RISK BASED CORRECTIVE ACTION DETEMINATION

7-ELEVEN PROPERTY 1024 SE GRAND AVENUE PORTLAND, MULTNOMAH COUNTY, OREGON

Report Prepared for and Reliance Provided to:

CALDWELL PROPERTIES LLC C/O
WYSE REAL ESTATE ADVISORS
810 SE BELMONT STREET
PORTLAND, OREGON 97214

Point Source Solutions Project No: OR160930-4B May 22, 2017 Field Work Conducted and Report Prepared in Accordance with the following:

ASTM Standard Practice E1903-11

Oregon State Board of Geologist Examiners Professional Practices Guideline (May 2014)

Point Source Solutions LLC (Point Source) is pleased to provide the results from the Risk-Based Corrective Action Determination prepared for 1024 SE Grand Avenue, Portland, Oregon 97214 ("Site"). This investigation was performed in accordance with Point Source's Proposal OR160930.4B as authorized by 1024 SE Grand Avenue LLC on February 27, 2017.

The Site is currently improved with a one-story commercial structure totaling approximately 4,500 square feet currently occupied by a 7-Eleven store. According to Multnomah County Assessors, the building was construction in 1920. The Property is identified by Multnomah County as tax lot 1S1E02BC1200 comprising 0.21 acres.

1.0 PURPOSE

The purpose of this investigation is to:

- Assess onsite subsurface conditions to evaluate if there has been a release of hazardous substances; determine the nature and extent of the impacts to soil, soil vapor and groundwater, if any; and evaluate potential threats from these releases to the beneficial use of the Site.
- Develop a Conceptual Site Model (CSM).
- Complete a Beneficial Land and Water Use determination (BLWUD).
- Develop a list of Contaminants of Interest (COI) based upon the characteristics of the identified release.
- Compare Contaminants of Potential Concern (COPC) concentrations to the ODEQ's Risk Based Concentrations (RBCs) for potentially complete exposure pathways.

This investigation was completed in general accordance with ASTM E1903-11, Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process. These methodologies are described as representing good commercial and customary practice for conducting a Phase II ESA of a property for the purpose of evaluating recognized environmental conditions.

The information provided in this report describes the work performed and provides documentation of the data and evaluation that constitutes the factual findings of the investigation.

2.0 BACKGROUND INFORMATION

Point Source performed a Phase I ESA (Project No. OR160930-4 dated October 27, 2016) on 1024 SE Grand Avenue, Portland, Oregon 97214 in general conformance with the scope and limitations of ASTM Practice E 1527-13. The report was prepared for Caldwell Properties, LLC. Below is an excerpt from the Phase I ESA report.

This assessment revealed environmental concerns in connection with the Site.

- Sanborn Maps have the Site building labeled as Auto Repairing & Top Shop in 1924, Used Cars in 1950 and Auto Sales & Service in 1969. The historical use of the Site as an automobile repairing facility from 1924 through 1969 may have resulted in an adverse environmental impact to the Site.
- The north adjoining property (1006 SE Grand Avenue) was occupied by Allyn's Cleaning and Dyeing

from 1935 to 1960. The 1924 and 1950 Sanborn Maps indicated that the dry cleaning room was located immediately abutting the northeast side of the Site building. Based on Sanborn Maps, the dry cleaning facility was replaced by the current drive and parking lot by 1969. Dry cleaners are known to use hazardous solvents in the cleaning process which often are released to the subsurface environment under normal operating conditions. This facility is located in a hydrogeologically cross gradient location relative to the Site. Adverse environmental impact to the Site from this site may have occurred.

• The east adjoining property (1025 SE 6th Avenue/521 SE Taylor Street) is listed under the names Home Service Co. in 1935, Homnie Service Garage in 1940 and Japanese Auto Repair from 2001 through 2012. Sanborn Maps and city directories reviewed by Point Source Solutions also indicated that this property is currently and has historically been occupied by auto repair businesses. This property is located in a hydrogeologically up gradient location relative to the Site. The historical use of this property as an auto repair facility as noted in city directories and the Sanborn Maps may have resulted in an adverse environmental impact to the Site.

As a result of these findings, Point Source conducted a Phase II ESA (Project Number OR160930-4A dated February 21, 2017) on the Property.

Soil samples were collected from four boring locations.

Soil Borings SB15 and SB17 were advanced using a geoprobe Macrocore sampler with a 4 foot disposable acetate liner, which was advanced by a truck-mounted direct push drill rig using 4 foot long by 1.25 inch diameter drill rods. The sampler was driven into the subsurface to allow undisturbed soil to enter the open sampler barrel and retrieved in 4-foot intervals to recover the soil-filled liners.

Soil Borings SB16 and SB18 were advanced using a geoprobe large bore sampler with an acetate liner, which was advanced by an electric jack hammer using 2, 3, and 4 foot long by 1.25 inch diameter drill rods. The sampler was driven into the subsurface to allow undisturbed soil to enter the open sampler barrel and retrieved in 2-foot intervals to recover the soil-filled liners.

- Borings SB15 and SB17 were advanced in the 7-Eleven parking lot. Borings were advanced to a
 depth of 12.0 feet below ground surface (bgs). Soil was screened continuously and no olfactory or
 visual indication of petroleum hydrocarbon contamination was noted in samples collected from
 these borings. Field screening with a photoionization detector (PID) did not indicate VOC readings
 above background levels for the area.
- SB16 was advanced in the northeast corner of the storeroom located in the east half of the 7-Eleven building. This boring was advanced to hard refusal on a tight confining layer located at 16.5 feet bgs. Stained soil with a solvent odor was observed from 9.0 feet to 16.0 feet bgs. Field screening with a PID indicated VOC readings as high as 1,192 parts per million (ppm). Soil staining abruptly terminated at the confining layer encountered slightly above the refusal depth. Unstained soil from 16.0 to 16.5 feet bgs retained a slight odor of solvents. No groundwater was encountered in this boring.
- SB18 was advanced in the storeroom approximately 15 feet south of SB16. This boring was advanced to refusal on a tight confining layer located at 17.0 feet bgs. Soil with a light solvent odor was observed starting at 9.0 feet bgs. Soil staining was observed in a narrow band from 9.5 to 10.0 feet bgs. No staining was observed from 11.0 to 14.0 feet bgs, however soils within this

interval retained a light solvent odor. Stained soils with a heavy odor of solvents were observed again starting at 13.0 feet bgs, and continued to the refusal depth of 17.0 feet bgs. Contamination at refusal appeared moderate when compared to heavy contamination observed in earlier runs. Field screening with a PID indicated VOC readings as high as 1,508 ppm. No groundwater was encountered in this boring.

Sample analytical results from this investigation are included in Table 1 below.

3.0 SOILS, GEOLOGY & GROUNDWATER CHARACTERISTICS

The Site is situated in the Willamette Valley (Orr, Orr, Baldwin, 1992). Sediments collected in this area record multiple Ice Age floods that originated in Montana, poured through the Cascades via the Columbia River, and backed up in the valley before eventually draining to the Pacific Ocean. The Property is located at approximately 55 feet above mean sea level. No bedrock was observed in the vicinity of the Property. The estimated depth to bedrock at the Property is greater than 200 feet below the ground surface.

Site soils are mapped predominantly as Urban Land. Urban land is soil that has been disturbed and modified by streets, buildings and other structures.

According to a well log search conducted on the Oregon Water Resources Department (OWRD) website, no significant shallow groundwater resources have been encountered in wells advanced in close proximity of the Property. Borings advanced on the north adjoining property encountered groundwater at approximately 30 to 32 feet below ground surface (bgs).

Based on a review of the Portland Quadrangle 7.5 minute series topographic map, the inferred groundwater flow at the Property is to the west toward the Willamette River (approximately 0.36 miles to the west at its closest point). According to the USEPA Ground Water Handbook, Vol.1 Ground Water and Contamination, September 1990, the water table typically conforms to surface topography.

4.0 SCOPE OF WORK

The purpose of the subsurface environmental investigation is to collect soil, soil vapor and groundwater samples (if encountered) on the Site to confirm the presence or absence of contaminants related to past use of the Site and support closure of the release with the ODEQ.

4.1 Areas of Potential Concern, Proposed Borings and Analysis

Based upon the past and current configuration and use of the Site, the following areas were identified for investigation. Boring locations are depicted on the attached Boring Location Diagram (Figure 4).

Area of Potential Concern	Borings
Impacted soil and potential soil vapor associated with the release identified in February 2017. Potential for soil being impacted as a result of the north adjoining property (former dry cleaning plant.	SB19 – SB25

Boring	Media	Analytical Methods	Detection Limit
SB19 – SB25	Soil	NWTPH-Gx, EPA 8260 (VOCs)	RBCs for Vapor Intrusion in an Occupational Setting or Less
SS2	Sub-slab Vapor	EPA TO15 (Gx/VOCs)	RBCs for Vapor Intrusion in an Occupational Setting or Less

Task 1 – Project Coordination

Point Source performed a site visit to determine specific sampling locations and confirm utility locations, develop a site specific health and safety plan for the proposed sampling activities and coordinate the efforts of subcontracted services including geophysical surveys, and analytical laboratory services.

<u>Task 2 – Geophysical Investigation</u>

Ground penetrating radar (GPR) and handheld metal detectors were used by Pacific Geophysics to conduct a mapping survey and to clear proposed boring locations.

Task 3 - Subsurface Investigation

Point Source advanced borings on the Site as follows:

- Point Source advanced seven direct push borings including three borings (SB19, SB20 and SB21) on the Site and four borings (SB22, SB23, SB24 and SB25) on the east adjoining property which shares ownership with the Site for the purpose of further screening and characterizing the extent of contaminated soil identified in February 2017.
- Point Source collected one sub-slab vapor sample in the 7-Eleven storeroom.

Task 4 – Analytical Services

Point Source collected soil samples for analysis by NWTPH-Gx and EPA 8260 (Volatile Organic Compounds).

Point Source collected the sub-slab vapor sample for analysis by EPA TO-15.

4.2 UTILITY LOCATING

Prior to initiating the field activities, Oregon law requires that, at least 48 hours prior to the initiation of any subsurface work (drilling, backhoe operation, etc.), a utility inspection be performed at the Site. This inspection consists of the marking of underground utility locations by authorized utility locating personnel. The utility inspection was performed prior to the drilling activities.

The ticket number for the utility inspection is 16310898.

4.3 HEALTH AND SAFETY PLAN

A written site specific Safety Plan was read by field personnel. A toolbox safety meeting was conducted at the site prior to the commencement of the fieldwork. Topics included potential exposure to contaminants of interest, personal protective equipment (drilling and media contact), location of first aid kit, and location/directions to closest emergency medical facility.

5.0 SAMPLING METHODOLOGY and QA/QC

5.1 Soil Samples

Soil Borings SB15, SB17, and SB21 were advanced using Geoprobe macro tooling with an acetate liner, driven by a truck mounted probe. Soil samples were obtained continuously from the surface using a 4-foot-long, 2.25-inch diameter sample tool lined with an acetate sleeve. The sampling tool was driven in 4-foot intervals until the target depth was achieved.

Soil Borings SB16, SB18 through SB20, and SB22 through SB25 (interior borings) were advanced using a geoprobe large bore sampler with an acetate liner, which was advanced by an electric jack hammer using 2, 3, and 4 foot long by 1.25 inch diameter drill rods. The sampler was driven into the subsurface to allow undisturbed soil to enter the open sampler barrel and retrieved in 2-foot intervals to recover the soil-filled liners.

Soils were field-screened using visual, sheen, and olfactory observations, and for the presence of volatile organic compounds (VOCs) using a photoionization detector (PID). Headspace vapor screening was conducted on representative samples placed in a sealed plastic bag. The tip of a PID was inserted into a hole in the bag, and the presence of VOCs was measured. Readings are collected in parts per million (ppm). Notes on visual appearance, odor, and PID readings were recorded on the field boring logs.

Soil samples were collected in 4-ounce glassware with Teflon-lined lids. Each sample was labeled for identification and stored in an iced cooler. Soil cuttings generated during the advancement of the borings were visually inspected for discoloration, and monitored for odors.

5.2 Groundwater Samples

Groundwater was not encountered to a maximum explored depth of 18.0 feet bgs.

5.3 Soil Gas Samples

The sub-slab soil gas probe consisted of a pre-fabricated stainless steel VaporPin manually inserted into a 5/8-inch diameter hole drilled within the concrete building slab using a rotary hammer hand drill. An approximately 1-inch void was drilled beneath the concrete slab. Following placement of the VaporPin, the sample point was sealed and allowed to equilibrate for 20-minutes, followed by a purge of at least three dead volumes. A sealed water dam was placed around the VaporPin during purging and sampling to act as a primary leak-check. No water loss was observed in the dam, indicating a complete seal between the VaporPin and concrete slab. Paper towels saturated with 2-Propanol were placed around the vapor pin and equipment fittings during sample collection as a secondary leak-check.

Soil vapor samples were collected in 1 liter sample canisters provided by Freidman & Bruya Environmental Chemists. The sample canister, Teflon tubing, vacuum gauge, and flow rate orifice apparatus were connected in the sample string. Vacuum gauge and sample canister vacuum were checked before initiating sample collection. A clean pair of disposable nitrile gloves was worn during assembly of the sample train and collection of the soil vapor sample.

All tooling was decontaminated in a water and detergent solution and rinsed in tap water between samples and boring locations. Samples were placed in laboratory provided containers. Upon collection, all samples were chilled. One transport blank was prepared.

Chain of Custody was maintained for all samples.

6.0 SUBSURFACE INVESTIGATION

6.1 Sampling

The subsurface investigation was conducted on March 14-22, 2017. During the investigation, soil borings were advanced by Point Source Solutions.

- Boring SB19 was completed to hard refusal at 17.5 feet bgs in the southeast corner of the 7-Eleven storeroom, approximately 12 feet south of SB18. Native soil consisting of clayey silt, sandy silt, silt, and fine sand was encountered in the boring. Coarse sand and gravel was noted at the refusal depth of 17.5 feet. Soil samples were collected at depths of 10.0 feet bgs and 17.5 feet bgs at this location. Groundwater not encountered in this boring. Indications of light to moderate contamination were noted in bands at several depths between 9.0 and 16.0 feet bgs in the continuous soil cores collected from this boring.
- Boring SB20 was completed to progress refusal at 18.0 feet bgs in the northwest corner of the 7-Eleven storeroom against the wall separating the store room from the sales floor. Native soil consisting of clayey silt, and silt was encountered in the boring. Soil samples were collected at depths of 10.0 feet bgs and 18.0 feet bgs at this location. Groundwater not encountered in this boring. Indications of heavy contamination were noted between 9.0 and 16.0 feet bgs in the continuous soil cores collected from this boring. Field screening of soils between 16.0 and 18.0 feet bgs indicated a light odor of contamination and no staining.
- Boring SB21 was completed to 16.0 feet bgs outside the 7-Eleven building in the parking lot.
 Shallow soils consisted of urban fill, including asphalt, pulverized brick, and mortar. Native soils consisted of clayey silt. A soil sample was collected from a depth of 16.0 feet at this location.
 Groundwater was not encountered at this boring. No indications of contamination were noted in the continuous soil cores collected from this boring.
- Boring SB22 was completed to hard refusal at 13.8 feet bgs in the German Automotive building (east adjacent to the 7-Eleven property). Native soil consisting of silt, sandy silt, and fine sand was encountered in the boring. A soil sample was collected at a depth of 13.8 feet bgs at this location. Groundwater not encountered in this boring. Indications of heavy contamination were noted between 12.2 and 13.8 feet bgs in the continuous soil cores collected from this boring.
- Boring SB23 was completed to hard refusal at 13.5 feet bgs in the German Automotive building, approximately 14 feet northeast of SB22. Native soil consisting of silt, clayey silt, sandy silt, and fine sand was encountered in the boring. A soil sample was collected at a depth of 13.5 feet bgs at this location. Groundwater not encountered in this boring. Indications of heavy contamination were noted between 12.0 and 13.5 feet bgs in the continuous soil cores collected from this boring.
- Boring SB24 was completed to hard refusal at 13.7 feet bgs in the northwest corner of the German Automotive building. Native soil consisting of silt, clayey silt, sandy silt, and fine sand was encountered in the boring. A soil sample was collected at a depth of 13.5 feet bgs at this location. Groundwater not encountered in this boring. Indications of heavy contamination were noted between 4.5 and 13.7 feet bgs in the continuous soil cores collected from this boring.
- Boring SB25 was completed to hard refusal at 13.7 feet bgs in the German Automotive building, approximately 13 feet east of SB23. Native soil consisting of gravel, silt, silty sand, coarse and medium sand was encountered in the boring. A soil sample was collected at a depth of 14.0 feet bgs at this location. Groundwater not encountered in this boring. No indications of contamination were noted in the continuous soil cores collected from this boring.

Sub-slab vapor sampling was conducted on March, 14 2017.

• Sub-Slab 2 (SS2) was collected in the 7-eleven store storeroom.

The sample locations are illustrated on Figure 4. Boring logs are presented in Appendix I.

6.2 Laboratory Analytical Results

Soil samples collected between March 14 and 22, 2016 were transported under chain of custody to Apex Labs, Inc. for analysis.

 Ten soil samples were analyzed by NWTPH-Gx for gasoline range petroleum hydrocarbons and EPA Method 8260B for volatile organic compounds.

Sub-slab vapor samples collected on March 14, 2017 were transported under chain of custody to Friedman & Bruya Environmental Chemists for analysis.

• One sample was analyzed by EPA Method TO-15. EPA Method TO-15 is used for the analysis of volatile organic compounds in air using a 1-liter Summa canister.

The sample analytical results including the results from the February 2017 investigation and March 2017 investigation are summarized in Tables 1 and 2 below.

The laboratory analytical reports and chain-of-custody forms are included as Appendix II.

			TABLE 1- SOIL	SAMPLES					
LABORATORY ANALYTICAL RESULTS – NWTPH-GX/DX/ VOCS/LEAD (MG/KG)									
SAMPLE	DEPTH	DATE	LOCATION	NWTPH- GX/DX/HO	VOCs	TCLP LEAD			
POINT SOURCE FEBRUARY 2017 INVESTIGATION									
SB15-S1	12.0′	1/06/17	7-Eleven Parking Lot – East	not detected	not detected	not analyzed			
SB16-S1	11.0′	1/06/17	Store Room – Northeast Corner	GX - 21,800	benzene - 1.27 ethylbenzene - 17.9 naphthalene - 13.8 124 TMB - 152 135 TMB - 44.0 xylenes - 59.4	not detected			
SB16-S2	16.5′	1/06/17	Store Room – Northeast Corner – Vertical Delineation Sample	GX - 79	124 TMB410	not analyzed			
SB17-S1	12.0′	1/06/17	7-Eleven Parking Lot – West	not detected	not detected	not analyzed			
SB18-S1	9.5′	1/06/17	Store Room – South lateral Sample	GX - 73	124 TMB478	not analyzed			
SB18-S2	17.0′	1/06/17	Store Room – South lateral – Vertical Delineation Sample	GX - 6,540	ethylbenzene442 naphthalene - 3.76 124 TMB - 48.3 135 TMB - 17.4 xylenes - 6.8	not analyzed			
POINT SO	URCE MAF	RCH 2017 INV	ESTIGATION		_	_			
SB19-S1	10.0′	03/14/17	Store Room – South lateral	not detected	124 TMB103	not analyzed			
SB19-S2	17.5′	03/14/17	Store Room – South lateral – Vertical Delineation Sample	not detected	not detected	not analyzed			
SB20-S1	10.0′	03/14/17	Store Room – West lateral	GX - 15,000	ethylbenzene - 1.82 124 TMB - 99.6 135 TMB - 33.7 xylenes - 18.61	not analyzed			

TABLE 1- SOIL SAMPLES LABORATORY ANALYTICAL RESULTS - NWTPH-GX/DX/ VOCS/LEAD (MG/KG) **SAMPLE** DEPTH DATE LOCATION NWTPH-VOCs **TCLP LEAD** GX/DX/HO SB20-S2 18.0' 03/14/17 Store Room – West lateral – Vertical not detected not detected **Delineation Sample** SB21-S1 16.0' 03/14/17 7-Eleven Parking Lot – South lateral not detected not detected SB22-S1 12.0' 03/22/17 German Automotive - South lateral GX - 13,800 ethylbenzene - 2.48 naphthalene - 5.88 TCE - 2.07 124 TMB - 79.0 135 TMB - 5.25 xylenes – 15.26 SB23-S1 12.0' 03/22/17 German Automotive - East lateral GX - 15,000 benzene - .338 ethylbenzene - 17.6 naphthalene - 27.9 PCE - 1.43 TCE - 12.9 124 TMB - 299 135 TMB - 103 xylenes - 80.1 4.5' 03/22/17 GX - 18,300 SB24-S1 German Automotive - North lateral benzene - .102 ethylbenzene - 8.18 naphthalene - 37.4 TCE - 4.91 124 TMB - 325 135 TMB - 139 xylenes - 62.1 13.7' SB24-S2 03/22/17 German Automotive - North lateral GX - 114 benzene - .099 **Vertical Delineation Sample** ethylbenzene - .06 TCE -.095 124 TMB - .836 135 TMB - .29 TCE -.047 SB25-S1 14.0' 03/22/17 German Automotive - East lateral not detected Vertical Delineation Sample

Table 1 Notes:

Concentrations are only presented for regulated VOCs. Various VOCs were detected in these samples without corresponding soil vapor RBCs.

Apex reported that "The samples carbon ranges are consistent with Stoddard Solvents on the chromatograph".

TABLE 2- SUB-SLAB SOIL VAPOR SAMPLE LABORATORY ANALYTICAL RESULTS –VOCS/GAS (C4-C12 HYDROCARBONS) (UG/M³)					
Sample	Depth	Date	Location	VOCS BY EPA TO-15	GX Range
Sub-slab 2 (SS2)	0.5′	03/14/17	7-Eleven Storeroom Floor	Toluene – 5.2 PCE – 22.0 Total Xylenes – 11.7 Naphthalene – 2.6	not detected

Table 2 Notes:

Concentrations are only presented for regulated VOCs. Various VOCs were detected in these samples without corresponding soil vapor RBCs.

Concentrations of 2-proponol (<43.0 ug/m³) used as a leak detector gas are not indicative of significant sample breakthrough.

6.3 Quality Assurance/Quality Control Review

Laboratory QA/QC measures were performed through data validation of available analytical data generated as part of these sampling events. Data validation considered the following:

- Method Detection and/or Reporting Limits
- Laboratory Matrix Blanks
- Sample Holding Times
- Surrogate and Matrix Spike Recoveries, and
- Laboratory Duplicate Analysis Results

The labs did not report any qualifiers, which would indicate problems with the sample results. According to the lab reports, all analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Exceptions are qualified in the analytical report. In cases where there is insufficient sample material provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

7.0 NATURE AND EXTENT OF CONTAMINATION

7.1 Primary Source(s) of Contamination

The primary sources of contamination include the following.

• A release of Stoddard Solvent and associated VOCs to soil. This may have been a release related to the past use of a north abutting dry cleaner which occupied the area that is now a driveway.

7.1.1 Soil

Gasoline-range petroleum hydrocarbons (Stoddard Solvent) as well as various VOCs were detected in soil samples (4.5 to 17 feet bgs) collected in the northeast portion of the 1024 SE Grand Avenue Site building and the northwest portion of the 521 SE Taylor Street Site building. Based on field screening (visual observation and PID) conducted during the investigation, contamination is not expected to be present in shallow (0-3 feet bgs) soils. Based on the analytical data identifying the gasoline range hydrocarbons as Stoddard Solvent, it is likely that the source of contamination is the former dry cleaning plant on the north abutting property.

Point Source estimates the quantity of gasoline-range petroleum hydrocarbon impacted soil present on the Site to be between 1,000 and 1,100 cubic yards based on a 6 foot lens of contaminated material spread over an aerial extent of 4,600 square feet.

7.1.2 Groundwater

Groundwater was not encountered to a maximum explored depth of 18.0 feet bgs.

7.1.3 Soil Vapor

Various VOCs including toluene, naphthalene, tetrachloroethene (PCE) and total xylenes were detected in the sub-slab vapor sample collected in the 7-Eleven storeroom.

7.2 Contaminants of Interest/Contaminants of Potential Concern

To identify compounds detected in site soils and groundwater that are most likely to be of concern to human health, detected concentrations of these contaminants were compared to a series of risk-based screening criteria that cover the range of potential human activities that may be practiced on the Property currently or in the future.

Compounds with detected concentrations were identified as being COIs. It should be noted that the identification of COIs does not indicate that an unacceptable risk or that a threat exists. Also, COI identification does not necessarily indicate that remediation of a specific environmental media is required. Screening criteria are purposely conservative so chemicals that may contribute to site risk can be further evaluated. The COIs for the Property include petroleum hydrocarbons (gas and oil), metals, VOCs, PAHs and PCBs detected in soil, sub-slab vapor and groundwater samples.

CONTAMINANTS OF INTEREST						
Contaminant	Soil Max Concentration mg/kg	Depth	Soil Vapor Max Concentration ug/m3			
TPH-GX (Stoddard Solvent)	21,800	11.0′	Not Detected			
Benzene	1.27	11.0′	Not Detected			
Ethylbenzene	17.9	11.0′	Not Detected			
Naphthalene	37.4	4.5′	2.6			
Tetrachloroethene (PCE)	1.43	12.0′	22			
Trichloroethene (TCE)	12.9	12.0′	Not Detected			
1,2,4 Trimethylbenzene	325	4.5′	Not Detected			
1,3,5 Trimethylbenzene	139	4.5'	Not Detected			
Toluene	Not Detected	NA	5.2			
Total Xylenes	80.1	12.0′	11.7			
TCLP Lead	Not Detected	NA	NA			

COIs that have concentrations less than their RBCs can be screened out. Constituents that remain after the screening are COPCs.

The COPCs have been carried forward for the risk screening discussed below.

8.0 BENEFICIAL LAND AND WATER USE DETERMINATION

The purpose of the BLWUD is to collect and document information regarding the current and reasonably likely future beneficial uses of land and water in the locality of the facility (LOF). Beneficial use determinations provide the basis for the development of exposure scenarios discussed later in this report. The BLWUD was completed in accordance with the ODEQ's Guidance for Conducting Beneficial Water Use Determinations at Environmental Cleanup Sites (ODEQ, 1998) and Guidance for Consideration of Land Use (ODEQ, 1998).

8.1 Locality of Facility

The LOF is defined by ODEQ as any point where human or ecological receptors may reasonably come into contact with site-related contaminants. Point Source assumes that the LOF extends to the Site boundaries to the north, west and south and include the east adjoining property (521 SE Taylor Street/

TL 1S1E02BC01100).

8.2 Summary of Water Use

The surrounding properties are all provided water by the City of Portland. According to the City of Portland, the main water supply for the district is the Bull Run Watershed (primary) and Columbia South Shore Well Field (secondary). Drinking water is stored in two reservoirs with up to 9.9 million gallons of usable water in storage. Based on our review of the available data information from the City of Portland, the Property and immediately surrounding areas are connected to the municipal water supply system.

The Property (TL 1S1E02BC1200) is located in the NW ¼ of the SE ¼ of Section 02, T.1S, R.1E. All well log records available from the Oregon Water Resources Department (OWRD) for Sections 02, 03 and 11 of T.1S, R.1E were reviewed.

Well ID	Owner	Address	Distance (FT)	Use	H2O		
SECTION 02	SECTION 02						
M2711	Pacific NW Bell	421 SW Oak Street	NA	Other	70'		
M2712	NW Natural Gas	SE 8 th Ave. & SW Taylor St.	NA	Test	Not Noted		
M2713	Western Dairy Products	Not Noted	NA	Industrial	37'		
M2714	Arden Farms	617 SE Main Street	NA	Industrial	Not Noted		
M2715	Lewis Brothers	1005 SE Washington Street	NA	Industrial	38'		
M2727	Arden Farms	617 SE Main Street	NA	Manufacturing	62'		
M95922	ODOT	2339 SE Grand Avenue	NA	Abandon			
M115047- M115049	City of Portland	NE 6 th Ave. & NE Alder St.	NA	Dewatering	18'		
M115311- M115314	City of Portland	NE 6 th Ave. & NE Alder St.	NA	Abandon			
SECTION 03							
M2716	NW Ice and Cold Storage	68 SE Washington Street	NA	Industrial	15'		
M2717	Eastside Plating Works	310 SE Stephens Street	NA	Industrial	53'		
M2718	NW Ice and Cold Storage	68 SE Washington Street	NA	Industrial	15'		
M2719	NW Natural Gas	SW 1 st Ave. & SW Grant St.	NA	Test	None Noted		
M2720	NW Ice and Cold Storage	68 SE Washington Street	NA	Abandon			
M2721	NW Ice and Cold Storage	68 SE Washington Street	NA	Industrial	None Noted		
M2722	Portland Lumber Co.	None Noted	NA	Industrial	None Noted		
M2723	Pacific NW Bell	238 SW 5 th Avenue	NA	Abandon			
M2724	Paramount Theater	None Noted	NA	Industrial	None Noted		
M2725	Fox Theater	837 SW Broadway	NA	Industrial	None Noted		
M2726	Pacific 1 st Federal S&L	711 SW Alder Street	NA	Industrial	230′		
M2728	Pacific Power & Light	920 SW 6 th Avenue	NA	Industrial	34'		

Well ID	Owner	Address	Distance (FT)	Use	H2O
M2729	Pacific 1 st Federal S&L	801 6 th Avenue	NA	Industrial	48'
M2730	Pacific Service Building	None Noted	NA	Industrial	55'
M2732	Pacific Service Building	None Noted	NA	Industrial	53'
M2733	Ladd Building	None Noted	NA	Industrial	52'
M2734	The Oregonian	1320 SW Broadway	NA	Industrial	64'
M2735	The Oregonian	1320 SW Broadway	NA	Industrial	95'
M2737	The Oregonian	1320 SW Broadway	NA	Industrial	86'
M2738	Boiler Maker's Assoc.	1313 SW 3 rd Avenue	NA	Industrial	56'
M2739	Equitable S&L	None Noted	NA	Other	91'
M2740	Portland State College	724 SW Harrison Street	NA	Other	144'
M2741	Portland General Electric	621 SW Alder Street	NA	Industrial	33'
M2742	Western Condensing	220 SW Harrison Street	NA	Industrial	None Noted
M2743	Pacific NW Bell	509 SW Oak Street	NA	Other	120'
M2744	Pacific NW Bell	509 SW Oak Street	NA	Other	130′
M2745	COP-City Auditorium	None Noted	NA	Other	84'
M004	Harold Coe	120 SE Clay Street	NA	Industrial	28'
M4852	Portland Parks	Waterfront Park	NA	Irrigation	23'
M75285	Portland State University	900 SW 4 th Avenue	NA	Industrial	133'
M88931-	Oregon DEQ	SE 3 rd Ave & Washington St	NA	Dewatering	27'
M88932					
M89361	COP BES	SE 3 rd Ave & Washington St	NA	Abandon	
M89364	COP BES	SE 3 rd Ave & Washington St	NA	Abandon	
M94412	COP BES	SE Alder St & SE MLK Blvd.	NA	Dewatering	38'
M98527	Park Lane Investors	811 SW 6 th Avenue	NA	Abandon	
M115559- M115562	Killian Pacific	1510 SE Water Street	NA	Dewatering	5′
M118308- M118312	Killian Pacific	1510 SE Water Street	NA	Abandon	
M120433	Urban Renaissance	1320 SW Broadway	NA	Abandon	
M120446	Urban Renaissance	1320 SW Broadway	NA	Abandon	
M120447	Urban Renaissance	1320 SW Broadway	NA	Abandon	
M123716	Killian Pacific	120 SE Clay Street	NA	Abandon	
SECTION 11				•	
M2770	Darigold	2720 SE 6 th Avenue	NA	Industrial	49'
M2771	Libby, McNeill, Libby	3800 SE 22 nd Avenue	NA	Manufacturing	21'
		1	1	1	

Well ID	Owner	Address	Distance (FT)	Use	H2O
M2772	Libby, McNeill, Libby	3800 SE 22 nd Avenue	NA	Industrial	21'
M2777	NW Natural Gas	SE 18 th Ave. & SE Clinton St.	NA	Test	None Noted
M2778	Irwin Hodsen	2838 SE 9 th Avenue	NA	Industrial	24'
M2779	Pemco	SE 26 th Ave. & SE Powell St.	NA	Other	None Noted
M2780	Southern Pacific RR	None Noted	NA	Industrial	21'
M2781	Dairy Cooperative Assoc.	1313 E 12 th Avenue	NA	Manufacturing	None Noted
M61986	Fred Meyer	3800 SE 22 nd Avenue	NA	Abandon	
M101101	Cyrk Building LLC	2002 SE Clinton Street	NA	LTGT	24'
M109770- M109771	Tri-Met	1509 SE 17 th Avenue	NA	Dewatering	22'
M110677- M110679	Tri-Met	1509 SE 17 th Avenue	NA	Dewatering	40'
M112318	Tri-Met	1509 SE 17 th Avenue	NA	Abandon	
M112434- M112436	Tri-Met	1509 SE 17 th Avenue	NA	Abandon	
M112985- M112987	Tri-Met	1509 SE 17 th Avenue	NA	Abandon	
M119791	Darigold	2720 SE 6 th Avenue	NA	Abandon	

Research of well logs filed with the OWRD revealed no drinking water supply wells within 1000 feet of the Property. Therefore no copies of well logs are included.

Copies of resource protection well logs from the north adjoining property are included in Appendix III.

8.3 Summary of Land Use

The current zoning of 1024 SE Grand Avenue is Central Employment (EX). EX zoning allows mixed-uses and is intended for areas in the center of the City that have predominantly industrial type development. The intent of the zone is to allow industrial, business, and service uses which need a central location. Residential uses are allowed, but are not intended to predominate or set development standards for other uses in the area. The development standards are intended to allow new development which is similar in character to existing development.

The current zoning of 521 SE Taylor Street (east adjoining property) is General Industrial 1 (IG1). IG1 zoning provides areas where most industrial uses may locate, while other uses are restricted to prevent potential conflicts and to preserve land for industry. The development standards for each zone are intended to allow new development which is similar in character to existing development. The intent is to promote viable and attractive industrial areas.

Based on the BLWUD, development of the Site for commercial use (current use) is allowed.

The adjoining properties are zoned EX and General Industrial 1 (IG1), however the Property to the east across SE 6th Avenue (609 SE Taylor Street) which is zoned IG1 is occupied by apartments. The distance from the east edge of the soil plume discussed in this report to the residential property is approximately

100'.

9.0 CONCEPTUAL SITE MODEL

A CSM defines the potentially complete exposure pathways through which human or ecological receptors may be exposed to site contaminants under current or anticipated future land use conditions. A discussion of Site geology and hydrogeology, potential contaminant sources, and the nature and extent of contamination are presented above. An evaluation of current and reasonably likely future receptor-exposure pathway analysis is presented below.

A Conceptual Site Model was developed for the Site and is included as Figure 6 of this report.

The Summary of the Conceptual Site Model, which includes the reasoning for accepting or rejecting exposure scenarios, is included as Figure 7.

9.1 Potential Human Receptors

Potential receptors are those individuals who might be likely exposed to the COIs under current and reasonably likely future land-use conditions. Current land use at the site and surrounding areas is zoned EX and IG1, however the Property to the east across SE 6th Avenue (609 SE Taylor Street) is occupied by apartments. The distance from the east edge of the soil plume discussed in this report to the residential property is approximately 100 feet. Future development of the site is expected to be for commercial/retail purposes. Current and potential human receptors that have been identified in the risk-based screening include the following:

- Adults in the occupational scenario (current Property use);
- Adults in the construction/excavation worker scenario; and,
- Future residential occupants on and off site.

9.1.1 Exposure Pathways for Soil

The following summarizes the potential and/or complete exposure pathways for soil.

- Soil Ingestion, Dermal Contact, and Inhalation These exposure pathways are considered
 potentially complete for future construction and excavation workers only. Underground utilities
 may be modified in the future within the LOF making it possible that future excavation and
 construction workers could be exposed to Site contamination during utility maintenance and
 construction activities.
- Volatilization to Outdoor Air This pathway is considered potentially complete for current on-site
 occupational receptors, current adjoining occupational receptors, and future on-site and adjoining
 residential/urban residential receptors.
- Vapor Intrusion into Buildings This pathway is considered potentially complete for current on-site
 occupational receptors, current adjoining occupational receptors, and future on-site and adjoining
 residential/urban residential receptors.
- Leaching to Groundwater This pathway considers soil leaching to groundwater used for tap water.
 Based upon the results of the Beneficial Water Use Survey, groundwater in the vicinity of the site is not used as a drinking water source.

9.1.2 Exposure Pathways for Groundwater

The following summarizes the potential exposure pathways for groundwater.

- Ingestion and Inhalation from Tap Water These exposure pathways are considered incomplete
 because drinking water wells are not located in or near the LOF and the Site and surrounding area
 receives drinking water from the Bull Run watershed via the City of Portland.
- Volatilization to Outdoor Air This exposure pathway is considered potentially complete for residential, urban residential and occupational receptors.
- Vapor Intrusion into Buildings This exposure pathway is considered potentially complete for residential, urban residential and occupational receptors.
- Direct Contact, Groundwater in Excavation This exposure pathway is considered potentially complete for construction and excavation workers.

9.1.3 Exposure Pathways for Soil Vapor

None of the detected concentrations in soil vapor samples exceed any of their respective RBCs.

9.2 Potential Ecological Receptors

Ecological receptors on the Property are not anticipated since there is no ecological habitat present within the assumed LOF.

10.0 RISK SCREENING

The COPCs for the Site include gasoline-range petroleum hydrocarbons noted as likely being Stoddard Solvent and various volatile organic compounds including benzene, ethylbenzene, toluene, total xylenes, naphthalene, PCE, TCE, 1,2,4 trimethylbenzene and 1,3,5 trimethylbenzene. Analytical results were compared to ODEQ RBCs (November 2015) for the applicable exposure pathways discussed above.

A summary of COPCs that exceed applicable RBCs is presented below.

CONTAMINANTS OF POTENTIAL CONCERN (COPCs)					
СОРС	Medium	Pathway	Receptor		
TPH-Gx Stoddard Solvent	Soil	Soil Ingestion, Dermal Contact and Inhalation	Future Construction Worker		
		Vapor Intrusion into Buildings	Future residential/urban residential receptors Current adjoining residential receptors		
		Volatilization to Outdoor Air	Future residential/urban residential receptors Current adjoining residential receptors		
		Leaching to Groundwater	All current and future receptors		
	Groundwater	Ingestion and Inhalation from Tapwater	All current and future receptors		
Benzene	Soil	Vapor Intrusion into Buildings	Future residential/urban residential receptors Current adjoining residential receptors		
		Leaching to Groundwater	Future residential/urban residential receptors Current adjoining residential receptors		

	CONTAMINANTS OF POTENTIAL CONCERN (COPCs)						
СОРС	Medium	Pathway	Receptor				
	Groundwater	Ingestion and Inhalation from Tapwater	Future residential receptors Current adjoining residential receptors				
Ethylbenzene	Soil	Vapor Intrusion into Buildings	Future residential/urban residential receptors Current adjoining residential receptors				
		Leaching to Groundwater	Future residential/urban residential receptors Current adjoining residential receptors				
	Groundwater	Ingestion and Inhalation from Tapwater	All current and future receptors				
Naphthalene	Soil	Soil Ingestion, Dermal Contact and Inhalation	Future Construction Worker				
		Vapor Intrusion into Buildings	Future residential/urban residential receptors Current adjoining residential receptors				
		Volatilization to Outdoor Air	Future residential/urban residential receptors Current adjoining residential receptors				
		Leaching to Groundwater	All current and future receptors				
	Groundwater	Ingestion and Inhalation from Tapwater	All current and future receptors				
Tetrachloroethene	Groundwater	Ingestion and Inhalation from Tapwater	Future residential receptors Current adjoining residential receptors				
Trichloroethene	Soil	Vapor Intrusion into Buildings	All current and future receptors				
		Leaching to Groundwater	All current and future receptors				
	Groundwater	Ingestion and Inhalation from Tapwater	All current and future receptors				
124 TMB	Soil	Vapor Intrusion into Buildings	All current and future receptors				
		Volatilization to Outdoor Air	Future residential/urban residential receptors Current adjoining residential receptors				
		Leaching to Groundwater	All current and future receptors				
	Groundwater	Ingestion and Inhalation from Tapwater	All current and future receptors				
135 TMB	Soil	Leaching to Groundwater	All current and future receptors				
	Groundwater	Ingestion and Inhalation from Tapwater	All current and future receptors				
Xylenes	Soil	Leaching to Groundwater	Future residential/urban residential receptors Current adjoining residential receptors				

10.1 Soil

COPCs detected in soil exceed the following RBCs.

• TPH-Gx in soil levels (highest 21,800 mg/kg) exceed the Soil Ingestion, Dermal Contact and Inhalation RBCs for residential, urban residential, and occupational uses; and construction workers.

This pathway is considered incomplete for residential, urban residential, and occupational receptors because the impacted soils are not accessible. This pathway is considered complete for

construction workers and will require preparation of a Contaminated Media Management Plan for future development of the Site.

• TPH-Gx in soil levels (highest 21,800 mg/kg) exceed the Vapor Intrusion into Buildings and Volatilization to Outdoor Air RBCs for residential and urban residential use.

These pathways are considered incomplete because gasoline was not detected in the sub-slab soil vapor sample collected within the building.

• TPH-Gx in soil levels (highest 21,800 mg/kg) exceed Leaching to Groundwater RBCs for residential, urban residential and occupational uses.

This pathway is considered potentially complete because some of the soil samples collected at the point of equipment refusal (up to 17 feet bgs) contained concentrations of TPH-Gx above the applicable RBCs. The confining layer encountered at this depth, however, is likely to act as a barrier to further vertical migration.

Furthermore, exposure pathways related to groundwater ingestion have been eliminated based upon the results of the BLWD.

Exposure pathways related to volatilization from groundwater have been eliminated based upon the results of the sub-slab soil vapor sampling.

 Benzene in soil levels (highest 1.27 mg/kg) exceed the Vapor Intrusion into Buildings RBCs for residential and urban residential use.

This pathway is considered incomplete because benzene was not detected in the sub-slab soil vapor sample collected within the building.

• Benzene in soil levels (highest 1.27 mg/kg) exceed the Leaching to Groundwater RBCs for residential, urban residential, and occupational use.

This pathway is considered potentially complete because soil samples collected at depths of up to 13.7 feet bgs contained concentrations of benzene above the applicable RBCs. The confining layer encountered at this depth, however, is likely to act as a barrier to further vertical migration.

Furthermore, exposure pathways related to groundwater ingestion have been eliminated based upon the results of the BLWD.

Exposure pathways related to volatilization from groundwater have been eliminated based upon the results of the sub-slab soil vapor sampling.

• Ethylbenzene in soil levels (highest 17.9 mg/kg) exceed the Vapor Intrusion into Buildings RBCs for residential, urban residential and occupational use.

This pathway is considered incomplete because ethylbenzene was not detected in the sub-slab soil vapor sample collected within the building.

• Ethylbenzene in soil levels (highest 17.9 mg/kg) exceed the Leaching to Groundwater RBCs for residential, urban residential and occupational use.

This pathway is considered potentially complete because soil samples collected at depths of up to 17 feet bgs contained concentrations of ethylbenzene above the applicable RBCs. The confining layer encountered at this depth, however, is likely to act as a barrier to further vertical migration.

Furthermore, exposure pathways related to groundwater ingestion have been eliminated based upon the results of the BLWD.

Exposure pathways related to volatilization from groundwater have been eliminated based upon the results of the sub-slab soil vapor sampling..

• Naphthalene in soil levels (highest 37.4 mg/kg) exceed the Soil Ingestion, Dermal Contact and Inhalation RBCs for residential, urban residential, and occupational uses.

This pathway is considered incomplete because the impacted soils are not accessible. However, preparation of a Contaminated Media Management Plan will be necessary for future development of the Site.

• Naphthalene in soil levels (highest 37.4 mg/kg) exceed the Vapor Intrusion into Buildings and Volatilization to Outdoor Air RBCs for residential and urban residential use.

These pathways are considered incomplete because naphthalene was detected at a concentration of 2.6 ug/m3 (below the most stringent RBC of 17 ug/m3) in the sub-slab soil vapor sample collected within the building

• Naphthalene in soil levels (highest 37.4 mg/kg) exceed the Leaching to Groundwater RBCs for residential, urban residential, and occupational use.

This pathway is considered potentially complete because soil samples collected at depths of up to 17 feet bgs contained concentrations of naphthalene above the applicable RBCs. The confining layer encountered at this depth, however, is likely to act as a barrier to further vertical migration.

Furthermore, exposure pathways related to groundwater ingestion have been eliminated based upon the results of the BLWD.

Exposure pathways related to volatilization from groundwater have been eliminated based upon the results of the sub-slab soil vapor sampling.

• PCE in soil levels (highest 1.43 mg/kg) exceed the Leaching to Groundwater RBCs for residential use.

This pathway is considered potentially complete because a single soil sample collected at a depth of 12 feet bgs contained concentrations of PCE above the applicable RBC. The confining layer encountered 13 to 17 feet, however, is likely to act as a barrier to further vertical migration.

Furthermore, exposure pathways related to groundwater ingestion have been eliminated based upon the results of the BLWD.

Exposure pathways related to volatilization from groundwater have been eliminated based upon the results of the sub-slab soil vapor sampling.

• TCE in soil levels (highest 12.9 mg/kg) exceed the Soil Ingestion, Dermal Contact and Inhalation

RBCs for residential uses.

This pathway is considered incomplete because the impacted soils are not accessible. However, preparation of a Contaminated Media Management Plan will be necessary for future development of the Site.

• TCE in soil levels (highest 12.9 mg/kg) exceed the Vapor Intrusion into Buildings RBCs for residential, urban residential and occupational use.

This pathway is considered incomplete because TCE was not detected in the sub-slab soil vapor sample collected within the building

• TCE in soil levels (highest 12.9 mg/kg) exceed the Leaching to Groundwater RBCs for residential, urban residential and occupational use.

This pathway is considered potentially complete because soil samples collected at depths of up to 12 feet bgs contained concentrations of TCE above the applicable RBCs. The confining layer encountered 13 to 17 feet, however, is likely to act as a barrier to further vertical migration.

Furthermore, exposure pathways related to groundwater ingestion have been eliminated based upon the results of the BLWD.

Exposure pathways related to volatilization from groundwater have been eliminated based upon the results of the sub-slab soil vapor sampling.

• 1,2,4-Trimethylbenzene in soil levels (highest 325 mg/kg) exceed the Soil Ingestion, Dermal Contact and Inhalation RBCs for residential and urban residential uses.

This pathway is considered incomplete because the impacted soils are not accessible. However, preparation of a Contaminated Media Management Plan will be necessary for future development of the Site.

• 1,2,4-Trimethylbenzene in soil levels (highest 325 mg/kg) exceed the Vapor Intrusion into Buildings RBCs for residential, urban residential, and occupational use; and the Volatilization to Outdoor Air RBC for residential and urban residential use.

These pathways are considered incomplete because 1,2,4-Trimethylbenzene was not detected in the sub-slab soil vapor sample collected within the building.

• 1,2,4-Trimethylbenzene in soil levels (highest 325 mg/kg) exceed the Leaching to Groundwater RBCs for residential, urban residential, and occupational use.

This pathway is considered potentially complete because soil samples collected at depths of up to 17 feet bgs contained concentrations of 1,2,4-Trimethylbenzene above the applicable RBCs. The confining layer encountered at this depth, however, is likely to act as a barrier to further vertical migration.

Furthermore, exposure pathways related to groundwater ingestion have been eliminated based upon the results of the BLWD.

Exposure pathways related to volatilization from groundwater have been eliminated based upon the results of the sub-slab soil vapor sampling.

• 1,3,5-Trimethylbenzene in soil levels (highest 139 mg/kg) exceed the Leaching to Groundwater RBCs for residential, urban residential, and occupational use.

This pathway is considered potentially complete because soil samples collected at depths of up to 12 feet bgs contained concentrations of 1,3,5-Trimethylbenzene above the applicable RBCs. The confining layer encountered at 13 to 17 feet, however, is likely to act as a barrier to further vertical migration.

Furthermore, exposure pathways related to groundwater ingestion have been eliminated based upon the results of the BLWD.

Exposure pathways related to volatilization from groundwater have been eliminated based upon the results of the sub-slab soil vapor sampling.

• Total Xylenes in soil levels (highest 80.1 mg/kg) exceed the Leaching to Groundwater RBCs for residential and urban residential, and use.

This pathway is considered potentially complete because soil samples collected at depths of up to 12 feet bgs contained concentrations of xylenes above the applicable RBCs. The confining layer encountered at 13 to 17 feet, however, is likely to act as a barrier to further vertical migration.

Furthermore, exposure pathways related to groundwater ingestion have been eliminated based upon the results of the BLWD.

Exposure pathways related to volatilization from groundwater have been eliminated based upon the results of the sub-slab soil vapor sampling.

10.2 Groundwater

Groundwater was not encountered to a depth of 18 feet below ground surface. Based on the findings of the BLWUD, the use of groundwater at the Site for drinking water purposes is not expected.

Based upon well logs reviewed on the OWRD database from the north adjoining property, depth to first water at the Site is estimated to be in excess of 30 feet below ground surface.

10.3 Soil Vapor

No COPCs were identified.

11.0 FINDINGS

The investigation, field screening of samples, and laboratory analytical results indicated the following:

 Point Source estimates the quantity of gasoline-range petroleum hydrocarbon (identified as Stoddard Solvent by Apex Labs) and associated VOCs impacted soil present beneath the Site to be between 1,000 and 1,100 cubic yards based on a 6 foot lens of contaminated material spread over an aerial extent of 4,600 square feet.

12.0 CONCLUSIONS

Based on the BLWUD and the CSM, and upon the soil, groundwater, and soil vapor sampling results; none of the COPCs exceed the RBCs for applicable exposure scenarios. Based upon the laboratory report and the history of the site and adjoining properties, it appears likely that the source of the impact is the former dry cleaning plant that once occupied what is now the north adjoining property.

No further corrective action is recommended at this time.

Development of a Contaminated Media Management Plan will be required to assure appropriate management of contaminated soil should redevelopment of the Site occur as the contaminated soils will require specialized handling and disposal.

