND		9.09	"	"							
Benzo(b)fluoranthene	ND		9.09	"	"							
Benzo(k)fluoranthene	ND		9.09	"	"							
Benzo(g,h,i)perylene	ND		9.09	"	"							
Chrysene	ND		9.09	"	"							
Dibenz(a,h)anthracene	ND		9.09	"	"							
Dibenzofuran	ND		9.09	"	"							
Fluoranthene	ND		9.09	"	"							
Fluorene	ND		9.09	"	"							
Indeno(1,2,3-cd)pyrene	ND		9.09	"	"							
1-Methylnaphthalene	ND		9.09	"	"							
2-Methylnaphthalene	ND		9.09	"	"							
Naphthalene	ND		9.09	"	"							
Phenanthrene	ND		9.09	"	"							
Pyrene	ND		9.09	"	"							
Surr: 2-Fluorobiphenyl (Surr)		R	ecovery: 83 %	Limits: 44-	120 %	Dilu	tion: 1x					
p-Terphenyl-d14 (Surr)			96 %	54-1	127 %		"					
LCS (8020552-BS1)				Prep	oared: 02/0	09/18 10:46	Analyzed:	02/09/18 17	7:13			
EPA 8270D (SIM)							<u></u>					
Acenaphthene	770		10.0	ug/kg wet	1	800		96	40-122%			
Acenaphthylene	719		10.0	"	"	"		90	32-132%			
Anthracene	688		10.0	"	"	"		86	47-123%			
Benz(a)anthracene	713		10.0	"	"	"		89	49-126%			
Benzo(a)pyrene	710		10.0	"	"	"		89	45-129%			
Benzo(b)fluoranthene	694		10.0	"	"	"			45-132%			
Benzo(k)fluoranthene	722		10.0	"	"	"			47-132%			
Benzo(g,h,i)perylene	708		10.0	"	"	"			43-134%			
Chrysene	772		10.0	"	"	"			50-124%			
Dibenz(a,h)anthracene	701		10.0	"	"	"			45-134%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Maenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

 7376 SW Durham Road
 Project Number: 661M133170
 Reported:

 Portland, OR 97224
 Project Manager: Joel Eledge
 02/13/18 19:41

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020552 - EPA 3546							Soil					
LCS (8020552-BS1)				Pre	pared: 02/	09/18 10:46	Analyzed:	02/09/18 1	7:13			
EPA 8270D (SIM)												
Fluoranthene	770		10.0	ug/kg wet	"	"		96	50-127%			
Fluorene	732		10.0	"	"	"		91	43-125%			
Indeno(1,2,3-cd)pyrene	674		10.0	"	"	"		84	45-133%			
1-Methylnaphthalene	770		10.0	"	"	"		96	40-120%			
2-Methylnaphthalene	736		10.0	"	"	"		92	38-122%			
Naphthalene	679		10.0	"	"	"		85	35-123%			
Phenanthrene	674		10.0	"	"	"		84	50-121%			
Pyrene	775		10.0	"	"	"		97	47-127%			
Surr: 2-Fluorobiphenyl (Surr)			Recovery: 83 %	Limits: 44	-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			93 %	54-	-127 %		"					
Duplicate (8020552-DUP2)				Pre	pared: 02/	09/18 10:46	Analyzed: (02/12/18 1	4:36			
QC Source Sample: AB-01 5.5-6.5 ft	(A8A0918-0	1RE1)										
EPA 8270D (SIM)												
Acenaphthene	ND		11.8	ug/kg dry	1		ND				30%	
Acenaphthylene	ND		11.8	"	"		ND				30%	
Anthracene	ND		11.8	"	"		ND				30%	
Benz(a)anthracene	ND		21.2	"	"		ND				30%	R-0
Benzo(a)pyrene	ND		11.8	"	"		7.35			2	30%	
Benzo(b)fluoranthene	ND		11.8	"	"		8.96			5	30%	
Benzo(k)fluoranthene	ND		11.8	"	"		ND				30%	
Benzo(g,h,i)perylene	14.9		11.8	"	"		16.3			9	30%	
Chrysene	ND		23.6	"	"		ND				30%	R-(
Dibenz(a,h)anthracene	ND		11.8	"	"		ND				30%	
Dibenzofuran	ND		11.8	"	"		ND				30%	
Fluoranthene	ND		11.8	"	"		ND				30%	
Fluorene	ND		11.8	"	"		ND				30%	
Indeno(1,2,3-cd)pyrene	ND		11.8	"	"		7.59			12	30%	
1-Methylnaphthalene	ND		11.8	"	"		ND				30%	
2-Methylnaphthalene	ND		11.8	"	"		ND				30%	
Naphthalene	ND		11.8	"	"		ND				30%	
Phenanthrene	ND		11.8	"	"		ND				30%	
Pyrene	17.7		11.8	,,	,,		10.8			48	30%	Q-(

