

DRAFT

Basis of Design Report Willamette Cove Upland Facility Portland, Oregon

> Prepared for: Port of Portland

September 27, 2024 32-23011207

DRAFT

Basis of Design Report Willamette Cove Upland Facility Portland, Oregon

Prepared for: Port of Portland

September 27, 2024 32-23011207

DRAFT

Steve Misner, RG Senior Associate Hydrogeologist

DRAFT

Herb Clough, PE Principal Engineer

Table of Contents

1.0 INTRODUCTION	1
1.1 Purpose and Objectives	1
1.2 Regulatory Framework	1
1.3 Coordination with In-Water Remedial Design Processes	3
1.4 Report Organization	4
2.0 SITE DESCRIPTION AND CONCEPTUAL SITE MODEL REFINEMENT	4
2.1 Site Description and Physical Setting	4
2.2 Remedial Design Dataset	8
2.3 Nature and Extent of Constituents of Concern	8
2.4 Data Gap Identification	11
3.0 PERFORMANCE STANDARDS AND DESIGN ELEMENTS	11
3.1 Preliminary Remedial Design	11
3.2 Performance Standards	12
3.3 Design Elements	14
3.4 Institutional and Engineering Controls	24
3.5 Permits/Permit Exemptions	25
3.6 Future Land Use	26
3.7 Easement and Access Requirements	26
3.8 Community Impacts	27
3.9 Constructability Considerations	27
4.0 MONITORING AND MAINTENANCE	28
4.1 Construction Monitoring	28
4.2 Verification Sampling of Soil Concentrations	28
4.3 Long-Term Remedy Performance Monitoring	
4.4 Remedy Maintenance	
5.0 DESIGN STUDIES	30
5.1 Supplemental Remedial Design Investigation	30
5.2 Remnant Structures Evaluation	30
5.3 Borrow Source Identification	30
5.4 Erosion Protection Evaluation	30
5.5 Seismic Design Evaluation	31
5.6 Climate Change	31
5.7 Additional RD Investigations	31
6.0 REMEDIAL DESIGN STAGES, CONCEPTUAL SEQUENCING PLAN, AND SCHEDULING	31
6.1 Remedial Design/Remedial Action Work Plan	32
6.2 30% Design	
6.3 60%, 95% and 100% Design	
6.4 Remedial Action Implementation	33
Willamette Cove Basis of Design Report	Page i

DRAFT

Tables

- 1 Receptor Specific Risk-Based Concentrations, Preliminary Remediation Goals, and Hot Spot Values for Soil – Human Health
- 2 Receptor Specific Risk-Based Concentrations, Preliminary Remediation Goals, and Hot Spot Values for Soil – Ecological Receptors
- 3 Cleanup Levels and Hot Spot Values for Soil

Figures

- 1 Site Location Map
- 2 Facility Plan
- 3 Site Plan with Approximate Drip Line of Native Trees
- 4 Sampling Areas
- 5 Hot Spot Exceedances and Preliminary Removal Depths
- 6A Ecological Hazard Quotient Rank Order Curves
- 6B Ecological Hazard Index Rank Order Curves
- 7 Preliminary Excavation Depths
- 8 Plant Residual Hazard Quotients
- 9 Invertebrate Residual Hazard Quotients
- 10 Bird Residual Hazard Quotients
- 11 Mammal Residual Hazard Quotients
- 12 Site Restoration and Cap Details
- 13 Preliminary Cap Thickness
- 14 Preliminary Net Grade Change

Appendices

- A Preliminary Evaluation of Excavation to Address Human Health Risk
- B Preliminary Evaluation of Cap Requirements

1.0 Introduction

Apex Companies, LLC (Apex) prepared this Basis of Design Report (BODR) for the Willamette Cove Upland Facility (the Facility) as part of Voluntary Cleanup Program (VCP) Agreement EC-NWR-00-26 between the Port of Portland (Port), Metro, and the Oregon Department of Environmental Quality (DEQ). The Facility is defined in the DEQ Environmental Cleanup Site Information (ECSI) database as ECSI No. 2066. For the BODR, the site consists of that portion of the upland Facility landward of the top of the riverbank (referred to as the Site). Investigation and cleanup of the riverbank, beach, and in-water contamination are being conducted separately under the Portland Harbor Superfund Site (PHSS) in-water actions overseen by the U.S. Environmental Protection Agency (EPA).

1.1 Purpose and Objectives

The purpose of this BODR is to build on the Remedial Design Investigation (RDI) Evaluation (Apex, 2023a) by refining the scope of the selected remedial alternative and to describe the objectives, overall approach, schedule, milestone check in points, and specific project elements of the final remedy.

The objectives of the BODR include:

- 1. Summarize the results of the RDI and discuss if identified data gaps have been adequately investigated such that the remedial design (RD) and remedial action (RA) can proceed;
- Summarize existing site conditions and site factors which affect technology assignments in the record of decision (ROD), including detailed reasonably anticipated future land use information and other data;
- 3. Summarize design criteria applicable to the Site;
- 4. Identify a preferred remedial approach based on consistency with the ROD;
- 5. Identify long-term monitoring and maintenance considerations for the Site;
- 6. Identify needed design studies for RD, if any; and
- 7. Describe a sequencing plan as well as an overall schedule to complete the design studies, RD, and RA for the Site.

1.2 Regulatory Framework

Since 1988, a succession of site-specific investigations and removal actions have been implemented at the Facility. The Facility is defined within the DEQ ECSI database as No. 2066. In November 2000, the Port and Metro entered into a voluntary agreement (ECVC-NWR-00-26) with DEQ to perform a remedial investigation/feasibility study (RI/FS) and implement any needed source control measures to prevent releases to Portland Harbor. In December 2000, the EPA identified the Portland Harbor area of the lower Willamette

River as a Superfund Site (ID No. ORSFN1002155) and placed it on the National Priorities List (NPL) due to concerns regarding contamination in Willamette River sediments posing risks to human health and the environment. The EPA selected a final action for Portland Harbor in their January 2017 ROD.

In 2001, the EPA entered into a Memorandum of Understanding (MOU) with the DEQ, six federally recognized Native American Tribes, the National Oceanic and Atmospheric Administration (NOAA), the U.S. Department of the Interior, and the Oregon Department of Fish and Wildlife (ODFW). Under this MOU, the DEQ is the lead agency for addressing sources of contamination in the upland portions of the Superfund Site (i.e., source control), and the EPA is the support agency.

Prior to 2000, environmental assessments were conducted at the Facility related to property transfers. The Facility is located within Portland Harbor, so following designation of the Portland Harbor Superfund Site, the DEQ determined that the Facility could pose a threat as a source of contamination to the harbor and that further upland assessment was required.

The Port and Metro conducted the RI of the Facility between April 2001 and September 2002. The RI combined historical information (prior to 2001) and results of the investigation to develop a conceptual site model and a list of contaminants of interest. Multiple subsequent investigations were conducted between 2002 and 2017 to further investigate areas identified in the RI and resolve data gaps. Interim removal actions were completed in 2004 to address liquid phase petroleum at the inner cove (Ash Creek, 2005), in 2008 to remove metals hot spots on the eastern Central Parcel (Ash Creek/Newfields, 2008), and in 2015/2016 to remove human health hot spots, primarily on the Central Parcel (Apex, 2016). These removal actions included off-site disposal of approximately 20, 1,000, and 5,000 tons of soil, respectively. An FS and a source control evaluation were conducted in 2019 (Apex, 2019).

Based on the FS, the DEQ defined the remedial action objectives (RAOs) and selected a final remedial action for the Site in the March 2021 ROD (DEQ, 2021). The ROD and this BODR address soil only. Groundwater is being further assessed through ongoing source control evaluation, and if needed, groundwater cleanup will be addressed in a separate action. In summary, the selected soil remedial action in the ROD consists of the following elements:

- Excavation and off-site disposal of soil exceeding hot spot levels for human health;
- Excavation and off-site disposal of soil exceeding non-dioxin/furan (e.g., metals including mercury) hot spot levels for ecological health;
- Consolidation and on-site capping¹ (using a demarcation layer and minimum 3 feet of clean material) of a) soil posing an excess risk to humans but below hot spot levels; and b) soil with higher risk levels relative to plants and animals, including hot spots;

¹ In 2022, the Metro Council elected to implement the contingency remedy in the ROD whereby soil designated for excavation and on-site capping in a consolidation cell will instead be disposed of off-site in a regulated landfill.

- Allowance for alternative techniques to save native trees during excavations;
- In-place covering of residual soil contamination posing a lower-level risk to plants and animals following off-site disposal and on-site consolidation¹ and capping. Cover thickness would be determined based on the level of residual risk; however, a minimum of 1 foot of clean topsoil will be necessary with 3 feet of clean soil cap in areas with remaining ecological hot spots;
- Long-term monitoring and maintenance of all engineering controls, including consolidation area¹ caps and soil covers. A cap inspection and maintenance plan, a contaminated media management plan, and a community and outreach plan will be developed;
- Institutional controls, including recording of a deed restriction or equivalent, with the property identifying the nature of contamination, use restrictions (e.g., no residential usage), and necessary long-term controls; and
- A contingency remedy incorporated by DEQ that allows for Metro to elect to perform additional measures during remedial design and in consultation with DEQ to align with final plans for use of the Site.² Under this framework, Metro can eliminate or greatly reduce the volume of soil to be consolidated on-site and instead transport the excavated soil off-site for disposal at a regulated waste facility.

Implementation of the selected remedy (including the contingency remedy that Metro has elected to perform) will allow for full access to the Site, on and off trails, in accordance with Metro's intended future use as a nature park.

1.3 Coordination with In-Water Remedial Design Processes

The Site is located upland of the Willamette Cove In-Water Project Area that is the portion of the Portland Harbor Superfund Site between approximately river miles (RMs) 6.1 and 6.9 along the east bank of the Willamette River. The Site remedial design process will require ongoing coordination with the In-Water Remedial Design Group (In-Water Group) to check that the selected remedy satisfies the remedial action objectives of the Site and the in-water project within the transition area, primarily the riverbank. To achieve this, both parties are engaged in ongoing regularly scheduled coordination meetings and shared design document review, and opportunities for realizing efficiencies in remedial actions are being discussed. In addition, Metro property ownership extends from the upland area to the ordinary low water line (OLWL) on the riverbank, and Metro and the Port will coordinate with the In-Water Group on future land-use planning goals, long term maintenance requirements and community priorities.

² As indicated in the prior footnote, the Metro Council has elected to implement this contingency remedy.

1.4 Report Organization

This document is organized in the following manner:

- Section 2 provides a description of the Facility and the Site and refinement of the conceptual site model (Objectives 1 and 2);
- Section 3 presents design criteria and performance standards (Objectives 3 and 4);
- Section 4 summarizes general monitoring and maintenance requirements (Objective 5);
- Section 5 describes design studies (Objective 6);
- Section 6 presents remedial design stages, the conceptual sequencing plan, and scheduling (Objective 7); and
- Section 7 is a list of references.

2.0 Site Description and Conceptual Site Model Refinement

2.1 Site Description and Physical Setting

The Site is located along the east bank of the Willamette River in the St. Johns area of Portland, Oregon. Figure 1 shows the location of the Site between River Miles 6 and 7 on the Willamette River and is mostly in Section 12 of Township 1 North, Range 1 West, Willamette Meridian. The Facility has been owned by Metro since 1996. Figure 2 provides a current plan of the Site, Facility, and the surrounding area. For the purposes of describing the Site, it has been divided into West, Central, and East Parcels as shown on Figure 2.

2.1.1 Extent of the Site

The Site is approximately 3,000 feet long and varies from 80 to 650 feet in width. The edge of the cove is up to 800 feet from the main river channel; it was created primarily as a result of the placement of the embankment leading up to the Burlington Northern Santa Fe (BNSF) railroad bridge. The Facility as defined in the VCP Agreement covers approximately 24 acres that are inland from the OLWL. However, the scope of work for the VCP Agreement limits the work to areas inland from the mean high water (MHW) line (defined as 13.3 feet, North American vertical datum 88 [NAVD88]) to the property line with the Union Pacific Railroad (UPRR). DEQ and EPA have agreed that the riverbank portion of the Facility (defined as the area from the waterline to the top of bank [TOB]) will be addressed as part of in-water activity. Although the FS included the upper portion of the riverbank, the ROD and upland RA work does not include any portion of the Facility from the TOB. Therefore, as stated in Section 1.0, the Site for the RA is that portion of the Facility from the TOB to the inland property line and covers an area of approximately 18.63 acres, divided as follows: West Parcel (4.28 acres); Central Parcel (7.76 acres); and East Parcel (6.59 acres).

Willamette Cove Basis of Design Report Willamette Cove Upland Facility September 27, 2024 X 32-23011207

2.1.2 Structures and Improvements

There are no buildings on the Site. Indications of previous structures include remnant debris, a large concrete slab foundation, a paved roadway in the eastern portion of the Site, and several smaller concrete slabs, vaults, and foundations.

Nine groundwater monitoring wells are present on the Site, generally located along the top of bank (see Figure 2).

Per the City of Portland GIS (<u>www.portlandmaps.com</u>), a buried City of Portland stormwater line crosses the Site near the west end of the Central Parcel. Associated with the stormwater line are three concrete manholes. The stormwater line consists of 18-inch concrete pipe between the manholes. From the last manhole to the outfall on the riverbank, the line is constructed of 30-inch concrete pipe.

2.1.3 Topography

The Site is situated on a terrace created by historical filling. Overall, the topography of this terrace is relatively flat, with an elevation ranging between 30 and 45 feet (all elevations in the report refer to NAVD88 unless otherwise noted). The surface elevations generally decrease from the West Parcel (35 to 45 feet) to the Central Parcel (30 to 40 feet) and to the East Parcel (30 to 35 feet). Berms and hummocks are occasionally present on the West Parcel and the edges of the East Parcel.

Adjacent to the Site, the riverbank is generally a steep slope down to the river. The BNSF railroad embankment along the southeast perimeter of the cove rises steeply approximately 30 feet higher than the East Parcel. North of the Site, across the UPRR tracks, is a naturally formed bluff rising 50 to 60 feet above the West Parcel, 60 to 120 feet above the Central Parcel, and 120 feet above the East Parcel. This bluff rises at approximately 5H:4V adjacent to the East and Central Parcels. Near the West Parcel, the slope is approximately 10H:3V.

2.1.4 Vegetation and Habitat Types

In 2015, Metro conducted a vegetation survey of the Facility that identified approximately 1,000 native trees on the Site. Figure 3 shows the general extent of native trees on the Site. Native species identified on the Site include:

- Pacific Madrone;
- Bigleaf Maple;
- Oregon Ash;
- Black Cottonwood;
- Oregon White Oak;

Willamette Cove Basis of Design Report Willamette Cove Upland Facility September 27, 2024 X 32-23011207

- Pacific Willow; and
- Scouler's Willow.

There are four major habitat types at or adjacent to the Site: shallow water, riparian forest, oak-madrone woodland, and mixed woodland.

2.1.5 Surrounding Properties

The Site is bordered on the northeast by the UPRR tracks. Farther to the northeast is a vegetated bluff. A residential area is present on top of the bluff and farther inland. Bordering the northwest side of the Site is a vacated portion of North Richmond Avenue with industrial property beyond. Toward the river, the Site is bordered by the riverbank and the surface water of the cove and Willamette River. To the southeast is an embankment for the BNSF railroad bridge over the Willamette River. On the opposite side of this embankment is the former McCormick & Baxter Creosoting Company, a federal Superfund Site (McCormick & Baxter). There is a sediment cap made of a concrete block mat and layers of sand and gravel adjacent to McCormick and Baxter that extends into Willamette Cove (see Figure 2).

2.1.6 Cultural Resources

A cultural resource survey of the Facility was conducted in 2003 (Archaeological Investigations Northwest, Inc., 2003) with the conclusion that there are no significant archaeological or historical resources identified. However, it is possible that significant resources may be encountered if future activity were to disturb the original floodplain surface and underlying native soils north and east of the 1910 shoreline. In addition, during part of the 2016 removal action, an archaeologist was on site to observe the debris encountered in one area of the Central Parcel. The archaeologist concluded that the brick and other debris encountered should not be recorded as an archaeological site.

Willamette Cultural Resources Associates (Willamette CRA) conducted a review of selected previous cultural resource works for the Site. An updated Willamette CRA review is being drafted and is intended to determine the status of previously completed cultural resources work at the Site and recommend future steps for consideration. Recommendations originating from the updated study that are applicable to the upland remedial action will be addressed in RD.

2.1.7 Geology

Regional Geology. The Site is in the southwestern portion of the Portland Basin, which consists of an elongated structural trough bounded by the Tualatin Mountains to the west, the Lewis River to the north, the foothills of the Cascade Range to the east, and the Clackamas River to the south (McFarland and Morgan, 1996 [United States Geological Survey 2470-A]). In the Portland area, the Columbia River Basalt forms the basement unit of the basin. Sediments filling the basin consist of the Troutdale Formation overlain by

quaternary alluvial and catastrophic flood deposits. In localized areas, surface soils include fill placed by human activity.

The banks of the Willamette River within Portland Harbor are characterized by fill material, fine-grained flood deposits, and recent alluvium (collectively referred to as FFA) and encompass a broad range of soil textures and hydraulic properties. The FFA unit is the primary unit of importance in characterizing the interactions between upland groundwater and the river because it forms most of the river channel as well as the adjacent uplands, and most of the upland impacted soil and groundwater occurs within this unit (EPA, 2016).

Site Geology. The geology beneath the Site consists of fill and alluvial deposits overlying the Troutdale Formation. Early maps of the area indicate the current upland portion of the Site consisted of a strip of lowland adjacent to the current UPRR railroad tracks. Based on historical maps and photographs, fill was placed on this lowland and outward into the Willamette River prior to and concurrent with development. The thickness of the fill across the Site is generally in the range of 20 to 30 feet; however, in places, it could be up to 60 feet (such as in a former log pond on the West Parcel filled in the early 1970s).

The West Parcel consists of a mixture of roughly equal amounts of silty sand, sandy silt, and silt with some clean sand. The Central and East Parcels consist mostly of sand or silty sand. The observed soil types are consistent with the known fill history where much of the Central and East Parcels were filled in a few large events, but the West Parcel was filled in multiple small events from a variety of sources (Apex, 2019).

2.1.8 Existing Conditions and Site Use

The Site is currently vacant, covered with invasive and native vegetation, and it provides habitat for opportunistic use by wildlife. The Site is not managed for any human use and is posted to prohibit trespassing. However, trespassers do come on the Site (e.g., persons experiencing houselessness, joggers/walkers, people seeking casual recreation, and anchored boaters coming ashore for various reasons).

The Site is currently zoned under the City of Portland Zoning Title 33 as an open space (OS) zone with "g" (River General) and "q" (River Water Quality) greenway overlay zones (City of Portland, 2023a). The open space zone is intended to preserve and enhance public and private open, natural, and improved park and recreational areas. Greenway regulations are also intended to protect, conserve, enhance, and maintain the natural, scenic, historical, economic, and recreational qualities of lands along Portland's rivers. Specifically, the "g" overlay is intended to allow public use and enjoyment of the waterfront, to enhance the river's scenic and natural qualities, and to implement the City of Portland's Willamette Greenway responsibilities, including a regional trail. The "q" overlay is designed to protect the functional values of water quality resources by limiting or mitigating the impact of development in the 50- to 200-foot setback from the top of bank. Nearby zoning includes commercial (EG2), residential (R2 and R5), open space (OS), and industrial (IH and IG2).

Willamette Cove Basis of Design Report Willamette Cove Upland Facility September 27, 2024 X 32-23011207 The Site is included in a citywide inventory that identified scenic resources (City of Portland, 2023b) and is identified as a scenic viewpoint. The zoning map shows a public-use trail through the Site (City of Portland, 2023a). This trail is proposed as part of the North Portland Greenway Trail Alignment Plan adopted in 2013. The trail alignment was originally adopted in 1987 as part of the Willamette Greenway Trail. The segment traversing Willamette Cove is a gap in the alignment identified in the Regional Trail Strategy, which makes eliminating gaps a priority (City of Portland, 2016).

Metro is planning to develop a nature park at Willamette Cove that will provide fish and wildlife habitat, offer low-impact recreation activities, and incorporate nature-friendly amenities. The Site's habitat and conservation objectives will be balanced with human access. Recreational opportunities will be determined after extensive Tribal and community conversations and would likely include the North Portland Greenway Trail, secondary trails, nature viewing points, beach access, water access, environmental education programs, cultural elements and interpretation, art, and information signs.

2.2 Remedial Design Dataset

The Port and Metro conducted an RDI in 2022 in accordance with the DEQ-approved *RDI Work Plan* (Apex, 2022). The results of the RDI were presented in the *Draft RDI Evaluation Report* (Apex, 2023a). The DEQ provided written comments on the *Draft RDI Evaluation Report* in a letter dated July 31, 2023 (DEQ, 2023), which requested a response from the Port and Metro to DEQ's comments in lieu of a revised report. The Port and Metro provided responses to DEQ's July 2023 comments in a letter dated October 4, 2023 (Apex, 2023b).

Two primary data types were collected during the RDI: incremental sampling methodology (ISM) samples and 5-point composite samples. The decision units (DUs) sampled during the RDI are shown on Figure 4. The RDI data will be used to prepare the remedial design. The data are presented in Tables 2a through 5b in the RDI report (Apex, 2023a). For decision units where replicate samples were collected, the design will be based on the maximum concentration among the replicates within each DU for each constituent of concern (COC).

2.3 Nature and Extent of Constituents of Concern

2.3.1 Nature and Extent Summary

The goal of the RD investigation was to laterally and vertically (to a depth of 3 feet) delineate COCs exceeding relevant screening levels. The results of the sampling described above demonstrated the following:

- COCs exceeding preliminary remediation goals (PRGs) in soil extend laterally throughout the entire Site;
- In most DUs, COCs exceeding PRGs in soil extend at least to the depth of sampling during this investigation (3 feet below ground surface [bgs]);

- Except for low detections in a few samples (maximum exceedance ratio of less than 1.2), COC concentrations in soil beneath the concrete slabs on the East Parcel are below PRGs;
- Primary ecological risk drivers are total dioxins/furans toxic equivalent (D/F TEQ), mercury, and lead
 on all parcels and polychlorinated biphenyls (PCBs) on the West Parcel. Total D/F TEQ and mercury
 ecological hot spots are present on the Central and East Parcels, and PCBs, mercury, and chromium
 ecological hot spots are present on the West Parcel. One replicate sample on the Central Parcel
 was found to be at the lead ecological hot spot level; and
- Primary human health risk drivers are total D/F TEQ (all parcels) and carcinogenic polycyclic aromatic hydrocarbons (cPAHs; Central Parcel). Based on the RDI data, there are no human health hot spots remaining on the Site.

2.3.2 Vertical Concentration Trends

Based on historical development and site use presented in the remedial investigation (Hart Crowser, 2003), a general model for vertical contaminant trends was developed and summarized as follows:

- The East Parcel and much of the Central Parcel were filled early in the 20th century, prior to significant industrial development in Portland Harbor. These fills were sourced from dredge sands and possibly fill from development of the adjacent BNSF cut/embankment. Because these fills were placed prior to industrial development, it is expected that the fill materials were not contaminated at the time of placement;
- The west end of the Central Parcel was only partially filled in the original site development. The timing of filling to present grade is uncertain, but the upper portions of this area were likely filled after industrial operations began.
- Some portions of the central area of the Central Parcel were disturbed after filling as evidenced by a small area of brick debris containing dioxins/furans to depths of about 5 feet (excavated during the 2015/2016 removal action);
- Much of the West Parcel was filled in the 1970s using fill sourced from multiple industrial facilities that included impacts from COCs; and
- Releases during historical site use would likely be associated with surface spills or surface deposition, and the COCs (metals, semi-volatile organic compounds, PCBs, and dioxins/furans) are relatively immobile.

Based on this historical summary, roughly the eastern half of the Site likely has COC concentrations that decrease with depth. Expected concentration trends in the west portion of the Central Parcel are uncertain, and the West Parcel likely does not have clear concentration trends within the upper 20 to 30 feet.

The RDI data were reviewed to evaluate vertical concentration trends. The analysis focused on locations with relatively higher concentrations, so the data set was selected as follows.

- Each DU has a data set consisting of three data points (corresponding to the three depths sampled) for each COC. There are 15 COCs, but high molecular weight polycyclic aromatic hydrocarbons (HPAHs), low molecular weight PAHs (LPAHs), and cPAHs were evaluated together, for a total of 13 COCs assessed. Each DU except DU-41 (East Parcel soil berm) was evaluated for a total of 43 DUs. This gives a total of 559 potential data sets to evaluate (13 COCs at each of 43 DUs).
- Data sets where all three depths had a COC concentration that was either less than twice the detection limit or below the DEQ default background concentration were excluded from the evaluation. Just over half of the data sets met those criteria, leaving 277 data sets to be evaluated.

Each data set was plotted (concentration versus depth) and visually assessed for a vertical concentration trend (each data set consists of three data points, insufficient for a more rigorous statistical analysis) with results summarized below by Parcel and COC.

	Portion of Data Sets Showing Decreasing Concentration with Depth							
Parcel	All COCs	All Risk Driver COCs	Lead	Mercury	D/F	PAHs	PCBs	
West	59%	52%	33%	100%	67%		33%	
Central	92%	95%	93%	94%	100%	94%		
East	71%	86%	40%	100%	100%			

Overall, 80 percent of the data sets show a decreasing concentration with depth, strongly supporting that COC concentrations decrease with depth. The Parcel results are consistent with the Site history discussion above where it was concluded that the Central and East Parcels are likely to show decreasing contamination with depth whereas the West Parcel may not. The relationship is even stronger when focusing on the primary risk drivers on the Central and East Parcels where (excluding lead on the East Parcel that has a limited data set) 94 to 100 percent of the data sets show decreasing concentrations with depth. Additionally, DU-14 is entirely within the area of the 2015 removal action (where surface soils were removed and replaced with clean topsoil). Excluding DU-14 from the analysis, 100 percent of risk driver COCs on the Central Parcel demonstrate a decreasing concentration with depth.

2.3.3 Preliminary Assessment of On-Site Borrow Potential

The discussion in Section 2.3.2 indicates that cleaner soil may be found at depth on the eastern half of the Site, suggesting that soil suitable for use as fill may be present on the Site. Two areas are being considered for significant excavation: layback of the riverbanks and beneath the concrete slabs on the East Parcel. A preliminary assessment of the potential volume of borrow soil available for use as fill was conducted by comparing the RDI soil data in these areas to cleanup levels (CULs; see Section 3.2.2).

Riverbank Layback. Bank layback is being evaluated by the In-Water Group and has not yet been established. However, where there is sufficient room for layback, target slopes would likely be on the order of 5:1 (horizontal:vertical) for the lower slopes and 3:1 for the upper slopes. The eastern 700 feet of the Central Parcel has sufficient widths for this type of layback and would result in moving the top of slope landward on the order of 70 feet. That area would generally correspond to DU-16, DU-19, and DU-26. The data for the 2- to 3-foot depth from these DUs were compared to CULs, and mercury, lead, zinc, PCBs, and dioxin/furans exceeded CULs at least once. The data for these COCs were used to extrapolate concentrations with depth, and concentrations are predicted to be less than CULs below a depth of less than 4 feet. Excluding the top 4 feet of soil, a 70-foot bank layback over a distance of 700 feet could generate 18,000 cubic yards of clean fill.

East Parcel Concrete Slabs. The concrete slabs on the East Parcel are represented primarily by DU-39 and DU-40. In these DUs, only one sample exceeds CULs (Selenium exceeds the CUL by a factor of 1.2 in sample DU-39 [1-2].) In general, all of the soil in these DUs would be suitable for re-use. Using assumptions for cut slopes similar to above for bank layback, an off-channel habitat excavation in the area of the concrete slabs could generate on the order of 20,000 cubic yards of clean fill.

As discussed in Section 3.3.6, Metro is developing a master plan for future site use that includes habitat restoration. Ultimately, these plans may include excavation beyond that needed for site remediation, potentially generating additional clean fill for on-site re-use.

2.4 Data Gap Identification

Based on the evaluation of the RDI data discussed above, the remaining data gaps include:

- Vertical delineation of COCs beyond 3 feet in areas proposed for 3 feet of excavation;
- Vertical delineation of COCs beneath the soil berms on the East Parcel (DU-41); and
- Vertical delineation of COCs in potential borrow areas beneath concrete slabs and along the riverbank.

3.0 Performance Standards and Design Elements

3.1 Preliminary Remedial Design

The planned remedy generally consists of removal and off-site disposal of soil with COCs above hot spot levels³ or posing an excess risk to humans followed by installation of a cap over remaining soil exceeding

³ The ROD does not require off-site disposal of dioxin/furan ecological hot spots, but those hot spots are required to be excavated and placed into the consolidation cell. With Metro exercising the contingency remedy, materials that were

ecological risk levels. Based on evaluation of the data collected during the RDI, excavation depths (where needed) are anticipated to range from less than 1 foot bgs to at least 3 feet bgs. The thickness and composition of the soil cap may vary depending on the excavation depth and residual contamination. Site restoration will be conducted in coordination with the Metro master plan currently under development and the in-water remedial action.

3.2 Performance Standards

3.2.1 Remedial Action Objectives

RAOs are the objectives or goals for the RA established in the ROD (DEQ, 2021) to achieve protection for human and ecological receptors. The ROD identified the following RAOs:

- Prevent exposure of human receptors (recreational/park user, transient trespasser, construction worker) to soil containing COCs at concentrations exceeding acceptable risk levels (based on exposure to individual COCs or the cumulative impact of simultaneous exposure to multiple COCs);
- 2. Prevent exposure of ecological receptors (mammals, birds, invertebrates, plants) to soil containing COCs at concentrations exceeding individual and cumulative acceptable risk levels;
- 3. Remove or treat soil hot spots of contamination to the extent feasible and practicable; and
- 4. Prevent further migration of contaminated upland soil to the river, to the extent practicable.

3.2.2 Cleanup Levels (CULs)

The CUL is defined as the soil concentration corresponding to the acceptable risk level (or the background concentration if the acceptable risk level is less than background) for the corresponding COC, receptor, and exposure area. The CUL values and the use of CULs in RD are discussed below.

Receptor-specific risk-based concentrations (RBCs) were developed in the baseline risk assessments (Formation Environmental, 2013 and 2014) and the feasibility study (Apex, 2019). The lowest RBC (or the background concentration, whichever is greater) for each COC was selected as the PRG⁴ for that COC. PRGs were identified separately for ecological and human receptors. The RBCs and PRGs are presented in Tables 1 and 2 (adopted from Tables 3 and 6 of the ROD with arsenic background revised per direction of DEQ)⁵ for human and ecological receptors, respectively. Table 3 presents the CULs. CULs will be used in RD as follows:

⁵ DEQ comment letter on the Remedial Design Investigation Evaluation Report (RDI Report, Apex March 22, 2023) dated July 31, 2023, General Comment number 4.

planned for the consolidation cell will be disposed of off-site. Therefore, the remedial design calls for all excavated hot spots to be disposed of off-site.

⁴ PRGs are conservative screening levels used during the remedial design investigation to assure that data collected will adequately characterize the nature and extent of contamination for use in RD. The PRGs correspond to the lowest CUL for each of ecological and human receptors.

- Immobile receptors (plants, invertebrates): For immobile receptors, soil concentrations representing DUs of approximately 0.5 acres will be compared to CULs. RD will define removal or risk management actions in each DU where a COC concentration equals or exceeds a CUL for immobile receptors. The CUL for each COC for immobile receptors is the lower of the plant or invertebrate RBC (or the background concentration, whichever is greater) for that COC.
- Mobile receptors (birds, mammals, humans): For mobile receptors, soil concentrations representing exposure areas (exposure point concentrations) will be compared to CULs. The exposure areas evaluated will be the West, Central, and East Parcels, generally consistent with baseline risk calculations (Formation Environmental, 2013 and 2014).⁶ The exposure point concentration for a parcel will be calculated as the 90 percent upper confidence limit of the mean (90 UCL) of the applicable data from the DUs within that parcel. As a result, for mobile receptors, it is possible for an individual DU COC concentration to exceed the CUL but the exposure point concentration for the parcel to be less than the CUL. In that event, no risk management would be required for that COC/receptor on that parcel. RD will address removal or risk management actions on each parcel where a COC exposure point concentration equals or exceeds a CUL for mobile receptors (generally focusing on addressing the DUs with higher COC concentrations until the risk at the parcel is acceptable). The CUL for each COC for mobile ecological receptors is the lesser of the bird or mammal RBC (or the background concentration, whichever is greater) for that COC. For human health, the CUL for each COC is the lowest of the human receptor RBCs (or the background concentration, whichever is greater) for that coc (i.e., the RBCs for the park user receptor).

3.2.3 Hot Spots

For soil, a hot spot exists if the Site presents an unacceptable risk and if the contamination is highly concentrated, highly mobile, or cannot be reliably contained. Hot spots were evaluated in the feasibility study (Apex, 2019), and only high-concentration hot spots were identified. For all receptors, hot spots are evaluated on a point-by-point basis. Therefore, soil concentrations representing DUs of approximately 0.5 acres will be compared to hot spot levels. The RD will define removal (to the extent feasible and practicable) or risk management actions in each DU where a COC concentration equals or exceeds a hot spot level. The hot spot level used in the RD is the lowest of the hot spot levels for any receptor. Table 3 lists the hot spot levels and corresponding receptors that define the hot spot levels.

⁶ The Central Parcel had three exposure areas in the Baseline Risk Assessment: Central Beach, Wharf Road, and Upland. The Central Beach exposure area is below top of bank, so it is not part of the Site. The Wharf Road exposure area evaluated dioxin/furan exposure only in a small area near the east end of the Central Parcel (part of which is below top of bank) but will not be separately evaluated going forward. The Central Parcel Upland exposure area corresponds almost entirely to the Central Parcel portion of the Site. The East Parcel had two exposure areas in the Baseline Risk Assessment: Inner Cove Beach and Upland. The Inner Cove Beach exposure area is below top of bank so is not part of the Site. The East Parcel Upland exposure area corresponds almost entirely to the East Parcel Upland exposure area corresponds almost entirely to the East Parcel Upland exposure area corresponds almost entirely to the East Parcel Upland exposure area corresponds almost entirely to the East Parcel Upland exposure area corresponds almost entirely to the East Parcel Upland exposure area corresponds almost entirely to the East Parcel Upland exposure area corresponds almost entirely to the East Parcel Upland exposure area corresponds almost entirely to the East Parcel Upland exposure area corresponds almost entirely to the East Parcel Upland exposure area corresponds almost entirely to the East Parcel Upland exposure area corresponds almost entirely to the East Parcel Upland exposure area corresponds almost entirely to the East Parcel Upland exposure area corresponds almost entirely to the East Parcel Upland exposure area corresponds almost entirely to the East Parcel upland exposure area corresponds almost entirely to the East Parcel upland exposure area corresponds almost entirely to the East Parcel upland exposure area corresponds almost entirely to the East Parcel upland exposure area corresponds almost entirely to the East Parcel upland exposure area corresponds almost entirely to the East Parcel upland exposure area corre

3.3 Design Elements

Remedial design elements are described in the following sections. Each of these elements will be defined in detail in the drawings and specifications that will be prepared during RD (see Section 6).

3.3.1 Site Clearing

Except in locations where native trees may be preserved (discussed below), areas targeted for excavation or capping will be cleared of vegetation and debris. This section discusses design requirements for site clearing.

Debris Removal. Debris on the Site consists primarily of concrete foundations (including metal reinforcing bars) associated with historical buildings but may also include wood pilings and smaller debris such as brick or wood, metal, glass, and ceramic fragments. Debris will be removed to the depth of the proposed excavation. Debris extending below the excavation depth may be removed or cut off at the limits of the excavation. Smaller debris (on the order of 2 feet in the longest dimension) may be removed with excavated soil. Larger debris will be removed separately and recycled if it can be adequately decontaminated. Otherwise, debris will be disposed of with the contaminated soil. During debris removal, protocols described in the Oregon SHPO Archaeological Inadvertent Discovery Plan template will be followed.

Invasive Species Removal. Invasive species, including roots, will be cleared from the entire Site and disposed of in an off-site landfill. In areas targeted for excavation, root removal may be conducted in conjunction with excavation.

Native Tree Preservation. During the ROD comment period, DEQ received substantial support from the public to preserve native trees. In the 2015 removal action, special techniques were used to successfully preserve native trees within the removal action area. These special techniques, implemented within the driplines of the trees and intended to preserve tree roots, limit excavation depths and residual soil cover thicknesses to approximately 6 inches. Therefore, given the widespread presence of COCs exceeding CULs and/or hot spot levels to depths greater than 6 inches, tree preservation would have a corresponding increase in residual risk. During RD, native tree preservation will be evaluated on a case-by-case basis using the following guidelines:

- Tree preservation will be considered only in DUs where planned excavation depths are 1 foot or less (these areas are likely to be limited to portions of the West and East Parcels); and
- Tree preservation will be limited to maintain human health risks at acceptable levels.

Following these guidelines will likely result in very limited preservation of native trees.

Woody Debris Salvage. The design will evaluate potential for salvage of large trees cleared from the Site for re-use in habitat enhancement or other site features, if deemed safe. At a minimum, some or all the native

Willamette Cove Basis of Design Report Willamette Cove Upland Facility September 27, 2024 32-23011207 trees cleared from the Site without root balls will be stockpiled for reuse in upland restoration or as in-water large woody debris. (The number needed for salvage will be determined during design, including consultation with the In-Water Group.) If it is desired to salvage trees with intact root balls, all contaminated soil must be removed from the root ball. The design will evaluate potential for salvage of large trees that include root balls.

Cleared Vegetation Disposal. Disposal of the cleared vegetation that does not contain invasive species or contaminated soil will be at the discretion of the contractor but may include chipping for on-site use as mulch or disposal at a composting facility. Vegetation containing soil (e.g., grubbed roots) or invasive species will be disposed of in an off-site landfill.

3.3.2 Soil Excavation

The lateral and vertical excavation of soil will be designed to remove soil exceeding hot spots or human health CULs. The input data for the excavation design will be the RDI data for Layers 1, 2, and 3 in each DU.⁷

3.3.2.1 Human Health⁸ and Ecological Hot Spot Excavation

Except in special cases discussed further below, each layer that has a soil concentration that exceeds a hot spot level will be targeted for excavation over the full lateral extent of the DU and the full 1-foot thickness of the layer. Figure 5 schematically depicts the soil cells (each 1-foot layer within each DU) that exceed hot spot levels.

Partial Layer Excavation. For practical reasons, the RDI data were collected over depth intervals of 1 foot, but there is no expectation that the vertical extent of contamination conforms to those depth intervals. Construction grading on the other hand can generally achieve tolerances on the order of 0.1 foot. Therefore, to the extent that the soil data suggests that contamination may extend only partially through a layer,⁹ the design excavation depth will be to the center of that layer.¹⁰ Removal of the hot spot will be verified with sampling, and additional excavation would be conducted if warranted based on protocols to be defined in the forthcoming verification sampling plan. Based on an evaluation of the soil data, the following layers have a high probability that COC concentrations are below hot spot levels in the lower portion of the layer, and these layers will be targeted for partial removal (the upper 0.5 feet) in the initial excavation plan:

¹⁰ This design process is a practicability assessment of the tradeoff between the impacts of doing unnecessary excavation versus the impacts of conducting additional rounds of verification sampling and potentially additional excavation. The impacts analysis considers such factors as effectiveness, reliability, implementability, short-term impacts, and cost.

⁷ Layers 1 through 3 correspond to the 1-foot-thick layers sampled as part of the RDI: Layer 1 is the 0- to 1-foot depth; Layer 2 is the 1- to 2-foot depth; and Layer 3 is the 2- to 3-foot depth.

⁸ Based on the RDI data, there are no human health hot spots remaining on the Site. However, in the event that subsequent data collection (e.g., verification sampling) identifies a human health hot spot, this process will be used to address that hot spot.

⁹ Evaluated considering such factors as the magnitude of exceedance in the subject layer and the change in concentration compared to the overlying layer.

- DU-12, Layer 3
- DU-16, Layer 3
- DU-17, Layer 2
- DU-19, Layer 3
- DU-21, Layer 3
- DU-24, Layer 2
- DU-25, Layer 2
- DU-27, Layer 2
- DU-28, Layer 3
- DU-42, Layer 2

Buried Hot Spots. From Figure 5, there are three DUs (DU-1, DU-6, and DU-30) with hot spots that are overlain by soil that does not exceed hot spot levels. Excavation requirements for these DUs were evaluated further considering the marginal impacts to excavate the hot spot compared to the marginal risk reduction. Section 3.3.3 describes the cap design process, showing that cap thicknesses will be 2.5 feet or greater except where the lowest residual risks remain following excavation. The ROD requires a minimum of 3 feet of cap over any remaining hot spots, so cap thicknesses will be similar whether the hot spot is removed or not. Considering marginal risks and impacts, these three DUs were evaluated for excavation as follows:

- DU-1: The risk associated with Layer 2 in DU-1 is on the order of 20 times greater than the risks associated with adjacent DUs (hazard quotient of 103 compared to adjacent DUs with hazard quotients of 4 to 8 see Figure 5). Excavation of DU-1 will result in significant risk reduction, so excavation of DU-1 to a depth of 2 feet is warranted.
- DU-6: DU-6 has a maximum hazard quotient of 10. This is similar to the residual risks in surrounding DUs (hazard quotients in adjacent DUs for layers that will not be excavated range from 4 to 9). Since excavation to 2 feet in DU-6 will not substantively reduce the residual risk, no hot spot excavation is proposed for DU-6.
- DU-30: DU-30 has a maximum hazard quotient of 11. This is similar to the residual risks in surrounding DUs (maximum hazard quotient is 6 in adjacent DUs for layers that will not be excavated). Since excavation to 3 feet in DU-30 will not substantively reduce the residual risk, no hot spot excavation is proposed for DU-30.

Considering the hot spot removal evaluation above, Figure 5 schematically depicts the preliminary excavation depth to address hot spots.¹¹

¹¹ DU-41 is a soil pile present on the north side of the East Parcel. The three samples from DU-41 exceed hot spot levels, so the soil pile will be removed. Design excavation depths beneath the DU-41 soil pile will match the bottom

3.3.2.2 Additional Excavation to Address Excess Human Health Risk

Additional excavation will be conducted beyond hot spot removals if necessary to achieve acceptable risk levels for human health. The risk remaining after hot spot removals (i.e., the residual risk) will be evaluated using the data corresponding to soil that will remain on Site after the hot spot removals. Human health risk (and therefore the need for additional excavation) will be evaluated separately for the West, Central, and East Parcels. Additional excavation to address human health risk will be evaluated as follows.

- Step 1: Determine if There Are Any Residual Human Health CUL Exceedances. The residual COC concentrations for each DU are compared to the human health CULs. If there are no exceedances, then no additional excavation is needed.
- Step 2: Evaluate the Residual Parcel Exposure Point Concentrations. If there is at least one CUL exceedance on a parcel, the residual human health risk for that parcel will be estimated using procedures consistent with the baseline risk assessment and considering ISM data evaluation guidance, as follows:
 - Human health risks will be calculated separately for each parcel that has a CUL exceedance.
 - Because human health risk will be addressed by removing soil from the Site (i.e, caps will be needed only to achieve acceptable risks levels for ecological receptors, not human health), the residual risk will be estimated using replacement values corresponding to the fill that will replace the removed layer. Replacement values will be estimated from concentrations in potential on-site borrow soil from beneath the concrete slabs on the East Parcel but will not be greater than CUL concentrations.
 - Data from DUs that fall entirely within areas planned for bank layback will be excluded.
 - The composite data will be used as if the composite concentrations are representative of the conditions beneath the concrete slabs.¹²

If the resulting exposure point concentrations are less than the CULs, no further excavation is needed to address human health risk. For those COCs/parcels that exceed CULs, the evaluation will proceed to Step 3.

elevation of the adjacent DU excavations. Additional smaller soil piles are present along the east edge of the East Parcel. These soil piles may or may not have been sampled as part of the incremental sampling conducted on the East Parcel. Unless otherwise demonstrated by future sampling, above-grade piles in this area will be removed in their entirety. Excavation depths for the DUs beneath soil piles will begin at the level of the adjacent surrounding grade. ¹² Verification sampling using ISM methods will be conducted during remedial action to verify that human health risks are acceptable.

- Step 3: Define Additional Excavation Needed to Address Excess Human Health Risk. For those COCs where the 90 UCL concentration from Step 2 exceeds the CUL, additional excavation will be proposed, and the residual risk evaluation will be refined using the following:
 - The DU/layer with the greatest exposed leave surface residual COC concentration will be targeted for removal.
 - Exposure point concentrations will be re-calculated with the updated data set using the same procedure as Step 2.
 - This process of removing the next greatest COC concentration and updating the exposure point concentration will be repeated as needed until the exposure point concentration meets the CUL.
- Step 4: Define Additional Excavation Needed to Address Localized Excess Human Health Risk. The risk evaluations conducted in Steps 2 and 3 will be conducted consistent with the baseline risk assessment (Formation 2013), evaluating the risk for exposure areas corresponding to the West, Central, and East Parcels. While these Parcels generally correspond to the historical site uses, in some cases (e.g., the former coal dock near the West/Central Parcel boundary), historical activities may have been focused in smaller areas or crossed over parcel boundaries. Risks calculated solely based on exposure areas corresponding to the parcels could obscure potential risks associated with these smaller areas or areas that overlap parcel boundaries. To assess these potential localized risks, residual COC concentrations (concentrations remaining after hot spot excavations and excavations to address human health risk described above) that exceed human health CULs will be plotted on a site plan. Clusters of exceedances that are significantly smaller than the exposure areas or that cross parcel boundaries will be further evaluated for potential concern considering the future site use as a nature park.
- Step 5: Define Additional Excavation Needed to Address Shallow Surface Soil (0 to 1 foot) Excess Risk. The risk evaluations in Steps 2 and 3 will be conducted consistent with the baseline risk assessment, evaluating the risk for exposure to surface soil defined as a depth range of 0 to 3 feet below the ground surface. As discussed in Section 2.3.2, COC concentrations in soil generally decrease with depth on the Central and East Parcels. To assess potential uncertainty in residual risks, the residual data associated with the top 1 foot (from the bottom of the proposed excavation) will be compared to the full residual data set (data within 3 feet of the bottom of the proposed excavation). A practicability evaluation, comparing the marginal risk reduction to the effort associated with additional excavation, will be conducted to identify if further excavation of surface soil is warranted.

Using the procedure described in this section, Appendix A presents the preliminary evaluation of additional excavation needed to address human health risk. Figure 5 schematically depicts the additional excavation to address human health risk.

3.3.2.3 Additional Excavation to Address Higher Relative Ecological Risk

The ROD requires that "soil with higher risk levels relative to plants and animals" be excavated. To evaluate potential additional excavation to address this requirement, rank-order curves of hazard quotients (HQs) and hazard indexes (HIs) were prepared for plants, invertebrates, birds, and mammals. Figures 6A and 6B show the HQs and HIs, respectively. On the figures, different symbols are used for layers targeted for no excavation, partial excavation, or full excavation. These figures illustrate that all layers with higher relative HQs or HIs (i.e., layers that fall above the knee of the rank-order curve) are targeted for full excavation. In fact, the first layer that is not targeted for full removal falls well below the knee of the curve for all receptors. Therefore, no additional excavation is needed to address higher relative/cumulative risks for ecological receptors. These figures will be updated as needed during RD.

3.3.2.4 Preliminary Excavation Plan

Using the excavation design processes described in Sections 3.3.2.1 through 3.3.2.3, Figure 7 presents the preliminary excavation plan. The proposed excavation in DU-1 through DU-26, DU-28, DU-42, and a portion of DU-27 is driven by hot spot removal. Excavation in the remainder of the East Parcel is driven by human health risk. This excavation plan will be refined in RD, including potential adjustments for constructability and park planning. Regardless, the excavation planning for the BODR or RD is the initial targeted excavation only; verification sampling and additional excavation will be conducted as needed to achieve the performance standards defined in Section 3.2. Verification sampling is discussed in Section 4.2.

Preservation of native trees will be evaluated in RD. Beneath trees that are preserved, if any, excavation will be on the order of 6 inches in depth.

Based on the preliminary excavation plan on Figure 7, the estimated soil excavation volume is 50,000 cubic yards.

3.3.2.5 Residual Risk Screening

Based on the preliminary excavation depths presented on Figure 7, this section summarizes the residual risks remaining following remedial action.

Residual human health exposure point concentrations were evaluated in Appendix A. Those concentrations and the corresponding residual excess cancer risks are summarized below.

COC	Human Health	Post-Remediation Exposure Point Concentrations in mg/kg	Post-Remediation Residual Human Health Excess Cancer Risk
-----	-----------------	---	--

	CUL (mg/kg)	West Parcel	Central Parcel	East Parcel	West Parcel	Central Parcel	East Parcel
Arsenic	8.8	NA ¹³	NA	5.4	NA	NA	< Background
D/F TEQ	1.50E-05	1.0E-05	5.9E-06	1.5E-05	6.7E-07	3.9E-07	9.9E-07
cPAHs	0.55	0.39	0.03	0.12	7.1E-07	4.7E-08	2.3E-07

The acceptable excess risk level for individual COCs for human health is 1E-06. The excess risk levels summarized above are each less than the acceptable risk level, so post-remediation risk levels are acceptable for human health.¹⁴

Residual ecological risk following excavation is summarized on Figures 8 through 11 showing maximum residual hazard quotients for each ecological receptor. Residual ecological risk is summarized below for each receptor.

- Plants (Figure 8) Residual risks for plants are acceptable for most of the Site. On the west end of the West Parcel and the east end of the East Parcel hazard quotients range from 1.0 to 2.4 (data are limited on the Central Parcel). The primary residual risk driver for plants is zinc with contributions from copper, lead, and antimony.
- Invertebrates (Figure 9) Hazard quotients for invertebrates range from 1.0 to 3.0 throughout most of the Site (data are limited on the Central Parcel). The primary residual risk drivers for invertebrates are metals (zinc, mercury, and copper).
- Birds (Figure 10) Hazard quotients for birds range from 1.0 to 10.6 throughout most of the Site (data are limited on the Central Parcel). Mercury hot spots are present at two decision units (DU-6 on the West Parcel and DU-30 on the East Parcel). The primary residual risk driver for birds is mercury, except on the East Parcel where it is primarily lead.
- Mammals (Figure 11) Hazard quotients for mammals range from 1.2 to 6.6 throughout most of the Site (data are limited on the Central Parcel). The primary residual risk driver for mammals is D/F TEQ with contributions from PCBs and nickel.

These excess ecological risks will be managed by caps as discussed in the next section.

¹⁴ The acceptable risk level for cumulative risk is 1E-05. Summing the risks for individual COCs results in cumulative risk levels of less than 1E-05.

¹³ NA = Not applicable. The maximum detected concentration on the parcel is less than the background concentration so an exposure point concentration was not calculated.

3.3.3 Capping

After soil removal is completed as described in Section 3.3.2, soil caps will be installed at locations that have unacceptable ecological residual risk. Figure 12 presents typical sections showing the site restoration and cap types to be used. In general, caps will consist of soil ranging in thickness from 1 to 3 feet (inclusive of the surface layer that will consist of a minimum of 1 foot of topsoil planted with native grasses, shrubs, and trees). Caps will be designed using the following approach.

- Step 1: Identify DUs with Residual Hazard Index Less Than One. No cap will be installed where the residual ecological hazard index is less than 1. These areas will be restored with 1 foot of topsoil planted with native grasses, shrubs, and trees (see Detail A, Figure 12).
- Step 2: Identify DUs with a Residual Hazard Quotient Equal to or Greater Than Ten. Where residual concentrations equal or exceed a hazard quotient of 10, the cap will consist of 3 feet of soil with a demarcation layer separating the native soil from the cap to provide a visible indicator if the cap is breached (see Figure 12, Detail C).
- Step 3: Determine Cap Thicknesses for Residual Hazard Index Greater Than One and a Maximum Residual Hazard Quotient Less Than Ten. For all other residual ecological conditions, the cap will consist of 1 to 3 feet of soil with no demarcation layer (see Figure 12, Detail B). The assumptions that form the basis for the cap design include:
 - Cap thickness should be proportional to the residual risk.
 - Cap requirements will be evaluated for each DU for all receptors.
 - The cap thickness will be designed to be protective even if in the long term the upper 3 feet of soil thoroughly mixes through natural processes (e.g., burrowing animals). The cap thickness will be designed by determining the thickness required such that, if the top 3 feet of soil is thoroughly mixed, the resulting COC concentrations will produce a hazard index less than 1 for each ecological receptor.¹⁵

Using the procedure described in this section, Appendix B presents the preliminary evaluation of caps needed to address residual ecological risk. Figure 13 presents the preliminary capping thicknesses. This capping plan will be refined in the RD, including potential adjustments for constructability, preservation of native trees, or habitat considerations. Within the drip line of preserved native trees, if any, the cap will consist of topsoil with a thickness corresponding to the depth of excavation within the tree drip line. That thickness is anticipated to be on the order of 6 inches.

¹⁵ Note that the cap will be protective regardless of whether mixing occurs. If there is no mixing, the cap will remain in place providing a clean soil layer barrier between ecological receptors and the underlying soil. If there is complete mixing, the resultant concentrations will be below the CULs.

Based on the preliminary capping plan on Figure 13, the estimated cap volume is 82,000 cubic yards (52,000 cubic yards of general fill and 30,000 cubic yards of topsoil).

Verification sampling will be conducted during site excavation. These data, together with RDI data representing soil remaining after excavation, will be used to confirm or adjust cap thicknesses using the procedure above. Verification sampling is discussed in Section 4.2.

The caps will be managed through periodic monitoring and maintenance in accordance with a Cap Inspection and Maintenance Plan and a contaminated media management plan that will be developed in the RD/RA work plan (see Section 4.4).

3.3.4 Imported Soil and On-Site Borrow

Soil used for site restoration (capping materials and topsoil) will be obtained from on-site materials or imported from off-site sources. In either case, unless otherwise approved by the DEQ, these soils will have concentrations of COCs below the CULs. Prior to use, the soil will be evaluated for compliance with these criteria. Samples of borrow soil collected for laboratory analysis will be analyzed for dioxin/furans, metals (antimony, arsenic, chromium, copper, lead, mercury, nickel, selenium, and zinc), PCBs, and PAHs (including dibenzofurans).

Imported Soil. Soil may be imported from off-site for use as temporary roadways and staging pads, general fill, or topsoil. Gravel (soil with particle sizes greater than No. 4 sieve size) from a virgin commercial source will be presumed to meet acceptance criteria and will not be sampled for chemical analysis. The method and frequency of sampling imported general fill and topsoil will be submitted to the DEQ for approval and will be determined based on the source of the material. In general, materials imported from a virgin, commercial source would have a lower sampling frequency. Recycled materials or soil imported from private sources would have a greater sampling frequency.

On-Site Borrow. Potential sources of on-site borrow are discussed in Section 2.3.3. The method and frequency of sampling borrow materials will be submitted to the DEQ for approval.

3.3.5 Finish Grades

Currently, the Site is relatively flat with no clear drainage channels. Most rainfall infiltrates into the ground surface. The intent with post-remediation finish grades (after excavation/capping) is to maintain these characteristics, emphasizing infiltration of rainfall. Finish grades may vary by several feet from current grades, but overall drainage will be maintained. Areas where there could be greater change between current and finish grades include where the riverbank is laid back, areas used for on-site borrow, or future park features. The In-Water Group is evaluating layback of portions of the riverbank. The park design team is collaborating with the In-Water Group and the upland remediation design team to minimize grade changes. Areas between

the current top of bank and the new top of bank may have larger grade changes, and surface runoff on the riverbank will be directed toward the river (again, riverbank layback, including erosion protection, will be addressed by the In-Water Group). If borrow materials are obtained from an on-site area, finish grade likely will be much lower in that area. Restoration of that area will account for the grade change and include habitat restoration consistent with the final elevations. The future park may include additional excavation for in-water habitat (in collaboration with the In-Water Group) or mounded areas to accommodate variable habitats and/or program elements within the park.

Based on the preliminary excavation depths and capping thicknesses shown on Figures 7 and 13, respectively, Figure 14 shows the approximate change in grade relative to current existing grade. The grades shown on Figure 14 include 1 foot of topsoil on DUs with no planned capping and do not account for final grades associated with removal of soil piles, preserved native trees, bank layback, potential on-site borrow areas, or park features. The grading plan will be refined in RD, including potential refinements associated with constructability, habitat, or drainage considerations and coordination with the in-water design or future park features.