This report should be submitted to the Oregon Department of Environmental Quality with a request for closure.

This report is intended for the exclusive use of 1024 SE Grand Avenue LLC or entities specified by 1024 SE Grand Avenue LLC. This report and findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, nor relied upon by any other party, in whole or in part without prior written consent of Point Source.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Prepared by:

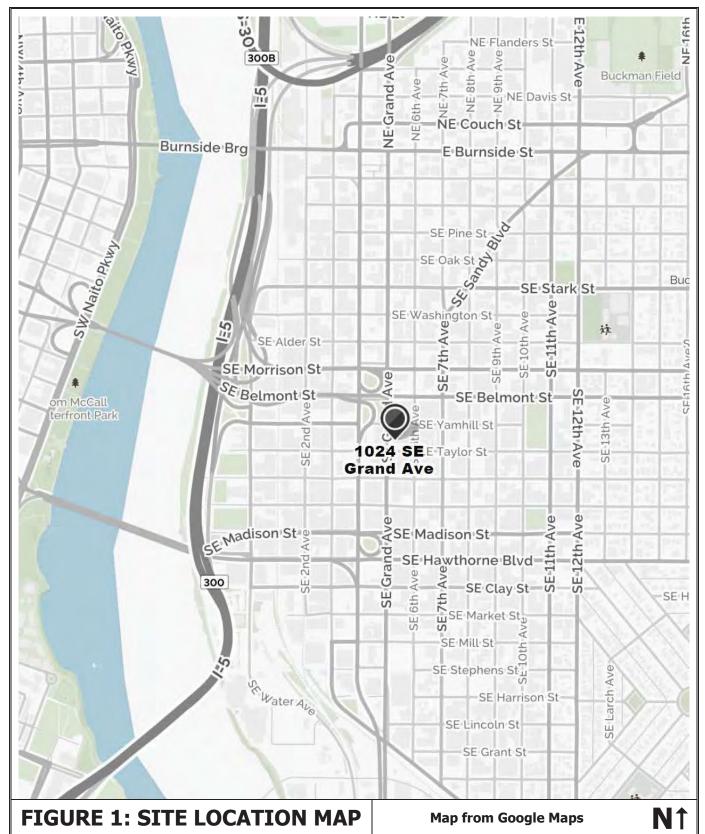
Gil Cobb, Registered Geologist (Oregon #G1440)

Reviewed By:

Jeff Jackman, Environmental Professional

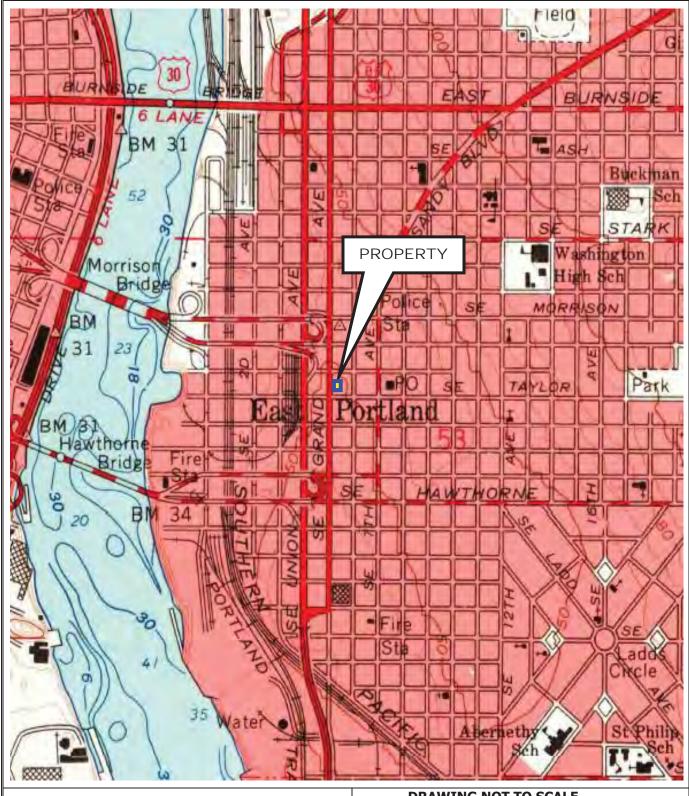
GEOLOGIE

Expires 12/31/2017


Point Source Solutions, LLC 10445 SW Canyon Road, Suite 115 Beaverton, Oregon 97005

Phone: 503.236.5885 Fax: 503.224.0449

www.pointsourcesolutions.com

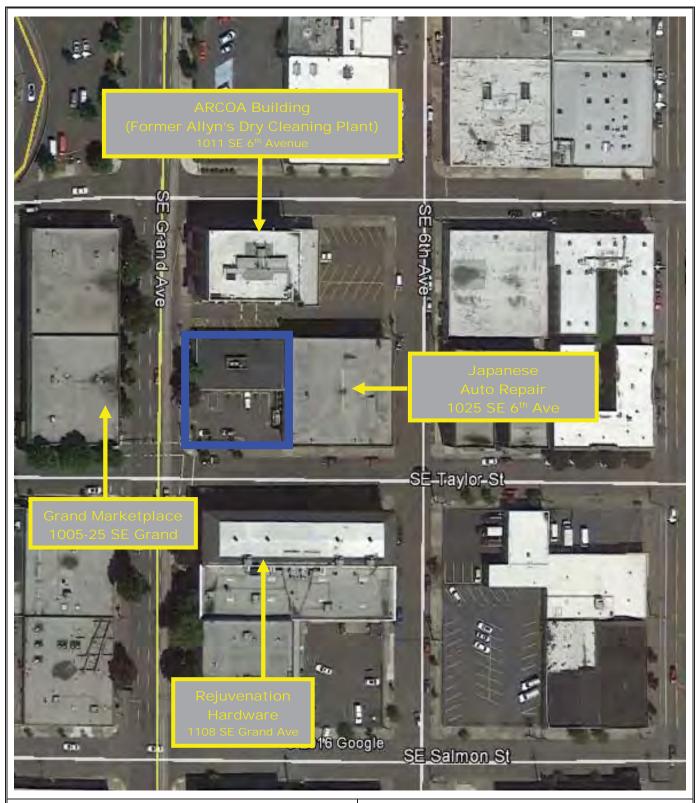

FIGURES

Site Name: 7-Eleven Property 1024 SE Grand Avenue Portland, Oregon, 97214

Project Number: OR160930-4B

FIGURE 2: TOPOGRAPHIC MAP

DRAWING NOT TO SCALE


Source: USGS 7.5 Minute Topographic Map Portland, OR Quadrangle 1990

Site Name: 7-Eleven Property

1024 SE Grand Avenue Portland, Oregon, 97214

Project Number: OR160930-4B

N↑

FIGURE 3 - SITE PLAN

From Google Earth 2016


N₁

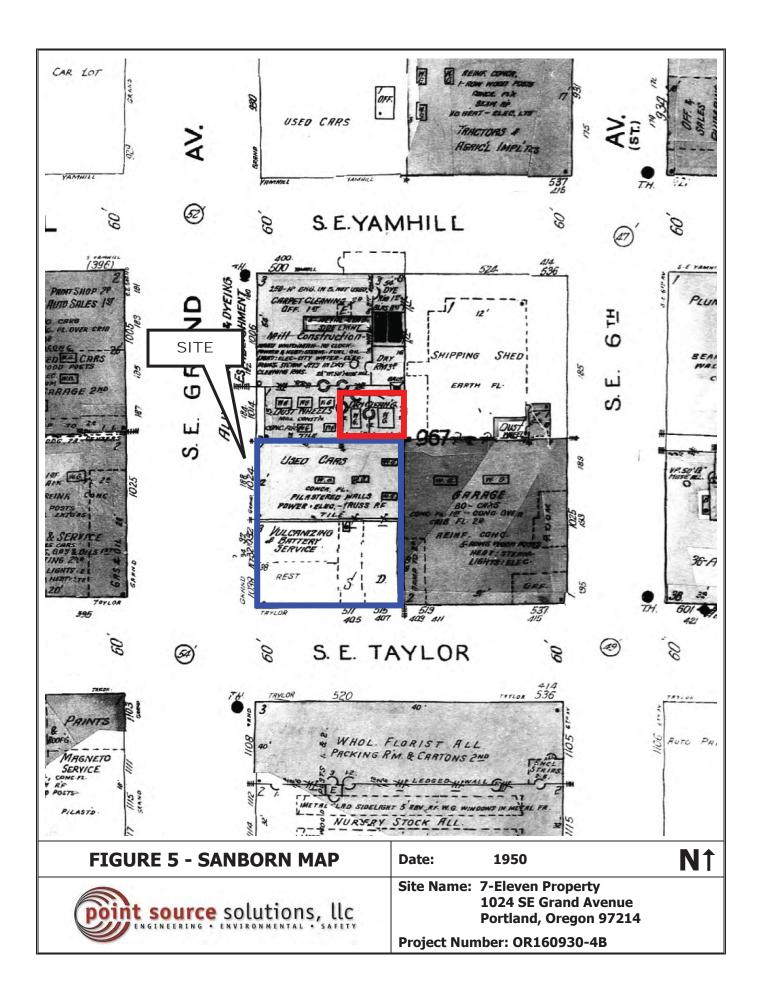
Site Name: 7-Eleven Property

1024 SE Grand Avenue Portland, Oregon, 97214

Project Number: OR160930-4B

FIGURE 4 – BORING LOCATIONS

From 2017 Google Maps



Site Name: 7-Eleven Property

1024 SE Grand Ave Portland, OR 97214

Project Number: OR160930-4B

POTENTIAL RECEPTORS **PRIMARY** Construction & **PRIMARY** RELEASE **SECONDARY TRANSPORT TERTIARY EXPOSURE** Occupational Residential Excavation SOURCES **ROUTES MECHANISMS** SOURCES **MECHANISMS** SOURCES Current Future Current Future Current Future Particles/Volatiles Air (Outdoor) Inhalation No Ingestion Surface Soils **Dermal Contact** No No No No No No Particles/Volatiles Air (Outdoor) Inhalation No No No No Yes Yes Yes Ingestion No No No No Yes Subsurface Soils Yes Yes **Dermal Contact** No No No No former dry cleaner Air (Outdoor) Inhalation Yes Yes Yes Yes N/A N/A (adjoining unknown Volatilization property) Air (Indoor) N/A N/A Inhalation Yes Yes Yes Yes Leaching Groundwater Yes Ingestion Yes Yes Yes N/A N/A Vol. Inhalation Yes N/A N/A Yes Yes Yes Vol. at the Tap Air (Indoor) N/A N/A Inhalation No No No No No No N/A N/A Ingestion No No Air (Outdoor) Inhalation No No No No N/A N/A Groundwater Volatilization Air (Indoor) Inhalation N/A N/A No No No No **Dermal Contact** No No No No No No Volatilization Air (Excavation) Inhalation No No No No No No Discharge Surface Water (3)

Figure 6: Conceptual Site Model

Notes:

Yes= This route is a primary source of exposure.

No= There is no exposure by this route.

Figure 7: SUMMARY OF CONCEPTUAL SITE MODEL

Potentially Exposed Population	Exposure Route, Medium and Exposure Point	Was This Pathway Selected?	Reason for Selection or Exclusion
CURRENT LAND USE: Con	nmercial		
Employees	Surface soils	No	Impacted soils are greater than 3 feet bgs
Residents (in area)	(all exposure routes)	No	
Exc./Const. Workers		No	
Employees	Subsurface soils	No	Impacted soils are not accessible.
Residents (in area)	ingestion, dermal	No	
Exc./Const. Workers	contact, inhalation	Yes	Impacted soils may become accessible via excavation
Employees	Subsurface soils	Yes	Impacted soils are present
Residents (in area)	volatilization to outdoor	Yes	
Exc./Const. Workers	air	No	Not a receptor scenario
Employees	Subsurface soils vapor	Yes	Impacted soils are present
Residents (in area)	intrusion into buildings	Yes	
Exc./Const. Workers		No	Not a receptor scenario
Employees	Subsurface soils	Yes	Impacted soils are present.
Residents (in area)	leaching to groundwater	Yes	
Exc./Const. Workers		No	Not a receptor scenario
Employees	Groundwater	No	There are no drinking water wells on site,
Residents (in area)	Ingestion and inhalation of tap water	No	or within 1,000 feet of the site. The area is served by a municipal water supply
Exc./Const. Workers	1	No	Not a receptor scenario
Employees	Groundwater	No	Volatiles not expected to be present in
Residents (in area)	Volatilization to outdoor	No	groundwater.
Exc./Const. Workers	air	No	Not a receptor scenario.
Employees	Groundwater	No	Volatiles not expected to be present in
Residents (in area)	Vapor intrusion into	No	groundwater.
Exc./Const. Workers	buildings	No	Not a receptor scenario
Exc./Const. Workers	Groundwater in excavation	No	Groundwater is not expected to be encountered at less than 30' bgs

APPENDICES

APPENDIX I SOIL BORING LOGS

PROJECT: 7-Eleven Prope	erty	DATE: January 6, 2017			
CLIENT: Caldwell Properties		DRILLED BY: Point Source Solutions			
LOCATION: 1024 SE Grand Ave Portland, Oregon		BORING METHOD: Push Probe			
GEOLOGIST: Gil Cobb		SAMPLING METHOD: Continuous			
ELEV. GL: NA	ELEV. TOC: NA	INITIAL WL: NA	STATIC WL: NA	TD: 12.0'	

DEPTH FEET	CORE REC	SAMPLE DEPTH	SAMPLE ID	SAMPLE/CORE DESCRIPTION	PID (PPM)
0 – 4.0'	75%			0 - 1.0 feet asphalt, gravel backfill; 1.0 - 4.0 feet fine brown sand with some brick fragments.	0
4.0' - 8.0'	75%			4.0 – 7.0 feet moist fine brown sand; 7.0 – 7.5 feet decomposed wood, charcoal, weathered concrete; 7.5 – 8.0 feet brown silt with some fine sand.	0
8.0' - 12.0'	100%	12.0'	SB15-S1	8.0 – 9.0 feet fine brown sand with some gravel and brick fragments; 9.0 – 12.0 feet tight, moist, fine brown sand.	0

 PROJECT: 7-Eleven Property
 DATE: January 6, 2017

 CLIENT: Caldwell Properties
 DRILLED BY: Point Source Solutions

 LOCATION: 1024 SE Grand Ave Portland, Oregon
 BORING METHOD: Push Probe

 GEOLOGIST: Gil Cobb
 SAMPLING METHOD: Continuous

 ELEV. GL: NA
 ELEV. TOC: NA
 INITIAL WL: NA
 STATIC WL: NA
 TD: 16.5'

DEPTH FEET	CORE REC	SAMPLE DEPTH	SAMPLE ID	SAMPLE/CORE DESCRIPTION	PID (PPM)
0 – 2.0'	NA			Gear advanced to 2.0' bgs. No cores logged.	
2.0' - 4.0'	90%			2.0-4.0 feet brown silt with some clay, layer of gravel and wood at 3.0 '.	0
4.0' - 6.0'	90%			4.0 – 6.0 feet light brown silt with some clay.	0
6.0' - 8.0'	85%			6.0 – 8.0 feet marbled grey and light brown silt with some clay and organics.	0
9.0' 10.0'	GE0/			8.0 – 9.0 feet light brown silt;	
8.0' - 10.0'	65%			9.0 – 10.0 feet silt with some clay, heavy solvent staining/odor.	974
10.0' - 12.0'	70%	11.0'	SB16-S1	10.0 – 12.0 feet silt with some clay, heavy solvent staining/odor.	1,192
12.0' - 14.0'	80%			12.0 – 14.0 feet silt with some clay, heavy solvent staining/odor.	1,104
14.0' - 15.0'	NA			Gear advanced to 15.0' bgs. No cores logged.	
15.0' - 16.5'	60%	16 F'	SB16-S2	15.0 – 16.0 feet silt with some clay, heavy solvent staining/odor;	
15.0 - 16.5		16.5'		16.0 – 16.5 feet brown silt with some clay, no solvent staining/odor.	40.3
				Hard refusal at 16.5'	
	ĺ				

PROJECT: 7-Eleven Prope	erty	DATE: January 6, 2017		
CLIENT: Caldwell Properties DRILLED BY: Point Source Solutions				
LOCATION: 1024 SE Gran Portland, Ore		BORING METHOD: Push Probe		
GEOLOGIST: Gil Cobb		SAMPLING METHOD: Continuous		
ELEV. GL: NA	ELEV. TOC: NA	INITIAL WL: NA	STATIC WL: NA	TD: 12.0'

DEPTH FEET	CORE REC	SAMPLE DEPTH	SAMPLE ID	SAMPLE/CORE DESCRIPTION	PID (PPM)
0 – 4.0'	85%			0 – 4.0 feet fine brown sand with some brick fragments.	1.4
4.0' - 8.0'	80%			4.0– 8.0 feet brown sandy silt with some clay, oxidation, organics, and brick.	0
8.0' - 12.0'	100%	12.0'	SB17-S1	8.0 – 9.0 feet sandy gravel with some pulverized brick and concrete; 9.0 – 12.0 feet slightly moist, light brown sandy silt, with some clay.	0

PROJECT: 7-Eleven Property

DATE: March 14, 2017

CLIENT: Caldwell Properties

DRILLED BY: Point Source Solutions

LOCATION: 1024 SE Grand Ave Portland, Oregon

BORING METHOD: Push Probe

SAMPLING METHOD: Continuous

ELEV. GL: NA

ELEV. TOC: NA

INITIAL WL: NA

STATIC WL: NA

TD: 17.0'

DEPTH FEET	CORE REC	SAMPLE DEPTH	SAMPLE ID	SAMPLE/CORE DESCRIPTION	PID (PPM)
0 – 7.0'	NA			Gear advanced to 7.0' bgs. No cores logged.	
7.0' - 9.0'	50%			7.0 – 9.0 feet brown silt with slight solvent odor/no staining.	
				9.0 – 9.5 feet brown silt with slight solvent odor/no staining;	
9.0' - 11.0'	60%			9.5 – 10.0 feet silt, heavy solvent staining/odor;	1,508
				10.0 – 11.0 feet brown silt, slight solvent odor/no staining.	208
11.0'-12.0'	NA			Gear advanced to 12.0' bgs. No cores logged.	
40.01 44.01	0=0/			12.0 – 13.0 feet brown silt, slight solvent odor/no staining;	
12.0' - 14.0'	95%			13.0 – 14.0 feet fine sand with some silt, moderate solvent odor/staining.	1,203
14.0' - 15.0'	NA			Gear advanced to 15.0' bgs. No cores logged.	
15.0' - 17.0'	80%	17.0	SB18-S1	15.0 – 17.0 feet fine sand with moderate solvent odor/staining, hard driving.	
				Progress refusal at 17.0'	

PROJECT: 7-Eleven Property

DATE: March 14, 2017

CLIENT: Caldwell Properties

DRILLED BY: Point Source Solutions

BORING METHOD: Push Probe

GEOLOGIST: Gil Cobb

SAMPLING METHOD: Continuous

ELEV. GL: NA

ELEV. TOC: NA

INITIAL WL: NA

STATIC WL: NA

TD: 17.5'

DEPTH FEET	CORE REC	SAMPLE DEPTH	SAMPLE ID	SAMPLE/CORE DESCRIPTION	PID (PPM)
0 – 2.0'	NA			Gear advanced to 2.0' bgs. No cores logged.	
2.0' - 4.0'	75%			2.0 – 4.0 feet brown silt.	1.0
4.0' - 6.0'	85%			4.0 – 6.0 feet brown silt.	0.8
6.0' - 8.0'	0%			Tube jammed. No recovery.	
8.0' - 10.0'	75%			8.0 – 9.0 feet brown silt; 9.0 – 9.5 feet brown sandy silt; 9.0 – 9.5 feet sandy silt, light solvent staining/moderate odor.	1,558
10.0' - 12.0'	90%	10.0'	SB19-S1	10.0 – 12.0 feet sandy silt, light solvent staining/odor.	158
12.0' – 14.0'	90%			12.0 – 12.5 feet brown silty clay, no staining/odor. 12.5 – 13.0 feet brown silty clay, marbled with light solvent staining/odor; 13.0–14.0 feet grey clay, possible organic odor.	15
14.0' - 16.0'	90%			14.0 – 14.5 feet brown silty clay, no staining/odor. 14.5 – 16.0 feet brown silty sand with some clay, moderate solvent odor/no staining.	1,180 140
16.0' – 17.5'	60%	17.5'	SB19-S2	16.0 – 17.5 feet brown silty sand with some clay, dry gravel and coarse sand in shoe, no staining/odor.	1.4
				Hard refusal at 17.5'	

PROJECT: 7-Eleven Property		DATE: March 14, 2017			
CLIENT: Caldwell Properties		DRILLED BY: Point Source Solutions			
LOCATION: 1024 SE Grand Ave Portland, Oregon		BORING METHOD: Push Probe			
GEOLOGIST: Gil Cobb		SAMPLING METHOD:	Continuous		
ELEV. GL: NA ELEV. TOC: NA		INITIAL WL: NA	STATIC WL: NA	TD: 18.0'	

DEPTH FEET	CORE REC	SAMPLE DEPTH	SAMPLE ID	SAMPLE/CORE DESCRIPTION	PID (PPM)
0 – 2.0'	NA			Gear advanced to 2.0' bgs. No cores logged.	
2.0' - 4.0'	55%			2.0 – 4.0 feet brown clayey silt with some black sandy gravel.	0.4
4.0' - 6.0'	50%			4.0 – 6.0 feet brown marbled clayey silt.	0.3
6.0' - 8.0'	90%			6.0 – 8.0 feet brown marbled clayey silt.	0.4
8.0' - 10.0'	60%	10.0'	SB20-S1	8.0 – 9.0 feet brown clayey silt; 9.0 – 10.0 feet clayey silt, heavy solvent staining/odor	1,426
10.0' - 12.0'	90%			10.0 – 12.0 feet clayey silt, moderate solvent staining/odor	577
12.0' – 14.0'	80%			12.0 – 13.0 feet clayey silt, light solvent staining/odor 13.0– 14.0 feet clayey silt, heavy solvent staining/odor	200
14.0' - 16.0'	75%			14.0 – 16.0 feet wet silt, heavy solvent staining/odor.	840
16.0' – 18.0'	40%	18.0'	SB20-S2	16.0 – 18.0 feet coarse brown sand with rounded and angular gravel, wet, light solvent odor/no staining.	174
				Progress refusal at 18.0'	

PROJECT: 7-Eleven Prop	erty	DATE : March 14, 2017			
CLIENT: Caldwell Properties		DRILLED BY: Point Source Solutions			
	LOCATION: 1024 SE Grand Ave Portland, Oregon		BORING METHOD: Push Probe		
GEOLOGIST: Gil Cobb		SAMPLING METHOD:	Continuous		
ELEV. GL: NA ELEV. TOC: NA		INITIAL WL: NA	STATIC WL: NA	TD: 16.0'	

DEPTH FEET	CORE REC	SAMPLE DEPTH	SAMPLE ID	SAMPLE/CORE DESCRIPTION	PID (PPM)
FEET	REC	DEPTH	טו		(FFIVI)
0 – 4.0'	60%			0 – 0.5 feet asphalt;	
				0.5 – 4.0 feet brown clayey sand with some brick fragments.	0.8
4.0' - 8.0'	60%			4.0– 7.0 feet brown sandy silt;	0.8
1.0 0.0	0070			7.0– 8.0 feet pulverized brick and morter.	
8.0' - 12.0'	100%			8.0 – 12.0 feet moist, light brown clayey silt.	0.5
12.0' - 16.0'	100%	16.0'	SB21-S1	12.0 – 16.0 feet light brown clayey silt.	0.4
	1				

PROJECT: 7-Eleven Property		DATE: March 22, 2017			
CLIENT: Caldwell Properties		DRILLED BY: Point Source Solutions			
LOCATION: 1024 SE Grand Ave Portland, Oregon		BORING METHOD: Push Probe			
GEOLOGIST: Gil Cobb		SAMPLING METHOD:	Continuous		
ELEV. GL: NA	ELEV. TOC: NA	INITIAL WL: NA STATIC WL: NA TD: 13.8			

DEPTH FEET	CORE REC	SAMPLE DEPTH	SAMPLE ID	SAMPLE/CORE DESCRIPTION	PID (PPM)
0 – 2.0'	NA			Gear advanced to 2.0' bgs. No cores logged.	
2.0' - 4.0'	0%			Tube jammed. Soil appeared clean.	
4.0' - 6.0'	0%			Tube jammed. Possible slight solvent odor on tooling	
6.0' - 8.0'	60%			6.0 – 8.0 feet light brown silt with some fine sand.	0.5
8.0' - 10.0'	95%			8.0 – 10.0 feet light brown silt with some fine sand.	0.4
10.0' - 12.0'	75%			10.0 – 12.0 feet light brown silt with some fine sand.	0.3
12.0' - 13.8'	60%	13.8'	SB22-S1	12.0 – 12.2 feet light brown fine sand with some silt; 12.2–13.8 feet fine sand, heavy solvent odor/staining.	705
				Hard refusal at 13.8'	
					_

PROJECT: 7-Eleven Property

CLIENT: Caldwell Properties

DRILLED BY: Point Source Solutions

LOCATION: 1024 SE Grand Ave Portland, Oregon

BORING METHOD: Push Probe

SAMPLING METHOD: Continuous

ELEV. GL: NA

ELEV. TOC: NA

INITIAL WL: NA

STATIC WL: NA

TD: 13.5'

DEPTH FEET	CORE REC	SAMPLE DEPTH	SAMPLE ID		SAMPLE/COR	E DESCRIPTION		PID (PPM)
0 – 2.0'	NA			Gear a	dvanced to 2.0' bgs. No core	es logged.		
2.0' - 4.0'	75%			2.0 – 4	.0 feet brown silt with some	fine sand.		0
4.0' - 6.0'	95%			4.0 – 6	.0 feet brown silt with some	fine sand, and clay.		0.1
6.0' - 8.0'	60%			6.0 – 8	.0 feet brown silt with some	fine sand, and clay.		0.1
8.0' - 10.0'	80%			8.0 – 1	0.0 feet brown silt with some	e clay.		0.3
10.0' - 12.0'	95%			10.0 –	12.0 feet light brown silt with	some fine sand.		0.1
12.0' - 13.5'	60%	13.5'	SB23-S1	12.0– 1	3.5 feet fine sand with some	e silt, heavy solvent odor/sta	aining.	692
				Hard re	efusal at 13.5'			

PROJECT: 7-Eleven Property

DATE: March 22, 2017

CLIENT: Caldwell Properties

DRILLED BY: Point Source Solutions

LOCATION: 1024 SE Grand Ave Portland, Oregon

BORING METHOD: Push Probe

SAMPLING METHOD: Continuous

ELEV. GL: NA

ELEV. TOC: NA

INITIAL WL: NA

STATIC WL: NA

TD: 13.7'

DEPTH FEET	CORE REC	SAMPLE DEPTH	SAMPLE ID	SAMPLE/CORE DESCRIPTION	PID (PPM)
0 – 2.0'	NA			Gear advanced to 2.0' bgs. No cores logged.	
2.0' - 4.0'	60%			2.0 – 4.0 feet brown silt with some fine sand.	0.3
4.0' - 6.0'	75%	4.5'	SB24-S1	4.0 – 4.5 feet brown silt with some fine sand; 4.5 – 6.0 feet silt with heavy solvent staining/odor.	
6.0' - 8.0'	80%			6.0 – 8.0 feet silt with heavy solvent staining/odor.	684
8.0' - 10.0'	80%			8.0 – 8.5 feet silt with heavy solvent staining/odor; 8.5 – 9.5 feet silt with some clay, moderate solvent staining/heavy odor; 9.5 – 10.0 feet silt with some fine sand, heavy solvent staining/odor;	790
10.0' - 12.0'	75%			10.0 – 12.0 feet fine sand with some silt, heavy solvent staining/odor.	690
12.0' - 13.7'	60%	13.7'	SB24-S2	12.0– 13.0 silt with heavy solvent staining/odor; 13.0– 13.7 feet fine sand with some silt, moderate solvent odor/staining.	694 124
				Hard refusal at 13.7'	

PROJECT: 7-Eleven Property

DATE: March 22, 2017

CLIENT: Caldwell Properties

DRILLED BY: Point Source Solutions

LOCATION: 1024 SE Grand Ave Portland, Oregon

BORING METHOD: Push Probe

SAMPLING METHOD: Continuous

ELEV. GL: NA

ELEV. TOC: NA

INITIAL WL: NA

STATIC WL: NA

TD: 14.0'

l <u> </u>					
DEPTH FEET	CORE REC	SAMPLE DEPTH	SAMPLE ID	SAMPLE/CORE DESCRIPTION	PID (PPM)
0 – 2.0'	NA			Gear advanced to 2.0' bgs. No cores logged.	
2.0' - 4.0'	60%			2.0 – 4.0 feet brown silt.	
4.0' - 8.0'	NA			Gear advanced to 8.0' bgs. No cores logged.	
8.0' - 10.0'	80%			8.0 – 10.0 feet brown silt.	1.3
10.0' - 12.0'	90%			10.0 – 12.0 feet brown silt.	3
12.0' - 14.0'	80%	14.0'	SB25-S1	12.0– 14.0 feet brown sand and brown silt, coarse brown sand and gravel in shoe.	2.5
				Progress refusal at 14.0'	
					\vdash
					\vdash

APPENDIX II LABORATORY ANALYTICAL REPORTS

Wy'East Analytical Report #87034 dated January 17, 2017
Friedman & Bruya Analytical Report #703265 dated March 28, 2017
APEX Labs Analytical Report #A7C0451 dated March 29, 2017
APEX Labs Analytical Report #A7C0722 dated March 30, 2017

APEX Labs Correspondence dated March 22, 2017 APEX Labs Correspondence dated March 30, 2017

WY'EAST ANALYTICAL REPORT #87034

1/9/17

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

Re: OR161203-3b

Dear Point Source Solutions

Enclosed are the results of analysis for samples received by the laboratory on 1/6/2017. The results related only to the samples included in this report.

The project was assigned a report number of 87034

If you have any questions concerning this report, please feel free to contact us.

Sincerely,

CY Chan

QA Officer

NW-TPHDx LABORATORY REPORT

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

SITE NAME: C.O.C. NUMBER: 87034
SITE LOCATION: 1024 SE Grand Ave REPORT DATE: 1/10/17

PROJECT NUMBER: OR161203-3b

Analytical Method: NWTPH-Dx Preparation Method: EPA3545A

Analytes: Total Diesel and Heavy Oil range petroleum in Soil. Calculated on a dry-weight basis.

		Diesel	Heavy Oil	Surrogate	Analytical	Prepared	Sampling
Field ID	LAB ID	(mg/Kg)	(mg/Kg)	Recovery (%)	Batch	Batch	Date
SB18-S1-9.5	L3578	ND	ND	95%	78FL1701091	D170109-1	1/6/2017
SB18-S2-17	L3579	ND	ND	101%	78FL1701091	D170109-1	1/6/2017
SB16-S1-11	L3580	ND	ND	93%	78FL1701091	D170109-1	1/6/2017
SB15-S1-12	L3581	ND	ND	91%	78FL1701091	D170109-1	1/6/2017
SB16-S2-16.5	L3582	ND	ND	91%	78FL1701091	D170109-1	1/6/2017
SB17-S1-12	L3583	ND	ND	92%	78FL1701091	D170109-1	1/6/2017
Reporting	Limit:	25	100				
Surrogate 1	Limit:			50%-150%			

Surrogate is 1-ChloroOctadecane

ND = Not Detected at or below the Reporting Limit

Results relate only to samples

This report shall not be reproduced, except in full, without the written approval of WyEast Environmental Sciences, Inc.

Chemist Initials:

Reviewed By:

PERCENT MOISTURE REPORT

REPORT NUMBER: 87034 **REPORT DATE:** 1/10/17

ASTM D2974-07a

Analytes: Percent Moisture in Sample

L3578 L3579			
L3579			
	25.9	1/6/17	
	24.6	1/6/17	
L3580	26.6	1/6/17	
L3581	24.1	1/6/17	
L3582	27.4	1/6/17	
L3583	24.7	1/6/17	

Method: NWTHP-Dx Report No. 87034

Client: Point Source Solutions Date: 1/9/2017

Sample Condition

6 Sample(s) were analyzed for NWTPH-Dx. Sample(s)were received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

Sample(s) were analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)

All criteria were within method limits

Method Blank

Method Blank meets method limit

Laboratory Control Sample (LCS)

All criteria were within method limits

Duplicate Sample

All criteria were within method limits

Matrix Spike

All criteria were within method limits

Matrix Spike Duplicate

No Matrix Spike Duplicate was run on this batch

Non-Conformance

Quality Control for NWTPH-Dx

Batch Date: 1/9/2017

Units: Soil Blank (mg/Kg) Water Blank (mg/L) CCV & LCS (ug/mL)

Blank Number	PB	Diesel Result	Oil Result	Limits Diesel	Limits Oil	Blank Control	Surr. Recovery	Surr. Limits	Surr. Control
SBK01091	D170109-1	2	0	50	100	PASS	97%	50%-150%	PASS
Diesel LCS Number	РВ	Diesel in Extract	Expected Conc.	LCS Recovery (%)	LCS Control Limits	LCS Control	Surr. Recovery	Surr. Limits	Surr. Control
SLC01091	D170109-1	545.84	500.00	109%	±30%	PASS	81%	50%-150%	PASS
Oil LCS Number	РВ	Oil in Extract	Expected Conc.	LCS Recovery (%)	LCS Control Limits	LCS Control	Surr. Recovery	Surr. Limits	Surr. Control
SLC01091	D170109-1	501.34	500.00	100%	±30%	PASS	81%	50%-150%	PASS
Diesel Dupl. Number	PB	Sample in Extract	Duplicate In Extract	RPD (%)	Control Limits	Duplicate Control			
L3574	D170109-1	17.91233071	2.328113498	0%	±30%	PASS			
Oil Dupl. Number	РВ	Sample in Extract	Duplicate in Extract	RPD (%)	Control Limits	Duplicate Control			
L3574	D170109-1	0	0	0%	±30%	PASS			
Diesel MS Number	PB	Sample in Extract	Diesel MS Result	MS Recovery (%)	MS Control Limits	MS Control			
L3575MS	D170109-1	3.837275883	639.6959339	95%	70%-130%	PASS			
Oil MS Number	PB	Sample in Extract	Oil MS Result	MS Recovery (%)	MS Control Limits	MS Control			
L3575MS	D170109-1	0	552.4817328	83%	70%-130%	PASS			

87034 1/9/2017

NW-TPHGx LABORATORY REPORT

Point Source Solutions

10445 SW Canyon Rd Suite 115

Portland, OR 97214

PROJECT NAME: SITE LOCATION:

1024 SE Grand Ave

PROJECT NUMBER:

OR161203-3b

Analytical Method: NW-TPHGx

Preparation Method: EPA 5035

C.O.C. NUMBER:

REPORT DATE:

Analytes: Gasoline in Soil. Calculated on a dry-weight basis.

		Gasoline	Surrogate	Analytical	Preperation	Sampling
Field ID	LAB ID	(mg/Kg)	Recov.(%)	Batch	Batch	Date
SB18-S1-9.5	L3578	73	106%	58PI170109-1	G170109-1	1/6/2017
SB18-S2-17	L3579	6540	126%	58PI170109-1	G170109-1	1/6/2017
SB16-S1-11	L3580	21800	108%	58PI170109-1	G170109-1	1/6/2017
SB15-S1-12	L3581	ND	102%	58PI170109-1	G170109-1	1/6/2017
SB16-S2-16.5	L3582	79	108%	58PI170109-1	G170109-1	1/6/2017
SB17-S1-12	L3583	ND	108%	58PI170109-1	G170109-1	1/6/2017

Reporting Limit: -- 20

Surrogate is p-Bromofluorobenzene

ND = Not Detected (Below Reporting or Detection Limit)

Results relate only to samples.

This report shall not be reproduced, except in full, without the written approval of Wy'East Environmental Sciences, Inc.

Chemist Initials:

Cy chan

Reviewer Initials:

PERCENT MOISTURE REPORT

REPORT NUMBER: 87034 **REPORT DATE:** 1/9/2017

ASTM D2974-07a

Analytes: Percent Moisture in Sample

LAB ID	Moisture (%)	Date Analyzed
L3578	26	1/6/2017
L3579	25	1/6/2017
L3580	27	1/6/2017
L3581	24	1/6/2017
L3582	27	1/6/2017
L3583	25	1/6/2017

Method: NWTHP-Gx Report No. 87034

Client: Point Source Solutions Date: 1/9/2017

Sample Condition

6 sample(s) were analyzed for NWTPH-Gx. Sample(s)were received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

sample(s) were analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)

All criteria were within method limts

Method Blank

Method Blank meets method limt

Laboratory Control Sample (LCS)

All criteria were within method limts

Duplicate Sample

No duplicate was run with this batch

Matrix Spike

All MS criteria were within method limts All MSD criteria were within method limts

Matrix Spike Duplicate RPD

All criteria were within method limts

Non-Conformance

Quality Control for Gasoline in Soil by NWTPH-Gx

Batch Date: 1/9/2017

Blank	Prep. Batch	Result(mg/Kg)	Accep. Range	Sur. % Recovery	% Accep.
GBK01091	G170109-1	0.73	<20	99%	50%-150%
Spike	Prep. Batch	Result (mg/Kg)	Expected (mg/Kg)	spike % Recovery	% Ассер.
GLC01091	G170109-1	99.22	100.3	99%	70%-130%
MS	A. Batch	Spike (mg/Kg)	Sample(mg/Kg)	Spike % Recovery	% Ассер.
BLK57MS	G170109-1	99	1	98%	70%-130%
BLK57MSD	G170109-1	98	1	97%	70%-130%
MSD	A. Batch	MSD (mg/Kg)	MS(mg/Kg)	RPD	% Ассер.
BLK57MSD	58PI170109-1	98	99	-2%	±30%

LABORATORY REPORT

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

PROJECT NAME: SITE LOCATION:

FIELD ID:

1024 SE Grand Ave OR161203-3b

PROJECT NUMBER: ANALYST

SB18-S1-9.5

INSTRUMENT REPORT NUMBER: REPORT DATE: ACQ. ON SolaTek 87034 1/10/17

ACQ. ON 9Jan20173:30pm PREP. BATCH V170109 LAB ID: L3578

Preparation Method: EPA 5035A

Analytical Method: EPA 8260C Analyte: Volatile Organics in Soil

Analyte: Volatile Organics in Soil	Sample	Quant. Limit	Qualifier Dilution
Compound	(ug/Kg)	(ug/Kg)	Factor
benzene	ND	200	50
bromobenzene	ND	200	50
bromochloromethane	ND	200	50
bromodichloromethane	ND	200	50
bromoform	ND	200	50
n-butylbenzene	ND	200	50
sec-butylbenzene	ND	200	50
tert-butylbenzene	ND	200	50
chlorobenzene	ND	200	50
chloroform	ND	200	50
2-chlorotoluene	ND	200	50
4-chlorotoluene	ND	200	50
dibromochloromethane	ND	200	50
1,2dibromo3-chloropropane	ND	200	50
1,2-dibromoethane	ND	200	50
dibromomethane	ND	200	50
1,2-dichlorobenzene	ND	200	50
1,3-dichlorobenzene	ND	200	50
1.4-dichlorobenzene	ND	200	50
1,1-dichloroethane	ND	200	50
1,2-dichloroethane	ND	200	50
1,1-dichloroethene	ND	200	50
cis-1,2-dichloroethene	ND	200	50
trans-1,2-dichloroethene	ND	200	50
1,2-dichloropropane	ND	200	50
1,3-dichloropropane	ND	200	50
1,1-dichloropropene	ND	200	50
cis-1,3-dichloropropene	ND	200	50
trans-1,3-dichloropropene	ND	200	50
ethylbenzene	ND	200	50
hexachlorobutadiene	ND	200	50
isopropylbenzene	ND	200	50
p-Isopropyltoluene	ND	200	50
methyl-tert-butylether(MTBE)	ND	200	50
naphthalene	ND	200	50
n-propyl-benzene	ND	200	50
styrene	ND	200	50
1,1,1,2-tetrachloroethane	ND	200	50
1,1,2,2-tetrachloroethane	ND	200	50
tetrachloroethylene	ND	200	50
toluene	ND	200	50
1,2,3-trichlorobenzene	ND	200	50
1,2,4-trichlorobenzene	ND ND	200	50
1,1,1-trichloroethane	ND ND	200	50
1,1,2-trichloroethane	ND ND	200	50
trichloroethene	ND ND	200	50
1,2,3-trichloropropane	ND ND	200	50
1,2,4-trimethlybenzene	478	200	50
1,3,5-trimethylbenzene	ND	200	50
, , , , , , , , , , , , , , , , , , ,	ND ND		50
xylene(m&p)	ND ND	200 200	50 50
o-xylene	ND ND	200	50 50
total xylenes	ND	200	30

Surrogate: Percent Recovery 1,2-dichloroethane-d4

toluene-d8

p-bromofluorobenzene

106

101 **Reviewer Initials:**

E C

Analyst:

Method:

Point Source Solutions Client:

Report No. 87034 1/9/2017 Date:

Sample Condition

Sample was analyzed for 8260. Sample was received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

Sample was analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)
All criteria were within method limts. Any exceptions are qualified in the body of the report

Method Blank

Method Blank meets method limt. Any exceptions are qualified in the body of the report

Laboratory Control Sample (LCS)

All criteria were within method limts, Any exceptions are qualified in the body of the report

Duplicate Sample

No Duplicate was run on this batch

Matrix Spike

All criteria were within method limts

Matrix Spike Duplicate

1 compounds of Matrix Spike Duplicate were outside method limts as flagged in the MSD QC report

LABORATORY REPORT

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

PROJECT NAME: SITE LOCATION:

1024 SE Grand Ave OR161203-3b

PROJECT NUMBER: ANALYST

FIELD ID: SB18-S2-17

INSTRUMENT REPORT NUMBER: REPORT DATE: ACQ. ON SolaTek 87034 1/10/17 9Jan20176:27pm

PREP. BATCH V170109 LAB ID: L3579

Preparation Method: EPA 5035A

Analytical Method: EPA 8260C Analyte: Volatile Organics in Soil

Analyte: Volatile Organics in Soil	Sample	Quant. Limit	Qualifier Dilution
Compound	(ug/Kg)	(ug/Kg)	Factor
benzene	ND	204	50
bromobenzene	ND	204	50
bromochloromethane	ND	204	50
bromodichloromethane	ND	204	50
bromoform	ND	204	50
n-butylbenzene	5851	204	500
sec-butylbenzene	5606	204	500
tert-butylbenzene	ND	204	50
chlorobenzene	ND	204	50
chloroform	ND	204	50
2-chlorotoluene	ND	204	50
4-chlorotoluene	ND	204	50
dibromochloromethane	ND	204	50
1,2dibromo3-chloropropane	ND	204	50
1,2-dibromoethane	ND	204	50
dibromomethane	ND	204	50
1,2-dichlorobenzene	ND	204	50
1,3-dichlorobenzene	ND	204	50
1.4-dichlorobenzene	ND	204	50
1,1-dichloroethane	ND	204	50
1,2-dichloroethane	ND	204	50
1,1-dichloroethene	ND	204	50
cis-1,2-dichloroethene	ND	204	50
trans-1,2-dichloroethene	ND	204	50
1,2-dichloropropane	ND	204	50
1,3-dichloropropane	ND	204	50
1,1-dichloropropene	ND	204	50
cis-1,3-dichloropropene	ND	204	50
trans-1,3-dichloropropene	ND	204	50
ethylbenzene	4420	204	500
hexachlorobutadiene	ND	204	50
isopropylbenzene	4371	204	500
p-Isopropyltoluene	7556	204	500
methyl-tert-butylether(MTBE)	ND	204	50
naphthalene	3764	204	500
n-propyl-benzene	7259	204	500
styrene	ND	204	50
1,1,1,2-tetrachloroethane	ND	204	50
1,1,2,2-tetrachloroethane	ND	204	50
tetrachloroethylene	ND	204	50
toluene	ND	204	50
1,2,3-trichlorobenzene	ND	204	50
1,2,4-trichlorobenzene	ND	204	50
1,1,1-trichloroethane	ND	204	50
1,1,2-trichloroethane	ND	204	50
trichloroethene	ND	204	50
1,2,3-trichloropropane	ND	204	50
1,2,4-trimethlybenzene	48284	204	2500
1,3,5-trimethylbenzene	17360	204	500
xylene(m&p)	6487	404	500
o-xylene	315	204	50
total xylenes	6802	204	50
J		* *	* *

Surrogate: Percent Recovery

1,<u>2</u> 0

1,2-dichloroethane-d4

toluene-d8

p-bromofluorobenzene

96

84 **Reviewer Initials:**

DE

Analyst:

Method:

Report No. 87034 Point Source Solutions 1/9/2017 Client: Date:

Sample Condition

Sample was analyzed for 8260. Sample was received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

Sample was analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)
All criteria were within method limts. Any exceptions are qualified in the body of the report

Method Blank

Method Blank meets method limt. Any exceptions are qualified in the body of the report

Laboratory Control Sample (LCS)

All criteria were within method limts, Any exceptions are qualified in the body of the report

Duplicate Sample

No Duplicate was run on this batch

Matrix Spike

All criteria were within method limts

Matrix Spike Duplicate

1 compounds of Matrix Spike Duplicate were outside method limts as flagged in the MSD QC report

LABORATORY REPORT

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

PROJECT NAME: SITE LOCATION:

1024 SE Grand Ave OR161203-3b

PROJECT NUMBER: ANALYST

FIELD ID: SB16-S1-11

INSTRUMENT REPORT NUMBER: REPORT DATE: ACQ. ON SolaTek 87034 1/12/17 9Jan20176:57pm

PREP. BATCH V170109
LAB ID: L3580

Preparation Method: EPA 5035A

Analytical Method: EPA 8260C Analyte: Volatile Organics in Soil

Compound	TARREST VARIABLE STERMEN M. EVA	Sample	Quant. Limit	Qualifier Dilution
bromochorenzene ND 200 50		(ug/Kg)		
bromochloromethane ND 200 50 50 50 50 50 50 5				
bromodeichloromethane ND 200 50 50 10 10 10 10 10				
bromoform ND 200 250 2500				
n-buylbenzene 13671 200 2500 2500 12540 200 25500 127-buylbenzene 12540 200 550 127-buylbenzene ND 200 50 50 126-buylbenzene ND 200				
sec-butylbenzene 12540 200 2500 chlorobenzene ND 200 50 chloroform ND 200 50 chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 dibromo-horomethane ND 200 50 1,2-dibromo-schloropropane ND 200 50 1,2-dibromo-schlane ND 200 50 dibromo-thane ND 200 50 1,2-dichloroberane ND 200 50 1,3-dichloroberane ND 200 50 1,3-dichloroberane ND 200 50 1,1-dichloroberane ND 200 50 1,1-dichloroberane ND 200 50 1,1-dichloroberane ND 200 50 1,1-dichloroberane ND 200				
tert-buylbenzene ND 200 50 chloroform ND 200 50 chloroform ND 200 50 2-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 1,2-dishromos-chloropropane ND 200 50 1,2-dishromos-chloropropane ND 200 50 1,2-dishromosthane ND 200 50 dibromomethane ND 200 50 1,2-dishlorosthane ND 200 50 1,3-dishlorobenzene ND 200 50 1,4-dishlorosthane ND 200 50 1,2-dishlorosthane ND 200 50 1,2-dishlorosthene ND 200 50 1,2-dishloropropane ND 200 50 1,2-dishloropropane ND 200 50 1,3-dishloropropane ND 200<				
chlorofenzene ND 200 50 chloroform ND 200 50 2-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 1,2dibromo3-chloropropane ND 200 50 1,2dibromo3-chloropropane ND 200 50 1,2dibromo6thane ND 200 50 dibromochlane ND 200 50 1,2-dichlorobenzene ND 200 50 1,3-dichlorobenzene ND 200 50 1,3-dichlorobenzene ND 200 50 1,4-dichlorotoluene ND 200 50 1,1-dichlorotenzen ND 200 50 1,1-	sec-butylbenzene			
chloroform ND 200 50 2-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 dibromochloromethane ND 200 50 1,2-dibromochloromethane ND 200 50 1,2-dibromochloromethane ND 200 50 1,2-dichorobethane ND 200 50 1,2-dichorobethane ND 200 50 1,2-dichlorobenzene ND 200 50 1,3-dichlorotoluene ND 200 50 1,4-dichlorothane ND 200 50 1,4-dichlorothane ND 200 50 1,4-dichlorothane ND 200 50 1,2-dichlorothane ND 200 50 1,3-dichloropropane ND 200 50 1,3-dichlo	tert-butylbenzene	ND	200	
2-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 dibromochloromethane ND 200 50 1,2-dibromo3-chloropropane ND 200 50 1,2-dibromo3-chloropropane ND 200 50 dibromoethane ND 200 50 1,2-dichlorobenzene ND 200 50 1,3-dichlorobenzene ND 200 50 1,4-dichlorobenzene ND 200 50 1,1-dichloroethane ND 200 50 1,1-dichloroethane ND 200 50 1,1-dichloroethene ND 200 50 1,1-dichloroethene ND 200 50 1,1-dichloropropane ND 200 50 1,2-dichloropropane ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloropropane	chlorobenzene	ND	200	50
4-chlorotoluene ND 200 50 dibromochloromethane ND 200 50 1,2-dibromochlane ND 200 50 1,2-dibromochlane ND 200 50 dibromomethane ND 200 50 1,2-dichlorobenzene ND 200 50 1,3-dichlorobenzene ND 200 50 1,4-dichloroethane ND 200 50 1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,1-dichloroethane ND 200 50 1,1-dichloroethane ND 200 50 1,1-dichloroethane ND 200 50 1,1-dichloroptome ND 200 50 1,1-dichloroptome ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloroptopene ND 200 50 1,1-dichloroptopene ND <t< td=""><td>chloroform</td><td>ND</td><td>200</td><td>50</td></t<>	chloroform	ND	200	50
dibromochloromethane ND 200 50 1,2.dibromo3-chloropropane ND 200 50 1,2-dibromocthane ND 200 50 dibromomethane ND 200 50 1,2-dichlorobenzene ND 200 50 1,3-dichlorobenzene ND 200 50 1,4-dichlorobenzene ND 200 50 1,4-dichloroethane ND 200 50 1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,2-dichloropropane ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,3-dichloropropene ND<	2-chlorotoluene	ND	200	50
1,2-dibromo-chloropropane ND 200 50 1,2-dibromoethane ND 200 50 dibromomethane ND 200 50 1,2-dichlorobenzene ND 200 50 1,3-dichlorobenzene ND 200 50 1,4-dichlorobenzene ND 200 50 1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,1-dichloroethene ND 200 50 1,1-dichloroethene ND 200 50 1,1-dichloroptopene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,3-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 trans-1,3-dichloroprope	4-chlorotoluene	ND	200	50
1.2-dibromoethane	dibromochloromethane	ND	200	50
1,2-dibromoethane	1,2dibromo3-chloropropane	ND	200	50
1,2-dichlorobenzene ND 200 50 1,3-dichlorobenzene ND 200 50 1,4-dichlorobenzene ND 200 50 1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,2-dichloroethene ND 200 50 cis-1,2-dichloroethene ND 200 50 trans-1,2-dichloropropane ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50		ND	200	50
1,3-dichlorobenzene ND 200 50 1,4-dichlorobenzene ND 200 50 1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,1-dichloroethene ND 200 50 1,1-dichloroethene ND 200 50 trans-1,2-dichloroethene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,3-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 ctrans-1,3-dichloropropene ND 200 50 etaylenbere 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropylbenzene 13908 200 2500 p-Isopropylbenz	dibromomethane	ND	200	50
1,4-dichlorobenzene ND 200 50 1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,1-dichloroethene ND 200 50 cis-1,2-dichloroethene ND 200 50 trans-1,2-dichloroethene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,3-dichloropropene ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 nethyl-tert-butylether(MTBE) ND 200 50 naphth	1,2-dichlorobenzene	ND	200	50
1,4-dichlorobenzene ND 200 50 1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,1-dichloroethene ND 200 50 cis-1,2-dichloroethene ND 200 50 trans-1,2-dichloroethene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,3-dichloropropene ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 nethyl-tert-butylether(MTBE) ND 200 50 naphth	1,3-dichlorobenzene	ND	200	50
1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,1-dichloroethene ND 200 50 cis-1,2-dichloroethene ND 200 50 trans-1,2-dichloropthene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 tetylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 p-Isopropylbenzene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,2-tetrachloroetha	1.4-dichlorobenzene	ND	200	
1,2-dichloroethane ND 200 50 1,1-dichloroethene ND 200 50 cis-1,2-dichloroethene ND 200 50 trans-1,2-dichloroethene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,3-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 p-Isopropyltoluene 14649 200 2500 p-sporpyltoluene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,2-tetrachloroe	,			50
1,1-dichloroethene ND 200 50 cis-1,2-dichloroethene ND 200 50 trans-1,2-dichloroethene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 tethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 2500 hexachlorobutadiene ND 200 2500 p-Isopropylloulene 14649 200 2500 p-Isopropylloulene 14649 200 2500 p-Isopropylloulene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 2500 naphthalene 13844 200 250	,	ND		50
cis-1,2-dichloroethene ND 200 50 trans-1,2-dichloroethene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 ctrans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyllotuene 14649 200 2500 p-Isopropylbenzene 13844 200 2500 n-propyl-benzene 13844 200 2500 n-propyl-benzene 23113 200 250 styrene ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,2,	,			
trans-1,2-dichloroethene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 ctrans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 2500 maphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50	,			
1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropylbenzene 14649 200 2500 p-Isopropylbenzene 13844 200 2500 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,3-trichloroethane ND 200 50 1,1,1,1-trichloroethane </td <td></td> <td></td> <td></td> <td></td>				
1,3-dichloropropene ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 ctrans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 n-propyl-benzene ND 200 50 1,1,2-tertachloroethane ND 200 50 1,1,1,2-tertachloroethane ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,3-trichloroethane ND 200 50				
1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,1,2-tertachloroethane ND 200 50 1,1,1,2-tertachloroethane ND 200 50 1,1,1,2-tertachloroethane ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 <t< td=""><td></td><td></td><td></td><td></td></t<>				
cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 n-propyl-benzene ND 200 50 styrene ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichloroethane ND 200 50 1,1,1-trichloroethane				
trans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 n-propyl-benzene ND 200 2500 styrene ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloropethane <td>. 1</td> <td></td> <td></td> <td></td>	. 1			
ethylberzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroptopane ND 200 50 1,1,2				
hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trinchlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloropropane ND 200 50 trichloropropane ND 200 50 1,2,3-trichloroprop				
isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichloroethane ND 200 50 1,1,1-trichloroethane ND 200 50 trichloropropane ND 200 50 trichloropropane ND 200 50 1,2,4-trimethlybenz				
p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 50 1,3,5-trimethlybenzene 43953 200 2500	isonronylhenzene			
methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichloroethane ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 50 1,3,5-trimethylbenzene 152401 200 500 1,3,5-trime				
naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichloroethane ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 50 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500				
n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 1,1,2-trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	• • • • • • • • • • • • • • • • • • • •			
styrene ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 trichloropropane ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500				
1,1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500				
1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	2			
tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	, , ,			
toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	, , ,			
1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500				
1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500				
1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 5000 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	, ,			
1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 5000 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	, ,			
trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 5000 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	, ,			
1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 5000 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	, ,			
1,2,4-trimethlybenzene 152401 200 5000 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500				
1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500				
xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	, , , , , , , , , , , , , , , , , , ,			
o-xylene 17436 200 2500				
total xylenes 59353 200 2500				
	ioiai xyienes	39333	200	2500

Surrogate: Percent Recovery

ecovery
Analyst: Cy chan

1,2-dichloroethane-d4

toluene-d8

p-bromofluorobenzene

77 **Reviewer Initials:**

Method:

Report No. 87034 Point Source Solutions 1/9/2017 Client: Date:

Sample Condition

Sample was analyzed for 8260. Sample was received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

Sample was analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)
All criteria were within method limts. Any exceptions are qualified in the body of the report

Method Blank

Method Blank meets method limt. Any exceptions are qualified in the body of the report

Laboratory Control Sample (LCS)

All criteria were within method limts, Any exceptions are qualified in the body of the report

Duplicate Sample

No Duplicate was run on this batch

Matrix Spike

All criteria were within method limts

Matrix Spike Duplicate

1 compounds of Matrix Spike Duplicate were outside method limts as flagged in the MSD QC report

LABORATORY REPORT

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

PROJECT NAME: SITE LOCATION:

1024 SE Grand Ave

PROJECT NUMBER: OR161203-3b **ANALYST**

FIELD ID: SB15-S1-12

INSTRUMENT SolaTek
REPORT NUMBER: 87034
REPORT DATE: 1/10/17
ACQ. ON 9Jan201'

1/10/17 9Jan20174:57pm

PREP. BATCH V170109 LAB ID: L3581

Preparation Method: EPA 5035A

Analytical Method: EPA 8260C Analyte: Volatile Organics in Soil

	Sample	Quant. Limit	Qualifier Dilution	_
Compound	(ug/Kg)	(ug/Kg)	Factor	
benzene	ND	202	50	
bromobenzene	ND	202	50	
bromochloromethane	ND	202	50	
bromodichloromethane	ND	202	50	
bromoform	ND	202	50	
n-butylbenzene	ND	202	50	
sec-butylbenzene	ND	202	50	
tert-butylbenzene	ND	202	50	
chlorobenzene	ND	202	50	
chloroform	ND	202	50	
2-chlorotoluene	ND	202	50	
4-chlorotoluene	ND	202	50	
dibromochloromethane	ND	202	50	
1,2dibromo3-chloropropane	ND	202	50	
1,2-dibromoethane	ND	202	50	
dibromomethane	ND	202	50	
1,2-dichlorobenzene	ND	202	50	
1,3-dichlorobenzene	ND	202	50	
1,4-dichlorobenzene	ND	202	50	
1,1-dichloroethane	ND	202	50	
1,2-dichloroethane	ND	202	50	
1,1-dichloroethene	ND	202	50	
cis-1,2-dichloroethene	ND	202	50	
trans-1,2-dichloroethene	ND	202	50	
1,2-dichloropropane	ND	202	50	
1,3-dichloropropane	ND	202	50	
1,1-dichloropropene	ND	202	50	
cis-1,3-dichloropropene	ND	202	50	
trans-1,3-dichloropropene	ND	202	50	
ethylbenzene	ND	202	50	
hexachlorobutadiene	ND	202	50	
isopropylbenzene	ND	202	50	
p-Isopropyltoluene	ND	202	50	
methyl-tert-butylether(MTBE)	ND	202	50	
naphthalene	ND	202	50	
n-propyl-benzene	ND	202	50	
styrene	ND	202	50	
1,1,1,2-tetrachloroethane	ND	202	50	
1,1,2,2-tetrachloroethane	ND	202	50	
tetrachloroethylene	ND	202	50	
toluene	ND	202	50	
1,2,3-trichlorobenzene	ND	202	50	
1,2,4-trichlorobenzene	ND	202	50	
1,1,1-trichloroethane	ND	202	50	
1,1,2-trichloroethane	ND	202	50	
trichloroethene	ND	202	50	
1,2,3-trichloropropane	ND	202	50	
1,2,4-trimethlybenzene	ND	202	50	
1,3,5-trimethylbenzene	ND	202	50	
xylene(m&p)	ND	404	50	
o-xylene	ND	202	50	
total xylenes	ND	202	50	
13.11.11.11.10.1	1,10	202	5 v	

Surrogate: Percent Recovery 1,2-dichloroethane-d4 110 toluene-d8 100 p-bromofluorobenzene

DE COR

Reviewer Initials:

2415 SE 11th Ave., Portland, OR 97214

Analyst:

These parameters are accredited in accredance with NELAP - OR100011

Phone (503) 231-9320 FAX (503) 231-9344

Method:

Point Source Solutions Client:

Report No. 87034 1/9/2017 Date:

Sample Condition

Sample was analyzed for 8260. Sample was received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

Sample was analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)
All criteria were within method limts. Any exceptions are qualified in the body of the report

Method Blank

Method Blank meets method limt. Any exceptions are qualified in the body of the report

Laboratory Control Sample (LCS)

All criteria were within method limts, Any exceptions are qualified in the body of the report

Duplicate Sample

No Duplicate was run on this batch

Matrix Spike

All criteria were within method limts

Matrix Spike Duplicate

1 compounds of Matrix Spike Duplicate were outside method limts as flagged in the MSD QC report

LABORATORY REPORT

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

PROJECT NAME: SITE LOCATION:

FIELD ID:

1024 SE Grand Ave OR161203-3b

PROJECT NUMBER: ANALYST

SB16-S2-16.5

INSTRUMENT REPORT NUMBER: REPORT DATE: ACQ. ON SolaTek 87034 1/10/17 9Jan20175:27pm

PREP. BATCH V170109 LAB ID: L3582

Preparation Method: EPA 5035A

Analytical Method: EPA 8260C Analyte: Volatile Organics in Soil

Analyte: Volatile Organics in Soil	Sample	Quant. Limit	Qualifier Dilution
Compound	(ug/Kg)	(ug/Kg)	Factor
benzene	ND	200	50
bromobenzene	ND	200	50
bromochloromethane	ND	200	50
bromodichloromethane	ND	200	50
bromoform	ND	200	50
n-butylbenzene	ND	200	50
sec-butylbenzene	ND	200	50
tert-butylbenzene	ND	200	50
chlorobenzene	ND	200	50
chloroform	ND	200	50
2-chlorotoluene	ND	200	50
4-chlorotoluene	ND	200	50
dibromochloromethane	ND	200	50
1,2dibromo3-chloropropane	ND	200	50
1,2-dibromoethane	ND	200	50
dibromomethane	ND	200	50
1,2-dichlorobenzene	ND	200	50
1,3-dichlorobenzene	ND	200	50
1.4-dichlorobenzene	ND	200	50
1,1-dichloroethane	ND	200	50
1,2-dichloroethane	ND	200	50
1,1-dichloroethene	ND	200	50
cis-1,2-dichloroethene	ND	200	50
trans-1,2-dichloroethene	ND	200	50
1,2-dichloropropane	ND	200	50
1,3-dichloropropane	ND	200	50
1,1-dichloropropene	ND	200	50
cis-1,3-dichloropropene	ND	200	50
trans-1,3-dichloropropene	ND	200	50
ethylbenzene	ND	200	50
hexachlorobutadiene	ND	200	50
isopropylbenzene	ND	200	50
p-Isopropyltoluene	ND	200	50
methyl-tert-butylether(MTBE)	ND	200	50
naphthalene	ND	200	50
n-propyl-benzene	ND	200	50
styrene	ND	200	50
1,1,1,2-tetrachloroethane	ND	200	50
1,1,2,2-tetrachloroethane	ND	200	50
tetrachloroethylene	ND	200	50
toluene	ND	200	50
1,2,3-trichlorobenzene	ND	200	50
1,2,4-trichlorobenzene	ND	200	50
1,1,1-trichloroethane	ND	200	50
1,1,2-trichloroethane	ND	200	50
trichloroethene	ND	200	50
1,2,3-trichloropropane	ND	200	50
1,2,4-trimethlybenzene	410	200	50
1,3,5-trimethylbenzene	ND	200	50
xylene(m&p)	ND	400	50
o-xylene	ND	200	50
total xylenes	ND	200	50

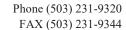
Surrogate: Percent Recovery

Analyst:

2415 SE 11th Ave.,

Portland, OR 97214

1,2-dichloroethane-d4


toluene-d8

p-bromofluorobenzene 104

DE COR

Reviewer Initials:

These parameters are accredited in accrodance with NELAP - OR100011

Method:

Report No. 87034 Point Source Solutions 1/9/2017 Client: Date:

Sample Condition

Sample was analyzed for 8260. Sample was received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

Sample was analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)
All criteria were within method limts. Any exceptions are qualified in the body of the report

Method Blank

Method Blank meets method limt. Any exceptions are qualified in the body of the report

Laboratory Control Sample (LCS)

All criteria were within method limts, Any exceptions are qualified in the body of the report

Duplicate Sample

No Duplicate was run on this batch

Matrix Spike

All criteria were within method limts

Matrix Spike Duplicate

1 compounds of Matrix Spike Duplicate were outside method limts as flagged in the MSD QC report

LABORATORY REPORT

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

PROJECT NAME: SITE LOCATION:

1024 SE Grand Ave OR161203-3b

PROJECT NUMBER: ANALYST

FIELD ID: SB17-S1-12

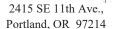
INSTRUMENT REPORT NUMBER: REPORT DATE: ACQ. ON

SolaTek 87034 1/10/17 9Jan20175:57pm

PREP. BATCH V170109
LAB ID: L3583

Preparation Method: EPA 5035A

Analytical Method: EPA 8260C Analyte: Volatile Organics in Soil


Analyte: Volatile Organics in Soil	Sample	Quant. Limit	Qualifier Dilution
Compound	(ug/Kg)	(ug/Kg)	Factor
benzene	ND	202	50
bromobenzene	ND	202	50
bromochloromethane	ND	202	50
bromodichloromethane	ND	202	50
bromoform	ND	202	50
n-butylbenzene	ND	202	50
sec-butylbenzene	ND	202	50
tert-butylbenzene	ND	202	50
chlorobenzene	ND	202	50
chloroform	ND	202	50
2-chlorotoluene	ND	202	50
4-chlorotoluene	ND	202	50
dibromochloromethane	ND	202	50
1,2dibromo3-chloropropane	ND	202	50
1,2-dibromoethane	ND	202	50
dibromomethane	ND	202	50
1,2-dichlorobenzene	ND	202	50
1,3-dichlorobenzene	ND	202	50
1.4-dichlorobenzene	ND	202	50
1,1-dichloroethane	ND	202	50
1,2-dichloroethane	ND	202	50
1,1-dichloroethene	ND	202	50
cis-1,2-dichloroethene	ND	202	50
trans-1,2-dichloroethene	ND	202	50
1,2-dichloropropane	ND	202	50
1,3-dichloropropane	ND	202	50
1,1-dichloropropene	ND	202	50
cis-1,3-dichloropropene	ND	202	50
trans-1,3-dichloropropene	ND	202	50
ethylbenzene	ND	202	50
hexachlorobutadiene	ND	202	50
isopropylbenzene	ND	202	50
p-Isopropyltoluene	ND	202	50
methyl-tert-butylether(MTBE)	ND	202	50
naphthalene	ND	202	50
n-propyl-benzene	ND	202	50
styrene	ND	202	50
1,1,1,2-tetrachloroethane	ND	202	50
1,1,2,2-tetrachloroethane	ND ND	202	50
tetrachloroethylene	ND ND	202	50
toluene	ND ND	202	50
1,2,3-trichlorobenzene	ND ND	202	50
1,2,4-trichlorobenzene	ND ND	202	50
1,1,1-trichloroethane	ND ND	202	50
1,1,2-trichloroethane	ND ND	202	50
trichloroethene	ND ND	202	50
	ND ND	202	50
1,2,3-trichloropropane	ND ND	202	50 50
1,2,4-trimethlybenzene	ND ND	202	50 50
1,3,5-trimethylbenzene	ND ND	404	50 50
xylene(m&p)			
o-xylene	ND ND	202	50
total xylenes	ND	202	50

Surrogate: Percent Recovery Analyst: 1,2-dichloroethane-d4 124 toluene-d8

p-bromofluorobenzene

DE COR

Reviewer Initials:

These parameters are accredited in accredance with NELAP - OR100011

Phone (503) 231-9320 FAX (503) 231-9344

Method:

Report No. 87034 Point Source Solutions 1/9/2017 Client: Date:

Sample Condition

Sample was analyzed for 8260. Sample was received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

Sample was analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)
All criteria were within method limts. Any exceptions are qualified in the body of the report

Method Blank

Method Blank meets method limt. Any exceptions are qualified in the body of the report

Laboratory Control Sample (LCS)

All criteria were within method limts, Any exceptions are qualified in the body of the report

Duplicate Sample

No Duplicate was run on this batch

Matrix Spike

All criteria were within method limts

Matrix Spike Duplicate

1 compounds of Matrix Spike Duplicate were outside method limts as flagged in the MSD QC report

QUALITY CONTROL REPORT (EPA 8260C)

Run Date: 1/9/2017 **Prep batch:** P1-9-17 **Report Date:** 1/10/2017 **Analytical batch:** STRA170109

LCS (ug/Kg) 17 19 15 16 19 14 19 20 18 16 18 19 15 17 15 17 15 17 14 14	Expected (ug/Kg) 16 16 16 16 16 16 16 16 16 16 16 16 16	Recovery % 105 119 93 101 116 89 120 122 111 100 114 116 95 104 93
17 19 15 16 19 14 19 20 18 16 18 19 15 17 15 17	16 16 16 16 16 16 16 16 16 16 16 16	105 119 93 101 116 89 120 122 111 100 114 116 95 104 93
19 15 16 19 14 19 20 18 16 18 19 15 17 15 17	16 16 16 16 16 16 16 16 16 16 16	119 93 101 116 89 120 122 111 100 114 116 95 104 93
15 16 19 14 19 20 18 16 18 19 15 17 15 17	16 16 16 16 16 16 16 16 16 16	93 101 116 89 120 122 111 100 114 116 95 104 93
16 19 14 19 20 18 16 18 19 15 17 15 17	16 16 16 16 16 16 16 16 16 16	101 116 89 120 122 111 100 114 116 95 104 93
19 14 19 20 18 16 18 19 15 17 15 17	16 16 16 16 16 16 16 16 16	116 89 120 122 111 100 114 116 95 104 93
14 19 20 18 16 18 19 15 17 15 17	16 16 16 16 16 16 16 16 16	89 120 122 111 100 114 116 95 104 93
19 20 18 16 18 19 15 17 15 17	16 16 16 16 16 16 16 16	120 122 111 100 114 116 95 104 93
20 18 16 18 19 15 17 15 17	16 16 16 16 16 16 16 16	122 111 100 114 116 95 104 93
18 16 18 19 15 17 15 17	16 16 16 16 16 16 16	111 100 114 116 95 104 93
16 18 19 15 17 15 17	16 16 16 16 16 16	100 114 116 95 104 93
18 19 15 17 15 17	16 16 16 16 16 16	114 116 95 104 93
19 15 17 15 17 14	16 16 16 16 16	116 95 104 93
15 17 15 17 14	16 16 16 16	95 104 93
17 15 17 14	16 16 16	104 93
15 17 14	16 16	93
17 14	16	
14		
14		107
14	16	89
1.1		91
15		95
		97
		100
		100
		93
		98 98
		101
		92
		91
		82
		89
		109
		92
		116
17	16	106
14	16	85
18	16	114
20	16	122
17	16	108
19	16	119
20	16	128
16	16	100
		103
		127
		101
		106
		102
		97
		105
		110
		117
		114
17	16	108
	14 15 16 16 16 15 16 16 15 15 13 14 17 15 19 17 14 18 20 17 19	14

Control: 70%-130%

DUPLICATE / MATRIX SPIKE REPORT (EPA 8260C)

Run Date: Report Date:	1/9/2017 1/10/2017	Prep batch: Analytical bat	tch:	P1-9-17 STRA170109		MSD ID: MS ID	SBK33MSD SBK33MS
Analyte		Sample	MSD	Recovery	Sample	Spike	Recovery
1		(ug/Kg)	(ug/Kg)	(%)	(ug/Kg)	(ug/Kg)	(%)
benzene		0	15	96	0	17	105
bromobenzene	41	0	15	93	0	19	119
bromochlorome		0	15 16	96 101	0	15 16	93 101
bromodichloron	netnane	0	16	97	0	19	116
bromoform		0	15	97 95	0 0	19	89
n-butylbenzene	_	0	15	95 92	0	14 19	
sec-butylbenzen tert-butylbenzen		0	15	92 93	0	20	120 122
chlorobenzene	ie	0	15	95 95	0	18	111
chloroform		0	14	90	0	16	100
2-chlorotoluene		0	17	105	0	18	114
4-chlorotoluene		0	17	91	0	19	116
dibromochloron	aathana	0	17	103	0	15	95
1,2dibromo3-ch		0	15	96	0	17	104
1,2-dibromoetha		0	17	104	0	15	93
dibromomethan		0	16	102	0	17	107
1,2-dichloroben		0	16	99	0	17	89
1,3-dichloroben		0	14	88	0	14	91
1.4-dichloroben		0	16	98	0	15	95
1.1-dichloroetha		0	15	96 96	0	16	93 97
1,2-dichloroetha		0	15	90 91	0	16	100
1,1-dichloroethe		0	15	93	0	16	100
cis-1,2-dichloro		0	15	95 95	0	15	93
trans-1.2-dichlor		0	15	95 95	0	16	93 98
1,2-dichloroprop		0	16	98	0	16	101
1,3-dichloroproproproproproproproproproproproprop		0	16	100	0	15	92
1,1-dichloroproproproproproproproproproproproprop		0	15	95	0	15	92 91
cis-1,3-dichloro		0	16	99	0	13	82
trans-1,3-dichlo		0	17	106	0	14	89
ethylbenzene	горгорене	0	17	94	0	17	109
hexachlorobutac	liona	0	15	96	0	15	92
isopropylbenzen		0	15	94	0	19	116
p-Isopropyltolue		0	14	90	0	17	106
methyl-tert-buty		0	16	98	0	14	85
naphthalene	Teuler(MTBE)	0	18	110	0	18	114
n-propyl-benzen	10	0	15	93	0	20	122
styrene	ic	0	15	93	0	17	108
1,1,1,2-tetrachlo	roothone	0	15	93 97	0	19	119
1,1,2,2-tetrachlo		0	15	93	0	20	128
tetrachloroethyle		0	16	99	0	16	100
toluene	ciic	0	16	99 97	0	16	103
1.2.3-trichlorobe	anzana	0	16	103	0	20	127
1,2,4-trichlorob		0	16	97	0	16	101
1,1,1-trichloroet		0	16	99	0	17	106
1,1,2-trichloroet		0	16	102	0	16	102
trichloroethene	mant	0	15	95	0	16	97
1,2,3-trichloropi	ronana	0	16	95 99	0	17	105
1,2,4-trimethlyb		0	14	90	0	18	110
		0	15	93	0	19	117
1,3,5-trimethylb	CHZCHC						
xylene(m&p) o-xylene		0	30 15	94 95	0 0	36 17	114 108
O-AYICHE		U	10	90	U	17	100
Control:				70%-130%			70%-130%

MATRIX SPIKE / MATRIX SPIKE DUPLICATE REPORT (EPA 8260C)

Run Date: 1/9/2017 Report Date: 1/10/2017	Prep batch: Analytical batch:	P1-9-17 STRA170109		MS ID: MSD ID:	SBK33MS SBK33MSD
Analyte	MS	MSD	RPD		
	(ug/Kg)	(ug/Kg)	(%)		
benzene	17	15	9		
bromobenzene	19	15	25		
bromochloromethane	15	15	3		
bromodichloromethane	16	16	0		
bromoform	19	16	18		
n-butylbenzene	14	15	6		
sec-butylbenzene	19	15	26		
tert-butylbenzene	20	15	28		
chlorobenzene	18 16	15 14	16 10		
chloroform 2-chlorotoluene	18	17	9		
4-chlorotoluene	19	15	24		
dibromochloromethane	15	13 17	9		
1,2dibromo3-chloropropane	17	15	8		
1,2-dibromoethane	15	17	11		
dibromomethane	17	16	5		
1,2-dichlorobenzene	14	16	10		
1,3-dichlorobenzene	14	14	3		
1,4-dichlorobenzene	15	16	3		
1,1-dichloroethane	16	15	2		
1,2-dichloroethane	16	15	9		
1,1-dichloroethene	16	15	7		
cis-1,2-dichloroethene	15	15	2		
trans-1,2-dichloroethene	16	15	4		
1,2-dichloropropane	16	16	3		
1,3-dichloropropane	15	16	8		
1,1-dichloropropene	15	15	3		
cis-1,3-dichloropropene	13	16	19		
trans-1,3-dichloropropene	14	17	17		
ethylbenzene	17	15	14		
hexachlorobutadiene	15	15	4		
isopropylbenzene	19	15	21		
p-Isopropyltoluene	17	14	17		
methyl-tert-butylether(MTBE)	14	16	14		
naphthalene	18	18	3		
n-propyl-benzene	20	15	28		
1,1,1,2-tetrachloroethane	17	15	14		
1,1,2,2-tetrachloroethane	19 20	15 15	20 31*		
tetrachloroethylene toluene	20 16	16	1		
1,2,3-trichlorobenzene	16	16	6		
1,2,4-trichlorobenzene	20	16	21		
1,1,1-trichloroethane	16	16	3		
1,1,2-trichloroethane	17	16	7		
trichloroethene	16	16	Ó		
trichlorofluoromethane	16	15	2		
1,2,3-trichloropropane	17	16	6		
1,2,4-trimethlybenzene	18	14	19		
1,3,5-trimethylbenzene	19	15	23		
xylene(m&p)	36	30	19		
o-xylene	17	15	13		
•					
Control:			30		

^{* -} QC fails on this compound

Laboratory Report

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

Project Name:

Project Location: 1024 SE Grand Ave

Project Number: OR161203-3b

Date Sampled: 1/6/17
Date received: 1/6/17

Report Number: 87034 Report Date: 1/16/17

TCLP-Pb Toxicity Characteristic Leaching Procedure for Lead

EPA 1311- Extraction; EPA 700-Analysis

ELTT TOTT Extraodion, ELTT	00 7 triaryolo			
Field ID	Lab ID	Result	Detection Limit	
		mg/L(ppm)	mg/L(ppm)	
SB16-S1-11	L3580	<0.2	0.2	

Quality Control Report: Lead (Pb)

PB1701161	Measured Conc. (mg/L)	Expected Concentration (mg/L)	Recovery (%)	Lower Limit	Upper Limit	
			()			DAGG
ICV	5.2	5.0	104%	80%	120%	PASS
Prep Blank	0.0	0.0		0.5 mg/L		PASS
LCS	3.1	2.7	113%	70%	130%	PASS
QC Blank	0.0	0.0		0.5 mg/L		PASS
QC Check	5.3	5.0	105%	80%	120%	PASS
Calibration R^2 :	1.	(Lower Limit:	0.990)			PASS

Wy'East

CHAIN OF CUSTODY

Report Number_

87034

Environmental Sciences, Inc. 2415 SE 11th Ave. Portland Oregon 97214

Dhana (500) 004 0000 EAV(500) 004 -

Commence							2002					-	- PN	one(503) 231-9320 FAX(503) 23	1-9344
Project #	t Source	e Solution	15 Pho	Phone (Su3) 422-2675											Comments	_
ORI	61203-	36	FA	FAX											A 1	
Project Name			Pur	Purchase Order#								_	E	ŀ	Andy	
Site						.1					3000	<u>Õ</u>	(a)		00 . 11	
1024	SE Gran	ARTICL CO.		Report Attention Collected By] ്	×	무	B (BTEX)	SIM (PAH)	m	cc: johnny	
Samples: Temp	perature 1.5 °C	On Ice? (Yes) No	Turi	Turnaround Time: Regular 3-5 Business Days				I H	NW-TPH-GX	NW-TPH-HCID	8021B	8270	8260B	5.1		
LAB ID		Field ID		Sampling Sampling Date Time Matrix Contain			Container	Volume	NW-TPH-Dx	-MN	L-WN	EPA	EPA	EPA (Analysis Requested	
135TR	5B18-S	1-9.5	-0.0	6-17		S	1	402	X					V	r tialysis ricquested	
L3579	5018 -			r		S	2	102	X	Х						
L3580	51316-5	V 3000 300				5	2		X	X				X		<u>.</u>
L7581	SB15 - S					5				1				X		of 27.
17587	5016-S		1			<u> </u>	1		X	X				X		26
L7583	5817 - 5						1		X	X		-		Х		ä
27303		21-12	- '	J.		<u> </u>	1	J	X	X				X_		
			-	2012											10 XXXXX	
			_			- 1										
								,,								
													10.00			
						28				3 2 <u>—</u> 22	100 000 00					
								-								
								30.50								
						A 10.0										
								.:								
Relinquished by	D.	Affiliation PSS	Date		Time	1.0	Received by	4.	\		Affiliat	ion	7]		Date Time	
Relinquished by	Rou	Affiliation	Date	6-1	Time		Received by	h	<u>/</u>	_	Affiliat	<u>y (</u>	1:		Date Time ZCS	
						8	. Looned by	55			Ammat	T			Date Time	
		900 Met	201000										-			1

2415 SE 11th Ave Portland, OR 97214 Ph: 503-231-9320 Fax: 503-231-9344

Sample Condition Check List

Customer Name: Point Source	coc#: 87 034
Method of Delivery: courier (client) other	
Type of ice Ice Blue None Cooler Temper	rature: 1.5 C
Matrix: Soil Water Other	
	Yes No NA Comments
Relinquish signed on Chain of Custody.	*
Received by signed on Chain of Custody.	
Chain of Custody filled out.	
Were samples Arrived within Hold Time.	* Same dans
Rush Trun Around Time Requested. If yes, how many days	1. Resuler
Temperatures measured and written in correct place on COC.	* 1.CC
Correct containers used.	407
Sufficient Volume.	
ID on COC and Sample labels match.	
Duplicate jars and vials labeled with a, b, c, d etc.	(NO DW 60
All tests logged in checked against the COC.	
The COC scanned into the main office computer.	
FOR WATER SAMPLES:	
Trip Blank: Yes Waiver on file Submitted by	by:
No.	
[경기] [2] [경기 : 10 [2] [2] [2] [2] [2] [2] [2] [2] [2] [2]	
	Yes No Comments
Was sufficient volume provided for analysis.	
Was sufficient volume provided for QC samples (at least two).	
HCL Preserved vials. HCL LOT Number:	
Were duplicate iars and vials labeled with a. b. c. d etc.	*
Headspace in VOA Vials (>6mm).	
Client Notification/Resolution:	e ""I e e" " i kompt a e " e"e d' fee _ e La se "Lawres a _ e
Comments:	
Commens.	
Reviewed:	Date: 1/6//

FRIEDMAN & BRUYA ANALYTICAL REPORT #703265 DATED MARCH 28, 2017	7

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Arina Podnozova, B.S. Eric Young, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 28, 2017

Andy Klopfenstein, Project Manager Point Source Solutions 10445 SW Canyon Rd., Ste. 115 Beaverton, OR 97005

Dear Mr. Klopfenstein:

Included are the results from the testing of material submitted on March 15, 2017 from the 1024 SE Grand Ave OR161206-3C, F&BI 703265 project. There are 6 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures PSS0328R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 15, 2017 by Friedman & Bruya, Inc. from the Point Source Solutions 1024 SE Grand Ave OR161206-3C, F&BI 703265 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID Point Source Solutions

703265 -01 SS2

The sample did not contain of peaks indicating the presence of a Stoddard solvent range product.

The TO-15 gasoline range concentrations were quantified using a single point calibration at 200 ppbv.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: SS2 Client: Point Source Solutions

Date Received: 03/15/17 Project: 1024 SE Grand Ave OR161206-3C

Lab ID: Date Collected: 03/14/17 $703265 - 01\ 1/5$ Date Analyzed: 03/17/17 Data File: 031717.DMatrix: Air Instrument: GCMS7 Units: ug/m3 Operator: MP

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 95 70 130

	Conce	ntration		Concent	tration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Chlorodifluoromethane	<1.8	< 0.5	1-Butanol	<30	<10
Propene	< 3.4	<2	Carbon tetrachloride	<3.1	< 0.5
Dichlorodifluoromethane	<2.5	< 0.5	Benzene	<1.6	< 0.5
Chloromethane	<1	< 0.5	Cyclohexane	<34	<10
F-114	< 3.5	< 0.5	2-Pentanone	<18	<5
Isobutene	< 4.6	<2	3-Pentanone	<18	<5
Acetaldehyde	<45	<25	Pentanal	<18	<5
Vinyl chloride	<1.3	< 0.5	1,2-Dichloropropane	< 2.3	< 0.5
1,3-Butadiene	<1.1	< 0.5	1,4-Dioxane	<1.8	< 0.5
Bromomethane	< 1.9	< 0.5	Bromodichloromethane	< 3.4	< 0.5
Chloroethane	<1.3	< 0.5	Trichloroethene	< 2.7	< 0.5
Ethanol	210	110	cis-1,3-Dichloropropene	< 2.3	< 0.5
Acetonitrile	<8.4	<5	4-Methyl-2-pentanone	<20	<5
Acrolein	<4.6	<2	trans-1,3-Dichloropropene	< 2.3	< 0.5
Acrylonitrile	<1.1 ca	<0.5 ca	Toluene	5.2	1.4
Pentane	<15 ca	<5 ca	1,1,2-Trichloroethane	< 2.7	< 0.5
Trichlorofluoromethane	< 2.8	< 0.5	3-Hexanone	<20	<5
Acetone	97	41	2-Hexanone	<20	<5
2-Propanol	<43	<17	Hexanal	<20	<5
Isoprene	<1.4	< 0.5	Tetrachloroethene	23	3.4
Iodomethane	< 2.9	< 0.5	Dibromochloromethane	<4.3	< 0.5
1,1-Dichloroethene	<2	< 0.5	1,2-Dibromoethane (EDB)	<3.8	< 0.5
Methacrolein	<14	<5	Chlorobenzene	< 2.3	< 0.5
trans-1,2-Dichloroethene	<2	< 0.5	Ethylbenzene	< 2.2	< 0.5
Cyclopentane	<1.4 ca	<0.5 ca	1,1,2,2-Tetrachloroethane	< 3.4	< 0.5
Methyl vinyl ketone	< 5.7	<2	m,p-Xylene	7.6	1.8
Butanal	<15	<5	o-Xylene	4.1	0.95
Methylene chloride	<430	<120	Styrene	<4.3	<1
CFC-113	<3.8	< 0.5	Bromoform	<10	<1
Carbon disulfide	<31	<10	Benzyl chloride	< 2.6	< 0.5
Methyl t-butyl ether	<1.8	< 0.5	1,3,5-Trimethylbenzene	<12	< 2.5
Vinyl acetate	<35 ca	<10 ca	1,2,4-Trimethylbenzene	<12	< 2.5
1,1-Dichloroethane	<2	< 0.5	1,3-Dichlorobenzene	<6	<1
cis-1,2-Dichloroethene	<2	< 0.5	1,4-Dichlorobenzene	<3	< 0.5
Hexane	<18	<5	1,2,3-Trimethylbenzene	<12	< 2.5
Chloroform	< 2.4	< 0.5	1,2-Dichlorobenzene	<6	<1
2-Butanone (MEK)	<15	<5	1,2,4-Trichlorobenzene	< 3.7	< 0.5
1,2-Dichloroethane (EDC)	<2	< 0.5	Naphthalene	2.6	0.50
1,1,1-Trichloroethane	< 2.7	< 0.5	Hexachlorobutadiene	< 5.3	< 0.5
Gasoline Range Organics	<2,100	< 500			

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-15

Client Sample ID: Method Blank Client: Point Source Solutions

Date Received: Not Applicable Project: 1024 SE Grand Ave OR161206-3C

Lab ID: Date Collected: Not Applicable 07-536 mb 03/16/17 Date Analyzed: Data File: 031607.DMatrix: Air Instrument: GCMS7 Units: ug/m3 Operator: MP

Surrogates: Recovery: Limit: Limit: 4-Bromofluorobenzene 99 70 130

	Concer	ntration		Concent	tration
Compounds:	ug/m3	ppbv	Compounds:	ug/m3	ppbv
Chlorodifluoromethane	< 0.35	< 0.1	1-Butanol	<6.1	<2
Propene	< 0.69	< 0.4	Carbon tetrachloride	< 0.63	< 0.1
Dichlorodifluoromethane	< 0.49	< 0.1	Benzene	< 0.32	< 0.1
Chloromethane	< 0.21	< 0.1	Cyclohexane	< 6.9	<2
F-114	< 0.7	< 0.1	2-Pentanone	< 3.5	<1
Isobutene	< 0.92	< 0.4	3-Pentanone	< 3.5	<1
Acetaldehyde	<9	<5	Pentanal	< 3.5	<1
Vinyl chloride	< 0.26	< 0.1	1,2-Dichloropropane	< 0.46	< 0.1
1,3-Butadiene	< 0.22	< 0.1	1,4-Dioxane	< 0.36	< 0.1
Bromomethane	< 0.39	< 0.1	Bromodichloromethane	< 0.67	< 0.1
Chloroethane	< 0.26	< 0.1	Trichloroethene	< 0.54	< 0.1
Ethanol	< 7.5	<4	cis-1,3-Dichloropropene	< 0.45	< 0.1
Acetonitrile	< 1.7	<1	4-Methyl-2-pentanone	<4.1	<1
Acrolein	< 0.92	< 0.4	trans-1,3-Dichloropropene	< 0.45	< 0.1
Acrylonitrile	< 0.22	< 0.1	Toluene	< 0.38	< 0.1
Pentane	<3 ca	<1 ca	1,1,2-Trichloroethane	< 0.55	< 0.1
Trichlorofluoromethane	< 0.56	< 0.1	3-Hexanone	<4.1	<1
Acetone	<4.8	<2	2-Hexanone	<4.1	<1
2-Propanol	<8.6	< 3.5	Hexanal	<4.1	<1
Isoprene	< 0.28	< 0.1	Tetrachloroethene	< 0.68	< 0.1
Iodomethane	< 0.58	< 0.1	Dibromochloromethane	< 0.85	< 0.1
1,1-Dichloroethene	< 0.4	< 0.1	1,2-Dibromoethane (EDB)	< 0.77	< 0.1
Methacrolein	< 2.9	<1	Chlorobenzene	< 0.46	< 0.1
trans-1,2-Dichloroethene	< 0.4	< 0.1	Ethylbenzene	< 0.43	< 0.1
Cyclopentane	< 0.29	< 0.1	1,1,2,2-Tetrachloroethane	< 0.69	< 0.1
Methyl vinyl ketone	<1.1	< 0.4	m,p-Xylene	< 0.87	< 0.2
Butanal	< 2.9	<1	o-Xylene	< 0.43	< 0.1
Methylene chloride	<87	<25	Styrene	< 0.85	< 0.2
CFC-113	< 0.77	< 0.1	Bromoform	< 2.1	< 0.2
Carbon disulfide	< 6.2	<2	Benzyl chloride	< 0.52	< 0.1
Methyl t-butyl ether	< 0.36	< 0.1	1,3,5-Trimethylbenzene	< 2.5	< 0.5
Vinyl acetate	<7	<2	1,2,4-Trimethylbenzene	< 2.5	< 0.5
1,1-Dichloroethane	< 0.4	< 0.1	1,3-Dichlorobenzene	<1.2	< 0.2
cis-1,2-Dichloroethene	< 0.4	< 0.1	1,4-Dichlorobenzene	< 0.6	< 0.1
Hexane	< 3.5	<1	1,2,3-Trimethylbenzene	< 2.5	< 0.5
Chloroform	< 0.49	< 0.1	1,2-Dichlorobenzene	<1.2	< 0.2
2-Butanone (MEK)	< 2.9	<1	1,2,4-Trichlorobenzene	< 0.74	< 0.1
1,2-Dichloroethane (EDC)	< 0.4	< 0.1	Naphthalene	< 0.52	< 0.1
1,1,1-Trichloroethane	< 0.55	< 0.1	Hexachlorobutadiene	<1.1	< 0.1
Gasoline Range Organics	<410	<100			

ENVIRONMENTAL CHEMISTS

Date of Report: 03/28/17 Date Received: 03/15/17

Project: 1024 SE Grand Ave OR161206-3C, F&BI 703265

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

	r		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Chlorodifluoromethane	ppbv	10	94	70-130
Propene	ppbv	10	78	70-130
Dichlorodifluoromethane	ppbv	10	93	70-130
Chloromethane	ppbv	10	94	70-130
F-114	ppbv	10	103	70-130
Isobutene	ppbv	10	93	70-130
Acetaldehyde	ppbv	10	94	70-130
Vinyl chloride	ppbv	10	100	70-130
1,3-Butadiene	ppbv	10	98	70-130
Bromomethane	ppbv	10	104	70-130
Chloroethane	ppbv	10	99	70-130
Ethanol	ppbv	10	101	70-130
Acetonitrile	ppbv	10	95	70-130
Acrolein	ppbv	10	95	70-130
Acrylonitrile	ppbv	10	71	70-130
Pentane	ppbv	10	69 vo	70-130
Trichlorofluoromethane	ppbv	10	103	70-130
Acetone	ppbv	10	97	70-130
2-Propanol	ppbv	10	99	70-130
Isoprene	ppbv	10	87	70-130
Iodomethane	ppbv	10	94	70-130
1,1-Dichloroethene	ppbv	10	91	70-130
Methacrolein	ppbv	10	84	70-130
trans-1,2-Dichloroethene	ppbv	10	92	70-130
Cyclopentane	ppbv	10	74	70-130
Methyl Vinyl Ketone	ppbv	10	100	70-130
Butanal	ppbv	10	91	70-130
Methylene chloride	ppbv	10	92	70-130
CFC-113	ppbv	10	95	70-130
Carbon disulfide	ppbv	10	91	70-130
Methyl t-butyl ether	ppbv	10	84	70-130
Vinyl acetate	ppbv	10	70	70-130
1,1-Dichloroethane	ppbv	10	88	70-130
cis-1,2-Dichloroethene	ppbv	10	88	70-130
Hexane	ppbv	10	84	70-130
Chloroform	ppbv	10	90	70-130
2-Butanone (MEK)	ppbv	10	90	70-130
1,2-Dichloroethane (EDC)	ppbv	10	86	70-130
1,1,1-Trichloroethane	ppbv	10	84	70-130
1-Butanol	ppbv	10	80	70-130
Carbon tetrachloride	ppbv	10	86	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/28/17 Date Received: 03/15/17

Project: 1024 SE Grand Ave OR161206-3C, F&BI 703265

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: Laboratory Control Sample

	1		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ppbv	10	88	70-130
Cyclohexane	ppbv	10	83	70-130
2-Pentanone	ppbv	10	93	70-130
3-Pentanone	ppbv	10	93	70-130
Pentanal	ppbv	10	85	70-130
1,2-Dichloropropane	ppbv	10	94	70-130
1,4-Dioxane	ppbv	10	103	70-130
Bromodichloromethane	ppbv	10	95	70-130
Trichloroethene	ppbv	10	95	70-130
cis-1,3-Dichloropropene	ppbv	10	87	70-130
4-Methyl-2-pentanone	ppbv	10	96	70-130
trans-1,3-Dichloropropene	ppbv	10	88	70-130
Toluene	ppbv	10	94	70-130
1,1,2-Trichloroethane	ppbv	10	102	70-130
3-Hexanone	ppbv	10	94	70-130
2-Hexanone	ppbv	10	94	70-130
Hexanal	ppbv	10	89	70-130
Tetrachloroethene	ppbv	10	98	70-130
Dibromochloromethane	ppbv	10	104	70-130
1,2-Dibromoethane (EDB)	ppbv	10	101	70-130
Chlorobenzene	ppbv	10	99	70-130
Ethylbenzene	ppbv	10	97	70-130
1,1,2,2,-Tetrachloroethane	ppbv	10	100	70-130
m,p-Xylene	ppbv	20	97	70-130
o-Xylene	ppbv	10	96	70-130
Styrene	ppbv	10	94	70-130
Bromoform	ppbv	10	101	70-130
Benzyl chloride	ppbv	10	83	70-130
1,3,5-Trimethylbenzene	ppbv	10	96	70-130
1,2,4-Trimethylbenzene	ppbv	10	98	70-130
1,3-Dichlorobenzene	ppbv	10	100	70-130
1,4-Dichlorobenzene	ppbv	10	98	70-130
1,2,3-Trimethylbenzene	ppbv	10	97	70-130
1,2-Dichlorobenzene	ppbv	10	100	70-130
1,2,4-Trichlorobenzene	ppbv	10	83	70-130
Naphthalene	ppbv	10	84	70-130
Hexachlorobutadiene	ppbv	10	89	70-130
Gasoline Range Organics	ppbv	10	97	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte may be due to carryover from previous sample injections.
- cf The sample was centrifuged prior to analysis.
- d The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.
- dy Insufficient sample volume was available to achieve normal reporting limits.
- f The sample was laboratory filtered prior to analysis.
- fb The analyte was detected in the method blank.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.
- hs Headspace was present in the container used for analysis.
- ht The analysis was performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the analyte is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- $\,$ nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.
- ve The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

	703265			S	AMPL)	E CHA	IN OF	CUS	ГОDY	-		M	6	03/15/17
AND DESCRIPTION OF THE PERSON	Report To And / Klo	ofe	usteir		SAMPI	ERS (si	gnature))					488	rage #of/ TURNAROUND TIME
(Company Point Source	2	Solut	ions	PROJE	CT NAI	ME				***************************************	PO 7	#	Standard 5 Jay
,	Company Point Source Address 10445 SW Can	700	Rd S	10115	1024		rand Av				OR16	206	-3C	Rush charges authorized hy:
(City, State, ZIP Beaucy	(a)	OR 9	7005	REMA	RKS	PEAK	3/2412			INV	OIC	E TC	☐ Dispose after 30 days
]	City, State, ZIP Beauty Phone 503 - 780 Email - 1569	Ans	7~6 be	4				<i>*</i> <						☐ Archive Samples ☐ Other
	-1569	50v	vice sol	utions	. cov	1				ANA	LYSIS	REC	QUES	STED
A STATE OF THE STA	Sample Name	Lab ID	Canister ID	Flow Contr. ID	Date Sampled		Field Initial Time	Field Final Press. (Hg)	Field Final Time		TO-15 BTEXN	TO-15 eVOCs	100/12/ ×9 1	Notes
	<u> </u>	01	2294	FB106	3/14/17	29.5	10,06	5	10:12				×	need Staddard solvents
-														30100(47)
-														
F											<u> </u>			
-		 		<u> </u>	-	-	<u> </u>		-	 	1	-	 	200

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:				
Received by:	Nhan Phan	FUBI	3(45/17	1400
Relinquished by:			*	\$-
Received by:				

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Wednesday, March 29, 2017

Gil Cobb Point Source Solutions, LLC 10445 SW Canyon Road Suite 115 Beaverton, OR 97005

RE: 7-Eleven / OR161202-3B

Enclosed are the results of analyses for work order <u>A7C0451</u>, which was received by the laboratory on 3/15/2017 at 2:05:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: KFriscia@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10445 SW Canyon Road Suite 115

Beaverton, OR 97005

Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION										
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received						
SB19-S1-10	A7C0451-01	Soil	03/14/17 12:15	03/15/17 14:05						
SB19-S2-17.5	A7C0451-02	Soil	03/14/17 12:58	03/15/17 14:05						
SB20-S1-10	A7C0451-03	Soil	03/14/17 14:00	03/15/17 14:05						
SB20-S2-18	A7C0451-04	Soil	03/14/17 15:00	03/15/17 14:05						
SB21-S1-16	A7C0451-05	Soil	03/14/17 15:25	03/15/17 14:05						

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10445 SW Canyon Road Suite 115 Beaverton, OR 97005 Project: **7-Eleven**Project Number: OR161202-3B

Reported: 03/29/17 08:01

ANALYTICAL SAMPLE RESULTS

Project Manager: Gil Cobb

Gaso	oline Rang	e Hydroca	rbons (Ben	zene through N	Naphthalen	ne) by NWTPH-G	х	
			Reporting	7				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SB19-S1-10 (A7C0451-01)			Matrix: So	oil B	atch: 70306	28		V-15
Gasoline Range Organics	ND		7.77	mg/kg dry	50	03/15/17 18:53	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	covery: 109 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			99 %	Limits: 50-150 %	"	"	"	
SB19-S2-17.5 (A7C0451-02)			Matrix: So	oil B	atch: 70306	28		V-15
Gasoline Range Organics	ND		8.49	mg/kg dry	50	03/15/17 19:20	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	covery: 105 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			99 %	Limits: 50-150 %	"	"	"	
SB20-S1-10 (A7C0451-03)			Matrix: So	oil B	atch: 70306	28		V-15
Gasoline Range Organics	15000		324	mg/kg dry	2000	03/15/17 20:41	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	covery: 193 %	Limits: 50-150 %	1	"	"	S-08
1,4-Difluorobenzene (Sur)			104 %	Limits: 50-150 %	"	"	"	
SB20-S2-18 (A7C0451-04)			Matrix: So	oil B	atch: 70306	28		V-15
Gasoline Range Organics	ND		4.73	mg/kg dry	50	03/15/17 19:47	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	covery: 107 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			99 %	Limits: 50-150 %	"	"	"	
SB21-S1-16 (A7C0451-05)			Matrix: So	oil B	atch: 70306	28		V-15
Gasoline Range Organics	ND		7.19	mg/kg dry	50	03/15/17 20:14	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	covery: 105 %	Limits: 50-150 %	1	"	n .	
1,4-Difluorobenzene (Sur)			99 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10445 SW Canyon Road Suite 115 Beaverton, OR 97005 Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