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	

Batch 8020552 - EPA 3546 Soil

Duplicate (8020552-DUP2) Prepared: 02/09/18 10:46 Analyzed: 02/12/18 14:36

QC Source Sample: AB-01 5.5-6.5 ft (A8A0918-01RE1)

EPA 8270D (SIM)

Surr: p-Terphenyl-d14 (Surr) Recovery: 83 % Limits: 54-127 % Dilution: Ix

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 16 of 26

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	issolved He	xavalent	Chromiu	m by SM3	500-Cr B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8011171 - Method Pi	rep: Aq						Wat	er				
Blank (8011171-BLK1)				Pre	pared: 01/	30/18 10:13	Analyzed:	01/30/18 10	0:18			
SM 3500-Cr B (Diss)												
Hexavalent Chromium	ND		0.00500	mg/L	1							
LCS (8011171-BS1)	.CS (8011171-BS1) Prepared: 01/30/18 10:13 Analyzed: 01/30/18 10:19											
SM 3500-Cr B (Diss)												
Hexavalent Chromium	0.107		0.00500	mg/L	1	0.100		107	85-115%			
Duplicate (8011171-DUP1)				Pre	pared: 01/	30/18 10:13	Analyzed:	01/30/18 10):19			
QC Source Sample: AB-06 GW (A	8A0918-12)											
SM 3500-Cr B (Diss)												
Hexavalent Chromium	ND		0.00500	mg/L	1		ND				20%	
Matrix Spike (8011171-MS1)				Pre	pared: 01/	30/18 10:13	Analyzed:	01/30/18 10):19			
QC Source Sample: AB-06 GW (A	8A0918-12)											
SM 3500-Cr B (Diss)												
Hexavalent Chromium	0.106		0.00510	mg/L	1	0.100	ND	106	85-115%			

Apex Laboratories

Philip Newsberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

QUALITY CONTROL (QC) SAMPLE RESULTS

			Tota	Metals by	EPA 602	20 (ICPMS	5)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020424 - EPA 3051A							Soi	l				
Blank (8020424-BLK1)				Prep	oared: 02/	06/18 11:17	Analyzed:	02/06/18 1	4:33			
EPA 6020A												
Arsenic	ND		1.00	mg/kg wet	10							
Barium	ND		1.00	"	"							
Cadmium	ND		0.200	"	"							
Chromium	ND		1.00	"	"							
Lead	ND		0.200	"	"							
Mercury	ND		0.0800	"	"							
Selenium	ND		1.00	"	"							
Silver	ND		0.200	"	"							
LCS (8020424-BS2)				Prep	oared: 02/	06/18 11:17	Analyzed:	02/06/18 1:	5:19			
EPA 6020A												
Arsenic	47.6		1.00	mg/kg wet	10	50.0		95	80-120%			Q-10
Barium	49.0		1.00	"	"	"		98	"			Q-10
Cadmium	47.8		0.200	"	"	"		96	"			Q-10
Chromium	49.9		1.00	"	"	"		100	"			Q-10
Lead	50.1		0.200	"	"	"		100	"			Q-10
Mercury	1.00		0.0800	"	"	1.00		100	"			Q-10
Selenium	26.3		1.00	"	"	25.0		105	"			Q-10
Silver	25.7		0.200	"	"	"		103	"			Q-16

Apex Laboratories

Philip Newsberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolve	ed Metals	by EPA	6020 (ICPI	MS)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8020389 - Matrix N	Matched Dire	ct Inject	t				Wa	ter				
Blank (8020389-BLK2)				Pro	epared: 02/	05/18 12:28	Analyzed:	02/06/18 1	4:51			
EPA 6020A (Diss)												
Arsenic	ND		1.00	ug/L	1							Q-16
Barium	ND		1.00	"	"							Q-16
Cadmium	ND		0.200	"	"							Q-16
Chromium	ND		1.00	"	"							Q-16
Lead	ND		0.200	"	"							Q-16
Mercury	ND		0.0800	"	"							Q-16
Selenium	ND		1.00	"	"							Q-16
Silver	ND		0.200	"	"							Q-16
LCS (8020389-BS2)				Pro	epared: 02/	05/18 12:28	Analyzed:	02/06/18 1	5:19			
EPA 6020A (Diss)												
Arsenic	52.9		1.00	ug/L	1	55.6		95	80-120%			Q-16
Barium	55.8		1.00	"	"	"		100	"			Q-16
Cadmium	56.2		0.200	"	"	"		101	"			Q-16
Chromium	55.0		1.00	"	"	"		99	"			Q-16
Lead	56.2		0.200	"	"	"		101	"			Q-16
Mercury	1.09		0.0800	"	"	1.11		98	"			Q-16
Selenium	27.9		1.00	"	"	27.8		100	"			Q-16
Silver	27.9		0.200	"	"	"		101	"			Q-16