3.3.6 Site Restoration

Site restoration will consist of planting finish grade with native grasses, shrubs, and trees to establish native vegetation that will prevent surface erosion and support native species. Metro is planning for final site use as a nature park (Metro's preliminary concepts are summarized below), and site restoration for the remedial action will be consistent with that planned final use.

Metro has developed a Site Conservation Plan (SCP) and is currently developing a Site Master Plan. Based on the SCP, the conservation targets for the Facility include shallow water habitat along the Willamette River migratory fish pathway, riparian forest, and oak-madrone woodland. Metro is not a partner in the in-water RD; however, Metro is collaborating with the In-Water Group to discuss opportunities for improving water quality and restoring fish habitat for salmon and lamprey. Pertinent recommended restoration actions which could apply to the Facility include work to:

- Protect, restore, and create shallow water and off-channel habitats;
- Improve aquatic habitat complexity and diversity;
- Improve riparian buffer density, health, and width and establish high species diversity;
- Maintain and expand Oregon white oak-madrone habitat;
- Restore floodplain function and connectivity; and
- Remove invasive species to reduce habitat stress and create more resilient habitats.

3.3.7 Use of Green Remediation Practices

Some of the work activities will impose negative environmental impacts that are anticipated and necessary in exchange for the reduction in risk associated with hazardous substances at the Site. Work will be conducted consistent with *Green Remediation Best Management Practices: Excavation and Surface Restoration* (EPA, 2008) and DEQ's Green Remediation Policy to promote, support, and implement sustainable practices that lessen the overall environmental impact of the cleanup. Green remediation approaches will be incorporated in deliverables throughout the design process. Some of the green remediation strategies to be evaluated in RD include, but are not limited to:

- Use of alternative fuels (e.g. biodiesel) to operate heavy machinery;
- Conserve raw materials such as borrowing clean soil from on-site sources rather than importing soil to the extent practicable;
- Minimize use of potable water;
- Recycle/reuse (e.g., composting, reuse of woody debris) cleared vegetation;
- Replant with native vegetation;
- Minimize disturbance of mature native vegetation where possible;
- Control/remove invasive species;
- Sequence work to improve efficiency;
- Consider the carbon footprint associated with travel routes and modes of material transportation for both import and export;
- Use alternative routes and modes of travel where practicable to reduce the impact on the local community;
- Restrict the idling times for heavy equipment and trucks when not being actively operated;
- Perform routine and on-time maintenance on heavy machinery and trucks to assure fuel efficiency;
- Control and mitigate dust, odors, noise, and light impacts; and
- Identify waste minimization measures and uses of recycled materials.

3.4 Institutional and Engineering Controls

Institutional and engineering controls will include a contaminated media management plan, signs, and designated pathways to be used indefinitely where capping is installed. A deed restriction identifying the presence of capped areas and residual contamination will be required. Metro will agree to place restrictions on property deeds that limit site uses to passive recreation activities. Park uses will be unrestricted. There will be restrictions on park maintenance associated with the cap (e.g., restrictions on alterations of the cap, excavations).

Outside capped areas, site use would be unrestricted and determined based on Metro's site master plan.

3.5 Permits/Permit Exemptions

Remedial actions conducted under Oregon cleanup rules must comply with federal, state, and local laws, including obtaining required permits except to the extent that state and local permits may be exempted pursuant to ORS 465.315(3) or the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This section identifies applicable or relevant and appropriate requirements (ARARs), permitting needs, and the permit requirements that could be exempted. For permits where exemptions may be proposed, the applicable substantive requirements of those permits are identified.

3.5.1 Site Development Permit

The selected upland RA consists primarily of earthwork activities. The work will include tree removal, where necessary, and excavation and/or filling. Earthwork activities will impact an area of greater than one acre. Permits (or permit exemptions associated with earthwork activities) include a site development permit from the City of Portland and a construction stormwater permit (1200-C) to address runoff of stormwater during implementation of the RA in accordance with Portland City Code Title 10. The 1200-C permit requires an erosion and sediment control plan (ESCP) and a contaminated media management plan. No other permits are anticipated associated with the earthwork activities. Requirements for tree preservation and/or replacement under city code Title 11 may also be applicable.

3.5.2 Greenway Review

Because a portion of the work will be conducted adjacent to the top of bank, city permitting includes requirements associated with Greenway review in accordance with Chapter 33.440 of the Portland Zoning Code. The Greenway review addresses issues of public access, flood protection, transportation connections, and potential impacts to recreational users. These requirements may include tree/shrub preservation or replacement as part of a mitigation plan.

3.5.3 Waste Designation

Federal and state waste designation laws and rules (e.g., the Resource Conservation and Recovery Act, Land Disposal Restrictions, and the Toxic Substances Control Act) define the requirements for disposal of soil removed from the Site.

For the 2015/16 removal action, the removed soil was evaluated (including testing for leachability of metals), and it was determined that the excavated soil is not a hazardous waste (Apex, 2014). Additionally, selected archived samples from the RDI with higher total metals concentrations were submitted for Toxicity

Willamette Cove Basis of Design Report Willamette Cove Upland Facility September 27, 2024 32-23011207 Characteristic Leaching Procedure (TCLP) analysis, and results were below hazardous waste limits. An updated waste designation will be prepared as part of RD.

3.5.4 Federal Emergency Management Agency Floodplain Regulations

A portion of the Site in the East and Central Parcels is located within the Federal Emergency Management Agency (FEMA) mapped Special Flood Hazard Area of the Willamette River. FEMA regulations 44 CFR § 60.3(d)(2) and (3) prohibit encroachments that would result in any increase in flood levels during occurrence of base flood discharge. A site-specific analysis will be performed during RD to evaluate potential flood impacts.

3.5.5 Cultural Resources

Recommendations resulting from the studies discussed in Section 2.1.6 will be addressed during RD.

3.6 Future Land Use

The Site is zoned as open space. Future changes in land use at the Site will include the development of passive recreation opportunities within a natural area context including a regional trail, water access, nature viewing points, beach access, environmental education programs, cultural elements and interpretation, art, and information signs. Master planning for future development is underway by Metro with the intent to facilitate increased public access, recreational activities, and beneficial use of the Site and the adjacent riverbank and river. Development of the Site will be coordinated with the In-Water Group to ensure compatibility with the Site design.

3.7 Easement and Access Requirements

The Site is not currently managed for any human use and is officially restricted with limited controls to discourage foot traffic access (locked gates, concrete barriers, and signs). However, trespassers frequently bypass the restrictions and traverse the Site. The Site is accessible by vehicle from North Edgewater Street to the east and North Richmond Avenue to the west. A locked gate is present at the north end of North Edgewater Street one block south of its intersection with North Willamette Boulevard. A gravel roadway is present on the Central and East Parcels, but vehicle access is limited by concrete blocks/rubble at the North Edgewater Street entrance. Access to the Site from the river is also restricted by use of signsbut no physical barriers.

The Site and the riverbank down to the OLWL are owned by Metro, and the submerged lands below the OLWL are owned by the State of Oregon and managed by the Department of State Lands. An access agreement is in place between Metro and the Port to provide access to the Site for RA activities. To the extent that access to the Site is needed from the river, access will be coordinated with the State of Oregon.

Willamette Cove Basis of Design Report Willamette Cove Upland Facility September 27, 2024 32-23011207

3.8 Community Impacts

Best management practices (BMPs) and mitigation measures will be developed in the RD to address the community impacts including concerns about air quality, noise, odor, and light. Exceedances of health-based standards may result in additional controls being put in place so that construction impacts are mitigated to the extent practicable.

3.9 Constructability Considerations

This section considers the ease of construction of the remedial action. These considerations will be evaluated and addressed to the extent practicable during RD to reduce or prevent errors, delays, cost overruns, and health and safety issues during the RA. The following constructability considerations will be accounted for during development of the RD:

- Quantity and size of debris to be removed. Surface and subsurface debris will impact the ability to perform excavation and place capping effectively. Debris will be removed wherever practicable.
- Potential utilities. These obstructions will be identified, and the design will be adapted as needed. Based on prior site work, there are no utilities expected within the proposed excavation.
- Access issues as discussed in Section 3.7.
- Impacts of excavation/capping on adjacent riverbank slopes.
- Construction materials. The project will require imported fill materials as discussed in Section 3.3.4. The RA will be conducted at the same time as other remedial actions throughout Portland Harbor. These simultaneous activities may place stress on available materials from vendors who will be supplying other remediation projects in the area. Materials in high demand may include sand and gravel. To mitigate some of those risks, acquiring materials early and outside of potential seasonal price increases should be considered. This could include negotiating a preferred pricing structure or considering an early downpayment for securing minimum volumes of material. Materials could be acquired directly from the supplier or suppliers, perhaps through a separate procurement process. The suppliers could potentially be charged with generating, storing, and maintaining materials for contractor use at appropriate times during construction.
- Material Transport. Based on preliminary excavation depths and cap thicknesses, on the order of 50,000 cubic yards of soil will be exported from the Site, and approximately 30,000 to 90,000 cubic yards of soil could be imported to the Site (the range of potential import volumes depends on such factors as the final cap thicknesses, the amount of bank layback conducted for the in-water work, and the amount of on-site soil that can be used for fill). Material transportation options include truck, rail, and barge. Each of these options will be evaluated during RD considering such factors as availability, impacts to community, coordination with in-water work, and costs.

 Sequencing of construction and coordination with in-water/riverbank construction. The in-water construction intends to use the upland facility for staging and water treatment, and the in-water construction will likely include layback of the riverbank. The upland construction may include material transport via barge. These activities require careful coordination between the upland team and the In-Water Group to avoid delays and additional costs.

4.0 Monitoring and Maintenance

4.1 Construction Monitoring

Monitoring will be performed during RA activities to confirm that the construction engineering controls are maintained and in working order. Construction engineering controls will include but not be limited to dust control, stormwater best management practices, and activities designed to limit off-site discharge of contaminated soil (e.g., brushing off trucks, containment of material conveyance to barge, etc.). Management of excavation depths and lateral extent will be monitored through global positioning system instrumentation either attached to construction equipment or with periodic surveys.

4.2 Verification Sampling of Soil Concentrations

Soil sampling and chemical analysis will be conducted during RA to verify removal of soil to the extent required by the remedial action objectives and design standards. The type and frequency of verification sampling will be detailed in the RD/RA work plan but will generally follow the same protocol that was used for the RDI sampling including the same DU boundaries, 30-point ISM samples (including in DUs that were previously sampled with composite samples), 1-foot depth intervals, and the same analyte list as used in the RDI. The verification sampling data will be used to update residual concentrations and residual risk estimates. The updated data will be used together with the processes described in Sections 3.3.2 and 3.3.3 to conduct additional excavation or adjust cap thicknesses, as appropriate.

4.3 Long-Term Remedy Performance Monitoring

There are several uncertainties at the Site that make it difficult to predict the long-term reliability of the remedial action described above, including:

- Heterogeneity in the subsurface;
- Potential changes in future groundwater or surface water use patterns (i.e., beneficial uses);
- Potential changes in future land use and zoning;
- Changes in community concerns regarding remedial actions; and
- Long-term performance of remedial cap areas.

Because of these uncertainties, a periodic monitoring, review, and contingency plan will be developed that will evaluate the performance of the remedy and any changes that may affect the ability of the remedy to meet the RAOs. The objective of the periodic monitoring, review, and contingency plan will be to maintain the overall protectiveness of the selected remedy by establishing a series of decision criteria and related response actions for each potential area of uncertainty identified above and in the RAOs.

The first component of the contingency plan will be a review of both remedy performance and local land and water uses. If supplemental monitoring is necessary and indicates that the RAOs are not being met, additional remedial actions will be evaluated to ensure that human health and the environment are protected.

4.4 Remedy Maintenance

Three separate plans will be prepared to evaluate the effectiveness of source removals and long-term monitoring and maintenance of engineering controls, including caps and soil covers. A cap inspection and maintenance plan, a contaminated media management plan, and a community and outreach plan will be developed. In addition to regular inspection, the cleanup action will be subject to periodic reviews, which provide an opportunity to evaluate the implementation and performance of the remedy to determine if it remains protective of human health and the environment. A draft of each plan shall be submitted with the draft Intermediate (60%) RD for DEQ review and comment. Final plans shall be submitted for DEQ approval addressing DEQ's comments on the draft plans. The draft and final plans shall be submitted according to the schedule of deliverables in the approved RD/RA work plan and shall include, at a minimum:

- Details regarding on-site impacts and remedy selection;
- Description of inspection requirements and schedule;
- Proposed inspection locations;
- Documentation and data reporting, including a proposed schedule for data report submittals;
- Description of institutional controls to be implemented for subsurface construction or maintenance activities under the cap, to include health and safety training and procedures, contaminated media characterization and management, and excavation closure;
- Notification requirements for cap disturbance;
- Proposed trigger mechanisms and assessment criteria that would warrant evaluation of contingency measures;
- A contingency plan to include identification of potential response actions and a description of the procedures and process for evaluating and implementing potential response actions;
- A description of assessment criteria for modifications to the long-term inspection program; and
- A description of periodic reviews of local land uses and beneficial water uses to be conducted, including procedures, reporting, and schedule.

5.0 Design Studies

5.1 Supplemental Remedial Design Investigation

At present, there is sufficient data to complete remedial design. The data gaps identified in Section 2.4 will be addressed as follows:

- Vertical delineation of COCs beyond depths of 3 feet or beneath soil berms on the East Parcel will be addressed with verification sampling during RA;
- Vertical delineation of COCs in potential borrow areas along the riverbank will be conducted as part of supplemental riverbank sampling being conducted by the In-Water Group; and
- Vertical delineation of COCs in potential borrow areas beneath concrete slabs will be conducted in supplemental sampling if it is determined that borrow from these areas is feasible for the planned site restoration.

If supplemental sampling is needed and requested by DEQ, a supplemental RDI work plan will be prepared and submitted to DEQ for review and approval. Following the supplemental RDI field investigations, a Supplemental RDI Evaluation Report will be prepared to summarize the results. The Supplemental RDI Evaluation Report will be submitted to DEQ for approval.

5.2 Remnant Structures Evaluation

As described in Section 2.1.2, a large concrete slab foundation, several smaller concrete slabs, a portion of paved roadway, and other remnant debris are present. These remaining structures were generally characterized during the pre-remedial design investigation. However, there may be additional buried debris present, which will be evaluated and managed during RA.

5.3 Borrow Source Identification

As described in Section 2.3.3, there are two potential opportunities for on-site clean fill borrow material: the bank layback area and the soil beneath the large concrete slab in the East Parcel. Further evaluation will be required to determine the suitability of this material for reuse on site.

5.4 Erosion Protection Evaluation

An erosion and sedimentation control plan is a required element of the 1200-C construction stormwater permit as described in Section 3.5.1. That plan will include best management practices that will be implemented during construction to control sediment runoff.

5.5 Seismic Design Evaluation

RD will evaluate seismic hazards resulting the recommended design earthquake for Portland Harbor (ground motion with a 10% probability of exceedance in 50 years). Associated seismic damage from this hazard level includes liquefaction of riverbanks or destabilization and displacement of riverbanks. These evaluations are being conducted primarily by the In-Water Group. If needed, further evaluation will be conducted for the upland design.

The primary risk associated with seismic hazards is exposure of contaminated soil resulting from failures related to liquefaction or the riverbank slope. The results of the seismic design evaluation will be used to determine mitigating measures against the exposure of contaminated soil. If these measures are impractical or ineffective, appropriate maintenance and repair measures will be included in the operations and maintenance plan.

5.6 Climate Change

Climate change is expected to result in changes to the hydrology (both in seasonal patterns of river flow and peak storm event flows) in the Willamette and Columbia Rivers, as well as sea level rise, and thus impact remedy design (EPA, 2021). The effects of climate change on peak flows, dam operations, typical base flow river stages, and sea level rise on river hydrodynamics in the in-water project area will be considered as part of the flood rise impact evaluation being conducted as part of the in-water 30% design and will be used to inform the upland RD.

5.7 Additional RD Investigations

Addressing current data gaps is discussed in Section 5.1. If additional data gaps are identified during the 30% Design, they will be evaluated and addressed during the 60% Design.

6.0 Remedial Design Stages, Conceptual Sequencing Plan, and Scheduling

Development of the RD/RA work plan is the initial stage of the design. The 30% RD documents and supporting deliverables follow the RD/RA work plan. The 60%, 95%, and 100% final (if necessary) RD stages present progressive refinements of the remedial design. Construction bidding and selection will be based on the DEQ-approved 95% or 100% RD plans and specifications package. RA scheduling and implementation will proceed following selection of the remediation contractor. A summary of the design stages, sequencing, and schedule is provided in the following sections.

6.1 Remedial Design/Remedial Action Work Plan

The RD/RA work plan will be submitted following completion of the BODR and will include the scope of work and schedule for the RD activities and submittal requirements. The draft RD/RA work plan will be submitted within 90 days of DEQ's approval of the BODR.

6.2 30% Design

Upon completion of approximately 30% of the RD effort and prior to submittal of the 60% RD report, a presentation will be prepared and presented to the DEQ. The general 30% (preliminary) RD presentation contents will consist of the following:

- Design objectives, criteria, and standards;
- Description of design elements;
- Preliminary drawings and schematics;
- Description of problems encountered or anticipated that may delay the project schedule; and
- Preliminary construction schedule.

6.3 60%, 95% and 100% Design

An intermediate (60% RD) report will be prepared and submitted to DEQ for review and comment and will:

- Include the same elements as the 30% RD;
- Be a continuation and expansion of the 30% RD; and
- Address DEQ comments on the 30% RD.

The pre-final (95% RD) report will be prepared with a compilation of the major design items reflecting approximately 95% completion. The pre-final report will serve as the draft design report and may constitute construction-ready drawings. The pre-final report will include the following as applicable:

- Design criteria/standards;
- Final design/analysis calculations;
- Drawing index and final stamped drawings suitable for bidding and construction;
- Final stamped specifications suitable for bidding and construction;
- Final construction schedule;
- Description of RA activities;
- Description of construction quality assurance/quality control; and

• Equipment startup and operator training requirements.

If necessary, a final (100% RD) report will be prepared to incorporate revisions required by DEQ based on review of the pre-final design and will provide the basis for the RA activities.

6.4 Remedial Action Implementation

Implementation of the remedial action will be initiated following approval of the final design (95% or 100% RD) by the DEQ and selection of the remediation contractor. The RD/RA work plan will include an anticipated implementation schedule, which will be refined as necessary in the subsequent 30%, 60%, and 95% RD deliverables. As the site remediation and in-water remediation will be coordinated to the extent feasible, scheduling changes may occur as the implementation planning progresses.

7.0 References

- Apex Companies, LLC (Apex), 2014. Surface Soil Sampling Remedial Design, Willamette Cove Upland Facility, Portland, Oregon. May 29, 2014.
- Apex, 2016. Removal Action Completion Report, Willamette Cove. May 27, 2016.
- Apex, 2019. Revised Feasibility Study and Source Control Evaluation, Willamette Cove Upland Facility, Portland, Oregon. March 7, 2019.
- Apex, 2022. Willamette Cove Remedial Design Investigation Work Plan, Willamette Cove Upland Facility, Portland, Oregon. July 5, 2022.
- Apex, 2023a. Draft Remedial Design Investigation Evaluation Report, Willamette Cove Upland Facility, Portland, Oregon. March 22, 2023.
- Apex, 2023b. Response to Oregon Department of Environmental Quality Comments on the Remedial Design Investigation Evaluation Report, Willamette Cove Upland Facility. October 4, 2023.
- Archaeological Investigations Northwest, Inc., 2003. An Assessment of the Potential for Archaeological and Historical Resources at Willamette Cove, Portland, Oregon. March 4, 2003.
- Ash Creek Associates, Inc. (Ash Creek), 2005. *Removal Action Activities: October 28, 2004, Willamette Cove Upland Facility.* Memorandum. March 8, 2005.
- Ash Creek/Newfields, 2008. Removal Action Report, Willamette Cove Upland Facility. December 2008.
- City of Portland, 2016. *"Map: Multi-use Regional Trail System." Portland Parks & Recreation,* <u>www.portland.gov/parks/nature/documents/trail-gap-map-2016/download</u>. October 17, 2016.
- City of Portland, 2023a. "Portland Zoning." *Portland Maps,* <u>www.portlandmaps.com/bps/zoning/#/map/</u>. Accessed August 22, 2023.
- City of Portland, 2023b. "Scenic Features Map." *PortlandMaps Open Data,* <u>gis-pdx.opendata.arcgis.com/search?collection=Dataset&g=scenic</u>. Accessed August 22, 2023.
- Oregon Department of Environmental Quality (DEQ), 2021. Record of Decision, Selected Remedial Action for Willamette Cove Upland Site, Portland, Oregon. March 2021.

- DEQ, 2023. Comments on the Remedial Design Investigation Report, Willamette Cove Uplands. July 31, 2023.
- U.S. Environmental Protection Agency (EPA), 2016. Portland Harbor RI/FS Feasibility Study. June 2016.
- EPA, 2008. Green Remediation Best Management Practices: Excavation and Surface Restoration. August 2019 Update.
- EPA, 2021. Remedial Design Guidelines and Considerations, Portland Harbor Superfund Site, Portland, Oregon. April 23, 2021.
- Formation Environmental (Formation), 2013. *Residual Human Health Risk Assessment, Willamette Cove Upland Facility*. December 2013.
- Formation, 2014. Ecological Risk Assessment, Residual Risk Assessment, Willamette Cove Upland Facility. January 2014.
- Hart Crowser, 2003. Remedial Investigation, Willamette Cove, Portland, Oregon, ECSI No. 2066. March 11, 2003.
- McFarland, W.D. and D.S. Morgan, 1996. Description of the Ground-Water Flow System in the Portland Basin, Oregon and Washington, U.S. Geological Survey Water-Supply Paper 2470-A.

Table 1 Receptor Specific Risk-Based Concentrations, Preliminary Remediation Goals, and Hot Spot Values for Soil – Human Health Willamette Cove Upland Facility

	Regional E	Background					R	eceptor Sp	ecific RB	Cs					Uuman U	ealth PRGs
	Concen	trations -	Recre	ational Tres	passer/Pa	rk User		Transient 7	respasser			Constructi	on Worker		nuillall n	
Analyte	Portlan	nd Basin	Ca	ncer	Non-C	Cancer	Car	ncer	Non-C	Cancer	Car	ncer	Non-C	Cancer		
	Mean	95% UPL	RBC	Hot Spot	RBC	Hot Spot	RBC	Hot Spot	RBC	Hot Spot	RBC	Hot Spot	RBC	Hot Spot	PRG	Hot Spot
						(Concentrati	on in mg/kg								
Antimony	0.29	0.56			24	243			98	980			31	310	24	243
Arsenic	4.4	8.8	1.4	140	74	740	29	2,900	370	3,700	15	1,500	97	970	8.8	140
Chromium	39	76														
Copper	24	34			11,000	110,000			56,000	560,000			14,000	140,000	11,000	110,000
Lead	27	79			400	4,000			800	8,000			800	8,000	400	4,000
Mercury	0.073	0.23														
Nickel	23	47														
Selenium	0.33	0.71														
Zinc	105	180														
cPAHs			0.55	55	60	600	32	3,200	270	2,700	17	1,700	74	740	0.55	55
Total PCBs			0.74	74	4	40	14	1,400	18	180	8.4	840	4.9	49	0.74	40
Dioxin/Furan TEQ			1.50E-05	1.50E-03	1.70E-04	1.70E-03	3.20E-04	3.20E-02	1.10E-02	1.10E-01	1.70E-04	1.70E-02	2.30E-04	2.30E-03	1.50E-05	1.50E-03

Notes:

Background concentrations from Development of Oregon Background Metals Concentrations in Soil, Oregon DEQ, March 2013

95% UPL = Upper Prediction Limit (95% confidence)

RBC = Risk Based Concentration

mg/kg = milligrams per kilogram

cPAHs= carcinogenic polycyclic aromatic hydrocarbons

HPAH = high molecular weight polycyclic aromatic hydrocarbons

LPAH = low molecular weight polycyclic aromatic hydrocarbons

PCBs = polychlorinated biphenyls

Dioxin/Furan TEQ = 2,3,7,8-TCDD toxicity equivalent

Receptor Specific RBC Concentrations from the Record of Decision for Willamette Cove Upland Site, Oregon Department of Environmental Quality, March 2021 with the exception of arsenic:

arsenic concentration is from the Residual Human Health Risk Assessment Willamette Cove Upland Facility, December 2013

Basis of Design Report Willamette Cove Upland Facility 32-23011207 Page 1 of 1

Table 2

Receptor Specific Risk-Based Concentrations, Preliminary Remediation Goals, and Hot Spot Values for Soil – Ecological Receptors Willamette Cove Upland Facility

	-	ackground			Receptor S	Specific Cle	anup Levels	s and RBCs				Ecologio	al PRGs	
		rations -	р	lant	ا می روبا	lah vata	D:	a la	Ман	nmal		Sampl	е Туре	
Analyte	Portlan	d Basin	۲	lant	Inven	tebrate	ы	Birds		imai	Discrete/C	Composite	IS	SM .
	Mean	95% UPL	RBC	Hot Spot	RBC	Hot Spot	RBC	Hot Spot	RBC	Hot Spot	PRG	Hot Spot	PRG	Hot Spot
						Concer	ntration in mg	/kg						
Antimony	0.29	0.56	5	50	78	780			2.7	27	2.7	27	2.7	27
Arsenic	4.4	8.8	18	180			575	5,750	83	830	18	180	18	180
Chromium	39	76	1	10	0.4	4	87	870	342	3,420	76	76	39	39
Copper	24	34	70	700	80	800	87.7	877	82	820	70	700	70	700
Lead	27	79	120	1,200	1,700	17,000	33	330	122	1,220	79	330	33	330
Mercury	0.073	0.23	0.3	3	0.1	1	0.015	0.15	3.53	35.3	0.23	0.23	0.073	0.15
Nickel	23	47	38	380	280	2,800	139	1,390	20	200	47	200	23	200
Selenium	0.33	0.71	0.52	5.2	4.1	41	3.42	34.2	1.1	11	0.71	5.2	0.52	5.2
Zinc	105	180	160	1,600	120	1,200	673	6,730	201	2,010	180	1,200	120	1,200
Dibenzofuran									0.01	0.10	0.01	0.1	0.01	0.1
Total HPAH					18	180			5.6	56	5.6	56	5.6	56
Total LPAH					29	290			100	1,000	29	290	29	290
Total PCBs			40	400			0.734	7.34	0.098	0.98	0.098	0.98	0.098	0.98
Dioxin/Furan TEQ							8.90E-05	8.90E-04	6.10E-06	6.10E-05	6.10E-06	6.10E-05	6.10E-06	6.10E-05

Notes:

Background concentrations from Development of Oregon Background Metals Concentrations in Soil, Oregon DEQ, March 2013

95% UPL = Upper Prediction Limit (95% confidence)

RBC = Risk Based Concentration

mg/kg = milligrams per kilogram

HPAH = high molecular weight polycyclic aromatic hydrocarbons

LPAH = low molecular weight polycyclic aromatic hydrocarbons

PCBs = polychlorinated biphenyls

Dioxin/Furan TEQ = 2,3,7,8-TCDD toxicity equivalent

Receptor Specific Screening Level and RBC Concentrations from the Record of Decision for Willamette Cove Upland Site,

Oregon Department of Environmental Quality, March 2021

Table 3 Cleanup Levels and Hot Spot Values for Soil Willamette Cove Upland Facility

	Human	Health			Ecolog	ical		
	•			Immobile			Mobile	
Analyte	Cleanup Level	Hot Spot	Cleanup Level	Hot Spot	Basis	Cleanup Level	Hot Spot	Basis
				Concentration	n in mg/kg			-
Antimony	24	240	5	50	Plant	2.7	27	Mamm
Arsenic	8.8	140	18	180	Plant	83	830	Mamm
Chromium			39	39	Bkgd	87	870	Bird
Copper	11,000	110,000	70	700	Plant	82	820	Mamm
Lead	400	4,000	120	1200	Plant	33	330	Bird
Mercury			0.1	1	Invert	0.073	0.15	Bird
Nickel			38	380	Plant	23	200	Bkgd/Mamm
Selenium			0.52	5.2	Plant	1.1	11	Mamm
Zinc			120	1,200	Invert	201	2,010	Mamm
cPAHs	0.55	55						
Dibenzofuran						0.01	0.1	Mamm
Total HPAH			18	180	Invert	5.6	56	Mamm
Total LPAH			29	290	Invert	100	1,000	Mamm
Total PCBs	0.74	40	40	400	Plant	0.098	0.98	Mamm
Dioxin/Furan TEQ	1.50E-05	1.50E-03				6.10E-06	6.10E-05	Mamm

Notes:

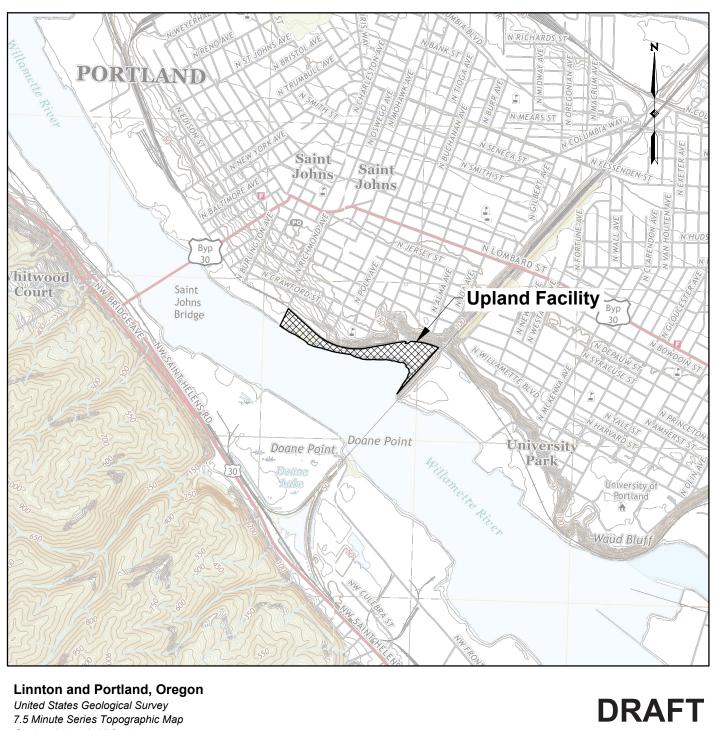
mg/kg = milligrams per kilogram

cPAHs= carcinogenic polycyclic aromatic hydrocarbons

PCBs = polychlorinated biphenyls

Dioxin/Furan TEQ = 2,3,7,8-TCDD toxicity equivalent

Receptor Specific Cleanup Levels from the Record of Decision for Willamette Cove Upland Site, Oregon Department of


Environmental Quality, March 2021 with the exception of arsenic: arsenic concentration is from the Residual Human

Health Risk Assessment Willamette Cove Upland Facility, December 2013.

Immobile ecological endpoints include plants and invertebrates

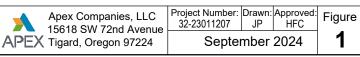
Mobile ecological endpoints include birds and mammals

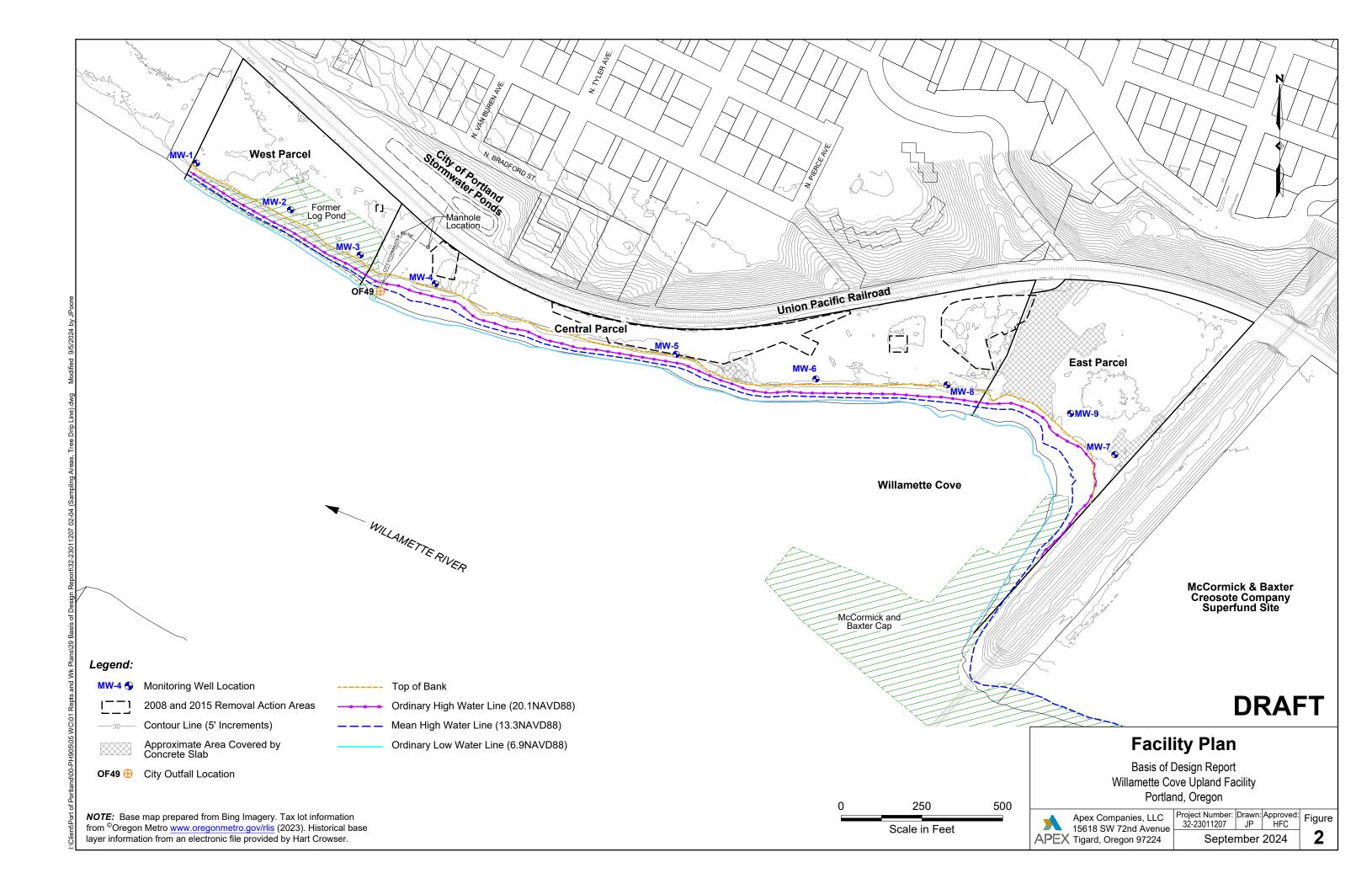
Basis of Design Report Willamette Cove Upland Facility 32-23011207 Page 1 of 1

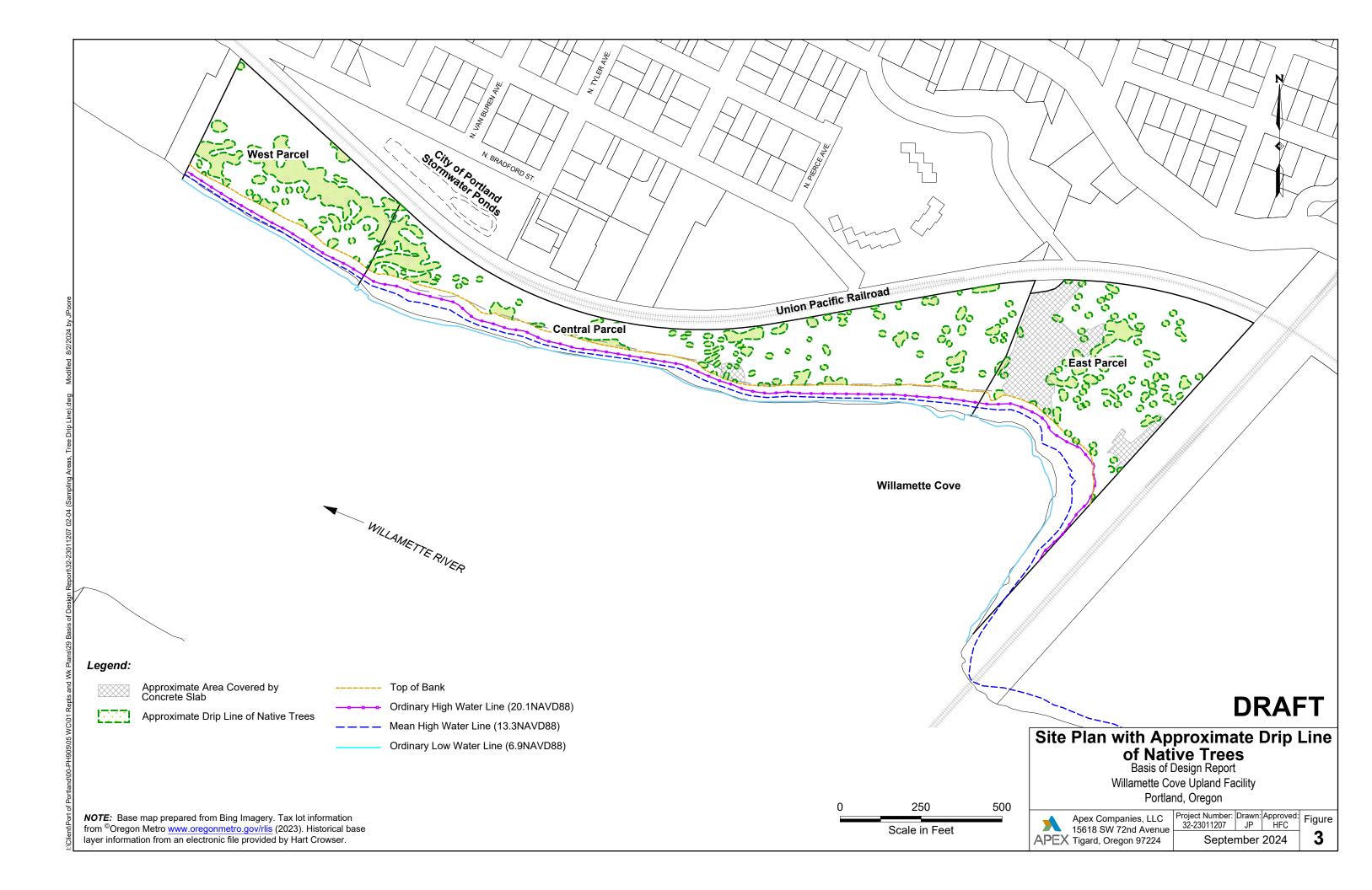
Contour Interval: 10 feet Scale: 1 inch = 24,000 feet Date: 2020

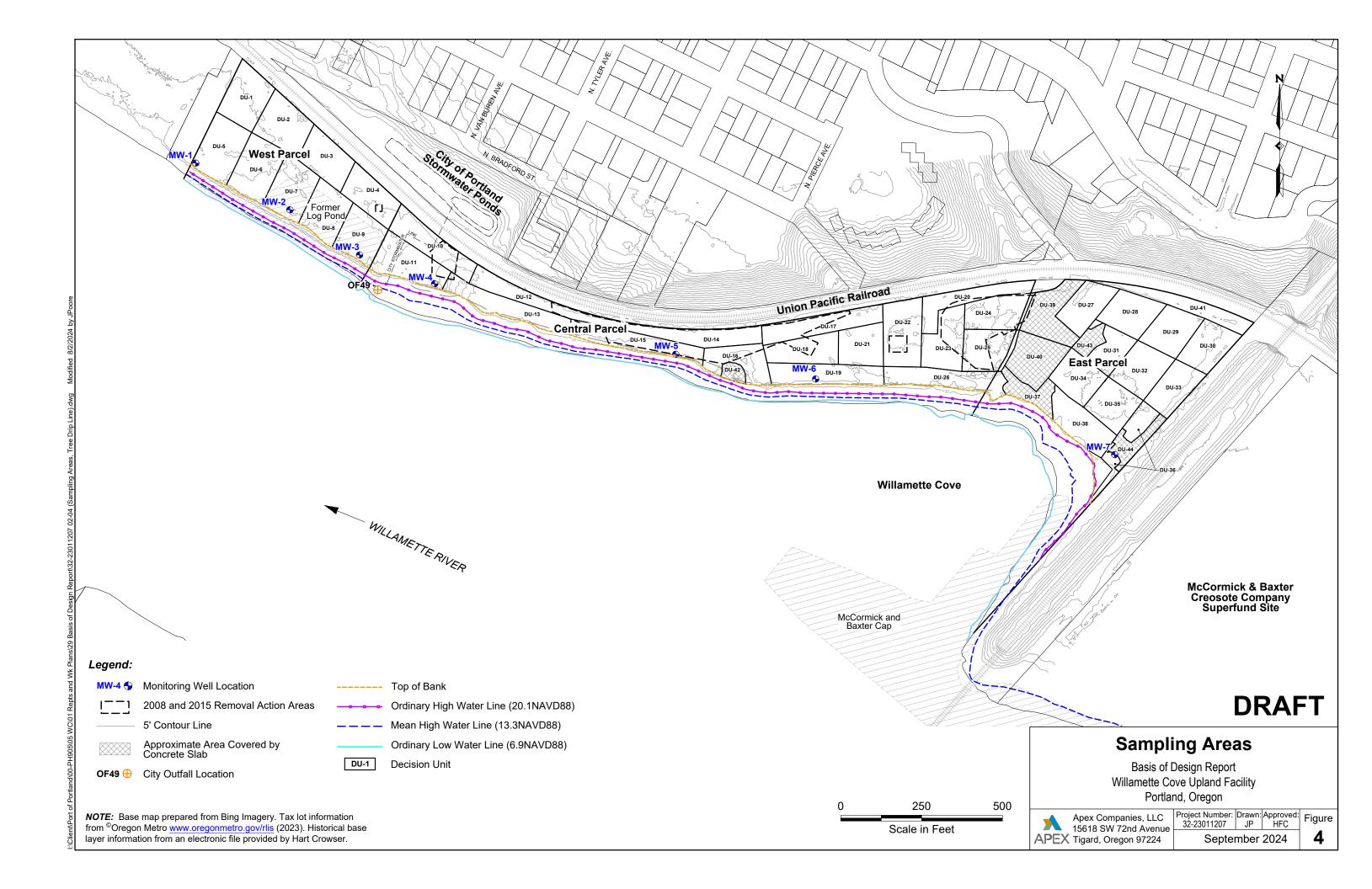
OREGON

0


2,000


4,000


Scale in Feet


Site Location Map

Basis of Design Report Willamette Cove Upland Facility Portland, Oregon

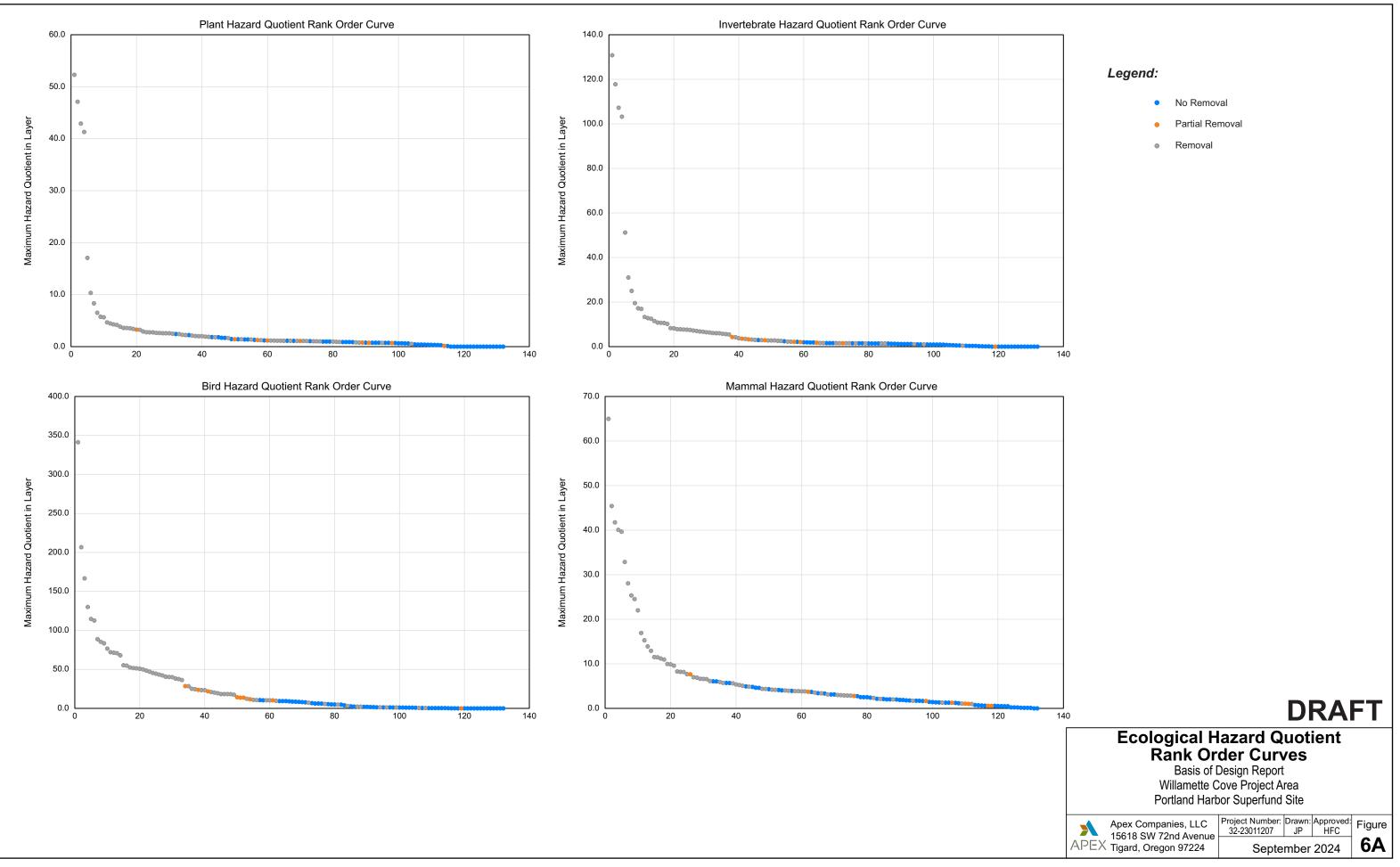
					Wes	st Par	cel						Central Parcel				East Parcel																												
Layer	Depth (ft)	DU-1	DU-2	DU-3	DU-4	DU-5	DU-6	DU-7	DU-8	DU-9	DU-10	DU-11	DU-12	2 DU-13	DU-14	DU-15	DU-16	DU-17	DU-18	DU-19	DU-20	DU-21	DU-22	DU-23	DU-24	DU-25	DU-26	DU-42	DU-27	DU-28	DU-29	DU-30	DU-31	DU-32	DU-33	DU-34	DU-35	DU-36	DU-37	DU-38	DU-39	DU-40	DU-41	DU-43	DU-44
1	0 - 1	4	5	4	5	131	9	20	10	11	71	48	19	77	89	65	341	38	115	44	21	52	40	68	18	51	130	15	17	43	8	8	9	6	6	9	7	7	1	5	0.6	0.1	42	0.5	0.2
2	1 - 2	103	8	1	3	107	10	9	11	9	55	42	18	52	207	85	113	24	71	72	9	18	23	36	12	14	83	12	11	47	3	6	3	1	3	5	2	6	0.5	3	0.6	0	40	0.2	0.2
3	2 - 3	5	0.6	0.7	5	118	9	6	10	9	41	40	-14	51	167	38	29	8	45	22	7	10	25	28	6	8	55	8	4	14	3	11	2	4	2	5	2	5	1	2	0.2	0	25	0.1	0.1

Legend:

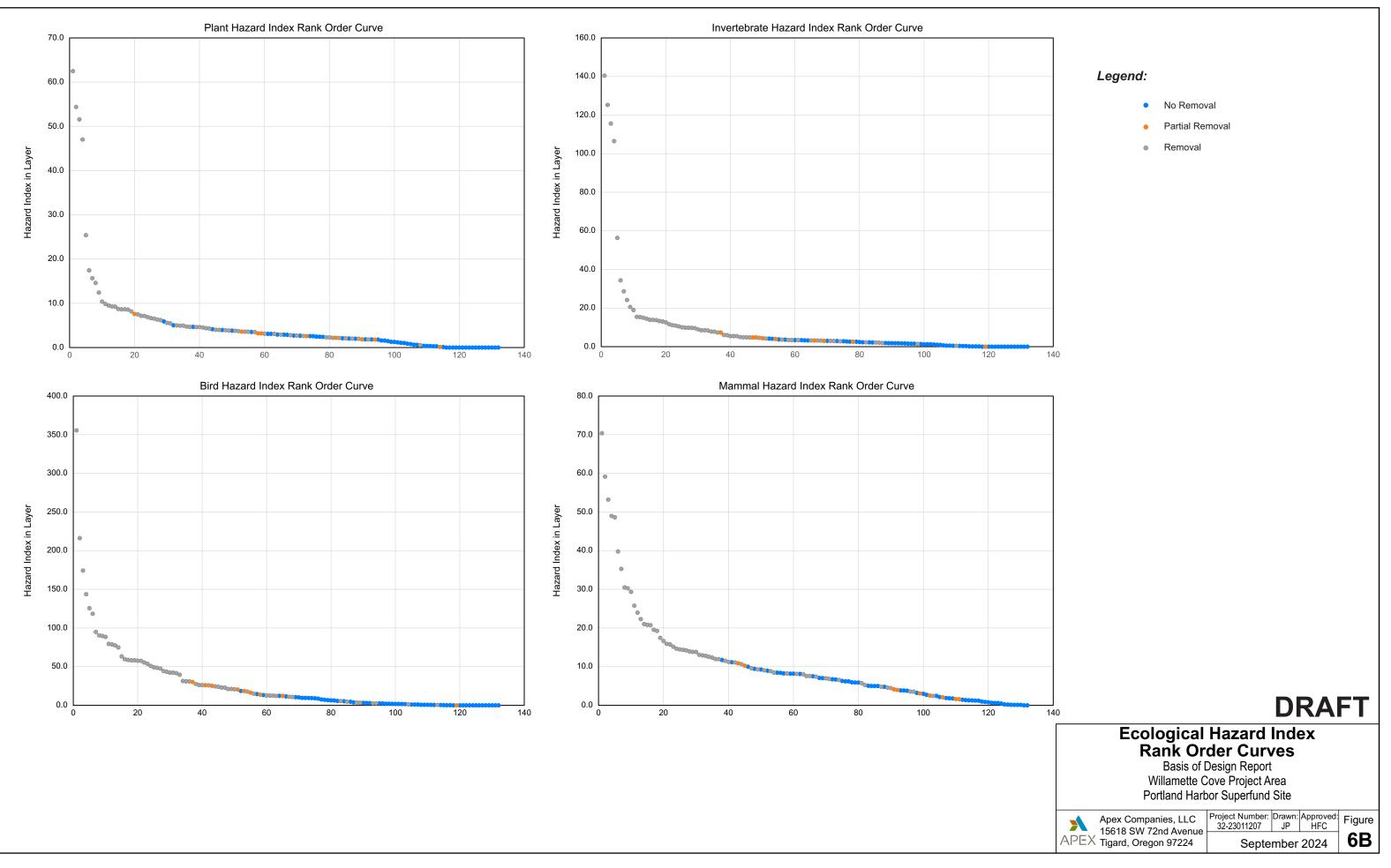
103

Maximum Ecological Hazard Quotient Within Layer and Decision Unit

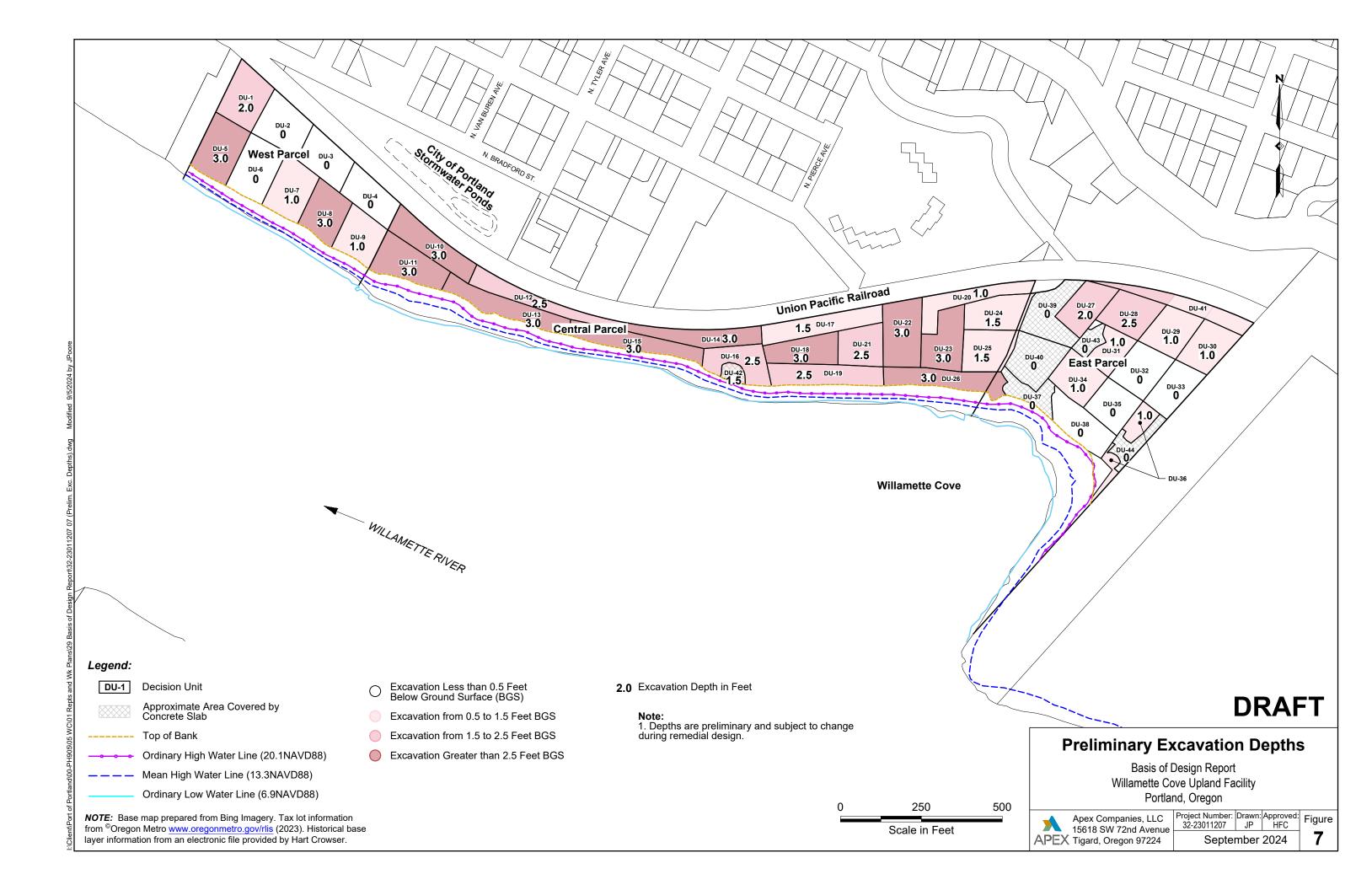
Exceeds Hot Spot Level (Hazard Quotient of 10 or Greater)