ANALYTICAL SAMPLE RESULTS

		voiatile	Organic Com	pounas by E	PA 8260B			
	D 1	MDI	Reporting		D.11	.		NT :
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SB19-S1-10 (A7C0451-01)			Matrix: Soil		atch: 70306			V-1
Acetone	ND		1550	ug/kg dry	50	03/15/17 18:53	5035/8260B	
Benzene	ND		15.5	"	"	"	"	
Bromobenzene	ND		38.9	"	"	"	"	
Bromochloromethane	ND		77.7	"	"	"	"	
Bromodichloromethane	ND		155	"	"	"	"	
Bromoform	ND		155	"	"	"	"	
Bromomethane	ND		777	"	"	"	"	
2-Butanone (MEK)	ND		777	"	"	"	"	
n-Butylbenzene	ND		77.7	"	"	"	"	
sec-Butylbenzene	ND		77.7	"	"	"	"	
tert-Butylbenzene	ND		77.7	"	"	"	"	
Carbon tetrachloride	ND		77.7	"	"	"	"	
Chlorobenzene	ND		38.9	"	"	"	"	
Chloroethane	ND		777	"	"	"	"	Q-3
Chloroform	ND		77.7	"	"	"	"	
Chloromethane	ND		389	"	"	"	"	
2-Chlorotoluene	ND		77.7	"	"	"	"	
4-Chlorotoluene	ND		77.7	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND		389	"	"	"	"	
Dibromochloromethane	ND		155	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		77.7	"	"	"	"	
Dibromomethane	ND		77.7	"	"	"	"	
1,2-Dichlorobenzene	ND		38.9	"	"	"	"	
1,3-Dichlorobenzene	ND		38.9	"	"	"	"	
1,4-Dichlorobenzene	ND		38.9	"	"	"	"	
Dichlorodifluoromethane	ND		155	"	"	"	"	
1,1-Dichloroethane	ND		38.9	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		38.9	"	"	"	"	
1,1-Dichloroethene	ND		38.9	"	"	"	"	
cis-1,2-Dichloroethene	ND		38.9	"	"	"	"	
trans-1,2-Dichloroethene	ND		38.9	"	"	"	"	
1,2-Dichloropropane	ND		38.9	"	"	"	"	
1,3-Dichloropropane	ND		77.7	"	"	"	"	
2,2-Dichloropropane	ND		77.7	"	"	"	"	
1,1-Dichloropropene	ND		77.7	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10445 SW Canyon Road Suite 115

Beaverton, OR 97005

Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

ANALYTICAL SAMPLE RESULTS

		Voiatile	Organic Com	ipoulius by E	A 0200B			
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
SB19-S1-10 (A7C0451-01)	TOSUIT	.,,,,,,	Matrix: Soil		Batch: 70306		ivicuiou	V-1
cis-1,3-Dichloropropene	ND		77.7	ug/kg dry	50	"	5035/8260B	• • •
trans-1,3-Dichloropropene	ND		77.7	ug/kg ury	"	"	3033/0200B	
Ethylbenzene	ND		38.9	"	"	"	"	
Hexachlorobutadiene	ND		155	"	"	"	"	
2-Hexanone	ND		777	"	"	"	"	
Isopropylbenzene	ND		77.7	"	"	"	"	
4-Isopropyltoluene	ND		77.7	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND		777	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND		77.7	"	"	"	"	
Methylene chloride	ND		389	"	"	"	"	
Naphthalene	ND		155	"	"	"	"	
n-Propylbenzene	ND		38.9	"	"	"	"	
Styrene	ND		77.7	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND		38.9	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND		77.7	"	"	"	"	
Tetrachloroethene (PCE)	ND		38.9	"	"	"	"	
Toluene	ND		77.7	"	"	"	"	
1,2,3-Trichlorobenzene	ND		389	"	"	"	"	
1,2,4-Trichlorobenzene	ND		389	"	"	"	"	
1,1,1-Trichloroethane	ND		38.9	"	"	"	"	
1,1,2-Trichloroethane	ND		38.9	"	"	"	"	
Trichloroethene (TCE)	ND		38.9	"	"	"	"	
Trichlorofluoromethane	ND		155	"	"	"	"	Q-3
1,2,3-Trichloropropane	ND		77.7	"	"	"	"	
1,2,4-Trimethylbenzene	103		77.7	"	"	"	"	
1,3,5-Trimethylbenzene	ND		77.7	"	"	"	"	
Vinyl chloride	ND		38.9	"	"	"	"	
m,p-Xylene	ND		77.7	"	"	"	"	
o-Xylene	ND		38.9	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr))	Re	ecovery: 114 %	Limits: 70-130 %	1	"	11	
Toluene-d8 (Surr)				Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Su	rr)		99 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10445 SW Canyon Road Suite 115 Beaverton, OR 97005 Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

ANALYTICAL SAMPLE RESULTS

		Volatile	Organic Com	pounds by E	PA 8260B			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SB19-S2-17.5 (A7C0451-02)			Matrix: Soil	В	atch: 70306	28		V-1
Acetone	ND		1700	ug/kg dry	50	03/15/17 19:20	5035/8260B	
Benzene	ND		17.0	"	"	"	"	
Bromobenzene	ND		42.4	"	"	"	"	
Bromochloromethane	ND		84.9	"	"	"	"	
Bromodichloromethane	ND		170	"	"	"	"	
Bromoform	ND		170	"	"	"	"	
Bromomethane	ND		849	"	"	"	"	
2-Butanone (MEK)	ND		849	"	"	"	"	
n-Butylbenzene	ND		84.9	"	"	"	"	
sec-Butylbenzene	ND		84.9	"	"	"	"	
tert-Butylbenzene	ND		84.9	"	"	"	"	
Carbon tetrachloride	ND		84.9	"	"	"	"	
Chlorobenzene	ND		42.4	"	"	"	"	
Chloroethane	ND		849	"	"	"	"	Q-3
Chloroform	ND		84.9	"	"	"	"	
Chloromethane	ND		424	"	"	"	"	
2-Chlorotoluene	ND		84.9	"	"	"	"	
4-Chlorotoluene	ND		84.9	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND		424	"	"	"	"	
Dibromochloromethane	ND		170	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		84.9	"	"	"	"	
Dibromomethane	ND		84.9	"	"	"	"	
1,2-Dichlorobenzene	ND		42.4	"	"	"	"	
1,3-Dichlorobenzene	ND		42.4	"	"	"	"	
1,4-Dichlorobenzene	ND		42.4	"	"	"	"	
Dichlorodifluoromethane	ND		170	"	"	"	"	
1,1-Dichloroethane	ND		42.4	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		42.4	"	"	"	"	
1,1-Dichloroethene	ND		42.4	"	"	"	"	
cis-1,2-Dichloroethene	ND		42.4	"	"	"	"	
trans-1,2-Dichloroethene	ND		42.4	"	"	"	"	
1,2-Dichloropropane	ND		42.4	"	"	"	"	
1,3-Dichloropropane	ND		84.9	"	"	"	"	
2,2-Dichloropropane	ND		84.9	"	"	"	"	
1,1-Dichloropropene	ND		84.9	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

Project: 7-Eleven Project Number: OR161202-3B

Reported: 03/29/17 08:01

10445 SW Canyon Road Suite 115 Beaverton, OR 97005 Project Manager: Gil Cobb

ANALYTICAL SAMPLE RESULTS

			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SB19-S2-17.5 (A7C0451-02)			Matrix: Soil	В	Batch: 70306	28		V-1
cis-1,3-Dichloropropene	ND		84.9	ug/kg dry	50	"	5035/8260B	
trans-1,3-Dichloropropene	ND		84.9	"	"	"	"	
Ethylbenzene	ND		42.4	"	"	"	"	
Hexachlorobutadiene	ND		170	"	"	"	"	
2-Hexanone	ND		849	"	"	"	"	
Isopropylbenzene	ND		84.9	"	"	"	"	
4-Isopropyltoluene	ND		84.9	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND		849	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND		84.9	"	"	"	"	
Methylene chloride	ND		424	"	"	"	"	
Naphthalene	ND		170	"	"	"	"	
n-Propylbenzene	ND		42.4	"	"	"	"	
Styrene	ND		84.9	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND		42.4	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND		84.9	"	"	"	"	
Tetrachloroethene (PCE)	ND		42.4	"	"	"	"	
Toluene	ND		84.9	"	"	"	"	
1,2,3-Trichlorobenzene	ND		424	"	"	"	"	
1,2,4-Trichlorobenzene	ND		424	"	"	"	"	
1,1,1-Trichloroethane	ND		42.4	"	"	"	"	
1,1,2-Trichloroethane	ND		42.4	"	"	"	"	
Trichloroethene (TCE)	ND		42.4	"	"	"	"	
Trichlorofluoromethane	ND		170	"	"	"	"	Q-3
1,2,3-Trichloropropane	ND		84.9	"	"	"	"	
1,2,4-Trimethylbenzene	ND		84.9	"	"	"	"	
1,3,5-Trimethylbenzene	ND		84.9	"	"	"	"	
Vinyl chloride	ND		42.4	"	"	"	"	
m,p-Xylene	ND		84.9	"	"	"	"	
o-Xylene	ND		42.4	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr))	Re	ecovery: 115 %	Limits: 70-130 %	1	"	"	
Toluene-d8 (Surr)			•	Limits: 70-130 %		"	"	
4-Bromofluorobenzene (Su	rr)			Limits: 70-130 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10445 SW Canyon Road Suite 115 Beaverton, OR 97005 Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

ANALYTICAL SAMPLE RESULTS

			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SB20-S1-10 (A7C0451-03)			Matrix: Soil	Е	Batch: 70306	28		V-1
Acetone	ND		64900	ug/kg dry	2000	03/15/17 20:41	5035/8260B	
Benzene	ND		649	"	"	"	"	
Bromobenzene	ND		1620	"	"	"	"	
Bromochloromethane	ND		3240	"	"	"	"	
Bromodichloromethane	ND		6490	"	"	"	"	
Bromoform	ND		6490	"	"	"	"	
Bromomethane	ND		32400	"	"	"	"	
2-Butanone (MEK)	ND		32400	"	"	"	"	
n-Butylbenzene	10300		3240	"	"	"	"	M-0
sec-Butylbenzene	15300		3240	"	"	"	"	
tert-Butylbenzene	ND		3240	"	"	"	"	
Carbon tetrachloride	ND		3240	"	"	"	"	
Chlorobenzene	ND		1620	"	"	"	"	
Chloroethane	ND		32400	"	"	"	"	Q-3
Chloroform	ND		3240	"	"	"	"	
Chloromethane	ND		16200	"	"	"	"	
2-Chlorotoluene	ND		3240	"	"	"	"	
4-Chlorotoluene	ND		3240	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND		16200	"	"	"	"	
Dibromochloromethane	ND		6490	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		3240	"	"	"	"	
Dibromomethane	ND		3240	"	"	"	"	
1,2-Dichlorobenzene	ND		1620	"	"	"	"	
1,3-Dichlorobenzene	ND		1620	"	"	"	"	
1,4-Dichlorobenzene	ND		1620	"	"	"	"	
Dichlorodifluoromethane	ND		6490	"	"	"	"	
1,1-Dichloroethane	ND		1620	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		1620	"	"	"	"	
1,1-Dichloroethene	ND		1620	"	"	"	11	
cis-1,2-Dichloroethene	ND		1620	"	"	"	"	
trans-1,2-Dichloroethene	ND		1620	"	"	"	"	
1,2-Dichloropropane	ND		1620	"	"	"	"	
1,3-Dichloropropane	ND		3240	"	"	"	"	
2,2-Dichloropropane	ND		3240	"	"	"	"	
1,1-Dichloropropene	ND		3240	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10445 SW Canyon Road Suite 115 Beaverton, OR 97005 Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

ANALYTICAL SAMPLE RESULTS

				npounds by E				
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
SB20-S1-10 (A7C0451-03)			Matrix: Soil		atch: 70306			V-1
cis-1,3-Dichloropropene	ND		3240	ug/kg dry	2000	"	5035/8260B	
trans-1,3-Dichloropropene	ND		3240	"	"	"	"	
Ethylbenzene	1820		1620	"	"	"	"	
Hexachlorobutadiene	ND		6490	"	"	"	"	
2-Hexanone	ND		32400	"	"	"	"	
Isopropylbenzene	5320		3240	"	"	"	"	
4-Isopropyltoluene	12700		3240	"	"	"	"	M-02
4-Methyl-2-pentanone (MiBK)	ND		32400	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND		3240	"	"	"	"	
Methylene chloride	ND		16200	"	"	"	"	
Naphthalene	ND		6490	"	"	"	"	
n-Propylbenzene	14600		1620	"	"	"	"	
Styrene	ND		3240	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND		1620	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND		19500	"	"	"	"	R-02
Tetrachloroethene (PCE)	ND		1620	"	"	"	"	
Toluene	ND		3240	"	"	"	"	
1,2,3-Trichlorobenzene	ND		16200	"	"	"	"	
1,2,4-Trichlorobenzene	ND		16200	"	"	"	"	
1,1,1-Trichloroethane	ND		1620	"	"	"	"	
1,1,2-Trichloroethane	ND		1620	"	"	"	"	
Trichloroethene (TCE)	ND		1620	"	"	"	"	
Trichlorofluoromethane	ND		6490	"	"	"	"	Q-3
1,2,3-Trichloropropane	ND		22700	"	"	"	"	R-02
1,2,4-Trimethylbenzene	99600		3240	"	"	"	"	
1,3,5-Trimethylbenzene	33700		3240	"	"	"	"	
Vinyl chloride	ND		1620	"	"	"	"	
m,p-Xylene	14300		3240	"	"	"	"	
o-Xylene	4310		1620	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr,)	Re	ecovery: 116 %	Limits: 70-130 %	1	"	"	
Toluene-d8 (Surr)				Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Su	rr)		94 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10445 SW Canyon Road Suite 115 Beaverton, OR 97005 Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

ANALYTICAL SAMPLE RESULTS

		volatile	Organic Com	pounds by E	PA 8260B			
A 1.	D 1/	MDI	Reporting		D31 - 2	D	M.d. I	NI :
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SB20-S2-18 (A7C0451-04)			Matrix: Soil		atch: 70306			V-1
Acetone	ND		946	ug/kg dry	50	03/15/17 19:47	5035/8260B	
Benzene	ND		9.46	"	"	"	"	
Bromobenzene	ND		23.7	"	"	"	"	
Bromochloromethane	ND		47.3	"	"	"	"	
Bromodichloromethane	ND		94.6	"	"	"	"	
Bromoform	ND		94.6	"	"	"	"	
Bromomethane	ND		473	"	"	"	"	
2-Butanone (MEK)	ND		473	"	"	"	"	
n-Butylbenzene	ND		47.3	"	"	"	"	
sec-Butylbenzene	ND		47.3	"	"	"	"	
tert-Butylbenzene	ND		47.3	"	"	"	"	
Carbon tetrachloride	ND		47.3	"	"	"	"	
Chlorobenzene	ND		23.7	"	"	"	"	
Chloroethane	ND		473	"	"	"	"	Q-3
Chloroform	ND		47.3	"	"	"	"	
Chloromethane	ND		237	"	"	"	"	
2-Chlorotoluene	ND		47.3	"	"	n	m m	
4-Chlorotoluene	ND		47.3	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND		237	"	"	"	"	
Dibromochloromethane	ND		94.6	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		47.3	"	"	"	"	
Dibromomethane	ND		47.3	"	"	"	"	
1,2-Dichlorobenzene	ND		23.7	"	"	"	"	
1,3-Dichlorobenzene	ND		23.7	"	"	"	"	
1,4-Dichlorobenzene	ND		23.7	"	"	"	"	
Dichlorodifluoromethane	ND		94.6	"	"	"	"	
1,1-Dichloroethane	ND		23.7	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		23.7	"	"	"	"	
1,1-Dichloroethene	ND		23.7	"	"	"	"	
cis-1,2-Dichloroethene	ND		23.7	"	"	"	"	
trans-1,2-Dichloroethene	ND		23.7	"	"	"	"	
1,2-Dichloropropane	ND		23.7	"	"	"	m m	
1,3-Dichloropropane	ND		47.3	"	"	"	"	
2,2-Dichloropropane	ND		47.3	"	"	"	"	
1,1-Dichloropropene	ND		47.3	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10445 SW Canyon Road Suite 115

Beaverton, OR 97005

Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

ANALYTICAL SAMPLE RESULTS

			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SB20-S2-18 (A7C0451-04)			Matrix: Soil	В	Batch: 70306	28		V-1
cis-1,3-Dichloropropene	ND		47.3	ug/kg dry	50	"	5035/8260B	
trans-1,3-Dichloropropene	ND		47.3	"	"	"	"	
Ethylbenzene	ND		23.7	"	"	"	"	
Hexachlorobutadiene	ND		94.6	"	"	"	"	
2-Hexanone	ND		473	"	"	"	"	
Isopropylbenzene	ND		47.3	"	"	"	"	
4-Isopropyltoluene	ND		47.3	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND		473	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND		47.3	"	"	"	"	
Methylene chloride	ND		237	"	"	"	"	
Naphthalene	ND		94.6	"	"	"	"	
n-Propylbenzene	ND		23.7	"	"	"	"	
Styrene	ND		47.3	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND		23.7	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND		47.3	"	"	"	"	
Tetrachloroethene (PCE)	ND		23.7	"	"	"	"	
Toluene	ND		47.3	"	"	"	"	
1,2,3-Trichlorobenzene	ND		237	"	"	"	"	
1,2,4-Trichlorobenzene	ND		237	"	"	"	"	
1,1,1-Trichloroethane	ND		23.7	"	"	"	"	
1,1,2-Trichloroethane	ND		23.7	"	"	"	"	
Trichloroethene (TCE)	ND		23.7	"	"	"	"	
Trichlorofluoromethane	ND		94.6	"	"	"	"	Q-3
1,2,3-Trichloropropane	ND		47.3	"	"	"	"	
1,2,4-Trimethylbenzene	ND		47.3	"	"	"	"	
1,3,5-Trimethylbenzene	ND		47.3	"	"	"	"	
Vinyl chloride	ND		23.7	"	"	"	"	
m,p-Xylene	ND		47.3	"	"	"	"	
o-Xylene	ND		23.7	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr))	Re	ecovery: 114 %	Limits: 70-130 %	1	"	"	
Toluene-d8 (Surr)			•	Limits: 70-130 %		"	"	
4-Bromofluorobenzene (Su	rr)			Limits: 70-130 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10445 SW Canyon Road Suite 115 Beaverton, OR 97005 Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

ANALYTICAL SAMPLE RESULTS

			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SB21-S1-16 (A7C0451-05)			Matrix: Soil	E	Batch: 70306	28		V-1
Acetone	ND		1440	ug/kg dry	50	03/15/17 20:14	5035/8260B	
Benzene	ND		14.4	"	"	"	"	
Bromobenzene	ND		36.0	"	"	"	"	
Bromochloromethane	ND		71.9	"	"	"	"	
Bromodichloromethane	ND		144	"	"	"	"	
Bromoform	ND		144	"	"	"	"	
Bromomethane	ND		719	"	"	"	"	
2-Butanone (MEK)	ND		719	"	"	"	"	
n-Butylbenzene	ND		71.9	"	"	"	"	
sec-Butylbenzene	ND		71.9	"	"	"	"	
tert-Butylbenzene	ND		71.9	"	"	"	"	
Carbon tetrachloride	ND		71.9	"	"	"	"	
Chlorobenzene	ND		36.0	"	"	"	"	
Chloroethane	ND		719	"	"	"	"	Q-3
Chloroform	ND		71.9	"	"	"	"	_
Chloromethane	ND		360	"	"	"	"	
2-Chlorotoluene	ND		71.9	"	"	"	"	
4-Chlorotoluene	ND		71.9	"	"	"	n .	
1,2-Dibromo-3-chloropropane	ND		360	"	"	"	n .	
Dibromochloromethane	ND		144	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		71.9	"	"	"	"	
Dibromomethane	ND		71.9	"	"	"	"	
1,2-Dichlorobenzene	ND		36.0	"	"	"	"	
1,3-Dichlorobenzene	ND		36.0	"	"	"	"	
1,4-Dichlorobenzene	ND		36.0	"	"	"	"	
Dichlorodifluoromethane	ND		144	"	"	"	"	
1,1-Dichloroethane	ND		36.0	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		36.0	"	"	"	"	
1,1-Dichloroethene	ND		36.0	"	"	"	"	
cis-1,2-Dichloroethene	ND		36.0	"	"	"	"	
trans-1,2-Dichloroethene	ND		36.0	"	"	"	"	
1,2-Dichloropropane	ND		36.0	"	"	"	"	
1,3-Dichloropropane	ND		71.9	"	"	"	"	
2,2-Dichloropropane	ND		71.9	"	"	"	"	
1,1-Dichloropropene	ND		71.9	,,	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10445 SW Canyon Road Suite 115

Beaverton, OR 97005

Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

ANALYTICAL SAMPLE RESULTS

			-	npounds by E				
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
SB21-S1-16 (A7C0451-05)			Matrix: Soil		atch: 70306	28		V-1
cis-1,3-Dichloropropene	ND		71.9	ug/kg dry	50	"	5035/8260B	
trans-1,3-Dichloropropene	ND		71.9	"	"	"	"	
Ethylbenzene	ND		36.0	"	"	"	"	
Hexachlorobutadiene	ND		144	"	"	"	"	
2-Hexanone	ND		719	"	"	"	"	
Isopropylbenzene	ND		71.9	"	"	"	"	
4-Isopropyltoluene	ND		71.9	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND		719	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND		71.9	"	"	"	"	
Methylene chloride	ND		360	"	"	"	"	
Naphthalene	ND		144	"	"	"	"	
n-Propylbenzene	ND		36.0	"	"	"	"	
Styrene	ND		71.9	"	"	"	"	
1,1,2-Tetrachloroethane	ND		36.0	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND		71.9	"	"	"	"	
Tetrachloroethene (PCE)	ND		36.0	"	"	"	"	
Toluene	ND		71.9	"	"	"	"	
1,2,3-Trichlorobenzene	ND		360	"	"	"	"	
1,2,4-Trichlorobenzene	ND		360	"	"	"	"	
1,1,1-Trichloroethane	ND		36.0	"	"	"	"	
1,1,2-Trichloroethane	ND		36.0	"	"	"	"	
Trichloroethene (TCE)	ND		36.0	"	"	"	"	
Trichlorofluoromethane	ND		144	"	"	"	"	Q-3
1,2,3-Trichloropropane	ND		71.9	"	"	"	"	
1,2,4-Trimethylbenzene	ND		71.9	"	"	"	"	
1,3,5-Trimethylbenzene	ND		71.9	"	"	"	"	
Vinyl chloride	ND		36.0	"	"	"	"	
m,p-Xylene	ND		71.9	"	"	"	"	
o-Xylene	ND		36.0	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr	·)	Re	ecovery: 114 %	Limits: 70-130 %	1	"	"	
Toluene-d8 (Surr)			98 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Su	urr)		97 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10445 SW Canyon Road Suite 115

Beaverton, OR 97005

Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

ANALYTICAL SAMPLE RESULTS

			Percent	Dry Weight		·		
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
SB19-S1-10 (A7C0451-01)			Matrix: Soil		atch: 70306			
% Solids	73.7		1.00	% by Weight	1	03/16/17 07:28	EPA 8000C	
SB19-S2-17.5 (A7C0451-02)			Matrix: Soil	Ва	atch: 70306	30		
% Solids	73.9		1.00	% by Weight	1	03/16/17 07:28	EPA 8000C	
SB20-S1-10 (A7C0451-03)			Matrix: Soil	Ва	atch: 70306	30		
% Solids	73.7		1.00	% by Weight	1	03/16/17 07:28	EPA 8000C	
SB20-S2-18 (A7C0451-04)			Matrix: Soil	Ва	atch: 70306	30		
% Solids	94.7		1.00	% by Weight	1	03/16/17 07:28	EPA 8000C	
SB21-S1-16 (A7C0451-05)			Matrix: Soil	Ва	atch: 70306	30		
% Solids	76.6		1.00	% by Weight	1	03/16/17 07:28	EPA 8000C	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10445 SW Canyon Road Suite 115

Beaverton, OR 97005

Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarb	ons (Benz	ene thro	ough Naph	thalene) l	by NWTF	PH-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030628 - EPA 5035A							Soi	1				
Blank (7030628-BLK1)				Pre	pared: 03/	15/17 09:00	Analyzed:	03/15/17 1	2:09			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 105 %	Limits: 50	-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			100 %	50-	-150 %		"					
LCS (7030628-BS2)				Pre	pared: 03/	15/17 09:00	Analyzed:	03/15/17 1	1:42			
NWTPH-Gx (MS)												
Gasoline Range Organics	27.7		5.00	mg/kg wet	50	25.0		111	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 103 %	Limits: 50	-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			101 %	50-	-150 %		"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10445 SW Canyon Road Suite 115

Beaverton, OR 97005

Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

QUALITY CONTROL (QC) SAMPLE RESULTS

		Reporting Spike Source %REC RPD												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 7030628 - EPA 5035A	١						Soil							
Blank (7030628-BLK1)				Pre	pared: 03/	15/17 09:00	Analyzed:	03/15/17 12	:09					
5035/8260B														
Acetone	ND		667	ug/kg wet	50									
Benzene	ND		6.67	"	"									
Bromobenzene	ND		16.7	"	"									
Bromochloromethane	ND		33.3	"	"									
Bromodichloromethane	ND		66.7	"	"									
Bromoform	ND		66.7	"	"									
Bromomethane	ND		333	"	"									
2-Butanone (MEK)	ND		333	"	"									
n-Butylbenzene	ND		33.3	"	"									
sec-Butylbenzene	ND		33.3	"	"									
tert-Butylbenzene	ND		33.3	"	"									
Carbon tetrachloride	ND		33.3	"	"									
Chlorobenzene	ND		16.7	"	"									
Chloroethane	ND		333	"	"							Q-		
Chloroform	ND		33.3	"	"									
Chloromethane	ND		167	"	"									
2-Chlorotoluene	ND		33.3	"	"									
4-Chlorotoluene	ND		33.3	"	"									
1,2-Dibromo-3-chloropropane	ND		167	"	"									
Dibromochloromethane	ND		66.7	"	"									
1,2-Dibromoethane (EDB)	ND		33.3	"	"									
Dibromomethane	ND		33.3	"	"									
1,2-Dichlorobenzene	ND		16.7	"	"									
1,3-Dichlorobenzene	ND		16.7	"	"									
1,4-Dichlorobenzene	ND		16.7	"	"									
Dichlorodifluoromethane	ND		66.7	"	"									
1,1-Dichloroethane	ND		16.7	"	"									
1,2-Dichloroethane (EDC)	ND		16.7	"	"									
1,1-Dichloroethene	ND		16.7	"	"									
cis-1,2-Dichloroethene	ND		16.7	"	"									
trans-1,2-Dichloroethene	ND		16.7	"	"									
1,2-Dichloropropane	ND		16.7	"	"									
1,3-Dichloropropane	ND ND		33.3	"	"									
2,2-Dichloropropane	ND ND		33.3	,,	"									

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kevin J. Friscia, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10445 SW Canyon Road Suite 115 Beaverton, OR 97005 Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030628 - EPA 5035A							Soil					
Blank (7030628-BLK1)				Pre	epared: 03/	15/17 09:00	Analyzed: (03/15/17 12	:09			
5035/8260B												
1,1-Dichloropropene	ND		33.3	ug/kg wet	"							
cis-1,3-Dichloropropene	ND		33.3	"	"							
trans-1,3-Dichloropropene	ND		33.3	"	"							
Ethylbenzene	ND		16.7	"	"							
Hexachlorobutadiene	ND		66.7	"	"							
2-Hexanone	ND		333	"	"							
Isopropylbenzene	ND		33.3	"	"							
4-Isopropyltoluene	ND		33.3	"	"							
4-Methyl-2-pentanone (MiBK)	ND		333	"	"							
Methyl tert-butyl ether (MTBE)	ND		33.3	"	"							
Methylene chloride	ND		167	"	"							
Naphthalene	ND		66.7	"	"							
n-Propylbenzene	ND		16.7	"	"							
Styrene	ND		33.3	"	"							
1,1,1,2-Tetrachloroethane	ND		16.7	"	"							
1,1,2,2-Tetrachloroethane	ND		33.3	"	"							
Tetrachloroethene (PCE)	ND		16.7	"	"							
Toluene	ND		33.3	"	"							
1,2,3-Trichlorobenzene	ND		167	"	"							
1,2,4-Trichlorobenzene	ND		167	"	"							
1,1,1-Trichloroethane	ND		16.7	"	"							
1,1,2-Trichloroethane	ND		16.7	"	"							
Trichloroethene (TCE)	ND		16.7	"	"							
Trichlorofluoromethane	ND		66.7	"	"							Q-
1,2,3-Trichloropropane	ND		33.3	"	"							
1,2,4-Trimethylbenzene	ND		33.3	"	"							
1,3,5-Trimethylbenzene	ND		33.3	"	"							
Vinyl chloride	ND		16.7	"	"							
m,p-Xylene	ND		33.3	"	"							
o-Xylene	ND		16.7	"	"							
Surr: 1,4-Difluorobenzene (Surr)		Rec	covery: 116 %	Limits: 70	130 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			98 %	70	-130 %		"					
4-Bromofluorobenzene (Surr)			96 %	70	-130 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

100 9 100

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10445 SW Canyon Road Suite 115

Beaverton, OR 97005

Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile O	rganic Con	npound	s by EPA 8	3260B					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030628 - EPA 5035A							Soi	<u> </u>				
LCS (7030628-BS1)				Prep	pared: 03/	15/17 09:00	Analyzed:	03/15/17 1	1:15			
5035/8260B												
Acetone	2270		1000	ug/kg wet	50	2000		113	65-135%			
Benzene	1330		10.0	"	"	1000		133	"			
Bromobenzene	1100		25.0	"	"	"		110	"			
Bromochloromethane	1130		50.0	"	"	"		113	"			
Bromodichloromethane	1240		100	"	"	"		124	"			
Bromoform	1280		100	"	"	"		128	"			
Bromomethane	1210		500	"	"	"		121	"			
2-Butanone (MEK)	2180		500	"	"	2000		109	"			
n-Butylbenzene	1130		50.0	"	"	1000		113	"			
sec-Butylbenzene	1120		50.0	"	"	"		112	"			
tert-Butylbenzene	1040		50.0	"	"	"		104	"			
Carbon tetrachloride	1270		50.0	"	"	"		127	"			
Chlorobenzene	1110		25.0	"	"	"		111	"			
Chloroethane	598		500	"	"	"		60	"			Q-
Chloroform	1220		50.0	"	"	"		122	"			
Chloromethane	912		250	"	"	"		91	"			
2-Chlorotoluene	1090		50.0	"	"	"		109	"			
4-Chlorotoluene	1070		50.0	"	"	"		107	"			
1,2-Dibromo-3-chloropropane	1240		250	"	"	"		124	"			
Dibromochloromethane	1190		100	"	"	"		119	"			
1,2-Dibromoethane (EDB)	1150		50.0	"	"	"		115	"			
Dibromomethane	1200		50.0	"	"	"		120	"			
1,2-Dichlorobenzene	1150		25.0	"	"	"		115	"			
1,3-Dichlorobenzene	1120		25.0	"	"	"		112	"			
1,4-Dichlorobenzene	1110		25.0	"	"	"		111	"			
Dichlorodifluoromethane	773		100	"	"	"		77	"			
1,1-Dichloroethane	1140		25.0	"	"	"		114	"			
1,2-Dichloroethane (EDC)	1090		25.0	"	"	"		109	"			
1,1-Dichloroethene	1050		25.0	"	"	"		105	"			
cis-1,2-Dichloroethene	1170		25.0	"	"	"		117	"			
trans-1,2-Dichloroethene	1140		25.0	"	"	"		114	"			
1,2-Dichloropropane	1240		25.0	"	"	"		124	"			
1,3-Dichloropropane	1120		50.0	"	"	"		112	"			
2,2-Dichloropropane	1090		50.0	"	"	"		109	"	_		

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10445 SW Canyon Road Suite 115

Beaverton, OR 97005

Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
		MIDL	Lillit	UIIIIS	ווע.	Amount	Resuit	/OKEC	Lillits	KI D	LIIIII	110168
Batch 7030628 - EPA 5035A							Soi	<u> </u>				
LCS (7030628-BS1)				Pr	repared: 03/	15/17 09:00	Analyzed:	03/15/17 11	:15			
5035/8260B												
1,1-Dichloropropene	1230		50.0	ug/kg wet	"	"		123	"			
cis-1,3-Dichloropropene	980		50.0	"	"	"		98	"			
trans-1,3-Dichloropropene	1020		50.0	"	"	"		102	"			
Ethylbenzene	1090		25.0	"	"	"		109	"			
Hexachlorobutadiene	1130		100	"	"	"		113	**			
2-Hexanone	1960		500	"	"	2000		98	"			
Isopropylbenzene	1120		50.0	"	"	1000		112	"			
4-Isopropyltoluene	1120		50.0	"	"	"		112	**			
4-Methyl-2-pentanone (MiBK)	1870		500	"	"	2000		94	**			
Methyl tert-butyl ether (MTBE)	1100		50.0	"	"	1000		110	"			
Methylene chloride	1320		250	"	"	"		132	"			
Naphthalene	1310		100	"	"	"		131	"			
n-Propylbenzene	1140		25.0	"	"	"		114	"			
Styrene	1130		50.0	"	"	"		113	"			
1,1,1,2-Tetrachloroethane	1170		25.0	"	"	"		117	"			
1,1,2,2-Tetrachloroethane	1290		50.0	"	"	"		129	"			
Tetrachloroethene (PCE)	1100		25.0	"	"	"		110	"			
Toluene	1120		50.0	"	"	"		112	"			
1,2,3-Trichlorobenzene	1180		250	"	"	"		118	"			
1,2,4-Trichlorobenzene	1140		250	"	"	"		114	"			
1,1,1-Trichloroethane	1180		25.0	"	"	"		118	"			
1,1,2-Trichloroethane	1160		25.0	"	"	"		116	"			
Trichloroethene (TCE)	1250		25.0	"	"	"		125	**			
Trichlorofluoromethane	600		100	"	"	"		60	**			Q-:
1,2,3-Trichloropropane	1170		50.0	"	"	"		117	"			
1,2,4-Trimethylbenzene	1090		50.0	"	"	"		109	"			
1,3,5-Trimethylbenzene	1110		50.0	"	"	"		111	"			
Vinyl chloride	971		25.0	"	"	"		97	"			
m,p-Xylene	2180		50.0	"	"	2000		109	"			
o-Xylene	1090		25.0	"	"	1000		109	"			
Surr: 1,4-Difluorobenzene (Surr)		Re	covery: 114 %	Limits: 7	0-130 %	Dilı	ution: 1x					
Toluene-d8 (Surr)		110	99 %		0-130 %	2111	"					
4-Bromofluorobenzene (Surr)			95 %		0-130 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kevin J. Friscia, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10445 SW Canyon Road Suite 115 Beaverton, OR 97005 Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030630 - Total Sol	ids (Dry We	ight)					Soil					
Duplicate (7030630-DUP3)				Prep	ared: 03/	15/17 18:09	Analyzed:	03/16/17 07	:28			
QC Source Sample: SB21-S1-16	(A7C0451-05)											
EPA 8000C												
% Solids	76.4		1.00	% by Weight	1		76.6			0.3	10%	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10445 SW Canyon Road Suite 115

Beaverton, OR 97005

Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

SAMPLE PREPARATION INFORMATION

Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 7030628							
A7C0451-01	Soil	NWTPH-Gx (MS)	03/14/17 12:15	03/15/17 16:16	5.66g/5mL	5g/5mL	0.88
A7C0451-02	Soil	NWTPH-Gx (MS)	03/14/17 12:58	03/15/17 16:16	5.04g/5mL	5g/5mL	0.99
A7C0451-03	Soil	NWTPH-Gx (MS)	03/14/17 14:00	03/15/17 16:16	5.36g/5mL	5g/5mL	0.93
A7C0451-04	Soil	NWTPH-Gx (MS)	03/14/17 15:00	03/15/17 16:16	5.93g/5mL	5g/5mL	0.84
A7C0451-05	Soil	NWTPH-Gx (MS)	03/14/17 15:25	03/15/17 16:16	5.76g/5mL	5g/5mL	0.87

		Vo	olatile Organic Comp	ounds by EPA 8260B			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 7030628							
A7C0451-01	Soil	5035/8260B	03/14/17 12:15	03/15/17 16:16	5.66g/5mL	5g/5mL	0.88
A7C0451-02	Soil	5035/8260B	03/14/17 12:58	03/15/17 16:16	5.04g/5mL	5g/5mL	0.99
A7C0451-03	Soil	5035/8260B	03/14/17 14:00	03/15/17 16:16	5.36g/5mL	5g/5mL	0.93
A7C0451-04	Soil	5035/8260B	03/14/17 15:00	03/15/17 16:16	5.93g/5mL	5g/5mL	0.84
A7C0451-05	Soil	5035/8260B	03/14/17 15:25	03/15/17 16:16	5.76g/5mL	5g/5mL	0.87

			Percent Dr	y Weight			
Prep: Total Solids	(Dry Weight	<u>)</u>	_	_	Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 7030630							
A7C0451-01	Soil	EPA 8000C	03/14/17 12:15	03/15/17 18:09	1N/A/1N/A	1N/A/1N/A	NA
A7C0451-02	Soil	EPA 8000C	03/14/17 12:58	03/15/17 18:09	1N/A/1N/A	1N/A/1N/A	NA
A7C0451-03	Soil	EPA 8000C	03/14/17 14:00	03/15/17 18:09	1N/A/1N/A	1N/A/1N/A	NA
A7C0451-04	Soil	EPA 8000C	03/14/17 15:00	03/15/17 18:09	1N/A/1N/A	1N/A/1N/A	NA
A7C0451-05	Soil	EPA 8000C	03/14/17 15:25	03/15/17 18:09	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLCProject:7-Eleven10445 SW Canyon Road Suite 115Project Number:OR161202-3BBeaverton, OR 97005Project Manager:Gil Cobb03/29/17 08:01

Notes and Definitions

Qualifiers: M-02

Q-31 Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
 R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
 S-08 TPH-Gx Surrogate recovery cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract. See 8260B results for accurate Surrogate recovery.

Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.

V-15 Sample aliquot was subsampled from the sample container. The subsampled aliquot was preserved in the laboratory within 48 hours of sampling.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kevin J. Friscia, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLCProject:7-Eleven10445 SW Canyon Road Suite 115Project Number:OR161202-3BBeaverton, OR 97005Project Manager:Gil Cobb

Reported: 03/29/17 08:01

		Ph. 50	13-718-	12232 S.W. Garden Place, Tigard, OR 97223 Ph.: 503-718-2323 Fax: 503-718-0333	ax: 503	1-811-8	1333												ď	PO#	
Company: Point Source Solution Mars (5)	200	4	Follow	Mgr	15						Project	Project Name:		3-1	7-eleven	12			-	Project # OQ161202-38	3
Address: 10449 SW Canyon	10	CX	j	X	0)	5		42	one:	Phone: 507-780-15,69	78	0	12	69			E	Email:	1	And populsance	2
Sampled by: ATK	g'	Peau		87005	x									ANA	ANALYSIS REQUEST	REQ	UEST			Solutions Com	30
Site Location: OR WA Other: SAMPLE ID	FVB ID #	BTAG	TIME	MATRIX	# OF CONTAINERS	AWTPH-HCID	zd-HqTWX	8700 AOC? Enii Fisi AMLEH-C*	8700 KBDM AOC8	8700 HAOC?	8700 BTEX VOCs	8710 SIM PAHs 2008 0728	8087 bCB2	O.L.1. 009	RCRA Metals (8)	TCLP Metals (8)	AI, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Se, Aa, Tl, V, Zn TOTAL DISS TCLP	1500- COFS	Z-0071		
01-15-6195		7/14/6	21.21 Alt1/2	2	-		-	X			-	-	-			-		-	⊢		-
SB19-52-175		-	12:58	w	-		X	X					-						-		-
5820-51-10		_	14:00	0	-		-	X				-	-					-			-
\$820-52-18		_	15:00	8	-		-	X	1			-	-						-		
sez[-5]-16		\rightarrow	15:25	2	-			X													
Normal Turn Around Time (TAT) = 10 Business Days	ss Days			YES		ON				SPEC	TAL	VSTRU	OLLO C	NS:	-	1	-	1	-	770	-
TAT Requested (circle) 1 Day 2 Day 4 DAY 5 DAY SAMPLES ARE HELD FOR 50 DAYS	1 Day 4 DAY		2 Day 5 DAY		3 Day Other:				201	8 1	Ja I	L X	JO M	19	28 3	₹ .	3	$\tilde{\lambda}$	2	Check for Stodard Solvents. Al Samples.	
RELINQUISHED BY:		-	RECEI	RECEIVED BY	1		1	7	-	RELIN	SUON	RELINQUISHED BY:	,;.				RE	RECEIVED BY:	D BY		
Signature ON THE Date \$1917 Signature.	Date of	画の	3/9/17 Signature			1	1	3/1	17.	Date 3/15/1 7 Signature:	nre			İ		Date:	Sign	Signature		Date:	
					6	1			3		14000					ime:		rened vanic	DC:	DAIL I	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10445 SW Canyon Road Suite 115 Beaverton, OR 97005 Project: **7-Eleven**Project Number: OR161202-3B
Project Manager: Gil Cobb

Reported: 03/29/17 08:01

Client: POME SOURCE SOURCE SOURCES Element WO#: A7 CO457 Project/Project #: 7 - E EVER Delivery info: Date/Time Received: 3/15/12 @ 14/103 By:	Client: Poly		LABS COOLER RECE	IPT FORM
Project/Project #: 7 - E EVEA Delivery info: Date/Time Received: 3/15/12 L/L/DT By:		It Source 5	volutions	Element WO#: A7 CO457
Date/Time Received: \$\frac{3}{15}/2 @ \frac{1}{2} @ \frac{1}{2} & \text{Delivered by: } \frac{1}{2} &				
Delivered by: Apex Client ESS FedEx UPS Swift Senvoy SDS Other Cooler Inspection Inspected by:	Delivery info:	9 V		
Cooler Inspection Inspected by: Chain of Custody Included? Yes No Custody Seals? Yes No Signed/Dated by Client? Yes No Signed/Dated by Client? Yes No Signed/Dated by Apex? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #5 Cooler #6 Cooler #6 Cooler Temperature (deg. C) Received on Ice? (VN) Temp. Blanks? (YN) Ice Type: (Gel/Real/Other) Cooler out of temp? (Y/N) Possible reason why: If some coolers are in temp and some out, were green dot applied to out of temperature samples? Yes/No(N) Samples Inspection: Inspected by: All Samples Intact? Yes No Comments: Bottle Labels/COCs agree? Yes No Comments: Do VOA Vials have Visible Headspace? Yes No NA Comments: Water Samples: pH Checked and Appropriate (except VOAs): Yes No NA Comments: Additional Information:	Date/Time Recei	red: 3/15/17@ 16	1.05 By:	MA
Cooler Inspection Chain of Custody Included? Yes No Custody Seals? Yes No Signed/Dated by Client? Yes No Signed/Dated by Client? Yes No Signed/Dated by Apex? Yes No Signed/Dated by Signed/Dated by Signed/Dated by Signed/Dated Si				Swift Senvoy SDS Other
Signed/Dated by Client? Yes No Signed/Dated by Apex? Yes No Signed/Dated by Apex? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #6 Cooler #7 Seceived on Ice? (DN) Temp. Blanks? (YM) Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #6 Cooler #7 Seceived on Ice? (DN) Temp. Blanks? (YM) Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #6 Cooler #7 Seceived on Ice? (DN) Temp. Blanks? (YM) Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #6 Cooler #6 Cooler #6 Cooler #7 Seceived on Ice? (DN) Temp. Blanks? (YM) Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 C	Cooler Inspection	n Inspected by:		
Signed/Dated by Apex? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler	Chain of Custody	Included? Yes N	lo Custod	y Seals? Yes No
Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler Temperature (deg. C)	Signed/Dated by	Client? Yes N	lo	
Temperature (deg. C) Received on Ice? (VN) Temp. Blanks? (YN) Ice Type: (Gel/Real/Other) Condition: Cooler out of temp? (YN) Possible reason why: If some coolers are in temp and some out, were green dot applied to out of temperature samples? Yes/No(N) Samples Inspection: Inspected by:	Signed/Dated by	Apex? Yes N	lo	
Received on Ice? (VN) Temp. Blanks? (YN) Ice Type: (Gel/Real/Other) Condition: Gooler out of temp? (YN) Possible reason why: If some coolers are in temp and some out, were green dot applied to out of temperature samples? Yes/Non Samples Inspection: Inspected by:		Cooler#1 Co	oler #2 Cooler #3 Coo	oler#4 Cooler#5 Cooler#6 Cooler#
Temp. Blanks? (Y/N) lce Type: (Gel/Real/Other) Condition: Grown Cooler out of temp? (Y/N) Possible reason why: If some coolers are in temp and some out, were green dot applied to out of temperature samples? Yes/No(N) Samples Inspection: Inspected by: No Comments: Bottle Labels/COCs agree? Yes No Comments: Containers/Volumes Received Appropriate for Analysis? Yes No Comments: Do VOA Vials have Visible Headspace? Yes No NA Comments: Water Samples: pH Checked and Appropriate (except VOAs): Yes No NA Comments: Additional Information:	Temperature (deg	c) 4.8		
Ice Type: (Gel/Kesl/Other) Condition: Cooler out of temp? (Y/D)Possible reason why: If some coolers are in temp and some out, were green dot applied to out of temperature samples? Yes/Noon Samples Inspection: Inspected by: Inspected by: No Comments: Bottle Labels/COCs agree? Yes No Comments: Containers/Volumes Received Appropriate for Analysis? Yes No Comments: Do VOA Vials have Visible Headspace? Yes No NA Comments: Water Samples: pH Checked and Appropriate (except VOAs): Yes No NA Comments: Additional Information:	Received on Ice?	(V)N)		
Condition: Cooler out of temp? (YM) Possible reason why: If some coolers are in temp and some out, were green dot applied to out of temperature samples? Yes/Notestamples Inspection: Inspected by: Inspected by: No Comments: Bottle Labels/COCs agree? Yes No Comments: Containers/Volumes Received Appropriate for Analysis? Yes No Comments: Do VOA Vials have Visible Headspace? Yes No NA X Comments: Vater Samples: pH Checked and Appropriate (except VOAs): Yes No NA X Comments: Additional Information:	Temp. Blanks? (Y	(KI)		
Cooler out of temp? (YM) Possible reason why: If some coolers are in temp and some out, were green dot applied to out of temperature samples? Yes/Notestamples Inspection: Inspected by: Inspected by: No Comments: Bottle Labels/COCs agree? Yes No Comments: Containers/Volumes Received Appropriate for Analysis? Yes No Comments: Do VOA Vials have Visible Headspace? Yes No NA X Comments: Vater Samples: pH Checked and Appropriate (except VOAs): Yes No NA X Comments: Additional Information:	Ice Type: (Gel/Re	/Other)		
If some coolers are in temp and some out, were green dot applied to out of temperature samples? Yes/Not/Samples Inspection: Inspected by: : 3/5//7 @ 41/33 All Samples Intact? Yes No Comments: No VOA Vials have Visible Headspace? Yes No NO NA NO Comments: No VOA Vials have Visible Headspace? Yes No NA NO NA NO COMMENTS: No NA NO NA NO NA NO COMMENTS: No NA NO NA NA NO NA NA NO COMMENTS: No NA NA NA NO NA	Condition:	6000		
Oo VOA Vials have Visible Headspace? Yes No NAX Comments Water Samples: pH Checked and Appropriate (except VOAs): Yes No NAX Comments: Additional Information:	Bottle Labels/COC	s agree? Yes No_	Comments:	o Ton Cont
Comments Water Samples: pH Checked and Appropriate (except VOAs): YesNoNAX Comments:	Containers/Volum	s Received Appropriate for	or Analysis? Yes N	lo Comments:
Water Samples: pH Checked and Appropriate (except VOAs): YesNoNAX Comments: Additional Information:			,	
Comments:Additional Information:		: Visible Headspace? Y	'es No NA	
Additional Information:	Do VOA Vials hav			Х
	Do VOA Vials hav			Х
abeled by: Witness: Cooler Inspected by: See Project Cootest Form: V	Oo VOA Vials hav Comments	Checked and Appropriat	te (except VOAs): Yes_	Х
	Do VOA Vials hav Comments Water Samples: pl Comments:	Checked and Appropriat	te (except VOAs): Yes_	Х
	Do VOA Vials hav Comments Water Samples: pl Comments:	Checked and Appropriat	te (except VOAs): Yes Cooler Inspected by:	X _NoNA_X
v v v	Do VOA Vials hav Comments Water Samples: pl Comments:	Checked and Appropriation;	te (except VOAs): Yes Cooler Inspected by:	No_NA_X

Apex Laboratories

APEX LABS ANALYTICAL	REPORT #A7C0722 DA	TED MARCH 30	2017
ALLY FADO ANAL I LICAL	. NLFONI #A/GU/ZZ DA	VIED MERCII 30.	4 011

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Thursday, March 30, 2017

Gil Cobb Point Source Solutions, LLC 10445 SW Canyon Road Suite 115 Beaverton, OR 97005

RE: German Auto / OR1203-3C

Enclosed are the results of analyses for work order <u>A7C0722</u>, which was received by the laboratory on 3/23/2017 at 3:22:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: KFriscia@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10SS5 W Candon Roau Wite 115