Apex Laboratories

Philip Newsberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 19 of 26

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch 8011236 - Total Solids (Dry Weight) Soil												
Duplicate (8011236-DUP2)				Prep	ared: 01/	31/18 12:57	Analyzed:	02/01/18 08	:06			
QC Source Sample: AB-05-5.5-6.5	ft (A8A0918-0	07)										
EPA 8000C												
% Solids	86.7		1.00	% by Weight	1		86.5			0.2	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler Project: American Industries
7376 SW Durham Road Project Number: 661M133170

7376 SW Durham Road Project Number: 661M133170 Reported:
Portland, OR 97224 Project Manager: Joel Eledge 02/13/18 19:41

SAMPLE PREPARATION INFORMATION

		Diese	el and/or Oil Hydrod	arbons by NWTPH-D	(
Prep: EPA 3510C (I	Fuels/Acid	Ext.)			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8020297							
A8A0918-08	Water	NWTPH-Dx	01/29/18 11:30	02/01/18 12:46	940mL/5mL	1000mL/5mL	1.06
A8A0918-10	Water	NWTPH-Dx	01/29/18 12:45	02/01/18 12:46	1030 mL/5 mL	1000mL/5mL	0.97
Batch: 8020338							
A8A0918-02	Water	NWTPH-Dx	01/29/18 09:30	02/02/18 10:26	940mL/5mL	1000 mL/5 mL	1.06
A8A0918-04	Water	NWTPH-Dx	01/29/18 10:10	02/02/18 10:26	970mL/5mL	1000mL/5mL	1.03
A8A0918-06	Water	NWTPH-Dx	01/29/18 10:55	02/02/18 10:26	1000 mL/5 mL	1000 mL/5 mL	1.00
Prep: EPA 3546 (F	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8020298							
A8A0918-01	Soil	NWTPH-Dx	01/29/18 09:15	02/01/18 12:51	10.53g/5mL	10g/5mL	0.95
A8A0918-03	Soil	NWTPH-Dx	01/29/18 10:00	02/01/18 12:51	10.27g/5mL	10g/5mL	0.97
A8A0918-05	Soil	NWTPH-Dx	01/29/18 10:45	02/01/18 12:51	10.65g/5mL	10g/5mL	0.94
A8A0918-07RE1	Soil	NWTPH-Dx	01/29/18 11:20	02/01/18 12:51	10.44g/5mL	10g/5mL	0.96
A8A0918-09	Soil	NWTPH-Dx	01/29/18 12:40	02/01/18 12:51	10.12g/5mL	10g/5mL	0.99
		Polyarom	natic Hydrocarbons	(PAHs) by EPA 8270D	SIM		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8020552							
A8A0918-01RE1	Soil	EPA 8270D (SIM)	01/29/18 09:15	02/09/18 10:46	10.35g/5mL	10g/5mL	0.97
A8A0918-03	Soil	EPA 8270D (SIM)	01/29/18 10:00	02/09/18 10:46	10.42g/5mL	10g/5mL	0.96
A8A0918-07	Soil	EPA 8270D (SIM)	01/29/18 11:20	02/09/18 10:46	10.74g/5mL	10g/5mL	0.93
		Dissol	ved Hexavalent Chr	omium by SM3500-Cr	В		
Prep: Method Prep	: Aa			<u> </u>	Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8011171			•	*			
A8A0918-08	Water	SM 3500-Cr B	01/29/18 11:30	01/30/18 10:13	25mL/25mL	25mL/25mL	1.00
A8A0918-12	Water	(Diss) SM 3500-Cr B (Diss)	01/29/18 14:50	01/30/18 10:13	25mL/25mL	25mL/25mL	1.00
			Total Metals by EF	PA 6020 (ICPMS)			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Merenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler
Project: American Industries
Project Number: 661M133170