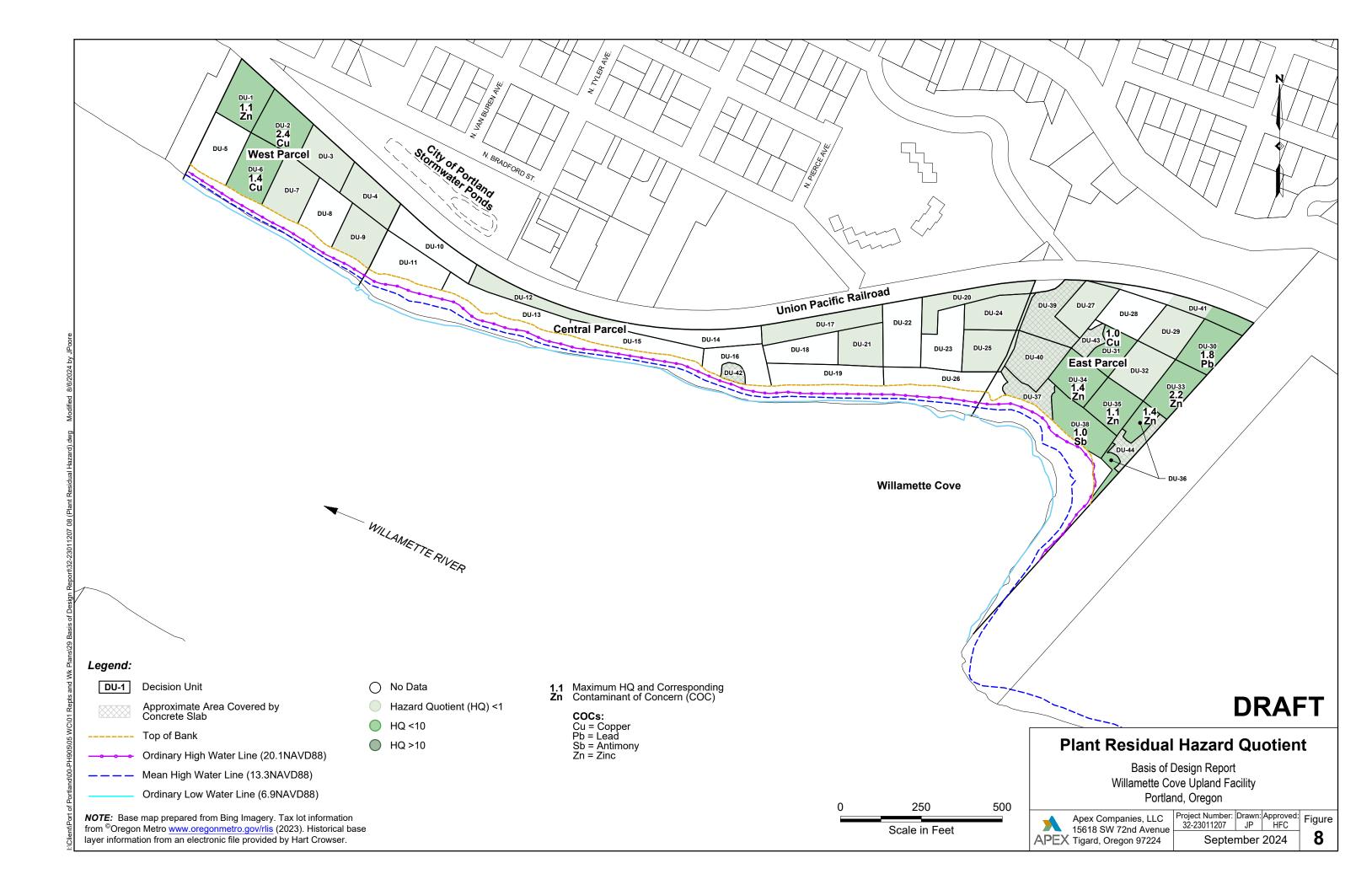

Preliminary Hot Spot Excavation Depth

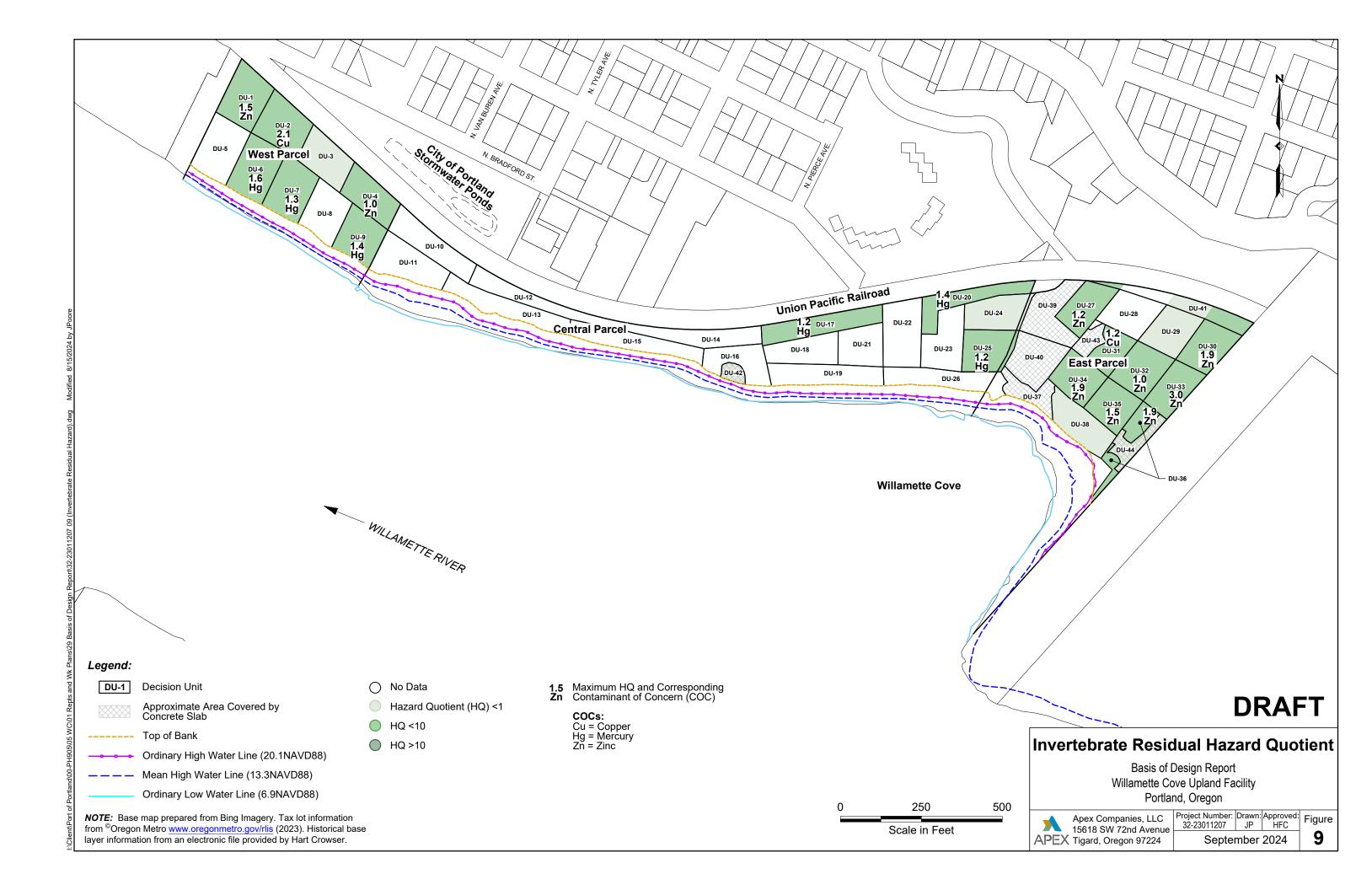
Additional Excavation to Address Human Health Excess Risk

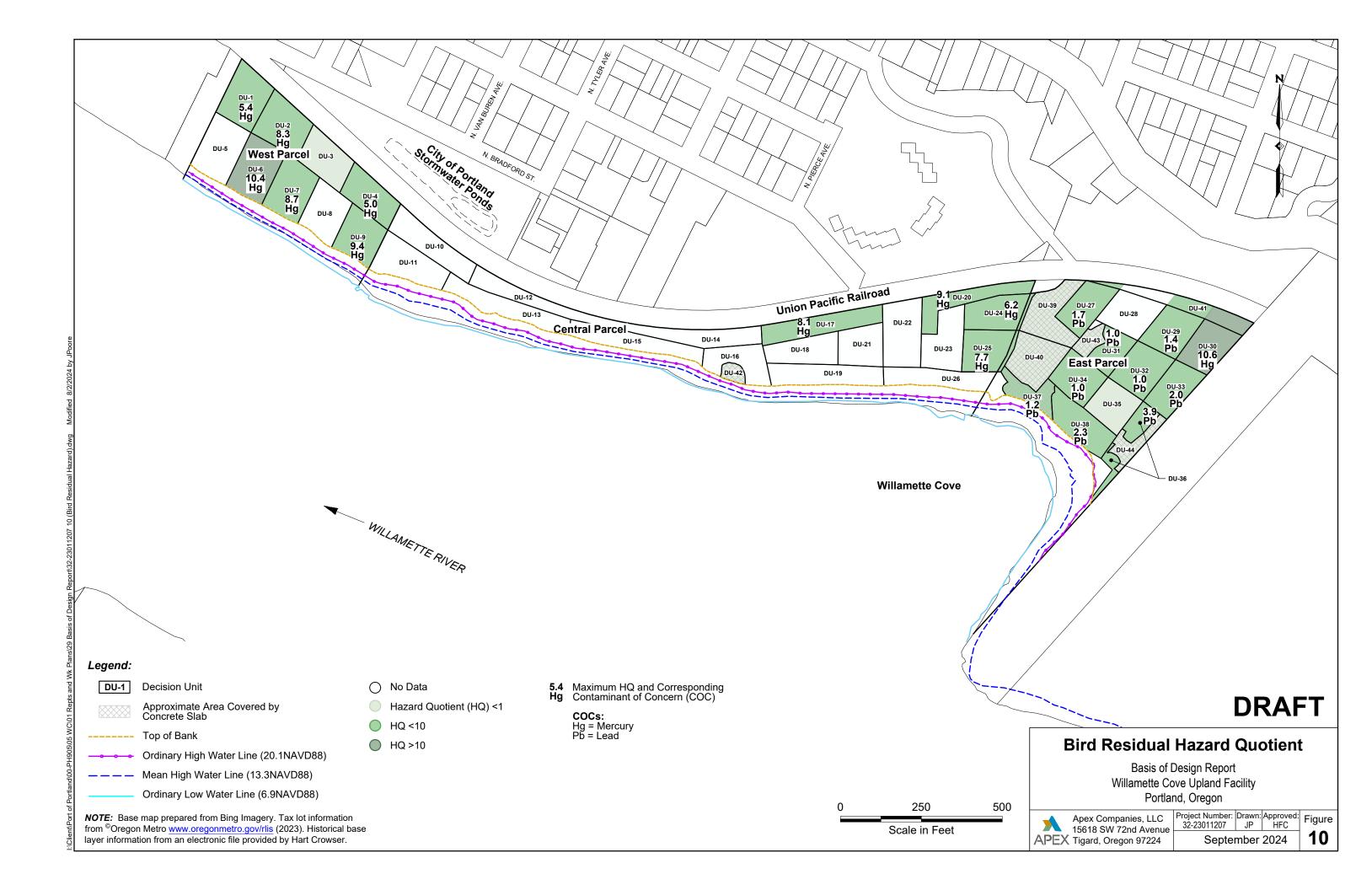


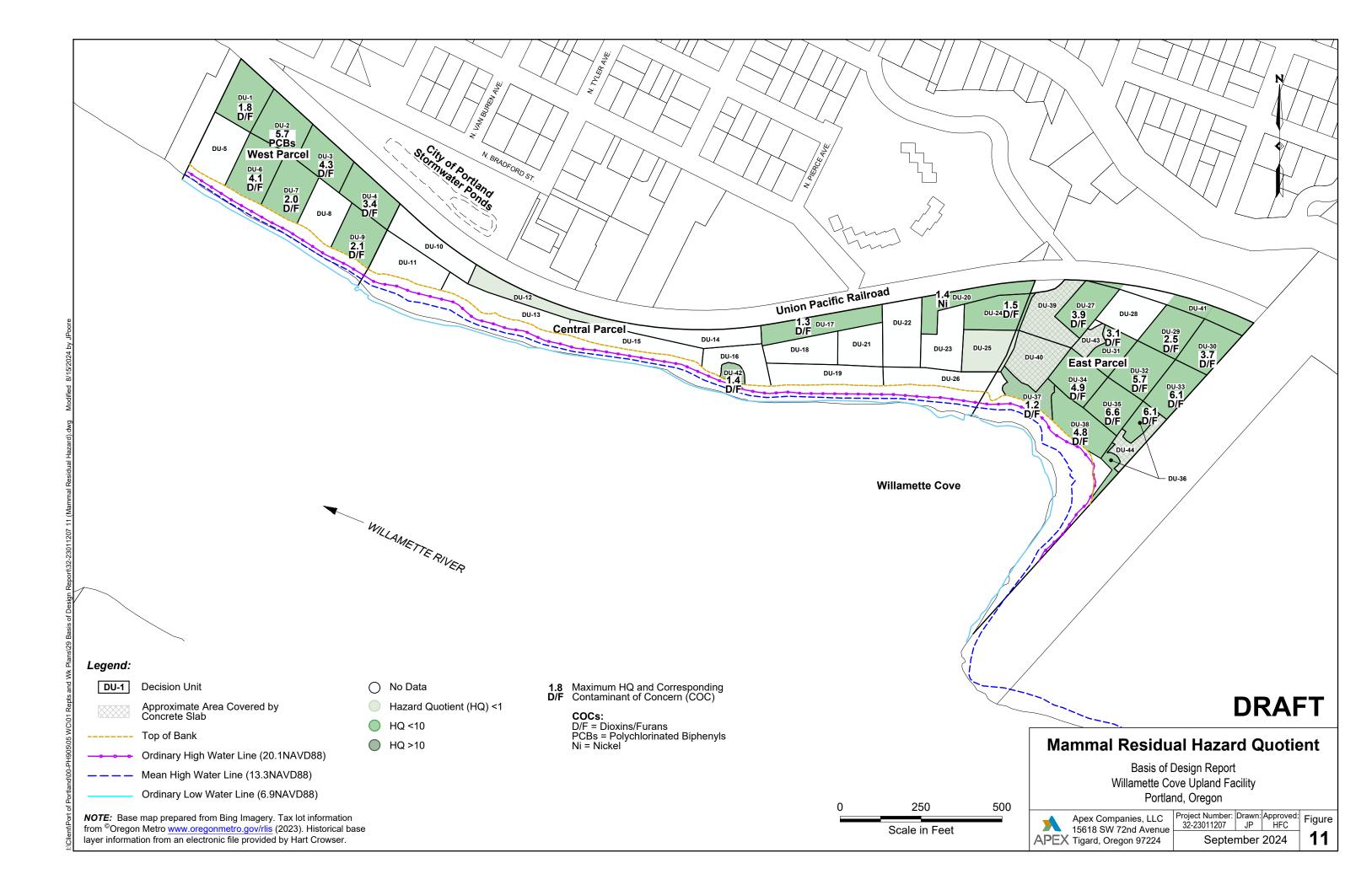
Hot Spot Exceedances and Preliminary Removal Depths Basis of Design Report Willamette Cove Project Area Portland Harbor Superfund Site

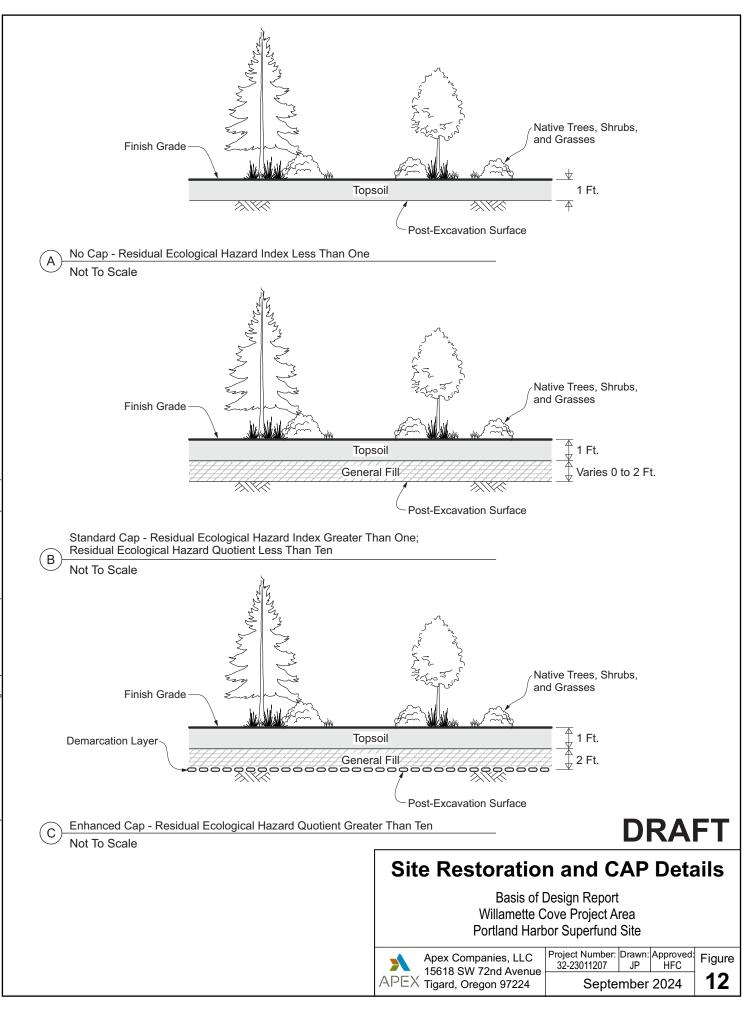

· ·	ex Companies, LLC 618 SW 72nd Avenue	Project Number: 32-23011207	Drawn: JP	Approved: HFC	Figure
APEX Tig	gard, Oregon 97224	Septe	mber	2024	5

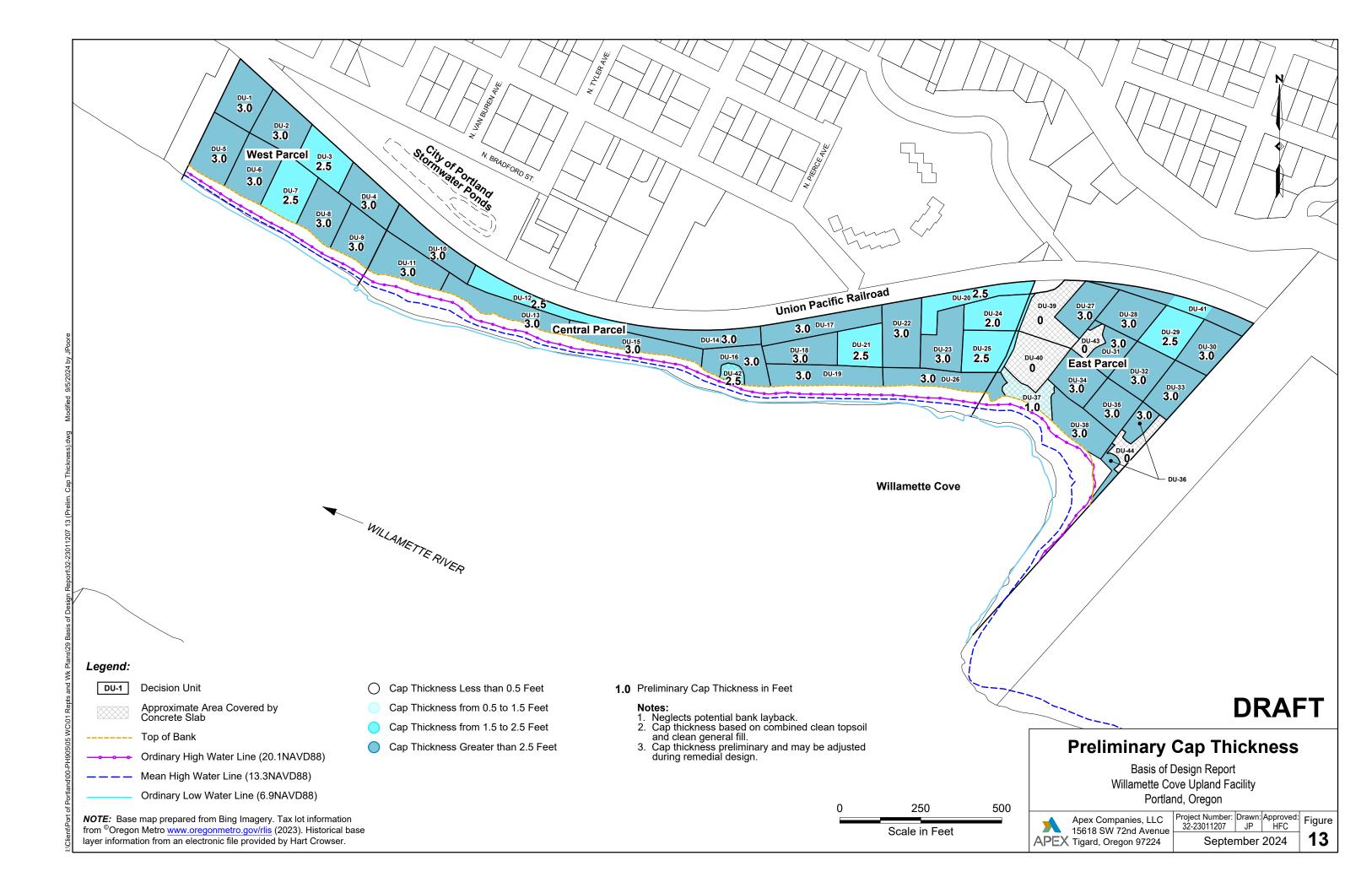


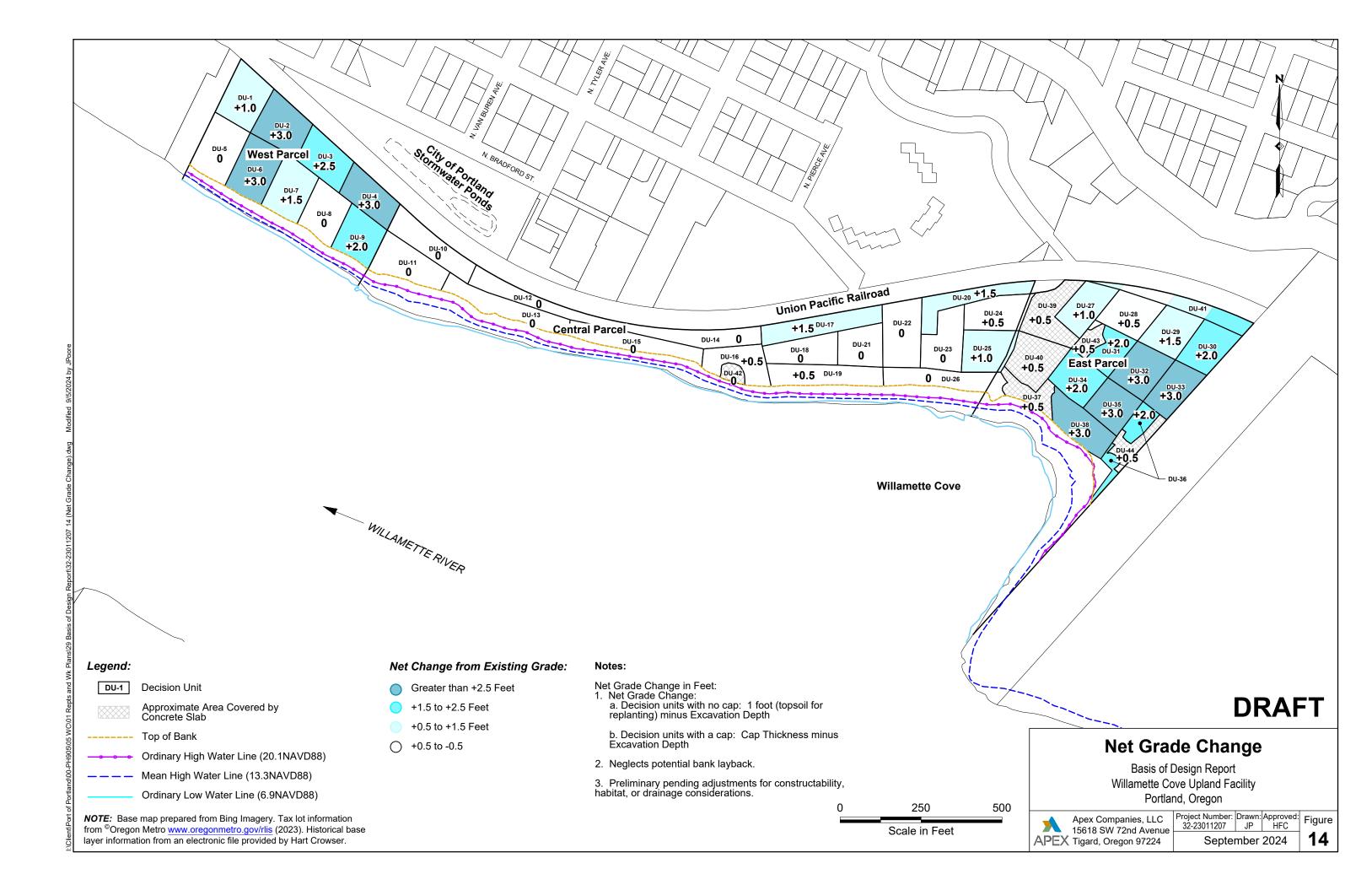





Port of Portland/00-PH905/05 WC/01 Repts and Wk Plans/29 Basis of Design Report/32-23011207 06AB (Eco Rank Order Curves).







Appendix A

Preliminary Evaluation of Excavation to Address Human Health Risk This appendix provides an example of the design process to define the additional excavation needed (following hot spot excavation) to address excess human health risks.

Step 1: Determine if there are any Human Health Cleanup Level (CUL) Exceedances. Table A-1 presents human health risk screening of the residual data following hot spot excavation (i.e., data for layers that are proposed for hot spot excavation are excluded from the screening). Only arsenic, D/F TEQ, and cPAHs were detected at least once above CULs, summarized below.

	West Parcel	Central Parcel	East Parcel
Number of Residual Samples	17	6	38
Arsenic	<background< td=""><td><background< td=""><td>3 samples >CUL Maximum Hazard Quotient (HQ) = 11</td></background<></td></background<>	<background< td=""><td>3 samples >CUL Maximum Hazard Quotient (HQ) = 11</td></background<>	3 samples >CUL Maximum Hazard Quotient (HQ) = 11
D/F TEQ	4 samples >CUL Maximum HQ = 1.8	<cul< td=""><td>20 samples >CUL Maximum HQ = 4.0</td></cul<>	20 samples >CUL Maximum HQ = 4.0
cPAHs	2 samples >CUL Maximum HQ = 3.2	<cul< td=""><td>1 sample >CUL Maximum HQ = 1.03</td></cul<>	1 sample >CUL Maximum HQ = 1.03

Much of the Central Parcel will be excavated to 3 feet for hot spot removal, so data are limited. The uncertainty in residual risk associated with the Central Parcel was assessed by screening the Layer 3 samples from the Central Parcel. The results of that screening are summarized below.

	Central Parcel, Incl. Layer 3 Samples
Number of Residual Samples	19
Arsenic	<background< td=""></background<>
D/F TEQ	5 samples >CUL Maximum HQ = 10
cPAHs	2 samples >CUL Maximum HQ = 9.3

Given these CUL exceedances, arsenic on the East Parcel and D/F TEQ and cPAHs on all three parcels will be evaluated in Step 2.

Step 2: Evaluate the Residual Parcel Exposure Point Concentration. Using methods consistent with the baseline human health risk assessment, residual exposure point concentrations were estimated for arsenic on the East Parcel and D/F TEQ and cPAHs on each parcel. The exposure point concentrations for each COC/parcel were calculated as follows:

- The base data set consisted of the following:
 - The residual data representing layers not excavated;
 - For layers that are partially excavated, the data representing the full layer was used (this likely overestimates the residual concentration for that layer);
 - Layers that are excavated were represented by replacement values corresponding to the clean fill expected to be used (no replacement values were used for cap soil overlying the replaced layers);
 - No data were excluded in anticipation of bank layback because the layback design is not yet known (this likely overestimates residual concentrations as bank layback will remove soil to deeper levels where soil concentrations are likely lower);
 - Composite data were used as if representative of the concentrations in the corresponding layers; and
 - Smaller DUs (DU-42, DU-43, and DU-44) were neglected (this likely overestimates the risk as the concentrations in these DUs are generally less than the adjacent DUs).

Table A-2 lists the input data for Step 2. Backup 90 percent upper confidence limit on the mean (90 UCL) calculations are included as an attachment to this appendix. Residual exposure point concentrations are summarized below.

	Human		90 UCL in mg/kg	
COC	Human Health CUL	West Parcel	Central Parcel	East Parcel
Arsenic	8.8 mg/kg (background)	NA	NA	5.4
D/F TEQ	1.5E-05 mg/kg	1.0E-05	5.9E-06	2.4E-05
cPAHs	0.55 mg/kg	0.39	0.03	0.12

These results show that only the D/F TEQ exposure point concentration on the East Parcel exceeded the CUL after hot spot excavation. The extent of additional excavation needed on the East Parcel is evaluated for D/F TEQ in Step 3.

Step 3: Define Additional Excavation Needed to Address Excess Human Health. Table A-3 lists the D/F TEQ residual data for the East Parcel. The first column lists the data following hot spot excavation (same as the data for the East Parcel in Table A-2). Subsequent columns list the prior column of data with the greatest exposed D/F TEQ concentration removed and the replacement concentration inserted. The corresponding

90 UCL concentration is listed at the bottom of each column. Backup 90 UCL calculations are included as an attachment to this appendix. The 90 UCL falls below the CUL after removal of the six greatest D/F TEQ samples. Therefore, to address human health risk on the East Parcel, the following additional excavation is needed (following hot spot excavation):

Decision Unit	Depth Range Targeted for Additional Excavation
DU-27	1.5 – 2.0 feet
DU-29, DU-30, DU-31, DU-34, and DU-36	0 – 1.0 feet

Step 4: Define Additional Excavation Needed to Address Localized Excess Human Health Risk. To evaluate potential localized risk, Figures A-1 through A-3 summarize residual human health risk following excavation of hot spots and additional excavation to address human health risk. No additional excavation was identified because of potential localized risk, as discussed below.

- Arsenic Residual arsenic concentrations exceeded background and the CUL in three DUs, all on the East Parcel (Figure A-1). Since these DUs are all on the East Parcel, the risk evaluation of the East Parcel adequately captured the potential risk associated with these DUs. Additionally, future use of the Site as a nature park is not likely to focus site use exclusively to these DUs, so the exposure point concentrations calculated for the East Parcel are representative of expected future exposures. Half of the DUs on the Central Parcel have proposed excavation depths of 3 feet, so there are no residual data to evaluate risk for those DUs. To assess the potential uncertainty associated with the limited data, hazard quotients for Layer 3 are shown on Figure A-1. Arsenic concentrations are below background for these data, so the data set is adequate to evaluate arsenic residual risk.
- cPAHs Residual cPAH concentrations exceeded the CUL in two DUs, one each on the West and East Parcels (Figure A-2). Given that these two DUs are widely separated, no localized cPAH risk is identified. However, DU-4 is adjacent to DU-10 and DU-11 on the Central Parcel that are also impacted by cPAHs. Those Central Parcel DUs are proposed for 3 feet of excavation so there are no residual data to evaluate a potential localized impact. Verification sampling will be conducted during remedial action and a potential localized cPAH impact will be re-evaluated at that time. Except for DU-10 and DU-11, cPAH concentrations in the Layer 3 data are below CULs, so the data set is otherwise adequate to evaluate cPAH residual risk.
- D/F TEQ Figure A-3 summarizes the residual human health risk screening for D/F TEQ. Fourteen DUs exceed the CUL (four on the West Parcel, one on the Central Parcel, and nine on the East Parcel). The CUL exceedances range from 1.0 to 2.7, and the DUs that exceed the CUL on the West and East Parcels are scattered within the Parcels, so the CUL exceedances do not represent a localized risk and the parcel exposure concentrations are representative of the potential human health risk. Except for DU-15, hazard quotients in Layer 3 on the Central Parcel range from 0.3 to 1.8. These relatively low hazard quotients support the conclusion that there are no localized risk concerns on the Central Parcel. DU-15, with a hazard quotient of 10, is located along the top of bank

and is expected to be further excavated as part of the in-water remediation bank layback. The bank layback will be evaluated further during remedial design.

Step 5: Define Additional Excavation Needed to Address Shallow Surface Soil (0 to 1 foot) Excess Risk. To evaluate the need for additional excavation to address shallow contamination, the residual data associated with the top 1 foot (from the bottom of the proposed excavation) was compared to the full residual data set. Results are discussed separately for each COC.

- Arsenic Arsenic exceeded background and the CUL only on the East Parcel. The average concentrations of the two data sets differed by approximately 10 percent (4.5 mg/kg for the full data set; 5.1 mg/kg for the 1-foot data set). These two data sets do not substantively differ, so no additional excavation is needed to address arsenic surface contamination.
- cPAHs cPAHs exceeded the CUL on the West and East Parcels. In both cases, the maximum detected concentration was not in the 1-foot data set. For the West Parcel, the average concentration of the full data set was higher than the 1-foot data set. For the East Parcel, the average concentrations of the two data sets differed by approximately 10 percent (0.070 mg/kg for the full data set; 0.078 mg/kg for the 1-foot data set). These data sets do not substantively differ, so no additional excavation is needed to address cPAH surface contamination.
- D/F TEQ D/F TEQ exceeded the CUL on each Parcel. For the West and Central Parcels, average concentrations of the two data sets differed by less than 20 and 10 percent, respectively. These data sets do not substantively differ, so no additional excavation is needed to address D/F TEQ surface contamination on the West and Central Parcels. On the East Parcel, the average concentration of the 1-foot data set (1.95E-05 mg/kg) is 50 percent greater than the full data set (1.29E-05 mg/kg). To assess the practicability of further risk reduction on the East Parcel, the 1-foot data set was adjusted by removing the highest remaining D/F TEQ concentration (Layer 2 of DU-36) and substituting the concentration for the underlying layer (Layer 3 of DU-36). With this substitution, the average concentration (1.89E-05 mg/kg) was essentially unchanged. Therefore, the marginal effort of additional excavation is disproportionate to the marginal risk reduction, so additional excavation is not warranted.

Table A-1	
Human Health Residual Risk Screening	
Willamette Cove Upland Facility	

			Sample		Antimony	Arsenic	Copper	Lead	Dioxin/Furan TEQ	cPAHs	Total PCE
Sample Location	Decision Unit	Sample Type	Depth (feet bgs)	Sample ID			c	onstituent (mg/l			•
	I		F	luman Health RBC	24.3	1.4	11000	400	1.50E-05	0.55	0.75
				ISM Bkgd	0.29 0.56	8.8 8.8	24 34	27 79			
			0-1	Composite Bkgd DU-1 (0-1)	0.801	6.24	180	74.8	2.21E-05	0.4460	0.4270
	DU-1	ISM	1-2	DU-1 (1-2)	0.712	5.41	64.6	321	2.56E-05	0.4000	2.7500
			2-3	DU-1 (2-3)	0.529	5.79	69.5	57.5	1.07E-05	0.3280	0.1100
	DU-2	ISM	0-1 1-2	DU-2 (0-1) DU-2 (1-2)	0.603 0.515	5.41 5.36	119 170	96.2 118	6.95E-06 3.44E-06	0.1650 0.1080	0.1860 0.5580
	00-2	10141	2-3	DU-2 (2-3)	0.495	5.21	41.9	24.4	2.42E-06	0.0319	0.0299
			0-1	DU-3 (0-1)	0.547	6.87	26.8	20.1	2.63E-05	0.1530	0.0250
	DU-3	ISM	1-2	DU-3 (1-2)	0.497	6.65	25.8	15.8	7.82E-06	0.1290	0.0050
			2-3 0-1	DU-3 (2-3) DU-4 (0-1)	0.536 0.565	6.65 6.57	21.6 29.1	13.5 23.7	4.57E-06 2.09E-05	0.1030	0.0048
	DU-4	ISM	1-2	DU-4 (1-2)	0.515	6.87	26.6	23.9	1.66E-05	1.7500	0.0245
			2-3	DU-4 (2-3)	0.502	7.63	34	45.1	1.47E-05	0.7670	0.0351
West Parcel	DU-5	ISM	0-1	DU-5 (0-1)	0.992	8.98 8.09	344	62.1	1.71E-05 1.53E-05	0.2420 0.1990	0.1770
WestFalcel	D0-3	10111	1-2 2-3	DU-5 (1-2) DU-5 (2-3)	0.832 0.596	6.73	237 214	70.5 118	2.33E-05	0.4080	0.1430
			0-1	DU-6 (0-1)	0.539	4.93	67.6	28.2	1.04E-05	0.1880	0.0625
	DU-6	ISM	1-2	DU-6 (1-2)	0.56	4.89	91.6	40	2.51E-05	0.2040	0.1110
			2-3 0-1	DU-6 (2-3) DU-7 (0-1)	0.526	4.67 4.37	100 36	37.8 23.3	1.14E-05 1.74E-05	0.2260	0.1670
	DU-7	ISM	1-2	DU-7 (0-1) DU-7 (1-2)	0.537	3.98	30.1	18.7	1.24E-05	0.0711	0.0567
	-		2-3	DU-7 (2-3)	0.536	3.07	24.2	14.9	8.17E-06	0.0478	0.0502
	DULO	1014	0-1	DU-8 (0-1)	0.56	4.33	32.5	39.1	2.36E-05	0.1210	0.0989
	DU-8	ISM	1-2 2-3	DU-8 (1-2) DU-8 (2-3)	0.501 0.545	4.13 4.13	32.9 32	31.4 31	2.46E-05 2.34E-05	0.0731 0.0847	0.0678
			0-1	DU-8 (2-3) DU-9 (0-1)	0.623	5.25	40.6	28.2	1.78E-05	0.1890	0.0984
	DU-9	ISM	1-2	DU-9 (1-2)	0.555	4.81	34.6	40.7	1.28E-05	0.0771	0.0353
			2-3	DU-9 (2-3)	0.512	5.12	37.4	21.5	1.23E-05	0.1800	0.0478
	DU-10	ISM	0-1	DU-10 (0-1)	0.541	4.5	33.3	86.5	1.73E-05	5.1900	0.0337
	00-10	10111	1-2 2-3	DU-10 (1-2) DU-10 (2-3)	0.531 0.514	5.56 5.16	33.6 32.2	54.8 73.3	5.46E-06 4.52E-06	4.7000 2.6000	0.0202
			0-1	DU-11 (0-1)	0.545	4.6	38.5	56.1	1.17E-05	5.4000	0.0369
	DU-11	ISM	1-2	DU-11 (1-2)	0.535	4.15	37.3	49	5.21E-06	2.6500	0.0372
			2-3 0-1	DU-11 (2-3)	0.526	4.23	35.2	43.3 165	5.89E-06 2.54E-05	5.1300 0.3930	0.0389
	DU-12	ISM	1-2	DU-12 (0-1) DU-12 (1-2)	0.83 0.493	4.95 4.26	78.9 55.7	105	2.54E-05 4.21E-06	0.3930	0.0532
	-	-	2-3	DU-12 (2-3)	0.551	3.62	41	70.8	2.60E-06	0.0900	0.0050
			0-1	DU-13 (0-1)	0.923	6.04	94.3	241	2.77E-04	1.1700	0.0701
	DU-13	ISM	1-2	DU-13 (1-2)	0.54	4.79	53	154	3.62E-05	0.4500	0.0272
			2-3 0-1	DU-13 (2-3) DU-14 (0-1)	0.562 2.81	4.04 6.14	54.2 73.5	175 134	2.66E-05 7.87E-05	0.2630	0.0330
	DU-14	ISM	1-2	DU-14 (1-2)	7.38	6.87	122	240	3.43E-05	0.2570	0.0048
			2-3	DU-14 (2-3)	3.04	5.66	185	162	1.43E-05	0.1950	0.0048
	DU-15	ISM	0-1	DU-15 (0-1)	2.81	5.04	95.4	131	3.96E-04 2.00E-04	0.1380 0.0499	0.0268
	D0-15	10111	1-2 2-3	DU-15 (1-2) DU-15 (2-3)	0.576 0.492	3.75 2.91	57.7 36.2	68.6 63.6	1.50E-04	0.1010	0.0048
			0-1	DU-16 (0-1)	4.29	8.31	131	306	2.44E-04	0.4960	0.0346
	DU-16	ISM	1-2	DU-16 (1-2)	2.29	6.92	71.8	151	1.75E-05	0.2460	0.0049
			2-3	DU-16 (2-3)	0.499	3.6	16	4	6.00E-06 4.04E-05	0.0200	0.0050
Central Parcel	DU-17	ISM	0-1 1-2	DU-17 (0-1) DU-17 (1-2)	1.06 0.511	4.95 3.72	59.2 34.3	81.4 62.5	4.04E-05 3.43E-06	0.0634	0.025
			2-3	DU-17 (2-3)	0.504	3.16	26.8	35.1	7.81E-06	0.0309	0.0049
			0-1	DU-18 (0-1)	1.41	10.9	111	280	6.68E-05	0.2710	0.0584
	DU-18	ISM	1-2	DU-18 (1-2)	0.495	6.22	79.5	179	2.16E-05	0.1380 0.0862	0.0336
			2-3 0-1	DU-18 (2-3) DU-19 (0-1)	0.502	5.63 7.67	59.9 107	92.3 257	1.29E-05 1.34E-04	0.0002	0.0310
	DU-19	ISM	1-2	DU-19 (1-2)	0.957	11.2	110	161	8.48E-05	0.2700	0.031
			2-3	DU-19 (2-3)	0.926	5.68	44.9	51	4.00E-05	0.0560	0.0568
	DU-20	ISM	0-1	DU-20 (0-1)	1.69 0.536	5.69 4.08	58.4 25.8	76.2 17.7	3.49E-05 4.30E-06	0.1450 0.0132	0.039
	00-20	IOIVI	1-2 2-3	DU-20 (1-2) DU-20 (2-3)	0.536	4.08	25.0	14.3	4.30E-06 3.97E-06	0.0132	0.005
		1	0-1	DU-21 (0-1)	2.73	10.5	128	295	7.03E-05	0.3140	0.049
	DU-21	ISM	1-2	DU-21 (1-2)	1.01	4.93	56.2	116	2.06E-05	0.1640	0.0364
			<u>2-3</u> 0-1	DU-21 (2-3)	0.497	4.48	45.9	89.7	1.01E-05	0.0879	0.005
	DU-22	ISM	0-1 1-2	DU-22 (0-1) DU-22 (1-2)	2.89 2.63	6.48 4.53	96.6 47.4	190 72.3	3.25E-05 1.23E-05	0.1310 0.0289	0.043
			2-3	DU-22 (2-3)	1.09	4.45	54	57.5	7.93E-06	0.0292	0.005
			0-1	DU-23 (0-1)	1.62	5.99	150	276	4.00E-05	0.1060	0.0591
	DU-23	ISM	1-2	DU-23 (1-2)	0.61	4.63	69.5	70.9	1.05E-05	0.1040	0.0265
			2-3 0-1	DU-23 (2-3) DU-24 (0-1)	0.498	3.82 4.16	41.9 39.9	82.2 48.8	5.92E-06 2.33E-05	0.0362	0.0050
	DU-24	ISM	1-2	DU-24 (0-1) DU-24 (1-2)	0.346	3.56	28.4	23.2	6.44E-06	0.0680	0.0049
	1	1	2-3	DU-24 (2-3)	0.501	2.84	17.6	13.8	8.88E-06	0.0145	0.0048

Table A-1	
Human Health Residual Risk Screening	
Willamette Cove Upland Facility	

Sample Location	Decision Unit	t Sample Type	Sample Depth (feet Sample ID		Antimony	Arsenic	Copper	Lead	Dioxin/Furan TEQ	cPAHs	Total PCB		
Sample Location	Decision Unit		bgs)	Sample ID	Constituent (mg/kg)								
			Н	uman Health RBC	24.3	1.4	11000	400	1.50E-05	0.55	0.75		
				ISM Bkgd	0.29	8.8	24	27					
				Composite Bkgd	0.56	8.8	34	79	4.005.05	0.0000	0.0050		
	DU-25	ISM	0-1 1-2	DU-25 (0-1) DU-25 (1-2)	0.822 0.493	5.24 3.29	226 43	144 92	4.69E-05 2.60E-06	0.3860	0.0653		
	D0-23	10111	2-3	DU-25 (1-2) DU-25 (2-3)	0.495	3.17	30	43.2	1.94E-06	0.0905	0.0050		
Central Parcel			0-1	DU-26 (0-1)	4.79	9.5	152	330	9.33E-05	0.7230	0.1850		
	DU-26	ISM	1-2	DU-26 (1-2)	1.4	11.6	80.7	151	4.27E-05	0.2810	0.0705		
			2-3	DU-26 (2-3)	0.529	4.75	41.6	76.1	2.36E-05	0.1480	0.1890		
Central Parcel	DU-42		0-1	DU-42 (0-1)	0.512	4.38	36.3	53.3	6.07E-05	0.0507	0.0050		
Concrete Slab	(Within DU-	Composite	1-2 2-3	DU-42 (1-2)	0.6 0.531	4.05 3.76	25 21.1	29.3	2.10E-05 8.27E-06	0.0300 0.0229	0.0050		
	16)	-	<u>2-3</u> 0-1	DU-42 (2-3) DU-27 (0-1)	1.3	3.76	21.1	20.1 46.1	1.03E-04	0.0229	0.0049		
	DU-27	ISM	1-2	DU-27 (0-1) DU-27 (1-2)	0.488	8.72	81.2	39.1	6.99E-05	0.2420	0.1680		
			2-3	DU-27 (2-3)	1.15	15.8	45.6	55.4	2.40E-05	0.0973	0.1780		
			0-1	DU-28 (0-1)	2.32	10.5	184	78.1	1.91E-05	0.4330	0.1000		
	DU-28	ISM	1-2	DU-28 (1-2)	2.87	13.3	327	74.1	3.27E-05	0.5280	0.0718		
			2-3	DU-28 (2-3)	4.79	7.4	229	113	1.49E-05	0.3530	0.0370		
	DU-29	ISM	0-1	DU-29 (0-1)	1.08	6.95	69.3	103	4.97E-05 1.53E-05	0.1540	0.0250		
	D0-29	ISM	1-2 2-3	DU-29 (1-2) DU-29 (2-3)	1.02 0.511	5.08 3.6	44.3 27.8	41.1 45.7	1.53E-05 1.53E-05	0.0697 0.0588	0.0047		
	DU-30	ISM	0-1	DU-30 (0-1)	1.66	4.22	63.4	131	5.05E-05	0.3980	0.0325		
			1-2	DU-30 (1-2)	2.09	3.72	79.8	202	2.24E-05	0.1690	0.0050		
			2-3	DU-30 (2-3)	6.81	4.14	86.6	220	1.44E-05	0.0709	0.0456		
	DU-31		0-1	DU-31 (0-1)	1.85	6.09	35.4	44.8	5.84E-05	0.1240	0.0257		
		ISM	1-2	DU-31 (1-2)	0.743	4.98	49.2	34.1	1.90E-05	0.1190	0.0298		
			2-3	DU-31 (2-3)	0.735	5.96	68.2	25	1.09E-05	0.0919	0.0270		
East Parcel	DU-32	ISM	0-1 1-2	DU-32 (0-1) DU-32 (1-2)	0.879 0.535	8.99 7.1	31.6 23.4	28.9 20.9	3.48E-05 7.54E-06	0.1150 0.0754	0.0048		
Last Faiter		10111	2-3	DU-32 (1-2) DU-32 (2-3)	0.335	3.56	20.1	20.9 34.1	7.59E-06	0.5660	0.0040		
	DU-33	ISM	0-1	DU-33 (0-1)	2.31	6.62	79.8	88.8	3.69E-05	0.0542	0.0852		
			1-2	DU-33 (1-2)	1.84	9.6	96.6	66.2	1.67E-05	0.0519	0.0501		
			2-3	DU-33 (2-3)	0.666	5.35	52.6	42.8	1.21E-05	0.0555	0.0579		
	DUIDA	1014	0-1	DU-34 (0-1)	1.05	5.13	32.6	41.4	6.03E-05	0.2530	0.0330		
	DU-34	ISM	1-2	DU-34 (1-2)	0.557 0.537	4.95 3.69	33.2 33.1	31.9 25.9	2.82E-05 3.02E-05	0.1840 0.0973	0.0476		
	-	-	2-3 0-1	DU-34 (2-3) DU-35 (0-1)	0.512	4.4	52.9	25.9	4.05E-05	0.0973	0.0050		
	DU-35	ISM	1-2	DU-35 (1-2)	0.531	3.81	29.1	19	1.31E-05	0.0331	0.0396		
	2000		2-3	DU-35 (2-3)	0.524	3.37	27.8	12.4	1.02E-05	0.0355	0.0050		
			0-1	DU-36 (0-1)	3.77	5.03	57.9	73.2	4.21E-05	0.0823	0.0279		
	DU-36	ISM	1-2	DU-36 (1-2)	3.44	4.23	56.7	130	3.70E-05	0.1030	0.0050		
					2-3	DU-36 (2-3)	3.62	4.12	46.3	63.3	2.80E-05	0.0379	0.0284
	DU-38	ICM	0-1	DU-38 (0-1)	1.31 4.88	3.71 3.76	27.7 56	30.5 76.7	2.94E-05 1.90E-05	0.0828 0.0635	0.0412		
	D0-36	J-38 ISM	1-2 2-3	DU-38 (1-2) DU-38 (2-3)	4.00 3.71	4.06	эо 51.4	76.7 51.3	1.05E-05	0.0635	0.0444		
			0-1	DU-37 (0-1)	0.495	3.72	26.1	39.3	6.78E-07	0.01124	0.0049		
	DU-37	Composite	1-2	DU-37 (1-2)	0.495	3	21.4	12.6	6.32E-07	0.0114	0.0050		
			2-3	DU-37 (2-3)	0.513	2.85	16.9	8.96	5.69E-07	0.0970	0.0051		
			0-1	DU-39 (0-1)	0.534	2.69	21.3	6.09	3.68E-06	0.0057	0.0049		
	DU-39	Composite	1-2	DU-39 (1-2)	0.56	3.24	17.9	5.11	1.38E-06	0.0057	0.0049		
			2-3 0-1	DU-39 (2-3)	0.525	3.44 2.88	18.4	6.88	1.36E-06 7.34E-07	0.0124	0.0049		
ast Parcel Concrete	DU-40	Composite	0-1 1-2	DU-40 (0-1) DU-40 (1-2)	0.509 0.513	2.88	16.2 15.4	3.75 3.47	7.34E-07 5.18E-07	0.0057	0.0049		
Slabs	00-40	Composite	2-3	DU-40 (1-2) DU-40 (2-3)	0.525	3.13	16.6	3.47	5.52E-07	0.0061	0.0050		
	DU-43		0-1	DU-43 (0-1)	0.503	2.92	18.8	5.42	3.00E-06	0.0163	0.0051		
	(Within DU-	Composite	1-2	DU-43 (1-2)	0.536	2.89	18.7	9.65	1.26E-06	0.0106	0.0051		
	31)		2-3	DU-43 (2-3)	0.523	3.06	16.3	4.35	6.63E-07	0.0097	0.0050		
	DU-44		0-1	DU-44 (0-1)	0.619	3.12	17.9	13	1.38E-06	0.0180	0.0049		
	(Within DU-	Composite	1-2	DU-44 (1-2)	0.486	3.24	15.7	6.23	8.37E-07	0.0127	0.0049		
	36)		2-3	DU-44 (2-3)	0.505	3.06	15	5.94	7.25E-07	0.0129	0.0048		
East Parcel Soil	DU-41	ISM	0-1 1-2	DU-41 (0-1) DU-41 (1-2)	2.81 2.39	50.1 14.1	78.6 71.1	83.8 129	2.55E-04 2.42E-04	0.3360 0.2760	0.0691 0.0926		
Berms	D0-41	10101	2-3	DU-41 (1-2) DU-41 (2-3)	2.39	14.1 19.6	45.2	129	2.42E-04 1.55E-04	0.2760	0.0920		

Notes: 1. Definition of table shading:

Layer Removed Layer Partially Removed Non-Detect

Layer not excavated for hot spots and exceeds detection limit, background, and human health risk-based concentration

2. mg/kg = milligrams per kilogram

		.	Sample		Cor	centration in m	g/kg
Sample Location	Decision Unit	Sample Type	Depth (feet bgs)	Sample ID	Arsenic	Dioxin/Furan TEQ	cPAHs
			0-1	Replace		1.40E-06	0.0100
	DU-1	ISM	1-2	Replace		1.40E-06	0.0100
			2-3	DU-1 (2-3)		1.07E-05	0.3280
			0-1	DU-2 (0-1)		6.95E-06	0.1650
	DU-2	ISM	1-2	DU-2 (1-2)		3.44E-06	0.1080
			2-3	DU-2 (2-3)		2.42E-06	0.0319
			0-1	DU-3 (0-1)		2.63E-05	0.1530
	DU-3	ISM	1-2	DU-3 (1-2)		7.82E-06	0.1290
			2-3	DU-3 (2-3)		4.57E-06	0.1030
	DU-4	ISM	0-1	DU-4 (0-1)		2.09E-05	0.4280
			1-2	DU-4 (1-2)		1.66E-05	1.7500
			2-3	DU-4 (2-3)		1.47E-05	0.7670
	DU-5	ISM	0-1	Replace		1.40E-06	0.0100
West Parcel			1-2	Replace		1.40E-06	0.0100
			2-3	Replace		1.40E-06	0.0100
	DU-6	ISM	0-1	DU-6 (0-1)		1.04E-05	0.1880
			1-2	DU-6 (1-2)		2.51E-05	0.2040
			2-3	DU-6 (2-3)		1.14E-05	0.2260
	DU-7	ISM	0-1	Replace		1.40E-06	0.0100
			1-2	DU-7 (1-2)		1.24E-05	0.0711
			2-3	DU-7 (2-3)		8.17E-06	0.0478
		ISM	0-1	Replace		1.40E-06	0.0100
	DU-8		1-2	Replace		1.40E-06	0.0100
			2-3	Replace		1.40E-06	0.0100
			0-1	Replace		1.40E-06	0.0100
	DU-9	ISM	1-2	DU-9 (1-2)		1.28E-05	0.0771
			2-3	DU-9 (2-3)		1.23E-05	0.1800

	.	<u> </u>	Sample		Con	centration in m	g/kg
Sample Location	Decision Unit	Sample Type	Depth (feet bgs)	Sample ID	Arsenic	Dioxin/Furan TEQ	cPAHs
			0-1	Replace		1.40E-06	0.0100
	DU-10	ISM	1-2	Replace		1.40E-06	0.0100
			2-3	Replace		1.40E-06	0.0100
			0-1	Replace		1.40E-06	0.0100
	DU-11	ISM	1-2	Replace		1.40E-06	0.0100
			2-3	Replace		1.40E-06	0.0100
			0-1	Replace		1.40E-06	0.0100
	DU-12	ISM	1-2	Replace		1.40E-06	0.0100
			2-3	DU-12 (2-3)		2.60E-06	0.0900
			0-1	Replace		1.40E-06	0.0100
	DU-13	ISM	1-2	Replace		1.40E-06	0.0100
			2-3	Replace		1.40E-06	0.0100
	DU-14	ISM	0-1	Replace		1.40E-06	0.0100
			1-2	Replace		1.40E-06	0.0100
			2-3	Replace		1.40E-06	0.0100
		ISM	0-1	Replace		1.40E-06	0.0100
	DU-15		1-2	Replace		1.40E-06	0.0100
Central			2-3	Replace		1.40E-06	0.0100
Parcel	DU-16	ISM	0-1	Replace		1.40E-06	0.0100
			1-2	Replace		1.40E-06	0.0100
			2-3	DU-16 (2-3)		7.62E-06	0.0569
	DU-17	ISM	0-1	Replace		1.40E-06	0.0100
			1-2	DU-17 (1-2)		3.43E-06	0.0513
			2-3	DU-17 (2-3)		7.81E-06	0.0309
			0-1	Replace		1.40E-06	0.0100
	DU-18	ISM	1-2	Replace		1.40E-06	0.0100
			2-3	Replace		1.40E-06	0.0100
			0-1	Replace		1.40E-06	0.0100
	DU-19	ISM	1-2	Replace		1.40E-06	0.0100
			2-3	DU-19 (2-3)		4.66E-05	0.0790
			0-1	Replace		1.40E-06	0.0100
	DU-20	ISM	1-2	DU-20 (1-2)		4.30E-06	0.0132
			2-3	DU-20 (2-3)		3.97E-06	0.0193
			0-1	Replace		1.40E-06	0.0100
	DU-21	ISM	1-2	Replace		1.40E-06	0.0100
			2-3	DU-21 (2-3)		1.01E-05	0.0879