Beaverton, OR 97005

Project mN6 ber: OR1203-3C
Project Manager: Gil Cobb

Reported: 03/30/17 18:35

v Av LNTYCv L RI PORT FOR Sv MPLI S

	SA	MPLE INFORMATION	ON	
SaE ple Ym	LaDoratorb Y m	Matrix	mate SaE pled	mate Receiyed
SB22-S1-12	A7C0722-01	Woil	03/22/17 20:00	03/23/17 15:22
SB23-S1-12	A7C0722-02	Woil	03/22/17 14:S5	03/23/17 15:22
SB26-S1-6.5	A7C0722-03	Woil	03/22/17 20:29	03/23/17 15:22
SB26-S2-13.7	A7C0722-0S	Woil	03/22/17 21:20	03/23/17 15:22
SB25-S1-16	A7C0722-05	Woil	03/22/17 22:07	03/23/17 15:22

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNte 115 Beaverton, OR 97005 Project: GerE an v uto

Project mN6 ber: OR1203-3C Project Manager: Gil Cobb **Reported:** 03/30/17 18:35

v Av LNTYCv L Sv MPLI RI SULTS

Gaso	oline Rang	e Hydroca	rbons (Ben	zene through	Naphthaler	ne) by NWTPH-G	x	
		·	Reporting	5				·
Analdte	ResNt	MDL	Li6 it	Units	DilNtion	Date Analdzeu	Methou	motes
SB99-S1-19 (A07 C099-C1)			Matrix: So	il	Batch: 0C4C3	69		V-15
Gasoline Range Organics	13800		152	6 g/kg urd	1000	03/2S/17 15:32	my TPH-Gx (MW)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 352 %	Limits: 50-150 %	5 1	"	"	S-08
1,4-Difluorobenzene (Sur)			102 %	Limits: 50-150 %	5 "	"	"	
SB94-S1-19 (A07 C099-C9RE1)			Matrix: So	oil I	Batch: 0C4C3	25		V-15
Gasoline Range Organics	15000		1810	6 g/kg urd	10000	03/28/17 15:32	my TPH-Gx (MW)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 121 %	Limits: 50-150 %	5 1	"	"	
1,4-Difluorobenzene (Sur)			99 %	Limits: 50-150 %	<u>"</u>	"	"	
SB96-S1-685 (A07 C099-C4RE1)		Matrix: Soil Batch: 0C4C325					V-15	
Gasoline Range Organics	18300		1570	6 g/kg urd	10000	03/28/17 15:59	my TPH-Gx (MW)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 133 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	5 "	"	"	
SB96-S9-1480 (A07 C099-C6RE1)			Matrix: So	oil I	Batch: 0C4C3	25		V-15
Gasoline Range Organics	116		4.23	6 g/kg urd	50	03/28/17 1S:34	my TPH-Gx (MW)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 133 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			105 %	Limits: 50-150 %	<u>"</u>	"	"	
SB95-S1-16 (A07 C099-C5RE1)			Matrix: So	oil I	Batch: 0C4C3	25		V-15
Gasoline Range Organics	mD		4.2S	6 g/kg urd	50	03/28/17 15:05	my TPH-Gx (MW)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 104 %	Limits: 50-150 %	5 1	"	"	
1,4-Difluorobenzene (Sur)			99 %	Limits: 50-150 %	· "	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNte 115 Beaverton, OR 97005 Project: **GerE an v uto** Project mN6 ber: OR1203-3C

Reported: 03/30/17 18:35

v Av LNTYCv L Sv MPLI RI SULTS

Project Manager: Gil Cobb

			Reporting					
Analdte	ResNt	MDL	Li6 it	Units	DilNtion	Date Analdzeu	Methou	motes
SB99-S1-19 (A07 C099-C1)			Matrix: Soil	Е	Batch: 0C4C3	69		V-1
Acetone	mD		30500	Ng/kg urd	1000	03/28/17 15:32	5035/4280B	
Benzene	mD		305	"	"	"	"	
Bro6 obenzene	mD		781	"	"	"	"	
Bro6 ochloro6 ethane	mD		1520	"	"	"	"	
Bro6 ouichloro6 ethane	mD		3050	"	"	"	"	
Bro6 ofor6	mD		3050	"	"	"	"	
Bro6 o6 ethane	mD		15200	"	"	"	"	
2-BNanone (MEK)	mD		15200	"	"	"	"	
n-ButblDen4ene	9770		1520	"	"	"	"	
sec-ButblDen4ene	11300		1520	"	"	"	"	
tert-BNdlbenzene	mD		1520	"	"	"	"	
Carbon tetrachloriue	mD		1520	"	"	"	"	
Chlorobenzene	mD		781	"	"	"	"	
Chloroethane	mD		15200	"	"	"	"	EW
Chlorofor6	mD		1520	"	"	"	"	
Chloro6 ethane	mD		7810	"	"	"	"	
2-ChlorotolNene	mD		3050	"	"	"	"	R-0
S-ChlorotolNene	mD		1520	"	"	"	"	
1,2-Dibro6 o-3-chloropropane	mD		7810	"	"	"	"	
Dibro6 ochloro6 ethane	mD		3050	"	"	"	"	
1,2-Dibro6 oethane (EDB)	mD		1520	"	"	"	"	
Dibro6 o6 ethane	mD		1520	"	"	"	"	
1,2-Dichlorobenzene	mD		781	"	"	"	"	
1,3-Dichlorobenzene	mD		781	"	"	"	"	
1,S-Dichlorobenzene	mD		781	"	"	"	"	
DichlorouiflNoro6 ethane	mD		3050	"	"	"	"	
1,1-Dichloroethane	mD		781	"	"	"	n	
1,2-Dichloroethane (EDC)	mD		781	"	"	"	n	
1,1-Dichloroethene	mD		781	"	"	"	n .	
cis-1,2-Dichloroethene	mD		781	"	"	"	п	
trans-1,2-Dichloroethene	mD		781	"	"	"	"	
1,2-Dichloropropane	mD		781	"	"	"	"	
1,3-Dichloropropane	mD		1520	"	"	"	"	
2,2-Dichloropropane	mD		1520	"	"	"	"	
1,1-Dichloropropene	mD		1520	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNite 115 Beaverton, OR 97005 Project mN6 ber: OR1203-3C
Project Manager: Gil Cobb

Reported: 03/30/17 18:35

v Av LNTYCv L Sv MPLI RI SULTS

		voiatile	Organic 7 o.	pourius by E	.FA ZJIIUD			
Analdte	ResNt	MDL	Reporting Li6 it	** *	DilNtion	Date Analdzeu	Methou	motes
	ROSINI	WIDL		Units			Methou	V-1
SB99-S1-19 (A07 C099-C1)			Matrix: Soil		atch: 0C4C36	"	5025/4200D	V-1
cis-1,3-Dichloropropene	mD		1520	Ng/kg urd	1000	"	5035/4280B	
trans-1,3-Dichloropropene	mD		1520	"	"	"	"	
I thblDen4ene	2680		781		"			
HexachlorobNauiene	mD		3050	"		"	"	
2-Hexanone	mD		15200	"	"	"	"	
YsopropblDen4ene	70z0		1520	"	"	"	"	
6-Yopropbltoluene	12900		1520	"	"	"	"	M-02
S-Methdl-2-pentanone (MiBK)	mD		15200	"	"	"	"	
Methdl tert-bNdl ether (MTBE)	mD		1520	"	"	"	"	
Methdlene chloriue	mD		7810	"	"	"	"	
Aaphthalene	5880		3050	"	"	"	"	
n-PropblDen4ene	11200		781	"	"	"	"	
Widrene	mD		1520	"	"	"	"	
1,1,1,2-Tetrachloroethane	mD		781	"	"	"	"	
1,1,2,2-Tetrachloroethane	mD		2SS00	"	"	"	"	R-02
Tetrachloroethene (PCE)	mD		781	"	"	"	"	
TolNene	mD		1520	"	"	"	"	
1,2,3-Trichlorobenzene	mD		7810	"	"	"	"	
1,2,S-Trichlorobenzene	mD		7810	"	"	"	"	
1,1,1-Trichloroethane	mD		781	"	"	"	"	
1,1,2-Trichloroethane	mD		781	"	"	"	"	
Trichloroethene XTCI %	2070		781	"	"	"	"	
TrichloroflNoro6 ethane	mD		3050	"	"	"	"	EWI
1,2,3-Trichloropropane	mD		15200	"	"	"	"	R-02
1,2,6-TriE ethblDen4ene	79000		1520	"	"	"	"	
1,3,5-TriE ethblDen4ene	5250		1520	"	"	"	"	
Qindl chloriue	mD		781	"	"	"	"	
E,p-Qblene	62z0		1520	"	"	"	"	
o-Qblene	11000		781	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Re	ecovery: 102 %	Limits: 70-130 %	1	"	"	
Toluene-d8 (Surr)			-	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr	•)		94 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNite 115 Beaverton, OR 97005 Project mN6 ber: OR1203-3C
Project Manager: Gil Cobb

Reported: 03/30/17 18:35

v Av LNTYCv L Sv MPLI RI SULTS

		Volatile	Organic 7 o.	pounds by E	PA 29mCB			
			Reporting					
Analdte	ResNt	MDL	Li6 it	Units	DilNtion	Date Analdzeu	Methou	motes
SB94-S1-19 (A07 C099-C9)			Matrix: Soil	В	atch: 0C4C3	69		V-15
Acetone	mD		32200	Ng/kg urd	1000	03/2S/17 15:59	5035/4280B	
Ben4ene	338		322	"	"	"	"	
Bro6 obenzene	mD		405	"	"	"	"	
Bro6 ochloro6 ethane	mD		1810	"	"	"	"	
Bro6 ouichloro6 ethane	mD		3220	"	"	"	"	
Bro6 ofor6	mD		3220	"	"	"	"	
Bro6 o6 ethane	mD		18100	"	"	"	"	
2-BNanone (MEK)	mD		18100	"	"	"	"	
n-ButblDen4ene	29700		1810	"	"	"	"	M-02
sec-ButblDen4ene	36300		1810	"	"	"	"	
tert-ButblDen4ene	2960		1810	"	"	"	"	M-02
Carbon tetrachloriue	mD		1810	"	"	"	"	
Chlorobenzene	mD		405	"	"	"	"	
Chloroethane	mD		18100	"	"	"	"	EWI
Chlorofor6	mD		1810	"	"	"	"	
Chloro6 ethane	mD		4050	"	"	"	"	
2-ChlorotolNene	mD		1810	"	"	"	"	
S-ChlorotolNene	mD		1810	"	"	"	"	
1,2-Dibro6 o-3-chloropropane	mD		4050	"	"	"	"	
Dibro6 ochloro6 ethane	mD		3220	"	"	"	"	
1,2-Dibro6 oethane (EDB)	mD		1810	"	"	"	"	
Dibro6 o6 ethane	mD		1810	"	"	"	"	
1,2-Dichlorobenzene	mD		405	"	"	"	"	
1,3-Dichlorobenzene	mD		405	"	"	"	"	
1,S-Dichlorobenzene	mD		405	"	"	"	"	
DichlorouiflNoro6 ethane	mD		3220	"	"	"	"	
1,1-Dichloroethane	mD		405	"	"	"	"	
1,2-Dichloroethane (EDC)	mD		405	"	"	"	"	
1,1-Dichloroethene	mD		405	"	"	"	"	
cis-1,2-Dichloroethene	mD		405	"	"	"	"	
trans-1,2-Dichloroethene	mD		405	"	"	"	"	
1,2-Dichloropropane	mD		405	"	"	"	"	
1,3-Dichloropropane	mD		1810	"	"	"	"	
2,2-Dichloropropane	mD		1810	"	"	"	"	
1,1-Dichloropropene	mD		1810	"	"	"	"	
cis-1,3-Dichloropropene	mD		1810	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNite 115 Beaverton, OR 97005 Project mN6 ber: OR1203-3C
Project Manager: Gil Cobb

Reported: 03/30/17 18:35

v Av LNTYCv L Sv MPLI RI SULTS

			Reporting					
Analdte	ResNt	MDL	Li6 it	Units	DilNion	Date Analdzeu	Methou	motes
SB94-S1-19 (A07 C099-C9)			Matrix: Soil	Е	Batch: 0C4C36	69		V-1
trans-1,3-Dichloropropene	mD		1810	Ng/kg urd	1000	"	5035/4280B	
I thblDen4ene	17z00		405	"	"	"	"	
HexachlorobNauiene	mD		3220	"	"	"	"	
2-Hexanone	mD		18100	"	"	"	"	
YsopropblDen4ene	25900		1810	"	"	"	"	
6-Yopropbltoluene	37z00		1810	"	"	"	"	M-02
S-Methdl-2-pentanone (MiBK)	mD		18100	"	"	"	"	
Methdl tert-bNdl ether (MTBE)	mD		1810	"	"	"	"	
Methdlene chloriue	mD		4050	"	"	"	"	
Aaphthalene	27900		3220	"	"	"	"	
n-PropblDen4ene	69z00		405	"	"	"	"	
W/drene	mD		1810	"	"	"	"	
1,1,1,2-Tetrachloroethane	mD		405	"	"	"	"	
1,1,2,2-Tetrachloroethane	mD		25700	"	"	"	"	R-02
Tetrachloroethene XPCI %	1630		405	"	"	"	"	
TolNene	mD		1810	"	"	"	"	
1,2,3-Trichlorobenzene	mD		4050	"	"	"	"	
1,2,S-Trichlorobenzene	mD		4050	"	"	"	"	
1,1,1-Trichloroethane	mD		405	"	"	"	"	
1,1,2-Trichloroethane	mD		9850	"	"	"	"	R-02
Trichloroethene XTCI %	12900		405	"	"	"	"	
TrichloroflNoro6 ethane	mD		3220	"	"	"	"	EWI
1,2,3-Trichloropropane	mD		20900	"	"	"	"	R-02
1,2,6-TriE ethblDen4ene	299000		1810	"	"	"	"	
1,3,5-TriE ethblDen4ene	103000		1810	"	"	"	"	
Qindl chloriue	mD		405	"	"	"	"	
E,p-Qblene	28500		1810	"	"	"	"	
o-Qblene	51z00		405	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr,)	Re	ecovery: 101 %	Limits: 70-130 %	1	"	"	
Toluene-d8 (Surr)			104 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Su	err)		93 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNite 115 Beaverton, OR 97005 Project: GerE an v uto

Project mN6 ber: OR1203-3C Project Manager: Gil Cobb

Reported: 03/30/17 18:35

v Av LNTYCv L Sv MPLI RI SULTS

		Volatile	Organic 7 o.	pounds by E	PA 29nCB			
			Reporting					
Analdte	ResNt	MDL	Li6 it	Units	DilNtion	Date Analdzeu	Methou	motes
SB96-S1-685 (A07 C099-C4)			Matrix: Soil	В	atch: 0C4C3	69		V-1
Acetone	mD		31500	Ng/kg urd	1000	03/2S/17 18:28	5035/4280B	
Ben4ene	1020		315	"	"	"	"	
Bro6 obenzene	mD		747	"	"	"	"	
Bro6 ochloro6 ethane	mD		1570	"	"	"	"	
Bro6 ouichloro6 ethane	mD		3150	"	"	"	"	
Bro6 ofor6	mD		3150	"	"	"	"	
Bro6 o6 ethane	mD		15700	"	"	"	"	
2-BNanone (MEK)	mD		15700	"	"	"	"	
n-ButblDen4ene	61000		1570	"	"	"	"	M-0
sec-ButblDen4ene	50300		1570	"	"	"	"	
tert-ButblDen4ene	6 z 70		1570	"	"	"	"	M-0
Carbon tetrachloriue	mD		1570	"	"	"	"	
Chlorobenzene	mD		747	"	"	"	"	
Chloroethane	mD		15700	"	"	"	"	EW
Chlorofor6	mD		1570	"	"	"	"	
Chloro6 ethane	mD		7470	"	"	"	"	
2-ChlorotolNene	mD		8290	"	"	"	"	R-0
S-ChlorotolNene	mD		1570	"	"	"	"	
1,2-Dibro6 o-3-chloropropane	mD		7470	"	"	"	"	
Dibro6 ochloro6 ethane	mD		3150	"	"	"	"	
1,2-Dibro6 oethane (EDB)	mD		1570	"	"	"	"	
Dibro6 o6 ethane	mD		1570	"	"	"	"	
1,2-Dichlorobenzene	mD		747	"	"	"	"	
1,3-Dichlorobenzene	mD		747	"	"	"	"	
1,S-Dichlorobenzene	mD		747	"	"	"	"	
DichlorouiflNoro6 ethane	mD		3150	"	"	"	"	
1,1-Dichloroethane	mD		747	"	"	"	"	
1,2-Dichloroethane (EDC)	mD		747	"	"	"	"	
1,1-Dichloroethene	mD		747	"	"	"	"	
cis-1,2-Dichloroethene	mD		747	"	"	"	"	
trans-1,2-Dichloroethene	mD		747	"	"	"	"	
1,2-michloropropane	1380		747	"	"	"	"	
1,3-Dichloropropane	mD		1570	"	"	"	"	
2,2-Dichloropropane	mD		1570	"	"	"	"	
1,1-Dichloropropene	mD		1570	"	"	"	"	
cis-1,3-Dichloropropene	mD		1570	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau Wite 115 Beaverton, OR 97005 Project: GerE an v uto

Project mN6 ber: OR1203-3C Project Manager: Gil Cobb **Reported:** 03/30/17 18:35

v Av LNTYCv L Sv MPLI RI SULTS

		Volatile	Organic 7 o.	pounds by E	PA 29mCB			
A 11	ResNt	MDL	Reporting		D.D.I.	D (4 11	M 4	
Analdte	Kesint	MDL	Li6 it	Units	DilNtion	Date Analdzeu	Methou	motes
SB96-S1-685 (A07 C099-C4)			Matrix: Soil		atch: 0C4C30			V-1
trans-1,3-Dichloropropene	mD		1570	Ng/kg urd	1000	"	5035/4280B	
I thblDen4ene	8180		747	"	"	"	"	
HexachlorobNauiene	mD		3150	"	"	"	"	
2-Hexanone	mD		14900	"	"	"	"	R-02
YsopropblDen4ene	2z100		1570	"	"	"	"	
6-Yopropbltoluene	58000		1570	"	"	"	"	M-02
S-Methdl-2-pentanone (MiBK)	mD		15700	"	"	"	"	
Methdl tert-bNdl ether (MTBE)	mD		1570	"	"	"	"	
Methdlene chloriue	mD		7470	"	"	"	"	
Aaphthalene	37600		3150	"	"	"	"	
n-PropblDen4ene	59900		747	"	"	"	"	
Widrene	mD		1570	"	"	"	"	
1,1,1,2-Tetrachloroethane	mD		747	"	"	"	"	
1,1,2,2-Tetrachloroethane	mD		S7200	"	"	"	"	R-02
Tetrachloroethene (PCE)	mD		747	"	"	"	"	
TolNene	mD		1570	"	"	"	"	
1,2,3-Trichlorobenzene	mD		7470	"	"	"	"	
1,2,S-Trichlorobenzene	mD		7470	"	"	"	"	
1,1,1-Trichloroethane	mD		747	"	"	"	"	
1,1,2-Trichloroethane	mD		747	"	"	"	"	
Trichloroethene XTCI %	6910		747	"	"	"	"	
TrichloroflNoro6 ethane	mD		3150	"	"	"	"	EWI
1,2,3-Trichloropropane	mD		3S800	"	"	"	"	R-02
1,3,5-TriE ethblDen4ene	139000		1570	"	"	"	"	
Qindl chloriue	mD		747	"	"	"	"	
E ,p-Qblene	15600		1570	"	"	"	"	
o-Qblene	6z700		747	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr))	Re	ecovery: 102 %	Limits: 70-130 %	1	"	"	
Toluene-d8 (Surr)			102 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Su	rr)		97 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNte 115 Beaverton, OR 97005 Project: GerE an v uto

Project mN6 ber: OR1203-3C Project Manager: Gil Cobb

Reported: 03/30/17 18:35

v Av LNTYCv L Sv MPLI RI SULTS

			Reporting					
Analdte	ResNt	MDL	Li6 it	Units	DilNtion	Date Analdzeu	Methou	motes
SB96-S1-685 (A07 C099-C4RE1)			Matrix: Soi	l Ba	atch: 0C4C3	25		V-1
1,2,6-TriE ethblDen4ene	325000		15700	Ng/kg urd	10000	03/28/17 15:59	5035/4280B	
Surrogate: 1,4-Difluorobenzene (Surr)		Re	ecovery: 103 %	Limits: 70-130 %	1	"	"	
Toluene-d8 (Surr)			98 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			98 %	Limits: 70-130 %	"	"	"	
SB96-S9-1480 (A07 C099-C6RE1)			Matrix: Soi	l Ba	atch: 0C4C3	25		V-1
Acetone	mD		1850	Ng/kg urd	50	03/28/17 1S:34	5035/4280B	
Ben4ene	98.7		18.5	"	"	"	"	
Bro6 obenzene	mD		S1.1	"	"	"	"	
Bro6 ochloro6 ethane	mD		42.3	"	"	"	"	
Bro6 ouichloro6 ethane	mD		185	"	"	"	"	
Bro6 ofor6	mD		185	"	"	"	"	
Bro6 o6 ethane	mD		423	"	"	"	"	
2-BNanone (MEK)	mD		423	"	"	"	"	
n-ButblDen4ene	8z.6		42.3	**	"	"	"	M-0
sec-ButblDen4ene	8z.6		42.3	**	"	"	"	
tert-BNdlbenzene	mD		42.3	"	"	"	"	
Carbon tetrachloriue	mD		42.3	**	"	"	"	
Chlorobenzene	mD		S1.1	"	"	"	"	
Chloroethane	mD		423	"	"	"	"	EWI
Chlorofor6	mD		42.3	"	"	"	"	
Chloro6 ethane	mD		S11	"	"	"	"	
2-ChlorotolNene	mD		42.3	"	"	"	"	
S-ChlorotolNene	mD		42.3	"	"	"	"	
1,2-Dibro6 o-3-chloropropane	mD		S11	"	"	"	"	
Dibro6 ochloro6 ethane	mD		185	"	"	"	"	
1,2-Dibro6 oethane (EDB)	mD		42.3	"	"	"	"	
Dibro6 o6 ethane	mD		42.3	"	"	"	"	
1,2-Dichlorobenzene	mD		S1.1	"	"	"	"	
1,3-Dichlorobenzene	mD		S1.1	"	"	"	"	
1,S-Dichlorobenzene	mD		S1.1	"	"	"	"	
DichlorouiflNoro6 ethane	mD		185	"	"	"	"	
1,1-Dichloroethane	mD		S1.1	"	"	"	"	
1,2-Dichloroethane (EDC)	mD		S1.1	"	"	"	"	
1,1-Dichloroethene	mD		S1.1	"	"	"	"	
cis-1,2-Dichloroethene	mD		S1.1	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNite 115 Beaverton, OR 97005 Project: GerE an v uto

Project mN6 ber: OR1203-3C Project Manager: Gil Cobb

Reported: 03/30/17 18:35

v Av LNTYCv L Sv MPLI RI SULTS

		Volatile	Organic 7 o.	pounds by E	PA 29mCB			
	D. M.) (D)	Reporting					
Analdte	ResNt	MDL	Li6 it	Units	DilNtion	Date Analdzeu	Methou	motes
SB96-S9-1480 (A07 C099-C6RE1)			Matrix: Soil		atch: 0C4C3			V-15
trans-1,2-Dichloroethene	mD		S1.1	Ng/kg urd	50	"	5035/4280B	
1,2-michloropropane	2zz		S1.1	"	"	"	"	
1,3-Dichloropropane	mD		42.3	"	"	"	"	
2,2-Dichloropropane	mD		42.3	"	"	"	"	
1,1-Dichloropropene	mD		42.3	"	"	"	"	
cis-1,3-Dichloropropene	mD		42.3	"	"	"	"	
trans-1,3-Dichloropropene	mD		42.3	"	"	"	"	
I thblDen4ene	z0.0		S1.1	"	"	"	"	
HexachlorobNauiene	mD		185	"	"	"	"	
2-Hexanone	mD		423	"	"	"	"	
Isopropdlbenzene	mD		42.3	"	"	"	"	
6-Yopropbltoluene	122		42.3	"	"	"	"	M-02
S-Methdl-2-pentanone (MiBK)	mD		423	"	"	"	"	
Methdl tert-bNtdl ether (MTBE)	mD		42.3	"	"	"	"	
Methdlene chloriue	mD		S11	"	"	"	"	
maphthalene	mD		185	"	"	"	"	
n-PropblDen4ene	11z		S1.1	"	"	"	"	
Widrene	mD		42.3	"	"	"	"	
1,1,1,2-Tetrachloroethane	mD		S1.1	"	"	"	"	
1,1,2,2-Tetrachloroethane	mD		2S7	"	"	"	"	R-02
Tetrachloroethene (PCE)	mD		S1.1	"	"	"	"	
TolNene	mD		42.3	"	"	"	"	
1,2,3-Trichlorobenzene	mD		S11	"	"	"	"	
1,2,S-Trichlorobenzene	mD		S11	"	"	"	"	
1,1,1-Trichloroethane	mD		S1.1	"	"	"	"	
1,1,2-Trichloroethane	mD		S1.1	"	"	"	"	
Trichloroethene XTCI %	95.6		S1.1	"	"	"	"	
TrichloroflNoro6 ethane	mD		185	"	"	"	"	EWTa
1,2,3-Trichloropropane	mD		42.3	"	"	"	"	
1,2,6-TriE ethblDen4ene	83z		42.3	"	"	"	"	
1,3,5-TriE ethblDen4ene	290		42.3	"	"	"	"	
Qindl chloriue	mD		S1.1	"	"	"	"	
6 ,p-Vdlene	mD		42.3	"	"	"	"	
o-Vdlene	mD		S1.1	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)				Limits: 70-130 %	1	ıı .	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNite 115 Beaverton, OR 97005 Project mN6 ber: OR1203-3C
Project Manager: Gil Cobb

Reported: 03/30/17 18:35

v Av LNTYCv L Sv MPLI RI SULTS

		Volatile	Organic 7	o. pounds by El	PA 29mCB			
Analdte	ResNt	MDL	Reporting Li6 it		DilMion	Date Analdzeu	Methou	motes
	Resint	WIDL		Units	DilNtion		Methou	V-1
SB96-S9-1480 (A07 C099-C6RE1)			Matrix: So		tch: 0C4C3	25	5025/42007	V-1
Surrogate: Toluene-d8 (Surr))	R	ecovery: 98 % 97 %	Limits: 70-130 % Limits: 70-130 %	1	"	5035/4280B	
4-Bromofluorobenzene (Su	err)							
SB95-S1-16 (A07 C099-C5RE1)			Matrix: So		tch: 0C4C3			V-1
Acetone	mD		1850	Ng/kg urd	50	03/28/17 15:05	5035/4280B	
Benzene	mD		18.5	"	"	"	"	
Bro6 obenzene	mD		S1.2	"	"	"	"	
Bro6 ochloro6 ethane	mD		42.S	"	"	"	"	
Bro6 ouichloro6 ethane	mD		185	"	"	"	"	
Bro6 ofor6	mD		185	"	"	"	"	
Bro6 o6 ethane	mD		42S	"	"	"	"	
2-BNanone (MEK)	mD		42S	"	"	"	"	
n-BNdlbenzene	mD		42.S	"	"	"	"	
sec-BNdlbenzene	mD		42.S	"	"	"	"	
tert-BNdlbenzene	mD		42.S	"	"	"	"	
Carbon tetrachloriue	mD		42.S	"	"	"	"	
Chlorobenzene	mD		S1.2	"	"	"	"	
Chloroethane	mD		42S	"	"	"	"	EWG
Chlorofor6	mD		42.S	"	"	"	"	
Chloro6 ethane	mD		S12	"	"	"	"	
2-ChlorotolNene	mD		42.S	"	"	"	"	
S-ChlorotolNene	mD		42.S	"	"	"	"	
1,2-Dibro6 o-3-chloropropane	mD		S12	"	"	"	"	
Dibro6 ochloro6 ethane	mD		185	"	"	"	"	
1,2-Dibro6 oethane (EDB)	mD		42.S	"	"	"	"	
Dibro6 o6 ethane	mD		42.S	"	"	"	"	
1,2-Dichlorobenzene	mD		S1.2	"	"	"	"	
1,3-Dichlorobenzene	mD		S1.2	"	"	"	"	
1,S-Dichlorobenzene	mD		S1.2	"	"	"	"	
DichlorouiflNoro6 ethane	mD		185	"	"	"	"	
1,1-Dichloroethane	mD		S1.2	"	"	"	"	
1,2-Dichloroethane (EDC)	mD		S1.2	"	"	"	"	
1,1-Dichloroethene	mD		S1.2	"	"	"	"	
cis-1,2-Dichloroethene	mD		S1.2	"	"	"	"	
trans-1,2-Dichloroethene	mD		S1.2	"	"	"	"	
1,2-Dichloropropane	mD		S1.2	"	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNite 115 Beaverton, OR 97005 Project: **GerE an v uto**Project mN6 ber: OR1203-3C

Reported: 03/30/17 18:35

v Av LNTYCv L Sv MPLI RI SULTS

Project Manager: Gil Cobb

		Volatile	Organic 7 o.	pounds by E	PA 29mCB			
		1.001	Reporting	<u> </u>				
Analdte	ResNt	MDL	Li6 it	Units	DilNtion	Date Analdzeu	Methou	motes
SB95-S1-16 (A07 C099-C5RE1)			Matrix: Soil	Ba	atch: 0C4C3	25		V-1
1,3-Dichloropropane	mD		42.S	Ng/kg urd	50	"	5035/4280B	
2,2-Dichloropropane	mD		42.S	"	"	"	"	
1,1-Dichloropropene	mD		42.S	"	"	"	"	
cis-1,3-Dichloropropene	mD		42.S	"	"	"	"	
trans-1,3-Dichloropropene	mD		42.S	"	"	"	"	
Ethdlbenzene	mD		S1.2	"	"	"	"	
HexachlorobNauiene	mD		185	"	"	"	"	
2-Hexanone	mD		42S	"	"	"	"	
Isopropdlbenzene	mD		42.S	"	"	"	"	
S-IsopropdltolNene	mD		42.S	"	"	"	"	
S-Methdl-2-pentanone (MiBK)	mD		42S	"	"	"	"	
Methdl tert-bNdl ether (MTBE)	mD		42.S	"	"	"	"	
Methdlene chloriue	mD		S12	"	"	"	"	
maphthalene	mD		185	"	"	"	"	
n-Propdlbenzene	mD		S1.2	"	"	"	"	
Wdrene	mD		42.S	"	"	"	"	
1,1,1,2-Tetrachloroethane	mD		S1.2	"	"	"	"	
1,1,2,2-Tetrachloroethane	mD		42.S	"	"	"	"	
Tetrachloroethene (PCE)	mD		S1.2	"	"	"	"	
TolNene	mD		42.S	"	"	"	"	
1,2,3-Trichlorobenzene	mD		S12	"	"	"	"	
1,2,S-Trichlorobenzene	mD		S12	"	"	"	"	
1,1,1-Trichloroethane	mD		S1.2	"	"	"	"	
1,1,2-Trichloroethane	mD		S1.2	"	"	"	"	
Trichloroethene XTCI %	67.0		S1.2	"	"	"	"	
TrichloroflNoro6 ethane	mD		185	"	"	"	"	EWI
1,2,3-Trichloropropane	mD		42.S	"	"	"	"	
1,2,S-Tri6 ethdlbenzene	mD		42.S	"	"	"	"	
1,3,5-Tri6 ethdlbenzene	mD		42.S	"	"	"	"	
Qindl chloriue	mD		S1.2	"	"	"	"	
6 ,p-Vdlene	mD		42.S	"	"	"	"	
o-Vdlene	mD		S1.2	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Ra	covery: 104 %	Limits: 70-130 %	1	"	ıı .	
Toluene-d8 (Surr)		A.c.	-	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Sur.	r)			Limits: 70-130 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNite 115 Beaverton, OR 97005 Project: GerE an v uto

Project mN6 ber: OR1203-3C Project Manager: Gil Cobb

Reported: 03/30/17 18:35

v Av LNTYCv L Sv MPLI RI SULTS

Percent Dry Weight													
Analdte	ResNt	MDL	Reporting Li6 it	Units	DilNtion	Date Analdzeu	Methou	motes					
SB99-S1-19 (A07 C099-C1)			Matrix: Soil	Ва	atch: 0C4C3	ml							
(Solids	7z.2		1.00	X bd y eight	1	03/27/17 04:00	EPA 4000C	•					
SB94-S1-19 (A07 C099-C9)			Matrix: Soil	Ва	atch: 0C4C3	m1							
(Solids	77.1		1.00	X bd y eight	1	03/27/17 04:00	EPA 4000C						
SB96-S1-685 (A07 C099-C4)			Matrix: Soil	Ва	atch: 0C4C3	m1							
(Solids	7z.7		1.00	X bd y eight	1	03/27/17 04:00	EPA 4000C						
SB96-S9-1480 (A07 C099-C6)			Matrix: Soil	Ва	atch: 0C4C3	m 1							
(Solids	75.8		1.00	X bd y eight	1	03/27/17 04:00	EPA 4000C						
SB95-S1-16 (A07 C099-C5)			Matrix: Soil	Ва	atch: 0C4C3	m 1							
(Solids	77.0		1.00	X bd y eight	1	03/27/17 04:00	EPA 4000C						

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNte 115 Beaverton, OR 97005 Project: GerE an v uto

Project mNo ber: OR1203-3C Project Manager: Gil Cobb

Reported: 03/30/17 18:35

) Uv LYTN COATROL X C%v MPLI RI SULTS

	Gasoline	Range	Hydrocarb	ons (Benze	ene thro	ugh Napht	halene) l	y NWTF	PH-Gx			
Analdte	ResNt	MDL	Reporting Li6 it	Units	Dil.	Woike A6 oNnt	WoNrce ResNt	XREC	X REC Li6 its	RPD	RPD Li6 it	motes
Batch 0C4C369 - EPA 5C45A							Soil					
Blank X030962-BLK1%				Prej	pareu: 03/	2S/17 09:00	Analdzeu:	03/2S/17 1	1:27			
AWTPH-Gx XMS%												
Gasoline Range Organics	mD		3.33	6 g/kg %et	50							
Surr: 4-Bromofluorobenzene (Sur)		Re	ecovery: 99 %	Limits: 50-	150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			96 %	50-	150 %		"					
LCS X030962-BS2%				Prej	pareu: 03/	2S/17 09:00	Analdzeu:	03/2S/17 1	1:01			
AWTPH-Gx XMS%												
Gasoline Range Organics	28.2		5.00	6 g/kg %et	50	25.0		105	70-130X			
Surr: 4-Bromofluorobenzene (Sur)		Re	ecovery: 96 %	Limits: 50-	150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			99 %	50-	150 %		"					
Batch 0C4C325 - EPA 5C45A							Soil					
Blank X030985-BLK1%				Prej	pareu: 03/	28/17 09:30	Analdzeu:	03/28/17 13	2:10			
AWTPH-Gx XMS%												
Gasoline Range Organics	mD		3.33	6 g/kg %et	50							
Surr: 4-Bromofluorobenzene (Sur)		Re	ecovery: 95 %	Limits: 50-	150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			96 %	50-	150 %		"					
LCS X030985-BS2%				Prej	pareu: 03/	28/17 09:30	Analdzeu:	03/28/17 1	1:SS			
AWTPH-Gx XMS%												
Gasoline Range Organics	25.7		5.00	6 g/kg %et	50	25.0		103	70-130X			
Surr: 4-Bromofluorobenzene (Sur)		Re	ecovery: 99 %	Limits: 50-	150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			101 %	50-	150 %		"					

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNte 115 Beaverton, OR 97005 Project mN6 ber: OR1203-3C
Project Manager: Gil Cobb

Reported: 03/30/17 18:35

) Uv LYTN COATROL X C%v MPLI RI SULTS

Analdre ResNt MDL Reporting Lisi in Units Units Pile Webic ResNt XREC LiG its RPD LiG its Batch OCAG369 - EPA 5C4564 Free Transmission of Control of Cont		ж	A 29mCB	s by EPA 2	pounds	rganic 7 o.	Volatile O			
Blank X030962-BLK1%					Dil.	Units		MDL	ResNt	Analdte
Acetone mD 887 Ng/kg %et 50		Soil	Soi							Batch 0C4C369 - EPA 5C45A
Acetone	27	ldzeu: 03/2S/17 11	00 Analdzeu:	2S/17 09:00	oareu: 03/2	Prep				Blank X030962-BLK1%
Benzene mD										5035/82z0B
Bro6 obenzene mD 18.7 " "					50	Ng/kg %et	887		mD	Acetone
Bro6 ochloro6 ethane mD 33.3 " "					"	"	8.87		mD	Benzene
Bro6 otichloro6 ethane mD					"	"	18.7		mD	Bro6 obenzene
Bro6 ofor 6 mD 88.7 " "					"	"	33.3		mD	Bro6 ochloro6 ethane
Bro6 of ethane mD 333 " "					"	"	88.7		mD	Bro6 ouichloro6 ethane
2-BNanone (MEK) mD 333 " <t< td=""><td></td><td></td><td></td><td></td><td>"</td><td>"</td><td>88.7</td><td></td><td>mD</td><td>Bro6 ofor6</td></t<>					"	"	88.7		mD	Bro6 ofor6
No. 18 N					"	"	333		mD	Bro6 o6 ethane
Sec-Bhdlbenzene mD					"	"	333		mD	2-BNanone (MEK)
tert-BNdlbenzene mD 33.3 "					"	"	33.3		mD	n-BNdlbenzene
Carbon tetrachloriue mD 33.3 " "					"	"	33.3		mD	sec-BNdlbenzene
Chlorobenzene mD 18.7 " "					"	"	33.3		mD	tert-BNdlbenzene
Chlorofor6 mD 333 " "					"	"	33.3		mD	Carbon tetrachloriue
Chlorofor6 mD 33.3 " " "					"	"	18.7		mD	Chlorobenzene
Chlorof ethane mD 187 " "	EV				"	"	333		mD	Chloroethane
2-ChlorotolNène mD 33.3 "					"	"	33.3		mD	Chlorofor6
S-ChlorotolNène mD 33.3 " " 1,2-Dibro6 orblane mD 18.7 " " 1,3-Dichlorotehane mD 18.7 " " 1,1-Dichlorotehane (EDC) mD 18.7 " "					"	"	187		mD	Chloro6 ethane
1,2-Dibro6 o-3-chloropropane mD 187 " "					"	"	33.3		mD	2-ChlorotolNene
1,2-Dibro6 o-3-chloropropane mD 187 " "					"	"	33.3			S-ChlorotolNene
Dibro6 ochloro6 ethane mD 88.7 " "					"	"	187		mD	
1,2-Dibro6 oethane (EDB) mD 33.3 " -					"	"	88.7			
Dibro6 of ethane mD 33.3 " "					"	"				
1,2-Dichlorobenzene mD 18.7 " "					"	"				, , , , , , , , , , , , , , , , , , , ,
1,3-Dichlorobenzene mD 18.7 " "					"	"				
1,S-Dichlorobenzene mD 18.7 " "					"	"				· ·
DichlorouiflNoro6 ethane mD 88.7 " "					"	"				· ·
1,1-Dichloroethane mD 18.7 " "					"	"				,
1,2-Dichloroethane (EDC) mD 18.7 " "					"	"				
1,1-Dichloroethene mD 18.7 " "					"	"				*
cis-1,2-Dichloroethene mD 18.7 " " trans-1,2-Dichloroethene mD 18.7 " "					"	"				
trans-1,2-Dichloroethene mD 18.7 " "					"	"				· ·
					"	"				*
1,2-Dichloropropane mD 18.7 " "					"	"				· · · · · · · · · · · · · · · · · · ·
1,3-Dichloropropane mD 33.3 " "					"	"				
2,2-Dichloropropane mD 33.3 " "					"	"				* *

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNte 115 Beaverton, OR 97005 Project mN6 ber: OR1203-3C
Project Manager: Gil Cobb

Reported: 03/30/17 18:35

) Uv LYTN COATROL X C%v MPLI RI SULTS

Analdte	ResNt	MDL	Reporting Li6 it	Units	Dil.	Woike A6 oNnt	WoNrce ResNt	XREC	X REC Li6 its	RPD	RPD Li6 it	motes
Batch 0C4C369 - EPA 5C45A							Soil					
Blank X7030962-BLK1%				Pre	epareu: 03/	2S/17 09:00	Analdzeu:	03/2S/17 11	:27			
5035/82z0B												
1,1-Dichloropropene	mD		33.3	Ng/kg %et	"							
cis-1,3-Dichloropropene	mD		33.3	"	"							
trans-1,3-Dichloropropene	mD		33.3	"	"							
Ethdlbenzene	mD		18.7	"	"							
HexachlorobNauiene	mD		88.7	"	"							
2-Hexanone	mD		333	"	"							
Isopropdlbenzene	mD		33.3	"	"							
S-IsopropdltolNene	mD		33.3	"	"							
S-Methdl-2-pentanone (MiBK)	mD		333	"	"							
Methdl tert-bNdl ether (MTBE)	mD		33.3	"	"							
Methdlene chloriue	mD		187	"	"							
maphthalene	mD		88.7	"	"							
n-Propdlbenzene	mD		18.7	"	"							
Wdrene	mD		33.3	"	"							
1,1,1,2-Tetrachloroethane	mD		18.7	"	"							
1,1,2,2-Tetrachloroethane	mD		33.3	"	"							
Tetrachloroethene (PCE)	mD		18.7	"	"							
TolNene	mD		33.3	"	"							
1,2,3-Trichlorobenzene	mD		187	"	"							
1,2,S-Trichlorobenzene	mD		187	"	"							
1,1,1-Trichloroethane	mD		18.7	"	"							
1,1,2-Trichloroethane	mD		18.7	"	"							
Trichloroethene (TCE)	mD		18.7	"	"							
TrichloroflNoro6 ethane	mD		88.7	"	"							Е
1,2,3-Trichloropropane	mD		33.3	"	"							
1,2,S-Tri6 ethdlbenzene	mD		33.3	"	"							
1,3,5-Tri6 ethdlbenzene	mD		33.3	"	"							
Oindl chloriue	mD		18.7	"	"							
6 ,p-Vdlene	mD		33.3	"	"							
o-Vdlene	mD		18.7	"	"							
Surr: 1,4-Difluorobenzene (Surr)			covery: 101 %	Limits: 70	130 %	Dila	ution: 1x					
Toluene-d8 (Surr)		nec	101 %		-130 %	Ditt	"					
4-Bromofluorobenzene (Surr)			101 %		-130 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kevin J. Friscia, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNte 115 Beaverton, OR 97005 Project: GerE an v uto

Project mN6 ber: OR1203-3C Project Manager: Gil Cobb **Reported:** 03/30/17 18:35

) Uv LYTN COATROL X C%v MPLI RI SULTS

			Volatile O	rganic 7 o.	pound	s by EPA 2	9nCB					
Analdte	ResNt	MDL	Reporting Li6 it	Units	Dil.	Woike A6 oNnt	WoNrce ResNt	XREC	X REC Li6 its	RPD	RPD Li6 it	motes
Batch 0C4C369 - EPA 5C45A	١						Soil					
LCS X030962-BS1%				Pre	pareu: 03/	2S/17 09:00	Analdzeu:	03/2S/17 1	0:3S			
5035/82z0B												
Acetone	1910		1000	Ng/kg %et	50	2000		98	85-135X			
Benzene	1050		10.0	"	"	1000		105	"			
Bro6 obenzene	1050		25.0	"	"	"		105	"			
Bro6 ochloro6 ethane	1100		50.0	"	"	"		110	"			
Bro6 ouichloro6 ethane	972		100	"	"	"		97	"			
Bro6 ofor6	430		100	"	"	"		43	"			
Bro6 o6 ethane	1190		500	"	"	"		119	"			
2-BNanone (MEK)	2000		500	"	"	2000		100	"			
n-BNdlbenzene	1090		50.0	"	"	1000		109	"			
sec-BNdlbenzene	1040		50.0	"	"	"		104	"			
tert-BNdlbenzene	1080		50.0	"	"	"		108	"			
Carbon tetrachloriue	997		50.0	"	"	"		100	"			
Chlorobenzene	1080		25.0	"	"	"		108	"			
Chloroethane	1190		500	"	"	"		119	"			EV
Chlorofor6	1000		50.0	"	**	"		100	"			
Chloro6 ethane	1070		250	"	"	"		107	"			
2-ChlorotolNene	1090		50.0	"	"	"		109	"			
S-ChlorotolNene	10S0		50.0	"	"	"		10S	"			
1,2-Dibro6 o-3-chloropropane	482		250	"	"	"		48	"			
Dibro6 ochloro6 ethane	448		100	"	"	"		49	"			
1,2-Dibro6 oethane (EDB)	1090		50.0	"	"	"		109	"			
Dibro6 o6 ethane	1020		50.0	"	"	"		102	"			
1,2-Dichlorobenzene	1090		25.0	"	"	"		109	"			
1,3-Dichlorobenzene	1070		25.0	"	"	"		107	"			
1,S-Dichlorobenzene	1080		25.0	"	"	"		108	"			
DichlorouiflNoro6 ethane	993		100	"	"	"		99	"			
1,1-Dichloroethane	1040		25.0	"	"	"		104	"			
1,2-Dichloroethane (EDC)	1100		25.0	"	"	"		110	"			
1,1-Dichloroethene	1030		25.0	"	"	"		103	"			
cis-1,2-Dichloroethene	1110		25.0	"	"	"		103	"			
· · · · · · · · · · · · · · · · · · ·			25.0	"	"	"		104	"			
trans-1,2-Dichloroethene	1040			"	,,	"			"			
1,2-Dichloropropane	1110		25.0	"	,,	"		111	,,			
1,3-Dichloropropane	1070		50.0	"		"		107	"			
2,2-Dichloropropane	1090		50.0	"	"	"		109	"			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNte 115 Beaverton, OR 97005 Project: GerE an v uto

Project mN6 ber: OR1203-3C Project Manager: Gil Cobb **Reported:** 03/30/17 18:35

) Uv LYTN COATROL X C%v MPLI RI SULTS

			Reporting			Woike	WoNrce		XREC		RPD	
Analdte	ResNt	MDL	Li6 it	Units	Dil.	A6 oNt	ResNt	XREC	Li6 its	RPD	Li6 it	motes
Batch 0C4C369 - EPA 5C45A							Soil					
LCS X030962-BS1%				Pre	pareu: 03/	2S/17 09:00	Analdzeu: (03/2S/17 10	:3S			
5035/82z0B												
1,1-Dichloropropene	1130		50.0	Ng/kg %et	"	"		113	"			
cis-1,3-Dichloropropene	1070		50.0	"	"	"		107	"			
trans-1,3-Dichloropropene	1090		50.0	"	"	"		109	"			
Ethdlbenzene	10S0		25.0	"	"	"		10S	"			
HexachlorobNauiene	11S0		100	"	"	"		11S	"			
2-Hexanone	2020		500	"	"	2000		101	"			
Isopropdlbenzene	1050		50.0	"	"	1000		105	"			
S-IsopropdItolNene	1050		50.0	"	"	"		105	"			
S-Methdl-2-pentanone (MiBK)	2100		500	"	"	2000		105	"			
Methdl tert-bNdl ether (MTBE)	974		50.0	"	"	1000		94	"			
Methdlene chloriue	1030		250	"	"	"		103	"			
maphthalene	1030		100	"	"	**		103	"			
n-Propdlbenzene	1080		25.0	"	"	"		108	"			
W/drene	10S0		50.0	"	"	"		10S	"			
1,1,1,2-Tetrachloroethane	1070		25.0	"	"	"		107	"			
1,1,2,2-Tetrachloroethane	977		50.0	"	"	"		94	"			
Tetrachloroethene (PCE)	1100		25.0	"	"	"		110	"			
TolNene	1050		50.0	"	"	"		105	"			
1,2,3-Trichlorobenzene	1050		250	"	"	"		105	"			
1,2,S-Trichlorobenzene	1030		250	"	"	"		103	"			
1,1,1-Trichloroethane	1080		25.0	"	"	"		108	"			
1,1,2-Trichloroethane	10S0		25.0	"	"	"		10S	"			
Trichloroethene (TCE)	1110		25.0	"	"	"		111	"			
TrichloroflNoro6 ethane	1490		100	"	"	"		149	"			Е
1,2,3-Trichloropropane	1120		50.0	"	"	"		112	"			
1,2,S-Tri6 ethdlbenzene	10S0		50.0	"	"	"		10S	"			
1,3,5-Tri6 ethdlbenzene	1030		50.0	"	"	"		103	"			
Qindl chloriue	1170		25.0	"	"	"		117	"			
6 ,p-Vdlene	2070		50.0	"	"	2000		10S	"			
o-Vdlene	1080		25.0	"	"	1000		108	"			
urr: 1,4-Difluorobenzene (Surr)	1000	Ro	covery: 102 %	Limits: 70-	.130 %		tion: 1x					
Toluene-d8 (Surr)		Net	101 %		130 %	Ditta	nion. 1x					
4-Bromofluorobenzene (Surr)			98 %		130 %		,,					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kevin J. Friscia, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNte 115 Beaverton, OR 97005 Project: GerE an v uto

Project mN6 ber: OR1203-3C Project Manager: Gil Cobb **Reported:** 03/30/17 18:35