Portland, OR 97224 Project Manager: Joel Eledge

Reported: 02/13/18 19:41

SAMPLE PREPARATION INFORMATION

			Total Metals by EF	PA 6020 (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8020424							
A8A0918-07	Soil	EPA 6020A	01/29/18 11:20	02/06/18 11:17	0.461 g/50 mL	0.5g/50mL	1.08
A8A0918-11	Soil	EPA 6020A	01/29/18 14:40	02/06/18 11:17	0.515g/50mL	0.5g/50mL	0.97
		D	issolved Metals by	EPA 6020 (ICPMS)			
Prep: Matrix Match	ed Direct	Inject			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8020389							
A8A0918-08RE1	Water	EPA 6020A (Diss)	01/29/18 11:30	02/05/18 12:28	45mL/50mL	45mL/50mL	1.00
A8A0918-12RE1	Water	EPA 6020A (Diss)	01/29/18 14:50	02/05/18 12:28	45mL/50mL	45mL/50mL	1.00
			Percent Dr	y Weight			
Prep: Total Solids	(Dry Weigl	<u>nt)</u>			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8011236							
A8A0918-01	Soil	EPA 8000C	01/29/18 09:15	01/31/18 12:57	1N/A/1N/A	1N/A/1N/A	NA
A8A0918-03	Soil	EPA 8000C	01/29/18 10:00	01/31/18 12:57	1N/A/1N/A	1N/A/1N/A	NA
A8A0918-05	Soil	EPA 8000C	01/29/18 10:45	01/31/18 12:57	1N/A/1N/A	1N/A/1N/A	NA
A8A0918-07	Soil	EPA 8000C	01/29/18 11:20	01/31/18 12:57	1N/A/1N/A	1N/A/1N/A	NA
A8A0918-09	Soil	EPA 8000C	01/29/18 12:40	01/31/18 12:57	1N/A/1N/A	1N/A/1N/A	NA
A8A0918-11	Soil	EPA 8000C	01/29/18 14:40	01/31/18 12:57	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 22 of 26

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster WheelerProject:American Industries7376 SW Durham RoadProject Number:661M133170Reported:Portland, OR 97224Project Manager:Joel Eledge02/13/18 19:41

Notes and Definitions

The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not

Qualifiers:

F-03

S-05

M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-16	Reanalysis of an original Batch QC sample.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
R-02	The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.

Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

Notes and Conventions:

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

representative of the fuel pattern reported.

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Philip Menterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 23 of 26

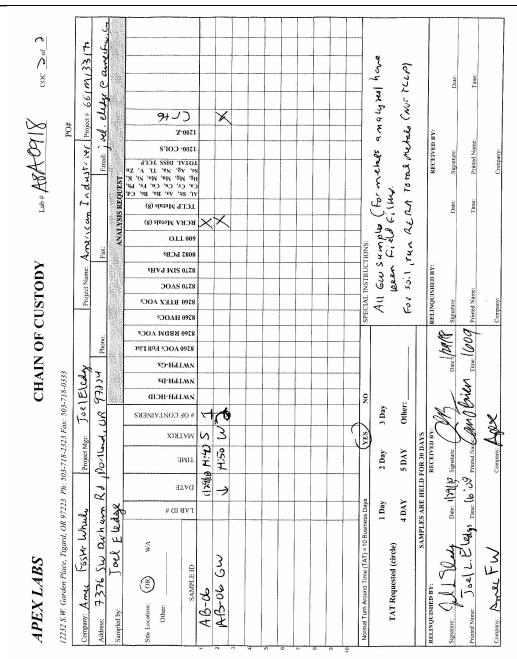
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler
Project: American Industries