			Sample		Con	centration in m	g/kg
Sample Location	Decision Unit	Sample Type	Depth (feet Sample I bgs)		Arsenic	Dioxin/Furan TEQ	cPAHs
			0-1	Replace		1.40E-06	0.0100
	DU-22	ISM	1-2	Replace		1.40E-06	0.0100
			2-3	Replace		1.40E-06	0.0100
			0-1	Replace		1.40E-06	0.0100
	DU-23	ISM	1-2	Replace		1.40E-06	0.0100
			2-3	Replace		1.40E-06	0.0100
			0-1	Replace		1.40E-06	0.0100
	DU-24	ISM	1-2	DU-24 (1-2)		6.44E-06	0.0740
Central			2-3	DU-24 (2-3)		8.88E-06	0.0145
Parcel			0-1	Replace		1.40E-06	0.0100
	DU-25	ISM	1-2	DU-25 (1-2)		2.60E-06	0.0905
			2-3	DU-25 (2-3)		1.94E-06	0.0873
	DU-26	ISM	0-1	Replace		1.40E-06	0.0100
			1-2	Replace		1.40E-06	0.0100
			2-3	Replace		1.40E-06	0.0100
	DU-42	Composite	0-1	0-1 DU-42 (0-1)			
			1-2	DU-42 (1-2) Not Used - Small Area			rea
			2-3	DU-42 (2-3)			
	DU-27		0-1	Replace	3.1	1.40E-06	0.0100
		ISM	1-2	DU-27 (1-2)	8.72	6.99E-05	0.2420
			2-3	DU-27 (2-3)	15.8	2.40E-05	0.0973
	DU-28	ISM	0-1	Replace	3.1	1.40E-06	0.0100
			1-2	Replace	3.1	1.40E-06	0.0100
			2-3	DU-28 (2-3)	7.4	1.49E-05	0.3530
			0-1	DU-29 (0-1)	6.95	4.97E-05	0.1540
	DU-29	ISM	1-2	DU-29 (1-2)	5.08	1.53E-05	0.0697
East Parcel			2-3	DU-29 (2-3)	3.6	1.53E-05	0.0588
East Parcer			0-1	DU-30 (0-1)	4.22	5.05E-05	0.3980
	DU-30	ISM	1-2	DU-30 (1-2)	3.72	2.24E-05	0.1690
			2-3	DU-30 (2-3)	4.14	1.44E-05	0.0709
			0-1	DU-31 (0-1)	6.09	5.84E-05	0.1240
	DU-31	ISM	1-2	DU-31 (1-2)	4.98	1.90E-05	0.1190
			2-3	DU-31 (2-3)	5.96	1.09E-05	0.0919
			0-1	DU-32 (0-1)	8.99	3.48E-05	0.1150
	DU-32	ISM	1-2	DU-32 (1-2)	7.1	7.54E-06	0.0754
			2-3	DU-32 (2-3)	3.56	7.59E-06	0.5660

			Sample		Concentration in mg/kg			
Sample Location	Decision Unit	Sample Type	Depth (feet bgs)	Sample ID	Arsenic	Dioxin/Furan TEQ	cPAHs	
			0-1	DU-33 (0-1)	6.62	3.69E-05	0.0542	
	DU-33	ISM	1-2	DU-33 (1-2)	9.6	1.67E-05	0.0519	
			2-3	DU-33 (2-3)	5.35	1.21E-05	0.0555	
			0-1	DU-34 (0-1)	5.13	6.03E-05	0.2530	
	DU-34	ISM	1-2	DU-34 (1-2)	4.95	2.82E-05	0.1840	
			2-3	DU-34 (2-3)	3.69	3.02E-05	0.0973	
			0-1	DU-35 (0-1)	4.4	4.05E-05	0.0931	
	DU-35	ISM	1-2	DU-35 (1-2)	3.81	1.31E-05	0.1190	
			2-3	DU-35 (2-3)	3.37	1.02E-05	0.0355	
	DU-36		0-1	DU-36 (0-1)	5.03	4.21E-05	0.0823	
		ISM	1-2	DU-36 (1-2)	4.23	3.70E-05	0.1030	
			2-3	DU-36 (2-3)	4.12	2.80E-05	0.0379	
	DU-38	ISM	0-1	DU-38 (0-1)	3.71	2.94E-05	0.0828	
			1-2	DU-38 (1-2)	3.76	1.90E-05	0.0635	
			2-3	DU-38 (2-3)	4.06	1.05E-05	0.0442	
	DU-37	Composite	0-1	DU-37 (0-1)	3.72	6.78E-07	0.0124	
East Parcel			1-2	DU-37 (1-2)	3.00	6.32E-07	0.0114	
			2-3	DU-37 (2-3)	2.85	5.69E-07	0.0970	
	DU-39	Composite	0-1	DU-39 (0-1)	2.69	3.68E-06	0.0057	
			1-2	DU-39 (1-2)	3.24	1.38E-06	0.0057	
			2-3	DU-39 (2-3)	3.44	1.36E-06	0.0124	
	DU-40		0-1	DU-40 (0-1)	2.88	7.34E-07	0.0057	
		Composite	1-2	DU-40 (1-2)	3.4	5.18E-07	0.0061	
			2-3	DU-40 (2-3)	3.13	5.52E-07	0.0061	
			0-1	DU-43 (0-1)	· ·			
	DU-43	Composite	1-2	DU-43 (1-2)	No	ot Used - Small Ai	rea	
			2-3	DU-43 (2-3)				
			0-1	DU-44 (0-1)				
	DU-44	Composite	1-2	DU-44 (1-2)	Not Used - Small Area			
			2-3	DU-44 (2-3)				
		ISM (Berm	0-1	DU-41 (0-1)				
	DU-41	Sample)	1-2	DU-41 (1-2)	Not Used - Soil Berm			
		Sample)	2-3	DU-41 (2-3)				

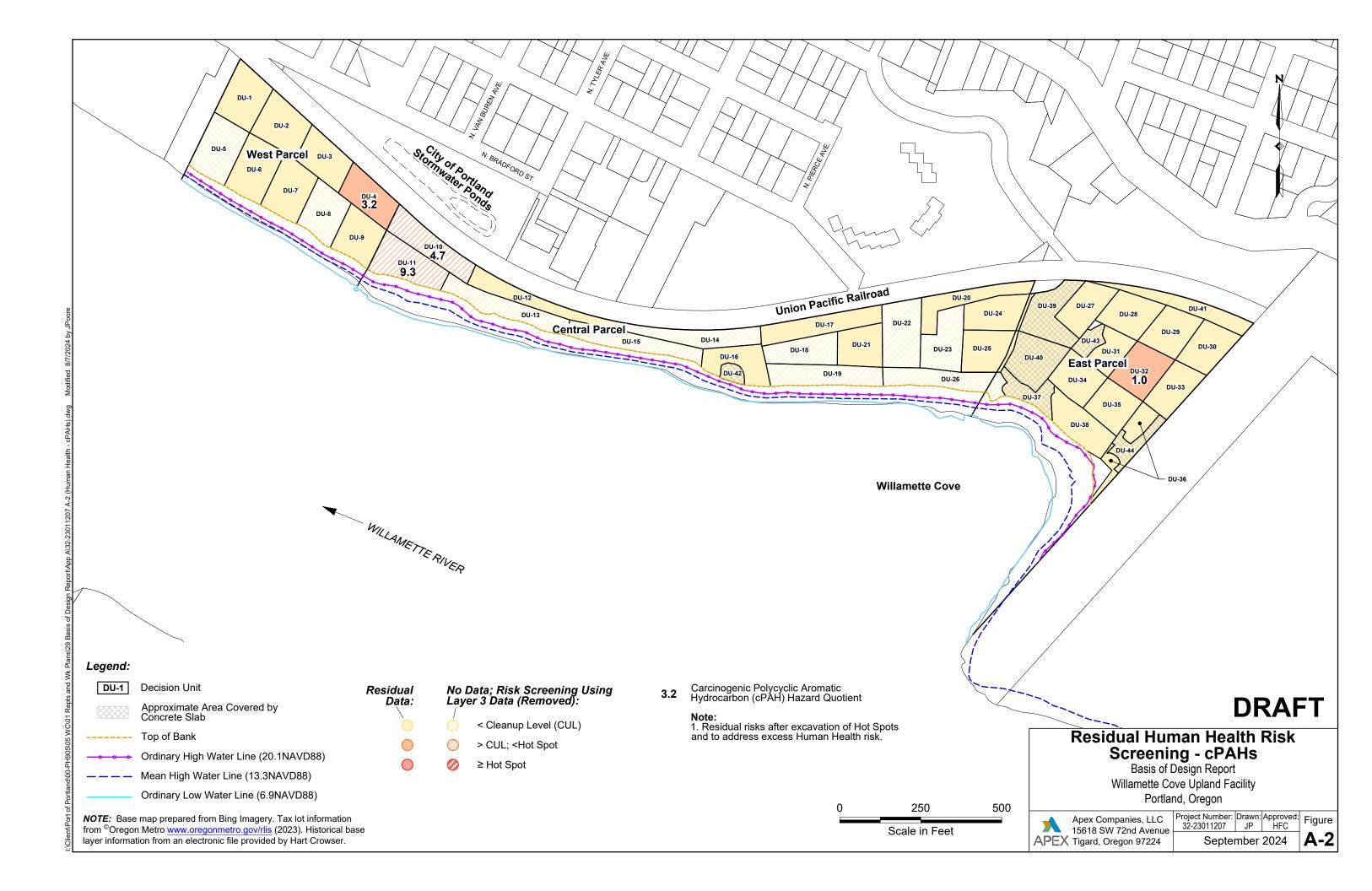
Notes:

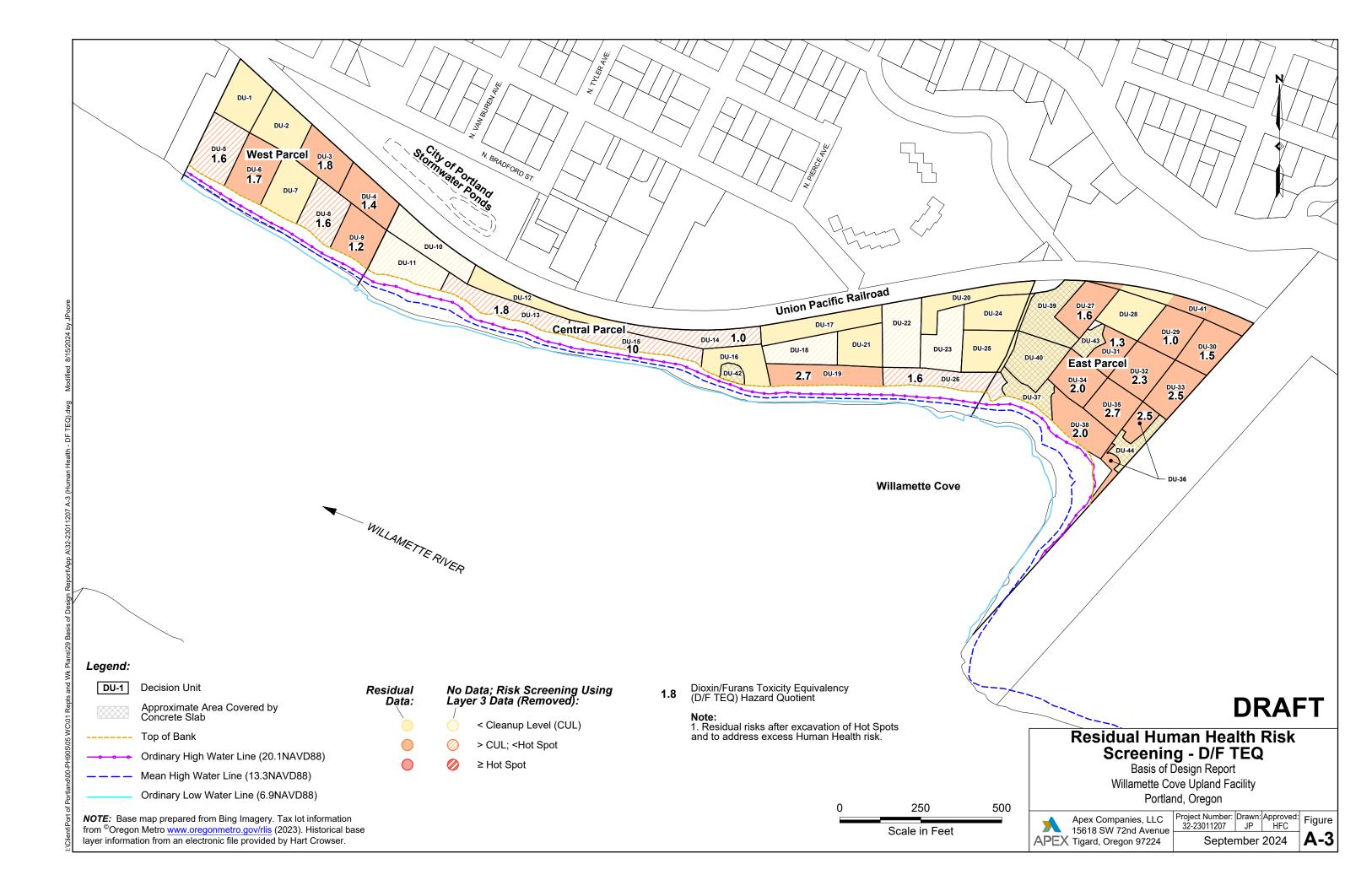
1. Definition of table shading:

Proposed for removal for hot spot excavation. Upper 0.5 feet proposed for removal for hot spot excavation. Conservatively use full layer concentration. Replacement value (based on concentrations beneath concrete pads on East Parcel). As 3.1 mg/kg D/F 1.40E-06 mg/kg cPAHs 0.01 mg/kg

Table A-3 Additional Human Health Risk Excavation - Step 3 Data and Results Willamette Cove Upland Facility


Comul-	Decision	Sample Type	Sample		Dioxin/Furan TEQ Concentration in mg/kg								
Sample Location	Unit		Depth (feet bgs)	Sample ID	Post Hot Spot Removal	Remove 1 Cell	Remove 2 Cells	Remove 3 Cells	Remove 4 Cells	Remove 5 Cells	Remove 6 Cells		
	DU 07	1014	0-1	Replace	1.40E-06	1.40E-06	1.40E-06	1.40E-06	1.40E-06	1.40E-06	1.40E-06		
	DU-27	ISM	1-2	DU-27 (1-2)	6.99E-05	1.40E-06	1.40E-06	1.40E-06	1.40E-06	1.40E-06	1.40E-06		
			2-3	DU-27 (2-3)	2.40E-05	2.40E-05	2.40E-05	2.40E-05	2.40E-05	2.40E-05	2.40E-05		
	DU 00	1014	0-1	Replace	1.40E-06	1.40E-06	1.40E-06	1.40E-06	1.40E-06	1.40E-06	1.40E-06		
	DU-28	ISM	1-2	Replace	1.40E-06	1.40E-06	1.40E-06	1.40E-06	1.40E-06	1.40E-06	1.40E-06		
			2-3	DU-28 (2-3)	1.49E-05	1.49E-05	1.49E-05	1.49E-05	1.49E-05	1.49E-05	1.49E-05		
			0-1	DU-29 (0-1)	4.97E-05	4.97E-05	4.97E-05	4.97E-05	4.97E-05	1.40E-06	1.40E-06		
	DU-29	ISM	1-2	DU-29 (1-2)	1.53E-05	1.53E-05	1.53E-05	1.53E-05	1.53E-05	1.53E-05	1.53E-05		
			2-3	DU-29 (2-3)	1.53E-05	1.53E-05	1.53E-05	1.53E-05	1.53E-05	1.53E-05	1.53E-05		
			0-1	DU-30 (0-1)	5.05E-05	5.05E-05	5.05E-05	5.05E-05	1.40E-06	1.40E-06	1.40E-06		
	DU-30	ISM	1-2	DU-30 (1-2)	2.24E-05	2.24E-05	2.24E-05	2.24E-05	2.24E-05	2.24E-05	2.24E-05		
			2-3	DU-30 (2-3)	1.44E-05	1.44E-05	1.44E-05	1.44E-05	1.44E-05	1.44E-05	1.44E-05		
			0-1	DU-31 (0-1)	5.84E-05	5.84E-05	5.84E-05	1.40E-06	1.40E-06	1.40E-06	1.40E-06		
	DU-31	ISM	1-2	DU-31 (1-2)	1.90E-05	1.90E-05	1.90E-05	1.90E-05	1.90E-05	1.90E-05	1.90E-05		
			2-3	DU-31 (2-3)	1.09E-05	1.09E-05	1.09E-05	1.09E-05	1.09E-05	1.09E-05	1.09E-05		
			0-1	DU-32 (0-1)	3.48E-05	3.48E-05	3.48E-05	3.48E-05	3.48E-05	3.48E-05	3.48E-05		
	DU-32	ISM	1-2	DU-32 (1-2)	7.54E-06	7.54E-06	7.54E-06	7.54E-06	7.54E-06	7.54E-06	7.54E-06		
			2-3	DU-32 (2-3)	7.59E-06	7.59E-06	7.59E-06	7.59E-06	7.59E-06	7.59E-06	7.59E-06		
			0-1	DU-33 (0-1)	3.69E-05	3.69E-05	3.69E-05	3.69E-05	3.69E-05	3.69E-05	3.69E-05		
	DU-33	ISM	1-2	DU-33 (1-2)	1.67E-05	1.67E-05	1.67E-05	1.67E-05	1.67E-05	1.67E-05	1.67E-05		
			2-3	DU-33 (2-3)	1.21E-05	1.21E-05	1.21E-05	1.21E-05	1.21E-05	1.21E-05	1.21E-05		
		ISM	0-1	DU-34 (0-1)	6.03E-05	6.03E-05	1.40E-06	1.40E-06	1.40E-06	1.40E-06	1.40E-06		
	DU-34		1-2	DU-34 (1-2)	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05	2.82E-05		
	00.04		2-3	DU-34 (1-2) DU-34 (2-3)	3.02E-05	3.02E-05	3.02E-05	3.02E-05	3.02E-05	3.02E-05	3.02E-05		
			0-1	DU-34 (2-3) DU-35 (0-1)	4.05E-05	4.05E-05	4.05E-05	4.05E-05	4.05E-05	4.05E-05	4.05E-05		
East Parcel	DU-35	ISM ISM											
East Parcel	D0-35		1-2	DU-35 (1-2)	1.31E-05	1.31E-05	1.31E-05	1.31E-05	1.31E-05	1.31E-05	1.31E-05		
			2-3	DU-35 (2-3)	1.02E-05	1.02E-05	1.02E-05	1.02E-05	1.02E-05	1.02E-05	1.02E-05		
	DU 00		0-1	DU-36 (0-1)	4.21E-05	4.21E-05	4.21E-05	4.21E-05	4.21E-05	4.21E-05	1.40E-06		
	DU-36		1-2	DU-36 (1-2)	3.70E-05	3.70E-05	3.70E-05	3.70E-05	3.70E-05	3.70E-05	3.70E-05		
			2-3	DU-36 (2-3)	2.80E-05	2.80E-05	2.80E-05	2.80E-05	2.80E-05	2.80E-05	2.80E-05		
		ISM	0-1	DU-38 (0-1)	2.94E-05	2.94E-05	2.94E-05	2.94E-05	2.94E-05	2.94E-05	2.94E-05		
	DU-38		1-2	DU-38 (1-2)	1.90E-05	1.90E-05	1.90E-05	1.90E-05	1.90E-05	1.90E-05	1.90E-05		
			2-3	DU-38 (2-3)	1.05E-05	1.05E-05	1.05E-05	1.05E-05	1.05E-05	1.05E-05	1.05E-05		
			0-1	DU-37 (0-1)	6.78E-07	6.78E-07	6.78E-07	6.78E-07	6.78E-07	6.78E-07	6.78E-07		
	DU-37	Composite	1-2	DU-37 (1-2)	6.32E-07	6.32E-07	6.32E-07	6.32E-07	6.32E-07	6.32E-07	6.32E-07		
			2-3	DU-37 (2-3)	5.69E-07	5.69E-07	5.69E-07	5.69E-07	5.69E-07	5.69E-07	5.69E-07		
			0-1	DU-39 (0-1)	3.68E-06	3.68E-06	3.68E-06	3.68E-06	3.68E-06	3.68E-06	3.68E-06		
	DU-39	Composite	1-2	DU-39 (1-2)	1.38E-06	1.38E-06	1.38E-06	1.38E-06	1.38E-06	1.38E-06	1.38E-06		
			2-3	DU-39 (2-3)	1.36E-06	1.36E-06	1.36E-06	1.36E-06	1.36E-06	1.36E-06	1.36E-06		
			0-1	DU-40 (0-1)	7.34E-07	7.34E-07	7.34E-07	7.34E-07	7.34E-07	7.34E-07	7.34E-07		
	DU-40	Composite	1-2	DU-40 (1-2)	5.18E-07	5.18E-07	5.18E-07	5.18E-07	5.18E-07	5.18E-07	5.18E-07		
		-	2-3	DU-40 (2-3)	5.52E-07	5.52E-07	5.52E-07	5.52E-07	5.52E-07	5.52E-07	5.52E-07		
			0-1	DU-43 (0-1)							1		
	DU-43	Composite	1-2	DU-43 (1-2)			Not	Used - Small Ar	ea				
			2-3	DU-43 (2-3)									
			0-1	DU-44 (0-1)									
	DU-44	Composite	1-2	DU-44 (1-2)			Not	Used - Small Ar	ea				
	20 44	Somposite	2-3	DU-44 (1-2) DU-44 (2-3)			NOU						
			2-3 0-1	. ,									
	DU-41	ISM (Berm		DU-41 (0-1)			Na	t Used - Soil Ber	m				
	D0-41	Sample)	1-2	DU-41 (1-2)			INO	i Oseu - Soli Bel	111				
			2-3	DU-41 (2-3)			I						
				_ Concentration	2.4E-05	2.19E-05	2.03E-05	1.87E-05	1.73E-05	1.60E-05	1.49E-05		


Notes:


1. Definition of table shading:

Proposed for removal for hot spot excavation or to adddress excess human health risk. Replacement value (based on concentrations beneath concrete pads on East Parcel).

Upper 0.5 feet proposed for removal for hot spot excavation. Conservatively use full layer concentration.

Appendix A Attachment

90 Percent Upper Confidence Limit Calculation Input and Output

Parcel	Sample ID	Result	D_Result
West Parcel - D/F TEQ [µg/kg]	DU-1 (0-1)	1.40	1
West Parcel - D/F TEQ [µg/kg]	DU-1 (1-2)	1.40	1
West Parcel - D/F TEQ [µg/kg]	DU-1 (2-3)	10.74	1
West Parcel - D/F TEQ [µg/kg]	DU-2 (0-1)	6.95	1
West Parcel - D/F TEQ [µg/kg]	DU-2 (1-2)	3.44	1
West Parcel - D/F TEQ [µg/kg]	DU-2 (2-3)	2.42	1
West Parcel - D/F TEQ [µg/kg]	DU-3 (0-1)	26.29	1
West Parcel - D/F TEQ [µg/kg]	DU-3 (1-2)	7.82	1
West Parcel - D/F TEQ [µg/kg]	DU-3 (2-3)	4.57	1
West Parcel - D/F TEQ [µg/kg]	DU-4 (0-1)	20.88	1
West Parcel - D/F TEQ [µg/kg]	DU-4 (1-2)	16.59	1
West Parcel - D/F TEQ [µg/kg]	DU-4 (2-3)	14.66	1
West Parcel - D/F TEQ [µg/kg]	DU-5 (0-1)	1.40	1
West Parcel - D/F TEQ [µg/kg]	DU-5 (1-2)	1.40	1
West Parcel - D/F TEQ [µg/kg]	DU-5 (2-3)	1.40	1
West Parcel - D/F TEQ [µg/kg]	DU-6 (0-1)	10.36	1
West Parcel - D/F TEQ [µg/kg]	DU-6 (1-2)	25.14	1
West Parcel - D/F TEQ [µg/kg]	DU-6 (2-3)	11.45	1
West Parcel - D/F TEQ [µg/kg]	DU-7 (0-1)	1.40	1
West Parcel - D/F TEQ [µg/kg]	DU-7 (1-2)	12.38	1
West Parcel - D/F TEQ [µg/kg]	DU-7 (2-3)	8.17	1
West Parcel - D/F TEQ [µg/kg]	DU-8 (0-1)	1.40	1
West Parcel - D/F TEQ [µg/kg]	DU-8 (1-2)	1.40	1
West Parcel - D/F TEQ [µg/kg]	DU-8 (2-3)	1.40	1
West Parcel - D/F TEQ [µg/kg]	DU-9 (0-1)	1.40	1
West Parcel - D/F TEQ [µg/kg]	DU-9 (1-2)	12.79	1
West Parcel - D/F TEQ [µg/kg]	DU-9 (2-3)	12.34	1
Central Parcel - D/F TEQ [µg/kg]	DU-10 (0-1)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-10 (1-2)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-10 (2-3)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-11 (0-1)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-11 (1-2)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-11 (2-3)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-12 (0-1)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-12 (1-2)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-12 (2-3)	2.60	1
Central Parcel - D/F TEQ [µg/kg]	DU-13 (0-1)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-13 (1-2)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-13 (2-3)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-14 (0-1)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-14 (1-2)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-14 (2-3)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-15 (0-1)	1.40	1

Central Parcel - D/F TEQ [µg/kg]	DU-15 (1-2)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-15 (2-3)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-16 (0-1)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-16 (1-2)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-16 (2-3)	7.62	1
Central Parcel - D/F TEQ [µg/kg]	DU-17 (0-1)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-17 (1-2)	3.43	1
Central Parcel - D/F TEQ [µg/kg]	DU-17 (2-3)	7.81	1
Central Parcel - D/F TEQ [µg/kg]	DU-18 (0-1)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-18 (1-2)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-18 (2-3)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-19 (0-1)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-19 (1-2)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-19 (2-3)	46.63	1
Central Parcel - D/F TEQ [µg/kg]	DU-20 (0-1)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-20 (1-2)	4.30	1
Central Parcel - D/F TEQ [µg/kg]	DU-20 (2-3)	3.97	1
Central Parcel - D/F TEQ [µg/kg]	DU-21 (0-1)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-21 (1-2)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-21 (2-3)	10.05	1
Central Parcel - D/F TEQ [µg/kg]	DU-22 (0-1)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-22 (1-2)	1.40	-
Central Parcel - D/F TEQ [µg/kg]	DU-22 (2-3)	1.40	-
Central Parcel - D/F TEQ [µg/kg]	DU-23 (0-1)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-23 (1-2)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-23 (2-3)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-24 (0-1)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-24 (1-2)	6.44	1
Central Parcel - D/F TEQ [µg/kg]	DU-24 (2-3)	8.88	1
Central Parcel - D/F TEQ [µg/kg]	DU-25 (0-1)	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-25 (1-2)	2.60	1
Central Parcel - D/F TEQ [µg/kg]	DU-25 (1-2) DU-25 (2-3)	2.00 1.94	1
Central Parcel - D/F TEQ [µg/kg]	DU-26 (0-1)	1.40	
	· · · ·	1.40	1
Central Parcel - D/F TEQ [µg/kg]	DU-26 (1-2)		1
Central Parcel - D/F TEQ [µg/kg]	DU-26 (2-3)	1.40	1
East Parcel - D/F TEQ [µg/kg]	DU-27 (0-1)	1.40	1
East Parcel - D/F TEQ [µg/kg]	DU-27 (1-2)	69.91	1
East Parcel - D/F TEQ [µg/kg]	DU-27 (2-3)	23.98	1
East Parcel - D/F TEQ [µg/kg]	DU-28 (0-1)	1.40	1
East Parcel - D/F TEQ [µg/kg]	DU-28 (1-2)	1.40	1
East Parcel - D/F TEQ [µg/kg]	DU-28 (2-3)	14.94	1
East Parcel - D/F TEQ [µg/kg]	DU-29 (0-1)	49.73	1
East Parcel - D/F TEQ [µg/kg]	DU-29 (1-2)	15.27	1
East Parcel - D/F TEQ [µg/kg]	DU-29 (2-3)	15.26	1

East Parcel - D/F TEQ [µg/kg]	DU-30 (0-1)	50.48	1
East Parcel - D/F TEQ [µg/kg]	DU-30 (1-2)	22.41	1
East Parcel - D/F TEQ [µg/kg]	DU-30 (2-3)	14.36	1
East Parcel - D/F TEQ [µg/kg]	DU-31 (0-1)	58.37	1
East Parcel - D/F TEQ [µg/kg]	DU-31 (1-2)	19.00	1
East Parcel - D/F TEQ [µg/kg]	DU-31 (2-3)	10.94	1
East Parcel - D/F TEQ [µg/kg]	DU-32 (0-1)	34.80	1
East Parcel - D/F TEQ [µg/kg]	DU-32 (1-2)	7.54	1
East Parcel - D/F TEQ [µg/kg]	DU-32 (2-3)	7.59	1
East Parcel - D/F TEQ [µg/kg]	DU-33 (0-1)	36.92	1
East Parcel - D/F TEQ [µg/kg]	DU-33 (1-2)	16.74	1
East Parcel - D/F TEQ [µg/kg]	DU-33 (2-3)	12.15	1
East Parcel - D/F TEQ [µg/kg]	DU-34 (0-1)	60.26	1
East Parcel - D/F TEQ [µg/kg]	DU-34 (1-2)	28.23	1
East Parcel - D/F TEQ [µg/kg]	DU-34 (2-3)	30.17	1
East Parcel - D/F TEQ [µg/kg]	DU-35 (0-1)	40.47	1
East Parcel - D/F TEQ [µg/kg]	DU-35 (1-2)	13.11	1
East Parcel - D/F TEQ [µg/kg]	DU-35 (2-3)	10.16	1
East Parcel - D/F TEQ [µg/kg]	DU-36 (0-1)	42.14	1
East Parcel - D/F TEQ [µg/kg]	DU-36 (1-2)	36.98	1
East Parcel - D/F TEQ [µg/kg]	DU-36 (2-3)	27.98	1
East Parcel - D/F TEQ [µg/kg]	DU-38 (0-1)	29.41	1
East Parcel - D/F TEQ [µg/kg]	DU-38 (1-2)	19.03	1
East Parcel - D/F TEQ [µg/kg]	DU-38 (2-3)	10.49	1
East Parcel - D/F TEQ [µg/kg]	DU-37 (0-1)	0.68	1
East Parcel - D/F TEQ [µg/kg]	DU-37 (1-2)	0.63	1
East Parcel - D/F TEQ [µg/kg]	DU-37 (2-3)	0.57	1
East Parcel - D/F TEQ [µg/kg]	DU-39 (0-1)	3.68	1
East Parcel - D/F TEQ [µg/kg]	DU-39 (1-2)	1.38	1
East Parcel - D/F TEQ [µg/kg]	DU-39 (2-3)	1.36	1
East Parcel - D/F TEQ [µg/kg]	DU-40 (0-1)	0.73	1
East Parcel - D/F TEQ [µg/kg]	DU-40 (1-2)	0.52	1
East Parcel - D/F TEQ [µg/kg]	DU-40 (2-3)	0.55	1
West Parcel - cPAHs [mg/kg]	DU-1 (0-1)	0.0100	1
West Parcel - cPAHs [mg/kg]	DU-1 (1-2)	0.0100	1
West Parcel - cPAHs [mg/kg]	DU-1 (2-3)	0.3280	1
West Parcel - cPAHs [mg/kg]	DU-2 (0-1)	0.1650	1
West Parcel - cPAHs [mg/kg]	DU-2 (1-2)	0.1080	1
West Parcel - cPAHs [mg/kg]	DU-2 (2-3)	0.0319	1
West Parcel - cPAHs [mg/kg]	DU-3 (0-1)	0.1530	1
West Parcel - cPAHs [mg/kg]	DU-3 (1-2)	0.1290	1
West Parcel - cPAHs [mg/kg]	DU-3 (2-3)	0.1030	1
West Parcel - cPAHs [mg/kg]	DU-4 (0-1)	0.4280	1
West Parcel - cPAHs [mg/kg]	DU-4 (1-2)	1.7500	1
	× /		

West Parcel - cPAHs [mg/kg]	DU-4 (2-3)	0.7670	1
West Parcel - cPAHs [mg/kg]	DU-5 (0-1)	0.0100	1
West Parcel - cPAHs [mg/kg]	DU-5 (1-2)	0.0100	1
West Parcel - cPAHs [mg/kg]	DU-5 (2-3)	0.0100	1
West Parcel - cPAHs [mg/kg]	DU-6 (0-1)	0.1880	1
West Parcel - cPAHs [mg/kg]	DU-6 (1-2)	0.2040	1
West Parcel - cPAHs [mg/kg]	DU-6 (2-3)	0.2260	1
West Parcel - cPAHs [mg/kg]	DU-7 (0-1)	0.0100	1
West Parcel - cPAHs [mg/kg]	DU-7 (1-2)	0.0711	1
West Parcel - cPAHs [mg/kg]	DU-7 (2-3)	0.0478	1
West Parcel - cPAHs [mg/kg]	DU-8 (0-1)	0.0100	1
West Parcel - cPAHs [mg/kg]	DU-8 (1-2)	0.0100	1
West Parcel - cPAHs [mg/kg]	DU-8 (2-3)	0.0100	1
West Parcel - cPAHs [mg/kg]	DU-9 (0-1)	0.0100	1
West Parcel - cPAHs [mg/kg]	DU-9 (1-2)	0.0771	1
West Parcel - cPAHs [mg/kg]	DU-9 (2-3)	0.1800	1
Central Parcel - cPAHs [mg/kg]	DU-10 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-10 (1-2)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-10 (2-3)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-11 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-11 (1-2)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-11 (2-3)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-12 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-12 (1-2)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-12 (2-3)	0.0900	1
Central Parcel - cPAHs [mg/kg]	DU-13 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-13 (1-2)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-13 (2-3)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-14 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-14 (1-2)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-14 (2-3)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-15 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-15 (1-2)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-15 (2-3)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-16 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-16 (1-2)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-16 (2-3)	0.0569	1
Central Parcel - cPAHs [mg/kg]	DU-17 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-17 (1-2)	0.0513	1
Central Parcel - cPAHs [mg/kg]	DU-17 (2-3)	0.0309	1
Central Parcel - cPAHs [mg/kg]	DU-18 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-18 (1-2)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-18 (2-3)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-19 (0-1)	0.0100	1

Central Parcel - cPAHs [mg/kg]	DU-19 (1-2)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-19 (2-3)	0.0790	1
Central Parcel - cPAHs [mg/kg]	DU-20 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-20 (1-2)	0.0132	1
Central Parcel - cPAHs [mg/kg]	DU-20 (2-3)	0.0193	1
Central Parcel - cPAHs [mg/kg]	DU-21 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-21 (1-2)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-21 (2-3)	0.0879	1
Central Parcel - cPAHs [mg/kg]	DU-22 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-22 (1-2)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-22 (2-3)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-23 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-23 (1-2)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-23 (2-3)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-24 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-24 (1-2)	0.0740	1
Central Parcel - cPAHs [mg/kg]	DU-24 (2-3)	0.0145	1
Central Parcel - cPAHs [mg/kg]	DU-25 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-25 (1-2)	0.0905	1
Central Parcel - cPAHs [mg/kg]	DU-25 (2-3)	0.0873	1
Central Parcel - cPAHs [mg/kg]	DU-26 (0-1)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-26 (1-2)	0.0100	1
Central Parcel - cPAHs [mg/kg]	DU-26 (2-3)	0.0100	1
East Parcel - cPAHs [mg/kg]	DU-27 (0-1)	0.0100	1
East Parcel - cPAHs [mg/kg]	DU-27 (1-2)	0.2420	1
East Parcel - cPAHs [mg/kg]	DU-27 (2-3)	0.0973	1
East Parcel - cPAHs [mg/kg]	DU-28 (0-1)	0.0100	1
East Parcel - cPAHs [mg/kg]	DU-28 (1-2)	0.0100	1
East Parcel - cPAHs [mg/kg]	DU-28 (2-3)	0.3530	1
East Parcel - cPAHs [mg/kg]	DU-29 (0-1)	0.1540	1
East Parcel - cPAHs [mg/kg]	DU-29 (1-2)	0.0697	1
East Parcel - cPAHs [mg/kg]	DU-29 (2-3)	0.0588	1
East Parcel - cPAHs [mg/kg]	DU-30 (0-1)	0.3980	1
East Parcel - cPAHs [mg/kg]	DU-30 (1-2)	0.1690	1
East Parcel - cPAHs [mg/kg]	DU-30 (2-3)	0.0709	1
East Parcel - cPAHs [mg/kg]	DU-31 (0-1)	0.1240	1
East Parcel - cPAHs [mg/kg]	DU-31 (1-2)	0.1190	1
East Parcel - cPAHs [mg/kg]	DU-31 (2-3)	0.0919	1
East Parcel - cPAHs [mg/kg]	DU-32 (0-1)	0.1150	1
East Parcel - cPAHs [mg/kg]	DU-32 (1-2)	0.0754	1
East Parcel - cPAHs [mg/kg]	DU-32 (2-3)	0.5660	1
East Parcel - cPAHs [mg/kg]	DU-33 (0-1)	0.0542	1
East Parcel - cPAHs [mg/kg]	DU-33 (1-2)	0.0519	1
East Parcel - cPAHs [mg/kg]	DU-33 (2-3)	0.0555	1

DU-34 (0-1)	0.2530	1
DU-34 (1-2)	0.1840	1
DU-34 (2-3)	0.0973	1
DU-35 (0-1)	0.0931	1
DU-35 (1-2)	0.1190	1
DU-35 (2-3)	0.0355	1
DU-36 (0-1)	0.0823	1
DU-36 (1-2)	0.1030	1
DU-36 (2-3)	0.0379	1
DU-38 (0-1)	0.0828	1
DU-38 (1-2)	0.0635	1
DU-38 (2-3)	0.0442	1
· · · ·	0.0124	1
. ,	0.0114	1
DU-37 (2-3)	0.0970	1
()	0.0057	1
. ,		1
· · ·		1
()		1
. ,		1
. ,		1
		1
. ,		1
· · · ·		1
		- 1
. ,		1
. ,		- 1
· · · ·		- 1
. ,		1
· · ·		1
. ,		1
()		1
()		1
		1
· · ·		1
()		1
· · · ·		1
. ,		1
· · ·		1
		1
		1
		1
· · · ·		1
DU-34 (1-2)	4.95	1
	DU-34 (1-2) DU-34 (2-3) DU-35 (0-1) DU-35 (1-2) DU-35 (2-3) DU-36 (0-1) DU-36 (1-2) DU-36 (2-3) DU-38 (0-1)	DU-34 (1-2) 0.1840 DU-34 (2-3) 0.0973 DU-35 (0-1) 0.0931 DU-35 (1-2) 0.1190 DU-35 (2-3) 0.0355 DU-36 (0-1) 0.0823 DU-36 (1-2) 0.1030 DU-36 (2-3) 0.0379 DU-38 (0-1) 0.0828 DU-38 (1-2) 0.0635 DU-38 (2-3) 0.0442 DU-37 (0-1) 0.0124 DU-37 (1-2) 0.0114 DU-37 (2-3) 0.0970 DU-39 (0-1) 0.0057 DU-39 (1-2) 0.0057 DU-39 (2-3) 0.0124 DU-40 (1-2) 0.0061 DU-27 (0-1) 3.1 DU-27 (2-3) 15.8 DU-28 (1-2) 3.1 DU-28 (1-2) 3.1 DU-29 (0-1) 6.95 DU-29 (1-2) 5.08 DU-29 (2-3) 3.6 DU-29 (2-3) 3.6 DU-29 (2-3) 3.6 DU-30 (2-3) 4.14 DU-31 (0-1) 6.09 DU-31 (1-2) 3.72 DU-32 (2-3) 3.56 DU-32 (0-1) 8.99 DU-32 (2-3) 3.56 DU-32 (2-3) 3.56 DU-33 (0-1) 6.62 DU-33 (0-1) 6.62 DU-33 (1-2) 9.6 DU-33 (2-3) 5.35 DU-34 (0-1) 5.13

East Parcel - Arsenic [mg/kg]	DU-34 (2-3)	3.69	1
East Parcel - Arsenic [mg/kg]	DU-35 (0-1)	4.4	1
East Parcel - Arsenic [mg/kg]	DU-35 (1-2)	3.81	1
East Parcel - Arsenic [mg/kg]	DU-35 (2-3)	3.37	1
East Parcel - Arsenic [mg/kg]	DU-36 (0-1)	5.03	1
East Parcel - Arsenic [mg/kg]	DU-36 (1-2)	4.23	1
East Parcel - Arsenic [mg/kg]	DU-36 (2-3)	4.12	1
East Parcel - Arsenic [mg/kg]	DU-38 (0-1)	3.71	1
East Parcel - Arsenic [mg/kg]	DU-38 (1-2)	3.76	1
East Parcel - Arsenic [mg/kg]	DU-38 (2-3)	4.06	1
East Parcel - Arsenic [mg/kg]	DU-37 (0-1)	3.72	1
East Parcel - Arsenic [mg/kg]	DU-37 (1-2)	3.00	1
East Parcel - Arsenic [mg/kg]	DU-37 (2-3)	2.85	1
East Parcel - Arsenic [mg/kg]	DU-39 (0-1)	2.69	1
East Parcel - Arsenic [mg/kg]	DU-39 (1-2)	3.24	1
East Parcel - Arsenic [mg/kg]	DU-39 (2-3)	3.44	1
East Parcel - Arsenic [mg/kg]	DU-40 (0-1)	2.88	1
East Parcel - Arsenic [mg/kg]	DU-40 (1-2)	3.4	1
East Parcel - Arsenic [mg/kg]	DU-40 (2-3)	3.13	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-27 (0-1)	1.40	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-27 (1-2)	1.40	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-27 (2-3)	23.98	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-28 (0-1)	1.40	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-28 (1-2)	1.40	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-28 (2-3)	14.94	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-29 (0-1)	49.73	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-29 (1-2)	15.27	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-29 (2-3)	15.26	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-30 (0-1)	50.48	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-30 (1-2)	22.41	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-30 (2-3)	14.36	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-31 (0-1)	58.37	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-31 (1-2)	19.00	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-31 (2-3)	10.94	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-32 (0-1)	34.80	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-32 (1-2)	7.54	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-32 (2-3)	7.59	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-33 (0-1)	36.92	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-33 (1-2)	16.74	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-33 (2-3)	12.15	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-34 (0-1)	60.26	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-34 (1-2)	28.23	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-34 (2-3)	30.17	1
Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-35 (0-1)	40.47	1

East East

East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-35 (1-2)	13.11	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-35 (2-3)	10.16	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-36 (0-1)	42.14	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-36 (1-2)	36.98	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-36 (2-3)	27.98	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-38 (0-1)	29.41	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-38 (1-2)	19.03	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-38 (2-3)	10.49	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-37 (0-1)	0.68	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-37 (1-2)	0.63	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-37 (2-3)	0.57	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-39 (0-1)	3.68	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-39 (1-2)	1.38	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-39 (2-3)	1.36	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-40 (0-1)	0.73	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-40 (1-2)	0.52	1
East Parcel D/F TEQ - 1 Additional Samples Removed [µg/kg]	DU-40 (2-3)	0.55	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-27 (0-1)	1.40	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-27 (1-2)	1.40	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-27 (2-3)	23.98	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-28 (0-1)	1.40	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-28 (1-2)	1.40	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-28 (2-3)	14.94	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-29 (0-1)	49.73	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-29 (1-2)	15.27	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-29 (2-3)	15.26	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-30 (0-1)	50.48	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-30 (1-2)	22.41	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-30 (2-3)	14.36	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-31 (0-1)	58.37	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-31 (1-2)	19.00	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-31 (2-3)	10.94	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-32 (0-1)	34.80	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-32 (1-2)	7.54	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-32 (2-3)	7.59	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-33 (0-1)	36.92	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-33 (1-2)	16.74	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-33 (2-3)	12.15	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-34 (0-1)	1.40	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-34 (1-2)	28.23	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-34 (2-3)	30.17	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-35 (0-1)	40.47	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-35 (1-2)	13.11	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-35 (2-3)	10.16	1
1 1 1 5 51	· /		

East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-36 (0-1)	42.14	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-36 (1-2)	36.98	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-36 (2-3)	27.98	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-38 (0-1)	29.41	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-38 (1-2)	19.03	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-38 (2-3)	10.49	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-37 (0-1)	0.68	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-37 (1-2)	0.63	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-37 (2-3)	0.57	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-39 (0-1)	3.68	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-39 (1-2)	1.38	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-39 (2-3)	1.36	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-40 (0-1)	0.73	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-40 (1-2)	0.52	1
East Parcel D/F TEQ - 2 Additional Samples Removed [µg/kg]	DU-40 (2-3)	0.55	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-27 (0-1)	1.40	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-27 (1-2)	1.40	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-27 (2-3)	23.98	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-28 (0-1)	1.40	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-28 (1-2)	1.40	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-28 (2-3)	14.94	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-29 (0-1)	49.73	-
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-29 (1-2)	15.27	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-29 (2-3)	15.26	-
East Parcel D/F TEQ - 3 Additional Samples Removed [μ g/kg]	DU-30 (0-1)	50.48	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-30 (1-2)	22.41	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-30 (2-3)	14.36	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-30 (2-3) DU-31 (0-1)	1.40	1
East Parcel D/F TEQ - 3 Additional Samples Removed [μ g/kg] East Parcel D/F TEQ - 3 Additional Samples Removed [μ g/kg]	DU-31 (0-1) DU-31 (1-2)	19.00	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-31 (1-2) DU-31 (2-3)	10.94	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-37 (2-3) DU-32 (0-1)	34.80	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-32 (0-1) DU-32 (1-2)	7.54	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg] East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	,	7.59	
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-32 (2-3)	36.92	1
	DU-33 (0-1)	30.92 16.74	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-33 (1-2)		1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-33 (2-3)	12.15	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-34 (0-1)	1.40	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-34 (1-2)	28.23	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-34 (2-3)	30.17	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-35 (0-1)	40.47	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-35 (1-2)	13.11	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-35 (2-3)	10.16	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-36 (0-1)	42.14	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-36 (1-2)	36.98	1

East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-36 (2-3)	27.98	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-38 (0-1)	29.41	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-38 (1-2)	19.03	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-38 (2-3)	10.49	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-37 (0-1)	0.68	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-37 (1-2)	0.63	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-37 (2-3)	0.57	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-39 (0-1)	3.68	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-39 (1-2)	1.38	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-39 (2-3)	1.36	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-40 (0-1)	0.73	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-40 (1-2)	0.52	1
East Parcel D/F TEQ - 3 Additional Samples Removed [µg/kg]	DU-40 (2-3)	0.55	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-27 (0-1)	1.40	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-27 (1-2)	1.40	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-27 (2-3)	23.98	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-28 (0-1)	1.40	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-28 (1-2)	1.40	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-28 (2-3)	14.94	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-29 (0-1)	49.73	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-29 (1-2)	15.27	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-29 (2-3)	15.26	- 1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-30 (0-1)	1.40	- 1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-30 (1-2)	22.41	- 1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-30 (2-3)	14.36	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-31 (0-1)	1.40	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-31 (1-2)	19.00	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-31 (2-3)	10.00	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-32 (0-1)	34.80	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-32 (0-1) DU-32 (1-2)	7.54	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-32 (1-2) DU-32 (2-3)	7.59	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-32 (2-3) DU-33 (0-1)	36.92	1
East Parcel D/F TEQ - 4 Additional Samples Removed [μ g/kg] East Parcel D/F TEQ - 4 Additional Samples Removed [μ g/kg]	DU-33 (0-1) DU-33 (1-2)	16.74	1
	DU-33 (1-2) DU-33 (2-3)	12.15	
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	, ,	1.40	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-34 (0-1)	28.23	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-34 (1-2)		1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-34 (2-3)	30.17	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-35 (0-1)	40.47	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-35 (1-2)	13.11	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-35 (2-3)	10.16	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-36 (0-1)	42.14	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-36 (1-2)	36.98	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-36 (2-3)	27.98	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-38 (0-1)	29.41	1

East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-38 (1-2)	19.03	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-38 (2-3)	10.49	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-37 (0-1)	0.68	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-37 (1-2)	0.63	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-37 (2-3)	0.57	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-39 (0-1)	3.68	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-39 (1-2)	1.38	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-39 (2-3)	1.36	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-40 (0-1)	0.73	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-40 (1-2)	0.52	1
East Parcel D/F TEQ - 4 Additional Samples Removed [µg/kg]	DU-40 (2-3)	0.55	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-27 (0-1)	1.40	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-27 (1-2)	1.40	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-27 (2-3)	23.98	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-28 (0-1)	1.40	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-28 (1-2)	1.40	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-28 (2-3)	14.94	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-29 (0-1)	1.40	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-29 (1-2)	15.27	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-29 (2-3)	15.26	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-30 (0-1)	1.40	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-30 (1-2)	22.41	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-30 (2-3)	14.36	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-31 (0-1)	1.40	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-31 (1-2)	19.00	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-31 (2-3)	10.94	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-32 (0-1)	34.80	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-32 (1-2)	7.54	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-32 (2-3)	7.59	- 1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-33 (0-1)	36.92	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-33 (1-2)	16.74	- 1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-33 (2-3)	12.15	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-34 (0-1)	1.40	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-34 (1-2)	28.23	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-34 (2-3)	30.17	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-35 (0-1)	40.47	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-35 (1-2)	13.11	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-35 (1-2) DU-35 (2-3)	10.16	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-36 (2-3) DU-36 (0-1)	42.14	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-36 (0-1) DU-36 (1-2)	36.98	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-36 (1-2) DU-36 (2-3)	27.98	1
	· · /	27.98	
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-38 (0-1)	19.03	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-38 (1-2)		1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-38 (2-3)	10.49	1

East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-37 (0-1)	0.68	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-37 (1-2)	0.63	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-37 (2-3)	0.57	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-39 (0-1)	3.68	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-39 (1-2)	1.38	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-39 (2-3)	1.36	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-40 (0-1)	0.73	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-40 (1-2)	0.52	1
East Parcel D/F TEQ - 5 Additional Samples Removed [µg/kg]	DU-40 (2-3)	0.55	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-27 (0-1)	1.40	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-27 (1-2)	1.40	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-27 (2-3)	23.98	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-28 (0-1)	1.40	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-28 (1-2)	1.40	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-28 (2-3)	14.94	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-29 (0-1)	1.40	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-29 (1-2)	15.27	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-29 (2-3)	15.26	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-30 (0-1)	1.40	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-30 (1-2)	22.41	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-30 (2-3)	14.36	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-31 (0-1)	1.40	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-31 (1-2)	19.00	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-31 (2-3)	10.94	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-32 (0-1)	34.80	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-32 (1-2)	7.54	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-32 (2-3)	7.59	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-33 (0-1)	36.92	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-33 (1-2)	16.74	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-33 (2-3)	12.15	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-34 (0-1)	1.40	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-34 (1-2)	28.23	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-34 (2-3)	30.17	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-35 (0-1)	40.47	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-35 (1-2)	13.11	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-35 (2-3)	10.16	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-36 (0-1)	1.40	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-36 (1-2)	36.98	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-36 (2-3)	27.98	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-38 (0-1)	29.41	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-38 (1-2)	19.03	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-38 (2-3)	10.49	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-37 (0-1)	0.68	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-37 (1-2)	0.63	1
· · · · · · · · · · · · · · · · · · ·	/		

East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-37 (2-3)	0.57	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-39 (0-1)	3.68	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-39 (1-2)	1.38	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-39 (2-3)	1.36	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-40 (0-1)	0.73	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-40 (1-2)	0.52	1
East Parcel D/F TEQ - 6 Additional Samples Removed [µg/kg]	DU-40 (2-3)	0.55	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-27 (0-1)	1.40	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-27 (1-2)	1.40	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-27 (2-3)	23.98	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-28 (0-1)	1.40	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-28 (1-2)	1.40	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-28 (2-3)	14.94	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-29 (0-1)	1.40	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-29 (1-2)	15.27	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-29 (2-3)	15.26	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-30 (0-1)	1.40	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-30 (1-2)	22.41	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-30 (2-3)	14.36	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-31 (0-1)	1.40	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-31 (1-2)	19.00	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-31 (2-3)	10.94	- 1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-32 (0-1)	34.80	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-32 (1-2)	7.54	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-32 (2-3)	7.59	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-33 (0-1)	36.92	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-33 (1-2)	16.74	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-33 (2-3)	12.15	1
East Parcel D/F TEQ - 7 Additional Samples Removed [μ g/kg] East Parcel D/F TEQ - 7 Additional Samples Removed [μ g/kg]	DU-34 (0-1)	1.40	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-34 (0-1) DU-34 (1-2)	28.23	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-34 (1-2) DU-34 (2-3)	30.17	
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-34 (2-3) DU-35 (0-1)	1.40	1 1
	. ,	13.11	
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-35 (1-2)	10.16	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-35 (2-3)	1.40	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-36 (0-1)		1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-36 (1-2)	36.98	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-36 (2-3)	27.98	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-38 (0-1)	29.41	1
East Parcel D/F TEQ - 7 Additional Samples Removed [μ g/kg]	DU-38 (1-2)	19.03	1
East Parcel D/F TEQ - 7 Additional Samples Removed [μ g/kg]	DU-38 (2-3)	10.49	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-37 (0-1)	0.68	1
East Parcel D/F TEQ - 7 Additional Samples Removed [μ g/kg]	DU-37 (1-2)	0.63	1
East Parcel D/F TEQ - 7 Additional Samples Removed [μ g/kg]	DU-37 (2-3)	0.57	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-39 (0-1)	3.68	1

East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-39 (1-2)	1.38	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-39 (2-3)	1.36	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-40 (0-1)	0.73	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-40 (1-2)	0.52	1
East Parcel D/F TEQ - 7 Additional Samples Removed [µg/kg]	DU-40 (2-3)	0.55	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-27 (0-1)	1.40	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-27 (1-2)	1.40	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-27 (2-3)	23.98	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-28 (0-1)	1.40	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-28 (1-2)	1.40	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-28 (2-3)	14.94	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-29 (0-1)	1.40	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-29 (1-2)	15.27	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-29 (2-3)	15.26	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-30 (0-1)	1.40	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-30 (1-2)	22.41	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-30 (2-3)	14.36	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-31 (0-1)	1.40	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-31 (1-2)	19.00	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-31 (2-3)	10.94	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-32 (0-1)	34.80	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-32 (1-2)	7.54	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-32 (2-3)	7.59	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-33 (0-1)	1.40	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-33 (1-2)	16.74	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-33 (2-3)	12.15	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-34 (0-1)	1.40	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-34 (1-2)	28.23	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-34 (2-3)	30.17	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-35 (0-1)	1.40	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-35 (1-2)	13.11	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-35 (2-3)	10.16	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-36 (0-1)	1.40	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-36 (1-2)	36.98	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-36 (2-3)	27.98	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-38 (0-1)	29.41	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-38 (1-2)	19.03	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-38 (2-3)	10.49	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-37 (0-1)	0.68	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-37 (1-2)	0.63	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-37 (2-3)	0.57	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-39 (0-1)	3.68	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-39 (1-2)	1.38	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-39 (2-3)	1.36	1
I	\ - <i>\</i>		

East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-40 (0-1)	0.73	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-40 (1-2)	0.52	1
East Parcel D/F TEQ - 8 Additional Samples Removed [µg/kg]	DU-40 (2-3)	0.55	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-27 (0-1)	1.40	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-27 (1-2)	1.40	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-27 (2-3)	23.98	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-28 (0-1)	1.40	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-28 (1-2)	1.40	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-28 (2-3)	14.94	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-29 (0-1)	1.40	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-29 (1-2)	15.27	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-29 (2-3)	15.26	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-30 (0-1)	1.40	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-30 (1-2)	22.41	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-30 (2-3)	14.36	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-31 (0-1)	1.40	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-31 (1-2)	19.00	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-31 (2-3)	10.94	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-32 (0-1)	34.80	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-32 (1-2)	7.54	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-32 (2-3)	7.59	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-33 (0-1)	1.40	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-33 (1-2)	16.74	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-33 (2-3)	12.15	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-34 (0-1)	1.40	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-34 (1-2)	28.23	- 1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-34 (2-3)	30.17	-
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-35 (0-1)	1.40	- 1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-35 (1-2)	13.11	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-35 (2-3)	10.16	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-36 (0-1)	1.40	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-36 (1-2)	1.40	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-36 (2-3)	27.98	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-38 (0-1)	29.41	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-38 (1-2)	19.03	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-38 (2-3)	10.49	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-37 (0-1)	0.68	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-37 (0-1) DU-37 (1-2)	0.63	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-37 (1-2) DU-37 (2-3)	0.57	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	· · · ·	3.68	1
	DU-39 (0-1)	3.00 1.38	
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-39 (1-2)		1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-39 (2-3)	1.36	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-40 (0-1)	0.73	1
East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg]	DU-40 (1-2)	0.52	1