) Uv LYTN COATROL X C%v MPLI RI SULTS

			Volatile O	rganic 70.	poullu	S DY EFA 2	SIILOD					
Analdte	ResNt	MDL	Reporting Li6 it	Units	Dil.	Woike A6 oNnt	WoNrce ResNt	XREC	X REC Li6 its	RPD	RPD Li6 it	motes
Batch 0C4C325 - EPA 5C45A	١						Soil					
Blank № 030985-BLK1%				Pre	pareu: 03/	28/17 09:30	Analdzeu:	03/28/17 12	:10			
5035/82z0B												
Acetone	mD		887	Ng/kg %et	50							
Benzene	mD		8.87	"	"							
Bro6 obenzene	mD		18.7	"	"							
Bro6 ochloro6 ethane	mD		33.3	"	"							
Bro6 ouichloro6 ethane	mD		88.7	"	"							
Bro6 ofor6	mD		88.7	"	"							
Bro6 o6 ethane	mD		333	"	"							
2-BNanone (MEK)	mD		333	"	"							
n-BNdlbenzene	mD		33.3	"	"							
sec-BNdlbenzene	mD		33.3	"	"							
tert-BNdlbenzene	mD		33.3	"	"							
Carbon tetrachloriue	mD		33.3	"	"							
Chlorobenzene	mD		18.7	"	"							
Chloroethane	mD		333	"	"							EV
Chlorofor6	mD		33.3	"	"							
Chloro6 ethane	mD		187	"	"							
2-ChlorotolNene	mD		33.3	"	"							
S-ChlorotolNene	mD		33.3	"	"							
1,2-Dibro6 o-3-chloropropane	mD		187	"	"							
Dibro6 ochloro6 ethane	mD		88.7	"	"							
1,2-Dibro6 oethane (EDB)	mD		33.3	"	"							
Dibro6 o6 ethane	mD		33.3	"	"							
1,2-Dichlorobenzene	mD		18.7	"	"							
1,3-Dichlorobenzene	mD		18.7	"	"							
1,S-Dichlorobenzene	mD		18.7	"	"							
DichlorouiflNoro6 ethane	mD		88.7	"	"							
1,1-Dichloroethane	mD		18.7	"	"							
1,2-Dichloroethane (EDC)	mD		18.7	"	"							
1,1-Dichloroethene	mD		18.7	"	"							
cis-1,2-Dichloroethene	mD		18.7	"	"							
trans-1,2-Dichloroethene	mD		18.7	"	"							
1,2-Dichloropropane	mD		18.7	"	"							
1,3-Dichloropropane	mD		33.3	"	"							
2,2-Dichloropropane	mD		33.3	"	,,							

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNte 115 Beaverton, OR 97005 Project mN6 ber: OR1203-3C
Project Manager: Gil Cobb

Reported: 03/30/17 18:35

) Uv LYTN COATROL X C%v MPLI RI SULTS

Analdte	ResNt	MDL	Reporting Li6 it	Units	Dil.	Woike A6 oNnt	WoNrce ResNt	XREC	X REC Li6 its	RPD	RPD Li6 it	motes
Batch 0C4C325 - EPA 5C45A							Soil					
Blank X7030985-BLK1%				Pre	epareu: 03/	28/17 09:30	Analdzeu:	03/28/17 12	:10			
5035/82z0B												
1,1-Dichloropropene	mD		33.3	Ng/kg %et	"							
cis-1,3-Dichloropropene	mD		33.3	"	"							
trans-1,3-Dichloropropene	mD		33.3	"	"							
Ethdlbenzene	mD		18.7	"	"							
HexachlorobNauiene	mD		88.7	"	"							
2-Hexanone	mD		333	"	"							
Isopropdlbenzene	mD		33.3	"	"							
S-IsopropdltolNene	mD		33.3	"	"							
S-Methdl-2-pentanone (MiBK)	mD		333	"	"							
Methdl tert-bNdl ether (MTBE)	mD		33.3	"	"							
Methdlene chloriue	mD		187	"	"							
maphthalene	mD		88.7	"	"							
n-Propdlbenzene	mD		18.7	"	"							
Widrene	mD		33.3	"	"							
1,1,1,2-Tetrachloroethane	mD		18.7	"	"							
1,1,2,2-Tetrachloroethane	mD		33.3	"	"							
Tetrachloroethene (PCE)	mD		18.7	"	"							
TolNene	mD		33.3	"	"							
1,2,3-Trichlorobenzene	mD		187	"	"							
1,2,S-Trichlorobenzene	mD		187	"	"							
1,1,1-Trichloroethane	mD		18.7	"	"							
1,1,2-Trichloroethane	mD		18.7	"	"							
Trichloroethene (TCE)	mD		18.7	"	"							
TrichloroflNoro6 ethane	mD		88.7	"	"							EV
1,2,3-Trichloropropane	mD		33.3	"	"							
1,2,S-Tri6 ethdlbenzene	mD		33.3	"	"							
1,3,5-Tri6 ethdlbenzene	mD		33.3	"	"							
Qindl chloriue	mD		18.7	"	"							
6 ,p-Vdlene	mD		33.3	"	"							
o-Vdlene	mD		18.7	"	"							
Surr: 1,4-Difluorobenzene (Surr)		Red	covery: 102 %	Limits: 70	0-130 %	Dila	ıtion: 1x					
Toluene-d8 (Surr)			102 %		130 %		"					
4-Bromofluorobenzene (Surr)			101 %		-130 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kevin J. Friscia, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNte 115 Beaverton, OR 97005 Project: GerE an v uto

Project mN6 ber: OR1203-3C Project Manager: Gil Cobb

Reported: 03/30/17 18:35

) Uv LYTN COATROL X C%v MPLI RI SULTS

			Volatile O	rganic 7 o.	pound	s by EPA 2	29mCB					
Analdte	ResNt	MDL	Reporting Li6 it	Units	Dil.	Woike A6 oNnt	WoNrce ResNt	XREC	X REC Li6 its	RPD	RPD Li6 it	motes
Batch 0C4C325 - EPA 5C45A							Soi	I				
LCS X030985-BS1%				Prep	oareu: 03/	28/17 09:30	Analdzeu:	03/28/17 11	:17			
6035/82z0B												
Acetone	1850		1000	Ng/kg %et	50	2000		42	85-135X			
Benzene	1010		10.0	"	**	1000		101	"			
Bro6 obenzene	99S		25.0	"	**	"		99	"			
Bro6 ochloro6 ethane	1050		50.0	"	**	"		105	"			
Bro6 ouichloro6 ethane	998		100	"	**	"		100	"			
Bro6 ofor6	470		100	"	**	"		47	"			
Bro6 o6 ethane	1310		500	"	"	"		131	"			
2-BNanone (MEK)	1710		500	"	"	2000		45	"			
n-BNdlbenzene	1010		50.0	"	"	1000		101	"			
sec-BNdlbenzene	1020		50.0	"	"	"		102	"			
tert-BNdlbenzene	992		50.0	"	"	"		99	"			
Carbon tetrachloriue	1040		50.0	"	"	"		104	"			
Chlorobenzene	1010		25.0	"	"	"		101	"			
Chloroethane	19S0		500	"	**	"		19S	"			EW
Chlorofor6	94S		50.0	"	"	"		94	"			
Chloro6 ethane	10S0		250	"	**	"		10S	"			
2-ChlorotolNene	1030		50.0	"	"	"		103	"			
S-ChlorotolNene	949		50.0	"	"	"		99	"			
1,2-Dibro6 o-3-chloropropane	432		250	"	"	"		43	"			
Dibro6 ochloro6 ethane	908		100	"	**	"		91	"			
1,2-Dibro6 oethane (EDB)	10S0		50.0	"	**	"		10S	"			
Dibro6 o6 ethane	973		50.0	"	**	"		97	"			
1,2-Dichlorobenzene	1010		25.0	"	**	"		101	"			
1,3-Dichlorobenzene	1000		25.0	"	"	"		100	"			
1,S-Dichlorobenzene	99S		25.0	"	"	"		99	"			
DichlorouiflNoro6 ethane	1010		100	"	"	"		101	"			
1,1-Dichloroethane	1050		25.0	"	"	"		105	"			
1,2-Dichloroethane (EDC)	10S0		25.0	"	"	"		10S	"			
1,1-Dichloroethene	1100		25.0	"	"	"		110	"			
cis-1,2-Dichloroethene	1040		25.0	"	"	"		104	"			
trans-1,2-Dichloroethene	1050		25.0	"	"	"		10S	"			
1,2-Dichloropropane	1050		25.0	"	,,	"		105	"			
1,3-Dichloropropane	1000		50.0	"	"	"		100	"			
2,2-Dichloropropane	1110		50.0	"	,,	"		111	"			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNte 115 Beaverton, OR 97005 Project: GerE an v uto

Project mN6 ber: OR1203-3C Project Manager: Gil Cobb **Reported:** 03/30/17 18:35

) Uv LYTN COATROL X C%v MPLI RI SULTS

			Volatile O		•							
Analdte	ResNt	MDL	Reporting Li6 it	Units	Dil.	Woike A6 oNnt	WoNrce ResNt	XREC	X REC Li6 its	RPD	RPD Li6 it	motes
Batch 0C4C325 - EPA 5C45A							Soil					
LCS X030985-BS1%				Pre	pareu: 03/	28/17 09:30	Analdzeu: (03/28/17 11	:17			
5035/82z0B												
1,1-Dichloropropene	1110		50.0	Ng/kg %et	"	"		111	"			
cis-1,3-Dichloropropene	10S0		50.0	"	"	"		10S	"			
trans-1,3-Dichloropropene	1070		50.0	"	"	"		107	"			
Ethdlbenzene	1000		25.0	"	"	"		100	"			
HexachlorobNauiene	1050		100	"	"	"		105	"			
2-Hexanone	17S0		500	"	"	2000		47	"			
Isopropdlbenzene	1010		50.0	"	"	1000		101	"			
S-IsopropdltolNene	948		50.0	"	"	"		99	"			
S-Methdl-2-pentanone (MiBK)	1430		500	"	"	2000		91	"			
Methdl tert-bNdl ether (MTBE)	921		50.0	"	"	1000		92	"			
Methdlene chloriue	1020		250	"	"	"		102	"			
maphthalene	958		100	"	"	"		98	"			
n-Propdlbenzene	1010		25.0	"	"	"		101	"			
Widrene	94S		50.0	"	"	"		94	"			
1,1,1,2-Tetrachloroethane	1100		25.0	"	"	"		110	"			
1,1,2,2-Tetrachloroethane	980		50.0	"	"	"		98	"			
Tetrachloroethene (PCE)	1080		25.0	"	"	"		108	"			
TolNene	1000		50.0	"	"	"		100	"			
1,2,3-Trichlorobenzene	942		250	"	"	"		94	"			
1,2,S-Trichlorobenzene	974		250	"	"	"		94	"			
1,1,1-Trichloroethane	1050		25.0	"	"	"		105	"			
1,1,2-Trichloroethane	941		25.0	"	"	"		94	"			
Trichloroethene (TCE)	1070		25.0	"	"	"		107	"			
TrichloroflNoro6 ethane	1520		100	"	"	"		152	"			EW
1,2,3-Trichloropropane	1030		50.0	"	"	"		103	"			
1,2,S-Tri6 ethdlbenzene	979		50.0	"	"	"		94	"			
1,3,5-Tri6 ethdlbenzene	974		50.0	"	"	"		94	"			
Qindl chloriue	1180		25.0	"	"	"		118	"			
6 ,p-Vdlene	1990		50.0	"	"	2000		99	"			
o-Vdlene	1990		25.0	"	"	1000		99 101	"			
	1010							101				
Surr: 1,4-Difluorobenzene (Surr)		Red	covery: 102 %	Limits: 70		Dilu	tion: 1x					
Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)			99 % 99 %	/0-	130 %							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kevin J. Friscia, Project Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC

10SS5 Wy Candon Roau WNte 115 Beaverton, OR 97005 Project: GerE an v uto

Project mNo ber: OR1203-3C Project Manager: Gil Cobb

Reported: 03/30/17 18:35

) Uv LYTN COATROL X C%v MPLI RI SULTS

Percent Dry Weight												
Analdte	ResNt	MDL	Reporting Li6 it	Units	Dil.	Woike A6 oNnt	WoNrce ResNt	XREC	X REC Li6 its	RPD	RPD Li6 it	motes
Batch 0C4C3m1 - Total Solids (Dry Weight) Soil												

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10SS5 Wy Candon Roau WVite 115

Beaverton, OR 97005

Project mN6 ber: OR1203-3C
Project Manager: Gil Cobb

Reported: 03/30/17 18:35

Sv MPLI PRI Pv Rv TYOA YAFORMV TYOA

	C	Sasoline Range Hydr	ocarbons (Benzen	e through Naphthalen	e) by NWTPH-Gx		
Prep: EPA 5C45A					Wa6 ple	DefaNt	RL Prep
Lab mN6 ber	Matrix	Methou	Wa6 pleu	Prepareu	Initial/Final	Initial/Final	Factor
Batch: 7030942							
A7C0722-01	Woil	my TPH-Gx (MW)	03/22/17 20:00	03/23/17 18:35	5.S2g/56 L	5g/56 L	0.92
Batch: 7030985							
A7C0722-02RE1	Woil	my TPH-Gx (MW)	03/22/17 14:S5	03/23/17 18:35	S.9Sg/56 L	5g/56 L	1.01
A7C0722-03RE1	Woil	my TPH-Gx (MW)	03/22/17 20:29	03/23/17 18:35	5.13g/56 L	5g/56 L	0.94
A7C0722-0SRE1	Woil	my TPH-Gx (MW)	03/22/17 21:20	03/23/17 18:35	S.94g/56 L	5g/56 L	1.00
A7C0722-05RE1	Woil	my TPH-Gx (MW)	03/22/17 22:07	03/23/17 18:35	S.41g/56 L	5g/56 L	1.0S

		Vo	latile Organic 7 o. po	ounds by EPA 29mCB			
Prep: EPA 5C45A		_			Wa6 ple	DefaNt	RL Prep
Lab mN6 ber	Matrix	Methou	Wa6 pleu	Prepareu	Initial/Final	Initial/Final	Factor
Batch: 7030942							
A7C0722-01	Woil	5035/4280B	03/22/17 20:00	03/23/17 18:35	5.S2g/56 L	5g/56 L	0.92
A7C0722-02	Woil	5035/4280B	03/22/17 14:S5	03/23/17 18:35	S.9Sg/56 L	5g/56 L	1.01
A7C0722-03	Woil	5035/4280B	03/22/17 20:29	03/23/17 18:35	5.13g/56 L	5g/56 L	0.94
Batch: 7030985							
A7C0722-03RE1	Woil	5035/4280B	03/22/17 20:29	03/23/17 18:35	5.13g/56 L	5g/56 L	0.94
A7C0722-0SRE1	Woil	5035/4280B	03/22/17 21:20	03/23/17 18:35	S.94g/56 L	5g/56 L	1.00
A7C0722-05RE1	Woil	5035/4280B	03/22/17 22:07	03/23/17 18:35	S.41g/56 L	5g/56 L	1.0S

Percent Dry Weight							
Prep: Total Solids (Dry Weight)					Wa6 ple	DefaNt	RL Prep
Lab mN6 ber	Matrix	Methou	Wa6 pleu	Prepareu	Initial/Final	Initial/Final	Factor
Batch: 7030961							
A7C0722-01	Woil	EPA 4000C	03/22/17 20:00	03/2S/17 18:04	1 m/A/1 m/A	1 m/A/1 m/A	mA
A7C0722-02	Woil	EPA 4000C	03/22/17 14:S5	03/2S/17 18:04	1 m/A/1 m/A	1 m/A/1 m/A	mA
A7C0722-03	Woil	EPA 4000C	03/22/17 20:29	03/2S/17 18:04	1 m/A/1 m/A	1 m/A/1 m/A	mA
A7C0722-0S	Woil	EPA 4000C	03/22/17 21:20	03/2S/17 18:04	1 m/A/1 m/A	1 m/A/1 m/A	mA
A7C0722-05	Woil	EPA 4000C	03/22/17 22:07	03/2S/17 18:04	1 m/A/1 m/A	1m/A/1m/A	mA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kevin J. Friscia, Project Manager

Page 25 of 24

Beaverton, OR 97005

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLCProject:GerE an v uto10SS5 Wy Candon Roau Wite 115Project mN6 ber: OR1203-3C

Project mN6 ber: OR1203-3C Reported:
Project Manager: Gil Cobb 03/30/17 18:35

Aotes and mefinitions

wNalifiers:

EWi ResNt reporteu as an Esti6 ateu QalNe. Analdte faileu initial calibration criteria.
 EWia ResNt reporteu as an Esti6 ateu QalNe. Analdte faileu initial calibration criteria.
 M-02 DNe to 6 atrix interference, this analdte cannot be accNateld qNantifieu. The reporteu resNt is esti6 ateu.
 R-02 The Reporting Li6 it for this analdte has been raiseu to accoNnt for interference fro6 coelNing organic co6 poNnus present in the sa6 ple.
 W04 TPH-Gx Wirogate recoverd cannot be accNateld qNantifieu uNe to interference fro6 coelNing organic co6 poNnus present in the sa6 ple extract. Wee 4280B resNts for accNate Wirogate recoverd.
 Q-15 Wa6 ple aliqNot %as sNbsa6 pleu fro6 the sa6 ple container. The sNbsa6 pleu aliqNot %as preserveu in the laboratord %ithin S4 hoNs of sa6 pling.

motes anu Conventions:

DET Analdte DETECTED

mD Analdte mOT DETECTED at or above the reporting li6 it

mR mot Reporteu

urd Wá6 ple resNts reporteu on a urd %eight basis. ResNts listeu as '%et' or %ithoN 'urd'uesignation are not urd %eight correcteu.

RPD Relative Percent Difference

MDL If MDL is not listeu, uata has been evalNateu to the Methou Reporting Li6 it onld.

y MWC y ater Miscible Wolvent Correction has been applieu to ResNts anu MRLs for volatiles soil sa6 ples per EPA 4000C.

Batch wC

Unless specificalld reqNesteu, this report contains onld resNts for Batch wC ueriveu fro6 client sa6 ples inclNieu in this report. All analdses %ere perfor6 eu %ith the appropriate Batch wC (inclNiing Wa6 ple DNplicates, Matrix Wpikes anu/or Matrix Wpike DNplicates) in oruer to 6 eet or exceeu 6 ethou anu regNatord reqNre6 ents. And exceptions to this %ill be qNalifieu in this report. Co6 plete Batch wC resNts are available Npon reqNest. In cases %here there is insNfficient sa6 ple proviueu for Wa6 ple DNplicates anu/or Matrix Wpikes, a Lab Control Wa6 ple DNplicate (LCWDNp) is analdzeu to ue6 onstrate accNacd anu precision of the extraction anu analdsis.

Blank Policd Apex assesses blank uata for potential high bias uo%n to a level eqNal to ½ the 6 ethou reporting li6 it (MRL), except for conventional che6 istrd anu HCID analdses %hich are assesseu onld to the MRL. Wa6 ple resNts flaggeu %ith a B or B-02 qNalifier are potentialld biaseu high if thed are less than ten ti6 es the level foNnu in the blank for inorganic analdses or less than five ti6 es the level foNnu in the blank for organic analdses.

For accNate co6 parison of volatile resNts to the level foNu in the blank; %ater sa6 ple resNts shoNu be uiviueu bd the uilNion factor, anu soil sa6 ple resNts shoNu be uiviueu bd 1/50 of the sa6 ple uilNion to accoNt for the sa6 ple prep factor.

ResNts qNalifieu as reporteu belo% the MRL 6 ad inclNue a potential high bias if associateu %ith a B or B-02 qNalifieu blank. B anu B-02 qNalifications are not applieu to J qNalifieu resNts reporteu belo% the MRL.

wC resNts are not applicable. For exa6 ple, X Recoveries for Blanks anu DNplicates, X RPD for Blanks, Blank Wpikes anu Matrix Wpikes, etc.

*** Useu to inuicate a possible uiscrepaned %ith the Wa6 ple anu Wa6 ple DNplicate resNts %hen the XRPD is not available. In this case, either the Wa6 ple or the Wa6 ple DNplicate has a reportable resNt for this analdte, %hile the other is mon Detect (mD).

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10SS5 Wy Candon Roau Wite 115

Beaverton, OR 97005

Project: **GerE an v uto**Project mN6 ber: OR1203-3C

Project Manager: Gil Cobb

Reported: 03/30/17 18:35

Pointsouce #021207-3X Z-0071 1700° COF2 TCLP Metals (8) RCRA Metals (8) OLL 009 8087 PCB5 CHAIN OF CUSTODY SHV4 KIS 0728 -780 3570 SVOC 8560 BTEX VOCs 503 8700 HAOC? 8500 KBDNI AOCe 8700 AOCs Enll Tyst NALL H-CX 999 12232 S.W. Garden Place, Tigard, OR 97223 Ph.: 503-718-2323 Fax: 503-718-0333 xd-H9TWV имтрн-нстр 3 Day # OF CONTAINERS 5 MATRIX 21.20 5/22 20:00 52.07 5 DAY 2 Day LIME I Day # 01 8V7 TAT Requested (circle) 4PEX LABS Point

A	Lahora	tarias
ADEX	ганога	101168

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Point Source Solutions, LLC 10SS5 Wy Candon Roau Wite 115

Beaverton, OR 97005

Project: **GerE an v uto**Project mN6 ber: OR1203-3C

Project Manager: Gil Cobb

Reported: 03/30/17 18:35

APEX LABS COOLER RECEIPT FORM Element WO#: A7 (0722 Project/Project #: Delivery info: Date/Time Received: 15:22 @ 3/23/17 By: Delivered by: Apex___ Cooler Inspection Chain of Custody Included? Custody Seals? Signed/Dated by Client? Signed/Dated by Apex? Cooler#1 Cooler#2 Cooler#3 Cooler#4 Cooler#5 Cooler#6 Cooler#7 Temperature (deg. C) Received on Ice? (Y/N) Temp. Blanks? (Y/N) lce Type: (Gol/Real/Other) Condition: Good Cooler out of temp? (Y/N) Possible reason why: If some coolers are in temp and some out, were green dot applied to out of temperature samples? Yes/No/NA/Samples Inspection: Inspected by: All Samples Intact? Yes Bottle Labels/COCs agree? Yes Containers/Volumes Received Appropriate for Analysis? Yes No I on all Do VOA Vials have Visible Headspace? Yes Water Samples: pH Checked and Appropriate (except VOAs): Yes___No_ Comments: Additional Information: Labeled by: Witness: Cooler Inspected by: See Project Contact Form: Y Client

Apex Laboratories

CORRESPONDANCE

From: Kevin Friscia

To: Andy Klopfenstein; Gil Cobb

 Subject:
 7-Eleven---Gx/VOCs Draft Report---A7C0451

 Date:
 Wednesday, March 22, 2017 10:46:15 AM

Attachments: <u>A7C0451 DRAFT 03 22 17 1035---PSS---7-Eleven.pdf</u>

Good Morning,

Your Gx/VOCs Draft results are enclosed for review.

Sample SB20-S1-10(A7C0451-03) carbon range is consistent with Stoddard Solvents on the Chromatograph.

Please feel free to contact me with any questions or requests.

Thank you,

Kevin Friscia
Project Manager & Sample Control Supervisor
APEX Laboratories
Main: 503-718-2323
Fax: 503-718-0333

We Welcome Your Feedback

Help us improve your experience by taking our short survey.

Apex Client Survey

Apex Laboratories is now ORELAP accredited to analyze Lead and Copper in Drinking Water

From: Kevin Friscia

To: Andy Klopfenstein; Gil Cobb

Subject: German Auto---Full Draft Report---A7C0722

Date: Thursday, March 30, 2017 4:31:05 PM

Attachments: A7C0722 DRAFT 03 30 17 1508---PSS---German Auto.pdf

Good Afternoon,

Your Draft results are enclosed for review.

The samples carbon ranges are consistent with Stoddard Solvents on the Chromatograph.

Please feel free to contact me with any questions or requests.

Thank you,

Kevin Friscia
Project Manager & Sample Control Supervisor
APEX Laboratories
Main: 503-718-2323

Fax: 503-718-0333

We Welcome Your Feedback

 $Help\ us\ improve\ your\ experience\ by\ taking\ our\ short\ survey.$

Apex Client Survey

Apex Laboratories is now ORELAP accredited to analyze Lead and Copper in Drinking Water

APPENDIX III POINT SOURCE OCTOBER 2016 PHASE II ESA

PHASE II ENVIRONMENTAL SITE ASSESSMENT

7-ELEVEN PROPERTY 1024 SE GRAND AVENUE PORTLAND, MULTNOMAH COUNTY, OREGON

Report Prepared for and Reliance Provided to:

CALDWELL PROPERTIES LLC C/O
WYSE REAL ESTATE ADVISORS
810 SE BELMONT STREET
PORTLAND, OREGON 97214

Point Source Solutions Project No: OR160930-4A February 21, 2017 Field Work Conducted and Report Prepared in Accordance with the following:

ASTM Standard Practice E1903-11

Oregon State Board of Geologist Examiners Professional Practices Guideline (May 2014)

Point Source Solutions LLC (Point Source) is pleased to provide the results of the Environmental Subsurface Investigation performed at the 7-Eleven property located at 1024 SE Grand Avenue, Portland, Oregon 97214 ("Property"). This investigation was performed in accordance with Point Source's Proposal OR161202.3 as authorized by Wyse Real Estate Advisors on December 7, 2016.

PURPOSE

The purpose of this investigation is to assess recognized environmental conditions (RECs) identified in a Phase I Environmental Site Assessment (Project OR160930-4) for the Property prepared by Point Source for Caldwell Properties c/o Wyse Real Estate Advisors in October 2016.

The information provided in this report describes the work performed and provides documentation of the data and evaluation that constitutes the factual findings of the investigation. This investigation is not intended to satisfy the level of inquiry that may be necessary to support remedial solutions or determine migration pathways related to a release from the RECs.

BACKGROUND INFORMATION

Point Source performed a Phase I ESA on the property located at 1024 SE Grand Avenue, Portland, Oregon in general conformance with the scope and limitations of ASTM Practice E 1527-13.

This assessment revealed environmental concerns in connection with the Property.

- The Property is listed as an EDR Historical Auto Station in 1935 under the name Miller Fender Shop (type: automobile repairing). Sanborn Maps have the Property building labeled as Auto Repairing & Top Shop in 1924, Used Cars in 1950 and Auto Sales & Service in 1969. The historical use of the Property as an automobile repairing facility from 1924 through 1969 may have impacted the Property.
- The north adjoining property (1006 SE Grand Avenue) is listed as an EDR US Historic Cleaners facility. This facility was occupied by Allyn's Cleaning and Dyeing from 1935 to 1960. The 1924 and 1950 Sanborn Maps indicated that the dry cleaning room was located immediately adjoining the northeast side of the Property building. This facility is located in a hydrogeologically cross-gradient location relative to the Property. Adverse environmental impact to the Property from this site may have occurred.
- The east adjoining property (1025 SE 6th Avenue) is listed in the EDR report as an EDR Historical Auto Station site. This database indicates that the Property was listed under the names Home Service CO in 1935, Homnie Service Garage in 1940, and Japanese Auto Repair from 2001 through 2012. Sanborn Maps and city directories review by Point Source Solutions also indicated that this property is currently and had historically been occupied by auto repair businesses. This property is located in a hydrogeologically up-gradient location relative to the Property. The historical use of this property as an auto repair facility as noted in the EDR Report, city directories, and the Sanborn Maps may have impacted the Property.

Based on the findings of this assessment, Point Source recommended conducting a subsurface investigation to test for potential contamination associated with the historical use of the Property as an auto repair/service facility, the historical use of the north adjoining property as a dry cleaning facility and historical and current use of the east adjoining property as an auto repair facility.

The investigation should include soil (and shallow groundwater if present) sampling in targeted areas on the Property and an evaluation of findings as they relate to the most recent revision of Risk-Based Concentrations for Individual Chemicals issued by the Oregon Department of Environmental Quality on November 1, 2015.

ENVIRONMENTAL SETTING

The Property is situated in the Willamette Valley (Orr, Orr, Baldwin, 1992). Sediments collected in this area record multiple Ice Age floods that originated in Montana, poured through the Cascades via the Columbia River, and backed up in the valley before eventually draining to the Pacific Ocean. The Property is located at approximately 55 feet above mean sea level. No bedrock was observed in the vicinity of the Property. The estimated depth to bedrock at the Property is greater than 200 feet below the ground surface.

Site soils were observed predominately as silts and clays, with some fine sand, gravel, weathered brick, weathered concrete, and other materials indicative of urban fill.

Groundwater was not encountered in borings advanced on site to a maximum depth of 17 feet below ground surface (bgs). According to a well log search conducted on the Oregon Water Resources Department (OWRD) website, no significant shallow groundwater resources have been encountered in wells advanced in the Property vicinity. Resource protection wells advanced in properties located within the same township, range, section and quarter/quarter section as the Property encountered groundwater at approximately 13.1 to 37 feet bgs. No springs were observed during the Property reconnaissance. Domestic water is supplied to the Property from the City of Portland.

The USEPA Ground Water Handbook, Vol.1 Ground Water and Contamination, September 1990, indicates that the water table typically conforms to surface topography. Based on a review of the Portland Quadrangle 7.5 minute series topographic map, the inferred groundwater flow at the Property is to the west toward the Willamette River (approximately 0.36 miles to the west at its closest point)This means the direction of flow for shallow groundwater is generally from higher elevations to lower elevations. Localized flow direction may vary as a result of tide, rainfall, development, geologic characteristics, nearby surface water bodies, underground utilities such as storm drains, septic systems and sewers, or other influences such as the presence of high volume wells.

SCOPE OF WORK

The purpose of the subsurface environmental investigation is to collect soil and groundwater samples on the Property to confirm the presence or absence of contaminants related to past use of the Property.

Areas of Potential Concern, Proposed Borings and Analysis

Based upon the past and current configuration and use of the Property, the following areas were identified for investigation. Boring locations are depicted on Figure 4.

Area of Potential Concern	Borings
Store room near NE corner of the Property - Historical records indicate that a dry cleaner was previously located on the north adjoining property.	SB16, SB18
Parking lot - Historical records indicate that an auto repair facility was previously located on the Property.	SB15, SB17

Boring	Media	Analytical Methods	Detection Limit
SB15-17	Soil	NWTPH-Gx/Dx, EPA 8260B (VOCs), TCLP Lead	Applicable Oregon DEQ RBCs

Task 1 – Project Coordination

Point Source confirmed utility locations, developed a site specific health and safety plan for the proposed sampling activities and coordinated the efforts of subcontract services including geophysical surveys, environmental drilling and analytical laboratory services.

Task 2 - Geophysical Investigation

Point Source conducted a subsurface mapping survey of selected portions of the Property to clear boring locations.

Task 3 - Subsurface Investigation

Point Source conducted the subsurface investigation as follows:

- Two borings were advanced through the parking lot of the 7-Eleven Property to a depth of up to 12 feet below ground surface, to groundwater, or refusal on the Property for the purpose of collecting soil and/or groundwater (if groundwater is encountered) samples to characterize if the Property's historic use as an auto repair facility has impacted the sub-surface environment.
- One boring was advanced through the building floor of the Property store-room to a depth of up to 10 feet below ground surface, to groundwater, or refusal on the Property for the purpose of collecting soil and/or groundwater (if groundwater is encountered) samples to characterize if the north-adjoining property's historic use as a dry cleaner has impacted the sub-surface environment.
- All soil and groundwater samples were analyzed for petroleum hydrocarbons by NWTPH-Dx, NWTPH-Gx, and VOCs by EPA 8260b. If initial laboratory testing indicates the presence of contaminants, follow-up testing for PAHs by EPA Method 8270 SIM, or TCLP lead will be ordered as necessary. Soil samples collected for VOC analysis will be preserved in methanol per EPA Method 5035 which allows for a 14-day hold time.

Task 4 – Analytical Services

Point Source Solutions transported soil and groundwater samples to Wy'East Laboratories, an Oregon licensed laboratory, for all required analyses.

UTILITY LOCATING

Oregon law requires that, at least 48 hours prior to the initiation of any subsurface work (drilling, backhoe operation, etc.), a utility inspection be performed at the Property. This inspection consists of the marking of underground utility locations by authorized utility locating personnel. The ticket number for the utility inspection is 16310898.

SAMPLING METHODOLOGY and QA/QC

Soil Borings SB15 and SB17 were advanced using a geoprobe Macrocore MC5 sampler with a 4 foot disposable acetate liner, which was advanced by a truck-mounted direct push drill rig using 4 foot long

by 1.25 inch diameter drill rods. The sampler was driven into the subsurface to allow undisturbed soil to enter the open sampler barrel and retrieved in 4 foot intervals to recover the soil-filled liners.

Soil Borings SB16 and SB18 were advanced using a geoprobe large bore sampler with an acetate liner, which was advanced by an electric jack hammer using 2, 3, and 4 foot long by 1.25 inch diameter drill rods. The sampler was driven into the subsurface to allow undisturbed soil to enter the open sampler barrel and retrieved in 2 to 3 foot intervals to recover the soil-filled liners.

Soils were field-screened using visual, sheen, and olfactory observations, and for the presence of volatile organic compounds (VOCs) using a photoionization detector (PID). Headspace vapor screening was conducted at representative intervals. The tip of a PID was inserted into a depression in the soil core through a hole in the acetate liner. The presence of VOCs was measured after sealing the hole. Readings are collected in parts per million (ppm). Notes on visual appearance, odor, and PID readings were recorded on the field boring logs.

Soil samples were collected in 4-ounce glassware with Teflon-lined lids. Each sample was labeled for identification and stored in an iced cooler. Soil cuttings generated during the advancement of the borings were visually inspected for discoloration, and monitored for odors.

Groundwater samples were not collected during project activities, as shallow groundwater was not encountered above the refusal depth for borings SB15 through SB18.

Direct push tooling was decontaminated in a water and detergent solution and rinsed in tap water between samples and boring locations. A clean pair of Nitrile gloves was worn by field personnel for the collection of each sample.

Upon collection, all samples were chilled. Chain of Custody was maintained for all samples.

HEALTH AND SAFETY PLAN

A toolbox safety meeting was conducted at the site prior to the commencement of the fieldwork. Topics included potential exposure to contaminants of interest, personal protective equipment (drilling and media contact), location of first aid kit, and location/directions to closest emergency medical facility.

SUBSURFACE INVESTIGATION

The subsurface investigation was conducted on January 6, 2017.

Geophysical Investigation

Pacific Geophysics conducted a limited geophysical survey for the purpose of clearing boring locations. No features of interest or safety concerns were identified during the geophysical survey.

Sampling

The soil borings were advanced in locations determined by Point Source based on the findings of the previously prepared Phase I Environmental Site Assessment, the geophysical survey, and marked utility locations.

 Borings SB15 through SB17 were advanced in the 7-Eleven parking lot. Borings were advanced to a depth of 12.0 feet bgs. Soil was screened continuously and no olfactory or visual indication of

petroleum hydrocarbon contamination were noted in samples collected from these borings. Field screening with a photoionization detector (PID) did not indicate VOC readings above background levels for the area.

- SB16 was advanced in the northeast corner of the store room located in the 7-Eleven building. This boring was advanced to hard refusal on a tight confining layer located at 16.5 feet bgs. Soil was screened continuously from ground surface, and stained soil with a solvent odor was observed from 9.0 feet to 16.0 feet bgs. Field screening with a photoionization detector (PID) indicated VOC readings as high as 1,192 parts per million (ppm). Soil staining abruptly terminated at the confining layer encountered slightly above the refusal depth. Unstained soil from 16.0 to 16.5 feet bgs retained a slight odor of solvents. No groundwater was encountered in this boring.
- SB18 was advanced in the store room located in the 7-Eleven building, approximately 15 feet south of SB16. This boring was advanced to progress refusal on a tight confining layer located at 17.0 feet bgs. Soil was screened continuously starting at 7.0 feet bgs, and soil with a light solvent odor was observed starting at 9.0 feet bgs. Soil staining was observed in a narrow band from 9.5 to 10.0 feet bgs. No staining was observed from 11.0 to 14.0 feet bgs, however soils within this interval retained a light solvent odor. Stained soils with a heavy odor of solvents were observed again starting at 13.0 feet bgs, and continued to the refusal depth of 17.0 feet bgs. Contamination at refusal appeared moderate when compared to heavy contamination observed in earlier runs. Field screening with a photoionization detector (PID) indicated VOC readings as high as 1,508 parts per million (ppm). No groundwater was encountered in this boring.

Soil encountered in these borings consisted predominantly of silts and clays.

The boring locations are illustrated on Figure 4.

Laboratory Analytical Results

The sample analytical results are summarized in Tables 1, 2 and 3 below.

	TABLE 1- SOIL SAMPLES LABORATORY ANALYTICAL RESULTS – NWTPH-GX/DX/VOCS (MG/KG)								
Sample #	Depth	Date	VOCs EPA 8260 / PAHs EPA 8270 SIM / TCLP Lead						
SB15-S1	12′	1/06/17	7-Eleven Parking Lot – East	not detected	not detected	not detected			
SB16-S1	11'	1/06/17	Store Room – Northeast Corner	21,800	not detected	TCLP lead – not detected benzene – 1.27 ethylbenzene – 17.9 isopropylbenzene – 13.9 naphthalene – 13.8 1,2,4-trimethylbenzene - 152 1,3,5- trimethylbenzene - 44.0 total xylenes – 59.4			
SB16-S2	16.5'	1/06/17	Store Room – Northeast Corner – Vertical Delineation Sample	79	not detected	1,2,4-trimethylbenzene410			
SB17-S1	12'	1/06/17	7-Eleven Parking Lot – West	not detected	not detected	not detected			
SB18-S1	9.5'	1/06/17	Store Room – South lateral Sample	73	not detected	1,2,4-trimethylbenzene478			
SB18-S2	17'	1/06/17	Store Room – South lateral –	<mark>6,540</mark>	not detected	ethylbenzene442 isopropylbenzene437			

	TABLE 1- SOIL SAMPLES LABORATORY ANALYTICAL RESULTS – NWTPH-GX/DX/VOCS (MG/KG)							
Sample #	Depth	Date	Location	NWTPH - GX	NWTPH - DX	VOCs EPA 8260 / PAHs EPA 8270 SIM / TCLP Lead		
			Vertical Delineation Sample			naphthalene – <mark>3.76</mark> 1,2,4-trimethylbenzene - <mark>48.3</mark> 1,3,5- trimethylbenzene - 17.4 total xylenes – 6.8		
Soil	Leaching	to Groundwa	ter- Occupational Receptors	Gx - 63	Not Applicable	benzene – 0.10 ethylbenzene –0 .90 naphthalene – 0.34 1,2,4-trimethylbenzene - 15		

Notes:

BOLD – Indicates concentration above applicable ODEQ RBCs.

Cleanup criteria for compounds noted in Table 1 are established in the manual titled "Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites" prepared by the Oregon Department of Environmental Quality revised November 1, 2015. These scenarios are the most stringent cleanup levels likely applicable to the Property.

Concentrations are only presented for regulated VOCs. Compounds without corresponding RBCs detected in these samples include n-butylbenze, sec-butylbenzene, n-propylbenzene, p-Isopropyltoluene,

The laboratory analytical reports and chain-of-custody forms are included as Appendix I of this report.

Quality Assurance/Quality Control Review

Laboratory QA/QC measures were performed through data validation of available analytical data generated as part of these sampling events. Data validation considered the following:

- Method Detection and/or Reporting Limits
- Laboratory Matrix Blanks
- Sample Holding Times
- Surrogate and Matrix Spike Recoveries, and
- Laboratory Duplicate Analysis Results

The laboratories did not report qualifiers that would indicate problems with the sample results. According to the lab reports all analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Exceptions are qualified in the analytical report.

Exceptions to the Scope of Work

The proposed scope of work for this project was substantially completed.

FINDINGS

The investigation, field screening of samples, and laboratory analytical results indicated the following:

 Soil samples in 7-Eleven Parking Lot (SB15 and SB17) – Did not detect petroleum hydrocarbons or volatile organic compounds above applicable Oregon DEQ Risk-Based Cleanup Levels for Occupational receptors.

 Soil samples in NE Corner of Store (SB16 and SB18) — Detected petroleum hydrocarbons and volatile organic compounds. <u>Gasoline and several VOCs were detected above Oregon DEQ Risk-Based Soil Leaching to Groundwater cleanup levels for occupational receptors. Ethylbenzene was detected above Oregon DEQ Risk-Based Soil Vapor Intrusion cleanup levels for occupational receptors.
</u>

CONCLUSIONS

The laboratory analytical results indicate that targeted regulated contaminants were detected at concentrations above applicable regulatory action limits.

While it is likely that the soil contamination beneath the building is from an off-site source, petroleum hydrocarbons and VOCs were detected in soil at concentrations that represent a potential risk to human health for building occupants. The majority of compounds in excess of a relevant ODEQ RBC exceeded only for the leaching to groundwater exposure pathway. Leaching to groundwater can typically be ruled out as a complete exposure pathway by demonstrating a 10 foot separation between the water table and the deepest soil contamination on site, or by collecting a groundwater sample and comparing the laboratory analytical results to ODEQ RBCs.

Ethylbenzene was encountered at a concentration that exceeds the ODEQ RBC for the vapor intrusion pathway for occupation receptors.

In order to determine if this concentration represents a risk to human health and to collect additional samples to support closure of this release through the Oregon Department of Environmental Quality Voluntary Cleanup Program with a Risk-Based Corrective Action determination, further investigation in is recommended. Additional sampling should include characterization of the extent of contamination on the Property, determination of separation distance between contaminated soil and groundwater and soil vapor sampling.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Reviewed By:

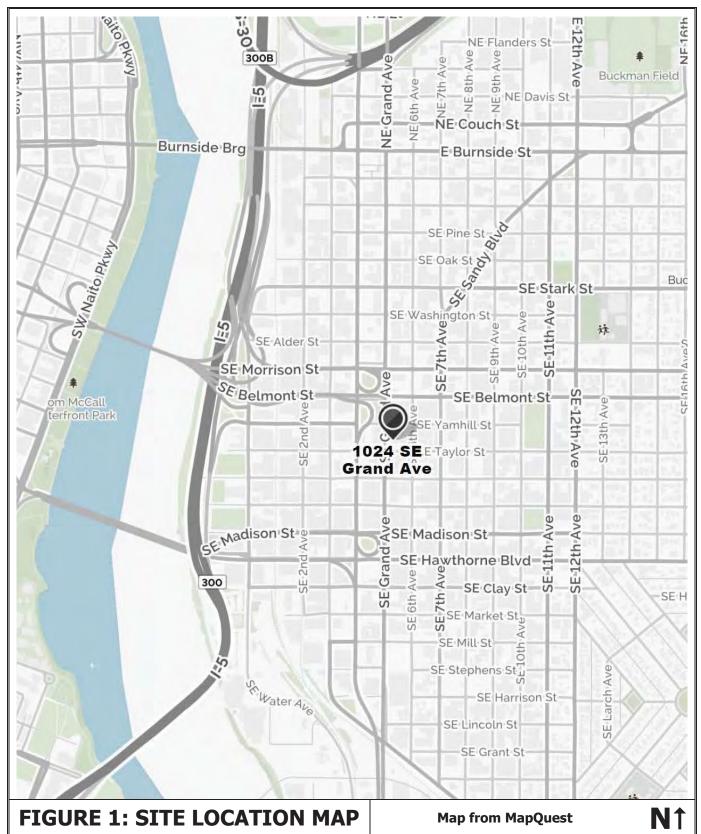
Andy Klopfenstein, E.I.T.

Point Source Solutions, LLC 10445 SW Canyon Road, Suite 115 Beaverton, Oregon 97005

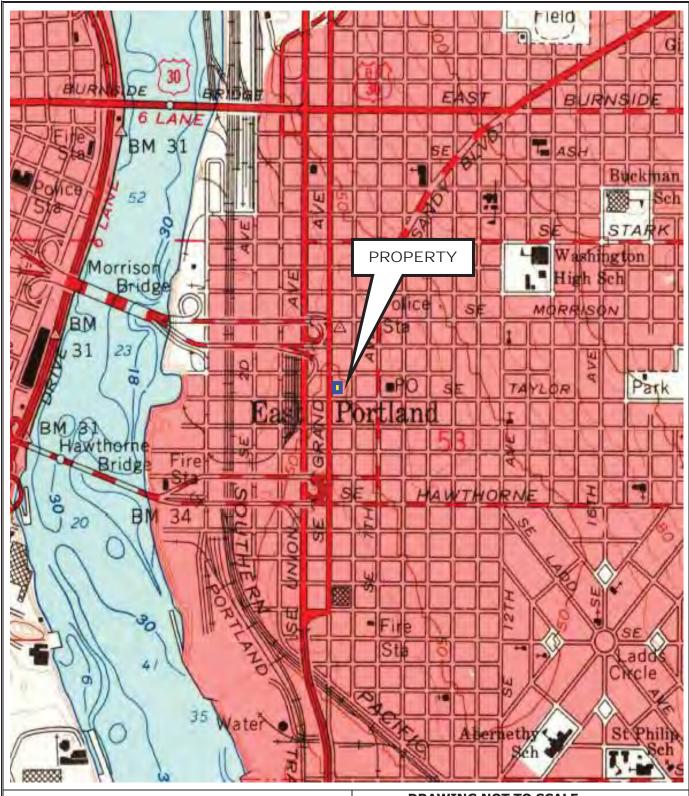
Phone: 503.236.5885 Fax: 503.224.0449

www.pointsourcesolutions.com

Prepared by:


Gil Cobb, Registered Geologist (Oregon #G1440)

Expires 12/31/2017



FIGURES

point source solutions, llc ENGINEERING . ENVIRONMENTAL . SAFETY Site Name: 7-Eleven Property 1024 SE Grand Avenue Portland, Oregon, 97214

Project Number: OR160930-4A

FIGURE 2: TOPOGRAPHIC MAP

DRAWING NOT TO SCALE

Source: USGS 7.5 Minute Topographic Map Portland, OR Quadrangle 1990

Site Name: 7-Eleven Property

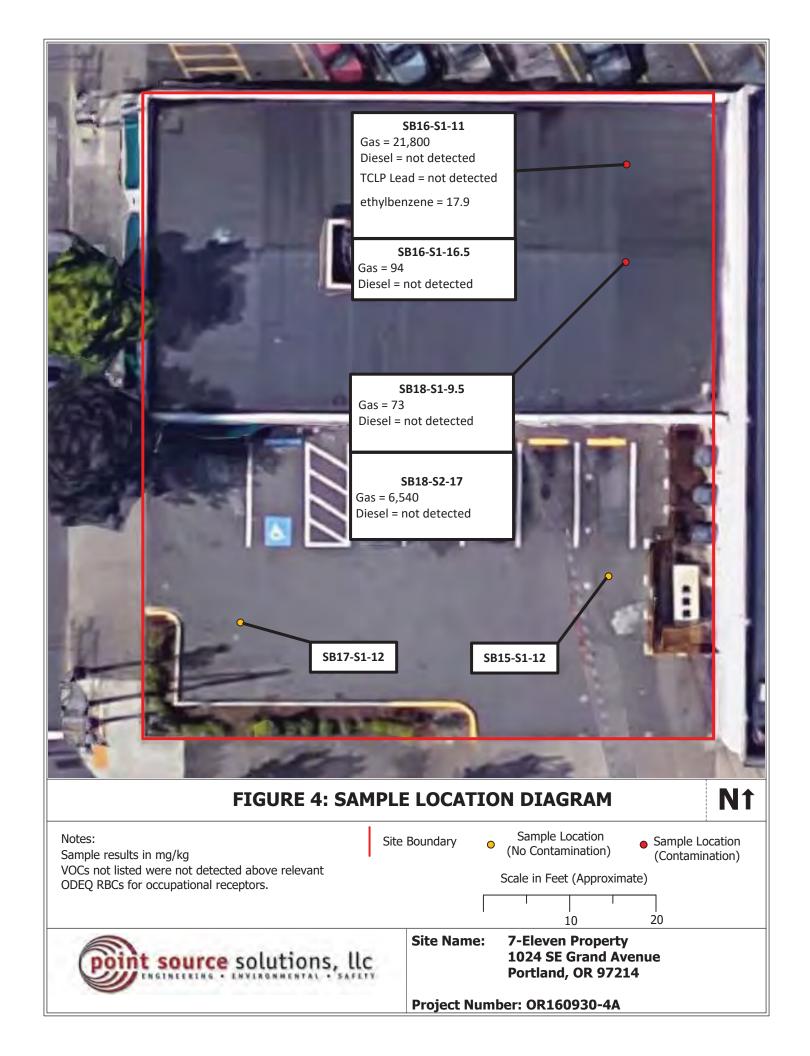
1024 SE Grand Avenue Portland, Oregon, 97214

Project Number: OR160930-4A

N↑

FIGURE 3 - SITE PLAN

From Google Earth 2016


N†

Site Name: 7-Eleven Property

1024 SE Grand Avenue Portland, Oregon 97214

Project Number: OR160930-4A

APPENDICES

APPENDIX I LABORATORY ANALYTICAL REPORTS

1/9/17

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

Re: OR161203-3b

Dear Point Source Solutions

Enclosed are the results of analysis for samples received by the laboratory on 1/6/2017. The results related only to the samples included in this report.

The project was assigned a report number of 87034

If you have any questions concerning this report, please feel free to contact us.

Sincerely,

CY Chan

QA Officer

NW-TPHDx LABORATORY REPORT

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

SITE NAME: C.O.C. NUMBER: 87034
SITE LOCATION: 1024 SE Grand Ave REPORT DATE: 1/10/17

PROJECT NUMBER: OR161203-3b

Analytical Method: NWTPH-Dx Preparation Method: EPA3545A

Analytes: Total Diesel and Heavy Oil range petroleum in Soil. Calculated on a dry-weight basis.

		Diesel	Heavy Oil	Surrogate	Analytical	Prepared	Sampling
Field ID	LAB ID	(mg/Kg)	(mg/Kg)	Recovery (%)	Batch	Batch	Date
SB18-S1-9.5	L3578	ND	ND	95%	78FL1701091	D170109-1	1/6/2017
SB18-S2-17	L3579	ND	ND	101%	78FL1701091	D170109-1	1/6/2017
SB16-S1-11	L3580	ND	ND	93%	78FL1701091	D170109-1	1/6/2017
SB15-S1-12	L3581	ND	ND	91%	78FL1701091	D170109-1	1/6/2017
SB16-S2-16.5	L3582	ND	ND	91%	78FL1701091	D170109-1	1/6/2017
SB17-S1-12	L3583	ND	ND	92%	78FL1701091	D170109-1	1/6/2017
Reporting	Limit:	25	100				
Surrogate 1	Limit:			50%-150%			

Surrogate is 1-ChloroOctadecane

ND = Not Detected at or below the Reporting Limit

Results relate only to samples

This report shall not be reproduced, except in full, without the written approval of WyEast Environmental Sciences, Inc.