Project Number: 661M133170

Portland, OR 97224
Project Manager: Joel Eledge
02/13/18 19:41

DAPLE Project Mg DATE DATE DATE DATE	NATPH-GX NATPH-PCX NATPH-HCID NATRIX A MATRIX A MATRIX	8700 HAOC? 8700 BDNI AOC? 8700 AOC? Leil ITel	BCRA Nicrais (8)		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1500-COT2	PO# Project # 466/71 / 2 2170 Project # 466/71 / 2 2170 1200-COLS 1200-CO
AB-05 - 6.0	ANTPH-GE NWTPH-GID NWTPH-GID NWTPH-GID NWTPH-GID NWTPH-GID	8700 MOC? L'III LIST 8200 WBDMI VOC.8 8200 VOC.8 Full LIST	8087 bCB8 8087 bCB8 \$ 8087 bCB8 \$ 8710 8708 8710 8708			1500-X	a uneche
mpled by: Jet Elected Other: Al3-01 SoS-6.5 A 1134 09:00 Al3-02 - 6.0 Al3-02 - 6.0 Al3-02 - 6.0 Al3-03 - 6.0 Al3-03 - 6.0 Al3-03 - 6.0	V X NATPH-DX NATPH-HCID	8700 HAOC? 8700 BBDM AOC? 8700 AOC? Enl I I'el	8770 SIM PAHs 8270 SIM PAHs	RCRA Metals (8) 28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	193234	1700-7 1700-7 1700-COIZ	
OR WA AMPLE ID LAB ID # LOLU S.SL.S.A. LOLU LOLU - G.S S C. S. A. LOLU - G.S T.S. A. C.S T.S. A. C.S.	AMALEH-DZ AMALEH-HCID AMALEH-HCID AMALEH-HCID	8700 HAOC? 8700 WBDM AOC? 8700 AOC? Enti Tigt	SHV4 WIS 0.78 ** *** *** *** *** *** *** ***	RCRA Metals (8)	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pp, Hg, Mg, Ma, Yd, Ni, K, Se, Ag, Tl, Y, Za, TOTAL DISS TCLP	Z-0071	
1941 1941 1941 1941 1941 1941 1941 1941	.MN	0978 0978 0978	0728	всв	(γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ		
6.5 ft (127/4)			* *				
1			*				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_		*				
1.5 ft. (c						-	
1.5 H. (ر - 3						
1000	× - 9		*				
75.00	5 - X						
TO-05-3-3-63 FF	× - s		*	X			7777700
AB-05 GW (11:30)	Ž W			W X	8	X	TO THE PERSON NAMED IN COLUMN TO THE
2000 AB-04-6,5-7,5H	X		*				
AB-04 GW 12:45 W	- 3/						
Normal Turn Around Time (TAT) = 10 Business Days YES	ES NO	SPECIA	SPECIAL INSTRUCTIONS:	4S:			
1 Day 2 Day	3 Day		* Run PAMSON Dx detects conly	the cost	detects,	Floor	
TAT Requested (circle) 4 DAY 5 DAY	Other:	A.I.	All metals have been tield filtered	have bes	Z +; e(d F. 176	3
SAMPLES ARE HELD FOR 30 DAYS	, s	J.	For soil, RCRAS to tak metals (NOT TELP)	CRAST	Utal Met	ile (Mor	76601
RELINQUISHED BY: RECEIVED BY	DCX XB	RELINQ	RELINQUISHED BY:		RECEIV	RECEIVED BY:	
Signature: Jeh Clery Date: 178 [18 Signature:	No.	19/18 Signature		Date:	: Signature:	8	Date;
Printed Name: 334 L. Elasky Tone: 17:08 Printed Name:	any Blaken Time 6009	1009 Printed Name	ame:	Time:	Printed Name	lame:	Time:
Commence Are F. Commence	Z .				Ç		


Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Menberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster WheelerProject:American Industries7376 SW Durham RoadProject Number:661M133170Reported:Portland, OR 97224Project Manager:Joel Eledge02/13/18 19:41

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Namberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

AMEC Foster Wheeler
Project: American Industries

7376 SW Durham Road
Portland, OR 97224
Project Manager: Joel Eledge
Project Manager: Joel Eledge

	APEX LABS COOLER	RECEIPT FORM	
Client: Ame	C	Element WO#: A8	0918
Project/Project #:A	mencan lydustrie		
Delivery info: Date/Time Received:C Delivered by: ApexC Cooler Inspection Chain of Custody Included Signed/Dated by Client? Signed/Dated by Apex? Temperature (deg. C) Received on Ice? (Y/N) Temp. Blanks? (Y/N) Ice Type: (Ge/Real/Other Condition: Cooler out of temp? (Y/N) If some coolers are in temp	lient ESS FedEx UP Inspected by: Yes No Yes No Yes No Cooler #1 Cooler #2 Cooler 3 9 Possible reason why: De and some out, were green dot as	S Swift Senvoy SDS: Swift Senvoy SDS: White Senvo	er#6 Cooler#7
Samples Inspection: Ins	spected by:: No Comments::	1/29/1 6 @ 1410	
A19-03 on a	Yes No X Comments: Ab - Ole Vad ved Appropriate for Analysis? Y	5 AB-06-65-7.	
Do VOA Vials have Visib	e Headspace? Yes No red and Appropriate (except VOA	NA	
Labeled by W	itness: Cooler Inspec		intact Form: Y Subsample Youldw = \N

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Neimberg