East Parcel D/F TEQ - 9 Additional Samples Removed [µg/kg] [DU-40 (2-3)	0.55	1
--	-------------	------	---

	A B C D E	F	G H I J K	L
1	UCL Statis	tics for Data	Sets with Non-Detects	
2				
3	User Selected Options Date/Time of Computation ProUCL 5.2 8/14/2024 10	1.00.32 VW		
4	From File UCL Input.xls	J.03.37 AIVI		
6	Full Precision OFF			
7	Confidence Coefficient 90%			
8	Number of Bootstrap Operations 2000			
9				
10				
11 12	Result (central parcel - cpahs [mg/kg])			
12		General	Statistics	
14	Total Number of Observations	51	Number of Distinct Observations	13
15			Number of Missing Observations	0
16	Minimum	0.01	Mean	0.0213
17	Maximum	0.0905	Median	0.01
18	SD	0.0252	Std. Error of Mean	0.00353
19	Coefficient of Variation	1.185	Skewness	2.075
20 21		Normal (GOF Test	
21	Shapiro Wilk Test Statistic	0.493	Shapiro Wilk GOF Test	
23	1% Shapiro Wilk P Value	0	Data Not Normal at 1% Significance Level	
24	Lilliefors Test Statistic	0.437	Lilliefors GOF Test	
25	1% Lilliefors Critical Value	0.143	Data Not Normal at 1% Significance Level	
26	Data Not	Normal at 1	% Significance Level	
27				
28		suming Norr	mal Distribution	
29	90% Normal UCL 90% Student's-t UCL	0.0259	90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995)	0.0265
30 31	50 % Student S-t OCE	0.0259	90% Modified-t UCL (Johnson-1978)	0.0265
32				0.020
33		Gamma	GOF Test	
34	A-D Test Statistic	12.31	Anderson-Darling Gamma GOF Test	
35	5% A-D Critical Value	0.769	Data Not Gamma Distributed at 5% Significance Leve	el
36	K-S Test Statistic	0.458	Kolmogorov-Smirnov Gamma GOF Test	
37	5% K-S Critical Value	0.127	Data Not Gamma Distributed at 5% Significance Leve	el
38 39	Data Not Gamr	na Distribute	ed at 5% Significance Level	
40		Gamma	Statistics	
41	k hat (MLE)	1.427	k star (bias corrected MLE)	1.356
42	Theta hat (MLE)	0.0149	Theta star (bias corrected MLE)	0.0157
43	nu hat (MLE)	145.5	nu star (bias corrected)	138.3
44	MLE Mean (bias corrected)	0.0213	MLE Sd (bias corrected)	0.0183
45		0.0010	Approximate Chi Square Value (0.1)	117.5
46	Adjusted Level of Significance	0.0948	Adjusted Chi Square Value	117
47 48	Δοσ	sumina Gam	ma Distribution	
48	90% Approximate Gamma UCL	0.025	90% Adjusted Gamma UCL	0.0251
50				
51		Lognorma	I GOF Test	
52	Shapiro Wilk Test Statistic	0.522	Shapiro Wilk Lognormal GOF Test	
53	10% Shapiro Wilk P Value	0	Data Not Lognormal at 10% Significance Level	
54	Lilliefors Test Statistic	0.451	Lilliefors Lognormal GOF Test	
55	10% Lilliefors Critical Value	0.113	Data Not Lognormal at 10% Significance Level	
56 57	Data Not Lo	ognormal at	10% Significance Level	
57		Loanorma	I Statistics	
59	Minimum of Logged Data	-4.605	Mean of logged Data	-4.24
60	Maximum of Logged Data	-2.402	SD of logged Data	0.751
61				
62			ormal Distribution	
63	90% H-UCL	0.0226	90% Chebyshev (MVUE) UCL	0.0256
64	95% Chebyshev (MVUE) UCL	0.0286	97.5% Chebyshev (MVUE) UCL	0.0328
65 66	99% Chebyshev (MVUE) UCL	0.0409		

	A B C D E	F	G H I J K	L
67			tion Free UCL Statistics	
68	Data do no	ot follow a D	iscernible Distribution	
69	Negere		whether Free Hole	
70	Nonpar 90% CLT UCL	0.0258	ribution Free UCLs 90% BCA Bootstrap UCL	0.0268
71 72	90% Standard Bootstrap UCL	0.0258	90% BCA BOOISITAP UCL 90% Bootstrap-t UCL	0.0208
72	90% Hall's Bootstrap UCL	0.0255	90% Percentile Bootstrap UCL	0.0271
74	90% Chebyshev(Mean, Sd) UCL	0.0319	95% Chebyshev(Mean, Sd) UCL	0.020
75	97.5% Chebyshev(Mean, Sd) UCL	0.0433	99% Chebyshev(Mean, Sd) UCL	0.0564
76				
77		Suggested	UCL to Use	
-	ecommendation Provided only for 95% Confidence Coefficient			
79				
80 81			e data were collected in a random and unbiased manner. Ilected from random locations.	
82			nental or other non-random methods,	
83			o correctly calculate UCLs.	
84				
85				
86	Result (central parcel - d/f teq [µg/kg])			
87				
88	Table 1 (O)	General		10
89	Total Number of Observations	51	Number of Distinct Observations	13 0
90 91	Minimum	1.4	Number of Missing Observations Mean	0 3.154
91	Maximum	46.63	Median	1.4
93	SD	6.553	Std. Error of Mean	0.918
94	Coefficient of Variation	2.077	Skewness	6.118
95			1	
96			GOF Test	
97	Shapiro Wilk Test Statistic	0.303	Shapiro Wilk GOF Test	
98	1% Shapiro Wilk P Value	0	Data Not Normal at 1% Significance Level	
99	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.394	Lilliefors GOF Test	
100 101			Data Not Normal at 1% Significance Level % Significance Level	
101				
103	Ass	suming Norr	nal Distribution	
104	90% Normal UCL		90% UCLs (Adjusted for Skewness)	
105	90% Student's-t UCL	4.346	90% Adjusted-CLT UCL (Chen-1995)	4.892
106			90% Modified-t UCL (Johnson-1978)	4.477
107 108		Gamma	GOF Test	
108	A-D Test Statistic	11.19	Anderson-Darling Gamma GOF Test	
110	5% A-D Critical Value	0.775	Data Not Gamma Distributed at 5% Significance Level	
111	K-S Test Statistic	0.439	Kolmogorov-Smirnov Gamma GOF Test	
112	5% K-S Critical Value	0.127	Data Not Gamma Distributed at 5% Significance Level	l
113	Data Not Gamn	na Distribute	ed at 5% Significance Level	
114		~		
115	1. L /	Gamma		1 100
116	k hat (MLE) Theta hat (MLE)	1.178 2.678	k star (bias corrected MLE) Theta star (bias corrected MLE)	1.122 2.812
117 118	nu hat (MLE)	120.1	· · · · · · · · · · · · · · · · · · ·	2.812
119	MLE Mean (bias corrected)	3.154	MLE Sd (bias corrected)	2.979
120			Approximate Chi Square Value (0.1)	95.5
121	Adjusted Level of Significance	0.0948	Adjusted Chi Square Value	95.09
122				
123		-	ma Distribution	
124	90% Approximate Gamma UCL	3.779	90% Adjusted Gamma UCL	3.795
125		Lognorma	GOF Test	
126 127	Shapiro Wilk Test Statistic	0.542	GOF Test Shapiro Wilk Lognormal GOF Test	
127	10% Shapiro Wilk P Value	0.042	Data Not Lognormal at 10% Significance Level	
120	Lilliefors Test Statistic	0.441	Lilliefors Lognormal GOF Test	
130	10% Lilliefors Critical Value	0.113	Data Not Lognormal at 10% Significance Level	
131	Data Not Lo	gnormal at	10% Significance Level	
132				

100	A B C D E	F	G H I J K	L
133	Minimum of Lowrood Data	Lognormal		0.000
134	Minimum of Logged Data	0.336	Mean of logged Data	0.668
135	Maximum of Logged Data	3.842	SD of logged Data	0.724
136			an al Disasika air a	
137			mal Distribution	0.050
138	90% H-UCL	2.97	90% Chebyshev (MVUE) UCL	3.359
139	95% Chebyshev (MVUE) UCL	3.74	97.5% Chebyshev (MVUE) UCL	4.269
140	99% Chebyshev (MVUE) UCL	5.309		
141				
142			on Free UCL Statistics	
143	Data do no	ot follow a Dis	scernible Distribution	
144				
145			ibution Free UCLs	= 100
146	90% CLT UCL	4.33	90% BCA Bootstrap UCL	5.128
147	90% Standard Bootstrap UCL	4.335	90% Bootstrap-t UCL	7.048
148	90% Hall's Bootstrap UCL	9.457	90% Percentile Bootstrap UCL	4.38
149	90% Chebyshev(Mean, Sd) UCL	5.907	95% Chebyshev(Mean, Sd) UCL	7.154
150	97.5% Chebyshev(Mean, Sd) UCL	8.885	99% Chebyshev(Mean, Sd) UCL	12.28
151				
152		Suggested U	ICL to Use	
153	ecommendation Provided only for 95% Confidence Coefficient			
154	·			
155	The calculated UCLs are based on assumption	ions that the	data were collected in a random and unbiased manner.	
156	Please verify the d	ata were coll	ected from random locations.	
157	If the data were collected	using judgm	ental or other non-random methods,	
158			correctly calculate UCLs.	
159			•	
160				
	Result (east parcel - arsenic [mg/kg])			
162				
163		General S	tatistics	
164	Total Number of Observations	42	Number of Distinct Observations	39
165			Number of Missing Observations	0
166	Minimum	2.69	Mean	4.9
167		2.05	Mean	
107	Maximum	15.8	Median	
-	Maximum	15.8	Median	4.09
168	SD	2.455	Std. Error of Mean	4.09 0.379
168 169				4.09
168 169 170	SD	2.455 0.501	Std. Error of Mean Skewness	4.09 0.379
168 169 170 171	SD Coefficient of Variation	2.455 0.501 Normal G	Std. Error of Mean Skewness	4.09 0.379
168 169 170 171 172	SD Coefficient of Variation Shapiro Wilk Test Statistic	2.455 0.501 Normal Ge 0.721	Std. Error of Mean Skewness OF Test Shapiro Wilk GOF Test	4.09 0.379
168 169 170 171 172 173	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	2.455 0.501 Normal Ge 0.721 0.922	Std. Error of Mean Skewness OF Test Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level	4.09 0.379
168 169 170 171 172 173 174	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic	2.455 0.501 Normal Ge 0.721 0.922 0.203	Std. Error of Mean Skewness OF Test Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test	4.09 0.379
168 169 170 171 172 173 174 175	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	2.455 0.501 Normal Ge 0.721 0.922 0.203 0.157	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level	4.09 0.379
168 169 170 171 172 173 174 175 176	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	2.455 0.501 Normal Ge 0.721 0.922 0.203 0.157	Std. Error of Mean Skewness OF Test Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test	4.09 0.379
168 169 170 171 172 173 174 175 176 177	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not	2.455 0.501 Normal Ge 0.721 0.922 0.203 0.157 Normal at 19	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level	4.09 0.379
168 169 170 171 172 173 174 175 176 177 178	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not	2.455 0.501 Normal Ge 0.721 0.922 0.203 0.157 Normal at 19	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution	4.09 0.379
168 169 170 171 172 173 174 175 176 177 178 179	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL	2.455 0.501 Normal G 0.721 0.922 0.203 0.157 Normal at 19 suming Norm	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness)	4.09 0.379 2.557
168 169 170 171 172 173 174 175 176 177 178 179 180	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not	2.455 0.501 Normal Ge 0.721 0.922 0.203 0.157 Normal at 19	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995)	4.09 0.379 2.557
168 169 170 171 172 173 174 175 176 177 178 179	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL	2.455 0.501 Normal G 0.721 0.922 0.203 0.157 Normal at 19 suming Norm	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness)	4.09 0.379 2.557
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL	2.455 0.501 Normal G 0.721 0.922 0.203 0.157 Normal at 19 suming Norm 5.393	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978)	4.09 0.379 2.557
168 169 170 171 172 173 174 175 176 177 178 179 180 181	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL	2.455 0.501 Normal G 0.721 0.922 0.203 0.157 Normal at 19 suming Norm	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) OF Test	4.09 0.379 2.557
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL	2.455 0.501 Normal G 0.721 0.922 0.203 0.157 Normal at 19 suming Norm 5.393	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978)	4.09 0.379 2.557
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL	2.455 0.501 Normal G 0.721 0.922 0.203 0.157 Normal at 19 suming Norm 5.393 Gamma G	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) OF Test	4.09 0.379 2.557 5.492 5.418
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL	2.455 0.501 Normal G 0.721 0.922 0.203 0.157 Normal at 19 suming Norm 5.393 5.393 Gamma G 1.712	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) OF Test Anderson-Darling Gamma GOF Test	4.09 0.379 2.557 5.492 5.418
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL A-D Test Statistic 5% A-D Critical Value	2.455 0.501 Normal G 0.721 0.922 0.203 0.157 Normal at 19 suming Norm 5.393 5.393 Gamma G 1.712 0.751	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) OF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	4.09 0.379 2.557 5.492 5.418
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL S% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	2.455 0.501 Normal G 0.721 0.922 0.203 0.157 Normal at 19 suming Norm 5.393 5.393 Gamma G 1.712 0.751 0.18 0.137	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level 6 Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) OF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	4.09 0.379 2.557 5.492 5.418
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL S% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	2.455 0.501 Normal G 0.721 0.922 0.203 0.157 Normal at 19 suming Norm 5.393 5.393 Gamma G 1.712 0.751 0.18 0.137	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level 6 Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) OF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	4.09 0.379 2.557 5.492 5.418
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL S% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	2.455 0.501 Normal G 0.721 0.922 0.203 0.157 Normal at 19 suming Norm 5.393 Gamma G 1.712 0.751 0.18 0.137 ma Distributed	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) OF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	4.09 0.379 2.557 5.492 5.418
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamm	2.455 0.501 Normal G 0.721 0.922 0.203 0.157 Normal at 19 Suming Norm 5.393 5.393 Gamma G 1.712 0.751 0.18 0.137 na Distributed Gamma S	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) OF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level tat 5% Significance Level	4.09 0.379 2.557 5.492 5.418
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamm	2.455 0.501 Normal Gr 0.721 0.922 0.203 0.157 Normal at 19 suming Norm 5.393 Gamma G 1.712 0.751 0.18 0.137 na Distributed Gamma S 6.018	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) OF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level tat 5% Significance Level tat 5% Significance Level tat 5% Significance Level	4.09 0.379 2.557 5.492 5.418
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 190 191 192	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL 3% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn K hat (MLE)	2.455 0.501 Normal Gr 0.721 0.922 0.203 0.157 Normal at 19 Suming Norm 5.393 5.393 Gamma G 1.712 0.751 0.18 0.137 na Distributed Gamma S 6.018 0.814	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) OF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level tat 5% Significance Level State Stributed at 5% Significance Level State Not Gamma Distributed at 5% Significance Level Data Not Gamma Distributed at 5% Significance Level State Significance Level	4.09 0.379 2.557 5.492 5.418 5.418
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 190 191 192 193	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE)	2.455 0.501 Normal Gr 0.721 0.922 0.203 0.157 Normal at 19 suming Norm 5.393 Gamma G 1.712 0.751 0.18 0.137 na Distributed Gamma S 6.018 0.814 505.5	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) OF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level tat 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE)	4.09 0.379 2.557 5.492 5.492 5.418 5.418 5.604 0.874 470.7
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 190 191 192 193 194	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL 3% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn K hat (MLE)	2.455 0.501 Normal Gr 0.721 0.922 0.203 0.157 Normal at 19 Suming Norm 5.393 5.393 Gamma G 1.712 0.751 0.18 0.137 na Distributed Gamma S 6.018 0.814	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) OF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level tatistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	4.09 0.379 2.557 5.57 5.492 5.418 5.418 5.604 0.874 470.7 2.07
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL S% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected)	2.455 0.501 Normal G 0.721 0.922 0.203 0.157 Normal at 19 Suming Norm 5.393 Gamma G 1.712 0.751 0.18 0.137 na Distributed Gamma S 6.018 0.814 505.5 4.9	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) OF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level tat S% Significance Level tatistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.1)	4.09 0.379 2.557 2.557 5.492 5.418 5.418 5.604 0.874 470.7 2.07 431.9
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL 5% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) Theta hat (MLE) nu hat (MLE)	2.455 0.501 Normal Gr 0.721 0.922 0.203 0.157 Normal at 19 suming Norm 5.393 Gamma G 1.712 0.751 0.18 0.137 na Distributed Gamma S 6.018 0.814 505.5	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) OF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level tatistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	4.09 0.379 2.557 5.57 5.492 5.418 5.418 5.604 0.874 470.7 2.07
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195	SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL S% A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Data Not Gamn k hat (MLE) theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance	2.455 0.501 Normal G 0.721 0.922 0.203 0.157 Normal at 19 suming Norm 5.393 Gamma G 1.712 0.751 0.18 0.137 na Distributed Gamma S 6.018 0.814 505.5 4.9 0.0937	Std. Error of Mean Skewness OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level & Significance Level al Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) OF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level tat S% Significance Level tatistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.1)	4.09 0.379 2.557 2.557 5.492 5.418 5.418 5.604 0.874 470.7 2.07 431.9

	A B C D E	F	G H I J K	L
199	90% Approximate Gamma UCL	5.341	90% Adjusted Gamma UCL	5.354
200			· · · · · ·	
201			I GOF Test	
202	Shapiro Wilk Test Statistic	0.867	Shapiro Wilk Lognormal GOF Test	
203	10% Shapiro Wilk Critical Value	0.951	Data Not Lognormal at 10% Significance Level	
204	Lilliefors Test Statistic	0.158	Lilliefors Lognormal GOF Test	
205	10% Lilliefors Critical Value	0.124	Data Not Lognormal at 10% Significance Level	
206	Data Not Lo	ognormal at	10% Significance Level	
207		Lognormo	I Statistics	
208 209	Minimum of Logged Data	0.99	Mean of logged Data	1.504
209	Maximum of Logged Data	2.76	SD of logged Data	0.389
210	Maximum of Eogged Data	2.70		0.000
212	Assu	imina Loand	ormal Distribution	
213	90% H-UCL	5.281	90% Chebyshev (MVUE) UCL	5.741
214	95% Chebyshev (MVUE) UCL	6.147	97.5% Chebyshev (MVUE) UCL	6.712
215	99% Chebyshev (MVUE) UCL	7.821		
216				
217	Nonparame	tric Distribu	tion Free UCL Statistics	
218	Data do no	ot follow a D	Discernible Distribution	
219				
220			tribution Free UCLs	
221	90% CLT UCL	5.385	90% BCA Bootstrap UCL	5.48
222	90% Standard Bootstrap UCL	5.375	90% Bootstrap-t UCL	5.564
223	90% Hall's Bootstrap UCL	5.672	90% Percentile Bootstrap UCL	5.374
224	90% Chebyshev(Mean, Sd) UCL	6.036	95% Chebyshev(Mean, Sd) UCL	6.551
225	97.5% Chebyshev(Mean, Sd) UCL	7.266	99% Chebyshev(Mean, Sd) UCL	8.669
226		Suggested	UCL to Use	
227 228	ecommendation Provided only for 95% Confidence Coefficient	Suggesteu		
220	econimentation r rowded only for 35% confidence coefficient			
230				
	Result (east parcel - cpahs [mg/kg])			
232				
_∠3∠				
232		General	Statistics	
	Total Number of Observations	General 42	Statistics Number of Distinct Observations	37
233 234 235		42	Number of Distinct Observations Number of Missing Observations	0
233 234 235 236	Minimum	42 0.00566	Number of Distinct Observations Number of Missing Observations Mean	0 0.101
233 234 235 236 237	Minimum Maximum	42 0.00566 0.566	Number of Distinct Observations Number of Missing Observations Mean Median	0 0.101 0.0732
233 234 235 236 237 238	Minimum Maximum SD	42 0.00566 0.566 0.115	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	0 0.101 0.0732 0.0178
233 234 235 236 237 238 239	Minimum Maximum	42 0.00566 0.566	Number of Distinct Observations Number of Missing Observations Mean Median	0 0.101 0.0732
233 234 235 236 237 238 239 240	Minimum Maximum SD	42 0.00566 0.566 0.115 1.139	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 0.101 0.0732 0.0178
233 234 235 236 237 238 239 240 241	Minimum Maximum SD Coefficient of Variation	42 0.00566 0.566 0.115 1.139 Normal (Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 0.101 0.0732 0.0178
233 234 235 236 237 238 239 240 241 242	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic	42 0.00566 0.566 0.115 1.139 Normal (0.724	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 0.101 0.0732 0.0178
233 234 235 236 237 238 239 240 241 242 243	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 0.101 0.0732 0.0178
233 234 235 236 237 238 239 240 241 242 243 244	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 0.101 0.0732 0.0178
233 234 235 236 237 238 239 240 241 242 243 244 245	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level	0 0.101 0.0732 0.0178
233 234 235 236 237 238 239 240 241 242 243 244	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 0.101 0.0732 0.0178
233 234 235 236 237 238 239 240 241 242 243 244 245 246	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157 Normal at 1	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level	0 0.101 0.0732 0.0178
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157 Normal at 1	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level Understand Significance Level 90% UCLs (Adjusted for Skewness)	0 0.101 0.0732 0.0178 2.334
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157 Normal at 1	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level Use Significance Level 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995)	0 0.101 0.0732 2.334 2.334
233 234 235 236 237 238 239 240 241 242 243 244 245 244 245 246 247 248 249 250 251	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157 Normal at 1 suming Normal	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level Understand Significance Level 90% UCLs (Adjusted for Skewness)	0 0.101 0.0732 0.0178 2.334
233 234 235 236 237 238 239 240 241 242 243 244 245 244 245 246 247 248 249 250 251 252	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157 Normal at 1 suming Normal 0.124	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Babino Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level W Significance Level 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978)	0 0.101 0.0732 2.334 2.334
233 234 235 236 237 238 239 240 241 242 243 244 245 244 245 246 247 248 249 250 251 252 253	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157 Normal at 1 suming Normal 0.124 0.124	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level Vilk Significance Level % Significance Level 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978)	0 0.101 0.0732 2.334 2.334
233 234 235 236 237 238 239 240 241 242 243 244 245 244 245 246 247 248 249 250 251 252 253 254	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157 Normal at 1 suming Normal 0.124 0.124 Gamma (0.705	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level Vilk Significance Level 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test	0 0.101 0.0732 2.334 2.334 0.129 0.129 0.126
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL A-D Test Statistic 5% A-D Critical Value	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157 Normal at 1 suming Normal 0.124 0.124 Gamma (0.705 0.782	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level % Significance Level 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	0 0.101 0.0732 2.334 2.334 0.129 0.129 0.126
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 4-D Test Statistic 5% A-D Critical Value K-S Test Statistic	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157 Normal at 1 suming Normal 0.124 Gamma (0.705 0.782 0.13	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level Vilk Significance Level % Significance Level 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test	0 0.101 0.0732 2.334 2.334 0.129 0.129 0.126
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 4-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157 Normal at 1 suming Normal 0.124 Gamma (0.705 0.782 0.13 0.141	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level Vilk Significance Level % Significance Level 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	0 0.101 0.0732 2.334 2.334 0.129 0.129 0.126
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 4-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157 Normal at 1 suming Normal 0.124 Gamma (0.705 0.782 0.13 0.141	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level Vilk Significance Level % Significance Level 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test	0 0.101 0.0732 2.334 2.334 0.129 0.129 0.126
233 234 235 236 237 238 239 240 241 242 243 244 245 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 4-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157 Normal at 1 suming Normanian 0.124 0.124 0.705 0.705 0.782 0.13 0.141 Gamma Di	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level Imal Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Stoma Distributed at 5% Significance	0 0.101 0.0732 2.334 2.334 0.129 0.129 0.126
233 234 235 236 237 238 239 240 241 242 243 244 245 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL 5% A-D Test Statistic 5% K-S Test Statistic 5% K-S Critical Value K-S Test Statistic	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157 Normal at 1 suming Normal 0.124 0.124 0.124 0.705 0.782 0.13 0.141 Gamma Di Gamma Di	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level Vilk GOF Test Data Not Normal at 1% Significance Level Wilk GOF Test Data Not Normal at 1% Significance Level Wilk Significance Level Wata Not Normal at 1% Significance Level Mata Not Normal at 1% Significance Mata Not Normal at 1% Significance Level Mata Not Normal at 1% Significance 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Statistics	0 0.101 0.0732 2.334 2.334 0.129 0.129 0.126 e Level e Level
233 234 235 236 237 238 239 240 241 242 243 244 245 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157 Normal at 1 suming Norr 0.124 0.124 Gamma (0.705 0.782 0.13 0.141 Gamma Di Gamma Di Gamma (0.915)	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level Villefors GOF Test Data Not Normal at 1% Significance Level W Significance Level 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE)	0 0.101 0.0732 2.334 2.334 0.178 0.129 0.129 0.126 0.126 e Level e Level e Level 0.866
233 234 235 236 237 238 239 240 241 242 243 244 245 244 245 246 247 248 249 250 251 252 253 254 255 255 256 257 258 259 260 261 262	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE)	42 0.00566 0.566 0.115 1.139 Normal 0 0.724 0.922 0.231 0.157 Normal at 1 suming Norr 0.124 0.124 Gamma 0 0.705 0.782 0.13 0.141 Gamma Di Gamma Di Gamma Di 0.915 0.111	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness 3OF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level Vilk Significance Level W Significance Level 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE)	0 0.101 0.0732 2.334 2.334 0.129 0.129 0.126 0.126 e Level e Level e Level 0.866 0.117
233 234 235 236 237 238 239 240 241 242 243 244 245 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261	Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data Not Ass 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear	42 0.00566 0.566 0.115 1.139 Normal (0.724 0.922 0.231 0.157 Normal at 1 suming Norr 0.124 Gamma (0.705 0.782 0.13 0.141 Gamma Di Gamma Di Gamma (0.915)	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data Not Normal at 1% Significance Level Villefors GOF Test Data Not Normal at 1% Significance Level W Significance Level 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE)	0 0.101 0.0732 2.334 2.334 0.178 0.129 0.129 0.126 0.126 e Level e Level e Level 0.866

286 Adjusted Level of Significance 0.007 Adjusted Chi Signifi Valler (7). 57.77 287 Adjusted Chi Signifi Cance 0.012 Adjusted Chi Signifi Valler (7). 57.77 288 Offic Approximate Gamma UCL 0.128 0.97.4 Adjusted Cancer UCL 0.128 280 Offic Approximate Gamma UCL 0.128 0.97.4 Adjusted Cancer UCL 0.128 271 Shapiro Wilk Chick Value 0.57 Shapiro Wilk Chick Value 0.57.7 272 Shapiro Wilk Chick Value 0.56 Date Net Copromal at 10% Significance Level 273 UNING Strate Value 0.56 Date Net Copromal at 10% Significance Level 274 Uninform of Coged Date 5.17.7 Mean of Logged Date 2.927 274 Meanmum of Logged Date 5.17.4 Mean of Logged Date 2.927 275 Meanmum of Logged Date 5.17.4 Mean of Logged Date 2.927 276 Meanmum of Logged Date 5.97.7 Mean of Logged Date 2.927 278 Mean of Logged Date 2.927 Mean of Logged Date 2.927 <td< th=""><th>005</th><th>A B C D E</th><th>F</th><th>G H I J K</th><th>L</th></td<>	005	A B C D E	F	G H I J K	L			
297 Assuming Gamma Distribution 298 90% Approximate Gamma UCL 0.128 90% Adjusted Gamma UCL 0.128 271 Capornal GOF Test Shapiro Wilk Cells Statistic 0.873 Shapiro Wilk Cells Statistic 0.874 Cells Statistic 0.874 Cells Statistic 0.874 Cells Statistic 0.874 0.87	265			Approximate Chi Square Value (0.1)	57.77			
Description Number of the state state of the state of the state of the state of the state of t	266	Adjusted Level of Significance	0.0937	Adjusted Chi Square Value	57.39			
280 90% Aguesed Gamma UCI 0.128 90% Adjusted Gamma UCI 0.128 271 Shapiro Wilk Critical Value 0.57 Shapiro Wilk Lognormal at 10% Significance Level 273 100% Shapiro Wilk Critical Value 0.51 Data Net Lognormal at 10% Significance Level 274 Ultificati Statistic 0.128 Data Net Lognormal at 10% Significance Level 276 Data Net Lognormal at 10% Significance Level Lognormal Statistic 2.282 276 Data Net Lognormal Distribution 2.282 Statistic 2.282 281 Maximum of Logged Data -5.174 Mean of logged Data 2.282 282 Maximum of Logged Data -5.174 Mean of logged Data 2.282 283 Maximum of Logged Data -5.174 Mean of logged Data 2.282 284 9.99% Chebyshev (MUE) UCL 0.243 9.76.86.89.84.00.00.00.00.00.00.00.00.00.00.00.00.00	267							
201 Logonmal GOF Test 272 Shapiro Wik Test Statistic 0.875 Shapiro Wik Test Statistic 273 10% Shapiro Wik Test Statistic 0.875 Data Not Logonmal GOF Test 274 Ulliefers Tost Statistic 0.157 Lilliefors Logonmal Statistic 275 10% Significance Level Exponse Statistic 2.927 278 Logonmal Statistic Significance Level 2.927 279 Minimum of Logged Data 5.14 Mean of Logged Data 2.927 281 Assuming Logonmal Distribution 90% Chebyshev (MVUE) UCL 0.243 9.75% Chebyshev (MVUE) UCL 0.243 282 95% Chebyshev (MVUE) UCL 0.243 9.75% Chebyshev (MVUE) UCL 0.243 283 95% Chebyshev (MVUE) UCL 0.243 9.75% Chebyshev (MVUE) UCL 0.243 284 95% Chebyshev (MVUE) UCL 0.243 9.75% Chebyshev (MVUE) UCL 0.161 285 Data appeer to Infore a Discensible Distribution 9.95% Chebyshev (MVUE) UCL 0.17 286 Data appeer to Infore a Discensible Distribution 9.95% Chebyshev (Manue) 0.121 <td>_</td> <td></td> <td>-</td> <td></td> <td></td>	_		-					
Caperonal GOF Test T22 Shinpiro Wikk Cristal Value 0.051 Data NcL Cognormal at 10% Significance Level Z73 Othory Shapiro Wikk Cristal Value 0.051 Data NcL Cognormal at 10% Significance Level Z76 Othory Wikk Cristal Value 0.124 Data NcL Cognormal at 10% Significance Level Z76 Data NcL Cognormal at 10% Significance Level Z.52 Z77 Mean of Logged Data 0.560 SD of logged Data 2.527 Z81 Cognormal Distribution SD of logged Data 2.527 Z82 Advantum of Logged Data 0.560 SD of logged Data 2.527 Z83 Optimum Cristal Value 0.131 SPS % Chebyshev (MVUE) UCL 0.243 Z84 Optimum Cristal Value 0.031 Optimum Cristal Value 0.028 Z85 Optimum Cristal Value 0.042 Optimum Cristal Value 0.028 Z85 Optimum Cristal Value 0.031 Optimum Cristal Value 0.028 Z86 Optimum Cristal Value 0.042 0.758 % Chebyshev (MAUUE) UCL 0.024 Z87 Optimum Cristal V	_	90% Approximate Gamma UCL	0.128	90% Adjusted Gamma UCL	0.128			
Shapio Wilk Test Statistic 0.875 Shapio Wilk Legonami 200F Test 273 10%: Shapio Wilk Test Statistic 0.157 Lillefors Lognormal 300F Test 274 10%: Significance Level 10%: Significance Level 275 10%: Lillefors Calavational at 10%: Significance Level 276 10%: Lillefors Calavational at 10%: Significance Level 278 Lognormal Statistics 279 Maximum of Logged Data -5.14 280 Maximum of Logged Data -0.568 281 Assuming Lognormal Distribution 2.2.927 282 Assuming Lognormal Distribution 0.2.94 283 99%: Chebyshev (MVUE) UCL 0.243 97.5%: Chebyshev (MVUE) UCL 0.243 284 99%: Chebyshev (MVUE) UCL 0.44 0.13 90%: Scatastraput UCL 0.13 285 Data appear to follow a Discontible Distribution 2.2.2 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	_							
273 10% Shapio Wik Critical Value 0.851 Data Not Lognormal 10% Significance Level 274 10% Lifefors Critical Value 0.124 Data Not Lognormal at 10% Significance Level 276 Data Not Lognormal at 10% Significance Level 252 277 Lognormal at 10% Significance Level 252 278 Lognormal Statistic 252 280 Maximum of Loggod Data 5.174 Mean of logged Data -2.527 281 Lognormal Distribution 250 1.279 282 Assuming Lognormal Distribution 90% Chebyshev (MVUE) UCL 0.244 90% Chebyshev (MVUE) UCL 0.242 285 99% Chebyshev (MUUE) UCL 0.404 275 281 282 286 Data appear to follow a Discernible Distribution 782 295 <t< td=""><td>_</td><td></td><td></td><td></td><td></td></t<>	_							
274 Lilliefors Test Statistic 0.157 Lilliefors Color Pest 275 10% Lilliefors Crictal Value 0.124 Data Not Lognormal at 10% Significance Level 276 Data Not Lognormal at 10% Significance Level								
275 10% Lilledra Critical Value 0.124 Date Net Lognormal at 10% Significance Lavel 277 Lagnormal Statistics 2.927 278 Maximum of Logget Data 5.174 Mean of logget Data 2.927 279 Minimum of Logget Data 0.569 SD of logget Data 2.927 280 Maximum of Logget Data 0.509 SD of logget Data 2.927 281 Assuming Lognormal Distribution 0.90% Checkpothere (WVLE) UCL 0.181 9.0% Checkpothere (WVLE) UCL 0.243 97.5% Checkpothere (WVLE) UCL 0.404 0.90% BCA Boostrap UCL 0.298 283 Data appear to follow a Diacomible Distribution 10124 90% BCA Boostrap UCL 0.13 283 Data appear to follow a Diacomible Distribution 1124 90% Boostrap UCL 0.128 284 90% Standard Boostrap UCL 0.131 90% Rock Boostrap UCL 0.128 284 90% Standard Boostrap UCL 0.124 90% Boostrap UCL 0.126 284 90% Standard Boostrap UCL 0.126 90% Standard Boostrap UCL 0.126 284 90% Stand		•						
Significance Level 276 Lognormal at 10% Significance Level 278 Lognormal Statistics 279 Minimum of Logged Data 5.174 Mean of logged Data 2.237 270 Minimum of Logged Data 0.559 S.D of logged Data 1.279 271 Commend Statistics S.D of logged Data 1.279 272 Assuming Lognormal Distribution 90% Chebyshev (MVUE) UCL 0.243 97.5% Chebyshev (MVUE) UCL 0.238 283 99% Chebyshev (MVUE) UCL 0.404 90% SChebyshev (MVUE) UCL 0.238 284 99% Chebyshev (MVUE) UCL 0.404 90% SChebyshev (MVUE) UCL 0.13 283 90% Standard Bootsnap UCL 0.124 90% Rock Bootsnap UCL 0.13 284 90% Standard Bootsnap UCL 0.131 90% Rock Bootsnap UCL 0.128 284 90% Chebyshev (Mus. Sig UCL 0.131 90% Rock Bootsnap UCL 0.128 285 97.5% Chebyshev (Man. Sig UCL 0.121 99% Chebyshev (Man. Sig UCL 0.128 286 90% Chebyshev (Man. Sig UCL 0.121 99								
277 Lognormal Statistics - 2.927 278 Maximum of Logged Data -5.174 Mean of logged Data -2.927 280 Maximum of Logged Data -5.959 SD of logged Data -2.927 281 Assuming Lognormal Distribution 90% Chebyshev (MVUE) UCL 0.181 90% Chebyshev (MVUE) UCL 0.284 282 Assuming Lognormal Distribution 90% Chebyshev (MVUE) UCL 0.243 97.5% Chebyshev (MVUE) UCL 0.284 283 99% Chebyshev (MVUE) UCL 0.404 97.5% Chebyshev (MVUE) UCL 0.404 283 Data appeer to follow a Discombib Distribution 798 0.112 997.5% Chebyshev (MVUE) UCL 0.124 284 Data appeer to follow a Discombib Distribution 90% Bootstrap UCL 0.133 90% Bootstrap UCL 0.125 282 99% Standard Bootstrap UCL 0.131 90% Bootstrap UCL 0.126 90% Bootstrap UCL 0.126 283 90% Standard Bootstrap UCL 0.131 90% Rootstrap UCL 0.126 284 99% Chebyshev (Musan, Sd) UCL 0.212 99% Chebyshev(Musan, Sd) UCL 0.127 <td></td> <td></td> <td></td> <td></td> <td></td>								
Description Leggor Data Strikt Mean of legged Data 2.927 280 Maximum of Legged Data 0.569 SD of legged Data 2.927 281 Assuming Legrormal Distribution SD of legged Data 2.927 283 90% Chebyshev (MVLE) UCL 0.181 90% Chebyshev (MVLE) UCL 0.234 286 99% Chebyshev (MVLE) UCL 0.404 0.404 0.181 90% Chebyshev (MVLE) UCL 0.238 286 0.99% Chebyshev (MVLE) UCL 0.404 0.404 0.13 90% BCA Bootstrap UCL 0.13 286 0.90% Standmore to Distribution Free UCL Statistice 0.13 90% BCA Bootstrap UCL 0.13 287 90% Standmore footstrap UCL 0.13 90% BCA Bootstrap UCL 0.179 284 90% Standmore footstrap UCL 0.16 95% Chebyshev(Mean, Sd) UCL 0.179 285 97.5% Chebyshev (Mean, Sd) UCL 0.16 95% Chebyshev (Mean, Sd) UCL 0.179 286 97.5% Chebyshev (Mean, Sd) UCL 0.16 95% Chebyshev (Mean, Sd) UCL 0.179 286 97.5% Chebyshev (Mean, Sd) UCL	_		Sgriornia at					
299 Minimum of Logged Datal 5.174 Mean of Logged Datal 2.327 280 Maximum of Logged Datal 0.569 SD of logged Datal 1.279 281 Assuming Lognomal Distribution 0.181 90%, Chebysher (MVLE) UCL 0.204 282 90%, Chebysher (MVLE) UCL 0.493 97.5%, Chebysher (MVLE) UCL 0.204 286 99% Chebysher (MVLE) UCL 0.404 0.38 0.39 286 Deta appear to follow a Discentible Distribution Free UCL Statistics 0.33 287 Nonparametric Distribution Free UCL 1.31 90%, ECA Bootstrap UCL 0.134 280 Nonparametric Distribution Free UCL 90%, Bootstrap UCL 0.132 90%, Bootstrap UCL 0.132 281 90%, Schebysher (Mean, Sd) UCL 0.131 90%, Percentile Bootstrap UCL 0.128 283 90%, Schebysher (Mean, Sd) UCL 0.121 90%, Schebysher (Mean, Sd) UCL 0.179 294 90%, Schebysher (Mean, Sd) UCL 0.121 99%, Schebysher (Mean, Sd) UCL 0.179 295 97.5%, Chebysher (Mean, Sd) UCL 0.121 99			Lognorma	I Statistics				
280 Maximum of Logged Data 0.569 SD of logged Data 1.279 281 Assuming Logrommal Distribution 282 90% Chebyshev (MVUE) UCL 0.241 90% Chebyshev (MVUE) UCL 0.242 282 95% Chebyshev (MVUE) UCL 0.404 0.298 0.298 283 96% Chebyshev (MVUE) UCL 0.404 0.298 0.298 284 95% Chebyshev (MVUE) UCL 0.404 0.298 0.298 285 96% Chebyshev (MVUE) UCL 0.404 0.75% Chebyshev (MVUE) UCL 0.13 286 Deta appert to follow a Discombile Distribution Fee UCLS 90% Schaft dota Bootstrap UCL 0.13 281 90% Schaft dota Bootstrap UCL 0.124 90% Schaft dota Bootstrap UCL 0.13 282 90% Schaft dota Bootstrap UCL 0.13 90% Schaft dotaBootstrap UCL 0.179 283 90% Schaft dota Bootstrap UCL 0.155 95% Schebyshev(Mean, Sd) UCL 0.179 294 90% Schaft dota Bootstrap UCL 0.155 95% Schebyshev(Mean, Sd) UCL 0.278 295 97.5% Chebyshev(Mean, Sd) UCL 0.216		Minimum of Logged Data			-2.927			
Seam Assuming Lognormal Distribution 283 0.90% H-UCL 0.743 90% Chebyshev (MVUE) UCL 0.243 284 99% Chebyshev (MVUE) UCL 0.243 97.5% Chebyshev (MVUE) UCL 0.243 285 99% Chebyshev (MVUE) UCL 0.243 97.5% Chebyshev (MVUE) UCL 0.243 286 99% Chebyshev (MVUE) UCL 0.244 97.5% Chebyshev (MVUE) UCL 0.13 287 Nonparametric Distribution Free UCL 0.13 0.13 0.13 289 0.90% Standard Bootstrap UCL 0.124 90% Bootstrap UCL 0.13 281 90% Chebyshev (Mean, 5d) UCL 0.131 90% Chebyshev (Mean, 5d) UCL 0.124 282 90% Standard Mode Bootstrap UCL 0.131 90% Chebyshev (Mean, 5d) UCL 0.212 99% Chebyshev (Mean, 5d) UCL 0.278 284 90% Standard Mode Bootstrap UCL 0.131 Stattistics 0.278 285 97.5% Chebyshev (Mean, 5d) UCL 0.212 99% Chebyshev (Mean, 5d) UCL 0.278 286 econtraction Stattistics Stattistics Stattistics Stattistics Stattistics </td <td>_</td> <td></td> <td></td> <td></td> <td></td>	_							
283 99% H-UCL 0.181 99% Chebyshev (MVUE) UCL 0.204 285 99% Chebyshev (MVUE) UCL 0.243 97.5% Chebyshev (MVUE) UCL 0.208 285 99% Chebyshev (MVUE) UCL 0.404 97.5% Chebyshev (MVUE) UCL 0.208 286 Data appear to follow a Discorrible Distribution 1000 1000 1000 286 Data appear to follow a Discorrible Distribution 1000 10100 10100 <td>281</td> <td></td> <td></td> <td></td> <td></td>	281							
294 95% Chebyshev (MVUE) UCL 0.443 97.5% Chebyshev (MVUE) UCL 0.298 285 99% Chebyshev (MVUE) UCL 0.404 0.404 0.298 286 Nonparametric Distribution Free UCL Statistics 0.404 0.404 0.404 287 Nonparametric Distribution Free UCL 0.131 0.0% ECA Bootstrap UCL 0.13 289 Nonparametric Distribution Free UCLs 0.90% ECA Bootstrap UCL 0.13 0.0% ECA Bootstrap UCL 0.13 291 90% Standard Bootstrap UCL 0.124 90% ECA Bootstrap UCL 0.13 292 90% Chebyshev(Mean, Sd) UCL 0.155 95% Chebyshev(Mean, Sd) UCL 0.175 295 97.5% Chebyshev(Mean, Sd) UCL 0.155 95% Chebyshev(Mean, Sd) UCL 0.278 296 97.5% Chebyshev(Mean, Sd) UCL 0.155 95% Chebyshev(Mean, Sd) UCL 0.278 297 Suggested UCL to Use 298 299 140 0.278 300 The calculated UCLs are based on assumptions the data were collected from random locations. 301 140 303 then contact a statristician to correcity calculate U	282	Ass	uming Logno	ormal Distribution				
285 99% Chebyshev (MVUE) UCL 0.404 286 Nonparametric Distribution Free UCL Statistics 287 Data appear to follow a Discomible Distribution 288 Obsappear to follow a Discomible Distribution 0.13 289 90% ECLT UCL 0.124 90% Bootstrap UCL 0.13 280 90% Standard Bootstrap UCL 0.131 90% Bootstrap UCL 0.132 281 90% Chebyshev(Mean, Sd) UCL 0.155 95% Chebyshev(Mean, Sd) UCL 0.128 283 90% Chebyshev(Mean, Sd) UCL 0.155 95% Chebyshev(Mean, Sd) UCL 0.278 284 Suggested UCL to Use 285 Commendation Provided only for 95% Confidence Coefficient 0.278 285 Commendation Provided only for 95% Confidence Coefficient 0.278 286 Commendation Provided only for 95% Confidence Coefficient 0.278 287 If the data were collected from random focations. 0.404 303 then contact a statistician to order or distinct Observations 40 0.207	283							
286 Nonparametric Distribution Free UCL Statistics 287 Nonparametric Distribution Free UCL Statistics 288 00% BCA Bootstrap UCL 0.13 290 90% Standard Bootstrap UCL 0.124 90% BCA Bootstrap UCL 0.13 291 90% Standard Bootstrap UCL 0.124 90% Bcotstrap UCL 0.13 292 90% Standard Bootstrap UCL 0.131 90% Percentile Bootstrap UCL 0.125 294 90% Chebyshev(Mean, Sd) UCL 0.131 90% Chebyshev(Mean, Sd) UCL 0.278 295 97.5% Chebyshev(Mean, Sd) UCL 0.212 99% Chebyshev(Mean, Sd) UCL 0.278 296 suggested UCL to Use 200 156 156 156 156 156 156 156 156 156 156 156 156 156 157 278				97.5% Chebyshev (MVUE) UCL	0.298			
Image: Product Statistics Statistics 288 Opta appear to follow a Discribitotion 289 Nonparametric Distribution Free UCLs 280 0%% CLT UCL 0.124 90% BCA Bootstrap UCL 0.13 281 0.90% CLT UCL 0.124 90% BCA Bootstrap UCL 0.13 282 90% Standard Bootstrap UCL 0.131 90% Percentile Bootstrap UCL 0.132 284 90% Schebyshev(Mean, Sd) UCL 0.155 95% Chebyshev(Mean, Sd) UCL 0.179 285 97.5% Chebyshev(Mean, Sd) UCL 0.121 99% Chebyshev(Mean, Sd) UCL 0.278 286 97.5% Chebyshev(Mean, Sd) UCL 0.212 99% Chebyshev(Mean, Sd) UCL 0.278 287 Suggested UCL to Use 500 500 500 500 288 Pornmendation Provided only for 95% Confidence Coefficient 500 500 500 500 303 The calculated UCLs are based on assumptions that the data were collected from random locations. 500 500 500 500 500 500 500 500 500 500 500 <		99% Chebyshev (MVUE) UCL	0.404					
Data appear to follow a Discemble Distribution 283 Nonparametric Distribution Free UCLs 290 90% CL1 UCL 0.124 90% BCA Bootstrap UCL 0.13 291 90% Standard Bootstrap UCL 0.124 90% Percentile Bootstrap UCL 0.13 293 90% Schedysherv(Mean, Sd) UCL 0.131 90% Percentile Bootstrap UCL 0.125 294 90% Schedysherv(Mean, Sd) UCL 0.155 95% Chedysherv(Mean, Sd) UCL 0.278 296 97.5% Chedysherv(Mean, Sd) UCL 0.212 99% Chedysherv(Mean, Sd) UCL 0.278 297 Suggested UCL to Use 200 1000 1000 2010 298 commendation Provided only for 95% Confidence Coefficient 1 1 201 299 Suggested UCL to Use 202 1000 1 1 300 The calculated UCLs are based on assumptions that the date were collected from random locations. 1000 1 1 301 Please werfty the data were collected from random locations. 1 1 1 1 1 1 1 1 1 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>								
283 Nonparametric Distribution Free UCLs 290 90% CLT UCL 0.124 90% BCA Bootstrap UCL 0.13 291 90% Standard Bootstrap UCL 0.124 90% BCA Bootstrap UCL 0.13 292 90% Chebyshev(Mean, Sd) UCL 0.131 90% Precentile Bootstrap UCL 0.175 294 90% Chebyshev(Mean, Sd) UCL 0.155 95% Chebyshev(Mean, Sd) UCL 0.278 295 97.5% Chebyshev(Mean, Sd) UCL 0.212 99% Chebyshev(Mean, Sd) UCL 0.278 296 Suggested UCL to Use 298 297 Suggested UCL to Use 298 296 OThe calculated UCLs are based on assumptions that the data were collected from random locations. 300 10 298 200 The calculated UCLs are based on assumptions that the data were collected from random locations. 301 301 303 303 then contact a statistican to correctly calculate UCLs. 40 304 306 307 Suggested UCL Variation 42 Number of Distinct Observations 40 311 Minimum 0.518 Number of Distinct Observations 0		•						
Nonparametric Distribution Free UCLs 291 90% Standard Bootsrap UCL 0.124 90% BCA Bootstrap UCL 0.13 292 90% Standard Bootsrap UCL 0.131 90% Precentile Bootstrap UCL 0.132 293 90% Chebyshev(Mean, Su) UCL 0.155 95% Chebyshev(Mean, Su) UCL 0.157 294 90% Chebyshev(Mean, Su) UCL 0.212 99% Chebyshev(Mean, Su) UCL 0.212 295 97.5% Chebyshev(Mean, Su) UCL 0.212 99% Chebyshev(Mean, Su) UCL 0.278 296 97.5% Chebyshev(Mean, Su) UCL 0.212 99% Chebyshev(Mean, Su) UCL 0.278 297 Suggested UCL to Use 200 The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. 301 206 If the data were collected using judgmental or other non-random methods, 303 40 303 Then contact a statistician to correctly calculate UCLs. 40 304 Statistic 0 301 305 General Statistic 0 301 310 Coefficient of Variation 0.51 Number of Distinct Observations		Data appea	r to follow a	Discernible Distribution				
291 90% CLT UCL 0.124 90% BCA Bootstrap UCL 0.13 292 90% Standard Bootstrap UCL 0.131 90% Percentile Bootstrap UCL 0.132 293 90% Chebyshev(Mean, Sd) UCL 0.155 95% Chebyshev(Mean, Sd) UCL 0.178 294 90% Chebyshev(Mean, Sd) UCL 0.155 95% Chebyshev(Mean, Sd) UCL 0.278 295 97.5% Chebyshev(Mean, Sd) UCL 0.212 99% Chebyshev(Mean, Sd) UCL 0.278 296 97.5% Chebyshev(Mean, Sd) UCL 0.212 99% Chebyshev(Mean, Sd) UCL 0.278 297 Suggested UCL to Use 298 commendation Provided only for 95% Confidence Coefficient		Nonpo	romotrio Dio	tribution Eron UCL o				
222 90% Standard Bootstrap UCL 0.124 90% Bootstrap UCL 0.13 233 90% Hall's Bootstrap UCL 0.131 90% Percentile Bootstrap UCL 0.125 244 90% Chebyshev(Mean, Sd) UCL 0.155 95% Chebyshev(Mean, Sd) UCL 0.278 295 97.5% Chebyshev(Mean, Sd) UCL 0.212 99% Chebyshev(Mean, Sd) UCL 0.278 296 scommendation Provided only for 95% Confidence Coefficient 99% Chebyshev(Mean, Sd) UCL 0.278 299 The calculated UCLs are based on assumptions that the data were collected from random locations. 300 The calculated UCLs are based on assumptions that the data were collected from random locations. 301 Prease verify the data were collected from random locations. 303 303 then contact a statistica to correctly calculate UCLs. 40 304 General Statistics 0 0 311 0 0 303 0 303 303 303 303 303 304 304 304 304 304 305 304 304 305 305 305 305 305 305	_				0.13			
283 90% Hall's Bootstrap UCL 0.131 90% Percentile Bootstrap UCL 0.125 284 90% Chebyshev(Mean, Sd) UCL 0.125 95% Chebyshev(Mean, Sd) UCL 0.179 295 97.5% Chebyshev(Mean, Sd) UCL 0.121 99% Chebyshev(Mean, Sd) UCL 0.179 296								
294 90% Chebyshev(Mean, Sd) UCL 0.155 95% Chebyshev(Mean, Sd) UCL 0.179 295 97.5% Chebyshev(Mean, Sd) UCL 0.212 99% Chebyshev(Mean, Sd) UCL 0.278 297 Suggested UCL to Use 99% Chebyshev(Mean, Sd) UCL 0.278 298 ecommendation Provided only for 95% Confidence Coefficient 299 The calculated UCLs are based on assumptions that the data were collected from random incotations. 300 The calculated UCLs are based on assumptions that the data were collected from random incotations. 301 Please verify the data were collected from random incotations. 302 If the data were collected using judgmental or other non-random methods, 303 then contact a statistican to correctly calculate UCLs. 304 Canceral Statistics 305 General Statistics 303 Total Number of Observations 42 Number of Missing Observations 0 301 Mainimum								
295 97.5% Chebyshev(Mean, Sd) UCL 0.212 99% Chebyshev(Mean, Sd) UCL 0.278 296								
296 Sugested UCL to Use 297 Sugested UCL to Use 298 ecommendation Provided only for 95% Confidence Coefficient								
297 Suggested UCL to Use 298 ecommendation Provided only for 95% Confidence Coefficient 300 The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. 301 Please verify the data were collected from random locations. 302 If the data were collected using judgmental or other non-random methods, 303 then contact a statistician to correctly calculate UCLs. 304 305 Ceneral Statistics 306 Ceneral Statistics 307 0 308 Ceneral Statistics 0 309 Total Number of Observations 42 Number of Distinct Observations 40 310 Maximum 69.91 Number of Missing Observations 0 311 Maximum 69.91 Stat Error of Mean 20.07 313 Coefficient of Variation 0.937 Skewness 0.943 314 Coefficient of Variation 0.922 Data								
299			Suggested	UCL to Use				
300 The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. 301 Please verify the data were collected from random incettions. 302 If the data were collected from random methods, 303 then contact a statistician to correctly calculate UCLs. 304 statistician to correctly calculate UCLs. 305 demonstrate a statistician to correctly calculate UCLs. 306 General Statistics 307 Total Number of Observations 42 Number of Distinct Observations 40 310 General Statistics 300 301 Mean 20.07 311 Other Maximum 05.18 Number of Distinct Observations 40 311 Maximum 05.18 Std. Error of Mean 2.902 313 Coefficient of Variation 0.937 Std. Error of Mean 2.902 313 Coefficient of Variation 0.937 Std. Error of Mean 2.902 314 Coefficient of Variation 0.937 Std. Error of Mean 2.902 314 Coefficient of Variation 0.922 Data N	298	ecommendation Provided only for 95% Confidence Coefficient						
301 Please verify the data were collected from random locations. 302 If the data were collected using judgmental or other non-random methods, 303 then contact a statistics to correctly calculate UCLs. 304 statistics to correctly calculate UCLs. 305 General Statistics 306 General Statistics 307 General Statistics 308 General Statistics 309 Total Number of Observations 40 310 Mumber of Missing Observations 0 311 Mumber of Missing Observations 0 312 Makinum 0.518 Mumber of Missing Observations 0 313 Ocoefficient of Variation 0.937 Statistic 0.943 315 Statistic 0.841 Statistic OF Test 0.943 316 Normal GOF Test 313 0.943 314 0.943 315 317 Shapiro Wilk Test Statistic 0.841 Shapiro Wilk GOF Test 314 318 0.1967 Data appear Normal at 1% Significance Level 325 <tr< td=""><td>299</td><td></td><td></td><td></td><td></td></tr<>	299							
302 If the data were collected using judgmental or other non-random methods, 303 then contact a statistician to correctly calculate UCLs. 304 304 305 second calculate UCLs. 306 Result (east parcel - dif teq [µg/kg]) 307		•						
303 the contact a statistician to correctly calculate UCLs. 304 305 Securit (east parcel - d/f teq [µg/kg]) 307 General Statistics 309 On total Number of Observations 40 309 Number of Distinct Observations 40 301 Output to the sing Observations 40 303 Output to the sing Observations 40 301 Output to the sing Observations 40 301 Output to the sing Observations 40 301 Output to the sing Observations 40 303 Output to the sing Observations 0 303 Supervaliant Sing Fictore Level 303 3								
304	_							
305 Result (east parcel - d/f teq [µg/kg]) 307 General Statistics 308 General Statistics 309 Total Number of Observations 40 310 Mumber of Missing Observations 0 311 Minimum 0.518 Mean 20.07 312 Maximum 69.91 Median 15.1 313 Coefficient of Variation 0.937 Skewness 0.943 314 Coefficient of Variation 0.937 Skewness 0.943 315 Vormal GOF Test Skewness 0.943 316 Vormal GOF Test 11 Singinficance Level 20.02 317 Shapiro Wilk Test Statistic 0.841 Shapiro Wilk GOF Test 31 318 1% Shapiro Wilk Critical Value 0.922 Data Not Normal at 1% Significance Level 32 318 1% Shapiro Wilk Critical Value 0.157 Data appear Normal at 1% Significance Level 32 319 Lilliefors Test Statistic 0.149 Statisticance Level 32		then contact a	statistician t					
Nesult (east parcel - d/f teq [µg/kg) 307 General Statistics 308 Ceneral Statistics 309 Total Number of Observations 42 309 Number of Distinct Observations 40 301 Number of Missing Observations 0 311 Minimum 0.518 Mean 20.07 312 Maximum 69.91 Median 15.1 313 Coefficient of Variation 0.937 Std. Error of Mean 2.902 314 Coefficient of Variation 0.937 Skewness 0.943 315 Std. Error of Mean 2.902 313 316 Coefficient of Variation 0.937 Skewness 0.943 315 Variation 0.937 Skewness 0.943 315 Variation 0.932 Data Not Normal at 1% Significance Level 0.943 318 11% Shapiro Wilk Critical Value 0.149 Lilliefors CoF Test 323 320 11% Lilliefors Critical Value 0.157 Data appear Normal at 1% Signifi				· · · · · · · · · · · · · · · · · · ·				
307 General Statistics 308 General Statistics 309 Total Number of Observations 42 Number of Distinct Observations 40 310 Number of Missing Observations 0 311 Minimum 0.518 Mean 20.07 312 Maximum 69.91 Median 15.1 313 Coefficient of Variation 0.937 Skewness 0.943 314 Coefficient of Variation 0.937 Skewness 0.943 315 Std. Error of Mean 2.902 0.943 316 Normal GOF Test 313 0.943 317 Shapiro Wilk Test Statistic 0.841 Shapiro Wilk GOF Test 314 318 1% Shapiro Wilk Critical Value 0.922 Data Not Normal at 1% Significance Level 321 319 Lilliefors Test Statistic 0.149 Lilliefors GOF Test 322 321 Data appear Approximate Normal at 1% Significance Level 322 323 323 322 Ostamappear Approximate Normal at 1%		Besult (east parcel - d/f teg [ug/kg])						
308 General Statistics 309 Total Number of Observations 42 Number of Distinct Observations 40 310 Minimum 0.518 Number of Missing Observations 0 311 Minimum 69.91 Median 15.1 312 Maximum 69.91 Median 15.1 313 SD 18.81 Std. Error of Mean 2.902 314 Coefficient of Variation 0.937 Skewness 0.943 315 Normal GOF Test 0.943 316 Normal GOF Test 0.943 317 Shapiro Wilk Test Statistic 0.841 Shapiro Wilk GOF Test 318 1% Shapiro Wilk Critical Value 0.922 Data Not Normal at 1% Significance Level 319 Lilliefors Critical Value 0.157 Data appear Normal at 1% Significance Level 322 Data appear Approximate Normal at 1% Significance Level 323 323 323 Assuming Normal Distribution 324 90% Normal UCL 90% Adjusted for Skewness) 324.90 324 90% Normal UCL 23.85 90% Adjusted -CT UCL (Chen	000							
309Total Number of Observations42Number of Distinct Observations40310Number of Missing Observations0311Minimum0.518Median20.07312Maximum69.91Median15.1313Coefficient of Variation0.937Std. Error of Mean2.902314Coefficient of Variation0.937Skewness0.943315VertraVertra0.922Std. Error of Mean2.902318Shapiro Wilk Test Statistic0.841Shapiro Wilk GOF TestVertra319Shapiro Wilk Critical Value0.922Data Not Normal at 1% Significance LevelVertra320Std. Error of Mean0.157Data appear Normal at 1% Significance LevelVertra321Data appear Apper Apper Virturet VertraVertraVertraVertra32290% Normal UCL0.157Data appear Normal at 1% Significance LevelVertra32390% Normal UCL23.8590% Adjusted for Skewness)24.0932490% Normal UCL23.8590% Adjusted-CLT UCL (Chen-1995)24.0932590% Stdent*s-t UCL23.8590% Adjusted-CLT UCL (Johnson-1978)23.92326Vertra90% Modified+t UCL (Johnson-1978)23.9232732890% Adjusted-CLT UCL (Chen-1995)24.09328A-D Test Statistic0.979Anderson-Darling Gamma GOF Test329A-D Test Statistic0.979Anderson-Darling Gamma GOF Test	307							
310Method0311Minimum0.518Number of Missing Observations0312Maximum69.91Median15.1313Maximum69.91Median2.902314Coefficient of Variation0.937Std. Error of Mean2.9023150.937Std. Error of Mean0.943316Maximum0.937Std. Error of Mean0.943317Shapiro Vilk Coefficient of Variation0.943Maximum0.943318Maximum0.941Shapiro Wilk GOF TestVertical Value0.922319MaximumMiximum0.922Data Not Normal at 1% Significance LevelVertical Value0.922319MaximumMiximum0.157Data appear Normal at 1% Significance LevelVertical Value0.157Data appear Normal at 1% Significance LevelVertical ValueVertical Value </td <td></td> <td></td> <td>General</td> <td>Statistics</td> <td></td>			General	Statistics				
312 Maximum 69.91 Median 15.1 313 Std. Error of Mean 2.902 314 Coefficient of Variation 0.937 Std. Error of Mean 2.902 315 Std. Error of Mean 0.943 315 Std. Error of Mean 0.943 315 Std. Error of Mean 0.943 316 Std. Error of Mean 0.943 317 Shapiro Wilk Test Statistic 0.841 Shapiro Wilk GOF Test 318 1% Shapiro Wilk Critical Value 0.922 Data Not Normal at 1% Significance Level 319 Lilliefors Test Statistic 0.149 Lilliefors GOF Test 320 1% Lilliefors Critical Value 0.157 Data appear Normal at 1% Significance Level 321 Data appear Approximate Normal at 1% Significance Level 322 90% Normal UCL 23.85 90% Adjusted-CLT UCL (Chen-1995) 24.09 326 90% Modifie	308				40			
313 SD 18.81 Std. Error of Mean 2.902 314 Coefficient of Variation 0.937 Skewness 0.943 315 Skewness 0.943 316 Normal GOF Test 317 Shapiro Wilk Test Statistic 0.841 Shapiro Wilk GOF Test 318 1% Shapiro Wilk Critical Value 0.922 Data Not Normal at 1% Significance Level 319 Lilliefors Test Statistic 0.149 Lilliefors GOF Test 320 1% Lilliefors Critical Value 0.157 Data appear Normal at 1% Significance Level 321 Data appear Approximate Normal at 1% Significance Level 322 90% Normal UCL 23.85 90% Adjusted for Skewness) 323 90% Normal UCL 23.85 90% Adjusted-CLT UCL (Chen-1995) 24.09 326 90% Adjusted-CLT UCL (Chen-1995) 24.09 3.92 327 328 Garma GOF Test 3.929 3.929	308 309			Number of Distinct Observations				
314Coefficient of Variation0.937Skewness0.943315316317Shapiro Wilk Test Statistic0.841Shapiro Wilk GOF Test3181% Shapiro Wilk Critical Value0.922Data Not Normal at 1% Significance Level319Lilliefors Test Statistic0.149Lilliefors GOF Test3201% Lilliefors Critical Value0.157Data appear Normal at 1% Significance Level321Data appear Appex Normal at 1% Significance Level	308 309 310	Total Number of Observations	42	Number of Distinct Observations Number of Missing Observations	0			
315316Normal GOF Test317Shapiro Wilk Test Statistic0.841Shapiro Wilk GOF Test3181% Shapiro Wilk Critical Value0.922Data Not Normal at 1% Significance Level319Lilliefors Test Statistic0.149Lilliefors GOF Test3201% Lilliefors Critical Value0.157Data appear Normal at 1% Significance Level321Data appear Approximate Normal at 1% Significance Level0.157322200.157Data appear Normal at 1% Significance Level323Assuming Normal at 1% Significance Level0.15732490% Normal UCL23.8590% Adjusted for Skewness)32590% Student's-t UCL23.8590% Adjusted-CLT UCL (Chen-1995)32624.0990% Modified-t UCL (Johnson-1978)23.92327328Gamma GOF Test32.92329A-D Test Statistic0.979Anderson-Darling Gamma GOF Test	308 309 310 311	Total Number of Observations Minimum Maximum	42 0.518 69.91	Number of Distinct Observations Number of Missing Observations Mean Median	0 20.07 15.1			
Normal GOF Test316Shapiro Wilk GOF Test317Shapiro Wilk Test Statistic0.841Shapiro Wilk GOF Test3181% Shapiro Wilk Critical Value0.922Data Not Normal at 1% Significance Level319Lilliefors Test Statistic0.149Lilliefors GOF Test3201% Lilliefors Critical Value0.157Data appear Normal at 1% Significance Level321Data appear Approximate Normal at 1% Significance Level322322323Assuming Normal Distribution32490% Normal UCL23.8590% Adjusted for Skewness)32590% Student's-t UCL23.8590% Adjusted-CLT UCL (Chen-1995)24.0932690% Modified-t UCL (Johnson-1978)23.92327328Gamma GOF Test32.92329A-D Test Statistic0.979Anderson-Darling Gamma GOF Test	308 309 310 311 312 313	Total Number of Observations Minimum Maximum SD	42 0.518 69.91 18.81	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	0 20.07 15.1 2.902			
317Shapiro Wilk Test Statistic0.841Shapiro Wilk GOF Test3181% Shapiro Wilk Critical Value0.922Data Not Normal at 1% Significance Level319Lilliefors Test Statistic0.149Lilliefors GOF Test3201% Lilliefors Critical Value0.157Data appear Normal at 1% Significance Level321Data appear Approximate Normal at 1% Significance Level322222323Astronomic Normal UCL90% UCLs (Adjusted for Skewness)32490% Normal UCL23.8590% Adjusted-CLT UCL (Chen-1995)32590% Student's-t UCL23.8590% Adjusted-CLT UCL (Chen-1995)32624.0990% Modified-t UCL (Johnson-1978)23.92327327328329A-D Test Statistic0.979329Anderson-Darling Gamma GOF Test30.979Anderson-Darling Gamma GOF Test	308 309 310 311 312 313 314	Total Number of Observations Minimum Maximum SD	42 0.518 69.91 18.81	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	0 20.07 15.1 2.902			
3181% Shapiro Wilk Critical Value0.922Data Not Normal at 1% Significance Level319Lilliefors Test Statistic0.149Lilliefors GOF Test3201% Lilliefors Critical Value0.157Data appear Normal at 1% Significance Level321Data appear Apper Ximate Normal at 1% Significance Level322323Summer Normal at 1% Significance Level32490% Normal UCL90% UCLs (Adjusted for Skewness)32590% Student's-t UCL23.8532690% Modified-t UCL (Johnson-1978)24.09327327328328Gamma GOF Test329A-D Test Statistic0.979Anderson-Darling Gamma GOF Test	308 309 310 311 312 313 314 315	Total Number of Observations Minimum Maximum SD	42 0.518 69.91 18.81 0.937	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 20.07 15.1 2.902			
319Lilliefors Test Statistic0.149Lilliefors GOF Test3201% Lilliefors Critical Value0.157Data appear Normal at 1% Significance Level321Data appear Approximate Normal at 1% Significance Level322322Saming Normal Distribution32432490% Normal UCL90% UCLs (Adjusted for Skewness)32590% Student's-t UCL23.8532690% Modified-t UCL (Chen-1995)24.09327327328328Gamma GOF Test329329A-D Test Statistic0.979Anderson-Darling Gamma GOF Test	308 309 310 311 312 313 314 315 316	Total Number of Observations Minimum Maximum SD Coefficient of Variation	42 0.518 69.91 18.81 0.937 Normal (Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 20.07 15.1 2.902			
320 1% Lilliefors Critical Value 0.157 Data appear Normal at 1% Significance Level 321 Data appear Approximate Normal at 1% Significance Level 323 322 Second Seco	308 309 310 311 312 313 314 315 316 317	Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic	42 0.518 69.91 18.81 0.937 Normal (0.841	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 20.07 15.1 2.902			
321 Data appear Approximate Normal at 1% Significance Level 322 Assuming Normal Distribution 323 Assuming Normal Distribution 324 90% Normal UCL 90% UCLs (Adjusted for Skewness) 325 90% Student's-t UCL 23.85 90% Adjusted-CLT UCL (Chen-1995) 24.09 326 90% Modified-t UCL (Johnson-1978) 23.92 327 Gamma GOF Test 328 Gamma GOF Test 329 Anderson-Darling Gamma GOF Test	308 309 310 311 312 313 314 315 316 317 318	Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	42 0.518 69.91 18.81 0.937 Normal (0.841 0.922	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 20.07 15.1 2.902			
322 323 Assuming Normal Distribution 324 90% Normal UCL 90% UCLs (Adjusted for Skewness) 325 90% Student's-t UCL 23.85 90% Adjusted-CLT UCL (Chen-1995) 24.09 326 0 90% Modified-t UCL (Johnson-1978) 23.92 327 327 328 Gamma GOF Test 329 A-D Test Statistic 0.979 Anderson-Darling Gamma GOF Test	308 309 310 311 312 313 314 315 316 317 318 319	Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic	42 0.518 69.91 18.81 0.937 Normal C 0.841 0.922 0.149	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 20.07 15.1 2.902			
323 Assuming Normal Distribution 324 90% Normal UCL 90% UCLs (Adjusted for Skewness) 325 90% Adjusted-CLT UCL (Chen-1995) 24.09 326 90% Modified-t UCL (Johnson-1978) 23.92 327 90% Modified-t UCL (Johnson-1978) 23.92 328 Gamma GOF Test 329 329 A-D Test Statistic 0.979 Anderson-Darling Gamma GOF Test	308 309 310 311 312 313 314 315 316 317 318 319 320	Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	42 0.518 69.91 18.81 0.937 Normal (0.841 0.922 0.149 0.157	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level	0 20.07 15.1 2.902			
324 90% Normal UCL 90% UCLs (Adjusted for Skewness) 325 90% Student's-t UCL 23.85 90% Adjusted-CLT UCL (Chen-1995) 24.09 326 90% Modified-t UCL (Johnson-1978) 23.92 327 90% Modified-t UCL (Johnson-1978) 23.92 328 Gamma GOF Test 329 329 A-D Test Statistic 0.979 Anderson-Darling Gamma GOF Test	308 309 310 311 312 313 314 315 316 317 318 319 320 321	Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	42 0.518 69.91 18.81 0.937 Normal (0.841 0.922 0.149 0.157	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level	0 20.07 15.1 2.902			
325 90% Student's-t UCL 23.85 90% Adjusted-CLT UCL (Chen-1995) 24.09 326 90% Modified-t UCL (Johnson-1978) 23.92 327	308 309 310 311 312 313 314 315 316 317 318 319 320 321 322	Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App	42 0.518 69.91 18.81 0.937 Normal (0.841 0.922 0.149 0.157 roximate No	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Bability GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level	0 20.07 15.1 2.902			
326 90% Modified-t UCL (Johnson-1978) 23.92 327	308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323	Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App	42 0.518 69.91 18.81 0.937 Normal (0.841 0.922 0.149 0.157 roximate No	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test BOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level mal Distribution	0 20.07 15.1 2.902			
327 Gamma GOF Test 328 Gamma GOF Test 329 A-D Test Statistic 0.979 Anderson-Darling Gamma GOF Test	308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324	Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App As 90% Normal UCL	42 0.518 69.91 18.81 0.937 Normal (0.841 0.922 0.149 0.157 roximate No suming Norr	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level mal Distribution 90% UCLs (Adjusted for Skewness)	0 20.07 15.1 2.902 0.943			
328 Gamma GOF Test 329 A-D Test Statistic 0.979 Anderson-Darling Gamma GOF Test	308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325	Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App As 90% Normal UCL	42 0.518 69.91 18.81 0.937 Normal (0.841 0.922 0.149 0.157 roximate No suming Norr	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level mal Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995)	0 20.07 15.1 2.902 0.943			
	308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326	Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App As 90% Normal UCL	42 0.518 69.91 18.81 0.937 Normal (0.841 0.922 0.149 0.157 roximate No suming Norr	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level mal Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995)	0 20.07 15.1 2.902 0.943			
330 5% A-D Critical Value 0.788 Data Not Gamma Distributed at 5% Significance Level	308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327	Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App As 90% Normal UCL	42 0.518 69.91 18.81 0.937 Normal C 0.841 0.922 0.149 0.157 roximate No suming Norr 23.85 Gamma C	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level mal Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978)	0 20.07 15.1 2.902 0.943			
	308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329	Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App As 90% Normal UCL 90% Student's-t UCL	42 0.518 69.91 18.81 0.937 Normal (0.841 0.922 0.149 0.157 roximate Normate	Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level mal Distribution 90% Adjusted for Skewness) 90% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test	0 20.07 15.1 2.902 0.943 			

		F		1
331	A B C D E K-S Test Statistic	0.153	G H I J K Kolmogorov-Smirnov Gamma GOF Test	L
332	5% K-S Critical Value	0.142	Data Not Gamma Distributed at 5% Significance Leve	1
333			ed at 5% Significance Level	1
334				
335		Gamma	Statistics	
336	k hat (MLE)	0.779	k star (bias corrected MLE)	0.739
337	Theta hat (MLE)	25.76	Theta star (bias corrected MLE)	27.15
338	nu hat (MLE)	65.45	nu star (bias corrected)	62.11
339	MLE Mean (bias corrected)	20.07	MLE Sd (bias corrected)	23.35
340			Approximate Chi Square Value (0.1)	48.32
341	Adjusted Level of Significance	0.0937	Adjusted Chi Square Value	47.98
342		0.0007		
343	Ass	sumina Garr	ma Distribution	
344	90% Approximate Gamma UCL	25.8	90% Adjusted Gamma UCL	25.99
345			,	
346		Lognorma	GOF Test	
347	Shapiro Wilk Test Statistic	0.82	Shapiro Wilk Lognormal GOF Test	
348	10% Shapiro Wilk Critical Value	0.951	Data Not Lognormal at 10% Significance Level	
349	Lilliefors Test Statistic	0.188	Lilliefors Lognormal GOF Test	
350	10% Lilliefors Critical Value	0.124	Data Not Lognormal at 10% Significance Level	
351		ognormal at	10% Significance Level	
352		J		
353		Loanorma	I Statistics	
354	Minimum of Logged Data	-0.659	Mean of logged Data	2.235
355	Maximum of Logged Data	4.247	SD of logged Data	1.559
356				
357	Assu	imina Loand	ormal Distribution	
358	90% H-UCL	54.78	90% Chebyshev (MVUE) UCL	58.02
359	95% Chebyshev (MVUE) UCL	70.85	97.5% Chebyshev (MVUE) UCL	88.66
360	99% Chebyshev (MVUE) UCL	123.7		
361				
362	Nonparame	tric Distribu	tion Free UCL Statistics	
363	•		Discernible Distribution	
364				
365	Nonnor	amotric Die	with ution Error LICL o	
	i inondar			
366	-		tribution Free UCLs 90% BCA Bootstrap UCL	24.16
366 367	90% CLT UCL	23.79	90% BCA Bootstrap UCL	24.16
367	90% CLT UCL 90% Standard Bootstrap UCL	23.79 23.79	90% BCA Bootstrap UCL 90% Bootstrap-t UCL	24.27
367 368	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL	23.79 23.79 24.22	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL	
367 368 369	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	23.79 23.79 24.22 28.78	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	24.27 23.85 32.72
367 368 369 370	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL	23.79 23.79 24.22	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL	24.27 23.85
367 368 369 370 371	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	23.79 23.79 24.22 28.78 38.2	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	24.27 23.85 32.72
367 368 369 370 371 372	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	23.79 23.79 24.22 28.78 38.2	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	24.27 23.85 32.72
367 368 369 370 371 372 373	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	23.79 23.79 24.22 28.78 38.2	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	24.27 23.85 32.72
367 368 369 370 371 372 373 373	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	23.79 23.79 24.22 28.78 38.2	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	24.27 23.85 32.72
367 368 369 370 371 372 373 374 375	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient	23.79 23.79 24.22 28.78 38.2 Suggested	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	24.27 23.85 32.72
367 368 369 370 371 372 373 374 375 376	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	23.79 23.79 24.22 28.78 38.2 Suggested	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	24.27 23.85 32.72
367 368 369 370 371 372 373 374 375 376 377	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient	23.79 23.79 24.22 28.78 38.2 Suggested	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	24.27 23.85 32.72
367 368 369 370 371 372 373 374 375 376 377 378	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient	23.79 23.79 24.22 28.78 38.2 Suggested	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use	24.27 23.85 32.72
367 368 369 370 371 372 373 374 375 376 377 378 379	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µ	23.79 23.79 24.22 28.78 38.2 Suggested g/kg]) General	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use	24.27 23.85 32.72 48.95
367 368 370 371 372 373 374 375 376 377 378 379 380	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µg Total Number of Observations	23.79 23.79 24.22 28.78 38.2 Suggested g/kg]) General 42	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use Statistics Number of Distinct Observations Number of Missing Observations	24.27 23.85 32.72 48.95
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µ Total Number of Observations	23.79 23.79 24.22 28.78 38.2 Suggested g/kg]) General 42 0.518	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use Statistics Number of Distinct Observations Number of Missing Observations Mean	24.27 23.85 32.72 48.95
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µq Total Number of Observations Minimum Maximum	23.79 23.79 24.22 28.78 38.2 Suggested g/kg]) General 42 0.518 60.26	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use Statistics Number of Distinct Observations Number of Missing Observations Mean Median	24.27 23.85 32.72 48.95
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µq Total Number of Observations Minimum Maximum SD	23.79 23.79 24.22 28.78 38.2 Suggested g/kg]) General 42 0.518 60.26 17.29	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	24.27 23.85 32.72 48.95
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µq Total Number of Observations Minimum Maximum	23.79 23.79 24.22 28.78 38.2 Suggested g/kg]) General 42 0.518 60.26	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use Statistics Number of Distinct Observations Number of Missing Observations Mean Median	24.27 23.85 32.72 48.95
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µq Total Number of Observations Minimum Maximum SD	23.79 23.79 24.22 28.78 38.2 Suggested g/kg]) General 42 0.518 60.26 17.29 0.937	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean	24.27 23.85 32.72 48.95 39 0 18.44 14.65 2.668
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µ Total Number of Observations Minimum Maximum SD Coefficient of Variation	23.79 23.79 24.22 28.78 38.2 Suggested g/kg]) General 42 0.518 60.26 17.29 0.937 Normal (90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	24.27 23.85 32.72 48.95 39 0 18.44 14.65 2.668
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µ Total Number of Observations Minimum Maximum SD Coefficient of Variation	23.79 23.79 24.22 28.78 38.2 Suggested g/kg]) General 42 0.518 60.26 17.29 0.937 Normal (0.834	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness	24.27 23.85 32.72 48.95 39 0 18.44 14.65 2.668
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µ Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	23.79 24.22 28.78 38.2 Suggested g/kg]) General 42 0.518 60.26 17.29 0.937 Normal (0.834 0.922	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level	24.27 23.85 32.72 48.95
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µq Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic	23.79 24.22 28.78 38.2 Suggested g/kg]) General 42 0.518 60.26 17.29 0.937 Normal (0.834 0.922 0.15	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use UCL to Use Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test	24.27 23.85 32.72 48.95
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Coefficient Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µq Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic	23.79 23.79 24.22 28.78 38.2 Suggested g/kg]) General 42 0.518 60.26 17.29 0.937 Normal (0.834 0.922 0.15 0.157	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use UCL to Use Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Chapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level	24.27 23.85 32.72 48.95 39 0 18.44 14.65 2.668
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Coefficient Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µq Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic	23.79 23.79 24.22 28.78 38.2 Suggested g/kg]) General 42 0.518 60.26 17.29 0.937 Normal (0.834 0.922 0.15 0.157	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use UCL to Use Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test	24.27 23.85 32.72 48.95
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µq Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear Appr	23.79 23.79 24.22 28.78 38.2 Suggested g/kg]) General 42 0.518 60.26 17.29 0.937 Normal (0.834 0.922 0.15 0.157 roximate No	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use UCL to Use Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Chata Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level	24.27 23.85 32.72 48.95
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µq Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear Appr	23.79 23.79 24.22 28.78 38.2 Suggested g/kg]) General 42 0.518 60.26 17.29 0.937 Normal (0.834 0.922 0.15 0.157 roximate No	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use UCL to Use Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level	24.27 23.85 32.72 48.95
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µq Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear Appr Ass 90% Normal UCL	23.79 24.22 28.78 38.2 Suggested g/kg]) General 42 0.518 60.26 17.29 0.937 Normal 0 0.834 0.922 0.15 0.157 roximate Nor suming Nor	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use UCL to Use Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level mal Distribution 90% UCLs (Adjusted for Skewness)	24.27 23.85 32.72 48.95 39 0 18.44 14.65 2.668 0.866
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 1 additional samples removed [µq Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear Appr	23.79 23.79 24.22 28.78 38.2 Suggested g/kg]) General 42 0.518 60.26 17.29 0.937 Normal (0.834 0.922 0.15 0.157 roximate No	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use UCL to Use Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level	24.27 23.85 32.72 48.95

	A B C D E	F	G H I J K	L
397		Gamma	GOF Test	
398 399	A-D Test Statistic	1.103	Anderson-Darling Gamma GOF Test	
400	5% A-D Critical Value	0.788	Data Not Gamma Distributed at 5% Significance Leve	el
401	K-S Test Statistic	0.168	Kolmogorov-Smirnov Gamma GOF Test	
402	5% K-S Critical Value	0.142	Data Not Gamma Distributed at 5% Significance Leve	el
403	Data Not Gamm	na Distribut	ed at 5% Significance Level	
404		Commo	Statistics	
405 406	k hat (MLE)	0.772	k star (bias corrected MLE)	0.733
407	Theta hat (MLE)	23.9	Theta star (bias corrected MLE)	25.18
408	nu hat (MLE)	64.83	nu star (bias corrected)	61.53
409	MLE Mean (bias corrected)	18.44	MLE Sd (bias corrected)	21.55
410	· · · · ·		Approximate Chi Square Value (0.1)	47.81
411	Adjusted Level of Significance	0.0937	Adjusted Chi Square Value	47.47
412	Acc.	uming Con	nma Distribution	
413 414	90% Approximate Gamma UCL	23.74	90% Adjusted Gamma UCL	23.91
414		20.74		20.01
416		Lognorma	I GOF Test	
417	Shapiro Wilk Test Statistic	0.816	Shapiro Wilk Lognormal GOF Test	
418	10% Shapiro Wilk Critical Value	0.951	Data Not Lognormal at 10% Significance Level	
419	Lilliefors Test Statistic	0.188	Lilliefors Lognormal GOF Test	
420 421	10% Lilliefors Critical Value		Data Not Lognormal at 10% Significance Level 10% Significance Level	
421		ynornai at		
423		Lognorma	al Statistics	
424	Minimum of Logged Data	-0.659	Mean of logged Data	2.142
425	Maximum of Logged Data	4.099	SD of logged Data	1.553
426				
427				50.04
428 429	90% H-UCL 95% Chebyshev (MVUE) UCL	49.24 63.77	90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	52.24 79.76
429	99% Chebyshev (MVUE) UCL	111.2		79.70
431				
432	Nonparamet	tric Distribu	tion Free UCL Statistics	
433	Data appear	to follow a	Discernible Distribution	
434				
435	Nonpara 90% CLT UCL	21.86	tribution Free UCLs 90% BCA Bootstrap UCL	22.13
436 437	90% Standard Bootstrap UCL	21.80	90% Bootstrap-t UCL	22.13
438	90% Hall's Bootstrap UCL	22.07	90% Percentile Bootstrap UCL	21.97
439	90% Chebyshev(Mean, Sd) UCL	26.45	95% Chebyshev(Mean, Sd) UCL	30.07
440	97.5% Chebyshev(Mean, Sd) UCL	35.1	99% Chebyshev(Mean, Sd) UCL	44.99
441				
442		Suggested	UCL to Use	
443 444	ecommendation Provided only for 95% Confidence Coefficient			
444				
	Result (east parcel d/f teq - 2 additional samples removed [µg	j/kg])		
447				
448			Statistics	
449	Total Number of Observations	42	Number of Distinct Observations	38
450	N #1	0 5 1 0	Number of Missing Observations	0 17.04
451 452	Minimum Maximum	0.518 58.37	Mean Median	17.04
452	SD	16.16	Std. Error of Mean	2.494
454	Coefficient of Variation	0.949	Skewness	0.859
455			·	
456			GOF Test	
457	Shapiro Wilk Test Statistic	0.833	Shapiro Wilk GOF Test	
458	1% Shapiro Wilk Critical Value	0.922	Data Not Normal at 1% Significance Level	
459 460	Lilliefors Test Statistic 1% Lilliefors Critical Value	0.153	Lilliefors GOF Test Data appear Normal at 1% Significance Level	
460			prmal at 1% Significance Level	
461				
τυZ				

	A B C D E	F	G H I J K	L
463		suming Nori	nal Distribution	
464	90% Normal UCL		90% UCLs (Adjusted for Skewness)	
465	90% Student's-t UCL	20.29	90% Adjusted-CLT UCL (Chen-1995)	20.47
466			90% Modified-t UCL (Johnson-1978)	20.35
467				
468			GOF Test	
469	A-D Test Statistic	1.209	Anderson-Darling Gamma GOF Test	
470	5% A-D Critical Value	0.789	Data Not Gamma Distributed at 5% Significance Leve	
471	K-S Test Statistic	0.182	Kolmogorov-Smirnov Gamma GOF Test	
472	5% K-S Critical Value	0.142	Data Not Gamma Distributed at 5% Significance Leve	
473	Data Not Gamm	na Distribute	ed at 5% Significance Level	
474		_	• · · ·	
475			Statistics	
476	k hat (MLE)	0.763	k star (bias corrected MLE)	0.724
477	Theta hat (MLE)	22.35	Theta star (bias corrected MLE)	23.54
478	nu hat (MLE)	64.06	nu star (bias corrected)	60.81
479	MLE Mean (bias corrected)	17.04	MLE Sd (bias corrected)	20.03
480			Approximate Chi Square Value (0.1)	47.18
481	Adjusted Level of Significance	0.0937	Adjusted Chi Square Value	46.84
482				
483		-	ma Distribution	
484	90% Approximate Gamma UCL	21.97	90% Adjusted Gamma UCL	22.13
485				
486		Lognorma	GOF Test	
487	Shapiro Wilk Test Statistic	0.815	Shapiro Wilk Lognormal GOF Test	
488	10% Shapiro Wilk Critical Value	0.951	Data Not Lognormal at 10% Significance Level	
489	Lilliefors Test Statistic	0.187	Lilliefors Lognormal GOF Test	
490	10% Lilliefors Critical Value	0.124	Data Not Lognormal at 10% Significance Level	
491	Data Not Lo	ognormal at	10% Significance Level	
492		0	U	
493		Lognorma	I Statistics	
494	Minimum of Logged Data	-0.659	Mean of logged Data	2.052
495	Maximum of Logged Data	4.067	SD of logged Data	1.545
496		1.007		1.010
497	IssA	imina Loana	ormal Distribution	
498	90% H-UCL	44.34	90% Chebyshev (MVUE) UCL	47.14
498	95% Chebyshev (MVUE) UCL	57.51	97.5% Chebyshev (MVUE) UCL	71.9
	99% Chebyshev (MVUE) UCL		37.5% Chebyshev (MIVOL) OCL	71.5
500		100.2		
501	Nonnoromo	tria Diatribu	tion Free UCL Statistics	
502				
503	Data appea		Discernible Distribution	
504	Nama	omotelo Dio		
505			tribution Free UCLs	00.40
506	90% CLT UCL	20.24	90% BCA Bootstrap UCL	20.43
507	90% Standard Bootstrap UCL	20.2	90% Bootstrap-t UCL	20.52
508	90% Hall's Bootstrap UCL	20.47	90% Percentile Bootstrap UCL	20.34
509	90% Chebyshev(Mean, Sd) UCL	24.52	95% Chebyshev(Mean, Sd) UCL	27.91
510	97.5% Chebyshev(Mean, Sd) UCL	32.62	99% Chebyshev(Mean, Sd) UCL	41.86
511				
512		Suggested	UCL to Use	
	ecommendation Provided only for 95% Confidence Coefficient			
514				
515				
_	Result (east parcel d/f teq - 3 additional samples removed [µ	g/kg])		
517				
518			Statistics	
519	Total Number of Observations	42	Number of Distinct Observations	37
520			Number of Missing Observations	0
521	Minimum	0.518	Mean	15.69
522	Maximum	50.48	Median	12.63
523	SD	14.96	Std. Error of Mean	2.308
524	Coefficient of Variation	0.954	Skewness	0.802
525				
526		Normal (GOF Test	
527	Shapiro Wilk Test Statistic	0.823	Shapiro Wilk GOF Test	
	1% Shapiro Wilk Critical Value	0.922	Data Not Normal at 1% Significance Level	
528				

	A B C D E	F	G H I J K	L
529	Lilliefors Test Statistic	0.164	Lilliefors GOF Test	
530	1% Lilliefors Critical Value	0.157	Data Not Normal at 1% Significance Level	
531	Data Not	Normal at 1	% Significance Level	
532				
533		suming Norr	nal Distribution	
534	90% Normal UCL 90% Student's-t UCL	19.00	90% UCLs (Adjusted for Skewness)	10.05
535	90% Student's-t UCL	18.69	90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978)	18.85 18.74
536 537			90% Modified-LOCE (Johnson-1978)	10.74
537		Gamma	GOF Test	
539	A-D Test Statistic	1.354	Anderson-Darling Gamma GOF Test	
540	5% A-D Critical Value	0.789	Data Not Gamma Distributed at 5% Significance Leve	
540	K-S Test Statistic	0.196	Kolmogorov-Smirnov Gamma GOF Test	
542	5% K-S Critical Value	0.142	Data Not Gamma Distributed at 5% Significance Leve	1
543			ed at 5% Significance Level	
544				
545		Gamma	Statistics	
546	k hat (MLE)	0.758	k star (bias corrected MLE)	0.719
547	Theta hat (MLE)	20.7	Theta star (bias corrected MLE)	21.81
548	nu hat (MLE)	63.64	nu star (bias corrected)	60.42
549	MLE Mean (bias corrected)	15.69	MLE Sd (bias corrected)	18.49
550			Approximate Chi Square Value (0.1)	46.83
551	Adjusted Level of Significance	0.0937	Adjusted Chi Square Value	46.49
552				
553		suming Gam	ma Distribution	
554	90% Approximate Gamma UCL	20.24	90% Adjusted Gamma UCL	20.38
555				
556		-	GOF Test	
557	Shapiro Wilk Test Statistic	0.811	Shapiro Wilk Lognormal GOF Test	
558	10% Shapiro Wilk Critical Value	0.951	Data Not Lognormal at 10% Significance Level	
559	Lilliefors Test Statistic	0.189	Lilliefors Lognormal GOF Test	
560	10% Lilliefors Critical Value	0.124	Data Not Lognormal at 10% Significance Level	
561	Data Not Lo	ognormal at	10% Significance Level	
562		Lognorma	I Statiatica	
563 564	Minimum of Logged Data	-0.659	Mean of logged Data	1.964
565	Maximum of Logged Data Maximum of Logged Data	3.922	SD of logged Data	1.534
566		0.522		1.004
567	Assu	umina Loanc	rmal Distribution	
568	90% H-UCL	39.6	90% Chebyshev (MVUE) UCL	42.23
569	95% Chebyshev (MVUE) UCL	51.48	97.5% Chebyshev (MVUE) UCL	64.3
570	99% Chebyshev (MVUE) UCL	89.5		
571				
572	Nonparame	tric Distribu	tion Free UCL Statistics	
573	Data do no	ot follow a D	iscernible Distribution	
574				
575	•		ribution Free UCLs	
576	90% CLT UCL	18.64	90% BCA Bootstrap UCL	18.74
577	90% Standard Bootstrap UCL	18.63	90% Bootstrap-t UCL	18.88
578	90% Hall's Bootstrap UCL	18.84	90% Percentile Bootstrap UCL	18.79
579	90% Chebyshev(Mean, Sd) UCL	22.61	95% Chebyshev(Mean, Sd) UCL	25.75
580	97.5% Chebyshev(Mean, Sd) UCL	30.1	99% Chebyshev(Mean, Sd) UCL	38.65
581		0		
582		Suggested	UCL to Use	
	ecommendation Provided only for 95% Confidence Coefficient			
584				
585	Result (east parcel d/f teq - 4 additional samples removed [µg	a/kal)		
586 587	nesur (easi parcei u/i teq - 4 auditional samples removed [μί	yrry])		
587 588		General	Statistics	
588 589	Total Number of Observations	42	Number of Distinct Observations	36
589		74	Number of Missing Observations	0
590 591	Minimum	0.518	Multiple of Missing Observations Mean	14.52
591	Maximum	49.73	Median	14.52
J32	SD	14.06	Std. Error of Mean	2.17
502	30			
593 594	Coefficient of Variation	0.969	Skewness	0.812

	A B C D E	F	G H I J K	L
595				
596	Charing Wills Tagt Statistic		GOF Test	
597 598	Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value	0.819	Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level	
598	Lilliefors Test Statistic	0.182	Lilliefors GOF Test	
600	1% Lilliefors Critical Value	0.157	Data Not Normal at 1% Significance Level	
601			% Significance Level	
602				
603	As	suming Nori	mal Distribution	
604	90% Normal UCL		90% UCLs (Adjusted for Skewness)	
605	90% Student's-t UCL	17.34	90% Adjusted-CLT UCL (Chen-1995)	17.49
606			90% Modified-t UCL (Johnson-1978)	17.39
607				
608			GOF Test	
609	A-D Test Statistic	1.478	Anderson-Darling Gamma GOF Test	
610	5% A-D Critical Value	0.789	Data Not Gamma Distributed at 5% Significance Level	
611	K-S Test Statistic	0.21	Kolmogorov-Smirnov Gamma GOF Test	
612	5% K-S Critical Value		Data Not Gamma Distributed at 5% Significance Level ed at 5% Significance Level	
613 614				
615		Gamma	Statistics	
616	k hat (MLE)	0.751	k star (bias corrected MLE)	0.713
617	Theta hat (MLE)	19.33	Theta star (bias corrected MLE)	20.36
618	nu hat (MLE)	63.08	nu star (bias corrected)	59.91
619	MLE Mean (bias corrected)	14.52	MLE Sd (bias corrected)	17.19
620			Approximate Chi Square Value (0.1)	46.38
621	Adjusted Level of Significance	0.0937	Adjusted Chi Square Value	46.04
622				
623			ma Distribution	
624	90% Approximate Gamma UCL	18.75	90% Adjusted Gamma UCL	18.89
625				
626			I GOF Test	
627	Shapiro Wilk Test Statistic	0.809	Shapiro Wilk Lognormal GOF Test	
628	10% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.951 0.202	Data Not Lognormal at 10% Significance Level Lilliefors Lognormal GOF Test	
629	10% Lilliefors Critical Value	0.202	Data Not Lognormal at 10% Significance Level	
630 631			10% Significance Level	
632		Synormal at		
633		Lognorma	I Statistics	
634	Minimum of Logged Data	-0.659	Mean of logged Data	1.878
635	Maximum of Logged Data	3.907	SD of logged Data	1.522
636				
637			ormal Distribution	
638	90% H-UCL	35.45	90% Chebyshev (MVUE) UCL	37.94
639	95% Chebyshev (MVUE) UCL	46.2	97.5% Chebyshev (MVUE) UCL	57.66
640	99% Chebyshev (MVUE) UCL	80.18		
641				
642			tion Free UCL Statistics	
643	Data do n	ot iollow a L	Discernible Distribution	
644			tribution Free UCLs	
	Nonna	rametric Die		
645				17.36
645 646	90% CLT UCL	17.3	90% BCA Bootstrap UCL	17.36
645 646 647	90% CLT UCL 90% Standard Bootstrap UCL		90% BCA Bootstrap UCL 90% Bootstrap-t UCL	17.4
645 646 647 648	90% CLT UCL	17.3 17.27	90% BCA Bootstrap UCL	
645 646 647	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL	17.3 17.27 17.34	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL	17.4 17.43
645 646 647 648 649	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	17.3 17.27 17.34 21.03 28.07	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	17.4 17.43 23.98
645 646 647 648 649 650 651 652	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	17.3 17.27 17.34 21.03 28.07	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	17.4 17.43 23.98
645 646 647 648 649 650 651 652 653	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	17.3 17.27 17.34 21.03 28.07	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	17.4 17.43 23.98
645 646 647 648 649 650 651 652 653 654	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	17.3 17.27 17.34 21.03 28.07	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	17.4 17.43 23.98
645 646 647 648 649 650 651 652 653 654 655	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient	17.3 17.27 17.34 21.03 28.07 Suggested	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	17.4 17.43 23.98
645 646 647 648 649 650 651 652 653 654 655 656	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	17.3 17.27 17.34 21.03 28.07 Suggested	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	17.4 17.43 23.98
645 646 647 648 649 650 651 652 653 654 655 656 657	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient	17.3 17.27 17.34 21.03 28.07 Suggested	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use	17.4 17.43 23.98
645 646 647 648 649 650 651 652 653 654 655 655 655 657 658	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient Result (east parcel d/f teq - 5 additional samples removed [µ	17.3 17.27 17.34 21.03 28.07 Suggested g/kg]) General	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use	17.4 17.43 23.98 36.11
645 646 647 648 649 650 651 652 653 654 655 656 657	90% CLT UCL 90% Standard Bootstrap UCL 90% Hall's Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL ecommendation Provided only for 95% Confidence Coefficient	17.3 17.27 17.34 21.03 28.07 Suggested	90% BCA Bootstrap UCL 90% Bootstrap-t UCL 90% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use	17.4 17.43 23.98

	A	В	С		D	E	F	G	Н		I		J	K		L
661						Minimum Maximum	0.518 42.14							Me Medi		13.37 10.72
662 663						SD	42.14						Std	Error of Me		2.014
664				(Coefficier	t of Variation	0.977						Siu.	Skewne		0.765
665							0.077							Chonno		0.700
666							Normal	GOF Test								
667				Sha	oiro Wilk	Test Statistic	0.804				Shapiro V					
668			19	-		Critical Value	0.922		Data	a Not I			-	ince Level		
669						Test Statistic	0.201				Lilliefo					
670				1%	_illiefors	Critical Value	0.157				Normal a	at 1% :	Significa	ince Level		
671						Data Not	Normal at	1% Signiti	cance Leve							
672 673						Δ٩	suming Nor	mal Distril	oution							
674			90%	6 Norm	al UCL	7.0	ounning rior			0% L	ICLs (Ad	diuste	d for Sk	ewness)		
675						udent's-t UCL	15.99					-		(Chen-199	95)	16.12
676														ohnson-197		16.03
677																
678								GOF Test								
679						Test Statistic	1.65							OF Test		
680						Critical Value	0.789		Data Not G						_eve	
681						Test Statistic Critical Value	0.224							GOF Test gnificance		1
682 683						ata Not Gam	-	ed at 5% s						grifficance	_eve	
684									oignineariec							
685							Gamma	Statistics								
686						k hat (MLE)	0.749					k star	(bias co	prrected ML	E)	0.711
687					The	eta hat (MLE)	17.85				Thet	a star	(bias co	prrected ML	.E)	18.79
688						nu hat (MLE)	62.91							ias correcte		59.75
689				MLE	Mean (bi	as corrected)	13.37							as correcte		15.85
690				-1		0:	0.0007			ŀ				re Value (0		46.24
691			A	djusted	Level of	Significance	0.0937					Adjus	ted Chi	Square Val	ue	45.9
692 693						Δο	suming Gan	ma Dietri	bution							
694			909	% Appi	oximate	Gamma UCL	17.27		bullon		9	90% A	diusted	Gamma U		17.4
695				, o , .pp.									ajuotou			
696							Lognorma	I GOF Te	st							
697						Test Statistic	0.803				o Wilk L					
698			109	-		Critical Value	0.951		Data N		-		-	icance Leve	əl	
699						Test Statistic	0.214				fors Log				<u> </u>	
700				10%	lliefors	Critical Value	0.124	100/ 01-			gnormal	at 109	% Signif	icance Leve	<u>)</u>	
701 702						Data Not Lo	ognormal at	10% Sign	lificance Le	vei						
702							Lognorma	Statistic	e							
703				Mir	imum of	Logged Data	-0.659		0				Mean c	f logged Da	ata	1.793
705						Logged Data	3.741							f logged Da		1.506
706								ı								
707							uming Logno	ormal Dist	ribution	-						
708						90% H-UCL	31.47						-	(MVUE) U		33.82
709						(MVUE) UCL	41.13				97.5	% Che	byshev	(MVUE) U	JL	51.27
710 711			99	3% Ch	enàsues	(MVUE) UCL	71.2									
711						Nonparame	tric Distribu	tion Free	UCL Statie	tics						
712							ot follow a D									
714																
715						Nonpa	rametric Dis	tribution F	ree UCLs							
716						0% CLT UCL	15.95							ootstrap U		16.07
717			9			ootstrap UCL	15.97							otstrap-t U		16.13
718						ootstrap UCL	16.03							ootstrap U		16.12
719						ean, Sd) UCL	19.41 25.94							ean, Sd) U		22.15
720 721			97.5%		ysnev(IMe	ean, Sd) UCL	20.94	1			99%	сперу	snev(IVI	ean, Sd) U(-L	33.41
721							Suggested	UCL to U	se							
	ecommenda	ation Provid	ed only for	· 95% (Confidenc	ce Coefficient	249903130									
724								1							I	
725																
726	Result (eas	st parcel d/f	teq - 6 ad	ditiona	l sample	s removed [µ	g/kg])									
								82		_		_			-	

	A B C D E	F	G H I J K	L				
727		Ganaral	Statistics					
728 729	Total Number of Observations	42	Number of Distinct Observations	34				
730		-12	Number of Missing Observations	0				
731	Minimum	0.518	Mean	12.4				
732	Maximum	40.47	Median	10.33				
733	SD	12.36	Std. Error of Mean					
734	Coefficient of Variation	0.997	Skewness	0.803				
735								
736			GOF Test					
737	Shapiro Wilk Test Statistic	0.796	Shapiro Wilk GOF Test					
738	1% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.922	Data Not Normal at 1% Significance Level Lilliefors GOF Test					
739	1% Lilliefors Critical Value	0.218	Data Not Normal at 1% Significance Level					
740 741			% Significance Level					
741								
743	Ass	umina Nor	mal Distribution					
744	90% Normal UCL		90% UCLs (Adjusted for Skewness)					
745	90% Student's-t UCL	14.88	90% Adjusted-CLT UCL (Chen-1995)	15.01				
746			90% Modified-t UCL (Johnson-1978)	14.92				
747								
748			GOF Test					
749	A-D Test Statistic	1.787	Anderson-Darling Gamma GOF Test					
750	5% A-D Critical Value	0.79	Data Not Gamma Distributed at 5% Significance Level					
751	K-S Test Statistic	0.238	Kolmogorov-Smirnov Gamma GOF Test					
752	5% K-S Critical Value	0.142	Data Not Gamma Distributed at 5% Significance Level					
753 754	Data Not Gamin	ia Distribut	ed at 5% Significance Level					
754		Gamma	Statistics					
756	k hat (MLE)	0.744	k star (bias corrected MLE)	0.707				
757	Theta hat (MLE)	16.66	Theta star (bias corrected MLE)	17.53				
758	nu hat (MLE)	62.52	nu star (bias corrected)	59.38				
759	MLE Mean (bias corrected)	12.4	MLE Sd (bias corrected)	14.74				
760			Approximate Chi Square Value (0.1)	45.92				
761	Adjusted Level of Significance	0.0937	Adjusted Chi Square Value	45.58				
762								
763	Ass	uming Gan	nma Distribution					
764	90% Approximate Gamma UCL	16.03	90% Adjusted Gamma UCL	16.15				
765								
766	Shapiro Wilk Test Statistic	0.801	I GOF Test Shapiro Wilk Lognormal GOF Test					
767 768	10% Shapiro Wilk Critical Value	0.801	Data Not Lognormal at 10% Significance Level					
769	Lilliefors Test Statistic	0.331	Lilliefors Lognormal GOF Test					
770	10% Lilliefors Critical Value	0.124	Data Not Lognormal at 10% Significance Level					
771			10% Significance Level					
772		0						
773		Lognorma	I Statistics					
774	Minimum of Logged Data	-0.659	Mean of logged Data	1.712				
775	Maximum of Logged Data	3.701	SD of logged Data	1.49				
776								
777			ormal Distribution					
778	90% H-UCL	28.08	90% Chebyshev (MVUE) UCL	30.31				
779	95% Chebyshev (MVUE) UCL	36.81	97.5% Chebyshev (MVUE) UCL	45.83				
780	99% Chebyshev (MVUE) UCL	63.56						
781	Namessa	ric Distribu	tion Free UCL Statistics					
782 783	•		Discernible Distribution					
783								
785	Nonnar	ametric Dis	tribution Free UCLs					
786	90% CLT UCL	14.84	90% BCA Bootstrap UCL	14.88				
787	90% Standard Bootstrap UCL	14.83	90% Bootstrap-t UCL	15.05				
788	90% Hall's Bootstrap UCL	14.95	90% Percentile Bootstrap UCL	14.92				
789	90% Chebyshev(Mean, Sd) UCL	18.12	95% Chebyshev(Mean, Sd) UCL	20.71				
790	97.5% Chebyshev(Mean, Sd) UCL	24.3	99% Chebyshev(Mean, Sd) UCL	31.37				
791			· · · · · · · · · · · · · · · · · · ·					
792		Suggested	UCL to Use					

	A B C D E	F	G		Н			J		К	
793	ecommendation Provided only for 95% Confidence Coefficient	Г	G					J		ĸ	
794											
795											
	Result (east parcel d/f teq - 7 additional samples removed [µg	/kg])									
797											
798		Genera	l Statisti	cs							
799	Total Number of Observations	42				-				ervations	
800						Nu	mber o	of Missin	g Obs	ervations	
801	Minimum	0.518								Mean	
802	Maximum	36.98								Median	
803	SD	11.64	_					Std		r of Mean	
804	Coefficient of Variation	1.015							S	kewness	0.832
805		Normal		ot							
806	Shapiro Wilk Test Statistic	0.785		51		Shanir	o Will	GOF T	aet		
807 808	1% Shapiro Wilk Critical Value	0.922			Data N	ot Norma				l evel	
809	Lilliefors Test Statistic	0.235			Data N			OF Tes		Level	
810	1% Lilliefors Critical Value	0.157			Data N	ot Norma				Level	
811		Normal at	1% Sigr	nificano							
812											
813	Ass	uming No	rmal Dis	tributio	n						
814	90% Normal UCL				90%	6 UCLs (
815	90% Student's-t UCL	13.81					-		•	en-1995)	
816						90% M	odified	d-t UCL (Johns	on-1978)	13.84
817											
818		Gamma	GOF Te	est							
819	A-D Test Statistic	1.953		D		erson-Da					
820	5% A-D Critical Value	0.79	_	Da	ta Not Gar						vel
821	K-S Test Statistic 5% K-S Critical Value	0.252		De	ta Not Gar	gorov-Sr					vol
822 823	Data Not Gamm		ted at 59				Indute		Signin		vei
824				o olgii							
825		Gamma	Statisti	cs							
826	k hat (MLE)	0.743					k st	ar (bias	correc	ted MLE)	0.705
827	Theta hat (MLE)	15.44				Tł				ted MLE)	
828	nu hat (MLE)	62.37						nu star (bias c	orrected)	59.25
829	MLE Mean (bias corrected)	11.47								orrected)	
830						Approx				alue (0.1)	
831	Adjusted Level of Significance	0.0937					Adj	usted Ch	ni Squa	are Value	45.46
832											
833		uming Gar	nma Dis	stributi	on		000/	A			14.04
834	90% Approximate Gamma UCL	14.83					90%	Adjuste	d Gan	nma UCL	. 14.94
835		Lognorma		Foot							
836 837	Shapiro Wilk Test Statistic	0.797		1651	Sha	piro Will		ormal G		et	
838	10% Shapiro Wilk Critical Value	0.951			Data Not						
839	Lilliefors Test Statistic	0.239				illiefors L					
840	10% Lilliefors Critical Value	0.124			Data Not		-				
841	Data Not Lo		t 10% Si	ignifica							
842		-		-							
843		Lognorm	al Statis	tics							
844	Minimum of Logged Data	-0.659								ged Data	
845	Maximum of Logged Data	3.61						SD	of log	ged Data	1.471
846											
847		ming Logn	ormal D	Istribu	tion		000/ 0	h - 1 - 1			07.00
848	90% H-UCL	24.92								UE) UCL	
849	95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	32.77 56.41				97	.5% C	nebysne	ev (IVIV	UE) UCL	. 40.75
850 851		50.41									
851 852	Nonparamet	ric Dietrib	ution Er		Statistics	2					
852 853	Data do no					•					
854				5.5 DR							
855	Nonpara	ametric Di	stributio	n Free	UCLs						
856	90% CLT UCL	13.77					9	0% BCA	Boots	trap UCL	13.84
857	90% Standard Bootstrap UCL	13.75								ap-t UCL	
858	90% Hall's Bootstrap UCL	13.91				g	0% P			trap UCL	

	A B C D E	F	G H	JK	L
859	90% Chebyshev(Mean, Sd) UCL	16.86		95% Chebyshev(Mean, Sd) UCL	19.3
860	97.5% Chebyshev(Mean, Sd) UCL	22.69		99% Chebyshev(Mean, Sd) UCL	29.34
861					
862		Suggested	UCL to Use		
	ecommendation Provided only for 95% Confidence Coefficient				
864	The colouisted LICLs are based on economy		data ware collected in a	rendem and unbiased menner	
865	The calculated UCLs are based on assumption		bliected from random loca		
866 867	If the data were collected				
868			to correctly calculate UCL		
869					
870					
	Result (east parcel d/f teq - 8 additional samples removed [µ	g/kg])			
872					
873			Statistics		
874	Total Number of Observations	42		Number of Distinct Observations	32
875				Number of Missing Observations	0
876	Minimum	0.518		Mean	10.62
877	Maximum	36.98		Median	7.562
878	SD Coefficient of Variation	11.02 1.038		Std. Error of Mean	1.701 0.888
879		1.038		Skewness	U.ÖÖŎ
880 881	<u> </u>	Normal (GOF Test		
882	Shapiro Wilk Test Statistic	0.78		Shapiro Wilk GOF Test	
883	1% Shapiro Wilk Critical Value	0.922		Normal at 1% Significance Level	
884	Lilliefors Test Statistic	0.251		Lilliefors GOF Test	
885	1% Lilliefors Critical Value	0.157	Data Not	Normal at 1% Significance Level	
886	Data Not	Normal at 1	% Significance Level		
887					
888		suming Nori	mal Distribution		
889	90% Normal UCL			UCLs (Adjusted for Skewness)	
890	90% Student's-t UCL	12.84		00% Adjusted-CLT UCL (Chen-1995)	12.97
891				90% Modified-t UCL (Johnson-1978)	12.87
892		0			
893 894	A-D Test Statistic	2.12	GOF Test	son-Darling Gamma GOF Test	
895	5% A-D Critical Value	0.79		ma Distributed at 5% Significance Leve	1
896	K-S Test Statistic	0.266		prov-Smirnov Gamma GOF Test	1
897	5% K-S Critical Value	0.142		na Distributed at 5% Significance Leve	
898		na Distribute	ed at 5% Significance Lev		
899			-		
900		Gamma	Statistics		
901	k hat (MLE)	0.741		k star (bias corrected MLE)	0.704
902	Theta hat (MLE)	14.32		Theta star (bias corrected MLE)	15.08
903	nu hat (MLE)	62.29		nu star (bias corrected)	59.17
904	MLE Mean (bias corrected)	10.62		MLE Sd (bias corrected)	12.65
905		0.0007		Approximate Chi Square Value (0.1)	45.73
906	Adjusted Level of Significance	0.0937		Adjusted Chi Square Value	45.39
907	۸		nma Distribution		
908 909	90% Approximate Gamma UCL	13.74		90% Adjusted Gamma UCL	13.84
909 910		13.74			13.04
910		Loanorma	I GOF Test		
912	Shapiro Wilk Test Statistic	0.795		iro Wilk Lognormal GOF Test	
913	10% Shapiro Wilk Critical Value	0.951		ognormal at 10% Significance Level	
914	Lilliefors Test Statistic	0.252		efors Lognormal GOF Test	
915	10% Lilliefors Critical Value	0.124	Data Not Lo	ognormal at 10% Significance Level	
916	Data Not Lo	ognormal at	10% Significance Level		
917					
918		-	I Statistics		
919	Minimum of Logged Data	-0.659		Mean of logged Data	1.554
920	Maximum of Logged Data	3.61		SD of logged Data	1.45
921	-		must Dist 11 11		
922		22.11	ormal Distribution	90% Chebyshev (MVUE) UCL	24.1
000			1		
923 924	90% H-UCL 95% Chebyshev (MVUE) UCL	29.17		97.5% Chebyshev (MVUE) UCL	36.21