Chemist Initials:

Reviewed By:

PERCENT MOISTURE REPORT

REPORT NUMBER: 87034 **REPORT DATE:** 1/10/17

ASTM D2974-07a

Analytes: Percent Moisture in Sample

L3578 L3579			
L3579			
	25.9	1/6/17	
	24.6	1/6/17	
L3580	26.6	1/6/17	
L3581	24.1	1/6/17	
L3582	27.4	1/6/17	
L3583	24.7	1/6/17	

Method: NWTHP-Dx Report No. 87034

Client: Point Source Solutions Date: 1/9/2017

Sample Condition

6 Sample(s) were analyzed for NWTPH-Dx. Sample(s)were received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

Sample(s) were analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)

All criteria were within method limits

Method Blank

Method Blank meets method limit

Laboratory Control Sample (LCS)

All criteria were within method limits

Duplicate Sample

All criteria were within method limits

Matrix Spike

All criteria were within method limits

Matrix Spike Duplicate

No Matrix Spike Duplicate was run on this batch

Non-Conformance

Quality Control for NWTPH-Dx

Batch Date: 1/9/2017

Units: Soil Blank (mg/Kg) Water Blank (mg/L) CCV & LCS (ug/mL)

Blank Number	PB	Diesel Result	Oil Result	Limits Diesel	Limits Oil	Blank Control	Surr. Recovery	Surr. Limits	Surr. Control
SBK01091	D170109-1	2	0	50	100	PASS	97%	50%-150%	PASS
Diesel LCS Number	РВ	Diesel in Extract	Expected Conc.	LCS Recovery (%)	LCS Control Limits	LCS Control	Surr. Recovery	Surr. Limits	Surr. Control
SLC01091	D170109-1	545.84	500.00	109%	±30%	PASS	81%	50%-150%	PASS
Oil LCS Number	РВ	Oil in Extract	Expected Conc.	LCS Recovery (%)	LCS Control Limits	LCS Control	Surr. Recovery	Surr. Limits	Surr. Control
SLC01091	D170109-1	501.34	500.00	100%	±30%	PASS	81%	50%-150%	PASS
Diesel Dupl. Number	PB	Sample in Extract	Duplicate In Extract	RPD (%)	Control Limits	Duplicate Control			
L3574	D170109-1	17.91233071	2.328113498	0%	±30%	PASS			
Oil Dupl. Number	РВ	Sample in Extract	Duplicate in Extract	RPD (%)	Control Limits	Duplicate Control			
L3574	D170109-1	0	0	0%	±30%	PASS			
Diesel MS Number	PB	Sample in Extract	Diesel MS Result	MS Recovery (%)	MS Control Limits	MS Control			
L3575MS	D170109-1	3.837275883	639.6959339	95%	70%-130%	PASS			
Oil MS Number	PB	Sample in Extract	Oil MS Result	MS Recovery (%)	MS Control Limits	MS Control			
L3575MS	D170109-1	0	552.4817328	83%	70%-130%	PASS			

87034 1/9/2017

NW-TPHGx LABORATORY REPORT

Point Source Solutions

10445 SW Canyon Rd Suite 115

Portland, OR 97214

PROJECT NAME: SITE LOCATION:

1024 SE Grand Ave

PROJECT NUMBER:

OR161203-3b

Analytical Method: NW-TPHGx

Preparation Method: EPA 5035

C.O.C. NUMBER:

REPORT DATE:

Analytes: Gasoline in Soil. Calculated on a dry-weight basis.

		Gasoline	Surrogate	Analytical	Preperation	Sampling
Field ID	LAB ID	(mg/Kg)	Recov.(%)	Batch	Batch	Date
SB18-S1-9.5	L3578	73	106%	58PI170109-1	G170109-1	1/6/2017
SB18-S2-17	L3579	6540	126%	58PI170109-1	G170109-1	1/6/2017
SB16-S1-11	L3580	21800	108%	58PI170109-1	G170109-1	1/6/2017
SB15-S1-12	L3581	ND	102%	58PI170109-1	G170109-1	1/6/2017
SB16-S2-16.5	L3582	79	108%	58PI170109-1	G170109-1	1/6/2017
SB17-S1-12	L3583	ND	108%	58PI170109-1	G170109-1	1/6/2017

Reporting Limit: -- 20

Surrogate is p-Bromofluorobenzene

ND = Not Detected (Below Reporting or Detection Limit)

Results relate only to samples.

This report shall not be reproduced, except in full, without the written approval of Wy'East Environmental Sciences, Inc.

Chemist Initials:

Cy chan

Reviewer Initials:

PERCENT MOISTURE REPORT

REPORT NUMBER: 87034 **REPORT DATE:** 1/9/2017

ASTM D2974-07a

Analytes: Percent Moisture in Sample

LAB ID	Moisture (%)	Date Analyzed
L3578	26	1/6/2017
L3579	25	1/6/2017
L3580	27	1/6/2017
L3581	24	1/6/2017
L3582	27	1/6/2017
L3583	25	1/6/2017

Method: NWTHP-Gx Report No. 87034

Client: Point Source Solutions Date: 1/9/2017

Sample Condition

6 sample(s) were analyzed for NWTPH-Gx. Sample(s)were received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

sample(s) were analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)

All criteria were within method limts

Method Blank

Method Blank meets method limt

Laboratory Control Sample (LCS)

All criteria were within method limts

Duplicate Sample

No duplicate was run with this batch

Matrix Spike

All MS criteria were within method limts All MSD criteria were within method limts

Matrix Spike Duplicate RPD

All criteria were within method limts

Non-Conformance

Quality Control for Gasoline in Soil by NWTPH-Gx

Batch Date: 1/9/2017

Blank	Prep. Batch	Result(mg/Kg)	Accep. Range	Sur. % Recovery	% Accep.
GBK01091	G170109-1	0.73	<20	99%	50%-150%
Spike	Prep. Batch	Result (mg/Kg)	Expected (mg/Kg)	spike % Recovery	% Ассер.
GLC01091	G170109-1	99.22	100.3	99%	70%-130%
MS	A. Batch	Spike (mg/Kg)	Sample(mg/Kg)	Spike % Recovery	% Ассер.
BLK57MS	G170109-1	99	1	98%	70%-130%
BLK57MSD	G170109-1	98	1	97%	70%-130%
MSD	A. Batch	MSD (mg/Kg)	MS(mg/Kg)	RPD	% Ассер.
BLK57MSD	58PI170109-1	98	99	-2%	±30%

LABORATORY REPORT

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

PROJECT NAME: SITE LOCATION:

FIELD ID:

1024 SE Grand Ave OR161203-3b

PROJECT NUMBER: ANALYST

SB18-S1-9.5

INSTRUMENT REPORT NUMBER: REPORT DATE: ACQ. ON SolaTek 87034 1/10/17

ACQ. ON 9Jan20173:30pm PREP. BATCH V170109 LAB ID: L3578

Preparation Method: EPA 5035A

Analytical Method: EPA 8260C Analyte: Volatile Organics in Soil

Analyte: Volatile Organics in Soil	Sample	Quant. Limit	Qualifier Dilution
Compound	(ug/Kg)	(ug/Kg)	Factor
benzene	ND	200	50
bromobenzene	ND	200	50
bromochloromethane	ND	200	50
bromodichloromethane	ND	200	50
bromoform	ND	200	50
n-butylbenzene	ND	200	50
sec-butylbenzene	ND	200	50
tert-butylbenzene	ND	200	50
chlorobenzene	ND	200	50
chloroform	ND	200	50
2-chlorotoluene	ND	200	50
4-chlorotoluene	ND	200	50
dibromochloromethane	ND	200	50
1,2dibromo3-chloropropane	ND	200	50
1,2-dibromoethane	ND	200	50
dibromomethane	ND	200	50
1,2-dichlorobenzene	ND	200	50
1,3-dichlorobenzene	ND	200	50
1.4-dichlorobenzene	ND	200	50
1,1-dichloroethane	ND	200	50
1,2-dichloroethane	ND	200	50
1,1-dichloroethene	ND	200	50
cis-1,2-dichloroethene	ND	200	50
trans-1,2-dichloroethene	ND	200	50
1,2-dichloropropane	ND	200	50
1,3-dichloropropane	ND	200	50
1,1-dichloropropene	ND	200	50
cis-1,3-dichloropropene	ND	200	50
trans-1,3-dichloropropene	ND	200	50
ethylbenzene	ND	200	50
hexachlorobutadiene	ND	200	50
isopropylbenzene	ND	200	50
p-Isopropyltoluene	ND	200	50
methyl-tert-butylether(MTBE)	ND	200	50
naphthalene	ND	200	50
n-propyl-benzene	ND	200	50
styrene	ND	200	50
1,1,1,2-tetrachloroethane	ND	200	50
1,1,2,2-tetrachloroethane	ND	200	50
tetrachloroethylene	ND	200	50
toluene	ND	200	50
1,2,3-trichlorobenzene	ND	200	50
1,2,4-trichlorobenzene	ND ND	200	50
1,1,1-trichloroethane	ND ND	200	50
1,1,2-trichloroethane	ND ND	200	50
trichloroethene	ND ND	200	50
1,2,3-trichloropropane	ND ND	200	50
1,2,4-trimethlybenzene	478	200	50
1,3,5-trimethylbenzene	ND	200	50
, , , , , , , , , , , , , , , , , , ,	ND ND		50
xylene(m&p)	ND ND	200 200	50 50
o-xylene	ND ND	200	50 50
total xylenes	ND	200	30

Surrogate: Percent Recovery 1,2-dichloroethane-d4

toluene-d8

p-bromofluorobenzene

106

101 **Reviewer Initials:**

E C

Analyst:

Method:

Point Source Solutions Client:

Report No. 87034 1/9/2017 Date:

Sample Condition

Sample was analyzed for 8260. Sample was received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

Sample was analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)
All criteria were within method limts. Any exceptions are qualified in the body of the report

Method Blank

Method Blank meets method limt. Any exceptions are qualified in the body of the report

Laboratory Control Sample (LCS)

All criteria were within method limts, Any exceptions are qualified in the body of the report

Duplicate Sample

No Duplicate was run on this batch

Matrix Spike

All criteria were within method limts

Matrix Spike Duplicate

1 compounds of Matrix Spike Duplicate were outside method limts as flagged in the MSD QC report

LABORATORY REPORT

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

PROJECT NAME: SITE LOCATION:

1024 SE Grand Ave OR161203-3b

PROJECT NUMBER: ANALYST

FIELD ID: SB18-S2-17

INSTRUMENT REPORT NUMBER: REPORT DATE: ACQ. ON SolaTek 87034 1/10/17 9Jan20176:27pm

PREP. BATCH V170109 LAB ID: L3579

Preparation Method: EPA 5035A

Analytical Method: EPA 8260C Analyte: Volatile Organics in Soil

Analyte: Volatile Organics in Soil	Sample	Quant. Limit	Qualifier Dilution
Compound	(ug/Kg)	(ug/Kg)	Factor
benzene	ND	204	50
bromobenzene	ND	204	50
bromochloromethane	ND	204	50
bromodichloromethane	ND	204	50
bromoform	ND	204	50
n-butylbenzene	5851	204	500
sec-butylbenzene	5606	204	500
tert-butylbenzene	ND	204	50
chlorobenzene	ND	204	50
chloroform	ND	204	50
2-chlorotoluene	ND	204	50
4-chlorotoluene	ND	204	50
dibromochloromethane	ND	204	50
1,2dibromo3-chloropropane	ND	204	50
1,2-dibromoethane	ND	204	50
dibromomethane	ND	204	50
1,2-dichlorobenzene	ND	204	50
1,3-dichlorobenzene	ND	204	50
1.4-dichlorobenzene	ND	204	50
1,1-dichloroethane	ND	204	50
1,2-dichloroethane	ND	204	50
1,1-dichloroethene	ND	204	50
cis-1,2-dichloroethene	ND	204	50
trans-1,2-dichloroethene	ND	204	50
1,2-dichloropropane	ND	204	50
1,3-dichloropropane	ND	204	50
1,1-dichloropropene	ND	204	50
cis-1,3-dichloropropene	ND	204	50
trans-1,3-dichloropropene	ND	204	50
ethylbenzene	4420	204	500
hexachlorobutadiene	ND	204	50
isopropylbenzene	4371	204	500
p-Isopropyltoluene	7556	204	500
methyl-tert-butylether(MTBE)	ND	204	50
naphthalene	3764	204	500
n-propyl-benzene	7259	204	500
styrene	ND	204	50
1,1,1,2-tetrachloroethane	ND	204	50
1,1,2,2-tetrachloroethane	ND	204	50
tetrachloroethylene	ND	204	50
toluene	ND	204	50
1,2,3-trichlorobenzene	ND	204	50
1,2,4-trichlorobenzene	ND	204	50
1,1,1-trichloroethane	ND	204	50
1,1,2-trichloroethane	ND	204	50
trichloroethene	ND	204	50
1,2,3-trichloropropane	ND	204	50
1,2,4-trimethlybenzene	48284	204	2500
1,3,5-trimethylbenzene	17360	204	500
xylene(m&p)	6487	404	500
o-xylene	315	204	50
total xylenes	6802	204	50
J		* *	* *

Surrogate: Percent Recovery

1,<u>2</u> 0

1,2-dichloroethane-d4

toluene-d8

p-bromofluorobenzene

96

84 **Reviewer Initials:**

DE

Analyst:

Method:

Report No. 87034 Point Source Solutions 1/9/2017 Client: Date:

Sample Condition

Sample was analyzed for 8260. Sample was received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

Sample was analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)
All criteria were within method limts. Any exceptions are qualified in the body of the report

Method Blank

Method Blank meets method limt. Any exceptions are qualified in the body of the report

Laboratory Control Sample (LCS)

All criteria were within method limts, Any exceptions are qualified in the body of the report

Duplicate Sample

No Duplicate was run on this batch

Matrix Spike

All criteria were within method limts

Matrix Spike Duplicate

1 compounds of Matrix Spike Duplicate were outside method limts as flagged in the MSD QC report

LABORATORY REPORT

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

PROJECT NAME: SITE LOCATION:

1024 SE Grand Ave OR161203-3b

PROJECT NUMBER: ANALYST

FIELD ID: SB16-S1-11

INSTRUMENT REPORT NUMBER: REPORT DATE: ACQ. ON SolaTek 87034 1/12/17 9Jan20176:57pm

PREP. BATCH V170109
LAB ID: L3580

Preparation Method: EPA 5035A

Analytical Method: EPA 8260C Analyte: Volatile Organics in Soil

Compound	TARREST VARIABLE STERMEN M. EVA	Sample	Quant. Limit	Qualifier Dilution
bromochorenzene ND 200 50		(ug/Kg)		
bromochloromethane ND 200 50 50 50 50 50 50 5				
bromodeichloromethane ND 200 50 50 10 10 10 10 10				
bromoform ND 200 250 2500				
n-buylbenzene 13671 200 2500 2500 12540 200 25500 127-buylbenzene 12540 200 550 127-buylbenzene ND 200 50 50 126-buylbenzene ND 200				
sec-butylbenzene 12540 200 2500 chlorobenzene ND 200 50 chloroform ND 200 50 chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 dibromo-horomethane ND 200 50 1,2-dibromo-schloropropane ND 200 50 1,2-dibromo-schlane ND 200 50 dibromo-thane ND 200 50 1,2-dichloroberane ND 200 50 1,3-dichloroberane ND 200 50 1,3-dichlorobenzene ND 200 50 1,1-dichlorobenzene ND 200 50 1,1-dichlorobenzene ND 200 50 1,1-dichlorobenzene ND 200 50 1,1-dichloropropane ND 200				
tert-buylbenzene ND 200 50 chloroform ND 200 50 chloroform ND 200 50 2-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 1,2-dishromos-chloropropane ND 200 50 1,2-dishromos-chloropropane ND 200 50 1,2-dishromosthane ND 200 50 dibromomethane ND 200 50 1,2-dishlorosthane ND 200 50 1,3-dishlorobenzene ND 200 50 1,4-dishlorosthane ND 200 50 1,2-dishlorosthane ND 200 50 1,2-dishlorosthene ND 200 50 1,2-dishloropropane ND 200 50 1,2-dishloropropane ND 200 50 1,3-dishloropropane ND 200<				
chlorofenzene ND 200 50 chloroform ND 200 50 2-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 1,2dibromo3-chloropropane ND 200 50 1,2dibromo3-chloropropane ND 200 50 1,2dibromo6thane ND 200 50 dibromochlane ND 200 50 1,2-dichlorobenzene ND 200 50 1,3-dichlorobenzene ND 200 50 1,3-dichlorobenzene ND 200 50 1,4-dichlorotoluene ND 200 50 1,1-dichlorotenzen ND 200 50 1,1-	sec-butylbenzene			
chloroform ND 200 50 2-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 dibromochloromethane ND 200 50 1,2-dibromochloromethane ND 200 50 1,2-dibromochloromethane ND 200 50 1,2-dichorobethane ND 200 50 1,2-dichorobethane ND 200 50 1,2-dichlorobenzene ND 200 50 1,3-dichlorotoluene ND 200 50 1,4-dichlorothane ND 200 50 1,4-dichlorothane ND 200 50 1,4-dichlorothane ND 200 50 1,2-dichlorothane ND 200 50 1,3-dichloropropane ND 200 50 1,3-dichlo	tert-butylbenzene	ND	200	
2-chlorotoluene ND 200 50 4-chlorotoluene ND 200 50 dibromochloromethane ND 200 50 1,2-dibromo3-chloropropane ND 200 50 1,2-dibromo3-chloropropane ND 200 50 dibromoethane ND 200 50 1,2-dichlorobenzene ND 200 50 1,3-dichlorobenzene ND 200 50 1,4-dichlorobenzene ND 200 50 1,1-dichloroethane ND 200 50 1,1-dichloroethane ND 200 50 1,1-dichloroethene ND 200 50 1,1-dichloroethene ND 200 50 1,1-dichloropropane ND 200 50 1,2-dichloropropane ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloropropane	chlorobenzene	ND	200	50
4-chlorotoluene ND 200 50 dibromochloromethane ND 200 50 1,2-dibromochlane ND 200 50 1,2-dibromochlane ND 200 50 dibromomethane ND 200 50 1,2-dichlorobenzene ND 200 50 1,3-dichlorobenzene ND 200 50 1,4-dichloroethane ND 200 50 1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,1-dichloroethane ND 200 50 1,1-dichloroethane ND 200 50 1,1-dichloroethane ND 200 50 1,1-dichloroptome ND 200 50 1,1-dichloroptome ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloroptopene ND 200 50 1,1-dichloroptopene ND <t< td=""><td>chloroform</td><td>ND</td><td>200</td><td>50</td></t<>	chloroform	ND	200	50
dibromochloromethane ND 200 50 1,2.dibromo3-chloropropane ND 200 50 1,2-dibromocthane ND 200 50 dibromomethane ND 200 50 1,2-dichlorobenzene ND 200 50 1,3-dichlorobenzene ND 200 50 1,4-dichlorobenzene ND 200 50 1,4-dichloroethane ND 200 50 1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,2-dichloropropane ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,3-dichloropropene ND<	2-chlorotoluene	ND	200	50
1,2-dibromo-chloropropane ND 200 50 1,2-dibromoethane ND 200 50 dibromomethane ND 200 50 1,2-dichlorobenzene ND 200 50 1,3-dichlorobenzene ND 200 50 1,4-dichlorobenzene ND 200 50 1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,1-dichloroethene ND 200 50 1,1-dichloroethene ND 200 50 1,1-dichloroptopene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,3-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 trans-1,3-dichloroprope	4-chlorotoluene	ND	200	50
1.2-dibromoethane	dibromochloromethane	ND	200	50
1,2-dibromoethane	1,2dibromo3-chloropropane	ND	200	50
1,2-dichlorobenzene ND 200 50 1,3-dichlorobenzene ND 200 50 1,4-dichlorobenzene ND 200 50 1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,2-dichloroethene ND 200 50 cis-1,2-dichloroethene ND 200 50 trans-1,2-dichloropropane ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50		ND	200	50
1,3-dichlorobenzene ND 200 50 1,4-dichlorobenzene ND 200 50 1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,1-dichloroethene ND 200 50 1,1-dichloroethene ND 200 50 trans-1,2-dichloroethene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,3-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 ctrans-1,3-dichloropropene ND 200 50 etaylenbere 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropylbenzene 13908 200 2500 p-Isopropylbenz	dibromomethane	ND	200	50
1,4-dichlorobenzene ND 200 50 1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,1-dichloroethene ND 200 50 cis-1,2-dichloroethene ND 200 50 trans-1,2-dichloroethene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,3-dichloropropene ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 nethyl-tert-butylether(MTBE) ND 200 50 naphth	1,2-dichlorobenzene	ND	200	50
1,4-dichlorobenzene ND 200 50 1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,1-dichloroethene ND 200 50 cis-1,2-dichloroethene ND 200 50 trans-1,2-dichloroethene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,3-dichloropropene ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 nethyl-tert-butylether(MTBE) ND 200 50 naphth	1,3-dichlorobenzene	ND	200	50
1,1-dichloroethane ND 200 50 1,2-dichloroethane ND 200 50 1,1-dichloroethene ND 200 50 cis-1,2-dichloroethene ND 200 50 trans-1,2-dichloropthene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 tetylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 p-Isopropylbenzene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,2-tetrachloroetha	1.4-dichlorobenzene	ND	200	
1,2-dichloroethane ND 200 50 1,1-dichloroethene ND 200 50 cis-1,2-dichloroethene ND 200 50 trans-1,2-dichloroethene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,3-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 p-Isopropyltoluene 14649 200 2500 p-sporpyltoluene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,2-tetrachloroe	,			50
1,1-dichloroethene ND 200 50 cis-1,2-dichloroethene ND 200 50 trans-1,2-dichloroethene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 tethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 2500 hexachlorobutadiene ND 200 2500 p-Isopropylloulene 14649 200 2500 p-Isopropylloulene 14649 200 2500 p-Isopropylloulene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 2500 naphthalene 13844 200 250	,	ND		50
cis-1,2-dichloroethene ND 200 50 trans-1,2-dichloroethene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 ctrans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyllotuene 14649 200 2500 p-Isopropylbenzene 13844 200 2500 nethyl-tert-butylether(MTBE) ND 200 2500 n-propyl-benzene 13844 200 2500 styrene ND 200 50 1,1,1-zetrachloroethane ND 200 50 1,1,1,2-zetrachloroethane ND 200 50	,			
trans-1,2-dichloroethene ND 200 50 1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 ctrans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 2500 maphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50	,			
1,2-dichloropropane ND 200 50 1,3-dichloropropane ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropylbenzene 14649 200 2500 p-Isopropylbenzene 13844 200 2500 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,3-trichloroethane ND 200 50 1,1,1,1-trichloroethane </td <td></td> <td></td> <td></td> <td></td>				
1,3-dichloropropene ND 200 50 1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 ctrans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 n-propyl-benzene ND 200 50 1,1,2-tertachloroethane ND 200 50 1,1,1,2-tertachloroethane ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,3-trichloroethane ND 200 50				
1,1-dichloropropene ND 200 50 cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,1,2-tertachloroethane ND 200 50 1,1,1,2-tertachloroethane ND 200 50 1,1,1,2-tertachloroethane ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 <t< td=""><td></td><td></td><td></td><td></td></t<>				
cis-1,3-dichloropropene ND 200 50 trans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 n-propyl-benzene ND 200 50 styrene ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichloroethane ND 200 50 1,1,1-trichloroethane				
trans-1,3-dichloropropene ND 200 50 ethylbenzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 n-propyl-benzene ND 200 2500 styrene ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloropethane <td>. 1</td> <td></td> <td></td> <td></td>	. 1			
ethylberzene 17895 200 2500 hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroptopane ND 200 50 1,1,2				
hexachlorobutadiene ND 200 50 isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2-tetrachloroethane ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichloroethane ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloropropane ND 200 50 trichloropropane ND 200 50 1,2,3-trichloropropan				
isopropylbenzene 13908 200 2500 p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichloroethane ND 200 50 1,1,1-trichloroethane ND 200 50 trichloropropane ND 200 50 trichloropropane ND 200 50 1,2,4-trimethlybenz				
p-Isopropyltoluene 14649 200 2500 methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 50 1,3,5-trimethlybenzene 43953 200 2500	isonronylhenzene			
methyl-tert-butylether(MTBE) ND 200 50 naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichloroethane ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 50 1,3,5-trimethylbenzene 152401 200 500 1,3,5-trime				
naphthalene 13844 200 2500 n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichloroethane ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 50 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500				
n-propyl-benzene 23113 200 2500 styrene ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 1,1,2-trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	• • • • • • • • • • • • • • • • • • • •			
styrene ND 200 50 1,1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 trichloropropane ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500				
1,1,1,2-tetrachloroethane ND 200 50 1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500				
1,1,2,2-tetrachloroethane ND 200 50 tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	2			
tetrachloroethylene ND 200 50 toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	, , ,			
toluene ND 200 50 1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	, , ,			
1,2,3-trichlorobenzene ND 200 50 1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500				
1,2,4-trichlorobenzene ND 200 50 1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 500 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500				
1,1,1-trichloroethane ND 200 50 1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 5000 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	, ,			
1,1,2-trichloroethane ND 200 50 trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 5000 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	, ,			
trichloroethene ND 200 50 1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 5000 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	, ,			
1,2,3-trichloropropane ND 200 50 1,2,4-trimethlybenzene 152401 200 5000 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	, ,			
1,2,4-trimethlybenzene 152401 200 5000 1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500				
1,3,5-trimethylbenzene 43953 200 2500 xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500				
xylene(m&p) 41917 200 2500 o-xylene 17436 200 2500	, , , , , , , , , , , , , , , , , , ,			
o-xylene 17436 200 2500				
total xylenes 59353 200 2500				
	ioiai xyienes	39333	200	2500

Surrogate: Percent Recovery

ecovery
Analyst: Cy chan

1,2-dichloroethane-d4

toluene-d8

p-bromofluorobenzene

77 **Reviewer Initials:**

Method:

Report No. 87034 Point Source Solutions 1/9/2017 Client: Date:

Sample Condition

Sample was analyzed for 8260. Sample was received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

Sample was analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)
All criteria were within method limts. Any exceptions are qualified in the body of the report

Method Blank

Method Blank meets method limt. Any exceptions are qualified in the body of the report

Laboratory Control Sample (LCS)

All criteria were within method limts, Any exceptions are qualified in the body of the report

Duplicate Sample

No Duplicate was run on this batch

Matrix Spike

All criteria were within method limts

Matrix Spike Duplicate

1 compounds of Matrix Spike Duplicate were outside method limts as flagged in the MSD QC report

LABORATORY REPORT

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

PROJECT NAME: SITE LOCATION:

1024 SE Grand Ave

PROJECT NUMBER: OR161203-3b **ANALYST**

FIELD ID: SB15-S1-12

INSTRUMENT SolaTek
REPORT NUMBER: 87034
REPORT DATE: 1/10/17
ACQ. ON 9Jan201'

1/10/17 9Jan20174:57pm

PREP. BATCH V170109 LAB ID: L3581

Preparation Method: EPA 5035A

Analytical Method: EPA 8260C Analyte: Volatile Organics in Soil

	Sample	Quant. Limit	Qualifier Dilution	_
Compound	(ug/Kg)	(ug/Kg)	Factor	
benzene	ND	202	50	
bromobenzene	ND	202	50	
bromochloromethane	ND	202	50	
bromodichloromethane	ND	202	50	
bromoform	ND	202	50	
n-butylbenzene	ND	202	50	
sec-butylbenzene	ND	202	50	
tert-butylbenzene	ND	202	50	
chlorobenzene	ND	202	50	
chloroform	ND	202	50	
2-chlorotoluene	ND	202	50	
4-chlorotoluene	ND	202	50	
dibromochloromethane	ND	202	50	
1,2dibromo3-chloropropane	ND	202	50	
1,2-dibromoethane	ND	202	50	
dibromomethane	ND	202	50	
1,2-dichlorobenzene	ND	202	50	
1,3-dichlorobenzene	ND	202	50	
1,4-dichlorobenzene	ND	202	50	
1,1-dichloroethane	ND	202	50	
1,2-dichloroethane	ND	202	50	
1,1-dichloroethene	ND	202	50	
cis-1,2-dichloroethene	ND	202	50	
trans-1,2-dichloroethene	ND	202	50	
1,2-dichloropropane	ND	202	50	
1,3-dichloropropane	ND	202	50	
1,1-dichloropropene	ND	202	50	
cis-1,3-dichloropropene	ND	202	50	
trans-1,3-dichloropropene	ND	202	50	
ethylbenzene	ND	202	50	
hexachlorobutadiene	ND	202	50	
isopropylbenzene	ND	202	50	
p-Isopropyltoluene	ND	202	50	
methyl-tert-butylether(MTBE)	ND	202	50	
naphthalene	ND	202	50	
n-propyl-benzene	ND	202	50	
styrene	ND	202	50	
1,1,1,2-tetrachloroethane	ND	202	50	
1,1,2,2-tetrachloroethane	ND	202	50	
tetrachloroethylene	ND	202	50	
toluene	ND	202	50	
1,2,3-trichlorobenzene	ND	202	50	
1,2,4-trichlorobenzene	ND	202	50	
1,1,1-trichloroethane	ND	202	50	
1,1,2-trichloroethane	ND	202	50	
trichloroethene	ND	202	50	
1,2,3-trichloropropane	ND	202	50	
1,2,4-trimethlybenzene	ND	202	50	
1,3,5-trimethylbenzene	ND	202	50	
xylene(m&p)	ND	404	50	
o-xylene	ND	202	50	
total xylenes	ND	202	50	
13.11.11.11.10.1	1,10	202	5 v	

Surrogate: Percent Recovery 1,2-dichloroethane-d4 110 toluene-d8 100 p-bromofluorobenzene

DE COR

Reviewer Initials:

2415 SE 11th Ave., Portland, OR 97214

Analyst:

These parameters are accredited in accredance with NELAP - OR100011

Phone (503) 231-9320 FAX (503) 231-9344

Method:

Point Source Solutions Client:

Report No. 87034 1/9/2017 Date:

Sample Condition

Sample was analyzed for 8260. Sample was received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

Sample was analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)
All criteria were within method limts. Any exceptions are qualified in the body of the report

Method Blank

Method Blank meets method limt. Any exceptions are qualified in the body of the report

Laboratory Control Sample (LCS)

All criteria were within method limts, Any exceptions are qualified in the body of the report

Duplicate Sample

No Duplicate was run on this batch

Matrix Spike

All criteria were within method limts

Matrix Spike Duplicate

1 compounds of Matrix Spike Duplicate were outside method limts as flagged in the MSD QC report

LABORATORY REPORT

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

PROJECT NAME: SITE LOCATION:

FIELD ID:

1024 SE Grand Ave OR161203-3b

PROJECT NUMBER: ANALYST

SB16-S2-16.5

INSTRUMENT REPORT NUMBER: REPORT DATE: ACQ. ON SolaTek 87034 1/10/17 9Jan20175:27pm

PREP. BATCH V170109 LAB ID: L3582

Preparation Method: EPA 5035A

Analytical Method: EPA 8260C Analyte: Volatile Organics in Soil

Analyte: Volatile Organics in Soil	Sample	Quant. Limit	Qualifier Dilution
Compound	(ug/Kg)	(ug/Kg)	Factor
benzene	ND	200	50
bromobenzene	ND	200	50
bromochloromethane	ND	200	50
bromodichloromethane	ND	200	50
bromoform	ND	200	50
n-butylbenzene	ND	200	50
sec-butylbenzene	ND	200	50
tert-butylbenzene	ND	200	50
chlorobenzene	ND	200	50
chloroform	ND	200	50
2-chlorotoluene	ND	200	50
4-chlorotoluene	ND	200	50
dibromochloromethane	ND	200	50
1,2dibromo3-chloropropane	ND	200	50
1,2-dibromoethane	ND	200	50
dibromomethane	ND	200	50
1,2-dichlorobenzene	ND	200	50
1,3-dichlorobenzene	ND	200	50
1.4-dichlorobenzene	ND	200	50
1,1-dichloroethane	ND	200	50
1,2-dichloroethane	ND	200	50
1,1-dichloroethene	ND	200	50
cis-1,2-dichloroethene	ND	200	50
trans-1,2-dichloroethene	ND	200	50
1,2-dichloropropane	ND	200	50
1,3-dichloropropane	ND	200	50
1,1-dichloropropene	ND	200	50
cis-1,3-dichloropropene	ND	200	50
trans-1,3-dichloropropene	ND	200	50
ethylbenzene	ND	200	50
hexachlorobutadiene	ND	200	50
isopropylbenzene	ND	200	50
p-Isopropyltoluene	ND	200	50
methyl-tert-butylether(MTBE)	ND	200	50
naphthalene	ND	200	50
n-propyl-benzene	ND	200	50
styrene	ND ND	200	50
1,1,1,2-tetrachloroethane	ND ND	200	50
1,1,2,2-tetrachloroethane	ND	200	50
tetrachloroethylene	ND ND	200	50
toluene	ND ND	200	50
1,2,3-trichlorobenzene	ND ND	200	50
1,2,4-trichlorobenzene	ND ND	200	50
1,1,1-trichloroethane	ND ND	200	50
1,1,2-trichloroethane	ND ND	200	50
trichloroethene	ND ND	200	50
1,2,3-trichloropropane	ND ND	200	50
1,2,4-trimethlybenzene	410	200	50
	ND	200	50
1,3,5-trimethylbenzene	ND ND	400	50
xylene(m&p) o-xylene	ND ND	200	50 50
•		200	50 50
total xylenes	ND	∠00	JU

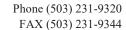
Surrogate: Percent Recovery

Analyst:

2415 SE 11th Ave.,

Portland, OR 97214

1,2-dichloroethane-d4


toluene-d8

p-bromofluorobenzene 104

DE COR

Reviewer Initials:

These parameters are accredited in accrodance with NELAP - OR100011

Method:

Report No. 87034 Point Source Solutions 1/9/2017 Client: Date:

Sample Condition

Sample was analyzed for 8260. Sample was received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

Sample was analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)
All criteria were within method limts. Any exceptions are qualified in the body of the report

Method Blank

Method Blank meets method limt. Any exceptions are qualified in the body of the report

Laboratory Control Sample (LCS)

All criteria were within method limts, Any exceptions are qualified in the body of the report

Duplicate Sample

No Duplicate was run on this batch

Matrix Spike

All criteria were within method limts

Matrix Spike Duplicate

1 compounds of Matrix Spike Duplicate were outside method limts as flagged in the MSD QC report

LABORATORY REPORT

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

PROJECT NAME: SITE LOCATION:

1024 SE Grand Ave OR161203-3b

PROJECT NUMBER: ANALYST

FIELD ID: SB17-S1-12

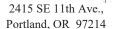
INSTRUMENT REPORT NUMBER: REPORT DATE: ACQ. ON

SolaTek 87034 1/10/17 9Jan20175:57pm

PREP. BATCH V170109
LAB ID: L3583

Preparation Method: EPA 5035A

Analytical Method: EPA 8260C Analyte: Volatile Organics in Soil


Analyte: Volatile Organics in Soil	Sample	Quant. Limit	Qualifier Dilution
Compound	(ug/Kg)	(ug/Kg)	Factor
benzene	ND	202	50
bromobenzene	ND	202	50
bromochloromethane	ND	202	50
bromodichloromethane	ND	202	50
bromoform	ND	202	50
n-butylbenzene	ND	202	50
sec-butylbenzene	ND	202	50
tert-butylbenzene	ND	202	50
chlorobenzene	ND	202	50
chloroform	ND	202	50
2-chlorotoluene	ND	202	50
4-chlorotoluene	ND	202	50
dibromochloromethane	ND	202	50
1,2dibromo3-chloropropane	ND	202	50
1,2-dibromoethane	ND	202	50
dibromomethane	ND	202	50
1,2-dichlorobenzene	ND	202	50
1,3-dichlorobenzene	ND	202	50
1.4-dichlorobenzene	ND	202	50
1,1-dichloroethane	ND	202	50
1,2-dichloroethane	ND	202	50
1,1-dichloroethene	ND	202	50
cis-1,2-dichloroethene	ND	202	50
trans-1,2-dichloroethene	ND	202	50
1,2-dichloropropane	ND	202	50
1,3-dichloropropane	ND	202	50
1,1-dichloropropene	ND	202	50
cis-1,3-dichloropropene	ND	202	50
trans-1,3-dichloropropene	ND	202	50
ethylbenzene	ND	202	50
hexachlorobutadiene	ND	202	50
isopropylbenzene	ND	202	50
p-Isopropyltoluene	ND	202	50
methyl-tert-butylether(MTBE)	ND	202	50
naphthalene	ND	202	50
n-propyl-benzene	ND	202	50
styrene	ND	202	50
1,1,1,2-tetrachloroethane	ND	202	50
1,1,2,2-tetrachloroethane	ND ND	202	50
tetrachloroethylene	ND ND	202	50
toluene	ND ND	202	50
1,2,3-trichlorobenzene	ND ND	202	50
1,2,4-trichlorobenzene	ND ND	202	50
1,1,1-trichloroethane	ND ND	202	50
1,1,2-trichloroethane	ND ND	202	50
trichloroethene	ND ND	202	50
1,2,3-trichloropropane	ND ND	202	50
1,2,4-trimethlybenzene	ND ND	202	50
1,3,5-trimethylbenzene	ND ND	202	50 50
, , , , , , , , , , , , , , , , , , ,	ND ND	202 404	50 50
xylene(m&p)			
o-xylene	ND ND	202	50
total xylenes	ND	202	50

Surrogate: Percent Recovery Analyst: 1,2-dichloroethane-d4 124 toluene-d8

p-bromofluorobenzene

DE COR

Reviewer Initials:

These parameters are accredited in accredance with NELAP - OR100011

Phone (503) 231-9320 FAX (503) 231-9344

Method:

Report No. 87034 Point Source Solutions 1/9/2017 Client: Date:

Sample Condition

Sample was analyzed for 8260. Sample was received in acceptable condition

Sample Temperature

Sample(s) arrived within acceptable temperature range

Sample Hold time

Sample was analyzed within hold time

Initial Calibration

All criteria were within acceptable limits

Continuing Calibration Check (CCV)
All criteria were within method limts. Any exceptions are qualified in the body of the report

Method Blank

Method Blank meets method limt. Any exceptions are qualified in the body of the report

Laboratory Control Sample (LCS)

All criteria were within method limts, Any exceptions are qualified in the body of the report

Duplicate Sample

No Duplicate was run on this batch

Matrix Spike

All criteria were within method limts

Matrix Spike Duplicate

1 compounds of Matrix Spike Duplicate were outside method limts as flagged in the MSD QC report

QUALITY CONTROL REPORT (EPA 8260C)

Run Date: 1/9/2017 **Prep batch:** P1-9-17 **Report Date:** 1/10/2017 **Analytical batch:** STRA170109

A 7 (DI ANIZ	T 600	T	D
Analyte	BLANK	LCS	Expected	Recovery
1	(ug/Kg)	(ug/Kg)	(ug/Kg)	% 10F
benzene	<4	17	16	105
bromobenzene	<4	19	16	119
bromochloromethane	<4	15	16	93
bromodichloromethane	<4	16	16	101
bromoform	<4	19	16	116
n-butylbenzene	<4	14	16	89
sec-butylbenzene	<4	19	16	120
tert-butylbenzene	<4	20	16	122
chlorobenzene	<4	18	16	111
chloroform	<4	16	16	100
2-chlorotoluene	<4	18	16	114
4-chlorotoluene	<4	19	16	116
dibromochloromethane	<4	15	16	95
1,2dibromo3-chloropropane	<4	17	16	104
1.2-dibromoethane	<4	15	16	93
dibromomethane	<4	17	16	107
1.2-dichlorobenzene	<4	14	16	89
1,3-dichlorobenzene	<4 <4	14	16	91
	-			
1,4-dichlorobenzene	<4	15	16	95
1,1-dichloroethane	<4	16	16	97
1,2-dichloroethane	<4	16	16	100
1,1-dichloroethene	<4	16	16	100
cis-1,2-dichloroethene	<4	15	16	93
trans-1,2-dichloroethene	<4	16	16	98
1,2-dichloropropane	<4	16	16	101
1,3-dichloropropane	<4	15	16	92
1,1-dichloropropene	<4	15	16	91
cis-1,3-dichloropropene	<4	13	16	82
trans-1,3-dichloropropene	<4	14	16	89
ethylbenzene	<4	17	16	109
hexachlorobutadiene	<4	15	16	92
isopropylbenzene	<4	19	16	116
,	•			106
p-Isopropyltoluene	<4	17	16	
methyl-tert-butylether(MTBE)	<4	14	16	85
naphthalene	<4	18	16	114
n-propyl-benzene	<4	20	16	122
styrene	<4	17	16	108
1,1,1,2-tetrachloroethane	<4	19	16	119
1,1,2,2-tetrachloroethane	<4	20	16	128
tetrachloroethylene	<4	16	16	100
toluene	<4	16	16	103
1,2,3-trichlorobenzene	<4	20	16	127
1,2,4-trichlorobenzene	<4	16	16	101
1,1,1-trichloroethane	<4	17	16	106
1.1.2-trichloroethane	<4	16	16	102
trichloroethene	<4	16	16	97
1,2,3-trichloropropane	<4 <4	17	16	97 105
, ,	<4 <4	18	16	110
1,2,4-trimethlybenzene	-			
1,3,5-trimethylbenzene	<4	19	16	117
xylene(m&p)	<8	36	32	114
o-xylene	<4	17	16	108
,				

Control: 70%-130%

DUPLICATE / MATRIX SPIKE REPORT (EPA 8260C)

Run Date: 1/9/2017 Report Date: 1/10/2017	Prep batch: Analytical bat	ch:	P1-9-17 STRA170109		MSD ID: MS ID	SBK33MSD SBK33MS
Analyte	Sample	MSD	Recovery	Sample	Spike	Recovery
1	(ug/Kg)	(ug/Kg)	(%)	(ug/Kg)	(ug/Kg)	(%)
benzene	0	15	96	0	17	105
bromobenzene	0	15	93	0	19	119
bromochloromethane	0	15 16	96 101	0 0	15 16	93 101
bromodichloromethane bromoform	0	16	97	0	19	116
n-butylbenzene	0	15	97 95	0	14	89
sec-butylbenzene	0	15	93 92	0	19	120
tert-butylbenzene	0	15	93	0	20	122
chlorobenzene	0	15	95 95	0	18	111
chloroform	0	14	90	0	16	100
2-chlorotoluene	0	17	105	0	18	114
4-chlorotoluene	0	15	91	Ö	19	116
dibromochloromethane	ő	17	103	ŏ	15	95
1,2dibromo3-chloropropane	ő	15	96	ŏ	17	104
1.2-dibromoethane	ő	17	104	ŏ	15	93
dibromomethane	ő	16	102	ŏ	17	107
1,2-dichlorobenzene	ő	16	99	ŏ	14	89
1,3-dichlorobenzene	ő	14	88	Ŏ	14	91
1.4-dichlorobenzene	Ö	16	98	Ö	15	95
1.1-dichloroethane	Ö	15	96	Ö	16	97
1,2-dichloroethane	Ö	15	91	Ö	16	100
1,1-dichloroethene	0	15	93	Ö	16	100
cis-1,2-dichloroethene	0	15	95	Ö	15	93
trans-1,2-dichloroethene	0	15	95	0	16	98
1,2-dichloropropane	0	16	98	0	16	101
1,3-dichloropropane	0	16	100	0	15	92
1,1-dichloropropene	0	15	95	0	15	91
cis-1,3-dichloropropene	0	16	99	0	13	82
trans-1,3-dichloropropene	0	17	106	0	14	89
ethylbenzene	0	15	94	0	17	109
hexachlorobutadiene	0	15	96	0	15	92
isopropylbenzene	0	15	94	0	19	116
p-Isopropyltoluene	0	14	90	0	17	106
methyl-tert-butylether(MTBE)	0	16	98	0	14	85
naphthalene	0	18	110	0	18	114
n-propyl-benzene	0	15	93	0	20	122
styrene	0	15	93	0	17	108
1,1,1,2-tetrachloroethane	0	15	97	0	19	119
1,1,2,2-tetrachloroethane	0	15	93	0	20	128
tetrachloroethylene	0	16	99	0	16	100
toluene	0	16	97	0	16	103
1,2,3-trichlorobenzene	0	16	103	0	20	127
1,2,4-trichlorobenzene	0	16	97	0	16	101
1,1,1-trichloroethane	0	16	99	0	17	106
1,1,2-trichloroethane	0	16	102	0	16	102
trichloroethene	0	15	95	0	16	97
1,2,3-trichloropropane	0	16	99	0	17	105
1,2,4-trimethlybenzene	0	14	90	0	18	110
1,3,5-trimethylbenzene	0	15	93	0	19	117
xylene(m&p)	0	30	94	0	36	114
o-xylene	0	15	95	0	17	108
Control:			70%-130%			70%-130%

MATRIX SPIKE / MATRIX SPIKE DUPLICATE REPORT (EPA 8260C)

Run Date: 1/9/2017 Report Date: 1/10/2017	Prep batch: Analytical batch:	P1-9-17 STRA170109		MS ID: MSD ID:	SBK33MS SBK33MSD
Analyte	MS	MSD	RPD		
	(ug/Kg)	(ug/Kg)	(%)		
benzene	17	15	9		
bromobenzene	19	15	25		
bromochloromethane	15	15	3		
bromodichloromethane	16	16	0		
bromoform	19	16	18		
n-butylbenzene	14	15	6		
sec-butylbenzene	19	15	26		
tert-butylbenzene	20	15	28		
chlorobenzene	18 16	15 14	16 10		
chloroform 2-chlorotoluene	18	17	9		
4-chlorotoluene	19	15	24		
dibromochloromethane	15	13 17	9		
1,2dibromo3-chloropropane	17	15	8		
1,2-dibromoethane	15	17	11		
dibromomethane	17	16	5		
1,2-dichlorobenzene	14	16	10		
1,3-dichlorobenzene	14	14	3		
1,4-dichlorobenzene	15	16	3		
1,1-dichloroethane	16	15	2		
1,2-dichloroethane	16	15	9		
1,1-dichloroethene	16	15	7		
cis-1,2-dichloroethene	15	15	2		
trans-1,2-dichloroethene	16	15	4		
1,2-dichloropropane	16	16	3		
1,3-dichloropropane	15	16	8		
1,1-dichloropropene	15	15	3		
cis-1,3-dichloropropene	13	16	19		
trans-1,3-dichloropropene	14	17	17		
ethylbenzene	17	15	14		
hexachlorobutadiene	15	15	4		
isopropylbenzene	19	15	21		
p-Isopropyltoluene	17	14	17		
methyl-tert-butylether(MTBE)	14	16	14		
naphthalene	18	18	3		
n-propyl-benzene	20	15	28		
1,1,1,2-tetrachloroethane	17	15	14		
1,1,2,2-tetrachloroethane	19 20	15 15	20 31*		
tetrachloroethylene toluene	20 16	16	1		
1,2,3-trichlorobenzene	16	16	6		
1,2,4-trichlorobenzene	20	16	21		
1,1,1-trichloroethane	16	16	3		
1,1,2-trichloroethane	17	16	7		
trichloroethene	16	16	Ó		
trichlorofluoromethane	16	15	2		
1,2,3-trichloropropane	17	16	6		
1,2,4-trimethlybenzene	18	14	19		
1,3,5-trimethylbenzene	19	15	23		
xylene(m&p)	36	30	19		
o-xylene	17	15	13		
•					
Control:			30		

^{* -} QC fails on this compound

Laboratory Report

Point Source Solutions 10445 SW Canyon Rd Suite 115 Portland, OR 97214

Project Name:

Project Location: 1024 SE Grand Ave

Project Number: OR161203-3b

Date Sampled: 1/6/17
Date received: 1/6/17

Report Number: 87034 Report Date: 1/16/17

TCLP-Pb Toxicity Characteristic Leaching Procedure for Lead

EPA 1311- Extraction; EPA 700-Analysis

ELTT TOTT Extraodion, ELTT	00 7 triaryolo			
Field ID	Lab ID	Result	Detection Limit	
		mg/L(ppm)	mg/L(ppm)	
SB16-S1-11	L3580	<0.2	0.2	

Quality Control Report: Lead (Pb)

PB1701161	Measured Conc. (mg/L)	Expected Concentration (mg/L)	Recovery (%)	Lower Limit	Upper Limit	
			()		- 11	DAGG
ICV	5.2	5.0	104%	80%	120%	PASS
Prep Blank	0.0	0.0		0.5 mg/L		PASS
LCS	3.1	2.7	113%	70%	130%	PASS
QC Blank	0.0	0.0		0.5 mg/L		PASS
QC Check	5.3	5.0	105%	80%	120%	PASS
Calibration R^2 :	1.	(Lower Limit:	0.990)			PASS

Environmental Sciences, Inc. 2415 SE 11th Ave. Portland Oregon 97214 Phone(503) 231-9320 FAX(503) 231-9344

Relinquished by Affiliation	Reinquished by Affiliation PSS							71-15- LIBS (ASI7	-15x2 SB16-52-16-5	1	- 15 -	1-5579 SB18 - 52 - 17	13578 5818-51-9.5	LAB ID Field ID	Samples: Temperature 1.5 °C On loe? (es) No	Site 1024 SE Grand Aux	Project Name	ORIGIZ03-36	Point Source Solutions
Date	Date 1-4-17							¢-		-		-	1-6-17	Sampling Date	Turnaround Time:	Report Attention	Purchase Order#	AX	Prione
Time	Time													Sampling Time		n	# #		OS) 4:
								4	~	~	S	S	n	Matrix	⊠ Regular [Colle	à		503)422-2675
Received by	Received by							-	-	-	2	2	-	Container	3-5 Business Days	Collected By	3		675
	7		240					4					402	Volume	Days	» (a	
	\sim					-		~	×	×	×	×	×	NW-	ΓΡΗ-I	Οx			50 Fee
≱	≥	_						×	×	\times	×	×	×	NW-	_			_	
Affiliation	Affiliation		25%										_	NW-		4 30			30000
	3/		_				-							to de la constant		B (BT			
	+1	\dashv						×	*	*	×	×	\neq	EPA EPA	-		rari.)	
Date Time	Date Time													2		CC: Johnny	Amay	<u>-</u>	Comments
	100							P	g. 2	26 o	f 27.				7	Luu	3		