	A B C D E	F	G H	I J K				
925	99% Chebyshev (MVUE) UCL	50.04	G III		-			
926			·					
927	Nonparame	tric Distribu	tion Free UCL Statistics					
928	Data do no	ot follow a D	iscernible Distribution					
929								
930			tribution Free UCLs					
931	90% CLT UCL	12.8		90% BCA Bootstrap UCL	13			
932	90% Standard Bootstrap UCL	12.79		90% Bootstrap-t UCL	12.97			
933	90% Hall's Bootstrap UCL	12.92		90% Percentile Bootstrap UCL	12.83			
934	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	15.72 21.24		95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	18.03 27.54			
935 936	97.5% Chebysnev(ineall, Su) UCL	21.24		99% Chebysnev(Mean, Sd) UCL	27.54			
930		Suggested	UCL to Use					
	ecommendation Provided only for 95% Confidence Coefficient	Cuggoolou						
939	,,, _,, _							
940	The calculated UCLs are based on assumpti	ions that the	a data were collected in a	random and unbiased manner.				
941	Please verify the d	ata were co	llected from random locat	tions.				
942	If the data were collected	using judgr	mental or other non-rando	m methods,				
943	then contact a s	statistician t	o correctly calculate UCL	S.				
944								
945								
_	Result (east parcel d/f teq - 9 additional samples removed [µg	g/kg])						
947			o					
948	Total Number of Observations		Statistics	Number of Distinct Observations	21			
949		42			31 0			
950 951	Minimum	0.518		Number of Missing Observations Mean	9.773			
951	Maximum	34.8		Median	5.609			
953	SD	10.29						
954	Coefficient of Variation	1.053		Skewness	1.588 0.903			
955								
956		Normal (GOF Test					
957	Shapiro Wilk Test Statistic	0.77		Shapiro Wilk GOF Test				
958	1% Shapiro Wilk Critical Value	0.922	Data Not	Normal at 1% Significance Level				
959	Lilliefors Test Statistic	0.268		Lilliefors GOF Test				
960	1% Lilliefors Critical Value	0.157		Normal at 1% Significance Level				
961	Data Not	Normal at 1	% Significance Level					
962								
963	90% Normal UCL	suming Nori	mal Distribution	JCLs (Adjusted for Skewness)				
964 965	90% Student's-t UCL	11.84		0% Adjusted-CLT UCL (Chen-1995)	11.97			
965	30 % Student S-t OCL	11.04		90% Modified-t UCL (Johnson-1978)	11.88			
967					11.00			
968		Gamma	GOF Test					
969	A-D Test Statistic	2.342		on-Darling Gamma GOF Test				
970	5% A-D Critical Value	0.79		na Distributed at 5% Significance Lev	el			
971	K-S Test Statistic	0.28	Kolmogo	rov-Smirnov Gamma GOF Test				
972	5% K-S Critical Value	0.142		na Distributed at 5% Significance Lev	el			
973	Data Not Gamn	na Distribute	ed at 5% Significance Lev	/el				
974		_						
975			Statistics					
976	k hat (MLE)	0.746		k star (bias corrected MLE)	0.708			
977	Theta hat (MLE)	13.11		Theta star (bias corrected MLE)	13.8			
978	nu hat (MLE)	62.64		nu star (bias corrected)	59.5			
979	MLE Mean (bias corrected)	9.773		MLE Sd (bias corrected) Approximate Chi Square Value (0.1)	11.61 46.02			
980 981	Adjusted Level of Significance	0.0937		Approximate Chi Square Value (0.1) Adjusted Chi Square Value	46.02			
981		0.0337		Aujusted Oni Square value	-J.UU			
983	Asa	umina Gar	ma Distribution					
984	90% Approximate Gamma UCL	12.64		90% Adjusted Gamma UCL	12.73			
985	···· FF.		1	.,	-			
986		Lognorma	GOF Test					
987	Shapiro Wilk Test Statistic	0.79		ro Wilk Lognormal GOF Test				
988	10% Shapiro Wilk Critical Value	0.951		ognormal at 10% Significance Level				
989	Lilliefors Test Statistic	0.264		efors Lognormal GOF Test				
990	10% Lilliefors Critical Value	0.124	Data Not Lo	gnormal at 10% Significance Level				

999 99% Chebyshev (MVUE) UCL 25.74 97.6% Chebyshev (MVUE) UCL 1000 99% Chebyshev (MVUE) UCL 3.87 1001 Nonparametric Distribution Free UCL Statistics 1003 Data do not follow a Discernible Distribution 1004 Nonparametric Distribution Free UCL 1005 Nonparametric Distribution Free UCL 1006 90% Statistical Scientific Distribution Free UCL 1007 90% Statistical Scientific Distribution Free UCL 1008 90% Natistical Scientific Distribution Free UCL 1009 90% Statistical Scientific Distribution Free UCL 1009 90% Statistical Scientific Distribution Free UCL 1001 97.5% Chebyshev(Mean, Sc) UCL 14.54 1010 97.5% Chebyshev(Mean, Sc) UCL 14.54 1011 90% Scientific Distribution Free UCL Scientific Distribution Free UCL Scientific Distribution Free UCL Scientific Distribution Free UCL 1011 97.5% Chebyshev(Mean, Sc) UCL 14.54 1012 Suggested UCL to Use 1013 The calculated UCLs are based on assumptions that the data were collected in a random cand unblased manner. 1012 Suggested UCL to Use	L	G H I J K	F	A B C D E	
933 Lognormal Statistics 934 Minimum of Logged Data 0.50 Maximum of Logged Data 936 Maximum of Logged Data 3.55 SD of logged Data 937 Assuming Lognormal Distribution 938 95% Chebyshev (MVUE) UCL 2.57 4 97.5% Chebyshev (MVUE) UCL 939 95% Chebyshev (MVUE) UCL 2.57 4 97.5% Chebyshev (MVUE) UCL 1000 99% Chebyshev (MVUE) UCL 2.43 7 1001 1001 Nonparametric Distribution Free UCL Statistics 1003 1002 Nonparametric Distribution Free UCL Statistics 90% Chebyshev (MuE) 1005 Statistical Control Statistical Control Statistical Control Statistical Control Contro Control Control Contro Control Control Control Contr		Significance Level	gnormal at	Data Not Lo	
Bysi Mean of Logged Data -0.653 Mean Digged Data 996 So of logged Data So So of logged Data 997 Assuming Lognormal Distribution 998 995% Chebyshev (MVLE) UCL 25.74 97.5% Chebyshev (MVLE) UCL 25.94 1000 99% Chebyshev (MVLE) UCL 25.74 97.5% Chebyshev (MVLE) UCL 25.97 1001 Nonparametric Distribution Free UCL Statistics 1003 Data do not follow a Discernible Distribution 1005 90% Schedyshev (MVLE) UCL 13.8 90% Bootsing-UCL 10.6 1006 90% Schedyshev (MVLE) UCL 14.34 90% Schedyshev(Mean, Sci) UCL 10.6 1007 90% Schedyshev (MVLE) UCL 14.34 90% Schedyshev(Mean, Sci) UCL 10.0 1006 90% Schedyshev (MCL 14.34 95% Chelyshev(Mean, Sci) UCL 10.0 1010 90% Schedyshev (MCL 14.34 95% Chelyshev(Mean, Sci) UCL 10.0 1010 90% Schedyshev (MCL 14.34 95% Chelyshev(Mean, Sci) UCL 10.0 1010 90% Schedyshev (Mean, Sci) UCL 16.36 95% Chelyshev (Mean, Sci) UCL					
Bits Maximum of Logged Data 3.55 SD of logged Data 966 Assuming Lognomal Distribution 995% Chebyshev (MVUE) UCL 25.74 97.5% Chebyshev (MVUE) UCL 998 95% Chebyshev (MVUE) UCL 25.74 97.5% Chebyshev (MVUE) UCL 1000 95% Chebyshev (MVUE) UCL 25.74 97.5% Chebyshev (MVUE) UCL 1001 Nonparametric Distribution Free UCL Statistics 1006 1002 Nonparametric Distribution Free UCL 95% Chebyshev (MuE) UCL 1006 90% Chebyshev (MuE) 11.8 90% Chebyshev (Mue).50 1006 90% Chebyshev (Man, Sq) UCL 11.8 90% Chebyshev (Mean, Sq) UCL 1007 90% Chebyshev (Mean, Sq) UCL 14.54 95% Chebyshev (Mean, Sq) UCL 1016 90% Chebyshev (Mean, Sq) UCL 10.69 99% Chebyshev (Mean, Sq) UCL 1016 The calculated UCLs are based on assumptions that the data were collected in a random and unblased manner. 1016 The calculated UCLs are based on assumptions that the data were collected in a random methods. 1018 When contact a statistician to orrectly calculate UCLs 1019 If the data were collected intor non-random inductods. <td>1.476</td> <td></td> <td></td> <td>Minimum of Loggod Date</td> <td></td>	1.476			Minimum of Loggod Date	
986 Assuming Lognormal Distribution 987 99% H-UCL 19.44 90% Chebyshev (MVUE) UCL 29.75 989 99% Chebyshev (MVUE) UCL 25.74 97.5% Chebyshev (MVUE) UCL 10.01 1000 99% Chebyshev (MVUE) UCL 43.97 97.5% Chebyshev (MVUE) UCL 10.01 1001 Nonparametric Distribution Free UCL Statistics 1000 1001 1003 Data do not follow a Discamible Distribution 1005 97% SCA Bootstrap UCL 11.81 97% BCA Bootstrap UCL 1006 90% Standard Bootstrap UCL 11.84 95% Fercentile Bootstrap UCL 10.06 90% Standard Bootstrap UCL 19.69 99% Chebyshev(Mean, Sc) UCL 10.16 97.5% Chebyshev(Mean, Sc) UCL 10.16 97.5% Chebyshev(Mean, Sc) UCL 10.69 99% Chebyshev(Mean, Sc) UCL 10.16					
997 Assuming Logrome Distribution 998 99% Chebyshev (MVUE) UCL 25.74 97.5% Chebyshev (MVUE) UCL 999 99% Chebyshev (MVUE) UCL 25.74 97.5% Chebyshev (MVUE) UCL 1000 99% Chebyshev (MVUE) UCL 25.74 97.5% Chebyshev (MVUE) UCL 1001 Assample 43.97 97.5% Chebyshev (MVUE) UCL 1002 Norparametric Distribution Free UCL Statistics 99.5% Chebyshev (Man 2000) 99.6% Chebyshev (Man 2000) 1006 90% Chebyshev (Man 2000) 11.8 90% Recentle Bootstrap UCL 1003 90% Chebyshev (Man 30) UCL 14.54 99% Chebyshev (Man 30) UCL 1010 97.5% Chebyshev (Man 30) UCL 14.54 99% Chebyshev (Man 30) UCL 1011 97.5% Chebyshev (Man 30) UCL 14.54 99% Chebyshev (Man 30) UCL 1011 97.5% Chebyshev (Man 30) UCL 14.54 99% Chebyshev (Man 30) UCL 1011 97.5% Chebyshev (Man 30) UCL 14.54 99% Chebyshev (Man 30) UCL 1011 97.5% Chebyshev (Man 30) UCL 14.54 99% Chebyshev (Man 30) UCL 1012 Suggested UCL to Use UCL 14.56 <td>1.424</td> <td></td> <td>5.55</td> <td></td> <td></td>	1.424		5.55		
989 99% Hotyskev (MVUE) UCL 94.4 99% Chebyskev (MVUE) UCL 1000 99% Chebyskev (MVUE) UCL 43.97 97.5% Chebyskev (MVUE) UCL 1001 99% Chebyskev (MVUE) UCL 43.97 97.5% Chebyskev (MVUE) UCL 1002 Nonparametric Distribution Free UCL statistics 1006 1003 Data do not follow a Diacennible Distribution 90% BCA Boostrap UCL 1006 90% NCLT UCL 11.81 90% BCA Boostrap UCL 1007 90% Standard Boostrap UCL 11.81 90% BCA Boostrap UCL 1008 90% Chebyskev (Mean, S0) UCL 11.8 90% Pootstape UCL 1019 90% Chebyskev (Mean, S0) UCL 19.69 99% Chebyskev (Mean, S0) UCL 1010 97.5% Chebyskev (Mean, S0) UCL 19.69 99% Chebyskev (Mean, S0) UCL 1018 Suggested UCL to Use 1013 1014 1018 New ex collected using judgemental or here non-andom methods, 1114 1019 The data were collected using judgemental or here non-andom methods, 1116 1018 then contact a statistician to correctly calculate UCLs. 1117 1020		I Distribution	mina Loana	Assi	
999 99% Chebyshev (MVUE) UCL 25.74 97.5% Chebyshev (MVUE) UCL 1000 99% Chebyshev (MVUE) UCL 43.97 1001 Nonparametic Distribution Free UCL Statistics 1003 Data do not follow a Discermible Distribution 1005 Nonparametic Distribution Free UCLs 1006 90% SCLT UCL 11.8 1007 90% Statistics 90% Provide Bootstrap UCL 1008 90% Hards Bootstrap UCL 11.8 1009 90% Chebyshev (Man, St) UCL 14.54 1001 97.5% Chebyshev(Man, St) UCL 14.54 1010 97.5% Chebyshev(Man, St) UCL 14.54 1011 Suggested UCL to Use 1012 Suggested UCL to Use 1013 The calculated UCLs are based on assumptions that the data were collected in a random and unblased manner. 1016 Pressee worthy the data were collected mannal or other non-random methods, 1011 The data were collected using judgmental or other non-random methods, 1012 Suggested UCL to Use 1013 The data were collected using iudgmental or other non-random methods, 1014 Mannau	21.31				
1000 99% Chebyshev (MVUE) UCL 43.97 1001 Nonparametric Distribution Free UCL Statistics 1003 Data do not follow a Diacemible Distribution 1004 Nonparametric Distribution Free UCLs 1005 Nonparametric Distribution Free UCLs 1006 90% Extracture Destriputici 11.8 1007 90% Extracture Destriputici 11.8 1008 90% Poctation UCL 11.8 1009 90% Extracture Destriputici 11.8 1009 90% Chebyshev (Mean, Sci) UCL 19.69 1016 97.5% Chebyshev (Mean, Sci) UCL 19.69 1017 Statado and Science Coefficient	31.89		25.74	95% Chebyshev (MVUE) UCL	
Integrate Nonparametric Distribution 1003 Data do not folow a Discemble Distribution 1004 Nonparametric Distribution Free UCLs 1005 90% Extra UCL 11.8 90% BCA Bootstrap UCL 1009 90% Nandard Bootstrap UCL 11.8 90% Bootstrap UCL 1009 90% Nandard Bootstrap UCL 11.8 90% Pootstrap UCL 1010 97.5% Chebyshev(Mean, Sci) UCL 19.69 90% Chebyshev(Mean, Sci) UCL 1011 57.5% Chebyshev(Mean, Sci) UCL 19.69 90% Chebyshev(Mean, Sci) UCL 1016 97.5% Chebyshev(Mean, Sci) UCL 19.69 90% Chebyshev(Mean, Sci) UCL 1011 57.5% Chebyshev(Mean, Sci) UCL 19.69 90% Chebyshev(Mean, Sci) UCL 1011 57.5% Chebyshev(Mean, Sci) UCL 19.69 90% Chebyshev(Mean, Sci) UCL 1013 57.5% Chebyshev(Mean, Sci) UCL 19.69 90% Chebyshev(Mean, Sci) UCL 1017 The data were collected using Logand and and unbiased menner. 1016 1012 The actual statistics 1017 1014 1012 The nontact a statisticics 1012 101			43.97		
Date Dist of follow a Discomble Distribution 1009 Nonparametric Distribution Free UCLs 1009 90% Bootstrap UCL 1009 90% Bootstrap UCL 1009 90% Bootstrap UCL 1009 90% Bootstrap UCL 1009 90% Chatyshev/Mean, Sol UCL 1010 97.5% Chebyshev/Mean, Sol UCL 1011 97.5% Chebyshev/Mean, Sol UCL 1012 Suggested UCL to Use 1013 95% Chatyshev/Mean, Sol UCL 1014 97.5% Chebyshev/Mean, Sol UCL 1015 The calculated UCLs are based on assumptions that the data were collected from random incetions. 1016 The calculated UCLs are based on assumptions that the data were collected from random methods, 1018 then contact a statistician to correctly calculate UCLs. 1019 1100 1021 Reservering UCL 1022 Minimum 1023 Coentral Number of Distric Observations [1024 Total Number of Observations [1025 Number of Missing Observations [1026 Maritum i 176 1027		· · · · · · · · · · · · · · · · · · ·			1001
1004 Nonparametric Distribution Free UCLa 1005 90% CDL UCL 11.81 90% BCA Bootstrap UCL 1006 90% Standard Bootstrap UCL 11.83 90% Potentile Bootstrap UCL 1009 90% Chebysher/Mean, Saj UCL 14.84 95% Chebysher/Mean, Saj UCL 1010 97.5% Chebysher/Mean, Saj UCL 14.84 95% Chebysher/Mean, Saj UCL 1011 97.5% Chebysher/Mean, Saj UCL 19.63 93% Chebysher/Mean, Saj UCL 1011 97.5% Chebysher/Mean, Saj UCL 19.63 93% Chebysher/Mean, Saj UCL 1011 97.5% Chebysher/Mean, Saj UCL 19.63 93% Chebysher/Mean, Saj UCL 1011 1016 116 116 116 1013 The calculated UCLs are based on assumptions that the data were collected n a random and unblased manner. 1016 1016 Please were the aware collected from random collations. 117 1012 Result (west parcel - cpahs (mg/kg)) 1122 1023 Ceneral Statistics 1102 1024 Total Number of Observations 27 Number of Distinct Observations 1025 Minimum <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
1005 Nonparametric Distribution Free UCLs 1007 90% BCA Educt, 11.8.1 90% BCA Educt, UCL 1008 90% Hall's Bootstrap UCL 11.8.9 90% Bootstrap UCL 1009 90% Chetyshev(Mean, So) UCL 14.5.4 95% Chebyshev(Mean, So) UCL 1010 97.5% Chebyshev(Mean, So) UCL 14.5.4 95% Chebyshev(Mean, So) UCL 1011 Suggested UCL to Use 1013accommendation Provided only for 95% Confidence Coefficient		rnible Distribution	ot follow a D		
1006 90% CLT UCL 11.81 90% BCA Bootstrap UCL 1007 90% Standards Bootstrap UCL 11.8 90% Procentile Bootstrap UCL 1009 90% Chebyshew(Mean, S4) UCL 11.83 90% Procentile Bootstrap UCL 1009 90% Chebyshew(Mean, S4) UCL 19.69 90% Chebyshew(Mean, S4) UCL 1010 97.5% Chebyshew(Mean, S4) UCL 19.69 90% Chebyshew(Mean, S4) UCL 1011 Suggested UCL to Use 1011 1012 Suggested UCL to Use 1011 1013 The calculated UCLs are based on assumptions that the data were collected in a random induclises dmanner. 1016 1014 The calculated UCLs are based on assumptions that the data were collected from random induclises dmanner. 1016 1018 then contact a statistica 1012 1028 Contact a statistica 1021 1021 General Statistics 1021 1022 General Statistics 1022 1023 Total Number of Observations 27 Number of Distinct Observations 1026 Minimu 0.1 Meanu 1027 Maxim					
1007 90% Standard Bostrap UCL 11.8 90% Bostrap-UCL 1008 90% Chebyshev(Mean, Sd) UCL 11.8 90% Bostrap-UCL 1009 90% Chebyshev(Mean, Sd) UCL 14.54 90% Bostrap-UCL 1010 97.5% Chebyshev(Mean, Sd) UCL 18.69 99% Chebyshev(Mean, Sd) UCL 1011 Suggested UCL to Use 1013 99% Chebyshev(Mean, Sd) UCL 1012 Suggested UCL to Use 1013 1014 1014 1013 Pease verify the data were collected from random methods, 1015 The calculated UCLs are based on assumptions that the data were collected in a random and unbiased meaner. 1015 The calculated UCLs are based on assumptions that the data were collected from random flocations. 1011 1013 the nontact a statistica to correctly calculate UCLs. 1013 1016 Researchystap (Mg) 127 Number of Distinct Observations 1021 Maximum 1,75 Median 1022 Maximum 1,75 Median 1023 Coefficient of Variation 1.891 Std. Error of Mean 1024 Std. Error of Mean 0.354 <td>11.92</td> <td></td> <td></td> <td></td> <td></td>	11.92				
1009 90% Halfs Bootsrap UCL 11.89 90% Chebysher(Mean, Sd) UCL 1010 97.5% Chebysher(Mean, Sd) UCL 19.69 99% Chebysher(Mean, Sd) UCL 1011 Suggested UCL to Use 11.89 99% Chebysher(Mean, Sd) UCL 1012 Suggested UCL to Use 11.89 99% Chebysher(Mean, Sd) UCL 1011 Suggested UCL to Use 11.89 99% Chebysher(Mean, Sd) UCL 1011 Suggested UCL to Use 11.89 99% Chebysher(Mean, Sd) UCL 1012 Suggested UCL to Use 11.81 11.81 11.81 1013 The calculated UCLs are based on assumptions that the data were collected from random locations. 11.11 11.11 1013 The calculated UCLs are base varify the data were collected from random locations. 11.11 11.11 1013 then contact a statistics 11.11	11.92	•			
1009 90% Chebyshev(Mean, Sd) UCL 14.54 95% Chebyshev(Mean, Sd) UCL 1010 97.5% Chebyshev(Mean, Sd) UCL 19.69 99% Chebyshev(Mean, Sd) UCL 1011 Suggested UCL to Use 1011 1012 Suggested UCL to Use 1011 1013 The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. 1016 The calculated UCLs are based on assumptions that the data were collected in a random methods, 1017 If the data were collected in or other non-random methods, 1018 then contact a statistician to correctly calculate UCLs. 1020 General Statistics 1021 General Statistics 1022 General Statistics 1023 General Statistics 1024 Total Number of Observations 1025 Number of Missing Observations 1026 Minimum 0.01 1027 Maximum 1.75 1028 SD 0.354 1029 Coefficient of Variation Std. Error of Mean 1029 Coefficient of Variation Std. Error of Mean	11.82				
1010 97.5% Chebyshev(Mean, Sd) UCL 19.69 99% Chebyshev(Mean, Sd) UCL 1011 Suggested UCL to Use 1013 economendation Provided only for 95% Confidence Coefficient Image: Comparison of Comparis	16.69			· · · ·	
Init Suggested UCL to Use 1012 Suggested UCL to Use 1013 Inscommendation Provided only for 95% Confidence Coefficient 1016 The calculated UCLs are based on assumptions that the data were collected from random locations. 1017 If the data were collected from random locations. 1019 If the data were collected from random nethods, 1019 If the data were collected from random locations. 1019 If the data were collected from random locations. 1019 If the data were collected from random methods, 1021 Result (west parcel - cpehs [mg/kg]) 1022 Coefficient of Observations 27 1023 Number of Distinct Observations 102 1024 Total Number of Observations 27 Number of Missing Observations 1025 Minimum 0.01 Mean 1026 Coefficient of Variation 1.851 Sterror of Mean 1029 Coefficient of Variation 1.851 Skewness 1031 Normal GOF Test Significance Level 1032 Shapiro Wilk Critical Value 0.854 Data No	25.57				
Init Suggested UCL to Use 1013 accommendation Provided only for 95% Confidence Coefficient Image: Commendation Provided only for 95% Confidence Coefficient 1014 The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner. 1015 The calculated UCLs are based on assumptions that the data were collected in a random inclusions. 1017 If the data were collected using judgmental or other non-random methods, 1018 then contact a statistician to correctly calculate UCLs. 1019 It en contact a statistician to correctly calculate UCLs. 1020 It en contact a statistics 1022 It en contact a statistics 1023 General Statistics 1024 Total Number of Diservations 1025 Number of Missing Observations 1026 Minimum 0.01 1027 Maximum 1.75 1028 Coefficient of Variation 1.891 1029 Coefficient of Variation 1.891 1031 Normal GOF Test 1032 Shapiro Wilk Cortical Value 0.394 1033 1% Shapirit Wilk Test Statisticit 0.308					
1013 Economendation Provided only for 95% Confidence Coefficient		_ to Use	Suggested		
International and the set of the data were collected from random iocations. 1016 Please verify the data were collected from random iocations. 1017 If the data were collected using judgmental or other non-random methods, 1018 then contact a statistician to correctly calculate UCLs. 1019 Calculate UCLs. 1020 Calculate UCLs. 1021 Result (west parcel - cpahs [mg/kg]). 1022 Calculate UCLs. 1023 Calculate UCLs. 1024 Total Number of Observations 27 1025 Number of District Observations 102 1026 Minimum 0.01 Mean 1027 Maximum 1.75 Median 1028 SD 0.354 Statistic Statistic 1030 Coefficient of Variation 1.891 Stewness Statistic 1031 Normal GOF Test 1033 1% Singlificance Level 11011 1033 1% Shapiro Wilk Test Statistic 0.525 Shapiro Wilk COF Test 1033 1% Shapiro Wilk Critical Value 0.77 Singlificance					
Intel Please verify the data were collected from random locations. 1017 If the data were collected using judgmental or other non-random methods, 1018 then contact a statistician to correctly calculate UCLs. 1019 1020 1021 Result (west parcel - cpahs [mg/kg]) 1022 General Statistics 1023 Quert of Distinct Observations [1024 Total Number of Observations [1025 Number of Missing Observations [1026 Minimum 0.01 1027 Maximum 1.75 1028 Coefficient of Variation [1.891 1029 Coefficient of Variation [1.891 1030 Normal GOF Test 1.394 1031 Normal GOF Test 1.394 1032 Shapiro Wilk Test Statistic [0.525 Shapiro Wilk GOF Test 1033 1% Shapiro Wilk Test Statistic [0.525 Shapiro Wilk GOF Test 1033 1% Shapiro Wilk Test Statistic [0.364 Data Not Normal at 1% Significance Level 1035 1% Significance Level 1.394 Data		·			1014
Initial If the data were collected using judgmental or other non-random methods, 1018 then contact a statistician to correctly calculate UCLs. 1020 Initial Statistician to correctly calculate UCLs. 1021 Result (west parcel - cpahs [mg/kg]) 1022 Ceneral Statistics 1023 Ceneral Statistics 1024 Total Number of Observations 27 1025 Maximum 0.01 1026 Maximum 1.75 1027 Maximum 1.75 1028 Coefficient of Variation 1.81 1029 Coefficient of Variation 1.81 1031 Ommal GOF Test 1033 1032 Shapiro Wilk Test Statistic 0.525 Shapiro Wilk GOF Test 1033 1% Shapiro Wilk Critical Value 0.894 Data Not Normal at 1% Significance Level 1033 1% Shapiro Wilk Critical Value 0.194 Data Not Normal at 1% Significance Level 1033 0% Shapiro Wilk Critical Value 0.194 Data Not Normal at 1% Significance Level 1034 Data Not Normal at 1% Significance Level 0.					1015
Normal Statistician to correctly calculate UCLs. 1019					
Initial <					
Number Statistics 1021 Result (west parcel - cpahs [mg/kg]) 1022 General Statistics 1024 Total Number of Observations 27 Number of Distinct Observations 1026 Number of Distinct Observations 27 Number of Distinct Observations 1026 Minimum 0.01 Mean 1027 Maximum 1.75 Median 1028 SD 0.354 Std. Error of Mean 1029 Coefficient of Variation 1.891 Skewness 1030 Shapiro Wilk Test Statistic 0.525 Shapiro Wilk GOF Test 1032 Shapiro Wilk Critical Value 0.894 Data Not Normal at 1% Significance Level 1033 1% Lilliefors Test Statistic 0.308 Lilliefors GOF Test 1035 1% Lilliefors Critical Value 0.894 Data Not Normal at 1% Significance Level 1036 Data Not Normal at 1% Significance Level 0.90% Modified-t UCL (Johnson-1978) 1038 Osuming Normal Distribution 90% Modified-t UCL (Johnson-1978) 1040 90% Normal OCL 90% Modified-t UCL		rrectly calculate UCLs.	statistician t		
Normal General Statistics 1022 Total Number of Observations 27 Number of Distinct Observations 1024 Total Number of Observations 27 Number of Distinct Observations 1025 Number of Missing Observations 1026 Mean 1026 Minimum 0.01 Mean 1027 Maximum 1.75 Median 1 1028 SD 0.354 Std. Error of Mean 1029 Coefficient of Variation 1.891 Skewness 1030 Normal GOF Test 1033 1% Shapiro Wilk Critical Value 0.884 Data Not Normal at 1% Significance Level 1033 1% Shapiro Wilk Critical Value 0.894 Data Not Normal at 1% Significance Level 1034 Lilliefors Critical Value 0.894 Data Not Normal at 1% Significance Level 1035 1% Lilliefors Critical Value 0.194 Data Not Normal at 1% Significance Level 1036 Data Not Normal at 1% Significance Level 0.90% Normal UCL 0.277 90% Adjusted Crit Skewness) 1040 90% Student's-t UCL 0.277					
International Statistics General Statistics 1022 Total Number of Observations 27 Number of Distinct Observations 1025 Number of Missing Observations 1000 Median 1026 Minimum 0.01 Median 1027 Maximum 1.75 Median 1028 SD 0.354 Std. Error of Mean 1029 Coefficient of Variation 1.891 Skewness 1030 Coefficient of Variation 1.891 Skewness 1031 Normal GOF Test Shapiro Wilk GOF Test Shapiro Wilk Critical Value 0.894 Data Not Normal at 1% Significance Level 1033 1% Shapiro Wilk Critical Value 0.894 Data Not Normal at 1% Significance Level 1035 1034 Lilliefors Critical Value 0.894 Data Not Normal at 1% Significance Level 1037 1035 1% Lilliefors Critical Value 0.194 Data Not Adjusted-CLT UCL (Chen-1995) 1041 1039 90% Normal UCL 90% UCLs (Adjusted for Skewness) 1042 90% Modified+t UCL (Johnson-1978) 1041 A-D					
International Statistics General Statistics 1024 Total Number of Observations 27 Number of Distinct Observations 1025 Number of Missing Observations Number of Missing Observations 1026 Minimum 0.01 Mean 1027 Maximum 1.75 Median 1028 SD 0.354 Std Error of Mean 1029 Coefficient of Variation 1.891 Skewness 1030 Total Number of Nik GOF Test Size Shapiro Wilk GOF Test 1033 1% Shapiro Wilk Test Statistic 0.304 Data Not Normal at 1% Significance Level 1034 Lilliefors Test Statistic 0.308 Lilliefors Critical Value 0.894 1035 1% Lilliefors Critical Value 0.194 Data Not Normal at 1% Significance Level 1036 Data Not Normal at 1% Significance Level 1034 1104 1037 Obs Normal UCL 0.277 90% Adjusted-CL T UCL (Chen-1995) 1040 90% Student's-t UCL 0.277 90% Adjusted-CL T UCL (Chen-1995) 1041 Gemma GOF Test 1.262 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
1024 Total Number of Observations 27 Number of Distinct Observations 1025 Minimum 0.01 Number of Missing Observations 1026 Minimum 0.01 Mean 1027 Maximum 1.75 Median 1028 SD 0.354 Std. Error of Mean 1029 Coefficient of Variation 1.891 Skewness 1030 Normal GOF Test 1033 1% Shapiro Wilk Test Statistic 0.525 Shapiro Wilk GOF Test 1031 Normal GOF Test 11891 Data Not Normal at 1% Significance Level 1034 1033 1% Shapiro Wilk Critical Value 0.894 Data Not Normal at 1% Significance Level 1035 1035 1% Lilliefors Critical Value 0.194 Data Not Normal at 1% Significance Level 1037 1038 Assuming Normal Distributon 1039 90% Normal UCL 0.277 90% Adjusted-CLT UCL (Chen-1995) 1041 90% Student's-t UCL 0.277 90% Modified-t UCL (Chen-1995) 1041 1042 90% Modified-t UCL (Chen-1995) 0.217 90% Modified-t		istics	General		
1025 Number of Missing Observations 1026 Minimum 0.01 Mean 1027 Maximum 1.75 Median 1028 SD 0.354 Std. Error of Mean 1029 Coefficient of Variation 1.891 Skewness 1030 Normal GOF Test Skewness 1031 Normal GOF Test Significance Level 1032 Shapiro Wilk Test Statistic 0.525 Shapiro Wilk GOF Test 1033 1% Shapiro Wilk Critical Value 0.894 Data Not Normal at 1% Significance Level 1034 Lilliefors Test Statistic 0.308 Lilliefors GOF Test 1035 1% Lilliefors Critical Value 0.194 Data Not Normal at 1% Significance Level 1037 Significance Level 0.277 90% Modified tor Skewness) 1040 90% Student's-t UCL 0.277 90% Modified-t UCL (Chen-1995) 1041 0.803 Data Not Gamma GOF Test 1044 1042 0.277 90% Modified-t UCL (Chen-1995) 1041 1044 A-D Test Statistic 1.262 <td>18</td> <td></td> <td></td> <td></td> <td></td>	18				
1027 Maximum 1.75 Median 1028 SD 0.354 Std. Error of Mean 1029 Coefficient of Variation 1.891 Skewness 1030 Coefficient of Variation 1.891 Skewness 1031 Normal GOF Test Shapiro Wilk Cest Statistic 0.525 Shapiro Wilk GOF Test 1033 1% Shapiro Wilk Critical Value 0.894 Data Not Normal at 1% Significance Level 1034 Lilliefors Test Statistic 0.308 Lilliefors GOF Test 1035 1% Lilliefors Critical Value 0.194 Data Not Normal at 1% Significance Level 1036 Data Not Normal at 1% Significance Level 0.308 Lilliefors GOF Test 1037 Student's-t UCL 0.277 90% Adjusted-CL T UCL (Chen-1995) 1040 90% Student's-t UCL 0.277 90% Modified-t UCL (Johnson-1978) 1042 90% Modified-t UCL (Adjusted for Skewness) 90% Modified-t UCL (Chen-1995) 1041 90% Student's-t UCL 0.277 90% Adjusted-CT UCL (Chen-1995) 1044 A-D Test Statistic 0.209 Kolmogoro-Smirimore Gorma	0	Number of Missing Observations			
1028 SD 0.354 Std. Error of Mean 1029 Coefficient of Variation 1.891 Skewness 1030 Normal GOF Test Shapiro Wilk GOF Test 1032 Shapiro Wilk Test Statistic 0.525 Shapiro Wilk GOF Test 1033 1% Shapiro Wilk Critcal Value 0.894 Data Not Normal at 1% Significance Level 1034 Lilliefors Test Statistic 0.308 Lilliefors GOF Test 1035 1% Lilliefors Test Statistic 0.308 Lilliefors GOF Test 1036 Data Not Normal at 1% Significance Level 1037 1038 Assuming Normal Distribution 1039 1039 90% Normal UCL 90% UCLs (Adjusted for Skewness) 1040 90% Student's-t UCL 0.277 90% Adjusted-CLT UCL (Chen-1995) 1041 0 0.207 90% Modified-t UCL (Johnson-1978) 1042 0 90% Student's-t UCL 0.277 90% Modified-t UCL (Johnson-1978) 1043 Gamma GOF Test 1.262 Anderson-Darling Gamma GOF Test 1043 Gamma GOF Test 1.262 Anderson-Darling Ga	0.187	Mean	0.01	Minimum	1026
1029 Coefficient of Variation 1.891 Skewness 1030	0.077 ⁻				1027
Normal GOF Test 1030 Normal GOF Test 1032 Shapiro Wilk Test Statistic 0.525 Shapiro Wilk GOF Test 1033 1% Shapiro Wilk Critical Value 0.894 Data Not Normal at 1% Significance Level 1034 Lilliefors Test Statistic 0.308 Lilliefors GOF Test 1035 1% Lilliefors Critical Value 0.194 Data Not Normal at 1% Significance Level 1036 Data Not Normal at 1% Significance Level 0.194 Data Not Normal at 1% Significance Level 1037 Data Not Normal at 1% Significance Level 0.308 Lilliefors Chical Value 0.194 1039 90% Normal UCL 90% UCLs (Adjusted for Skewness) 0.404 0.401 90% Modified-t UCL (Chen-1995) 1040 90% Student's-t UCL 0.277 90% Adjusted-CLT UCL (Johnson-1978) 0.404 1042 90% Modified-t UCL (Johnson-1978) 1.262 Anderson-Darling Gamma GOF Test 1043 Gamma GOF Test 1.262 Anderson-Darling Gamma GOF Test 1044 A-D Test Statistic 0.209 Kolmogorov-Smirnov Gamma GOF Test 1047 5% K-S Critical Value 0.177 Data Not Gamma Distributed at 5% Significance Level	0.068	Std. Error of Mean			
Normal GOF Test 1032 Shapiro Wilk Test Statistic 0.525 Shapiro Wilk GOF Test 1033 1% Shapiro Wilk Critical Value 0.894 Data Not Normal at 1% Significance Level 1034 Lilliefors Test Statistic 0.308 Lilliefors GOF Test 1035 1% Lilliefors Critical Value 0.194 Data Not Normal at 1% Significance Level 1036 Data Not Normal at 1% Significance Level 0.308 Lilliefors GOF Test 1036 Data Not Normal at 1% Significance Level 0.308 Lilliefors GOF Test 1037 Assuming Normal Distribution 0.308 Gamma GOF Test 1039 90% Normal UCL 0.277 90% Adjusted-CL T UCL (Chen-1995) 1041 90% Modified+t UCL (Johnson-1978) 90% Modified+t UCL (Johnson-1978) 1042 90% Modified+t UCL (Johnson-1978) 90% Modified+t UCL (Johnson-1978) 1043 Gamma GOF Test 1044 A-D Test Statistic 1.262 Anderson-Darling Gamma GOF Test 1044 A-D Test Statistic 0.209 Kolmogorov-Smirnov Gamma GOF Test 1045 1045 5% A-D Critical Value 0.177	3.707	Skewness	1.891		
1032 Shapiro Wilk Test Statistic 0.525 Shapiro Wilk QOF Test 1033 1% Shapiro Wilk Critical Value 0.894 Data Not Normal at 1% Significance Level 1034 Lilliefors Test Statistic 0.308 Lilliefors GOF Test 1035 1% Lilliefors Critical Value 0.194 Data Not Normal at 1% Significance Level 1036 Data Not Normal at 1% Significance Level 0.194 Data Not Normal at 1% Significance Level 1037 Assuming Normal Distribution 90% UCLs (Adjusted for Skewness) 1040 1039 90% Normal UCL 0.277 90% Adjusted-CLT UCL (Chen-1995) 1040 90% Student's-t UCL 0.277 90% Modified+t UCL (Johnson-1978) 1042 90% Mormal GOF Test 90% Modified+t UCL (Johnson-1978) 1042 1.262 Anderson-Darling Gamma GOF Test 1044 A-D Test Statistic 1.262 Anderson-Darling Gamma GOF Test 1045 5% A-D Critical Value 0.803 Data Not Gamma Distributed at 5% Significance Level 1045 K-S Test Statistic 0.209 Kolmogorov-Smirnov Gamma GOF Test 1047 5% K-S Critical Value 0.177 Data Not Gamma Distributed at 5% Significance Level					
1033 1% Shapiro Wilk Critical Value 0.894 Data Not Normal at 1% Significance Level 1034 Lilliefors Test Statistic 0.308 Lilliefors GOF Test 1035 1% Lilliefors Critical Value 0.194 Data Not Normal at 1% Significance Level 1036 Data Not Normal at 1% Significance Level Data Not Normal at 1% Significance Level 1037 Data Not Normal Distribution 1038 Assuming Normal Distribution 1039 90% Normal UCL 90% Adjusted for Skewness) 1040 90% Student's-t UCL 0.277 90% Modified-t UCL (Johnson-1978) 1042 1042 90% Modified-t UCL (Johnson-1978) 1043 Gamma GOF Test 1044 A-D Test Statistic 1.262 1045 5% A-D Critical Value 0.803 1046 K-S Test Statistic 0.209 1047 5% K-S Critical Value 0.177 1048 Data Not Gamma Distributed at 5% Significance Level 1049 0 0.177 1049 Data Not Gamma Statistics 1.050 1051 K hat (MLE) 0.342 K hat (bias corrected MLE)				Charing Wills Tagt Statistic	
1034 Lilliefors Test Statistic 0.308 Lilliefors GOF Test 1035 1% Lilliefors Critical Value 0.194 Data Not Normal at 1% Significance Level 1036 Data Not Normal at 1% Significance Level 0.194 Data Not Normal at 1% Significance Level 1037 Assuming Normal Distribution 1038 00% Normal UCL 90% UCLs (Adjusted for Skewness) 1040 90% Student's-t UCL 0.277 90% Adjusted-CLT UCL (Chen-1995) 1041 1041 90% Modified-t UCL (Johnson-1978) 90% Modified-t UCL (Johnson-1978) 1042 1043 Gamma GOF Test 1.262 Anderson-Darling Gamma GOF Test 1044 A-D Test Statistic 1.262 Anderson-Darling Gamma GOF Test 1045 5% A-D Critical Value 0.803 Data Not Gamma Distributed at 5% Significance Level 1045 5% K-S Critical Value 0.177 Data Not Gamma Distributed at 5% Significance Level 1048 Data Not Gamma Distributed at 5% Significance Level 1049 1050 Gamma Statistics 1054 K hat (MLE) 0.548 K star (bias corrected MLE) 1053 nu star (bias corrected MLE) 1054 Nu star (bias corrected MLE) 1053 Nu					
1035 1% Lilliefors Critical Value 0.194 Data Not Normal at 1% Significance Level 1036 Data Not Normal at 1% Significance Level 1037 1037					
I036 Data Not Normal at 1% Significance Level 1037 Assuming Normal Distribution 1038 90% Normal UCL 90% UCLs (Adjusted for Skewness) 1040 90% Student's-t UCL 0.277 90% Adjusted-CLT UCL (Chen-1995) 1041 90% Modified-t UCL (Johnson-1978) 90% Modified-t UCL (Johnson-1978) 1042 90% Modified-t UCL (Johnson-1978) 90% Adjusted-CLT UCL (Johnson-1978) 1043 Gamma GOF Test 1044 1044 A-D Test Statistic 1.262 Anderson-Darling Gamma GOF Test 1045 5% A-D Critical Value 0.803 Data Not Gamma Distributed at 5% Significance Level 1046 K-S Test Statistic 0.209 Kolmogorov-Smirnov Gamma GOF Test 1047 5% K-S Critical Value 0.177 Data Not Gamma Distributed at 5% Significance Level 1048 Data Not Gamma Distributed at 5% Significance Level 1049 1050 Gamma Statistics 1050 Gamma Statistics 1051 k hat (MLE) 0.342 Theta star (bias corrected MLE) 1052 Theta hat (MLE) 0.342 Theta star (bias corrected MLE) 1054					
1037 Assuming Normal Distribution 1038 90% Normal UCL 90% UCLs (Adjusted for Skewness) 1040 90% Student's-t UCL 0.277 90% Adjusted-CLT UCL (Chen-1995) 1041 90% Modified-t UCL (Johnson-1978) 90% Modified-t UCL (Johnson-1978) 1042 90% Modified-t UCL (Johnson-1978) 90% Modified-t UCL (Johnson-1978) 1043 Gamma GOF Test 1044 A-D Test Statistic 1.262 Anderson-Darling Gamma GOF Test 1045 5% A-D Critical Value 0.803 Data Not Gamma Distributed at 5% Significance Level 1046 K-S Test Statistic 0.209 Kolmogorov-Smirnov Gamma GOF Test 1047 5% K-S Critical Value 0.177 Data Not Gamma Distributed at 5% Significance Level 1048 Data Not Gamma Distributed at 5% Significance Level 0.104 0.104 1050 Gamma Statistics 1050 1051 k hat (MLE) 0.548 k star (bias corrected MLE) 1053 1044 (MLE) 10.342 Theta star (bias corrected MLE) 1053 1044 (MLE) 1057 MLE Sd (bias corrected) 1054 MLE Mean (bias corrected) 1057<					
1038 Assuming Normal Distribution 1039 90% Normal UCL 90% UCLs (Adjusted for Skewness) 1040 90% Student's-t UCL 0.277 90% Adjusted-CLT UCL (Chen-1995) 1041 90% Modified-t UCL (Johnson-1978) 90% Modified-t UCL (Johnson-1978) 1042 90% Modified-t UCL (Johnson-1978) 90% Modified-t UCL (Johnson-1978) 1042 90% Modified-t UCL (Johnson-1978) 90% Adjusted-CLT UCL (Johnson-1978) 1044 A-D Test Statistic 1.262 Anderson-Darling Gamma GOF Test 1045 5% A-D Critical Value 0.803 Data Not Gamma Distributed at 5% Significance Level 1046 K-S Test Statistic 0.209 Kolmogorov-Smirnov Gamma GOF Test 1047 5% K-S Critical Value 0.177 Data Not Gamma Distributed at 5% Significance Level 1048 Data Not Gamma Distributed at 5% Significance Level 0.177 Data Not Gamma GOF Test 1050 Gamma Statistics 1051 k hat (MLE) 0.548 k star (bias corrected MLE) 1052 Theta hat (MLE) 0.342 Theta star (bias corrected MLE) 1053 1054 MLE Mean (bias corrected) <td></td> <td></td> <td></td> <td></td> <td></td>					
1040 90% Student's-t UCL 0.277 90% Adjusted-CLT UCL (Chen-1995) 1041 90% Modified-t UCL (Johnson-1978) 90% Modified-t UCL (Johnson-1978) 1042 90% Modified-t UCL (Johnson-1978) 90% Adjusted-CLT UCL (Chen-1995) 1042 90% Modified-t UCL (Johnson-1978) 90% Adjusted-CLT UCL (Chen-1995) 1042 90% Modified-t UCL (Johnson-1978) 90% Adjusted-CLT UCL (Chen-1995) 1043 Gamma GOF Test 90% Adjusted-CLT UCL (Johnson-1978) 1044 A-D Test Statistic 1.262 Anderson-Darling Gamma GOF Test 1045 5% A-D Critical Value 0.803 Data Not Gamma Distributed at 5% Significance Level 1046 K-S Test Statistic 0.209 Kolmogorov-Smirnov Gamma GOF Test 1047 5% K-S Critical Value 0.177 Data Not Gamma Distributed at 5% Significance Level 1048 Data Not Gamma Distributed at 5% Significance Level 1049 1050 Gamma Statistics 1051 k hat (MLE) 0.548 k star (bias corrected MLE) 1052 Theta hat (MLE) 0.342 Theta star (bias corrected MLE) 1053 nu hat (MLE)		Distribution	uming Norr		
1041 90% Modified-t UCL (Johnson-1978) 1042 1043 044 A-D Test Statistic 1045 5% A-D Critical Value 0.803 1046 K-S Test Statistic 0.209 1047 5% K-S Critical Value 0.177 1048 Data Not Gamma Distributed at 5% Significance Level 1049 0.177 Data Not Gamma Distributed at 5% Significance Level 1048 Data Not Gamma Distributed at 5% Significance Level 1049 Gamma Statistics 1050 Gamma Statistics 1051 k hat (MLE) 0.548 k star (bias corrected MLE) 1052 Theta hat (MLE) 0.342 Theta star (bias corrected MLE) 1053 nu hat (MLE) 29.58 nu star (bias corrected) 1054 MLE Mean (bias corrected) 0.187 MLE Sd (bias corrected)		90% UCLs (Adjusted for Skewness)		90% Normal UCL	
Idea Gamma GOF Test Idea A-D Test Statistic 1.262 Anderson-Darling Gamma GOF Test Ide4 A-D Test Statistic 1.262 Anderson-Darling Gamma GOF Test Ide5 5% A-D Critical Value 0.803 Data Not Gamma Distributed at 5% Significance Level Ide6 K-S Test Statistic 0.209 Kolmogorov-Smirnov Gamma GOF Test Ide7 5% K-S Critical Value 0.177 Data Not Gamma Distributed at 5% Significance Level Ide8 Data Not Gamma Distributed at 5% Significance Level 0.177 Data Not Gamma Distributed at 5% Significance Level Ide9 Gamma Statistics 0.177 Data Not Gamma Distributed at 5% Significance Level Ide9 Gamma Statistics K star (bias corrected MLE) 0.548 Ide5 K hat (MLE) 0.548 K star (bias corrected MLE) Ide5 Theta hat (MLE) 0.342 Theta star (bias corrected MLE) Ide5 MLE Mean (bias corrected) 0.187 MLE Sd (bias corrected) Ide5 Approximate Chi Square Value (0.1) Approximate Chi Square Value (0.1)	0.309		0.277		
Gamma GOF Test1043A-D Test Statistic1.262Anderson-Darling Gamma GOF Test10455% A-D Critical Value0.803Data Not Gamma Distributed at 5% Significance Level1046K-S Test Statistic0.209Kolmogorov-Smirnov Gamma GOF Test10475% K-S Critical Value0.177Data Not Gamma Distributed at 5% Significance Level1048Data Not Gamma Distributed at 5% Significance Level0.177Data Not Gamma Distributed at 5% Significance Level10490Camma Statistics0.177Data Not Gamma Distributed at 5% Significance Level1050K hat (MLE)0.548k star (bias corrected MLE)10531051MLE Mean (bias corrected)0.187MLE Sd (bias corrected)1055MLE Mean (bias corrected)0.187Approximate Chi Square Value (0.1)	0.285	90% Modified-t UCL (Johnson-1978)			
1044A-D Test Statistic1.262Anderson-Darling Gamma GOF Test10455% A-D Critical Value0.803Data Not Gamma Distributed at 5% Significance Level1046K-S Test Statistic0.209Kolmogorov-Smirnov Gamma GOF Test10475% K-S Critical Value0.177Data Not Gamma Distributed at 5% Significance Level1048Data Not Gamma Distributed at 5% Significance Level0.177Data Not Gamma Distributed at 5% Significance Level10490.1050Gamma Statistics0.548k star (bias corrected MLE)1052Theta hat (MLE)0.342Theta star (bias corrected MLE)1053nu hat (MLE)29.58nu star (bias corrected)1054MLE Mean (bias corrected)0.187MLE Sd (bias corrected)1055Approximate Chi Square Value (0.1)					
10455% A-D Critical Value0.803Data Not Gamma Distributed at 5% Significance Level1046K-S Test Statistic0.209Kolmogorov-Smirnov Gamma GOF Test10475% K-S Critical Value0.177Data Not Gamma Distributed at 5% Significance Level1048Data Not Gamma Distributed at 5% Significance Level0.177Data Not Gamma Distributed at 5% Significance Level10490.177Data Not Gamma Statistics1050Gamma Statistics1051k hat (MLE)0.548k star (bias corrected MLE)1052Theta hat (MLE)0.342Theta star (bias corrected MLE)1053nu hat (MLE)29.58nu star (bias corrected)1054MLE Mean (bias corrected)0.187MLE Sd (bias corrected)1055MLE Sd (bias corrected)0.187Approximate Chi Square Value (0.1)					
1046K-S Test Statistic0.209Kolmogorov-Smirnov Gamma GOF Test10475% K-S Critical Value0.177Data Not Gamma Distributed at 5% Significance Level1048Data Not Gamma Distributed at 5% Significance Level104910501051k hat (MLE)0.5481052Theta hat (MLE)0.3421053nu hat (MLE)29.581054MLE Mean (bias corrected)0.1871055MLE Sd (bias corrected)0.187					
10475% K-S Critical Value0.177Data Not Gamma Distributed at 5% Significance Level1048Data Not Gamma Distributed at 5% Significance Level10491050051K hat (MLE)0.548K star (bias corrected MLE)1052Theta hat (MLE)0.342Theta star (bias corrected MLE)1053nu hat (MLE)29.58nu star (bias corrected)1054MLE Mean (bias corrected)0.187MLE Sd (bias corrected)1055	/el				
Oter Mot Gamma Distributed at 5% Significance Level 1049 1050 1051 1051 1052 Theta hat (MLE) 1053 1054 1055 1054 1055 1056 1057 1058 1059 1054 1055					
I049 Gamma Statistics I050 Gamma Statistics 1051 k hat (MLE) 0.548 k star (bias corrected MLE) 1052 Theta hat (MLE) 0.342 Theta star (bias corrected MLE) 1053 nu hat (MLE) 29.58 nu star (bias corrected) 1054 MLE Mean (bias corrected) 0.187 MLE Sd (bias corrected) 1055	/81				
Gamma Statistics1050k hat (MLE)0.548k star (bias corrected MLE)1052Theta hat (MLE)0.342Theta star (bias corrected MLE)1053nu hat (MLE)29.58nu star (bias corrected)1054MLE Mean (bias corrected)0.187MLE Sd (bias corrected)1055Approximate Chi Square Value (0.1)					
1051k hat (MLE)0.548k star (bias corrected MLE)1052Theta hat (MLE)0.342Theta star (bias corrected MLE)1053nu hat (MLE)29.58nu star (bias corrected)1054MLE Mean (bias corrected)0.187MLE Sd (bias corrected)1055Approximate Chi Square Value (0.1)			Gamma		
1052Theta hat (MLE)0.342Theta star (bias corrected MLE)1053nu hat (MLE)29.58nu star (bias corrected)1054MLE Mean (bias corrected)0.187MLE Sd (bias corrected)1055Approximate Chi Square Value (0.1)		istics			
1053 nu hat (MLE) 29.58 nu star (bias corrected) 1054 MLE Mean (bias corrected) 0.187 MLE Sd (bias corrected) 1055 Approximate Chi Square Value (0.1)	0.512			k hat (MLE)	1051
1054 MLE Mean (bias corrected) 0.187 MLE Sd (bias corrected) 1055 Approximate Chi Square Value (0.1)		k star (bias corrected MLE)	0.548		
1055 Approximate Chi Square Value (0.1)	0.366	k star (bias corrected MLE) Theta star (bias corrected MLE)	0.548 0.342	Theta hat (MLE)	1052
		k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.548 0.342 29.58	Theta hat (MLE) nu hat (MLE)	1052 1053
1056 Adjusted Level of Significance 0.089 Adjusted Chi Square Value	0.366 27.63 0.262	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	0.548 0.342 29.58	Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected)	1052 1053 1054

1	A B C D E	F	G H I J K	L
1057				
1058			ma Distribution	0.000
1059 1060	**	0.278	90% Adjusted Gamma UCL	0.283
1060		Lognorma	GOF Test	
1062	Shapiro Wilk Test Statistic	0.875	Shapiro Wilk Lognormal GOF Test	
1063		0.935	Data Not Lognormal at 10% Significance Level	
1064	Lilliefors Test Statistic	0.239	Lilliefors Lognormal GOF Test	
1065		0.153	Data Not Lognormal at 10% Significance Level 10% Significance Level	
1066 1067		Synormal at		
1068		Lognorma	I Statistics	
1069		-4.605	Mean of logged Data	-2.819
1070	Maximum of Logged Data	0.56	SD of logged Data	1.595
1071	A	ming Logna		
1072 1073		0.463	rmal Distribution 90% Chebyshev (MVUE) UCL	0.419
1073		0.521	97.5% Chebyshev (MVUE) UCL	0.662
1075		0.94		
1076				
1077	· · · · ·		tion Free UCL Statistics	
1078		ot follow a D	iscernible Distribution	
1079 1080		ametric Dist	tribution Free UCLs	
1080	90% CLT UCL	0.275	90% BCA Bootstrap UCL	0.328
1082	90% Standard Bootstrap UCL	0.273	90% Bootstrap-t UCL	0.389
1083	90% Hall's Bootstrap UCL	0.708	90% Percentile Bootstrap UCL	0.278
1084	90% Chebyshev(Mean, Sd) UCL	0.392	95% Chebyshev(Mean, Sd) UCL	0.484
1085		0.613	99% Chebyshev(Mean, Sd) UCL	0.865
1086 1087		Suggested	UCL to Use	
	ecommendation Provided only for 95% Confidence Coefficient	ouggoolou		
1089	-			
1090	The calculated UCLs are based on assumpt		e data were collected in a random and unbiased manner.	
1091	The calculated UCLs are based on assumpt Please verify the c	lata were co	llected from random locations.	
1091 1092	The calculated UCLs are based on assumpt Please verify the c If the data were collected	lata were co I using judgr	llected from random locations. nental or other non-random methods,	
1091 1092 1093	The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a	lata were co I using judgr	llected from random locations.	
1091 1092	The calculated UCLs are based on assumpt Please verify the o If the data were collected then contact a	lata were co I using judgr	llected from random locations. nental or other non-random methods,	
1091 1092 1093 1094 1095	The calculated UCLs are based on assumpt Please verify the o If the data were collected then contact a	lata were co I using judgr	llected from random locations. nental or other non-random methods,	
1091 1092 1093 1094 1095 1096 1097	The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Result (west parcel - d/f teq [µg/kg])	lata were co I using judgr statistician t	llected from random locations. nental or other non-random methods, o correctly calculate UCLs.	
1091 1092 1093 1094 1095 1096 1097 1098	The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Result (west parcel - d/f teq [µg/kg])	lata were co I using judgr statistician t General	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics	18
1091 1092 1093 1094 1095 1096 1097 1098 1099	The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations	lata were co I using judgr statistician t	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Number of Distinct Observations	18 0
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100	The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations	lata were co I using judgr statistician t General	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics	18 0 8.185
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102	The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum	lata were co l using judgr statistician t General 27 1.4 26.29	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Number of Distinct Observations Number of Missing Observations Mean Median	0 8.185 6.954
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103	The calculated UCLs are based on assumpt Please verify the o If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD	lata were co l using judgr statistician t General 27 1.4 26.29 7.59	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	0 8.185 6.954 1.461
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104	The calculated UCLs are based on assumpt Please verify the o If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation	lata were co l using judgr statistician t General 27 1.4 26.29	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Number of Distinct Observations Number of Missing Observations Mean Median	0 8.185 6.954
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105	The calculated UCLs are based on assumpt Please verify the o If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation	lata were co l using judgr statistician t General 27 1.4 26.29 7.59 0.927	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 8.185 6.954 1.461
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106	The calculated UCLs are based on assumpt Please verify the o If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation	lata were co l using judgr statistician t General 27 1.4 26.29 7.59 0.927	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test	0 8.185 6.954 1.461
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105	The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation	lata were co l using judgr statistician t General 27 1.4 26.29 7.59 0.927 Normal C	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 8.185 6.954 1.461
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109	The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic	lata were co l using judgr statistician t General 27 1.4 26.29 7.59 0.927 Normal C 0.839 0.894 0.186	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Correct Data Not Normal at 1% Significance Level Lilliefors GOF Test	0 8.185 6.954 1.461
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110	The calculated UCLs are based on assumpt Please verify the o If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value	lata were co l using judgr statistician t General 27 1.4 26.29 7.59 0.927 Normal (0.839 0.894 0.186 0.194	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Correct Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level	0 8.185 6.954 1.461
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1110	The calculated UCLs are based on assumpt Please verify the o If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App	lata were co l using judgr statistician t General 27 1.4 26.29 7.59 0.927 Normal (0.839 0.894 0.186 0.194	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Correct Data Not Normal at 1% Significance Level Lilliefors GOF Test	0 8.185 6.954 1.461
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112	The calculated UCLs are based on assumpt Please verify the o If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear Appr	Iata were co I using judgr statistician t General 27 1.4 26.29 7.59 0.927 Normal (0.839 0.894 0.186 0.194 roximate No	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Charlen Shapiro Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level	0 8.185 6.954 1.461
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1111 1112 1113	The calculated UCLs are based on assumpt Please verify the o If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App	Iata were co I using judgr statistician t General 27 1.4 26.29 7.59 0.927 Normal (0.839 0.894 0.186 0.194 roximate No	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Correct Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level	0 8.185 6.954 1.461
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112	The calculated UCLs are based on assumpt Please verify the o If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App	Iata were co I using judgr statistician t General 27 1.4 26.29 7.59 0.927 Normal (0.839 0.894 0.186 0.194 roximate No	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Chapter Wilk GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level mal Distribution	0 8.185 6.954 1.461
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116	The calculated UCLs are based on assumpt Please verify the o If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App As 90% Normal UCL 90% Student's-t UCL	lata were co l using judgr statistician t 27 1.4 26.29 7.59 0.927 Normal C 0.839 0.894 0.186 0.194 roximate No	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness Std. Error of Mean Skewness Std. Error of Mean Skewness Std. Error of Mean Skewness COF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level mal Distribution 90% UCLs (Adjusted for Skewness)	0 8.185 6.954 1.461 1.003
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117	The calculated UCLs are based on assumpt Please verify the o If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App As: 90% Normal UCL 90% Student's-t UCL	lata were co l using judgr statistician t 27 1.4 26.29 7.59 0.927 Normal C 0.839 0.894 0.186 0.194 roximate No suming Norr	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Stewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level mal Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978)	0 8.185 6.954 1.461 1.003
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118	The calculated UCLs are based on assumpt Please verify the o If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App As: 90% Normal UCL 90% Student's-t UCL	lata were co l using judgr statistician t General 27 1.4 26.29 7.59 0.927 Normal (0.839 0.894 0.186 0.194 roximate No suming Norr 10.11	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level rmal at 1% Significance Level mal Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) GOF Test	0 8.185 6.954 1.461 1.003
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119	The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App As 90% Normal UCL 90% Student's-t UCL	Iata were coll I using judgr statistician t General 27 1.4 26.29 7.59 0.927 Normal (0000) 0.839 0.894 0.186 0.194 roximate No suming Norr 10.11 Gamma (01.433)	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness AOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level mal Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) GOF Test CaOF Test	0 8.185 6.954 1.461 1.003 10.03 10.26 10.15
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120	The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App As 90% Normal UCL 90% Student's-t UCL	Iata were col using judgr statistician t General 27 1.4 26.29 7.59 0.927 Normal (0.839 0.839 0.894 0.186 0.194 roximate No suming Norr 10.11 Gamma (1.433 0.771	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Std. Error of Mean Std. Error of Mean Skewness AOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level mal at 1% Significance Level mal Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Adjusted-CLT UCL (Johnson-1978) SGOF Test CaOF Test Anderson-Darling Gamma GOF Test Data Not Gamma Distributed at 5% Significance Level	0 8.185 6.954 1.461 1.003 10.03 10.26 10.15
10911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119	The calculated UCLs are based on assumpt Please verify the c If the data were collected then contact a Result (west parcel - d/f teq [µg/kg]) Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 1% Shapiro Wilk Test Statistic 1% Shapiro Wilk Critical Value Lilliefors Test Statistic 1% Lilliefors Critical Value Data appear App As 90% Normal UCL 90% Student's-t UCL 90% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	Iata were coll I using judgr statistician t General 27 1.4 26.29 7.59 0.927 Normal (0000) 0.839 0.894 0.186 0.194 roximate No suming Norr 10.11 Gamma (01.433)	Ilected from random locations. nental or other non-random methods, o correctly calculate UCLs. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness AOF Test Data Not Normal at 1% Significance Level Lilliefors GOF Test Data appear Normal at 1% Significance Level mal Distribution 90% UCLs (Adjusted for Skewness) 90% Adjusted-CLT UCL (Chen-1995) 90% Modified-t UCL (Johnson-1978) GOF Test CaOF Test	0 8.185 6.954 1.461 1.003 10.03

	А	В	С	D	E	F	G	Н	I	J	K	L
1123				Da	ta Not Gamr	na Distribute	ed at 5% Sig	nificance Le	vel	•		
1124												
1125						Gamma	Statistics					
1126					k hat (MLE)	1.108			k :	star (bias cor	rected MLE)	1.009
1127												8.11
1128												54.5
1129												8.147
1130												41.62
1131											41.05	
1132												
1133						-	ma Distribut	tion				
1134			90% A	pproximate C	Gamma UCL	10.72			90	% Adjusted C	Gamma UCL	10.87
1135												
1136						-	GOF Test					
1137				hapiro Wilk T		0.836				normal GOF		
1138												
1139												
1140			10	% Lilliefors C		0.153	400/ 01		ognormal at	10% Signific	ance Level	
1141												
1142						Lognormo	l Otatiatica					
1143				Minimum of L	annad Data	0.336	I Statistics			Maan of	logged Data	1.587
1144				Aaximum of L		3.269		1.587				
1145 1146			ľ		ogged Data	3.209				50.01	logged Data	1.105
1146					Δεει	imina Loano	ormal Distrib	ution				
1147					90% H-UCL	13.78		uuon	90%	Chebyshev (I		15.16
1140			95%	Chebyshev (I		18.09				Chebyshev (I		22.16
1150				Chebyshev (I	,	30.14			07.070		WIVOL) 00L	22.10
1151			0070			00.14						
1152					Nonparame	tric Distribu	tion Free UC	L Statistics				
1153							Discernible					
1154												
1155					Nonpar	ametric Dist	tribution Free	e UCLs				
1156				90	% CLT UCL	10.06		-		90% BCA Bo	otstrap UCL	9.99
1157			90%	Standard Bo		9.959					tstrap-t UCL	10.24
1158									10.01			
1159								14.55				
1160				ebyshev(Mea		17.31				ebyshev(Me		22.72
1161					·						·	
1162						Suggested	UCL to Use					
1163	ecommendat	tion Provide	d only for 95°	% Confidence	e Coefficient							
1164												

Appendix B

Preliminary Evaluation of Cap Requirements

This appendix presents the preliminary development of the cap thicknesses needed to address residual ecological risk.

Step 1: Identify DUs with Residual Hazard Index Less Than One. Table B-1 presents residual COC concentrations following the proposed excavation to address hot spots and human health risk. CULs for each ecological receptor are listed in the table. Table B-2 summarizes the screening of residual COC data against ecological CULs, listing the maximum residual hazard quotient (HQ) and the residual hazard index (HI). The following DUs have residual HI values of less than 1 and require no cap.

Decision Units with No Cap Requirements
DU-39
DU-40
DU-43
DU-44

These DUs will be restored as shown on Detail A of Figure 12. There are no long-term inspection or maintenance requirements for remedial action of these DUs.

Step 2: Identify DUs with a Residual Hazard Quotient Equal to or Greater Than Ten. Table B-2 lists the maximum residual HQ for each DU. The following DUs have residual HQ values of 10 or greater and require an enhanced cap.

Decision Units with Enhanced Cap Requirements							
DU-6							
DU-30							

In addition, eleven decision units have a proposed excavation depth of 3 feet so have no residual data. The hazard quotient in Layer 3 of these DUs was greater than 10.

The initial cap design for these 13 DUs is shown on Detail C of Figure 12. These DUs will require long-term inspection and maintenance.

Step 3: Determine Cap Thicknesses for Residual Hazard Index Greater Than One and a Maximum Residual Hazard Quotient Less Than Ten. Standard cap thickness will be established such that, if the top 3 feet of soil is thoroughly mixed, the resulting COC concentrations will result in an HI of less than 1 for each ecological receptor. Preliminary cap thicknesses were determined using the residual data in Table B-1 and the following procedure.

• Assuming 1 foot of soil cap, calculate the final COC concentrations after mixing with the underlying soil to a total depth of 3 feet. Input concentrations for the clean soil cap were estimated from the

COC concentrations for soil beneath the East Parcel concrete pads. Input concentrations for the underlying soil were obtained from the residual RDI data. For DUs where the planned excavation is 3 feet, Layer 3 residual concentrations were used for the input data.

- Calculate the hazard index for each ecological receptor.
- Repeat for soil cap thicknesses of 1.5, 2.0, and 2.5 feet.
- For each DU, select the soil cap thickness that results in the HI less than 1 for each receptor.

Table B-3 summarizes the resultant HIs for the range of potential cap thicknesses for DUs targeted for a standard cap (Detail B on Figure 12). The table identifies the proposed cap thicknesses based on the thinnest cap that results in the HIs less than 1. Except for DU-24 (2 feet) and DU-37 (1 foot), proposed cap thicknesses range from 2.5 to 3.0 feet.

a 1	D · · ·	a 1	Sample								C	oncentration	in mg/kg						
Sample Location	Decision Unit	Sample Type	Depth (feet bgs)	Sample ID	Antimony	Arsenic	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Zinc	Dioxin/Furan TEQ	Dibenzofuran	Total HPAH	Total LPAH	cPAHs	Total PCBs
				SM Background		8.8	39	24	27	0.073	23.4	0.33	105						
			Compos	site Background	0.56	8.8	76	34	79	0.23	47	0.71	180						
- <i>i</i>	a (Plant RBC	5	18	1.0	70	120	0.30	38	0.52	160			10			40
Referer	ice Concentr	ations	l In	ivertebrate RBC	78	F7F	0.4	80	1700	0.10	280	4.10	120	0.005.05		18	29		0 704
				Bird RBC Mammal RBC	2.70	575 83	87.0 342	88 82	33 122	0.015 3.53	139 20	3.42 1.1	673 201	8.90E-05 6.10E-06	0.01	5.6	100		0.734 0.098
				Cap Material ¹														0.01	
			0.1		0.53	3.1	14	18	5	0.042	18	0.54	55	1.40E-06	0.005	0.1	0.08	0.01	0.005
	DU-1	ISM	0-1 1-2	DU-1 (0-1) DU-1 (1-2)	0.801 0.712	6.24 5.41	37.4 41.3	180 64.6	74.8 321	0.0696 0.0863	27.1 30.9	0.514 0.516	151 140	2.21E-05 2.56E-05	0.0078 0.0102	2.6600 2.6200	0.3370 0.4240	0.4460 0.4000	0.4270 2.7500
	D0-1	10101	2-3	DU-1 (1-2) DU-1 (2-3)	0.712	5.79	29.5	69.5	57.5	0.0803	25.0	0.510	140	1.07E-05	0.0102	2.0200	0.4240	0.4000	0.1100
			0-1	DU-2 (0-1)	0.603	5.41	23.5	119	96.2	0.0731	18.9	0.505	99.4	6.95E-06	0.0040	1.0200	0.2000	0.3260	0.1860
	DU-2	ISM	1-2	DU-2 (0-1) DU-2 (1-2)	0.515	5.36	21.0	170	118	0.124	16.4	0.515	88.8	0.33E-00 3.44E-06	0.0031	0.7920	0.1270	0.1030	0.5580
	002	10111	2-3	DU-2 (2-3)	0.495	5.21	15.5	41.9	24.4	0.0607	14.7	0.495	78	2.42E-06	0.0050	0.2230	0.0275	0.0319	0.0299
F			0-1	DU-3 (0-1)	0.547	6.87	16.2	26.8	20.1	0.0438	16.3	0.547	80.4	2.63E-05	0.0048	0.9760	0.1210	0.1530	0.0250
	DU-3	ISM	1-2	DU-3 (1-2)	0.497	6.65	16.5	25.8	15.8	0.0455	17.1	0.497	72.2	7.82E-06	0.0051	0.9840	0.1210	0.1290	0.0050
			2-3	DU-3 (2-3)	0.536	6.65	15.7	21.6	13.5	0.0497	16.0	0.536	64.7	4.57E-06	0.0050	0.7450	0.1140	0.1030	0.0048
			0-1	DU-4 (0-1)	0.565	6.57	16.3	29.1	23.7	0.0746	23.9	0.565	89.4	2.09E-05	0.0057	2.5200	0.3290	0.4280	0.0317
	DU-4	ISM	1-2	DU-4 (1-2)	0.515	6.87	16.3	26.6	23.9	0.0596	24.6	0.515	79.4	1.66E-05	0.0334	11.9000	3.5400	1.7500	0.0245
			2-3	DU-4 (2-3)	0.502	7.63	18.4	34	45.1	0.076	22.4	0.502	115	1.47E-05	0.0094	4.6500	0.6340	0.7670	0.0351
			0-1	DU-5 (0-1)	0.992	8.98	52.3	344	62.1	0.352	32.6	0.369	211	1.71E-05	0.0073	1.4000	0.1860	0.2420	0.1770
West Parcel	DU-5	ISM	1-2	DU-5 (1-2)	0.832	8.09	42.9	237	70.5	0.369	58.9	0.335	179	1.53E-05	0.0061	1.1600	0.1550	0.1990	0.1430
			2-3	DU-5 (2-3)	0.596	6.73	47.1	214	118	0.273	31.3	0.309	224	2.33E-05	0.0099	2.8800	0.5470	0.4080	0.3870
			0-1	DU-6 (0-1)	0.539	4.93	22.1	67.6	28.2	0.128	19.6	0.539	135	1.04E-05	0.0052	1.1000	0.1200	0.1880	0.0625
	DU-6	ISM	1-2	DU-6 (1-2)	0.56	4.89	25.2	91.6	40	0.156	21.8	0.56	124	2.51E-05	0.0090	1.2900	0.1910	0.2040	0.1110
			2-3	DU-6 (2-3)	0.526	4.67	23.2	100	37.8	0.141	22.0	0.526	112	1.14E-05	0.0110	1.4300	0.2160	0.2260	0.1670
			0-1	DU-7 (0-1)	0.537	4.37	19.2	36	23.3	0.304	19.3	0.537	126	1.74E-05	0.0051	0.7510	0.0885	0.1270	0.0527
	DU-7	ISM	1-2	DU-7 (1-2)	0.547	3.98	18.6	30.1	18.7	0.13	19.7	0.547	92.7	1.24E-05	0.0050	0.4400	0.0705	0.0711	0.0567
			2-3	DU-7 (2-3)	0.536	3.07	16.2	24.2	14.9	0.0927	19.1	0.536	75.1	8.17E-06	0.0050	0.3160	0.0497	0.0478	0.0502
			0-1	DU-8 (0-1)	0.56	4.33	21.7	32.5	39.1	0.154	19.6	0.56	144	2.36E-05	0.0055	0.7550	0.1140	0.1210	0.0989
	DU-8	ISM	1-2	DU-8 (1-2)	0.501	4.13	24.6	32.9	31.4	0.164	19.7	0.501	130	2.46E-05	0.0055	0.4940	0.1010	0.0731	0.0678
			2-3	DU-8 (2-3)	0.545	4.13	21.9	32	31	0.156	20.7	0.545	126	2.34E-05	0.0062	0.5890	0.1200	0.0847	0.0984
	DU-9	ISM	0-1	DU-9 (0-1)	0.623	5.25	30.6 27.8	40.6	28.2	0.16	26.5	0.506	154	1.78E-05	0.0057	1.1200	0.1600	0.1890	0.0640
	D0-9	ISIVI	1-2 2-3	DU-9 (1-2)	0.555	4.81 5.12	27.8	34.6 37.4	40.7	0.141	24.4 26.2	0.555	115 122	1.28E-05 1.23E-05	0.0048 0.0080	0.4770 1.1600	0.0753 0.1990	0.0771 0.1800	0.0353 0.0478
		nd of the te		DU-9 (2-3)	0.512	5.12	31	37.4	21.5	0.141	20.Z	0.512	IZZ	1.235-03	0.0000	1.1000	0.1990	0.1000	0.0470

<u> </u>	.	a 1	Sample								C	oncentration	in mg/kg						
Sample Location	Decision Unit	Sample Type	Depth (feet bgs)	Sample ID	Antimony	Arsenic	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Zinc	Dioxin/Furan TEQ	Dibenzofuran	Total HPAH	Total LPAH	cPAHs	Total PCBs
				SM Background		8.8	39	24	27	0.073	23.4	0.33	105						
			Compos	site Background		8.8	76	34	79	0.23	47	0.71	180						l l
				Plant RBC	5	18	1.0	70	120	0.30	38	0.52	160						40
Referer	nce Concentr	ations	In	vertebrate RBC	78		0.4	80	1700	0.10	280	4.10	120			18	29		0 -0 /
				Bird RBC	0.70	575	87.0	88	33	0.015	139	3.42	673	8.90E-05	0.04	5.0	400		0.734
				Mammal RBC	2.70	83	342	82	122	3.53	20	1.1	201	6.10E-06	0.01	5.6	100		0.098
				Cap Material ¹	0.53	3.1	14	18	5	0.042	18	0.54	55	1.40E-06	0.005	0.1	0.08	0.01	0.005
			0-1	DU-10 (0-1)	0.541	4.5	14.8	33.3	86.5	1.07	29.9	0.541	106	1.73E-05	0.0235	29.4000	3.8500	5.1900	0.0337
	DU-10	ISM	1-2	DU-10 (1-2)	0.531	5.56	15.3	33.6	54.8	0.829	27.5	0.513	94.9	5.46E-06	0.0494	28.3000	6.5900	4.7000	0.0262
			2-3	DU-10 (2-3)	0.514	5.16	14.5	32.2	73.3	0.609	22.6	0.491	117	4.52E-06	0.0244	16.9000	3.3700	2.6000	0.0051
			0-1	DU-11 (0-1)	0.545	4.6	23.6	38.5	56.1	0.726	29.3	0.545	116	1.17E-05	0.0819	31.3000	9.3600	5.4000	0.0369
	DU-11	ISM	1-2	DU-11 (1-2)	0.535	4.15	22	37.3	49	0.633	28.2	0.535	99.5	5.21E-06	0.0486	15.1000	2.9800	2.6500	0.0372
			2-3	DU-11 (2-3)	0.526	4.23	22	35.2	43.3	0.604	26.4	0.526	95	5.89E-06	0.0613	30.2000	7.3500	5.1300	0.0389
			0-1	DU-12 (0-1)	0.83	4.95	14.8	78.9	165	0.292	19.8	0.504	166	2.54E-05	0.0070	2.4700	0.3520	0.3930	0.0532
	DU-12	ISM	1-2	DU-12 (1-2)	0.493	4.26	14	55.7	131	0.275	19	0.493	104	4.21E-06	0.0059	0.9970	0.1900	0.1430	0.0317
			2-3	DU-12 (2-3)	0.551	3.62	13.7	41	70.8	0.207	17.8	0.551	79.7	2.60E-06	0.0050	0.5840	0.1030	0.0900	0.0050
		_	0-1	DU-13 (0-1)	0.923	6.04	14.2	94.3	241	1.15	21.4	0.563	204	2.77E-04	0.0084	7.9300	0.4760	1.1700	0.0701
	DU-13	ISM	1-2	DU-13 (1-2)	0.54	4.79	13.8	53	154	0.785	18.6	0.54	128	3.62E-05	0.0155	3.0600	0.6760	0.4500	0.0272
			2-3	DU-13 (2-3)	0.562	4.04	12.6	54.2	175	0.769	18.4	0.562	127	2.66E-05	0.0052	1.6700	0.2480	0.2630	0.0330
Central			0-1	DU-14 (0-1)	2.81	6.14	22.9	73.5	134	1.33	24.3	0.514	147	7.87E-05	0.0229	0.9920	0.3010	0.1490	0.0283
Parcel	DU-14	ISM	1-2	DU-14 (1-2)	7.38	6.87	21.6	122	240	3.1	23.7	0.519	204	3.43E-05	0.0224	1.7000	0.4070	0.2570	0.0048
			2-3	DU-14 (2-3)	3.04	5.66	20.6	185	162	2.5	24.8	0.493	164	1.43E-05	0.0143	1.3200	0.2860	0.1950	0.0048
			0-1	DU-15 (0-1)	2.81	5.04	16	95.4	131	0.75	21.7	0.506	131	3.96E-04	0.0081	0.9590	0.1440	0.1380	0.0268
	DU-15	ISM	1-2	DU-15 (1-2)	0.576	3.75	14	57.7	68.6	1.28	19.3	0.517	120	2.00E-04	0.0049	0.3280	0.0668	0.0499	0.0048
			2-3	DU-15 (2-3)	0.492	2.91	11.2	36.2	63.6	0.563	17.6	0.492	76.8	1.50E-04	0.0049	0.6910	0.0868	0.1010	0.0048
		_	0-1	DU-16 (0-1)	4.29	8.31	26.6	131	306	5.12	28.1	0.543	371	2.44E-04	0.0776	3.2200	0.9680	0.4960	0.0346
	DU-16	ISM	1-2	DU-16 (1-2)	2.29	6.92	13.6	71.8	151	1.69	18.5	0.521	139	1.75E-05	0.0075	1.6300	0.2070	0.2460	0.0049
			2-3	DU-16 (2-3)	0.499	3.72	12.9	29.1	37.5	0.429	16.8	0.539	71.3	7.62E-06	0.0050	0.4170	0.0624	0.0569	0.0050
			0-1	DU-17 (0-1)	1.06	4.95	12.4	59.2	81.4	0.575	16.4	0.499	156	4.04E-05	0.0050	0.4280	0.0851	0.0634	0.0257
	DU-17	ISM	1-2	DU-17 (1-2)	0.511	3.72	11.8	34.3	62.5	0.356	16.3	0.511	70.6	3.43E-06	0.0050	0.3630	0.0859	0.0513	0.0050
			2-3	DU-17 (2-3)	0.504	3.16	11.1	26.8	35.1	0.121	14.6	0.504	58.4	7.81E-06	0.0050	0.2220	0.0348	0.0309	0.0049
			0-1	DU-18 (0-1)	1.41	10.9	22.8	111	280	1.72	23.5	0.531	204	6.68E-05	0.0069	1.8100	0.2630	0.2710	0.0435
	DU-18	ISM	1-2	DU-18 (1-2)	0.495	6.22	15.3	79.5	179	1.06	21.8	0.495	158	2.16E-05	0.0050	0.8940	0.1380	0.1380	0.0217
			2-3	DU-18 (2-3)	0.502	5.63	13.9	59.9	92.3	0.681	18.3	0.502	118	1.29E-05	0.0051	0.5870	0.0841	0.0862	0.0290

•	_		Sample								C	oncentration	in mg/kg						
Sample Location	Decision Unit	Sample Type	Depth (feet bgs)	Sample ID	Antimony	Arsenic	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Zinc	Dioxin/Furan TEQ	Dibenzofuran	Total HPAH	Total LPAH	cPAHs	Total PCBs
				SM Background		8.8	39	24	27	0.073	23.4	0.33	105						
			Compos	site Background		8.8	76	34	79	0.23	47	0.71	180						
				Plant RBC	5	18	1.0	70	120	0.30	38	0.52	160						40
Referer	nce Concentr	ations	In	vertebrate RBC	78	F 7 F	0.4	80	1700	0.10	280	4.10	120	0.005.05		18	29		0.704
				Bird RBC Mammal RBC	2.70	575 83	87.0 342	88 82	33 122	0.015 3.53	139 20	3.42 1.1	673 201	8.90E-05 6.10E-06	0.01	5.6	100		0.734 0.098
				Cap Material ¹														0.04	
	1	1	0.4		0.53	3.1	14	18	5	0.042	18	0.54	55	1.40E-06	0.005	0.1	0.08	0.01	0.005
			0-1	DU-19 (0-1)	1.39	7.67	13.2	107	257	0.666	16.5	0.541	215	1.34E-04	0.0121	2.3700	0.3430	0.4030	0.1440
	DU-19	ISM	1-2	DU-19 (1-2)	0.957	11.2	12	110	161	1.08 0.327	15.5	0.555	198	8.48E-05	0.0174	1.8200	0.3840	0.2700	0.0311
			2-3 0-1	DU-19 (2-3) DU-20 (0-1)	0.926	5.68 5.69	11.2 19.6	44.9 58.4	70.8 76.2	0.327	15.5 22.7	0.497 0.517	113 117	4.66E-05	0.0051	0.5140	0.0627	0.0790	0.0568
	DU-20	ISM	1-2	DU-20 (0-1) DU-20 (1-2)	0.536	4.08	19.6	25.8	17.7	0.314	22.7	0.517	87.3	3.49E-05 4.30E-06	0.0048 0.0049	0.8920 0.0881	0.0970 0.0236	0.1450 0.0132	0.0390
	D0-20	10101	2-3	DU-20 (1-2) DU-20 (2-3)	0.530	4.08 3.68	16.7	23.0	14.3	0.130	20.4 21.1	0.530	90.4	4.30E-00 3.97E-06	0.0049	0.0881	0.0230	0.0132	0.0050
-			0-1	DU-20 (2-3) DU-21 (0-1)	2.73	10.5	14.8	128	295	0.776	20.3	0.493	242	0.000070304	0.0047	2.0900	0.0247	0.0193	0.0050
	DU-21	ISM	1-2	DU-21 (0-1) DU-21 (1-2)	1.01	4.93	14.0	56.2	116	0.276	17.7	0.433	180	2.05915E-05	0.0074	1.0500	0.4040	0.3140	0.0492
	0021	10111	2-3	DU-21 (2-3)	0.497	4.48	11.6	45.9	89.7	0.154	18	0.5	100	1.00546E-05	0.0052	0.6240	0.1480	0.0879	0.0050
			0-1	DU-22 (0-1)	2.89	6.48	19.6	96.6	190	0.602	23.2	0.538	178	3.25E-05	0.1120	2.6500	1.9500	0.1310	0.0438
	DU-22	ISM	1-2	DU-22 (1-2)	2.63	4.53	18.8	47.4	72.3	0.349	22.6	0.512	164	1.23E-05	0.0051	0.2350	0.0463	0.0289	0.0258
			2-3	DU-22 (2-3)	1.09	4.45	18	54	57.5	0.376	21.4	0.557	123	7.93E-06	0.0051	0.2250	0.0652	0.0292	0.0050
a			0-1	DU-23 (0-1)	1.62	5.99	22.1	150	276	1.02	22.9	0.497	184	4.00E-05	0.0061	0.7550	0.1410	0.1060	0.0591
Central	DU-23	ISM	1-2	DU-23 (1-2)	0.61	4.63	18.4	69.5	70.9	0.545	20.5	0.518	127	1.05E-05	0.0050	0.5370	0.0638	0.1040	0.0265
Parcel			2-3	DU-23 (2-3)	0.498	3.82	15.6	41.9	82.2	0.426	18.8	0.488	99	5.92E-06	0.0051	0.2310	0.0313	0.0362	0.0050
			0-1	DU-24 (0-1)	0.546	4.16	15.5	39.9	48.8	0.276	19.2	0.546	117	2.33E-05	0.0050	0.6300	0.0812	0.0907	0.0326
	DU-24	ISM	1-2	DU-24 (1-2)	0.496	3.56	15	31.1	23.2	0.175	20.6	0.496	124	6.44E-06	0.0050	0.5000	0.0548	0.0740	0.0049
			2-3	DU-24 (2-3)	0.501	2.84	10.9	17.6	13.8	0.0928	18.5	0.501	83.1	8.88E-06	0.0050	0.0883	0.0202	0.0145	0.0048
			0-1	DU-25 (0-1)	0.822	5.24	20.2	226	144	0.762	21.3	0.491	242	4.69E-05	0.0123	2.7700	0.4270	0.3860	0.0653
	DU-25	ISM	1-2	DU-25 (1-2)	0.493	3.29	14.5	48.5	113	0.213	19.6	0.493	202	2.60E-06	0.0050	0.6430	0.1010	0.0905	0.0050
			2-3	DU-25 (2-3)	0.496	3.17	12.6	30	43.2	0.116	18.7	0.496	138	1.94E-06	0.0048	0.6130	0.0873	0.0873	0.0050
			0-1	DU-26 (0-1)	4.79	9.5	19.1	152	330	1.95	20.7	0.605	260	9.33E-05	0.0246	4.8900	0.7790	0.7230	0.1850
	DU-26	ISM	1-2	DU-26 (1-2)	1.4	11.6	15.5	80.7	151	1.25	19.9	0.558	206	4.27E-05	0.0050	1.6600	0.1580	0.2810	0.0705
			2-3	DU-26 (2-3)	0.529	4.75	14.6	41.6	76.1	0.82	18.3	0.521	138	2.36E-05	0.0050	0.9930	0.1240	0.1480	0.1890
			0-1	DU-42 (0-1)	0.512	4.38	17.8	36.3	53.3	0.226	23.3	0.531	126	6.07E-05	0.0050	0.3470	0.0678	0.0507	0.0050
	DU-42	Composite	1-2	DU-42 (1-2)	0.667	4.11	18.4	25.4	30.3	0.186	22.6	0.549	109	2.27E-05	0.0048	0.2200	0.0429	0.0309	0.0050
		nd of the tel	2-3	DU-42 (2-3)	0.531	3.76	17.4	21.1	20.1	0.125	20.7	0.531	87	8.27E-06	0.0050	0.1580	0.0297	0.0229	0.0049

	D · · ·	a 1	Sample								C	oncentration	in mg/kg						
Sample Location	Decision Unit	Sample Type	Depth (feet bgs)	Sample ID	Antimony	Arsenic	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Zinc	Dioxin/Furan TEQ	Dibenzofuran	Total HPAH	Total LPAH	cPAHs	Total PCBs
				SM Background		8.8	39	24	27	0.073	23.4	0.33	105						
			Compos	site Background	0.56	8.8	76	34	79	0.23	47	0.71	180						
				Plant RBC	5	18	1.0	70	120	0.30	38	0.52	160						40
Referer	ice Concentr	ations	l In	vertebrate RBC	78		0.4	80	1700	0.10	280	4.10	120	0.005.05		18	29		0 70 4
				Bird RBC	2.70	575	87.0 342	88 82	33 122	0.015 3.53	139 20	3.42	673	8.90E-05 6.10E-06	0.01	5.6	100		0.734 0.098
				Mammal RBC		83						1.1	201					0.04	
	-	-		Cap Material ¹	0.53	3.1	14	18	5	0.042	18	0.54	55	1.40E-06	0.005	0.1	0.08	0.01	0.005
	DU 07	1014	0-1	DU-27 (0-1)	1.3	14.5	19.8	204	46.1	0.184	21.1	0.583	173	1.03E-04	0.0050	1.4000	0.1590	0.2130	0.1860
	DU-27	ISM	1-2	DU-27 (1-2)	0.488	8.72	16.9	81.2	39.1	0.0555	21.3	0.488	130	6.99E-05	0.0101	1.7800	0.3630	0.2420	0.1680
			2-3	DU-27 (2-3)	1.15	15.8	15.5	45.6	55.4	0.0643	18.4	0.512	139	2.40E-05	0.0050	0.6570	0.1030	0.0973	0.1780
	DU 00	1014	0-1	DU-28 (0-1)	2.32	10.5	16.4	184	78.1	0.649	17.9	0.513	267	1.91E-05	0.0070	2.3600	0.2610	0.4330	0.1000
	DU-28	ISM	1-2	DU-28 (1-2)	2.87	13.3	17.3	327	74.1	0.706	17.2	0.493	231	3.27E-05	0.0085	3.1400	0.3090	0.5280	0.0718
			2-3	DU-28 (2-3)	4.79	7.4	16.9	229	113	0.207	19.6	0.522	275	1.49E-05	0.0084	1.8900	0.2380	0.3530	0.0370
	DU 00		0-1	DU-29 (0-1)	1.08	6.95	12.1	69.3	103	0.0595	18.1	0.518	164	4.97E-05	0.0085	0.9880	0.1570	0.1540	0.0250
	DU-29	ISM	1-2	DU-29 (1-2)	1.02	5.08	10.4	44.3	41.1	0.0436	15.3	0.545	100	1.53E-05	0.0051	0.4780	0.0641	0.0697	0.0047
			2-3	DU-29 (2-3)	0.511	3.6	10	27.8	45.7	0.0409	15.2	0.511	92.7	1.53E-05	0.0050	0.3800	0.0562	0.0588	0.0049
	DU-30	ICM	0-1	DU-30 (0-1)	1.66	4.22	14.5	63.4	131	0.0829	18.3	0.5	179	5.05E-05	0.0072	2.1500	0.2030	0.3980	0.0325
	D0-30	ISM	1-2	DU-30 (1-2)	2.09	3.72	13.9	79.8	202	0.05	17.7	0.512	228	2.24E-05	0.0050	1.0000	0.1200	0.1690	0.0050
			2-3	DU-30 (2-3)	6.81	4.14	11.6	86.6	220	0.159	15.7	0.501	152 116	1.44E-05	0.0050	0.4650	0.0681	0.0709	0.0456
East Parcel	DU-31	ISM	0-1 1-2	DU-31 (0-1)	1.85 0.743	6.09 4.98	14.5 12.6	35.4 49.2	44.8 34.1	0.0479 0.067	16.5 17	0.491	140	5.84E-05 1.90E-05	0.0050	0.8540	0.1160 0.1270	0.1240 0.1190	0.0257
East Faicei	D0-31	13111		DU-31 (1-2) DU-31 (2-3)	0.745	4.96 5.96	12.0	49.2 68.2	25	0.067	16.7	0.516 0.519	140		0.0054	0.7680			0.0298
			2-3 0-1	· · · ·	0.735	5.96 8.99	12.9	31.6	25	0.0415	15.7	0.519	109	1.09E-05 3.48E-05	0.0050 0.0063	0.6490	0.1100 0.1220	0.0919 0.1150	0.0270
	DU-32	ISM	1-2	DU-32 (0-1) DU-32 (1-2)	0.679	0.99 7.1	12.4	23.4	20.9	0.0428	15.7	0.535	104	3.48E-05 7.54E-06	0.0063	0.7760 0.4910	0.1220	0.1150	0.0048
	D0-02		2-3	DU-32 (1-2) DU-32 (2-3)	0.335	3.56	9.91	20.1	34.1	0.0428	13.3	0.335	90.2	7.59E-06	0.0047	3.5300	0.0084	0.0754	0.0048
			0-1	DU-32 (2-3) DU-33 (0-1)	2.31	6.62	9.85	79.8	88.8	0.0435	14.2	0.492	290	7.59⊑-00 3.69E-05	0.0403	0.4140	0.1040	0.0542	0.0852
	DU-33	ISM	1-2	DU-33 (1-2)	1.84	9.6	12.3	96.6	66.2	0.0433	17.8	0.516	354	1.67E-05	0.0066	0.4510	0.1280	0.0542	0.0501
	20.00	10111	2-3	DU-33 (2-3)	0.666	5.35	10.3	52.6	42.8	0.0423	16.4	0.529	234	1.21E-05	0.0049	0.4010	0.0650	0.0555	0.0579
			0-1	DU-34 (0-1)	1.05	5.13	10.0	32.6	41.4	0.042	22	0.523	182	6.03E-05	0.0043	1.7200	0.3960	0.2530	0.0330
	DU-34	ISM	1-2	DU-34 (1-2)	0.557	4.95	14.6	33.2	31.9	0.0447	24.3	0.498	177	2.82E-05	0.0098	1.1900	0.2100	0.1840	0.0330
	2001		2-3	DU-34 (2-3)	0.537	3.69	14.0	33.1	25.9	0.043	20.1	0.537	222	3.02E-05	0.0050	0.6510	0.1160	0.0973	0.0050
			0-1	DU-35 (0-1)	0.512	4.4	14.5	52.9	22.6	0.0415	17.8	0.512	174	4.05E-05	0.0053	0.6160	0.1040	0.0931	0.0284
	DU-35	ISM	1-2	DU-35 (1-2)	0.531	3.81	12.3	29.1	19	0.0425	15.3	0.531	168	1.31E-05	0.0050	0.7040	0.1040	0.1190	0.0396
			2-3	DU-35 (2-3)	0.524	3.37	9.45	27.8	12.4	0.042	14.2	0.524	141	1.02E-05	0.0049	0.2500	0.0334	0.0355	0.0050
		nd of the te		20 00 (2 0)	0.027	0.01	0.70	21.0	14.7	0.072	11.4	0.027	1 T I		010010	0.2000	0.0001	0.0000	0.0000

			Sample								C	oncentration	in mg/kg						
Sample Location	Decision Unit	Sample Type	Depth (feet bgs)	Sample ID	Antimony	Arsenic	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Zinc	Dioxin/Furan TEQ	Dibenzofuran	Total HPAH	Total LPAH	cPAHs	Total PCBs
				SM Background		8.8	39	24	27	0.073	23.4	0.33	105						
			Compos	site Background		8.8	76	34	79	0.23	47	0.71	180						
				Plant RBC	5	18	1.0	70	120	0.30	38	0.52	160						40
Referen	nce Concent	rations	In	vertebrate RBC	78		0.4	80	1700	0.10	280	4.10	120			18	29		0 =0 4
				Bird RBC	0.70	575	87.0	88	33	0.015	139	3.42	673	8.90E-05	0.04	F 0	400		0.734
				Mammal RBC	2.70	83	342	82	122	3.53	20	1.1	201	6.10E-06	0.01	5.6	100		0.098
		1		Cap Material ¹	0.53	3.1	14	18	5	0.042	18	0.54	55	1.40E-06	0.005	0.1	0.08	0.01	0.005
	DU 00	1014	0-1	DU-36 (0-1)	3.77	5.03	20.1	57.9	73.2	0.0398	22.6	0.498	266	4.21E-05	0.0060	0.6170	0.0892	0.0823	0.0279
	DU-36	ISM	1-2	DU-36 (1-2)	3.44	4.23	17.3	56.7	130	0.0606	19	0.52	222	3.70E-05	0.0082	0.7770	0.1290	0.1030	0.0050
			2-3	DU-36 (2-3)	3.62	4.12	14.4	46.3	63.3	0.0449	18.3	0.526	190	2.80E-05	0.0050	0.2950	0.0564	0.0379	0.0284
	20		0-1	DU-38 (0-1)	1.31	3.71	13.1	27.7	30.5	0.0454	16.5	0.536	110	2.94E-05	0.0056	0.5940	0.0920	0.0828	0.0412
	DU-38	ISM	1-2	DU-38 (1-2)	4.88	3.76	12.3	56	76.7	0.0415	16	0.519	102	1.90E-05	0.0051	0.4550	0.0853	0.0635	0.0444
			2-3	DU-38 (2-3)	3.71	4.06	13.6	51.4	51.3	0.0421	17.1	0.527	108	1.05E-05	0.0051	0.5190	0.0738	0.0442	0.0300
	DU-37	Composito	0-1 1-2	DU-37 (0-1)	0.495 0.495	3.72 3.00	17.4 14.9	26.1 21.4	39.3 12.6	0.0396 0.043	18.6 18.8	0.572 0.537	74.4 61.5	6.78E-07	0.0050	0.0834	0.0210	0.0124	0.0049
	D0-37	Composite	2-3	DU-37 (1-2) DU-37 (2-3)	0.495	3.00 2.85	14.9	21.4 16.9	8.96	0.043	10.0	0.537	52.2	6.32E-07 5.69E-07	0.0050 0.0115	0.1050 0.8510	0.0213 0.2540	0.0114 0.0970	0.0050 0.0051
			0-1	DU-37 (2-3) DU-39 (0-1)	0.534	2.69	13.4	21.3	6.09	0.0411	16	0.513	62.8	3.68E-06	0.00115	0.0270	0.2340	0.0057	0.0031
	DU-39	Composite	1-2	DU-39 (1-2)	0.56	3.24	15.1	17.9	5.11	0.0448	18.3	0.615	57.4	1.38E-06	0.0049	0.0210	0.1750	0.0057	0.0049
	0000	Composito	2-3	DU-39 (2-3)	0.525	3.44	16	18.4	6.88	0.0440	19.2	0.525	54.3	1.36E-06	0.0049	0.0247	0.1290	0.0007	0.0049
East Parcel			0-1	DU-40 (0-1)	0.509	2.88	12.9	16.1	3.75	0.0407	16.3	0.509	44.3	7.34E-07	0.0040	0.0249	0.0174	0.0057	0.0049
	DU-40	Composite	1-2	DU-40 (1-2)	0.513	3.4	13.4	15.4	3.47	0.0411	17.7	0.513	44.7	5.18E-07	0.0050	0.0281	0.0175	0.0061	0.0050
			2-3	DU-40 (2-3)	0.525	3.13	13.7	16.6	3.1	0.042	18.2	0.525	45.1	5.52E-07	0.0051	0.0279	0.0177	0.0061	0.0050
			0-1	DU-43 (0-1)	0.503	2.92	13.8	18.8	5.42	0.0402	16.9	0.522	53.9	3.00E-06	0.0049	0.1200	0.0236	0.0163	0.0051
	DU-43	Composite	1-2	DU-43 (1-2)	0.536	2.89	14	18.7	9.65	0.0429	18.5	0.536	56.4	1.26E-06	0.0051	0.1220	0.0813	0.0106	0.0051
			2-3	DU-43 (2-3)	0.523	3.06	13.8	16.3	4.35	0.0418	18.4	0.523	46	6.63E-07	0.0050	0.0616	0.0174	0.0097	0.0050
		1	0-1	DU-44 (0-1)	0.619	3.12	14	17.9	13	0.0394	17.7	0.492	83.7	1.38E-06	0.0050	0.1430	0.0294	0.0180	0.0049
	DU-44	Composite	1-2	DU-44 (1-2)	0.486	3.24	14.3	15.7	6.23	0.0389	17.2	0.486	51.3	8.37E-07	0.0050	0.0910	0.0206	0.0127	0.0049
			2-3	DU-44 (2-3)	0.505	3.06	13.2	15	5.94	0.0404	16.0	0.505	45.9	7.25E-07	0.0049	0.0840	0.0171	0.0129	0.0048
		ISM (Berm	0-1	DU-41 (0-1)	2.81	50.1	16.9	78.6	83.8	0.262	16.5	0.531	139	2.55E-04	0.0184	2.1100	0.3120	0.3360	0.0691
	DU-41	Sample)	1-2	DU-41 (1-2)	2.39	14.1	20.7	71.1	129	0.108	18.4	0.514	165	2.42E-04	0.0427	1.9400	0.5590	0.2760	0.0926
	S	oumpie)	2-3	DU-41 (2-3)	1.69	19.6	21.7	45.2	109	0.0732	21.7	0.511	182	1.55E-04	0.0129	1.0800	0.2310	0.1490	0.0438

Notes:

1. Generally equal to the average concentration in DU-39 and DU-40.

2. Definition of table shading:

Proposed for removal for hot spot excavation or to adddress excess human health risk.

Upper 0.5 feet proposed for removal for hot spot excavation.

COC was not detected. Value shown is the detection limit.

Table B-2Ecological Residual Risk ScreeningWillamette Cove Upland Facility

				Primary	Controlling
Location	Decision Unit	Maximum HQ	HI	COC	Receptor
	DU-1	5.4	8.7	Hg	Bird
	DU-2	8.3	15	Hg	Bird
	DU-3	4.3	5.1	D/F	Mammal
	DU-4	5.1	10	Hg, D/F	Bird, Mammal
West Parcel	DU-5			Cr	Invertebrate
	DU-6	10	13	Hg	Bird
	DU-7	8.7	9.1	Hg	Bird
	DU-8			Hg	Bird
	DU-9	9.4	12	Hg	Bird
	DU-10			Hg	Bird
	DU-11			Hg	Bird
	DU-12			Hg	Bird
	DU-13			Hg	Bird
	DU-14			Hg	Bird
	DU-15			Hg	Bird
	DU-16			Hg	Bird
	DU-17	8.1	9.4	Hg	Bird
Central	DU-18			Hg	Bird
Parcel	DU-19			Hg	Bird
	DU-20	9.1	9.6	Hg	Bird
	DU-21			Hg	Bird
	DU-22			Hg	Bird
	DU-23			Hg	Bird
	DU-24	6.2	6.2	Hg	Bird
	DU-25	7.7	9.6	Hg	Bird
	DU-26			Hg	Bird
	DU-42	1.4	1.4	D/F	Mammal

Table B-2Ecological Residual Risk ScreeningWillamette Cove Upland Facility

Location	Decision Unit	Maximum HO	НІ	Primary COC	Controlling Receptor
Location					•
	DU-27	3.9	8.2	D/F	Mammal
	DU-28			Hg	Bird
	DU-29	2.5	3.8	D/F	Mammal
	DU-30	11	19	Hg	Bird
	DU-31	3.1	5.9	D/F	Mammal
	DU-32	5.7	8.1	DbF	Mammal
	DU-33	6.1	12	D/F	Mammal
	DU-34	4.9	9.3	D/F	Mammal
East Parcel	DU-35	2.1	3.9	D/F	Mammal
	DU-36	6.1	11	D/F	Mammal
	DU-37	1.2	1.3	DbF	Mammal
	DU-38	4.8	7.5	D/F	Mammal
	DU-39	0.6	0.6	D/F	Mammal
	DU-40	0.1	0.1	D/F	Mammal
	DU-41	42	49	D/F	Mammal
	DU-43	0.5	0.5	D/F	Mammal
	DU-44	0.2	0.5	D/F	Mammal

Notes:

1. Definition of Shading

Proposed excavation to 3 feet so no residual data. The HQ in Layer 3 is greater than 10.

Proposed excavation to 2.5 so residual data uncertain. Excavation expected to reduce residual HQ to less than 10.

Soil berm to be removed. Pending verification sampling, cap design based on adjacent DU.

- 2. HQ = Hazard Quotient
- 3. HI = Hazard Index
- 4. Cr = Chromium
- 5. DbF = Dibenzofuran
- 6. D/F = Dioxin/furan

7. Hg = Mercury

Table B-3 Standard Cap Design Evaluation Willamette Cove Upland Facility

1									Hazard	Index Ass	uming Com	plete Mixir	ng in Upper	3 Feet							
		(Cap Thickn	ess = 1 Fo	ot	C	ap Thickne	ss = 1.5 Fe	eet	(Cap Thickne	ess = 2 Fee	et	C	ap Thickne	ss = 2.5 Fe	eet	(Cap Thickne	ess = 3 Fe	et
Location	Decision Unit	Plant	Invert	Bird	Mammal	Plant	Invert	Bird	Mammal	Plant	Invert	Bird	Mammal	Plant	Invert	Bird	Mammal	Plant	Invert	Bird	Mammal
	DU-1	2	2	2	4	2	2	2	3	0.5	0.4	0.4	2	0.4	0.3	0.3	1.0	<1	<1	<1	<1
	DU-2	3	2	9	6	2	1.0	3	4	1.1	0.6	2	3	0.6	0.4	0.4	2	<1	<1	<1	<1
	DU-3	0.3	0	0.1	2	0.3	0	0.1	2	0	0	0.1	2	0	0	0	0.9	<1	<1	<1	<1
	DU-4	0.7	0.6	0.4	5	0.3	0.2	0.1	3	0	0	0	2	0	0	0	1.3	<1	<1	<1	<1
West Parcel	DU-5										na	а									
	DU-6				-				-		na		-								
	DU-7	0.6	1.2	6	2	0.3	0.8	5	1.3	0	0	0	1.1	0	0	0	0.7	<1	<1	<1	<1
	DU-8										na										
┣────┤	DU-9	0.8	1.5	8	3	0.7	1.2	6	2	0.3	0.8	5	1.5	0	0	0	1.1	<1	<1	<1	<1
	DU-10										na										
	DU-11		0	10	4.0	1.0		10		0.7	na	a –		0		•		- 4			
	DU-12	1.4	2	12	1.2	1.2	2	10	1.0	0.7	1.3	1	0.6	0	0	0	0.3	<1	<1	<1	<1
	DU-13										na										
	DU-14										na										
	DU-15	2	2	20	<u> </u>	0	2	16	10	0	na D		11	1.4	1.0	7	0.0	-1	-1	-1	- 1
	DU-16 DU-17	2 1.1	3 2	20 10	2 1.4	2 0.4	2 1.2	16 8	1.2 0.6	2 0.4	2 1.1	12	1.1 0.5	1.4 0.3	1.2 0.9	6	0.9 0.3	<1 <1	<1 <1	<1 <1	<1 <1
Central	DU-17 DU-18	1.1	Z	10	1.4	0.4	1.2	0	0.0	0.4	na na	<i>1</i>	0.5	0.3	0.9	0	0.5	×1	N	N1	×1
Parcel	DU-10 DU-19	3	3	18	7	3	2	14	6	2	2	10	4	1.4	1.0	6	2	<1	<1	<1	<1
	DU-13 DU-20	0.3	0.9	6	0.5	0.3	0.8	6	0.5	0.2	0.7	5	0.4	0	0	0	0.3	<1	<1	<1	<1
	DU-21	1.4	2	10	3	1.2	1.4	8	2	0.9	1.1	7	2	0	0	0	1.0	<1	<1	<1	<1
	DU-22	1.1	2	10	Ŭ	1.2		Ū	2	0.0	na	, a		v	Ŭ	v	1.0	-1	.1	- 1	
	DU-23										na										
	DU-24	0.3	0.9	6	1.0	0.3	0.8	5	0.8	0	0	0	0.6	0	0	0	0.4	<1	<1	<1	<1
	DU-25	2	2	9	2	2	2	8	1.4	0.9	1.1	7	0.8	0	0	0	0.3	<1	<1	<1	<1
	DU-26										na	а	11								1
	DU-42	0	1.1	7	1.4	0	0.9	6	1.2	0	0.8	5	1.0	0	0	0	0.8	<1	<1	<1	<1
	DU-27	2	2	2	6	1.2	0.5	2	5	0.8	0.5	0.4	3	0.3	0.1	0	2	<1	<1	<1	<1
	DU-28	6	5	15	8	5	4	12	6	3	3	9	5	1.0	0.7	0.6	2	<1	<1	<1	<1
	DU-29	0.8	0.4	1.4	3	0.5	0.4	0.3	2	0.5	0.3	0.3	2	0.1	0	0	0.8	<1	<1	<1	<1
	DU-30										na	а									
	DU-31	1.0	0.6	0.6	3	0.7	0.5	0.4	3	0.5	0.4	0.3	2	0.1	0	0	1.4	<1	<1	<1	<1
	DU-32	0.8	0.3	0.4	3	0.4	0	0.2	3	0.4	0	0.1	3	0.1	0	0	2	<1	<1	<1	<1
	DU-33	3	3	3	7	3	2	2	6	2	2	2	5	0.6	0.4	0.3	3	<1	<1	<1	<1
	DU-34	1.5	2	0.8	6	1.2	1.3	0.6	4	0.1	0	0.1	3	0.1	0	0	2	<1	<1	<1	<1
East Parcel	DU-35	1.3	1.5	0.8	5	1.2	1.3	0.7	4	0	0	0	3.4	0	0	0	1.8	<1	<1	<1	<1

Basis of Design Report Willamette Cove Upland Facility 32-23011207 Page 1 of 2

Table B-3 Standard Cap Design Evaluation Willamette Cove Upland Facility

									Hazard	Index Ass	uming Corr	nplete Mixi	ng in Upper	3 Feet							
			Cap Thickn	ess = 1 Fo	ot	C	ap Thickne	ss = 1.5 Fe	eet		Cap Thickn	ess = 2 Fe	et	C	ap Thickne	ss = 2.5 Fe	eet		Cap Thickn	ess = 3 Fe	et
Location	Decision Unit	Plant	Invert	Bird	Mammal	Plant	Invert	Bird	Mammal	Plant	Invert	Bird	Mammal	Plant	Invert	Bird	Mammal	Plant	Invert	Bird	Mammal
	DU-36	3	2	3	7	2	2	3	6	2	1.3	2	5	0.6	0.3	0.3	2	<1	<1	<1	<1
	DU-37	0	0	0	0.6	0	0	0	0.7	0	0	0	0.7	0	0	0	0.7	<1	<1	<1	<1
	DU-38	1.2	0.4	2	5	0.7	0.3	0.5	4	0.2	0	0.1	3	0.1	0	0	2	<1	<1	<1	<1
	DU-39										n	а									
	DU-40										n	а									
	DU-41										n	а									
	DU-43										n	а									
	DU-44										n	а									

Notes:

1. Definition of Shading

Proposed excavation to 3 feet so no residual data. The HQ in Layer 3 is greater than 10 so assume enhanced cap.

Residual HQ greater than 10; enhanced cap.

Soil berm to be removed. Pending verification sampling, cap design based on adjacent DU.

Residual HI less than 1. No cap required.

Selected cap thickness

2. HQ = Hazard Quotient

3. HI = Hazard Index

Basis of Design Report Willamette Cove Upland Facility 32-23011207 Page 2 of 2