2415 SE 11th Ave Portland, OR 97214 Ph: 503-231-9320 Fax: 503-231-9344

Sample Condition Check List

$\nabla \cdot \mathcal{A} \subseteq \mathcal{A}$	0.034
Customer Name: Point Source	coc#: 8700
Method of Delivery: courier client other	
Type of ice Ice Blue None Cooler Tempe	erature: 156
Matrix: Soil Water Other	
	Yes No NA Comments
Relinquish signed on Chain of Custody.	*
Received by signed on Chain of Custody.	
Chain of Custody filled out.	
Were samples Arrived within Hold Time.	* Same day
Rush Trun Around Time Requested. If yes, how many days	1. Recular
Temperatures measured and written in correct place on COC.	I WAR TO BE THE THE THE THE THE THE THE THE THE TH
Correct containers used.	/ 407
Sufficient Volume.	/ / / / / / / / / / / / / / / / / / / /
ID on COC and Sample labels match.	
Duplicate jars and vials labeled with a, b, c, d etc.	1. NO DU 360
All tests logged in checked against the COC.	
The COC scanned into the main office computer.	
FOR WATER SAMPLES:	
Trip Blank: Yes Waiver on file Submitted	by:
No	다른 과건에 가는 요즘까요 생각이 시간하였다.
the state of the s	Yes No Comments
Was sufficient volume provided for analysis. Was sufficient volume provided for QC samples (at least two).	
HCL Preserved vials.	
HCL LOT Number:	
Were duplicate jars and vials labeled with a, b, c, d etc.	
Headspace in VOA Vials (>6mm).	
Client Notification/Resolution:	1 열차 1명 시호 (20) 1 200 : -
Cheft Pothication Resolution.	
Comments:	[일하면 4.] 상하요 이 생물에 보았는데 함께하다.]
	11,71
Reviewed:	Date: / (5/17)

APPENDIX IV WELL LOGS

North Adjoining Property

STATE OF OREGON GEOTECHNICAL HOLE REPORT (as required by OAR 690-240-0035)

(1) OWNER/PROJECT Hole Number SB-1	
PROJECT NAME/NBR: CHUGWATER	(9) LOCATION OF HOLE (legal description)
First Name Last Name	County MULTNOMAH Twp 100 S N/S Range 100 E E/W WM
Company HUFFCO PORTLAND LLC	Sec 2 SW 1/4 of the NW 1/4 Tax Lot 1300
Address 15019 S RIVERSHORE DR	Tax Map Number Lot
City VANCOUVER State WA Zip 98683	Lat " " or 45.51547800 DMS or DD
(2) TYPE OF WORK New Deepening Abandonment	Long " or -122.66041000 DMS or DD Street address of hole Nearest address 1006 SE GRAND AVE, PORTLAND, OR 97214
Alteration (repair/recondition)	
(3) CONSTRUCTION Rotary Air Hand Auger Hollow stem auger Rotary Mud Cable ▼ Push Probe Other	(10) STATIC WATER LEVEL Date SWL(psi) + SWL(ft) Existing Well / Predeepening Completed Well
(4) TYPE OF HOLE:	WATER BEARING ZONES Flowing Artesian? Depth water was first found
	SWL Date From To Est Flow SWL(psi) + SWL(fi)
Uncased Temporary Uncased Permanent Slope Stablity Other Other	SWE Date From 16 Est Flow SWE(pst) 7 SWE(ff)
(5) USE OF HOLE	(11) SUBSURFACE LOG Ground Elevation
COLLECT SON CAMPLES	Material From To
COLLECT SOIL SAMPLES	Brn Sand w/Gravel 0 7
	Grey Med-Fine Sand 7 16
	Brn Sand w/Gravel 16 20
2.25 0 20	Date Started 12/5/2012 Completed 12/5/2012 (12) ABANDONMENT LOG: sacks/
Filter pack from ft. to ft. Material Size	Material From To Amt lbs
(7) CASING/SCREEN	Bentonite Chips 0 20 1 S
Casing Screen Dia + From To Gauge Stl Plstc Wld Thrd	
(8) WELL TESTS	Data Stand Associated Interest
Pump Bailer An Flowing Artesian Yield gal/min Drawdown Drill stem/Pump depth Duration(hr)	Professional Certification (to be signed by an Oregon beensed water or
Temperature °F Lab analysis Yes By Supervising Geologist/Engineer Water quality concerns? Yes (describe below) TDS amount	I accept responsibility for the construction, deepening, alteration, or abandonment work performed during the construction dates reported above. All work performed during this time is in compliance with Oregon geotechnical hole construction standards. This report is true to the best of my knowledge and belief
From To Description Amount Units	License/Registration Number 10615 Date 12/12/2012
	First Name MARTIN Last Name HAUN Affiliation ESN-NW
ORIGINAL - WATER RESOURCES THIS REPORT MUST BE SUBMITTED TO THE WATER RESOURCES DEPART	Affiliation ESN-NW DEPARTMENT

STATE OF OREGON GEOTECHNICAL HOLE REPORT (as required by OAR 690-240-0035)

(1) OWNER/PROJECT Hole Number SB-2	
(1) (1) (1) (1) (1)	(9) LOCATION OF HOLE (legal description)
PROJECT NAME/NBR: CHUGWATER	County MULTNOMAH TWP LOO S N/S Range LOO E E/W WM
First Name Last Name	Sec 2 SW 1/4 of the NW 1/4 Tax Lot 1300
Company HUFFCO PORTLAND LLC Address 15019 S RIVERSHORE DR	Tax Map Number Lot
City VANCOUVER State WA Zip 98683	Lat " or 45.51549200 DMS or DD
	Long or -122 66022000 DMS or DD Street address of hole Nearest address
(2) TYPE OF WORK New Deepening Abandonment Alteration (repair/recondition)	1006 SE GRAND AVE, PORTLAND, OR 97214
(3) CONSTRUCTION Rotary Air Hand Auger Hollow stem auger Rotary Mud Cable Push Probe Other	(10) STATIC WATER LEVEL Existing Well / Predeepening
(4) TYPE OF HOLE:	WATER BEARING ZONES Depth water was first found
Uneased Temporary Cased Permanent	SWL Date From To Est Flow SWL(psi) + SWL(ft)
Uncased Permanent Slope Stablity	
Other	
Other:	
(5) USE OF HOLE	(11) SUBSURFACE LOG Ground Elevation
	Material From To
COLLECT SOIL SAMPLES	Brn Sand w/Gravel 0 5
	Grey Med-Fine Sand 5 17
	Brn Sand w/Gravel 17 22
BORE HOLE SEAL sacks Dia From To Material From To Amt lbs 2.25 0 22 Bentonite Chips 0 22 1 S	
	Date Started 12/5/2012 Completed 12/5/2012
Backfill placed from 0 ft. to 22 ft. Material BENTONITE Filter pack from ft. to ft. Material Size	(12) ABANDONMENT LOG: sacks/ Material From To Amt lbs
(7) CASING/SCREEN	Bentonite Chips 0 22 1 S
Casing Screen Dia + From To Gauge Stl Plste Wld Thrd	
8 8 H H 8 8 H H	
(8) WELL TESTS	
Pump Bailer Air Flowing Artesian	Date Started 12/5/2012 Completed 12/5/2012
Yield gal/min Drawdown Drill stem/Pump depth Duration(hr)	Professional Certification (to be signed by an Oregon licensed water or munitoring well constructor (fregon registered geologist or professional engineer).
	I accept responsibility for the construction, deepening, alteration, or abandonment
Temperature "F Lab analysis Yes By	work performed during the construction dates reported above. All work performed
Supervising Geologist/Engineer	during this time is in compliance with Oregon geotechnical hole construction standards. This report is true to the best of my knowledge and belief.
Water quality concerns? Yes (describe below) TDS amount From To Description Amount Units	License/Registration Number 10615 Date 12/12/2012
	First Name MARTIN Last Name HAUN
	Affiliation ESN-NW

STATE OF OREGON GEOTECHNICAL HOLE REPORT (as required by OAR 690-240-0035)

(1) OWNER/PROJECT Hole Number SB-3	
PROJECT NAME/NBR: CHUGWATER	(9) LOCATION OF HOLE (legal description)
First Name Last Name	County MULTNOMALI Twp 1.00 S N/S Range 1.00 E E/W WM
Company HUFFCO PORTLAND LLC	Sec 2 SW 1/4 of the NW 1/4 Tax Lot 1300
Address 15019 S RIVERSHORE DR	Tax Map Number Lot Lat " or 45 51549000 DMS or DD
City VANCOUVER State WA Zip 98683	Lat or or 45.51549000 DMS or DD Long or -122.66007900 DMS or DD
(2) TYPE OF WORK New Deepening Abandonment Alteration (repair/recondition)	(Street address of hole Nearest address 1006 SE GRAND AVE, PORTLAND, OR 97214
(3) CONSTRUCTION Rotary Air Hand Auger Hollow stem auger Rotary Mud Cable Push Probe	(10) STATIC WATER LEVEL Date SWL(psi) + SWL(ft) Existing Well / Predeepening
Other	Completed Well Flowing Artesian? WATER BEARING ZONES
(4) TYPE OF HOLE:	Depth water was first found
Uncased Temporary Cased Permanent Uncased Permanent Slope Stablity Other	SWL Date From To Est Flow SWL(psi) + SWL(ft)
Other	
Odd	
(5) USE OF HOLE	(11) SUBSURFACE LOG Ground Elevation
DOLL POT COV. GLAMPI, CO.	Material From To
COLLECT SOIL SAMPLES	Brn Sand w/Gravel 0 1
	Grey Med-Fine Sand 1 16
	Bri Sand W.Grayer 16 20
Dia From Fo Material From To Amt lbs 2.25 0 20 Bentonite Chips 0 20 1 S	Date Started 12/5/2012
	Completed description
Backfill placed from 0 ft to 20 ft. Material BENTONITE Filter pack from ft to ft. Material Size	(12) ABANDONMENT LOG: sacks/ Material From To Amt Ibs
(7) CASING/SCREEN	Bentonite Chips 0 20 1 S
Casing Screen Dia + From To Gauge Stl Plstc Wld Thrd	
(8) WELL TESTS	
Pump Bailer Air Flowing Artesian Yield gal/min Drawdown Drill stem/Pump depth Duration(hr)	Date Started 12/5/2012 Completed 12/5/2012
Field gammin Drawdown Drin'stems only depair Duranosi(iii)	Professional Certification (to be signed by an Oregon licensed water or monitoring well constructor, Oregon registered geologist or professional anguager).
Temperature °F Lab analysis Yes By	I accept responsibility for the construction, deepening, alteration, or abandonment work performed during the construction dates reported above. All work performed
Supervising Geologist/Engineer	during this time is in compliance with Oregon geotechnical hole construction standards. This report is true to the best of my knowledge and belief.
Water quality concerns? Yes (describe below) TDS amount From To Description Amount Units	License/Registration Number 10615 Date 12/12/2012
	First Name MARTIN Last Name HAUN Affiliation ESN-NW
	EDITOR A LEGISTICAL

STATE OF OREGON GEOTECHNICAL HOLE REPORT (as required by OAR 690-240-0035)

(1) OWNER/PROJECT Hole Number SB-4	The state of the s
PROJECT NAME/NBR: CHUGWATER	(9) LOCATION OF HOLE (legal description)
First Name Last Name	County MULTNOMAH Twp 1.00 S N/S Range 1.00 E E/W
Company HUFFCO PORTLAND LLC	Sec 2 SW 1/4 of the NW 1/4 Tax Lot 1300
Address 15019 S RIVERSHORE DR	Tax Map Number Lot Lat " " or 45 51546900 DMS or I
City VANCOUVER State WA Zip 98683	Lat " or 45.51546900 DMS or I Long o " or -122.65986700 DMS or I
(2) TYPE OF WORK ⋉ New Deepening ⋉ Abandonment	Street address of hole Nearest address
Alteration (repair/recondition)	1006 SE GRAND AVE, PORTLAND, OR 97214
(3) CONSTRUCTION Rotary Air Hand Auger Hollow stem auger Rotary Mud Cable Push Probe	(10) STATIC WATER LEVEL Date SWL(psi) + SWL(fit
Other	Completed Well
(4) TYPE OF HOLE:	WATER BEARING ZONES Flowing Artesian? Depth water was first found
()Uncased Temporary	SWL Date From To Est Flow SWL(psi) + SWL(ft
Uneased Permanent Slope Stablity Other	
Other:	
(5) USE OF HOLE	(11) SUBSURFACE LOG Ground Elevation
	Material From To
COLLECT SOIL SAMPLES	Brn Sand w/Gravel 0 1
	Grey Med-Fine Sand 1 15 16 Brn Sand w/Gravel 15 16 17 18 18 19 19 19 19 19 19
	Bill Salid W/Glayer
2.25 0 16 Bentonite Chips 0 16 0.75 S	Date Started 12/5/2012
Backfill placed from 0 ft to 16 ft Material BENTONITE Filter pack from ft to ft Material Size	(12) ABANDONMENT LOG: sacks/ Material From To Amt lbs
/TV CASING/SCREEN	Bentonite Chips 0 16 0.75 S
(7) CASING/SCREEN	-
Casing Screen Dia + From To Gauge Stl Plstc Wld Thrd	-
	-
Casing Screen Dia + From To Gauge Stl Plstc Wld Thrd	-
Casing Screen Dia + From To Gauge Stl Plstc Wld Thrd	-
Casing Screen Dia + From To Gauge Stl Plstc Wld Thrd	-
Casing Screen Dia + From To Gauge Stl Plstc Wld Thrd	Bentonite Chips 0 16 0.75 S
Casing Screen Dia + From To Gauge Stl Plste Wld Thrd	Date Started 12/5/2012
Casing Screen Dia + From To Gauge Stl Plste Wld Thrd	Date Started 12/5/2012 Completed 12/5/2012 Professional Certification (to be signed by an Oregon licensed water
Casing Screen Dia + From To Gauge Stl Plste Wld Thrd	Date Started 12/5/2012 Completed 12/5/2012 Professional Certification (66 be signed by an Oregon licensed water monitoring well constructor Oregon registered geologist or professional engine
Casing Screen Dia + From To Gauge Stl Plstc Wld Thrd	Date Started 12/5/2012 Completed 12/5/2012 Professional Certification (to be signed by an Oregon licensed water mountainty well constructor Oregon registered geologist or professional engine 1 accept responsibility for the construction, deepening, alteration, or abandonn
Casing Screen Dia + From To Gauge Stl Plste Wld Thrd (8) WELL TESTS Pump Bailer Air Flowing Artesian Yield gal/min Drawdown Drill stem/Pump depth Duration(hr) Temperature °F Lab analysis Yes By	Date Started 12/5/2012 Completed 12/5/2012 Professional Certification (66 be signed by an Oregon licensed water monitoring well constructor Oregon registered geologist or professional engine I accept responsibility for the construction, deepening, alteration, or abandoning work performed during the construction dates reported above. All work performed during this time is in compliance with Oregon geotechnical hole construction.
Casing Screen Dia + From To Gauge Stl Plste Wld Thrd (8) WELL TESTS Pump Bailer Air Flowing Artesian Yield gal/min Drawdown Drill stem/Pump depth Duration(hr) Temperature °F Lab analysis Yes By Supervising Geologist/Engineer	Date Started 12/5/2012 Completed 12/5/2012 Professional Certification (to be signed by an Oregon licensed water monitoring well constructor Oregon registered geologist or professional engine I accept responsibility for the construction, deepening, alteration, or abandoning work performed during the construction dates reported above. All work performed to the construction dates reported above. All work performed to the construction dates reported above.
Casing Screen Dia + From To Gauge Stl Plste Wld Thrd (8) WELL TESTS Pump Bailer Air Flowing Artesian Yield gal/min Drawdown Drill stem/Pump depth Duration(hr) Temperature °F Lab analysis Yes By	Date Started 12/5/2012 Completed 12/5/2012 Professional Certification (66 be signed by an Oregon licensed water monitoring well constructor Oregon registered geologist or professional engine I accept responsibility for the construction, deepening, alteration, or abandoning work performed during the construction dates reported above. All work performed during this time is in compliance with Oregon geotechnical hole construction.
Casing Screen Dia + From To Gauge Stl Plste Wld Thrd (8) WELL TESTS Pump Bailer Air Flowing Artesian Yield gal/min Drawdown Drill stem/Pump depth Duration(hr) Temperature °F Lab analysis Yes By Supervising Geologist/Engineer Water quality concerns? Yes (describe below) TDS amount	Date Started 12/5/2012 Completed 12/5/2012 Professional Certification (to be signed by an Oregon licensed water mountoing well constructor Oregon registered geologist or professional engine I accept responsibility for the construction, deepening, alteration, or abandona work performed during the construction dates reported above. All work performed during this time is in compliance with Oregon geotechnical hole construction dates. This report is true to the best of my knowledge and belief.

STATE OF OREGON GEOTECHNICAL HOLE REPORT (as required by OAR 690-240-0035)

(1) OWNER/PROJECT Hole Number SB-5	
PROJECT NAME/NBR: CHUGWATER	(9) LOCATION OF HOLE (legal description)
First Name Last Name	County MULTNOMAH TWP 1.00 S N/S Range 1.00 E E/W WM
Company HUFFCO PORTLAND LLC	Sec 2 SW 1/4 of the NW 1/4 Tax Lot 1300 Tax Map Number Lot
Address 15019 S RIVERSHORE DR	Lat ° ' or 45.51564500 DMS or DD
City VANCOUVER State WA Zip 98683	Long o "or -122.65988100 DMS or DD
(2) TYPE OF WORK New Deepening Abandonment Alteration (repair/recondition)	Street address of hole Nearest address 1006 SE GRAND AVE, PORTLAND, OR 97214
(3) CONSTRUCTION Rotary Air Hand Auger Hollow stem auger	(10) STATIC WATER LEVEL Date SWL(psi) + SWL(fi)
Rotary Mud Cable Push Probe Other	Existing Well / Predeepening Completed Well
(4) TYPE OF HOLE:	WATER BEARING ZONES Flowing Artesian? Depth water was first found
● Uneased Temporary Cased Permanent	SWL Date From To Est Flow SWL(psi) + SWL(ft)
Uncased Permanent Slope Stablity	
Other	
Other	
(5) USE OF HOLE	(11) SUBSURFACE LOG Ground Elevation
(a) est of note	Material From To
COLLECT SOIL SAMPLES	Brn Sand w/Gravel 0 1
	Grey Med-Fine Sand 1 14
	Brn Sand w/Gravel 14 16
BORE HOLE SEAL Sacks	Date Started 12/5/2012
Backfill placed from 0 ft. to 16 ft. Material BENTONITE Filter pack from ft. to ft. Material Size	sacks/
(7) CASING/SCREEN	Material From To Amt Ibs Bentonite Chips 0 16 0.75 S
Casing Screen Dia + From To Gauge Stl Plstc Wld Thrd	
8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
RAHHHH RAHH	
WELL TESTS	
(8) WELL TESTS Pump Bailer Air Elowing Artesian	Date Started 12/5/2012 Completed 12/5/2012
Yield gal/min Drawdown Drill stem/Pump depth Duration(hr)	Professional Certification (to be signed by an Oregon beensed water or mountoring well constructor. Oregon registered (geologist or professional engineer)
	I accept responsibility for the construction, deepening, alteration, or abandonment
Temperature°F Lab analysisYes By Supervising Geologist/Engineer	work performed during the construction dates reported above. All work performed during this time is in compliance with Oregon geotechnical hole construction
Water quality concerns ³ Yes (describe below) TDS amount From To Description Amount Units	standards. This report is true to the hest of my knowledge and belief
From To Description Amount Units	License/Registration Number 10615 Date 12/12/2012
	First Name MARTIN Last Name HAUN Affiliation ESN-NW

STATE OF OREGON GEOTECHNICAL HOLE REPORT (as required by OAR 690-240-0035)


(1) OWNER/PROJECT Hole Number SB-6		100					
PROJECT NAME/NBR: CHUGWATER	7	(9) LOCATI	ON OF H	OLE (le	gal desc	eription)	
First Name Last Name		County MULTNO					
Company HUFFCO PORTLAND LLC		The second second second	W 1/4 c	of the NV	V 1/4		()()
Address 15019 S RIVERSHORE DR		Tax Map Numbe		The rear	******	Lot	DMS or DD
City VANCOUVER State WA Zip 98	683	Lat		or 45.51.			DMS or DD
(2) TYPE OF WORK New Deepening X	Abandonment		Street address	s of hole	-	Nearest address	DINISOLDIS
(3) CONSTRUCTION							
Rotary Mud Cable Push Probe Other		(10) STATIO	Vell / Predeep	ening	Date	SWL(psi)	+ SWL(fi)
(4) TYPE OF HOLE:		WATER BEARD	NG ZONES		lowing Ar	rtesian?	
		SWL Date	From	To		low_SWL(psi)	+ SWL(ft)
Uneased Temporary Uneased Permanent Slope Stablity Other Other					Later	ISW SWE(ps()	Javan
Oliv.							
(5) USE OF HOLE		(11) SUBSU	RFACE L	OG Grou	ind Elevat	ion	
COLLECT SOIL SAMPLES		11170	Materia	al		From	To
COLLECT SOIL SAMPLES		Brn Sand w/Gra				0	1
		Grey Med-Fine Brn Sand w/Gra				15	15
		Date Started	12/5/2012		Comple	eted 12/5/2012	
Backfill placed from 0 ft. to 16 lt. Material BEN			ONMENT	LOG:			
Backini placed from 0 it. to 10 it. winterial BEIN	TONITE	(12) ABAND	AN ASSESSMENT				
Filter pack from ft. to ft. Material	Size				To	sacks/	
Filter pack from ft. to ft Material		N	laterial onite Chips	From	To 16	Amt lbs	
Filter pack from ft. to ft. Material (7) CASING/SCREEN	Size	N	laterial	From	-	Amt 1bs	
(7) CASING/SCREEN Casing Screen Dia + From To Gauge Stl Pls	Size	N	laterial	From	-	Amt 1bs	
Filter pack from ft. to ft. Material (7) CASING/SCREEN	Size	N	laterial	From	-	Amt 1bs	
Filter pack from ft. to ft. Material (7) CASING/SCREEN Casing Screen Dia + From To Gauge Stl Pls	Size	N	laterial	From	-	Amt 1bs	
Filter pack from ft. to ft. Material (7) CASING/SCREEN Casing Screen Dia + From To Gauge Stl Pls	Size	N	laterial	From	-	Amt 1bs	
Filter pack from ft. to ft. Material (7) CASING/SCREEN Casing Screen Dia + From To Gauge Stl Pls	Size	N	laterial	From	-	Amt 1bs	
(7) CASING/SCREEN Casing Screen Dia + From To Gauge Stl Pls	Size	Bent	laterial onite Chips	From 0	16	Amt 1bs 0.75 S	
Filter pack from fit to fit Material (7) CASING/SCREEN Casing Screen Dia + From To Gauge Stl Pls (8) WELL TESTS Pump Bailer Air Flow	Size	Date Started	laterial onite Chips	From 0	Comple	Amt Ibs 0.75 S	
Filter pack from fit to fit Material (7) CASING/SCREEN Casing Screen Dia + From To Gauge Stl Pls (8) WELL TESTS Pump Bailer Air Flow	Size atc Wld Thrd	Date Started Professional	laterial onite Chips 12/5/2012 Certificat	From 0	Comple	Amt Ibs 0.75 S s s s s s s s s s s s s s s s s s s	
Filter pack from fit to fit Material (7) CASING/SCREEN Casing Screen Dia + From To Gauge Stl Pls (8) WELL TESTS Pump Bailer Air Flow	Size atc Wld Thrd	Date Started Professional	laterial onite Chips 12/5/2012 Certificat consument (From 0 ion (to i)	Comple	Amt Ibs 0.75 S 0.75 S ted 12/5/2012 by an Oregon I profes	sional engineer)
Filter pack from fit to fit Material (7) CASING/SCREEN Casing Screen Dia + From To Gauge Stl Pls (8) WELL TESTS Pump Bailer Air Flow	Size atc Wld Thrd	Date Started Professional manuforing well I accept respons work performed	12/5/2012 Certificat consument (ibility for the during the co	from (to)	Comple be signed gettion, deepedates report	Amt Ibs 0.75 S 0.75 S ted 12/5/2012 by an Oregon I plotogist or profesening, alteration, and above. All	or abandonment work performed
(7) CASING/SCREEN Casing Screen Dia + From To Gauge Stl Pls (8) WELL TESTS Pump Bailer Air Flow Yield gal/min Drawdown Drill stem/Pump depth Dur	Size atc Wld Thrd	Date Started Professional manname well I accept respons work performed during this time	12/5/2012 Certificat consumer (ibility for the during the coe is in comp	from 0 ion (to 1) report reg construction liance wit	Comple complete signed persons deeper dates report h Oregon	Amt Ibs 0.75 S 10.75 S ted 12/5/2012 by an Oregon I pologist or profesening, alteration, orted above All a geotechnical h	or abandonment work performed ole construction
(7) CASING/SCREEN Casing Screen Dia + From To Gauge Stl Pls (8) WELL TESTS Pump Bailer Air Flow Yield gal/min Drawdown Drill stem/Pump depth Dur Temperature °F Lab analysis Yes By Supervising Geologist/Engineer Water quality concerns? Yes (describe below) TDS amount	ing Artesian	Date Started Professional mannarme well I accept respons work performed during this time standards. This	12/5/2012 Certificat consument (ibility for the during the coe is in compreport is true to the consument (ibility for the during the coe is in compreport is true to the consument (ibility for the compression of the com	ion (to) reported construction liance with	Comple complete signed persons deeper dates report h Oregon	Amt Ibs 0.75 S 10.75 S ted 12/5/2012 by an Oregon I pologist or profesening, alteration, orted above All a geotechnical h	or abandonment work performed ole construction
(7) CASING/SCREEN Casing Screen Dia + From To Gauge Stl Pls (8) WELL TESTS Pump Bailer Air Flow Yield gal/min Drawdown Drill stem/Pump depth Dur Temperature "F Lab analysis Yes By Supervising Geologist/Engineer	size ttc Wld Thrd ing Artesian ation(hr)	Date Started Professional manname well I accept respons work performed during this time	12/5/2012 Certificat consument (ibility for the during the coe is in compreport is true to the consument (ibility for the during the coe is in compreport is true to the consument (ibility for the compression of the com	ion (to) reported construction liance with	Comple complete signed persons deeper dates report h Oregon	Amt Ibs 0.75 S 10.75 S ted 12/5/2012 hy an Oregon I pologist or professing, alteration, alteration, and above. All a geotechnical hydrogen and beli	or abandonment work performed ole construction
(7) CASING/SCREEN Casing Screen Dia + From To Gauge Stl Pls (8) WELL TESTS Pump Bailer Air Flow Yield gal/min Drawdown Drill stem/Pump depth Dur Temperature	ing Artesian	Date Started Professional mannarme well I accept respons work performed during this time standards. This	12/5/2012 Certificat constituent (state of the during the code is in compreport is true to atton Number ARTIN	from 0 lon (to 1) region region struction liance wit to the best 10615	Comple complete signed persons deeper dates report h Oregon	Amt Ibs 0.75 S 10.75 S ted 12/5/2012 hy an Oregon I professing, alteration, orted above. All a geotechnical he wiledge and believed to the profession of	or abandonment work performed ole construction of

GEOTECHNICAL HOLE REPORT - Map with location identified must be attached and shall include an approximate scale and north arrow

MULT 111731

12/12/2012

Map of Hole

STATE OF OREGON GEOTECHNICAL HOLE REPORT (as required by OAR 690-240-0035)

3/13/2013

(1) OWNER/PROJECT Hole Number SB-2B	
PROJECT NAME/NBR: CHUGWATER	(9) LOCATION OF HOLE (legal description)
First Name Last Name	County MULTNOMAH Twp 1.00 S N/S Range 1.00 E E/W WM
Company HUFFCO PORTLAND LLC	Sec 2 SW 1/4 of the NW 1/4 Tax Lot 1300
Address 15019 S RIVERSHORE DR	Tax Map Number Lot Lat " " or 45.51550400 DMS or DD
City VANCOUVER State WA Zip 98683	Long or -122.66031000 DMS or DD
(2) TYPE OF WORK New Deepening Abandonment	Street address of hole Nearest address 1006 SE GRAND AVE_PORTLAND, OR 97214
(3) CONSTRUCTION Rotary Air Hand Auger Hollow stem auger Rotary Mud Cable Push Probe	(10) STATIC WATER LEVEL Date SWL(psi) + SWL(fi) Existing Well / Predeepening
Other	Completed Well Flowing Artesian?
(4) TYPE OF HOLE:	WATER BEARING ZONES Depth water was first found 28.40
Uncased Temporary Cased Permanent Uncased Permanent Slope Stablity Other	SWL Date From To Est Flow SWL(psi) + SWL(ft) 2/15/2013 28.4 32 * 28.4
Other	
(5) USE OF HOLE	(11) SUBSURFACE LOG Ground Elevation
COLLECT SOIL & WATER CAMBLES	Material From To
COLLECT SOIL & WATER SAMPLES	Brn med sand w/ gravel 0 24
	Brn gravely sand 24 32
Depth of Completed Hole 32 00 ft.	Date Started 2/15/2013 Completed 2/15/2013
P. CO. C. L. C. A. C. March Department of the	(12) ABANDONMENT LOG:
Backfill placed from 0 ft. to 32 ft Material BENTONITE CHIPS Filter pack from ft. to ft. Material Size	Material From To Amt lbs
(7) CASING/SCREEN	Bentonite Chips 0 32 1.5 S
Casing Screen Dia + From To Gauge Stl Plste Wid Thrd	
● 0.75 □ 0 27 80 □ □ X □ 0.75 □ 27 32 80 □ □ X	
8 8 1 1 1 8 8 1 1	
(8) WELL TESTS	Date Started 2/15/2013 Completed 2/15/2013
Pump Bailer Air Flowing Artesian Yield gal/min Drawdown Drill stem/Pump depth Duration(hr)	Professional Certification (to be signed by an Oregon licensed water or
	morntoring well constructor. Oregon registered geologist or professional engineer)
Temperature 49 °F Lab analysis Yes By	I accept responsibility for the construction, deepening, alteration, or abandonment work performed during the construction dates reported above. All work performed
Supervising Geologist/Engineer Chugwaler	during this time is in compliance with Oregon geotechnical hole construction standards. This report is true to the best of my knowledge and belief
Water quality concerns? Yes (describe below) TDS amount	License/Registration Number 10615 Date 3/13/2013
	First Name MARTIN Last Name HAUN Affiliation ESN-NW
	ESIN-IKW

STATE OF OREGON GEOTECHNICAL HOLE REPORT (as required by OAR 690-240-0035)

3/13/2013

(1) OWNER/PROJECT Hole Number SB-8	
PROJECT NAME/NBR: CHUGWATER	(9) LOCATION OF HOLE (legal description)
First Name Last Name	County MULTNOMAH TWP 1.00 S N/S Range 1.00 E E/W WM
Company HUFFCO PORTLAND LLC	Sec 2 SW 1/4 of the NW 1/4 Tax Lot 1300
Address 15019 S. RÍVERSHORE DR	Tax Map Number Lot Lat " or 45.51549700 DMS or DD
City VANCOUVER State WA Zip 98683	Long or -122.66017600 DMS or DD
(2) TYPE OF WORK New Deepening Abandonment Alteration (repair/recondition)	Street address of hole Nearest address [1006 SE GRAND AVE, PORTLAND, OR 97214
(3) CONSTRUCTION Rotary Air Hand Auger Hollow stem auger Rotary Mud Cable Push Probe	(10) STATIC WATER LEVEL Date SWL(psi) + SWL(ft) Existing Well / Predeepening Completed Well
(4) TYPE OF HOLE:	WATER BEARING ZONES Flowing Artesian? Depth water was first found
	SWL Date From To Est Flow SWL(psi) + SWL(ft)
Uncased Temporary Cased Permanent Slope Stability	
Other	
Other:	
(5) USE OF HOLE	(11) SUBSURFACE LOG Ground Elevation
COLLECT SOIL SAMPLES	Material From To
COLLECT SOIL SAMPLES	Brn med sand w/ gravel 0 4
	Brn fine sand 4 11 Grey fine sand 11 15
	Brn/grey gravely sand 15 21
BORE HOLE SEAL Sacks/	Date Started 2/15/2013 Completed 2/15/2013
	The state of the s
Backfill placed from 0 ft. to 21 ft. Material BENTONITE CHIPS Filter pack from ft. to ft. Material Size	(12) ABANDONMENT LOG: sacks/ Material From To Amt lbs
(7) CASING/SCREEN	Bentonite Chips 0 21 1 S
Casing Screen Dia + From To Gauge Stl Plstc Wld Thrd	
8 9 1 1 1 1 8 9 1 1	
(8) WELL TESTS	Date Started 2/15/2013 Completed 2/15/2013
Pump Bailer Air Flowing Artesian	Date Started 2/13/2013 25/mpreted 2/13/2013
Yield gal/min Drawdown Drill stem/Pump depth Duration(hr)	Professional Certification (to be signed by an Oregon licensed water or maintening well constructor. Oregon registered geologist or professional engineers
	I accept responsibility for the construction, deepening, alteration, or abandonment
Temperature °F Lab analysis Yes By	work performed during the construction dates reported above. All work performed
Supervising Geologist/Engineer	during this time is in compliance with Oregon geotechnical hole construction standards. This report is true to the best of my knowledge and belief
Water quality concerns? Yes (describe below) TDS amount From To Description Amount Units	The state of the s
Description	
	First Name MARTIN Last Name HAUN Affiliation ESN-NW

GEOTECHNICAL HOLE REPORT - Map with location identified must be attached and shall include an approximate scale and north arrow

MULT 112527

3/13/2013

Map of Hole

STATE OF OREGON GEOTECHNICAL HOLE REPORT (as required by OAR 690-240-0035)

(1) OWNER/PROJECT Hole Number B-1	Face and A. North Property
PROJECT NAME/NBR: P3146	(9) LOCATION OF HOLE (legal description)
First Name Last Name	County MULTNOMAH Twp 1.00 S N/S Range 1.00 E E/W WM
Company HUFFCO	Sec 2 NW
Address 15019 SW RIVERSIDE DR	Lat ° " or DMS or DD
City VANCOUVER State WA Zip 98683	Long On DMS or DD
(2) TYPE OF WORK New Deepening Abandonment Alteration (repair/recondition)	Street address of hole Nearest address 1006 SE GRAND AVE, PORTLAND, OR 97215
(3) CONSTRUCTION Rotary Air Hand Auger Hollow stem auger	(10) STATIC WATER LEVEL
Rotary Mud Cable Push Probe	Date SWL(psi) + SWL(ft) Existing Well / Predeepening
(4) TYPE OF HOLE:	WATER BEARING ZONES Flowing Artesian? Depth water was first found
Uncased Temporary Cased Permanent	SWL Date From To Est Flow SWL(psi) + SWL(ft)
Uncased Permanent Slope Stablity	
Other	
Other	
(5) USE OF HOLE	(11) SUBSURFACE LOG Ground Elevation
(3) USE OF HOLE	
SOIL SAMPLES	Material From 10 asphalt 0 0.33
	fine silt 0.33 19
	gravel 19 34
(6) BORE HOLE CONSTRUCTION Special Standard Attach copy	
(6) BORE HOLE CONSTRUCTION Special Standard Attach copy Depth of Completed Hole 34 00 ft	
BORE HOLE SEAL sacks	
Dia From To Material From To Amt lbs 2.25 0 34 Other 0 2 0.1 S	
2.25 0 34 Other 0 2 0.1 S Bentomte Chips 2 34 1.5 S	
	Date Started 5/20/2013 Completed 5/20/2013
Backfill placed from ft. to ft. Material	(12) ABANDONMENT LOG:
Filter pack from fl. to ft. Material Size	sacks/ Material From To Amt lbs
/E) CASING/SCREEN	Other 0 2 0.1 S
(7) CASING/SCREEN	Bentonite Chips 2 34 1.5 S
Casing Screen Dia + From To Gauge Stl Plstc Wld Thrd	
8 9 H H H 8 9 H H	
R A H B A H B A H H	
(8) WELL TESTS	Date Started 5/20/2013 Completed 5/20/2013
Pump Bailer Air Flowing Artesian	Date Started <u>5/20/2013</u> Completed <u>5/20/2013</u>
Yield gal/min Drawdown Drill stem/Pump depth Duration(hr)	Professional Certification (to be signed by an Oregon licensed water or
	morntomics well constructor, Oregon registered, geologist or professional engineer)
	I accept responsibility for the construction, deepening, alteration, or abandonment
Temperature "F Lab analysis Yes By	work performed during the construction dates reported above. All work performed
Supervising Geologist/Engineer	during this time is in compliance with Oregon geotechnical hole construction standards. This report is true to the best of my knowledge and belief
Water quality concerns? Yes (describe below) TDS amount From To Description Amount Units	
10 Description Amount Chits	
	First Name TYLER Last Name DAY
	Affiliation CASCADE DRILLING

STATE OF OREGON GEOTECHNICAL HOLE REPORT (as required by OAR 690-240-0035)

(1) OWNER/PROJECT Hole Number B-1B	
PROJECT NAME/NBR: P3146	(9) LOCATION OF HOLE (legal description)
First Name Last Name	County MULTNOMAH Twp 1.00 S N/S Range 1.00 E E/W WM
Company HUFFCO	Sec 2 NW 1/4 of the SE 1/4 Tax Lot 1300
Address 15019 SW RIVERSIDE DR.	Tax Map Number Lot Lat " or DMS or DD
City VANCOUVER State WA Zip 98683	Lat or or DMS or DD Long or or DMS or DD
(2) TYPE OF WORK New Deepening Abandonment	Street address of hole Nearest address 1006 SE GRAND AVE.
(3) CONSTRUCTION	PORTLAND, OR 97215
Rotary Air Hand Auger Hollow stem auger Rotary Mud Cable Push Probe	(10) STATIC WATER LEVEL Date SWL(psi) + SWL(fi) Existing Well / Predeepening
Other	Completed Well 5/20/2013 31
2 434 4 5777	Flowing Artesian?
(4) TYPE OF HOLE:	WATER BEARING ZONES Depth water was first found
Uncased Temporary Cased Permanent Slope Stablity Other	SWL Date From To Est Flow SWL(psi) + SWL(fi) 5/20/2013 30 36 31
Other	
TALLED A DECISION AS	
(5) USE OF HOLE	(11) SUBSURFACE LOG Ground Elevation
SOIL AND WATER SAMPLES	Material From To
SOIL AND WATER SAMELES	asphalt 0 0.33
	fine silt 0.33 19 gravel 19 36
	Aut.
Depth of Completed Hole 36.00 ft	
Backfill placed from fi. to fi. Material Filter pack from fi. to fi. Material Size	(12) ABANDONMENT LOG: sacks/
A second	Material From To Amt Ibs Other 0 2 0.1 S
(7) CASING/SCREEN	Bentonite Chips 2 36 1.5 S
Casing Screen Dia + From To Gauge Stl Plstc Wld Thrd	
8 9 H H 1 1 1 1 9 9 H H	
RAHHHHRAHH	
(8) WELL TESTS	Date Started 5/20/2013 Completed 5/20/2013
Pump Bailer Air Flowing Artesian Yield gal/min Drawdown Drill stem/Pump depth Duration(hr)	
Treid garrini Diawdown Dini stenorump deput Duranon(m)	Professional Certification (to be signed by an Oregon licensed water or
	trionitoring well constructor. Oregon registered, geologist or professional engineer)
Temperature 58 °F Lab analysis Yes By	I accept responsibility for the construction, deepening, alteration, or abandonment
Temperature 58 °F Lab analysis Yes By Supervising Geologist/Engineer	work performed during the construction dates reported above. All work performed during this time is in compliance with Oregon geotechnical hole construction
Water quality concerns? Yes (describe below) TDS amount	standards. This report is true to the best of my knowledge and belief.
From To Description Amount Units	License/Registration Number 10586 Date 7/19/2013
	First Name TYLER Last Name DAY Affiliation CASCADE DRILLING

STATE OF OREGON GEOTECHNICAL HOLE REPORT (as required by OAR 690-240-0035)

(1) OWNER/PROJECT Hole Number B-2	
PROJECT NAME/NBR: P3146	(9) LOCATION OF HOLE (legal description)
First Name Last Name	County MULTNOMAH Twp 1.00 S N/S Range L00 E E/W W
Company HUFFCO	Sec 2 NW 1/4 of the SE 1/4 Tax Lot 1300
Address 15019 SW RIVERSIDE DR	Tax Map Number Lot
City VANCOUVER State WA Zip 98683	Lat " or DMS or DI
(2) TYPE OF WORK New Deepening Abandonment	Street address of hole Nearest address
Alteration (repair/recondition)	1006 SE GRAND AVE, PORTLAND, OR 97215
(3) CONSTRUCTION	(10) STATIC WATER LEVEL
Rotary Aur Hand Auger Hollow stem auger Rotary Mud Cable Push Probe	Date SWL(psi) + SWL(ft)
Rotary Mud Cable Push Probe	Existing Well / Predeepening Completed Well 5/20/2013 30.5
Other	Flowing Artesian?
(4) TYPE OF HOLE:	WATER BEARING ZONES Depth water was first found
Uneased Temporary Cased Permanent	SWL Date From To Est Flow SWL(psi) + SWL(ft)
Uneased Temporary Cased Permanent Uneased Permanent Slope Stablity	5/20/2013 30 31 30.5
Other	
Other:	
5000	
(5) USE OF HOLE	(11) SUBSURFACE LOG Ground Elevation
COM AND IN ADDRESS OF A PRINTED	Material From To
SOIL AND WATER SAMPLES	asphalt 0 0.33
	fine silt 0.33 19
	gravel 19 31
Dia From To Material From To Amt Ibs 2.25 0 31 Other 0 2 0.1 S	
2.25 0 31 Other 0 2 0.1 S Bentonite Chips 2 31 1.5 S	Date Started 5/20/2013 Completed 5/20/2013 (12) ABANDONMENT LOG:
Other 0 2 0,1 S Bentonite Chips 2 31 1.5 S	Date Started 5/20/2013 Completed 5/20/2013 (12) ABANDONMENT LOG: sacks/
Dither 0 2 0,1 S	Date Started 5/20/2013 Completed 5/20/2013 (12) ABANDONMENT LOG:
Dither 0 2 0,1 S	Date Started 5/20/2013 Completed 5/20/2013 (12) ABANDONMENT LOG: Material From To Amt Jbs
Dither 0 2 0,1 S	Date Started 5/20/2013 Completed 5/20/2013
Dither 0 2 0,1 S	Date Started 5/20/2013 Completed 5/20/2013
	Date Started 5/20/2013 Completed 5/20/2013
	Date Started 5/20/2013 Completed 5/20/2013
	Date Started 5/20/2013 Completed 5/20/2013
Dither 0 2 0,1 S	Date Started 5/20/2013 Completed 5/20/2013
Dither 0 2 0,1 S	Date Started 5/20/2013 Completed 5/20/2013
Dither 0 2 0,1 S	Date Started 5/20/2013 (12) ABANDONMENT LOG: Material From To Amt Ibs Other 0 2 0.1 S Bentonite Chips 2 31 1.5 S Date Started 5/20/2013 Date Started 5/20/2013 Completed 5/20/2013
Dither 0 2 0,1 S	Date Started 5/20/2013
Dither 0 2 0,1 S	Date Started 5/20/2013 Completed 5/20/2013
Backfill placed from ft to ft Material Filter pack from ft to ft Material Size (7) CASING/SCREEN Casing Screen Din + From To Gauge Stl Plste Wld Thrd	Date Started 5/20/2013 Completed 5/20/2013 (12) ABANDONMENT LOG: Material From To Amt Ibs Other 0 2 0.1 S Bentonite Chips 2 31 1.5 S Date Started 5/20/2013 Completed 5/20/2013 Professional Certification (w he signed by an Oregon licensed water manuoring well constructor, Oregon registered geologist or professional enginee I accept responsibility for the construction, deepening, alteration, or abandoning
Backfill placed from ft to ft Material Filter pack from ft to ft Material Size (7) CASING/SCREEN Casing Screen Din + From To Gauge Stl Plste Wld Thrd	Date Started 5/20/2013 Completed 5/20/2013 (12) ABANDONMENT LOG: Material From To Amt Ibs Other 0 2 0.1 S Bentonite Chips 2 31 1.5 S Date Started 5/20/2013 Completed 5/20/2013 Professional Certification (to be signed by an Oregon licensed water menutoring well constructor, Oregon registered geologist or professional enginee I accept responsibility for the construction, deepening, alteration, or abandoning work performed during the construction dates reported above. All work performed
Backfill placed from	Date Started 5/20/2013 Completed 5/20/2013 (12) ABANDONMENT LOG: Material From To Amt Ibs Other 0 2 0.1 S Bentonite Chips 2 31 1.5 S Date Started 5/20/2013 Completed 5/20/2013 Professional Certification (to be signed by an Oregon licensed water monitoring well constructor, Oregon registered geologist or professional enginee I accept responsibility for the construction, deepening, alteration, or abandoning work performed during the construction dates reported above. All work performed during this time is in compliance with Oregon geotechnical hole construction during this time is in compliance with Oregon geotechnical hole construction.
Backfill placed from	Date Started 5/20/2013 Completed 5/20/2013 (12) ABANDONMENT LOG: Material From To Amt Ibs Other 0 2 0.1 S Bentonite Chips 2 31 1.5 S Date Started 5/20/2013 Completed 5/20/2013 Professional Certification (to be signed by an Oregon licensed water monitoring well constructor, Oregon registered geologist or professional enginee I accept responsibility for the construction, deepening, alteration, or abandoning well professional designed by the construction dates reported above. All work performed during this time is in compliance with Oregon geotechnical hole construction standards. This report is true to the best of my knowledge and belief
Backfill placed from	Date Started 5/20/2013 Completed 5/20/2013 (12) ABANDONMENT LOG: Material From To Amt Ibs Other 0 2 0.1 S Bentonite Chips 2 31 1.5 S Bentonite Chips 2 31 1.5 S Date Started 5/20/2013 Completed 5/20/2013 Professional Certification (w he signed by an Oregon licensed water monitoring well constructor, Oregon registered geologist or professional enginee I accept responsibility for the construction, deepening, alteration, or abandoning work performed during the construction dates reported above. All work perform during this time is in compliance with Oregon geotechnical hole construction standards. This report is true to the best of my knowledge and belief License/Registration Number 10586 Date 7/19/2013
Backfill placed from	Date Started 5/20/2013 Completed 5/20/2013 (12) ABANDONMENT LOG: Material From To Amt Ibs Other 0 2 0.1 S Bentonite Chips 2 31 1.5 S Date Started 5/20/2013 Completed 5/20/2013 Professional Certification (to be signed by an Oregon licensed water monitoring well constructor, Oregon registered geologist or professional enginee I accept responsibility for the construction, deepening, alteration, or abandoning well professional designed by the construction dates reported above. All work performed during this time is in compliance with Oregon geotechnical hole construction standards. This report is true to the best of my knowledge and belief

STATE OF OREGON GEOTECHNICAL HOLE REPORT (as required by OAR 690-240-0035)

(1) OWNER/PROJECT Hole Number B-3	
PROJECT NAME/NBR: P3146	(9) LOCATION OF HOLE (legal description)
First Name Last Name	County MULTNOMAH Twp 1.00 S N/S Range 1,00 E E/W WM
Company HUFFCO	Sec 2 NW 1/4 of the SE 1/4 Tax Lot 1300
Address 15019 SW RIVERSIDE DR.	Tax Map Number Lot Lat " or DMS or DD
City VANCOUVER State WA Zip 98683	Lat or or DMS or DD Long or or DMS or DD
(2) TYPE OF WORK New Deepening Abandonment Alteration (repair/recondition)	Street address of hole Nearest address 1006 SE GRAND AVE, PORTLAND, OR 97215
(3) CONSTRUCTION	(10) STATIC WATER LEVEL
Rotary Air Hand Auger Hollow stem auger Rotary Mud Cable Push Probe Other	Date SWL(psi) + SWL(ft) Existing Well / Predeepening Completed Well
	WATER READING ZONICS Flowing Artesian?
(4) TYPE OF HOLE:	SWL Date From To Est Flow SWL(ft) + SWL(ft)
Uncased Temporary Cased Permanent Uncased Permanent Slope Stablity Other	SWE Date From TO ESTEROW SWE(DSI) 7 SWE(II)
Other	
AN LINE OF HOLE	(11) SUBSURFACE LOG Ground Elevation
(5) USE OF HOLE	
SOIL SAMPLES	Material From To asphalt 0 0.33
	fine silt 0.33 19
	gravel 19 20
BORE HOLE SEAL Sacks	Date Started 5/20/2013 Completed 5/20/2013
Backfill placed from ft. to ft. Material Size	(12) ABANDONMENT LOG: Sacks/ Material From To Amt Ibs
(7) CASING/SCREEN	Other
Casing Screen Dia + From To Gauge Stl Plstc Wld Thrd	
(8) WELL TESTS	
Pump Bailer Air Flowing Artesian	Date Started <u>5/20/2013</u> Completed <u>5/20/2013</u>
Yield gal/min Drawdown Drill stem/Pump depth Duration(hr) Temperature °F Lab analysis Yes By Supervising Geologist/Engineer	Professional Certification (to be signed by an Oregon licensed water of monitoring well constructor, Oregon registered geologist or professional engineer) I accept responsibility for the construction, deepening, alteration, or abandonment work performed during the construction dates reported above. All work performed during this time is in compliance with Oregon geotechnical hole construction standards. This report is true to the best of my knowledge and belief.
Water quality concerns? Yes (describe below) TDS amount From To Description Amount Units	License/Registration Number 10586 Date 7/19/2013
	First Name TYLER Last Name DAY Affiliation CASCADE DRILLING

Map of Hole

WRO

OREGON SITE MAP

Cascade Project No.

P3146

Bid Number 7718

Oregon Water Resources Department (OWRD) requires completion of a Geotechnical Hole Report if any of the following apply

- · Geotechnical hole is greater than 18 feet deep;
- Within 50 feet of a water supply or monitoring well;
- . Used to make a determination of water quality:
- . Constructed in an area of known or reasonably suspected comamination.

In order to comply with OWRD requirements, please provide a Site Map

Map shall include an approximate scale, north arrow. Upon completion of well activities, a site map with each well location clearly identified must be filed with each Geotechnical Hole Report (OR 690-240-035).

Thank You for your information and assistance on compliance with Oregon Administrative Rules.

Yoursales B. 3 Bewoods MUST PROVIDE SCALE Site Address: 1006 SE GRAND AVENUE, PORTLAND, DR CHUGWATER, LLC Date: