DECEMBER 2023 PROJECT NO. 222194-200

DRAFT

MARION COUNTY

Wastewater Facilities Planning Study

Mill City/Gates WWFPS

PREPARED BY

KELLER ASSOCIATES, INC. 245 Commercial St. SE Suite 210 Salem, OR 97301 (503) 364-2002 PREPARED FOR

OREGON Marion County - Public Works Dept. 5155 Silverton Road, NE Bldg. 1 Salem, OR 97305 (503) 930-8502

TABLE OF CONTENTS

ACRONYMS & ABBREVIATIONS

CHAPTER 1 - PROJECT PLANNING	1-1
1.1. Location	1-1
1.2. Environmental Resources Present	1-1
1.3. Population Trends	1-4
1.4. Community Engagement	1-5
1.5. Regulatory Requirements	1-5
1.6. North Santiam River Water Quality	1-6
1.7. Effluent Reuse Regulations	1-7
1.8. Expected Discharge Permit Requirements	
1.9. Biosolids	1-9
CHAPTER 2 - EXISTING FACILITIES	2-1
2.1. Treatment System Overview	2-1
2.2. Location Map	2-1
2.3. History	2-1
2.4. Condition Of Existing Facilities	2-2
2.5. Existing Collection System Inventory	2-18
2.6. Model Development	2-20
2.7. Model Calibration	2-21
2.8. Existing Collection System Evaluation	2-22
2.9. Treatment Plant Operations	2-24
2.10. Financial Status Of Existing Facilities	2-24
2.11. Water/Energy/Waste Audits	2-24
CHAPTER 3 - NEED FOR SYSTEM IMPROVEMENTS	3-1
3.1. Health, Sanitation, Environmental Regulations, And Security	3-1
3.2. Collection System Regulatory And Evaluation Criteria	3-2
3.3. Aging Infrastructure	3-4
3.4. Reasonable Growth	3-4
CHAPTER 4 - ALTERNATIVES CONSIDERED	4-1
4.1. Treatment Alternatives Considered	4-1
4.2. Collection System Alternatives	4-25
CHAPTER 5 - SELECTION OF AN ALTERNATIVE, TREATMENT	5-1
5.1. Life Cycle Cost Analysis And Alternatives Selection	5-1
5.2. Non-Monetary Factors	

SELECTION OF AN ALTERNATIVE, COLLECTION	5-12
5.3. Gates / Mill City Alternative Selected Alternative	5-12
5.4. Spring Street Growth Selected Alternative	5-13
CHAPTER 6 - PROPOSED PROJECTS	6-1
6.1. Preliminary Project Design	6-1
6.2. Project Schedule	6-8
6.3. Sustainability Considerations	6-9
6.4. Future Reuse Considerations	6-10
6.5. Total Project Cost Estimate	6-10
6.6. Annual Operating Budget	6-12
CHAPTER 7 - CONCLUSIONS AND RECOMMENDATIONS	7-1
7.1. Treatment Phasing And Startup Considerations	7-1
7.2. Construction Sequencing	7-2
7.3. Subconsultant Roles And Coordination	7-3
7.4. Conclusions And Next Steps	7-3

LIST OF FIGURES

Figure 1-1: Study Area1-1
Figure 1-2: Projected Population (Gates And Mill City Combined)
Figure 2-1: Study Area2-1
Figure 2-2: Mill City WPCF2-3
Figure 2-3: Mill City's Water Pollution Control Facility2-3
Figure 2-4: Mill City's Filter2-4
Figure 2-5: Monthly Average Flow Vs. Rainfall (MMDWF₁₀ And MMWWF₅)
Figure 2-6: Flow Vs. Rainfall (PDAF₅)2-8
Figure 2-7: Flow Vs. Probability (PIF₅)2-9
Figure 2-8: WPCF Maximum Daily Flow2-13
Figure 2-9: WPCF Influent Bod Concentrations2-14
Figure 2-10: WPCF Monthly Average Influent TSS And TKN Concentrations
Figure 2-11: WPCF Influent O&G Concentrations2-15
Figure 2-12: WPCF Effluent BOD And TSS Concentrations
Figure 2-13: WPCF Effluent Nitrate Concentrations2-16
Figure 2-14: Resulting RDIi Inflow Curve2-21
Figure 2-15: Existing Peak Day Flow Velocities2-22
Figure 2-16: Existing Peak Day Max Depth Over Fulld Epth
Figure 3-1: Current WPCF Nitrate And Ammonia Effluent Concentrations
Figure 3-2: Study Area Growth Areas3-5

Figure 4-1: Sequencing Batch Reactor Treatment System4-2
Figure 4-2: Oxidation Ditch Treatment System4-3
Figure 4-3: Membrane Bioreactor Treatment System4-4
Figure 4-4: Screen Alternatives4-6
Figure 4-5: Grit Removal Technologies4-6
Figure 4-6: Lift Station Configuration Alternatives4-7
Figure 4-7: UV Disinfection Alternatives4-9
Figure 4-8: Denitrification Filter4-11
Figure 4-9: Rapid Infiltration Basins4-12
Figure 4-10: Sludge Dewatering Alternatives4-15
Figure 4-11 Current WPCF Process Flow Diagram4-20
Figure 4-12 Future WPCF Process Flow Diagram4-21
Figure 4-13: Gates/Mill City Force Main Alternatives4-27
Figure 4-14: Sring Street Alternatives4-30
Figure 6-1: Recommended WPCF Flow Diagram6-3
Figure 6-2: Fairview Ave Force Main Extension6-4
Figure 6-3: Alder Street Upsizing6-6
Figure 6-4: Spring Street Basin Trunkline Upsize6-7
Figure 6-5: Future Sewer Basin Near Remine Road6-8

LIST OF TABLES

Table 1-1: Summary Of NSC Land Use	1-2
Table 1-2: Willamette Basin TMDL Temperature Criteria	1-3
Table 1-3: PSU Historic Population Data (Gates And Mill City Combined)	1-4
Table 1-4: Projected Population (Gates And Mill City Combined)	1-4
Table 1-5: Reuse Requirements By Effluent Category	1-7
Table 1-6: Expected Discharge Requirements	1-9
Table 2-1: Monthly Average Flow Vs. Rainfall (MMDWF10 And MMWWF5)	2-7
Table 2-2: Mill City Historical Flows	2-10
Table 2-3: Gates Historical Flows	2-10
Table 2-4: Mill City Historical Loads	2-12
Table 2-5: WPCF Permit Requirements	2-12
Table 2-6: Design Capacity Vs. Current Influent	2-17
Table 2-7: Lift Station Inventory	2-19
Table 2-8: Gravity Pipeline Inventory	2-19
Table 2-9: Existing Peak Inflow Vs. Firm Capacities	2-23
Table 3-1: Recommended Minimum Pipe Slopes	3-3

Table 3-2: Growth Area Details	3-5
Table 4-1: RIB Sites Measured Infiltration Rates	4-12
Table 4-2: Groundwater Pollutant Modeling Summary	
Table 4-3: Mill City Historical Flow Data	4-16
Table 4-4: Additional EDU Projections (Gates And Mill City Combined)	4-17
Table 4-5: Establishments In Gates And Minimum Suggested Sewage Flows	4-17
Table 4-6: Projected Design Flow Criteria (Gates And Mill City Combined)	4-18
Table 4-7: Unit Loading For Mill City Existing Connections	4-19
Table 4-8: Unit Loadings Applied To Future Connections	4-19
Table 4-9: Projected Design Loadings (Gates And Mill City Combined)	4-20
Table 4-10: Environmental Impacts Summary	4-23
Table 4-11: Gates / Mill City Design Criteria	4-27
Table 4-12: Gates / Mill City Alternatives Environmental Impacts	4-28
Table 5-1:Secondary Treatment Options Advantages And Disadvantages	5-1
Table 5-2: Secondary Treatment Life Cycle Cost Analysis	5-2
Table 5-3: Headworks Screening Options Advantages And Disadvantages	5-3
Table 5-4: Headworks Screening Life Cycle Cost Analysis	5-4
Table 5-5: Headworks Grit Removal Options Advantages And Disadvantages	5-5
Table 5-6: Headworks Grit Removal Life Cycle Cost Analysis	5-5
Table 5-7: Influent Lift Station Options Advantages And Disadvantages	5-6
Table 5-8: Influent Lift Station Life Cycle Cost Analysis	5-7
Table 5-9: Disinfection Options Advantages And Disadvantages	5-8
Table 5-10: Disinfection Life Cycle Cost Analysis	5-8
Table 5-11: Solids Handling Options Advantages And Disadvantages	5-9
Table 5-12: Solids Handling Life Cycle Cost Analysis	5-10
Table 5-13: Rapid Infiltration Basin Sizes At Different Disposal Sites	
Table 5-14: Mill City/Gates Alternative Cost Estimates	5-12
Table 5-15: Spring Basin Alternative Costs	5-13
Table 6-1: Prioritization Criteria	6-1
Table 6-2: WPCF Design Criteria	6-1
Table 6-3: Gates Lift Station Details	6-5
Table 6-4: NSCSP Priority 1 Costs	6-11
Table 6-5: Priority 2 And 3 Project Costs	6-12
Table 6-6: Treatment System Annual O&M Costs Summary	6-13
Table 6-7: Collection System Short-Lived And Long-Lived Assets	
Table 6-8: WPCF Short-Lived Assets	6-14

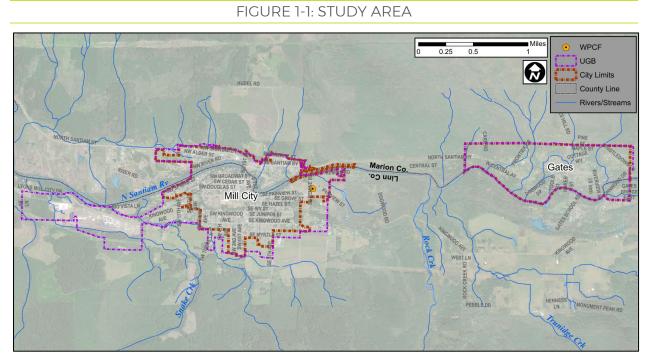
LIST OF APPENDICES

- Appendix A Full Size Figures
- Appendix B NOAA Atlas
- Appendix C Financial Statements
- Appendix D Pump Testing Results
- Appendix E Alternative Cost Estimates
- Appendix F Annual Costs
- Appendix G Conceptual Project Design
- Appendix H Current WPCF Influent Analysis
- Appendix I GSI Report
- Appendix J Agency Permitting and Approvals

ACRONYMS, ABBREVIATIONS, AND SELECTED DEFINITIONS

AACE	Advancement of Cost Engineering	NOAA	National Oceanic and Atmospheric
AADF	average annual daily flow		Administration
AAGR	average annual growth rate	NPDES	National Pollution Discharge
ADL	average daily load		Elimination System
ADWF	average dry weather flow	NSC	North Santiam Canyon
AWWF	average wet weather flow	NSSA	North Santiam Sewer Authority
bgs	below ground surface	NTU	Nephelometric turbidity units
BLM	Bureau of Land Management	0	Oxidized
BMP	Biosolids Management Plan	O&G	oil and grease
BOD₅	5-day biochemical oxygen demand	OAR	Oregon Administrative Rules
CCTV	closed circuit television	ODOT	Oregon Department of
CFR	Code of Federal Regulations		Transportation
CWA	Clean Water Act	OH&P	overhead and profit
D	Disinfection	O&M	operation and maintenance
DO	dissolved oxygen	ORVs	Outstandingly Remarkable Values
d/D	existing depth of full depth	PDAF5	peak daily average flow (5 years)
DI	ductile iron	PERs	preliminary engineering reports
DEQ	Oregon Department of	PIF	peak instantaneous flow
	Environmental Quality	PLC	programmable logic controller
DMR	Discharge Monitoring Report	ppd	pounds per day
DSL	Division of State Lands	POC	pollutant of concern
EDU	equivalent dwelling unit	PSU	Portland State University
EPA	Environmental Protection Agency	PVC	polyvinyl chloride
EQC	Environmental Quality Commission	PWDS	Public Works Design Standards
F	Filtration	PWkF	peak week flow
ft	feet/foot	RAS	, return activated sludge
FEMA	Federal Emergency Management	RCP	reinforced concrete pipe
	Agency	RDII	rainfall-derived infiltration and inflow
gpm	gallons per minute	RIBs	rapid infiltration basins
G&O	grease and oil	RGF	recirculating gravel bed filter
GM	geometric mean	RO	reverse osmosis
GMP	guaranteed maximum price	RPA	reasonable potential analysis
GPD	gallons per day	ROW	right of way
HDPE	high density polyethylene	SBR	sequencing batch reactors
hp	horsepower	SCADA	supervisory control and data
hr	hour	-	acquisition
1/1	infiltration and inflow	SCFM	standard cubic feet per minute
LS	lift station	SDC	System Development Charge
LWI	Local Wetlands Inventory	SHPO	State Historic Preservation Office
mg/L	million gallon per liter	SLR	solids loading rate
ml	milliliter	SOCs	synthetic organic compounds
MBRs	membrane bioreactors	SP	sample point
MGD	million gallons per day	STEG	septic tank effluent gravity
MMDWF	maximum monthly dry weather flow	STEP	septic tank effluent pumped
MML	maximum month load	TIN	total inorganic nitrogen
MMWWF	maximum monthly wet weather flow	TKN	total Kjeldahl nitrogen
		TMDL	total maximum daily load
		· · · · -	

TN	total nitrogen
TRC	Technical Review Committee
TSS	total suspended solids
UGB	urban growth boundary
US	United States
UV	ultraviolet
VOCs	volatile organic compounds
VFD	variable frequency drive
WAS	waste activated sludge
WLOTC	warning letter with opportunity to
	correct
WPCF	water pollution control facility
WWADL	wet weather average daily load
WWF	wet weather flow
WWMDL	wet weather maximum daily load
WWMMDL	wet weather maximum month daily
	load
WWTP	wastewater treatment plant



CHAPTER 1 - PROJECT PLANNING

This chapter provides an overview of the study area which includes the Cities of Mill City and Gates, associated environmental resources present, population projections, and regulatory requirements unique to the North Santiam Canyon.

1.1. LOCATION

The study area includes the cities of Mill City and Gates in the North Santiam Canyon located in Linn and Marion Counties, Oregon. Mill City is approximately 33 miles east of the City of Salem along State Highway 22, and Gates is approximately 3 miles east of Mill City. The North Santiam River is the boundary between Marion and Linn County, and approximately 70% of the study population resides in Linn County and 30% in Marion County. Figure 1-1 shows the study area with current city limits for Mill City and Gates. A full-size figure of the study area is shown in Figure 1-1 in Appendix A.

1.2. ENVIRONMENTAL RESOURCES PRESENT

An inventory of existing environmental resources was compiled to consider the environmental impacts of this master plan. The factors analyzed in this section include land use/prime farmland, floodplains, wetlands, cultural resources, coastal resources, and socio-economic conditions.

1.2.1. Land Use

A summary of land use in Mill City and Gates is shown in Table 1-1 below. Most of the property within the NSC communities is zoned for residential uses. Approximately 10% of land use in both Mill City and Gates is commercial zoning, mainly along North Santiam Highway 22. Mill City also has a significant amount of land designated for industrial zoning, about 27%, and 10% or less each of Public, Planned Development, Urban Transitional, Farm/Agricultural, and Forest Conservation zoning. Gates has approximately 6% of land use designated as Industrial and 1% set aside as Urban Transitional. The land use is illustrated in Figure 2 in Appendix A.

	Mill City		Mill City Gates		Gates
Zone Designation	Acres	% of Total	Acres	% of Total	
Commercial	78.1	10.1%	30.7	9.0%	
Industrial	207.6	26.8%	21.5	6.3%	
Residential	375.2	48.4%	287.3	83.8%	
Public	73.7	9.5%	-	-	
Planned Development	14.7	1.9%	-	-	
Urban Transitional	7	0.9%	3.4	1.0%	
Farm/Agricultural	11.9	1.5%	-	-	
Forest Conservation and Management	6.9	0.9%	-	-	
Total Acreage	775.1	-	342.9	-	

TABLE 1-1: SUMMARY OF NSC LAND USE

1.2.2. Floodplains

The Federal Emergency Management Agency (FEMA) publishes flood insurance studies that classify land into different flood zone designations. As shown in Figure 3 (Appendix A), some portions of the study area are located inside the 100-year and 500-year floodplains of the North Santiam River and some of its tributary creeks. The topography is also shown in Figure 3 in Appendix A.

1.2.3. Wetlands

The Oregon Department of State Lands (DSL) keeps an inventory of the local wetlands created for areas in Oregon. Mill City had a local wetland inventory (LWI) approved on 12/16/2011. U.S. Fish and Wildlife National Wetlands Inventory was used to determine the wetland areas that could potentially be impacted. The map of delineated wetlands from the LWI and National Wetlands Inventory is shown in Figure 4 (Appendix A).

1.2.4. Cultural Resources

The State Historic Preservation Office (SHPO) maps above-ground cultural resources on their website. Maps developed from the SHPO website for Mill City and Gates are shown in Figure 5 (Appendix A). SHPO also keeps track of underground cultural resources. They only provide information from their database to professional archaeologists, with one exception; They will provide information for small project areas if provided the complete legal description of the project location, a United States Geological Survey (USGS) map of the project area, and a description of the project and ground disturbance. SHPO should be consulted as part of the environmental / design process of any proposed recommendation.

1.2.5. Biological Resources

The Bureau of Land Management (BLM) lists the endangered, threatened, and sensitive species for districts in the state. The communities in the NSC lie within the BLM's Northwest Region.

Species listed as federally threatened or federally endangered in this region include Marbled Murrelet, Streaked Horned Lark, Northern Spotted Owl, Coho Salmon, Steelhead, Chinook Salmon, Pacific Eulachon, Bull Trout, Golden Paintbrush, Willamette Daisy, Water Howellia, Bradshaw's Desert Parsley, Kincaid's Lupine, Nelson's Checkermallow, Taylor's Checkerspot, Fender's Blue Butterfly, and the Oregon Silverspot Butterfly.

1.2.6. Water Resources

The communities within the NSC have an abundance of surface and groundwater resources. The largest surface water resource is the North Santiam River itself, stretching 92 miles from its origin high in the Cascade Mountains to where it joins the South Santiam River just south of Jefferson. The North Santiam River basin drains approximately 766 square miles of land; and serves as a drinking water source, wildlife habitat, and recreation area. The North Santiam River provides the source water for more than 225,000 people per day, with most of those users located downstream of the canyon communities and outside of the North Santiam River watershed. The North Santiam River basin is subject to the Three Basin Rule (OAR 340-041-0350), which currently prohibits new surface wastewater discharge permits. The National Parks Service classifies the North Santiam River as a scenic river and has Outstandingly Remarkable Values (ORVs) for scenery, recreation, and fish.

The City of Gates uses the North Santiam River as their primary drinking water source. Mill City historically used the North Santiam River as its sole drinking water source until it switched to two groundwater wells within the city limits in 2005. Both wells are subject to a wellhead protection area that will need to be considered in all future developments.

The North Santiam River subbasin is part of the Willamette Basin Total Maximum Daily Load (TMDL) that was approved by the EPA on September 29, 2006, and administered by the Oregon Department of Environmental Quality (DEQ). None of the NSC communities are currently required to manage for the TMDL. Chapters 4 and 8 of the TMDL pertain to the North Santiam subbasin and describe the methodology of developing the temperature TMDL for the rivers within the subbasin. The temperature criteria for the North Santiam River are shown in Table 1-2 below:

TABLE 1-2: WILLAMETTE BASIN TMDL TEMPERATURE CRITERIA

River Mile	Season	Criteria
0 to 10	September 1 - June 30	Spawning: 12.8 °C
10 to 26.5	September 15 - June 30	Spawning: 12.8 °C
0 to 10 Summer		Rearing: 17.8 °C

All river miles in the table are downstream of the City of Stayton.

1.2.7. Coastal Resources

There are no coastal areas within the study area.

1.2.8. Socio-Economic Conditions

According to the U.S. Census Bureau, the population in Marion County is primarily (67.4%) Caucasian and Hispanic or Latino is the second most common, making up 27.7% of the population. Based on the 2019 ACS 5-year Estimates Data, the Marion County median household income was 59,625 in 2019. The Mill City median household income was \$53,243 in 2019 and 60,434 in 2021. The population in Linn County is primarily (83.7%) Caucasian with Hispanic or Latino being the second most common, making up 9.8% of the population. The Linn County median household income was \$55,893 in 2019. It is anticipated that income in the communities in the NSC falls well below the county-wide median household income.

1.2.9. Miscellaneous Issues

Other environmental resources considered were air quality and soils. The study area is not located in an area designated as an air maintenance or nonattainment area by DEQ. Soils maps are provided in Figure 6 (Appendix A); soils in Gates and Mill City are typically loamy but can vary widely.

1.3. POPULATION TRENDS

Population is generally a considerable constraint on economic growth. In the case of the NSC communities, the population is growing slowly or, depending on the community, declining. In the City of Gates, new residential developments are limited by the minimum lot sizes needed to facilitate the construction of privately owned, on-site septic systems and drain fields. Mill City's zoning code permits residential development on smaller residential lots; minimum lot sizes are 5,000 SF and 7,500 SF. These lots without private septic systems are connected to the city's Water Pollution Control Facility (WPCF). The treatment plant is at capacity, which precludes addition of future connections to the existing WPCF. The aforementioned population growth, minimum lot size, and WPCF capacity hinders the development of new residential, commercial or industrial facilities in the NSC. Table 1-3 shows the combined population growth in Mill City and Gates over the past 40 years as recorded by Portland State University (PSU). Historically, the cities of Mill City and Gates have seen an overall average growth rate of 0.41% since 1980. Over the past 20 years the average growth rate has been 0.85%.

TABLE 1-3: PSU HISTORIC POPULATION DATA (GATES AND MILL CITY COMBINED)

Year	Population	Growth Rate
1980	2,020	-
1990	2,054	0.17%
2000	2,010	-0.22%
2010	2,326	1.47%
2020	2,381	0.23%

Mill City is experiencing challenges with allowing new construction because the existing WPCF is nearing capacity. Residents in the City of Gates maintain private, individual septic systems with the exception of trailer parks, motels and apartment/multifamily housing that are typically served by shared septic systems. The capacity to develop additional housing in Mill City and Gates is desired to allow new residents to move in, promote economic growth, and recover from recent wildfires. The populations of Mill City and Gates were projected through 2070 using the most recent population forecasts published by PSU's population research center. Table 1-4 and Figure 1-2 below provide the population projections.

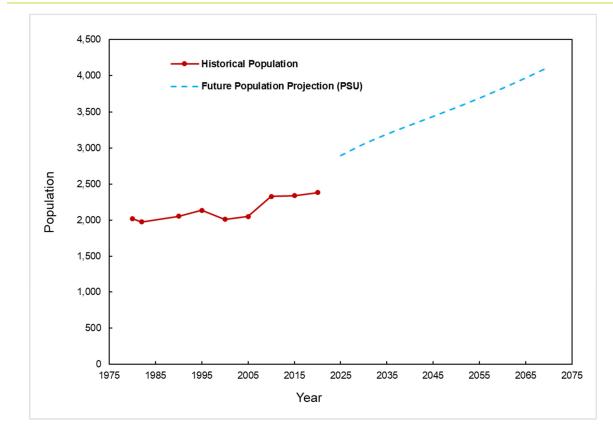

It is typical for a planning study to establish the 20-year planning period for treatment systems which will be established as the 2045 population. The collection system, however, should consider a longer planning period due to the longer useful life of collection system pipelines and because of the difficulty with increasing the capacity of a collection system mainline once installed. For this reason, the 50-year population projection was used as the planning period for the collection system and corresponds to the 2070 projected population.

TABLE 1-4: PROJECTED POPULATION (GATES AND MILL CITY COMBINED)

Year	PSU Projection
2025	2,896
2030	3,056
2035	3,193
2040	3,318
2045	3,439
2070	4,124

FIGURE 1-2: PROJECTED POPULATION (GATES AND MILL CITY COMBINED)

1.4. COMMUNITY ENGAGEMENT

Internal communication efforts include Technical Review Committee (TRC) meetings and North Santiam Sewer Authority (NSSA) Board meetings. External communication efforts include meeting with Oregon Department of Environmental Quality (DEQ) representatives as well as public townhall meetings.

1.5. REGULATORY REQUIREMENTS

Keller Associates had several conversations with DEQ regarding the Three Basin Rule. A new surface water discharge (NPDES permit) would not be allowed without a significant waiver from the Environmental Quality Commission (EQC). There is currently no process or mechanism for DEQ staff or the EQC to provide a waiver. An action of this type would need to involve the state legislature. The first step would be for the Sewer Authority to request the EQC to add this item to their agenda for consideration.

The DEQ may issue a WPCF permit for a new domestic sewage treatment facility in accordance with the Three Basin Rule, contingent on the following terms: **1) THERE IS NO WASTE** (waste meaning any discharge that requires an NPDES permit, WPCF permit, or 401 Certification) **DISCHARGE TO SURFACE WATER**; 2) all groundwater protection requirements of OAR 340-040-0030 are met; and 3) the Environmental Quality Commission (EQC) finds that the new domestic sewage treatment facility provides a preferable means of disposal compared to the current means of disposal. A preferable means must meet one of the following three criteria:

There are a significant number of failing individual collection systems that would be replaced by the new domestic treatment facility that cannot be repaired adequately or cost effectively,

- > The impact of all individual treatment systems to groundwater is greater than the anticipated impact of the new sewage treatment facility, or
- If an individual, or several, on-site collection system(s) would not normally be utilized (e.g., the system is frequently hydraulically overloaded due to flows exceeding the design flow of the system), a new sewage treatment facility may be allowed if the social and economic benefits outweigh the possible environmental impacts.

Applications for domestic wastewater WPCF permits must also not include wastes that would incapacitate the treatment system; be operated or supervised by a certified wastewater treatment plant operator per OAR 340-049-0005 (however, may be exempt per OAR 340-049-0075); and provide annual written certification of proper treatment and disposal system operation from a qualified Registered Sanitarian, Professional Engineer, or certified wastewater treatment system operator.

Once the DEQ has reviewed a domestic wastewater WPCF permit application, drafted a permit, and allowed the required time for public comment, the draft permit is placed before the EQC. The EQC serves as the DEQ's policy and rulemaking board and reviews all WPCF permits related to the Three Basin Rule. It is a five-member committee appointed by the governor, composed of citizens with backgrounds in politics, education, engineering, finance, etc. that serve four-year terms. The EQC will review the draft WPCF permit and may have additional comments or questions that need to be addressed. The EQC must approve the final WPCF permit.

1.6. NORTH SANTIAM RIVER WATER QUALITY

This section discusses some of the potential parameters that could be regulated based on the water quality in the North Santiam River if discharge were allowed. The Clean Water Act (CWA) and Oregon antidegradation policies (OAR 340-04-0004)) would be the main rules for compliance. The beneficial uses of the North Santiam River are: public domestic water supply, private domestic water supply, industrial water supply, livestock watering, anadromous fish passage, salmonid fish spawning, resident fish and aquatic life, fishing and hunting, salmonid fish rearing, water contact recreation, irrigation, wildlife, boating, aesthetic quality, and hydropower. Fecal coliform bacteria and turbidity have been concerns with the river's water quality in the past, but those issues are not likely to drive additional regulations for treatment for the North Santiam.

Dissolved Oxygen

The North Santiam River subbasin has stream segments that are listed under the CWA 303(d) list for dissolved oxygen. Currently, there is not a TMDL for the subbasin. There is potential for a TMDL to be developed in the future, but the timeline and if a TMDL would impact discharge limits are unknown at this time.

The discharge would have a 5-day biochemical oxygen demand (BOD₅) limit. Usually this is technology-based effluent limits based on the Basin Standards of OAR 340-041, but further evaluation of the water quality may lead to more stringent limits.

Temperature

The temperature requirements are set by the TMDL on the North Santiam River. The requirements are derived from a waste load allocation (WLA).

<u>рН</u>

There are pH requirements for the North Santiam River, which require the pH to be between 6.5 and 8.5 at the edge of the mixing zone of any surface water discharge to the river. pH requirements would likely be similar for effluent discharged to groundwater from the future WPCF.

Ammonia

In August 2015, EPA approved revisions to Oregon's ammonia water quality standards for the protection of aquatic life. This standard indicates that mussels and snails are the most sensitive species to ammonia. DEQ did not adopt criteria for ammonia, based on the absence of snails/mussels, but current information indicates that they are (or historically were) present throughout most of Oregon. DEQ did not preclude the development of site-specific criteria. A reasonable potential analysis (RPA) could be performed to indicate if a limit would be likely. In other words, could the discharge cause or contribute to harming the water quality of the receiving body of water.

Nutrients and Algae

Nitrogen and phosphorus are the typical concerns for nutrient impaired receiving water bodies. The North Santiam River subbasin is not currently water quality limited for nutrients. However, Detroit Lake has experienced blue-green algae (cyanobacteria) blooms. The algae can produce toxins that are unsafe for domestic consumption.

Other Toxic Pollutants

Any discharges must be evaluated for toxic pollutants of concern (POCs) that might cause an exceedance of the water quality standard in the receiving water body. The current water quality criteria for aquatic toxicity are listed in OAR 340-41 pollutant Tables 20, 33A and 33B, and for human health water quality criteria in OAR 340-41 pollutant Table 40. Mercury is a contaminate of concern throughout the Willamette Basin, of which the North Santiam River is a subbasin.

1.7. EFFLUENT REUSE REGULATIONS

Land application or subsurface disposal is governed by recycled water regulations, as outlined in OAR 340-055. OAR 340-055 defines five categories of effluent, identifies allowable uses for each category, and provides requirements for treatment, monitoring, public access, and setback distances. Fewer restrictions are imposed for higher-quality effluent, as shown in Table 1-5. For recycled water use, groundwater must be protected in accordance with the requirements of OAR 340-040.

	Class A	Class B	Class C	Class D	Non-disinfected
Treatment ¹	O,D,F	O,D	O,D	O,D	0
Total coliform, 7-day median #/100 mL	2.2 ²	2.2 ²	23 ³	_ 4	Per permit
Turbidity, NTU	2	-	-	-	
Public access ⁵		Limited	Limited	Controlled	Prevented
Setback to property line 6		10 feet	70 feet	100 feet	Per permit
Setback to water supply source		50 feet	100 feet	100 feet	150 feet

TABLE 1-5: REUSE REQUIREMENTS BY EFFLUENT CATEGORY

¹ O = oxidized, D = disinfection, F = filtration, RWUP = Recycle Water Use Permit
 ² Must not exceed 23 total coliform organisms per 100 milliliters (ml) in any single sample
 ³ Must not exceed 240 total coliform organisms per 100 ml in any two consecutive samples
 ⁴ Rather than total coliform, Class D Recycled Water is required to sample for E. coli. E. coli is a subgroup of the total coliform organisms, so a total coliform analysis includes the E. coli organisms. For Class D Recycled Water, the 30-day log mean must not exceed 126 E. coli organisms per 100 ml; and must not exceed 406 E. coli organisms per 100 ml in a single sample
 ⁵ Limited public access: no direct contact during irrigation cycle
 ⁶ Sprinkler irrigation assumed

1.8. EXPECTED DISCHARGE PERMIT REQUIREMENTS

The expected effluent discharge requirements are based on several criteria, namely the need to protect surface and groundwater in the NSC, as well as design requirements of disposal technologies such as groundwater recharge through rapid infiltration. Generally, constituents of greatest concern in wastewater are BOD₅, TSS, ammonia, nitrate, and total coliform levels. Treatment of these constituents are taken into account both to protect NSC groundwater quality as well as ensure proper functioning of the effluent disposal system through rapid infiltration.

 BOD_5 and TSS levels are of greatest concern for long term functioning of groundwater recharge through effluent disposal systems such as rapid infiltration, as higher concentrations can lead to more plugging of the soil, thus reducing their effective capacity. For proper functioning of infiltration basins, treated effluent sent for disposal should not exceed a monthly average of 30 mg/L for both BOD_5 or TSS, as well as 200 col/100 ml of fecal coliform.¹

Ammonia and nitrate (summed to give total inorganic nitrogen, TIN) levels are of greatest concern for groundwater quality, and the permitted effluent is expected to be in-line with groundwater requirements and the Three Basin Rule. Specifically, this would mean that discharged effluent does not degrade groundwater quality, and that constituents of concern in wastewater effluent would not significantly contribute to levels above background concentration by the time they exit the property boundary in the groundwater table. Ammonia and nitrate would be treated to low levels to ensure these requirements are met.

While there are no requirements for the level of nitrate in discharged effluent from the current WPCF in Mill City, it is assumed that there will be strict requirements on nitrate discharged from the future WPCF per groundwater protection rules and to ensure protections associated with the Three Basin Rule. Keller has developed the preliminary expected discharge requirements listed in Table 1-6 based on groundwater quality requirements of the Three Basin Rule, OAR 340-040-0030, as well as the limits of technology with regards to nitrogen removal in wastewater treatment. It would not be possible to reliably remove ammonia to lower than 1 mg/L as N based on average monthly samples due to the reliable limits of technology. Nitrate can be reliably removed to 5 mg/L with the secondary treatment processes proposed in Chapter 4. Where permit limits require lower nitrate levels, tertiary treatment would be required. This additional process could reliably treat wastewater to an average nitrate limit of 1 mg/L through utilization of denitrifying sand filters.

¹ Müşerref Türkmen, Edward F. Walther, A. Scott Andres, Anastasia A.E. Chirnside, William F. Ritter. 2008. *Evaluation of Rapid Infiltration Basin Systems For Wastewater Disposal: Phase I.* Newark: Delware Geological Survey, University of Delware.

TABLE 1-6	EXPECTED	DISCHARGE	REQUIREMENTS
-----------	----------	-----------	--------------

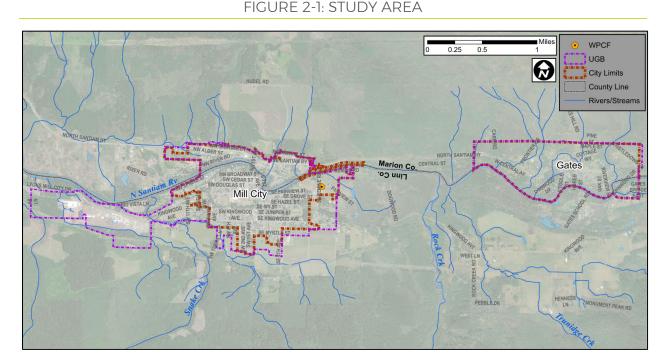
Parameter	Limit	Sample Type
BOD₅ (mg/L)	20	Average Monthly
TSS (mg/L)	20	Average Monthly
Ammonia (mg/L N)	1*	Average Monthly
Nitrate (mg/L N)	5**	Average Monthly
Total Coliform (Organisms/100mL)	23	Daily Maximum
рН	6.5-8.5	Minimum-Maximum

* Represents approximately 93-99% removal based on 2022 monthly influent data

** If required, tertiary treatment could be added to bring effluent nitrate levels to 1 mg/L

1.9. BIOSOLIDS

Both federal and state regulations apply to land application of biosolids from wastewater treatment plants. Title 40 of the Code of Federal Regulations, Part 503 (40 CFR §503) discusses standards for the use and disposal of biosolids. Oregon regulations include OAR 340-050, which were most recently revised in July 1995. They reference many of the federal technical biosolids regulations (40 CFR §503), including limits on trace pollutants and pathogens. Under state regulations, a Biosolids Management Plan (BMP) and Land Application Plan are required. Note that land application of biosolids is not anticipated to be a part of this project.


CHAPTER 2 - EXISTING FACILITIES

This chapter presents a description of Mill City's existing sewer collection and treatment systems, an evaluation of existing facilities, performance, and capacity, and references the valuation of the existing assets and liabilities.

2.1. TREATMENT SYSTEM OVERVIEW

The Mill City water pollution control facility (WPCF) was originally constructed in 1992. The facility is a recirculating gravel bed filter (RGF) treatment system consisting of a metering flume, static screen, recirculation and storage tank, gravel filter feed pumps, gravel filter, a splitter box, effluent pumps, and drainage fields located just south of the North Santiam River on the east side of Mill City. The system wide wastewater treatment process employs a combination of onsite treatment units located on individual properties using interceptor and septic tank systems, followed by dilution, equalization, and storage in the recirculation tank, followed by pumping through the recirculating gravel filter for treatment, and disposal via the drainage fields. Six disposal units are in operation at all times, with six held in reserve. Each disposal unit has three drainage fields (A, B, and C) that are dosed with treated effluent at the same time.

2.2. LOCATION MAP

2.3. HISTORY

The City of Mill City is the only city in the study area that operates a community sanitary sewer system. The majority of the collection and treatment system was built in 1992. In 2009, all three collection system pump stations were replaced, as well as some treatment system components. In 2010, a wastewater O&M manual was produced by CH2M Hill to document Mill City's wastewater collection, treatment, and disposal facilities, permit requirements, as well as the system upgrades completed in 2009.

Residents in the City of Gates maintain private, individual septic systems, with the exception of the trailer parks, motels and apartment/multi-family housing that are typically served by shared septic systems. The most recent sanitary survey was performed in 1999 by Edgewater Environmental, which presented the following information regarding the condition of the on-site sewage systems.

At the time of the study, there were 192 dwelling units within the city. Due to historical permitting processes for Marion County, and Gates, septic permits could not be located, and the sizes of the systems could not be determined. A local septic tank pumping contractor, however, did indicate that there were no chronic repeat customers (more than one pump-out per year) in Gates.

The results of the survey included 105 septic systems, 88 were found to be operational/ satisfactory, 10 marginal, and 7 failing. 87 systems were not able to be surveyed, where the condition remains unknown. The results of water sampling in nearby creeks and ditches were inconclusive in determining if failing septic systems had caused groundwater contamination in the City.

Keller Associates produced a Regional Wastewater Analysis in 2017 and a North Santiam Sewer Authority Wastewater Master Plan in 2021 to provide a feasible approach and associated cost for wastewater facilities serving communities in the NSC.

2.4. CONDITION OF EXISTING FACILITIES

This section provides an evaluation of existing conditions and capacity of the Mill City wastewater collection and treatment systems and updates the 2021 master plan existing flows and loadings based on two new years of DMR data (2021 and 2022).

2.4.1. Wastewater System Management, Classification, Operators and License

Permit Number 100696 has been issued to the City of Mill City by the State of Oregon to discharge a maximum of 185,000 gallons per day of treated wastewater effluent by subsurface disposal. The required operator classification for both the collection system and treatment systems is Grade I.

Influent to the treatment system shall not exceed 300 mg/L BOD₅, 25 mg/L grease and oil (G&O), 150 mg/L TSS, and 150 mg/L TKN. Effluent from the treatment system to the drainage fields is not to exceed 20 mg/L BOD₅, or 20 mg/L TSS.

 NO_3 -N at sample point (SP) 2 shall not exceed the background results at SP1. SP1 was established upstream from the disposal fields and downstream from a point in the river perpendicular to the Boy Scout Camp disposal field. SP2 was established at the foot of the boat ramp near Monitoring Well 1 (MW 1). SP3 is located between 50 and 100 ft downstream from SP2.

2.4.2. Existing Treatment Plant Conditions

The WPCF is located adjacent to Kimmel Park on Remine Road. Mill City's WPCF (Figure 2-2) consists of influent flow monitoring, a recirculation/equalization tank (with two compartments), a recirculating gravel filter, and disposal drain fields. The influent flow is measured in the influent Parshall flume. Following the flume, the influent passes through a static screen into the recirculation/equalization tank. The screen is cleaned manually. Filter feed pumps transport the wastewater from the recirculation/equalization tank to the gravel filter. A biofilm on the gravel filter treats the wastewater. After passing through the filter, approximately 80% of the filtrate water is recirculated in the recirculation/equalization tank back to the gravel filter. The remaining 20% is routed to the effluent pumps. Manual slide gates are used to adjust and control the flow to the effluent pumps. The effluent pumps dispose of the treated wastewater in the City's drain fields.

 WPCF Property
 Fisting Gravel Bed

 Fisting Drain Field - Header Brade Laterals Installed in Deckenour Pattern, Show
 Existing Recirculation

FIGURE 2-2: MILL CITY WPCF

FIGURE 2-3: MILL CITY'S WATER POLLUTION CONTROL FACILITY

Automatic samplers collect the influent and effluent wastewater samples. The influent sample is taken from the influent flow metering manhole. The effluent sample is taken from the effluent pump chamber. The samples are sent to Waterlab Corporation (Salem, OR) for testing. Solids from the WPCF are periodically removed from the recirculation/equalization tank and disposed of by a licensed sewage disposal service. The removal frequency is approximately every five years. Odorous air is drawn from the influent metering manhole, energy absorption manhole, and recirculation/equalization tank influent chamber and are treated using a biofilter. A permanent diesel generator with an automatic transfer switch is installed at the WPCF for use in the event of power loss. The City's SCADA system monitors the collection system pump stations and WPCF. Backup power at each connection is not necessary as most discharge by gravity with a small group of STEP systems. These STEP systems provide some storage. During a prolonged power outage, this may require limiting wastewater discharge by users or providing backup power to STEP users.

The pumps, composite samplers, biofilter, and Parshall flume ultrasonic level sensor were replaced in 2009. Most of the current issues at the WPCF are electrical. Several of the electrically actuated valves in the drain field failed and were replaced recently. The wiring and relays in the control room burned out and were also recently replaced. The PLC and operating software was replaced in August 2023. The heater in the WPCF Office is also broken. Most recently, the bearings on the odor control blower have failed, as well as a seal of one of the effluent pumps. In general, the equipment is wearing down and requires more expensive repairs.

The City of Mill City received a warning letter with opportunity to correct (WLOTC) following a DEQ site visit in June 2023. The following deficiencies were noted by DEQ during the inspection and upon review of the discharge monitoring reports for the last three years:

- > Effluent was found to be ponding on the surface of the recirculating gravel filter.
- Effluent was found to be leaking from piping penetrating the concrete wall of the recirculating gravel filter and discharging onto the ground surface.
- Maximum daily design flow was exceeded on Dec 21, 2020, and January 6 & 7, 2022.

FIGURE 2-4: MILL CITY'S FILTER

> Deficiencies

- o The recirculating gravel filter pools with influent.
- o Untreated influent leaks from piping penetrating the gravel filter concrete walls.
- Maximum daily flows have been exceeded several times over the past 3 years.
- The office heater is broken.

Keller and the City are working with DEQ staff to address the issues listed above.

2.4.3. Historical Flows

The existing sanitary sewer system in Mill City is comprised of septic tank effluent gravity (STEG) and septic tank effluent pumped (STEP) systems. The STEP/STEG system is comprised of small diameter pipes that transport effluent from residential septic tanks to gravity collection mains. These mains have very few manholes, instead utilizing smaller clean outs and inspection ports. As seen in the following analysis of Mill City's existing STEG system, STEG systems generally have less infiltration and inflow (I/I) influence than a traditional gravity collection system, but more I/I influence than a septic tank effluent pumping (STEP) system.

The wastewater flow analysis looks at historic wastewater flows to develop flow projections for the planning period. This section summarizes results of the analysis of historical flows. Flow data came from discharge monitoring reports from 2016-2022 provided by Mill City. Rainfall data (2016-2022) is sourced from five different NOAA Stations. Two of the stations are in Mill City, two of the stations are in Gates, and one of the stations is near the Detroit dam.

Average Annual Daily Flow (AADF)

The average annual daily flow (AADF) is the average daily flow for the entire year. An AADF was calculated for each year of data. The years with a complete data set (2016-2022) were averaged to obtain the design AADF.

Average Dry-Weather Flow (ADWF)

The average dry-weather flow (ADWF) is the average daily flow for the period of May through October. An ADWF was calculated for each year of data. The years with a complete data set (2016-2022) were averaged to obtain the design ADWF.

Average Wet-Weather Flow (AWWF)

The average wet weather flow (AWWF) was calculated as the average daily flow for the period encompassing January-April, and November-December for each year of data. Seven years' worth of data (2016-2022) was averaged to obtain the AWWF.

Max Month Dry-Weather Flow (MMDWF10)

The maximum monthly dry-weather flow (MMDWF₁₀) represents the month with the highest flow during the summer months. DEQ's method for calculating the MMDWF₁₀ is to graph the January through May monthly average flows for the most recent year against the total precipitation for each month. DEQ states that May is typically the maximum monthly flow for the dry-weather period (May through October). Selecting the May 90% precipitation exceedance most likely corresponds to the maximum monthly flow during the dry-weather period for a 10-year event. The May 90% precipitation exceedance value (8.47 inches) was extrapolated from the NOAA Summary of Monthly Normal from 1981 to 2010.

Data from 2016–2022 was used according to the DEQ guidance to produce Figure 2-5. Table 2-1 summarizes the data points illustrated in the chart.

Max Month Wet-Weather Flow (MMWWF5)

The maximum monthly wet-weather flow (MMWWF₅) represents the highest monthly average during the winter period. DEQ's method for calculating the MMWWF₅ is to graph the January through May average daily flows against the monthly precipitation. DEQ states that January is typically the maximum monthly flow for wet weather (November through April). Selecting the January 80% precipitation exceedance value most likely corresponds to the maximum monthly flow during the wet-weather period for a 5-year event. The January 80% precipitation exceedance value (17.24 inches) was extrapolated from the NOAA Summary of Monthly Normal from 1981 to 2010. The DEQ method and MMWWF₅ result are illustrated in Figure 2-5 and summarized in Table 2-1.

FIGURE 2-5: MONTHLY AVERAGE FLOW VS. RAINFALL (MMDWF10 AND MMWWF5)

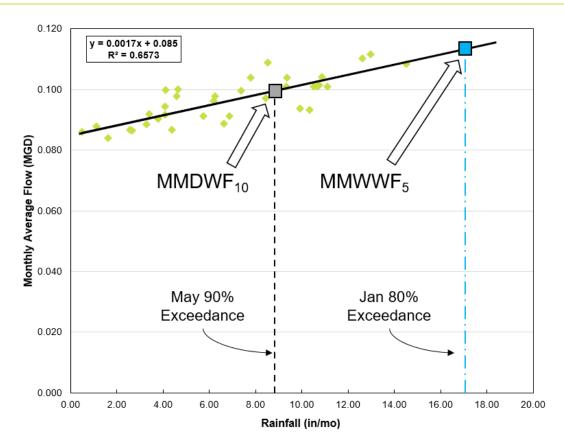


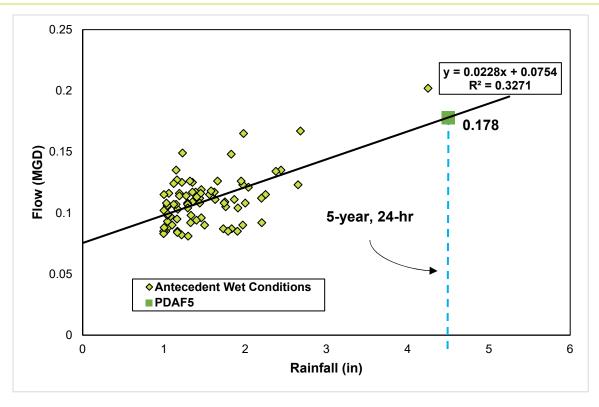
TABLE 2-1: MONTHLY AVERAGE FLOW VS. RAINFALL (MMDWF10 AND MMWWF5)

Mauth	Monthly Average Flow (MGD)						Rainfall (in/mo)							
Month	2016	2017	2018	2019	2020	2021	2022	2016	2017	2018	2019	2020	2021	2022
January	0.093	0.104	0.104	0.092	0.101	0.104	0.109	10.4	9.4	7.8	4.1	10.7	10.9	8.5
February	0.096	0.108	0.100	0.101	0.100	0.110	0.089	6.2	14.5	4.1	9.3	4.7	12.6	3.3
March	0.097	0.112	0.098	0.090	0.091	0.098	0.089	8.4	13.0	6.2	3.8	5.7	4.6	6.6
April	0.087	0.102	0.100	0.101	0.092	0.088	0.094	4.4	10.7	7.4	10.5	3.4	1.1	9.9
Мау	0.084	0.094	0.086	0.087	0.091	0.086	0.101	1.6	4.1	0.5	2.6	6.9	2.7	11.1
MMDWF ₁₀				0.099							8.47			
MMWWF ₅	0.114							17.24						

Peak Week Flow (PWkF)

The peak week flow (PWkF) was calculated using a 7-day rolling average for each year. The maximum of all the year PWkF values was used as the PWkF.

Peak Daily Average Flow (PDAF₅)


As outlined by the DEQ, the peak daily average flow (PDAF₅) corresponds to a 5-year storm event (DEQ Flow Projection Guidelines¹). The DEQ's method for determining PDAF₅ is plotting daily plant flow against daily precipitation for significant storm events, using data only for wet-weather seasons when groundwater is high. The PDAF₅ is the 5-year, 24-hour storm event (4.5 inches per the NOAA isopluvial maps for Oregon (Appendix B)) from a trend line fitted to the data. A significant storm event was considered more than 1-inch of rainfall in 24-hours. Antecedent conditions were evaluated on a case-by-case basis, and wet conditions were assumed if any day in the preceding three had a storm event of 0.5-inches or larger. Data was also considered based on cumulative rainfall for 30 days before the storm event. The cutoff for 30-day cumulative rainfall (for purposes of this analysis) was 4.5-inches. Figure 2-6 below shows the results of the DEQ analysis.

An analysis per the DEQ method using data from 2016-2022 resulted in a PDAF₅ of 0.178 MGD. The peak daily average flow observed in discharge monitoring reports (DMR) data was 0.221 MGD in 2022. The observed flow of 0.221 MGD was used for the design PDAF₅ flow.

¹ Oregon Department of Environmental Quality. (n.d.). *Guidelines for Making Wet-Weather and Peak Flow Projections for Sewage Treatment in Western Oregon*. State of Oregon.

FIGURE 2-6: FLOW VS. RAINFALL (PDAF₅)

Peak Instantaneous Flow (PIF₅)

The peak instantaneous flow (PIF₅) represents the peak flow recorded at the WPCF. The DEQ recommends evaluating hourly or instantaneous flow data for high-flow days if available. Mill City does not record instantaneous flow data. As an alternative, DEQ recommends estimating PIF₅ by extrapolation. A probability graph, where the PIF₅ was extrapolated from a known PDAF₅ was produced. Figure 2-7 shows the results.

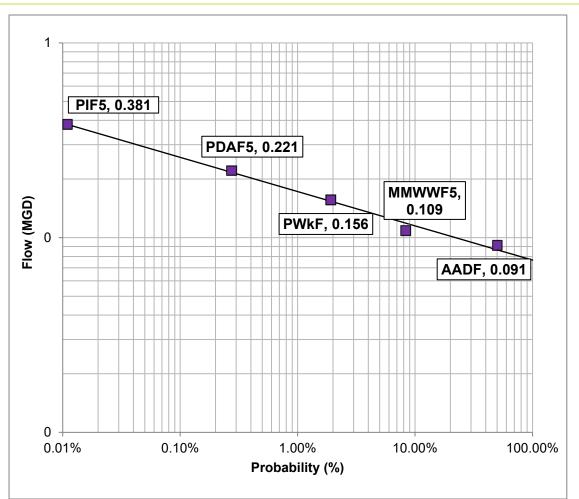


FIGURE 2-7: FLOW VS. PROBABILITY (PIF₅)

Per the DEQ extrapolation method, the PIF₅ was found to be 0.381 MGD. However, if both the Spring Street and 1st street lift stations are pumping at the same time, the actual PIF₅ is approximately 0.52 MGD (Table 2-7). Section 4-2 provides additional discussion regarding pump station vs. calculated peak instantaneous flows.

Table 2-2 summarizes the observed flows in Mill City for each year from 2016-2022. The historical flows were derived as described in the preceding paragraphs.

	Mill City Historical Flows (MGD)										
Year	2016	2017	2018	2019	2020	2021	2022	Average			
Population	1,860	1,860	1,865	1,880	1,894	1,965	2,007	-			
ADWF	0.087	0.089	0.086	0.085	0.088	0.086	0.087	0.087			
MMDWF ₁₀	0.100	0.097	0.089	0.089	0.092	0.092	0.101	0.094			
AADF	0.092	0.097	0.092	0.089	0.092	0.094	0.091	0.093			
AWWF	0.097	0.105	0.098	0.093	0.097	0.103	0.095	0.098			
MMWWF ₅	0.110	0.114	0.105	0.102	0.104	0.116	0.109	0.109			
PWkF	0.116	0.130	0.110	0.136	0.124	0.151	0.156	0.132			
PDAF₅	0.141	0.176	0.125	0.169	0.202	0.194	0.221	0.175			
PIF₅	0.228	0.284	0.201	0.272	0.326	0.313	0.381	0.283			

TABLE 2-2: MILL CITY HISTORICAL FLOWS

For Gates, the ADWF was estimated by averaging the community's wet weather water usage from the water system (January to March and November to December) and adjusting usage by the Mill City adjustment factor, 0.911 (NSC Wastewater Master Plan, 2021, Keller Associates). Table 2-3 provides the assumed wastewater flows for Gates based on their water system meter data.

TABLE 2-3: GATES HISTORICAL FLOWS

Gates Historical Flows (MGD)								
Year	2018	2019	2020					
Population	485	485	481					
ADWF	0.028	0.032	0.034					
AADF	0.030	0.035	0.037					
AWWF	0.032	0.037	0.039					
MMWWF₅	0.037	0.043	0.045					
PDAF₅	0.066	0.075	0.080					
PIF₅	0.102	0.116	0.123					

2.4.4. Historical Loading

Depending on the discharge location, a different level of treatment may be required. Key contaminants in wastewater that may need to be monitored and treated include the following:

5-day Biochemical oxygen demand (BOD₅): the amount of oxygen required by microorganisms to break down organic material in the wastewater. Higher BOD₅ concentrations in receiving waters will lead to a reduction in dissolved oxygen and will produce more microbes.

Total suspended solids (TSS): the total solids not dissolved in the wastewater. High TSS concentrations in receiving waters can be detrimental to water quality and aquatic life.

Nitrogen and Phosphorus: nutrients found in wastewater that can lead to poor water quality, growth of algae (which results in a reduction of dissolved oxygen) and can be toxic to aquatic life. Nitrogen is often found in organic compounds, as well as ammonia and nitrates. Total Kjeldahl Nitrogen (TKN) is a common measurement for wastewater nitrogen which includes organic nitrogen as well as ammonia.

Turbidity: this is the relative clarity of the water. The more turbid the water, the more likely there is inorganic and organic materials present.

E. Coli: bacteria commonly used as a marker to identify the number of pathogens in wastewater.

These contaminants, when not adequately treated, can be detrimental to water quality and aquatic life. Mill City's historical loading data (2016 to 2022) was analyzed. The wastewater influent loading analysis follows a similar methodology as was used for the influent flow determinations. However, Mill City utilizes a STEP/STEG system, and influent at the time of sampling has already undergone partial treatment in the septic tanks before entering the WPCF. Thus, the actual loading produced at each source is unknown.

The historical wastewater loading data was used to develop future loading projections for the planning period. An estimate was also made for influent loadings without a STEG or STEP system. This section summarizes the results of the BOD₅, TSS, and TKN load analysis. Dry weather (May 1 – October 31) and wet weather (November 1 – April 30) loads were evaluated. The following definitions summarize the terminology of the loading conditions:

Average Daily Load

The average daily load (ADL) is the average load during a period. The average daily load was calculated for both the 6-months of dry weather (DWADL) and the 6-months of wet weather (WWADL) for each year of data.

Maximum Month Load

The maximum month load (MML) is the month with the largest average daily load. The maximum month load was reported for both the 6-months of dry weather (DWMML) and the 6-months of wet weather (WWMML) for each year of data. The maximum month data is from the DMRs and represents the samples taken during the month rather than a 30-day rolling average.

The BOD₅, TSS, and TKN historical loadings (pounds per day (ppd)) observed in Mill City are summarized in Table 2-4.

Year	2016	2017	2018	2019	2020	2021	2022	Avg.	Max		
Population	1860	1860	1865	1880	1894	1965	2007	-	-		
	BOD₅ (ppd)										
WWADL	99.8	74.0	88.7	101.5	100.5	95.9	93.6	93.4	101.5		
WWMML	113.6	82.7	114.9	138.8	171.7	138.3	164.7	132.1	171.7		
DWADL	97.2	62.2	92.5	82.4	78.3	125.3	104.5	91.8	125.3		
DWMML	99.6	65.9	107.8	100.7	111.5	248.7	130.0	123.5	248.7		
	TSS (ppd)										
WWADL	30.2	25.4	28.7	30.0	22.7	26.9	21.94	26.6	30.2		
WWMML	31.4	30.4	34.1	35.6	44.5	37.2	32.62	35.1	44.5		
DWADL	36.3	21.5	30.2	29.3	25.0	34.0	28.26	29.2	36.3		
DWMML	41.1	25.2	47.0	40.1	36.8	72.7	46.79	44.2	72.7		
				TKN (pp	od)						
WWADL	36.8	35.8	39.9	41.9	40.9	39.5	40.3	39.3	41.9		
WWMML	46.1	39.8	46.0	44.0	51.1	51.4	57.4	48.0	57.4		
DWADL	46.1	35.6	40.3	42.0	34.2	57.1	50.1	43.6	57.1		
DWMML	46.8	36.4	46.5	53.7	47.3	100.3	56.3	55.3	100.3		

TABLE 2-4: MILL CITY HISTORICAL LOADS

2.4.5. Existing Treatment Plant Capacity

Mill City's current WPCF permit requirements are shown in Table 2-5.

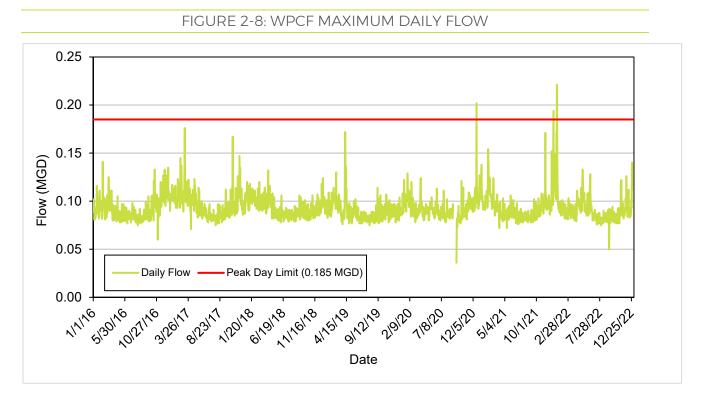
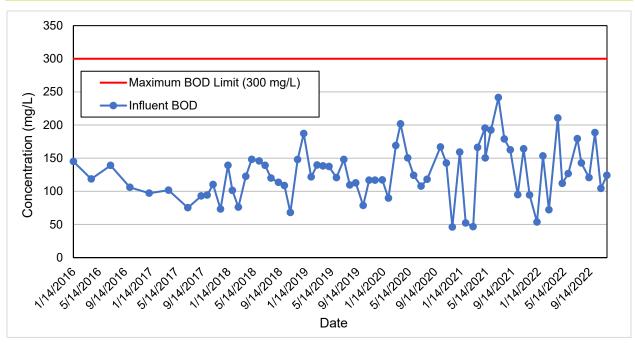
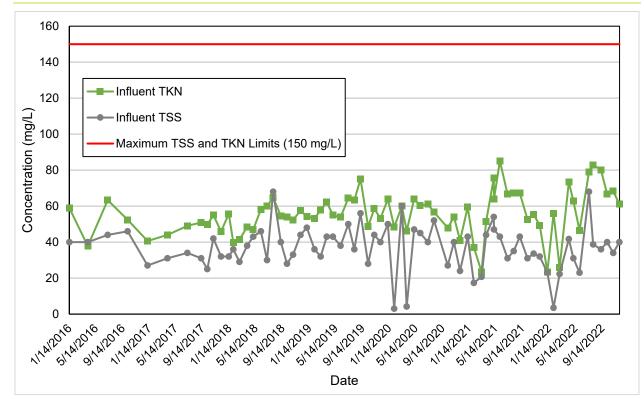

Parameter	Maximum Daily Limit
Influent Max. BOD₅ (mg/L)	300
Influent Max. O&G (mg/L)	25
Influent Max. TSS (mg/L)	150
Influent Max. TKN (mg/L)	150
Influent Flow (MGD)	0.185
Effluent Max. BOD₅ (mg/L)	20
Effluent Max. TSS (mg/L)	20

TABLE 2-5: WPCF PERMIT REQUIREMENTS

BOD5 = five-day biochemical oxygen demand
mg/L = milligrams per literTSS = total suspended solids
TKN = total Kjeldahl nitrogen
O&G = oil and grease


The City's WPCF data from 2016 through 2022 was analyzed as a part of this planning study. A comparison of the historical influent flow is compared to the WPCF permit conditions in Figure 2-8 below. From 2016 to 2022, with the exception of a few days, the WPCF was in compliance with influent flow permit requirements, with most of the flows well below 80% of the WPCF capacity. On December 21, 2020, Mill City received approximately 4.25 inches of rain and the influent flow was 0.202 MGD (0.017 MGD higher than the permit limit). The permitted influent limit was also violated on other occasions including December 21, 2021, when the flow reached 0.194 MGD, and on January 6 and 7, 2022, when the daily flows reached 0.221 and 0.187, respectively.


The influent concentrations of BOD₅, TKN, TSS, and O&G were in compliance with permit requirements as shown in Figure 2-9, Figure 2-10 and Figure 2-11. Since the collection system includes treatment that clarifies the wastewater, the influent TSS and BOD₅ measured at the WPCF are lower than typical domestic influent.

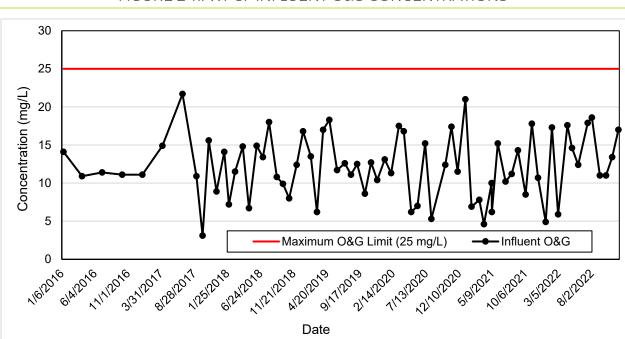
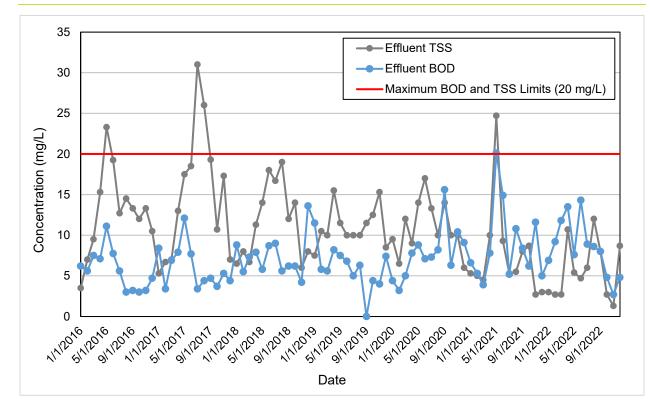


FIGURE 2-10: WPCF MONTHLY AVERAGE INFLUENT TSS AND TKN CONCENTRATIONS



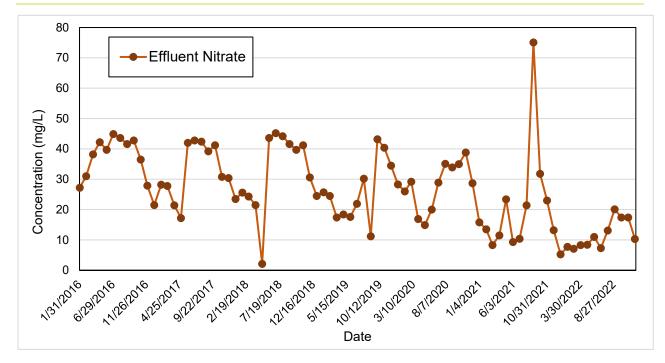

The Mill City WPCF effluent data for the years 2016 to 2022 is shown in Figure 2-12 and Figure 2-13.

FIGURE 2-12: WPCF EFFLUENT BOD AND TSS CONCENTRATIONS

There were several instances between 2016 and 2022 where effluent TSS concentrations exceeded permit limitations and one case in which effluent BOD_5 concentration exceeded the permitted limit. The Mill City WPCF operator believes the high TSS concentrations were a result of the gravel filter becoming clogged with organic material, as the filter is not covered.

FIGURE 2-13: WPCF EFFLUENT NITRATE CONCENTRATIONS

Table 2-6 compares the original rated capacity to current influent flows. Mill City's historical flows are discussed in Section 2.4.3. The rated capacity was established from the 1992 WPCF design documents. Planning flows have been updated from the 2021 WWMP utilizing new discharge monitoring report (DMR) data from 2021 and 2022.

Component	Permit Limit	2016-2022 Flows
Influent		
Average Annual Weather Flow (gpd)	92,500	93,000
Average Wet Weather Flow (gpd)	170,000	98,000
Peak Day Wet Weather Flow (gpd)	185,000	221,000
Influent Max Permitted Biochemical Oxygen Demand (BOD _{5,} mg/L)	300	242
Influent Max Permitted BOD₅ (lbs/day)	463	446
Recirculation/Equalization Tank		
Volume (gallons)	185,000	
Hydraulic Retention Time @ Peak Day Wet Weather Flow (hr)	24	28.7
Gravel Filter		
Surface Area (ft ²)	36,864	-
Average Dry Weather Hydraulic Loading (gal/ft²/day)	2.5	2.4
Average Wet Weather Hydraulic Loading (gal/ft²/day)	4.6	2.7
Peak Day Wet Weather Hydraulic Loading (gal/ft²/day)	5.0	6.0
Drainfield		
Area (acres)	10	
Design Max Hydraulic Loading (gal/ft/day)	12.5	5.7 (ADWF) 6.5 (AWWF) 14.6 (PDWWF)
Linear Feet	15,200	

TABLE 2-6: DESIGN CAPACITY VS. CURRENT INFLUENT

Based on historical flows and the historically rated WPCF design capacity, the recirculation/equalization tank and the gravel filter design flows are insufficient for the current peak

day wet weather flow occurrence in Mill City. The defined capacity of the drainage fields is also less than the observed peak day wet weather flows.

2.5. EXISTING COLLECTION SYSTEM INVENTORY

The collection system consists of a combination of gravity and pressure sewer lines and three lift stations. This section summarizes the lift station and pipeline characteristics.

2.5.1. Lift Stations

The collection system consists of three lift stations: River Road Lift Station (LS), First Avenue LS, and Spring Street LS. An inventory of the three lift stations is included in Table 2-7.

An in-depth conditions assessment of the lift stations was not included within the scope of this study; however, the lift stations were visited, and general observations were noted. There were no apparent deficiencies based on the site visits and the three lift stations appear to be in good working order. The Mill City operators did not report any historical issues with operation or capacity. Pump tests were completed while onsite to document current pumping capacities. The reported capacities presented in Table 2-7 represent the results from the pump testing. Pump curves and previous reported capacities indicate the current pumping capacity may be different than the original design flow rates. The wastewater system operations and maintenance (O&M) manual reports the firm capacity of the River Road LS, First Avenue LS, and Spring Street LS to be 60 gpm, 125 gpm, and 350 gpm respectively. The River Road LS is pumping at about 40 gpm higher than the previously reported capacity while the Spring Street LS is pumping about 120 gpm lower than the previously reported capacity. The First Avenue LS appears to be pumping at a consistent rate to its previously reported capacity. The discrepancy between the pumping capacities cannot be determined without additional investigation, however, some potential reasons could include, excess impeller wear, changing pipe roughness, incorrect pump curves, or oversized pump installation. For this study, the pumping capacities observed during the pump testing will be used as the reported capacity. The pump testing details are provided in Appendix D. It should be noted that Mill City replaced the existing pump controllers at each of the lift stations in September 2023 as a part of the short-term improvements identified in the previous master plan.

Additionally, each of the lift stations have an onsite generator with an automatic transfer switch in the event of a power outage. The lift stations have redundant level sensors and alarms. There are not any provisions for bypass pumping in the event of a line break, however the wetwell overflow pipeline consists of additional storage to allow for time to repair the lift station. The overflow volume and time to fill are also included in the table below.

Lift Station Name	River Rd Lift Station	First Ave Lift Station	Spring St Lift Station	
			Duplex; Submersible	
Type Year Constructed	Duplex; Submersible	Duplex; Submersible	•	
	1990	1990	1990	
Motor Size (HP)	7.5	10	20	
Reported Capacity (gpm) ¹	100	130	230	
Design Head (ft) ²	65	50	75	
Wetwell Diameter (ft)	8	8	10	
Wetwell Depth (ft) ³	11.8	9.7	15.75	
Lead Pump On (ft)	2.50	3.00	4.5	
Lead Pump Off (ft)	1.50	1.50	1.5	
Lag Pump On (ft)	2.75	3.50	n/a	
Lag Pump Off (ft)	1.75	1.75	n/a	
Overflow Level (ft) ⁴	6.2	5.25	8.25	
Level Indicator Type	Pressure Transducer	Pressure Transducer	Pressure Transducer	
Flow Meter (Y/N)	Yes	Yes	Yes	
Pressure Gauge (Y/N)	No	No	No	
Back-up Power	Yes, Onsite	Yes, Onsite	Yes, Onsite	
Transfer Switch	Automatic	Automatic	Automatic	
Odor/H2S Control	No	No	No	
Force Main Diameter (in)	4	4 to 8	8	
Force Main Length (ft) ⁵	1,900	5,300	5,850	
Overflow Storage (gal)	2,050	1,950	7,800	
Time to Fill Overflow (minutes) ⁶	361	134	156	
1) Reported capacities based on observe	ed pumping rates from April 2	023. Pump curves were not a	vailable.	
2) Design head calculated based on repo	orted capacity, elevation gain,	and major losses.		
3) From sump elevation to top of slab ele	vation.			
4) Distance from sump elevation to overf	low pipe invert.			

TABLE 2-7: LIFT STATION INVENTORY

5) Approximate length based on GIS.

6) Based on average annual flow rates within each lift station basin.

2.5.2. Pipelines

The collection system gravity pipes range in diameter from 4-inches to 8-inches. There are very few manholes throughout the system and most contain cleanouts. A summary of the pipeline sizes and material is shown in Table 2-8. The majority of the system's pipeline was installed at the same time in 1992. Areas that have developed since 1992 have connected into the existing collection system.

TABLE 2-8: GRAVITY PIPELINE INVENTORY

	Pipe Length (ft) (Rounded)									
	Material ¹	DI	HDPE	PVC	Not Specified	Total	% of Total			
(in)	4	600	0	50,600	500	51,700	86%			
	6	0	0	2,700	100	2,800	5%			
Diameter	8	0	0	5,700	0	5,700	9%			
Di	Total	600	0	59,000	600	60,200	100%			
	% of Total	1%	0%	98%	1%	100%	-			
1) DI	= Ductile Iron: HD	PE = High-Density	Polvethvlene: PVC	= Polvvinvl Chlorid	le					

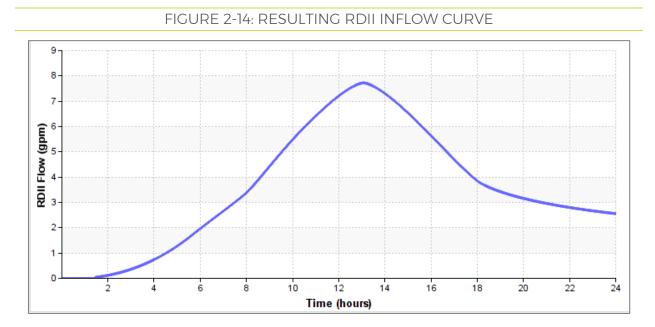
The collection system also consists of approximately 12,900 feet of pressure sewer pipe ranging in diameter from 2-inch to 8-inch. The pressure sewer pipe is primarily for conveying flows from lift stations to either the next gravity collection basin, or straight to the WPCF. There are some segments of the pressure sewer lines with service laterals connecting into it. These services have individual pumps which pump into the pressure mainlines.

2.6. MODEL DEVELOPMENT

A hydraulic model was developed to evaluate the existing and future collection system to identify potential bottlenecks and capacity deficiencies. InfoSWMM Suite 14.7 Update #2 was selected as the modeling software for this project. InfoSWMM is a fully dynamic model which operates in conjunction with Esri ArcGIS and allows for evaluation of complex hydraulic flow patterns. A variety of sources were used in developing the hydraulic model and are described below:

- <u>Pipes:</u> The record drawings from the collection system installation in 1992 were used as the primary source for developing the pipeline characteristics including diameter, slopes, connectivity, and manholes/cleanout locations. Record drawings from development that occurred since the original collection system installation were used to input the additional collection pipelines.
- <u>Pumps:</u> Some information from the original collection system record drawings were used to input lift station characteristics, however, major improvements were made to all three lift stations in 2009-2010. Record drawings from these improvements were the primary source for lift station characteristics including wetwell dimensions, elevations, overflow provisions, and connectivity. Pump curves for the lift stations were used to model the pumps, however, an adjusted pump curve was used for the Spring LS because the pump testing results were lower than what the pump curve suggests. The pumps were calibrated so the model outputs matched the pump test results. The Mill City operators provided the current operating setpoints (on/off settings) for each lift station and were used in the model.
- Flows: Several flow scenarios were included in the model evaluation and include the ADWF and the PDF₅. The ADWF's were assigned based on the lift station basins. More detailed flow data was unavailable; therefore, the lift station basin's flows were spread evenly across model junctions. Supervisory Control and Data Acquisition (SCADA) data was not available at the lift stations nor WPCF therefore no diurnal curve was developed specifically based on Mill City flows. A representative diurnal curve was developed based on flow data from the City of Stayton which is located approximately 20 miles to the west of Mill City. The diurnal curve was modified to match the peak flows identified in the planning criteria. Rainfall-derived infiltration and inflow (RDII) flows were assigned to junctions based on representative sewer sheds. The RDII characteristics were adjusted to match the expected peak flows. Additional discussion regarding the flow analysis will be discussed in the next section.

It is important to note that one of the basic assumptions of the hydraulic model is that all pipelines are free from physical obstructions such as roots and accumulated debris. Such maintenance issues, which certainly exist, must be discovered and addressed through consistent maintenance efforts. The modeled capacities discussed in this chapter represent the capacities assuming the wastewater collection lines are in good working order. Note, the City is currently in the process of cleaning and inspecting the entire sewer collection system and is anticipated to be completed by May 2024.

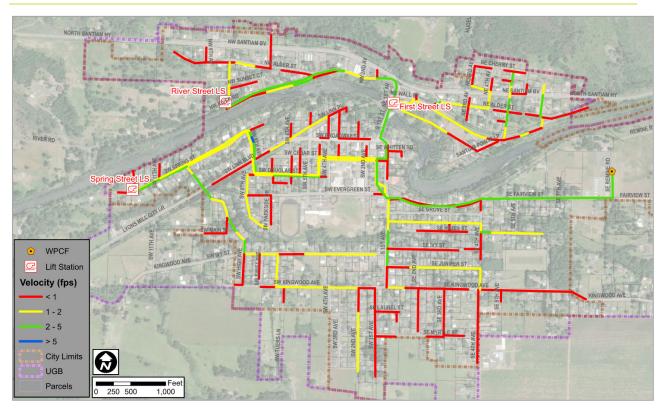


2.7. MODEL CALIBRATION

Typical practice for calibrating a collection system model is to complete flow monitoring at a handful of locations throughout the system for a period of time to record flow patterns, peak flows, and daily volumes within each flow monitor basin. Flow monitoring was not completed as a part of this study due to the lack of appropriate locations to install flow monitoring equipment, therefore additional assumptions had to be made regarding the model calibration. Two scenarios were used to calibrate the model: ADWF and PDF₅. The ADWF (also referred to as the base flows) were assigned by distributing the ADWF planning criteria of 0.087 MGD (60.4 gpm) to junctions within the collection system.

The flows were assigned individually by lift station basins. Based on 2022 lift station flows, the Spring Street LS accounts for an average of 81% of daily flows in the dry season and 71% of daily flows in the wet season. The First Avenue LS accounts for 19% of the daily flows in the dry season and 29% of daily flows in the wet season. The River Road LS is upstream of the First Avenue LS and accounts for 45% of the daily flows during the dry season but only 33% during the wet season. These flow splits were used to assign the system wide flows into each lift station basin. The diurnal curve from Stayton discussed previously was assigned to each flow junction. The data points used for calibration included the total daily volume at the WPCF and lift stations, matching peak inflows at the lift stations, and the WPCF, and lift station pumping rates. The model outputs were compared to these known data pumps and adjustments to the model flows, patterns, and pump curves were made until the results were matching. The model was considered calibrated if the flows were within +10% or -5% of the known values.

The next scenario used to calibrate the model was the PDF₅. This scenario was also used to evaluate the system's capacity. The base flows account for approximately 40% of the PDF₅ indicating the remaining 60% is due to infiltration and inflow. In the PDF₅ scenario, the base flows were kept the same, and the RDII values were adjusted to match total flow volumes and peak flow rates. The RDII flows are calibrated by adjusting several input values which relate to the percentage of rainfall infiltrating into the collection system, the time it takes to infiltrate, and the time it takes to recede. An example of the resulting RDII inflow curve is illustrated in Figure 2-14.



2.8. EXISTING COLLECTION SYSTEM EVALUATION

The PDF₅ system flows were run in the calibrated model to assess flow velocities, capacity deficiencies, and compare with lift station pumping capacities.

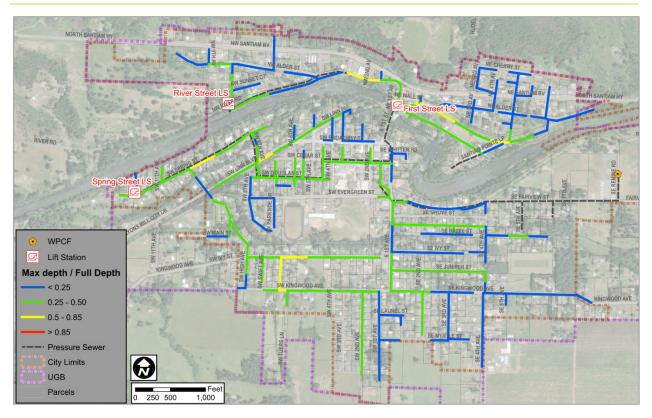

Figure 2-15 illustrates the maximum flow velocities experienced under the PDF₅ flow scenario. As shown in the figure, the majority of the system has maximum flow velocities below 2 fps. The majority of the collection system consists of 4-inch pipe and would need approximately a 1% slope to achieve 2 fps at 75% full. The collection system was not all installed at or above the 1% slope, and therefore has maximum flow velocities that are lower than recommended. This may lead to increased build-up of sediment and debris and result in additional operational efforts to keep the pipelines clean.

FIGURE 2-15: EXISTING PEAK DAY FLOW VELOCITIES

Figure 2-16 illustrates the existing depth of full depth (d/D) of the collection system under peak day demands. Most of the system shows sufficient capacity to convey the peak day flows, however there are some pipe segments which are between 50% and 85% full. These pipes should be monitored and if surcharging is observed, they should be upsized.

The peak inflows into the lift stations were compared to the firm pumping capacities based on the pump testing. The results are presented in Table 2-9. There are no existing deficiencies in the lift station capacities and there is room for additional growth within each lift station basin.

Lift Station Name	Firm Capacity (gpm)	Peak Inflow (gpm)	Surplus/Deficit (gpm)	Allowable Growth (capita) ¹		
Spring Lift Station	230	207	23	231		
First Lift Station ²	133	91	42	426		
River Lift Station	103 27		77	770		
1) Based on the peak instantaneous flow in gallons per capita flow rate established in the planning criteria.						
2) The First Lift Station peak inflow includes the flows discharged into this basin from the River Baisn. Therefore the allowable growth reported in this basin includes growth in both the River and First Lift Station basins.						

TABLE 2-9: EXISTING PEAK INFLOW VS. FIRM CAPACITIES

2.9. TREATMENT PLANT OPERATIONS

Recent operations concerns reported by staff include clogging and back up of the gravel filter and failure of the WPCF control system. As shown in Table 2-6, the peak day wet weather flow may exceed the hydraulic capacity of the gravel filter, leading to pooling of water on the filter surface. This negative effect may be magnified due to the gravel filter being uncovered and filling with precipitation during the rainy season, airborne organics from trees, as well as increased peak wet weather flows. Operators have reported that the filter back up generally occurs during the winter rainy season.

2.10. FINANCIAL STATUS OF EXISTING FACILITIES

The budget adopted for the City of Mill City 2020-2021 sewer fund included revenue of \$437,577 and expenses of \$323,475 for a net revenue of \$114,102, with 433,243 coming from sewer monthly charges. Materials and service costs for the 2020-2021 fiscal year adopted for the Mill City sewer fund totaled \$132,975. The budget approved for 2021-2022 included \$452,816 in revenue and 316,650 in expenses, for a net revenue of \$136,166, with \$448,400 coming from sewer monthly charges. Materials and service costs for the 2021-2022 fiscal year adopted for the Mill City sewer fund totaled \$127,150. Financial documents can be found in Appendix C.

2.11. WATER/ENERGY/WASTE AUDITS

No audits have been conducted for the Mill City wastewater collection or treatment systems in the past three years.

2.11.1. Treatment Plant Energy Evaluation

Effluent from the treatment plant is disposed of through subsurface drainfields located west of the WPCF. The Effluent Pump Chamber consists of three effluent pumps for disposal. Each effluent pump has a 3 horsepower (hp) motor and is rated at 300 gpm at 22 feet total dynamic head. The pumps are controlled by a level transmitter in the Effluent Pump Chamber, and the high-level float switch in the Influent Pump Chamber. Normal automatic operation is for one pump to operate at a time and to discharge to a single drainfield at a time. During high flow conditions, a high-level float in the Influent Chamber activates effluent pumps 1 and 2 to run simultaneously. At this time, changing the gravel filter feed pumps and effluent pumps to variable frequency drive (VFD) motors would not result in significant cost savings for the treatment plant, since the pumps are run intermittently to match the capacity of the gravel beds and drainfields.

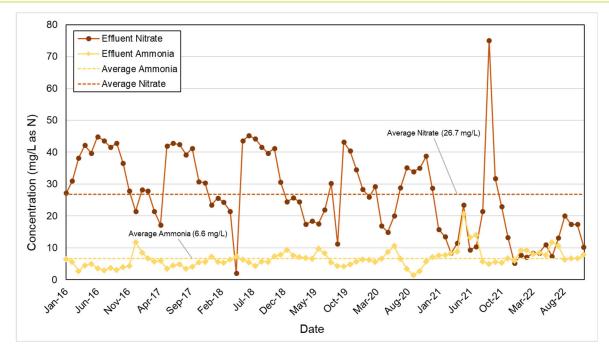
2.11.2. Collection System Energy Evaluation

The only components of the collection system that consume energy are the three existing lift stations. The lift station pumps do not currently have VFDs and are operated at full speed once turned on. Generally, VFDs provide greater operational flexibility and improved efficiency across a wide range of flows. They can also be used to decrease the number of pump starts in a system which will reduce the wear on the pump and motor. However, the existing lift station pumps are relatively small compared to other wastewater systems and the pumps are sized adequately to convey peak flows, while not operating with excessive pump starts and stops. Incorporating VFDs would not likely lead to significant energy savings, however, as flows increase and the lift stations need to be upsized for higher flows, VFDs or soft starts should be considered.

CHAPTER 3 - NEED FOR SYSTEM IMPROVEMENTS

This chapter intends to summarize the deficiencies based on the existing facility evaluation, and in anticipation of future flows and loadings to the WPCF. Concerns surrounding health, sanitation, security, aging infrastructure, and reasonable growth should be addressed to meet the needs of the system throughout the planning period.

3.1. HEALTH, SANITATION, ENVIRONMENTAL REGULATIONS, AND SECURITY


The Oregon DEQ permits the operation of a WPCF on the east side of Mill City, just south of the North Santiam River with discharge into drainfields east of Kimmel Park (Permit number 101736). Maximum daily influent flow is permitted at 185,000 gpd. Influent limitations include a maximum of 300 mg/L BOD₅, 25mg/L greases and oils, 150 mg/L TSS, and 150 mg/L TKN. Effluent from the pollution control facility may not exceed 20 mg/L BOD₅ or TSS, and total effluent flow should be approximately 50% of the maximum daily or peak flow to the system. Mill City's treatment permit requires influent and effluent monitoring as well as groundwater monitoring at several sampling points near the WPCF. Per the Three Basin Rule (OAR-340-041-0350), discharge to surface water is prohibited for newly permitted pollution control and treatment facilities. All groundwater protection requirements of OAR-340-040-0030 must also be met.

Current peak day wet weather flows have already exceeded the design and permitted capacity of 185,000 gpd. With flows projected to increase in the 20-year planning period, Mill City will need a pollution control facility with higher influent capacity. Current effluent flow has also already exceeded the peak day wet weather hydraulic loading design capacity of the gravel filter and the drainfields.

Currently, there is no limit on nitrate or ammonia levels in treated effluent leaving the facility. A new WPCF that includes secondary treatment basins for removal of ammonia as well as nitrate would increase the quality of the discharged effluent. This in turn would increase the quality of groundwater as well as surface water in the NSC compared to the current treatment technology at the Mill City WPCF. Figure 3-1 provides levels of nitrate and ammonia in the current WPCF effluent. As discussed in Chapter 1 and throughout the report, a new WPCF as well as the treatment technologies proposed in Chapters 4, 5, and 6 would greatly reduce the levels of contaminants discharged to NSC groundwater. Additionally, as the proposed discharge site will be located further from the North Santiam River, natural subsurface processes would facilitate attenuation of the contaminants to lower levels than the current effluent discharge scheme by the time the effluent reaches the River, as the current drainfields are located directly adjacent to the River.

FIGURE 3-1: CURRENT WPCF NITRATE AND AMMONIA EFFLUENT CONCENTRATIONS

The average effluent ammonia and nitrate concentrations from 2016 to 2022 are approximately 6.6 and 26.7 mg/L, respectively, for a total inorganic nitrogen concentration of 33 mg/L. The proposed WPCF technologies described in Chapters 4, 5, and 6, would be designed to treat total inorganic nitrogen concentrations down to 6 mg/L (5 mg/L nitrate and 1 mg/L ammonia with secondary treatment alone) or, where permitting limits require, down to 2 mg/L (1 mg/L nitrate and 1 mg/L ammonia with secondary treatment and tertiary treatment) on average. This would represent a decrease of 6 times the concentration of discharged ammonia and a decrease of over 5 times the concentration of nitrate with secondary treatment at the future proposed facility. If tertiary treatment for additional nitrate removal is also chosen, the average concentration of nitrate discharged from the treatment facility would be over 20 times less than the current process. The treatment technologies, discharge requirements, and cost to the community should all be taken into consideration when selecting the final treatment processes and equipment for the future WPCF.

The populations of both the City of Mill City and the City of Gates are limited by wastewater infrastructure and development. In the City of Gates, new residential developments are limited by the minimum lot sizes required for construction of on-site septic systems and drainfields. Development in Mill City is constrained as the WPCF has reached its design capacity, making it difficult for new residents to obtain new connections. The minimum lot size requirements in Gates and the design capacity of the Mill City WPCF hinder the development of new residential lots as well as industrial or commercial facilities in the NSC.

3.2. COLLECTION SYSTEM REGULATORY AND EVALUATION CRITERIA

The existing collection system was evaluated against the following criteria. These criteria consist of a combination of regulatory requirements, general industry standards, and Mill City's Public Works Design Standards.

Lift stations must meet the DEQ's requirements which include the following:

Redundant Pumping Capacity – The DEQ design criteria requires the lift station firm capacity (largest pump out of service) to be capable of conveying the larger of the 10-year dry-weather or 5-year wet-weather event.

- Hydrogen Sulfide Control Hydrogen sulfide can be corrosive (especially to concrete materials) and lead to odor problems. Where septic conditions may occur, provisions for addressing hydrogen sulfide should be in place.
- Alarms The alarm system should include high level, overflow, power, and pump fail conditions. The DEQ also requires an alarm condition when all pumps are called on (loss of redundancy alarm) to keep up with inflow into the pump station.
- Standby Power Standby power is required for every pump station because extended power outages may lead to wastewater backing up into homes and sanitary sewer overflows. Mobile generators or portable trash pumps may be acceptable for pump stations, depending on the risk of overflow, available storage in the wet well and pipelines, alarms, and response time.
- The DEQ has also established guidelines for wet well volumes, overflows, maximum force main velocities, and location/elevation relative to mapped floodplains.

Lift stations should be designed to handle peak flows with the largest pump out of service (defined as firm capacity).

Pipes should be considered full at 85% depth (d/D).

Capacity should be based on Manning's Equation with "n" = 0.013 and pipe flowing at full depth.

Force main velocities should not be less than 2 fps nor greater than 8 fps under design flows.

Pipelines in recommended improvements will be evaluated with the minimum slopes shown in These pipe slope recommendations are the same as recommended pipe slopes provided in the Ten State Standards¹.

Pipe Diameter (in)	10 State Standards Minimum Slope (%)
8	0.4
10	0.28
12	0.22
15	0.15
18	0.12
21	0.1
24	0.08
30	0.058
36	0.046
42	0.037

TABLE 3-1: RECOMMENDED MINIMUM PIPE SLOPES

Pipeline Regulatory Rules (CMOM Guidance). CMOM refers to Capacity Management, Operation, and Maintenance of the entire wastewater conveyance system. The vast majority of all sanitary sewer overflows originate from three sources in the collection system: 1) I/I, 2) roots, and 3) fats, oil, and grease (FOG). I/I problems are best addressed through a program of regular flow monitoring, T.V. monitoring, and pipeline rehabilitation and replacement. Blockages from roots or FOG are also addressed via a routine cleaning program. A FOG control program may also involve public education and regulations (e.g., requirements for installation and regular maintenance of grease interceptors). All new facilities believed to contribute FOG should be equipped with grease interceptors. The DEQ prohibits all sanitary sewer overflows.

¹ Great Lakes-Upper Mississippi River Board of State and Provincial Public Health and Environment Managers, 2014

The Oregon sanitary sewer overflow rules include both wet-weather and dry-weather design criteria. The DEQ has indicated that they have enforcement discretion and that fines will not occur for overflow resulting from storm events that exceed the DEQ design criteria (i.e., greater than a winter 5-year storm event or a summer 10-year storm event). In December 2009, the DEQ developed a Sanitary Sewer Overflow Enforcement Internal Management Directive that provides guidance for preventing, reporting, and responding to sanitary sewer overflows. The DEQ updated this document in November 2010. The Community's discharge permit also includes requirements for an Emergency Response and Public Notification Plan.

Excessive Infiltration & Inflow. EPA defines excessive I/I as the quantity that can be economically eliminated from a sewer system by rehabilitation. Some guidelines for determining excessive I/I were developed in 1985 by EPA based on a survey of 270 standard metropolitan statistical area cities (EPA Infiltration/Inflow Analysis and Project Certification, 1985). Non-excessive numeric criteria for infiltration were defined as average daily dry-weather flows that are below 120 gpcd. Similarly, a guideline of 275 gpcd average wetweather flow was established as an indicator below which is considered non-excessive storm water inflow.

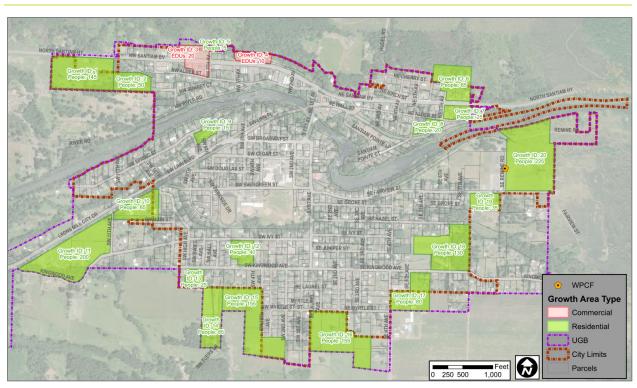
Pipeline surcharging occurs as flows exceed the capacity of a full pipe, causing wastewater to back up into manholes and service laterals. Surcharging of gravity pipelines is generally discouraged because of 1) the increased potential for backing up into residents' homes, 2) the increased potential of exfiltration, and 3) health risks associated with sanitary sewer overflows.

Any illicit cross connections, often from stormwater infrastructure, should be removed.

3.3. AGING INFRASTRUCTURE

Mill City's WPCF was originally constructed in 1992 as an upgrade to prior septic use. The pollution control facility was updated in 2010 by CH2M HILL, Inc. The 2021 North Santiam Sewer Authority WWMP produced by Keller Associates, Inc. identified deficiencies based on existing facilities evaluation, and future projected flows and loadings to the WPCF.

Several components of the existing WPCF have failed or are at the end of their useful life. Further updates and improvements needed at the Milll City WPCF in addition to the capacity issues. Conditional issues at the current facility include replacement of PLC, cleanout of the gravel filter, covering the gravel filter to prevent clogging and backup during winter, and installing septic tank specific alarms in the SCADA system to notify operators when a problem arises.


There are also a number of failing individual septic systems in the City of Gates that would not be needed with a new WPCF. Due to the amount of failing individual septic systems, the cost would be high to repair or replace them all.

3.4. REASONABLE GROWTH

Wastewater facility improvements are needed to stay ahead of potential increased population. Chapter 1 of this report discusses population growth projections for the 20-year and 50-year planning period and Chapter 4 provides projected wastewater flows and loadings associated with this growth. This section documents where the growth is anticipated to occur within the City limits and UGB. Figure 3-2 shows the locations of the projected growth areas and the number of people associated with each area. Additional details regarding each of the growth areas is included in Table 3-2.

The growth areas assume an equivalent dwelling unit (EDU) density of 4.5 homes per gross acre and a household size of 2.5 people per EDU. These values were developed with input from the City planner. 2020-2022 winter water consumption data was reviewed for residential and commercial account types and it was determined that 2.0 EDUs per commercial lot was representative of future commercial flows. The commercial growth areas were split into the number of lots expected with input from the City planner.

FIGURE 3-2: STUDY AREA GROWTH AREAS

TABLE 3-2: GROWTH AREA DETAILS

Growth Area ID	Gross Area (ac)	EDUs	Туре	EDUs per Acre	People per EDU	New Persons	PDF Load (gpm) ²		
1	12.8	51	Residential	4.0	2.5	128	17.28		
2 ¹	4.3	54	Residential	-	2.5	135	18.19		
5	0.2	1	Residential	4.0	2.5	2	0.27		
6	7.3	29	Residential	4.0	2.5	73	9.83		
7	2.0	8	Residential	4.0	2.5	20	2.69		
8	1.8	7	Residential	4.0	2.5	18	2.42		
9	1.4	6	Residential	4.0	2.5	14	1.89		
10	5.7	23	Residential	4.0	2.5	57	7.68		
12	3.2	13	Residential	4.0	2.5	32	4.31		
13	2.1	9	Residential	4.0	2.5	21	2.83		
14	7.6	30	Residential	4.0	2.5	76	10.24		
15	13.6	55	Residential	4.0	2.5	137	18.45		
16	13.7	55	Residential	4.0	2.5	137	18.45		
17	7.1	29	Residential	4.0	2.5	71	9.56		
18	11.8	47	Residential	4.0	2.5	118	15.90		
19	3.0	12	Residential	4.0	2.5	30	4.04		
20	19.9	79	Residential	4.0	2.5	199	26.81		
11	17.5	70	Residential	4.0	2.5	175	23.57		
3	4.7	0	Commercial	n/a	n/a	0	7.03		
4	2.1	0	Commercial	n/a	n/a	0	3.20		
Total	Fotal 142 577 1,443 205								
·	 Growth Area 2 is the Beech St. Apartments and consists of 54 units. Based on existing planning criteria flows of 0.135 gpm per capita. 								

CHAPTER 4 - ALTERNATIVES CONSIDERED

4.1. TREATMENT ALTERNATIVES CONSIDERED

4.1.1. Description

In the development of viable treatment solutions for Mill City and Gates in the NSC, the primary objective is to assist in the effective and reliable treatment of its wastewater in an economical manner. Solutions are developed on a case-by-case basis and recommendations are made after consideration of the best siting and treatment solutions available, and extensive communication with City, County, and State staff.

Each design alternative is planned to meet the needs for a 20-year minimum period for treatment facilities. It is important to note that the 20-year design horizon relies on assumptions that were made for the demands and populations within each time period. These population and demand projections are estimates based on the best information available but may vary due to the unpredictable nature of growth and human movement. Equivalent development benchmarks could reasonably occur earlier or later than the proposed time periods; however, in all cases, the information presented herein meets or exceeds the industry and governing agency's standard for these types of predictions. 20-year and 50-year projections for Mill City and Gates are based on Portland State University population projections.

Discussion in this section is presented in general terms regarding project alternatives for treatment system improvements in order to provide a background for the various solutions available for Mill City and Gates. Various alternatives exist to address the treatment needs. The alternatives discussed in the remainder of this report are evaluated based upon their ability to resolve the needs of Mill City and Gates, anticipated costs, environmental impacts, and operation and maintenance requirements.

4.1.2. Secondary Treatment Alternatives

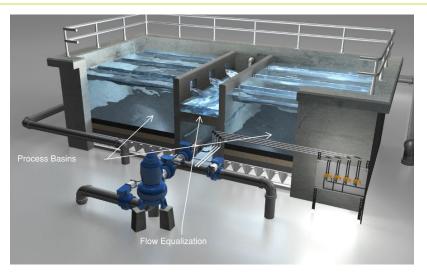
Secondary treatment of wastewater must be capable of removing BOD₅, TSS, nitrifying ammonia, and denitrifying nitrate to meet permit limits in the North Santiam Canyon. The selection of the secondary treatment process influences the evaluation of other treatment processes, including headworks screening, disinfection, and tertiary treatment. Thus, this process is evaluated, and a recommendation provided prior to discussing other treatment processes.

Secondary treatment typically consists of a biological reactor and a clarification or sludge separation process. In the biological reactor, an aerobic environment is provided to allow heterotrophic and autotrophic bacteria to grow. This reactor may also have a recycled sludge flow to help maintain a healthy microbial population. The sludge separation process typically consists of a gravity clarifier or a physical membrane filtration barrier that separates sludge from the water. The technologies considered below are commonly used both nationally as well as regionally.

Size and Redundancy

The secondary treatment process will be sized to hydraulically pass the peak hour flow with one biological reactor. There will also be sufficient biological aeration capacity for peak aeration needs with one unit out of service. Per EPA requirements, secondary clarifiers will be sized to treat 75% of the peak hour flow with one clarifier offline. The biological reactors will be designed to treat the maximum month loading, with redundancy in mechanical equipment such as blowers, aerators, mixers and pumps.

Performance Requirements


The secondary treatment process will be required to meet the BOD₅, TSS, ammonia, and nitrate limits as determined by Oregon DEQ in accordance with the Three Basin Rule. The process will be designed to be expandable for future flows as well as future permit limits. Other performance criteria include flexibility in operation and minimal maintenance and operator inputs.

Three technologies were evaluated for secondary treatment:

- Sequencing batch reactors
- Oxidation ditches with clarifiers
- Membrane bioreactors

Sequencing Batch Reactors

The first secondary treatment technology considered is the sequencing batch reactor (SBR) system. The system consists of redundant process basins, with diffused aeration at the bottom of the basins. While there are sometimes variations in the process design, generally the basins are sequenced such that one basin is filling with screened influent while the other is treating a batch of wastewater. When one basin is filled completely with influent, aeration is initiated, and the wastewater is treated biologically. At the end of the aeration step, aerators are turned off and sludge is allowed to settle during the clarification step. An SBR system acts as an all-in-one treatment basin for aerobic and anoxic treatment, as well as a sludge settling basin. This treatment method precludes the need for many activated sludge basins as well as separate gravity clarifiers for solids removal. Many plants utilizing SBR secondary treatment technology are also present in Western Oregon. However, there are less options for process flexibility and optimization as there are not separate aerobic, anaerobic, and anoxic zones, and no internal recirculation is provided. The main process variations available for an SBR system are limited to aeration intensity and time, as well as decanting time (the time allowed for settling of produced sludge). A treatment facility utilizing SBRs for the secondary treatment system would likely be classified as a Class II wastewater treatment facility.

FIGURE 4-1: SEQUENCING BATCH REACTOR TREATMENT SYSTEM

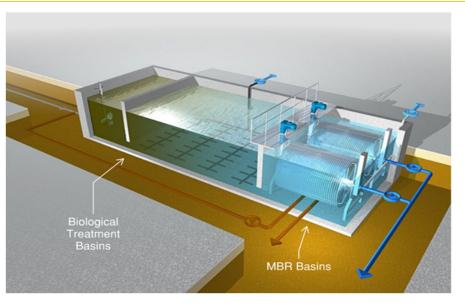
*Headworks, pump/blower buildings, and solids handling are not shown here.

Oxidation ditches

Another secondary treatment technology alternative considered is the oxidation ditch system, coupled with secondary clarifiers. Oxidation Ditch systems consist of an oval concrete structure in which wastewater is cycled with aerator impellers that provide both the aeration and mixing of the tank. Circular secondary clarifiers, with spiral sludge blades, would also be required. For both the process basins, as well as the secondary clarifiers, multiple tanks would be provided to allow for hydraulic and treatment redundancy. For additional aeration redundancy, a standby mechanical aerator/mixer will be provided with the treatment design. Return activated sludge (RAS) pumps would be provided and installed in a nearby building, with a redundant RAS pump included. Control of the system would be simple, with the speed of the aerators being adjusted to maintain a set dissolved oxygen concentration in the process basins and the RAS pumps' speed being adjusted to maintain a particular ratio of RAS flow back to the basins. This design provides slightly more operational flexibility than the SBR system. Oxidation ditch systems are quite common throughout the US. However, there are not many located in Western Oregon. A treatment facility utilizing oxidation ditches for the secondary treatment system would likely be classified as a Class II wastewater treatment facility.

FIGURE 4-2: OXIDATION DITCH TREATMENT SYSTEM

Membrane bioreactors


Membrane bioreactors (MBRs) vary somewhat from the previously presented alternatives. While this process continues to use an aerated reactor with blowers and diffusers, the sludge separation process uses filtration membranes instead of gravity clarification. This allows for much higher concentrations of sludge in the basins that would not otherwise be possible with the other process technologies, as the clarifiers are limited in the ability to separate sludge by gravity. A higher concentration of sludge results in smaller process volumes, and consequently a smaller footprint. Note, however, that the membrane bioreactors are typically required to be installed in a climate-controlled building and include their own set of blowers and a chemical dosing system to keep the membranes sufficiently clean for optimal filtration. Furthermore, the capacity of the membranes is derated with low water temperatures.

Equipment and infrastructure to be provided in this option include aeration basins, diffusers, mechanical mixers for basins without aeration requirements, aeration and membrane scour blowers, membrane modules, permeate pumps, RAS pumps, chemical dosing and storage, connecting air piping and water piping. Redundancy would be provided with multiple basins, standby membranes and redundant mechanical equipment (pumps and blowers). In addition to the equipment noted above, the membrane system requires an additional stage of headworks screening with smaller openings to prevent build-up of solids that may result in damage of the membranes.

Membrane bioreactor processes provide the highest level of flexibility in treatment capabilities and modularity, while also producing the highest quality of effluent. However, they also carry the highest annual costs, in both power and chemical usage, as well as the replacement costs of the membranes (which typically have a life of 10 years). In order to keep the membranes functioning properly over their expected useful lives, additional fine screening processes would be installed in the headworks, which adds to the capital costs of the MBR option.

Because membrane bioreactors utilize smaller process basins than the other options, and the most expensive component of the system is the mechanical components, this option favors modularity in expansion. This means that a smaller system can be provided to meet current flows and loadings, and as these increase over the design period, additional membranes can be added. This additional equipment may incrementally incur less cost than adding on additional equipment for the other options with future increases in service population, flows, and loadings to the wastewater treatment plant. As PSU's population research center projects a combined population of Mill City and Gates of around 3,500 people in 2045, there may not be a large benefit to the community in terms of process modularity savings, since the communities in the NSC will still be relatively small over the next 20 years. Additionally, a treatment facility utilizing MBRs for the secondary treatment system would likely be classified as a Class III wastewater treatment facility due to the inclusion of pressurized membrane filtration units.

FIGURE 4-3: MEMBRANE BIOREACTOR TREATMENT SYSTEM

*Headworks, pump/blower buildings, and solids handling are not shown here.

4.1.3. Headworks

Headworks treatment consists of processes to remove deleterious material and grit, flow meter and sample influent prior to flows entering downstream processes. Depending on site configurations, this process may also include pumping downstream of the above-mentioned processes (in the case of this particular design, it is anticipated that pumping will be required to lift flows into the secondary treatment process).

Size and Redundancy

Each headworks treatment process will be sized to hydraulically pass the peak hour flow and will include redundancy as required by Ten State Standards. This includes a manual bypass screen and a bypass of the grit removal process. A standby pump will be provided in the influent lift station.

Performance Requirements

The automatic influent screen must meet the following requirements:

- Automatic mechanical screening
- > Automatic screening washing, compacting (dewatering), and transport
- > Require limited maintenance
- Minimum screening size of ¼"

The grit removal and dewatering systems must meet the following requirements:

- > Automatic grit removal
- Automatic grit classification
- Maximized grit removal efficiency
- Small footprint
- Require limited maintenance

<u>Screening</u>

Screening of raw wastewater is necessary to avoid clogging of mechanical equipment and pumps, and accumulation of debris in downstream basins. This is accomplished with a mechanical screen with openings no larger than ¼". The existing screen at the WPCF is a manually cleaned static screen, which requires monitoring and maintenance to ensure it does not become clogged. Keller recommends upgrading the influent screening to one with an automatic washer/compactor. The equipment would automatically remove debris accumulating on the screen and would dewater it and compact it to minimize costs associated with hauling and disposal of screened material. Multiple types of screens are available for this process, including bar screens, drum screens, and band screens. These options are shown in Figure 4-4. For a plant utilizing a membrane bioreactor for secondary treatment, a fine screen should also be included to protect the sensitive membrane equipment later in the treatment process. This additional screening cost is taken into account in the capital costs for the MBR secondary treatment option. The cost for screening and washing/compacting equipment is included in the headworks cost estimates summary in Chapter 5.

Bar Screen Drum Screen Band Screen Image: Comparison of the street of the s

Grit Removal

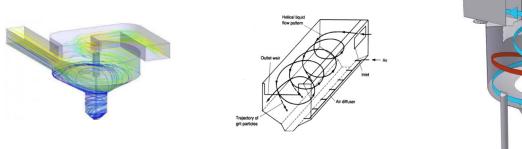

Raw wastewater contains inorganic material, such as grit, gravel, and sand that must be removed in a separate process from screening. Grit can wear out pumps prematurely and can deposit in the process basins. A grit removal process typically consists of a grit trap, which produces velocities or flow patterns that allow grit to settle out and separate from the wastewater stream, a grit slurry pump or conveyor, which moves the separated grit away from the trap, and a grit classifier or washer, which dewaters the grit prior to disposal. Among other options, grit trap systems are discussed here: aerated grit, mechanical vortex and induced vortex. These systems are shown in Figure 4-5.

FIGURE 4-5: GRIT REMOVAL TECHNOLOGIES

Mechanical Vortex

Aerated Grit

Induced Vortex

Aerated grit systems are not as efficient in grit removal as the mechanical and induced vortex systems. Additionally, aerated grit systems require blowers and can generate odors in the headworks building. Certain manufacturers of mechanical and induced vortex grit traps are able to achieve grit removal efficiencies of up to 95% of grit particles 140 micron and larger.

Because of this, and due to the relatively simple operation of these systems, it is recommended that the design be based around one of these two options. A preliminary review of currently available equipment suggests that the induced vortex grit removal technology may be more cost effective than mechanical vortex. With the mechanical vortex technology, manufacturer equipment is provided, but the concrete structure that creates the vortex flow pattern and houses the mechanical equipment must be designed and constructed, while manufacturers of the induced vortex option offer prefabricated units that may be placed into a precast manhole which generally results in cheaper and more simple construction compared to the mechanical vortex option. The design will also include a grit slurry pump (either a self-priming pump or a vacuum primed centrifugal pump) as well as a grit classifier.

Influent Pumping

Where the headworks processes would have a water surface elevation lower than the downstream treatment processes, pumping would be required. This would typically be done with dry pit pumps and a wet well, or submersible pumps installed directly in the wet well. Figure 4-6 shows these two options. In a wet well/dry pit lift station configuration, pumps and valves are housed in a pump room (dry pit or dry well), that is easily accessible. A wet-well is included adjacent to the dry-pit that serves as the wastewater receiving well. An advantage of dry-pit lift stations is that they allow easy access to the pumps for visual inspection and maintenance. Pumps located in a dry-pit configuration are generally easier to repair than submerged pumps. One advantage of submersible lift stations is that they typically cost less than wet well/dry pit configurations and are designed to operate without frequent pump maintenance. Submersible lift stations also do not usually require large aboveground structures and tend to blend in with their surrounding environment in residential areas. They require less space and are easier and less expensive to construct for wastewater flow capacities of 10,000 GPM (14.4 MGD) or less.¹ Based on the expected size of the WPCF, a wet well with submersible pumps is recommended for this project.

FIGURE 4-6: LIFT STATION CONFIGURATION ALTERNATIVES

Wet Well

¹ United States Environmental Protection Agency. (2000). *Collection Systems Technology Fact Sheet*. Washington, D.C.: Office of Water.

Flow Metering and Sampling

It is anticipated that flow to the headworks processes will be pumped in a closed conduit. Based on this, it is recommended that magnetic flow metering be used for recording of wastewater influent flows in the headworks (where influent flow is open channel, it is more favorable to use a Parshall flume for influent flow monitoring). Influent sampling can be accomplished with a refrigerated, automatic sampler that can take composite samples and store them until the plant staff is ready to collect them.

4.1.4. Disinfection

The current WPCF permit does not have specific limits on E. coli present in the effluent. However, a monitoring well system is in use at the Mill City WPCF drain fields, and fecal coliform at monitoring well 1 is not to exceed 200 organisms per 100 mL. It is expected that the future WPCF permit will include limits on E. Coli in the discharged effluent, which is to be controlled with disinfection. There are several options for disinfection, including UV, chlorination, and peracetic acid. Each of these options is able to reduce the E. coli levels to the levels that would likely be required by the WPCF permit. In order to avoid the use of expensive, hazardous and potentially difficult to acquire chemicals, and in order to avoid possible issues with meeting total residual chlorine levels in the effluent, it is recommended to proceed with a design based around a UV disinfection system.

Size and Redundancy

The new UV system will be able to handle the peak hour flow with one channel or unit out of service.

Performance Requirements

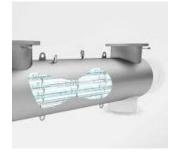
The UV Disinfection System will meet the following requirements:

- > Capable of dimming lamps for dose pacing based on influent flow to save energy.
- > Automatic wiping system to reduce the frequency of chemical cleaning.
- > Easy access to equipment for maintenance and repair.
- Equipment shall be validated for performance as per National Water Research Institute (NWRI) guidelines; calculations shall not be permitted to verify delivered dose.
- Low pressure, high output system based on the anticipated power consumption of other options.
- A UV transmittance monitor will be installed as part of the control package to monitor water quality and provide alarms if the system is operating out of compliance.
- ➢ UV Transmittance: 65%
- Minimum Lamp Aging Factor: 0.7
- Minimum Lamp Fouling Factor: 0.8
- Minimum Lamp Life, hours: 9,000

Multiple types of UV disinfection equipment configurations are available and those being considered are shown in Figure 4-7. This section discusses the advantages and disadvantages of three configurations and provides a recommended disinfection technology for final design. They include:

- Horizontal Lamp Systems
- Inclined Vertical Lamp Systems
- Closed Vessel Systems

FIGURE 4-7: UV DISINFECTION ALTERNATIVES


Horizontal

Inclined Vertical

Enclosed

Open Channel Horizontal

Open channel UV systems are among the most commonly used UV systems in wastewater treatment plants. As such, there are several manufacturers that provide this type of equipment, and service and parts are generally common. These systems typically consist of multiple racks of bulbs that are oriented parallel to the water flow in steel or concrete channels. Each rack has bulbs stacked vertically and depending on the flow and channel configuration, can have multiple racks side by side. Modern horizontal systems will have controllers that are able to dim the bulbs to provide a consistent dose across a range of flows, thus enabling the power usage to be optimized. Modern systems also include an automatic cleaning system to remove the buildup of foulants that accumulate on the bulbs. Systems which require a manual chemical dip tank for bulb cleaning should be avoided. Maintenance or replacement of bulbs is accomplished by lifting a single rack of bulbs out of the channel (either by hand or with a small portable crane). Compared to other configurations discussed, the horizontal system has smaller bulbs and will require a larger quantity of bulbs.

Inclined Vertical

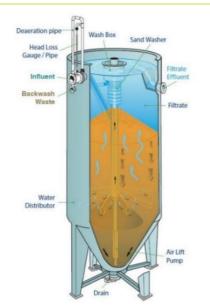
The inclined vertical UV configuration has bulbs inclined approximately 45 degrees to the flow path, with the orientation of bulbs still parallel to the flow. Instead of racks being set vertically, a single rack is set horizontally, perpendicular to the flow. The inclined vertical UV configuration utilizes larger bulbs with higher output and as such requires fewer bulbs than the horizontal system. Modern inclined systems include hydraulic or electric lifting mechanisms that allow a single rack of bulbs to be extended out of the channel for maintenance or bulb replacement. This configuration also includes automatic cleaning systems. Inclined vertical UV disinfection systems are often found in larger treatment plants where they are most cost effective.

Closed Vessel

Unlike the other two configurations, the closed vessel UV configuration does not utilize a concrete or steel open channel. Instead, bulbs are installed in a closed vessel, or pipe, through which water is passed. In order for the bulbs to provide adequate treatment, and to ensure the bulbs do not overheat, the entire vessel must be full of water and pressurized. Thus, this system is best suited in applications where the feed water is pumped into the UV process.

This type of UV disinfection system would most likely be used following membrane bioreactor secondary treatment as the MBR filtrate is pressurized. Service and replacement of bulbs is accomplished by isolating the UV vessel, opening an access hatch and removing the bulbs as required. As such, multiple vessels are required to provide continuous treatment capacity. As with the other options, automatic cleaning is provided.

Inclined vertical UV disinfection is not likely to be cost effective at a smaller treatment plant. Both open channel horizontal and close vessel UV disinfection would provide sufficient disinfection and could both be cost effective for the expected size for the Mill City WPCF. Chapter 5 provides a comparison of capital costs associated with open channel horizontal and closed vessel UV disinfection systems, as well as a recommended alternative.


4.1.5. Tertiary Treatment (Denitrification)

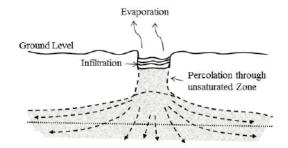
Historical groundwater data recorded since 1982² show nitrate concentrations in the Mill City/Gates groundwater to be around 1 mg/L on average. Keller Associates has contracted with hydrology and geology subconsultants (GSI Water Solutions, GSI, and GeoSystems Analysis, Inc, GSA) to evaluate groundwater quality and infiltration rates for multiple rapid infiltration sites for disposal of treated wastewater. As the results of the full groundwater analysis may not be available prior to the submission of this report, Keller has assumed stringent nitrate effluent requirements, and this section provides preliminary evaluation of tertiary treatment for denitrification where very low nitrate limits may be required in the permit. Technical memorandums from GSI are provided in Appendix I which identify impacts to groundwater and the Santiam River for given effluent nitrate concentrations. It is important to note that the closest source of groundwater nitrate data to the current Mill City WPCF had the highest concentration of nitrate (Mill City Drinking Water Well, Linn County, Water System ID 00520) at approximately 1.4 mg/L average historical nitrate concentration, with the latest sampling in June of 2022 measuring 1.79 mg/L.

The current facility has no denitrification systems in place. A new WPCF would likely improve the local groundwater quality over that of the current system. One of the most common tertiary treatment processes for removal of nitrates in wastewater is biological denitrification utilizing a sand filtration system with an added carbon source for conversion of nitrates to nitrogen gas by denitrifying bacteria. If required, nitrate could be lowered to 1 mg/L using tertiary denitrification, bringing TIN to 2 mg/L in the treated effluent as opposed to 6 mg/L with secondary treatment alone. The cost for a denitrification process is included with the total project cost estimates in Chapter 6. However, should the permit limits not require a TIN of 2 mg/L, this process could be removed from the design, which would provide significant savings in capital and ongoing maintenance costs. Figure 4-8 shows a denitrification filter setup. A typical installation would consist of several filters for redundancy and to allow the system to be backwashed without interrupting treatment. A sand filter for denitrification would also be capable of achieving lower turbidity levels in treated effluent than secondary treatment alone.

² Oregon Public Health. (2023). *Drinking Water Data Online*. Retrieved from yourwater.oregon.gov

FIGURE 4-8: DENITRIFICATION FILTER

Other treatment options exist for removal of nitrates. Some of these technologies include ion exchange contactors, reverse osmosis (RO) membranes, and electrodialysis. These technologies are not commonly used in wastewater treatment systems, especially at smaller plants. The capital and operating costs of these systems, as well as production of concentrated waste streams or depleted filter media, make these options less feasible than biological denitrification with a sand filter, whose media can be backwashed and reused for many years. The use of pressure filtration technology, such as reverse osmosis, may also increase the operator classification required at the plant. Additionally, sand filters would remove more TSS in treated effluent compared to ion exchange or electrodialysis treatment trains.


4.1.6. Effluent Disposal

Treated effluent must be disposed of after treatment at the Mill City WPCF. Several options were considered by Keller Associates in the NSC WWMP including subsurface disposal through drainage fields, surface infiltration, land application (with winter storage), surface discharge to the North Santiam River, and injection wells. While discharge to surface waters would normally be advisable in many treatment scenarios, the Three Basin Rule precludes the discharge of wastewater effluent from the new treatment facility directly into the North Santiam River. Discharge to groundwater in the NSC is allowed as long as effluent does not affect the groundwater quality, and pollutant modeling and sampling is performed to ensure protection of groundwater. Surface infiltration using Rapid Infiltration Basins (RIBs) was recommended by Keller in the 2021 NSC master plan as the primary option for effluent disposal for the Mill City WPCF. RIBs consist of shallow excavations several feet deep where effluent is drained and can infiltrate into the groundwater table. The design of RIBs is limited primarily by the infiltration rates and groundwater depth specific to the area under consideration. Figure 4-9 shows a typical rapid infiltration basin system and an infiltration diagram.

FIGURE 4-9: RAPID INFILTRATION BASINS

Design, Size, and Redundancy

Infiltration basins will be designed based on EPA guidance on RIB effluent disposal using measured soil infiltration rates, final effluent quality parameters, available sites in the NSC basin, expected biological nutrient removal and mixing during infiltration, and depth to groundwater at the available sites.

Several sites have been identified for disposal of treated effluent for the future Mill City/Gates WPCF. To evaluate the feasibility of treated effluent infiltration, Keller has contracted with GSI and GSA to conduct soil and groundwater infiltration characterization studies and pollutant attenuation modeling during groundwater infiltration. The data referenced below is from the 2023 GSI Gates/Mill City Shallow Soil Characterization and Infiltration Testing Technical Memorandum.³

Subsurface investigation is necessary to determine the viability of different sites for rapid infiltration of treated effluent in compliance with groundwater discharge regulations and the Three Basin Rule. The first phase of the soils characterization study focused on shallow soils, and consisted of excavating test pits in four study areas to classify soil types, conduct infiltration tests, and collect soil samples. The objective of the shallow subsurface characterization was to collect data that can be used to select three of the four study areas for a second phase, which will be a deep soil characterization study.

The four study areas assessed for potential construction of rapid infiltration basins included the Baughman-Lucas Site (GM1), the Shepherd Site (GM2), the 4th Ave Right of Way (ROW) Site (GM4), and the Weyerhaeuser Site (GM5). Table 4-1 below provides initial infiltration rates as measured by GSI and GSA using single ring cylinder infiltrometer tests with lateral divergence correction as well as a modified test pit infiltration method with lateral divergence correction.

Site ID	Effective Saturated Hydraulic Conductivity (Geometric Mean, ft/day)
GM1	5.97
GM2	0.12
GM4	0.78
GM5	0.18

TABLE 4-1: RIB SITES MEASURED INFILTRATION RATES

³ GSI Water Solutions, Inc., and GeoSystems Analysis, Inc. (2023). Gates/Mill City Shallow Soil Characterizaiton and Inifltration Testing Results, Marion and Linn Counties, Oregon. Portland: GSI Water Solutions, Inc.

The US EPA recommends using a design infiltration rate of 10% of the measured infiltration rate to account for soil plugging typically associated with wastewater infiltration.⁴ Preliminary design calculations suggest that the GM1 site may be best for disposal of effluent as it has a relatively high infiltration rate as compared to the other sites tested. The higher infiltration rate measured at the GM1 site would allow for infiltration basins with a much smaller footprint compared to the other sites included in the soils characterization study. The US EPA also recommends BOD_5 loading of less than 115 lb/acre/day for rapid infiltration basins. Preliminary calculations show BOD_5 loading of approximately 25 lbs/acre/day with the GM1 infiltration basins sized to handle average winter flow at 10% of the measured hydraulic conductivity. Estimates of site-specific design and effluent disposal redundancy criteria will be provided in Chapter 5 with discussion of alternative selections.

Fate and Transport Modeling

Additionally, sampling for specific contaminants including metals, VOCs, SOCs, and radionuclides in the current wastewater influent was conducted. Results were input into groundwater models simulating dilution, dispersion, sorption, and biodegradation from the proposed infiltration basins to the property boundary to aid in selection and design of future WPCF treatment processes for protection of NSC groundwater.⁵ The WPCF influent testing revealed several contaminants of interest to groundwater quality, either because they are synthetic or volatile organic compounds, or they are naturally occurring compounds detected at a concentration above that of NSC groundwater concentrations. The compounds of interest and groundwater modeling summary info are included in Table 4-2. Total inorganic nitrogen (TIN) was modeled under two scenarios; SBR secondary treatment with denitrifying sand filters, and SBR treatment alone. The model inputs for these scenarios were 2 mg/L TIN (Scenario 1 - 1 mg/L ammonia and 1 mg/L nitrate), respectively.

Compound	Model Input Concentration (mg/L)	Modeled Concentration in Groundwater at Property Boundary (mg/L)
TIN (Scenario 1)	2	1.26 - 1.61
TIN (Scenario 2)	6	3.36 - 4.44
Toluene ²	0.0496	<0.0005
di(2-ethylhexyl)phthalate (DEHP) ²	0.00901	<0.0001

TABLE 4-2: GROUNDWATER POLLUTANT MODELING SUMMARY

Notes:

1. Modeling Includes dilution, dispersion, sorption, and biodegradation

2. Minimum detection limits for Toluene and DEHP are 0.0005 mg/L and 0.0001 mg/L, respectively

The groundwater modeling report concluded that both TIN scenario 1 and 2 result in very low TIN concentrations at the property boundary that would be further reduced as the constituents continued to travel along the horizontal hydraulic gradient in the aquifer. The estimated nitrate concentration at the property boundary likely represents a negligible increase over the background nitrate concentrations of 1.1 mg/L observed in upgradient groundwater.

⁴ U.S. Environmental Protection Agency. (1981, October). *Process Design Manual for Land Treatment of Municipal Wastewater.* Cincinnati: U.S. Environmental Protection Agency, Center for Environmental Research Information.

⁵ GSI Water Solutions, Inc. (2023). Evaluation of the Environmental Fate of Residual Pollutants from an Advance (Class A) Treated Wastewater Infiltration System, Mill City, Oregon. Portland: GSI Water Solutions, Inc.

GSI also concluded that concentrations of DEHP and toluene would be below background concentrations by the time they reached the GM1 site property boundary, even without removal during treatment at the WPCF. However, some removal of both toluene and DEHP is expected during the secondary treatment process, prior to discharge through rapid infiltration. The pollutant fate and transport groundwater modeling and evaluation for site GM1 can be found in Appendix I.

4.1.7. Sludge Dewatering

Solids wasted from the secondary treatment process must be disposed of off-site. To minimize hauling and tipping fee costs, these solids can be mechanically dewatered onsite. Also note that some disposal sites will not accept sludge that does not pass the paint filter test, which can be difficult to achieve without mechanical dewatering. Mechanical dewatering also reduces the total volume and weight (and frequency of hauling) of solids that must be removed. Process equipment typically includes a feed pump, a mechanical dewatering press, a dewatered cake pump or conveyor, and a polymer injection system. Sludge drying beds may be considered as an alternate option for reducing landfill hauling costs for wastewater treatment plants. However, given the large area required for drying beds, possible odor issues, and the wet winter climate in the NSC, sludge drying beds were not considered a viable option for solids handling.

Size and Redundancy

While all three mechanical dewatering presses evaluated are able to function without an operator present, the size of the equipment will be based on dewatering all wasted solids on an 8-hr/day, 5-day/week operational schedule. A solids holding tank will also be provided to feed the press, but as this size is not dependent on the type of press, it is not included as part of this equipment evaluation. When the dewatering press is offline, wasted solids will need to be pumped to the solids holding tank where they are temporarily stored on site to await dewatering.

Performance Requirements

The new dewatering equipment must meet the following requirements:

- > Thicken solids to 15%, or greater
- > Include fully automated operation with limited operator observation required
- > Be able to accommodate incoming solids ranging from 0.5% 2%, or greater
- Efficient usage of energy, polymer, and wash water
- Solids capture rate of at least 95%

Alternatives Considered

Three dewatering technologies were considered, as shown in Figure 4-10. These include a screw press, volute press, and fan press. Each of these presses operate on a similar principle, in that sludge is passed over a screen (or surface with narrow openings) that allows water to leach out while retaining the solids. A compression zone at the back end of the unit further squeezes the solids to maximize the amount of water removed. With all of these technologies, polymer must be added in order to achieve optimal cake dryness and solids capture. This would be accomplished with a liquid polymer make-up unit that delivers blended polymer into the sludge upstream of the press. Prior to pressing, the polymer and sludge must be mixed and have time to react, either in-pipe or in a tank.

FIGURE 4-10: SLUDGE DEWATERING ALTERNATIVES

Screw Press

A screw press operates by introducing sludge into one end of a wedge wire drum with an internal screw shaft. As the sludge is moved along the length of the drum, a combination of smaller openings in the drum along with narrower spacing between flights of the screw, helps to compress the sludge and remove excess water. A compression cone is also provided at the back end of the unit to assist with compression of the solids. The excess water is drained back to the head of the WPCF and the cake solids are discharged into a hopper feeding either a cake pump or a conveyor, where the solids can then be discharged for disposal. An internal spray bar system cleans accumulated sludge off of the basket. There are a number of manufacturers that are able to provide a screw press with similar performance capabilities.

Volute Press

A volute press operates similar to a screw press. However, instead of using a wedge wire basket to remove excess water and retain solids, a volute press uses a series of concentric rings surrounding the screw shaft. A small gap is provided between each ring that serves as the pathway to removing water. Additionally, the rings alternate between a fixed ring and a "floating" ring. As the screw shaft rotates, the flights of the screw displace the floating ring. This provides a self-cleaning function to prevent solids from clogging the spacing between the rings. Similar to the screw press, the flights of the screw get more closely spaced and a compression cone at the end of the unit is provided to improve dewaterability.

A typical volute press skid includes a polymer injection, mixing and flocculation tank and can often include multiple drums. The benefit of multiple drums is that redundancy can be provided and a degree of dewatering can still be achieved with one drum offline (note that redundancy is only in the drums and not the flocculation tank). This can be a benefit over a screw press as a single screw press skid has no redundancy.

Fan Press

A fan press operates by introducing sludge into a circular channel that narrows along the flow path. Screens on either side of the channel allow water to drain away from the sludge channel. Depending on the manufacturer, a plate at the end of the channel can be utilized to create backpressure and improve dewaterability. Multiple channels can be installed on a single skid, providing redundancy in pressing. Equipment skids can also include the polymer dosing, injection and flocculation systems.

4.1.8. WPCF Sites

Several sites have been identified as possible locations for the future Mill City WPCF. In addition to the sites discussed in section 4.1.6, the FEMA trailer site, located just south of the existing WPCF, was identified as a potential location for the new treatment plant. However, it is unlikely that RIBs for disposal of treated effluent could be permitted at the existing drain field site. The WPCF itself could be located at this site, allowing for reuse of some of the current treatment plant infrastructure, but RIBs would need to be located elsewhere, requiring the installation of a costly effluent disposal line to the RIB site. Several other properties in Mill City were considered. However, due to the lack of space surrounding these properties for future WPCF expansion, further investigation of these sites was not undertaken. Keller recommends choosing a site that would allow both construction of the new WPCF as well as effluent disposal on the same site, precluding the need for long effluent transmission piping. At this time, the GM1 site under investigation by GSI and GSA is the most promising to allow both treatment and effluent disposal to be located at the same site. However, the ongoing subsurface investigations should be completed prior to making a final siting decision.

4.1.9. Backup Power

Backup power is required to allow the WPCF to continue to provide treatment during power outages. This is typically accomplished with a fuel-fired generator and an automatic transfer switch. To reduce the required size of the generator, capacity is determined based only on equipment required to meet discharge permits. Generators can be either natural gas fired or diesel. Natural gas generators are often significantly more expensive and require a significantly larger footprint. Based on this, it is recommended to utilize a diesel generator. As the cost for backup power generation will not vary significantly based on the treatment processes or siting chosen for the future Mill City WPCF, this equipment is included in the cost estimates for the proposed project in Chapter 6.

4.1.10. Design Criteria

This study utilizes historical Mill City DMR data, sewage flows recommended in Table 2 of OAR 340-071-0220, as well as PSU population projections to estimate future flows in a combined Mill City and Gates system. Actual future flows will depend on several factors and could potentially decrease through aggressive I/I reduction efforts. It is generally recommended that flows be reviewed periodically, and future capital projects phased where practical. Historical flow data for Mill city is provided in Table 4-3 below.

Mill City Historical Flows (MGD)									Planning Flow (MGD)	
Year	2016	2017	2018	2019	2020	2021	2022	Average		
ADWF	0.087	0.089	0.086	0.085	0.088	0.086	0.087	0.087	0.087	
MMDWF ₁₀	0.100	0.097	0.089	0.089	0.092	0.092	0.101	0.094	0.101	
AADF	0.092	0.097	0.092	0.089	0.092	0.094	0.091	0.093	0.093	
AWWF	0.097	0.105	0.098	0.093	0.097	0.103	0.095	0.098	0.098	
MMWWF ₅	0.110	0.114	0.105	0.102	0.104	0.116	0.109	0.109	0.116	
PWkF	0.116	0.130	0.110	0.136	0.124	0.151	0.156	0.132	0.156	
PDAF₅	0.141	0.176	0.125	0.169	0.202	0.194	0.221	0.175	0.221	
PIF₅	0.228	0.284	0.201	0.272	0.326	0.313	0.357	0.283	0.381	

TABLE 4-3: MILL CITY HISTORICAL FLOW DATA

Wastewater flows from existing Mill City connections (Table 4-3) were based on historical DMR data from Mill City. Keller Associates used the method recommended by DEQ in "Guidelines for Making Wet-Weather and Peak Flow Projections for Sewage Treatment in Western Oregon" for determining design flows associated with current connections in Mill City. A peak instantaneous flow of 0.381 MGD was extrapolated according to the above-mentioned guidelines. Flows associated with future connections to the sewer system, both in the form of new population growth in Mill City as well as connections from the City of Gates, were projected using PSU population projections, Table 2 from OAR 340-071-0220, as well as an average of 2.5 persons per EDU as suggested by Mill City municipal planning staff. The number of estimated additional EDUs associated with new population growth by year are shown in Table 4-4 below.

Year	Additional EDUs
2025	314
2030	379
2035	434
2040	483
2045	532
2070	806

TABLE 4-4: ADDITIONAL EDU PROJECTIONS (GATES AND MILL CITY COMBINED)

A breakdown of dwellings by number of bedrooms was obtained⁶ and the percentages were applied to EDU projections to obtain future number of dwellings with 3 or more bedrooms. The suggested peak day sewage flows from OAR 640-071-0220 of 300 gal/EDU/day for dwellings with 2 or less bedrooms and additional 75 gpd for each additional bedroom above 2 was used to project flows based on EDUs. Additionally, from OAR 340-071-0220 Table 2, other existing establishments in Gates were tabulated and their suggested sewage flows added to the 2025 peak day flows. A list of these establishments is provided in Table 4-5 below. An average of historical peaking ratios from 2016-2022 were used to adjust peak day flows to other flow criteria.

TABLE 4-5: ESTABLISHMENTS IN GATES AND MINIMUM SUGGESTED SEWAGE FLOWS

Gates				
Establishment	GPD			
Sierra Mexican	800			
Canyon Espresso	300			
Hwy 22 Canteen	800			
Camp Bendaroo RV Park	750			
Total	2,650			

To account for an increase in industrial development following the construction of a municipal sewer system, AADF was increased by 1,500 gallons per acre per day starting in 2030. It was assumed industrial development will be a total of 3 acres in the sewer basin. Peaking factors were used to adjust the AADF to establish other design criteria flows. AAGRs from the combined PSU population projections of Mill City and Gates were used to project the additional industrial flows as well as flows from the tabulated establishments above (Table 4-5) through 2070. These projections, along with the base flows from Mill City historical DMR data (Table 4-3), and flows expected from future EDUs in Mill City and Gates were summed to produce the flow projections provided in Table 4-6 below.

⁶ Advameg, Inc. (2023). City Data. Retrieved from http://www.city-data.com/housing/houses-Mill-City-Oregon.html

TABLE 4-6: PROJECTED DESIGN FLOW CRITERIA (GATES AND MILL CITY COMBINED)

Flow Regime	Average Ratio to PDAF5 (2016-2022 Historical)	Projected Design Flow (MGD)					
Year	-	2025	2030	2035	2040	2045	2070
Total Population	-	2,896	3,056	3,193	3,318	3,439	4,124
ADWF	0.495	0.166	0.182	0.192	0.201	0.209	0.259
MMDWF ₁₀	0.538	0.180	0.197	0.208	0.218	0.227	0.281
AADF	0.528	0.177	0.194	0.204	0.214	0.223	0.276
AWWF	0.561	0.188	0.206	0.217	0.227	0.237	0.293
MMWWF ₅	0.619	0.207	0.227	0.240	0.251	0.262	0.324
PDAF₅	1.000	0.335	0.367	0.387	0.405	0.423	0.523
PIF₅	1.613	0.541	0.592	0.624	0.654	0.682	0.843

Based on the reported pumping capacity of the Spring Street and First Avenue lift stations in Mill City, the current PIF₅ is approximately 0.52 MGD if both stations are pumping simultaneously. Projected 2045 peak flows for Mill City and Gates combined are 0.682 MGD. With a projected flow of approximately 0.58 MGD for Mill City in 2045, the Spring Street and/or First Avenue lift stations will likely need to be upgraded within the 20-year planning horizon. Until then, the actual peak flows entering the WPCF from Mill City and Gates will not exceed 0.52 MGD.

The historical unit loadings (load divided by the population (pound per capita per day (ppcd)) were calculated from 2016-2022 DMR data. Existing Mill City average and max unit loadings are provided in Table 4-7 below.

Unit Loading	Unit Loading Criteria (ppcd) Existing loading (ppd)						
	BOD ₅						
WWADL	0.059	119					
WWMML	0.082	165					
DWADL	0.061	123					
DWMML	0.081	162					
	TSS						
WWADL	0.017	34					
WWMML	0.023	46					
DWADL	0.020	40					
DWMML	0.028	57					
	TKN						
WWADL	0.025	50					
WWMML	0.030	61					
DWADL	0.029	59					
DWMML	0.036	71					
	NH ₃						
WWADL	0.022	44					
WWMML	0.031	62					
DWADL	0.024	48					
DWMML	0.031	63					
	NO ₃ -						
WADL	0.004	7					
WWMML	0.005	10					
DWADL	0.004	9					
DWMML	0.006	11					

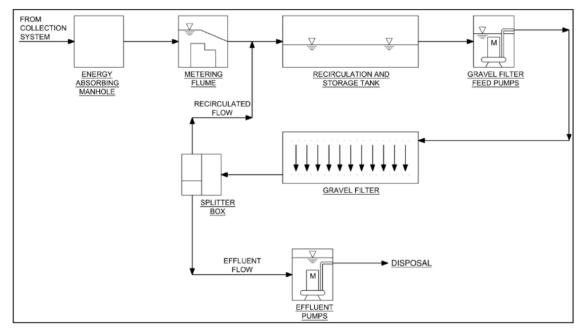
TABLE 4-7: UNIT LOADING FOR MILL CITY EXISTING CONNECTIONS

For future connections, both in the form of new population growth in Mill City and the connections from the City of Gates, unit loading criteria⁷ (Table 4-7) were applied to the population projections provided in Table 1-4. These future projected loadings along with the max loadings from the existing Mill City connections with STEP/STEG systems (Table 4-7) were summed. To account for loadings from future industrial and commercial sources, the residential loadings were assumed to account for 75% and commercial/industrial additions of 25% were added for total loading at the treatment plant for each constituent starting in 2030. The final loadings are provided in Table 4-8.

Per Capita Loadings Applied to Future Connections					
Parameter PPCD					
BOD 5	0.16				
TSS	0.13				
TKN	0.03				
NH ₃	0.026				
NO3 ⁻ -					
Total Phosphorus (as P)	0.007				

TABLE 4-8: UNIT LOADINGS APPLIED TO FUTURE CONNECTIONS

⁷ Metcalf, & Eddy. (2013). Wastewater Engineering Treatment and Reuse. McGraw Hill.


TABLE 4-9: PROJECTED DESIGN LOADINGS (GATES AND MILL CITY COMBINED)

Year	2025	2030	2035	2040	2045
Population	2,896	3,056	3,193	3,318	3,439
	N	lax Month Loadi	ng (ppd)		
BOD ₅	280	408	437	464	490
TSS	137	210	234	256	277
TKN	100	140	145	150	155
NH ₃	87	122	127	131	135
NO ₃ -	13	18	18	18	18
ТР	20	21	22	23	24

4.1.11. Map

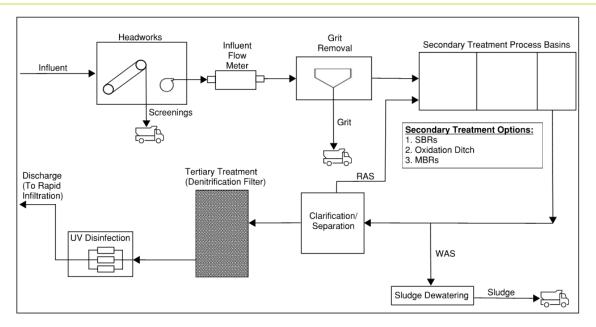

Maps of the existing sewer shed are provided in Appendix A. Figure 4-11 and Figure 4-12 below show flow schematics of the current and future planned Mill City/Gates WPCF treatment processes.

FIGURE 4-11 CURRENT WPCF PROCESS FLOW DIAGRAM

FIGURE 4-12 FUTURE WPCF PROCESS FLOW DIAGRAM

4.1.12. Environmental Impacts

A comparison of the potential environmental impacts of the alternatives is summarized in Table 4-10 at the end of this section.

4.1.13. Land Use

The four sites being considered for rapid infiltration of treated effluent are listed below with their current land-use designations. No proposed sites are located on land designated for exclusive farm use (prime farmland).

- > Baughman-Lucas Study Area (GM1): Forest and Farm/Forest
- > Shepherd Study Area (GM2): Farm/Forest
- > 4th Ave Row Study Area (GM4): Rural Residential and Farm/Forest
- Weyerhauser Study Area (GM5): Forest

As discussed in section 4.1.6, preliminary calculations suggest that the GM1 site would be the most amenable site of the four included in the shallow soils characterization study for efficient disposal of treated effluent due to the relatively high measured infiltration rate. It is assumed that the new WPCF would be located at the same site as the effluent disposal basins to preclude the need for a long and expensive transmission line solely for conveyance of treated effluent to the disposal basins. Any site recommendations are contingent upon completion of subsurface investigations for treated effluent disposal in the NSC. If the concurrent subsurface hydrologic investigations determine the proposed site is unsuitable, or another site is more suitable, recommendations on siting will be revisited.

4.1.14. Floodplains

No potential sites are located inside the 100-year or 500-year floodplains. Figure 4-3 in Appendix A shows topography and floodplains in the Mill City/Gates study area.

4.1.15. Wetlands

The current WPCF is not located in or affecting any designated wetlands in the NSC. There are several sites under consideration for disposal of future effluent via RIBs. The Shepherd (GM2) infiltration study area is the only infiltration testing site under consideration that encompasses a small amount of freshwater emergent wetland.

4.1.16. Cultural Resources

None of the alternatives will interfere with the above-ground cultural resources identified by the State Historic Preservation Office.

4.1.17. Biological Resources

As described in section 1.2.5, species in the NSC listed as federally threatened or endangered include the Marbled Murrelet, Streaked Horned Lark, Northern Spotted Owl, Coho Salmon, Steelhead, Chinook Salmon, Pacific Eulachon, Bull Trout, Golden Paintbrush, Willamette Daisy, Water Howellia, Bradshaw's Desert Parsley, Kincaid's Lupine, Nelson's Checkermallow, Taylor's Checkerspot, Fender's Blue Butterfly, and the Oregon Silverspot Butterfly. None of the fish species are likely to be affected by proposed projects as there is no discharge directly to the North Santiam River, and effluent will be treated to low nutrient levels before infiltration. If the other listed species are found, further investigation would be undertaken to determine the necessary mitigation measures.

4.1.18. Water Resources

The new Mill City/Gates WPCF will improve treatment reliability and effluent quality, leading to beneficial impacts on NSC water resources over the current facilities. Subsurface investigations are under way to prevent the intrusion of disposed effluent to the North Santiam River per the Three Basin Rule. Treated effluent will be disposed of via rapid infiltration basins, and processes at the new WPCF will be designed to provide high quality effluent to protect groundwater quality in the NSC.

4.1.19. Coastal Resources

No coastal resources are within the study area.

4.1.20. Socio-economic conditions

None of the alternatives would have a disproportionate effect on any segment of each community's population. Equitable wastewater facilities would be provided to all people within the sewer authority limited only by physical geography and overall district budget - not by economic, social, or cultural status of any individual or neighborhood.

4.1.21. Miscellaneous issues

As described previously, the Three Basin Rule prohibits new discharge of treated wastewater effluent to the North Santiam River and outlines provisions for stringent protection of groundwater and surface waters in the NSC. Studies are underway to inform treatment and disposal decisions for the future Mill City/Gates WPCF to protect both groundwater and surface water resources in the study area.

Environmental Criteria	Secondary Treatment			Tertiary Treatment	Other Treatment Processes			Effluent Disposal
	SBR	Oxidation Ditch	MBR	Denitrification Filter	Headworks	Disinfection	Solids Handling	Rapid Infiltration
Land Use/Prime Farmland	No Impact	No Impact	No Impact	No Impact	No Impact	No Impact	No Impact	Sewer Authority must purchase disposal site
Floodplains	No Impact	No Impact	No Impact	No Impact	No Impact	No Impact	No Impact	No Impact
Wetlands	No Impact	No Impact	No Impact	No Impact	No Impact	No Impact	No Impact	Disposal site GM2 surrounds a small patch of freshwater emergent wetland
Cultural Resources	No Impact	No Impact	No Impact	No Impact	No Impact	No Impact	No Impact	No Impact
Biological Resources	No Impact	No Impact	No Impact	No Impact	No Impact	No Impact	No Impact	No Impact
Water Quality Issues	Improved effluent quality	Improved effluent quality	Improved effluent quality	Improved effluent quality	Improved effluent quality	Improved effluent quality	Improved effluent quality	No Impact
Coastal Resources	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Socio- Economic/Environmental Justice Issues	Increased development and economic opportunities	Increased development and economic opportunities	Increased development and economic opportunities	Increased development and economic opportunities	Increased development and economic opportunities	Increased development and economic opportunities	Increased development and economic opportunities	Increased development and economic opportunities
Miscellaneous Issues	Class II Operation	Class II Operation	Class III Operation	No Impact	No Impact	No Impact	No Impact	No Impact

TABLE 4-10: ENVIRONMENTAL IMPACTS SUMMARY

4.1.22. Land Requirements

The sewer authority would purchase land necessary for the new treatment facilities as well as for rapid infiltration of the disposed effluent. It is recommended to locate these facilities at the same site to avoid the need for costly effluent transmission lines. The most important factors in deciding the new WPCF treatment and disposal site will likely include amenability to groundwater infiltration in compliance with the Three Basin Rule, as well as cost to the sewer authority for land acquisition.

4.1.23. Potential Construction Problems

The depth of the water table and subsurface rock may affect the construction of alternatives. Preliminary subsurface investigations for rapid infiltration basin design have revealed highly variable water table depths in the study area ranging from 12 to 50 feet below ground surface (bgs). Depending on the sites chosen for the new WPCF and RIBs, construction may require geotechnical stabilization and techniques that effectively manage dewatering and sloughing issues. Construction plans for any of the alternatives would also include provisions to control dust and runoff. Additionally, there must be sufficient acreage for construction of the new plant at the chosen site. To utilize most of the existing equipment at the Mill City WPCF (equalization basin, recirculation pumps, gravel filter) the new treatment system could be constructed at the current site, possibly utilizing the redundant drainage fields for construction until the new plant is fully functional. Under this scenario, treated effluent would need to be conveyed to the rapid infiltration basins located farther from the North Santiam River. Alternatively, the new WPCF could be located at the effluent disposal rapid infiltration sites. It is important to note that the subsurface investigations being conducted by GSI and GSA will not be completed until near the end of 2023, and while the phase I shallow soils report suggests site GM1 as the most ideal for infiltration of treated effluent, further investigations must be completed before a final decision is made on treatment and disposal siting.

4.1.24. Sustainability Considerations

To provide the Cities of Mill City and Gates with economically and environmentally sustainable wastewater treatment solutions, several treatment options have been considered, as described in the preceding sections. Groundwater infiltration models and levels of nutrient removal and dilution expected during rapid infiltration of treated effluent are being evaluated to inform necessary secondary and tertiary treatment processes for providing optimal effluent quality, while conserving the level of energy and chemicals needed at the WPCF.

4.1.25. Water and Energy Efficiency

Water and wastewater treatment facilities generally require clean water for use in filter backwashing, as well as washwater for solids handling and screening equipment. Several alternatives considered for the Mill City/Gates WPCF will require washwater for screening, as well as a tertiary treatment option that requires filter backwashing. The goal of the WPCF is to provide a high-quality effluent while maintaining a reasonable level of water and energy efficiency. Several add-ons are available for decreasing the water and energy footprint of the plant. Designing a water storage and reuse system for the plant would decrease the water footprint by allowing certain areas to be irrigated with reclaimed water. However, a chlorination system would be required to provide a disinfectant residual in any reclaimed water reuse and storage systems. These options generally incur capital costs while providing savings over the life of the plant. Life cycle costs analyses should be conducted to determine if certain options would provide a net benefit to the community in terms of energy, water, and cost savings.

4.1.26. Green Infrastructure

Variable frequency drive (VFD) process blowers are recommended in the process basins to optimize the level of aeration required for secondary treatment based on influent loading and wastewater temperatures. VFD blowers allow the operator to ramp up or down aeration in the process basins and offer significant energy and cost savings over the life of the plant when utilized in conjunction with online dissolved oxygen (DO) monitoring.

4.1.27. Other

The current Mill City WPCF operates as a Class I wastewater treatment system. The future WPCF will be classified as a Class II wastewater treatment system for the SBR, and oxidation ditch secondary treatment options, and likely a Class III wastewater treatment system for the MBR secondary treatment option due to operation and maintenance of the pressurized membrane filtration units. Operator classification is an important variable to consider as it can be more difficult and costly to hire qualified operations staff with higher levels of certification.

4.1.28. Cost Estimates

Relative cost estimates for the different treatment alternatives presented in section 4.1 are provided in Chapter 5. Capital operation and maintenance costs developed for the alternatives are Class 4 estimates as defined by the Association for the Advancement of Cost Engineering (AACE). AACE Class 4 estimates are used to provide sufficient accuracy for budgetary planning purposes. The cost estimates presented for the alternatives in Chapter 5 are relative costs and do not include costs that are shared between all alternatives for a given process. Chapter 6 will include total costs for the recommended alternatives in the total project cost estimate.

The cost estimates are based on the perception of current conditions at the project location and are based on cost estimating resources and experience with similar/recent wastewater projects. Estimates were developed based on 2023 dollars. The total estimated probable project costs include general conditions (10%), contingency (30%), contractor overhead and profit (OH&P, 15%), and professional services (25%) which are typical of a planning-level estimate. Overall project costs include total construction costs, costs for engineering design, construction management services, inspection, permits, as well as construction administrative costs.

Actual construction costs may differ from the estimates presented, depending on specific design requirements and the economic climate when a project is bid. As a result, the final project costs will vary from the estimations presented in this document. Keller Associates has no control over variances in the cost of labor, materials, equipment, services provided by others, contractor's methods of determining prices, competitive bidding or market conditions, practices, or bidding strategies. Keller Associates cannot and does not warrant nor guarantee that proposals, bids, or actual construction costs will not vary from the cost estimates presented herein.

4.2. COLLECTION SYSTEM ALTERNATIVES

This section includes a description of the alternatives considered and compares the alternatives by reviewing various factors such as environmental impacts, land requirements, potential construction problems, sustainability, efficiency and costs.

The hydraulic model was exercised under 2070 flows to further identify needed improvements and potential alternatives to consider. The flows associated with new growth were assigned to the nearest junction (manhole or cleanout), however, there were areas where existing infrastructure did not exist. New collection system lines were added to convey flows to the system. It should be noted that the growth in the River Road Lift Station Basin requires upsizing of some existing pipelines upstream of the River Road Lift Station along NW 8th Place. These improvements have already been designed and the improvements were modeled as complete in the future model. Figure 11 in Appendix A illustrates the growth areas, their load placements, and added pipes to serve the 2070 growth areas. Specifically, the areas toward the eastern part of the City needed additional collection system components including a new lift station and gravity pipes. The results from the future model scenarios are included in Figure 12 and Figure 13 in Appendix A. The following deficiencies were identified:

- > Flooding along NW Alder Street directly downstream of the River LS force main discharge
- > Flooding along SW Kingwood Avenue west of SW 2nd Avenue in the Spring Street Basin

- > Surcharging upstream of First Avenue Lift Station
- > Peak inflow into Spring Street LS exceeds the firm capacity
- > Peak inflow into First Ave LS exceeds the firm capacity

Of the deficiencies listed above, alternatives were only evaluated for the flooding along Kingwood Avenue in the Spring Street Basin. Improvements to address the other deficiencies are relatively straightforward and other feasible alternatives do not exist. Additionally, minor deficiencies such as replacement of aging infrastructure are not included in this alternatives analysis because they only consist of replacing with similar infrastructure and will not impact the operation of the system. The projects for which alternatives were evaluated include the following:

- Sates / Mill City Force Main Alignment
- Spring Street Basin Growth Alternatives (Flooding at Kingwood Avenue)

The City of Gates does not currently have a public wastewater system and residents currently rely on septic tanks and drainfields for wastewater management. Previous planning efforts recommended a new wastewater collection system to serve Gates and that the collected flows be conveyed to the new WPCF in Mill City once upgraded/replaced. The new Gates collection system will consist of gravity pipelines with lift stations to convey flows to the regional lift station pumping to Mill City. Alternatives for the Gates collection system (gravity vs STEP) were evaluated in previous planning efforts, and a gravity system was recommended. Therefore, this study only includes an evaluation of a gravity collection system in Gates.

4.2.1. DESCRIPTION – Gates/Mill City Force Main Alternatives

It is not feasible to convey the wastewater from Gates to Mill City via gravity flow, therefore a pressurized sewer line must be constructed between the two cities. Two main alternative alignments were considered in this study to convey the flows from Gates to Mill City.

- Alternative 1 consists of a new regional lift station in Gates located toward the southeast end of the city on the north side of the Santiam River. The force main will flow across the existing bridge to the south side of the Santiam River and then go west and south along Gates School Road. The force main will then go west along Kingwood Avenue to the new WPCF location.
- Alternative 2 also consists of a new regional lift station, but it will be located on the southwest end of the Gates. The force main will flow west along Central Street / Gates Mill City Road and within an inactive railroad right-of-way (ROW) to Mill City. This alternative requires upsizing the existing pumps at the First Ave LS, but the existing force main from First Avenue LS to the WPCF can be used. Once in Mill City, there are two alignments which were considered to get flows to the First Avenue LS.
- Alternative 2A discharges the pressure flow into a manhole along Alder Street and installing 8inch gravity pipe along Alder Street to the First Avene LS
- Alternative 2B discharges the pressure flow into a manhole south of Alder Street and upsizing the existing 4-inch pipe within an existing walkway/bike pathway to the First Avenue LS.

The alignments for Alternative 1 (red), Alternative 2 (yellow), Alternative 2A (green), and Alternative 2B (blue) are illustrated in Figure 4-13.

4.2.2. DESIGN CRITERIA – Gates/Mill City Force Main Alternatives

The population projections, future systemwide flows and the new flow per capita for growth within Mill City are documented in previous chapters. Federal, state, and agency regulatory and design criteria used for the collection system are documented in Chapters 1, 3, and 4.

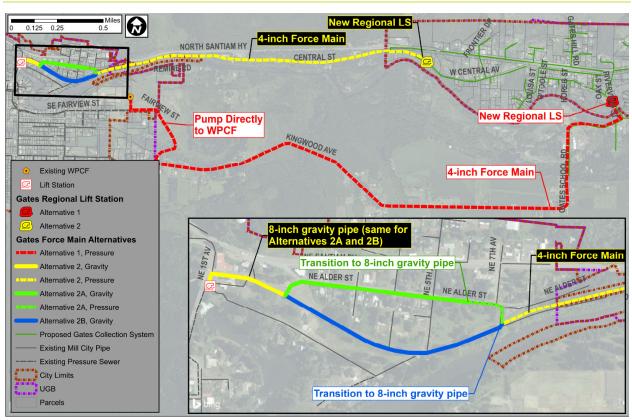

Future flows were input to the hydraulic model to size the force main and evaluate the capacity of the First Ave LS. The specific design criteria and model outputs are summarized below in Table .

TABLE 4-11: GATES / MILL CITY DESIGN CRITERIA

Parameter	Value	Unit	Basis for Criteria
Gates Regional LS Design Flow	100	gpm	Equal to projected PIF for Gates in 2070.
Gates / Mill City Force Main Size	4	inches	Provides between 2 fps and 8 fps at design flow rate.
First Ave New Design Flow (Alt. 2 only)	300	gpm	Equal to PIF from the model during 2070 flows.

4.2.3. MAP – Gates/Mill City Force Main Alternatives

A figure illustrating the two alternative alignments considered is included in Figure 4-13.

FIGURE 4-13: GATES/MILL CITY FORCE MAIN ALTERNATIVES

4.2.4. ENVIRONMENTAL IMPACTS – Gates / Mill City Force Main Alternatives

A summary of the environmental impacts associated with the two alternatives are presented in Table . In summary, the route associated with Alternative 1 appears to pose a larger impact on environmental resources including floodplains, wetlands, and endangered species due to the crossing of the Santiam River, Triangle Creek, and Rock Creek. Alternative 2 crosses some smaller bodies of water but is not anticipated to be as significant of an impact as Alternative 1.

There is not expected to be any generation or management of residuals or wastes associated with this alternative because it only relates to the collection system and does address the treatment of the wastewater.

TABLE 4-12: GATES / MILL CITY ALTERNATIVES ENVIRONMENTAL IMPACTS

Environmental Impact	Alternative 1	Alternative 2	
Floodplains	Crosses Rock Creek floodway& Santiam River floodway	No impact anticipated	
Wetlands	Possible disturbance along Kingwood Road at Triangle Creek	No impact anticipated	
Land Resources	No impact anticipated	No impact anticipated	
Endangered Species	Several river and creek crossings which may impact aquatic species.	Several river and creek crossings which may impact aquatic species.	
Historical/Acheological Properties	No impact anticipated	No impact anticipated	

4.2.5. LAND REQUIREMENTS – Gates / Mill City Force Main Alternatives

The locations proposed for the regional lift stations for Alternative 1 and Alternative 2 would both require purchasing land to construct the infrastructure. The force main for Alternative 1 is anticipated to be installed within the county ROW along Gates School Road and Kingwood Ave for the majority of the length. Alternative 1 would be installed within the City/County ROW along Central Avenue and then within the old railroad ROW that is state ROW. Mill City currently owns a portion of the old railroad ROW within their city limits.

4.2.6. POTENTIAL CONSTRUCTION PROBLEMS – Gates/Mill City Force Main Alternatives

Potential construction problems associated with Alternative 1 may include the following:

- > Crossing of Santiam River, Triangle Creek, and Rock Creek.
- Subsurface bedrock and boulders may be encountered, however, the force main bury depth can be relatively shallow compared to gravity sewer pipes.

Potential construction problems associated with both Alternatives 1 and 2 may include the following:

- Subsurface bedrock and boulders may be encountered, however, the force main bury depth can be relatively shallow compared to gravity sewer pipes.
- > There is a potential landslide hazard area that may require mitigation measures to be accounted for in the design process.
- High water table is not expected for the majority of the length, however, may be encountered for stream crossings or adjacent to wetlands.

4.2.7. SUSTAINABILITY CONSIDERATIONS – Gates/Mill City Force Main Alternatives

Sustainability benefits for both Alternatives 1 and 2 are similar and could be implemented for either alternative. Both alternatives should consider installation of energy efficient pumps, VFDs or soft-starts, and trenchless installation methods such as directional drilling.

4.2.8. WATER AND ENERGY EFFICIENCY – Gates/Mill City Force Main Alternatives

Water and energy efficiency benefits for Alternatives 1 and 2 are similar and are applicable to either alternative. Both alternatives should consider installation of energy efficient pumps and VFDs or soft-starts. It was previously determined that gravity flow from Gates to Mill City is not feasible and therefore, both alternatives consist of energy use to pump wastewater.

4.2.9. GREEN INFRASTRUCTURE – Gates/Mill City Force Main Alternatives

Both alternatives should consider installing green infrastructure at the regional lift station site and reduce the amount of impervious surface. Additional opportunities for green infrastructure are not applicable to these alternatives.

4.2.10. OTHER – Gates/Mill City Force Main Alternatives

Other considerations are discussed in the non-monetary considerations in Chapter 5.

4.2.11. COST ESTIMATES – Gates/Mill City Force Main Alternatives

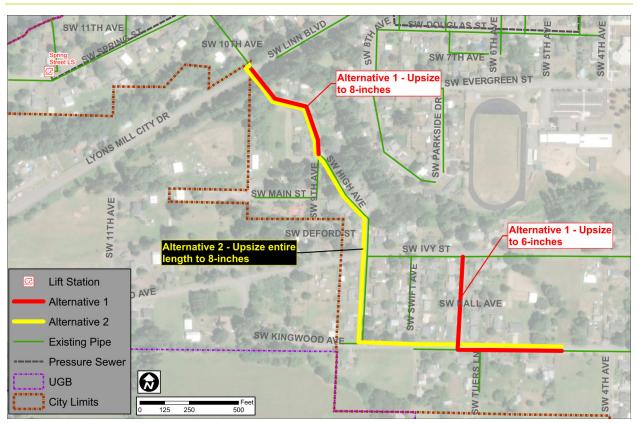
Cost estimates for these alternatives are provided in Chapter 5.

4.2.12. DESCRIPTION – Spring Street Growth Alternatives

As Mill City continues to grow, it is important to evaluate how the new developments will connect to the existing system and if there are any capacity issues due to the increased flows. Future flows were assigned to the hydraulic model and capacity issues were identified in the Spring Street Basin. These sections evaluate two alternatives for alleviating the capacity issues.

- Alternative 1 Upsize the existing pipelines to the minimum diameter to pass flows without exceeding 0.85 d/D. This includes upsizing the existing 6-inch to 8-inches between SW 9th Avenue and Linn Boulevard and upsizing the existing 4-inch to 6-inches from Kingwood Avenue to Ivy Street.
- Alternative 2 Replace the existing pipeline with a new 8-inch trunkline from Kingwood Avenue to Linn Boulevard.

4.2.13. DESIGN CRITERIA – Spring Street Growth Alternatives


The projected populations and flows presented in previous chapters were used as the basis for this alternatives analysis. The growth areas shown in Chapter 3 were assigned to the existing collection system and the new trunkline to evaluate these alternatives. Note the results from the model are based on the selected Alternative 2 for the Gates/Mill City Force Main which will be routed to the First Ave lift station.

The upsized pipes associated with Alternative 1 were assumed to be constructed at the same slope as the existing pipes. The new 8-inch trunkline elevations were input at minimum recommended pipe slopes where feasible. Pipe slopes were greater than minimum slopes where topography resulted in excessively deep manholes (greater than 10-15 feet). In steeper areas, manhole inverts were assigned to maintain depths between 5 to 15 feet. It should be noted there were some areas where pipe slopes exceeded 20% slopes. These pipe segments should be anchored according to the governing agency's design standards.

4.2.14. MAP – Spring Street Growth Alternatives

Figure 4-14 summarizes the two alternatives considered for alleviating the surcharging and flooding in the Spring Street Basin.

FIGURE 4-14: SRING STREET ALTERNATIVES

4.2.15. ENVIRONMENTAL IMPACTS – Spring Street Growth Alternatives

Neither alternatives for this project are anticipated to have an impact on wetlands, water ways, endangered species, nor floodplains because the project locations are not near any of these features.

4.2.16. LAND REQUIREMENTS – Spring Street Growth Alternatives

Both alternatives consist of similar alignment and are both anticipated to be constructed within existing right-of-way within the City. No additional land requirements are necessary for either project.

4.2.17. POTENTIAL CONSTRUCTION PROBLEMS – Spring Street Growth Alternatives

Alternative 1 only consists of upsizing the existing pipes by one nominal pipe size. This may allow for the option to implement trenchless pipe construction methods such as pipe bursting. The upsized pipes can be installed at the existing elevations and slopes which decreases the likelihood of encountering subsurface rock.

Alternative 2 will be constructed deeper than the existing infrastructure, but not deeper than 10-15 feet deep. This alternative may consist of rock excavation due to the deeper bury depths. It is not anticipated that additional potential construction problems will be encountered.

4.2.18. SUSTAINABILITY CONSIDERATIONS – Spring Street Growth Alternatives

There are minimal improvements to the current sustainability and resiliency of the collection system associated with Alternative 1 because it is replacing the system with similar infrastructure.

Alternative 2 consists of a larger diameter pipe which is capable of passing solids and therefore eliminates the need for STEG tanks in existing and future connections that discharge to this line. Therefore, when existing STEG tanks along the corridor fail, the services can be reconnected with just a 4-inch service rather than replacing with a new STEG tank. Additionally, removing the STEG tanks from the system results in higher loading at the WPCF which actually improves the processes at the WPCF. The existing STEG tanks throughout the City remove solids before discharging to the collection system, and therefore the WPCF will need to add additional components to the treatment processes to improve removal rates. Additionally, development that can connect to the new trunkline will not be required to construct STEG tanks at new connections which reduces costs to the developer and continues to improve the loading at the WPCF. Lastly, removing STEG tanks from the system results in less operations and maintenance costs to the City. Currently, the City pumps the STEG tanks every couple years and discharges the solids to the WPCF. Removing the STEG tanks from the system will allow the City staff to focus on preventative maintenance to reduce I/I and maintain a more resilient system.

4.2.19. WATER AND ENERGY EFFICIENCY – Spring Street Growth Alternatives

Neither alternative consists of pumping or energy usage.

4.2.20. GREEN INFRASTRUCTURE – Spring Street Growth Alternatives

Green infrastructure to preserve or mimic natural processes for stormwater management are not applicable to this project. However, if deficiencies within the stormwater system are present within the corridor of this project, the stormwater improvements could be completed in conjunction with the collection system improvements.

4.2.21. OTHER – Spring Street Growth Alternatives

There were no other considerations in the selection of an alternative than those described above.

4.2.22. COST ESTIMATES – Spring Street Growth Alternatives

Cost estimates for these alternatives are provided in Chapter 5.

CHAPTER 5 - SELECTION OF AN ALTERNATIVE, TREATMENT

5.1. LIFE CYCLE COST ANALYSIS AND ALTERNATIVES SELECTION

This chapter will provide relative capital and life cycle cost estimates and recommendations for selection of the treatment alternatives described in Chapter 4. The alternatives recommended in this chapter have been evaluated based on advantages and disadvantages, expected effluent quality, treatment reliability, and capital and life cycle costs. Annual O&M costs are included in the cost estimates to arrive at a present value for comparison of alternatives. The cost estimates presented in this chapter are relative costs that do not include costs that are shared between all alternatives for a given process. The present value analysis was conducted using a real discount rate of 3% and a 20-year period. The treatment equipment (unless a short-lived asset) is assumed to have a 20-year useful life, so no salvage value is included for comparing the alternatives.

The estimated capital and operation and maintenance costs presented are considered only to be preliminary level cost estimates (Class 4 as defined by the American Association of Cost Engineers), which are used to provide sufficient accuracy for budgetary planning purposes. These estimates include costs associated with engineering services, contractor overhead and profit, and contingency to compensate for changes in the cost of construction and unexpected conditions. The cost estimates herein are based on the perception of current conditions at the project location. This estimate reflects an opinion of probable costs at this time and is subject to change as the project design matures. Keller Associates has no control over variances in the cost of labor, materials, equipment, services provided by others, contractor's methods of determining prices, competitive bidding or market conditions, practices, or bidding strategies. Keller Associates cannot and does not warrant nor guarantee that proposals, bids, or actual construction costs will not vary from the cost estimates presented herein.

5.1.1. Secondary Treatment

Secondary treatment options include sequencing batch reactors, oxidation ditches, and membrane bioreactors. The advantages and disadvantages for the secondary treatment options are provided in Table 5-1.

Sequencing Batch Reactor	Oxidation Ditch	Membrane Bio-Reactor			
	Advantages				
- Simple operation - Smaller footprint than Oxidation Ditch - Lowest capital costs	 Simple operation Less mechanical equipment than other options 	 Smallest footprint, more concentrated biological process, so process basins may be much smaller Capability to treat to very low TSS, N and P levels Would set up system for multiple tertiary treatment options if needed, without extra add-ons 			
	Disadvantages				
 Less operational flexibility to achieve lower nutrient limits - can only change the aeration intensity and cycle times, no internal recirculation Post-Process equalization basin recommended 	 Less operational flexibility to achieve lower nutrient limits Larger footprint than SBR or MBR due to shallower process basins 	 Generally highest capital and O&M Costs More technical operation and maintenance compared to SBR and Oxidation Ditch (More equipment to be maintained) Requires addition of fine screens in headworks Would likely require a higher operator certification than SBR or Oxidation Ditch secondary treatment plant 			

TABLE 5-1:SECONDARY TREATMENT OPTIONS ADVANTAGES AND DISADVANTAGES

A 20-year life cycle cost comparison for the three secondary treatment options, including capital costs, as well as operational and maintenance costs, is provided in Table 5-2.

TABLE 5-2: SECONDARY TREATMENT LIFE CYCLE COST ANALYSIS

Sequencing batch reactors incur the lowest capital costs as well as the lowest O&M costs over the 20-year period, although O&M for the SBR and Oxidation Ditch systems are effectively comparable.

ltem	Sequencing Batch Reactor	Oxidation Ditch	Membrane Bio- Reactor
Capital Costs			
Excavation and Backfill	\$140,000	\$180,000	\$110,000
Geotechnical Stabilization	\$194,444	\$250,000	\$144,882
Concrete	\$1,430,000	\$1,820,000	\$1,060,000
Buildings	\$550,000	\$385,000	\$830,000
Mechanical Equipment	\$1,800,145	\$2,312,800	\$3,405,640
Electrical and Controls	\$604,000	\$752,000	\$840,000
Subtotal	\$4,718,589	\$5,699,800	\$6,390,522
General Conditions (10%)	\$472,000	\$570,000	\$640,000
Subtotal	\$5,190,589	\$6,269,800	\$7,030,522
Contingency (30%)	\$1,558,000	\$1,881,000	\$2,110,000
Subtotal	\$6,748,589	\$8,150,800	\$9,140,522
Contractor OH&P (15%)	\$1,013,000	\$1,223,000	\$1,372,000
Subtotal	\$7,761,589	\$9,373,800	\$10,512,522
Professional Services (25%)	\$1,941,000	\$2,344,000	\$2,629,000
Total Estimated Project Cost	\$9,702,589	\$11,717,800	\$13,141,522
Annual O&M Costs			
Electricity	\$18,800	\$24,800	\$81,500
Chemical	\$32,303	\$32,303	\$36,023
Disposal	\$7,300	\$7,300	\$7,300
Parts	\$13,000	\$9,000	\$27,200
Personnel	\$225,000	\$225,000	\$300,000
Estimated Annual O&M	\$296,403	\$298,403	\$452,023
20-Year Life Cycle Cost	\$15,450,000	\$17,510,000	\$21,910,000

SBR systems offer the least amount of operational flexibility in terms of recirculation, and process separation (aerobic, anaerobic, anoxic tanks), while MBRs provide the highest level of operational flexibility, biological process separation, and solids removal through membrane filtration. However, the MBR secondary treatment option incurs the highest capital and O&M costs and would likely result in a higher operator classification required than a plant based around SBR or Oxidation Ditch secondary treatment technology (Class II vs. Class III for MBR).

Current subsurface investigations are underway to determine the treated effluent requirements necessary to prevent negative impacts to surface waters and groundwaters in the NSC as described in the Three Basin Rule. Pending the results of the groundwater and soil investigations, WPCF planning and recommendations will assume a high level of effluent quality required for groundwater infiltration. The effluent quality requirements expected with permitting of the new Mill City WPCF are described in Table 1-6. Constituents of concern include TSS, BOD₅, ammonia, and nitrate. All secondary treatment processes discussed will provide sufficient requirements of 20 mg/L each. However, as the biological process oxidizes ammonia to nitrates during wastewater treatment, levels of nitrate may be higher in treated effluent than would be required to not exceed background groundwater concentrations. Where the secondary treatment process is unable to meet these effluent requirements, tertiary denitrification treatment will be required, regardless of the secondary treatment process chosen. Tertiary treatment is discussed in Chapter 4 and Chapter 6.

Keller recommends the implementation of sequencing batch reactors for secondary treatment. If permitted levels of nitrate are required to be below 5 mg/L, Keller recommends addition of tertiary denitrification filters for additional removal of nitrates, as well as extra solids removal, prior to disinfection and discharge to rapid infiltration basins. Under these treatment scenarios, the effluent would be of sufficiently high quality to protect NSC ground and surface waters and reduce clogging of RIBs during effluent disposal. The system would also be well situated for addition of further tertiary treatment if future discharge limitations are enforced for currently unregulated contaminants in wastewater effluents.

5.1.2. Headworks

Headworks processes are important to reduce wear and clogging of pumps and other mechanical equipment in downstream processes. Preliminary treatment that occurs in the headworks includes screening and grit removal. Options evaluated for screening at the Mill City WPCF include bar screens, drum screens, and band screens. Options evaluated for grit removal include mechanical vortex and induced vortex technologies. Table 5-3 provides advantages and disadvantages of the evaluated screening options and Table 5-4 provides 20-year life cycle cost estimates for screening options. Table 5-5 and Table 5-6 provide advantages and disadvantages and 20-year life cycle cost estimates for grit removal technologies.

Bar Screens	Drum Screens	Band Screens		
	Advantages			
- Small footprint - Low wash water requirement	 Lowest capital life cycle cost Integrated washer/compactor 	- Small footprint - Low wash water requirements		
Disadvantages				
 Separate washer/compactor Same type of screen openings as backup screen 	- Slightly larger footprint than other options	- Separate washer/compactor - Highest life cycle cost		

TABLE 5-3: HEADWORKS SCREENING OPTIONS ADVANTAGES AND DISADVANTAGES

TABLE 5-4: HEADWORKS SCREENING LIFE CYCLE COST ANALYSIS

Item	Multi-Rake Bar Screen	Drum Screen	Band Screen
Capital Costs			
Site Work	\$10,000	\$10,000	\$10,000
Excavation and Backfill	\$6,800	\$8,000	\$6,600
Concrete	\$22,500	\$26,500	\$21,900
Building	\$120,000	\$150,000	\$120,000
Screens	\$200,200	\$130,000	\$222,700
Mechanical Equipment and Installation (30%)	\$107,900	\$97,400	\$114,400
Electrical and Controls (25%)	\$116,900	\$105,500	\$123,900
Subtotal	\$584,300	\$527,400	\$619,500
General Conditions (10%)	\$59,000	\$53,000	\$62,000
Subtotal	\$643,300	\$580,400	\$681,500
Contingency (30%)	\$193,000	\$175,000	\$205,000
Subtotal	\$836,300	\$755,400	\$886,500
Contractor OH&P (15%)	\$126,000	\$114,000	\$133,000
Subtotal	\$962,300	\$869,400	\$1,019,500
Professional Services (25%)	\$241,000	\$218,000	\$255,000
Total Estimated Project Cost	\$1,204,000	\$1,088,000	\$1,275,000
Annual O&M Costs			
Electricity	\$200	\$200	\$400
Disposal	\$2,600	\$2,600	\$2,600
Parts	\$3,000	\$4,000	\$3,000
Personnel	\$5,200	\$5,200	\$5,200
Estimated Annual O&M	\$11,000	\$12,000	\$11,200
20-Year Life Cycle Cost	\$1,420,000	\$1,330,000	\$1,500,000

Band screens generally have lower capture rates than drum screens and bar screens of similar cost, and rotating drum screens generally require a larger footprint than bar screens. The excavation and concrete costs associated with the larger footprint of the drum screen option is included in the capital costs in Table 5-5. Based on the 20-year life cycle cost and the high screening capture rates, Keller recommends the rotating drum screen option with ¼" openings and an integrated washer/compactor system. For screening redundancy, Keller recommends installing a manually cleaned static screen as a downstream backup.

TABLE 5-5: HEADWORKS GRIT REMOVAL OPTIONS ADVANTAGES AND DISADVANTAGES

Induced Vortex	Mechanical Vortex	
Advantages		
- Simple construction - Lower capital cost	 Controlled by programmable logic controller (more operational flexibility) 	
Disadvantages		
- Controlled by relay (less operational flexibility)	- Higher capital cost - More complex construction	

TABLE 5-6: HEADWORKS GRIT REMOVAL LIFE CYCLE COST ANALYSIS

ltem	Induced Vortex	Mechanical Vortex
WWTP Project		
Site Work	\$10,000	\$10,000
Excavation and Backfill	\$5,000	\$5,800
Concrete	\$15,000	\$28,900
Grit Trap, Pump and Classifier Equipment	\$252,200	\$393,900
Mechanical Equipment and Installation	\$56,500	\$131,600
Electrical and Controls (25%)	\$84,700	\$142,600
Subtotal	\$423,400	\$712,800
General Conditions (10%)	\$43,000	\$72,000
Subtotal	\$466,400	\$784,800
Contingency (30%)	\$140,000	\$236,000
Subtotal	\$606,400	\$1,020,800
Contractor OH&P (15%)	\$91,000	\$154,000
Subtotal	\$697,400	\$1,174,800
Professional Services (25%)	\$175,000	\$294,000
Total Estimated Project Cost	\$873,000	\$1,469,000
Annual O&M Costs		
Electricity	\$200	\$200
Disposal	\$2,600	\$2,600
Parts	\$2,000	\$4,000
Personnel	\$2,600	\$2,600
Estimated Annual O&M	\$7,400	\$9,400
20-Year Life Cycle Cost	\$1,020,000	\$1,660,000

As discussed in Chapter 4, aerated grit removal systems are generally not cost-effective at smaller treatment plants, and many manufacturers produce induced vortex and mechanical vortex technologies at competitive prices. Keller recommends an induced vortex grit removal system due to cheaper acquisition of mechanical components and simpler construction with availability for installation in a precast manhole.

5.1.3. Influent Lift Station

Two types of lift stations were evaluated for wastewater influent receiving and pumping at the future Mill City WPCF. These options include a wet well submersible pump lift station and a wet well/dry pit lift station configuration. Table 5-7 provides advantages and disadvantages of the influent lift station configurations, and Table 5-8 provides a life cycle cost comparison.

TABLE 5-7: INFLUENT LIFT STATION OPTIONS ADVANTAGES AND DISADVANTAGES

Wet Well	Wet Well/Dry Pit
Adva	intages
 Lower capital costs Requires less space Does not require aboveground structures Sealed pumps may require less maintenance 	- Easier access and maintenance than submerged pumps
Disad	vantages
- When maintenance is required, pump access is more difficult	 Higher capital costs Generally, only installed for large pump stations

Item	Wet Well	Wet Well/Dry Pit
Capital Costs		
Site Work	\$40,000	\$100,000
Structures (Building and Manholes)	\$25,000	\$145,000
Pumping Equipment	\$25,000	\$25,000
Mechanical Equipment and Installation	\$18,000	\$81,000
Electrical and Controls (25%)	\$27,000	\$87,800
Subtotal	\$135,000	\$438,800
General Conditions (10%)	\$14,000	\$44,000
Subtotal	\$149,000	\$482,800
Contingency (30%)	\$45,000	\$145,000
Subtotal	\$194,000	\$627,800
Contractor OH&P (15%)	\$30,000	\$95,000
Subtotal	\$224,000	\$722,800
Professional Services (25%)	\$56,000	\$181,000
Total Estimated Project Cost	\$280,000	\$904,000
Annual O&M Costs		
Electricity	\$4,800	\$4,800
Parts	\$2,000	\$4,000
Personnel	\$2,000	\$3,000
Estimated Annual O&M	\$8,800	\$11,800
20-Year Life Cycle Cost	\$460,000	\$1,140,000

TABLE 5-8: INFLUENT LIFT STATION LIFE CYCLE COST ANALYSIS

Based on low capital costs, simpler construction, and the expected size of the WPCF, Keller recommends a wet well with submerged pumps for the future WPCF influent lift station.

5.1.4. Disinfection

To achieve the expected E coli. discharge requirements, disinfection prior to discharge will be essential at the future Mill City WPCF. As a chemical disinfectant residual is generally not required for wastewater disinfection, and such disinfection systems require the use of costly and potentially hazardous chemical oxidants, Keller has proceeded with an evaluation of different technologies based on ultraviolet (UV) disinfection. The two technologies evaluated include open channel horizontal UV disinfection and enclosed chamber UV disinfection. Open channel inclined UV disinfection technology was not evaluated as it is not likely to be cost efficient for the expected treatment plant size. Table 5-9 provides advantages and disadvantages of both technologies. Table 5-10 provides life cycle cost analyses for the proposed disinfection technologies.

TABLE 5-9: DISINFECTION OPTIONS ADVANTAGES AND DISADVANTAGES

Open Channel	Enclosed
Adva	antages
- Slightly lower capital cost for mechanical equipment	- No concrete channels required
Disad	vantages
- Requires concrete and excavation for construction of open channels	 Slightly higher capital costs for mechanical equipment Higher electricity usage

TABLE 5-10: DISINFECTION LIFE CYCLE COST ANALYSIS

Item	Open Channel	Enclosed
WWTP Project		
Excavation and Concrete	\$20,000	-
UV Equipment	\$262,000	\$287,000
Isolation Valves	-	\$10,000
Mechanical Equipment and Installation (30%)	\$85,000	\$90,000
Electrical and Controls (25%)	\$92,000	\$97,000
Subtotal	\$459,000	\$484,000
General Conditions (10%)	\$46,000	\$49,000
Subtotal	\$505,000	\$533,000
Contingency (30%)	\$152,000	\$160,000
Subtotal	\$657,000	\$693,000
Contractor OH&P (15%)	\$99,000	\$104,000
Subtotal	\$756,000	\$797,000
Professional Services (25%)	\$189,000	\$200,000
Total Estimated Project Cost	\$945,000	\$997,000
Annual O&M Costs		
Electricity	\$3,600	\$7,900
Chemical	\$200	\$200
Parts	\$4,100	\$5,740
Personnel	\$7,800	\$7,800
Estimated Annual O&M	\$15,700	\$21,640
20-Year Life Cycle Cost	\$1,180,000	\$1,320,000

Based on lower capital costs and lower electricity requirements, Keller recommends the open channel UV disinfection configuration for effluent disinfection at the Mill City WPCF. Depending on effluent nitrate requirements, open channel UV disinfection would be compatible both after SBR secondary treatment as well as following tertiary denitrification filters (where required).

5.1.5. Solids Handling Equipment

During the wastewater treatment process, solids are separated from the liquid wastewater stream and must be disposed of. In order to consolidate and dispose of the separated sludge, it must be thickened and dewatered through solids handling processes. The main goal of solids handling is to reduce the total volume and weight of the solids to be disposed of by removing moisture from the separated sludge. The liquid stream separated from waste sludge is then generally sent back to the head of the treatment plant for processing. Following solids handling, the thickened and dewatered sludge can be disposed of at a solid waste disposal site more economically than would have been possible directly following clarification or filtration. Three solids handling technologies were evaluated in this study: screw press, volute press, and fan press. All three options are able to thicken and dewater waste sludge to levels required for economical disposal of solids, so the final recommendation is based on capital cost for installation, operating costs, and ease of maintenance. Table 5-11 provides advantages and disadvantages of the solids handling alternatives. Table 5-12 provides associated life cycle cost estimates.

Volute Press	Fan Press	Screw Press			
	Advantages				
 Lowest capital and life cycle cost Ability to expand redundancy with a single skid including multiple drums Lowest wash water usage Can operate unattended 	 Ability to expand redundancy with a single skid that includes multiple channels Can operate unattended 	 Capable of starting and stopping autonomously with linked sensors Can operate unattended 			
	Disadvantages				
- Fewer manufacturers and installations relative to screw press	- High wash water usage	 A single skid can only provide one press (for redundancy, multiple units would be necessary) High wash water usage 			

TABLE 5-11: SOLIDS HANDLING OPTIONS ADVANTAGES AND DISADVANTAGES

TABLE 5-12: SOLIDS HANDLING LIFE CYCLE COST ANALYSIS

Item	Volute Press	Fan Press	Screw Press
Capital Costs			
Site Work, Excavation and Concrete	\$23,700	\$23,700	\$23,700
Buildings	\$188,000	\$188,000	\$188,000
Dewatering Press and Associated Equipment	\$234,700	\$361,800	\$373,500
Mechanical Equipment and Installation (30%)	\$134,000	\$172,100	\$175,600
Electrical and Controls (25%)	\$145,100	\$186,400	\$190,200
Subtotal	\$725,500	\$932,000	\$951,000
General Conditions (10%)	\$73,000	\$94,000	\$96,000
Subtotal	\$798,500	\$1,026,000	\$1,047,000
Contingency (30%)	\$240,000	\$308,000	\$315,000
Subtotal	\$1,038,500	\$1,334,000	\$1,362,000
Contractor OH&P (15%)	\$156,000	\$201,000	\$205,000
Subtotal	\$1,194,500	\$1,535,000	\$1,567,000
Professional Services (25%)	\$299,000	\$384,000	\$392,000
Total Estimated Project Cost	\$1,493,500	\$1,919,000	\$1,959,000
Annual O&M Costs			
Electricity	\$1,100	\$1,200	\$1,000
Chemical	\$1,000	\$1,000	\$1,000
Disposal	\$19,500	\$19,500	\$19,500
Parts	\$10,500	\$10,500	\$10,500
Personnel	\$15,600	\$15,600	\$15,600
Estimated Annual O&M	\$47,700	\$47,800	\$47,600
20-Year Life Cycle Cost	\$2,420,000	\$2,850,000	\$2,890,000

Based on lower capital costs, Keller recommends the volute press for use in solids handling at the future Mill City WPCF. The volute press could also be expanded in the future to include multiple drums for redundancy in solids dewatering.

5.1.6. Effluent Disposal and Siting

Following disinfection, effluent must be disposed of in accordance with federal, state, and local regulations, and in compliance with the new WPCF permit. As the Three Basin Rule does not permit new discharge of treated effluent directly to the North Santiam River, discharge to groundwater through rapid infiltration basins will most likely be the permitted disposal option, pending the completion of subsurface investigations by GSI and GSA (Appendix I). As described in Chapter 4, several sites in the Mill City/Gates area are currently under investigations to determine the best candidate site for effluent disposal. Table 5-13 provides preliminary recommended basin sizes based on the measured groundwater infiltration rate of the four sites undergoing subsurface investigation. Preliminary design calculations are based on EPA guidance for design of rapid infiltration basins, as well as the expected 2045 MMWWF₅ wastewater flows and effluent quality at the future WPCF.

TABLE 5-13: RAPID	INFILTRATION BASIN	I SIZES AT DIFFEREN	T DISPOSAL SITES

Site ID	Effective Saturated Hydraulic Conductivity (Geometric Mean, ft/day)	Recommended Basin Area (Acres)
GM1	5.97	1.72
GM2	0.12	85.78
GM4	0.78	13.2
GM5	0.18	57.18

Basin sizes were calculated using 10% of the measured infiltration rate to account for clogging of the soil that can occur during wastewater effluent infiltration.¹ It is also recommended to cycle effluent disposal to the infiltration basins utilizing short wet cycles (the effluent loading cycle) and longer dry cycles to allow for the infiltrations beds to dry and reaerate for improved biological treatment in the soil during infiltration. Allowing infiltration basins to dry or providing a "rest" period in between effluent loadings also helps to prevent clogging of basin soil over time. Per EPA recommended RIB loading and drying cycles (2 days loading and 7 days drying in the summer, and 2 days loading and 12 days drying in the winter), approximately 5-7 infiltration basins spread over the recommended basin site is proposed. Based on the Phase I Shallow Soil Report conducted by GSI and GSA, Keller recommends moving forward with general layouts at the GM1 site as it appears to be the most viable in terms of the basin area necessary for effluent disposal. It would likely be advantageous to locate the new WPCF at the same site as effluent disposal to avoid construction of costly pipelines for conveyance of treated effluent to the chosen infiltration disposal site. A preliminary examination of the GM1 site indicates that it would be sufficiently large for both the treatment facilities and infiltration basins needed for the 2045 expected planning flows and loadings, as well as several acres available for expansion of treatment and disposal facilities beyond 2045. Subsurface hydraulic investigations are still being conducted at the time of this report, and suitability of the proposed site for disposal of treated effluent are dependent on the final conclusions of the subsurface investigations and groundwater modeling. Where these investigations determine the proposed site to be unsuitable, the siting recommendation will be revisited.

5.2. NON-MONETARY FACTORS

Important non-monetary factors to be considered in treatment plant design include ease of operation, ease of obtaining equipment replacement parts, operator classification, future site planning, expansions, renovations, and straightforward and redundant operational framework to meet the requirements of the Three Basin Rule.

Keller recommends a treatment system based around SBR secondary treatment technology, likely followed by denitrification tertiary treatment. The secondary treatment process selection is based on monetary factors (capital and O&M costs), the ability of the process to meet the expected effluent requirements, and the non-monetary factors outlined above. A plant based around SBR for secondary treatment would likely require Class II operators, while the MBR option would likely require Class III operators due to pressurized membrane filtration. Class II operators would likely be easier to recruit than Class III in the area, and many communities in Western Oregon also operate SBR treatment plants.

A preliminary assessment of the GM1 disposal site suggests that the non-monetary siting criteria would be achievable in the coming decades. The non-monetary criteria for WPCF siting include room for site expansion and renovation, as well as ease of access for chemical and equipment deliveries. Odor control at the future WPCF site is also a concern for the municipal planning staff in Mill City.

¹ U.S. Environmental Protection Agency. (1981, October). *Process Design Manual for Land Treatment of Municipal Wastewater.* Cincinnati: U.S. Environmental Protection Agency, Center for Environmental Research Information.

While residential developments are located near the GM1 site, treatment processes that are generally associated with odor, such as the headworks, could be located furthest from these developments and would be designed with odor control processes to further mitigate these issues.

SELECTION OF AN ALTERNATIVE, COLLECTION

This section provides a recommendation for a preferred alternative for the Gates / Mill City Force Main and the Spring Street Growth Alternatives discussed in Chapter 4. This section considers costs and non-monetary factors.

5.3. GATES / MILL CITY ALTERNATIVE SELECTED ALTERNATIVE

Based on the considerations documented in Chapter 4 and the following sections, it is recommended to pursue Alternative 2 for the Gates / Mill City Force Main project. Within Alternative 2, the alignment for 2B should be constructed.

5.3.1. Life Cycle Cost Analysis – Gates / Mill City Force Main

Construction costs were estimated for each of the two alternatives for the Gates/Mill City force main. Operations and maintenance and life-cycle costs were not compared because both alternatives have similar considerations. The detailed cost estimate is provided in Appendix E and a summary is included in Table 5-14. Note, the costs for Alternative 2 are based on the Alternative 2B alignment.

Item	Alternative 1	Alternative 2
Goods and Services	\$6,008,000	\$5,380,400
Construction Costs ¹	\$3,904,000	\$3,498,000
Engineering and Permitting ²	\$3,349,000	\$3,124,000
Total Project Cost	\$13,270,000	\$12,010,000

TABLE 5-14: MILL CITY/GATES ALTERNATIVE COST ESTIMATES

1) Inclues mobilization, contractor overhead and profit, prevailing wages, American Iron and Steel / Build America, Buy America consideration, and contingency.

2) Includes engineering design, construction administration, and inspection, permitting, environmental, geotechnical, SCADA integration, surveying, and legal.

5.3.2. Non-Monetary Considerations – Gates / Mill City Force Main

Alternative 2 provides additional benefits including increased resiliency, use of existing infrastructure, and improved communities. This alternative consists of less water crossings which are more vulnerable to breaking and therefore improves the resiliency of the force main. This alternative avoids installation of a new wastewater pipeline across the Santiam River by utilizing the existing force main from the First Ave lift station. This reduces the risk of polluting a major water source by not adding another potential point of failure. The communities of Mill City and Gates can benefit from this alternative by constructing a walking/biking path above the force main located within the inactive railroad ROW. This would provide a path between the two communities that is off the existing highway. This pathway could be constructed with green infrastructure such as infiltration trenches to capture runoff. Alternative 2B is recommended over Alternative 2A. Alternative 2A is located lower in the sewer basin and will capture most of the new connections in this basin and allows for continued growth past the 2070 estimates with minimum pipe sizes. Alternative 2B also transitions from a pressure pipe to gravity pipe at a manhole location away from existing structures which is beneficial because there will be an increased odor at this transition manhole and will require some odor control measures.

5.4. SPRING STREET GROWTH SELECTED ALTERNATIVE

Based on the considerations documented in Chapter 4 and the following sections, it is recommended to pursue Alternative 1 for the Spring Street growth alternatives.

5.4.1. Life Cycle Cost Analysis – Spring Street Growth

Table 5-15 summarizes the capital, O&M, replacement, and salvage costs associated with both alternatives. The cost comparison for these alternatives considers each of these costs because the two alternatives result in different operation of the system and will have different costs over a 20-year life cycle. Alternative 1 will continue to use STEG tanks which have costs associated with it including pumping and disposal as well as replacement when they reach the end of their useful life. Additionally, there are pipeline O&M costs for CCTV and cleaning. Alternative 2 only has O&M costs for pipeline CCTV and cleaning. Replacement costs for pipeline were not considered since both alternatives would have similar costs. Additionally, the potential savings on chemicals at the WPCF associated with Alternative 2 due to the increased loading were not considered.

Although Alternative 1 has additional O&M costs associated with it, the capital costs for Alternative 2 significantly exceed those of Alternative 1. Therefore, unless there are other factors such as a desire to eliminate STEG tanks, Alternative 1 is recommended.

Item	Alternative 1	Alternative 2		
Capital Costs	\$590,000	\$1,790,000		
O&M 20-Year Present Worth ¹	\$90,900	\$34,900		
Replacement 20-Year Present Worth ²	\$102,000	\$0		
Salvage Value	\$0	\$0		
20-Year Lifecycle cost \$780,000 \$1,824,900				
1) Equal to present worth of 20-years of O&M activities associated with each alternative.				
2) Equal to present worth of 20-years of annual replacement savings for STEG tank replacement.				

TABLE 5-15: SPRING BASIN ALTERNATIVE COSTS

5.4.2. Non-Monetary Considerations – Spring Street Growth

Non-monetary considerations would be if the city had interest in phasing out the existing STEG tanks. If this were the case, Alternative 2 would allow for new connections along the alignment and new development to discharge directly to the trunkline. However, the city is not currently interested in removing STEG tanks from their system.

Alternative 1 consists of less disturbance to the existing system and will have a lesser impact on existing customers.

CHAPTER 6 - PROPOSED PROJECTS

This chapter includes a summary of the recommended alternatives and a description of the proposed project based on the information available at the time of this study. The chapter also includes description of the preliminary project schedule, anticipated permit requirements, sustainability considerations, cost estimates, and annual operating budgets.

6.1. PRELIMINARY PROJECT DESIGN

The project described below includes the recommended alternatives and are included in the capital improvement plan. The projects are prioritized according to the criteria outlined in Table 6-1.

Priority	Implementation Timeline	Description
1	0-5 Years	 Construction of new WPCF Regionalization of Gates and Mill City systems Existing capacity related deficiency Conditions related replacement
2	5-20 Years	Lower priority projects to complete within next 5-20 years
3	Development Driven	Projects to serve new development.

TABLE 6-1: PRIORITIZATION CRITERIA

Projects 1.1 through 1.3 – Water Pollution Control Facility

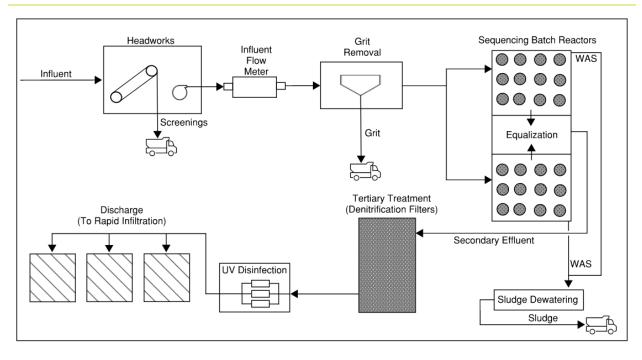
This project involves construction of a new WPCF and disposal site in Mill City, as well as decommissioning of the current WPCF. The new WPCF will be designed to receive and treat wastewater flows from both Mill City and Gates through 2045 as described in Chapter 4 and outlined in Table 6-2 below.

WPCF Design Flows		WPCF Design Max	Month Loadings
Design Criteria	Design Criteria Flow (MGD)		Loading (PPD)
ADF	0.223	BOD₅	490
MMF	0.262	TSS	277
PIF₅	0.682	TKN	155
		TP	24

TABLE 6-2: WPCF DESIGN CRITERIA

Additionally, the site will include space for expanding the facility for treatment and disposal of future influent flows and loadings beyond 2045. Major WPCF processes and their recommended components are summarized below.

Headworks – The headworks processes should be capable of removing branches, plastics, grit, and other deleterious materials that arrive in the WPCF influent to protect downstream pumps and mechanical equipment. Keller recommends a rotating drum screen option with ¼" openings and an integrated washer/compactor for headworks screening. For screening redundancy, a manually cleaned static screen is recommended as a downstream backup. Keller recommends an induced vortex grit removal system due to cheaper acquisition of mechanical components and simpler construction with installation in a precast manhole.



- Influent Lift Station An influent lift station is required following the headworks to pump screened influent to secondary treatment and downstream processes. Keller recommends a wet well with submersible pumps alternating between duty and standby pumping. This configuration is less expensive and more cost effective for smaller treatment plants. Operating one pump at a time also results in less wear on each pump and allows maintenance to be performed on one pump without halting treatment of influent at the WPCF.
- Secondary Treatment During secondary treatment, a large portion of the wastewater constituents will be removed. These include ammonia, TSS, BOD₅, as well as some nitrate. Secondary treatment will also likely encompass the bulk of the electrical and chemical operating costs associated with the facility treatment process. Keller recommends installation of a sequencing batch reactor (SBR) system for secondary treatment due to the low capital cost and relatively few pieces of mechanical equipment required. The SBR process will consist of two concrete process basins and a post-equalization basin where treated secondary effluent is stored until it is pumped to tertiary treatment, disinfection, and rapid infiltration. The SBR process would be sized to treat expected 2045 max month flows and loadings and blowers, diffusers, and mechanical mixers would be provided for aerobic treatment of the wastewater. A chemical injection system for addition of methanol and caustic soda to the process basins would be installed as well. The preliminary site layout includes room for expansion of treatment processes beyond 2045.
- Tertiary Treatment If nitrate levels in treated effluent are required to be lower than 5 mg/L prior to rapid infiltration, Keller recommends tertiary treatment involving sand denitrification filters. A biological denitrification filter creates an environment free of oxygen with a high surface area. This encourages growth of denitrifying organisms that convert nitrate into nitrogen gas which is then released to the atmosphere. This process results in removal of the associated nitrogen from the liquid treatment train that originally entered as organic nitrogenous compounds or ammonia (together known as TKN). The filters would be located in metal tanks near the secondary treatment post-equalization tank and would be designed to bring monthly average nitrate levels down to 1 mg/L and daily average turbidity down to 2 NTU or less prior to disinfection and discharge.
- Disinfection Keller recommends open channel horizontal UV disinfection for removal of coliform prior to discharge. This system would not require injection of chemicals directly into the water being treated but would require a small amount of chemical for cleaning of the UV bulbs when UV transmittance drops below setpoints.
- Sludge Dewatering During secondary treatment, microorganisms consume the wastewater constituents described above and eventually form a blanket of sludge on the bottom of the process basins. Some of this blanket is left to ensure a healthy microbial population, but older sludge would be pumped to a solids holding tank for storage before dewatering and hauling to a landfill. Due to lower capital cost and the ability to install multiple drums on a single skid, Keller recommends installation of a volute press for sludge thickening and dewatering. A polymer mixing and addition system would also be required to aid in sludge agglomeration and dewaterability. Following the dewatering process, solids would drop into a conveyer where they could be stored in a dumpster before they are hauled to a landfill.
- Effluent Pumping Station Following disinfection, treated effluent would gravity flow to an effluent pumping station with a similar configuration to that of the influent lift station. A wet well with two submersible pumps would be utilized to send the final effluent to the rapid infiltration basins.

- Disposal As surface water discharge is not an option per the Three Basin Rule, Keller recommends rapid infiltration basins (RIBs) for disposal of treated effluent. The basins would be designed based on EPA guidance and include redundant basins allowing operators to cycle effluent loading to minimize standing water in the RIBs. Data from subsurface investigations, as well as groundwater modeling and sampling will be utilized in design and operation recommendations to ensure groundwater and surface water are protected in the NSC.
- Backup Power A backup diesel generator is recommended to run core processes, lights, and HVAC at the WPCF during power outages or other emergencies.
- Site Development This portion of the project includes land development of the WPCF/RIB property. This includes access roads, utilities, access inside the property, and stormwater collection, treatment, and disposal. Also included in this project will be landscaping to comply with land use and design standards for the County and/or City.
- Current WPCF Decommissioning Upon construction and startup of the future WPCF, the current facility will need to be decommissioned. Decommissioning of the current WPCF will include capping the influent line and capping or removing the effluent line. All sewage, sludge, and sediment will be removed from the pipes, basins, and gravel filter and disposed of. Tanks that are not being reused will be removed or backfilled with sand, earth, gravel, or other approved material. All aboveground piping, equipment, chemicals, spare parts will be removed. Cleaned piping and equipment may remain in place if buried or located below grade. Tanks and buildings may remain in place for other uses if they are properly cleaned and retro-fitted so that they are not a safety concern or environmental hazard. Unused monitoring wells will be abandoned in conformance with state requirements.

Figure 6-1 provides an updated flow diagram with the above recommended technologies for the future Mill City WPCF.

FIGURE 6-1: RECOMMENDED WPCF FLOW DIAGRAM

Project 1.4 – Mill City Lift Station Improvements

This project consists of upgrading the First Avenue Lift station including upsizing the pumps and electrical equipment. The First Avenue Lift Station pumps should upsize the existing 130 gpm pumps to 300 gpm and associated electrical/controls equipment. Install Variable Frequency Drives (VFDs) to allow for variable pumping rates depending on fluctuations in flows.

Project 1.5 – Mill City Piping Improvements

This project consists of abandoning a portion of the existing 8-inch pressure sewer pipeline going to the existing WPCF location and extending the pipeline along Fairview Avenue to the new WPCF site. It includes approximately 700 LF of new 10-inch pressure sewer pipeline installed within the Fairview Avenue right-of-way and running through the new WPCF site. The project extents are provided in Figure 6-2 The existing 8-inch force main should not be abandoned until the new 10-inch forcemain and WPCF are online.

Project 1.6 – Gates to Mill City Force Main and Gravity Main

This project consists of constructing 10,000 LF of 4-inch pressure sewer pipe and 2,000 LF of 8inch gravity sewer pipe. The 4-inch pressure sewer pipe will start at the new Gates Regional Lift Station and head west toward Mill City. The preliminary layout of the force main is provided in Appendix G. It is anticipated that the pipe will be buried relatively shallow with three to four feet of ground cover. The pipe will be installed within Central Avenue for the first 1,000 LF and then will cross into the abandoned railroad right-of-way (currently owned by ODOT). Once in the right-of-way, the surface repair over the pipe will be a 10-foot-wide asphalt walking/biking path. The 4-inch force main will discharge into a lined manhole with odor control measures to the east of NE 5th Avenue and Santiam Pointe Loop. The existing 4-inch gravity pipe extending to the west will be replaced with an 8-inch gravity pipe at the same depths and slopes. At Wall Street the existing 4-inch gravity pipe will be abandoned and a new alignment within Wall Street to NE 1st Avenue will be constructed. The existing 4-inch in NE 1st Avenue to the First Avenue Lift Station will be replaced with an 8-inch pipe.

Some of the challenges which may be encountered during construction are described below.

- Several intermittent and perennial stream crossings along the proposed alignment that may be bored or open cut.
- Existing structures have been erected within the public right-of-way in between Mill City and Gates.
- > Steep slopes and concern for landslides exist for a portion of the alignment.
- The existing Mill City collection system consists of some shallow 4-inch gravity pipes. Cover at a few locations may be less than three feet if installed at existing depths. Adjustments to the grade or mitigation for sub-standard depths will be provided during the design process.
- Shallow bedrock exists throughout the sections of the existing gravity pipe for the Mill City system. There is 300 LF of 8-inch gravity pipe with a new alignment. Rock excavation may be required.

Project 1.7 – Gates Lift Stations

This project consists of constructing three new lift stations in the City of Gates including the Gates Regional Lift Station which will pump flows to Mill City (Project 1.6). This project includes the pressure sewer pipelines within the City of Gates which is approximately 2,300 LF of 4-inch pressure pipeline. The Gates Regional Lift Station will consist of a new 6-foot diameter wetwell, duplex submersible pumps with a capacity of 100-150 gpm. Additional details regarding the lift stations are provided in Table 6-3. This lift station will collect flows from any connections connected to the new Gates collection system.

Proposed Gates Lift Stations	Regional LS	Dogwood LS	Riverview LS
Туре	Duplex; Submersible	Duplex; Submersible	Duplex; Submersible
Capacity (gpm)	100-150	<100	<100
Pump Manufacturer	Flygt / Xylem	Flygt / Xylem	Flygt / Xylem
Wetwell Diameter (ft)	6	6	6
Wetwell Depth (ft) ³	15	15	12
Level Indicator Type	Pressure Transducer & Floats	Pressure Transducer & Floats	Pressure Transducer & Floats
Variable Frequency Drive	Yes	Yes	Yes
Flow Meter (Y/N)	Yes	Yes	Yes
Pressure Gauge (Y/N)	Yes	Yes	Yes
Back-up Power	Yes	Yes	Yes
Transfer Switch	Automatic	Automatic	Automatic

TABLE 6-3: GATES LIFT STATION DETAILS

Project 1.8 and 1.9 – Gates Collection System and Services

This project consists of constructing a new gravity collection system within the City of Gates. It includes approximately 25,000 LF of new 8-inch gravity pipeline and three areas with pressurized systems and individual grinder pumps. The existing septic tanks should be either removed or abandoned-in-place per DEQ standards. The conceptual layout including approximate pipeline alignment, lift station locations, and pressure sewer systems is included in Appendix G. This project includes installation of new service connections to each customer.

Project 2.1– Alder Street Upsizing

This project consists of upsizing the existing 4-inch gravity pipeline from the manhole where the River Road pressure pipe discharges to gravity (along Alder Street west of NW 2nd Avenue) to the upsized 8-inch pipe installed as a part of Project 1.6. The project extents are provided in Figure 6-3. This project is not included in the Priority 1 improvements. The project may be funded by BizOregon, other grant funding, or system development charges (SDCs) and is anticipated to be constructed by 2026.

Project 3.1 – Spring Street Lift Station Upsizing

This project is not needed under existing conditions but as areas develop within the Spring Street Basin, the pumping capacity of the Spring Street Lift Station will need to be increased. Based on the peak hour flow criteria at the time of this study, the Spring Street Lift Station can accommodate approximately 200 additional people, or 80 EDU's before the peak inflow reaches the firm capacity. It is uncertain exactly when development in this basin will occur, and therefore the City should consider upsizing the pumps as development occurs in this basin. The City could consider upsizing the pumps to the projected 2070 peak inflow which is 380 gpm. Installation of VFDs should also be considered for energy efficiency.

Project 3.2 – Spring Street Basin Trunkline Upsize

This project is not needed under existing conditions but as areas develop within the Spring Street Basin, the existing gravity lines will need to be upsized. This project consists of upsizing 1,000 LF of 4-inch pipe to 6-inch pipe along Kingwood Avenue and Hall Avenue and 600 LF of 6-inch pipe to 8-inch pipe along High Avenue. Consideration to alternative alignments should be given as development occurs in the vicinity of these projects. These developments may provide an alternate path to accomplish the conveyance requirements.

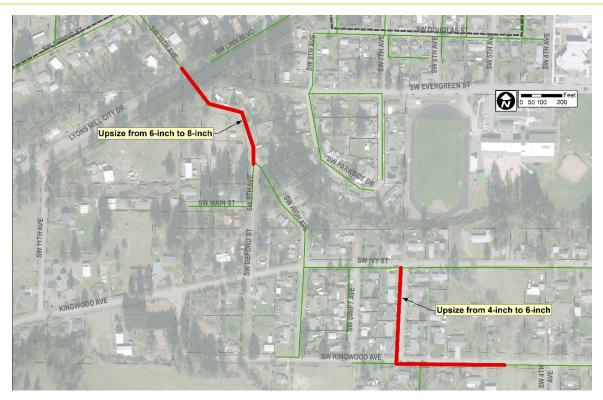
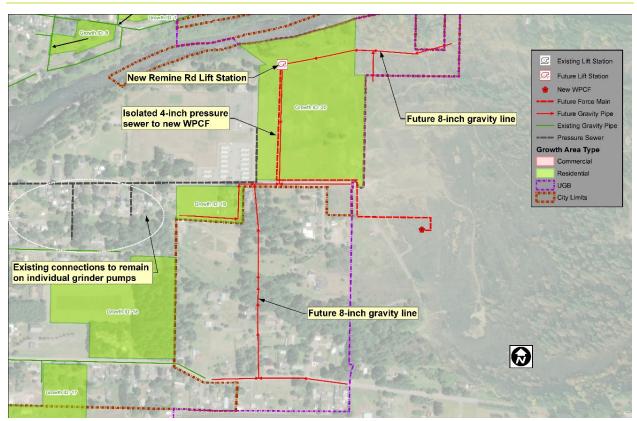



FIGURE 6-4: SPRING STREET BASIN TRUNKLINE UPSIZE

Project 3.3 – Remine Road Collection System

This project is not needed under existing conditions but as areas develop near the eastern edge of the City limits, additional collection system components will be needed to convey flows to the new WPCF. The proposed project will include a new lift station along Remine Road and a new gravity collection system to convey flows to the new lift station. The potential layout is shown in Figure 6-5. The lift station should pump to the new WPCF headworks through a dedicated 4-inch pressurized pipeline. It should be noted, future trunkline layouts outside of the identified growth areas are depicted in the figure. These are provided to depict a concept that could serve the remainder of the areas within this sewer basin for the UGB. The exact alignment of these trunklines will likely vary as the areas develop, however, the connectivity and drainage to the new Remine Road Lift Station should be similar. The City could consider constructing the Remine Road Lift Station at the existing WPCF site, however, it is slightly higher in elevation than the location shown in the figure below.

FIGURE 6-5: FUTURE SEWER BASIN NEAR REMINE ROAD

6.2. PROJECT SCHEDULE

The general project milestones are listed below. A preliminary project schedule is provided in Appendix G.

Project Milestones:

- December 2023: Finalize WWFPS
- January 2024 July 2024: 30% Design
- > August 2024 January 2025: 60% Design
- February 2025 May 2025: 90% Design
- March 2025 June 2026: WPCF Construction
- September 2025 January 2026: Gates Pump Station and Mill City Sewer Main Construction
- > January 2026 November 2026: Gates Sewer Main and pump stations
- > July 2026 August 2026: Substantial Completion and Commissioning and Startup
- September 2026 December 2026: Connect new Gates connections
- September 2026 October 2026: Decommissioning of old WPCF
- > December 2026: Final Completion

Permit requirements

The new WPCF will require a new WPCF permit as administered by Oregon DEQ. Keller has based expected effluent requirements and the associated process design on guidelines from the Three Basin Rule and extensive meetings with the DEQ. Table 1-6 in Chapter 1 provides the expected discharge requirements of the new WPCF.

It is anticipated that several permits will be required by various local, state, and federal agencies. Appendix J contains a comprehensive list of possible permits, organized by agency and includes the name of the permit, regulations, permit trigger, application process, timing considerations, and which projects the permit may apply to. The following is a list of only the agencies: USACE, NOAA Fisheries, USFWS, ODFW, DSL, ODA, OWRD, DEQ, SHPO, ODOT, Marion County, Linn County, City of Gates, and the City of Mill City. The first design phase (Pre-design) of the project for Priority 1 projects will include permitting considerations and will begin the permitting efforts.

6.3. SUSTAINABILITY CONSIDERATIONS

6.3.1. Water And Energy Efficiency

The following were considered and recommended for implementing water and energy efficiency.

- Process blowers that utilize VFDs in tandem with DO monitoring can help optimize the level of aeration required under different influent loadings and temperatures.
- A water storage and reuse system that utilizes treated effluent for wash water, irrigation, and other utility uses could help reduce the water usage of the WPCF.
- > VFDs at First Avenue Lift Station and Spring Street Lift Station

6.3.2. Green Infrastructure

The following were considered and recommended for implementing green infrastructure.

- Construct new lift station sites with pervious surface such as gravel, native plants, or pervious pavers.
- Construct the new WPCF with native vegetation and trees to avoid excessive use of irrigation water. Design WPCF landscape to be low maintenance.

6.3.3. Others

Additional sustainability considerations that are recommended to be implemented include the following:

Utilizing electrically actuated valves to cycle RIBs with effluent discharge, and other mechanical equipment connected to a SCADA system would allow for better resiliency of the system and increased efficiency and simplicity of operation.

6.4. FUTURE REUSE CONSIDERATIONS

In order to produce Class A reuse water for irrigation and other municipal purposes as directed by OAR 340-055-0005 the future Mill city treatment plant would have to obtain a reuse permit from DEQ. In order to obtain a Class A reuse permit the Mill City treatment plant would need to add at a minimum chlorine disinfection, a treated effluent storage and pumping station, and purple pipe distribution infrastructure in order to distribute and utilize the Class A effluent. Prior to this, the additional treatment systems and reuse plan would also need to be approved by DEQ.

6.5. TOTAL PROJECT COST ESTIMATE

Total project cost estimates were prepared for each of the Priority 1 projects described in Section 6.1. A summary of the costs for priority 1 projects is provided in Table 6-4. The WPCF cost includes the cost for installation of tertiary denitrification filters. If these filters are not required in the final WPCF process design, significant savings could be achieved in mechanical equipment and construction costs.

TABLE 6-4: NSCSP PRIORITY 1 COSTS

	Construction			
Area	Description		Cost	Notes
1	New WPCF	\$	20,386,888	
2	Existing Treatment Plant	\$	200,000	
	Infiltration Basins	\$	574,615	
	Mill City Lift Station Improvements	\$	274,838	
	Mill City Piping Improvements	\$	250,000	
	Gates to Mill City Force Main	\$	3,975,972	
	Gates Lift Stations	\$	1,125,912	
	Gates Collection Systems	\$	10,967,662	
	Gates Service Connections	\$	3,382,586	
	Site Support Services	\$	1,927,860	
	General Conditions	\$	3,277,115	
Subtotal - Cost o		\$	46,343,448	
	Other Costs			
	Escalation to GMP	\$	2,317,172	
	Design Contingency	\$	9,268,690	
	CM/GC Contingency	\$	2,317,172	5.0%
Subtotal - Other (\$	13,903,034	
SUBTOTAL WITH		\$	60,246,482	
	Markups			
	CM/GC Fee	\$	4,217,254	
	Bonds and Insurance	\$	1,445,916	
	OR CAT ax	\$	343,405	0.57%
Subtotal - Marku		\$	6,006,574	
TOTAL CONSTR	UCTION COSTS	\$	66,253,057	
	Other Contracts	-		1
	Pre-Construction Contract	\$	375,218	
	EWA1 - Force Main Clearing & Test Pits	\$	103,259	Pending
Subtotal - Other (\$	478,477	
	Owner Contingency			
	Owner Contingency in GMP	\$	-	0.0%
Subtotal - Owner	Contingency	\$	-	
		_		_
	Total Contract Value	\$	66,731,534	
				L
	Other Project Costs			
	Engineering Services	\$	9,000,000	~16%
11	Permits and Special Inspections	\$	220,000	
12	Utility Connection & Service Fees	\$	90,000	
13	Keller ESDCs	\$	4,500,000	~8%
14	Keller SCADA Integration	\$	250,000	
	Marion County Costs	\$	850,000	
	Land Acquisition	\$	1,200,000	
Subtotal - Other I	Project Costs	\$	16,110,000	
Total Project Cos		\$	82,841,534	
	Total Construction OPCC Range Class	5: -30%	%/+50%	·
	Estimate Class Ranges - Lower	\$	57,989,074	-30%
	-			
	Estimate Class Ranges - Upper	\$	124,262,301	+50%

Costs for Priority 2 and 3 projects were also estimated, and a summary is presented in Table 6-5. The projects are primarily development driven projects and a large portion of the project cost would be eligible to be paid for by SDCs. The detailed costs for each of these projects are provided in Appendix G.

Project ID#	Project ID# Project Name Project Trigger		Total Estimated Cost (2023 Dollars)		
2.1	Alder Street Upsizing	Existing system approaching capacity	\$760,000		
3.1	Spring Street Lift Station Upsizing	Development Driven	\$250,000		
3.2	Spring Street Basin Trunkline	Development Driven	\$1,550,000		
3.3	Remine Road Collection System	Development Driven	\$5,480,000		
	TOTAL SYSTEM IMPROVEMENTS COSTS (rounded				

TABLE 6-5: PRIORITY 2 AND 3 PROJECT COSTS

6.6. ANNUAL OPERATING BUDGET

An itemized annual operating budget at the current Mill City WPCF for the fiscal year 2020-2021 is provided in Appendix C. Additional information on operating budget items can be found in the following sections.

6.6.1. Income

The existing City of Mill City sewer rate schedule consists of a flat rate of \$44.10 per EDU per month, with businesses, public buildings, and schools added to the rate calculation based on EDU multipliers. Based on the 2021-2022 the annual sewer rate revenue was \$448,400, thus, there were approximately 839 EDUs contributing to the rate revenue. During the 2021 NSC WWMP FCS Financial Group assessed the user rate impact of the new WPCF system O&M costs, expected annual debt service, and O&M costs for the new Mill City WPCF under 3 funding scenarios in a business case analysis. These funding scenarios included varying amounts of grant funding for the funding "Gap".

The "Gap" refers to the remaining funding needed in addition to the direct legislative appropriation of \$40 million that is allocated for Phase 1 of the North Santiam Canyon Sewer Project (NSCSP). The average monthly cost per EDU would be calculated by the annual debt service and the annual O&M cost of the system. FCS Financial Group has developed updated models for a year-to-year analysis. The model looks at the construction process and when existing users will be connected to the new treatment system as well as when the new users from the City of Gates would be connected and contributing to the rate revenue. This model includes assumptions relative to governance of the system and other policies related to new connections and when/if they will be required. The NSSA has begun engaging with legal representation to support the board in stepping through the process to create the policies needed to remove the assumptions and start discussing specifics on establishing the user rates. This means the new business case analysis will not be completed until after this planning study is submitted, and final user rate impacts will be determined separately from this WWFPS. Chapter 7 discusses collaboration and next steps for the project.

6.6.2. Annual Operations and Maintenance Costs

This section summarizes the anticipated O&M costs associated with the recommended Priority 1 projects. These O&M costs assume all Priority 1 projects have been completed. The costs were separated out by treatment and collection system.

Treatment System Annual O&M Costs

Table 6-6 provides annual operating and maintenance costs associated with the treatment system. These costs include electrical, chemical, staffing, and replacement part costs associate with each process in the treatment plant, as well as estimates for HVAC electrical costs, required analytical testing, and several miscellaneous items such as office supplies, phone bills, and training for operators. The O&M costs in Table 6-6 include chemical and replacement part costs for tertiary denitrification filters. If this treatment step is not required, O&M cost savings could also be achieved in both chemical usage and replacement parts.

ltem	2023 Dollars		204	5 Dollars ¹
Electricity	\$	26,600	\$	52,000
Chemical	\$	34,500	\$	64,000
Disposal	\$	19,600	\$	47,000
Parts	\$	42,000	\$	65,000
Personnel	\$	335,800	\$	520,000
Other (Analytical Testing, Office Supplies, Utilities, Phones, Training, Fees, Insurance)	\$	121,500	\$	188,000
Total Annualized Costs	\$	580,000	\$	936,000

TABLE 6-6: TREATMENT SYSTEM ANNUAL O&M COSTS SUMMARY

1) Includes additional costs associated with increased electricity and chemical usage as well as 2% inflation per year.

Collection System Annual O&M Costs

Completion of the recommended improvements will add an entirely new collection system in the City of Gates and therefore additional O&M costs are anticipated in addition to the existing Mill City system. Short-lived and long-lived asset replacement is included in Section 6.6.4. A summary of the annual costs for the collection system in 2023 and 2045 dollars is provided in Table 6-7. Additional details regarding the O&M and asset replacement costs are included in Appendix F.

6.6.3. Debt Repayments

The City of Mill City still holds a current debt of approximately \$2 million for their current wastewater system. The City of Gates does not hold any current debt. What will happen to Mill City's current debt is not a part of this WWFPS, this will need further discussion and policy decisions by the City and the NSSA board.

6.6.4. Reserves

Debt Service Reserve

There is currently \$40 million in grant funding for the priority 1 improvements. Depending on the type of funding pursued to cover the remainder of the capital costs for the proposed projects, a debt reserve may be required. Municipal bonds such as revenue bonds would require a debt service reserve, likely not exceeding 10% of the stated principal amount of the bond issue. A debt service reserve would likely not be required for a State loan. Several financing resources available to offset the costs associated with implementing the CIP include, but are not limited to: user rates, SDCs, DEQ State Revolving Fund Loan Program, Oregon Infrastructure Finance Authority grants and loans, USDA Rural Utilities Services

loans and grants, direct state loans, revenue bonds, general obligation bonds, US Economic Development Administration grants, and Energy Trust of Oregon.

Short-Lived Asset Reserve

The short-lived assets for Mill City and Gates collection systems include STEP system replacements, lift station pump maintenance and replacement, and lift station electrical and instrumentation equipment. Long-lived assets include gravity and pressure pipelines, manholes and cleanouts, STEP and STEG tanks, and lift station valves, generators, wetwells, site, and buildings.

The O&M costs for the collection system include costs for annual CCTV inspections, STEG tank pumping and disposal, lift station power, and staffing. Quantities and annual costs were developed with input from the City on historical budgets and the system's targeted levels of service.

TABLE 6-7: COLLECTION SYSTEM SHORT-LIVED AND LONG-LIVED ASSETS

Item	2023 Dollars	2045 Dollars ¹				
Short-Lived Asset Replacement	\$110,000	\$171,000				
Long-Lived Asset Replacement ²	\$883,000	\$1,366,000 \$305,000				
Annual Operations Cost	\$197,000					
Total Annual Costs	\$1,190,000	\$1,842,000				
1) Assumes 2% annual inflation.						
2) Long-lived asset replacement budget can be adjusted as needed.						

Table 6-8 below provides a list of WPCF short-lived assets and their expected useful lives. This table includes replacement expenses for assets that are anticipated to wear out in the next 10 years. These costs were included in the total annual O&M costs provided in Table 6-6, but are broken out here by item. Costs for short-lived assets are in 2023 dollars.

Process Description	Item Description	Unit Cost	Replacement Frequency (Years)	Annualized Cost	
Headworks and Influent Pumping	Screening and Grit Trap Wear Parts	\$ 45,000	10	\$	4,500
	Pumps	\$ 21,000	10	\$	2,100
Secondary Treatment	Diffuser Replacement and Pump Rebuilds	\$ 95,000	10	\$	9,500
	Blower Replacement Parts	\$ 20,000	5	\$	4,000
	Common Pump Parts	\$ 2,000	1	\$	2,000
Disinfection	Replacement Parts and Bulbs	\$ 4,100	1	\$	4,100
Solids Handling	Replacements Parts	\$ 25,000	5	\$	5,000
Tertiary Treatment	Filter Airlift and Replacement Parts	\$ 21,000	10	\$	2,100
Effluent Disposal	Pumps	\$ 21,000	10	\$	2,100
WPCF Total Short-Lived Assets (Rounded)				\$	36,000

TABLE 6-8: WPCF SHORT-LIVED ASSETS

CHAPTER 7 - CONCLUSIONS AND RECOMMENDATIONS

This chapter provides an overview and recommendations for the unique startup considerations, coordination efforts, and next steps for permitting and construction of the future Mill City mechanical WPCF.

7.1. TREATMENT PHASING AND STARTUP CONSIDERATIONS

The WPCF serving Mill City and Gates will require unique considerations for phasing and startup of the treatment and disposal processes. While all treatment equipment, processes, and disposal basins will be sized to hydraulically pass the expected 2045 flows from both Mill City and Gates with redundancy, design considerations should also be included for the lower flows and loadings that will be present upon initial startup of the treatment plant, particularly for the biological treatment processes and before the wastewater connections from Gates are added to the system.

Based on the analysis of current DMR data and flow and loading projections provided in Chapter 4, the initial average daily startup flows will be around 130,000 GPD with the connections from Mill City alone. The connections from Gates are expected to add approximately 40,000 GPD for a total initial flow of 170,000 GPD AADF. Mechanical equipment including headworks screens, influent flow meters, pumps, grit removal equipment, UV disinfection, solids handling, and the effluent pumping station will be sized to process these lower flows, as well as the 2045 projected design flows. Secondary and tertiary treatment processes (where required) as well as rapid infiltration of treated effluent will be capable of processing the full range of flows and loadings. Recommended treatment plant mechanical equipment is listed below along with design considerations for phasing from day 1 startup flows to 2045 projected flows. A discussion of phasing for secondary and possible tertiary treatment is provided in the following paragraph.

- Headworks Screening: Flow variations between startup and 2045 expected flows would not affect screening capability, screening equipment would be sized to handle both the minimum and maximum expected flows with redundancy.
- Influent Flow Meters: Flow metering equipment would be sized for the expected startup flow through the 2045 expected flows.
- Grit Removal: While the grit removal equipment relies on specific flow rates to produce velocities or flow patterns that allow grit to settle out and separate from the influent stream, the recommended grit removal system will be designed to operate under the full range of flows expected both at startup and in 2045.
- UV Disinfection: The recommended UV disinfection equipment would be designed with the capability to ramp down bulb power based on flows and turbidity. This would allow the equipment to operate over the full range of expected flows and loadings while also saving electricity used to power the UV bulbs.
- Influent and Effluent Pumping Stations: The influent and effluent pumping stations would function similar to collection system lift stations; an in-ground vault would be constructed with redundant pumps used to convey influent to downstream processes and final effluent to the rapid infiltration basins. The vault would fill with wastewater and pumps would function intermittently to empty the vault and convey wastewater downstream. Pump times would be shorter during startup phasing and the system would be designed to convey the full range of wastewater flows at the future WPCF.

Effluent Disposal: The rapid infiltration disposal basins will be sized for 2045 expected flows and will also be able to process the startup flows without issue. During the first years of startup, effluent flow will be able to be pumped more slowly to the infiltration basins, likely resulting in lower groundwater mounding and higher removal of wastewater constituents in the upper soil horizons.

Loading ranges also must be considered both during design and especially during startup of the WPCF. Of particular importance in a treatment process with stringent denitrification requirements, whether through secondary treatment or tertiary treatment, is the influent BOD₅ loading, as conversion of nitrate to nitrogen gas requires a carbon energy source (typically measured in the industry as BOD₅). While the existing Mill City connections represent around 75% of the initial flow and connections from Gates represent about 25% of the flow, the BOD₅ loadings will be not be proportional to the expected influent flows, likely with the residential connections from Gates providing a higher per capita BOD₅ loading. This is because connections in Mill City will still be connected to the individual STEP/STEG systems, while the residential connections from Gates are expected to abandon the existing septic systems and operate as direct connections to the new community sewer system. According to EPA's Onsite Wastewater Treatment Systems Manual, approximately 40% of the BOD₅ present in wastewater is removed by a typical STEP system.¹ The secondary treatment process design will include provisions for addition of several important process chemicals including an additional carbon supplement required for denitrification. The anticipated dosing should be determined during the design phase, and continual monitoring during commissioning and startup will be necessary to ensure adequate treatment. These doses will likely be metered down when the residents from the City of Gates are connected.

7.2. CONSTRUCTION SEQUENCING

The future treatment facility will be built according to the schedule provided in Chapter 6 and Appendix G. Construction of the civil and structural components of the treatment facility are expected to occur throughout the majority of 2025, with installation of mechanical and electrical equipment planned to begin in early 2026. Included in the civil and structural components are the treatment basins, buildings, effluent pipeline to disposal, and disposal infiltration basins. Construction of the Gates pump station as well as the sewer main to Mill City is expected to occur during the later stages of the treatment facility civil and structural components. The final component of the construction project is the installation of the Gates collection sewer mains with residential connections added during commissioning and startup of the facility. Below is a summary of this sequence for the Priority 1 projects.

- 1. New treatment plant and rapid infiltration basins construction, startup, and commissioning.
- 2. Construction of new force main to the new treatment plant.
- 3. Abandonment of existing force main and demolition of existing WPCF.
- 4. 1st Avenue Lift Station upgrades
- 5. Construct Gates to Mill City force main
- 6. Construct Regional lift station in Gates on Central Avenue
- 7. Construct Gates main line collection system and two other local lift stations
- 8. Construct individual property connections basin by basin and make final connections to individual property plumbing

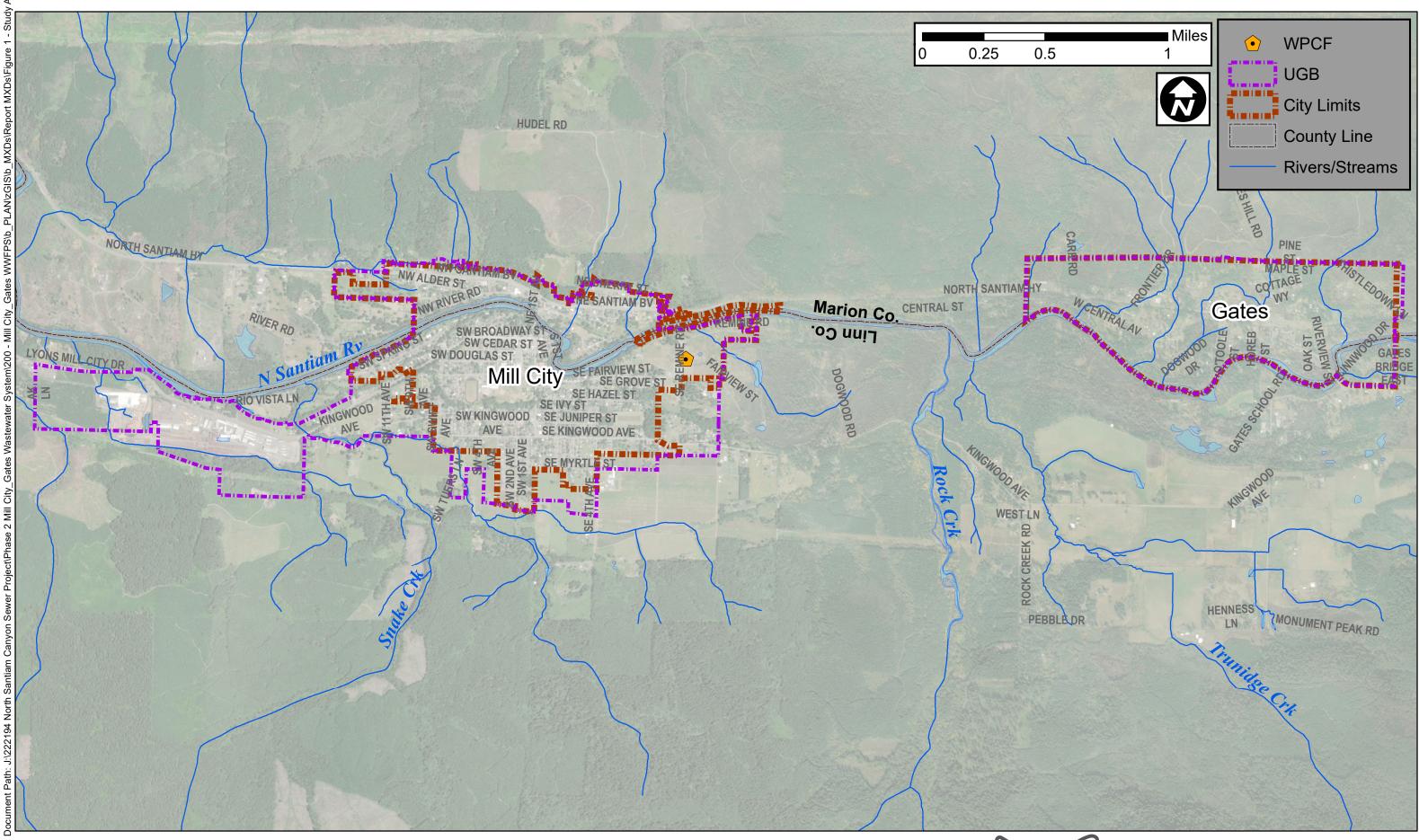
¹ U.S. Environmental Protection Agency. (2002). *Onsite Wastewater Treatment Systems Manual.* Office of Water, U.S. Environmental Protection Agency.

7.3. SUBCONSULTANT ROLES AND COORDINATION

The Mill City and Gates WWFPS has included collaboration with many parties including Marion and Linn Counties, the cities of Mill City and Gates, Oregon DEQ, the CM/GC contractor (Slayden) as well as multiple consultants. Continued collaboration between these parties will be required during the design and construction of the Mill City WPCF and Gates collection system. As this WWFPS has been conducted concurrently with groundwater and financial analyses, and reports on these topics may not be completed until after the WWFPS is finalized, subconsultant roles will continue into the early design stages of the treatment facility. Keller expects that close collaboration with GSI Water Solutions will continue for support with and updates to the groundwater modeling and subsurface investigations. The groundwater modeling and fate and transport investigations that have recently been completed by GSI are currently in draft format and will be reviewed by DEQ staff, and a site recommendation may be updated based on these continuing discussions.

Continued sampling at groundwater monitoring wells will also be conducted by GSI to comply with DEQ requirements and amend the current report being reviewed by the DEQ. GSI will also be conducting pilot testing of the rapid infiltration basin at site GM1 to further ground truth the current recommendation. Collaboration with FCS Financial Group will continue as additional funding resources are pursued for construction of the WPCF, as well as finalization of user rates and financial analyses. Much of the finalization of user rates will depend on policy decisions by the NSSA board and respective city councils, as well as finalizing the capital funding sources.

7.4. CONCLUSIONS AND NEXT STEPS

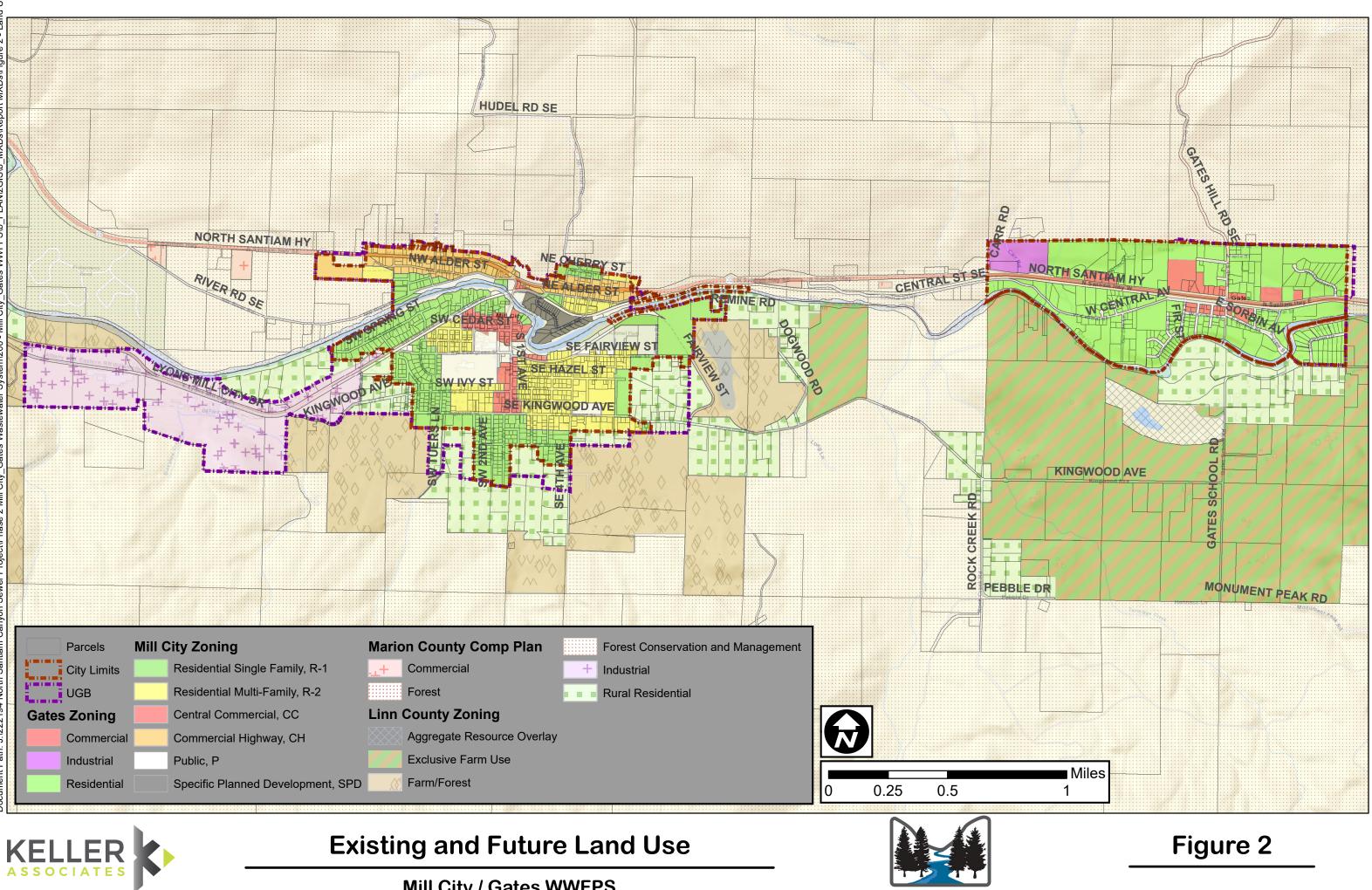

Keller has provided descriptions and recommendations for treatment processes and equipment in Chapters 4, 5, and 6. Selection criteria for treatment equipment was balanced between cost, operability, achievable treatment levels (limits of technology), and applicable federal and state environmental protections (i.e. Clean Water Act, Three basin Rule, and Oregon Administrative Rules).

Additionally, preliminary site recommendations based on groundwater sampling, modeling, and analysis indicate the GM1 site would be the best for treatment and infiltration of WPCF effluent. However, as described previously, site selection is contingent upon completion of subsurface investigations, as well as negotiations with property owners. It is recommended to proceed with pilot testing of rapid infiltration at site GM1 based on the technical memorandums provided by GSI (See Appendix I).

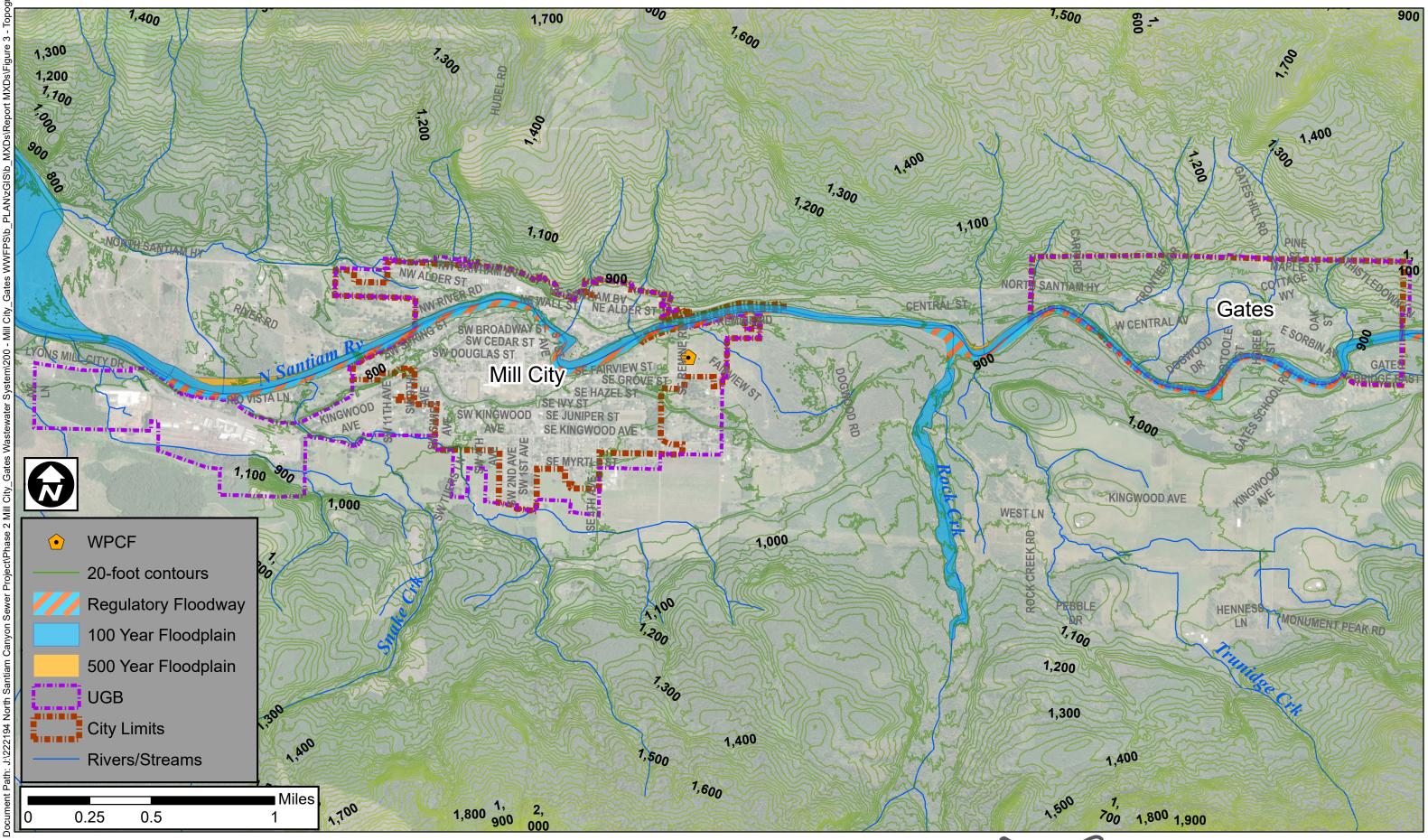
Next steps for WPCF design and construction include completion of preliminary engineering reports (PERs) for more in-depth analyses of treatment processes, preliminary design, and construction drawings, finalizing guaranteed maximum price (GMP) for construction, and filing for groundwater discharge and required building permits for the WPCF.

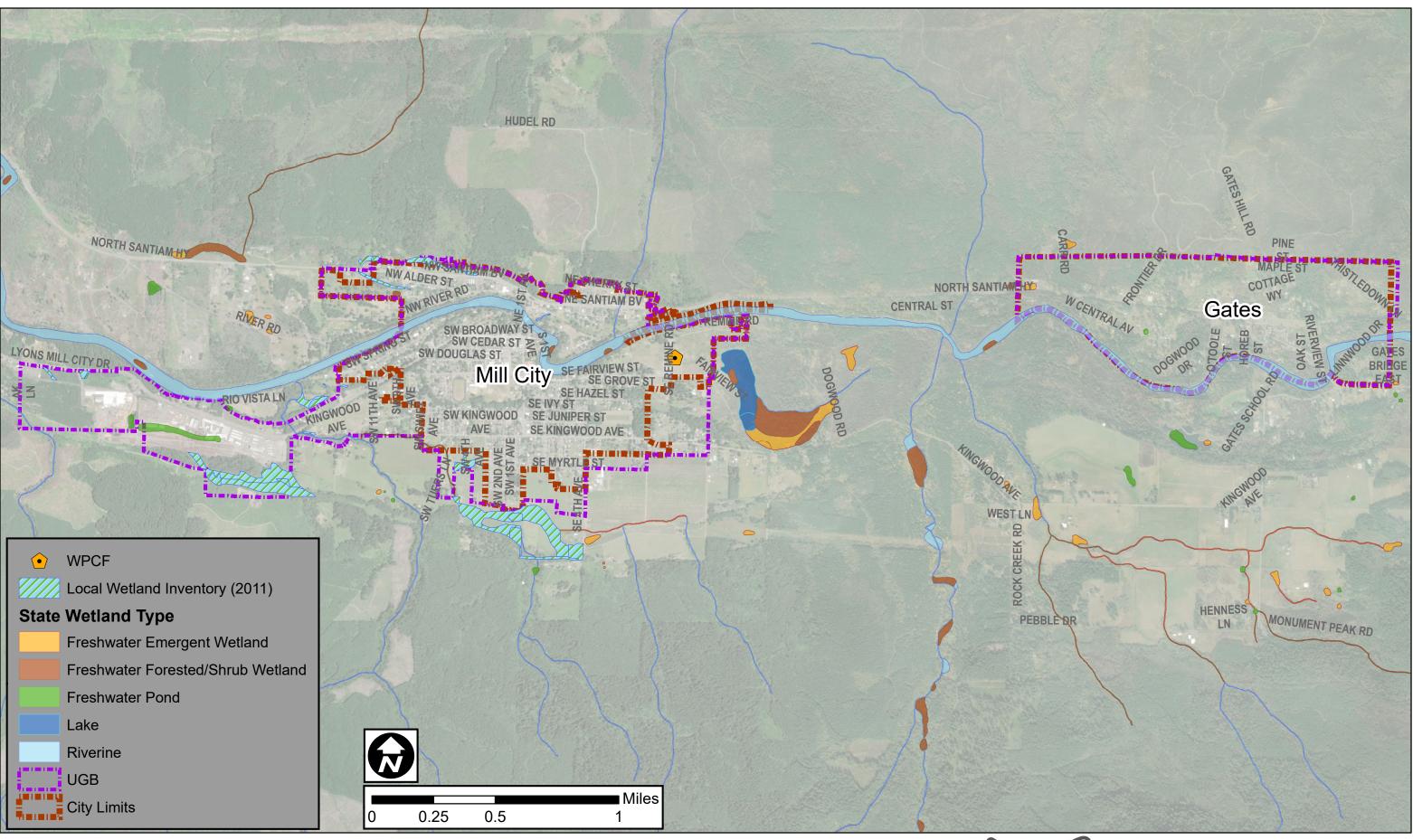
APPENDIX A

Full Size Figures



Study Area





Topography & Floodplains

MXDs/

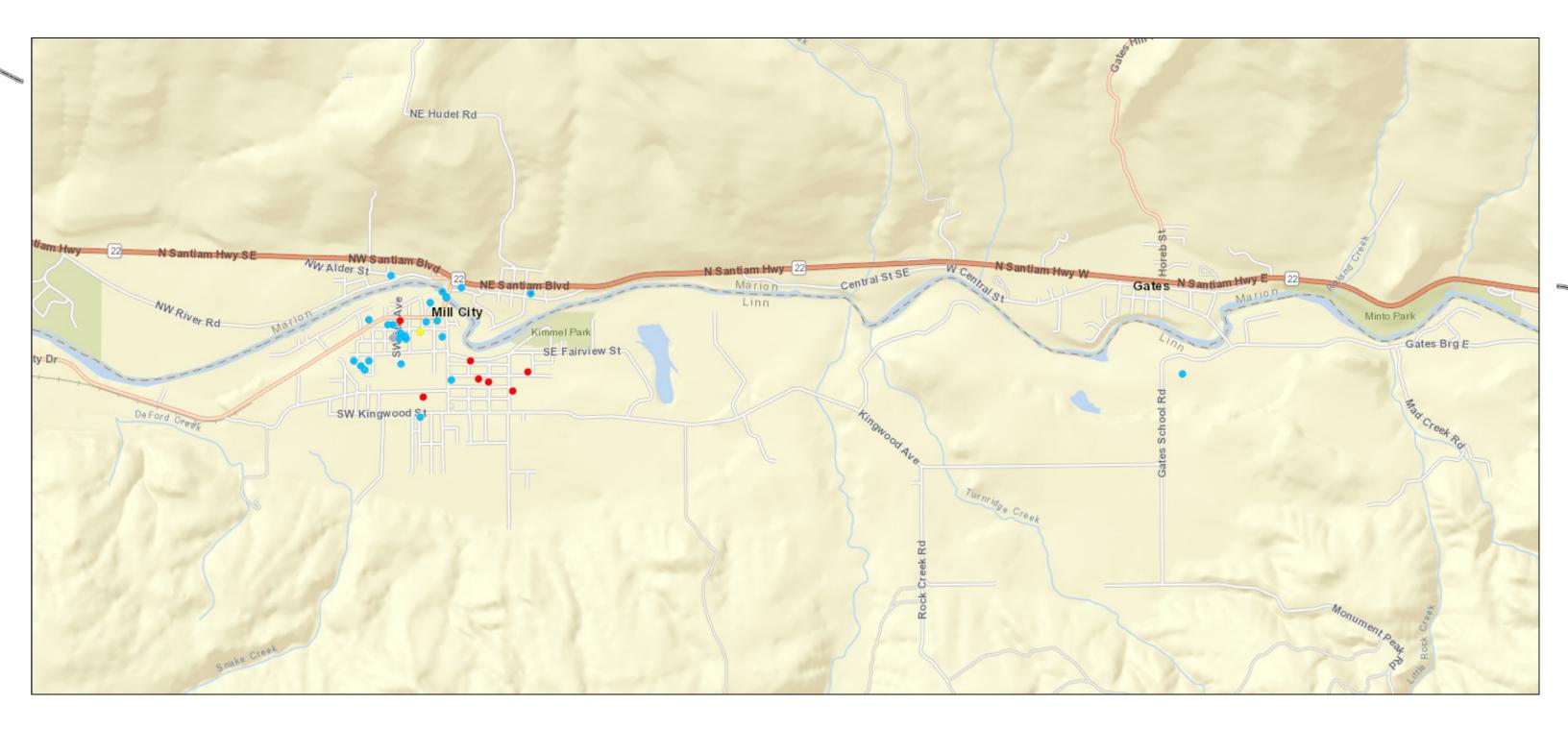
PLAN\zGIS\b_

liik

Gat City

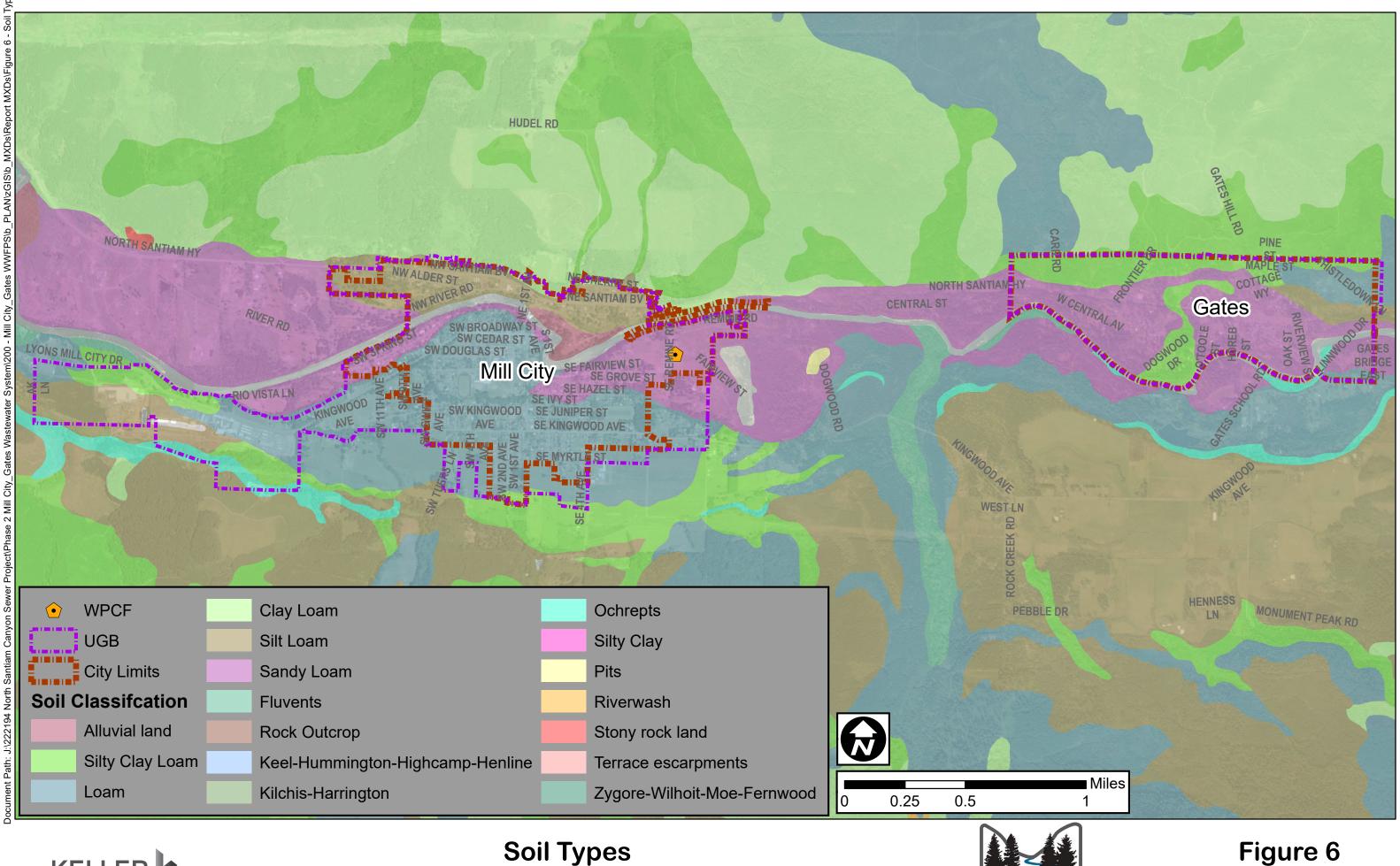
Mill

Sev

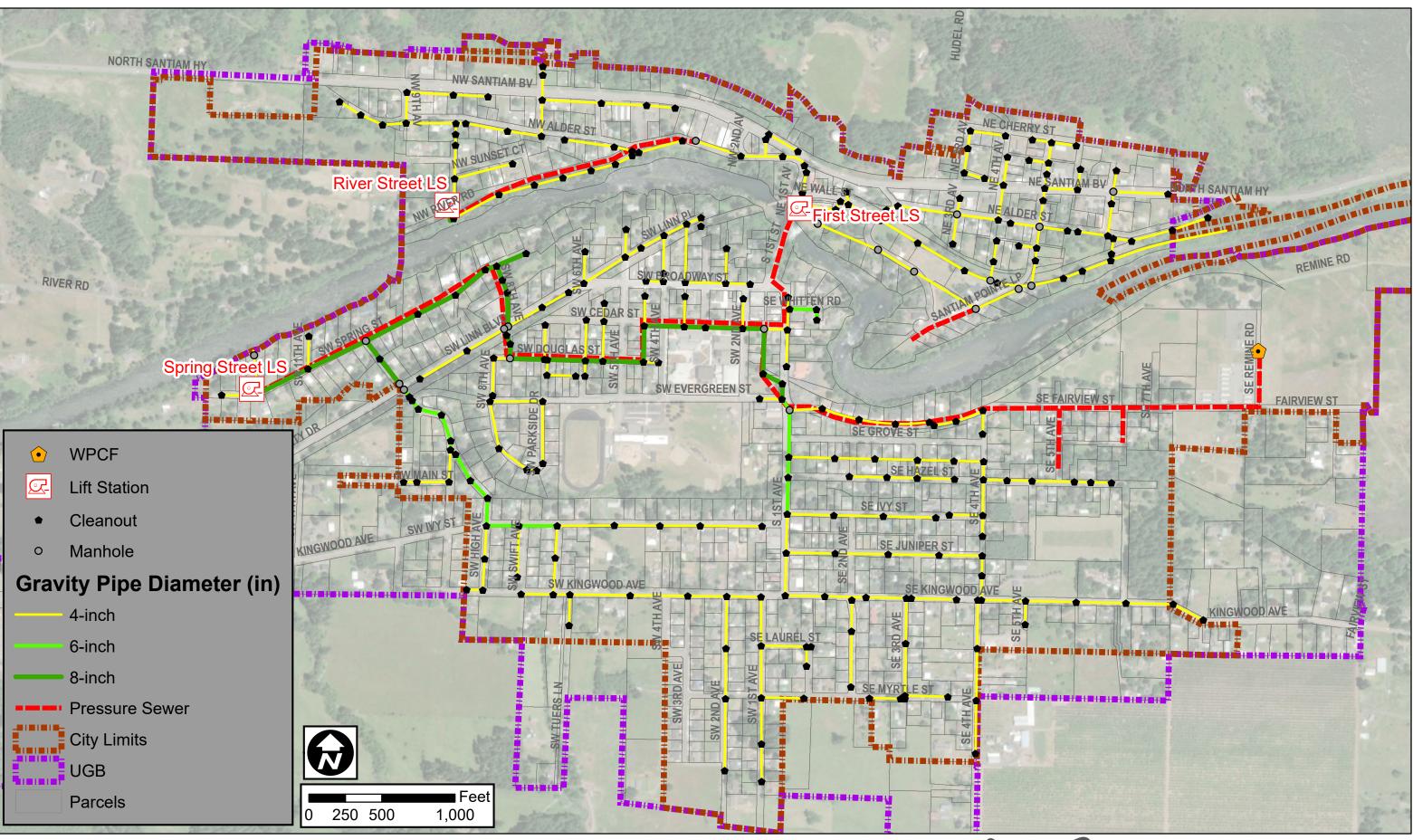


Mill City / Gates WWFPS

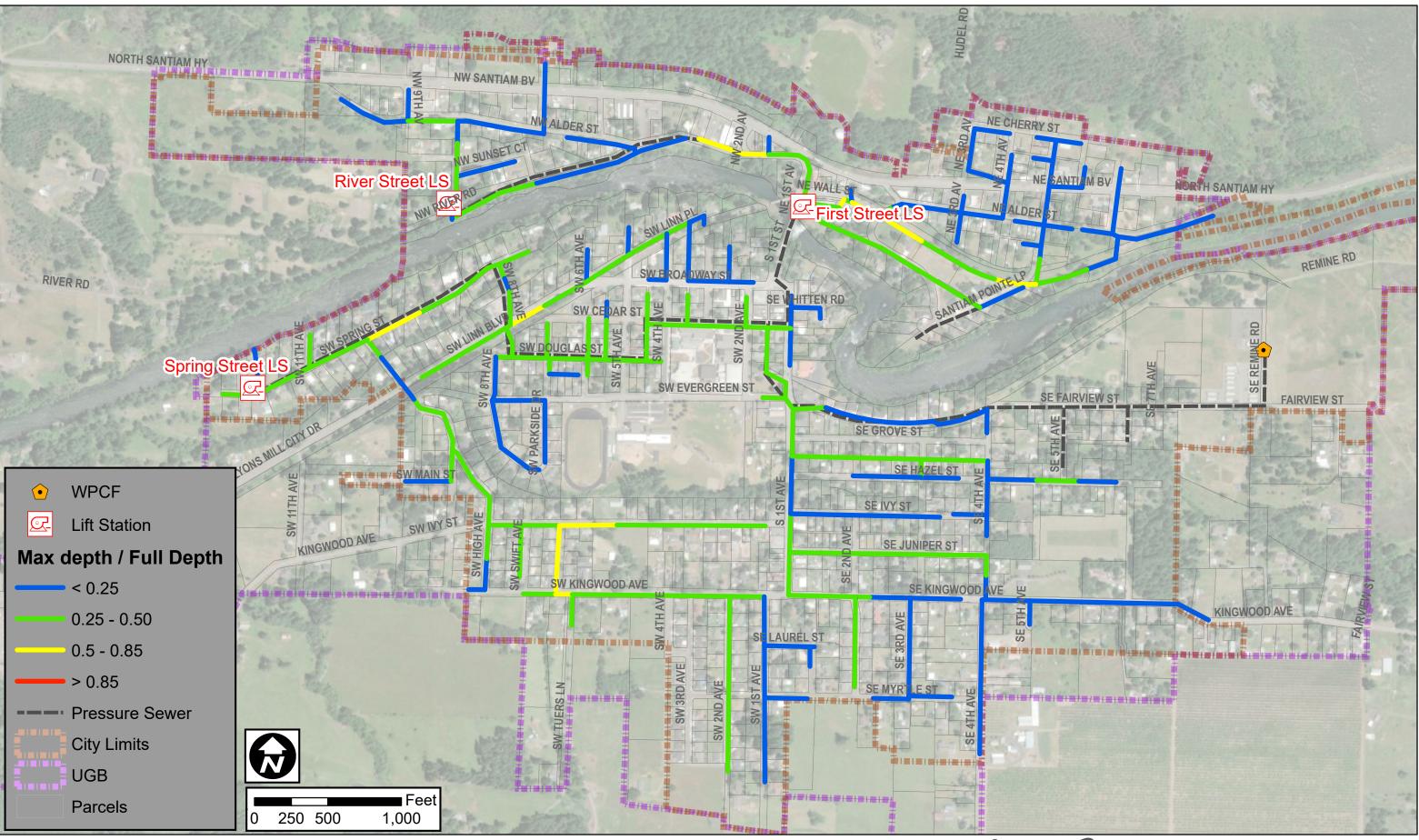
Wetlands

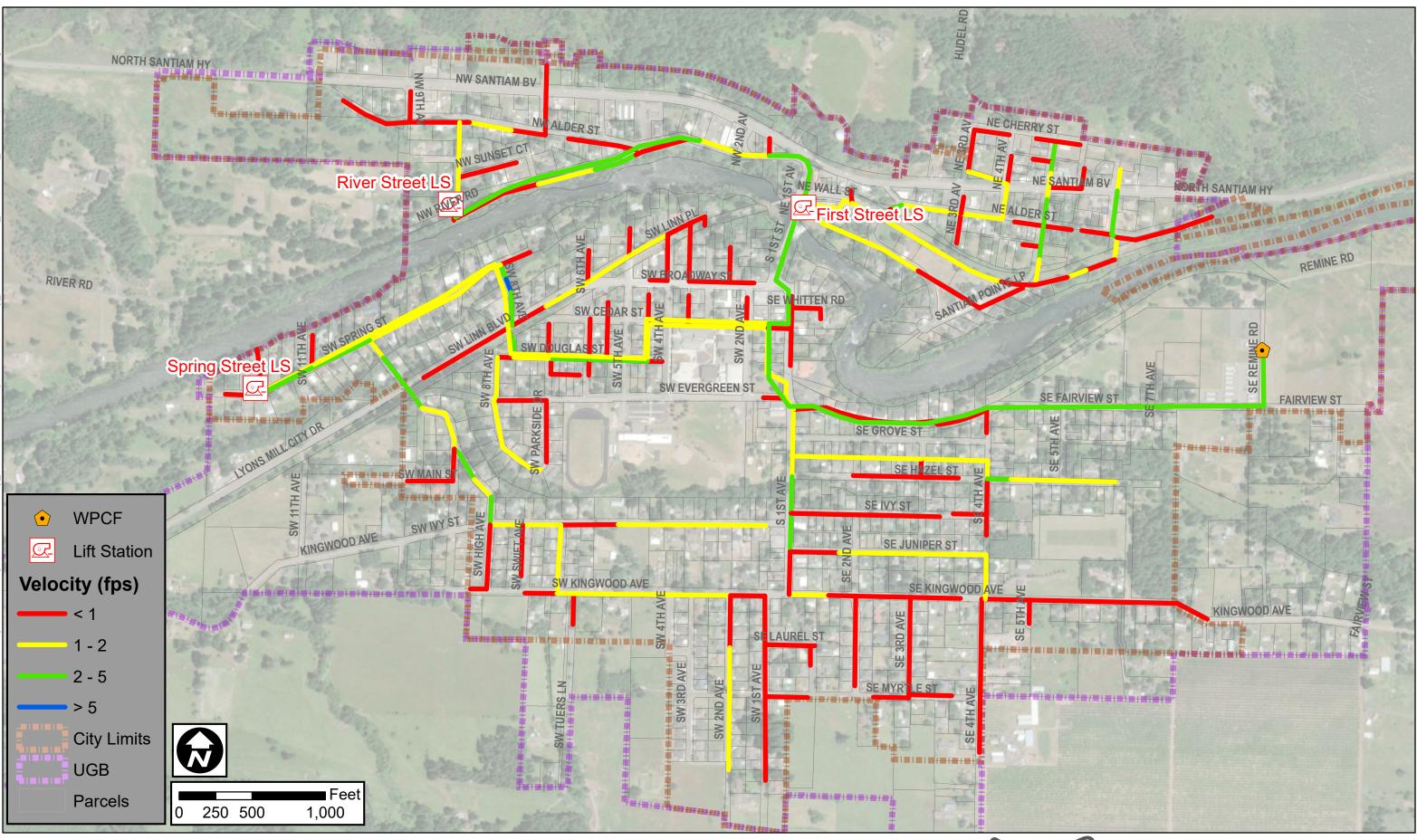


Historic Sites

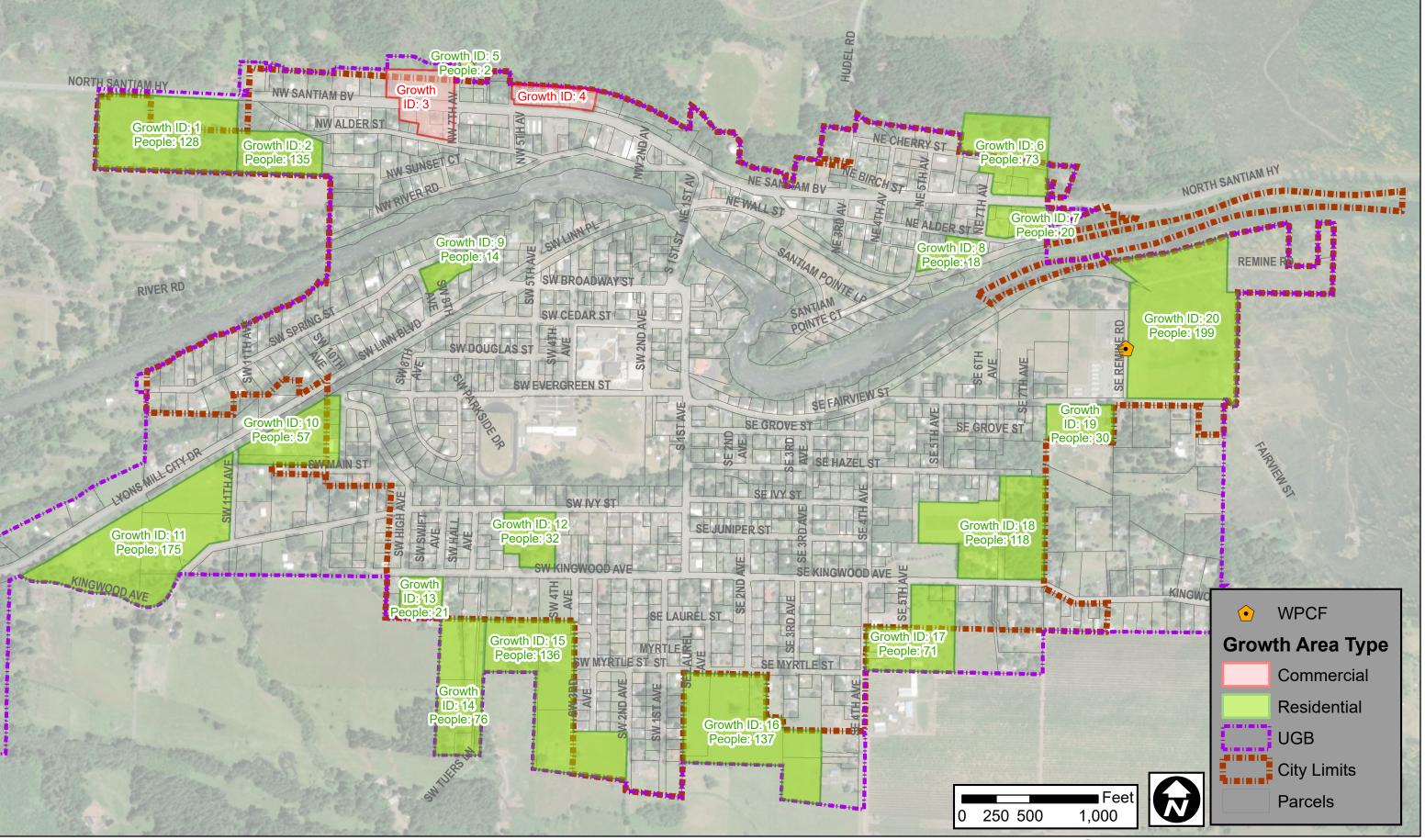


Soil Types


Existing Collection System

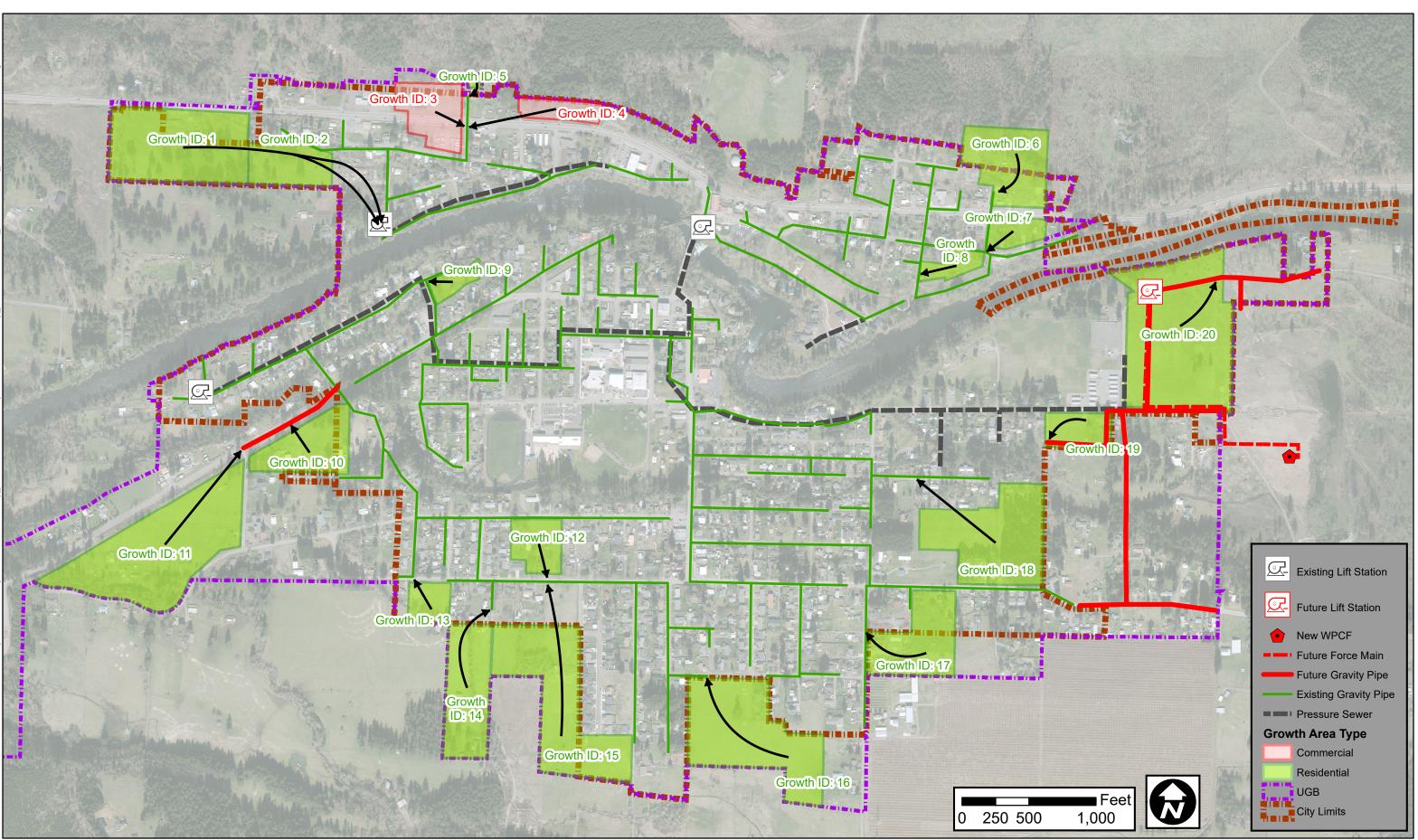


Existing PDF d/D Mill City / Gates WWFPS



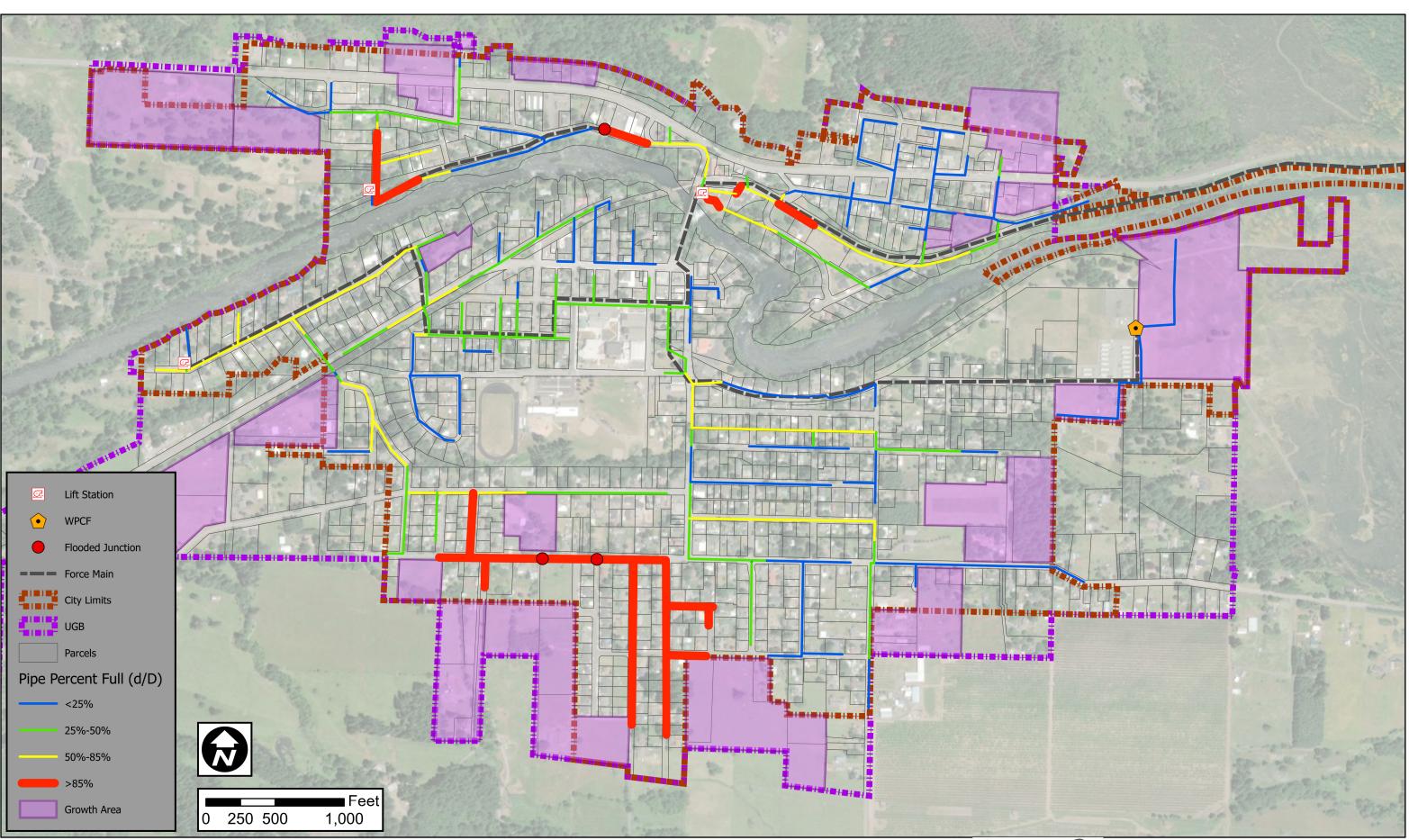
Existing PDF Velocities

2194


Growth Areas

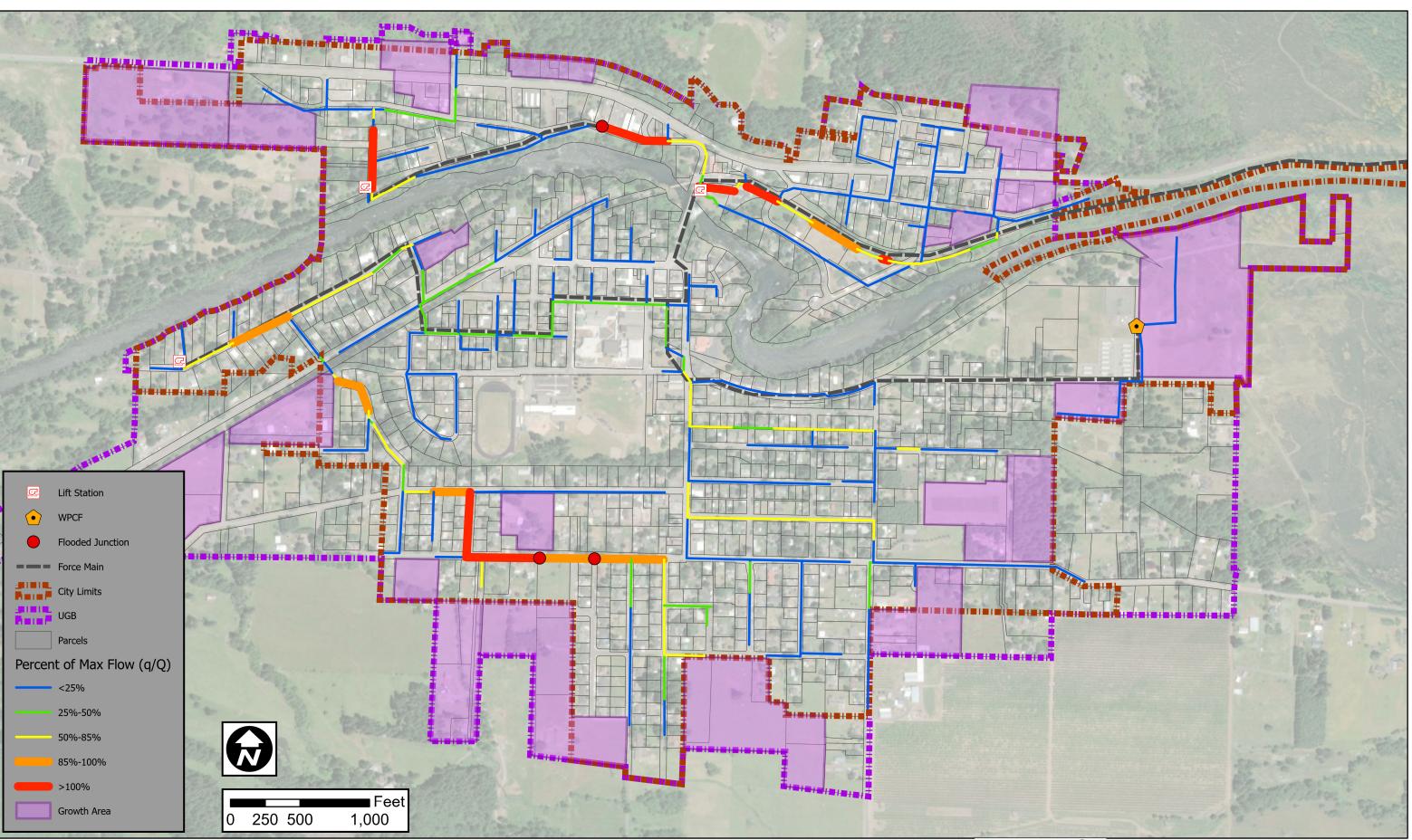
Mill City / Gates WWFPS

Figure 10


Future Collection System

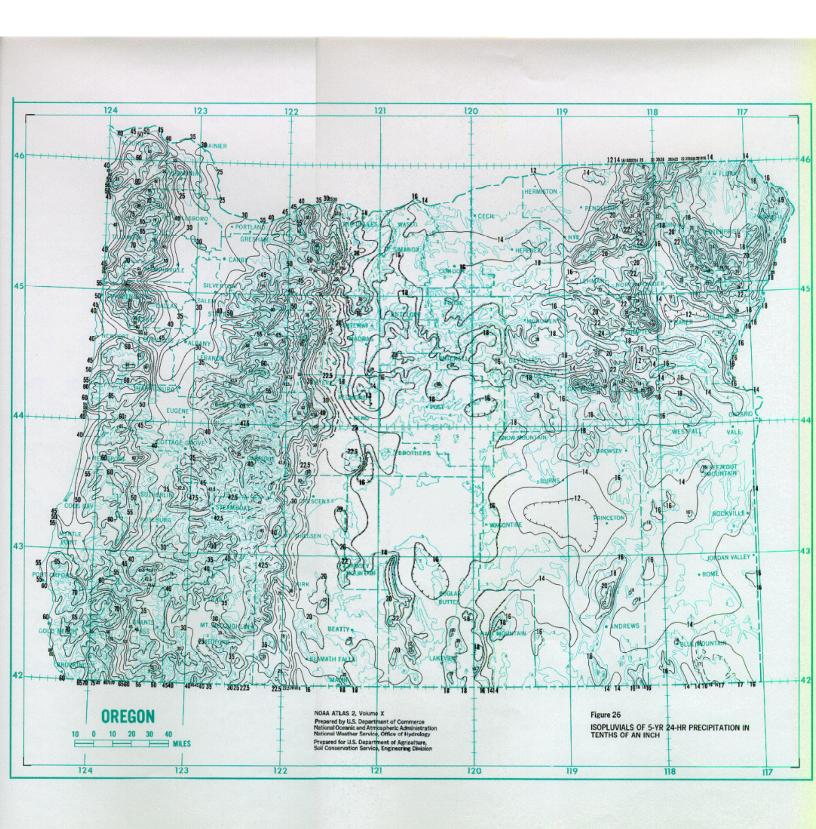
Mill City / Gates WWFPS

Figure 11



Future PDF d/D - Existing Pipes

Future PDF q/Q - Existing Pipes



APPENDIX B

NOAA Atlas

This document was created by an application that isn't licensed to use <u>novaPDF</u>. Purchase a license to generate PDF files without this notice.

APPENDIX C

Financial Statements

LB-11 This fu			by resolution / oro for the following s			ESERVE FUND S AND REQUIRE		Year this reserve fund will b Date can not be more than Review Year:			
	0 (date	/			SEWER F	RESERVE FUND	70 74		CITY OF MI	LL CITY	
						(Fund)			Name of Municipa)
		Historical Data				(<i>i</i>			or Next Year 2020-2		Í
	Actı	ual			[DESCRIPTION			Approved By	Adopted By	1
			Adopted Budget		RESOURCE	S AND REQUIRE	MENTS	Proposed By	Budget	Governing	
	2017-2018	2018-2019	2019-2020					Budget Officer	Committee	Body	
1				1		RESOURCES					1
2	131,812	143,704	160,760	2	Cash on hand	* (cash basis)		183,250	183,250	183,250	2
3	659	719	1,608	3	Interest			1,374	1,374	1,374	3
4	-	-	-	4	Previously lev	ied taxes estima	ted to be received	-	-	-	4
5	3,244	3,244	8,110	5	SDC SEWER			6,488	6,488	6,488	5
6		20,000	30,000	6	GRANTS			-	-	-	6
7	-	20,000	20,000	7	Transferred IN	I, from SEWER F	UND	50,000	50,000	20,000	7
8				8				-	-	-	8
9				9					-	-	9
10	135,715	187,667	220,478	10	Total Resource	es, except taxes	to be levied	241,112	241,112	211,112	10
11				11	Taxes estimate	ed to be receive	d				11
12				12	Taxes collecte	d in year levied					12
13	135,715	187,667	220,478	13		TOTAL RESOUR	CES	241,112	241,112	211,112	13
14				14		REQUIREMENTS	5 **				14
15				15	Org. Unit or Prog. & Activity	Object Classification	Detail				15
16				16	Public Works	- Wastewater			-		16
17	1,681	2,011	3,602	17		M & S	Miscellaneous	3,504	3,504	3,504	17
18	-	5,000	5,000	18		M & S	Administration	2,500	2,500	2,500	18
19	10,000	35,000	50,000	19		M & S	Engineering	10,000	10,000	10,000	
20	60,000	95,000	75,000	20		Cap Outlay	Wastewater Imp	50,000	50,000	50,000	20
21			20,000	21		C/O	Pump Station	20,000	20,000	20,000	21
22	64,034		-	22		Transfers		60,000	60,000	60,000	22
23				23					-		23
24				24							24
25				25							25
26				26	Ending balanc						26
27			66,876	27	RESERVED	FOR FUTURE EX	XPENDITURES	95,108	95,108	95,108	27
28	135,715	137,011	220,478	28	тс	DTAL REQUIREN	IENTS	241,112	241,112	241,112	28

FORM

REQUIREMENTS SUMMARY

ALLOCATED TO AN ORGANIZATIONAL UNIT OR PROGRAM & ACTIVITY

LB-30

SEWER FUND 40

		Historical Data				Bud	get For Next Year 2020	2021	
[Ac	tual	Adopted Budget		REQUIREMENTS FOR:	Buu	get for Next fear 2020	-2021	
[Second Preceding	First Preceding	This Year			Proposed By	Approved By	Adopted By	
	Year 2017-2018	Year 2018-2019	2019-2020			Budget Officer	Budget Committee	Governing Body	
1				1	PERSONNEL SERVICES				1
2	84,129	89,550	95,750	2	SALERIES	104,750	104,750	104,750	2
3	58,970	65,640	73,950	3	BENEFITS	80,750	80,750	80,750	3
4				4					4
5				5					5
6				6					6
7				7					7
8	143,099	155,190	169,700	8	TOTAL PERSONNEL SERVICES	185,500	185,500	185,500	8
9				9	Total Full-Time Equivalent (FTE)				9
10		•	•	10	MATERIALS AND SERVICES		•		10
11	5,425	5,700	5,400	11	OFFICE SUPPLIES/POSTAGE/PRINT	5,800	5,800	5,800	11
12	7,700	9,500	10,000	12	PLANNING/CONSULTANTS	3,750	3,750	3,750	12
13	1,600	2,600	2,100		MISCELLANEOUS	1,100	1,100	1,100	13
14	11,500	14,000	19,750	14	CONTRACTED SERVICES	19,275	19,275	19,275	14
15	16,700	16,000	17,250	15	UTILITIES/FACILITIES	22,300	22,300	22,300	15
16	8,365	4,500	3,500		INSURANCE	4,750	4,750	4,750	16
17	1,800	1,750	1,500	17	SCHOOL & TRAINING	3,250	3,250	3,250	17
18	12,750	22,950	14,000		MAINTENANCE	10,750	10,750	10,750	18
19	1,500	2,500	2,000	19	EQUIPMENT	4,000	4,000	4,000	19
20	23,000	27,000	28,000	20	SLUDGE MANAGEMENT	58,000	58,000	58,000	20
21				21					21
22				22					22
23				23					23
24				24					24
25				25					25
26				26					26
27	90,340	106,500	103,500	27	TOTAL MATERIALS AND SERVICES	132,975	132,975	132,975	27
28		, ,	1 ,	28	CAPITAL OUTLAY	,	1	,	28
29	0	7,000	5,000		C/O SEWER PLANT	5,000	0	0	29
30	7,500	10,000	0		C/O PUMP STATION	0	0	0	30
31	0	0	0	_	C/O COLLECTION SYSTEM	0	0	0	31
32	7,050	0	0		C/O COMPUTERS	0	0	0	32
33	0	0	0		C/O MISCELLANEOUS SEWER	0	0	0	33
34				34					34
35	14,550	17,000	5,000	_	TOTAL CAPITAL OUTLAY	5,000	5,000	5,000	35
36	247,989	278,690	278,200	36	ORGANIZATIONAL UNIT / ACTIVITY TOTAL	323,475	323,475	323,475	36

150-504-030 (Rev 10-16)

FORM

REQUIREMENTS SUMN	ARY
-------------------	-----

NOT ALLOCATED TO AN ORGANIZATIONAL UNIT OR PROGRAM

LB-30

FORM

SEWER FUND 40 (name of fund)

Image: stand presenting in the stream in the str			Historical Data				Duda	at For Next Year 2020	2021	Τ
Result for the appendix of this Year with the Year 2000 Year 2		Act	tual	Adopted Budget	1		Budg	et For Next Year 2020	-2021	
2 Image: state sta						REQUIREMENTS DESCRIPTION PUBLIC WORKS				
3 <t< td=""><td>1</td><td></td><td></td><td></td><td>1</td><td>PERSONNEL SERVICES NOT ALLOCATED</td><td></td><td></td><td></td><td>1</td></t<>	1				1	PERSONNEL SERVICES NOT ALLOCATED				1
4 0 0 0 4 107AL PERSONNEL SERVICES 0 0 0 0 0 0 0 5 CA CA 5 Total Infime Equivalent (FE) CA CA 5 7 A CA CA 7 A CA 7 8 CA CA CA 7 A 9 0 0 0 9 TOTAL MATERIALS AND SERVICES 0 0 0 0 0 10 CAPITAL OUTAY NOT ALLOCATED CAPITAL OUTAY NOT ALLOCATED CAPITAL OUTAY NOT ALLOCATED CA CA 12 11 CA CA 13 CACAPITAL OUTAY NOT ALLOCATED CA CA 13 13 O 0 0 13 CALAPITAL OUTAY NOT ALLOCATED CA CA 13 14 CA CA CA CA CA CA 13 CA CA 13 15 CA CA CA CA CA CA CA 13 CA CA 13 16 CA CA CA CA CA CA CA 13 17 CA CA CA C	2				2					2
SImage of the second secon	3				3					3
6 MATERIALS AND SERVICES NOT ALLOCATED 6 7 7 8 7 9 0 0 9 TOTAL MATERIALS AND SERVICES 0 0 0 9 9 0 0 0 9 TOTAL MATERIALS AND SERVICES 0 0 0 9 10 CAPITAL OUTLAY NOT ALLOCATED 12 12 10 0 0 12 12 11 12	4	0	0	0	4	TOTAL PERSONNEL SERVICES	0	0	0	4
7 1 1 7 1 1 7 7 8 0 0 0 9 10 10 10 10 10 10 10 10 10 11 10 11 11 11 11 11 11 11 11 11 12 0 0 0 0 0 0 0 0 11 12 11 11 11 11 11 11 11 12 0 0 0 13 11 11 11 13 0 0 0 13 13 14 14 14 14 14 15 14 15 15 16 17 0 0 0 0 13 14 0 0 0 13 15 16 16 15 16 13 15 16 17 16 17 18 19 10 0 0 13 17 <td>5</td> <td></td> <td></td> <td></td> <td>5</td> <td>Total Full-Time Equivalent (FTE)</td> <td></td> <td></td> <td></td> <td>5</td>	5				5	Total Full-Time Equivalent (FTE)				5
8 1 1 8 1 1 1 1 9 0 0 0 0 0 0 0 0 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 11 11 11 11 11 11 13 0 0 0 3 3 11 14 15 10 0 0 3 11 15 11 11 11 11 11 11 16 11 11 11 11 11 11 17 0 0 0 3 13 10 10 10 18 11 11 11 11 11 11 11 18 11 11 11 11 11 11 11 19 11 11 11 11 11 11 11 19 11 11 11 11 11 11	6				6	MATERIALS AND SERVICES NOT ALLOCATED				6
	7				7					7
10CAPITAL OUTLAY NOT ALLOCATEDI11II<	8				8					8
1111111111111111120013TOTAL CAPITAL OUTLAY000131300013TOTAL CAPITAL OUTLAY0001314	9	0	0	0	9	TOTAL MATERIALS AND SERVICES	0	0	0	9
12141415161717181718181814140EBT SERVICE00001314140EBT SERVICE0151515151516171616151616151600017171700017161819000171710001717181900171010101017190001210101010101010001010101010101010101010001210	10		•		10	CAPITAL OUTLAY NOT ALLOCATED			-	10
13 0 0 0 13 TOTAL CAPITAL OUTLAY 0 0 0 0 13 14 $$ 14 DEBT SERVICE $$ 14 15 $$ 15 $$ 15 16 $$	11				11					11
14 $$ 14 DEBT SERVICE $$ 14 15 15 16 15 16 15 16 15 15 17 0 0 0 17 TOTAL DEBT SERVICE 0 0 0 0 1 17 18 19 20 16 20 21 20 20 16 20 20 20	12				12					12
15 1	13	0	0	0	13	TOTAL CAPITAL OUTLAY	0	0	0	13
16 16 16 16 16 16 16 16 16 17 0 0 0 17 18 10 10 10 10 10 10 11 18 19 10 <	14				14	DEBT SERVICE				14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15				15					15
18 Image: Second s	16				16					16
19	17	0	0	0	17	TOTAL DEBT SERVICE	0	0	0	17
20 20 20 20 20 20 20 21 0 0 0 21 TOTAL SPECIAL PAYMENTS 0 0 0 21 22	18				18	SPECIAL PAYMENTS				18
2100021TOTAL SPECIAL PAYMENTS00021222324020,00020,00023STF XFER TO SEWER RESERVE50,00050,00050,0002324010,00010,00024STF XFER TO EQUIPMENT RESERVE10,00010,00010,0002425128679160,000160,00025STF XFER TO BONDED DEBT95,00095,00095,0002526001026STF XFER TO GENERAL FACILITIES00262720202727002728128,679190,000190,00028TOTAL INTERFUND TRANSFERS155,000155,000155,00028292027,29930Total Requirements NOT ALLOCATED185,24730,24730,24730,247303124010,1,34633Ending balance (prior years)3440,00040,00040,00040,00040,00040,000	19				19					19
22 INTERFUND TRANSFERS 22 INTERFUND TRANSFERS 22 23 $20,000$ $20,000$ 23 STF XFER TO SEWER RESERVE $50,000$ $50,000$ $50,000$ 23 24 0 $10,000$ $10,000$ 24 STF XFER TO EQUIPMENT RESERVE $10,000$ $10,000$ $10,000$ 24 25 128679 $160,000$ 26 STF XFER TO EQUIPMENT RESERVE $95,000$ $95,000$ $95,000$ 26 27 26 0 0 $160,000$ 26 STF XFER TO GENERAL FACILITIES 0 0 0 26 27 28 $128,679$ $190,000$ 28 $TOTAL INTERFUND TRANSFERS$ $155,000$ $155,000$ $155,000$ $155,000$ 28 29 $$	20				20					20
23 20,000 20,000 23 STF XFER TO SEWER RESERVE 50,000 50,000 50,000 23 24 0 10,000 10,000 24 STF XFER TO EQUIPMENT RESERVE 10,000 10,000 10,000 24 25 128679 160,000 160,000 25 STF XFER TO BONDED DEBT 95,000 95,000 95,000 25 26 0 0 0 26 STF XFER TO GENERAL FACILITIES 0 0 26 27 28 128,679 190,000 190,000 28 TOTAL INTERFUND TRANSFERS 155,000 155,000 155,000 28 29	21	0	0	0	21	TOTAL SPECIAL PAYMENTS	0	0	0	21
24 0 10,000 10,000 24 STF XFER TO EQUIPMENT RESERVE 10,000 10,000 10,000 24 25 128679 160,000 160,000 25 STF XFER TO BONDED DEBT 95,000 95,000 95,000 25 26 26 0 0 26 STF XFER TO GENERAL FACILITIES 0 0 26 27 28 128,679 190,000 190,000 28 TOTAL INTERFUND TRANSFERS 155,000 155,000 155,000 28 28 29	22		-		22	INTERFUND TRANSFERS				22
25 128679 160,000 160,000 25 STF XFER TO BONDED DEBT 95,000 95,000 95,000 25 26 0 0 0 26 STF XFER TO GENERAL FACILITIES 0 0 26 27 28 128,679 190,000 190,000 28 TOTAL INTERFUND TRANSFERS 155,000 155,000 155,000 28 29	23		20,000	20,000	23	STF XFER TO SEWER RESERVE	50,000	50,000	50,000	23
26 0 0 26 $STF XFER TO GENERAL FACILITIES$ 0 0 26 27 27 27 27 0 0 0 27 28 $128,679$ $190,000$ $190,000$ 28 $70TAL INTERFUND TRANSFERS$ $155,000$ $155,000$ $155,000$ $155,000$ $155,000$ 28 29 $37,299$ 29 $0FERATING CONTINGENCY$ $30,247$ </td <td>24</td> <td>0</td> <td>10,000</td> <td>10,000</td> <td>24</td> <td>STF XFER TO EQUIPMENT RESERVE</td> <td>10,000</td> <td>10,000</td> <td>10,000</td> <td>24</td>	24	0	10,000	10,000	24	STF XFER TO EQUIPMENT RESERVE	10,000	10,000	10,000	24
2727272700272728128,679190,000190,00028TOTAL INTERFUND TRANSFERS155,000155,000155,000155,00028292937,299290PERATING CONTINGENCY30,24730,24730,24730,2472930128,679190,000227,29930Total Requirements NOT ALLOCATED185,247185,247185,2473131111Total Requirements for ALL Org.Units/Progams within fund111313211111113232331101,34633Ending balance (prior years)140,00040,00040,00034	25	128679	160,000	160,000	25	STF XFER TO BONDED DEBT	95,000	95,000	95,000	25
28128,679190,000190,00028TOTAL INTERFUND TRANSFERS155,000155,000155,000282937,29929OPERATING CONTINGENCY30,24730,24730,24730,24730,2472930128,679190,000227,29930Total Requirements NOT ALLOCATED185,247185,247185,2473031313233Total Requirements for ALL Org. Units/Progams within fund313233101,34633Reserved for future expenditure323334101,34635Ending balance (prior years)40,00040,00040,00034	26	0	0		26	STF XFER TO GENERAL FACILITIES	0	0		26
2937,29929OPERATING CONTINGENCY30,24730,24730,24730,2472930128,679190,000227,29930Total Requirements NOT ALLOCATED185,247185,247185,247303111 </td <td>27</td> <td></td> <td></td> <td></td> <td>27</td> <td></td> <td></td> <td>0</td> <td></td> <td>27</td>	27				27			0		27
30128,679190,000227,29930Total Requirements NOT ALLOCATED185,247185,247185,247303131Total Requirements for ALL Org. Units/Progams within fund113131323232Reserved for future expenditure11323233101,34633Ending balance (prior years)140,00040,00040,00034	28	128,679	190,000	190,000	28	TOTAL INTERFUND TRANSFERS	155,000	155,000	155,000	28
3131Total Requirements for ALL Org.Units/Progams within fund31313232323232323233101,34633Ending balance (prior years)33333465,00034UNAPPROPRIATED ENDING FUND BALANCE40,00040,00040,000	29			37,299	29	OPERATING CONTINGENCY	30,247	30,247	30,247	29
323334101,34632Reserved for future expenditure32333334101,34635,00034UNAPPROPRIATED ENDING FUND BALANCE40,00040,00040,00034	30	128,679	190,000	227,299	30	Total Requirements NOT ALLOCATED	185,247	185,247	185,247	30
33 101,346 33 Ending balance (prior years) 34 35 33 34 65,000 34 UNAPPROPRIATED ENDING FUND BALANCE 40,000 40,000 40,000 34	31				31	Total Requirements for ALL Org.Units/Progams within fund				31
34 65,000 34 UNAPPROPRIATED ENDING FUND BALANCE 40,000 40,000 40,000 34	32				32	Reserved for future expenditure				32
	33		101,346		33	Ending balance (prior years)				33
35 128,679 291,346 292,299 35 TOTAL REQUIREMENTS 225,247 225,247 225,247 35	34			65,000	34	UNAPPROPRIATED ENDING FUND BALANCE	40,000	40,000	40,000	34
	35	128,679	291,346	292,299	35	TOTAL REQUIREMENTS	225,247	225,247	225,247	35

150-504-030 (Rev 10-16)

FORM LB-20

RESOURCES SEWER FUND 40

							CITY OF MILL CITY	7	-
		Historical Data				Budge	et for Next Year 2020	-2021	
-	Actua Second Preceding	al First Preceding	Adopted Budget This Year		RESOURCE DESCRIPTION	Proposed By	Approved By	Adopted By]
	Year 2017-2018	Year 2018-2019	Year 2019-2020			Budget Officer	Budget Committee	Governing Body	
1	72,776	152,000	125,346		Available cash on hand* (cash basis)	111,145	111,145	111,145	
2	370,000	410,000	443,600	2		421,243	421,243	421,243	
3	250	250	0			0	0	-	3
4	364	717	1,303	4	Interest/SEWER	834	834	834	4
5	500	250	250	5	MISCELLANEOUS	500	500	500	5
6				6	OTHER RESOURCES	0	0	-	6
7	-	0	0	7	SEWER DEPOSITS	3,000	3,000	3,000	7
8	10,500	9,000	0	8		12,000	12,000	12,000	8
9	-	0	0	9	TRANSFER FROM GENERAL FUND	0	0	-	9
10	-			10					10
11				11					11
12				12					12
13				13					13
14				14					14
15				15					15
16				16					16
17				17					17
18				18					18
19				19					19
20				20					20
21				21					21
22				22					22
23				23					23
24				24					24
25				25					25
26				26					24 25 26
27				27					27
28				28					28
29	454,390	572,217	570,499	29	Total resources, except taxes to be levied	548,722	548,722	548,722	29
30	·	·				<i>.</i>		,	30
31									31
32	454,390	572,217	570,499	32	TOTAL RESOURCES	548,722	548,722	548,722	32

*The balance of cash, cash equivalents and investments in the fund at the beginning of the budget year

APPENDIX D

Pump Testing Results

1st Avenue Lift Station Analysis

Lift Station: 1st Avenue Wet well is: Circular Summary Table Formula: Pi x R^2 x H Flow Out (ft³/s) Flow Out (gpm) TDH (ft of head) Diameter (ft): 8 Pump 1 0.30 133 Gauges not available Radius (ft): 4 Pump 2 0.30 133 Gauges not available Notes:

		F	low (in) = Flow (out) + Δ Storag	e		
Flow In	Δ Time (sec)	Start Depth (ft)	End Depth (ft)	ΔH	Volume (ft ³)	Flow (ft ³ /s)	Flow (gpm)
Pump 1 Fill 1	60	7.25	7.27	0.02	1.01	0.03	15.04
Pump 1 Fill 2	0			0	0.00	0.00	0.00
Pump 1 Fill Avg.	30						
Pump 2 Fill 1	60	7.25	7.27	0.02	1.01	0.03	15.04
Pump 2 Fill 2	0			0	0.00	0.00	0.00
Pump 2 Fill Avg.	30						
∆ Storage	∆ Time (sec)	Start Depth (ft)	Stop Depth (ft)	ΔH	Volume (ft ³)	Flow (ft ³ /s)	Flow (gpm)
Pump 1 Test 1	60	7.58	7.25	0.33333	16.75	0.28	125.33
Pump 1 Test 2	60	7.58	7.25	0.33333	16.75	0.28	125.33
Pump 2 Test 1	60	7.75	7.4166666	0.3333334	16.76	0.28	125.33
Pump 2 Test 2	60	7.58	7.25	0.33333	16.75	0.28	125.33
Flow Out						Flow (ft ³ /s)	Flow (gpm)
Pump 1						0.30	133
Pump 2						0.30	133

		PUMP 1	L				PUMP 2	2	
		Pump 1 Fil	11				Pump 2 Fil	1	
Time one					Time one				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds	Time (min)	
		60	1.0				60	1.0	
Time two					Time two			_	
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds		
			0.0					0	
		Delta T	60	seconds			Delta T	60	second
		Pump 1 Fil	12				Pump 2 Fil	11 2	
<u>Time one</u> Hour	Minute	Seconds	Time (min)		Time one Hour	Minute	Seconds	Time (min)	
			0.0					0.0	
Time two			0.0		Time two			0.0	
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds		
			0.0					0	•
		Delta T	0	seconds			Delta T	0	second
T		Pump 1 Tes	at 1		Time		Pump 2 Te	51.1	
<u>Time one</u> Hour	Minute	Seconds	Time (min)		Time one Hour	Minute	Seconds	Time (min)	
Tioui	winnute	60	1.0		Hour	winute	60	1.0	
Time two		00	2.0		Time two		00	2.0	
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds	Time (min)	
			0.0					0	
		Delta T	60	seconds			Delta T	60	second
		Pump 1 Tes	st 2				Pump 2 Te	st 2	
Time one					Time one				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds	Time (min)	
		60	1.0				60	1.0	
<u>Time two</u>					Time two				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds	Time (min)	
			0.0					0	
			0.0	-				-	

Pump Times

River Lift Station Analysis

Lift Station:	River	_				
Wet well is:	Circular	1		Sum	mary Table	
Formula:	Pi x R^2 x H	4		Flow Out (ft ³ /s)	Flow Out (gpm)	TDH (ft of head)
Diameter (ft):	8		Pump 1	0.29	129	Gauges not availab
Radius (ft):	4		Pump 2	0.23	103	Gauges not availab
Notes:						

		ł	low (in) = Flow (6		
Flow In	∆ Time (sec)	Start Depth (ft)	End Depth (ft)	ΔΗ	Volume (ft ³)	Flow (ft ³ /s)	Flow (gpm)
Pump 1 Fill 1	60	10	10.007	0.007	0.35	0.01	5.26
Pump 1 Fill 2	0	10	10.007	0.007	0.35	0.01	5.26
Pump 1 Fill Avg.	30						
Pump 2 Fill 1	60	10	10.007	0.007	0.35	0.01	5.26
Pump 2 Fill 2	0	10	10.007	0.007	0.35	0.01	5.26
Pump 2 Fill Avg.	30						
∆ Storage	∆ Time (sec)	Start Depth (ft)	Stop Depth (ft)	ΔH	Volume (ft ³)	Flow (ft ³ /s)	Flow (gpm)
Pump 1 Test 1	60	10.265625	9.9375	0.328125	16.49	0.27	123.37
Pump 1 Test 2	60	10.265625	9.9375	0.328125	16.49	0.27	123.37
Pump 2 Test 1	60	10.5520833	10.2916666	0.2604167	13.09	0.22	97.91
Pump 2 Test 2	60	10.5520833	10.2916666	0.2604167	13.09	0.22	97.91
Flow Out						Flow (ft ³ /s)	Flow (gpm)
Pump 1						0.29	129
Pump 2						0.23	103

		PUMP 1					PUMP 2	2	
		Pump 1 Fil	1				Pump 2 Fil	1	
Time one					Time one				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds	Time (min)	
		60	1.0				60	1.0	
Time two					Time two				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds		
			0.0	_				0	
		Delta T	60	seconds			Delta T	60	seconds
		Pump 1 Fil	12				Pump 2 Fil	11 2	
Time one					Time one				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds	Time (min)	
								0.0	
Time two			0.0		Time two			0.0	
Time two					Time two				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds		
			0.0					Ö	
		Delta T	0	seconds			Delta T	0	seconds
	F	Pump 1 Tes	st 1				Pump 2 Te	st 1	
Time one					Time one				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds	Time (min)	
		60	1.0				60	1.0	
Time two					Time two				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds	Time (min)	
		Delta T	0.0	- seconds			Delta T	0	seconds
	6	Pump 1 Tes		seconus			Pump 2 Te		seconus
Time one		unp 1 163			Time one				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds	Time (min)	
		60	1.0				60	1.0	
Time two			ļ.		Time two				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds	Time (min)	
			0.0					0	

Pump Times

Spring Lift Station Analysis

Lift Station:	Spring	-				
Wet well is:	Circular	1		Sum	mary Table	
Formula:	Pi x R^2 x H			Flow Out (ft ³ /s)	Flow Out (gpm)	TDH (ft of head)
Diameter (ft):	10		Pump 1	0.66	294	Gauges not availab
Radius (ft):	5		Pump 2	0.51	230	Gauges not availab
Notes:						

		F	low (in) = Flow (out) + ∆ Storag	e		
Flow In	∆ Time (sec)	Start Depth (ft)	End Depth (ft)	ΔH	Volume (ft ³)	Flow (ft ³ /s)	Flow (gpm)
Pump 1 Fill 1	60	10	10.09	0.09	7.07	0.12	52.87
Pump 1 Fill 2	60	10	10.09	0.09	7.07	0.12	52.87
Pump 1 Fill Avg.	60						
Pump 2 Fill 1	60	10	10.09	0.09	7.07	0.12	52.87
Pump 2 Fill 2	60	10	10.09	0.09	7.07	0.12	52.87
Pump 2 Fill Avg.	60						
∆ Storage	∆ Time (sec)	Start Depth (ft)	Stop Depth (ft)	ΔH	Volume (ft ³)	Flow (ft ³ /s)	Flow (gpm)
Pump 1 Test 1	60	11.307	10.895833	0.411167	32.29	0.54	241.55
Pump 1 Test 2	60	11.307	10.895833	0.411167	32.29	0.54	241.55
Pump 2 Test 1	60	11.5208333	11.21875	0.3020833	23.73	0.40	177.47
Pump 2 Test 2	60	11.5208333	11.21875	0.3020833	23.73	0.40	177.47
Flow Out						Flow (ft ³ /s)	Flow (gpm)
Pump 1						0.66	294
Pump 2						0.51	230

		PUMP 1					PUMP 2	2	
		Pump 1 Fil	1				Pump 2 Fil	1	
Time one					Time one				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds	Time (min)	
		60	1.0				60	1.0	
Time two					Time two				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds		
			0.0	_				0	_
		Delta T	60	seconds			Delta T	60	seconds
		Pump 1 Fil	12				Pump 2 Fil	11 2	
Time one					Time one				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds	Time (min)	
		60	1.0				60	1.0	
Time two		60	1.0		Time two		60	1.0	
Time two					Inne two				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds		
			0.0					0	
		Delta T	60	seconds			Delta T	60	seconds
	ļ	Pump 1 Tes	st 1		Pump 2 Test 1				
Time one					Time one				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds	Time (min)	
		60	1.0				60	1.0	
Time two					Time two			_	
Hour	Minute	Seconds	Time (min) 0.0		Hour	Minute	Seconds	Time (min) 0	
		Delta T	60	seconds	-		Delta T	60	seconds
		Pump 1 Tes		seconus			Pump 2 Te		seconds
Time one					Time one				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds	Time (min)	
		60	1.0				60	1.0	
Time two					Time two				
Hour	Minute	Seconds	Time (min)		Hour	Minute	Seconds	Time (min)	
			0.0					0	
		Delta T	60	seconds			Delta T	60	seconds

Pump Times

LIFT STATION DATA SHEET

Project:	NSCSP MCG WWFPS			Date:	April 4, 2023
Lift Station Name:	First Avenu	e LS			
Location:	First Avenue & Wall Street				
					Circular
Number of Pumps:	_2 We	t Well Dimensio	ns: <u>8 feet</u>		\square Rectangular
Pump Type(s):	Submersib	le			
Pumps are in:		🛛 Wet Well	🗌 Dry Well		
Record Drawings:		🛛 Yes	🗌 No – gati	her elevations of inve	erts, pressure gauges, etc.
Pump Curves:		🗌 Yes	🖂 No		
Level Set Points:		🗌 Yes	🔀 No – gat	her information.	
Alarm Set Points:		Yes	🔀 No – gat	her information.	
Discharge Manhole	Lined:	🗌 Yes	🖂 No		
Air Release on Disc	harge Line:	🗌 Yes	🛛 No	□ N/A	
Flow Meter:		🛛 Yes	🗌 No		
Discharge Pressure	Gauges:	🗌 Yes	🖂 No		
Bypass Pump Provi	sions:	Yes	🖂 No		
Odor/H ₂ S Control:	🗌 Yes -	- type:		🖂 No	
Level Indicator Type	e: Pressure	e Transducer			
Inlet Pipe Size(s) (ir	ı): <u>4</u>	Discha	rge Line Size	(in): <u>3" transition</u>	n to 4"
Pump and Motor Nar	me Plate Dat	<u>a:</u>			
	Voltage		Phase		
Dr	ive Type		Нр	10	
Mon	GPM ufacturer F		Curve No.	00.050.005000	_
		lygt 3102.090	Serial No.	63-256-005206	
<u>Standby Power:</u>					
On-Site Generator:		🛛 Yes 🛛 –	size (KW):	No	
Transfer Switch:		🛛 Automa	tic 🗌 Manı	ual 🗌 None	
Portable Generator	Connection:	🗌 Yes	🛛 No		

Safety / Security:		
Fenced:	🗌 Yes	No
Access Locked:	🛛 Yes	No
Fall Protection:	🛛 Yes	□ No
SCADA / Controls / Alarm	s:	
Year Constructed: 1990)	
Description of Upgrades:	Upgradec	d in 2009.
		er outages? Regular alarms and cause? History of problems/issues? viced? Wet well cleaned? Air release serviced?)

Lift Station Name:	First Avenue LS	Pump Test Reminders:
		1. If VFD, operate at 60 Hz
Date of Test:	4/4/2023	2. Be certain flow is not backing up into inlet pipes

Pump Test Data

Time (HH:MM:SS)	Wet Well Level/Depth (ft)	Pump Status (Pump # On/Off)	Condition (Filling / Emptying)	Discharge Pressure (psi)	Discharge Flow (gpm)	Notes
Example: 12:13:00	3.65'	Pump 1 – On	Emptying	10.8 psi		
12:14:00	1.50'	Pump 1 – Off	Filling	3.5 psi		
60 seconds	87" to 91"	Pump 1	Emptying		112 gpm	
60 seconds	89" to 93"	Pump 2	Emptying		119 gpm	
60 seconds	88.1" to 93.1"	Pumps 1 & 2	Emptying		231 gpm	Inflow 18.2 gpm

ADDITIONAL NOTES / PUMP STATION SCHEMATICS:

- Inflow was equal to about 15 gpm.
- Lead pump on at 3.0 feet.
- Lead pump off at 1.5 feet.
- Lag pump on at 3.5 feet.
- Lag pump off at 1.75 feet.
- Overflow level at 5.0 feet.

LIFT STATION DATA SHEET

Project:	NSCSP MC	G WWFPS		Da	ate: _April 4, 2023	
Lift Station Name:	River Street	LS				
Location:	River Street	& 8 th Place				
					Circular	
Number of Pumps:	_2 Wet	Well Dimensio	ns: <u>8 feet</u>		Rectangular	
Pump Type(s):	Submersibl	e				
Pumps are in:		🛛 Wet Well	🗌 Dry Well			
Record Drawings:		🛛 Yes	🗌 No – gat	her elevations of	inverts, pressure gauges, etc	
Pump Curves:		🗌 Yes	🖂 No			
Level Set Points:		🗌 Yes	\boxtimes No – gather information. \boxtimes No – gather information.			
Alarm Set Points:		🗌 Yes				
Discharge Manhole Lined:		🗌 Yes	🛛 No			
Air Release on Disc	harge Line:	🗌 Yes	⊠ No □ N/A			
Flow Meter:		🛛 Yes	🗌 No			
Discharge Pressure	Gauges:	🗌 Yes	🛛 No			
Bypass Pump Provi	sions:	🗌 Yes	🖂 No			
Odor/H ₂ S Control:	🗌 Yes -	- type:			No	
Level Indicator Type	e: Pressure	Transducer				
Inlet Pipe Size(s) (ir	ı): <u>4</u>	Discha	rge Line Size	(in): <u>3" trans</u>	sition to 4"	
Pump and Motor Nai	me Plate Data	<u>a:</u>				
	Voltage		Phase			
Dr	rive Type		Нр	7.5		
	GPM		Curve No.			
Man	ufacturer	FLYGT 3102.060	Serial No.	63-257-00-52	206	
<u>Standby Power:</u>			-			
On-Site Generator:		🛛 Yes 🛛 –	size (KW):	🗌 No		
Transfer Switch:		🛛 Automa	tic 🗌 Manu	ual 🗌 None		

Portable Generator Connection:	Yes	🖂 No	

Safety / Security:
Fenced: 🛛 Yes 🗌 No
Access Locked: 🛛 Yes 🗌 No
Fall Protection: 🛛 Yes 🗌 No
SCADA / Controls / Alarms:
Year Constructed: 1990
Description of Upgrades: Upgraded in 2009.
NOTES: (Capacity related overflows? Power outages? Regular alarms and cause? History of problems/issues? Facility conditions? How often are pumps serviced? Wet well cleaned? Air release serviced?)

2

Lift Station Name:	River Road LS	Pump Test Reminders:
		1. If VFD, operate at 60 Hz
Date of Test:	4/4/2023	2. Be certain flow is not backing up into inlet pipes

Pump Test Data

Time (HH:MM:SS)	Wet Well Level/Depth (ft)	Pump Status (Pump # On/Off)	Condition (Filling / Emptying)	Discharge Pressure (psi)	Discharge Flow (gpm)	Notes
Example: 12:13:00	3.65'	Pump 1 – On	Emptying	10.8 psi		
12:14:00	1.50'	Pump 1 – Off	Filling	3.5 psi		
60 accordo	119.3" to	Duran 1	Encentrain o		122	
60 seconds	123.2"	Pump 1	Emptying		132 gpm	
60 accorda	123.5" to	Dump 2	Emptying		02 apm	
60 seconds	126.6"	Pump 2	Pump 2 Emptying	92 gpm		
60 seconds	125.3" to	Pump 1 & 2	Emptying		224 apm	
ou seconus	129.5"	Fullip I & Z			224 gpm	

ADDITIONAL NOTES / PUMP STATION SCHEMATICS:

- Inflow around 5 gpm
- Lead pump on at 2.5 feet
- Lead pump off at 1.5 feet
- Lag pump on at 2.75 feet
- Lag pump off at 1.75 feet
- Overflow level at 5.95 feet

LIFT STATION DATA SHEET

Project:	NSCSP MC	G WWFPS		Date	: _April 4, 2023	
Lift Station Name:	Spring Stree	et LS				
Location:	Spring Stree	et & SW 11 th Av	venue			
Number of Pumps:	_2 Wet	t Well Dimensio	ns: <u>10 fee</u>	t	\Box Rectangular	
Pump Type(s):	Submersibl	e				
Pumps are in:		🛛 Wet Well	🗌 Dry Well			
Record Drawings:		🛛 Yes	🗌 No – gatł	ner elevations of inv	erts, pressure gauges, etc	
Pump Curves:		🗌 Yes	🖂 No			
Level Set Points:		🗌 Yes	🔀 No – gatł	ner information.		
Alarm Set Points:		🗌 Yes	🔀 No – gather information.			
Discharge Manhole	Lined:	🗌 Yes	🖂 No			
Air Release on Disc	Air Release on Discharge Line:		🛛 No	□ N/A		
Flow Meter:		🛛 Yes	🗌 No			
Discharge Pressure	Gauges:	🗌 Yes	🖂 No			
Bypass Pump Provi	sions:	🗌 Yes	🖂 No			
Odor/H ₂ S Control:	🗌 Yes -	- type:		No 🛛		
Level Indicator Type	e: Pressure	e Transducer				
Inlet Pipe Size(s) (ir	n): <u>12</u>	Discha	rge Line Size	(in): <u>4" transitio</u>	n to 6"	
Pump and Motor Nar	ne Plate Data	<u>a:</u>				
	Voltage		Phase			
Dr	ive Type		Нр	20		
	GPM		Curve No.		_	
Man	ufacturer F	lygt 3153.091	Serial No.	63-462-00-6050		
<u>Standby Power:</u>						
On-Site Generator:		🛛 Yes 🛛 –	size (KW): 6	00kW 🗌 No		
Transfer Switch:		🛛 Automa	tic 🗌 Manu	ial 🗌 None		
Portable Generator	Connection:	🗌 Yes	🖂 No			

Safety / Security:
Fenced: 🛛 Yes 🗌 No
Access Locked: 🛛 Yes 🗌 No
Fall Protection: 🛛 Yes 🗌 No
SCADA / Controls / Alarms:
Year Constructed: 1990
Description of Upgrades: Upgraded in 2009.
NOTES: (Capacity related overflows? Power outages? Regular alarms and cause? History of problems/issues? Facility conditions? How often are pumps serviced? Wet well cleaned? Air release serviced?)

2

Lift Station Name:	Spring Street Lift Station				
Date of Test:	4/4/2023				

Pump Test Reminders:

- 1. If VFD, operate at 60 Hz
- 2. Be certain flow is not backing up into inlet pipes

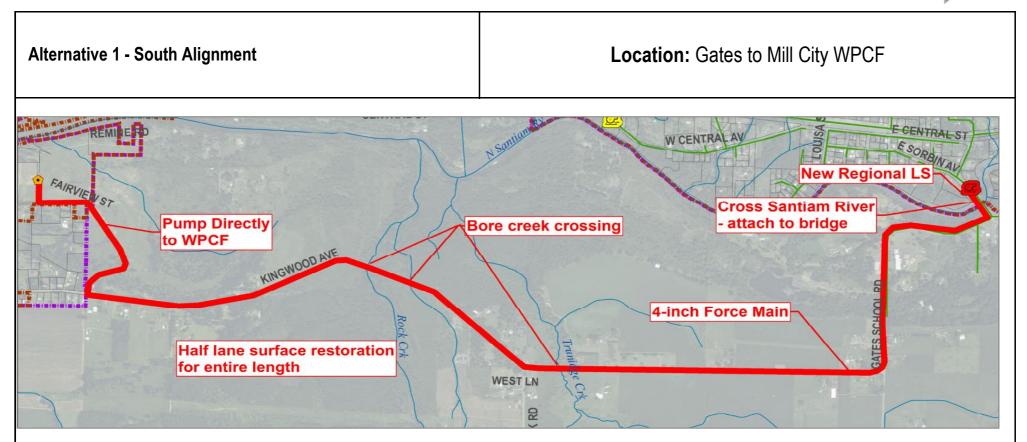
Pump Test Data

3.65'	Pump 1 – On			(gpm)	
	-	Emptying	10.8 psi		
1.50'	Pump 1 – Off	Filling	3.5 psi		
130.8" to 135.7"	Pump 1	Emptying		270 gpm	
134.6" to 138.3"	Pump 2	Emptying		238 gpm	
135.6" to 140.5"	Pump 1 & 2	Emptying		508 gpm	
1	30.8" to 135.7" 34.6" to 138.3" 35.6" to	30.8" to Pump 1 135.7" Pump 1 34.6" to Pump 2 138.3" Pump 1 & 2	30.8" to 135.7" Pump 1 Emptying 34.6" to 138.3" Pump 2 Emptying 35.6" to Pump 1 & 2 Emptying	30.8" to 135.7" Pump 1 Emptying 34.6" to 138.3" Pump 2 Emptying 35.6" to Pump 1 & 2 Emptying	30.8" to 135.7" Pump 1 Emptying 270 gpm 34.6" to 138.3" Pump 2 Emptying 238 gpm 35.6" to Pump 1 & 2 Emptying 508 gpm

ADDITIONAL NOTES / PUMP STATION SCHEMATICS:

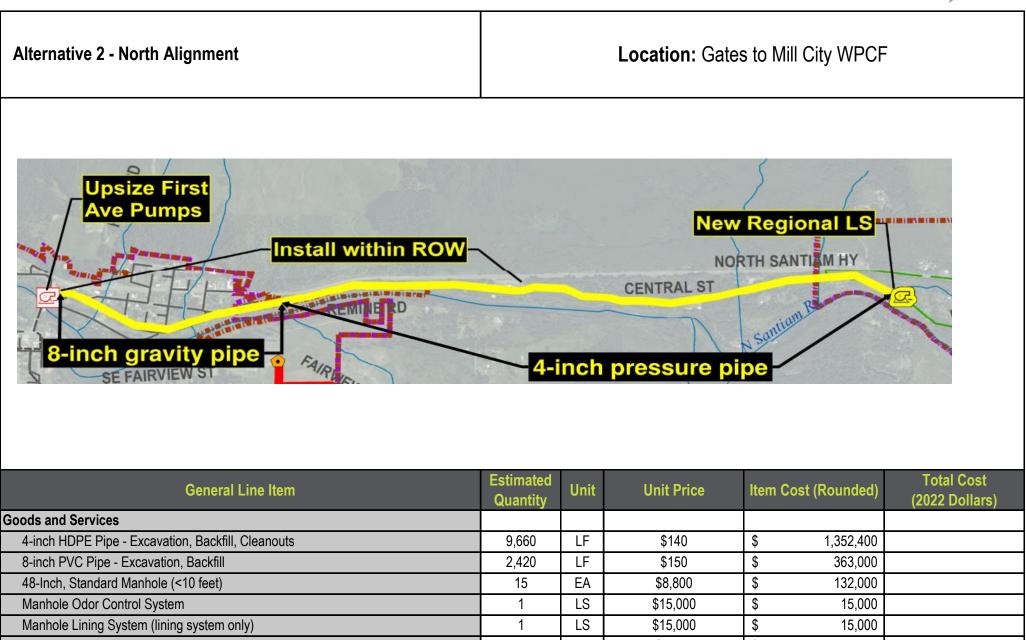
- Inflow of 55 gpm
- Lead on at 4.5 feet
- Lead off at 1.5 feet
- No lag settings provided.

APPENDIX E


Collection System Alternative Cost Estimates

k,

Mill City / Gates Wastewater Facility Plan


General Line Item	Estimated Quantity	Unit	Unit Price	Item Cost (Rounded)) (Total Cost (2022 Dollars)
Goods and Services						
4-inch HDPE Pipe - Excavation, Backfill, Cleanouts 20,000			\$140	\$ 2,800,000		
Boring, Construction & Repairs (24 in and smaller casing)	600	LF	\$1,000	\$ 600,000		
Launching / Receiving Pit Excavation & Restoration	3	LS	\$100,000	\$ 300,000		
1/2 Lane (7') Pavement Repair	19,400	LF	\$70	\$ 1,358,000		
Gates Regional Lift Station (Site, Wetwell, Pumps, Electrical, Valves)	1	LS	\$830,000	\$ 830,000		
Traffic Control w/ Flaggers	1	LS	\$120,000	\$ 120,000		
				Construction Subtota	\$	6,008,000
Additional Elements (estimated % of above)						
Mobilization and Administration			10%	\$ 601,000		
Bonding			2.5%	\$ 150,000		
Contractor Overhead and Profit			15%	\$ 901,000		
Prevailing Wages			2.5%	\$ 150,000		
AIS / BABA (if funded by IIJA/BIL or SRF)			5%	\$ 300,000		
Contingency			30%	\$ 1,802,000		
			Tota	al Construction Subtota	1\$	9,912,000
Plans and Contract Documents						
Engineering Design and Bid Phase Services			15%	\$ 1,487,000		
Engineering - Construction Contract Administration			5%	\$ 496,000		
Engineering Inspection			8%	\$ 793,000		
Environmental			LS	\$ 75,000		
Permitting			LS	\$ 50,000		
Geotechnical Investigation			LS	\$ 100,000		
SCADA Integration			LS	\$ 30,000		
Surveying			LS	\$ 120,000		
Legal, Administrative, and Funding			2%	\$ 198,000		
			Total Project	Costs (rounded)	\$	13,270,000

EA = each, LF = linear foot, LS = lump sum

The cost estimate herein is based on our perception of current conditions at the project location. This estimate reflects our opinion of probable costs at this time and is subject to change as the project design matures. Keller Associates has no control over variances in the cost of labor, materials, equipment, services provided by others, contractor's methods of determining prices, competitive bidding or market conditions, practices or bidding strategies. Keller Associates cannot and does not warrant or guarantee that proposals, bids, or actual construction costs will not vary from the cost presented herein. Plan and Contract document costs based on percent of Total Construction Subtotal.

Mill City / Gates Wastewater Facility Plan

Manhole Lining System (lining system only)	\$15,000	\$	15,000			
Boring, Construction & Repairs (24 in and smaller casing)	300	LF	\$1,000	\$	300,000	
Launching / Receiving Pit Excavation & Restoration	4	LS	\$100,000	\$	400,000	
1/2 Lane (7') Pavement Repair	1,800	LF	\$70	\$	126,000	
Asphalt Walking/Biking Pathway Construction, 6' wide (Aggregate Base, Asphalt)	10,280	LF	\$150	\$	1,542,000	
Gates Regional Lift Station (Site, Wetwell, Pumps, Electrical, Valves)	1	LS	\$830,000	\$	830,000	
First Ave Lift Station Upgrades (Pumps, Electrical, SCADA)	1	LS	\$175,000	\$	175,000	
Traffic Control w/ Flaggers	1	LS	\$130,000	\$	130,000	
				Cons	struction Subtotal	\$ 5,380,400
Additional Elements (estimated % of above)						
Mobilization and Administration			10%	\$	538,000	
Bonding			2.5%	\$	135,000	
Contractor Overhead and Profit			15%	\$	807,000	
Prevailing Wages			3%	\$	135,000	
AIS / BABA (if funded by IIJA/BIL or SRF)	AIS / BABA (if funded by IIJA/BIL or SRF)					
Contingency			30%	\$	1,614,000	
			Tot	al Cons	struction Subtotal	\$ 8,879,000
Plans and Contract Documents						
Engineering Design and Bid Phase Services			15%	\$	1,332,000	
Engineering - Construction Contract Administration			5%	\$	444,000	
Engineering Inspection			8%	\$	710,000	
Environmental			1%	\$	90,000	
Permitting	1%	\$	90,000			
Geotechnical Investigation	LS	\$	150,000			
SCADA Integration	LS	\$	30,000			
Surveying	LS	\$	100,000			
Legal, Administrative, and Funding			2%	\$	178,000	
			Total Project	Cos	ts (rounded)	\$ 12,010,000

EA = each, LF = linear foot, LS = lump sum

The cost estimate herein is based on our perception of current conditions at the project location. This estimate reflects our opinion of probable costs at this time and is subject to change as the project design matures. Keller Associates has no control over variances in the cost of labor, materials, equipment, services provided by others, contractor's methods of determining prices, competitive bidding or market conditions, practices or bidding strategies. Keller Associates cannot and does not warrant or guarantee that proposals, bids, or actual construction costs will not vary from the cost presented herein. Plan and Contract document costs based on percent of Total Construction Subtotal.

City of Mill City Wastewater Facility Plan

10,000

Alternative 1 - Upsize Existing Infrastructure		Loca	ntion: High Ave, 4	th Ave & Kingwo	od Ave
SV/ MAIN ST O O O O O O O O O O O O O O O O O O O	AVE S SMILLAR SWIVY ST SWIVY ST		Upsize to 6-inches		
General Line Item	Estimated Quantity	Unit	Unit Price	Item Cost (Rounded)	Total Cost (2022 Dollars)
Goods and Services					(1011 2011010)
6-inch PVC Pipe - Excavation, Backfill	990	LF	\$135	\$ 133,700	
8-inch PVC Pipe - Excavation, Backfill	600	LF	\$150	\$ 90,000	
Sewer Cleanout	12	EA	\$2,000	\$ 24,000	
Reconnect Sewer Service (excavation, backfill, pipe, surface restoration)	21	EA	\$1,000	\$ 21,000	
1/2 Lane (7') Pavement Repair	1,590	LF	\$70	\$ 111,300	
Traffic Control w/o Flaggers	1	LS	\$10,000	\$ 10,000	
				Construction Subtotal	\$ 256,300
Additional Elements (estimated % of above)					
Mobilization and Administration			10%	\$ 26,000	
Bonding			2.5%	\$ 6,000	
Contractor Overhead and Profit			15%	\$ 38,000	
Prevailing Wages			2.5%	\$ 6,000	
AIS / BABA (if funded by IIJA/BIL or SRF)			5%	\$ 13,000	
Contingency			30%	\$ 77,000	
			Tota	al Construction Subtotal	\$ 423,000
Plans and Contract Documents					
Engineering Design and Bid Phase Services			15%	\$ 63,000	
Engineering - Construction Contract Administration			5%	\$ 21,000	
Engineering Inspection			8%	\$ 34,000	
Environmental			LS	\$ 10,000	
				¢ 40.000	

Geotechnical Investigation	LS	\$	-	
SCADA Integration	LS	\$	-	
Surveying	LS	\$	20,000	
Legal, Administrative, and Funding	2%	\$	8,000	
	Total Project	Cos	sts (rounded)	\$ 590,000

LS

\$

EA = each, LF = linear foot, LS = lump sum

Permitting

The cost estimate herein is based on our perception of current conditions at the project location. This estimate reflects our opinion of probable costs at this time and is subject to change as the project design matures. Keller Associates has no control over variances in the cost of labor, materials, equipment, services provided by others, contractor's methods of determining prices, competitive bidding or market conditions, practices or bidding strategies. Keller Associates cannot and does not warrant or guarantee that proposals, bids, or actual construction costs will not vary from the cost presented herein. Plan and Contract document costs based on percent of Total Construction Subtotal.

City of Mill City Wastewater Facility Plan

Alternative 1 - Upsize Existing Infrastructure Location: E 4th Ave to Spring LS									
SW 10 HAVE SW LINN ELV SW LINN ELV SW MAIN ST H SW MAIN ST H SW DEFORD ST	SW PARKSIDE DR SW 7TH AVE SM FARKSIDE DR SW 7TH AVE SM FARKSIDE DR SW 7TH AVE SW 5TH AVE		SW 5TH AVE						
General Line Item	Estimated Quantity	Unit	Unit Price	Item (Cost (Rounded)		Total Cost 022 Dollars)		
Goods and Services							/		
8-inch PVC Pipe - Excavation, Backfill	2,700	LF	\$150	\$	405,000				
48-Inch, Standard Manhole (<10 feet)	15	EA	\$8,800	\$	132,000				
Connect to Existing Manhole	1	EA	\$1,900	\$	1,900				
Reconnect Sewer Service (excavation, backfill, pipe, surface restoration)	30	EA	\$1,000	\$	30,000				
1/2 Lane (7') Pavement Repair	2,700	LF	\$70	\$	189,000				
Traffic Control w/o Flaggers	1	LS	\$38,000	\$	38,000				
				Const	ruction Subtotal	\$	795,900		
Additional Elements (estimated % of above)									
Mobilization and Administration			10%	\$	80,000				
Bonding			2.5%	\$	20,000				
Contractor Overhead and Profit			15%	\$	119,000				
Prevailing Wages			2.5%	\$	20,000				
AIS / BABA (if funded by IIJA/BIL or SRF)			5%	\$	40,000				
Contingency			30%	\$	239,000				
			То	tal Const	ruction Subtotal	\$	1,314,00		
Plans and Contract Documents									
			15%	\$	197,000				
Engineering Design and Bid Phase Services			5%	\$	66,000				
Engineering - Construction Contract Administration			00/	•	100 000				
Engineering - Construction Contract Administration Engineering Inspection			8%	\$	105,000				
Engineering - Construction Contract Administration Engineering Inspection Environmental			LS	\$	10,000				
Engineering - Construction Contract Administration Engineering Inspection Environmental Permitting			LS LS	\$ \$	10,000 10,000				
Engineering - Construction Contract Administration Engineering Inspection Environmental Permitting Geotechnical Investigation			LS LS LS	\$ \$ \$	10,000				
Engineering - Construction Contract Administration Engineering Inspection Environmental Permitting Geotechnical Investigation SCADA Integration			LS LS LS LS	\$ \$ \$ \$	10,000 10,000 20,000 -				
Engineering - Construction Contract Administration Engineering Inspection Environmental Permitting Geotechnical Investigation			LS LS LS	\$ \$ \$	10,000 10,000				

EA = each, LF = linear foot, LS = lump sum The cost estimate herein is based on our perception of current conditions at the project location. This estimate reflects our opinion of probable costs at this time and is subject to change as the project design matures. Keller Associates has no control over variances in the cost of labor, materials, equipment, services provided by others, contractor's methods of determining prices, competitive bidding or market conditions, practices or bidding strategies. Keller Associates cannot and does not warrant or guarantee that proposals, bids, or actual construction costs will not vary from the cost presented herein.

Plan and Contract document costs based on percent of Total Construction Subtotal.

Spring Basin Life Cycle Costs

2% Discount Rate3% Inflation Rate

Alternative 1 O&M Costs												
Line Item Annual Cost Unit Cost Quantity 20-Year Present Worth Factor 20-Year Pres												
Septic Tank Pumping	\$2,600	\$100	26	21.5	\$56,020							
Pipline CCTV & Cleaning	\$1,620	\$1	2,700	21.5	\$34,905							
				Total (Rounded)	\$90,900							

Alternative 2 O&M Costs											
Line Item Annual Cost Unit Cost Quantity 20-Year Present Worth Factor 20-Year Present Wo											
Pipline CCTV & Cleaning	\$1,620	\$1	2,700	21.5	\$34,905						
				Total (Rounded)	\$34,900						

Alternative 1 STEG Tank Replacement Costs												
Line Item	Line Item Annual Cost Unit Cost Quantity Useful Life 20-Year Present Worth											
STEG Tank Replacement 4752.2 5,000 26 40 \$102,392												

Alternative 2 STEG Tank Replacement Costs
Alternative 2 Removes STEG tanks along the project corridor and therefore have no replacement costs

Notes

- 1) Present worth factor uses 2% discount rate and 3% inflation rate.
- 2) Septic Tank pumping based on reported values from the NSCSP 2019 Master Plan.
- 3) Pipeline CCTV & Cleaning assumed to be same length for both alternatives.
- 4) Quantity of STEG tank replacements is equal to number of connections that would not need a STEG tank under Alternative 2.

APPENDIX F

Collection System Annual Costs

Mill City Short Lived and Long Lived Asset Replacement

Short Lived Assets	Quantity	Unit	Unit Cost	Total Replacement Cost	Typical Useful Life / Frequency (years)	Annualized Replacement Cost
STEP Systems	_					
STEP Pump Replacement	68	EA	\$400	\$30,000	10	\$3,000
	To	tal STE	P Systems	\$30,000	-	\$3,000
River Lift Station						
Submersible Pump & Motor (7.5 hp)	2	EA	\$35,000	\$70,000	20	\$3,500
Routine Pump Inspection	1	LS	\$3,000	\$3,000	5	\$600
Impeller Replacement	2	EA	\$6,000	\$12,000	10	\$1,200
Instrumentation	1	LS	\$10,000	\$10,000	15	\$700
Control Panel & Electrical	1	LS	\$36,000	\$40,000	15	\$2,700
SCADA System	1	LS	\$20,000	\$20,000	15	\$1,400
	Tota	l River	Lift Station	\$155,000	-	\$10,100
First Avenue Lift Station						
Submersible Pump & Motor (10 hp)	2	EA	\$40,000	\$80,000	20	\$4,000
Routine Pump Inspection	1	LS	\$3,000	\$3,000	5	\$600
Impeller Replacement	2	EA	\$6,000	\$12,000	10	\$1,200
Instrumentation	1	LS	\$10,000	\$10,000	15	\$700
Control Panel & Electrical	1	LS	\$36,000	\$40,000	15	\$2,700
SCADA System	1	LS	\$20,000	\$20,000	15	\$1,400
	Total First A	venue	Lift Station	\$165,000	-	\$10,600
Spring Street Lift Station						
Submersible Pump & Motor (20 hp)	2	EA	\$50,000	\$100,000	20	\$5,000
Routine Pump Inspection	1	LS	\$3,000	\$3,000	5	\$600
Impeller Replacement	2	EA	\$7,500	\$15,000	10	\$1,500
Instrumentation	1	LS	\$10,000	\$10,000	15	\$700
Control Panel & Electrical	1	LS	\$36,000	\$40,000	15	\$2,700
SCADA System	1	LS	\$20,000	\$20,000	15	\$1,400
	Total Spring	Street	Lift Station	\$188,000	-	\$11,900
	Тс	otal Ma	terial Costs	\$508,000	•	\$35,600
				Mobilization	10%	\$3,560
				Subtotal	-	\$39,160
				Contingency	20%	\$7,800
			1	Fotal Construction Cost	-	\$47,000
				Engineering	20%	\$9,400
	Total	Short-	Lived Asset	Replacement (rounded)	-	\$56,000

Mill City Short Lived and Long Lived Asset Replacement

Long Lived Assets	Quantity	Unit	Unit Cost	Total Replacement	Typical Useful Life	Annualized Replacement
	quantity	- Chint		Cost	(years)	Cost
Pipelines / Cleanouts						
4-inch Pipe & Surface Repair (Gravity)	51,700	LF	\$210	\$10,860,000	75	\$145,000
6-inch Pipe & Surface Repair (Gravity)	2,800	LF	\$215	\$600,000	75	\$8,000
8-inch Pipe & Surface Repair (Gravity)	5,700	LF	\$220	\$1,250,000	75	\$17,000
4-inch Pipe & Surface Repair (Pressure)	2,910	LF	\$210	\$610,000	75	\$9,000
8-inch pipe & Surface Repair (Pressure)	8,840	LF	\$220	\$1,940,000	75	\$26,000
Cleanout	268	EA	\$3,000	\$800,000	50	\$16,000
Manhole	29	EA	\$9,800	\$280,000	50	\$6,000
STEG Tank & Service Line	706	EA	\$10,000	\$7,060,000	50	\$142,000
STEP System & Service Line	34	EA	\$10,000	\$340,000	50	\$7,000
	Total Pipe	elines	/ Cleanouts	\$23,740,000	-	\$376,000
River Lift Station						
Valves / Meters	1	LS	\$48,000	\$48,000	30	\$1,600
Onsite Diesel Generator (40kW)	1	EA	\$50,000	\$50,000	30	\$1,700
Wetwell (rehab)	1	EA	\$42,000	\$42,000	25	\$1,700
Site paving, fencing, landscaping, etc.	1	LS	\$10,000	\$10,000	30	\$400
Building	1	LS	\$35,000	\$40,000	40	\$1,000
	Total	River	Lift Station	\$190,000	-	\$6,400
First Avenue Lift Station						
Valves / Meters	1	LS	\$48,000	\$50,000	30	\$1,700
Onsite Diesel Generator (40kW)	1	EA	\$50,000	\$50,000	30	\$1,700
Wetwell (rehab)	1	EA	\$42,000	\$40,000	25	\$1,600
Site paving, fencing, landscaping, etc.	1	LS	\$10,000	\$10,000	30	\$400
Building	1	LS	\$35,000	\$40,000	40	\$1,000
	otal First A	venue	Lift Station	\$190,000	-	\$6,400
Spring Street Lift Station						
Valves / Meters	1	LS	\$48,000	\$50,000	30	\$1,700
Onsite Diesel Generator (60kW)	1	EA	\$50,000	\$50,000	30	\$1,700
Wetwell (rehab)	1	EA	\$42,000	\$40,000	25	\$1,600
Site paving, fencing, landscaping, etc.	1	LS	\$10,000	\$10,000	30	\$400
Building	1	LS	\$35,000	\$40,000	40	\$1,000
	<u> </u>		Lift Station	\$190,000	-	\$6,400
Total Collection	System R	eplace	ment Costs	\$24,310,000	400/	\$395,200
				Mobilization	10%	\$39,520
				Subtotal	-	\$434,720
				Contingency	20%	\$86,900
				Total Construction Cost		\$521,600
	_			Engineering	20%	\$104,300
	Total	Long-	Lived Asset	Replacement (rounded)	-	\$626,000

Gates Short Lived and Long Lived Asset Replacement

Short Lived Assets	Quantity	Unit	Unit Cost	Total Replacement	Typical Useful	Annualized Replacement
				Cost	Life (years)	Cost
STEP Systems						
STEP Pump Replacement	60	EA	\$400	\$20,000	10	\$2,000
	То	tal STE	EP Systems	\$20,000	-	\$2,000
Riverview Lift Station						
Submersible Pump & Motor (hp TBD)	2	EA	\$40,000	\$80,000	20	\$4,000
Routine Pump Inspection	1	LS	\$3,000	\$3,000	5	\$600
Impeller Replacement	2	EA	\$6,000	\$12,000	10	\$1,200
Instrumentation	1	LS	\$10,000	\$10,000	15	\$700
Control Panel & Electrical	1	LS	\$36,000	\$40,000	15	\$2,700
SCADA System	1	LS	\$20,000	\$20,000	15	\$1,400
	Tota	River	Lift Station	\$165,000	-	\$10,600
Dogwood Lift Station						
Submersible Pump & Motor (hp TBD)	2	EA	\$40,000	\$80,000	20	\$4,000
Routine Pump Inspection	1	LS	\$3,000	\$3,000	5	\$600
Impeller Replacement	2	EA	\$6,000	\$12,000	10	\$1,200
Instrumentation	1	LS	\$10,000	\$10,000	15	\$700
Control Panel & Electrical	1	LS	\$36,000	\$40,000	15	\$2,700
SCADA System	1	LS	\$20,000	\$20,000	15	\$1,400
Т	otal First A	venue	Lift Station	\$165,000	-	\$10,600
Gates Regional Lift Station						
Submersible Pump & Motor (hp TBD)	2	EA	\$40,000	\$80,000	20	\$4,000
Routine Pump Inspection	1	LS	\$3,000	\$3,000	5	\$600
Impeller Replacement	2	EA	\$7,500	\$15,000	10	\$1,500
Instrumentation	1	LS	\$10,000	\$10,000	15	\$700
Control Panel & Electrical	1	LS	\$36,000	\$40,000	15	\$2,700
SCADA System	1	LS	\$20,000	\$20,000	15	\$1,400
Тс	otal Spring	Street	Lift Station	\$168,000	-	\$10,900
	То	otal Ma	terial Costs	\$498,000	-	\$34,100
				Mobilization	10%	\$3,410
				Subtotal	-	\$37,510
				Contingency	20%	\$7,500
				Total Construction Cost	-	\$45,000
				Engineering	20%	\$9,000
	Total	Short-	Lived Asset	Replacement (rounded)	-	\$54,000

Gates Short Lived and Long Lived Asset Replacement

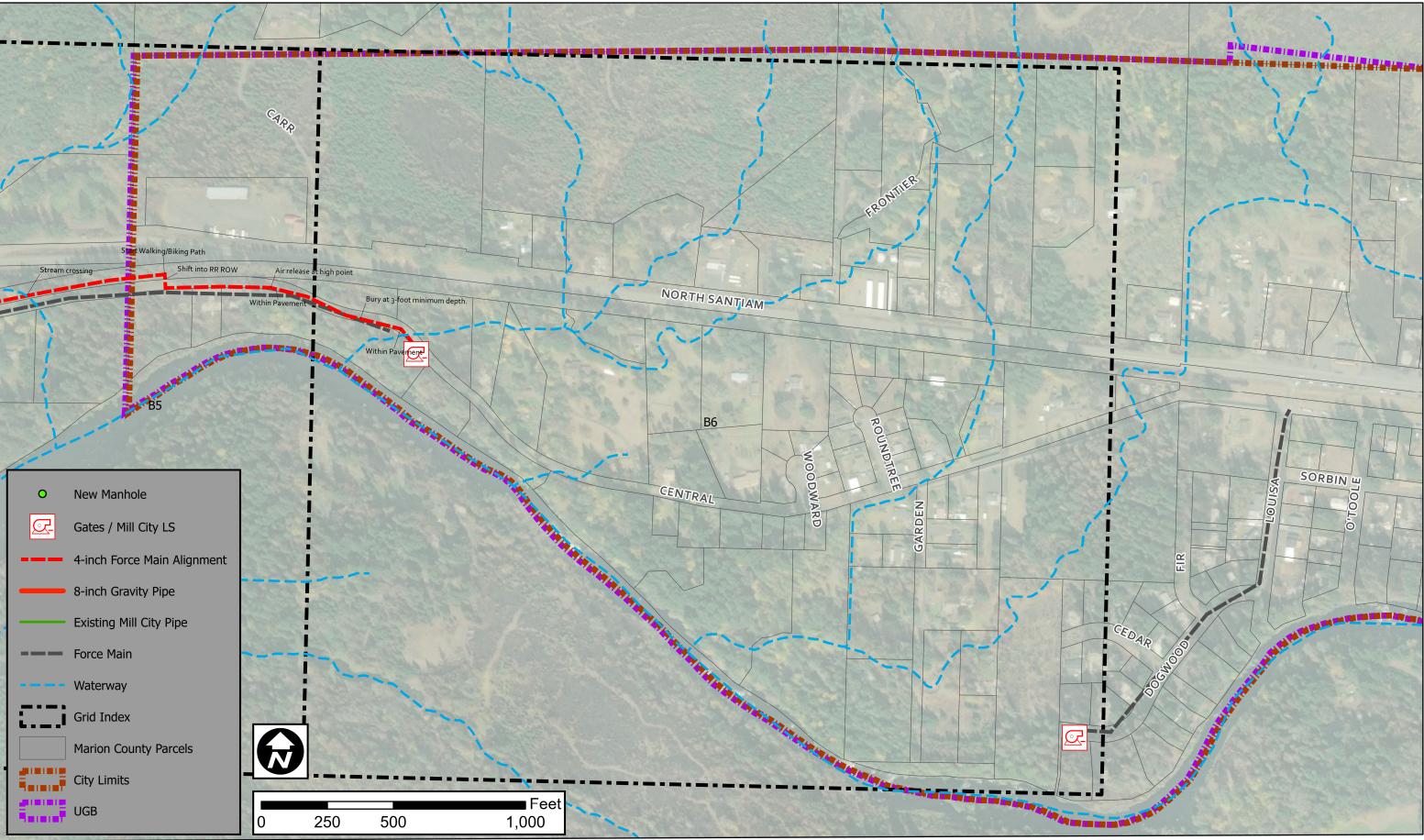
Long Lived Assets	Quantity	Unit	Unit Cost	Total Replacement Cost	Typical Useful Life (years)	Annualized Replacement Cost
				COSI	Life (years)	COSI
Pipelines / Cleanouts						
8-inch Pipe & Surface Repair (Gravity)	24,640	LF	\$220	\$5,420,000	75	\$73,000
4-inch Pipe & Surface Repair (Pressure)	12,322	LF	\$210	\$2,590,000	75	\$35,000
Cleanout	30	EA	\$3,000	\$90,000	50	\$2,000
Manhole	130	EA	\$9,800	\$1,270,000	50	\$26,000
STEP System & Service Line	30	EA	\$10,000	\$300,000	50	\$6,000
	Total Pip	elines	/ Cleanouts	\$9,670,000	-	\$142,000
Riverview Lift Station						
Valves / Meters	1	LS	\$48,000	\$48,000	30	\$1,600
Onsite Diesel Generator	1	EA	\$50,000	\$50,000	30	\$1,700
Wetwell (rehab)	1	EA	\$42,000	\$42,000	20	\$2,100
Site paving, fencing, landscaping, etc.	1	LS	\$10,000	\$10,000	30	\$400
Building	1	LS	\$35,000	\$40,000	40	\$1,000
	Tota	River	Lift Station	\$190,000	-	\$6,800
Dogwood Lift Station						
Valves / Meters	1	LS	\$48,000	\$50,000	30	\$1,700
Onsite Diesel Generator	1	EA	\$50,000	\$50,000	30	\$1,700
Wetwell (rehab)	1	EA	\$42,000	\$40,000	20	\$2,000
Site paving, fencing, landscaping, etc.	1	LS	\$10,000	\$10,000	30	\$400
Building	1	LS	\$35,000	\$40,000	40	\$1,000
Т	otal First A	venue	Lift Station	\$190,000	-	\$6,800
Gates Regional Lift Station						
Valves / Meters	1	LS	\$48,000	\$50,000	30	\$1,700
Onsite Diesel Generator	1	EA	\$50,000	\$50,000	30	\$1,700
Wetwell (rehab)	1	EA	\$42,000	\$40,000	20	\$2,000
Site paving, fencing, landscaping, etc.	1	LS	\$10,000	\$10,000	30	\$400
Building	1	LS	\$35,000	\$40,000	40	\$1,000
Тс	otal Spring	Street	Lift Station	\$190,000	-	\$6,800
Total Collection	System R	eplace	ment Costs	\$10,240,000		\$162,400
				Mobilization	10%	\$16,240
				Subtotal	-	\$178,640
				Contingency	20%	\$35,700
				Total Construction Cost	-	\$214,300
				Engineering	20%	\$42,900
	Total	Long-	Lived Asset	Replacement (rounded)	-	\$257,000

Annual Collection System O&M Costs

Mill City		
Activity	Annual Cost	
ipeline CCTV	\$37,000	
STEG Tank Pumping	\$35,000	
Lift Station Power Costs	\$1,600	
Staffing	\$50,000	
Total O&M	\$124,000	
Pipeline CCTV	100/	
Target	10%	
Target Linear Feet	7,000	
Cost per LF	\$5.3	
Annual CCTV Cost	\$37,000	
STEG Tank Pumping		
Target	15%	annually
Target Number of Tanks	103	aaury
Cost per Tank Pump	\$340	
Annual Pumping Cost (rounded)	\$35,000	
	\$60,000	
Lift Station Power Costs	Annual (kWh per year)	
River Road LS	3,700	
First Avenue LS	3,000	
Spring Street LS	8,600	
5p	0,000	
Power Unit Cost (per kWh)	\$0.10	
Annual Power Cost	\$1,600	
Wastewater Staffing	% of Total Spent	Collection vs. Treatment Split
Collection	15%	60%
Treatment	10%	40%
	Supervisor	Operator 1
Total WW hours/week	10	5
Collection Hrs/Week ¹		
	6	3
Current FTE Recommended FTE ²	0.15	0.08
	0.10	0.00
Rate	\$150,000	\$115,000
Annual Staffing Cost for WW Collection	\$37,500	\$8,625
1) Based on % of total time and collection vs. treatme	ent split in table above	

Total 17.5 10.5 0.26 0.10 \$365,000 \$49,875

Annual Collection System O&M Costs


	Gates		
Activity	Annual Cost		
Pipeline CCTV	\$21,000		
Lift Station Power Costs	\$1,600		
Staffing	\$50,000		
Total O&M	\$73,000		
Pipeline CCTV			
Target	10%	annually	
Target Linear Feet	4,000		
Cost per LF	\$5.3		
Annual CCTV Cost	\$21,000		
Lift Station Power Costs	Annual (kWh per year)	7	
Riverview LS	5,100	Equal to average power consumption from Mill City life	t stations
Dogwood LS	5,100		
Gates Regional LS	5,100		
Power Unit Cost (per kWh)	\$0.10		
Annual Power Cost	\$1,600		

Wastewater Staffing

Annual Staffing Cost \$49,875 Assumes equivalent FTE and staffing as Mill City since Gates system will also consists of three lift stations

APPENDIX G

Conceptual Project Design

GIS

MXDs[\]

AN/zGIS/b

Ċ Mill

л С

ď

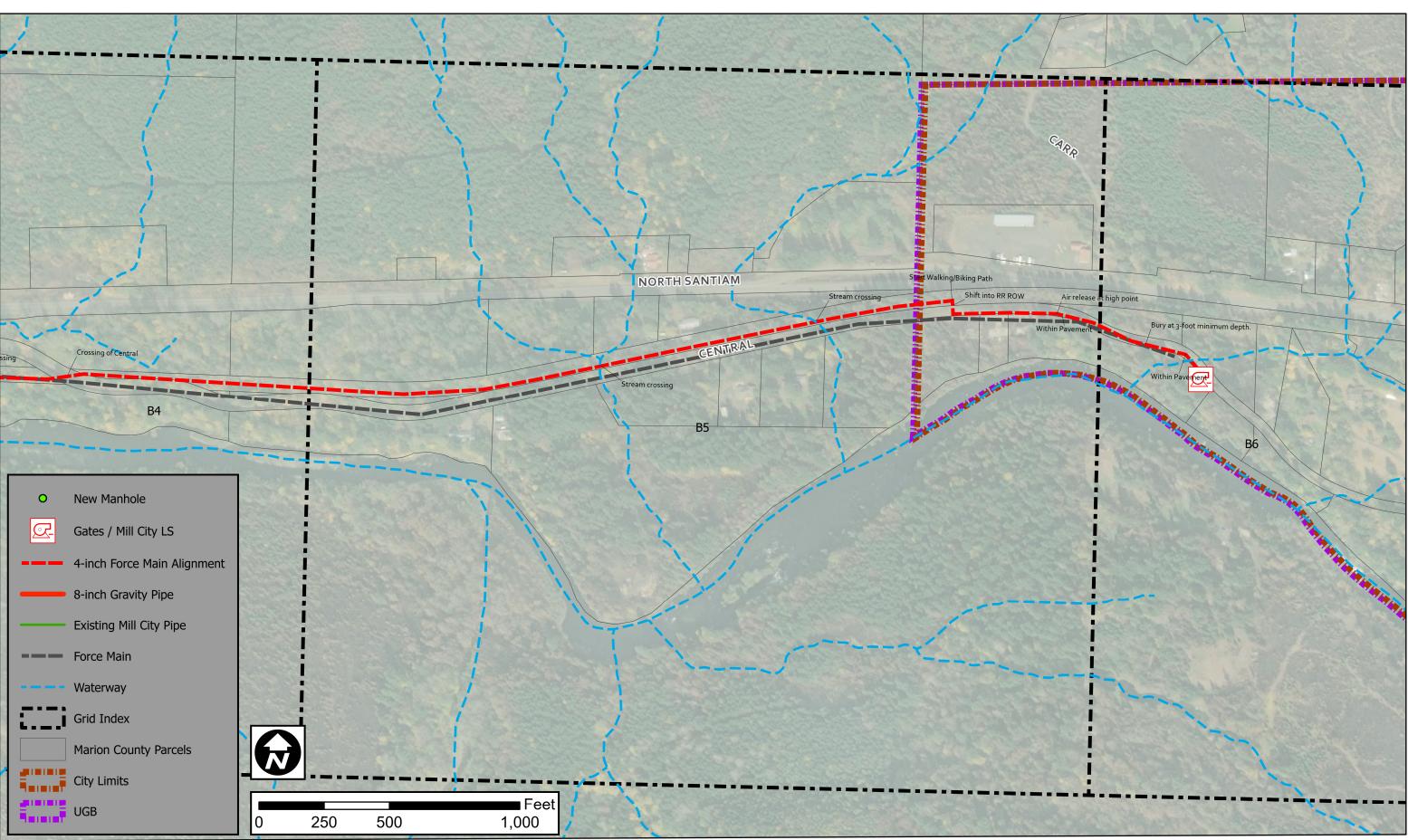
Ō

ပိ

Sar

North

222194


Path ţ

Gates to Mill City Force Main Alignment

Mill City / Gates WWFPS

Pro cGIS

MXDs[/]

PLAN/zGIS/b

Gates WWFPS\b

Mill Citv

200

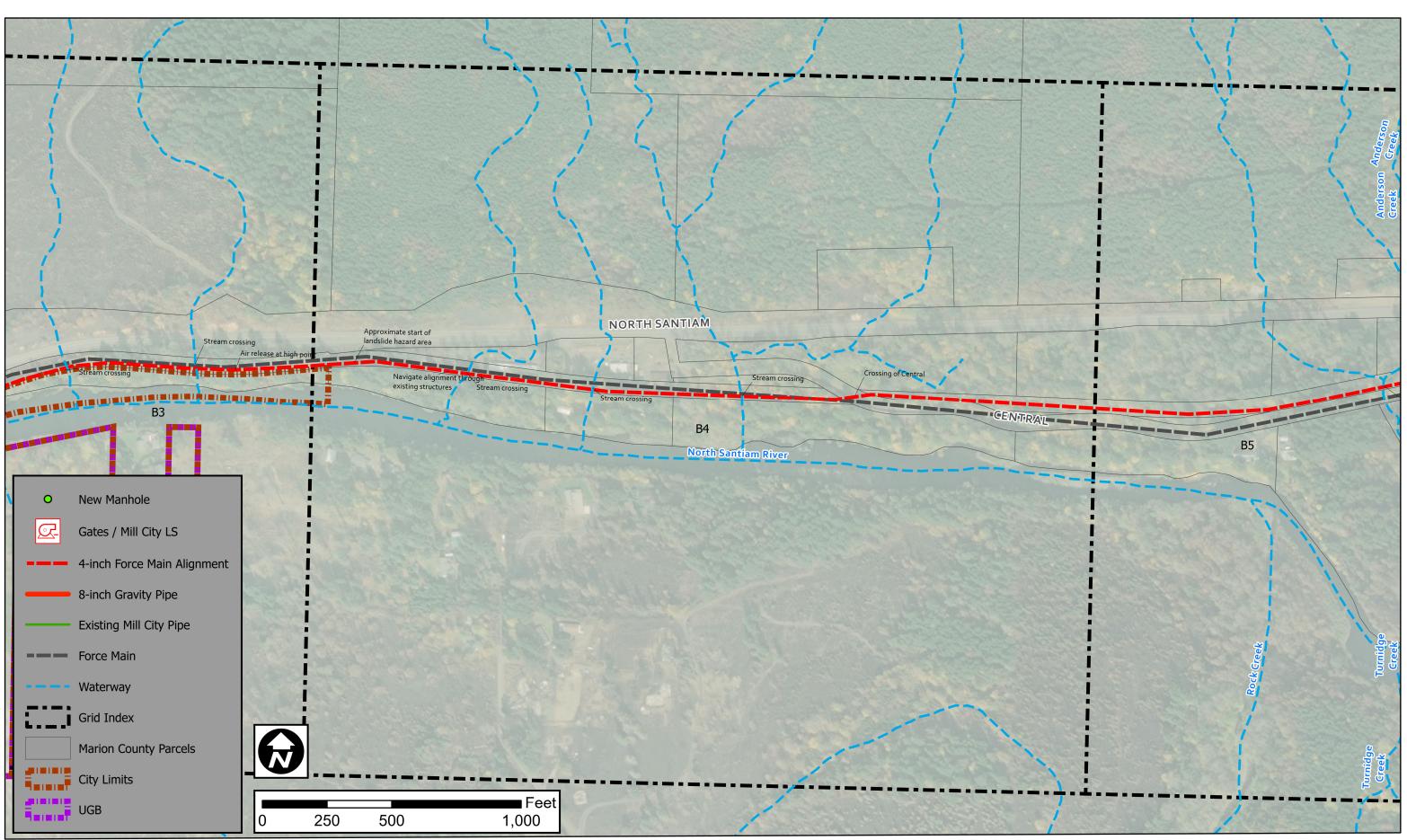
ď

ŭ,

ů S

Santiam

222194 North


Path

Gates to Mill City Force Main Alignment

Mill City / Gates WWFPS

Pro cGIS

MXDs/Ar

PLAN/zGIS/b

Gates WWFPS\b

City

Mill

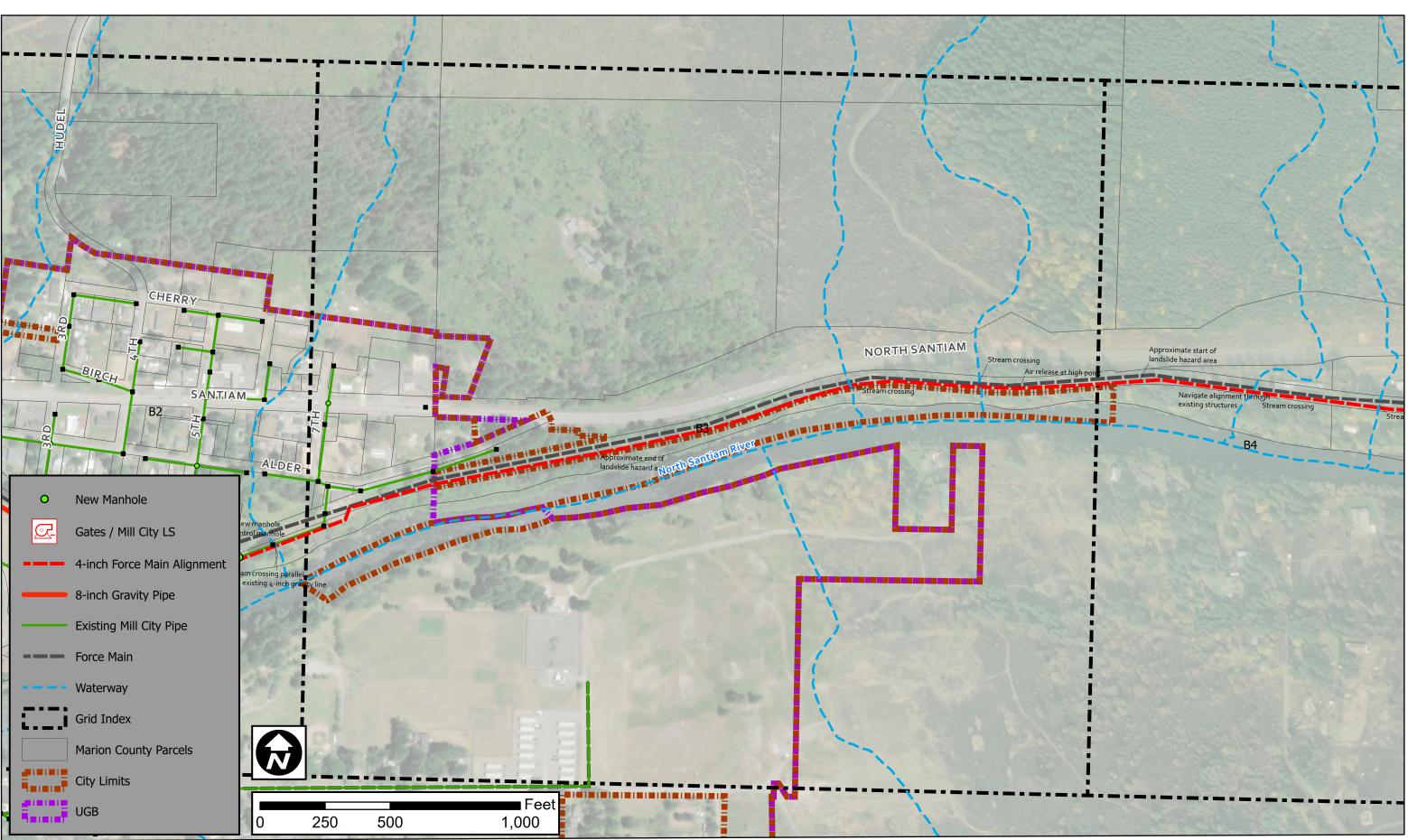
ď

တ်

S

Santiam

J:\222194 North


Path

Gates to Mill City Force Main Alignment

Mill City / Gates WWFPS

S C C C C

MXDs/A

AN/zGIS/b

WWFPS\b

Gates

Mill Citv

Gate S

Vill

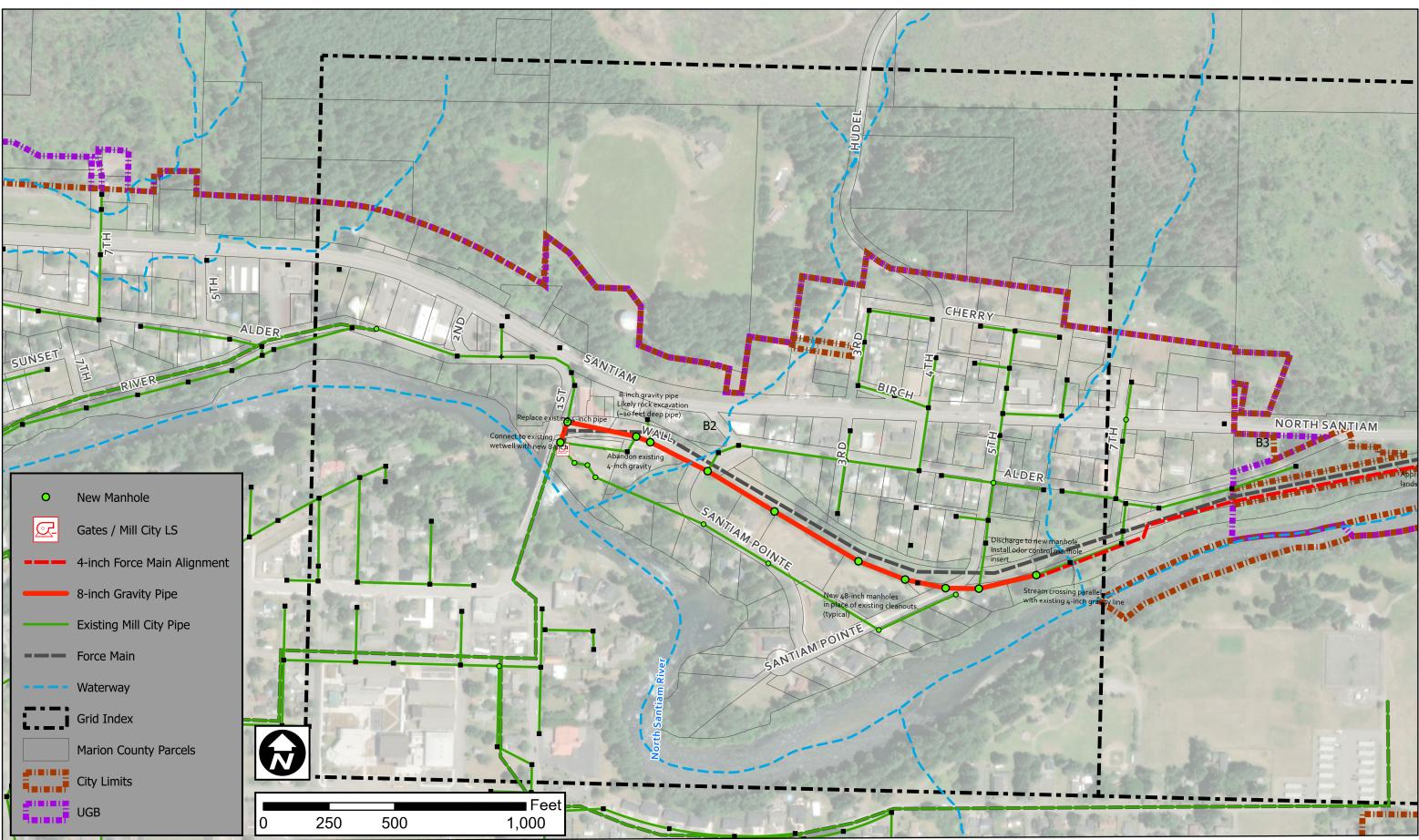
ď

တ်

S

Santiam

222194 North


Path Dt.

Gates to Mill City Force Main Alignment

Mill City / Gates WWFPS

50M/s

Mar Pro cGIS

MXDs

GIS/b

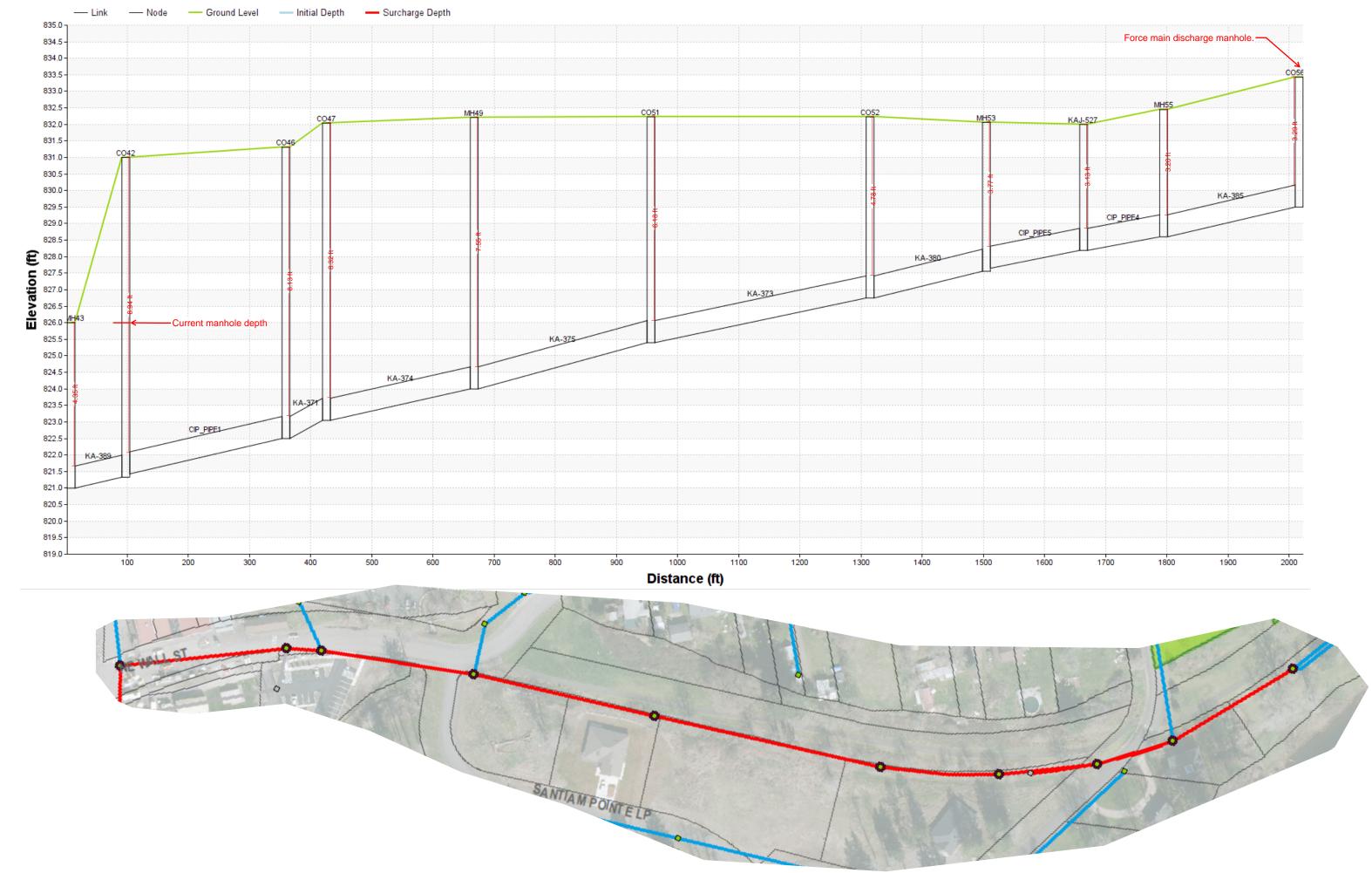
200

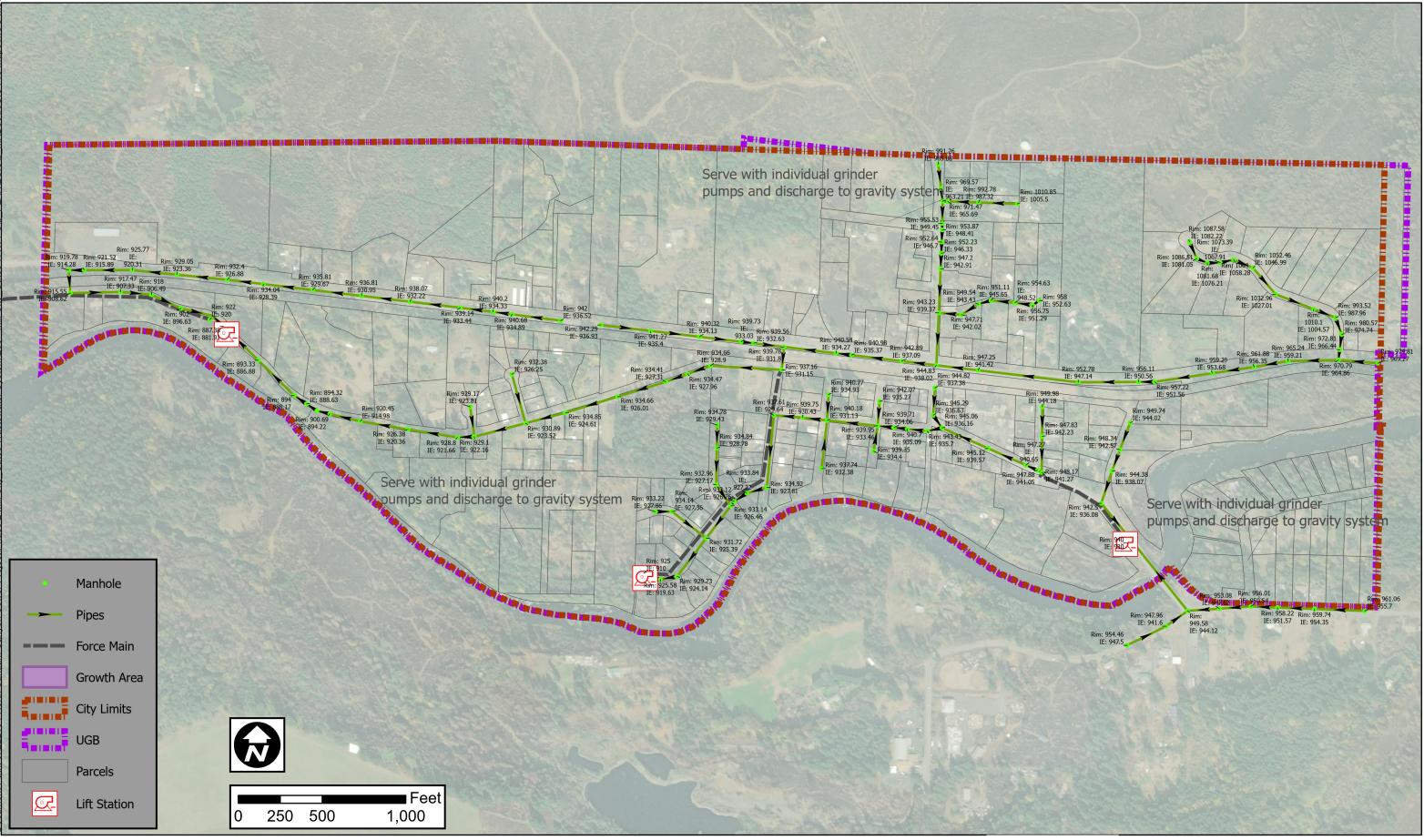
Ĉ

Sar

194

Path


Gates to Mill City Force Main Alignment



Mill City / Gates WWFPS

Mill City new 8-inch gravity line profile

KELLER ASSOCIATES

Gates System Layout

Mill City / Gates WWFPS

Years				2	023										2024											20	25										202	26				
Quarters	Q	2		Q3			Q4			Q1			Q2			Q	3		(ຊ4			Q1		Q2			Q3		Q	-		Q1			Q2			Q3		Q4	
Months	М	J	J	А	S	0	N	D	J	F	М	Α	M	J	J	A	\ <u>\$</u>	S	0	Ν	D	J	FN	/I A	M	J	J	Α	S	0	I D	J	F	Μ	Α	Μ	J	J	Α	s o) N	D
Engineering Schedule				CM/GC Contract				WWFPS			3	30% E)esign					6	0% Desig	jn			909	% Desig	n																	
CM/GC Milestones																		E	GMP execution																			Substan Complet				Final npletion
Preconstruction					Initial C	Cost Es	stimates	Alterna	tives An	alysis a	and Con	nstruct	ability Re	views	Deve	elop GM	IP G	6MP Ap	proval																							
Financial Reviews												Fir	nancial Vi	ability E	Evaluatio	n					V	alue E Constru	Engineerir uciton Co	ng, Sub	omittals	Value Const	Engine truciton	ering, Cost														
Long-Lead Equipment															Relea		Sub	omittals	S				Equ	ipment l	Delivere	d																
Treatment Plant																										С	ivil & St	tructura	1				Mecha	inical ar	nd Elec	trical		C&SI	J Ot	perations and Su		g
Outfall Pipeline																										Out	fall Pipe	eline														
Infiltration Basin																										Infiltra	ation Ba	asins														
Gates Pump Station																													Gates	s Pump \$	Station											
Force Main to Mill City																													Sewer	Main to	Mill City											
Gates Collection System																									Publ	ic Outre	each															
Gates Conection System																																		Gat	tes Sev	ver Mai	in		Co	onnection	ns	

Mill City and Gates Preliminary Project Schedule

Mill City / Gates WWFPS

North Santiam Sewer Authority

Alder Street Upsizing		Location: Alder Street									
Priority Project 2.1 General Line Item	Estimated Quantity	Unit		Unit Price	Item Cost	(Rounded)		tal Cost 2 Dollars)			
Goods and Services											
8-inch Pipe - Excavation, Backfill	1,000	LF	\$	170	\$	170,000					
48-Inch, Concrete Manhole	6	EA	\$	7,900	\$	47,400					
Connect to Existing Manhole	1	EA	\$	4,000	\$	4,000					
Reconnect Services (existing)	5	EA	\$	1,000	\$	5,000					
Roadway Restoration (Full Lane)	1,000	LF	\$	93	\$	93,100					
Traffic Control w/o Flaggers	1,000	LF	\$	10	\$	10,000					
Bypass Pumping	1	LS	\$	25,000	\$	25,000					
					Construct	ion Subtotal	\$	354,500			
Additional Elements (estimated % of above)											
Mobilization and Administration				10%	\$	35,000					
Bonding				2.5%	\$	9,000					
Contractor Overhead and Profit				15%	\$	53,000					
Prevailing Wages				0%	\$	-					
Contingency				30%	\$	106,000					
				Tota	l Construct	ion Subtotal	\$	558,000			
Plans and Contract Documents											
Engineering Design and Bid Phase Services				15%	\$	84,000					
Engineering - Construction Contract Administration				5%	\$	28,000					
Engineering Inspection				8%	\$	45,000					
Geotechnical Investigation				LS	\$	15,000					
SCADA Integration				LS	\$	-					
Surveying				LS	\$	10,000					
Environmental & Permitting				LS	\$	-					
Legal, Administrative, and Funding				2%	\$	11,000					
				Total Project	Costs (r	ounded)	\$	760,000			

EA = each, LF = linear foot, LS = lump sum

The cost estimate herein is based on our perception of current conditions at the project location. This estimate reflects our opinion of probable costs at this time and is subject to change as the project design matures. Keller Associates has no control over variances in the cost of labor, materials, equipment, services provided by others, contractor's methods of determining prices, competitive bidding or market conditions, practices or bidding strategies. Keller Associates cannot and does not warrant or guarantee that proposals, bids, or actual construction costs will not vary from the cost presented herein.

Spring Street Lift Station Upsizing

Location: Spring Street Lift Station

Spring Street Lift Station Upsizing Location: Spring Street Lift Station										
Priority Project 3.1										
General Line Item	Estimated Quantity	Unit	Unit Price	Item Cost (Rounded)	Total Cost (2022 Dollars)					
Goods and Services										
Spring Street Pump Upsize	2	EA	\$ 35,000	\$ 70,000						
Spring Street Electrical Upgrades	1	LS	\$ 40,000	\$ 40,000						
				Construction Subtotal	\$ 110,000					
Additional Elements (estimated % of above)										
Mobilization and Administration			10%	\$ 11,000						
Bonding			2.5%	\$ 3,000						
Contractor Overhead and Profit			15%	\$ 17,000						
Prevailing Wages			0%	\$-						
Contingency			30%	\$ 33,000						
			Tota	al Construction Subtotal	\$ 174,000					
Plans and Contract Documents										
Engineering Design and Bid Phase Services			15%	\$ 26,000						
Engineering - Construction Contract Administration			5%	\$ 9,000						
Engineering Inspection			8%	\$ 14,000						
Geotechnical Investigation			LS	\$-						
SCADA Integration			LS	\$ 15,000						
Surveying			LS	\$-						
Environmental & Permitting			LS	\$-						
Legal, Administrative, and Funding			2%	\$ 3,000						
			Total Project	Costs (rounded)	\$ 250,000					

EA = each, LF = linear foot, LS = lump sum

The cost estimate herein is based on our perception of current conditions at the project location. This estimate reflects our opinion of probable costs at this time and is subject to change as the project design matures. Keller Associates has no control over variances in the cost of labor, materials, equipment, services provided by others, contractor's methods of determining prices, competitive bidding or market conditions, practices or bidding strategies. Keller Associates cannot and does not warrant or guarantee that proposals, bids, or actual construction costs will not vary from the cost presented herein.

Ι

Total Cost

(2022 Dollars)

733,500

1,155,000

d Ave and High Street

	Spring Street Basin Trunkline Upsize	Location: Kingwood Ave and High Stre										
	Priority Project 3.2											
	General Line Item	Estimated Quantity	Unit		Unit Price	Ite	m Cost (Rounded)					
(Goods and Services											
	6-inch Pipe - Excavation, Backfill	1,400	LF	\$	160	\$	224,000	1				
	8-inch Pipe - Excavation, Backfill	850	LF	\$	170	\$	144,500	1				
	48-Inch, Concrete Manhole	10	EA	\$	7,900	\$	79,000					
	Connect to Existing Manhole	2	EA	\$	4,000	\$	8,000					
	Reconnect Services (existing)	21	EA	\$	1,000	\$	21,000					
	Roadway Restoration (Full Lane)	2,250	LF	\$	93	\$	209,500	1				
	Traffic Control w/o Flaggers	2,250	LF	\$	10	\$	22,500	1				
	Bypass Pumping	1	LS	\$	25,000	\$	25,000	1				
I						Co	onstruction Subtotal	\$				
1	Additional Elements (estimated % of above)											
	Mobilization and Administration				10%	\$	73,000	1				
	Bonding				2.5%	\$	18,000	1				
	Contractor Overhead and Profit				15%	\$	110,000					
	Prevailing Wages				0%	\$	-	1				
	Contingency				30%	\$	220,000	1				
					Tota	l Co	onstruction Subtotal	\$				
	Plans and Contract Documents											
	Engineering Design and Bid Phase Services				15%	\$	173,000	1				
					50/	•		<u> </u>				

Engineering Design and Bid Phase Services	15%	\$	173,000	
Engineering - Construction Contract Administration	5%	\$	58,000	
Engineering Inspection	8%	\$	92,000	
Geotechnical Investigation	LS	\$	20,000	
SCADA Integration	LS	\$	-	
Surveying	LS	\$	22,500	
Environmental & Permitting	LS	\$	-	
Legal, Administrative, and Funding	2%	\$	23,000	
	Total Project	Costs	(rounded)	\$ 1.550.000

EA = each, LF = linear foot, LS = lump sum

The cost estimate herein is based on our perception of current conditions at the project location. This estimate reflects our opinion of probable costs at this time and is subject to change as the project design matures. Keller Associates has no control over variances in the cost of labor, materials, equipment, services provided by others, contractor's methods of determining prices, competitive bidding or market conditions, practices or bidding strategies. Keller Associates cannot and does not warrant or guarantee that proposals, bids, or actual construction costs will not vary from the cost presented herein.

Remine Road Collection System			Location: I	Remine Road		
Priority Project 3.3						
General Line Item	Estimated Quantity	Unit	Unit Price	Item Cost (Rounded)		Total Cost 022 Dollars)
Goods and Services						
8-inch Pipe - Excavation, Backfill	6,500	LF	\$ 170	\$ 1,105,000		
48-Inch, Concrete Manhole	22	EA	\$ 7,900	\$ 173,800		
Roadway Restoration (Full Lane)	6,500	LF	\$ 93	\$ 605,200		
4-inch Pressure Pipe - Excavation, Backfill	2,400	LF	\$ 100	\$ 240,000		
Remine Road Lift Station (Wetwell, pumps, valves, electrical)	1	LS	\$ 500,000	\$ 500,000		
				Construction Subtotal	\$	2,624,00
Additional Elements (estimated % of above)						
Mobilization and Administration			10%	\$ 262,000		
Bonding			2.5%	\$ 66,000		
Contractor Overhead and Profit			15%	\$ 394,000		
Prevailing Wages			0%	\$-		
Contingency			30%	\$ 787,000		
			Tota	I Construction Subtotal	\$	4,133,00
Plans and Contract Documents						
Engineering Design and Bid Phase Services			15%	\$ 620,000		
Engineering - Construction Contract Administration			5%	\$ 207,000		
Engineering Inspection			8%	\$ 331,000		
Geotechnical Investigation			LS	\$ 20,000		
SCADA Integration			LS	\$ 20,000		
Surveying			LS	\$ 65,220		
Environmental & Permitting			LS	\$-		
Legal, Administrative, and Funding			2%	\$ 83,000	1	

EA = each, LF = linear foot, LS = lump sum

The cost estimate herein is based on our perception of current conditions at the project location. This estimate reflects our opinion of probable costs at this time and is subject to change as the project design matures. Keller Associates has no control over variances in the cost of labor, materials, equipment, services provided by others, contractor's methods of determining prices, competitive bidding or market conditions, practices or bidding strategies. Keller Associates cannot and does not warrant or guarantee that proposals, bids, or actual construction costs will not vary from the cost presented herein.

APPENDIX H

Current WPCF Influent Analysis

TERLAB CORP.

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder P. O. Box 256 Mill City, OR 97360

05/09/2023

CITMILC

Lab Receipt Information

05/02/2023 1045 SW

PO#:

Collection Information

Date:	05/02	2/2023	
Time:	0900	<u>E</u>	
By:	Russ	i	
Lab #:		20230502-095	
Locatio	on:	360 Remine Rd Mill City	INF

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

				EPA	Analys	sis
Analyte	Method	Acc* Results	Qual MRL	Units Limit	Date Time	Tech
Alkalinity, Total - 1927	SM2320 B	279.	10.	mg/l CaCO3	05/04/2023	AS
Bicarbonate Alkalinity	SM2320B	340.4	10	HC03	05/04/2023	AS
Hardness as CaCO3	SM2340C	86.	10.	mg/l CaCO3 250	05/04/2023	AS

ND- No Detection at @ MRL SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit" * Accreditation A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

K

ERLAB CORP.

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder P. O. Box 256 Mill City, OR 97360

PO#:

Collection Information

 Date:
 05/02/2023

 Time:
 0900

 By:
 Russ

 Lab #:
 20230502-096

 Location:
 360 Remine Rd Mill City Inf

05/22/2023

CITMILC

Lab Receipt Information 05/02/2023 1045 SW

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

							Ana	Analysis	
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Т	Fech
Inorganic Chemicals									
Antimony	SM3113B		ND		0.005	mg/l	05/12/2023		bem
Arsenic	SM3113B		ND		0.002	mg/l	05/08/2023		bem
Barium	SM3113B	в	0.0109		0.0005	mg/l	05/12/2023	1515	cbb
Beryllium	SM3113B		ND		0.001	mg/l	06/05/2023		bem
Cadmium	SM3113B		ND		0.001	mg/l	05/11/2023		bem
Chromium	SM3113B		ND		0.02	mg/l	05/09/2023		bem
Fluoride	EPA300.0		7.41		0.2	mg/l	05/02/2023		bem
Lead	SM3113 B		ND		0.001	mg/l	05/15/2023		bem
Mercury	SM3112B		ND		0.001	mg/l	05/17/2023		bem

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater", 19th ed

EPA- "Methods for Chemical Analysis for Water and Wastes", USEPA

MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation. B=Neilson Research Corporation, ORELAP ID#OR100016

Approved by:

Page 1 of 2

WATERLAB CORP.

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

Page: 2

LAB #: 20230502-096

096 (Cont)

CITMILC

							Analysis		
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Т	ech
Nickel	SM3113B		ND		0.05	mg/l	05/09/2023		bem
Nitrogen, Nitrate	EPA300.0		ND		0.2	mg/l N	05/02/2023	1640	as
Nitrogen, Nitrite	EPA300.0		ND		0.2	mg/l N	05/02/2023	1640	as
Selenium	SM3113B		ND		0.005	mg/l	05/12/2023		bem
Sodium	SM3111B		50.2		1.0	mg/l	05/09/2023		as
Thallium	SM3113B		ND		0.001	mg/l	05/11/2023		bem
Aluminum	SM3113B		0.275		0.050	mg/l	05/30/2023		bem
Copper	SM3113 B		ND		0.002	mg/l	05/31/2023		bem
Iron	SM3111B		0.286		0.1	mg/l	05/31/2023		as
Manganese	SM3111B		ND		0.05	mg/l	05/31/2023		as
Silver	SM3113B		ND		0.01	mg/l	05/22/2023		bem
Zinc	SM3111 B		0.0547		0.01	mg/l	05/31/2023		bem

ND- No Detection at @ MRL SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit" * Accreditation A- Waterlab Corporation, ORELAP 100039 The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation. B=Neilson Research Corporation, ORELAP ID#OR100016

Approved by:

Page 2 of 2

ANALYTICAL SUMMARY REPORT

June 09, 2023

Waterlab Corp 2603 12th St SE Salem, OR 97302-2154

Work Order: C23050297

Project Name: Mill City WWTP

Energy Laboratories, Inc. Casper WY received the following 1 sample for Waterlab Corp on 5/8/2023 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C23050297-001	20230502-094 Mill City WWTP	05/02/23 8:30	05/08/23	Waste Water	Metals by ICP/ICPMS, Drinking Water Metals Preparation by EPA 200.2 Gross Alpha, Gross Beta, Total Radium 226 + Radium 228, Total Radium 226, Total Radium 228, Total

The analyses presented in this report were performed by Energy Laboratories, Inc., 2393 Salt Creek Hwy., Casper, WY 82601, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager .

Report Approved By:

Cishley Wilson Ashley L. Wilson Project Managar Digitally signed by Ashley L. Wilson Date: 2023.06.09 14:46:22 -06:00

	Trust our People: Trust our Data:	Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711				
CLIENT:	Waterlab Corp					
Project:	Mill City WWTP	Report Date: 06/09/23				
Work Order:	C23050297	CASE NARRATIVE				
ENEROX(LARO						

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative. Please verify ELI's certification coverage by visiting www.energylab.com.

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client:Waterlab CorpProject:Mill City WWTPLab ID:C23050297-001Client Sample ID:20230502-094 Mill City WWTP

 Report Date:
 06/09/23

 Collection Date:
 05/02/23 08:30

 DateReceived:
 05/08/23

 Matrix:
 Waste Water

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analyzia Data (Ry
		01110	Quanters		GOL	Meulou	Analysis Date / By
RADIONUCLIDES - TOTAL							
Uranium	ND	mg/L		0.0003	0.03	E200.8	05/17/23 04:23 / eli-b
Uranium, Activity		pCi/L		0.2	0,00	E200.8	05/17/23 04:23 / eli-b
RADIONUCLIDES, TOTAL		-					
Gross Alpha	-5	pCi/L	U			E900.0	05/27/23 02:30 / haw
Gross Alpha precision (±)		•	-			E900.0	05/27/23 02:30 / haw
Gross Alpha MDC		pCi/L				E900.0	05/27/23 02:30 / haw
Gross Beta		pCi/L				E900.0	05/27/23 02:30 / haw
Bross Beta precision (±)		pCi/L				E900.0	05/27/23 02:30 / haw
Bross Beta MDC		pCi/L				E900.0	05/27/23 02:30 / haw
Radium 226	-0.05	•	U			E903.0	05/23/23 11:12 / kdk
Radium 226 precision (±)		pCi/L	-			E903.0	05/23/23 11:12 / kdk
Radium 226 MDC		pCi/L				E903.0	05/23/23 11:12 / kdk
Radium 228		pCi/L				RA-05	05/18/23 13:08 / trs
Radium 228 precision (±)		pCi/L				RA-05	05/18/23 13:08 / trs
Radium 228 MDC		pCi/L				RA-05	05/18/23 13:08 / trs
adium 226 + Radium 228		pCi/L				A7500-RA	05/24/23 12:54 / dmf
adium 226 + Radium 228 precision (±)		pCî/L				A7500-RA	05/24/23 12:54 / dmf
Radium 226 + Radium 228 MDC		pCi/L				A7500-RA	05/24/23 12:54 / dmf

Report Definitions: RL - Analyte Reporting Limit QCL - Quality Control Limit U - Not detected at Minimum Detectable Concentration (MDC)

MCL - Maximum Contaminant Level ND - Not detected at the Reporting Limit (RL)

QA/QC Summary Report

Prepared by Billings, MT Branch

Client:	Waterlab Corp				Work Order:	C2305	50297	Repo	rt Date	: 05/17/23	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8							Analytic	al Run: I	CPMS207-B	_230515A
Lab ID:	QCS	Ini	tial Calibratio	on Verifica	tion Standard					05/17	/23 02:09
Uranium			0.0476	mg/L	0.00030	95	90	110			
Lab ID:	ccv	Co	ontinuing Cal	ibration Ve	rification Standar	d				05/17	/23 03:40
Uranium			0.0476	mg/L	0.00030	95	90	110			
Method:	E200.8									Batc	h: 178689
Lab ID:	MB-178689	2 Me	ethod Blank				Run: ICPMS	S207-B_230515	А	05/17	23 02:58
Uranium			0.00003	mg/L	0.00002						
Uranium,	, Activity		0.02	pCi/L	0.01						
Lab ID:	LCS4-178689	La	boratory Cor	ntrol Samp	le		Run: ICPMS	S207-B_230515	A	05/17/	23 03:04
Uranium			0.0932	mg/L	0.00030	93	85				
Lab ID:	B23050597-001AMS	54 Sa	mple Matrix	Spike			Run: ICPMS	S207-B_230515	A	05/17/	23 03:58
Uranium			0.0960	mg/L	0.00030	95	70	130			
Lab ID:	B23050597-001AMS	D Sa	mple Matrix	Spike Dup	licate		Run: ICPMS	S207-B_230515	207-B_230515A 05/		23 04:04
Uranium			0.102	mg/L	0.00030	101	70		6.0	20	

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Waterlab Corp		Work	Order: C230	50297	Repo	ort Date	: 06/01/23	
Analyte	Count Resul	t Units	RL %REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E900.0					····		Batch: G	GrAB-3184
Lab ID: Th230-GrAB-3184	3 Laboratory (Control Sample		Run: G542	M-2_230523A		05/27/	/23 02:30
Gross Alpha	98	3 pCi/L	98		- 130			
Gross Alpha precision (±)	20) pCi/L						
Gross Alpha MDC	3.8	3 pCi/L						
Lab ID: Sr90-GrAB-3184	3 Laboratory C	Control Sample		Run: G542	M-2_230523A		05/27/	/23 02:30
Gross Beta	550		115		130		00/2//	20 02.00
Gross Beta precision (±)	56	pCi/L			100			
Gross Beta MDC	3.6	pCi/L						
Lab ID: MB-GrAB-3184	6 Method Blan	k		Run: G542	M-2_230523A		05/27/	23 02:30
Gross Alpha	-5	pCi/L					00/21/	23 02.30 U
Gross Alpha precision (±)	2	pCi/L						Ū
Gross Alpha MDC	3	pCi/L						
Gross Beta	-4	pCi/L						U
Gross Beta precision (±)	2	pCi/L						•
Gross Beta MDC	4	pCi/L						
Lab ID: C23050241-001AM	S 3 Sample Matr	ix Spike		Run: G542N	<i>I</i> -2 230523A		05/27/	23 02:30
Gross Alpha	350	pCi/L	87	70	130			
Gross Alpha precision (±)	72	pCi/L						
Gross Alpha MDC	16	pCi/L						
Lab ID: C23050241-001AM	SD 3 Sample Matri	x Spike Duplicate		Run: G5421	1-2_230523A		05/27/	23 02:30
Gross Alpha	400	pCi/L	99	70	130	12	30	00 02.00
Gross Alpha precision (±)	81	pCi/L						
Gross Alpha MDC	18	pCi/L						
- The RER result is 0.42.								
ab ID: C23050585-010AM	S1 3 Sample Matri	x Spike		Run: G542M	1-2 230523A		05/31/2	23 08:46
Gross Beta	3800	pCi/L	118	70	130		00/01/2	20 00.40
Gross Beta precision (±)	380	pCi/L						
Gross Beta MDC	19	pCi/L						
ab ID: C23050585-010AM	SD 3 Sample Matri	x Spike Duplicate		Run: G542M	I-2_230523A		05/31/2	23 08:46
Gross Beta	3700	pCi/L	115	70	130	3.1	30	
Gross Beta precision (±)	370	pCi/L				0.1	00	
Gross Beta MDC	20	pCi/L						
- The RER result is 0.22.								

Qualifiers:

RL - Analyte Reporting Limit

U - Not detected at Minimum Detectable Concentration (MDC)

ND - Not detected at the Reporting Limit (RL)

QA/QC Summary Report

Prepared by Casper, WY Branch

Client: Waterlab Corp				Work Order: C23050297			Report Date: 06/01/23				
Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual	
Method: E903.0									Batch: RA2	26-10894	
Lab ID: LCS-RA226-10894	3 La	boratory Co	ntrol Sample			Run: TENN	ELEC-3_2305128	3		23 11:12	
Radium 226		11	pCi/L		114	70	130	-	• • • •		
Radium 226 precision (±)		2.3	pCi/L								
Radium 226 MDC		0.22	pCi/L								
Lab ID: MB-RA226-10894	3 Me	thod Blank				Run: TENN	ELEC-3 230512E	2	05/23/	23 11:12	
Radium 226		0.1	pCi/L					-	00/20/	U	
Radium 226 precision (±)		0.2	pCi/L							0	
Radium 226 MDC		0.2	pCi/L								
Lab ID: C23050423-001FDUF	> 3 Sai	mple Duplica	ate			Rup TENNI	ELEC-3_230512E	2	05/02/	23 11:12	
Radium 226		1.9	pCi/L				LLLO-0_2000 120	, 5.6	30	23 11.12	
Radium 226 precision (±)		0.48	pCi/L					0.0	30		
Radium 226 MDC - The RER result is 0.15.		0.23	pCi/L								

Qualifiers:

RL - Analyte Reporting Limit

U - Not detected at Minimum Detectable Concentration (MDC)

ND - Not detected at the Reporting Limit (RL)

QA/QC Summary Report

Prepared by Casper, WY Branch

				•							
Client:	Waterlab Corp				Work Order:	C2305	0297	Repor	t Date	: 06/01/23	
Analyte		Count	Result	Units	RL.	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	RA-05									Batch: RA	228-7094
Lab ID:	LCS-228-RA226-1089	4 3 Lat	oratory Cor	ntrol Sample	•		Run: TENN	ELEC-3_230512	Δ		/23 13:08
Radium 2	228		5.7	pCi/L		81	70	130	•	00/10/	20 10.00
Radium 2	228 precision (±)		1.4	pCi/L			10	100			
Radium 2	228 MDC		1.2	pCi/L							
Lab ID:	MB-RA226-10894	3 Met	thod Blank				Run [,] TENN	ELEC-3_230512	٨	05/19	23 13:08
Radium 2	228		2	pCi/L				200012	`	00/10/	23 13.00
Radium 2	28 precision (±)		0.8	pCi/L							
Radium 2	28 MDC		1	pCi/L							
Lab ID:	C23050423-001FDUP	3 Sar	nple Duplica	ate			Run: TENNI	ELEC-3_230512/	`	05/19/	23 13:08
Radium 2	28		2.2	pCi/L				200012	11	30	23 13:06
Radium 2	28 precision (±)		0.91	pCi/L					11	30	
Radium 2	28 MDC R result is 0.19.		1.3	pCi/L							

Work Order Receipt Checklist

Waterlab Corp

C23050297

Login completed by:	Hannah R. Johnson		Date Received: 5/8/2023					
Reviewed by:	cjohnson	Received by: cch						
Reviewed Date:	5/10/2023		Carrier name: UPS					
Shipping container/cooler in	good condition?	Yes 🗹	No 🗌	Not Present				
Custody seals intact on all sl	nipping container(s)/cooler(s)?	Yes 📋	No 🗌	Not Present 🗹				
Custody seals intact on all sa	ample bottles?	Yes	No 🛄	Not Present 🗹				
Chain of custody present?		Yes 🗹	No 🗌					
Chain of custody signed whe	en relinquished and received?	Yes 🗹	No 🔄					
Chain of custody agrees with	n sample labels?	Yes 📋	No 🔽					
Samples in proper container	/bottle?	Yes 🗹	No 📋					
Sample containers intact?		Yes 🗹	No 🗌					
Sufficient sample volume for	indicated test?	Yes 🗹	No 🔲					
All samples received within h (Exclude analyses that are c such as pH, DO, Res CI, Su	onsidered field parameters	Yes 🗹	No 🗌					
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes 🗌	No 🟹	Not Applicable				
Container/Temp Blank tempe	erature:	12.8°C No Ice						
Containers requiring zero he bubble that is <6mm (1/4").	adspace have no headspace or	Yes 🛄	No 🗌	No VOA vials submitted				
Water - pH acceptable upon	receipt?	Yes 🗹	No 🗌	Not Applicable				

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

Contact and Corrective Action Comments:

The sample collection time indicated on the COC is 09:00, the collection time listed on the sample bottles is 08:30, Beth requested we use the collection time on the sample bottles-Chantel S. Johnson

Chain of Custody & Analytical Request Record

Hust by Wolfe, fully out Data.			S	www.energylab.com	ergyla	0,com) } }		5		Page 1 of 1
Account Information (Billing Information)	~		Repor	t Inform	ation (//	different (Report Information (if different than Account Information)	Information			Com	Comments
Company/Name Vateriati Corp			Company/Nanie	/Nartie	T.							
Contact Beth Myers			Contact		Belh Wvers	1						
Phone 503-363-0473			Phone.									
Malling Address (2603: 12th St SE			Malling Address	idress.	-					r		Please do not return
State, Zip			City, State, Zip	, 2lp								
Email belti@waterlaboorp.com			Email	peq	@water	beth@watertabcorp.com	com					
CHard Copy DEmail	Rocelve Report DHard Copy	py memal	Receive F	Receive Report Cirtard Copy EEmail	rd Copy I	BÉmal)						
Purchase Order	Boltje Order		Special Rol	Special Roport/Formelar	AG. D.ET	D/EDT (e	CILEVEL N G NELAO. C EDD/EDT (conloct (aborator)	ov ⊡ Olher				
Project Information			Matrix Codes	odes				12.6	1			
Project Name, PWSID, Permit, etc. Mill City WWTP	1P		A. Ar W: Walk	1		 		najeanhay siekiniy	naisa			All-turnaround times are
Sampler Name Sampl	Sampler Phone (503) 363-04	0473	S Solls'	<u>م</u> د						, as _a		standard unless marked as RUSH.
Sampte Origin State Oregon	EPA/State Compliance II Yes	čes El No	 Vegetalion Bioassay 	fallon: Issay	58				···		1	Energy Laboratories MUST be contacted of for to
MiNING CLENTS, please indicate sample type. 11 ore tras been processed or refered, call before sanding.	ig: I ore (NOT ground of re	(jned)*	D. Other DW . When	eudlA	u 556/5	ü	etəs			<u> </u>	bəriəsii	RUSH sample submittal for charges and scheduling – See listructions Page
Sample Identification	Sun Collec	action	Number of	Matrix	نه ا	njue	i SSO				A 99	
A LUMBURG (MINYAL, BIC)	·	Tíme				IJ	eı				S	TAT STATE DOWNLOW SAVET
	5/2/23	9:00 am	4 W	<u>.</u>	<u>ر</u> ر	>	2	:				
										:		
		-			1-mi.a				:			
4 .											-	
			. <u>.</u>							- -		
3.				<u> </u>	<u></u> 							
												In the second second
0			;		~ ~ 7							
Oustody Reinquisited by (and) Record MUST Act 1 1 1 1 1 2 1 2 2	Date/Time	3	<u>е</u> . И. ⁷ .	Tratter		Received by (prini)	(10)20			Date(The		station of the second se
_	Date Time	Stinaturi 1				A par Xag	Tabortoon (P	No.	9 4 0	C. C. S. Man	6	Bignatury
Shipped By Cooler (0(s) Custom States and Cooler (0(s)	eals Intect	Receipt Temp.	麗		Nuse of		Payment Type	Type		Vinount	Rece	Receipt Number (Sector 14)
		0	2 >		N ×	000	Cash Check	к,		\$		And Anna Anna Anna Anna Anna Anna Anna A
								-				

In certain bicumstances, samples submitted to Energy Laboratories, ind, may be subontracted to other certified laboratories in order to complete the analysis requested. This serves as notice of this possibility. All subcontracted data will be clearly notated on your analytical report.

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder P. O. Box 256 Mill City, OR 97360

05/22/2023

CITMILC

Lab Receipt Information

05/02/2023

1045

SW

PO#:

Collection Information

 Date:
 05/02/2023

 Time:
 0900

 By:
 Russ

 Lab #:
 20230502-097

 Location:
 360 Remine Rd. Mills City/ Influent

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

							Analys	is
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Tech
Synthetic Organic Contaminants								
Synthetic Organics, Regulated								
1,2-Dibromo-3-chloropropane	EPA 504.1	в	ND		0.0000	mg/liter	05/04/2023	2017 TJW
Ethylene Dibromide	EPA 504.1	в	ND		0.0000	mg/liter	05/04/2023	2017 TJW
Chlordane	EPA 508	в	ND		0.0002	mg/liter	05/10/2023	0806 TJW
Endrin	EPA 508	в	ND		0.00001	mg/liter	05/10/2023	0806 TJW
BHC-Gamma Lindane	EPA 508	в	ND		0.00001	mg/liter	05/10/2023	0806 TJW

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

B=Neilson Research Corporation, ORELAP ID#OR100016

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

CITMILC

LAB #: 20230502-097

097 (Cont)

Page: 2

							Analy	/sis	
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Т	ech
Heptachlor	EPA 508	В	ND		0.00001	mg/liter	05/10/2023	0806	TJW
Heptachlor Epoxide	EPA 508	в	ND		0.00001	mg/liter	05/10/2023	0806	TJW
Methoxychlor	EPA 508	в	ND		0.0000	mg/liter	05/10/2023	0806	TJW
Polychlorinated Biphenyls	EPA 508	в	ND		0.0002	mg/liter	05/10/2023	0806	TJW
Toxaphene	EPA 508	в	ND		0.0003	mg/liter	05/10/2023	0806	TJW
2,4,5-TP Silvex	EPA 515.3	в	ND		0.005	mg/liter	05/16/2023	0026	TJW
Dalapon	EPA 515.3	в	ND		0.005	mg/liter	05/16/2023	0026	TJW
Dinoseb	EPA 515.3	в	ND		0.001	mg/liter	05/16/2023	0026	TJW
Pentachlorophenol	EPA 515.3	в	ND		0.0005	mg/liter	05/16/2023	0026	TJW
Picloram	EPA 515.3	в	ND		0.005	mg/liter	05/16/2023	0026	TJW
Alachlor	EPA 525.2	в	ND		0.0002	mg/liter	05/18/2023	1628	TJW
Atrazine	EPA 525.2	в	ND		0.0003	mg/liter	05/18/2023	1628	TJW
Benzo(a)pyrene	EPA 525.2	в	ND		0.0001	mg/liter	05/18/2023	1628	TJW
Bis(2-ethylhexyl)phthalate	EPA 525.2	в	0.00901		0.002	mg/liter	05/18/2023	1628	TJW
Bis(2-ethylhexyl)adipate	EPA 525.2	в	ND		0.004	mg/liter	05/18/2023	1628	TJW
Hexachlorobenzene	EPA 525.2	в	ND		0.0003	mg/liter	05/18/2023	1628	TJW
Hexachlorocyclopentadiene	EPA 525.2	в	ND		0.005	mg/liter	05/18/2023	1628	TJW
Simazine	EPA 525.2	в	ND		0.0004	mg/liter	05/18/2023	1628	TJW
Carbofuran	EPA 531.2	в	ND		0.004	mg/liter	05/03/2023	1809	TJW
Vydate	EPA 531.2	в	ND		0.004	mg/liter	05/03/2023	1809	TJW
Endothall	EPA 548.1	в	ND		0.01	mg/liter	05/17/2023	1726	TJW
Diquat	EPA 549.2	в	ND		0.01	mg/liter	05/11/2023	1548	TJW
2,4-D	EPA 515.3	в	ND		0.002	mg/liter	05/16/2023	0026	TJW

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

B=Neilson Research Corporation, ORELAP ID#OR100016

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

Т	E	S	Т	R	Е	P	0	R	Т

		LAB	#: 2023	30502-	097	(Cont)	CITMILC	F	Page: 3	3
		#23. #	Acres (1997)	12455 18				Anal	ysis	
Analyte	Method	Acc*	Results	Qual	MRL	Units		Date Time	Т	ech
Glyphosate	EPA 547	В	ND		0.05	mg/liter		05/08/2023	1220	TJW

ND- No Detection at @ MRL SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit" * Accreditation A- Waterlab Corporation, ORELAP 100039 The results relate only to the parameters tested or to the sample as received by

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation.

B=Neilson Research Corporation, ORELAP ID#OR100016

the laboratory.

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

TO: City of Mill City c/o City Recorder P. O. Box 256 Mill City, OR 97360

PO#:

Collection Information

Date: 05/02/2023 Time: 0900 By: Russ Lab #: 20230502-098 Location: 360 Remine Rd. Mills City/ Influent

Case Narrative

The analyses were performed according to the guidelines in the WATERLAB Corp Quality Assurance Program. This report contains analytical results for the sample(s) as received by the laboratory.

								Analysis	
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date	Time	Tech
Volatile Organics, Regulated									
1,1,1-Trichloroethane	E524.2	В	ND		0.0005	mg/liter	05/05/20	023 0024	I TJW
1,1,2-Trichloroethane	E524.2	В	ND		0.0005	mg/liter	05/05/20	023 0024	I TJW
1,1-Dichloroethylene	E524.2	В	ND		0.0005	mg/liter	05/05/20	023 0024	I TJW
1,2,4-Trichlorobenzene	E524.2	В	ND		0.0005	mg/liter	05/05/20	023 0024	I TJW
1,2-Dichloroethane	E524.2	В	ND		0.0005	mg/liter	05/05/20	023 0024	I TJW
1,2-Dichloropropane	E524.2	В	ND		0.0005	mg/liter	05/05/20	023 0024	L TJW
Benzene	E524.2	В	ND		0.0005	mg/liter	05/05/20	023 0024	t TJW

ND- No Detection at @ MRL

SM-"Standard Methods for the Examination of Water & Wastewater", 19th ed

EPA- "Methods for Chemical Analysis for Water and Wastes", USEPA

MRL-"Method Reporting Limit"

* Accreditation

A- Waterlab Corporation, ORELAP 100039

The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation. B=Neilson Research Corporation, ORELAP ID#OR100016

Bitter E. Myers

Approved by:

Page 1 of 2

05/22/2023

CITMILC

Lab Receipt Information

05/02/2023 1045 SW

TEST REPORT

2603 - 12th Street, SE Salem, OR 97302 Voice: (503) 363-0473 FAX: (503) 363-8900

CITMILC

LAB # : 20230502-098

98 (Cont)

Page: 2

							Anal	ysis	
Analyte	Method	Acc*	Results	Qual	MRL	Units	Date Time	Т	ech
Carbon Tetrachloride	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
cis-1,2-Dichloroethylene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Dichloromethane	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Ethylbenzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Monochlorobenzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
o-Dichlorobenzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
p-Dichlorobenzene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Styrene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Tetrachloroethylene (PCE)	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Toluene	E524.2	В	0.0496		0.0005	mg/liter	05/05/2023	0024	TJW
trans-1,2-Dichloroethylene	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Trichloroethylene (TCE)	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Vinyl Chloride	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW
Xylenes, Total	E524.2	В	ND		0.0005	mg/liter	05/05/2023	0024	TJW

ND- No Detection at @ MRL SM-"Standard Methods for the Examination of Water & Wastewater",19th ed EPA- "Methods for Chemical Analysis for Water and Wastes",USEPA MRL-"Method Reporting Limit" * Accreditation A- Waterlab Corporation, ORELAP 100039 The results relate only to the parameters tested or to the sample as received by the laboratory.

This report shall not be reproduced except in full, without the written approval of Waterlab Corporation. B=Neilson Research Corporation, ORELAP ID#OR100016

Bitter E. Myers

APPENDIX I

GSI Reports

TECHNICAL MEMORANDUM

Gates/Mill City Shallow Soil Characterization and Infiltration Testing Results, Marion and Linn Counties, Oregon

То:	Chris Einmo / Marion County
From:	Matt Kohlbecker, RG / GSI Water Solutions, Inc.
	Jason Keller, RG / GeoSystems Analysis, Inc.
	Jesse Hall, GIT / GSI Water Solutions, Inc.
Cc:	Peter Olsen / Keller Associates, Inc.
	Pamela Villarreal / Keller Associates, Inc.
	Brian Nicholas / Marion County
	Dave Kinney / City of Mill City
	Russ Foltz / City of Mill City
	Kari Low / Commonstreet Consulting
	Tamisha Schrunk / Commonstreet Consulting
	Mary Camarata / Department of Environmental Quality
Date:	June 23, 2023

This Technical Memorandum (TM), prepared by GSI Water Solutions, Inc. (GSI) and GeoSystems Analysis, Inc. (GSA), summarizes the first phase of a subsurface characterization to evaluate the feasibility of treated wastewater infiltration in Gates and Mill City, Oregon. This first phase focused on shallow soils, and consisted of excavating test pits in four study areas to classify soil types, conduct infiltration tests, and collect soil samples. The objective of the shallow subsurface characterization was to collect data that can be used to select three of the four study areas for a second phase, which is a deep soil characterization.

1. Introduction

The North Santiam Sewer Authority (NSSA) is planning to dispose of treated wastewater using infiltration basins. Two infiltration basins are planned—one in the Gates/Mill City area and another in the Detroit/Idanha area. The project will be authorized by a Water Pollution Control Facilities (WPCF) permit from the Oregon Department of Environmental Quality (DEQ).

In the Gates/Mill City area, four study areas were chosen to be assessed for potential infiltration basins: the Baughman-Lucas Site (GM1), the Shepherd Site (GM2), the 4th Ave Right of Way (ROW) Site (GM4), and the Weyerhaeuser Site (GM5) (see Figure 1). Because infiltration projects require characterization of subsurface soils to inform infiltration feasibility and basin design, it is necessary to characterize soil properties at each study area.

In March 2023, GSI and its teaming partner GSA conducted the first phase of subsurface soil characterization (referred as the "Gates/Mill City Phase I Subsurface Characterization" in this TM) in general accordance with the *Santiam Canyon Treated Wastewater Disposal - Subsurface Characterization Work Plan* (the Work Plan) (GSI and GSA, 2023). Specifically, GSI and GSA oversaw excavation of test pits in each study area (see Figures 2a through 2d) to measure soil infiltration rates, classify soil types, and collect samples for laboratory analysis. This TM summarizes methods (Section 2) and results (Section 3) of the Gates/Mill City Phase I Subsurface Characterization, describes a ranking system to evaluate the favorability of each study area for infiltration (Section 4), and provides conclusions and recommendations based on collected data and site ranking (Section 5).

2. Methods

This section describes the methods that were used during the Phase I Subsurface Characterization to: (1) locate utilities (Subsection 2.1), (2) excavate test pits, classify soil types, and collect soil samples (Subsection 2.2), and (3) conduct infiltration tests (Subsection 2.3).

2.1 Utility Locating

A total of 15 test pit locations were located and cleared for utilities in the study area by Pacific Northwest Locating, LLC on March 9th, 2023. The only utilities found near the proposed test pit locations were residential utility lines crossing 4th Ave approximately 10-feet north of the initially-proposed location for 4th Ave ROW Test Pit 1 (GM4-TP1)¹. To remain clear of subsurface utilities, GM4-TP1 was relocated approximately 30-feet south of where this utility crosses 4th Ave (see Figure 2c).

2.2 Test Pit Excavation, Soil Logging, and Soil Sampling

Test pits were excavated by McKillip Excavation, Inc. using a John Deere 50G or a John Deere 85G excavator outfitted with a 36-inch or 24-inch bucket (the test pit logs in Attachment A indicate the type of excavator that was used for each test pit). Table 1 shows the dates test pits were excavated, the excavation depths, and the soil quality samples that were collected. GSI personnel continuously logged soils excavated from each pit in general accordance with the visual-manual method of the Unified Soil Classification System (USCS).

Soil samples were collected for analysis of soil physical properties (specific gravity and particle size distribution) and soil quality (a multi-residue pesticide screen):

- Soils Physical Properties. Samples were collected from each soil horizon in each test pit to represent the soil types that were encountered in the study area, and a subset of the samples was submitted to the GSA lab in Tucson, Arizona for specific gravity testing by ASTM D854-15 and particle size distribution analysis by ASTM D69-13-17 and ASTM D7928-17.
- Soil Quality Samples. Samples were collected at a depth of 5 feet below ground surface (bgs) and were submitted to Matrix Laboratories for multi-residue pesticide analysis using the Modified Environmental Protection Agency (EPA) Method 8270D and 8321B.

¹ According to the utility locator, the utility line was a residential gas line.

Test Pit ID	Date of Excavation	Test Pit Depth feet bgs	Soil Physical Properties ¹ Sample ft bgs (analyses)	Infiltration Test² ft bgs (test type)	Soil Quality Sample ³ ft bgs (test type)
GM1-TP1	03/23/2023	12			5 feet (P)
GM1-TP2	03/23/2023	12	6 feet (PSD, SG)	2 feet (TI)	5 feet (P)
GM1-TP3	03/23/2023	11	5 feet (PSD, SG)	2 feet (CI)	5 feet (P)
GM1-TP4	03/23/2023	12	5 feet (PSD)	2 feet (CI) 3 feet (TI)	5 feet (P)
GM2-TP1	03/21/2023	13		2 feet (CI)	5 feet (P)
GM2-TP2	03/21/2023	13		2 feet (CI)	5 feet (P)
GM2-TP3	03/22/2023	13		No Test – Groundwater in Test Pit	5 feet (P)
GM2-TP4	03/22/2023	9		2 feet (CI)	5 feet (P)
GM4-TP1	03/20/2023	9		3 feet (CI)	5 feet (P)
GM4-TP2	03/20/2023	2		3 feet (CI)	
GM4-TP3	03/20/2023	8	4.5 feet (PSD, SG) 6 feet (PSD)	2 feet (CI) 4.5 feet (TI)	5 feet (P)
GM5-TP1	03/21/2023	9		2 feet (CI)	5 feet (P)
GM5-TP2	03/22/2023	13	8 feet (PSD)	2 feet (CI)	5 feet (P)
GM5-TP2	03/22/2023	13	8 feet (PSD)	2 feet (CI)	5 fee

Table 1. Test Pit D	epths. Soil Sam	ples, and Infilt	tration Tests.

Notes

(1) Soil physical properties include specific gravity (SG) and/or particle size distribution (PSD)

(2) CI – Single ring cylinder infiltrometer test; TI – Test pit infiltration test

(3) P - multi-residue pesticide analysis

(--) no sample collected or infiltration test performed

bgs = below ground surface ft = feet

2.3 Infiltration Testing

GSA conducted one or more infiltration tests at each test pit. A total of 13 infiltration tests were conducted with the purpose of targeting different soil units that were observed near the location of proposed infiltration basins. Ten infiltration tests were conducted using the single ring infiltrometer method with lateral divergence correction (Bouwer et al., 1999). Three infiltration tests were conducted using a modified test pit infiltration method with lateral divergence correction due to the soils having a large fraction of gravels, cobbles, and/or boulders that restricted the ability to create an adequate seal between the coarse clasts and the ring infiltrometer. For both methods, the lateral and vertical extent of the wetting front and ponding height were measured to calculate the effective saturated hydraulic conductivity (K) of the soil. Effective K values provide a good estimate of the potential infiltration rate in the absence of surface clogging and/or restricting or compacted layers present deeper in the profile (Bouwer et al., 1999; Rice et al., 2014). A technical memorandum prepared by GSA to document the methods and results of the infiltration testing is provided in Attachment B. Following infiltration testing, the test pits were backfilled with excavated soils and compacted by tamping down the soil with the bucket and tracks of the excavator.

3. Results

This section presents soil characterization and infiltration testing results, including: shallow geology (Subsection 3.1), effective saturated hydraulic conductivity measured during infiltration tests (Subsection 3.2), and soil sampling results (Subsection 3.3).

3.1 Shallow Geology

Shallow geology in the Gates/Mill City area varied between study areas. Test pit logs showing soil classifications are provided in Attachment A, and photologs of each test pit are provided in Attachment C. The following sections summarize the shallow geology at each study area.

3.1.1 Baughman Lucas Study Area (GM1) Shallow Geology

The Baughman-Lucas Study Area (GM1) is located near the City of Mill City, 0.25 miles south of the Santiam River at an approximate elevation of 850 feet above mean sea level (amsl) (Figure 2a). Study Area GM1 is comprised of two relatively flat benches: a southern bench with an elevation of about 860 feet amsl (approximately 3.6 acres) and a northern bench with an elevation of about 850 feet amsl (approximately 5.3 acres) (see Figure 2a). The infiltration basin would be sited on the lower, northern bench.

Shallow soils at GM1 are characterized by a higher proportion of gravel and sand relative to the other study areas. Generally, surficial geology in the study area consists of 1 to 2 feet of silt underlain by sand or coarse gravel, cobbles, and boulders. The geology at GM1 is heterogeneous. Specifically, the sands are fine to medium, and the gravels range from silty (i.e., "GM," with a significant fines content making them less permeable) to sandy (i.e., "GW," with few fines making them more permeable). The underlying sands and gravels do not follow a layer-cake geometry and appear to occur as discrete lenses, which is consistent with the fluvial depositional environment. Detailed geologic descriptions of the soils in the GM1 Study Area are provided in Attachment A.

3.1.2 Shepherd Study Area (GM2) Shallow Geology

The Shepherd Study Area (GM2) is located 0.8 miles from the Santiam River, southeast of the City of Mill City at an elevation that ranges from 900 to 960 feet amsl (Figure 2b). Study Area GM2 is comprised of two terraces separated by a steep slope, with the northern terrace (approximately 7.3 acres) 40 to 50 feet in elevation lower than the southern terrace (approximately 12.6 acres). Shallow geology at Site GM2 includes surficial deposits of silty sand and clay underlain by gravels. The silty sand and clay are over 9 feet thick with the exception of test pit GM2-TP4, where silty sand is 5.5 feet thick. It should also be noted that the gravel was not encountered in test pit GM2-TP2 (excavated to 13 feet bgs). Groundwater was observed as shallow as 2 feet below ground surface in test pits GM2-TP3 and GM2-TP4, both of which are located on the northern, lower terrace. Detailed geologic descriptions of the soils in the GM1 Study Area are provided in Attachment A.

3.1.3 4th Ave ROW Study Area (GM4) Shallow Geology

The 4th Ave ROW Study Area (GM4) is located within the 4th Avenue right-of-way in the City of Mill City (Figure 2c). Study Area GM4 is approximately 0.55 miles from the Santiam River at an elevation of 880 to 890 feet amsl. Surficial geology at the site was generally consistent between test pits and showed deposits of silty sand (3.5 to 5 feet thick) underlain by silty gravels with low proportions of sand. The geology appeared to be layer-cake, but this could be due to the test pits being excavated over a relatively small area. Detailed geologic descriptions of the soils in the GM1 Study Area are provided in Attachment A.

3.1.4 Weyerhaeuser Study Area (GM5) Shallow Geology

The Weyerhaeuser Study Area (GM5) is located adjacent to the Shepherd Study Area (GM2) southeast of the city of Mill City at elevations ranging from 960 to 1020 feet amsl, approximately 0.85 miles from the Santiam River (Figure 2d). The study area is comprised of two parcels that the property owner has proposed

for sale: Parcel A (24.7 acres) and Parcel B (11.8 acres). Only two test pits were excavated at Study Area GM5 due to weather conditions (snow) and access constraints. The two test pits that were excavated, test pits GM5-1 and GM5-2, show similar shallow geology generally consisting of approximately 5 feet of dry to moist silty sand underlain by silty gravels, cobbles, and boulders. There were large areas of ponded water throughout Site GM5 at the time of test pit excavation. Detailed geologic descriptions of the soils in the GM1 Study Area are provided in Attachment A.

3.2 Infiltration Test Results

Effective saturated hydraulic conductivity (K) values measured from the infiltration testing are shown in Table 2 and Appendix B. Note that these effective K rates are raw measurements that do not include a safety factor to account for clogging over time or uncertainties related to spatial variability in soil properties.

Test Pit ID	Depth	Geology	Effective Saturated Hydraulic Conductivity ft/day
GM1-TP2	2.0	Silty GRAVEL (GM)	12.66
GM1-TP3	2.0	Well graded SAND with silt (SW-SM)	3.25
GM1-TP4	2.0	Silty GRAVEL (GM)	3.70
GM1-TP4	3.0	Well graded GRAVEL with silt (GW-GM)	8.31
		GM1 Geometric Mean	5.97
GM2-TP1	2.0	Silty SAND (SM)	1.17
GM2-TP2	2.0	Lean CLAY (CL)	< 0.01
GM2-TP4	2.0	Silty SAND (SM)	2.03
		GM2 Geometric Mean	0.12
GM4-TP1	3.0	Silty SAND (SM)	0.52
GM4-TP2	3.5	Silty SAND (SM)	1.19
GM4-TP3	2.0	Silty SAND with gravel (SM)	0.93
GM4-TP3	4.5	Silty SAND with gravel (SM)	0.65
		GM4 Geometric Mean	0.78
GM5-TP1	2.0	Silty SAND (SM)	0.01
GM5-TP2	2.0	Silty SAND (SM)	2.29
		GM5 Geometric Mean	0.18

Table 2. Test Pit Depths, Soil Samples, and Infiltration Tests.

Notes

(1) Soil physical properties include specific gravity (SG) and/or particle size distribution (PSD)

(2) CI – Sing ring cylinder infiltrometer test; TI – Test pit infiltration test

(3) P – multi-residue pesticide analysis

(-) no sample collected or infiltration test performed

bgs = below ground surface ft/day = feet per day

ID = identification

The geometric mean soil effective K increased with decreasing fines content, ranging from less than 0.01 ft/day for Lean Clay (CL) to 12.66 ft/day for silty Gravel (GM). Study area geometric mean effective K values were greatest at the Baughman-Lucas Study Area (GM1, 5.97 ft/day), followed by the 4th Ave ROW Study Area (GM4, 0.78 ft/day), the Weyerhaeuser Study Area (GM5, 0.18 ft/day), and the Shepherd Study Area

(GM2, 0.12 ft/day). Note the GM5 study area was limited to two infiltration tests due to access and weather constraints. As a result, there is increased uncertainty of the GM5 study area effective K, however, based on proximity to the GM2 study area and similarity of soils to those observed at the GM2 and GM4 study areas, the GM5 study area effective K likely ranges between the values measured at GM2 and GM4 study areas.

3.3 Soil Quality and Soil Physical Parameter Results

Laboratory reports are tabulated and presented in Attachment D (soil quality results) and Attachment E (soil physical properties).

3.3.1 Soil Quality Results

All soil samples were nondetect for pesticides. These results indicate that infiltration through the surficial soils in the study area is not likely to violate DEQ's groundwater protection rules due to leaching of soil contaminants. These rules require that groundwater is protected to its highest beneficial use (usually drinking water). WPCF-permitted projects are required to meet these rules, which, in practice, require that infiltration projects do not degrade background groundwater quality at a receptor point (i.e., a water well).

3.3.2 Soil Physical Parameters

Results of soil particle specific gravity and soil grain size analyses on the less than 4.75 millimeter (mm) size fraction are provided in Table 3 and Figure 3, respectively, and in Attachment E. The percent fines in soils (<0.075 mm) ranged between 47 percent and 8 percent. Laboratory PSD results were used to calibrate field PSD estimates for the sand and fines and the USCS visual-manual classifications on the test pit logs (Attachment B) were updated based on the lab results. For the gravel units, USCS visual-manual classifications on test pit logs were not updated because the lab results were not necessarily representative of soil conditions in the field (i.e., because cobble and boulder-sized sediment were not included in the laboratory analyses).

A linear regression equation was developed to correlate field estimates of fines to the laboratory measured results (Figure 3). The correlation for fines ($R^2 = 0.99$) was used to adjust the field-estimated values to the laboratory-measured values (calculations are provided in Attachment B). Sample GM1-TP4-5 was considered an outlier and excluded from the correlation analysis.

Test Pit ID	Depth (feet)	Specific Gravity g/cm ³
GM1-TP2-6	6.0	2.80
GM1-TP3-5	5.0	2.79
GM4-TP3-4.5	4.5	2.67

Table 3. Laboratory-Measured Soil Specific Gravity.

Notes

g/cm³ = grams per cubic centimeter

4. Study Area Scoring Methods and Scoring Results

4.1 Scoring methods

A scoring system was developed to rank the favorability of each study area for infiltration from the perspectives of distance to nearest surface water (i.e., the Santiam River), predominant soil types, depth to groundwater (i.e., ability of the unsaturated zone to accommodate a groundwater mound), and permeability (i.e., effective saturated hydraulic conductivity). The objective of ranking was to select three of the four study areas for a deep subsurface soil investigation. Table 4 summarizes the scoring system. One point was

awarded for a positive ranking, zero points for neutral ranking, and one point was subtracted (-1) for negative ranking.

Table 4. Scoring Criteria.

Score	Distance to Surface Water (miles)	Predominant Soil Type(s)	Depth to Groundwater (feet)	K_{sat} (feet/day)
Negative (-1)	< 0.25	Silty SAND (SM) Clay (CL)	< 10	< 0.50
Neutral (0)	0.25 to 0.50	Silty SAND (SM) Silty GRAVEL (GM)	10 to 20	0.5 - 1.0
Positive (1)	> 0.50	Clean GRAVEL (GW) Silty GRAVEL (GM)	> 20	> 1.0

Notes

 K_{sat} = Saturated hydraulic conductivity

Once all categories were considered and points awarded, study areas were ranked and ordered from highest to lowest infiltration potential.

4.2 Scoring results

Table 5 summarizes the results of the study area scoring. Based on the scoring, the Baughman Lucas Study Area (GM1), Weyerhaeuser Study Area (GM5), and 4th Avenue ROW Study Area (GM4) appear to be more favorable for infiltration than the Shepherd Study Area (GM2).

Rank	Study Area	Distance to River Score	Predominant Soil Type Score	Depth to Groundwater Score	Infiltration Rate Score	Total Score
1	Baughman-Lucas (GM1)	0	1	0	1	2
2	4 th Avenue ROW (GM4)	1	0	1	0	2
3	Weyerhaeuser (GM5)	1	0	1	-1	1
4	Shepherd (GM2)	1	-1	-1	-1	-2

Table 5. Site Scoring

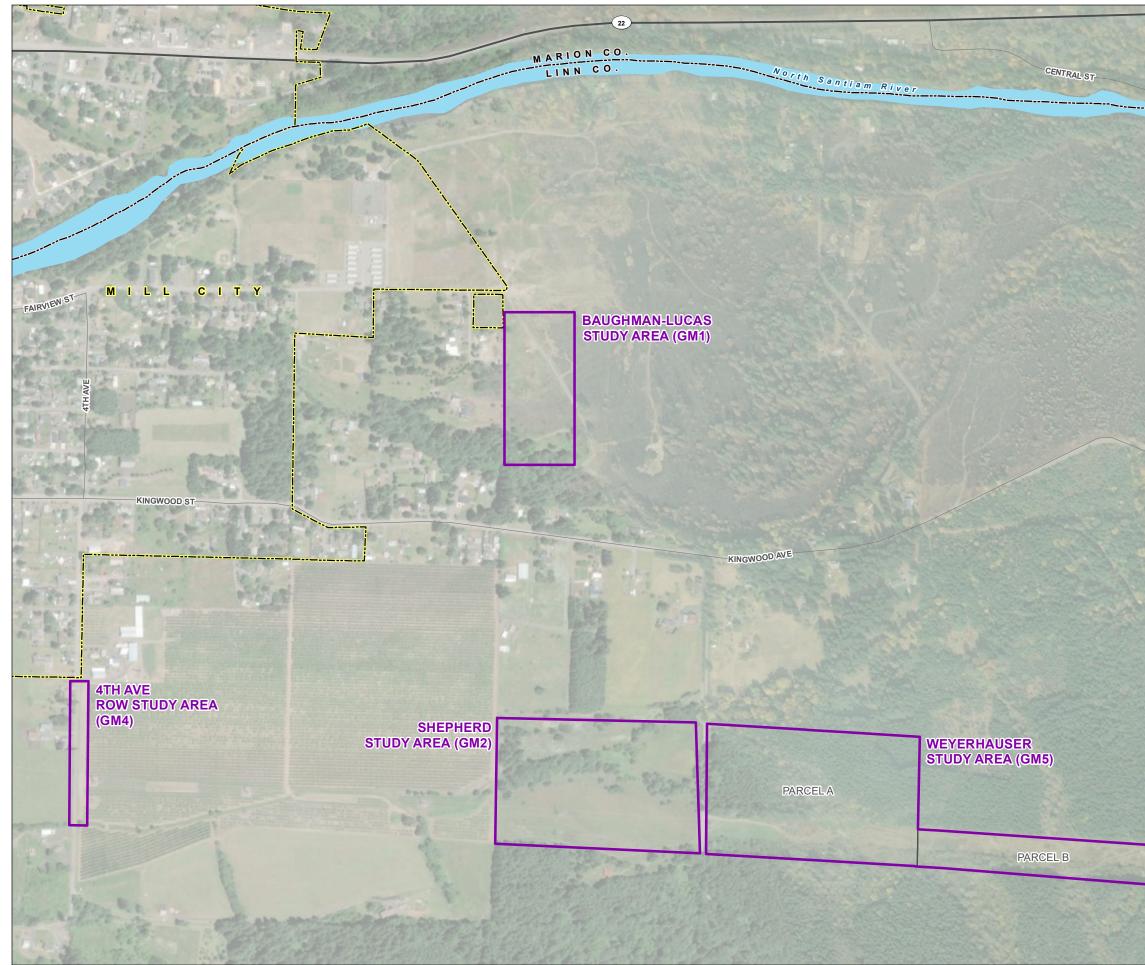
5. Conclusions and Recommendations

GSI and GSA make the following conclusions based on the Gates/Mill City Phase I Subsurface Investigation:

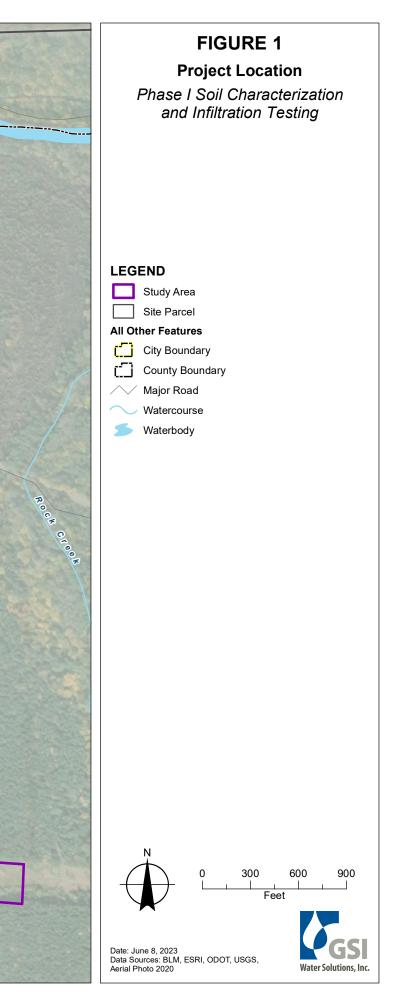
- Measured soil effective K values were greatest at the GM1 study area, indicating the potential for high infiltration rates relative to the other sites tested. The GM4 study area had moderate soil effective K rates, whereas GM2 and GM5 project areas had low soil effective K rates, indicating potentially limiting infiltration rates at the GM2 and GM5 project areas.
- The GM1 study area and GM4 study area are closest to the Santiam River and, therefore, may require a higher level of wastewater treatment to be compliant with the Three Basin Rule. The Weyerhaeuser (GM5) and Shepherd (GM2) study areas are the farthest from the Santiam River and may require less treatment, but the soils do not appear to be favorable to infiltration based on both measured soil effective K values (less than 0.2 feet per day) and observed soils types (silty gravels or silty sands). In addition, shallow groundwater was noted at GM2.

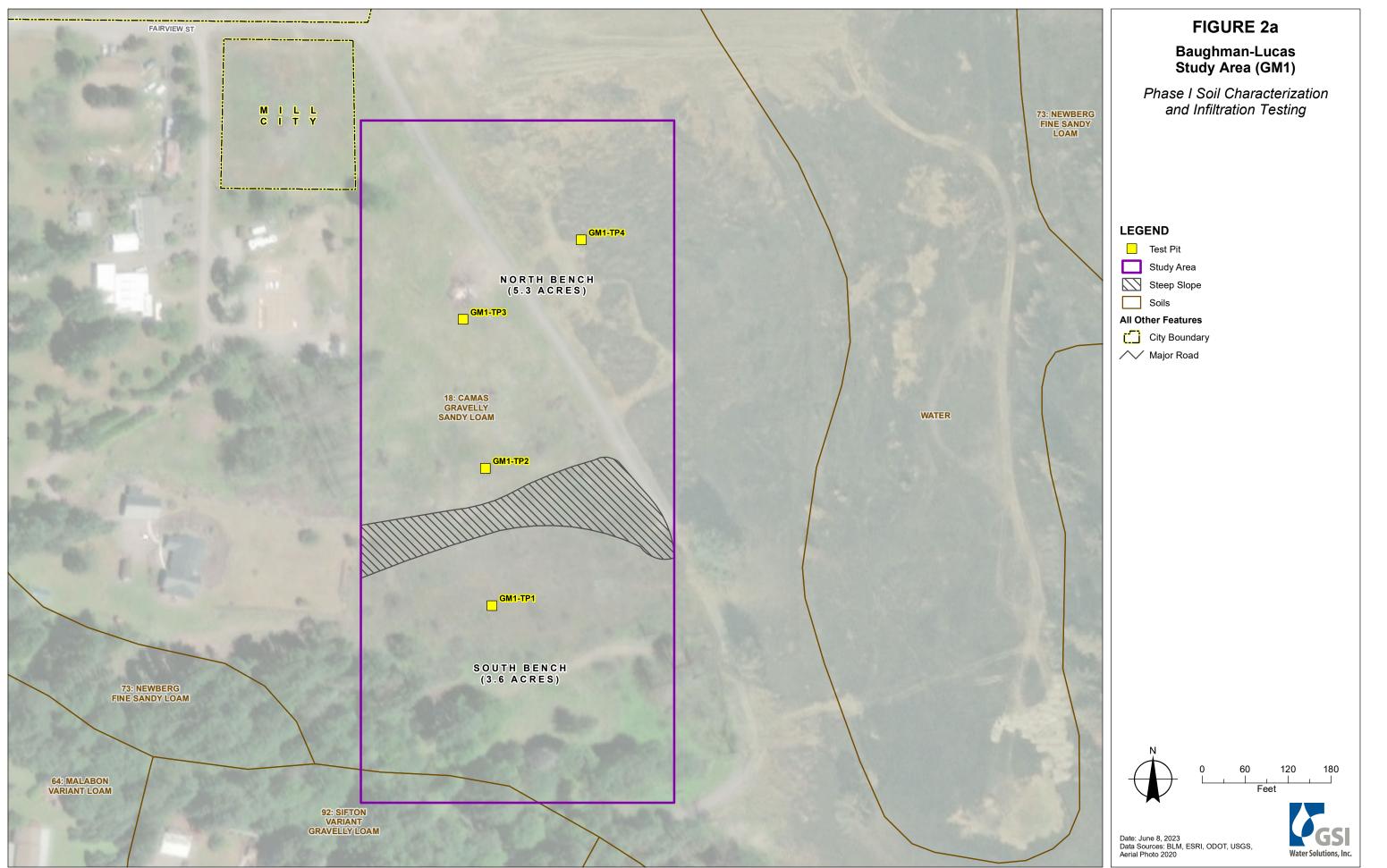
GSI and GSA make the following recommendations based on the Gates/Mill City Phase I Subsurface Investigation:

- The effective K rates presented in this TM do not account for uncertainties related to the spatial variability of soil properties and clogging of the basin over time. We recommend applying a safety factor to these effective K rates to account for these uncertainties. For effective saturated hydraulic conductivity results from cylinder infiltrometer measurements, 10 to 15% is a reasonable assumption. Additionally, we recommend the selected site undergo large scale (i.e., 4 ft diameter) and long term (i.e., 8 hours) infiltration testing to refine long term estimated infiltration rates and safety factors as a part of preliminary design and prior to basin construction.
- Infiltration basin designs based on the results of the Phase I Subsurface Investigation, which focused on shallow soils (less than 13 feet bgs) should be considered preliminary because we have not yet evaluated the potential for less permeable soil horizons deeper in the soil profile. In addition, we have not yet evaluated the aquifer potential to dissipate the groundwater mound that will occur during recharge, which depends on aquifer properties. Deep soils will be evaluated as part of the Phase II Subsurface Investigation, which completed field investigations in May and June 2023.
- We recommend that the project team consider basin designs that include a single recharge basin as well as multiple recharge basins. Use of multiple basins provides benefits including the capability to continue recharge while conducting maintenance activities (e.g., clogging layer removal) and regular cycling of recharge between basins (i.e., periods of loading followed by periods of resting) should groundwater or perched water mounding beneath a basin reduce infiltration rates.
- Based on the ranking system, GSI recommends Phase II groundwater monitoring at the Baughman-Lucas study area (GM1), the 4th Ave ROW study area (GM4), and the Weyerhaeuser study area (GM5).
- Should Phase II testing further support the GM5 study area as a potentially viable infiltration basin location, we recommend completing the Phase I near surface infiltration testing previously planned for the site that could not be completed due to weather and access constraints.

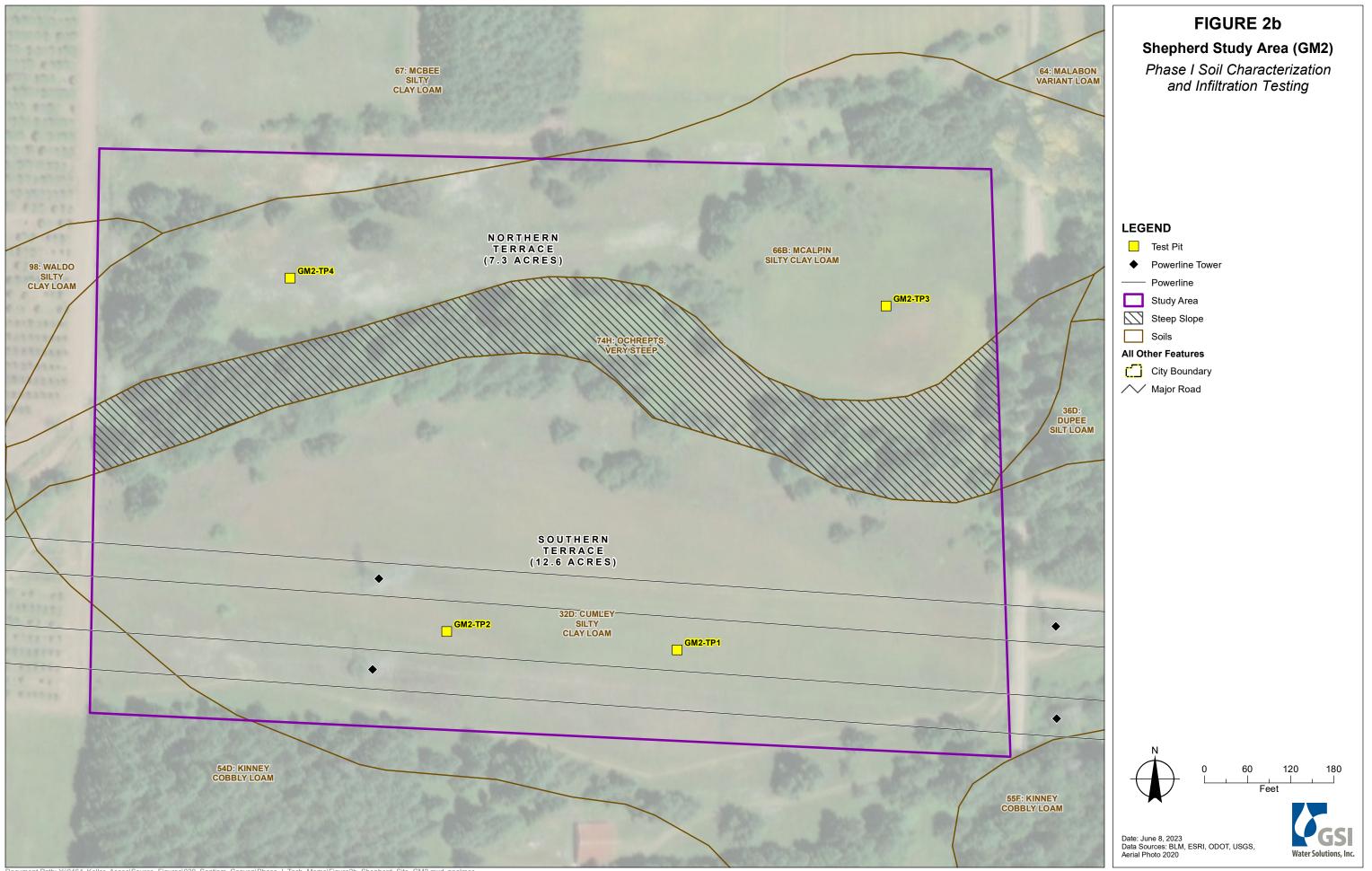

6. References

Bouwer, H., Back, J.T., Oliver, J.M. 1999. Predicting Infiltration and Groundwater Mounds for Artificial Recharge, J Hydro Eng, ASCE, (4) pp. 350-357.

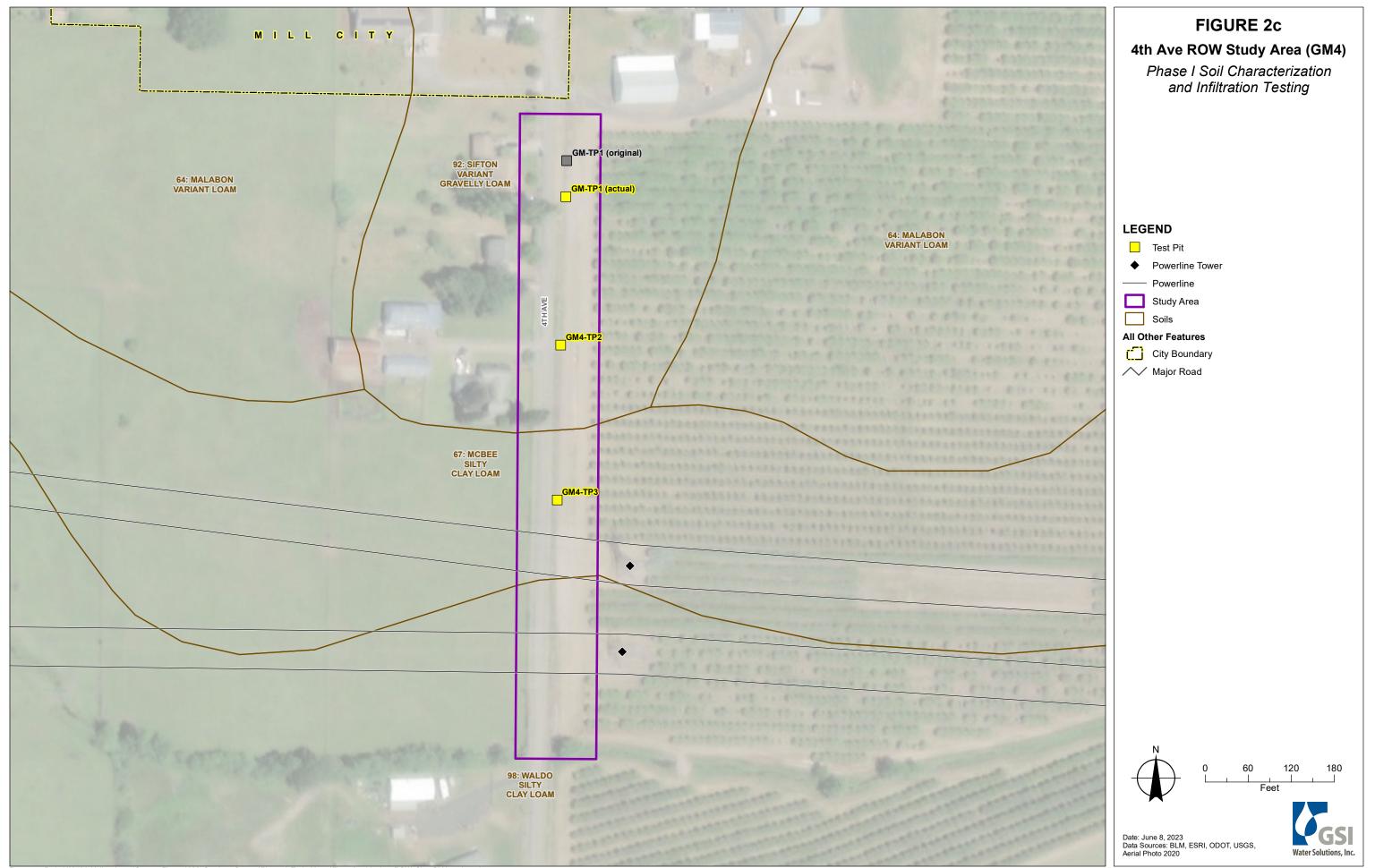

Bouwer, H. 2002. Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeology Journal.

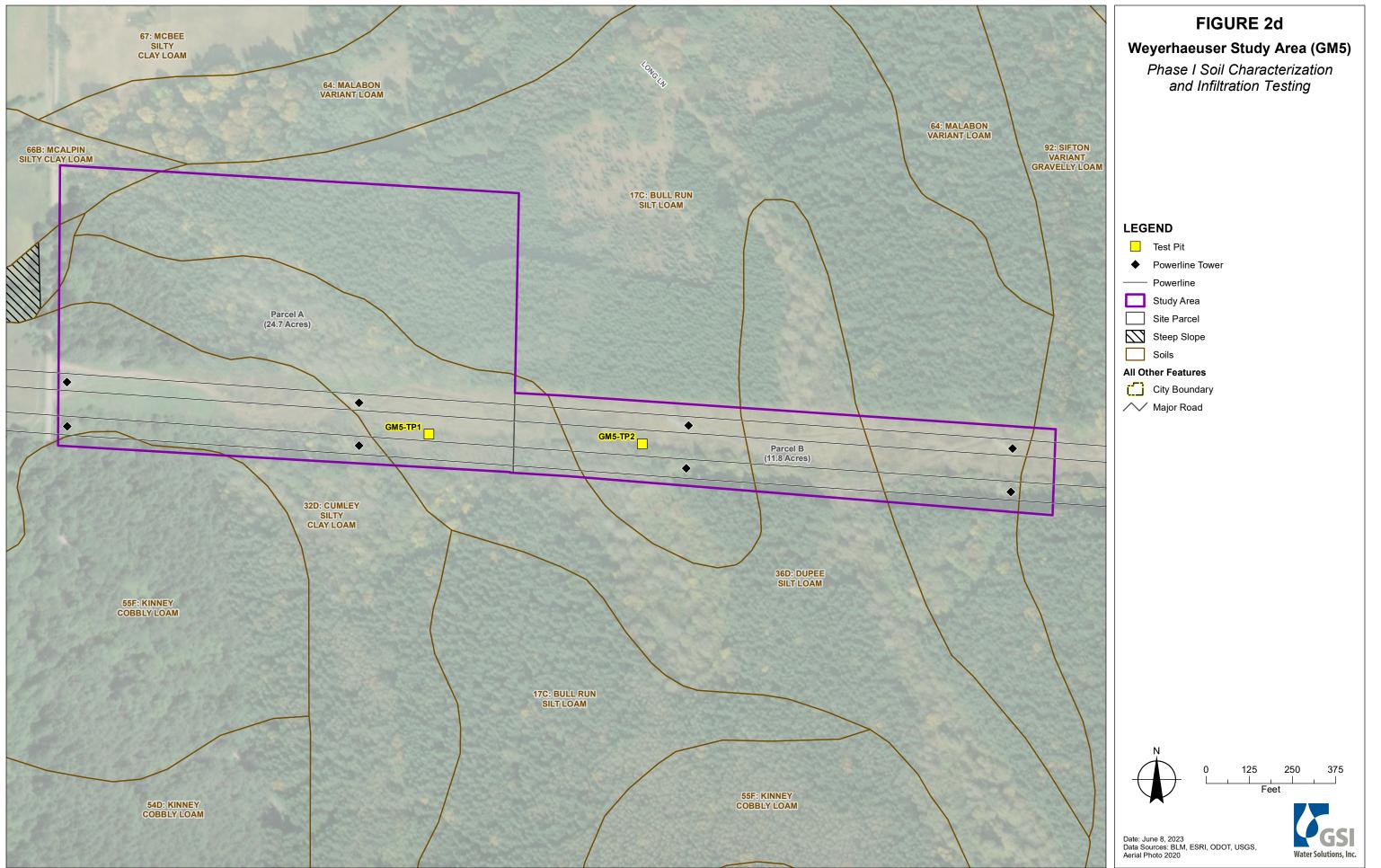

Rice, R.C., M. Milczarek, J. Keller. 2014. A Critical Review of Single Ring Cylinder Infiltrometers with Lateral Flow Compensation. Proceedings 14th Biennial Symposium on Managed Aquifer Recharge, July 31-August 1, 2014 – Orange, CA.

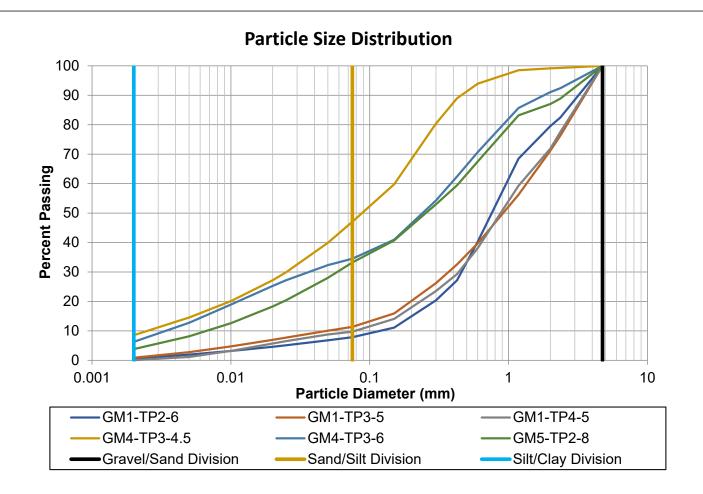
GSI and GSA. 2023. Santiam Canyon Treated Wastewater Disposal – Subsurface Characterization Work Plan. March 3.

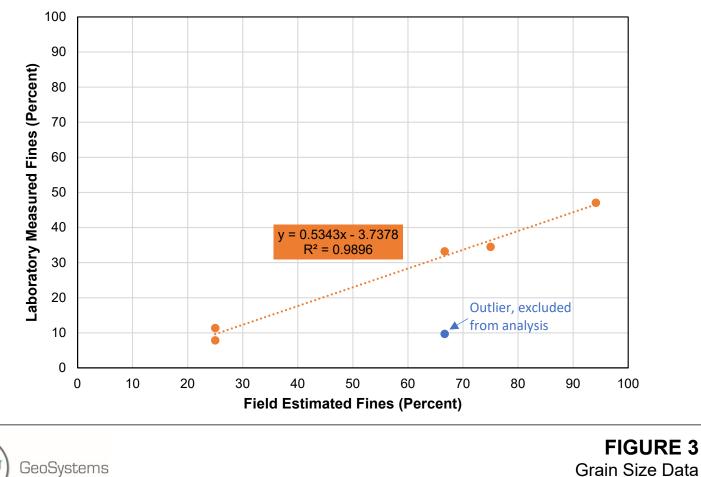


Document Path: Y:\0464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_I_Tech_Memo\Figure1_Project_Location.mxd, npalme




Document Path: Y:\0464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_I_Tech_Memo\Figure2a_Baughman_Lucas_Site_GM1.mxd, npalmer


Document Path: Y:\0464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_I_Tech_Memo\Figure2b_Shepherd_Site_GM2.mxd, npalme


Document Path: Y:\0464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_I_Tech_Memo\Figure2c_4th_Ave_ROW_Site_GM4.mxd, npalme

Document Path: Y:\0464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_I_Tech_Memo\Figure2d_Weyerhaeuser_Site_GM5.mxd, npalme

Laboratory-Measured and Field-Estimated Percent Fines

Analysis, Inc.

Innovations in Hydrology

Phase I Soil Characterization and Infiltration Testing

-ATTACHMENT A----

Test Pit Logs

	GSI Water	Solutions, Inc. Santiam Canyon Infiltration Evaluation				M1-TP1	
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROUNI 861 fee			LEVATION AN	D DATUM:
TE	EST PIT LOCATION:	44.749451°, -122.461443°	τοταl ε 12	EPTH	(ft):	DATE STARTED : 3/23/2023	
	CONTRACTOR:	McKillip Excavation, Inc.	LOGGEE J. Hall	BY:			DATE FINISHED: 3/23/2023
S/	AMPLING METHOD:	Continuous	DEPTH 1 WATER			IRST:	COMPLETED:
	EQUIPMENT:	John Deere 85G					
DEPTH (feet)		SAMPLE DESCRIPTION	% GRAVEL	% SAND	% SILT	С	OMMENTS
				IELD S			RRECTED SOIL
0	SM	0.0 - 2.0 ft: Very loose, dark brown, moist, Silty SAND with gravel (SM), some sand, sand is medium to coarse, angular to subangular, gravel is fine to coarse, subangular to rounded some cobbles, subangular to rounded, some boulders (up to 24 inches)		<10%			ASSIFICATION
3		- Boulders increase with depth					
4 5 6 7 8 8 9	GM	2.0 - 12.0 ft: Very loose, brown, moist, silty GRAVEL with sand (GM), sand is fine to coarse, angular to subrounded, gravel is fine to coarse, subangular to rounded, many fine to coarse cobbles, subrounded to rounded, many cobbles (up to 12 inches), boulders are subrounded to rounded [QUARTERNARY MIDDLE TERRACE DEPOSITS]	45%	35%	20%		
10 11 11 12		Tatal Darity 12 fact				-	
13		Total Depth = 12 feet					
14							
15							
16— 						percentages a	ed soil grain size nd classification based inalysis (see Section 3.3.2).
	ater Solutions, Inc	Portland, OR 503.239.8799	Pr	oject l	No. 04	464.020	Page 1 of 1

	GSI Water	Solutions, Inc.	L	.00	6 ID	: G	M1-TF	2
	PROJECT:	Santiam Canyon Infiltration Evaluation			SURF ams		LEVATION	AND DATUM:
т	EST PIT LOCATION:	44.749976°, -122.461496°	то ⁻ 12	TAL D	EPTH	(ft):	DATE STARTED : 3/23/2023	
	CONTRACTOR:	McKillip Excavation, Inc.		G <mark>GED</mark> Hall	BY:			DATE FINISHED: 3/23/2023
S	AMPLING METHOD:	Continuous		PTH T TER (0 ft bgs)	F	IRST: -	COMPLETED:
	EQUIPMENT:	John Deere 85G						
DEPTH (feet)		SAMPLE DESCRIPTION		% GRAVEL	% SAND	% SILT		COMMENTS
					ELD SC			
0	GM	0.0 - 1.5 ft: Loose, dark brown, moist, silty GRAVEL (GM), few sand, fine to medium, trace rootlets, trace organics, gravel is fine to coarse, rounded to subrounded, cobbles (up to 4 inches)		50	<10	40		
2 3		[FILL] – Increasing sand, decreasing silt with depth 1.5 - 6.0 ft: Loose, dark brown to brown, moist, silty GRAVEL (GM), few fine sand, trace rootlets, cobbles, subrounded to					Infilitrat	ion test at 2 feet bgs (12.7)
4 5	GM	[QUARTERNARY MIDDLE TERRACE DEPOSITS]		70	<10	20		
6 7	GW-GM	6.0 - 8.0 ft: Loose, brown, moist, well graded GRAVEL with silt and sand (GW-GM), trace silt, sand is fine to coarse, angular to subrounded, gravel is fine to coarse, angular to subrounded, cobbles are subrounded to rounded (up to 10 inches)		60	30	10		
8	GW.	[QUARTERNARY MIDDLE TERRACE DEPOSITS] 8.0 - 12.0 ft: Loose, brown, moist, well graded GRAVEL (GW), few sand, angular to subangular, gravel is fine to coarse, rounded to subangular, cobbles are subrounded to rounded, boulders (up to 20 inches) [QUARTERNARY MIDDLE TERRACE DEPOSITS]		90	10	<5	-	
12		Total Dopth - 12.0 foot					-	
13-		Total Depth = 12.0 feet						
14								
15								
16— 							Note: Infilit	ration test results are in ft/day.
<u> </u>	ater Solutions, Inc			Pro	L	L No. 04	464.020	Page 1 of 1

	GSI Water	Solutions, Inc.	LC	DG	i ID	: Gl	M1-TP3	3		
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROL 852 f			ACE E	LEVATION A	ND DATUM:		
TE	ST PIT LOCATION:	44.750628°, -122.461808°	тота 11	LDE	EPTH (ft):	DATE STARTED : 3/23/2023			
	CONTRACTOR:	McKillip Excavation, Inc.	LOGG J. Ha		BY:		DATE FINISHED: 3/23/2023			
SA	AMPLING METHOD:	Continuous	DEPT	нто		F	IRST:	COMPLETED:		
	EQUIPMENT:	John Deere 85G								
DEPTH (feet)		SAMPLE DESCRIPTION		% GRAVEL	% SAND	% SILT		COMMENTS		
			0					ORRECTED SOIL		
0	SM	0.0 - 1.0 ft: Very loose, dark brown, moist, silty SAND (SM), few sand is fine to medium, trace cobbles (up to 4 inches) are subrounded to rounded, rootlets			SIFIC <i>I</i> <10%			LASSIFICATION 55% Sand, 40% Fines		
	SW-SM	(FILL)	<1	10%	60%	30%		, 80% Sand, 10% Fines		
2 3 1 3 1 3 1 1 1 1 1		 1.0 - 2.0 ft: Very loose, dark brown to brown, moist, well graded SAND with silt (SW-SM), trace gravel is fine to medium, trace cobbles, trace rootlets, trace boulders (up to 1 inches) [QUARTERNARY MIDDLE TERRACE DEPOSITS] Sand decreases with depth 2.0 - 8.0 ft: Very loose, brown, moist, silty SAND with gravel (SW), sand is fine to medium, subrounded to rounded [QUARTERNARY MIDDLE TERRACE DEPOSITS] 		0%	60%	20%		est at 2 feet bgs (3.25) , 75% Sand, 5% Fines		
9	GM	8.0 - 11.0 ft: Very loose, brown, dry, silty GRAVEL (GM), trac sand is fine to medium, subangular to subrounded, gravel is fine to coarse, subrounded to rounded, cobbles are subangular to rounded, boulders are subrounded to rounded (up to up to 20 inches) [QUARTERNARY MIDDLE TERRACE DEPOSITS]		5%	<5%	15%				
11		Total Depth = 11.0 feet								
12										
13-										
14										
15-										
16							Corrected gr	tion test results are in ft/day. ain size percentages ation based on grain size		
17_							analysis (see	e Section 3.3.2).		
GSI Wa	ater Solutions, Inc	Portland, OR 503.239.8799		Pro	ject N	lo. 04	64.020	Page 1 of 1		

	GSI Water	Solutions, Inc.	LOC	g id): G	M1-TF	24	
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROUND 851 fee			ELEVATION	AND DATUM:	
TE	ST PIT LOCATION:	44.750660°, -122.460875°	TOTAL D	EPTH	(ft):		DATE STARTED : 3/23/2023	
	CONTRACTOR:	McKillip Excavation, Inc.	LOGGEE J. Hall	BY:		DATE FINISHED: 3/23/2023		
SA	AMPLING METHOD:	Continuous	DEPTH 1 WATER	O (ft bgs)		IRST: -	COMPLETED:	
	EQUIPMENT:	John Deere 85G						
DEPTH (feet)		SAMPLE DESCRIPTION	% GRAVEL	% SAND	% SILT		COMMENTS	
0	GM	0.0 - 2.0 ft: Loose, dark brown, moist, silty GRAVEL (GM), trace rootlets, trace organics, anthropogenics (plastic, plywood), trace sand is fine to medium, gravel is fine to coarse, subangular to rounded, cobbles (up to 8 inches) are subrounded to rounded	50%	<5%	45%			
2						- Infilitration	test at 2 feet bgs (3.70)	
3-		 Cobbles/Boulders increase with depth 				Infilitration	test at 3 feet bgs (8.31)	
4 5 6	GW-GM	2.0 - 10.0 ft: Loose, brown, dry, well graded GRAVEL with sil (GW-GM), trace rootlets, trace organics, trace sand is fine to coarse, gravel is fine to coarse, subangular to rounded,	t 85%	<5%	10%			
7		cobbles are subrounded to rounded [QUARTERNARY MIDDLE TERRACE DEPOSITS]						
9								
10 11	GW	10.0 - 12.0 ft: Loose, brown, dry, well graded GRAVEL (GW) non-plastic, trace silt, trace sand is fine to coarse, gravel is fine to coarse, subangular to rounded, cobbles are subrounded to rounded, boulders (up to 24 inches)	, 95%	<5%	<5%	-		
12—		[QUARTERNARY MIDDLE TERRACE DEPOSITS]				_		
13		Total Depth = 12.0 feet						
14—								
15—								
16								
 17						Note: Infilitr	ration test results are in ft/day.	
	ater Solutions, Inc	Portland, OR 503.239.8799	Pr	oject l	No. 04	464.020	Page 1 of 1	

¢	GSI Water	Solutions, Inc.	LOC	g id	: Gl	M2-TP1		
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROUNE 955 fee			ELEVATION AND DATUM:		
TE	EST PIT LOCATION:	44.742499°, -122.458983°	TOTAL D	EPTH	(ft):	DATE STARTED : 3/21/2023		
	CONTRACTOR:	McKillip Excavation, Inc.	LOGGED J. Hall	BY:		DATE FINISHED: 3/21/2023		
SA	AMPLING METHOD:	Continuous	DEPTH T WATER (F	FIRST: COMPLETED:		
	EQUIPMENT:	John Deere 50G	1					
DEPTH (feet)		SAMPLE DESCRIPTION	% GRAVEL	% SAND	% SILT	COMMENTS		
0				ELD SC SSIFICA		CORRECTED SOIL CLASSIFICATION		
	SM	0.0 - 2.0 ft: Stiff, dark brown,dry, silty SAND (SM), trace rootlets, trace organics, - Grades to brown at 1.2 feet [QUARTERNARY MIDDLE TERRACE DEPOSITS]	0%	0%	100%	0% Gravel, 65% Sand, 35% Fines		
2 3	SM	2.0 - 3.5 ft: Medium stiff, brown to light brown, dry, silty SANE (SM), trace rootlets, sand is medium to coarse, angular to subangular	0%	20%	80%	 Infilitration test at 2 feet bgs (1.17) 0% Gravel, 60% Sand, 40% Fines 		
4 1 5 1	SM	3.5 - 6.0 ft:Stiff, light brown to brown, dry, silty SAND (SM), sand is medium to coarse, angular to subangular [QUARTERNARY MIDDLE TERRACE DEPOSITS]	10%	20%	70%	10% Gravel, 60% Sand, 30% Fines		
6	SM	6.0 - 10.0 ft: Stiff, dark brown to gray, dry, silty SAND with gravel (SM), sand is medium to coarse, angular to subangular, gravel is medium, poorly sorted, angular to subrounded [QUARTERNARY MIDDLE TERRACE DEPOSITS] Cobbles (up to 8 inches) at 8 feet, angular to rounded.	25%	15%	60%	25% Gravel, 55% Sand, 20% Fines		
10 11 11 12 12	GM	Increase in cobbles with depth 10.0 - 13.0 ft: Loose, dark brown to gray, wet, silty GRAVEL with sand (GM), sand is medium to coarse, angular to subangular, gravel is fine to coarse, subangular to rounded, cobbles (up to 8 inches) [QUARTERNARY MIDDLE TERRACE DEPOSITS]	40%	20%	40%			
14		Total Depth - 13.0 feet						
15 16						Note: Infilitration test results are in ft/day Corrected soil grain size percentages and classification based on grain size		
17_	ater Solutions, Inc	. Portland, OR 503.239.8799				analysis (see Section 3.3.2).464.020Page 1 of 1		

LOG ID: GM2-TP2 PROJECT: Santiam Canyon Infiltration Evaluation GROUND SURFACE ELEVATION AND DATUM: 945 feet ams! TEST PIT LOCATION: 44.742544°, -122.460223° TOTAL DEPTH (ft): 3/21/2023 DATE STARTI 3/21/2023 CONTRACTOR: McKillip Excavation, Inc. LOGGED BY: J. Hall DATE FINISHE 3/21/2023 SAMPLING METHOD: Continuous DEPTH TO WATER (ft bgs) FIRST: COMPLETED: COMPLETED: PIRST: COMPLETED: PIRST:	ED:
TEST PIT LOCATION: 44.742544°, -122.460223° 13 3/21/2023 CONTRACTOR: McKillip Excavation, Inc. LOGGED BY: J. Hall DATE FINISHE 3/21/2023 SAMPLING METHOD: Continuous DEPTH TO WATER (ft bgs) FIRST: - COMPLETED: - EQUIPMENT: John Deere 50G II II II	ED:
CONTRACTOR: MCKIIIIP Excavation, Inc. J. Hall 3/21/2023 SAMPLING METHOD: Continuous DEPTH TO WATER (ft bgs) FIRST: COMPLETED: - EQUIPMENT: John Deere 50G III III	
SAMPLING METHOD: Continuous DEPTH TO WATER (ft bgs) FIRST: - COMPLETED: - EQUIPMENT: John Deere 50G - -	D:
H (100) SAMPLE DESCRIPTION I I I COMMENTS	
Ğ − − − − − − − − − − − − − − − − − − −	
FIELD SOIL CORRECTED SO CLASSIFICATION CLASSIFICATION	
0 - - - - - - - - - - - - -	5% Fines
CL 1.5 - 5.0 ft: Stiff, gray, moist, lean CLAY (CL), trace rootlets, high plasticity [QUARTERNARY MIDDLE TERRACE DEPOSITS] Infilitration test at 2 feet b 0% 0% 100%	gs (<0.01)
6 CL 5.0 - 7.0 ft: Stiff, light brown to gray, moist, lean CLAY (CL), medium to high plasticity, sand is fine to medium, angular to subangular 0% 10% 90% IQUARTERNARY MIDDLE TERRACE DEPOSITS] 0% 10% 90%	
 7 8 9 7.0 - 13.0 ft: Stiff, light brown to gray, moist, lean CLAY with 	
10 gravel (CL), high plasticity, sand is fine to medium, angular to subangular, gravel is fine to medium, subangular to angular 10% <10%	
11- 12- - Trace sand at 12 feet	
13	
15 Note: Infilitration test results a Corrected soil grain size percand classification based on g	entages
17 analysis (see Section 3.3.2) GSI Water Solutions, Inc. Portland, OR 503.239.8799 Project No. 0464.020 Page 1	

	GSI Water	Solutions, Inc.	LO	g id	: G	M2-TP3
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROUN 915 fe			LEVATION AND DATUM:
TE	ST PIT LOCATION:	44.743815°, -122.457928°	TOTAL 13	DEPTH	(ft):	DATE STARTED : 3/21/2023
	CONTRACTOR:	McKillip Excavation, Inc.	LOGGE J. Hall	D BY:		DATE FINISHED: 3/21/2023
SA	MPLING METHOD:	Continuous	DEPTH WATER			IRST: COMPLETED:
	EQUIPMENT:	John Deere 85G	1			
DEPTH (feet)		SAMPLE DESCRIPTION	% GRAVEL	% SAND	% SILT	COMMENTS
			-	IELD SO		CORRECTED SOIL CLASSIFICATION
	SM	0.0 - 2.0 ft: Loose, dark brown, moist, silty SAND (SM), trace rootlets, sand is fine to coarse, [QUARTERNARY MIDDLE TERRACE DEPOSITS]	0%	<5%	95%	
2 3 	SM	 Increasing clay content with depth 2.0 - 4.5 ft: Medium dense, wet, dark brown, silty SAND (SM), trace rootlets, sand is fine to medium [QUARTERNARY MIDDLE TERRACE DEPOSITS] 	0%	<5%	95%	 Pit saturated at 2 feet bgs. Unable to complete infiltration test. 0% Gravel, 55% Sand, 45% Fines Water flowing from top of clay layer at 4.5 feet bgs.
5 6 7	SM	 4.5 - 8.5 ft: Stiff, brown to gray, moist, silty SAND (SM), trace sand is fine to medium, trace rootlets Grades to gray at 6 to 7.5 feet [QUARTERNARY MIDDLE TERRACE DEPOSITS] 	0%	<5%	95%	0% Gravel, 55% Sand, 45% Fines Water flowing from bottom of clay layer at 8.5 feet bgs.
9	SM	8.5 - 9.0 ft: Medium stiff, brown, wet, silty SAND with gravel (SM), sand is fine to coarse, gravel is fine to coarse,	20%	10%	70%	20% Gravel, 55% Sand, 25% Fines
	GM	Subangular to subrounded [QUARTERNARY MIDDLE TERRACE DEPOSITS] 9.0 - 13.0 ft: Loose, brown, wet, silty GRAVEL (GM), trace sand, gravel is fine to coarse, subrounded to subangular, trace cobbles (up to 8 inches) - Increasing gravel with depth [QUARTERNARY MIDDLE TERRACE DEPOSITS]	50%	<10%	40%	Water accumulating at bottom of pit at 11 feet bgs.
		Total Depth = 13.0 feet				
14						
15— 16—						
10						Note: Corrected soil grain size percentages and classification based on grain size analysis (see Section 3.3.2)
	ater Solutions, Inc	. Portland, OR 503.239.8799	P	roject l	No. 04	164.020 Page 1 of 1

	GSI Water	Solutions, Inc. Santiam Canvon Infiltration Evaluation	LO	g id): Gl	M2-TP4	4
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROUN 898 fee			LEVATION A	ND DATUM:
TE	EST PIT LOCATION:	44.743894°, -122.461166°	TOTAL I 9	DEPTH	(ft):		DATE STARTED : 3/22/2023
	CONTRACTOR:	McKillip Excavation, Inc.	LOGGE	OBY:			DATE FINISHED: 3/22/2023
SA	AMPLING METHOD:	Continuous	DEPTH			IRST:	COMPLETED:
	EQUIPMENT:	John Deere 85G	1				
DEPTH (feet)		SAMPLE DESCRIPTION	% GRAVEL	% SAND	% SILT		COMMENTS
				IELD S SSIFIC			ORRECTED SOIL CLASSIFICATION
0	SM	0.0 - 3.5 ft: Loose, dark brown, dry, silty SAND (SM), trace rootlets, trace organics - Increasing gravel with depth [QUARTERNARY MIDDLE TERRACE DEPOSITS]	<5%		100%	5% Grav	rel, 50% Sand, 45% Fines on test at 2 feet bgs (2.03)
4 5	SM	3.5 - 5.5 ft: Medium stiff, brown, wet, silty SAND with gravel (SM), sand is medium, subangular to angular, gravel is fine to coarse, angular to rounded, cobbles (up to 6 inches) [QUARTERNARY MIDDLE TERRACE DEPOSITS]) 20%	40%	40%	20% Gra	vel, 65% Sand, 15% Fines
6	ĠM	5.5 - 9.0 ft: Loose, brown, wet, silty GRAVEL with sand (GM), sand is fine to coarse, angular to subangular, gravel is fine to coarse, angular to rounded, cobbles, rounded to subrounded, boulders (up to 14 inches) [QUARTERNARY MIDDLE TERRACE DEPOSITS]		20%	20%		cumulating in bottom feet bgs
9 10	oybidPoyloriyoliyo	* Hit refusal on cobbles/boulders at 9 feet				-	
 11							
- - 12							
13							
14							
15							
16						Corrected so and classifica	ion test results are in ft/day. il and grain size percentages ation based on grain size
17_	ater Solutions, Inc					analysis (see 164.020	Page 1 of 1

	GSI Water	Solutions, Inc.	LO	G١	ID	: G	M4-TP	1
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROUN 884 fe			ACE E	LEVATION	AND DATUM:
TE	ST PIT LOCATION:	44.744493°, -122.472179°	TOTAL			(ft):		DATE STARTED : 3/20/2023
	CONTRACTOR:	McKillip Excavation, Inc.	J. Hall		/ :			DATE FINISHED: 3/20/2023
SA	AMPLING METHOD:	Continuous		то	ns)	F	IRST:	COMPLETED:
	EQUIPMENT:	John Deere 50G			3-7		-	
DEPTH (feet)		SAMPLE DESCRIPTION	% GRAVEL		% SAND	% SILT		COMMENTS
				FIELD				ORRECTED SOIL
	SM	0.0 - 2.0 ft: Stiff, dark brown, dry, silty SAND (SM), trace gravel, rounded to angular, anthropogenics (hairbrush, spoor [FILL]			5%	90%		avel, 55% Sand, 40% Fines
2 3	SM	2.0 - 3.5 ft: Loose, light to dark brown, moist, silty SAND(SM) trace rootlets, boulders at 3.5 feet (up to 16 inches) [QUARTERNARY MIDDLE TERRACE DEPOSITS]),	% </td <td>5%</td> <td>95%</td> <td></td> <td>avel, 55% Sand, 45% Fines tion test at 3 feet bgs (0.52)</td>	5%	95%		avel, 55% Sand, 45% Fines tion test at 3 feet bgs (0.52)
4	GM	3.5 - 5.0 ft: Loose, light to dark brown, moist, silty GRAVEL (GM), trace rootlets, trace sand, cobbles, boulders are rounded to subangular (up to 16 inches)	60'	% </td <td>5%</td> <td>35%</td> <td>-</td> <td></td>	5%	35%	-	
5	GM	[QUARTERNARY MIDDLE TERRACE DEPOSITS] 5.0 - 7.5 ft: Loose, light to dark brown, moist, silty GRAVEL (GM), gravel is rounded to subangular, cobbles, rounded to subangular - Gradual decrease in silt [QUARTERNARY MIDDLE TERRACE DEPOSITS]	70	% <1	0%	20%	-	
8	GM	7.5 - 9.0 ft: Loose, dark brown, moist, silty GRAVEL with san (GM), gravel is fine to coarse, rounded to angular, some cobbles, rounded to angular	nd 60'	% 20	0%	20%		
9 10		[QUARTERNARY MIDDLE TERRACE DEPOSITS] * Hit refusal on cobbles/boulders at 9 feet						
11								
12								
13								
14								
15								
16							Corrected s	ation test results are in ft/day. oil grain size percentages cation based on grain size
17_	ater Solutions, Inc	. Portland, OR 503.239.8799					analysis (se	Page 1 of 1

	GSI Water	Solutions, Inc.	L	.00	6 ID	: G	M4-TF	2
	PROJECT:	Santiam Canyon Infiltration Evaluation		OUND 4 feet			LEVATION	AND DATUM:
TE	ST PIT LOCATION:	44.743935°, -122.472185°		TAL D				DATE STARTED : 3/20/2023
	CONTRACTOR:	McKillip Excavation, Inc.		GGED Hall	BY:			DATE FINISHED: 3/20/2023
SA	AMPLING METHOD:	Continuous	DE	PTH TO) t bgs)	F	IRST:	COMPLETED:
	EQUIPMENT:	John Deere 50G						
DEPTH (feet)		SAMPLE DESCRIPTION		% GRAVEL	% SAND	% SILT		COMMENTS
0—				-		DIL		CORRECTED SOIL CLASSIFICATION
	SM	0.0 - 3.0 ft: Stiff, dark brown, dry, silty SAND (SM) [FILL]		<5%	<5%	90%		avel, 55% Sand, 40% Fines tion test at 3 feet bgs (1.19)
		Total depth = 3.0 feet						
4 5 								
7 7 8								
9 10								
11								
12 13								
14								
15 16							Corrected s and classif	ration test results are in ft/day. soil grain size percentages ication based on grain size
17_ GSI Wa	ater Solutions, Inc	Portland, OR 503.239.8799		Pro	oject N	lo. 04	analysis (s 164.020	ee Section 3.3.2). Page 1 of 1

TEST PIT LOCATION: 44 743328°, 122.472182° DODE RECLAINS CONTRACTOR: MAKING DEPTH (0): 3/20/2023 CONTRACTOR: MAKING DEPTH (0): 3/20/2023 SAMPLING METHOD: CONTRACTOR: John Deere 50G EQUIPMENT: John Deere 50G FEED Solt COMMENTS COMMENTS SAMPLE DESCRIPTION Gon Content of the colspan="2">COMMENTS COMMENTS C	PROJECT: Santiam Canyon Infiltration Evaluation GR0			LOG ID: GM4-TP3										
TEST PT LOCATION: 44/43328*, 122/472182* 9 3720/2023 CONTRACTOR: McKillip Excavation, Inc. J. Hall CONTRACTOR: McKillip Excavation, Inc. J. Hall CONTRACTOR: McKillip Excavation, Inc. J. Hall CONTRACTOR: CONTRECTOR: <	PROJECT: Santiam Canyon Infiltration Evaluation GR 88													
CONTRACTOR IDCKNID EXCLUSION, InC. J. Hall J320/2023 SAMPLING METHOD Continuous DEPTHON FIRST: COMPLETED: EQUIPMENT: John Deore 50G Image: Sample Description Image: S	TEST PIT LOCATION:		44.743328°, -122.472182°		TAL D	EPTH (ft):							
SAMPLING METHOD: Continuous WATER (ft bgs) . EQUIPMENT: John Deere 50G Eggs SAMPLE DESCRIPTION Egg g g g g g g g g g g g g g g g g g g		CONTRACTOR:	McKillip Excavation, Inc.			BY:								
Egg SAMPLE DESCRIPTION Egg Egg Egg COMMENTS 0 02.0 ft. Losse. dark brown. molet, silly SAND with gravel (SM), gravel i Skin to coarse, rounded to angular, some cobbles (up to 12 Inches) 35%. 07%. 55%. 35%. Gravel, 50%. Sand, 15%. Fines 2 02.0 ft. Losse. dark brown. molet, silly SAND with gravel (SM), sand is well-graded, angular to subangular, pravel is well gravel at 3.5 ft 10%. 55%. 35%. Gravel, 50%. Sand, 15%. Fines 4 02.0 ft. Losse, dark brown, molst, silly SAND with gravel (SM), sand is well-graded, angular to subangular, gravel is well gravel at 3.5 ft 20%. 10%. 70%. 35%. Gravel, 50%. Sand, 25%. Fines 4 5 5 10%. 5.5%. 35%. Gravel, 50%. Sand, 25%. Fines 5 6 6 15%. 6.76%. 8 8 6 7 60%. <10%. 30%.	SA	MPLING METHOD:	Continuous				F -	IRST:	COMPLETED: -					
SM Image: Constraint of the subscription of the subscrip		EQUIPMENT:	John Deere 50G	l										
O CLASSIFICATION CLASSIFICATION 1 SM 0.0 - 2.0 ft: Loose, dark brown, moist, slity SAND with gravel (SM), gravel is line to coarse, rounded to angular, some cobiles (up to 12 inches) 35% 10% 55% 35% Gravel, 50% Sand, 15% Fines 2 SM C.0 - 4.0 ft: Medium stiff, dark brown, moist, slity SAND with gravel (SM), gravel as 15 ft 20% 10% 70% 20% Gravel, 55% Sand, 15% Fines 4 SM C.0 - 4.0 ft: Medium stiff, dark brown, moist, slity SAND with gravel (SM), gravel as 15 ft 20% 10% 70% 20% Gravel, 55% Sand, 25% Fines 5 SM COUARTERNARY MIDDLE TERRACE DEPOSITS) 15% <5% 80% 15% Gravel, 55% Sand, 25% Fines 6 SM COUARTERNARY MIDDLE TERRACE DEPOSITS) 15% <5% 80% 15% Gravel, 50% Sand, 35% Fines 6 GM COUARTERNARY MIDDLE TERRACE DEPOSITS) 15% <5% 80% 15% Gravel, 50% Sand, 35% Fines 10 Fines sintitic as and, gravel is rounded to subangular, cobbles (up to 12 inches), nounded to subangular, some cobbles (up to 12 inches), for the subangu	DEPTH (feet)		SAMPLE DESCRIPTION			% SAND	% SILT		COMMENTS					
1 SM 0.0 - 2.0 ft. Loss, dark brown, moist, stilly SAND with gravel (SM), gravel is fine to coarse, or nucled to angular, some cobbles (up to 12 inches) 35% 10% 55% 2 SM (SU, ATTERNARY MIDDLE TERRACE DEPOSITS) 35% 10% 55% 3 SM (2.0 - 4.0 ft. Medium stiff, dark brown, moist, stilly SAND with gravel is well graded, angular to subangular, gravel is well graded, angular to subangular, some (SM), gravel is rounded to angular 20% 10% 70% 4 SM 4.0 - 5.0 ft. Loss, dark brown, moist, still YSAND with grave (SM), gravel is rounded to angular, cobbles (up to 12 inches), rounded to subangular, and the sub- gravel is rounded to subangular, cobbles (up to 12 inches), rounded to subangular, cobbles (up to 12 inches), rounded to subangular, and the sub- gravel is nonded to subangular, cobbles (up to 12 inches), rounded to subangular, and the sub- gravel is nonded to subangular, cobbles (up to 12 inches), rounded to subangular, and the sub- gravel is nonded to subangular, and the sub- gravel is nonded to subangular, cobbles (up to 12 inches), rounded to subangular, and the sub- gravel is nonded to sub- gravel is non						~ ~								
3 SM		SM	(SM), gravel is fine to coarse, rounded to angular, some cobbles (up to 12 inches)		35%	10%	55%	35% Grav	vel, 50% Sand, 15% Fines					
4 10 - 5.0 ft: Losse, light to dark brown, moist, silty SAND with grave (SM), gravel is rounded to angular 15% <5% 80%		SM	2.0 - 4.0 ft: Medium stiff, dark brown, moist, silty SAND with gravel (SM), sand is well-graded, angular to subangular, gravel is well graded, angular to subrounded – Increase in gravel at 3.5 ft		20%	10%	70%		_					
6 6 6 6 6 6 6 6 6 6 6 6 6 6		SM	4.0 - 5.0 ft: Loose, light to dark brown, moist, silty SAND with grave (SM), gravel is rounded to angular	h	15%	<5%	80%							
8 * Hit refusal on cobbles/boulders at 8 feet 9 10 11 12 13 14 15		GM	5.0 - 8.0 ft: Loose, dark brown, moist, silty GRAVEL (GM), trace sand, gravel is rounded to subangular, cobbles (up to inches), rounded to subangular	12	60%	<10%	30%							
	8		[QUARTERNARY MIDDLE TERRACE DEPOSITS]											
	9		* Hit refusal on cobbles/boulders at 8 feet											
12- 13- 14- 15-	10-													
13- 14- 15-	11-													
	12-													
15	13-													
	15													
16 Note: Infilitration test results are in ft/day. Corrected soil grain size percentages and classification based on grain size	16							Corrected so	bil grain size percentages					
17_ analysis (see Section 3.3.2). GSI Water Solutions, Inc. Portland, OR 503.239.8799 Project No. 0464.020 Page 1 of 1		ator Solutions Inc	Dortland OD 502 220 0700		Dre			analysis (see	e Section 3.3.2).					

PROJECT: Santiam Canyon Infiltration Evaluation			LOG ID: GM5-TP1							
PROJECT: Santiam Canyon Infiltration Evaluation			GROUND SURFACE ELEVATION AND DATUM: 986 feet amsl							
TEST PIT LOCATION:		44.742272°, -122.452914°	TOTAL D 9	EPTH	DATE STARTED : 3/21/2023					
	CONTRACTOR:	McKillip Excavation, Inc.	LOGGED J. Hall	BY:		DATE FINISHED: 3/21/2023				
SA	MPLING METHOD:	Continuous	DEPTH TO FIRST: WATER (ft bgs) -				COMPLETED:			
	EQUIPMENT:	John Deere 50G								
DEPTH (feet)		SAMPLE DESCRIPTION	% GRAVEL	% SAND	% SILT		COMMENTS			
0			FIELD SOIL CLASSIFICATION			CORRECTED SOIL CLASSIFICATION				
	SM	0.0 - 5.0 ft: Loose, dark brown to dark gray, moist, silty SAND (SM), sand is fine, trace rootlets [QUARTERNARY MIDDLE TERRACE DEPOSITS] Increasing plastisity with depth (medium to high at 5 feet). Trace rootlets at 5 feet	0%	<5%	95%		on test at 2 feet bgs (0.01) rel, 55% Sand, 45% Fines			
6-1- 7-1- 8-1- 9-1	GM	5.0 - 9.0 ft: Loose, brown to gray, wet, silty GRAVEL (GM), trace sand, gravel is subangular to angular, cobbles are rounded to subrounded, boulders (up to 20 inches) [QUARTERNARY MIDDLE TERRACE DEPOSITS]	60%	<5%	40%	Water ac pit at 8 fo	ccumulating in bottom of eet bgs.			
-		* Hit refusal on large boulders at 9 feet								
10										
11										
12-										
13										
14										
15										
16						Corrected s and classife	ation test results are in ft/day. oil grain size percentages ation based on grain size			
17_	ater Solutions, Inc	. Portland, OR 503.239.8799				analysis (se 164.020	Page 1 of 1			

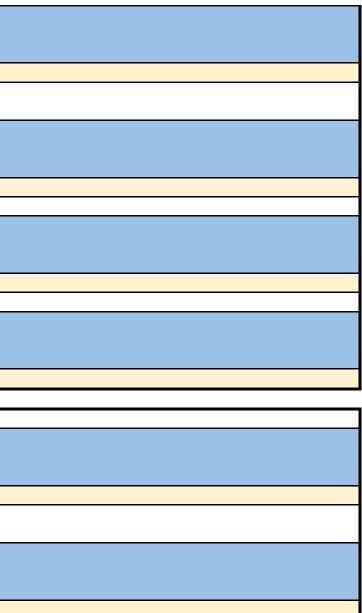
PROJECT: Santiam Canyon Infiltration Evaluation			L	LOG ID: GM5-TP2							
PROJECT: Santiam Canyon Infiltration Evaluation				GROUND SURFACE ELEVATION AND DATUM: 1005 feet amsl							
TEST PIT LOCATION:		44.742237°, -122.450529°	тот <i>і</i> 13	AL DI	EPTH (ft):		DATE STARTED : 3/22/2023			
	CONTRACTOR:	McKillip Excavation, Inc.	LOG J. Ha		BY:			DATE FINISHED : 3/22/2023			
SAMPLING METHOD:		Continuous	DEPT				IRST: COMPLETED:				
	EQUIPMENT:	John Deere 85G	1								
DEPTH (feet)		SAMPLE DESCRIPTION		% GRAVEL	% SAND	% SILT		COMMENTS			
0		FIELD SOIL CLASSIFICATION				CORRECTED SOIL N CLASSIFICATION					
	SM	0.0 - 5.0 ft: Loose, dark brown, dry, silty SAND (SM), trace organics, trace rootlets, sand is fine to coarse, gravel is medium to coarse, subrounded to rounded, few cobbles, boulders (up to 16 inches) [QUARTERNARY MIDDLE TERRACE DEPOSITS] – Grades to light brown, increase in gravel at 4.5 feet	1	10%	<10%	80%		n test at 2 feet bgs (2.29) rel, 55% Sand, 35% Fines			
	GM	5.0 - 6.0 ft: Loose, dark brown to brown, wet, silty GRAVEL (GM), trace sand is fine to medium, gravel is medium to coarse, subangular to angular, cobbles are rounded to	5	60%	<10%	40%					
	GM	Coarse, subangular to angular, coobles are rounded to subangular, boulders are rounded to subangular (up to 18 inches) Increase in gravel and cobbles at 6.5 feet [QUARTERNARY MIDDLE TERRACE DEPOSITS] 6.0 - 13.0 ft: Loose, brown, wet, silty GRAVEL with sand (GM), sand is fine to coarse, subangular to angular, gravel is fine to coarse, rounded to subangular, cobbles are rounded to subangular, boulders are rounded to subangular [QUARTERNARY MIDDLE TERRACE DEPOSITS] Total Depth = 13.0 feet	- 4 	40%	20%	40%	Water acc pit at 10 fe	cumulating in bottom of eet bgs.			
15— 16—							Corrected so and classific	tion test results are in ft/day. il grain size percentages ation based on grain size			
17_	er Solutions, Inc	. Portland, OR 503.239.8799		Dro	viact N	0 44	analysis (see 04.020	e Section 3.3.2). Page 1 of 1			

Tost Dit:	est Pit: GM1-TP1										
Test Pit:	GIVI1-TP1								1		
	Original %	Original %	Original %	Normalized %	Normalized %	Interim Corrected	Interim	Final	Final	Final	
Depth	- -	-	-				Corrected %	Corrected %	Corrected %	Corrected %	Corrected USCS Classification
	Gravel	Sand	Fines	Sand	Fines	% Fines	Sand	Gravel	Sand	Fines	
0'-2'	0.35	0.10	0.60	0.14	0.86	0.28	0.72	0.35	0.47	0.18	Silty SAND with gravel (SM)
Test Pit: GM1-TP3											
	Original %	Original %	Original %	Normalized 0/	Normalized %	Interim Corrected	Interim	Final	Final	Final	
Depth	- -	-	Original %	Normalized %		Interim Corrected	Corrected %	Corrected %	Corrected %	Corrected %	Corrected USCS Classification
	Gravel	Sand	Fines	Sand	Fines	% Fines	Sand	Gravel	Sand	Fines	
0'-1'	0.05	0.10	0.85	0.11	0.89	0.42	0.58	0.05	0.55	0.40	silty SAND (SM)
								-			
	Original %	Original %	Original %	Normalized %	Normalized %	Interim Corrected	Interim	Final	Final	Final	
Depth		•	Ŭ				Corrected %	Corrected %	Corrected %	Corrected %	Corrected USCS Classification
	Gravel	Sand	Fines	Sand	Fines	% Fines	Sand	Gravel	Sand	Fines	
1'-2'	0.10	0.60	0.30	0.67	0.33	0.12	0.88	0.10	0.79	0.11	well graded SAND with silt (SW-SM)
	Original %	Original %	Original %	Normalized %	Normalized %	Interim Corrected	Interim	Final	Final	Final	
Depth	- -	-	Original %				Corrected %	Corrected %	Corrected %	Corrected %	Corrected USCS Classification
	Gravel	Sand	Fines	Sand	Fines	% Fines	Sand	Gravel	Sand	Fines	
2'-8'	0.20	0.60	0.20	0.75	0.25	0.07	0.93	0.20	0.74	0.06	silty SAND with gravel (SW)

Test Pit:	GM2-TP1										
Depth	Original % Gravel	Original % Sand	Original % Fines	Normalized % Sand	Normalized % Fines	Interim Corrected % Fines	Interim Corrected % Sand	Final Corrected % Gravel	Final Corrected % Sand	Final Corrected % Fines	Corrected USCS Classification
0'-2'	0.00	0.00	1.00	0.00	1.00	0.50	0.50	0.00	0.50	0.50	silty SAND (SM)
Depth	Original % Gravel	Original % Sand	Original % Fines	Normalized % Sand	Normalized % Fines	Interim Corrected % Fines	Interim Corrected % Sand	Final Corrected % Gravel	Final Corrected % Sand	Final Corrected % Fines	Corrected USCS Classification
2'-3.5'	0.00	0.20	0.80	0.20	0.80	0.39	0.61	0.00	0.61	0.39	silty SAND (SM)
								_			-
Depth	Original % Gravel	Original % Sand	Original % Fines	Normalized % Sand	Normalized % Fines	Interim Corrected % Fines	Interim Corrected % Sand	Final Corrected % Gravel	Final Corrected % Sand	Final Corrected % Fines	Corrected USCS Classification
3.5'-6'	0.10	0.20	0.70	0.22	0.78	0.34	0.66	0.10	0.60	0.30	silty SAND (SM)
					1				T		
Depth	Original % Gravel	Original % Sand	Original % Fines	Normalized % Sand	Normalized % Fines	Interim Corrected % Fines	Interim Corrected % Sand	Final Corrected % Gravel	Final Corrected % Sand	Final Corrected % Fines	Corrected USCS Classification
6'-10'	0.25	0.15	0.60	0.20	0.80	0.28	0.72	0.25	0.54	0.21	silty SAND with gravel (SM)
Test Pit:	Test Pit: GM2-TP2										
Depth	Original % Gravel	Original % Sand	Original % Fines	Normalized % Sand	Normalized % Fines	Interim Corrected % Fines	Interim Corrected % Sand	Final Corrected % Gravel	Final Corrected % Sand	Final Corrected % Fines	Corrected USCS Classification

0'-1.5'	0.00	0.00	1.00	0.00	1.00	0.50	0.50	0.00	0.50	0.50	silty SAND (SM)
Test Pit:	GM2-TP3										
Depth	Original % Gravel	Original % Sand	Original % Fines	Normalized % Sand	Normalized % Fines	Interim Corrected % Fines	Interim Corrected % Sand	Final Corrected % Gravel	Final Corrected % Sand	Final Corrected % Fines	Corrected USCS Classification
0'-2'	0.00	0.05	0.95	0.05	0.95	0.47	0.53	0.00	0.53	0.47	silty SAND (SM)
Depth	Original % Gravel	Original % Sand	Original % Fines	Normalized % Sand	Normalized % Fines	Interim Corrected % Fines	Interim Corrected % Sand	Final Corrected % Gravel	Final Corrected % Sand	Final Corrected % Fines	Corrected USCS Classification
2'-4.5'	0.00	0.05	0.95	0.05	0.95	0.47	0.53	0.00	0.53	0.47	silty SAND (SM)
	1	1									
Depth	Original % Gravel	Original % Sand	Original % Fines	Normalized % Sand	Normalized % Fines	Interim Corrected % Fines	Interim Corrected % Sand	Final Corrected % Gravel	Final Corrected % Sand	Final Corrected % Fines	Corrected USCS Classification
4.5'-8.5'	0.00	0.05	0.95	0.05	0.95	0.47	0.53	0.00	0.53	0.47	silty SAND (SM)
Depth	Original % Gravel	Original % Sand	Original % Fines	Normalized % Sand	Normalized % Fines	Interim Corrected % Fines	Interim Corrected % Sand	Final Corrected % Gravel	Final Corrected % Sand	Final Corrected % Fines	Corrected USCS Classification
8.5'-9'	0.20	0.10	0.70	0.13	0.88	0.34	0.66	0.20	0.53	0.27	silty SAND with gravel (SM)
Test Pit:	GM2-TP4										
Depth	Original % Gravel	Original % Sand	Original % Fines	Normalized % Sand	Normalized % Fines	Interim Corrected % Fines	Interim Corrected % Sand	Final Corrected % Gravel	Final Corrected % Sand	Final Corrected % Fines	Corrected USCS Classification
0'-3.5'	0.05	0.00	0.95	0.00	1.00	0.47	0.53	0.05	0.50	0.45	silty SAND (SM)
Depth	Original % Gravel	Original % Sand	Original % Fines	Normalized % Sand	Normalized % Fines	Interim Corrected % Fines	Interim Corrected % Sand	Final Corrected % Gravel	Final Corrected % Sand	Final Corrected % Fines	Corrected USCS Classification
3.5'-5.5'	0.20	0.40	0.40	0.50	0.50	0.18	0.82	0.20	0.66	0.14	silty SAND with gravel (SM)
					L		1	•			
Test Pit:	GM4-TP1										
	_									 1	

Test Pit:	: GM4-TP1										
Depth	Original % Gravel	Original % Sand	Original % Fines	Normalized % Sand	Normalized % Fines	Interim Corrected % Fines	Interim Corrected % Sand	Final Corrected % Gravel	Final Corrected % Sand	Final Corrected % Fines	Corrected USCS Classification
0'-2'	0.05	0.05	0.95	0.05	0.95	0.47	0.53	0.05	0.50	0.45	silty SAND (SM)
Depth	Original % Gravel	Original % Sand	Original % Fines	Normalized % Sand	Normalized % Fines	Interim Corrected % Fines	Interim Corrected % Sand	Final Corrected % Gravel	Final Corrected % Sand	Final Corrected % Fines	Corrected USCS Classification
2'-3.5'	0.01	0.05	0.94	0.05	0.95	0.46	0.54	0.01	0.53	0.46	silty SAND (SM)


Test Pit: GM4-TP2

Depth	Gravel	Sand	Original % Fines	Sand	Fines	Interim Corrected % Fines	Sand	Gravel	Sand	Fines	Corrected USCS Classification
0'-3'	0.05	0.05	0.90	0.05	0.95	0.44	0.56	0.05	0.53	0.42	silty SAND (SM)
Test Pit:	Test Pit: GM4-TP3										
	Original %	Original %	Original %	Normalized %	Normalized %	Interim Corrected	Interim	Final	Final	Final	
Depth	Gravel	Sand	Fines	Sand	Fines	% Fines	Corrected %	Corrected %	Corrected %	Corrected %	Corrected USCS Classification
	Ulavei	Janu	T IIIC3	Sanu	Times	70111105	Sand	Gravel	Sand	Fines	
0'-2'	0.35	0.10	0.55	0.15	0.85	0.26	0.74	0.35	0.48	0.17	silty SAND with gravel (SM)
	Original %	Original %	Original %	Normalized %	Normalized %	Interim Corrected	Interim	Final	Final	Final	
Depth	Gravel	Sand	Fines	Sand	Fines	% Fines	Corrected %	Corrected %	Corrected %	Corrected %	Corrected USCS Classification
						/*********	Sand	Gravel	Sand	Fines	
2'-4'	0.20	0.10	0.70	0.13	0.88	0.34	0.66	0.20	0.53	0.27	silty SAND with gravel (SM)
	Original %	Original %	Original %	Normalized %	Normalized %	Interim Corrected	Interim	Final	Final	Final	
Depth	Ŭ	Ŭ	Ū				Corrected %	Corrected %	Corrected %	Corrected %	Corrected USCS Classification
	Gravel	Sand	Fines	Sand	Fines	% Fines	Sand	Gravel	Sand	Fines	
4'-5'	0.15	0.05	0.80	0.06	0.94	0.39	0.61	0.15	0.52	0.33	silty SAND with gravel (SM)
Test Pit:	Test Pit: GM5-TP1										

TEST FIL.											
	Original %	Original %	Original %	Normalized %	Normalized %	Interim Corrected	Interim	Final	Final	Final	
Depth	Gravel	Sand	Fines	Sand	Fines	% Fines	Corrected %	Corrected %	Corrected %	Corrected %	Corrected USCS Classification
	Ulavel	Sanu	111165	Sanu	TITES	70 1 11105	Sand	Gravel	Sand	Fines	
0'-5'	0.00	0.05	0.95	0.05	0.95	0.47	0.53	0.00	0.53	0.47	silty SAND (SM)

Test Pit: GM5-TP2

Depth	Ŭ	U U	0			Interim Corrected	Interim Corrected %	Final Corrected %	Final Corrected %	Final Corrected %	Corrected USCS Classification
	Gravel	Sand	Fines	es Sand	Fines	% Fines	Sand	Gravel	Sand	Fines	
0'-5'	0.10	0.10	0.80	0.11	0.89	0.39	0.61	0.10	0.55	0.35	silty SAND (SM)

-ATTACHMENT B-

GeoSystems Analysis Infiltration Testing Memo

MEMORANDUM

June 2, 2023

TO: Matt Kohlbecker, RG, GSI Water Solutions, Inc.

FROM: Jason Keller, GeoSystems Analysis, Inc.

CC: Jesse Hall, GSI Water Solutions, Inc. Scott Waibel, GeoSystems Analysis, Inc.

RE: Gates – Mill City Infiltration Testing

1.0 INTRODUCTION

GeoSystems Analysis Inc. (GSA) was contracted to conduct an infiltration assessment to support test pit characterization performed by GSI Water Solutions, Inc (GSI) at four study areas. The infiltration assessment and test pit characterization were conducted to evaluate the feasibility of treated wastewater infiltration in Gates and Mill City, Oregon. The four study areas are shown in Figure 1 and include:

- Baughman Lucas (GM1)
- Shepherd (GM2)
- 4th Ave Right of Way (ROW) (GM4)
- Weyerhaeuser (GM5)

This technical memorandum presents the results of cylinder infiltrometer (CI) testing and test pit infiltration testing to measure the field effective saturated hydraulic conductivity (K) of predominant materials identified from test pit soil logging performed by GSI.

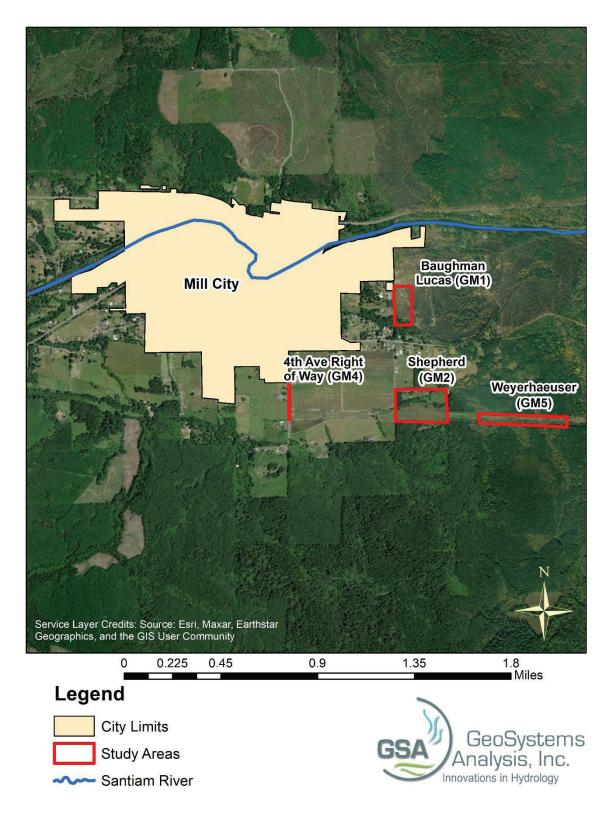


Figure 1. Project study areas

2.0 METHODS

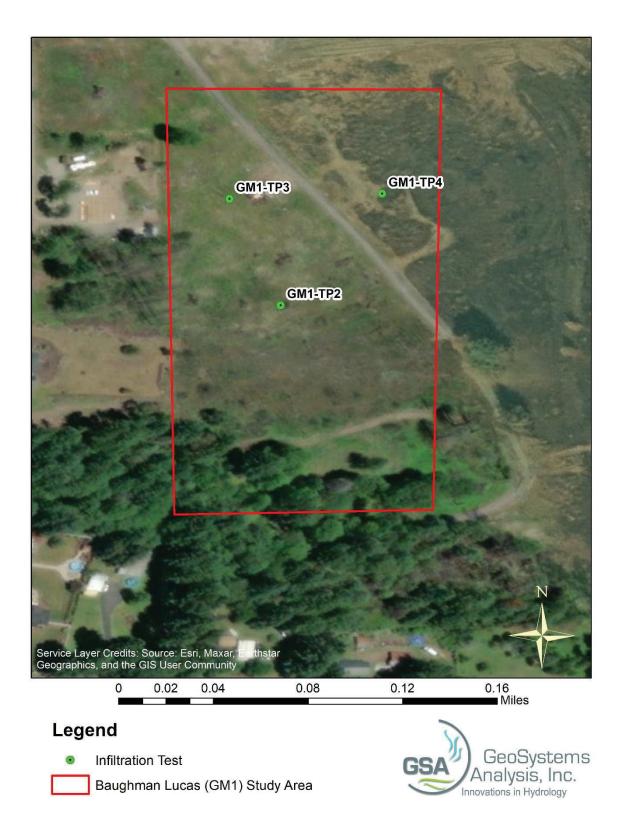
The single-ring CI method with lateral divergence correction (Bouwer et al., 1999) provides an intermediate-scale measurement of the effective K in the tested material. Effective K values provide a good estimate of the potential infiltration rate in the absence of surface clogging and/or restricting or compacted layers present deeper in the profile (Bouwer et al., 1999, Rice et al., 2014). The CI method employs a cylinder measuring 20 inches in diameter and 12 inches in height (Figure 2).

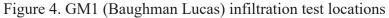
Infiltration tests in soils containing large fraction of gravels, cobbles, and/or boulders were conducted using a modified test pit infiltration with lateral divergence method (Figure 3) due to the inability to create an adequate seal between the coarse gravel and larger size clasts and the ring infiltrometer. Test pit infiltration tests are similar to the CI method except that water is added to an open test pit as opposed to a CI ring. The modified test pit infiltration method may overestimate effective K due to flow through the sidewall of the pit, however, final infiltration measurements were made with pit water heights of approximately 13 inches or less, resulting in flow being predominately vertical flow through the bottom of the test pit and reducing the potential error introduced by sidewall flow. Standard Operating Procedure (SOP) for the CI test method is provided in Appendix A. Modifications to the CI test calculations for the test pit infiltration tests are provided in Appendix B.

Figure 2. Example CI measurement (GM1, TP-4 at 2 ft bgs)

GeoSystems Analysis, Inc.

2310 - Subsurface Characterization at Gates - Mill City/reports/Phase I/Gates-Mill City Infiltration Testing_02June2023


Figure 3. Example modified test pit infiltration measurement (GM1, TP-4 at 3 ft bgs)


Based on GSI's test pit geologic logging results, test pits and depths were selected within each of the four study areas for infiltration testing to measure the effective K of the range of materials encountered. Table 1 summarizes infiltration test ID, infiltration test depth, and test method (i.e., CI method or modified test pit infiltration method). Four infiltration tests were conducted at GM1 (Figure 4), three tests at GM2 (Figure 5), four tests at GM4 (Figure 6), and two tests at GM5 (Figure 7). GM5 was limited to two infiltration tests due to snowy conditions and access constraints.

Study Area	Test ID	Test Date	Test Depth (ft bgs)	Test Typeª
	GM1- TP2	3/73/71/73		TPI
GM1	GM1- TP3	3/23/2023	2	CI
	GM1-	3/23/2023	2	CI
	TP4	0/20/2020	3	TPI
	GM2- TP1	3/21/2023	2	CI
GM2	GM2- TP2	3/21/2023	2	CI
	GM2- TP4	3/22/2023	2	CI
	GM4- TP1	3/20/2023	3	CI
GM4	GM4- TP2	3/20/2023	3	CI
	GM4- TP3	3/20/2023	2	CI
			4.5	TPI
OME	GM5- TP1	3/21/2023	2	CI
GM5	GM5- TP2	3/22/2023	2	CI

Table 1. Infiltration test ID, depth and test type

a - CI - Single ring cylinder infiltrometer; TPI - Test pit infiltration

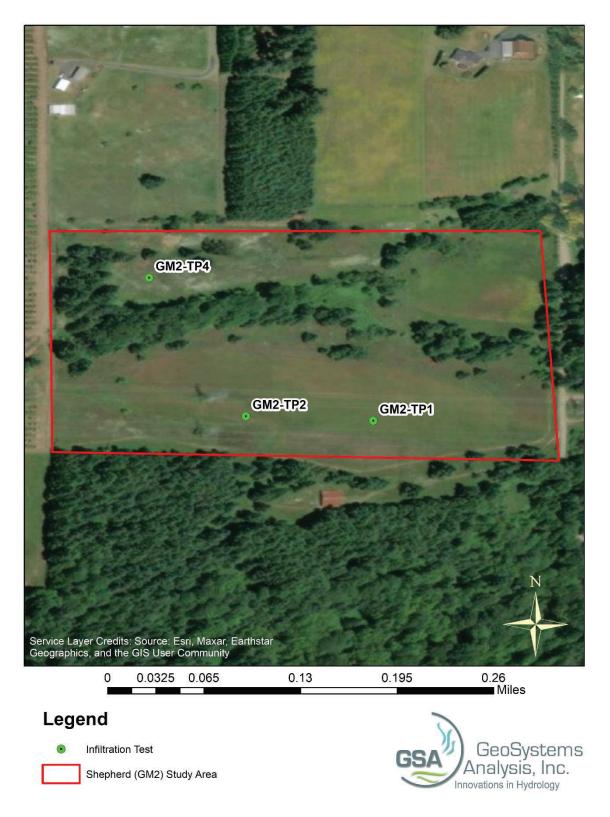


Figure 5. GM2 (Shepherd) infiltration test locations

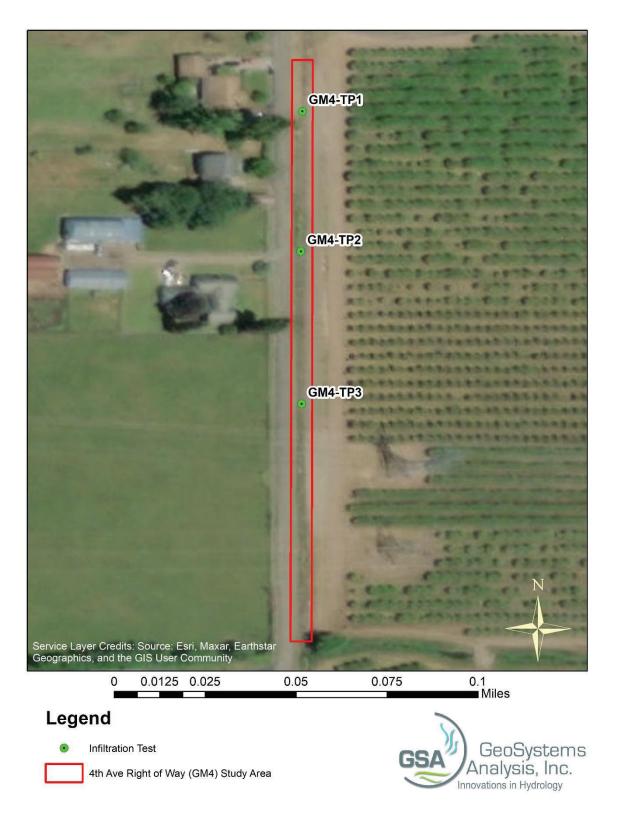


Figure 6. GM4 (4th Ave ROW) infiltration test locations

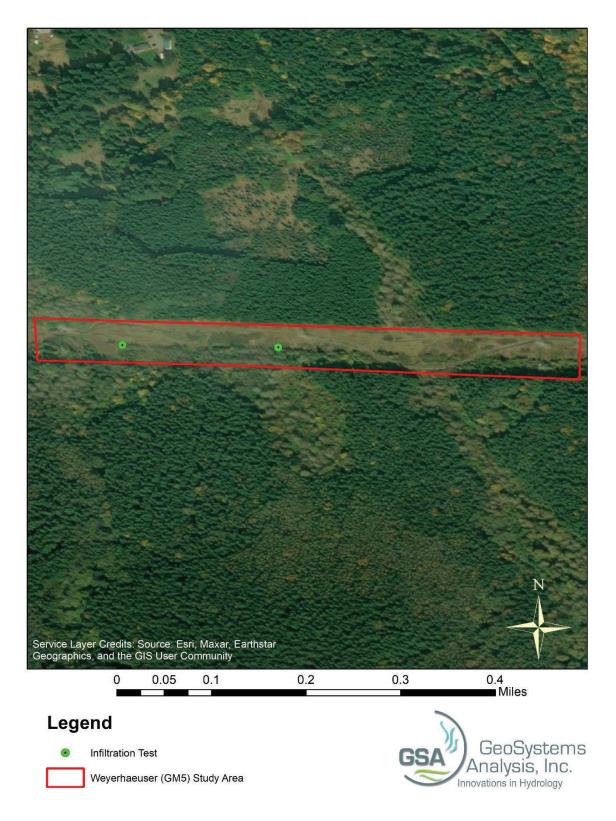


Figure 7. GM5 (Weyerhaeuser) infiltration test locations

3.0 RESULTS

Table 2 presents infiltration testing measured K, United States Department of Agriculture (USDA) soil series, and GSI's soil classification at the infiltration test depth per the Unified Soil Classification System. Note that the effective K rates do not account for surface clogging over time due to fine soil (i.e., silt and clay) accumulation or biological fouling or uncertainties related to spatial variability in soil properties.

The geometric mean soil effective K increased with decreasing fines content, ranging from less than 0.01 ft/day for USCS Lean Clay (CL) to 12.66 ft/day for USCS Gravel (GM). Study area geometric mean effective K values were greatest at GM1 (Baughman-Lucas, 5.97 ft/day), followed by GM4 (4th Ave ROW, 0.78 ft/day), GM5 (Weyerhaeuser, 0.18 ft/day), and GM2 (Shepherd, 0.12 ft/day).

The GM5 study area was limited to two infiltration tests which had large variability (0.01 ft/day and 2.29 ft/day) and as a result there is increased uncertainty of the GM5 study area effective K. However, based on its proximity to the GM2 study area (Figure 1) and similarity of soils to those observed at the GM2 and GM4 study area (Table 2), the GM5 study area effective K likely ranges between the values measured at GM2 and GM4 study areas (0.12 ft/day to 0.78 ft/day).

Table 2. Infiltration test results

Study Area	Test ID	Depth	USDA Soil Series	USCS Classification ^a	Effective Saturated Hydraulic Conductivity (ft/day)
	GM1- TP2	2		Gravel (GM)	12.66
0144	GM1- TP3	2	Camas Gravelly Sandy Loam	Sand with gravel (SM)	3.25
GM1	GM1- TP4	2	Sanuy Loani	Gravel with silt (GW- GM)	3.70
	GM1- TP4	3		Gravel with silt (GW- GM)	8.31
			GM1 Geometric N	lean	5.97
	GM2- TP1	2	Cumley Silty Clay	Silt with sand (ML)	1.17
GM2	GM2- TP2	2	Loam	Lean CLAY (CL)	<0.01
	GM2- TP4	2	McAlpin Silty Clay Loam	Silt (ML)	2.03
			GM2 Geometric M	0.12	
	GM4- TP1	3	Sifton Variant	Silt (ML)	0.52
	GM4- TP2	3	Gravelly Loam	Silt (ML)	1.19
GM4	GM4- TP3	2	McBee Silty Clay	Silt (ML)	0.93
	GM4- TP3	4.5	Loam	Silt (ML)	0.65
			GM4 Geometric M	lean	0.78
	GM5- TP1	2	Dupee Silt Loam	Silt (ML)	0.01
GM5	GM5- TP2	2	Bull Run Silt Loam	Silt with gravel (ML)	2.29
	tast nit la		GM5 Geometric N	lean	0.18

 $a-From \ GSI \ test \ pit \ logs$

4.0 CONCLUSIONS

Measured soil effective K values were greatest at the GM1 project area, indicating the potential for high infiltration rates relative to the other sites tested. The GM4 project area had moderate soil effective K rates, whereas GM2 and GM5 project areas had low soil effective K rates, indicating potentially limiting infiltration rates at the GM2 and GM5 study areas.

Should the Phase II borehole characterization support the GM5 study area as a potentially viable infiltration basin location, we recommend completing the Phase I near surface infiltration testing previously planned for the site that could not be completed due to weather and access constraints.

The effective K rates presented do not account for surface clogging, potentially hydraulically restrictive material layers present deeper in the profile, or uncertainties related to the spatial variability of soil properties. We recommend applying a safety factor to these effective K rates to account for these uncertainties. Additionally, we recommend the selected site undergo large scale (i.e., 4 ft diameter) and long term (i.e., 8 hours) infiltration testing to refine long term estimated infiltration rates.

5.0 REFERENCES

- Bouwer, H., Back, J.T., Oliver, J.M., 1999. Predicting Infiltration and Groundwater Mounds for Artificial Recharge, J Hydro Eng, ASCE, (4) pp. 350-357.
- Bower, H. 2002. Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeology Journal. 10:121-142.
- Rice, R.C., M. Milczarek, J. Keller, 2014. A Critical Review of Single Ring Cylinder Infiltrometers with Lateral Flow Compensation. Proceedings 14th Biennial Symposium on Managed Aquifer Recharge, July 31-August 1, 2014 – Orange, CA.

Appendix A

Cylinder Infiltrometer Standard Operating Procedure

Standard Operating Procedure 4.4 - Single Ring Infiltrometer with Lateral Divergence Correction

STANDARD OPERATING PROCEDURE 4.4

Single Ring Infiltrometer with Lateral Divergence Correction

Version 1.0

Prepared by:	RR	Date:	08/06/2015
Reviewed by:	JB	Date:	10/09/2020
Approved by:		Date:	

Standard Operating Procedure 4.4 - Single Ring Infiltrometer with Lateral Divergence Correction

TABLE OF CONTENTS

1.0	General Statement	. 1
2.0	Objective	1
3.0	Equipment and/or Instrumentation	.2
4.0	Preparation	
5.0	Procedures	3
6.0	Sample Containers, Preservation, and Transmittal	.3
7.0	Equipment Decontamination and Disposal	
8.0	Documentation	.4
8.0	Documentation	.5
9.0	Quality Assurance	5
11.0	References	5

FIGURES

Figure 1. Cylinder infiltrometer testing (1a); measurement of lateral divergence (1b)......1

TABLES

Table 1. Water entry values for different soil types 5

1.0 GENERAL STATEMENT

The single-ring cylinder infiltrometer (CI) method is described by Bouwer et al. (1999). The method is a short-term infiltration test, which provides an in-situ measurement of the effective saturated hydraulic conductivity (K) of soil material.

2.0 OBJECTIVE

The CI is driven into the material to be tested and then filled with water to the top of the ring. The decline of water in the ring is then monitored (Figure 1). After the water falls about 5 cm, the time and exact decrease in water level is recorded and the cylinder is refilled. This process is continued until about 40 cm of water have infiltrated or four hours have expired. A shovel is then used to dig outside of the cylinder to determine the distance of lateral divergence (Figure 1). The depth of the wetting front is also determined by augering in the center of the wetted surface to dryness or the wetting front, if evident. The final infiltration rate, wetting depth and divergence are then used to calculate K.

Figure 1. Cylinder infiltrometer testing (1a); measurement of lateral divergence (1b)

3.0 EQUIPMENT AND/OR INSTRUMENTATION

The following field equipment shall be used to run a CI test:

- Cylinder infiltrometer, minimum diameter of 50 cm, depth of 30 cm.
- 20 to 60-liter water-filled containers to supply water.
- Bubble wrap to place inside the ring while filling with water.
- Stopwatch or watch.
- Thermometer.
- Ruler or tape measure.
- Sledge hammer or equivalent driver and three foot 2x4's for driving the CI into the soil.
- Shovel.
- Pick or breaking bar.
- Hand auger
- Knee pads and/or chair (optional).

4.0 PREPARATION

The following procedures shall be used to prepare the site and the equipment for running the CI test:

- The measuring surface should be relatively level.
- Large rocks or stones should be removed from the cylinder perimeter.
- The method is not recommended for use on rocky soil that prevents the insertion of the cylinder.
- When measurements are not taken at the ground surface, the site should be leveled after excavation. Care is to be taken to remove loose, disturbed soil.
- The area leveled should be at least one meter larger than the cylinder diameter.

5.0 PROCEDURES

The following procedures shall be used to run the CI test in the field. Data collected shall be recorded in Table 1.

- Drive the CI approximately 4 to 7 cm into the ground using a sledge hammer or driver and 2x4's placed across the CI top.
- In cases where the soil is too compacted to drive the CI to the required depth, the soil may be loosened around the outside perimeter of the cylinder with a pick or breaking bar and then driven in.
- Lightly compact the soil against the inside and outside of the CI ring to minimize preferential flow at the ring-soil contact.
- Place bubble wrap on the soil surface inside the CI ring to prevent soil disturbance during filling with water.
- Fill the CI ring with water to the top, remove bubble wrap and measure water temperature
- Monitor the decline in water level (y). After the water has fallen about 5 cm, record the elapsed time (Δt) and exact decrease in water level (y_n) before the CI is refilled.
- This process is repeated until about 40 cm of water has infiltrated or four hours have expired.
- When the CI has been filled for the last time, water level measurements should be taken more frequently to obtain an accurate infiltration rate.
- At the conclusion of the test, a shovel is used to dig outside of the cylinder to determine the distance (*x*) of lateral divergence. In moist soils where the lateral wetting cannot be determined by change of color, the lateral wetting can be determined with a portable moisture probe.
- After removing the cylinder, determine the depth of wetting (L) by augering to dryness or the wetting front, when possible.

6.0 SAMPLE CONTAINERS, PRESERVATION, AND TRANSMITTAL

Not applicable.

7.0 EQUIPMENT DECONTAMINATION AND DISPOSAL

Not applicable.

8.0 DOCUMENTATION

In order to calculate K, the downward flow rate, i_w , must first be corrected for the effect of lateral divergence, based on the radius of the observed wetting front:

$$1) \qquad i_w = \frac{i_n \pi r^2}{\pi (r+x)^2}$$

Where,

 i_n = infiltration rate during the last water drop ($y_n/\Delta t_n$),

r = radius of the CI ring,

x = lateral divergence from the ring, and

 Δt_n = elapsed time during last water drop

When the depth of the wetting front at the end of the test, L, is difficult to measure, such as in soil that is already moist, it can be calculated from the cumulative infiltration (y_l) as follows:

$$2) \qquad L = \frac{y_t \pi r^2}{n \pi (r+x)^2}$$

Where, n is the estimated fillable porosity of the soil, based on the field description of soil texture and initial moisture content. When the depth of the wetting front was directly measured in the field, Equation 2 may be used to estimate fillable porosity.

Applying Darcy's equation to the downward flow i_w (Equation 1) and assuming vertical flow in the wetted zone yields:

$$i_w = K \frac{z + L - h_{we}}{L}$$

where:

K = effective saturated hydraulic conductivity of the wetted zone,

z = average depth of water in the cylinder during the last water drop y_n ,

 h_{we} = water entry value of the soil (estimate of soil suction, from Bouwer et al., 1999).

Soil texture estimates made in the field (Table 1) are used to assign the water entry value for each sample.

Equation 3 is rearranged to solve for K:

$$4) \qquad K = \frac{i_w L}{(z + L - h_{we})}$$

This calculated *K* is an estimate of the effective field saturated hydraulic conductivity. The effective field saturated hydraulic conductivity, may be less than the true hydraulic conductivity due to air entrapment within the pores. Nonetheless, because of scale effects, cylinder infiltrometers provide a more accurate estimation of saturated hydraulic conductivity than smaller-scale laboratory measurements.

Soil Type	Water-entry Value (cm of water) ¹
Coarse sands	-5
Medium sands	-10
Fine sands	-15
Loamy sands	-20
Sandy loams	-25
Loams	-35
Structured clay soils	-30
Nonstructured clay soils	-100 or less (more negative)

Table 1. Water entry values for different soil types

¹Water entry values taken from Bouwer, 1999

8.1 Spreadsheet

Enter the data into the Standard Field Form Single Ring Cylinder Infiltrometer spreadsheet (see below) to calculate the final K value. The data to be entered is highlighted in yellow. Several tests can be recorded in the same spreadsheet and summarized on the first page.

9.0 QUALITY ASSURANCE

Quality assurance (QA) for running the CI shall be accomplished by following the procedures contained in this SOP. It is especially important that the sites chosen remain as `undisturbed and are as level as possible. In addition, soils with a large percentage of gravel material, or soils that are loosely compacted increase the probability that the *K* will not be representative of the undisturbed soil matrix.

10.0 REFERENCES

Bouwer, H., Back, J.T., Oliver, J.M., 1999. Predicting Infiltration and Ground Water Mounds for Artificial Recharge, J Hydro Eng, ASCE, (4) pp. 350-357 Standard Operating Procedure 4.4 - Single Ring Infiltrometer with Lateral Divergence Correction

Standard Field Form Single Ring Cylinder Infiltrometer										
Project:										
Location:										
Date:	Operators: _									
Soil Type:										
Cover and moisture conditions:										
Diameter of cylinder	Height of cylinder: <u>30 cm</u>									
Depth of penetration	:									
Time	Filled level	Water level drop	Infiltration	Accumulated infiltration						
·	0	<u>Filled</u>	·							
	·,	·*								
		5		,3						
	15	5								
		. 	81							
	··		<u></u>							
	···	1 <u></u>	<u>. </u>	·						
Lateral wetting outside cylinder:										
Wetting depth:		;								
Water entry value:										
Fillable porosity:		·								
Final infiltration rate for large area:										

Appendix B

Test Pit Infiltration Test Lateral Divergence Correction for an Assumed Rectangular Prism

Test Pit Infiltration Test Lateral Divergence Correction for an Assumed Rectangular Prism)

In order to calculate K, the downward flow rate, iw, must first be corrected for the effect of lateral divergence, based on the change in width and length of the observed wetting front in the rectangular plan view:

1)
$$i_w = \frac{i_n l w}{(l+2x)(w+2x)}$$

where:

 i_n = infiltration rate during the last water drop $({}^{y_n}/_{\Delta t_n})$ l = length of rectangular prism plan view face w = width of rectangular prism plan view face x = observed lateral divergence distance Δt_n = elapsed time during last water drop

When the depth of the wetting front at the end of the test, L, is difficult to measure, such as in soil that is already moist, it can be calculated from the cumulative infiltration (y_t) as follows:

2)
$$L = \frac{y_t l w}{n(l+2x)(w+2x)}$$

where n is the estimated fillable porosity of the soil, based on the field description of soil texture and initial moisture content. When the depth of the wetting front was directly measured in the field, Equation 2 may be used to estimate fillable porosity.

Applying Darcy's equation to the downward flow i_w (Equation 1) and assuming vertical flow in the wetted zone yields:

3)
$$i_w = K\left(\frac{z+L-h_{we}}{L}\right)$$

where:

K = effective saturated hydraulic conductivity of the wetted zone z = average depth of water in the test pit during the last water drop y_n , $h_{we} =$ water entry value of the soil

Soil texture estimates made in the field are used to assign the water entry value for each sample.

Equation 3 is rearranged to solve for *K*:

4)
$$K = \frac{i_w L}{(z + L - h_{we})}$$

This calculated K is an estimate of the effective field saturated hydraulic conductivity.

-ATTACHMENT C-----

Test Pit Photolog

Test Pit Soil Photologs

Santiam Canyon Infiltration Evaluation, Phase I Subsurface Characterization

Baughman-Lucas (GM1) TP1 0.0 – 2.0 feet bgs

Baughman-Lucas (GM1) TP1 2.0 – 12.0 feet bgs

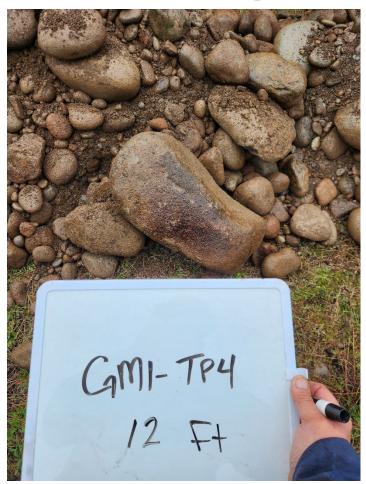
Baughman-Lucas (GM1) TP2 0.0 – 1.5 feet bgs

Baughman-Lucas (GM1) TP2 1.5 – 6.0 feet bgs

Baughman-Lucas (GM1) TP2 6.0 – 8.0 feet bgs

GSI Water Solutions, Inc.

Baughman-Lucas (GM1) TP4 0.0 – 2.0 feet bgs



GSI Water Solutions, Inc.

Baughman-Lucas (GM1) TP4 2.0 – 10.0 feet bgs

Baughman-Lucas (GM1) TP4 10.0 – 12.0 feet bgs

Shepherd (GM2) TP1 0.0 – 2.0 feet bgs

Shepherd (GM2) TP1 3.5 – 6.0 feet bgs

Shepherd (GM2) TP1 6.0 – 10.0 feet bgs

Shepherd (GM2) TP1 10.0 – 13.0 feet bgs

Shepherd (GM2) TP2 0.0 – 1.5 feet bgs

Shepherd (GM2) TP2 1.5 – 5.0 feet bgs

Shepherd (GM2) TP2 5.0 – 7.0 feet bgs

Shepherd (GM2) TP2 7.0 – 13.0 feet bgs

Shepherd (GM2) TP2 0.0 – 2.0 feet bgs

Shepherd (GM2) TP2

Shepherd (GM2) TP3

Shepherd (GM2) TP3

Shepherd (GM2) TP4 0.0 – 3.5 feet bgs

Shepherd (GM2) TP4 3.5 – 5.5 feet bgs

Shepherd (GM2) TP4 5.5 – 9.0 feet bgs

4th Ave. ROW (GM4) TP1 0.0 – 2.0 feet bgs

4th Ave. ROW (GM4) TP1 2.0 – 3.5 feet bgs

4th Ave. ROW (GM4) TP3 0.0 – 2.0 feet bgs

4th Ave. ROW (GM4) TP3 2.0 – 4.0 feet bgs

4th Ave. ROW (GM4) TP3 4.0 – 5.0 feet bgs

4th Ave. ROW (GM4) TP3 5.0 – 8.0 feet bgs

GSI Water Solutions, Inc.

Weyerhaeuser (GM5) TP1 0.0 – 5.0 feet bgs

Weyerhaeuser (GM5) TP1 5.0 – 9.0 feet bgs

GSI Water Solutions, Inc.

Weyerhaeuser (GM5) TP2 0.0 – 5.0 feet bgs

Weyerhaeuser (GM5) TP1 5.0 – 6.0 feet bgs

Weyerhaeuser (GM5) TP2 6.0 – 13.0 feet bgs

-ATTACHMENT D-

Soil Quality Results Lab Report

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

GSI Water Solutions, Inc. 650 NE Holladay Street Suite 900 Portland, OR 97232

Report Number: P230392 Report Date: April 20, 2023 Client Project ID: 464.020.002

Analytical Report

Client Sample ID: GMI-TP1 Matrix: soil **PAL Sample ID:** P230392-01 **Sample Date:** 3/23/23 **Received Date:** 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Method: Modi	fied EPA 8270D (C	GC-MS/MS)			H1
4/10/23	4/13/23	2,6-Dichlorobenzamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	a-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Acetochlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Alachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ametryn	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aspon	ND	0.0067 mg/kg	
4/10/23	4/13/23	b-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Benfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bifenthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bolstar	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bromopropylate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Buprofezin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Captan	ND	0.067 mg/kg	
4/10/23	4/13/23	Chlordane	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenapyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenvinphos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorobenzilate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chloroneb	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpropham	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	cis-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Cyfluthrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Cypermethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Dacthal	ND	0.0067 mg/kg	
4/10/23	4/13/23	d-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Deltamethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Demeton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diazinon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlobenil	ND	0.0067 mg/kg	

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-01 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP1 Matrix: soil

		Received Date: 4/0/25				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/13/23	Dichlorofenthion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dichlorvos	ND	0.0067 mg/kg		
4/10/23	4/13/23	Diclofop-methyl	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dicloran	ND	0.034 mg/kg		
4/10/23	4/13/23	Dicofol	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dieldrin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dimethenamid	ND	0.0067 mg/kg		
4/10/23	4/13/23	Diphenamid	ND	0.0067 mg/kg		
4/10/23	4/13/23	Diphenylamine	ND	0.0067 mg/kg		
4/10/23	4/13/23	Disulfoton	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dithiopyr	ND	0.0067 mg/kg		
4/10/23	4/13/23	Endosulfan I	ND	0.013 mg/kg		
4/10/23	4/13/23	Endosulfan II	ND	0.013 mg/kg		
4/10/23	4/13/23	Endosulfan sulfate	ND	0.013 mg/kg		
4/10/23	4/13/23	Endrin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Endrin ketone	ND	0.0067 mg/kg		
4/10/23	4/13/23	EPN	ND	0.0067 mg/kg		
4/10/23	4/13/23	Esfenvalerate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ethalfluralin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ethofumesate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ethoprop	ND	0.0067 mg/kg		
4/10/23	4/13/23	Etoxazole	ND	0.0067 mg/kg		
4/10/23	4/13/23	Etridiazole	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenarimol	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenitrothion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenoxaprop-ethyl	ND	0.013 mg/kg		
4/10/23	4/13/23	Fenthion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenvalerate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fipronil	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fluazifop-p-butyl	ND	0.013 mg/kg		
4/10/23	4/13/23	Fludioxonil	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fluroxypyr-meptyl	ND	0.013 mg/kg		
4/10/23	4/13/23	Flutolanil	ND	0.0067 mg/kg		

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-01 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP1 Matrix: soil

		Received Date: 4/0/25				
Extraction	Analysis		Amount	Limit of		
Date	Date	Analyte	Detected	Quantitation	Notes	
4/10/23	4/13/23	Fonofos	ND	0.0067 mg/kg		
4/10/23	4/13/23	g-BHC	ND	0.0067 mg/kg		
4/10/23	4/13/23	Heptachlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	Heptachlor epoxide	ND	0.0067 mg/kg		
4/10/23	4/13/23	Hexachlorobenzene	ND	0.0067 mg/kg		
4/10/23	4/13/23	Kresoxim-methyl	ND	0.0067 mg/kg		
4/10/23	4/13/23	lambda-Cyhalothrin	ND	0.013 mg/kg		
4/10/23	4/13/23	Leptophos	ND	0.0067 mg/kg		
4/10/23	4/13/23	Malathion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Mefenoxam	ND	0.0067 mg/kg		
4/10/23	4/13/23	Methoxychlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	Metolachlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	MGK-264	ND	0.0067 mg/kg		
4/10/23	4/13/23	Myclobutanil	ND	0.0067 mg/kg		
4/10/23	4/13/23	Napropamide	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ovex	ND	0.0067 mg/kg		
4/10/23	4/13/23	Oxadiazon	ND	0.0067 mg/kg		
4/10/23	4/13/23	Oxyfluorfen	ND	0.0067 mg/kg		
4/10/23	4/13/23	p,p'-DDD	ND	0.0067 mg/kg		
4/10/23	4/13/23	p,p'-DDE	ND	0.0067 mg/kg		
4/10/23	4/13/23	p,p'-DDT	ND	0.0067 mg/kg		
4/10/23	4/13/23	Paclobutrazol	ND	0.0067 mg/kg		
4/10/23	4/13/23	Parathion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Parathion-methyl	ND	0.0067 mg/kg		
4/10/23	4/13/23	PCA	ND	0.0067 mg/kg		
4/10/23	4/13/23	PCB	ND	0.0067 mg/kg		
4/10/23	4/13/23	PCNB	ND	0.0067 mg/kg		
4/10/23	4/13/23	Pendimethalin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Pentachlorothioanisole	ND	0.0067 mg/kg		
4/10/23	4/13/23	Permethrin	ND	0.034 mg/kg		
4/10/23	4/13/23	Phorate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Procymidone	ND	0.0067 mg/kg		
4/10/23	4/13/23	Prodiamine	ND	0.0067 mg/kg		

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

 Report Number:
 P230392

 Report Date:
 April 20, 2023

 Client Project ID:
 464.020.002

Analytical Report

Client Sample ID: GMI-TP1 Matrix: soil

Sam	ple Date: 3/23/23
Rece	vived Date: 4/6/23

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

Extraction	Analysis		Amount	Limit of	
Date	Date	Analyte	Detected	Quantitation	Notes
4/10/23	4/13/23	Pronamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Propachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pyriproxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Quinoxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ronnel	ND	0.0067 mg/kg	
4/10/23	4/13/23	Spirodiclofen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Sulfotep	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tefluthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Terbufos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetraconazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetradifon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Thionazin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tokuthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	trans-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trichloronate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trifluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Vinclozalin	ND	0.0067 mg/kg	
Surrogate Recov Surrogate Recov (TPP-d15 used as St	ery Range: 34-134				
Method: Modi	Method: Modified EPA 8321B (LC-MS/MS)				H1
4/10/23	4/11/23	3-Hydroxycarbofuran	ND	0.0067 mg/kg	
4/10/23	4/11/23	Abamectin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acephate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acetamiprid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acibenzolar-S-methyl	ND	0.013 mg/kg	

ND

ND

ND

ND

ND

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

gra green

4/11/23

4/11/23

4/11/23

4/11/23

4/11/23

4/11/23

4/11/23

Afidopyropen Aldicarb

Allethrin

Aldicarb Sulfone

Aldicarb Sulfoxide

Page 4 of 118

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-01 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP1 Matrix: soil

	Analysis Date					
Extraction Date		Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Azinphos-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Azinphos-methyl	ND	0.013 mg/kg		
4/10/23	4/11/23	Azoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bendiocarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bensulide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bitertanol	ND	0.0067 mg/kg		
4/10/23	4/11/23	Boscalid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bromacil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carbaryl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carbendazim	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carbofuran	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carfentrazone-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Chlorantraniliprole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Clethodim	ND	0.013 mg/kg		
4/10/23	4/11/23	Clomazone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Clothianidin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyanazine	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyantraniliprole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyazofamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyclaniliprole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cycloate	ND	0.013 mg/kg		
4/10/23	4/11/23	Cyflufenamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyflumetofen	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyhalofop-butyl	ND	0.013 mg/kg		
4/10/23	4/11/23	Cyprodinil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyprosulfamide	ND	0.0067 mg/kg		
4/10/23	4/11/23	DCPMU	ND	0.0067 mg/kg		
4/10/23	4/11/23	Diazoxon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Difenoconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Diflubenzuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Diflufenican	ND	0.0067 mg/kg		
4/10/23	4/11/23	Dimethoate	ND	0.0067 mg/kg		
4/10/23	4/11/23	Dimethomorph	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-01

Sample Date: 3/23/23

Analytical Report

Client Sample ID: GMI-TP1 Matrix: soil

			Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Dinotefuran	ND	0.0067 mg/kg	
4/10/23	4/11/23	Disulfoton sulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Diuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	d-Phenothrin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Emamectin Benzoate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Ethion	ND	0.0067 mg/kg	
4/10/23	4/11/23	Etofenprox	ND	0.0067 mg/kg	
4/10/23	4/11/23	Famoxadone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Famphur	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenamidone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenamiphos sulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenamiphos sulfoxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenazaquin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenbuconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenbutatin oxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenhexamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenobucarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenoxycarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenpropathrin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenpyroximate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flonicamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluazinam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flubendiamide	ND	0.013 mg/kg	
4/10/23	4/11/23	Flufenacet	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flumetsulam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flumioxazin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluometuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluopicolide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluopyram	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluoxastrobin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flupyradifurone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluridone	ND	0.0067 mg/kg	
				5 5	

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-01 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP1 Matrix: soil

		Received Date: 4/0/25				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Flutianil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flutriafol	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluvalinate	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluxapyroxad	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fonofos	ND	0.013 mg/kg		
4/10/23	4/11/23	Hexaconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Hexazinone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Hexythiazox	ND	0.0067 mg/kg		
4/10/23	4/11/23	Imazalil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Imidacloprid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Indaziflam	ND	0.0067 mg/kg		
4/10/23	4/11/23	Indoxacarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Ipconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Iprodione	ND	0.034 mg/kg		
4/10/23	4/11/23	Isofetamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Isoxaben	ND	0.0067 mg/kg		
4/10/23	4/11/23	Isoxadifen-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Lactofen	ND	0.0067 mg/kg		
4/10/23	4/11/23	Linuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Malaoxon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Mandipropamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Metconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Methamidophos	ND	0.034 mg/kg		
4/10/23	4/11/23	Methidathion	ND	0.0067 mg/kg		
4/10/23	4/11/23	Methiocarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Methomyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Methoxyfenozide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Metrafenone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Metribuzin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Mevinphos	ND	0.0067 mg/kg		
4/10/23	4/11/23	Monuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Neburon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Norflurazon	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-01

Sample Date: 3/23/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP1 Matrix: soil

		Received Date: 4/0/25				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Novaluron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Omethoate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oryzalin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxadixyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxamyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxydemeton-Methyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Penoxsulam	ND	0.0067 mg/kg		
4/10/23	4/11/23	Penthiopyrad	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phorate Sulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phorate Sulfoxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosalone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosmet	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosphamidon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Picoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Piperonyl Butoxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pirimicarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pirimiphos-methyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prallethrin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prometon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prometryn	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propamocarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propanil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propargite	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propazine	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propiconazole	ND	0.013 mg/kg		
4/10/23	4/11/23	Pyraclostrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyraflufen-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyrethrin	ND	0.034 mg/kg		
4/10/23	4/11/23	Pyridaben	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyridalyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyrimethanil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyroxasulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Quizalofop-p-ethyl	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-01

Sample Date: 3/23/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP1 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Rotenone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Saflufenacil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Sethoxydim	ND	0.013 mg/kg	
4/10/23	4/11/23	Siduron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Simazine	ND	0.0067 mg/kg	
4/10/23	4/11/23	Simetryn	ND	0.0067 mg/kg	
4/10/23	4/11/23	Spinetoram	ND	0.0067 mg/kg	
4/10/23	4/11/23	Spinosad	ND	0.0067 mg/kg	
4/10/23	4/11/23	Spiromesifen	ND	0.013 mg/kg	
4/10/23	4/11/23	Spirotetramat	ND	0.0067 mg/kg	
4/10/23	4/11/23	Spiroxamine	ND	0.0067 mg/kg	
4/10/23	4/11/23	Sulfentrazone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Sulfoxaflor	ND	0.0067 mg/kg	
4/10/23	4/11/23	Tebuconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Tebufenozide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Tebuthiuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Terbacil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Terbuthylazine	ND	0.0067 mg/kg	
4/10/23	4/11/23	Terbutryn	ND	0.0067 mg/kg	
4/10/23	4/11/23	Thiabendazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Thiacloprid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Thiamethoxam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Thiobencarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Thiodicarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Tolfenpyrad	ND	0.0067 mg/kg	
4/10/23	4/11/23	Triadimefon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Triadimenol	ND	0.013 mg/kg	
4/10/23	4/11/23	Triallate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Trifloxystrobin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Triflumizole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Triticonazole	ND	0.0067 mg/kg	

Surrogate Recovery: 52 %

Surrogate Recovery Range: 36-117

(TPP-d15 used as Surrogate)

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

GSI Water Solutions, Inc. 650 NE Holladay Street Suite 900 Portland, OR 97232

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GMI-TP2 Matrix: soil PAL Sample ID: P230392-02 Sample Date: 3/23/23 Received Date: 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Method: Modi	fied EPA 8270D (C	GC-MS/MS)			H1
4/10/23	4/13/23	2,6-Dichlorobenzamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	a-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Acetochlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Alachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ametryn	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aspon	ND	0.0067 mg/kg	
4/10/23	4/13/23	b-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Benfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bifenthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bolstar	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bromopropylate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Buprofezin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Captan	ND	0.067 mg/kg	
4/10/23	4/13/23	Chlordane	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenapyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenvinphos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorobenzilate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chloroneb	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpropham	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	cis-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Cyfluthrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Cypermethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Dacthal	ND	0.0067 mg/kg	
4/10/23	4/13/23	d-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Deltamethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Demeton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diazinon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlobenil	ND	0.0067 mg/kg	

gragheen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-02 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP2 Matrix: soil

		Received Date: 4/0/25				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/13/23	Dichlorofenthion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dichlorvos	ND	0.0067 mg/kg		
4/10/23	4/13/23	Diclofop-methyl	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dicloran	ND	0.034 mg/kg		
4/10/23	4/13/23	Dicofol	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dieldrin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dimethenamid	ND	0.0067 mg/kg		
4/10/23	4/13/23	Diphenamid	ND	0.0067 mg/kg		
4/10/23	4/13/23	Diphenylamine	ND	0.0067 mg/kg		
4/10/23	4/13/23	Disulfoton	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dithiopyr	ND	0.0067 mg/kg		
4/10/23	4/13/23	Endosulfan I	ND	0.013 mg/kg		
4/10/23	4/13/23	Endosulfan II	ND	0.013 mg/kg		
4/10/23	4/13/23	Endosulfan sulfate	ND	0.013 mg/kg		
4/10/23	4/13/23	Endrin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Endrin ketone	ND	0.0067 mg/kg		
4/10/23	4/13/23	EPN	ND	0.0067 mg/kg		
4/10/23	4/13/23	Esfenvalerate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ethalfluralin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ethofumesate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ethoprop	ND	0.0067 mg/kg		
4/10/23	4/13/23	Etoxazole	ND	0.0067 mg/kg		
4/10/23	4/13/23	Etridiazole	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenarimol	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenitrothion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenoxaprop-ethyl	ND	0.013 mg/kg		
4/10/23	4/13/23	Fenthion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenvalerate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fipronil	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fluazifop-p-butyl	ND	0.013 mg/kg		
4/10/23	4/13/23	Fludioxonil	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fluroxypyr-meptyl	ND	0.013 mg/kg		
4/10/23	4/13/23	Flutolanil	ND	0.0067 mg/kg		

Fara Steen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-02 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP2 Matrix: soil

		Received Date: 4/0/25				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/13/23	Fonofos	ND	0.0067 mg/kg		
4/10/23	4/13/23	g-BHC	ND	0.0067 mg/kg		
4/10/23	4/13/23	Heptachlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	Heptachlor epoxide	ND	0.0067 mg/kg		
4/10/23	4/13/23	Hexachlorobenzene	ND	0.0067 mg/kg		
4/10/23	4/13/23	Kresoxim-methyl	ND	0.0067 mg/kg		
4/10/23	4/13/23	lambda-Cyhalothrin	ND	0.013 mg/kg		
4/10/23	4/13/23	Leptophos	ND	0.0067 mg/kg		
4/10/23	4/13/23	Malathion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Mefenoxam	ND	0.0067 mg/kg		
4/10/23	4/13/23	Methoxychlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	Metolachlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	MGK-264	ND	0.0067 mg/kg		
4/10/23	4/13/23	Myclobutanil	ND	0.0067 mg/kg		
4/10/23	4/13/23	Napropamide	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ovex	ND	0.0067 mg/kg		
4/10/23	4/13/23	Oxadiazon	ND	0.0067 mg/kg		
4/10/23	4/13/23	Oxyfluorfen	ND	0.0067 mg/kg		
4/10/23	4/13/23	p,p'-DDD	ND	0.0067 mg/kg		
4/10/23	4/13/23	p,p'-DDE	ND	0.0067 mg/kg		
4/10/23	4/13/23	p,p'-DDT	ND	0.0067 mg/kg		
4/10/23	4/13/23	Paclobutrazol	ND	0.0067 mg/kg		
4/10/23	4/13/23	Parathion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Parathion-methyl	ND	0.0067 mg/kg		
4/10/23	4/13/23	PCA	ND	0.0067 mg/kg		
4/10/23	4/13/23	PCB	ND	0.0067 mg/kg		
4/10/23	4/13/23	PCNB	ND	0.0067 mg/kg		
4/10/23	4/13/23	Pendimethalin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Pentachlorothioanisole	ND	0.0067 mg/kg		
4/10/23	4/13/23	Permethrin	ND	0.034 mg/kg		
4/10/23	4/13/23	Phorate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Procymidone	ND	0.0067 mg/kg		
4/10/23	4/13/23	Prodiamine	ND	0.0067 mg/kg		

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GMI-TP2 Matrix: soil

PAL Sample ID: P230392-02	
Sample Date: 3/23/23	
Received Date: 4/6/23	

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/13/23	Pronamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Propachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pyriproxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Quinoxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ronnel	ND	0.0067 mg/kg	
4/10/23	4/13/23	Spirodiclofen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Sulfotep	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tefluthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Terbufos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetraconazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetradifon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Thionazin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tokuthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	trans-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trichloronate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trifluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Vinclozalin	ND	0.0067 mg/kg	
(TPP-d15 used as S	ery Range: 34-134				H1
Method: Modi	lied EPA 8521B (I	LC-M5/M5)			пі
4/10/23	4/11/23	3-Hydroxycarbofuran	ND	0.0067 mg/kg	
4/10/23	4/11/23	Abamectin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acephate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acetamiprid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acibenzolar-S-methyl	ND	0.013 mg/kg	
4/10/23	4/11/23	Afidopyropen	ND	0.0067 mg/kg	
4/10/23	4/11/23	Aldicarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Aldicarb Sulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Aldicarb Sulfoxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Allethrin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Ametoctradin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Atrazine	ND	0.0067 mg/kg	
			This anal	vtical report complies with the ISO	₩ ₩

Agra Speen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-02 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP2 Matrix: soil

		Received Date. 4/0/25					
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes		
4/10/23	4/11/23	Azinphos-ethyl	ND	0.0067 mg/kg			
4/10/23	4/11/23	Azinphos-methyl	ND	0.013 mg/kg			
4/10/23	4/11/23	Azoxystrobin	ND	0.0067 mg/kg			
4/10/23	4/11/23	Bendiocarb	ND	0.0067 mg/kg			
4/10/23	4/11/23	Bensulide	ND	0.0067 mg/kg			
4/10/23	4/11/23	Bitertanol	ND	0.0067 mg/kg			
4/10/23	4/11/23	Boscalid	ND	0.0067 mg/kg			
4/10/23	4/11/23	Bromacil	ND	0.0067 mg/kg			
4/10/23	4/11/23	Carbaryl	ND	0.0067 mg/kg			
4/10/23	4/11/23	Carbendazim	ND	0.0067 mg/kg			
4/10/23	4/11/23	Carbofuran	ND	0.0067 mg/kg			
4/10/23	4/11/23	Carfentrazone-ethyl	ND	0.0067 mg/kg			
4/10/23	4/11/23	Chlorantraniliprole	ND	0.0067 mg/kg			
4/10/23	4/11/23	Clethodim	ND	0.013 mg/kg			
4/10/23	4/11/23	Clomazone	ND	0.0067 mg/kg			
4/10/23	4/11/23	Clothianidin	ND	0.0067 mg/kg			
4/10/23	4/11/23	Cyanazine	ND	0.0067 mg/kg			
4/10/23	4/11/23	Cyantraniliprole	ND	0.0067 mg/kg			
4/10/23	4/11/23	Cyazofamid	ND	0.0067 mg/kg			
4/10/23	4/11/23	Cyclaniliprole	ND	0.0067 mg/kg			
4/10/23	4/11/23	Cycloate	ND	0.013 mg/kg			
4/10/23	4/11/23	Cyflufenamid	ND	0.0067 mg/kg			
4/10/23	4/11/23	Cyflumetofen	ND	0.0067 mg/kg			
4/10/23	4/11/23	Cyhalofop-butyl	ND	0.013 mg/kg			
4/10/23	4/11/23	Cyprodinil	ND	0.0067 mg/kg			
4/10/23	4/11/23	Cyprosulfamide	ND	0.0067 mg/kg			
4/10/23	4/11/23	DCPMU	ND	0.0067 mg/kg			
4/10/23	4/11/23	Diazoxon	ND	0.0067 mg/kg			
4/10/23	4/11/23	Difenoconazole	ND	0.0067 mg/kg			
4/10/23	4/11/23	Diflubenzuron	ND	0.0067 mg/kg			
4/10/23	4/11/23	Diflufenican	ND	0.0067 mg/kg			
4/10/23	4/11/23	Dimethoate	ND	0.0067 mg/kg			
4/10/23	4/11/23	Dimethomorph	ND	0.0067 mg/kg			

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-02

Sample Date: 3/23/23

Analytical Report

Client Sample ID: GMI-TP2 Matrix: soil

IX. 5011			Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Dinotefuran	ND	0.0067 mg/kg	
4/10/23	4/11/23	Disulfoton sulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Diuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	d-Phenothrin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Emamectin Benzoate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Ethion	ND	0.0067 mg/kg	
4/10/23	4/11/23	Etofenprox	ND	0.0067 mg/kg	
4/10/23	4/11/23	Famoxadone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Famphur	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenamidone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenamiphos sulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenamiphos sulfoxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenazaquin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenbuconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenbutatin oxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenhexamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenobucarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenoxycarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenpropathrin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenpyroximate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flonicamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluazinam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flubendiamide	ND	0.013 mg/kg	
4/10/23	4/11/23	Flufenacet	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flumetsulam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flumioxazin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluometuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluopicolide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluopyram	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluoxastrobin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flupyradifurone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluridone	ND	0.0067 mg/kg	

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-02 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP2 Matrix: soil

		Received Date. 4/0/25					
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes		
4/10/23	4/11/23	Flutianil	ND	0.0067 mg/kg			
4/10/23	4/11/23	Flutriafol	ND	0.0067 mg/kg			
4/10/23	4/11/23	Fluvalinate	ND	0.0067 mg/kg			
4/10/23	4/11/23	Fluxapyroxad	ND	0.0067 mg/kg			
4/10/23	4/11/23	Fonofos	ND	0.013 mg/kg			
4/10/23	4/11/23	Hexaconazole	ND	0.0067 mg/kg			
4/10/23	4/11/23	Hexazinone	ND	0.0067 mg/kg			
4/10/23	4/11/23	Hexythiazox	ND	0.0067 mg/kg			
4/10/23	4/11/23	Imazalil	ND	0.0067 mg/kg			
4/10/23	4/11/23	Imidacloprid	ND	0.0067 mg/kg			
4/10/23	4/11/23	Indaziflam	ND	0.0067 mg/kg			
4/10/23	4/11/23	Indoxacarb	ND	0.0067 mg/kg			
4/10/23	4/11/23	Ipconazole	ND	0.0067 mg/kg			
4/10/23	4/11/23	Iprodione	ND	0.034 mg/kg			
4/10/23	4/11/23	Isofetamid	ND	0.0067 mg/kg			
4/10/23	4/11/23	Isoxaben	ND	0.0067 mg/kg			
4/10/23	4/11/23	Isoxadifen-ethyl	ND	0.0067 mg/kg			
4/10/23	4/11/23	Lactofen	ND	0.0067 mg/kg			
4/10/23	4/11/23	Linuron	ND	0.0067 mg/kg			
4/10/23	4/11/23	Malaoxon	ND	0.0067 mg/kg			
4/10/23	4/11/23	Mandipropamid	ND	0.0067 mg/kg			
4/10/23	4/11/23	Metconazole	ND	0.0067 mg/kg			
4/10/23	4/11/23	Methamidophos	ND	0.034 mg/kg			
4/10/23	4/11/23	Methidathion	ND	0.0067 mg/kg			
4/10/23	4/11/23	Methiocarb	ND	0.0067 mg/kg			
4/10/23	4/11/23	Methomyl	ND	0.0067 mg/kg			
4/10/23	4/11/23	Methoxyfenozide	ND	0.0067 mg/kg			
4/10/23	4/11/23	Metrafenone	ND	0.0067 mg/kg			
4/10/23	4/11/23	Metribuzin	ND	0.0067 mg/kg			
4/10/23	4/11/23	Mevinphos	ND	0.0067 mg/kg			
4/10/23	4/11/23	Monuron	ND	0.0067 mg/kg			
4/10/23	4/11/23	Neburon	ND	0.0067 mg/kg			
4/10/23	4/11/23	Norflurazon	ND	0.0067 mg/kg			

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-02 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP2 Matrix: soil

		Received Date: 4/0/25				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Novaluron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Omethoate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oryzalin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxadixyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxamyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxydemeton-Methyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Penoxsulam	ND	0.0067 mg/kg		
4/10/23	4/11/23	Penthiopyrad	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phorate Sulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phorate Sulfoxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosalone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosmet	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosphamidon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Picoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Piperonyl Butoxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pirimicarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pirimiphos-methyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prallethrin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prometon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prometryn	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propamocarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propanil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propargite	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propazine	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propiconazole	ND	0.013 mg/kg		
4/10/23	4/11/23	Pyraclostrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyraflufen-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyrethrin	ND	0.034 mg/kg		
4/10/23	4/11/23	Pyridaben	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyridalyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyrimethanil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyroxasulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Quizalofop-p-ethyl	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-02

Sample Date: 3/23/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP2 Matrix: soil

Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes		
4/11/23	Rotenone	ND	0.0067 mg/kg			
4/11/23	Saflufenacil	ND	0.0067 mg/kg			
4/11/23	Sethoxydim	ND	0.013 mg/kg			
4/11/23	Siduron	ND	0.0067 mg/kg			
4/11/23	Simazine	ND	0.0067 mg/kg			
4/11/23	Simetryn	ND	0.0067 mg/kg			
4/11/23	Spinetoram	ND	0.0067 mg/kg			
4/11/23	Spinosad	ND	0.0067 mg/kg			
4/11/23	Spiromesifen	ND	0.013 mg/kg			
4/11/23	Spirotetramat	ND	0.0067 mg/kg			
4/11/23	Spiroxamine	ND	0.0067 mg/kg			
4/11/23	Sulfentrazone	ND	0.0067 mg/kg			
4/11/23	Sulfoxaflor	ND	0.0067 mg/kg			
4/11/23	Tebuconazole	ND	0.0067 mg/kg			
4/11/23	Tebufenozide	ND	0.0067 mg/kg			
4/11/23	Tebuthiuron	ND	0.0067 mg/kg			
4/11/23	Terbacil	ND	0.0067 mg/kg			
4/11/23	Terbuthylazine	ND	0.0067 mg/kg			
4/11/23	Terbutryn	ND	0.0067 mg/kg			
4/11/23	Thiabendazole	ND	0.0067 mg/kg			
4/11/23	Thiacloprid	ND	0.0067 mg/kg			
4/11/23	Thiamethoxam	ND	0.0067 mg/kg			
4/11/23	Thiobencarb	ND	0.0067 mg/kg			
4/11/23	Thiodicarb	ND	0.0067 mg/kg			
4/11/23	Tolfenpyrad	ND	0.0067 mg/kg			
4/11/23	Triadimefon	ND	0.0067 mg/kg			
4/11/23	Triadimenol	ND	0.013 mg/kg			
4/11/23	Triallate	ND	0.0067 mg/kg			
4/11/23	Trifloxystrobin	ND	0.0067 mg/kg			
4/11/23	Triflumizole	ND	0.0067 mg/kg			
4/11/23	Triticonazole	ND	0.0067 mg/kg			
	Date 4/11/23	Date Analyte 4/11/23 Rotenone 4/11/23 Saflufenacil 4/11/23 Saflufenacil 4/11/23 Sethoxydim 4/11/23 Siduron 4/11/23 Simazine 4/11/23 Simazine 4/11/23 Simazine 4/11/23 Spinosad 4/11/23 Spinosad 4/11/23 Spiromesifen 4/11/23 Spirotetramat 4/11/23 Spiroxamine 4/11/23 Sulfentrazone 4/11/23 Sulfoxaflor 4/11/23 Tebuconazole 4/11/23 Tebutinuron 4/11/23 Tebutylazine 4/11/23 Terbacil 4/11/23 Thiacloprid 4/11/23 Thiacloprid 4/11/23 Thiodicarb 4/11/23 Tolfenpyrad 4/11/23 Triadimenol 4/11/23 Triadimenol 4/11/23 Trialate 4/11/23 Trifloxystrobin	DateAnalyteDetected4/11/23RotenoneND4/11/23SaflufenacilND4/11/23SaflufenacilND4/11/23StehoxydimND4/11/23SiduronND4/11/23SimazineND4/11/23SimetrynND4/11/23SpinetoramND4/11/23SpinosadND4/11/23SpiromesifenND4/11/23SpirotetramatND4/11/23SulfentrazoneND4/11/23TebuconazoleND4/11/23TebutenozideND4/11/23TerbacilND4/11/23TerbacilND4/11/23TerbacilND4/11/23ThiabendazoleND4/11/23ThiabendazoleND4/11/23ThiabendazoleND4/11/23ThiabendazoleND4/11/23ThiabendazoleND4/11/23ThiadendazoleND4/11/23ThiabendazoleND4/11/23ThiadendazoleND4/11/23ThiadendazoleND4/11/23ThiadendazoleND4/11/23ThiadendazoleND4/11/23ThiadendazoleND4/11/23ThiadendazoleND4/11/23TriadimenolND4/11/23TriadimenolND4/11/23TriadimenolND4/11/23TriadimenolND4/11/23TriallateND4/11/23 </td <td>Date Analyte Detected Quantitation 4/11/23 Rotenone ND 0.0067 mg/kg 4/11/23 Saflufenacil ND 0.013 mg/kg 4/11/23 Sethoxydim ND 0.0067 mg/kg 4/11/23 Siduron ND 0.0067 mg/kg 4/11/23 Simazine ND 0.0067 mg/kg 4/11/23 Simetryn ND 0.0067 mg/kg 4/11/23 Spinosad ND 0.0067 mg/kg 4/11/23 Spironesifen ND 0.0067 mg/kg 4/11/23 Spirosad ND 0.0067 mg/kg 4/11/23 Spirosamine ND 0.0067 mg/kg 4/11/23 Spirosamine ND 0.0067 mg/kg 4/11/23 Sulfentrazone ND 0.0067 mg/kg 4/11/23 Sulfentrazone ND 0.0067 mg/kg 4/11/23 Tebuconazole ND 0.0067 mg/kg 4/11/23 Tebufenozide ND 0.0067 mg/kg 4/11/23 Terbuthylazine ND</td>	Date Analyte Detected Quantitation 4/11/23 Rotenone ND 0.0067 mg/kg 4/11/23 Saflufenacil ND 0.013 mg/kg 4/11/23 Sethoxydim ND 0.0067 mg/kg 4/11/23 Siduron ND 0.0067 mg/kg 4/11/23 Simazine ND 0.0067 mg/kg 4/11/23 Simetryn ND 0.0067 mg/kg 4/11/23 Spinosad ND 0.0067 mg/kg 4/11/23 Spironesifen ND 0.0067 mg/kg 4/11/23 Spirosad ND 0.0067 mg/kg 4/11/23 Spirosamine ND 0.0067 mg/kg 4/11/23 Spirosamine ND 0.0067 mg/kg 4/11/23 Sulfentrazone ND 0.0067 mg/kg 4/11/23 Sulfentrazone ND 0.0067 mg/kg 4/11/23 Tebuconazole ND 0.0067 mg/kg 4/11/23 Tebufenozide ND 0.0067 mg/kg 4/11/23 Terbuthylazine ND		

Surrogate Recovery: 68 %

Surrogate Recovery Range: 36-117

(TPP-d15 used as Surrogate)

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

GSI Water Solutions, Inc. 650 NE Holladay Street Suite 900 Portland, OR 97232

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GMI-TP3 Matrix: soil **PAL Sample ID:** P230392-03 **Sample Date:** 3/23/23 **Received Date:** 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Method: Modi	fied EPA 8270D (C	GC-MS/MS)			H1
4/10/23	4/13/23	2,6-Dichlorobenzamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	a-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Acetochlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Alachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ametryn	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aspon	ND	0.0067 mg/kg	
4/10/23	4/13/23	b-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Benfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bifenthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bolstar	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bromopropylate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Buprofezin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Captan	ND	0.067 mg/kg	
4/10/23	4/13/23	Chlordane	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenapyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenvinphos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorobenzilate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chloroneb	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpropham	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	cis-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Cyfluthrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Cypermethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Dacthal	ND	0.0067 mg/kg	
4/10/23	4/13/23	d-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Deltamethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Demeton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diazinon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlobenil	ND	0.0067 mg/kg	

gragheen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-03 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP3 Matrix: soil

		Received Date: 4/0/25					
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes		
4/10/23	4/13/23	Dichlorofenthion	ND	0.0067 mg/kg			
4/10/23	4/13/23	Dichlorvos	ND	0.0067 mg/kg			
4/10/23	4/13/23	Diclofop-methyl	ND	0.0067 mg/kg			
4/10/23	4/13/23	Dicloran	ND	0.034 mg/kg			
4/10/23	4/13/23	Dicofol	ND	0.0067 mg/kg			
4/10/23	4/13/23	Dieldrin	ND	0.0067 mg/kg			
4/10/23	4/13/23	Dimethenamid	ND	0.0067 mg/kg			
4/10/23	4/13/23	Diphenamid	ND	0.0067 mg/kg			
4/10/23	4/13/23	Diphenylamine	ND	0.0067 mg/kg			
4/10/23	4/13/23	Disulfoton	ND	0.0067 mg/kg			
4/10/23	4/13/23	Dithiopyr	ND	0.0067 mg/kg			
4/10/23	4/13/23	Endosulfan I	ND	0.013 mg/kg			
4/10/23	4/13/23	Endosulfan II	ND	0.013 mg/kg			
4/10/23	4/13/23	Endosulfan sulfate	ND	0.013 mg/kg			
4/10/23	4/13/23	Endrin	ND	0.0067 mg/kg			
4/10/23	4/13/23	Endrin ketone	ND	0.0067 mg/kg			
4/10/23	4/13/23	EPN	ND	0.0067 mg/kg			
4/10/23	4/13/23	Esfenvalerate	ND	0.0067 mg/kg			
4/10/23	4/13/23	Ethalfluralin	ND	0.0067 mg/kg			
4/10/23	4/13/23	Ethofumesate	ND	0.0067 mg/kg			
4/10/23	4/13/23	Ethoprop	ND	0.0067 mg/kg			
4/10/23	4/13/23	Etoxazole	ND	0.0067 mg/kg			
4/10/23	4/13/23	Etridiazole	ND	0.0067 mg/kg			
4/10/23	4/13/23	Fenarimol	ND	0.0067 mg/kg			
4/10/23	4/13/23	Fenitrothion	ND	0.0067 mg/kg			
4/10/23	4/13/23	Fenoxaprop-ethyl	ND	0.013 mg/kg			
4/10/23	4/13/23	Fenthion	ND	0.0067 mg/kg			
4/10/23	4/13/23	Fenvalerate	ND	0.0067 mg/kg			
4/10/23	4/13/23	Fipronil	ND	0.0067 mg/kg			
4/10/23	4/13/23	Fluazifop-p-butyl	ND	0.013 mg/kg			
4/10/23	4/13/23	Fludioxonil	ND	0.0067 mg/kg			
4/10/23	4/13/23	Fluroxypyr-meptyl	ND	0.013 mg/kg			
4/10/23	4/13/23	Flutolanil	ND	0.0067 mg/kg			

Fara Steen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-03 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP3 Matrix: soil

		Received Date: 4/0/25			
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/13/23	Fonofos	ND	0.0067 mg/kg	
4/10/23	4/13/23	g-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Heptachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Heptachlor epoxide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Hexachlorobenzene	ND	0.0067 mg/kg	
4/10/23	4/13/23	Kresoxim-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	lambda-Cyhalothrin	ND	0.013 mg/kg	
4/10/23	4/13/23	Leptophos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Malathion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Mefenoxam	ND	0.0067 mg/kg	
4/10/23	4/13/23	Methoxychlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Metolachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	MGK-264	ND	0.0067 mg/kg	
4/10/23	4/13/23	Myclobutanil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Napropamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ovex	ND	0.0067 mg/kg	
4/10/23	4/13/23	Oxadiazon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Oxyfluorfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDD	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDE	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDT	ND	0.0067 mg/kg	
4/10/23	4/13/23	Paclobutrazol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Parathion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Parathion-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCA	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCB	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCNB	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pendimethalin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pentachlorothioanisole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Permethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Phorate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Procymidone	ND	0.0067 mg/kg	
4/10/23	4/13/23	Prodiamine	ND	0.0067 mg/kg	

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

 Report Number:
 P230392

 Report Date:
 April 20, 2023

 Client Project ID:
 464.020.002

Analytical Report

Client Sample ID: GMI-TP3 Matrix: soil

Analysis

Extraction

Date 4/10/23 4/10/23 4/10/23 4/10/23 4/10/23 4/10/23 4/10/23 4/10/23	Date 4/13/23 4/13/23 4/13/23 4/13/23 4/13/23 4/13/23	Analyte Pronamide Propachlor Pyriproxyfen Quinoxyfen Ronnel	Detected ND ND ND ND	Quantitation 0.0067 mg/kg 0.0067 mg/kg 0.0067 mg/kg	Notes
4/10/23 4/10/23 4/10/23 4/10/23 4/10/23 4/10/23	4/13/23 4/13/23 4/13/23 4/13/23	Propachlor Pyriproxyfen Quinoxyfen	ND ND	0.0067 mg/kg 0.0067 mg/kg	
4/10/23 4/10/23 4/10/23 4/10/23 4/10/23 4/10/23	4/13/23 4/13/23 4/13/23	Pyriproxyfen Quinoxyfen	ND	0.0067 mg/kg	
4/10/23 4/10/23 4/10/23 4/10/23 4/10/23	4/13/23 4/13/23	Quinoxyfen		6.6	
4/10/23 4/10/23 4/10/23 4/10/23	4/13/23	· ·	ND	0.00/7	
4/10/23 4/10/23 4/10/23		Ronnel		0.0067 mg/kg	
4/10/23 4/10/23	4/13/23		ND	0.0067 mg/kg	
4/10/23		Spirodiclofen	ND	0.0067 mg/kg	
	4/13/23	Sulfotep	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tefluthrin	ND	0.0067 mg/kg	
	4/13/23	Terbufos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetraconazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetradifon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Thionazin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tokuthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	trans-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trichloronate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trifluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Vinclozalin	ND	0.0067 mg/kg	
Surrogate Recov Surrogate Recov (TPP-d15 used as Si	very Range: 34-134				

Amount

Method: Modified EPA 8321B (LC-MS/MS)

4/	10/23	4/11/23	3-Hydroxycarbofuran	ND	0.0067 mg/kg
4/	10/23	4/11/23	Abamectin	ND	0.0067 mg/kg
4/	10/23	4/11/23	Acephate	ND	0.0067 mg/kg
4/	10/23	4/11/23	Acetamiprid	ND	0.0067 mg/kg
4/	10/23	4/11/23	Acibenzolar-S-methyl	ND	0.013 mg/kg
4/	10/23	4/11/23	Afidopyropen	ND	0.0067 mg/kg
4/	10/23	4/11/23	Aldicarb	ND	0.0067 mg/kg
4/	10/23	4/11/23	Aldicarb Sulfone	ND	0.0067 mg/kg
4/	10/23	4/11/23	Aldicarb Sulfoxide	ND	0.0067 mg/kg
4/	10/23	4/11/23	Allethrin	ND	0.0067 mg/kg
4/	10/23	4/11/23	Ametoctradin	ND	0.0067 mg/kg
4/	10/23	4/11/23	Atrazine	ND	0.0067 mg/kg

Fara Steen

This analytical report complies with the ISO/IEC 17025:2017 Quality Standard.

H1

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-03 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP3 Matrix: soil

		Rective Date: 4/0/25				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Azinphos-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Azinphos-methyl	ND	0.013 mg/kg		
4/10/23	4/11/23	Azoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bendiocarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bensulide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bitertanol	ND	0.0067 mg/kg		
4/10/23	4/11/23	Boscalid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bromacil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carbaryl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carbendazim	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carbofuran	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carfentrazone-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Chlorantraniliprole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Clethodim	ND	0.013 mg/kg		
4/10/23	4/11/23	Clomazone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Clothianidin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyanazine	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyantraniliprole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyazofamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyclaniliprole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cycloate	ND	0.013 mg/kg		
4/10/23	4/11/23	Cyflufenamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyflumetofen	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyhalofop-butyl	ND	0.013 mg/kg		
4/10/23	4/11/23	Cyprodinil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyprosulfamide	ND	0.0067 mg/kg		
4/10/23	4/11/23	DCPMU	ND	0.0067 mg/kg		
4/10/23	4/11/23	Diazoxon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Difenoconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Diflubenzuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Diflufenican	ND	0.0067 mg/kg		
4/10/23	4/11/23	Dimethoate	ND	0.0067 mg/kg		
4/10/23	4/11/23	Dimethomorph	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-03

Sample Date: 3/23/23

Analytical Report

Client Sample ID: GMI-TP3 Matrix: soil

IX. 3011			Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Dinotefuran	ND	0.0067 mg/kg	
4/10/23	4/11/23	Disulfoton sulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Diuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	d-Phenothrin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Emamectin Benzoate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Ethion	ND	0.0067 mg/kg	
4/10/23	4/11/23	Etofenprox	ND	0.0067 mg/kg	
4/10/23	4/11/23	Famoxadone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Famphur	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenamidone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenamiphos sulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenamiphos sulfoxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenazaquin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenbuconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenbutatin oxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenhexamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenobucarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenoxycarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenpropathrin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenpyroximate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flonicamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluazinam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flubendiamide	ND	0.013 mg/kg	
4/10/23	4/11/23	Flufenacet	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flumetsulam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flumioxazin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluometuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluopicolide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluopyram	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluoxastrobin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flupyradifurone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluridone	ND	0.0067 mg/kg	

Kgra Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-03 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP3 Matrix: soil

		Received Date: 4/0/25				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Flutianil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flutriafol	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluvalinate	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluxapyroxad	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fonofos	ND	0.013 mg/kg		
4/10/23	4/11/23	Hexaconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Hexazinone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Hexythiazox	ND	0.0067 mg/kg		
4/10/23	4/11/23	Imazalil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Imidacloprid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Indaziflam	ND	0.0067 mg/kg		
4/10/23	4/11/23	Indoxacarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Ipconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Iprodione	ND	0.034 mg/kg		
4/10/23	4/11/23	Isofetamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Isoxaben	ND	0.0067 mg/kg		
4/10/23	4/11/23	Isoxadifen-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Lactofen	ND	0.0067 mg/kg		
4/10/23	4/11/23	Linuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Malaoxon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Mandipropamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Metconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Methamidophos	ND	0.034 mg/kg		
4/10/23	4/11/23	Methidathion	ND	0.0067 mg/kg		
4/10/23	4/11/23	Methiocarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Methomyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Methoxyfenozide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Metrafenone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Metribuzin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Mevinphos	ND	0.0067 mg/kg		
4/10/23	4/11/23	Monuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Neburon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Norflurazon	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-03 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP3 Matrix: soil

		Received Date: 4/0/25				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Novaluron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Omethoate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oryzalin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxadixyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxamyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxydemeton-Methyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Penoxsulam	ND	0.0067 mg/kg		
4/10/23	4/11/23	Penthiopyrad	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phorate Sulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phorate Sulfoxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosalone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosmet	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosphamidon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Picoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Piperonyl Butoxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pirimicarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pirimiphos-methyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prallethrin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prometon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prometryn	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propamocarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propanil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propargite	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propazine	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propiconazole	ND	0.013 mg/kg		
4/10/23	4/11/23	Pyraclostrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyraflufen-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyrethrin	ND	0.034 mg/kg		
4/10/23	4/11/23	Pyridaben	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyridalyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyrimethanil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyroxasulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Quizalofop-p-ethyl	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-03

Sample Date: 3/23/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP3 Matrix: soil

Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes		
4/11/23	Rotenone	ND	0.0067 mg/kg			
4/11/23	Saflufenacil	ND	0.0067 mg/kg			
4/11/23	Sethoxydim	ND	0.013 mg/kg			
4/11/23	Siduron	ND	0.0067 mg/kg			
4/11/23	Simazine	ND	0.0067 mg/kg			
4/11/23	Simetryn	ND	0.0067 mg/kg			
4/11/23	Spinetoram	ND	0.0067 mg/kg			
4/11/23	Spinosad	ND	0.0067 mg/kg			
4/11/23	Spiromesifen	ND	0.013 mg/kg			
4/11/23	Spirotetramat	ND	0.0067 mg/kg			
4/11/23	Spiroxamine	ND	0.0067 mg/kg			
4/11/23	Sulfentrazone	ND	0.0067 mg/kg			
4/11/23	Sulfoxaflor	ND	0.0067 mg/kg			
4/11/23	Tebuconazole	ND	0.0067 mg/kg			
4/11/23	Tebufenozide	ND	0.0067 mg/kg			
4/11/23	Tebuthiuron	ND	0.0067 mg/kg			
4/11/23	Terbacil	ND	0.0067 mg/kg			
4/11/23	Terbuthylazine	ND	0.0067 mg/kg			
4/11/23	Terbutryn	ND	0.0067 mg/kg			
4/11/23	Thiabendazole	ND	0.0067 mg/kg			
4/11/23	Thiacloprid	ND	0.0067 mg/kg			
4/11/23	Thiamethoxam	ND	0.0067 mg/kg			
4/11/23	Thiobencarb	ND	0.0067 mg/kg			
4/11/23	Thiodicarb	ND	0.0067 mg/kg			
4/11/23	Tolfenpyrad	ND	0.0067 mg/kg			
4/11/23	Triadimefon	ND	0.0067 mg/kg			
4/11/23	Triadimenol	ND	0.013 mg/kg			
4/11/23	Triallate	ND	0.0067 mg/kg			
4/11/23	Trifloxystrobin	ND	0.0067 mg/kg			
4/11/23	Triflumizole	ND	0.0067 mg/kg			
4/11/23	Triticonazole	ND	0.0067 mg/kg			
	Date 4/11/23	Date Analyte 4/11/23 Rotenone 4/11/23 Saflufenacil 4/11/23 Saflufenacil 4/11/23 Sethoxydim 4/11/23 Siduron 4/11/23 Simazine 4/11/23 Simazine 4/11/23 Simazine 4/11/23 Spinosad 4/11/23 Spinosad 4/11/23 Spiromesifen 4/11/23 Spirotetramat 4/11/23 Spiroxamine 4/11/23 Sulfentrazone 4/11/23 Sulfoxaflor 4/11/23 Tebuconazole 4/11/23 Tebutinuron 4/11/23 Tebutylazine 4/11/23 Terbacil 4/11/23 Thiacloprid 4/11/23 Thiacloprid 4/11/23 Thiodicarb 4/11/23 Tolfenpyrad 4/11/23 Triadimenol 4/11/23 Triadimenol 4/11/23 Trialate 4/11/23 Trifloxystrobin	DateAnalyteDetected4/11/23RotenoneND4/11/23SaflufenacilND4/11/23SaflufenacilND4/11/23StehoxydimND4/11/23SiduronND4/11/23SimazineND4/11/23SimetrynND4/11/23SpinetoramND4/11/23SpinosadND4/11/23SpiromesifenND4/11/23SpirotetramatND4/11/23SulfentrazoneND4/11/23TebuconazoleND4/11/23TebutenozideND4/11/23TerbacilND4/11/23TerbacilND4/11/23TerbacilND4/11/23ThiabendazoleND4/11/23ThiabendazoleND4/11/23ThiabendazoleND4/11/23ThiabendazoleND4/11/23ThiabendazoleND4/11/23ThiadendazoleND4/11/23ThiabendazoleND4/11/23ThiadendazoleND4/11/23ThiadendazoleND4/11/23ThiadendazoleND4/11/23ThiadendazoleND4/11/23ThiadendazoleND4/11/23ThiadendazoleND4/11/23TriadimenolND4/11/23TriadimenolND4/11/23TriadimenolND4/11/23TriadimenolND4/11/23TriallateND4/11/23 </td <td>Date Analyte Detected Quantitation 4/11/23 Rotenone ND 0.0067 mg/kg 4/11/23 Saflufenacil ND 0.013 mg/kg 4/11/23 Sethoxydim ND 0.0067 mg/kg 4/11/23 Siduron ND 0.0067 mg/kg 4/11/23 Simazine ND 0.0067 mg/kg 4/11/23 Simetryn ND 0.0067 mg/kg 4/11/23 Spinosad ND 0.0067 mg/kg 4/11/23 Spironesifen ND 0.0067 mg/kg 4/11/23 Spirosad ND 0.0067 mg/kg 4/11/23 Spirosamine ND 0.0067 mg/kg 4/11/23 Spirosamine ND 0.0067 mg/kg 4/11/23 Sulfentrazone ND 0.0067 mg/kg 4/11/23 Sulfentrazone ND 0.0067 mg/kg 4/11/23 Tebuconazole ND 0.0067 mg/kg 4/11/23 Tebufenozide ND 0.0067 mg/kg 4/11/23 Terbuthylazine ND</td>	Date Analyte Detected Quantitation 4/11/23 Rotenone ND 0.0067 mg/kg 4/11/23 Saflufenacil ND 0.013 mg/kg 4/11/23 Sethoxydim ND 0.0067 mg/kg 4/11/23 Siduron ND 0.0067 mg/kg 4/11/23 Simazine ND 0.0067 mg/kg 4/11/23 Simetryn ND 0.0067 mg/kg 4/11/23 Spinosad ND 0.0067 mg/kg 4/11/23 Spironesifen ND 0.0067 mg/kg 4/11/23 Spirosad ND 0.0067 mg/kg 4/11/23 Spirosamine ND 0.0067 mg/kg 4/11/23 Spirosamine ND 0.0067 mg/kg 4/11/23 Sulfentrazone ND 0.0067 mg/kg 4/11/23 Sulfentrazone ND 0.0067 mg/kg 4/11/23 Tebuconazole ND 0.0067 mg/kg 4/11/23 Tebufenozide ND 0.0067 mg/kg 4/11/23 Terbuthylazine ND		

Surrogate Recovery: 61 %

Surrogate Recovery Range: 36-117

(TPP-d15 used as Surrogate)

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

GSI Water Solutions, Inc. 650 NE Holladay Street Suite 900 Portland, OR 97232

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GMI-TP4 Matrix: soil **PAL Sample ID:** P230392-04 **Sample Date:** 3/23/23 **Received Date:** 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Method: Modi	fied EPA 8270D (C	GC-MS/MS)			H1
4/10/23	4/13/23	2,6-Dichlorobenzamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	a-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Acetochlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Alachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ametryn	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aspon	ND	0.0067 mg/kg	
4/10/23	4/13/23	b-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Benfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bifenthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bolstar	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bromopropylate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Buprofezin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Captan	ND	0.067 mg/kg	
4/10/23	4/13/23	Chlordane	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenapyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenvinphos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorobenzilate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chloroneb	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpropham	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	cis-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Cyfluthrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Cypermethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Dacthal	ND	0.0067 mg/kg	
4/10/23	4/13/23	d-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Deltamethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Demeton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diazinon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlobenil	ND	0.0067 mg/kg	

Kara Speen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-04 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP4 Matrix: soil

		Received Date: 4/0/25				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/13/23	Dichlorofenthion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dichlorvos	ND	0.0067 mg/kg		
4/10/23	4/13/23	Diclofop-methyl	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dicloran	ND	0.034 mg/kg		
4/10/23	4/13/23	Dicofol	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dieldrin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dimethenamid	ND	0.0067 mg/kg		
4/10/23	4/13/23	Diphenamid	ND	0.0067 mg/kg		
4/10/23	4/13/23	Diphenylamine	ND	0.0067 mg/kg		
4/10/23	4/13/23	Disulfoton	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dithiopyr	ND	0.0067 mg/kg		
4/10/23	4/13/23	Endosulfan I	ND	0.013 mg/kg		
4/10/23	4/13/23	Endosulfan II	ND	0.013 mg/kg		
4/10/23	4/13/23	Endosulfan sulfate	ND	0.013 mg/kg		
4/10/23	4/13/23	Endrin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Endrin ketone	ND	0.0067 mg/kg		
4/10/23	4/13/23	EPN	ND	0.0067 mg/kg		
4/10/23	4/13/23	Esfenvalerate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ethalfluralin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ethofumesate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ethoprop	ND	0.0067 mg/kg		
4/10/23	4/13/23	Etoxazole	ND	0.0067 mg/kg		
4/10/23	4/13/23	Etridiazole	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenarimol	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenitrothion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenoxaprop-ethyl	ND	0.013 mg/kg		
4/10/23	4/13/23	Fenthion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenvalerate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fipronil	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fluazifop-p-butyl	ND	0.013 mg/kg		
4/10/23	4/13/23	Fludioxonil	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fluroxypyr-meptyl	ND	0.013 mg/kg		
4/10/23	4/13/23	Flutolanil	ND	0.0067 mg/kg		

Fara Steen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-04 **Sample Date:** 3/23/23

Analytical Report

Client Sample ID: GMI-TP4 Matrix: soil

IA. 5011			Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/13/23	Fonofos	ND	0.0067 mg/kg	
4/10/23	4/13/23	g-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Heptachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Heptachlor epoxide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Hexachlorobenzene	ND	0.0067 mg/kg	
4/10/23	4/13/23	Kresoxim-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	lambda-Cyhalothrin	ND	0.013 mg/kg	
4/10/23	4/13/23	Leptophos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Malathion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Mefenoxam	ND	0.0067 mg/kg	
4/10/23	4/13/23	Methoxychlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Metolachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	MGK-264	ND	0.0067 mg/kg	
4/10/23	4/13/23	Myclobutanil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Napropamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ovex	ND	0.0067 mg/kg	
4/10/23	4/13/23	Oxadiazon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Oxyfluorfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDD	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDE	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDT	ND	0.0067 mg/kg	
4/10/23	4/13/23	Paclobutrazol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Parathion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Parathion-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCA	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCB	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCNB	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pendimethalin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pentachlorothioanisole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Permethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Phorate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Procymidone	ND	0.0067 mg/kg	
4/10/23	4/13/23	Prodiamine	ND	0.0067 mg/kg	

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GMI-TP4 Matrix: soil

PAL Sample ID:	P230392-04
Sample Date: 3/2	23/23
Received Date: 4	/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/13/23	Pronamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Propachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pyriproxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Quinoxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ronnel	ND	0.0067 mg/kg	
4/10/23	4/13/23	Spirodiclofen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Sulfotep	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tefluthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Terbufos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetraconazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetradifon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Thionazin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tokuthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	trans-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trichloronate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trifluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Vinclozalin	ND	0.0067 mg/kg	
Surrogate Recover Surrogate Recover (TPP-d15 used as Second	ery Range: 34-134				
Method: Modi	fied EPA 8321B (I	LC-MS/MS)			H1
4/10/23	4/11/23	3-Hydroxycarbofuran	ND	0.0067 mg/kg	
4/10/23	4/11/23	Abamectin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acephate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acetamiprid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acibenzolar-S-methyl	ND	0.013 mg/kg	
4/10/23	4/11/23	Afidopyropen	ND	0.0067 mg/kg	
4/10/23	4/11/23	Aldicarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Aldicarb Sulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Aldicarb Sulfoxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Allethrin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Ametoctradin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Atrazine	ND	0.0067 mg/kg	

Kara Sheen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-04 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP4 Matrix: soil

		Received Date: 4/0/25				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Azinphos-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Azinphos-methyl	ND	0.013 mg/kg		
4/10/23	4/11/23	Azoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bendiocarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bensulide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bitertanol	ND	0.0067 mg/kg		
4/10/23	4/11/23	Boscalid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bromacil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carbaryl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carbendazim	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carbofuran	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carfentrazone-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Chlorantraniliprole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Clethodim	ND	0.013 mg/kg		
4/10/23	4/11/23	Clomazone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Clothianidin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyanazine	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyantraniliprole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyazofamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyclaniliprole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cycloate	ND	0.013 mg/kg		
4/10/23	4/11/23	Cyflufenamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyflumetofen	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyhalofop-butyl	ND	0.013 mg/kg		
4/10/23	4/11/23	Cyprodinil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyprosulfamide	ND	0.0067 mg/kg		
4/10/23	4/11/23	DCPMU	ND	0.0067 mg/kg		
4/10/23	4/11/23	Diazoxon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Difenoconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Diflubenzuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Diflufenican	ND	0.0067 mg/kg		
4/10/23	4/11/23	Dimethoate	ND	0.0067 mg/kg		
4/10/23	4/11/23	Dimethomorph	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-04 **Sample Date:** 3/23/23

Analytical Report

Client Sample ID: GMI-TP4 Matrix: soil

1X . 5011			Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Dinotefuran	ND	0.0067 mg/kg	
4/10/23	4/11/23	Disulfoton sulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Diuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	d-Phenothrin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Emamectin Benzoate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Ethion	ND	0.0067 mg/kg	
4/10/23	4/11/23	Etofenprox	ND	0.0067 mg/kg	
4/10/23	4/11/23	Famoxadone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Famphur	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenamidone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenamiphos sulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenamiphos sulfoxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenazaquin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenbuconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenbutatin oxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenhexamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenobucarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenoxycarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenpropathrin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenpyroximate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flonicamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluazinam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flubendiamide	ND	0.013 mg/kg	
4/10/23	4/11/23	Flufenacet	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flumetsulam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flumioxazin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluometuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluopicolide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluopyram	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluoxastrobin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flupyradifurone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluridone	ND	0.0067 mg/kg	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-04 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP4 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Flutianil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flutriafol	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluvalinate	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluxapyroxad	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fonofos	ND	0.013 mg/kg		
4/10/23	4/11/23	Hexaconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Hexazinone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Hexythiazox	ND	0.0067 mg/kg		
4/10/23	4/11/23	Imazalil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Imidacloprid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Indaziflam	ND	0.0067 mg/kg		
4/10/23	4/11/23	Indoxacarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Ipconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Iprodione	ND	0.034 mg/kg		
4/10/23	4/11/23	Isofetamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Isoxaben	ND	0.0067 mg/kg		
4/10/23	4/11/23	Isoxadifen-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Lactofen	ND	0.0067 mg/kg		
4/10/23	4/11/23	Linuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Malaoxon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Mandipropamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Metconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Methamidophos	ND	0.034 mg/kg		
4/10/23	4/11/23	Methidathion	ND	0.0067 mg/kg		
4/10/23	4/11/23	Methiocarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Methomyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Methoxyfenozide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Metrafenone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Metribuzin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Mevinphos	ND	0.0067 mg/kg		
4/10/23	4/11/23	Monuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Neburon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Norflurazon	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-04 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP4 Matrix: soil

		Received Date: 4/0/25				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Novaluron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Omethoate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oryzalin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxadixyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxamyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxydemeton-Methyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Penoxsulam	ND	0.0067 mg/kg		
4/10/23	4/11/23	Penthiopyrad	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phorate Sulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phorate Sulfoxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosalone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosmet	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosphamidon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Picoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Piperonyl Butoxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pirimicarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pirimiphos-methyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prallethrin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prometon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prometryn	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propamocarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propanil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propargite	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propazine	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propiconazole	ND	0.013 mg/kg		
4/10/23	4/11/23	Pyraclostrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyraflufen-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyrethrin	ND	0.034 mg/kg		
4/10/23	4/11/23	Pyridaben	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyridalyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyrimethanil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyroxasulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Quizalofop-p-ethyl	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-04

Sample Date: 3/23/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GMI-TP4 Matrix: soil

Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/11/23	Rotenone	ND	0.0067 mg/kg	
4/11/23	Saflufenacil	ND	0.0067 mg/kg	
4/11/23	Sethoxydim	ND	0.013 mg/kg	
4/11/23	Siduron	ND	0.0067 mg/kg	
4/11/23	Simazine	ND	0.0067 mg/kg	
4/11/23	Simetryn	ND	0.0067 mg/kg	
4/11/23	Spinetoram	ND	0.0067 mg/kg	
4/11/23	Spinosad	ND	0.0067 mg/kg	
4/11/23	Spiromesifen	ND	0.013 mg/kg	
4/11/23	Spirotetramat	ND	0.0067 mg/kg	
4/11/23	Spiroxamine	ND	0.0067 mg/kg	
4/11/23	Sulfentrazone	ND	0.0067 mg/kg	
4/11/23	Sulfoxaflor	ND	0.0067 mg/kg	
4/11/23	Tebuconazole	ND	0.0067 mg/kg	
4/11/23	Tebufenozide	ND	0.0067 mg/kg	
4/11/23	Tebuthiuron	ND	0.0067 mg/kg	
4/11/23	Terbacil	ND	0.0067 mg/kg	
4/11/23	Terbuthylazine	ND	0.0067 mg/kg	
4/11/23	Terbutryn	ND	0.0067 mg/kg	
4/11/23	Thiabendazole	ND	0.0067 mg/kg	
4/11/23	Thiacloprid	ND	0.0067 mg/kg	
4/11/23	Thiamethoxam	ND	0.0067 mg/kg	
4/11/23	Thiobencarb	ND	0.0067 mg/kg	
4/11/23	Thiodicarb	ND	0.0067 mg/kg	
4/11/23	Tolfenpyrad	ND	0.0067 mg/kg	
4/11/23	Triadimefon	ND	0.0067 mg/kg	
4/11/23	Triadimenol	ND	0.013 mg/kg	
4/11/23	Triallate	ND	0.0067 mg/kg	
4/11/23	Trifloxystrobin	ND	0.0067 mg/kg	
4/11/23	Triflumizole	ND	0.0067 mg/kg	
4/11/23	Triticonazole	ND	0.0067 mg/kg	
	Date 4/11/23	Date Analyte 4/11/23 Rotenone 4/11/23 Saflufenacil 4/11/23 Saflufenacil 4/11/23 Sethoxydim 4/11/23 Siduron 4/11/23 Simazine 4/11/23 Simazine 4/11/23 Simazine 4/11/23 Spinosad 4/11/23 Spinosad 4/11/23 Spiromesifen 4/11/23 Spirotetramat 4/11/23 Spiroxamine 4/11/23 Sulfentrazone 4/11/23 Sulfoxaflor 4/11/23 Tebuconazole 4/11/23 Tebutinuron 4/11/23 Tebutylazine 4/11/23 Terbacil 4/11/23 Thiacloprid 4/11/23 Thiacloprid 4/11/23 Thiodicarb 4/11/23 Tolfenpyrad 4/11/23 Triadimenol 4/11/23 Triadimenol 4/11/23 Trialate 4/11/23 Trifloxystrobin	DateAnalyteDetected4/11/23RotenoneND4/11/23SaflufenacilND4/11/23SaflufenacilND4/11/23StehoxydimND4/11/23SiduronND4/11/23SimazineND4/11/23SimetrynND4/11/23SpinetoramND4/11/23SpinosadND4/11/23SpiromesifenND4/11/23SpirotetramatND4/11/23SulfentrazoneND4/11/23TebuconazoleND4/11/23TebutenozideND4/11/23TerbacilND4/11/23TerbacilND4/11/23TerbacilND4/11/23ThiabendazoleND4/11/23ThiabendazoleND4/11/23ThiabendazoleND4/11/23ThiabendazoleND4/11/23ThiabendazoleND4/11/23ThiadendazoleND4/11/23ThiabendazoleND4/11/23ThiadendazoleND4/11/23ThiadendazoleND4/11/23ThiadendazoleND4/11/23ThiadendazoleND4/11/23ThiadendazoleND4/11/23ThiadendazoleND4/11/23TriadimenolND4/11/23TriadimenolND4/11/23TriadimenolND4/11/23TriadimenolND4/11/23TriallateND4/11/23 </td <td>Date Analyte Detected Quantitation 4/11/23 Rotenone ND 0.0067 mg/kg 4/11/23 Saflufenacil ND 0.013 mg/kg 4/11/23 Sethoxydim ND 0.0067 mg/kg 4/11/23 Siduron ND 0.0067 mg/kg 4/11/23 Simazine ND 0.0067 mg/kg 4/11/23 Simetryn ND 0.0067 mg/kg 4/11/23 Spinosad ND 0.0067 mg/kg 4/11/23 Spironesifen ND 0.0067 mg/kg 4/11/23 Spirosad ND 0.0067 mg/kg 4/11/23 Spirosamine ND 0.0067 mg/kg 4/11/23 Spirosamine ND 0.0067 mg/kg 4/11/23 Sulfentrazone ND 0.0067 mg/kg 4/11/23 Sulfentrazone ND 0.0067 mg/kg 4/11/23 Tebuconazole ND 0.0067 mg/kg 4/11/23 Tebufenozide ND 0.0067 mg/kg 4/11/23 Terbuthylazine ND</td>	Date Analyte Detected Quantitation 4/11/23 Rotenone ND 0.0067 mg/kg 4/11/23 Saflufenacil ND 0.013 mg/kg 4/11/23 Sethoxydim ND 0.0067 mg/kg 4/11/23 Siduron ND 0.0067 mg/kg 4/11/23 Simazine ND 0.0067 mg/kg 4/11/23 Simetryn ND 0.0067 mg/kg 4/11/23 Spinosad ND 0.0067 mg/kg 4/11/23 Spironesifen ND 0.0067 mg/kg 4/11/23 Spirosad ND 0.0067 mg/kg 4/11/23 Spirosamine ND 0.0067 mg/kg 4/11/23 Spirosamine ND 0.0067 mg/kg 4/11/23 Sulfentrazone ND 0.0067 mg/kg 4/11/23 Sulfentrazone ND 0.0067 mg/kg 4/11/23 Tebuconazole ND 0.0067 mg/kg 4/11/23 Tebufenozide ND 0.0067 mg/kg 4/11/23 Terbuthylazine ND

Surrogate Recovery: 72 %

Surrogate Recovery Range: 36-117

(TPP-d15 used as Surrogate)

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

GSI Water Solutions, Inc. 650 NE Holladay Street Suite 900 Portland, OR 97232

Report Number: P230392 Report Date: April 20, 2023 Client Project ID: 464.020.002

Analytical Report

Client Sample ID: GM2-TP1 Matrix: soil **PAL Sample ID:** P230392-05 **Sample Date:** 3/21/23 **Received Date:** 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Method: Modi	fied EPA 8270D (O	GC-MS/MS)			H1
4/10/23	4/13/23	2,6-Dichlorobenzamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	a-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Acetochlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Alachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ametryn	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aspon	ND	0.0067 mg/kg	
4/10/23	4/13/23	b-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Benfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bifenthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bolstar	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bromopropylate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Buprofezin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Captan	ND	0.067 mg/kg	
4/10/23	4/13/23	Chlordane	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenapyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenvinphos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorobenzilate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chloroneb	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpropham	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	cis-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Cyfluthrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Cypermethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Dacthal	ND	0.0067 mg/kg	
4/10/23	4/13/23	d-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Deltamethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Demeton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diazinon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlobenil	ND	0.0067 mg/kg	

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GM2-TP1 Matrix: soil PAL Sample ID: P230392-05 Sample Date: 3/21/23 Received Date: 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/13/23	Dichlorofenthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlorvos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diclofop-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dicloran	ND	0.034 mg/kg	
4/10/23	4/13/23	Dicofol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dieldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dimethenamid	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diphenamid	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diphenylamine	ND	0.0067 mg/kg	
4/10/23	4/13/23	Disulfoton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dithiopyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Endosulfan I	ND	0.013 mg/kg	
4/10/23	4/13/23	Endosulfan II	ND	0.013 mg/kg	
4/10/23	4/13/23	Endosulfan sulfate	ND	0.013 mg/kg	
4/10/23	4/13/23	Endrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Endrin ketone	ND	0.0067 mg/kg	
4/10/23	4/13/23	EPN	ND	0.0067 mg/kg	
4/10/23	4/13/23	Esfenvalerate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethalfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethofumesate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethoprop	ND	0.0067 mg/kg	
4/10/23	4/13/23	Etoxazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Etridiazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenarimol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenitrothion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenoxaprop-ethyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Fenthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenvalerate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fipronil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fluazifop-p-butyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Fludioxonil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fluroxypyr-meptyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Flutolanil	ND	0.0067 mg/kg	

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-05 **Sample Date:** 3/21/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP1 Matrix: soil

Extraction Date	Analysis Date					
		Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/13/23	Fonofos	ND	0.0067 mg/kg		
4/10/23	4/13/23	g-BHC	ND	0.0067 mg/kg		
4/10/23	4/13/23	Heptachlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	Heptachlor epoxide	ND	0.0067 mg/kg		
4/10/23	4/13/23	Hexachlorobenzene	ND	0.0067 mg/kg		
4/10/23	4/13/23	Kresoxim-methyl	ND	0.0067 mg/kg		
4/10/23	4/13/23	lambda-Cyhalothrin	ND	0.013 mg/kg		
4/10/23	4/13/23	Leptophos	ND	0.0067 mg/kg		
4/10/23	4/13/23	Malathion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Mefenoxam	ND	0.0067 mg/kg		
4/10/23	4/13/23	Methoxychlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	Metolachlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	MGK-264	ND	0.0067 mg/kg		
4/10/23	4/13/23	Myclobutanil	ND	0.0067 mg/kg		
4/10/23	4/13/23	Napropamide	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ovex	ND	0.0067 mg/kg		
4/10/23	4/13/23	Oxadiazon	ND	0.0067 mg/kg		
4/10/23	4/13/23	Oxyfluorfen	ND	0.0067 mg/kg		
4/10/23	4/13/23	p,p'-DDD	ND	0.0067 mg/kg		
4/10/23	4/13/23	p,p'-DDE	ND	0.0067 mg/kg		
4/10/23	4/13/23	p,p'-DDT	ND	0.0067 mg/kg		
4/10/23	4/13/23	Paclobutrazol	ND	0.0067 mg/kg		
4/10/23	4/13/23	Parathion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Parathion-methyl	ND	0.0067 mg/kg		
4/10/23	4/13/23	PCA	ND	0.0067 mg/kg		
4/10/23	4/13/23	PCB	ND	0.0067 mg/kg		
4/10/23	4/13/23	PCNB	ND	0.0067 mg/kg		
4/10/23	4/13/23	Pendimethalin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Pentachlorothioanisole	ND	0.0067 mg/kg		
4/10/23	4/13/23	Permethrin	ND	0.034 mg/kg		
4/10/23	4/13/23	Phorate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Procymidone	ND	0.0067 mg/kg		
4/10/23	4/13/23	Prodiamine	ND	0.0067 mg/kg		

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-05

Analytical Report

Client Sample ID: GM2-TP1 Matrix: soil

atrix: soil			Sample Date: 3/21/23 Received Date: 4/6/23			
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/13/23	Pronamide	ND	0.0067 mg/kg		
4/10/23	4/13/23	Propachlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	Pyriproxyfen	ND	0.0067 mg/kg		
4/10/23	4/13/23	Quinoxyfen	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ronnel	ND	0.0067 mg/kg		
4/10/23	4/13/23	Spirodiclofen	ND	0.0067 mg/kg		
4/10/23	4/13/23	Sulfotep	ND	0.0067 mg/kg		
4/10/23	4/13/23	Tefluthrin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Terbufos	ND	0.0067 mg/kg		
4/10/23	4/13/23	Tetraconazole	ND	0.0067 mg/kg		
4/10/23	4/13/23	Tetradifon	ND	0.0067 mg/kg		
4/10/23	4/13/23	Thionazin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Tokuthion	ND	0.0067 mg/kg		
4/10/23	4/13/23	trans-Nonachlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	Trichloronate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Trifluralin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Vinclozalin	ND	0.0067 mg/kg		
Surrogate Recov Surrogate Recov (TPP-d15 used as S	ery Range: 34-134					
Method: Modi	fied EPA 8321B (L	C-MS/MS)			H1	
4/10/23	4/11/23	3-Hydroxycarbofuran	ND	0.0067 mg/kg		
4/10/23	4/11/23	Abamectin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Acephate	ND	0.0067 mg/kg		
4/10/23	4/11/23	Acetamiprid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Acibenzolar-S-methyl	ND	0.013 mg/kg		
4/10/23	4/11/23	Afidopyropen	ND	0.0067 mg/kg		

ND

ND

ND

ND

ND

ND

This analytical report complies with the ISO/IEC 17025:2017 Quality Standard.

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

gragheen

4/11/23

4/11/23

4/11/23

4/11/23

4/11/23

4/11/23

Aldicarb

Allethrin

Atrazine

Ametoctradin

Aldicarb Sulfone

Aldicarb Sulfoxide

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-05 **Sample Date:** 3/21/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP1 Matrix: soil

Extraction Date	Analysis Date	Amalista	Amount Detected	Limit of Quantitation	Notes
Date	Date	Analyte	Detected	Quantitation	notes
4/10/23	4/11/23	Azinphos-ethyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Azinphos-methyl	ND	0.013 mg/kg	
4/10/23	4/11/23	Azoxystrobin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Bendiocarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Bensulide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Bitertanol	ND	0.0067 mg/kg	
4/10/23	4/11/23	Boscalid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Bromacil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Carbaryl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Carbendazim	ND	0.0067 mg/kg	
4/10/23	4/11/23	Carbofuran	ND	0.0067 mg/kg	
4/10/23	4/11/23	Carfentrazone-ethyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Chlorantraniliprole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Clethodim	ND	0.013 mg/kg	
4/10/23	4/11/23	Clomazone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Clothianidin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyanazine	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyantraniliprole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyazofamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyclaniliprole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cycloate	ND	0.013 mg/kg	
4/10/23	4/11/23	Cyflufenamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyflumetofen	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyhalofop-butyl	ND	0.013 mg/kg	
4/10/23	4/11/23	Cyprodinil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyprosulfamide	ND	0.0067 mg/kg	
4/10/23	4/11/23	DCPMU	ND	0.0067 mg/kg	
4/10/23	4/11/23	Diazoxon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Difenoconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Diflubenzuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Diflufenican	ND	0.0067 mg/kg	
4/10/23	4/11/23	Dimethoate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Dimethomorph	ND	0.0067 mg/kg	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-05 **Sample Date:** 3/21/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP1 Matrix: soil

Extraction Date	Analysis Date	Received Date: 4/0/25				
		Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Dinotefuran	ND	0.0067 mg/kg		
4/10/23	4/11/23	Disulfoton sulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Diuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	d-Phenothrin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Emamectin Benzoate	ND	0.0067 mg/kg		
4/10/23	4/11/23	Ethion	ND	0.0067 mg/kg		
4/10/23	4/11/23	Etofenprox	ND	0.0067 mg/kg		
4/10/23	4/11/23	Famoxadone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Famphur	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenamidone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenamiphos sulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenamiphos sulfoxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenazaquin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenbuconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenbutatin oxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenhexamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenobucarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenoxycarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenpropathrin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenpyroximate	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flonicamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluazinam	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flubendiamide	ND	0.013 mg/kg		
4/10/23	4/11/23	Flufenacet	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flumetsulam	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flumioxazin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluometuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluopicolide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluopyram	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluoxastrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flupyradifurone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluridone	ND	0.0067 mg/kg		

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-05 **Sample Date:** 3/21/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP1 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Flutianil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flutriafol	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluvalinate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluxapyroxad	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fonofos	ND	0.013 mg/kg	
4/10/23	4/11/23	Hexaconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Hexazinone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Hexythiazox	ND	0.0067 mg/kg	
4/10/23	4/11/23	Imazalil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Imidacloprid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Indaziflam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Indoxacarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Ipconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Iprodione	ND	0.034 mg/kg	
4/10/23	4/11/23	Isofetamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Isoxaben	ND	0.0067 mg/kg	
4/10/23	4/11/23	Isoxadifen-ethyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Lactofen	ND	0.0067 mg/kg	
4/10/23	4/11/23	Linuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Malaoxon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Mandipropamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Metconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methamidophos	ND	0.034 mg/kg	
4/10/23	4/11/23	Methidathion	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methiocarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methomyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methoxyfenozide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Metrafenone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Metribuzin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Mevinphos	ND	0.0067 mg/kg	
4/10/23	4/11/23	Monuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Neburon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Norflurazon	ND	0.0067 mg/kg	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-05 **Sample Date:** 3/21/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP1 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Novaluron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Omethoate	ND	0.0067 mg/kg	
4/10/23	4/12/23	Oryzalin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Oxadixyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Oxamyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Oxydemeton-Methyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Penoxsulam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Penthiopyrad	ND	0.0067 mg/kg	
4/10/23	4/11/23	Phorate Sulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Phorate Sulfoxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Phosalone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Phosmet	ND	0.0067 mg/kg	
4/10/23	4/11/23	Phosphamidon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Picoxystrobin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Piperonyl Butoxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Pirimicarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Pirimiphos-methyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Prallethrin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Prometon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Prometryn	ND	0.0067 mg/kg	
4/10/23	4/11/23	Propamocarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Propanil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Propargite	ND	0.0067 mg/kg	
4/10/23	4/11/23	Propazine	ND	0.0067 mg/kg	
4/10/23	4/11/23	Propiconazole	ND	0.013 mg/kg	
4/10/23	4/11/23	Pyraclostrobin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Pyraflufen-ethyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Pyrethrin	ND	0.034 mg/kg	
4/10/23	4/11/23	Pyridaben	ND	0.0067 mg/kg	
4/10/23	4/11/23	Pyridalyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Pyrimethanil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Pyroxasulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Quizalofop-p-ethyl	ND	0.0067 mg/kg	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-05

Sample Date: 3/21/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP1 Matrix: soil

				Received Date: 4/0/23	
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Rotenone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Saflufenacil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Sethoxydim	ND	0.013 mg/kg	
4/10/23	4/11/23	Siduron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Simazine	ND	0.0067 mg/kg	
4/10/23	4/11/23	Simetryn	ND	0.0067 mg/kg	
4/10/23	4/11/23	Spinetoram	ND	0.0067 mg/kg	
4/10/23	4/11/23	Spinosad	ND	0.0067 mg/kg	
4/10/23	4/11/23	Spiromesifen	ND	0.013 mg/kg	
4/10/23	4/11/23	Spirotetramat	ND	0.0067 mg/kg	
4/10/23	4/11/23	Spiroxamine	ND	0.0067 mg/kg	
4/10/23	4/11/23	Sulfentrazone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Sulfoxaflor	ND	0.0067 mg/kg	
4/10/23	4/11/23	Tebuconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Tebufenozide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Tebuthiuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Terbacil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Terbuthylazine	ND	0.0067 mg/kg	
4/10/23	4/11/23	Terbutryn	ND	0.0067 mg/kg	
4/10/23	4/11/23	Thiabendazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Thiacloprid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Thiamethoxam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Thiobencarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Thiodicarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Tolfenpyrad	ND	0.0067 mg/kg	
4/10/23	4/11/23	Triadimefon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Triadimenol	ND	0.013 mg/kg	
4/10/23	4/11/23	Triallate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Trifloxystrobin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Triflumizole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Triticonazole	ND	0.0067 mg/kg	

Surrogate Recovery: 62 %

Surrogate Recovery Range: 36-117

(TPP-d15 used as Surrogate)

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

GSI Water Solutions, Inc. 650 NE Holladay Street Suite 900 Portland, OR 97232

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GM2-TP2 Matrix: soil **PAL Sample ID:** P230392-06 **Sample Date:** 3/21/23 **Received Date:** 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Method: Modi	fied EPA 8270D (C	GC-MS/MS)			H1
4/10/23	4/13/23	2,6-Dichlorobenzamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	a-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Acetochlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Alachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ametryn	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aspon	ND	0.0067 mg/kg	
4/10/23	4/13/23	b-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Benfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bifenthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bolstar	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bromopropylate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Buprofezin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Captan	ND	0.067 mg/kg	
4/10/23	4/13/23	Chlordane	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenapyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenvinphos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorobenzilate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chloroneb	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpropham	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	cis-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Cyfluthrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Cypermethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Dacthal	ND	0.0067 mg/kg	
4/10/23	4/13/23	d-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Deltamethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Demeton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diazinon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlobenil	ND	0.0067 mg/kg	

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-06 **Sample Date:** 3/21/23

Analytical Report

Client Sample ID: GM2-TP2 Matrix: soil

1X . 5011]	Received Date: 4/6/23	
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/13/23	Dichlorofenthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlorvos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diclofop-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dicloran	ND	0.034 mg/kg	
4/10/23	4/13/23	Dicofol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dieldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dimethenamid	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diphenamid	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diphenylamine	ND	0.0067 mg/kg	
4/10/23	4/13/23	Disulfoton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dithiopyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Endosulfan I	ND	0.013 mg/kg	
4/10/23	4/13/23	Endosulfan II	ND	0.013 mg/kg	
4/10/23	4/13/23	Endosulfan sulfate	ND	0.013 mg/kg	
4/10/23	4/13/23	Endrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Endrin ketone	ND	0.0067 mg/kg	
4/10/23	4/13/23	EPN	ND	0.0067 mg/kg	
4/10/23	4/13/23	Esfenvalerate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethalfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethofumesate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethoprop	ND	0.0067 mg/kg	
4/10/23	4/13/23	Etoxazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Etridiazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenarimol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenitrothion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenoxaprop-ethyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Fenthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenvalerate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fipronil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fluazifop-p-butyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Fludioxonil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fluroxypyr-meptyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Flutolanil	ND	0.0067 mg/kg	

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-06 **Sample Date:** 3/21/23

Analytical Report

Client Sample ID: GM2-TP2 Matrix: soil

IA. 5011			Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/13/23	Fonofos	ND	0.0067 mg/kg	
4/10/23	4/13/23	g-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Heptachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Heptachlor epoxide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Hexachlorobenzene	ND	0.0067 mg/kg	
4/10/23	4/13/23	Kresoxim-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	lambda-Cyhalothrin	ND	0.013 mg/kg	
4/10/23	4/13/23	Leptophos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Malathion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Mefenoxam	ND	0.0067 mg/kg	
4/10/23	4/13/23	Methoxychlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Metolachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	MGK-264	ND	0.0067 mg/kg	
4/10/23	4/13/23	Myclobutanil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Napropamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ovex	ND	0.0067 mg/kg	
4/10/23	4/13/23	Oxadiazon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Oxyfluorfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDD	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDE	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDT	ND	0.0067 mg/kg	
4/10/23	4/13/23	Paclobutrazol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Parathion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Parathion-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCA	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCB	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCNB	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pendimethalin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pentachlorothioanisole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Permethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Phorate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Procymidone	ND	0.0067 mg/kg	
4/10/23	4/13/23	Prodiamine	ND	0.0067 mg/kg	

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

 Report Number:
 P230392

 Report Date:
 April 20, 2023

 Client Project ID:
 464.020.002

PAL Sample ID: P230392-06

Sample Date: 3/21/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP2 Matrix: soil

Extraction	Analysis		Amount	Limit of	
Date	Date	Analyte	Detected	Quantitation	Note
4/10/23	4/13/23	Pronamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Propachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pyriproxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Quinoxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ronnel	ND	0.0067 mg/kg	
4/10/23	4/13/23	Spirodiclofen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Sulfotep	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tefluthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Terbufos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetraconazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetradifon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Thionazin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tokuthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	trans-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trichloronate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trifluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Vinclozalin	ND	0.0067 mg/kg	
Surrogate Recov Surrogate Recov (TPP-d15 used as S	ery Range: 34-134				
Method: Modi	fied EPA 8321B (I	LC-MS/MS)			H1
4/10/23	4/11/23	3-Hydroxycarbofuran	ND	0.0067 mg/kg	
4/10/23	4/11/23	Abamectin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acephate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acetamiprid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acibenzolar-S-methyl	ND	0.013 mg/kg	

ND

ND

ND

ND

ND

ND

ND

This analytical report complies with the ISO/IEC 17025:2017 Quality Standard.

0.0067 mg/kg

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

Faraspeen

4/11/23

4/11/23

4/11/23

4/11/23

4/11/23

4/11/23

4/11/23

Afidopyropen Aldicarb

Allethrin

Atrazine

Ametoctradin

Aldicarb Sulfone

Aldicarb Sulfoxide

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-06

Sample Date: 3/21/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP2 Matrix: soil

				Received Date: 4/0/23	
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Azinphos-ethyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Azinphos-methyl	ND	0.013 mg/kg	
4/10/23	4/11/23	Azoxystrobin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Bendiocarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Bensulide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Bitertanol	ND	0.0067 mg/kg	
4/10/23	4/11/23	Boscalid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Bromacil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Carbaryl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Carbendazim	ND	0.0067 mg/kg	
4/10/23	4/11/23	Carbofuran	ND	0.0067 mg/kg	
4/10/23	4/11/23	Carfentrazone-ethyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Chlorantraniliprole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Clethodim	ND	0.013 mg/kg	
4/10/23	4/11/23	Clomazone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Clothianidin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyanazine	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyantraniliprole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyazofamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyclaniliprole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cycloate	ND	0.013 mg/kg	
4/10/23	4/11/23	Cyflufenamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyflumetofen	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyhalofop-butyl	ND	0.013 mg/kg	
4/10/23	4/11/23	Cyprodinil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyprosulfamide	ND	0.0067 mg/kg	
4/10/23	4/11/23	DCPMU	ND	0.0067 mg/kg	
4/10/23	4/11/23	Diazoxon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Difenoconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Diflubenzuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Diflufenican	ND	0.0067 mg/kg	
4/10/23	4/11/23	Dimethoate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Dimethomorph	ND	0.0067 mg/kg	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-06 **Sample Date:** 3/21/23

Analytical Report

Client Sample ID: GM2-TP2 Matrix: soil

in. son				Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Dinotefuran	ND	0.0067 mg/kg		
4/10/23	4/11/23	Disulfoton sulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Diuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	d-Phenothrin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Emamectin Benzoate	ND	0.0067 mg/kg		
4/10/23	4/11/23	Ethion	ND	0.0067 mg/kg		
4/10/23	4/11/23	Etofenprox	ND	0.0067 mg/kg		
4/10/23	4/11/23	Famoxadone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Famphur	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenamidone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenamiphos sulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenamiphos sulfoxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenazaquin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenbuconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenbutatin oxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenhexamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenobucarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenoxycarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenpropathrin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenpyroximate	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flonicamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluazinam	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flubendiamide	ND	0.013 mg/kg		
4/10/23	4/11/23	Flufenacet	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flumetsulam	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flumioxazin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluometuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluopicolide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluopyram	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluoxastrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flupyradifurone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluridone	ND	0.0067 mg/kg		

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-06 **Sample Date:** 3/21/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP2 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Flutianil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flutriafol	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluvalinate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluxapyroxad	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fonofos	ND	0.013 mg/kg	
4/10/23	4/11/23	Hexaconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Hexazinone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Hexythiazox	ND	0.0067 mg/kg	
4/10/23	4/11/23	Imazalil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Imidacloprid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Indaziflam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Indoxacarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Ipconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Iprodione	ND	0.034 mg/kg	
4/10/23	4/11/23	Isofetamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Isoxaben	ND	0.0067 mg/kg	
4/10/23	4/11/23	Isoxadifen-ethyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Lactofen	ND	0.0067 mg/kg	
4/10/23	4/11/23	Linuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Malaoxon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Mandipropamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Metconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methamidophos	ND	0.034 mg/kg	
4/10/23	4/11/23	Methidathion	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methiocarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methomyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methoxyfenozide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Metrafenone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Metribuzin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Mevinphos	ND	0.0067 mg/kg	
4/10/23	4/11/23	Monuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Neburon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Norflurazon	ND	0.0067 mg/kg	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-06 **Sample Date:** 3/21/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP2 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Novaluron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Omethoate	ND	0.0067 mg/kg	
4/10/23	4/12/23	Oryzalin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Oxadixyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Oxamyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Oxydemeton-Methyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Penoxsulam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Penthiopyrad	ND	0.0067 mg/kg	
4/10/23	4/11/23	Phorate Sulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Phorate Sulfoxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Phosalone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Phosmet	ND	0.0067 mg/kg	
4/10/23	4/11/23	Phosphamidon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Picoxystrobin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Piperonyl Butoxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Pirimicarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Pirimiphos-methyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Prallethrin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Prometon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Prometryn	ND	0.0067 mg/kg	
4/10/23	4/11/23	Propamocarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Propanil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Propargite	ND	0.0067 mg/kg	
4/10/23	4/11/23	Propazine	ND	0.0067 mg/kg	
4/10/23	4/11/23	Propiconazole	ND	0.013 mg/kg	
4/10/23	4/11/23	Pyraclostrobin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Pyraflufen-ethyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Pyrethrin	ND	0.034 mg/kg	
4/10/23	4/11/23	Pyridaben	ND	0.0067 mg/kg	
4/10/23	4/11/23	Pyridalyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Pyrimethanil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Pyroxasulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Quizalofop-p-ethyl	ND	0.0067 mg/kg	

gragheen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-06

Sample Date: 3/21/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP2 Matrix: soil

Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/11/23	Rotenone	ND	0.0067 mg/kg	
4/11/23	Saflufenacil	ND	0.0067 mg/kg	
4/11/23	Sethoxydim	ND	0.013 mg/kg	
4/11/23	Siduron	ND	0.0067 mg/kg	
4/11/23	Simazine	ND	0.0067 mg/kg	
4/11/23	Simetryn	ND	0.0067 mg/kg	
4/11/23	Spinetoram	ND	0.0067 mg/kg	
4/11/23	Spinosad	ND	0.0067 mg/kg	
4/11/23	Spiromesifen	ND	0.013 mg/kg	
4/11/23	Spirotetramat	ND	0.0067 mg/kg	
4/11/23	Spiroxamine	ND	0.0067 mg/kg	
4/11/23	Sulfentrazone	ND	0.0067 mg/kg	
4/11/23	Sulfoxaflor	ND	0.0067 mg/kg	
4/11/23	Tebuconazole	ND	0.0067 mg/kg	
4/11/23	Tebufenozide	ND	0.0067 mg/kg	
4/11/23	Tebuthiuron	ND	0.0067 mg/kg	
4/11/23	Terbacil	ND	0.0067 mg/kg	
4/11/23	Terbuthylazine	ND	0.0067 mg/kg	
4/11/23	Terbutryn	ND	0.0067 mg/kg	
4/11/23	Thiabendazole	ND	0.0067 mg/kg	
4/11/23	Thiacloprid	ND	0.0067 mg/kg	
4/11/23	Thiamethoxam	ND	0.0067 mg/kg	
4/11/23	Thiobencarb	ND	0.0067 mg/kg	
4/11/23	Thiodicarb	ND	0.0067 mg/kg	
4/11/23	Tolfenpyrad	ND	0.0067 mg/kg	
4/11/23	Triadimefon	ND	0.0067 mg/kg	
4/11/23	Triadimenol	ND	0.013 mg/kg	
4/11/23	Triallate	ND	0.0067 mg/kg	
4/11/23	Trifloxystrobin	ND	0.0067 mg/kg	
4/11/23	Triflumizole	ND	0.0067 mg/kg	
4/11/23	Triticonazole	ND	0.0067 mg/kg	
	Date 4/11/23	Date Analyte 4/11/23 Rotenone 4/11/23 Saflufenacil 4/11/23 Saflufenacil 4/11/23 Saflufenacil 4/11/23 Sethoxydim 4/11/23 Siduron 4/11/23 Simazine 4/11/23 Simazine 4/11/23 Spinosad 4/11/23 Spiromesifen 4/11/23 Spirotetramat 4/11/23 Spiroxamine 4/11/23 Sulfentrazone 4/11/23 Sulfoxaflor 4/11/23 Tebuconazole 4/11/23 Tebuthiuron 4/11/23 Terbacil 4/11/23 Terbuthylazine 4/11/23 Terbuthylazine 4/11/23 Thiabendazole 4/11/23 Thiacloprid 4/11/23 Thiodicarb 4/11/23 Thiodicarb 4/11/23 Triadimenol 4/11/23 Triadimenol 4/11/23 Triadimenol 4/11/23 Trialate	DateAnalyteDetected4/11/23RotenoneND4/11/23SaflufenacilND4/11/23SaflufenacilND4/11/23SethoxydimND4/11/23SiduronND4/11/23SimazineND4/11/23SimetrynND4/11/23SpinetoramND4/11/23SpinosadND4/11/23SpiromesifenND4/11/23SpirotetramatND4/11/23SulfentrazoneND4/11/23SulfoxaflorND4/11/23TebuconazoleND4/11/23TerbacilND4/11/23TerbacilND4/11/23TerbuthylazineND4/11/23ThiabendazoleND4/11/23ThiabendazoleND4/11/23ThiabendazoleND4/11/23ThiabendazoleND4/11/23ThiadenarbND4/11/23ThiadenarbND4/11/23ThiabendazoleND4/11/23ThiadenarbND4/11/23ThiadenarbND4/11/23ThiadenarbND4/11/23TriadimenolND4/11/23TriadimenolND4/11/23TriadimenolND4/11/23TriadimenolND4/11/23TriadimenolND4/11/23TriadimenolND4/11/23TriadimenolND4/11/23TriallateND4/11/23Triflumiz	Date Analyte Detected Quantitation 4/11/23 Rotenone ND 0.0067 mg/kg 4/11/23 Saflufenacil ND 0.0013 mg/kg 4/11/23 Saflurenacil ND 0.0067 mg/kg 4/11/23 Siduron ND 0.0067 mg/kg 4/11/23 Simazine ND 0.0067 mg/kg 4/11/23 Simetryn ND 0.0067 mg/kg 4/11/23 Spinetoram ND 0.0067 mg/kg 4/11/23 Spinosad ND 0.0067 mg/kg 4/11/23 Spirotetramat ND 0.0067 mg/kg 4/11/23 Spirotetramat ND 0.0067 mg/kg 4/11/23 Spirotetramat ND 0.0067 mg/kg 4/11/23 Sulfentrazone ND 0.0067 mg/kg 4/11/23 Sulfentrazone ND 0.0067 mg/kg 4/11/23 Tebuconazole ND 0.0067 mg/kg 4/11/23 Tebuthiuron ND 0.0067 mg/kg 4/11/23 Terbutryn ND

Surrogate Recovery: 66 %

Surrogate Recovery Range: 36-117

(TPP-d15 used as Surrogate)

Farastreen

Kara Greer, Project Manager

This analytical report complies with the ISO/IEC 17025:2017 Quality Standard.

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

GSI Water Solutions, Inc. 650 NE Holladay Street Suite 900 Portland, OR 97232

Report Number: P230392 Report Date: April 20, 2023 Client Project ID: 464.020.002

Analytical Report

Client Sample ID: GM2-TP3 Matrix: soil **PAL Sample ID:** P230392-07 **Sample Date:** 3/22/23 **Received Date:** 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Method: Modi	fied EPA 8270D (C	GC-MS/MS)			H1
4/10/23	4/13/23	2,6-Dichlorobenzamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	a-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Acetochlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Alachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ametryn	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aspon	ND	0.0067 mg/kg	
4/10/23	4/13/23	b-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Benfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bifenthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bolstar	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bromopropylate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Buprofezin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Captan	ND	0.067 mg/kg	
4/10/23	4/13/23	Chlordane	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenapyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenvinphos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorobenzilate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chloroneb	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpropham	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	cis-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Cyfluthrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Cypermethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Dacthal	ND	0.0067 mg/kg	
4/10/23	4/13/23	d-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Deltamethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Demeton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diazinon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlobenil	ND	0.0067 mg/kg	

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GM2-TP3 Matrix: soil

PAL Sample ID: P230392-07
Sample Date: 3/22/23
Received Date: 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Date	Date	Analyte	Dettettu	Quantitation	INOLES
4/10/23	4/13/23	Dichlorofenthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlorvos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diclofop-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dicloran	ND	0.034 mg/kg	
4/10/23	4/13/23	Dicofol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dieldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dimethenamid	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diphenamid	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diphenylamine	ND	0.0067 mg/kg	
4/10/23	4/13/23	Disulfoton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dithiopyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Endosulfan I	ND	0.013 mg/kg	
4/10/23	4/13/23	Endosulfan II	ND	0.013 mg/kg	
4/10/23	4/13/23	Endosulfan sulfate	ND	0.013 mg/kg	
4/10/23	4/13/23	Endrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Endrin ketone	ND	0.0067 mg/kg	
4/10/23	4/13/23	EPN	ND	0.0067 mg/kg	
4/10/23	4/13/23	Esfenvalerate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethalfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethofumesate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethoprop	ND	0.0067 mg/kg	
4/10/23	4/13/23	Etoxazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Etridiazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenarimol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenitrothion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenoxaprop-ethyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Fenthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenvalerate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fipronil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fluazifop-p-butyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Fludioxonil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fluroxypyr-meptyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Flutolanil	ND	0.0067 mg/kg	

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GM2-TP3 Matrix: soil

PAL Sample ID: P230392-07
Sample Date: 3/22/23
Received Date: 4/6/23

Extraction	Analysis		Amount	Limit of	
Date	Date	Analyte	Detected	Quantitation	Notes
4/10/23	4/13/23	Fonofos	ND	0.0067 mg/kg	
4/10/23	4/13/23	g-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Heptachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Heptachlor epoxide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Hexachlorobenzene	ND	0.0067 mg/kg	
4/10/23	4/13/23	Kresoxim-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	lambda-Cyhalothrin	ND	0.013 mg/kg	
4/10/23	4/13/23	Leptophos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Malathion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Mefenoxam	ND	0.0067 mg/kg	
4/10/23	4/13/23	Methoxychlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Metolachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	MGK-264	ND	0.0067 mg/kg	
4/10/23	4/13/23	Myclobutanil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Napropamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ovex	ND	0.0067 mg/kg	
4/10/23	4/13/23	Oxadiazon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Oxyfluorfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDD	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDE	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDT	ND	0.0067 mg/kg	
4/10/23	4/13/23	Paclobutrazol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Parathion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Parathion-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	РСА	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCB	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCNB	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pendimethalin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pentachlorothioanisole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Permethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Phorate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Procymidone	ND	0.0067 mg/kg	
4/10/23	4/13/23	Prodiamine	ND	0.0067 mg/kg	

Fara Steen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-07

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg This analytical report complies with the ISO/IEC 17025:2017

Quality Standard.

Sample Date: 3/22/23

Analytical Report

Client Sample ID: GM2-TP3 Matrix: soil

			Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Date		1 mary ce		Z	TUTES
4/10/23	4/13/23	Pronamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Propachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pyriproxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Quinoxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ronnel	ND	0.0067 mg/kg	
4/10/23	4/13/23	Spirodiclofen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Sulfotep	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tefluthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Terbufos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetraconazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetradifon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Thionazin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tokuthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	trans-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trichloronate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trifluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Vinclozalin	ND	0.0067 mg/kg	
Surrogate Recov					
-	ery Range: 34-134				
(TPP-d15 used as S	urrogate)				
Method: Modi	fied EPA 8321B (L	LC-MS/MS)			H1
4/10/23	4/11/23	3-Hydroxycarbofuran	ND	0.0067 mg/kg	
4/10/23	4/11/23	Abamectin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acephate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acetamiprid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acibenzolar-S-methyl	ND	0.013 mg/kg	
4/10/23	4/11/23	Afidopyropen	ND	0.0067 mg/kg	
4/10/23	4/11/23	Aldicarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Aldicarb Sulfone	ND	0.0067 mg/kg	

ND

ND

ND

ND

Aldicarb Sulfoxide

Allethrin

Atrazine

Ametoctradin

Agrantien

4/10/23

4/10/23

4/10/23

4/10/23

4/11/23

4/11/23

4/11/23

4/11/23

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-07 **Sample Date:** 3/22/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP3 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Azinphos-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Azinphos-methyl	ND	0.013 mg/kg		
4/10/23	4/11/23	Azoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bendiocarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bensulide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bitertanol	ND	0.0067 mg/kg		
4/10/23	4/11/23	Boscalid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Bromacil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carbaryl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carbendazim	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carbofuran	ND	0.0067 mg/kg		
4/10/23	4/11/23	Carfentrazone-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Chlorantraniliprole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Clethodim	ND	0.013 mg/kg		
4/10/23	4/11/23	Clomazone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Clothianidin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyanazine	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyantraniliprole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyazofamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyclaniliprole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cycloate	ND	0.013 mg/kg		
4/10/23	4/11/23	Cyflufenamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyflumetofen	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyhalofop-butyl	ND	0.013 mg/kg		
4/10/23	4/11/23	Cyprodinil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Cyprosulfamide	ND	0.0067 mg/kg		
4/10/23	4/11/23	DCPMU	ND	0.0067 mg/kg		
4/10/23	4/11/23	Diazoxon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Difenoconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Diflubenzuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Diflufenican	ND	0.0067 mg/kg		
4/10/23	4/11/23	Dimethoate	ND	0.0067 mg/kg		
4/10/23	4/11/23	Dimethomorph	ND	0.0067 mg/kg		

gragheen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-07 **Sample Date:** 3/22/23

Analytical Report

Client Sample ID: GM2-TP3 Matrix: soil

1X . 5011			Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Dinotefuran	ND	0.0067 mg/kg	
4/10/23	4/11/23	Disulfoton sulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Diuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	d-Phenothrin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Emamectin Benzoate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Ethion	ND	0.0067 mg/kg	
4/10/23	4/11/23	Etofenprox	ND	0.0067 mg/kg	
4/10/23	4/11/23	Famoxadone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Famphur	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenamidone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenamiphos sulfone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenamiphos sulfoxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenazaquin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenbuconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenbutatin oxide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenhexamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenobucarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenoxycarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenpropathrin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenpyroximate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fenuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flonicamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluazinam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flubendiamide	ND	0.013 mg/kg	
4/10/23	4/11/23	Flufenacet	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flumetsulam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flumioxazin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluometuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluopicolide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluopyram	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluoxastrobin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flupyradifurone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluridone	ND	0.0067 mg/kg	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-07

Sample Date: 3/22/23

Analytical Report

Client Sample ID: GM2-TP3 Matrix: soil

IX. 5011			Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Flutianil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flutriafol	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluvalinate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluxapyroxad	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fonofos	ND	0.013 mg/kg	
4/10/23	4/11/23	Hexaconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Hexazinone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Hexythiazox	ND	0.0067 mg/kg	
4/10/23	4/11/23	Imazalil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Imidacloprid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Indaziflam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Indoxacarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Ipconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Iprodione	ND	0.034 mg/kg	
4/10/23	4/11/23	Isofetamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Isoxaben	ND	0.0067 mg/kg	
4/10/23	4/11/23	Isoxadifen-ethyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Lactofen	ND	0.0067 mg/kg	
4/10/23	4/11/23	Linuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Malaoxon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Mandipropamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Metconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methamidophos	ND	0.034 mg/kg	
4/10/23	4/11/23	Methidathion	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methiocarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methomyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methoxyfenozide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Metrafenone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Metribuzin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Mevinphos	ND	0.0067 mg/kg	
4/10/23	4/11/23	Monuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Neburon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Norflurazon	ND	0.0067 mg/kg	

Kara Speen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-07 **Sample Date:** 3/22/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP3 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Novaluron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Omethoate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oryzalin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxadixyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxamyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxydemeton-Methyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Penoxsulam	ND	0.0067 mg/kg		
4/10/23	4/11/23	Penthiopyrad	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phorate Sulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phorate Sulfoxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosalone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosmet	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosphamidon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Picoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Piperonyl Butoxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pirimicarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pirimiphos-methyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prallethrin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prometon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prometryn	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propamocarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propanil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propargite	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propazine	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propiconazole	ND	0.013 mg/kg		
4/10/23	4/11/23	Pyraclostrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyraflufen-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyrethrin	ND	0.034 mg/kg		
4/10/23	4/11/23	Pyridaben	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyridalyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyrimethanil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyroxasulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Quizalofop-p-ethyl	ND	0.0067 mg/kg		

gragheen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-07

Sample Date: 3/22/23

Analytical Report

Client Sample ID: GM2-TP3 Matrix: soil

			Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Rotenone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Saflufenacil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Sethoxydim	ND	0.013 mg/kg	
4/10/23	4/11/23	Siduron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Simazine	ND	0.0067 mg/kg	
4/10/23	4/11/23	Simetryn	ND	0.0067 mg/kg	
4/10/23	4/11/23	Spinetoram	ND	0.0067 mg/kg	
4/10/23	4/11/23	Spinosad	ND	0.0067 mg/kg	
4/10/23	4/11/23	Spiromesifen	ND	0.013 mg/kg	
4/10/23	4/11/23	Spirotetramat	ND	0.0067 mg/kg	
4/10/23	4/11/23	Spiroxamine	ND	0.0067 mg/kg	
4/10/23	4/11/23	Sulfentrazone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Sulfoxaflor	ND	0.0067 mg/kg	
4/10/23	4/11/23	Tebuconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Tebufenozide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Tebuthiuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Terbacil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Terbuthylazine	ND	0.0067 mg/kg	
4/10/23	4/11/23	Terbutryn	ND	0.0067 mg/kg	
4/10/23	4/11/23	Thiabendazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Thiacloprid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Thiamethoxam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Thiobencarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Thiodicarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Tolfenpyrad	ND	0.0067 mg/kg	
4/10/23	4/11/23	Triadimefon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Triadimenol	ND	0.013 mg/kg	
4/10/23	4/11/23	Triallate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Trifloxystrobin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Triflumizole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Triticonazole	ND	0.0067 mg/kg	
				· · ·	

Surrogate Recovery: 73 %

Surrogate Recovery Range: 36-117

(TPP-d15 used as Surrogate)

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

GSI Water Solutions, Inc. 650 NE Holladay Street Suite 900 Portland, OR 97232

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GM2-TP4 Matrix: soil **PAL Sample ID:** P230392-08 **Sample Date:** 3/22/23 **Received Date:** 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Method: Modi	fied EPA 8270D (C	GC-MS/MS)			H1
4/10/23	4/13/23	2,6-Dichlorobenzamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	a-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Acetochlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Alachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ametryn	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aspon	ND	0.0067 mg/kg	
4/10/23	4/13/23	b-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Benfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bifenthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bolstar	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bromopropylate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Buprofezin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Captan	ND	0.067 mg/kg	
4/10/23	4/13/23	Chlordane	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenapyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenvinphos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorobenzilate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chloroneb	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpropham	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	cis-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Cyfluthrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Cypermethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Dacthal	ND	0.0067 mg/kg	
4/10/23	4/13/23	d-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Deltamethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Demeton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diazinon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlobenil	ND	0.0067 mg/kg	

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-08 **Sample Date:** 3/22/23

Analytical Report

Client Sample ID: GM2-TP4 Matrix: soil

IA. 5011			-	Received Date: 4/6/23	
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/13/23	Dichlorofenthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlorvos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diclofop-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dicloran	ND	0.034 mg/kg	
4/10/23	4/13/23	Dicofol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dieldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dimethenamid	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diphenamid	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diphenylamine	ND	0.0067 mg/kg	
4/10/23	4/13/23	Disulfoton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dithiopyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Endosulfan I	ND	0.013 mg/kg	
4/10/23	4/13/23	Endosulfan II	ND	0.013 mg/kg	
4/10/23	4/13/23	Endosulfan sulfate	ND	0.013 mg/kg	
4/10/23	4/13/23	Endrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Endrin ketone	ND	0.0067 mg/kg	
4/10/23	4/13/23	EPN	ND	0.0067 mg/kg	
4/10/23	4/13/23	Esfenvalerate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethalfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethofumesate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethoprop	ND	0.0067 mg/kg	
4/10/23	4/13/23	Etoxazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Etridiazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenarimol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenitrothion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenoxaprop-ethyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Fenthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenvalerate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fipronil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fluazifop-p-butyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Fludioxonil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fluroxypyr-meptyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Flutolanil	ND	0.0067 mg/kg	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-08 **Sample Date:** 3/22/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP4 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/13/23	Fonofos	ND	0.0067 mg/kg		
4/10/23	4/13/23	g-BHC	ND	0.0067 mg/kg		
4/10/23	4/13/23	Heptachlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	Heptachlor epoxide	ND	0.0067 mg/kg		
4/10/23	4/13/23	Hexachlorobenzene	ND	0.0067 mg/kg		
4/10/23	4/13/23	Kresoxim-methyl	ND	0.0067 mg/kg		
4/10/23	4/13/23	lambda-Cyhalothrin	ND	0.013 mg/kg		
4/10/23	4/13/23	Leptophos	ND	0.0067 mg/kg		
4/10/23	4/13/23	Malathion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Mefenoxam	ND	0.0067 mg/kg		
4/10/23	4/13/23	Methoxychlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	Metolachlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	MGK-264	ND	0.0067 mg/kg		
4/10/23	4/13/23	Myclobutanil	ND	0.0067 mg/kg		
4/10/23	4/13/23	Napropamide	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ovex	ND	0.0067 mg/kg		
4/10/23	4/13/23	Oxadiazon	ND	0.0067 mg/kg		
4/10/23	4/13/23	Oxyfluorfen	ND	0.0067 mg/kg		
4/10/23	4/13/23	p,p'-DDD	ND	0.0067 mg/kg		
4/10/23	4/13/23	p,p'-DDE	ND	0.0067 mg/kg		
4/10/23	4/13/23	p,p'-DDT	ND	0.0067 mg/kg		
4/10/23	4/13/23	Paclobutrazol	ND	0.0067 mg/kg		
4/10/23	4/13/23	Parathion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Parathion-methyl	ND	0.0067 mg/kg		
4/10/23	4/13/23	PCA	ND	0.0067 mg/kg		
4/10/23	4/13/23	PCB	ND	0.0067 mg/kg		
4/10/23	4/13/23	PCNB	ND	0.0067 mg/kg		
4/10/23	4/13/23	Pendimethalin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Pentachlorothioanisole	ND	0.0067 mg/kg		
4/10/23	4/13/23	Permethrin	ND	0.034 mg/kg		
4/10/23	4/13/23	Phorate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Procymidone	ND	0.0067 mg/kg		
4/10/23	4/13/23	Prodiamine	ND	0.0067 mg/kg		

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-08

Sample Date: 3/22/23

Analytical Report

Client Sample ID: GM2-TP4 Matrix: soil

			Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/13/23	Pronamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Propachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pyriproxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Quinoxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ronnel	ND	0.0067 mg/kg	
4/10/23	4/13/23	Spirodiclofen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Sulfotep	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tefluthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Terbufos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetraconazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetradifon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Thionazin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tokuthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	trans-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trichloronate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trifluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Vinclozalin	ND	0.0067 mg/kg	
Surrogate Recov Surrogate Recov (TPP-d15 used as S	ery Range: 34-134				
Method: Modi	fied EPA 8321B (I	LC-MS/MS)			H1
4/10/23	4/11/23	3-Hydroxycarbofuran	ND	0.0067 mg/kg	
4/10/23	4/11/23	Abamectin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acephate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acetamiprid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Acibenzolar-S-methyl	ND	0.013 mg/kg	
4/10/23	4/11/23	Afidopyropen	ND	0.0067 mg/kg	

ND

ND

ND

ND

ND

ND

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

Grangheen

4/11/23

4/11/23

4/11/23

4/11/23

4/11/23

4/11/23

Aldicarb

Allethrin

Atrazine

Ametoctradin

Aldicarb Sulfone

Aldicarb Sulfoxide

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-08 **Sample Date:** 3/22/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP4 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Azinphos-ethyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Azinphos-methyl	ND	0.013 mg/kg	
4/10/23	4/11/23	Azoxystrobin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Bendiocarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Bensulide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Bitertanol	ND	0.0067 mg/kg	
4/10/23	4/11/23	Boscalid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Bromacil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Carbaryl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Carbendazim	ND	0.0067 mg/kg	
4/10/23	4/11/23	Carbofuran	ND	0.0067 mg/kg	
4/10/23	4/11/23	Carfentrazone-ethyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Chlorantraniliprole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Clethodim	ND	0.013 mg/kg	
4/10/23	4/11/23	Clomazone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Clothianidin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyanazine	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyantraniliprole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyazofamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyclaniliprole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cycloate	ND	0.013 mg/kg	
4/10/23	4/11/23	Cyflufenamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyflumetofen	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyhalofop-butyl	ND	0.013 mg/kg	
4/10/23	4/11/23	Cyprodinil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Cyprosulfamide	ND	0.0067 mg/kg	
4/10/23	4/11/23	DCPMU	ND	0.0067 mg/kg	
4/10/23	4/11/23	Diazoxon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Difenoconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Diflubenzuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Diflufenican	ND	0.0067 mg/kg	
4/10/23	4/11/23	Dimethoate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Dimethomorph	ND	0.0067 mg/kg	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-08 **Sample Date:** 3/22/23

Analytical Report

Client Sample ID: GM2-TP4 Matrix: soil

1X . 5011				Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Dinotefuran	ND	0.0067 mg/kg		
4/10/23	4/11/23	Disulfoton sulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Diuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	d-Phenothrin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Emamectin Benzoate	ND	0.0067 mg/kg		
4/10/23	4/11/23	Ethion	ND	0.0067 mg/kg		
4/10/23	4/11/23	Etofenprox	ND	0.0067 mg/kg		
4/10/23	4/11/23	Famoxadone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Famphur	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenamidone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenamiphos sulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenamiphos sulfoxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenazaquin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenbuconazole	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenbutatin oxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenhexamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenobucarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenoxycarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenpropathrin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenpyroximate	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fenuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flonicamid	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluazinam	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flubendiamide	ND	0.013 mg/kg		
4/10/23	4/11/23	Flufenacet	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flumetsulam	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flumioxazin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluometuron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluopicolide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluopyram	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluoxastrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Flupyradifurone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Fluridone	ND	0.0067 mg/kg		

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-08 **Sample Date:** 3/22/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP4 Matrix: soil

			Received Date: 4/0/23	HC. H /0/25	
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/11/23	Flutianil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Flutriafol	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluvalinate	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fluxapyroxad	ND	0.0067 mg/kg	
4/10/23	4/11/23	Fonofos	ND	0.013 mg/kg	
4/10/23	4/11/23	Hexaconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Hexazinone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Hexythiazox	ND	0.0067 mg/kg	
4/10/23	4/11/23	Imazalil	ND	0.0067 mg/kg	
4/10/23	4/11/23	Imidacloprid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Indaziflam	ND	0.0067 mg/kg	
4/10/23	4/11/23	Indoxacarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Ipconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Iprodione	ND	0.034 mg/kg	
4/10/23	4/11/23	Isofetamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Isoxaben	ND	0.0067 mg/kg	
4/10/23	4/11/23	Isoxadifen-ethyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Lactofen	ND	0.0067 mg/kg	
4/10/23	4/11/23	Linuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Malaoxon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Mandipropamid	ND	0.0067 mg/kg	
4/10/23	4/11/23	Metconazole	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methamidophos	ND	0.034 mg/kg	
4/10/23	4/11/23	Methidathion	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methiocarb	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methomyl	ND	0.0067 mg/kg	
4/10/23	4/11/23	Methoxyfenozide	ND	0.0067 mg/kg	
4/10/23	4/11/23	Metrafenone	ND	0.0067 mg/kg	
4/10/23	4/11/23	Metribuzin	ND	0.0067 mg/kg	
4/10/23	4/11/23	Mevinphos	ND	0.0067 mg/kg	
4/10/23	4/11/23	Monuron	ND	0.0067 mg/kg	
4/10/23	4/11/23	Neburon	ND	0.0067 mg/kg	
4/10/23	4/11/23	Norflurazon	ND	0.0067 mg/kg	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-08 **Sample Date:** 3/22/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP4 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/11/23	Novaluron	ND	0.0067 mg/kg		
4/10/23	4/11/23	Omethoate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oryzalin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxadixyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxamyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Oxydemeton-Methyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Penoxsulam	ND	0.0067 mg/kg		
4/10/23	4/11/23	Penthiopyrad	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phorate Sulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phorate Sulfoxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosalone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosmet	ND	0.0067 mg/kg		
4/10/23	4/11/23	Phosphamidon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Picoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Piperonyl Butoxide	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pirimicarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pirimiphos-methyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prallethrin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prometon	ND	0.0067 mg/kg		
4/10/23	4/11/23	Prometryn	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propamocarb	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propanil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propargite	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propazine	ND	0.0067 mg/kg		
4/10/23	4/11/23	Propiconazole	ND	0.013 mg/kg		
4/10/23	4/11/23	Pyraclostrobin	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyraflufen-ethyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyrethrin	ND	0.034 mg/kg		
4/10/23	4/11/23	Pyridaben	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyridalyl	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyrimethanil	ND	0.0067 mg/kg		
4/10/23	4/11/23	Pyroxasulfone	ND	0.0067 mg/kg		
4/10/23	4/11/23	Quizalofop-p-ethyl	ND	0.0067 mg/kg		

gragheen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-08

Sample Date: 3/22/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GM2-TP4 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes		
4/10/23	4/11/23	Rotenone	ND	0.0067 mg/kg			
4/10/23	4/11/23	Saflufenacil	ND	0.0067 mg/kg			
4/10/23	4/11/23	Sethoxydim	ND	0.013 mg/kg			
4/10/23	4/11/23	Siduron	ND	0.0067 mg/kg			
4/10/23	4/11/23	Simazine	ND	0.0067 mg/kg			
4/10/23	4/11/23	Simetryn	ND	0.0067 mg/kg			
4/10/23	4/11/23	Spinetoram	ND	0.0067 mg/kg			
4/10/23	4/11/23	Spinosad	ND	0.0067 mg/kg			
4/10/23	4/11/23	Spiromesifen	ND	0.013 mg/kg			
4/10/23	4/11/23	Spirotetramat	ND	0.0067 mg/kg			
4/10/23	4/11/23	Spiroxamine	ND	0.0067 mg/kg			
4/10/23	4/11/23	Sulfentrazone	ND	0.0067 mg/kg			
4/10/23	4/11/23	Sulfoxaflor	ND	0.0067 mg/kg			
4/10/23	4/11/23	Tebuconazole	ND	0.0067 mg/kg			
4/10/23	4/11/23	Tebufenozide	ND	0.0067 mg/kg			
4/10/23	4/11/23	Tebuthiuron	ND	0.0067 mg/kg			
4/10/23	4/11/23	Terbacil	ND	0.0067 mg/kg			
4/10/23	4/11/23	Terbuthylazine	ND	0.0067 mg/kg			
4/10/23	4/11/23	Terbutryn	ND	0.0067 mg/kg			
4/10/23	4/11/23	Thiabendazole	ND	0.0067 mg/kg			
4/10/23	4/11/23	Thiacloprid	ND	0.0067 mg/kg			
4/10/23	4/11/23	Thiamethoxam	ND	0.0067 mg/kg			
4/10/23	4/11/23	Thiobencarb	ND	0.0067 mg/kg			
4/10/23	4/11/23	Thiodicarb	ND	0.0067 mg/kg			
4/10/23	4/11/23	Tolfenpyrad	ND	0.0067 mg/kg			
4/10/23	4/11/23	Triadimefon	ND	0.0067 mg/kg			
4/10/23	4/11/23	Triadimenol	ND	0.013 mg/kg			
4/10/23	4/11/23	Triallate	ND	0.0067 mg/kg			
4/10/23	4/11/23	Trifloxystrobin	ND	0.0067 mg/kg			
4/10/23	4/11/23	Triflumizole	ND	0.0067 mg/kg			
4/10/23	4/11/23	Triticonazole	ND	0.0067 mg/kg			

Surrogate Recovery: 54 %

Surrogate Recovery Range: 36-117

(TPP-d15 used as Surrogate)

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

GSI Water Solutions, Inc. 650 NE Holladay Street Suite 900 Portland, OR 97232

Report Number: P230392 Report Date: April 20, 2023 Client Project ID: 464.020.002

Analytical Report

Client Sample ID: GM4-TP1 Matrix: soil PAL Sample ID: P230392-09 Sample Date: 3/20/23 Received Date: 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Method: Modi	fied EPA 8270D (C	GC-MS/MS)			H1
4/10/23	4/13/23	2,6-Dichlorobenzamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	a-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Acetochlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Alachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ametryn	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aspon	ND	0.0067 mg/kg	
4/10/23	4/13/23	b-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Benfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bifenthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bolstar	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bromopropylate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Buprofezin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Captan	ND	0.067 mg/kg	
4/10/23	4/13/23	Chlordane	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenapyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenvinphos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorobenzilate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chloroneb	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpropham	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	cis-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Cyfluthrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Cypermethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Dacthal	ND	0.0067 mg/kg	
4/10/23	4/13/23	d-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Deltamethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Demeton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diazinon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlobenil	ND	0.0067 mg/kg	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-09 **Sample Date:** 3/20/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM4-TP1 Matrix: soil

Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes		
4/13/23	Dichlorofenthion	ND	0.0067 mg/kg			
4/13/23	Dichlorvos	ND	0.0067 mg/kg			
4/13/23	Diclofop-methyl	ND	0.0067 mg/kg			
4/13/23	Dicloran	ND	0.034 mg/kg			
4/13/23	Dicofol	ND	0.0067 mg/kg			
4/13/23	Dieldrin	ND	0.0067 mg/kg			
4/13/23	Dimethenamid	ND	0.0067 mg/kg			
4/13/23	Diphenamid	ND	0.0067 mg/kg			
4/13/23	Diphenylamine	ND	0.0067 mg/kg			
4/13/23	Disulfoton	ND	0.0067 mg/kg			
4/13/23	Dithiopyr	ND	0.0067 mg/kg			
4/13/23	Endosulfan I	ND	0.013 mg/kg			
4/13/23	Endosulfan II	ND	0.013 mg/kg			
4/13/23	Endosulfan sulfate	ND	0.013 mg/kg			
4/13/23	Endrin	ND	0.0067 mg/kg			
4/13/23	Endrin ketone	ND	0.0067 mg/kg			
4/13/23	EPN	ND	0.0067 mg/kg			
4/13/23	Esfenvalerate	ND	0.0067 mg/kg			
4/13/23	Ethalfluralin	ND	0.0067 mg/kg			
4/13/23	Ethofumesate	ND	0.0067 mg/kg			
4/13/23	Ethoprop	ND	0.0067 mg/kg			
4/13/23	Etoxazole	ND	0.0067 mg/kg			
4/13/23	Etridiazole	ND	0.0067 mg/kg			
4/13/23	Fenarimol	ND	0.0067 mg/kg			
4/13/23	Fenitrothion	ND	0.0067 mg/kg			
4/13/23	Fenoxaprop-ethyl	ND	0.013 mg/kg			
4/13/23	Fenthion	ND				
4/13/23	Fenvalerate	ND	0.0067 mg/kg			
4/13/23	Fipronil	ND	0.0067 mg/kg			
4/13/23	Fluazifop-p-butyl	ND	0.013 mg/kg			
4/13/23	Fludioxonil	ND	0.0067 mg/kg			
4/13/23	Fluroxypyr-meptyl	ND	0.013 mg/kg			
4/13/23	Flutolanil	ND	0.0067 mg/kg			
	Date 4/13/23	DateAnalyte $4/13/23$ Dichlorofenthion $4/13/23$ Dichlorvos $4/13/23$ Diclofop-methyl $4/13/23$ Dicloran $4/13/23$ Dicofol $4/13/23$ Dicofol $4/13/23$ Dieldrin $4/13/23$ Dimethenamid $4/13/23$ Diphenylamine $4/13/23$ Diphenylamine $4/13/23$ Disulfoton $4/13/23$ Disulfoton $4/13/23$ Endosulfan I $4/13/23$ Endosulfan sulfate $4/13/23$ Endosulfan sulfate $4/13/23$ Endosulfan sulfate $4/13/23$ Endrin $4/13/23$ Endrin $4/13/23$ Esfenvalerate $4/13/23$ Ethoprop $4/13/23$ Ethoprop $4/13/23$ Ethoprop $4/13/23$ Fenarimol $4/13/23$ Fenarimol $4/13/23$ Fenarimol $4/13/23$ Fenarimol $4/13/23$ Fenoxaprop-ethyl $4/13/23$ Fenoxaprop-ethyl $4/13/23$ Fenoxaprop-ethyl $4/13/23$ Fipronil $4/13/23$ Fluazifop-p-butyl	DateAnalyteDetected $4/13/23$ DichlorofenthionND $4/13/23$ DichlorvosND $4/13/23$ Diclofop-methylND $4/13/23$ DicloranND $4/13/23$ DicloranND $4/13/23$ DiclofolND $4/13/23$ DiclofanND $4/13/23$ DieldrinND $4/13/23$ DimethenamidND $4/13/23$ DiphenylamineND $4/13/23$ DiphenylamineND $4/13/23$ DisulfotonND $4/13/23$ Endosulfan IND $4/13/23$ Endosulfan sulfateND $4/13/23$ Endosulfan sulfateND $4/13/23$ Endrin ketoneND $4/13/23$ EsfenvalerateND $4/13/23$ EtholfumesateND $4/13/23$ EtholfumesateND $4/13/23$ EtholfumesateND $4/13/23$ EtholfumesateND $4/13/23$ EtholfumesateND $4/13/23$ FenarimolND $4/13/23$ FenarimolND $4/13/23$ FenarimolND $4/13/23$ FenarimolND $4/13/23$ Fenoxaprop-ethylND $4/13/23$ FenovalerateND $4/13/23$ FenovalerateND $4/13/23$ FenovalerateND $4/13/23$ FenovalerateND $4/13/23$ FenovalerateND $4/13/23$ FenovalerateND $4/13/23$ Fenovalerate<	Date Analyte Detected Quantitation 4/13/23 Dichlorofenthion ND 0.0067 mg/kg 4/13/23 Dichlorvos ND 0.0067 mg/kg 4/13/23 Diclopop-methyl ND 0.0067 mg/kg 4/13/23 Dicloran ND 0.0067 mg/kg 4/13/23 Dicofol ND 0.0067 mg/kg 4/13/23 Diedrin ND 0.0067 mg/kg 4/13/23 Diedrin ND 0.0067 mg/kg 4/13/23 Diphenamid ND 0.0067 mg/kg 4/13/23 Diphenylamine ND 0.0067 mg/kg 4/13/23 Disulfoton ND 0.0067 mg/kg 4/13/23 Disulfoton ND 0.0067 mg/kg 4/13/23 Endosulfan I ND 0.013 mg/kg 4/13/23 Endosulfan II ND 0.013 mg/kg 4/13/23 Endosulfan Sulfate ND 0.0067 mg/kg 4/13/23 Endrin ketone ND 0.0067 mg/kg 4/13/23 Esfervalerate <t< td=""></t<>		

Fara Steen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-09 **Sample Date:** 3/20/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM4-TP1 Matrix: soil

			Acceived Date: 4/0/25				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes		
4/10/23	4/13/23	Fonofos	ND	0.0067 mg/kg			
4/10/23	4/13/23	g-BHC	ND	0.0067 mg/kg			
4/10/23	4/13/23	Heptachlor	ND	0.0067 mg/kg			
4/10/23	4/13/23	Heptachlor epoxide	ND	0.0067 mg/kg			
4/10/23	4/13/23	Hexachlorobenzene	ND	0.0067 mg/kg			
4/10/23	4/13/23	Kresoxim-methyl	ND	0.0067 mg/kg			
4/10/23	4/13/23	lambda-Cyhalothrin	ND	0.013 mg/kg			
4/10/23	4/13/23	Leptophos	ND	0.0067 mg/kg			
4/10/23	4/13/23	Malathion	ND	0.0067 mg/kg			
4/10/23	4/13/23	Mefenoxam	ND	0.0067 mg/kg			
4/10/23	4/13/23	Methoxychlor	ND	0.0067 mg/kg			
4/10/23	4/13/23	Metolachlor	ND	0.0067 mg/kg			
4/10/23	4/13/23	MGK-264	ND	0.0067 mg/kg			
4/10/23	4/13/23	Myclobutanil	ND	0.0067 mg/kg			
4/10/23	4/13/23	Napropamide	ND	0.0067 mg/kg			
4/10/23	4/13/23	Ovex	ND	0.0067 mg/kg			
4/10/23	4/13/23	Oxadiazon	ND	0.0067 mg/kg			
4/10/23	4/13/23	Oxyfluorfen	ND	0.0067 mg/kg			
4/10/23	4/13/23	p,p'-DDD	ND	0.0067 mg/kg			
4/10/23	4/13/23	p,p'-DDE	ND	0.0067 mg/kg			
4/10/23	4/13/23	p,p'-DDT	ND	0.0067 mg/kg			
4/10/23	4/13/23	Paclobutrazol	ND	0.0067 mg/kg			
4/10/23	4/13/23	Parathion	ND	0.0067 mg/kg			
4/10/23	4/13/23	Parathion-methyl	ND	0.0067 mg/kg			
4/10/23	4/13/23	PCA	ND	0.0067 mg/kg			
4/10/23	4/13/23	PCB	ND	0.0067 mg/kg			
4/10/23	4/13/23	PCNB	ND	0.0067 mg/kg			
4/10/23	4/13/23	Pendimethalin	ND	0.0067 mg/kg			
4/10/23	4/13/23	Pentachlorothioanisole	ND	0.0067 mg/kg			
4/10/23	4/13/23	Permethrin	ND	0.034 mg/kg			
4/10/23	4/13/23	Phorate	ND	0.0067 mg/kg			
4/10/23	4/13/23	Procymidone	ND	0.0067 mg/kg			
4/10/23	4/13/23	Prodiamine	ND	0.0067 mg/kg			

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-09

Sample Date: 3/20/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GM4-TP1 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/13/23	Pronamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Propachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pyriproxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Quinoxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ronnel	ND	0.0067 mg/kg	
4/10/23	4/13/23	Spirodiclofen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Sulfotep	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tefluthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Terbufos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetraconazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetradifon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Thionazin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tokuthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	trans-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trichloronate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trifluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Vinclozalin	ND	0.0067 mg/kg	
urrogate Recov urrogate Recov FPP-d15 used as S	ery Range: 34-134				
Method: Modi	fied EPA 8321B (L	.C-MS/MS)			H1
4/10/23	4/12/23	3-Hydroxycarbofuran	ND	0.0067 mg/kg	
4/10/23	4/12/23	Abamectin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Acephate	ND	0.0067 mg/kg	
4/10/23	4/12/23	Acetamiprid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Acibenzolar-S-methyl	ND	0.013 mg/kg	

ND

ND

ND

ND

ND

ND

ND

0.0067 mg/kg

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

gragheen

4/12/23

4/12/23

4/12/23

4/12/23

4/12/23

4/12/23

4/12/23

Afidopyropen Aldicarb

Allethrin

Atrazine

Ametoctradin

Aldicarb Sulfone

Aldicarb Sulfoxide

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-09 **Sample Date:** 3/20/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM4-TP1 Matrix: soil

Extraction Date	Analysis Date	Amolyte	Amount Detected	Limit of Quantitation	Natas
Date	Date	Analyte	Detected	Quantitation	Notes
4/10/23	4/12/23	Azinphos-ethyl	ND	0.0067 mg/kg	
4/10/23	4/12/23	Azinphos-methyl	ND	0.013 mg/kg	
4/10/23	4/12/23	Azoxystrobin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Bendiocarb	ND	0.0067 mg/kg	
4/10/23	4/12/23	Bensulide	ND	0.0067 mg/kg	
4/10/23	4/12/23	Bitertanol	ND	0.0067 mg/kg	
4/10/23	4/12/23	Boscalid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Bromacil	ND	0.0067 mg/kg	
4/10/23	4/12/23	Carbaryl	ND	0.0067 mg/kg	
4/10/23	4/12/23	Carbendazim	ND	0.0067 mg/kg	
4/10/23	4/12/23	Carbofuran	ND	0.0067 mg/kg	
4/10/23	4/12/23	Carfentrazone-ethyl	ND	0.0067 mg/kg	
4/10/23	4/12/23	Chlorantraniliprole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Clethodim	ND	0.013 mg/kg	
4/10/23	4/12/23	Clomazone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Clothianidin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cyanazine	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cyantraniliprole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cyazofamid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cyclaniliprole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cycloate	ND	0.013 mg/kg	
4/10/23	4/12/23	Cyflufenamid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cyflumetofen	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cyhalofop-butyl	ND	0.013 mg/kg	
4/10/23	4/12/23	Cyprodinil	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cyprosulfamide	ND	0.0067 mg/kg	
4/10/23	4/12/23	DCPMU	ND	0.0067 mg/kg	
4/10/23	4/12/23	Diazoxon	ND	0.0067 mg/kg	
4/10/23	4/12/23	Difenoconazole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Diflubenzuron	ND	0.0067 mg/kg	
4/10/23	4/12/23	Diflufenican	ND	0.0067 mg/kg	
4/10/23	4/12/23	Dimethoate	ND	0.0067 mg/kg	
4/10/23	4/12/23	Dimethomorph	ND	0.0067 mg/kg	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-09

Sample Date: 3/20/23

Analytical Report

Client Sample ID: GM4-TP1 Matrix: soil

in. son			Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/12/23	Dinotefuran	ND	0.0067 mg/kg	
4/10/23	4/12/23	Disulfoton sulfone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Diuron	ND	0.0067 mg/kg	
4/10/23	4/12/23	d-Phenothrin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Emamectin Benzoate	ND	0.0067 mg/kg	
4/10/23	4/12/23	Ethion	ND	0.0067 mg/kg	
4/10/23	4/12/23	Etofenprox	ND	0.0067 mg/kg	
4/10/23	4/12/23	Famoxadone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Famphur	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenamidone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenamiphos sulfone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenamiphos sulfoxide	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenazaquin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenbuconazole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenbutatin oxide	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenhexamid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenobucarb	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenoxycarb	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenpropathrin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenpyroximate	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenuron	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flonicamid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluazinam	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flubendiamide	ND	0.013 mg/kg	
4/10/23	4/12/23	Flufenacet	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flumetsulam	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flumioxazin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluometuron	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluopicolide	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluopyram	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluoxastrobin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flupyradifurone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluridone	ND	0.0067 mg/kg	

Kara Sheen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-09 **Sample Date:** 3/20/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM4-TP1 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/12/23	Flutianil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Flutriafol	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fluvalinate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fluxapyroxad	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fonofos	ND	0.013 mg/kg		
4/10/23	4/12/23	Hexaconazole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Hexazinone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Hexythiazox	ND	0.0067 mg/kg		
4/10/23	4/12/23	Imazalil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Imidacloprid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Indaziflam	ND	0.0067 mg/kg		
4/10/23	4/12/23	Indoxacarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Ipconazole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Iprodione	ND	0.034 mg/kg		
4/10/23	4/12/23	Isofetamid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Isoxaben	ND	0.0067 mg/kg		
4/10/23	4/12/23	Isoxadifen-ethyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Lactofen	ND	0.0067 mg/kg		
4/10/23	4/12/23	Linuron	ND	0.0067 mg/kg		
4/10/23	4/12/23	Malaoxon	ND	0.0067 mg/kg		
4/10/23	4/12/23	Mandipropamid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Metconazole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Methamidophos	ND	0.034 mg/kg		
4/10/23	4/12/23	Methidathion	ND	0.0067 mg/kg		
4/10/23	4/12/23	Methiocarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Methomyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Methoxyfenozide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Metrafenone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Metribuzin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Mevinphos	ND	0.0067 mg/kg		
4/10/23	4/12/23	Monuron	ND	0.0067 mg/kg		
4/10/23	4/12/23	Neburon	ND	0.0067 mg/kg		
4/10/23	4/12/23	Norflurazon	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-09

Sample Date: 3/20/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GM4-TP1 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/12/23	Novaluron	ND	0.0067 mg/kg		
4/10/23	4/12/23	Omethoate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oryzalin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oxadixyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oxamyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oxydemeton-Methyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Penoxsulam	ND	0.0067 mg/kg		
4/10/23	4/12/23	Penthiopyrad	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phorate Sulfone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phorate Sulfoxide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phosalone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phosmet	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phosphamidon	ND	0.0067 mg/kg		
4/10/23	4/12/23	Picoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Piperonyl Butoxide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pirimicarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pirimiphos-methyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Prallethrin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Prometon	ND	0.0067 mg/kg		
4/10/23	4/12/23	Prometryn	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propamocarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propanil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propargite	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propazine	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propiconazole	ND	0.013 mg/kg		
4/10/23	4/12/23	Pyraclostrobin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyraflufen-ethyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyrethrin	ND	0.034 mg/kg		
4/10/23	4/12/23	Pyridaben	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyridalyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyrimethanil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyroxasulfone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Quizalofop-p-ethyl	ND	0.0067 mg/kg		

gra green

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-09

Sample Date: 3/20/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GM4-TP1 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
		-		-	10005
4/10/23	4/12/23	Rotenone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Saflufenacil	ND	0.0067 mg/kg	
4/10/23	4/12/23	Sethoxydim	ND	0.013 mg/kg	
4/10/23	4/12/23	Siduron	ND	0.0067 mg/kg	
4/10/23	4/12/23	Simazine	ND	0.0067 mg/kg	
4/10/23	4/12/23	Simetryn	ND	0.0067 mg/kg	
4/10/23	4/12/23	Spinetoram	ND	0.0067 mg/kg	
4/10/23	4/12/23	Spinosad	ND	0.0067 mg/kg	
4/10/23	4/12/23	Spiromesifen	ND	0.013 mg/kg	
4/10/23	4/12/23	Spirotetramat	ND	0.0067 mg/kg	
4/10/23	4/12/23	Spiroxamine	ND	0.0067 mg/kg	
4/10/23	4/12/23	Sulfentrazone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Sulfoxaflor	ND	0.0067 mg/kg	
4/10/23	4/12/23	Tebuconazole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Tebufenozide	ND	0.0067 mg/kg	
4/10/23	4/12/23	Tebuthiuron	ND	0.0067 mg/kg	
4/10/23	4/12/23	Terbacil	ND	0.0067 mg/kg	
4/10/23	4/12/23	Terbuthylazine	ND	0.0067 mg/kg	
4/10/23	4/12/23	Terbutryn	ND	0.0067 mg/kg	
4/10/23	4/12/23	Thiabendazole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Thiacloprid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Thiamethoxam	ND	0.0067 mg/kg	
4/10/23	4/12/23	Thiobencarb	ND	0.0067 mg/kg	
4/10/23	4/12/23	Thiodicarb	ND	0.0067 mg/kg	
4/10/23	4/12/23	Tolfenpyrad	ND	0.0067 mg/kg	
4/10/23	4/12/23	Triadimefon	ND	0.0067 mg/kg	
4/10/23	4/12/23	Triadimenol	ND	0.013 mg/kg	
4/10/23	4/12/23	Triallate	ND	0.0067 mg/kg	
4/10/23	4/12/23	Trifloxystrobin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Triflumizole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Triticonazole	ND	0.0067 mg/kg	
T/ 10/ 23	TI 1212J	mitteonazoie		0.0007 mg/Kg	

Surrogate Recovery: 66 %

Surrogate Recovery Range: 36-117

(TPP-d15 used as Surrogate)

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

GSI Water Solutions, Inc. 650 NE Holladay Street Suite 900 Portland, OR 97232

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GM4-TP3 Matrix: soil **PAL Sample ID:** P230392-10 **Sample Date:** 3/20/23 **Received Date:** 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Method: Modi	fied EPA 8270D (C	GC-MS/MS)			H1
4/10/23	4/13/23	2,6-Dichlorobenzamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	a-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Acetochlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Alachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ametryn	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aspon	ND	0.0067 mg/kg	
4/10/23	4/13/23	b-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Benfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bifenthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bolstar	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bromopropylate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Buprofezin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Captan	ND	0.067 mg/kg	
4/10/23	4/13/23	Chlordane	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenapyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenvinphos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorobenzilate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chloroneb	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpropham	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	cis-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Cyfluthrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Cypermethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Dacthal	ND	0.0067 mg/kg	
4/10/23	4/13/23	d-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Deltamethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Demeton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diazinon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlobenil	ND	0.0067 mg/kg	

Fara Steen

This analytical report complies with the ISO/IEC 17025:2017 Quality Standard.

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-10

Sample Date: 3/20/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GM4-TP3 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/13/23	Dichlorofenthion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dichlorvos	ND	0.0067 mg/kg		
4/10/23	4/13/23	Diclofop-methyl	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dicloran	ND	0.034 mg/kg		
4/10/23	4/13/23	Dicofol	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dieldrin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dimethenamid	ND	0.0067 mg/kg		
4/10/23	4/13/23	Diphenamid	ND	0.0067 mg/kg		
4/10/23	4/13/23	Diphenylamine	ND	0.0067 mg/kg		
4/10/23	4/13/23	Disulfoton	ND	0.0067 mg/kg		
4/10/23	4/13/23	Dithiopyr	ND	0.0067 mg/kg		
4/10/23	4/13/23	Endosulfan I	ND	0.013 mg/kg		
4/10/23	4/13/23	Endosulfan II	ND	0.013 mg/kg		
4/10/23	4/13/23	Endosulfan sulfate	ND	0.013 mg/kg		
4/10/23	4/13/23	Endrin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Endrin ketone	ND	0.0067 mg/kg		
4/10/23	4/13/23	EPN	ND	0.0067 mg/kg		
4/10/23	4/13/23	Esfenvalerate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ethalfluralin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ethofumesate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ethoprop	ND	0.0067 mg/kg		
4/10/23	4/13/23	Etoxazole	ND	0.0067 mg/kg		
4/10/23	4/13/23	Etridiazole	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenarimol	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenitrothion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenoxaprop-ethyl	ND	0.013 mg/kg		
4/10/23	4/13/23	Fenthion	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fenvalerate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fipronil	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fluazifop-p-butyl	ND	0.013 mg/kg		
4/10/23	4/13/23	Fludioxonil	ND	0.0067 mg/kg		
4/10/23	4/13/23	Fluroxypyr-meptyl	ND	0.013 mg/kg		
4/10/23	4/13/23	Flutolanil	ND	0.0067 mg/kg		

Fara Steen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GM4-TP3 Matrix: soil

PAL Sample ID: P230392-10
Sample Date: 3/20/23
Received Date: 4/6/23

Analysis		Amount	Limit of	
Date	Analyte	Detected	Quantitation	Notes
4/13/23	Fonofos	ND	0.0067 mg/kg	
4/13/23	g-BHC	ND	0.0067 mg/kg	
4/13/23	Heptachlor	ND	0.0067 mg/kg	
4/13/23	Heptachlor epoxide	ND	0.0067 mg/kg	
4/13/23	Hexachlorobenzene	ND	0.0067 mg/kg	
4/13/23	Kresoxim-methyl	ND	0.0067 mg/kg	
4/13/23	lambda-Cyhalothrin	ND	0.013 mg/kg	
4/13/23	Leptophos	ND	0.0067 mg/kg	
4/13/23	Malathion	ND	0.0067 mg/kg	
4/13/23	Mefenoxam	ND	0.0067 mg/kg	
4/13/23	Methoxychlor	ND	0.0067 mg/kg	
4/13/23	Metolachlor	ND	0.0067 mg/kg	
4/13/23	MGK-264	ND	0.0067 mg/kg	
4/13/23	Myclobutanil	ND	0.0067 mg/kg	
4/13/23	Napropamide	ND	0.0067 mg/kg	
4/13/23	Ovex	ND	0.0067 mg/kg	
4/13/23	Oxadiazon	ND	0.0067 mg/kg	
4/13/23	Oxyfluorfen	ND	0.0067 mg/kg	
4/13/23	p,p'-DDD	ND	0.0067 mg/kg	
4/13/23	p,p'-DDE	ND	0.0067 mg/kg	
4/13/23	p,p'-DDT	ND	0.0067 mg/kg	
4/13/23	Paclobutrazol	ND	0.0067 mg/kg	
4/13/23	Parathion	ND	0.0067 mg/kg	
4/13/23	Parathion-methyl	ND	0.0067 mg/kg	
4/13/23	PCA	ND	0.0067 mg/kg	
4/13/23	PCB	ND	0.0067 mg/kg	
4/13/23	PCNB		0.0067 mg/kg	
4/13/23	Pendimethalin	ND	0.0067 mg/kg	
4/13/23	Pentachlorothioanisole	ND	0.0067 mg/kg	
4/13/23		ND	0.034 mg/kg	
4/13/23	Phorate	ND		
	-		0.0067 mg/kg	
4/13/23	Prodiamine	ND	0.0067 mg/kg	
	Date 4/13/23	Date Analyte 4/13/23 Fonofos 4/13/23 g-BHC 4/13/23 Heptachlor 4/13/23 Heptachlor epoxide 4/13/23 Heptachlor epoxide 4/13/23 Heptachlor epoxide 4/13/23 Hesachlorobenzene 4/13/23 Kresoxim-methyl 4/13/23 Leptophos 4/13/23 Malathion 4/13/23 Methoxychlor 4/13/23 Metolachlor 4/13/23 Metolachlor 4/13/23 Metolachlor 4/13/23 Myclobutanil 4/13/23 Myclobutanil 4/13/23 Ovex 4/13/23 Ovex 4/13/23 Ovex 4/13/23 p.p'-DDD 4/13/23 p.p'DT 4/13/23 Parathion 4/13/23 Parathion 4/13/23 PCA 4/13/23 PCB 4/13/23 PCNB 4/13/23 Pendimethalin 4/13/23	Date Analyte Detected 4/13/23 Fonofos ND 4/13/23 g-BHC ND 4/13/23 Heptachlor ND 4/13/23 Heptachlor epoxide ND 4/13/23 Heptachlor opoxide ND 4/13/23 Heptachlorobenzene ND 4/13/23 Kresoxim-methyl ND 4/13/23 Leptophos ND 4/13/23 Malathion ND 4/13/23 Mefenoxam ND 4/13/23 Methoxychlor ND 4/13/23 Metolachlor ND 4/13/23 Myclobutanil ND 4/13/23 Myclobutanil ND 4/13/23 Oxadiazon ND 4/13/23 Oxyfluorfen ND 4/13/23 p.p'-DDD ND 4/13/23 p.p'DDT ND 4/13/23 Paclobutrazol ND 4/13/23 Paclobutrazol ND 4/13/23 PcA ND	Date Analyte Detected Quantitation 4/13/23 Fonofos ND 0.0067 mg/kg 4/13/23 g-BHC ND 0.0067 mg/kg 4/13/23 Heptachlor ND 0.0067 mg/kg 4/13/23 Heptachlor epoxide ND 0.0067 mg/kg 4/13/23 Heptachlor opoxide ND 0.0067 mg/kg 4/13/23 Hexachlorobenzene ND 0.0067 mg/kg 4/13/23 Leptophos ND 0.0067 mg/kg 4/13/23 Leptophos ND 0.0067 mg/kg 4/13/23 Mefenoxam ND 0.0067 mg/kg 4/13/23 Mefenoxam ND 0.0067 mg/kg 4/13/23 Metolachlor ND 0.0067 mg/kg 4/13/23 Metolachlor ND 0.0067 mg/kg 4/13/23 Metolachlor ND 0.0067 mg/kg 4/13/23 Myclobutanil ND 0.0067 mg/kg 4/13/23 Ovex ND 0.0067 mg/kg 4/13/23 Oyex ND

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 Report Date: April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-10

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg This analytical report complies with the ISO/IEC 17025:2017

Quality Standard.

Sample Date: 3/20/23

Analytical Report

Client Sample ID: GM4-TP3 Matrix: soil

			Received Date: 4/6/23			
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/13/23	Pronamide	ND	0.0067 mg/kg		
4/10/23	4/13/23	Propachlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	Pyriproxyfen	ND	0.0067 mg/kg		
4/10/23	4/13/23	Quinoxyfen	ND	0.0067 mg/kg		
4/10/23	4/13/23	Ronnel	ND	0.0067 mg/kg		
4/10/23	4/13/23	Spirodiclofen	ND	0.0067 mg/kg		
4/10/23	4/13/23	Sulfotep	ND	0.0067 mg/kg		
4/10/23	4/13/23	Tefluthrin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Terbufos	ND	0.0067 mg/kg		
4/10/23	4/13/23	Tetraconazole	ND	0.0067 mg/kg		
4/10/23	4/13/23	Tetradifon	ND	0.0067 mg/kg		
4/10/23	4/13/23	Thionazin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Tokuthion	ND	0.0067 mg/kg		
4/10/23	4/13/23	trans-Nonachlor	ND	0.0067 mg/kg		
4/10/23	4/13/23	Trichloronate	ND	0.0067 mg/kg		
4/10/23	4/13/23	Trifluralin	ND	0.0067 mg/kg		
4/10/23	4/13/23	Vinclozalin	ND	0.0067 mg/kg		
Surrogate Recov Surrogate Recov (TPP-d15 used as S	ery Range: 34-134					
Method: Modi	fied EPA 8321B (I	LC-MS/MS)			H1	
4/10/23	4/12/23	3-Hydroxycarbofuran	ND	0.0067 mg/kg		
4/10/23	4/12/23	Abamectin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Acephate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Acetamiprid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Acibenzolar-S-methyl	ND	0.013 mg/kg		
4/10/23	4/12/23	Afidopyropen	ND	0.0067 mg/kg		
4/10/23	4/12/23	Aldicarb	ND	0.0067 mg/kg		

ND

ND

ND

ND

ND

Aldicarb Sulfone

Allethrin

Atrazine

Ametoctradin

Aldicarb Sulfoxide

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

grangheen

4/12/23

4/12/23

4/12/23

4/12/23

4/12/23

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-10

Sample Date: 3/20/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GM4-TP3 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/12/23	Azinphos-ethyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Azinphos-methyl	ND	0.013 mg/kg		
4/10/23	4/12/23	Azoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Bendiocarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Bensulide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Bitertanol	ND	0.0067 mg/kg		
4/10/23	4/12/23	Boscalid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Bromacil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Carbaryl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Carbendazim	ND	0.0067 mg/kg		
4/10/23	4/12/23	Carbofuran	ND	0.0067 mg/kg		
4/10/23	4/12/23	Carfentrazone-ethyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Chlorantraniliprole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Clethodim	ND	0.013 mg/kg		
4/10/23	4/12/23	Clomazone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Clothianidin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cyanazine	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cyantraniliprole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cyazofamid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cyclaniliprole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cycloate	ND	0.013 mg/kg		
4/10/23	4/12/23	Cyflufenamid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cyflumetofen	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cyhalofop-butyl	ND	0.013 mg/kg		
4/10/23	4/12/23	Cyprodinil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cyprosulfamide	ND	0.0067 mg/kg		
4/10/23	4/12/23	DCPMU	ND	0.0067 mg/kg		
4/10/23	4/12/23	Diazoxon	ND	0.0067 mg/kg		
4/10/23	4/12/23	Difenoconazole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Diflubenzuron	ND	0.0067 mg/kg		
4/10/23	4/12/23	Diflufenican	ND	0.0067 mg/kg		
4/10/23	4/12/23	Dimethoate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Dimethomorph	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-10

Sample Date: 3/20/23

Analytical Report

Client Sample ID: GM4-TP3 Matrix: soil

			Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/12/23	Dinotefuran	ND	0.0067 mg/kg	
4/10/23	4/12/23	Disulfoton sulfone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Diuron	ND	0.0067 mg/kg	
4/10/23	4/12/23	d-Phenothrin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Emamectin Benzoate	ND	0.0067 mg/kg	
4/10/23	4/12/23	Ethion	ND	0.0067 mg/kg	
4/10/23	4/12/23	Etofenprox	ND	0.0067 mg/kg	
4/10/23	4/12/23	Famoxadone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Famphur	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenamidone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenamiphos sulfone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenamiphos sulfoxide	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenazaquin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenbuconazole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenbutatin oxide	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenhexamid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenobucarb	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenoxycarb	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenpropathrin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenpyroximate	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenuron	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flonicamid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluazinam	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flubendiamide	ND	0.013 mg/kg	
4/10/23	4/12/23	Flufenacet	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flumetsulam	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flumioxazin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluometuron	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluopicolide	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluopyram	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluoxastrobin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flupyradifurone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluridone	ND	0.0067 mg/kg	

Kara Sheen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-10

Sample Date: 3/20/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GM4-TP3 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/12/23	Flutianil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Flutriafol	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fluvalinate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fluxapyroxad	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fonofos	ND	0.013 mg/kg		
4/10/23	4/12/23	Hexaconazole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Hexazinone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Hexythiazox	ND	0.0067 mg/kg		
4/10/23	4/12/23	Imazalil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Imidacloprid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Indaziflam	ND	0.0067 mg/kg		
4/10/23	4/12/23	Indoxacarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Ipconazole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Iprodione	ND	0.034 mg/kg		
4/10/23	4/12/23	Isofetamid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Isoxaben	ND	0.0067 mg/kg		
4/10/23	4/12/23	Isoxadifen-ethyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Lactofen	ND	0.0067 mg/kg		
4/10/23	4/12/23	Linuron	ND	0.0067 mg/kg		
4/10/23	4/12/23	Malaoxon	ND	0.0067 mg/kg		
4/10/23	4/12/23	Mandipropamid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Metconazole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Methamidophos	ND	0.034 mg/kg		
4/10/23	4/12/23	Methidathion	ND	0.0067 mg/kg		
4/10/23	4/12/23	Methiocarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Methomyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Methoxyfenozide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Metrafenone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Metribuzin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Mevinphos	ND	0.0067 mg/kg		
4/10/23	4/12/23	Monuron	ND	0.0067 mg/kg		
4/10/23	4/12/23	Neburon	ND	0.0067 mg/kg		
4/10/23	4/12/23	Norflurazon	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-10

Sample Date: 3/20/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GM4-TP3 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/12/23	Novaluron	ND	0.0067 mg/kg		
4/10/23	4/12/23	Omethoate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oryzalin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oxadixyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oxamyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oxydemeton-Methyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Penoxsulam	ND	0.0067 mg/kg		
4/10/23	4/12/23	Penthiopyrad	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phorate Sulfone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phorate Sulfoxide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phosalone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phosmet	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phosphamidon	ND	0.0067 mg/kg		
4/10/23	4/12/23	Picoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Piperonyl Butoxide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pirimicarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pirimiphos-methyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Prallethrin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Prometon	ND	0.0067 mg/kg		
4/10/23	4/12/23	Prometryn	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propamocarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propanil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propargite	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propazine	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propiconazole	ND	0.013 mg/kg		
4/10/23	4/12/23	Pyraclostrobin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyraflufen-ethyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyrethrin	ND	0.034 mg/kg		
4/10/23	4/12/23	Pyridaben	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyridalyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyrimethanil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyroxasulfone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Quizalofop-p-ethyl	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-10

Sample Date: 3/20/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GM4-TP3 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes		
4/10/23	4/12/23	Rotenone	ND	0.0067 mg/kg			
4/10/23	4/12/23	Saflufenacil	ND	0.0067 mg/kg			
4/10/23	4/12/23	Sethoxydim	ND	0.013 mg/kg			
4/10/23	4/12/23	Siduron	ND	0.0067 mg/kg			
4/10/23	4/12/23	Simazine	ND	0.0067 mg/kg			
4/10/23	4/12/23	Simetryn	ND	0.0067 mg/kg			
4/10/23	4/12/23	Spinetoram	ND	0.0067 mg/kg			
4/10/23	4/12/23	Spinosad	ND	0.0067 mg/kg			
4/10/23	4/12/23	Spiromesifen	ND	0.013 mg/kg			
4/10/23	4/12/23	Spirotetramat	ND	0.0067 mg/kg			
4/10/23	4/12/23	Spiroxamine	ND	0.0067 mg/kg			
4/10/23	4/12/23	Sulfentrazone	ND	0.0067 mg/kg			
4/10/23	4/12/23	Sulfoxaflor	ND	0.0067 mg/kg			
4/10/23	4/12/23	Tebuconazole	ND	0.0067 mg/kg			
4/10/23	4/12/23	Tebufenozide	ND	0.0067 mg/kg			
4/10/23	4/12/23	Tebuthiuron	ND	0.0067 mg/kg			
4/10/23	4/12/23	Terbacil	ND	0.0067 mg/kg			
4/10/23	4/12/23	Terbuthylazine	ND	0.0067 mg/kg			
4/10/23	4/12/23	Terbutryn	ND	0.0067 mg/kg			
4/10/23	4/12/23	Thiabendazole	ND	0.0067 mg/kg			
4/10/23	4/12/23	Thiacloprid	ND	0.0067 mg/kg			
4/10/23	4/12/23	Thiamethoxam	ND	0.0067 mg/kg			
4/10/23	4/12/23	Thiobencarb	ND	0.0067 mg/kg			
4/10/23	4/12/23	Thiodicarb	ND	0.0067 mg/kg			
4/10/23	4/12/23	Tolfenpyrad	ND	0.0067 mg/kg			
4/10/23	4/12/23	Triadimefon	ND	0.0067 mg/kg			
4/10/23	4/12/23	Triadimenol	ND	0.013 mg/kg			
4/10/23	4/12/23	Triallate	ND	0.0067 mg/kg			
4/10/23	4/12/23	Trifloxystrobin	ND	0.0067 mg/kg			
4/10/23	4/12/23	Triflumizole	ND	0.0067 mg/kg			
4/10/23	4/12/23	Triticonazole	ND	0.0067 mg/kg			

Surrogate Recovery: 58 %

Surrogate Recovery Range: 36-117

(TPP-d15 used as Surrogate)

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

GSI Water Solutions, Inc. 650 NE Holladay Street Suite 900 Portland, OR 97232

Report Number: P230392 Report Date: April 20, 2023 Client Project ID: 464.020.002

Analytical Report

Client Sample ID: GM5-TP1 Matrix: soil **PAL Sample ID:** P230392-11 **Sample Date:** 3/22/23 **Received Date:** 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Method: Modi	fied EPA 8270D (C	GC-MS/MS)			H1
4/10/23	4/13/23	2,6-Dichlorobenzamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	a-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Acetochlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Alachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ametryn	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aspon	ND	0.0067 mg/kg	
4/10/23	4/13/23	b-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Benfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bifenthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bolstar	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bromopropylate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Buprofezin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Captan	ND	0.067 mg/kg	
4/10/23	4/13/23	Chlordane	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenapyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenvinphos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorobenzilate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chloroneb	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpropham	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	cis-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Cyfluthrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Cypermethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Dacthal	ND	0.0067 mg/kg	
4/10/23	4/13/23	d-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Deltamethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Demeton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diazinon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlobenil	ND	0.0067 mg/kg	

Fara Steen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GM5-TP1 Matrix: soil **PAL Sample ID:** P230392-11 **Sample Date:** 3/22/23 **Received Date:** 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/13/23	Dichlorofenthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlorvos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diclofop-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dicloran	ND	0.034 mg/kg	
4/10/23	4/13/23	Dicofol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dieldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dimethenamid	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diphenamid	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diphenylamine	ND	0.0067 mg/kg	
4/10/23	4/13/23	Disulfoton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dithiopyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Endosulfan I	ND	0.013 mg/kg	
4/10/23	4/13/23	Endosulfan II	ND	0.013 mg/kg	
4/10/23	4/13/23	Endosulfan sulfate	ND	0.013 mg/kg	
4/10/23	4/13/23	Endrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Endrin ketone	ND	0.0067 mg/kg	
4/10/23	4/13/23	EPN	ND	0.0067 mg/kg	
4/10/23	4/13/23	Esfenvalerate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethalfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethofumesate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethoprop	ND	0.0067 mg/kg	
4/10/23	4/13/23	Etoxazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Etridiazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenarimol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenitrothion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenoxaprop-ethyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Fenthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenvalerate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fipronil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fluazifop-p-butyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Fludioxonil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fluroxypyr-meptyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Flutolanil	ND	0.0067 mg/kg	

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GM5-TP1 Matrix: soil

PAL Sample ID: P230392-11
Sample Date: 3/22/23
Received Date: 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
2					110000
4/10/23	4/13/23	Fonofos	ND	0.0067 mg/kg	
4/10/23	4/13/23	g-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Heptachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Heptachlor epoxide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Hexachlorobenzene	ND	0.0067 mg/kg	
4/10/23	4/13/23	Kresoxim-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	lambda-Cyhalothrin	ND	0.013 mg/kg	
4/10/23	4/13/23	Leptophos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Malathion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Mefenoxam	ND	0.0067 mg/kg	
4/10/23	4/13/23	Methoxychlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Metolachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	MGK-264	ND	0.0067 mg/kg	
4/10/23	4/13/23	Myclobutanil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Napropamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ovex	ND	0.0067 mg/kg	
4/10/23	4/13/23	Oxadiazon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Oxyfluorfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDD	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDE	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDT	ND	0.0067 mg/kg	
4/10/23	4/13/23	Paclobutrazol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Parathion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Parathion-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCA	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCB	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCNB	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pendimethalin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pentachlorothioanisole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Permethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Phorate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Procymidone	ND	0.0067 mg/kg	
4/10/23	4/13/23	Prodiamine	ND	0.0067 mg/kg	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 Report Date: April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-11

Sample Date: 3/22/23

Analytical Report

Client Sample ID: GM5-TP1 Matrix: soil

			Received Date: 4/6/23				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes		
4/10/23	4/13/23	Pronamide	ND	0.0067 mg/kg			
4/10/23	4/13/23	Propachlor	ND	0.0067 mg/kg			
4/10/23	4/13/23	Pyriproxyfen	ND	0.0067 mg/kg			
4/10/23	4/13/23	Quinoxyfen	ND	0.0067 mg/kg			
4/10/23	4/13/23	Ronnel	ND	0.0067 mg/kg			
4/10/23	4/13/23	Spirodiclofen	ND	0.0067 mg/kg			
4/10/23	4/13/23	Sulfotep	ND	0.0067 mg/kg			
4/10/23	4/13/23	Tefluthrin	ND	0.0067 mg/kg			
4/10/23	4/13/23	Terbufos	ND	0.0067 mg/kg			
4/10/23	4/13/23	Tetraconazole	ND	0.0067 mg/kg			
4/10/23	4/13/23	Tetradifon	ND	0.0067 mg/kg			
4/10/23	4/13/23	Thionazin	ND	0.0067 mg/kg			
4/10/23	4/13/23	Tokuthion	ND	0.0067 mg/kg			
4/10/23	4/13/23	trans-Nonachlor	ND	0.0067 mg/kg			
4/10/23	4/13/23	Trichloronate	ND	0.0067 mg/kg			
4/10/23	4/13/23	Trifluralin	ND	0.0067 mg/kg			
4/10/23	4/13/23	Vinclozalin	ND	0.0067 mg/kg			
Surrogate Recov Surrogate Recov (TPP-d15 used as S	ery Range: 34-134						
Method: Modi	fied EPA 8321B (L	LC-MS/MS)			H1		
4/10/23	4/12/23	3-Hydroxycarbofuran	ND	0.0067 mg/kg			
4/10/23	4/12/23	Abamectin	ND	0.0067 mg/kg			
4/10/23	4/12/23	Acephate	ND	0.0067 mg/kg			
4/10/23	4/12/23	Acetamiprid	ND	0.0067 mg/kg			
4/10/23	4/12/23	Acibenzolar-S-methyl	ND	0.013 mg/kg			
4/10/23	4/12/23	Afidopyropen	ND	0.0067 mg/kg			
4/10/23	4/12/23	Aldicarb	ND	0.0067 mg/kg			
4/10/23	4/12/23	Aldicarb Sulfone	ND	0.0067 mg/kg			

ND

ND

ND

ND

Aldicarb Sulfoxide

Allethrin

Atrazine

Ametoctradin

0.0067 mg/kg 0.0067 mg/kg 0.0067 mg/kg 0.0067 mg/kg 0.0067 mg/kg

gra green

4/10/23

4/10/23

4/10/23

4/10/23

4/12/23

4/12/23

4/12/23

4/12/23

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GM5-TP1 Matrix: soil

PAL Sample ID: P230392-11
Sample Date: 3/22/23
Received Date: 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/12/23	Azinphos-ethyl	ND	0.0067 mg/kg	
4/10/23	4/12/23	Azinphos-methyl	ND	0.013 mg/kg	
4/10/23	4/12/23	Azoxystrobin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Bendiocarb	ND	0.0067 mg/kg	
4/10/23	4/12/23	Bensulide	ND	0.0067 mg/kg	
4/10/23	4/12/23	Bitertanol	ND	0.0067 mg/kg	
4/10/23	4/12/23	Boscalid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Bromacil	ND	0.0067 mg/kg	
4/10/23	4/12/23	Carbaryl	ND	0.0067 mg/kg	
4/10/23	4/12/23	Carbendazim	ND	0.0067 mg/kg	
4/10/23	4/12/23	Carbofuran	ND	0.0067 mg/kg	
4/10/23	4/12/23	Carfentrazone-ethyl	ND	0.0067 mg/kg	
4/10/23	4/12/23	Chlorantraniliprole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Clethodim	ND	0.013 mg/kg	
4/10/23	4/12/23	Clomazone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Clothianidin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cyanazine	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cyantraniliprole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cyazofamid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cyclaniliprole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cycloate	ND	0.013 mg/kg	
4/10/23	4/12/23	Cyflufenamid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cyflumetofen	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cyhalofop-butyl	ND	0.013 mg/kg	
4/10/23	4/12/23	Cyprodinil	ND	0.0067 mg/kg	
4/10/23	4/12/23	Cyprosulfamide	ND	0.0067 mg/kg	
4/10/23	4/12/23	DCPMU	ND	0.0067 mg/kg	
4/10/23	4/12/23	Diazoxon	ND	0.0067 mg/kg	
4/10/23	4/12/23	Difenoconazole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Diflubenzuron	ND	0.0067 mg/kg	
4/10/23	4/12/23	Diflufenican	ND	0.0067 mg/kg	
4/10/23	4/12/23	Dimethoate	ND	0.0067 mg/kg	
4/10/23	4/12/23	Dimethomorph	ND	0.0067 mg/kg	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-11 **Sample Date:** 3/22/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM5-TP1 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/12/23	Dinotefuran	ND	0.0067 mg/kg		
4/10/23	4/12/23	Disulfoton sulfone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Diuron	ND	0.0067 mg/kg		
4/10/23	4/12/23	d-Phenothrin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Emamectin Benzoate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Ethion	ND	0.0067 mg/kg		
4/10/23	4/12/23	Etofenprox	ND	0.0067 mg/kg		
4/10/23	4/12/23	Famoxadone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Famphur	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fenamidone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fenamiphos sulfone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fenamiphos sulfoxide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fenazaquin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fenbuconazole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fenbutatin oxide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fenhexamid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fenobucarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fenoxycarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fenpropathrin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fenpyroximate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fenuron	ND	0.0067 mg/kg		
4/10/23	4/12/23	Flonicamid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fluazinam	ND	0.0067 mg/kg		
4/10/23	4/12/23	Flubendiamide	ND	0.013 mg/kg		
4/10/23	4/12/23	Flufenacet	ND	0.0067 mg/kg		
4/10/23	4/12/23	Flumetsulam	ND	0.0067 mg/kg		
4/10/23	4/12/23	Flumioxazin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fluometuron	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fluopicolide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fluopyram	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fluoxastrobin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Flupyradifurone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Fluridone	ND	0.0067 mg/kg		

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-11 **Sample Date:** 3/22/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM5-TP1 Matrix: soil

Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/12/23	Flutianil	ND	0.0067 mg/kg		
4/12/23	Flutriafol	ND	0.0067 mg/kg		
4/12/23	Fluvalinate	ND	0.0067 mg/kg		
4/12/23	Fluxapyroxad	ND	0.0067 mg/kg		
4/12/23	Fonofos	ND	0.013 mg/kg		
4/12/23	Hexaconazole	ND	0.0067 mg/kg		
4/12/23	Hexazinone	ND	0.0067 mg/kg		
4/12/23	Hexythiazox	ND	0.0067 mg/kg		
4/12/23	Imazalil	ND	0.0067 mg/kg		
4/12/23	Imidacloprid	ND	0.0067 mg/kg		
4/12/23	Indaziflam	ND	0.0067 mg/kg		
4/12/23	Indoxacarb	ND	0.0067 mg/kg		
4/12/23	Ipconazole	ND	0.0067 mg/kg		
4/12/23	Iprodione	ND	0.034 mg/kg		
4/12/23	Isofetamid	ND	0.0067 mg/kg		
4/12/23	Isoxaben	ND	0.0067 mg/kg		
4/12/23	Isoxadifen-ethyl	ND	0.0067 mg/kg		
4/12/23	Lactofen	ND	0.0067 mg/kg		
4/12/23	Linuron	ND	0.0067 mg/kg		
4/12/23	Malaoxon	ND	0.0067 mg/kg		
4/12/23	Mandipropamid	ND	0.0067 mg/kg		
4/12/23	Metconazole	ND	0.0067 mg/kg		
4/12/23	Methamidophos	ND	0.034 mg/kg		
4/12/23	Methidathion	ND	0.0067 mg/kg		
4/12/23	Methiocarb	ND	0.0067 mg/kg		
4/12/23	Methomyl	ND	0.0067 mg/kg		
4/12/23	Methoxyfenozide	ND	0.0067 mg/kg		
4/12/23	Metrafenone	ND	0.0067 mg/kg		
4/12/23	Metribuzin	ND	0.0067 mg/kg		
4/12/23	Mevinphos	ND	0.0067 mg/kg		
4/12/23	Monuron	ND	0.0067 mg/kg		
4/12/23	Neburon	ND	0.0067 mg/kg		
4/12/23	Norflurazon	ND	0.0067 mg/kg		
	Date 4/12/23	DateAnalyte4/12/23Flutianil4/12/23Flutriafol4/12/23Fluvalinate4/12/23Fluxapyroxad4/12/23Fonofos4/12/23Hexaconazole4/12/23Hexazinone4/12/23Hexazinone4/12/23Imazalil4/12/23Imdacloprid4/12/23Indaziflam4/12/23Indoxacarb4/12/23Ipconazole4/12/23Ipconazole4/12/23Isofetamid4/12/23Isosaben4/12/23Isoxaben4/12/23Lactofen4/12/23Malaoxon4/12/23Malaoxon4/12/23Methonazole4/12/23Methorazole4/12/23Methorazole4/12/23Methorazole4/12/23Malaoxon4/12/23Methorazole	Date Analyte Detected 4/12/23 Flutianil ND 4/12/23 Flutriafol ND 4/12/23 Fluvalinate ND 4/12/23 Fluvalinate ND 4/12/23 Fluxapyroxad ND 4/12/23 Fonofos ND 4/12/23 Hexaconazole ND 4/12/23 Hexazinone ND 4/12/23 Imazalil ND 4/12/23 Imazalil ND 4/12/23 Indaziflam ND 4/12/23 Indoxacarb ND 4/12/23 Ipconazole ND 4/12/23 Isosten ND 4/12/23 Malaoxon ND 4/12/23 Methonazole ND 4/12/23	Date Analyte Detected Quantitation 4/12/23 Flutianil ND 0.0067 mg/kg 4/12/23 Flutiafol ND 0.0067 mg/kg 4/12/23 Fluxapyroxad ND 0.0067 mg/kg 4/12/23 Fluxapyroxad ND 0.0067 mg/kg 4/12/23 Fonofos ND 0.0067 mg/kg 4/12/23 Hexaconazole ND 0.0067 mg/kg 4/12/23 Hexazinone ND 0.0067 mg/kg 4/12/23 Hexazinone ND 0.0067 mg/kg 4/12/23 Imazalil ND 0.0067 mg/kg 4/12/23 Imazalil ND 0.0067 mg/kg 4/12/23 Imdacloprid ND 0.0067 mg/kg 4/12/23 Indoxacarb ND 0.0067 mg/kg 4/12/23 Ipconazole ND 0.0067 mg/kg 4/12/23 Isofetamid ND 0.0067 mg/kg 4/12/23 Isofetamid ND 0.0067 mg/kg 4/12/23 Isosaben ND 0.	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-11 **Sample Date:** 3/22/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM5-TP1 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/12/23	Novaluron	ND	0.0067 mg/kg		
4/10/23	4/12/23	Omethoate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oryzalin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oxadixyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oxamyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oxydemeton-Methyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Penoxsulam	ND	0.0067 mg/kg		
4/10/23	4/12/23	Penthiopyrad	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phorate Sulfone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phorate Sulfoxide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phosalone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phosmet	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phosphamidon	ND	0.0067 mg/kg		
4/10/23	4/12/23	Picoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Piperonyl Butoxide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pirimicarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pirimiphos-methyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Prallethrin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Prometon	ND	0.0067 mg/kg		
4/10/23	4/12/23	Prometryn	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propamocarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propanil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propargite	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propazine	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propiconazole	ND	0.013 mg/kg		
4/10/23	4/12/23	Pyraclostrobin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyraflufen-ethyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyrethrin	ND	0.034 mg/kg		
4/10/23	4/12/23	Pyridaben	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyridalyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyrimethanil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyroxasulfone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Quizalofop-p-ethyl	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

PAL Sample ID: P230392-11

Sample Date: 3/22/23 Received Date: 4/6/23

Analytical Report

Client Sample ID: GM5-TP1 Matrix: soil

		Received Date: 4/0/25				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
		v				
4/10/23	4/12/23	Rotenone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Saflufenacil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Sethoxydim	ND	0.013 mg/kg		
4/10/23	4/12/23	Siduron	ND	0.0067 mg/kg		
4/10/23	4/12/23	Simazine	ND	0.0067 mg/kg		
4/10/23	4/12/23	Simetryn	ND	0.0067 mg/kg		
4/10/23	4/12/23	Spinetoram	ND	0.0067 mg/kg		
4/10/23	4/12/23	Spinosad	ND	0.0067 mg/kg		
4/10/23	4/12/23	Spiromesifen	ND	0.013 mg/kg		
4/10/23	4/12/23	Spirotetramat	ND	0.0067 mg/kg		
4/10/23	4/12/23	Spiroxamine	ND	0.0067 mg/kg		
4/10/23	4/12/23	Sulfentrazone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Sulfoxaflor	ND	0.0067 mg/kg		
4/10/23	4/12/23	Tebuconazole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Tebufenozide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Tebuthiuron	ND	0.0067 mg/kg		
4/10/23	4/12/23	Terbacil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Terbuthylazine	ND	0.0067 mg/kg		
4/10/23	4/12/23	Terbutryn	ND	0.0067 mg/kg		
4/10/23	4/12/23	Thiabendazole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Thiacloprid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Thiamethoxam	ND	0.0067 mg/kg		
4/10/23	4/12/23	Thiobencarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Thiodicarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Tolfenpyrad	ND	0.0067 mg/kg		
4/10/23	4/12/23	Triadimefon	ND	0.0067 mg/kg		
4/10/23	4/12/23	Triadimenol	ND	0.013 mg/kg		
4/10/23	4/12/23	Triallate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Trifloxystrobin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Triflumizole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Triticonazole	ND	0.0067 mg/kg		
				0.8		

Surrogate Recovery: 62 %

Surrogate Recovery Range: 36-117

(TPP-d15 used as Surrogate)

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

GSI Water Solutions, Inc. 650 NE Holladay Street Suite 900 Portland, OR 97232

Report Number: P230392 Report Date: April 20, 2023 Client Project ID: 464.020.002

Analytical Report

Client Sample ID: GM5-TP2 Matrix: soil **PAL Sample ID:** P230392-12 **Sample Date:** 3/23/23 **Received Date:** 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Method: Modi	fied EPA 8270D (C	GC-MS/MS)			H1
4/10/23	4/13/23	2,6-Dichlorobenzamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	a-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Acetochlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Alachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ametryn	ND	0.0067 mg/kg	
4/10/23	4/13/23	Aspon	ND	0.0067 mg/kg	
4/10/23	4/13/23	b-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Benfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bifenthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bolstar	ND	0.0067 mg/kg	
4/10/23	4/13/23	Bromopropylate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Buprofezin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Captan	ND	0.067 mg/kg	
4/10/23	4/13/23	Chlordane	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenapyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorfenvinphos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorobenzilate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chloroneb	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpropham	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Chlorpyrifos-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	cis-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Cyfluthrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Cypermethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Dacthal	ND	0.0067 mg/kg	
4/10/23	4/13/23	d-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Deltamethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Demeton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diazinon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlobenil	ND	0.0067 mg/kg	

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GM5-TP2 Matrix: soil

PAL Sample ID: P230392-12
Sample Date: 3/23/23
Received Date: 4/6/23

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
Date		7 Mary C		Z	Totes
4/10/23	4/13/23	Dichlorofenthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dichlorvos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diclofop-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dicloran	ND	0.034 mg/kg	
4/10/23	4/13/23	Dicofol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dieldrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dimethenamid	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diphenamid	ND	0.0067 mg/kg	
4/10/23	4/13/23	Diphenylamine	ND	0.0067 mg/kg	
4/10/23	4/13/23	Disulfoton	ND	0.0067 mg/kg	
4/10/23	4/13/23	Dithiopyr	ND	0.0067 mg/kg	
4/10/23	4/13/23	Endosulfan I	ND	0.013 mg/kg	
4/10/23	4/13/23	Endosulfan II	ND	0.013 mg/kg	
4/10/23	4/13/23	Endosulfan sulfate	ND	0.013 mg/kg	
4/10/23	4/13/23	Endrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Endrin ketone	ND	0.0067 mg/kg	
4/10/23	4/13/23	EPN	ND	0.0067 mg/kg	
4/10/23	4/13/23	Esfenvalerate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethalfluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethofumesate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ethoprop	ND	0.0067 mg/kg	
4/10/23	4/13/23	Etoxazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Etridiazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenarimol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenitrothion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenoxaprop-ethyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Fenthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fenvalerate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fipronil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fluazifop-p-butyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Fludioxonil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Fluroxypyr-meptyl	ND	0.013 mg/kg	
4/10/23	4/13/23	Flutolanil	ND	0.0067 mg/kg	

Fara Steen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GM5-TP2 Matrix: soil

PAL Sample ID: P230392-12
Sample Date: 3/23/23
Received Date: 4/6/23

Extraction	Analysis		Amount	Limit of	
Date	Date	Analyte	Detected	Quantitation	Notes
4/10/23	4/13/23	Fonofos	ND	0.0067 mg/kg	
4/10/23	4/13/23	g-BHC	ND	0.0067 mg/kg	
4/10/23	4/13/23	Heptachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Heptachlor epoxide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Hexachlorobenzene	ND	0.0067 mg/kg	
4/10/23	4/13/23	Kresoxim-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	lambda-Cyhalothrin	ND	0.013 mg/kg	
4/10/23	4/13/23	Leptophos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Malathion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Mefenoxam	ND	0.0067 mg/kg	
4/10/23	4/13/23	Methoxychlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Metolachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	MGK-264	ND	0.0067 mg/kg	
4/10/23	4/13/23	Myclobutanil	ND	0.0067 mg/kg	
4/10/23	4/13/23	Napropamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ovex	ND	0.0067 mg/kg	
4/10/23	4/13/23	Oxadiazon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Oxyfluorfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDD	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDE	ND	0.0067 mg/kg	
4/10/23	4/13/23	p,p'-DDT	ND	0.0067 mg/kg	
4/10/23	4/13/23	Paclobutrazol	ND	0.0067 mg/kg	
4/10/23	4/13/23	Parathion	ND	0.0067 mg/kg	
4/10/23	4/13/23	Parathion-methyl	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCA	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCB	ND	0.0067 mg/kg	
4/10/23	4/13/23	PCNB	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pendimethalin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pentachlorothioanisole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Permethrin	ND	0.034 mg/kg	
4/10/23	4/13/23	Phorate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Procymidone	ND	0.0067 mg/kg	
4/10/23	4/13/23	Prodiamine	ND	0.0067 mg/kg	

Fara Steen

Kara Greer, Project Manager

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

 Report Number:
 P230392

 Report Date:
 April 20, 2023

 Client Project ID:
 464.020.002

PAL Sample ID: P230392-12

Sample Date: 3/23/23 **Received Date:** 4/6/23

Analytical Report

Client Sample ID: GM5-TP2 Matrix: soil

Extraction	Analysis Date		Amount Detected	Limit of	N T /
Date	Date	Analyte	Detected	Quantitation	Notes
4/10/23	4/13/23	Pronamide	ND	0.0067 mg/kg	
4/10/23	4/13/23	Propachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Pyriproxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Quinoxyfen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Ronnel	ND	0.0067 mg/kg	
4/10/23	4/13/23	Spirodiclofen	ND	0.0067 mg/kg	
4/10/23	4/13/23	Sulfotep	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tefluthrin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Terbufos	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetraconazole	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tetradifon	ND	0.0067 mg/kg	
4/10/23	4/13/23	Thionazin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Tokuthion	ND	0.0067 mg/kg	
4/10/23	4/13/23	trans-Nonachlor	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trichloronate	ND	0.0067 mg/kg	
4/10/23	4/13/23	Trifluralin	ND	0.0067 mg/kg	
4/10/23	4/13/23	Vinclozalin	ND	0.0067 mg/kg	
Surrogate Recov Surrogate Recov TPP-d15 used as S	ery Range: 34-134				
Method: Modi	fied EPA 8321B (L	.C-MS/MS)			H1
4/10/23	4/12/23	3-Hydroxycarbofuran	ND	0.0067 mg/kg	
4/10/23	4/12/23	Abamectin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Acephate	ND	0.0067 mg/kg	
4/10/23	4/12/23	Acetamiprid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Acibenzolar-S-methyl	ND	0.013 mg/kg	
4/10/23	4/12/23	Afidopyropen	ND	0.0067 mg/kg	
4/10/00	1/10/00				

ND

ND

ND

ND

ND

ND

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

0.0067 mg/kg

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

4/10/23

Kara Sheen

4/12/23

4/12/23

4/12/23

4/12/23

4/12/23

4/12/23

Aldicarb

Allethrin

Atrazine

Ametoctradin

Aldicarb Sulfone

Aldicarb Sulfoxide

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-12 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM5-TP2 Matrix: soil

		Received Date: 4/0/25				
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/12/23	Azinphos-ethyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Azinphos-methyl	ND	0.013 mg/kg		
4/10/23	4/12/23	Azoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Bendiocarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Bensulide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Bitertanol	ND	0.0067 mg/kg		
4/10/23	4/12/23	Boscalid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Bromacil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Carbaryl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Carbendazim	ND	0.0067 mg/kg		
4/10/23	4/12/23	Carbofuran	ND	0.0067 mg/kg		
4/10/23	4/12/23	Carfentrazone-ethyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Chlorantraniliprole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Clethodim	ND	0.013 mg/kg		
4/10/23	4/12/23	Clomazone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Clothianidin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cyanazine	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cyantraniliprole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cyazofamid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cyclaniliprole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cycloate	ND	0.013 mg/kg		
4/10/23	4/12/23	Cyflufenamid	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cyflumetofen	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cyhalofop-butyl	ND	0.013 mg/kg		
4/10/23	4/12/23	Cyprodinil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Cyprosulfamide	ND	0.0067 mg/kg		
4/10/23	4/12/23	DCPMU	ND	0.0067 mg/kg		
4/10/23	4/12/23	Diazoxon	ND	0.0067 mg/kg		
4/10/23	4/12/23	Difenoconazole	ND	0.0067 mg/kg		
4/10/23	4/12/23	Diflubenzuron	ND	0.0067 mg/kg		
4/10/23	4/12/23	Diflufenican	ND	0.0067 mg/kg		
4/10/23	4/12/23	Dimethoate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Dimethomorph	ND	0.0067 mg/kg		

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-12 **Sample Date:** 3/23/23

Analytical Report

Client Sample ID: GM5-TP2 Matrix: soil

			Received Date: 4/6/23		
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/12/23	Dinotefuran	ND	0.0067 mg/kg	
4/10/23	4/12/23	Disulfoton sulfone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Diuron	ND	0.0067 mg/kg	
4/10/23	4/12/23	d-Phenothrin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Emamectin Benzoate	ND	0.0067 mg/kg	
4/10/23	4/12/23	Ethion	ND	0.0067 mg/kg	
4/10/23	4/12/23	Etofenprox	ND	0.0067 mg/kg	
4/10/23	4/12/23	Famoxadone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Famphur	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenamidone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenamiphos sulfone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenamiphos sulfoxide	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenazaquin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenbuconazole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenbutatin oxide	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenhexamid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenobucarb	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenoxycarb	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenpropathrin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenpyroximate	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fenuron	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flonicamid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluazinam	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flubendiamide	ND	0.013 mg/kg	
4/10/23	4/12/23	Flufenacet	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flumetsulam	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flumioxazin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluometuron	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluopicolide	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluopyram	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluoxastrobin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flupyradifurone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluridone	ND	0.0067 mg/kg	

Farastreen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-12 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM5-TP2 Matrix: soil

				literited Bater 176,25	
Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes
4/10/23	4/12/23	Flutianil	ND	0.0067 mg/kg	
4/10/23	4/12/23	Flutriafol	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluvalinate	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fluxapyroxad	ND	0.0067 mg/kg	
4/10/23	4/12/23	Fonofos	ND	0.013 mg/kg	
4/10/23	4/12/23	Hexaconazole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Hexazinone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Hexythiazox	ND	0.0067 mg/kg	
4/10/23	4/12/23	Imazalil	ND	0.0067 mg/kg	
4/10/23	4/12/23	Imidacloprid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Indaziflam	ND	0.0067 mg/kg	
4/10/23	4/12/23	Indoxacarb	ND	0.0067 mg/kg	
4/10/23	4/12/23	Ipconazole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Iprodione	ND	0.034 mg/kg	
4/10/23	4/12/23	Isofetamid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Isoxaben	ND	0.0067 mg/kg	
4/10/23	4/12/23	Isoxadifen-ethyl	ND	0.0067 mg/kg	
4/10/23	4/12/23	Lactofen	ND	0.0067 mg/kg	
4/10/23	4/12/23	Linuron	ND	0.0067 mg/kg	
4/10/23	4/12/23	Malaoxon	ND	0.0067 mg/kg	
4/10/23	4/12/23	Mandipropamid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Metconazole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Methamidophos	ND	0.034 mg/kg	
4/10/23	4/12/23	Methidathion	ND	0.0067 mg/kg	
4/10/23	4/12/23	Methiocarb	ND	0.0067 mg/kg	
4/10/23	4/12/23	Methomyl	ND	0.0067 mg/kg	
4/10/23	4/12/23	Methoxyfenozide	ND	0.0067 mg/kg	
4/10/23	4/12/23	Metrafenone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Metribuzin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Mevinphos	ND	0.0067 mg/kg	
4/10/23	4/12/23	Monuron	ND	0.0067 mg/kg	
4/10/23	4/12/23	Neburon	ND	0.0067 mg/kg	
4/10/23	4/12/23	Norflurazon	ND	0.0067 mg/kg	

Fara Steen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

> **PAL Sample ID:** P230392-12 **Sample Date:** 3/23/23

Received Date: 4/6/23

Analytical Report

Client Sample ID: GM5-TP2 Matrix: soil

Extraction Date	Analysis Date	Analyte	Amount Detected	Limit of Quantitation	Notes	
4/10/23	4/12/23	Novaluron	ND	0.0067 mg/kg		
4/10/23	4/12/23	Omethoate	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oryzalin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oxadixyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oxamyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Oxydemeton-Methyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Penoxsulam	ND	0.0067 mg/kg		
4/10/23	4/12/23	Penthiopyrad	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phorate Sulfone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phorate Sulfoxide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phosalone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phosmet	ND	0.0067 mg/kg		
4/10/23	4/12/23	Phosphamidon	ND	0.0067 mg/kg		
4/10/23	4/12/23	Picoxystrobin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Piperonyl Butoxide	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pirimicarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pirimiphos-methyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Prallethrin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Prometon	ND	0.0067 mg/kg		
4/10/23	4/12/23	Prometryn	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propamocarb	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propanil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propargite	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propazine	ND	0.0067 mg/kg		
4/10/23	4/12/23	Propiconazole	ND	0.013 mg/kg		
4/10/23	4/12/23	Pyraclostrobin	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyraflufen-ethyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyrethrin	ND	0.034 mg/kg		
4/10/23	4/12/23	Pyridaben	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyridalyl	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyrimethanil	ND	0.0067 mg/kg		
4/10/23	4/12/23	Pyroxasulfone	ND	0.0067 mg/kg		
4/10/23	4/12/23	Quizalofop-p-ethyl	ND	0.0067 mg/kg		

gragheen

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Analytical Report

Client Sample ID: GM5-TP2 Matrix: soil

PAL Sample ID: P230392-12
Sample Date: 3/23/23
Received Date: 4/6/23

Extraction	Analysis		Amount	Limit of	
Date	Date	Analyte	Detected	Quantitation	Notes
4/10/23	4/12/23	Rotenone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Saflufenacil	ND	0.0067 mg/kg	
4/10/23	4/12/23	Sethoxydim	ND	0.013 mg/kg	
4/10/23	4/12/23	Siduron	ND	0.0067 mg/kg	
4/10/23	4/12/23	Simazine	ND	0.0067 mg/kg	
4/10/23	4/12/23	Simetryn	ND	0.0067 mg/kg	
4/10/23	4/12/23	Spinetoram	ND	0.0067 mg/kg	
4/10/23	4/12/23	Spinosad	ND	0.0067 mg/kg	
4/10/23	4/12/23	Spiromesifen	ND	0.013 mg/kg	
4/10/23	4/12/23	Spirotetramat	ND	0.0067 mg/kg	
4/10/23	4/12/23	Spiroxamine	ND	0.0067 mg/kg	
4/10/23	4/12/23	Sulfentrazone	ND	0.0067 mg/kg	
4/10/23	4/12/23	Sulfoxaflor	ND	0.0067 mg/kg	
4/10/23	4/12/23	Tebuconazole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Tebufenozide	ND	0.0067 mg/kg	
4/10/23	4/12/23	Tebuthiuron	ND	0.0067 mg/kg	
4/10/23	4/12/23	Terbacil	ND	0.0067 mg/kg	
4/10/23	4/12/23	Terbuthylazine	ND	0.0067 mg/kg	
4/10/23	4/12/23	Terbutryn	ND	0.0067 mg/kg	
4/10/23	4/12/23	Thiabendazole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Thiacloprid	ND	0.0067 mg/kg	
4/10/23	4/12/23	Thiamethoxam	ND	0.0067 mg/kg	
4/10/23	4/12/23	Thiobencarb	ND	0.0067 mg/kg	
4/10/23	4/12/23	Thiodicarb	ND	0.0067 mg/kg	
4/10/23	4/12/23	Tolfenpyrad	ND	0.0067 mg/kg	
4/10/23	4/12/23	Triadimefon	ND	0.0067 mg/kg	
4/10/23	4/12/23	Triadimenol	ND	0.013 mg/kg	
4/10/23	4/12/23	Triallate	ND	0.0067 mg/kg	
4/10/23	4/12/23	Trifloxystrobin	ND	0.0067 mg/kg	
4/10/23	4/12/23	Triflumizole	ND	0.0067 mg/kg	
4/10/23	4/12/23	Triticonazole	ND	0.0067 mg/kg	

Surrogate Recovery: 61 %

Surrogate Recovery Range: 36-117

(TPP-d15 used as Surrogate)

Farastreen

Kara Greer, Project Manager

Matrix: soil

GSI Water Solutions, Inc. 650 NE Holladay Street Suite 900 Portland, OR 97232

Method Blank Data

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

 Report Number:
 P230392

 Report Date:
 April 20, 2023

 Client Project ID:
 464.020.002

Quality Assurance

Extraction	Analysis	Batch QC			Expected %	
Date	Date	Sample #	Analyte	% Recovery	Recovery	Notes
4/10/23	4/13/23	23D1004-BLK1	2,6-Dichlorobenzamide	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	3-Hydroxycarbofuran	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Abamectin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	a-BHC	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Acephate	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Acetamiprid	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Acetochlor	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Acibenzolar-S-methyl	Not Detected	< 0.013 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Afidopyropen	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Alachlor	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Aldicarb	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Aldicarb Sulfone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Aldicarb Sulfoxide	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Aldrin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Allethrin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Ametoctradin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Ametryn	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Aspon	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Atrazine	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Azinphos-ethyl	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Azinphos-methyl	Not Detected	< 0.013 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Azoxystrobin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	b-BHC	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Bendiocarb	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Benfluralin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Bensulide	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Bifenthrin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Bitertanol	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Bolstar	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Boscalid	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Bromacil	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Bromopropylate	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Buprofezin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Captan	Not Detected	< 0.067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Carbaryl	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Carbendazim	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Carbofuran	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Carfentrazone-ethyl	Not Detected	< 0.0067 mg/kg	

Farastreen

Kara Greer, Project Manager

650 NE Holladay Street Suite 900 Portland, OR 97232

Method Blank Data

Matrix: soil

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Extraction	Analysis	Batch QC			Expected %	
Date	Date	Sample #	Analyte	% Recovery	Recovery	Notes
4/10/23	4/11/23	23D1004-BLK1	Chlorantraniliprole	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Chlordane	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Chlorfenapyr	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Chlorfenvinphos	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Chlorobenzilate	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Chloroneb	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Chlorpropham	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Chlorpyrifos	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Chlorpyrifos-methyl	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	cis-Nonachlor	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Clethodim	Not Detected	< 0.013 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Clomazone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Clothianidin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Cyanazine	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Cyantraniliprole	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Cyazofamid	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Cyclaniliprole	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Cycloate	Not Detected	< 0.013 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Cyflufenamid	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Cyflumetofen	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Cyfluthrin	Not Detected	< 0.034 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Cyhalofop-butyl	Not Detected	< 0.013 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Cypermethrin	Not Detected	< 0.034 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Cyprodinil	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Cyprosulfamide	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Dacthal	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	d-BHC	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	DCPMU	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Deltamethrin	Not Detected	< 0.034 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Demeton	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Diazinon	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Diazoxon	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Dichlobenil	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Dichlorofenthion	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Dichlorvos	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Diclofop-methyl	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Dicloran	Not Detected	< 0.034 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Dicofol	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Dieldrin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Difenoconazole	Not Detected	< 0.0067 mg/kg	

Kara Speen

650 NE Holladay Street Suite 900 Portland, OR 97232

Method Blank Data

Matrix: soil

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Extraction	Analysis	Batch QC			Expected %	
Date	Date	Sample #	Analyte	% Recovery	Recovery	Notes
4/10/23	4/11/23	23D1004-BLK1	Diflubenzuron	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Diflufenican	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Dimethenamid	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Dimethoate	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Dimethomorph	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Dinotefuran	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Diphenamid	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Diphenylamine	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Disulfoton	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Disulfoton sulfone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Dithiopyr	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Diuron	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	d-Phenothrin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Emamectin Benzoate	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Endosulfan I	Not Detected	< 0.013 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Endosulfan II	Not Detected	< 0.013 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Endosulfan sulfate	Not Detected	< 0.013 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Endrin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Endrin ketone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	EPN	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Esfenvalerate	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Ethalfluralin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Ethion	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Ethofumesate	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Ethoprop	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Etofenprox	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Etoxazole	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Etridiazole	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Famoxadone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Famphur	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fenamidone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fenamiphos sulfone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fenamiphos sulfoxide	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Fenarimol	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fenazaquin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fenbuconazole	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fenbutatin oxide	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fenhexamid	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Fenitrothion	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fenobucarb	Not Detected	< 0.0067 mg/kg	

Kgra Steen

Kara Greer, Project Manager

650 NE Holladay Street Suite 900 Portland, OR 97232

Method Blank Data

Matrix: soil

21830 S.W. Alexander Ln Sherwood, OR 97140

PACAGLAB.COM

 Report Number:
 P230392

 Report Date:
 April 20, 2023

 Client Project ID:
 464.020.002

Extraction	Analysis	Batch QC			Expected %	
Date	Date	Sample #	Analyte	% Recovery	Recovery	Notes
4/10/23	4/13/23	23D1004-BLK1	Fenoxaprop-ethyl	Not Detected	< 0.013 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fenoxycarb	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fenpropathrin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fenpyroximate	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Fenthion	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fenuron	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Fenvalerate	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Fipronil	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Flonicamid	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Fluazifop-p-butyl	Not Detected	< 0.013 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fluazinam	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Flubendiamide	Not Detected	< 0.013 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Fludioxonil	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Flufenacet	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Flumetsulam	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Flumioxazin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fluometuron	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fluopicolide	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fluopyram	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fluoxastrobin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Flupyradifurone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fluridone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Fluroxypyr-meptyl	Not Detected	< 0.013 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Flutianil	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Flutolanil	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Flutriafol	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fluvalinate	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fluxapyroxad	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Fonofos	Not Detected	< 0.013 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Fonofos	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	g-BHC	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Heptachlor	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Heptachlor epoxide	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Hexachlorobenzene	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Hexaconazole	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Hexazinone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Hexythiazox	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Imazalil	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Imidacloprid	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Indaziflam	Not Detected	< 0.0067 mg/kg	

Kara Sheen -

Kara Greer, Project Manager

650 NE Holladay Street Suite 900 Portland, OR 97232

Method Blank Data

Matrix: soil

PA	CA	CI	AD	CO	TA AT
PA	LA	UL/	чD.	LU	πл

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

 Report Number:
 P230392

 Report Date:
 April 20, 2023

 Client Project ID:
 464.020.002

Extraction	Analysis	Batch QC			Expected %	
Date	Date	Sample #	Analyte	% Recovery	Recovery	Notes
4/10/23	4/11/23	23D1004-BLK1	Indoxacarb	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Ipconazole	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Iprodione	Not Detected	< 0.034 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Isofetamid	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Isoxaben	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Isoxadifen-ethyl	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Kresoxim-methyl	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Lactofen	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	lambda-Cyhalothrin	Not Detected	< 0.013 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Leptophos	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Linuron	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Malaoxon	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Malathion	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Mandipropamid	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Mefenoxam	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Metconazole	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Methamidophos	Not Detected	< 0.034 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Methidathion	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Methiocarb	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Methomyl	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Methoxychlor	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Methoxyfenozide	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Metolachlor	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Metrafenone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Metribuzin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Mevinphos	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	MGK-264	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Monuron	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Myclobutanil	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Napropamide	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Neburon	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Norflurazon	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Novaluron	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Omethoate	Not Detected	< 0.0067 mg/kg	
4/10/23	4/12/23	23D1004-BLK1	Oryzalin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Ovex	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Oxadiazon	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Oxadixyl	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Oxamyl	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Oxydemeton-Methyl	Not Detected	< 0.0067 mg/kg	

Kara Sheen

Kara Greer, Project Manager

650 NE Holladay Street Suite 900 Portland, OR 97232

Method Blank Data

Matrix: soil

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

 Report Number:
 P230392

 Report Date:
 April 20, 2023

 Client Project ID:
 464.020.002

Extraction	Analysis	Batch QC			Expected %	
Date	Date	Sample #	Analyte	% Recovery	Recovery	Notes
4/10/23	4/13/23	23D1004-BLK1	Oxyfluorfen	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	p,p'-DDD	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	p,p'-DDE	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	p,p'-DDT	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Paclobutrazol	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Parathion	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Parathion-methyl	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	PCA	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	PCB	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	PCNB	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Pendimethalin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Penoxsulam	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Pentachlorothioanisole	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Penthiopyrad	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Permethrin	Not Detected	< 0.034 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Phorate	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Phorate Sulfone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Phorate Sulfoxide	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Phosalone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Phosmet	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Phosphamidon	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Picoxystrobin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Piperonyl Butoxide	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Pirimicarb	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Pirimiphos-methyl	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Prallethrin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Procymidone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Prodiamine	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Prometon	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Prometryn	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Pronamide	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Propachlor	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Propamocarb	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Propanil	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Propargite	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Propazine	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Propiconazole	Not Detected	< 0.013 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Pyraclostrobin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Pyraflufen-ethyl	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Pyrethrin	Not Detected	< 0.034 mg/kg	

Kara Speen

Kara Greer, Project Manager

This analytical report complies with the ISO/IEC 17025:2017 Quality Standard.

GSI Water Solutions, Inc.

650 NE Holladay Street Suite 900 Portland, OR 97232

Method Blank Data

Matrix: soil

PACAGLAB.COM

503.626.7943 21830 S.W. Alexander Ln Sherwood, OR 97140

Report Number: P230392 **Report Date:** April 20, 2023 **Client Project ID:** 464.020.002

Extraction	Analysis	Batch QC			Expected %	
Date	Date	Sample #	Analyte	% Recovery	Recovery	Notes
4/10/23	4/11/23	23D1004-BLK1	Pyridaben	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Pyridalyl	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Pyrimethanil	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Pyriproxyfen	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Pyroxasulfone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Quinoxyfen	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Quizalofop-p-ethyl	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Ronnel	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Rotenone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Saflufenacil	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Sethoxydim	Not Detected	< 0.013 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Siduron	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Simazine	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Simetryn	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Spinetoram	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Spinosad	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Spirodiclofen	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Spiromesifen	Not Detected	< 0.013 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Spirotetramat	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Spiroxamine	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Sulfentrazone	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Sulfotep	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Sulfoxaflor	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Tebuconazole	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Tebufenozide	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Tebuthiuron	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Tefluthrin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Terbacil	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Terbufos	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Terbuthylazine	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Terbutryn	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Tetraconazole	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Tetradifon	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Thiabendazole	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Thiacloprid	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Thiamethoxam	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Thiobencarb	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Thiodicarb	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Thionazin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Tokuthion	Not Detected	< 0.0067 mg/kg	

Kara Sheen

Kara Greer, Project Manager

This analytical report complies with the ISO/IEC 17025:2017 Quality Standard.

GSI Water Solutions, Inc.

650 NE Holladay Street Suite 900 Portland, OR 97232

Method Blank Data Matrix: soil

Report Number: P230392

Report Date: April 20, 2023 **Client Project ID:** 464.020.002

Extraction	Analysis	Batch QC			Expected %	
Date	Date	Sample #	Analyte	% Recovery	Recovery	Notes
4/10/23	4/11/23	23D1004-BLK1	Tolfenpyrad	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	trans-Nonachlor	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Triadimefon	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Triadimenol	Not Detected	< 0.013 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Triallate	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Trichloronate	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Trifloxystrobin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Triflumizole	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Trifluralin	Not Detected	< 0.0067 mg/kg	
4/10/23	4/11/23	23D1004-BLK1	Triticonazole	Not Detected	< 0.0067 mg/kg	
4/10/23	4/13/23	23D1004-BLK1	Vinclozalin	Not Detected	< 0.0067 mg/kg	

Farastreen

Kara Greer, Project Manager

PACAGLAB.COM

21830 S.W. Alexander Ln Sherwood, OR 97140

503.626.7943

21830 S.W. Alexander Ln Sherwood, OR 97140

503.626.7943

GSI Water Solutions, Inc.

650 NE Holladay Street Suite 900 Portland, OR 97232

Matrix Spike Data

Matrix: soil

Report Number: P230392 Report Date: April 20, 2023 **Client Project ID:** 464.020.002

Extraction	Analysis	Batch QC			Expected %	
Date	Date	Sample #	Analyte	% Recovery	Recovery	Notes
4/10/23	4/11/23	23D1004-MS1	Azoxystrobin	92	53-103	
4/10/23	4/11/23	23D1004-MSD1	Azoxystrobin	95	53-103	
4/10/23	4/14/23	23D1004-MS1	Bifenthrin	109	50-151	
4/10/23	4/14/23	23D1004-MSD1	Bifenthrin	106	50-151	
4/10/23	4/11/23	23D1004-MS1	Boscalid	99	52-120	
4/10/23	4/11/23	23D1004-MSD1	Boscalid	101	52-120	
4/10/23	4/11/23	23D1004-MS1	Bromacil	95	64-106	
4/10/23	4/11/23	23D1004-MSD1	Bromacil	95	64-106	
4/10/23	4/14/23	23D1004-MS1	Chlorpyrifos	112	45-145	
4/10/23	4/14/23	23D1004-MSD1	Chlorpyrifos	110	45-145	
4/10/23	4/14/23	23D1004-MS1	Dimethenamid	106	46-142	
4/10/23	4/14/23	23D1004-MSD1	Dimethenamid	106	46-142	
4/10/23	4/14/23	23D1004-MS1	Dithiopyr	102	53-139	
4/10/23	4/14/23	23D1004-MSD1	Dithiopyr	98	53-139	
4/10/23	4/11/23	23D1004-MS1	Diuron	92	59-98	
4/10/23	4/11/23	23D1004-MSD1	Diuron	96	59-98	
4/10/23	4/14/23	23D1004-MS1	Endosulfan I	111	58-126	
4/10/23	4/14/23	23D1004-MSD1	Endosulfan I	107	58-126	
4/10/23	4/11/23	23D1004-MS1	Flumioxazin	95	44-121	
4/10/23	4/11/23	23D1004-MSD1	Flumioxazin	91	44-121	
4/10/23	4/11/23	23D1004-MS1	Imidacloprid	100	56-109	
4/10/23	4/11/23	23D1004-MSD1	Imidacloprid	102	56-109	
4/10/23	4/11/23	23D1004-MS1	Indaziflam	90	49-105	
4/10/23	4/11/23	23D1004-MSD1	Indaziflam	93	49-105	
4/10/23	4/11/23	23D1004-MS1	Iprodione	120	60-116	R1
4/10/23	4/11/23	23D1004-MSD1	Iprodione	122	60-116	R1
4/10/23	4/11/23	23D1004-MS1	Isoxaben	97	58-108	
4/10/23	4/11/23	23D1004-MSD1	Isoxaben	95	58-108	
4/10/23	4/14/23	23D1004-MS1	Myclobutanil	108	42-149	
4/10/23	4/14/23	23D1004-MSD1	Myclobutanil	107	42-149	
4/10/23	4/12/23	23D1004-MS1	Oryzalin	86	34-135	
4/10/23	4/12/23	23D1004-MSD1	Oryzalin	81	34-135	
4/10/23	4/14/23	23D1004-MS1	Pendimethalin	129	45-157	
4/10/23	4/14/23	23D1004-MSD1	Pendimethalin	131	45-157	
4/10/23	4/14/23	23D1004-MS1	Prodiamine	115	35-150	
4/10/23	4/14/23	23D1004-MSD1	Prodiamine	106	35-150	
4/10/23	4/14/23	23D1004-MS1	Pronamide	102	60-140	
4/10/23	4/14/23	23D1004-MSD1	Pronamide	101	60-140	
4/10/23	4/11/23	23D1004-MS1	Pyraclostrobin	100	60-114	
4/10/23	4/11/23	23D1004-MSD1	Pyraclostrobin	101	60-114	
4/10/23	4/14/23	23D1004-MS1	Pyriproxyfen	105	48-158	
4/10/23	4/14/23	23D1004-MSD1	Pyriproxyfen	105	48-158	
4/10/23	4/11/23	23D1004-MS1	Thiabendazole	88	14-104	
4/10/23	4/11/23	23D1004-MSD1	Thiabendazole	84	14-104	

gra green

This analytical report complies with the ISO/IEC 17025:2017 Quality Standard.

21830 S.W. Alexander Ln Sherwood, OR 97140

503.626.7943

GSI Water Solutions, Inc. 650 NE Holladay Street Suite 900

Portland, OR 97232

Matrix Spike Data Matrix: soil

 Report Number:
 P230392

 Report Date:
 April 20, 2023

 Client Project ID:
 464.020.002

Extraction Date	Analysis Date	Batch QC Sample #	Analyte	% Recovery	Expected % Recovery	Notes
4/10/23	4/14/23	23D1004-MS1	Trifluralin	94	49-136	
4/10/23	4/14/23	23D1004-MSD1	Trifluralin	96	49-136	

Project Notes

Notes	Definition
R1	Spike recovery is outside of control limits.
H1	The sample was received and extracted outside of recommended hold time.

Farastreen

Kara Greer, Project Manager

This analytical report complies with the ISO/IEC 17025:2017 Quality Standard.

-ATTACHMENT E-

Soil Physical Properties Lab Report

3393 N Dodge Blvd Tucson, AZ 85716 520-628-9330 Fax: 520-628-1122 www.gsanalysis.com

3393 N Dodge Blvd Tucson, AZ 85716 520-628-9330 Fax: 520-628-1122 www.gsanalysis.com

Date:May 19, 2023Project Number:92310Project Name:GSI - Gates/Mill City Soil CharacterizationJob Description:Lab TestingClient:GSI Water SolutionsProject Contact:Matt Kohlbecker, RGBilling Address:650 NE Holladay St., Suite 900
Portland, OR 97232

Test	Method	Qty
Specific Gravity of Soils	ASTM D854-14	3
Particle Size Analysis with Hydrometer	ASTM D6913-17 / ASTM D7928-17	6

Thank you for choosing GeoSystems Analysis for your material testing needs. We look forward to working with you again. If you have any questions or require additional information, please contact us at 1-520-628-9330

Sincerely,

to De

Prepared By: Nate Blevens Laboratory Project Manager

and we have

Reviewed By: Mike Yao Laboratory Technical Director

3393 N Dodge Blvd Tucson, AZ 85716 520-628-9330 Fax: 520-628-1122 www.gsanalysis.com

Laboratory Test Results - Soil Specific Gravity

Date: May 19, 2023

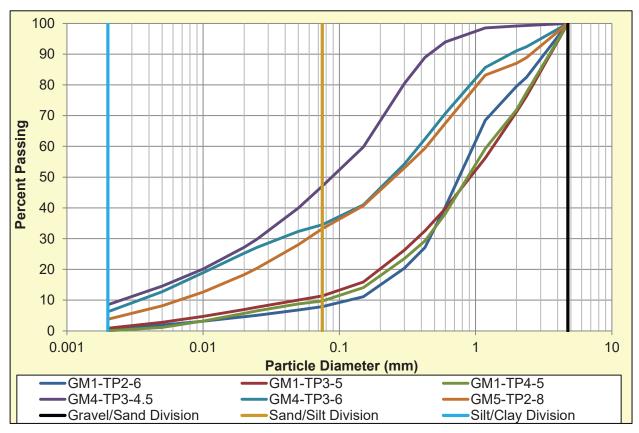
Project Number: 92310

Project Name: **GSI - Gates/Mill City Soil Characterization** Client: GSI Water Solutions

Sample ID	Specific Gravity (g/cm ³)
GM1-TP2-6	2.80
GM1-TP3-5	2.79
GM4-TP3-4.5	2.67

Laboratory Test Results - Particle Size Distribution

Date: May 19, 2023 Project Number: **92310** Project Name: **GSI - Gates/Mill City Soil Characterization** Client: GSI Water Solutions


	PSD						
				Sample ID			
Si	Sieve		GM1-TP3-5	GM1-TP4-5	GM4-TP3- 4.5	GM4-TP3-6	
(mm)	US standard		Percent Passing				
4.75	#4	100	100	100	100	100	
2.36	#8	82	76	78	99	92	
2	#10	80	71	72	99	91	
1.18	#16	68	56	59	99	86	
0.6	#30	40	40	38	94	71	
0.425	#40	27	33	29	89	62	
0.3	#50	20	26	24	80	54	
0.15	#100	11	16	14	60	41	
0.075	#200	7.9	11.4	9.7	47.1	34.5	
0.05	<u>۔</u>	6.8	10.0	8.8	39.9	32.3	
0.025	ete	5.1	7.7	6.5	29.9	27.2	
0.02	Ĕ	4.6	7.0	5.7	27.2	25.3	
0.01	2 L	3.2	4.7	3.2	20.1	18.9	
0.005	Hydrometer	1.9	2.8	1.1	14.5	12.7	
0.002	–	0.6	0.9	0.0	8.5	6.3	
			PSD				
		Sample ID					
Si	eve	GM5-TP2-8					
(mm)	US standard		Pe	ercent Passii	ng		
4.75	#4	100					
2.36	#8	89					
2	#10	87	I				
1.18	#16	83					
0.6	#30	68					
0.425	#40	59	l				
0.3	#50	53	1				
0.15	#100	41					
0.075	#200	33.2					
0.05	L	28.0	I				
0.025	ite	20.4	I				
0.02	ů –	18.3	I				
0.01	<u>2</u>	12.6	1				
0.005	Hydrometer	8.1	l				
0.002		3.8	1				

3393 N Dodge Blvd Tucson, AZ 85716 520-628-9330 Fax: 520-628-1122 www.gsanalysis.com

Laboratory Test Results - Soil Particle Size Distribution with Hydrometer

DRAFT TECHNICAL MEMORANDUM

Phase II Subsurface Characterization to Support an Evaluation of Treated Wastewater Infiltration in Gates and Mill City, Marion and Linn Counties, Oregon

То:	Chris Einmo / Marion County
From:	Jesse Hall, GIT / GSI Water Solutions, Inc. Matt Kohlbecker, RG / GSI Water Solutions, Inc. Jason Keller, RG / GeoSystems Analysis, Inc.
CC:	Peter Olsen / Keller Associates, Inc.
	Pamela Villarreal / Keller Associates, Inc.
	Brian Nicholas / Marion County
	Dave Kinney / City of Mill City
	Russ Foltz / City of Mill City
	Kari Low / Commonstreet Consulting
	Tamisha Schrunk / Commonstreet Consulting
Date:	August 11, 2023

This Technical Memorandum (TM), prepared by GSI Water Solutions, Inc. (GSI) and GeoSystems Analysis, Inc. (GSA), summarizes the second phase of a subsurface characterization to evaluate the feasibility of treated wastewater infiltration in Gates and Mill City, Oregon.

1. Introduction

This section summarizes background information about the treated wastewater infiltration project in the Santiam Canyon, including a project overview (Section 1.1) and an overview of the Phase II Subsurface Characterization in Gates and Mill City (Section 1.2).

1.1 Project Overview

The North Santiam Sewer Authority (NSSA) is planning to dispose of treated wastewater by infiltration. Two infiltration facilities are planned—one in the Gates/Mill City area and another in the Detroit/Idanha area. Infiltration facilities will be comprised of rapid infiltration basins and will be authorized by Water Pollution Control Facilities (WPCF) permits from the Oregon Department of Environmental Quality (DEQ).

A phased approach is being used to evaluate infiltration feasibility in the Gates/Mill City area. The phases include:

- Phase I. Excavation of test pits and infiltration testing to characterize shallow soils in four study areas.
- Phase II. Construction of a single monitoring well and aquifer testing to characterize deep soils in the three study areas that are considered to be the most favorable for infiltration based on the results of Phase I.
- Phase III. Construction of two additional monitoring wells, advancement of two temporary borings within the footprint of the planned infiltration basin area, and aquifer testing in the study area that is most favorable to infiltration based on the results of Phase II.

1.2 Phase II Investigation in the Gates/Mill City Area

Permitting and design of an infiltration basin requires characterization of soils and groundwater to evaluate whether infiltration capacity at a site is sufficient to meet the projected volume of wastewater that will be infiltrated. In 2023, GSI developed the Santiam Canyon Treated Wastewater Infiltration Evaluation Subsurface Characterization Work Plan (the Work Plan) (GSI, 2023a) to guide Phase I and Phase II of the subsurface characterization. An addendum to the Work Plan will be prepared to guide Phase III of the characterization.

In the Gates/Mill City area, the Phase I Subsurface Characterization was completed in March of 2023 at the four study areas shown in Figure 1. The Phase II Subsurface Characterization was completed in July of 2023 at study areas GM1, GM3, and GM4, which were most favorable to infiltration based on the results of the Phase I Subsurface Characterization (GSI, 2023b).

The objective of the Phase II Subsurface Characterization is to collect data that can be used to select one of the three study areas for the Phase III Subsurface Characterization. This TM summarizes the: (1) Phase II subsurface investigation at GM1, GM3, and GM4 that consisted of installing groundwater monitoring wells and conducting aquifer tests to estimate aquifer permeability, and (2) analytical groundwater modeling to estimate the volume of wastewater that can be infiltrated at each study area based on data collected during the field event. Monitoring well locations are shown in Figure 2a (study area GM1), Figure 2b (study area GM4), and Figure 2c (study area GM5).

This TM summarizes methods (Section 2) and results (Section 3) of the Gates/Mill City Phase II Subsurface Characterization. Finally, this TM provides conclusions and recommendations (Section 4).

2. Methods

This section describes methods used during the Phase II Subsurface Characterization to: (1) locate subsurface utilities (Subsection 2.1), (2) construct monitoring wells (Subsection 2.2), (3) collect samples for analysis of soil physical properties (Subsection 2.3), (4) collect samples for analysis of groundwater and wastewater quality (Subsection 2.4), (5) conduct a slug test to determine aquifer hydraulic conductivity (Subsection 2.5), and (6) estimate the infiltration capacity at each site (Subsection 2.6).

2.1 Utility Locating

Areas chosen for monitoring wells were located and cleared for subsurface utilities by Pacific Northwest Locating, LLC on May 5th, 2023. No utilities were identified near proposed monitoring well locations.

2.2 Monitoring Well Construction and Development

Groundwater monitoring wells were constructed at sites GM1, GM4, and GM5 with the objectives of: (1) identifying potential restrictive layers at depth, (2) collecting soil samples for analysis of physical properties, (3) collecting groundwater quality samples, and (4) testing of aquifer permeability. Monitoring well borings

were drilled with a track-mounted Terra Sonic 150cc Compact Crawler rotosonic drilling rig operated by Holt Services of Vancouver, Washington. Monitoring well borings were advanced to approximately 20 feet below the water table. Drilling dates, tooling methods, and total monitoring well depths are provided in Table 1.

Table 1. Overview of Monitoring Well Drilling.

Well ID	Drilling Date(s) ¹	Drill Tooling	Total Depth (feet)
GM1-MW1	5/19/2023 - 5/22/2023	6-inch casing, 4-inch core barrel	40
GM4-MW1	5/17/2023 - 5/18/2023	6-inch casing, 4-inch core barrel	45
GM5-MW1	5/15/2023 - 5/16/2023	6-inch casing, 4-inch core barrel	75

Notes

(1) Does not include well completion activities.

Once monitoring well construction was completed, wells were developed using a Waterra Pump System ® with foot valve and surge block. Wells were pumped and surged until at least ten borehole volumes had been removed, turbidity levels in the well dropped below 100 nephelometric turbidity units (NTUs), and water quality parameters stabilized in accordance with Environmental Protection Agency (EPA) well development guidance (Striggow et al, 2008).

2.3 Soil Physical Properties Logging and Sampling

During drilling, GSI personnel continuously logged soils from each borehole in general accordance with the visual-manual method of the Unified Soil Classification System (USCS) (ASTM, 2016). In addition, the following soil physical properties were measured during the Phase II Subsurface Characterization:

Saturated Vertical Hydraulic Conductivity, Particle Size Distribution, and Specific Gravity. Soils were continuously sampled from each monitoring well boring. A subset of the soil samples, selected to be representative of the range of soil lithologies observed in the boring, was submitted to GSA laboratories for analysis of vertical saturated hydraulic conductivity (K_{sat}) by ASTM Method D5856-95 (ASTM, 1995), particle size distribution by ASTM Method D6913-17 (ASTM, 2017) and ASTM Method D7928-17 (ASTM, 2017) (wet sieve and hydrometer methods), and specific gravity by ASTM Method D854-14 (ASTM, 2014). A summary of soil property sampling is presented in Table 2.

Table 2. Laboratory Analysis of Vertical K_{sat}, Particle Size Distribution, and Specific Gravity.

Well ID	Depth (feet bgs)	Analysis Performed
	7.5 - 10	K_{sat} ; particle size distribution; specific gravity
GM1-MW1	15-17.5	K _{sat}
	22.5-25	K _{sat} ; particle size distribution
	15-17.5	K_{sat} ; particle size distribution; specific gravity
GM4-MW1	17.5-20	K _{sat}
	22.5-25	K _{sat} ; particle size distribution
_	10-12.5	K _{sat} ; particle size distribution
GM5-MW1	20-22.5	K _{sat}
-	50-52.5	K_{sat} ; particle size distribution; specific gravity

Notes

ft bgs = feet below ground surface

Bulk Density and Water Content. Each section of soil core (i.e., returned in 2.5 foot long increments) from the monitoring well borings was weighed by GSA personnel in the field. Samples of each soil core were submitted to Oregon State University in Corvallis, Oregon, for measurement of gravimetric water content by ASTM Method D2216-19. Dry bulk density was calculated from the gravimetric water content and field-measured mass.

2.4 Water Quality Sampling

After monitoring wells were constructed and developed, GSI personnel returned to each site on May 28, 2023, to sample groundwater for the suite of contaminants regulated under the Safe Drinking Water Act (SDWA) to characterize baseline groundwater quality. Monitoring wells were sampled using a Waterra Pump System ® with foot valve and EPA low-flow (minimal drawdown) groundwater sampling procedures (EPA, 1996). Groundwater samples were collected from GM1-MW1, GM4-MW1, and GM5-MW1, stored in ice-chilled coolers, and immediately couriered to Edge Analytical Laboratories in Wilsonville, Oregon for analysis.

In addition to water quality sampling at monitoring wells, untreated wastewater from the City's wastewater treatment was sampled on May 2, 2023, by City personnel and submitted to Waterlab Corporation laboratories for analysis of synthetic organic compounds (SOCs), volatile organic compounds (VOCs), metals, and radionuclides. Because samples were collected upstream of treatment, the samples represent raw wastewater quality. The objective of the wastewater quality sampling was to develop a preliminary understanding of the types and concentrations of pollutants in the City's wastewater.

2.5 Aquifer Testing

After monitoring wells were constructed and developed, GSI conducted multiple slug tests (including 'slug-in' and 'slug-out' tests) at each monitoring well to estimate hydraulic conductivity of the shallow aquifer (i.e., horizontal hydraulic conductivity). A solid, tapered tube, or slug, was introduced (slug-in) or removed (slug-out) from each monitoring well to instantaneously raise or lower the water level in the well. A pressure transducer was used to monitor changes in water level. Horizontal hydraulic conductivity was calculated using the Hvorslev (1951) method for monitoring wells where the aquifer exhibited an overdamped response, and the Springer-Gelhar (1991) method for monitoring wells where the aquifer exhibited an underdamped response.

2.6 Infiltration Capacity Modeling

GSA conducted a groundwater mounding analysis to determine the infiltration capacity in study areas GM1, GM4, and GM5. The Zlotnik (2017) analytical solution for groundwater mounding as applied in MOUNDSOLV (Hydrosolve, 2023) was used to estimate the steady-state groundwater mound that may develop beneath the potential infiltration facilities in response to recharge of treated wastewater. The required model input parameters for a steady-state simulation include recharge rate, recharge basin infiltration area, aquifer saturated hydraulic conductivity, aquifer initial saturated thickness, and horizontal hydraulic gradient. The output of the MOUNDSOLV model is the rise in groundwater levels beneath the infiltration basin.

Simulations were based on the projected year 2045 effluent generation rate of 0.2375 million gallons per day (MGD). For this initial feasibility assessment, the infiltration facility was conservatively assumed to consist of one, square-shaped basin. The size of the infiltration was selected to be sufficiently large to accept the 0.2375 MGD of treated wastewater. The long-term infiltration rate was assumed to be 15 percent of the mean measured near-surface K_{sat} measured by GSA using a single ring infiltrometer with the lateral divergence correction during the Phase I Subsurface Characterization (GSI, 2023b). The value of 15 percent of K_{sat} was used to account for potential surface clogging (EPA, 1984).

3. Results

This section presents the results of Phase II Subsurface Characterization including monitoring well construction (Subsection 3.1), subsurface geology (Subsection 3.2), saturated hydraulic conductivity (Subsection 3.3), bulk density, gravimetric water content, and specific gravity (Subsection 3.4), water quality sampling (Subsection 3.5), and a groundwater mounding analysis (Subsection 3.6).

3.1 Monitoring Well Construction

Construction information for the monitoring wells installed during the Phase II Subsurface Characterization is summarized in Table 3. Monitoring well locations are shown in Figure 2a (study area GM1), Figure 2b (study area GM4), and Figure 2c (study area GM5). Boring logs showing well construction and soil types are provided in Attachment A.

Well ID	Latitude ¹	Longitude ¹	Ground Surface Elevation ¹ (ft amsl)	Total Boring Depth (ft bgs)	Depth to Ground- water ² (ft bgs)	Screened Interval (ft bgs)	Slot Size (inches)	Well Diameter and Material	Filter Pack
GM1-MW1	44.751118°	-122.460715°	852	40	15.4	30 - 40	0.010	2-inch, Sch. 40 PVC	10-20 Silica Sand
GM4-MW1	44.742539°	-122.472156°	880	40	12.7	30 - 40	0.010	2-inch, Sch. 40 PVC	10-20 Silica Sand
GM5-MW1	44.741882°	-122.448286°	1005	76	58.3	65 - 75	0.010	2-inch, Sch. 40 PVC	10-20 Silica Sand

Table 3. Monitoring Well Construction.

Notes

ft amsl = feet above mean sea level

ft bgs = feet below ground surface

Sch. = schedule

(1) Preliminary latitude, longitude, and ground surface elevation determined by Google Earth. A site survey will occur during Phase III.
 (2) At study areas GM4 and GM5, depth to groundwater was measured on June 8, 2023. At study area GM1, depth to groundwater was measured on May 29, 2023.

3.2 Subsurface Geology

Observations of subsurface geology from monitoring well borings are summarized below:

- In each of the three borings, a thin surficial fill layer (less that about 3 feet thick) was encountered overlying the Quaternary middle terrace deposits that comprise the primary alluvial geologic unit in the Gates/Mill City area. The Quaternary middle terrace deposits consisted of gravels with varying amounts of sand and fines (i.e., silt and clay) (see boring logs in Attachment A).
- As shown in Table 4, which summarizes laboratory-measured particle size distribution of soils from the monitoring well borings, the soils at study area GM5 consist of significantly more fine material (silt and clay fraction ranging from 16% to 23%) than the soils at study area GM1 and GM4 (ranging from about 4% to 12%). The finer-grained nature of the soils at GM5 based on lab analyses is consistent with the soil classification using the USCS visual-manual method (see boring logs in Attachment A).

Well ID	Depth (feet bgs)	% Gravel (>0.475 mm)	% Sand (4.75 mm - 0.075 mm)	% Silt (0.075 mm - 0.002 mm)	% Clay
	7.5 - 10.0	52.0%	36.2%	11.4%	0.4
GM1-MW1 —	22.5 - 25.0	34.0%	61.3%	4.5%	0.2
0.0.4.0.004	15.0 - 17.5	84.0%	11.4%	4.4%	0.2
GM4-MW1 —	22.5 - 25.0	57.0%	33.6%	8.8%	0.6
	10.0 - 12.5	70.0%	14.0%	11.0%	5.0
GM5-MW1 —	50.0 - 52.5	46.0%	30.7%	16.7%	6.6

mm = millimeters

feet bgs = feet below ground surface

3.3 Saturated Hydraulic Conductivity

Saturated hydraulic conductivity is a measure of how easily water travels through soil, and is an anisotropic soil property (meaning that hydraulic conductivity may be different in the horizontal and vertical directions). Due to geologic layering, horizontal hydraulic conductivity may be 10 to 100 times greater in vertical hydraulic conductivity. Vertical saturated hydraulic conductivity was measured in the laboratory based on soil samples collected from monitoring well borings (see Attachment B and discussion in Section 3.3.1) and horizontal saturated conductivity was measured in the field at monitoring wells (see Attachment E and discussion in Section 3.3.2).

3.3.1 Vertical Saturated Hydraulic Conductivity (K_{sat})

Laboratory-measured saturated hydraulic conductivities of soils at study areas GM1, GM4, and GM5 are summarized in Table 5. Because the analyses were conducted on soils above and below the water table, the hydraulic conductivities in Table 5 represent unsaturated zone hydraulic conductivity (soils above the water table) or aquifer hydraulic conductivity (soils below the water table).

The vertical saturated hydraulic conductivity of soil in study area GM5 (geometric mean = 0.0005 feet per day) is significantly lower than the saturated hydraulic conductivity of soil in study area GM1 (10.5 feet per day) and GM4 (9.8 feet per day). The low saturated hydraulic conductivity values in study area GM5 indicate that the deeper unsaturated zone sediments may limit percolation of infiltrated water at this location. Additional discussion of the relationship between saturated hydraulic conductivity and the percentage of fine material in soils is provided in Attachment B.

Table 5. Summary of Lab-Measured Vertical Saturated Hydraulic Conductivity.

Well ID	Depth (feet bgs)	Vertical K₅at (feet/day)	Geometric Mean Vertical K_{sat} (feet/day)
GM1-MW1	7.5 – 10.0 (unsaturated zone) 2.8		- 10.5
GIVIT-IVIWT	15.0 – 17.5 (aquifer)	34.0	

			_
	22.5 - 25.0 (aquifer)	12.2	
	15.0 – 17.5 (aquifer)	17.6	
GM4-MW1	17.5 - 20.0 (aquifer)	6.0	9.8
	22.5 - 25.0 (aquifer)	8.8	-
	10.0 – 12.5 (unsaturated zone)	0.0004	
GM5-MW1	20.0 – 22.5 (unsaturated zone)	0.0015	0.0005
	50.0 – 52.5 (unsaturated zone)	0.0002	-

Notes

feet bgs = feet below ground surface

3.3.2 Horizontal Saturated Hydraulic Conductivity (Aquifer Hydraulic Conductivity)

Table 6 summarizes geometric mean horizontal saturated hydraulic conductivity in each study area based on multiple slug tests at each monitoring well. Because the slug tests were conducted in saturated soils below the water table, the hydraulic conductivities in Table 6 represent aquifer hydraulic conductivities. The horizontal saturated hydraulic conductivity in study area GM1 (560 feet per day) is significantly higher than in study area GM4 (3.5 feet per day) and GM5 (33 feet per day).

Table 6. Summary of Field-Measured Horizontal Saturated Hydraulic Conductivity.

Well ID	Geometric Mean Horizontal K _{sat} (feet/day)
GM1-MW1	560.3
GM4-MW1	3.54
GM5-MW1	33.0

The following bullets provide additional information about the slug test analyses:

- As shown in Attachment E, some of the slug tests at MW-1 in study area GM-1 exhibited an underdamped response, indicating very high hydraulic conductivities.
- At MW-1 in study area GM-4, the slug tests exhibited an overdamped response, indicating lower hydraulic conductivities. The water level recoveries follow three trends: (1) an early-time trend that reflects the hydraulic conductivity of the monitoring well's filter pack, (2) a middle-time trend that reflects the hydraulic conductivity of the aquifer, and (3) a late-time recovery that reflects deviation of water level recovery from the theoretical aquifer response. The hydraulic conductivities analyzed by the Hvorslev (1951) method represent water level recovery during the middle-time trend (i.e., aquifer response).
- At MW-1 in study area GM-5, slug tests indicated an overdamped response. Water levels exhibited two trends: (1) an early-time trend that reflects aquifer permeability and (2) a late-time trend that reflects deviation of water level recovery from the theoretical aquifer response. The hydraulic conductivities analyzed by the Hvorslev method represent water level recovery during the early-time trend (i.e., aquifer response).

3.4 Bulk Density, Gravimetric Water Content, and Specific Gravity

Graphs showing dry bulk density and water content with depth in each boring are provided in Figure 3 (study area GM1), Figure 4 (study area GM4), and Figure 5 (study area GM5) of GSA's technical memorandum in Attachment B. Water content is variable and a function of soil texture (finer texture soil layers generally have greater water content than coarser-textured soil) and position relative to first-encountered groundwater (soil layers closer to or below first-encountered groundwater have greater water content than soil layers further from or above first-encountered groundwater). The water content in soil above first-encountered groundwater (soil groundwater at study area GM5 (ranging from about 7% to 47%) was highly variable relative to the water content at study areas GM1 (ranging from about 5% to 13%) and GM4 (ranging from about 7% to 30%), likely due to the differing layers of fine-textured soil overlaying less fine-textured soils.

Specific gravity results are shown in Table 7. Specific gravity ranged from 2.67 grams per cubic centimeter (g/cm^3) to 2.81 g/cm³.

Well ID	Depth (feet bgs)	Specific Gravity (grams per cubic centimeter)
GM1-MW1	7.5 - 10.0	2.72
GM4-MW1	15.0 - 17.5	2.81
GM5-MW1	50.0 - 52.5	2.67

Table 7. Summary of Specific Gravity.

3.5 Water Quality Sampling

Groundwater and wastewater quality results are provided in Table 8. Laboratory reports are provided in Attachment C, and groundwater sampling field forms are included in Attachment D. The following bullets summarize the groundwater quality results. Pollutant concentrations are compared to EPA Maximum Contaminant Levels (MCLs) and EPA Secondary Maximum Contaminant Levels (SMCLs). MCLs are legally-enforceable levels for constituents in drinking water; SMCLs are non-mandatory water quality guidelines to assist public water systems in managing drinking water for aesthetic considerations, including taste, color, and odor. MCLs and SMCLs are used by Oregon's Groundwater Protection Rules to evaluate the significance of a particular pollutant concentration and trigger necessary regulatory action¹.

- VOCs and SVOCs. No VOCs or SVOCs were detected in groundwater. In untreated wastewater, the only VOCs and SVOCs detected were di(2-ethylhexyl)phthalate (9.01 micrograms per liter or ug/L, which is above the EPA MCL of 6 ug/L) and toluene (49.6 ug/L, which is below the EPA MCL of 1,000 ug/L).
- General Geochemical and Inorganic Constituents. The following bullets summarize the quality of untreated wastewater and groundwater for general geochemical and inorganic constituents, many of which are naturally-occurring.
 - In groundwater, concentrations of aluminum, iron, and manganese exceed the EPA MCL or SMCL. The primary source of iron and manganese is likely naturally occurring iron and manganese oxide minerals that are present in alluvial soils of western Oregon, and the aluminum may be related to aluminosilicate minerals (Frank, 1973). Because concentrations of aluminum, iron, and manganese in untreated wastewater are lower than groundwater, infiltration will improve groundwater quality for these constituents.

¹ OAR 340 - 040

- Concentrations of zinc, fluoride, gross alpha, gross beta, and combined radium 226/228 are higher in untreated wastewater than in groundwater. With the exception of fluoride, the concentrations in untreated wastewater are below EPA MCLs.
- Nitrate is not detected in untreated wastewater because nitrogen is in the form of ammonia prior to treatment.

3.6 Groundwater Mounding Analysis

A technical memorandum summarizing the results of the groundwater mounding analysis performed by GSA is provided in Attachment F. Table 9 summarizes the input parameters used for the mounding analysis.

GM1	GM4	GM5
0.2375 MGD	0.2375 MGD	0.2375 MGD
Continuous	Continuous	Continuous
0.81 acres	6.23 acres	26.99 acres
0.90 feet/day	0.12 feet/day	0.03 feet/day
370 feet/day	3.5 feet/day	33.0 feet/day
15.4 feet bgs	30.0 feet bgs	58.3 feet bgs
44.6 feet	147 feet	122 feet
0.0139 feet/foot	0.0139 feet/feet	0.0139 feet/foot
	GM10.2375 MGDContinuous0.81 acres0.90 feet/day370 feet/day15.4 feet bgs44.6 feet	0.2375 MGD0.2375 MGDContinuousContinuous0.81 acres6.23 acres0.90 feet/day0.12 feet/day370 feet/day3.5 feet/day15.4 feet bgs30.0 feet bgs44.6 feet147 feet

Table 9. Input Parameters Used for Groundwater Mounding Analysis.

Notes

bgs = below ground surface

MGD = Million Gallons Per Day (1) Projected 2045 effluent generation rate

(2) Selected to be sufficiently large to accept the 0.2375 MGD of treated wastewater

(3) 15 percent of the mean measured near-surface K_{sat} for the study area (GSI, 2023b)

(4) See Table 6 in Section 3.3.2

(5) Depth to groundwater at study area GM1 was measured on May 29, 2023 at monitoring well GM1-MW1. Depth to groundwater at study area GM5 was measured on June 8, 2023 at monitoring well GM5-MW1. Depth to groundwater at study area GM4 was selected to be 30 feet below ground surface (bgs) because the depth to groundwater is likely between 12.7 feet bgs (measured near the southern edge of the property near a stream at monitoring well GM4-MW1) and 37 feet bgs (measured in the City's Kingwood Well No. 2, LINN 56359, in April 2013).

(6) Estimated from deep borehole logs. In study area GM1, the nearby 60-feet-deep domestic water well LINN 1443 shows that unconsolidated sediments are at least 60 feet thick (60 feet of unconsolidated sediments – 15.4 feet depth to water = 44.6 feet of aquifer). In study area GM4, the nearby 177-feet-deep domestic water well LINN 2588 shows that unconsolidated sediments are at least 177 feet thick (177 feet of unconsolidated sediments – 30 feet depth to water = 147 feet of aquifer).

(7) Horizontal hydraulic gradient determined based on a groundwater elevation contour map developed from the water levels measured by GSI at GM1-MW1, GM4-MW-1, GM5-MW-1 and water levels from the Oregon Water Resources Department.

The model-predicted steady state groundwater mounding results are provided in Table 10. Contour maps showing the predicted rise in groundwater levels are provided in Figure 2 (study area GM1), Figure 3 (study area GM4) and Figure 4 (study area GM5) of GSA's technical memorandum in Attachment F.

Table 10. Predicted Mounding During Infiltration.

Model Output	GM1	GM4	GM5
Maximum Mound Height	1.6 feet above static	47.4 feet above static	5.0 feet above static
Depth to Groundwater	13.8 feet bgs	0 feet bgs	53.3 feet bgs

Notes

bgs = below ground surface

The following bullets summarize the results of the groundwater mounding analysis:

- At study area GM1, the mounding is predicted to be relatively minor (1.6 feet above the static groundwater level) due to the high aquifer hydraulic conductivity at the site. Because the depth to groundwater in study area GM1 is relatively shallow, the depth to the water table is 13.8 feet bgs during infiltration.
- At study area GM4, a relatively large maximum mound height of 47.4 feet above the static groundwater level was predicted due to the low aquifer hydraulic conductivity at the site. In addition, the water table intersected the ground surface. Preferably, the groundwater mound should be at least 10 feet or greater below ground surface to prevent the groundwater from impacting infiltration rates or resulting in the daylighting of groundwater outside of the basin footprint. Additional model simulations by GSA indicated that an infiltration basin would need to be 364,000 acres to meet the 10 feet bgs depth to groundwater criteria, which exceeds the available acreage of available properties near study area GM4.
- At study area GM5, the mounding is predicted to be relatively minor (5.0 feet above the static groundwater level) due to the high aquifer hydraulic conductivity and large area available for an infiltration basin. However, it's important to note that the mounding analysis does not consider the impact of potential low permeability soils above the water table. The Phase II Subsurface Investigation indicated that numerous low-permeability layers are present in the unsaturated zone at study area GM5, which would limit infiltration rate and create perched water conditions above the water table.

4. Conclusions and Recommendations

Based on data collected during the Phase II Subsurface Characterization and mounding analysis, study area GM1 is considered to be the most favorable to infiltration:

- The aquifer hydraulic conductivity (560 feet per day), vertical hydraulic conductivity (10.5 feet per day), and soil types in the unsaturated zone (generally gravels with 5 to 15 percent fines by weight) are the most permeable of three sites evaluated as a part of Phase II.
- Based on MOUNDSOLV modeling (included in Attachment F), study area GM1 is capable of infiltrating the projected 2045 effluent generation rate while maintaining a depth to groundwater of more than 10 feet bgs.

<u>Therefore, we recommend conducting Phase III Subsurface Characterization at study area GM1.</u> At the remaining sites:

- Study Area GM5. Due to low-permeability soil layers in the unsaturated zone that would limit infiltration, we recommend not considering study area GM5 further. Therefore, monitoring well MW-1 at GM5 should be decommissioned.
- Study Area GM4.We recommend retaining study area GM4 as a backup site that could be furtherevaluated if: (1) the Phase III Subsurface Characterization at study area GM1 produces data that indicate the study area is not as favorable to infiltration as indicated by the Phase I and Phase II data, or (2) groundwater contaminant fate and transport modeling indicates that attenuation of constituents in infiltrating wastewater does not meet DEQ standards. While the MOUNDSOLV simulations at GM4 indicate the site cannot infiltrate the target volume of treated wastewater while maintaining water levels deeper than 10 feet bgs, additional data collection may indicate that the aquifer permeability measured at monitoring well MW-1 is not representative of overall site conditions. Specifically, additional slug testing at new monitoring wells may indicate that the aquifer

is more permeable in other areas of the study area. <u>It is important to note that we do not consider it</u> to be *likely* that the additional data collection will indicate infiltration is feasible (we only consider it to be possible).

Data collected during the Phase III Subsurface Characterization will be used to complete the following tasks to provide additional information about infiltration basin design and feasibility in study area GM1:

- Install two additional monitoring wells and:
 - Measure the depth to groundwater to calculate a horizontal hydraulic gradient (horizontal hydraulic gradient in MOUNDSOLV currently assumes an "initial horizontal hydraulic gradient" calculated based on water levels from monitoring wells in other study areas and water level collected over many years by the Oregon Water Resources Department).
 - Conduct additional slug tests to evaluate heterogeneity in aquifer hydraulic conductivity (aquifer permeability in MOUNDSOLV is currently based on slug tests at a single monitoring well).
- Install a temporary boring to bedrock to directly-measure the aquifer saturated thickness (the MOUNDSOLV model used an "initial aquifer saturated thickness" assumed from nearby water wells).
- Re-run the MOUNDSOLV model to confirm that an infiltration basin at study area GM1 can infiltrate the projected 2045 effluent generation rate.
- Develop a groundwater fate and transport model to evaluate whether constituents in infiltrating wastewater will be sufficiently attenuated to meet DEQ standards.

5. References

American Society for Testing Materials (ASTM). (1995). Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Ridged-Wall Compaction-Mold Permeameter. (ASTM D5856-95).

American Society for Testing Materials (ASTM). (2009). Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). (ASTM D2488-09a).

American Society for Testing Materials (ASTM). (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. (ASTM D854-14).

American Society for Testing Materials (ASTM). (2016). Visual Manual Method.

American Society for Testing Materials (ASTM). (2017). *Standard Test Method for Particle-Size Distribution* (Gradation) of Soils Using Sieve Analysis. (ASTM D6913/D6913M-17).

American Society for Testing Materials (ASTM). (2017). Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. (ASTM D7928-17).

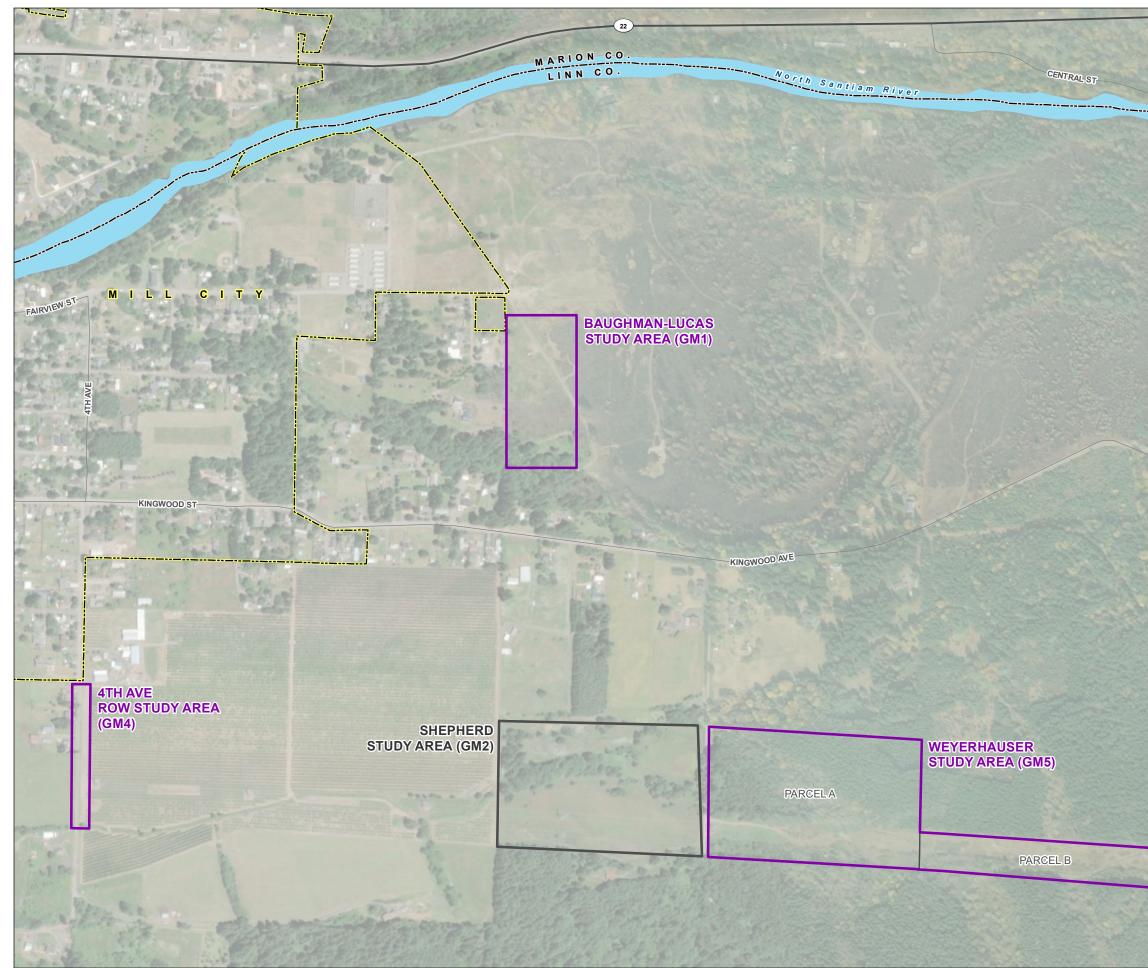
Environmental Protection Agency (EPA). (1994). Well purging guidance.

Environmental Protection Agency (EPA). (1996, April). *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures*. (EPA 540-S-95-504). EPA, Office of Research and Development. EPA, Office of Solid Waste and Emergency Response. https://www.epa.gov/sites/default/files/2015-06/documents/lwflw2a.pdf

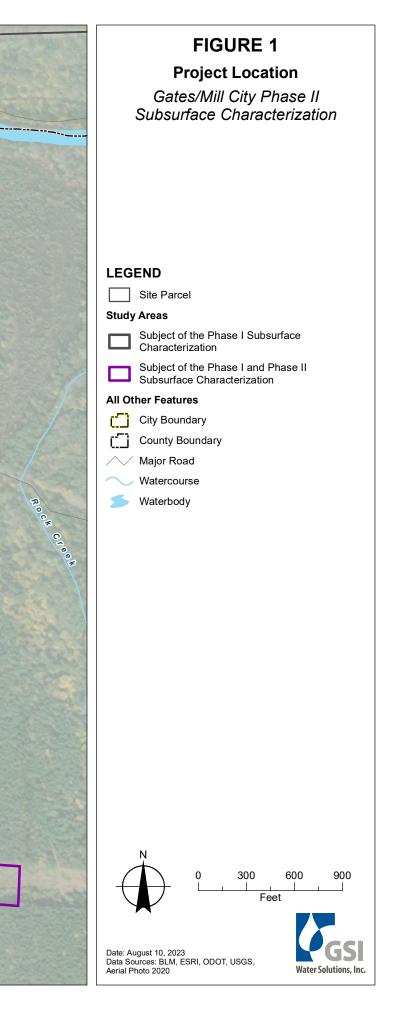
GSI. (2023a). Work Plan.

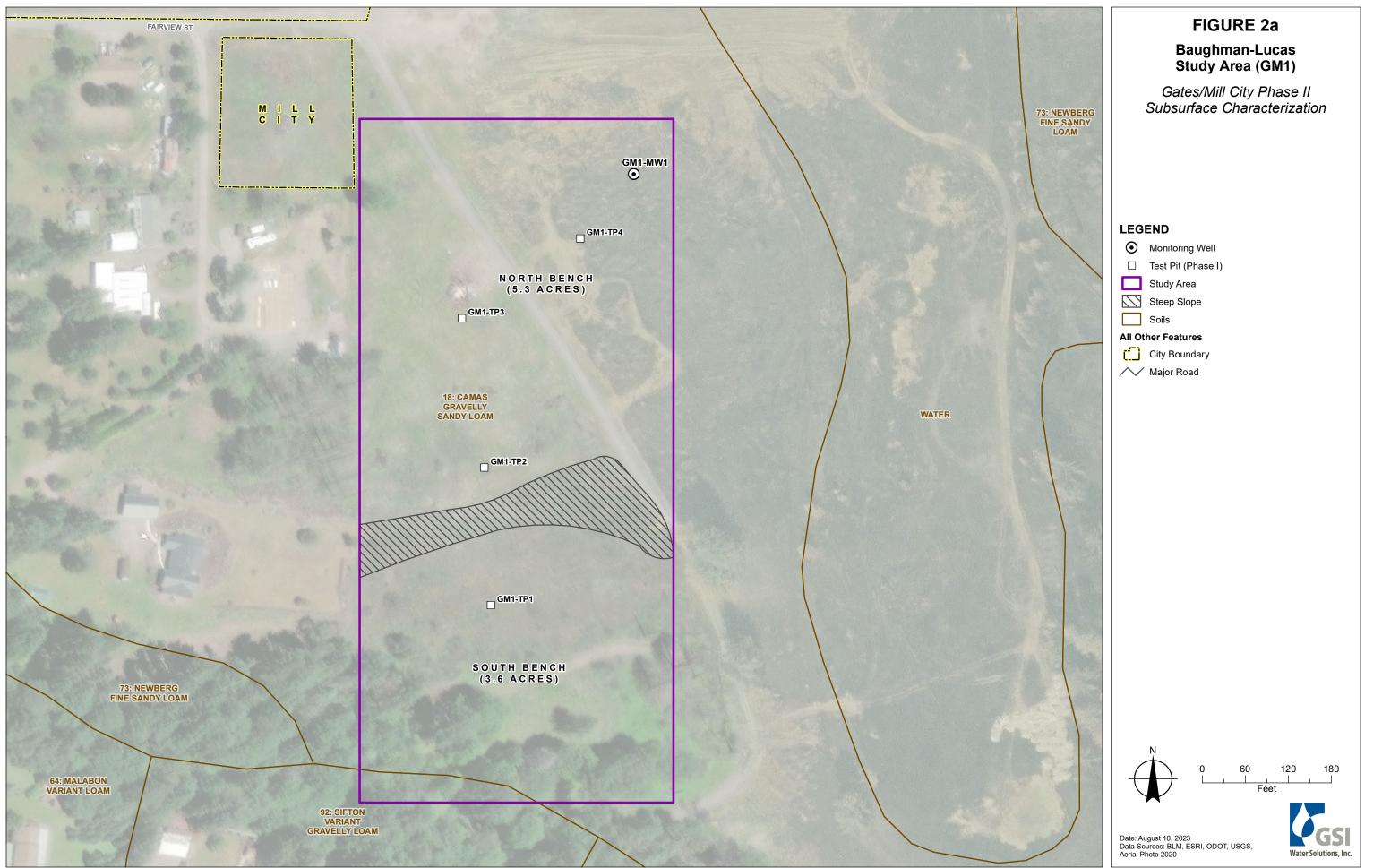
GSI. (2023b). Phase I Memo.

Hvorslev, M.J. (1951). *Time Lag and Soil Permeability in Ground-Water Observations*. (Bul. no. 26). U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi


Hydrosolv. (2023).

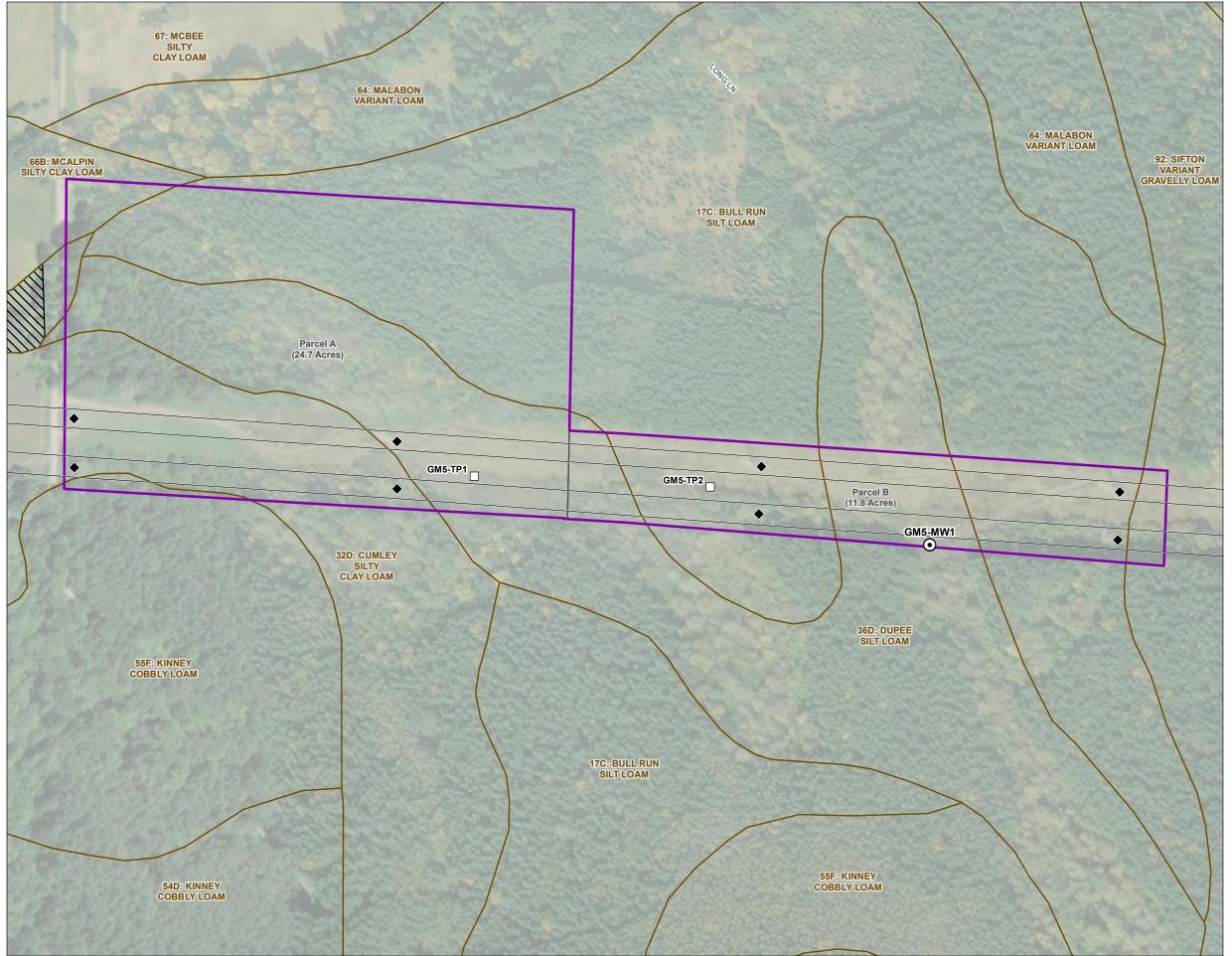
Springer-Gelhar (1991).


Striggow, B., Quinones, A., and Ackerman, L. (2008, February). *Design and Installation of Monitoring Wells*. (SESDGUID-101-R0). Environmental Protection Agency, Science and Ecosystem Support Division. https://www.epa.gov/sites/default/files/2014-03/documents/appendix_m_monitor_well_installation.pdf


U.S. Geological Survey (USGS). (2007). *Description of North Santiam River Basin*. (SIR 2007-5178). U.S. Department of the Interior, USGS. https://pubs.usgs.gov/sir/2007/5178/section3.html

<mark>Zlotnik. (2017).</mark>

Document Path: Y:10464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_II_Subsurface_Characterization\Figure1_Project_Location.mxd, abarry



Document Path: Y:\0464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_II_Subsurface_Characterization\Figure2a_Baughman_Lucas_Site_GM1.mxd, abarry

Document Path: Y:\0464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_II_Subsurface_Characterization\Figure2b_4th_Ave_ROW_Site_GM4.mxd, abarry

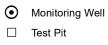

Document Path: Y:10464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_II_Subsurface_Characterization\Figure2c_Weyerhaeuser_Site_GM5.mxd, abarry

FIGURE 2c

Weyerhaeuser Study Area (GM5)

Gates/Mill City Phase II Subsurface Characterization

LEGEND

- Powerline Tower
- Powerline

Site Parcel

Soils

All Other Features

City Boundary

0 125 250 375 Feet

Date: August 10, 2023 Data Sources: BLM, ESRI, ODOT, USGS, Aerial Photo 2020

DRAFT TECHNICAL MEMORANDUM

Phase III Subsurface Characterization to Support an Evaluation of Treated Wastewater Infiltration in Gates and Mill City, Marion and Linn Counties, Oregon

То:	Chris Einmo, PE / Marion County
From:	Jesse Hall / GSI Water Solutions, Inc. Matt Kohlbecker, RG / GSI Water Solutions, Inc. Jason Keller, RG / GesSystems Analysis, Inc.
CC:	Peter Olsen, PE / Keller Associates, Inc. Pamela Villarreal, PE / Keller Associates, Inc. Brian Nicholas / Marion County Dave Kinney / City of Mill City Russ Foltz / City of Mill City Kari Low / Commonstreet Consulting
Date:	November 8, 2023

This Technical Memorandum (TM), prepared by GSI Water Solutions, Inc. (GSI) and GeoSystems Analysis, Inc. (GSA), summarizes the third phase of a subsurface characterization to evaluate the feasibility of treated wastewater infiltration in Gates and Mill City, Oregon.

1. Introduction

This section summarizes background information about the treated wastewater infiltration project in the Santiam Canyon, including a project overview (Section 1.1) and an overview of the Phase III Subsurface Characterization in Gates and Mill City (Section 1.2).

1.1 Project Overview

The North Santiam Sewer Authority (NSSA) is planning to dispose of treated wastewater by infiltration. Two infiltration facilities are planned—one in the Gates/Mill City area and another in the Detroit/Idanha area (Figure 1). Infiltration facilities will be comprised of rapid infiltration basins and will be authorized by Water Pollution Control Facilities (WPCF) permits from the Oregon Department of Environmental Quality (DEQ).

A phased approach is being used to evaluate infiltration feasibility in the Gates/Mill City area. The phases include:

• **Phase I.** Excavation of test pits and infiltration testing to characterize shallow soils in four study areas.

- Phase II. Construction of a single monitoring well and aquifer testing to characterize deep soils in the three study areas that are considered to be the most favorable for infiltration based on the results of Phase I.
- Phase III. Construction of two additional monitoring wells, advancement of two temporary borings within the footprint of the planned infiltration basin area, and aquifer testing in the study area that is most favorable to infiltration based on the results of Phase II.

1.2 Phase III Subsurface Characterization in the Gates/Mill City Area

Permitting and design of an infiltration basin requires characterization of soils and groundwater to evaluate whether infiltration capacity at a site is sufficient to meet the projected volume of wastewater that will be infiltrated. In March of 2023, GSI developed a work plan¹ to guide Phase I and Phase II of the subsurface characterization (GSI, 2023a). In April of 2023, an addendum was developed to guide Phase III of the characterization² (GSI, 2023b).

In the Gates/Mill City area, the Phase I Subsurface Characterization was completed in March of 2023. The Phase II Subsurface Characterization was completed in July of 2023 at study areas GM1, GM4, and GM5. Based on the results of the Phase II Subsurface Characterization, study area GM1 was selected for the Phase III Subsurface Characterization (GSI, 2023c).

The objective of the Phase III Subsurface Characterization was to collect data that can be used to evaluate infiltration feasibility, inform pollutant fate and transport evaluations, and update previous estimates of groundwater mounding during infiltration. This TM summarizes the: (1) collection and analysis of data during the Phase III subsurface investigation at study area GM1, and (2) updated groundwater mounding modeling to estimate the volume of wastewater that can be infiltrated at Study Area GM1.

This TM summarizes methods (Section 2) and results (Section 3) of the Gates/Mill City Phase III Subsurface Characterization. Finally, this TM provides conclusions and recommendations (Section 4).

2. Methods

This section describes methods used during the Phase III Subsurface Characterization to: (1) locate subsurface utilities (Subsection 2.1), (2) construct monitoring wells (Subsection 2.2), (3) drill temporary boreholes (Subsection 2.3), (4) classify soil physical properties (Subsection 2.4), (5) survey monitoring wells (Subsection 2.5), (6) conduct slug tests to determine aquifer hydraulic conductivity (Subsection 2.6), and (7) estimate the infiltration capacity at the site (Subsection 2.7).

2.1 Utility Locating

Oregon 411 was notified of work activities at study area GM1 and conducted a public utility locate to identify all utilities within 25-feet of the centerline of SE Fairview Street. Additionally, areas chosen for monitoring wells, which were not necessarily within 25 feet of the SE Fairview Street centerline, were located and cleared for subsurface utilities by the private locating company Pacific Northwest Locating, LLC, on August 21, 2023. No utilities were identified along the SE Fairview Street corridor or near proposed monitoring well locations.

¹ Santiam Canyon Treated Wastewater Infiltration Evaluation Subsurface Characterization Work Plan, dated March 3, 2023 ² Santiam Canyon Treated Wastewater Disposal – Subsurface Characterization Work Plan Addendum No. 1 (Phase III), dated August 18, 2023

2.2 Monitoring Well Construction and Development

Groundwater monitoring wells were constructed at site GM1 with the objectives of: (1) identifying potential restrictive layers at depth, (2) testing aquifer permeability, and (3) measuring shallow groundwater elevations to develop groundwater elevation contour maps and calculate horizontal hydraulic gradients. Monitoring well borings were drilled with a track-mounted Terra Sonic 150cc Compact Crawler rotosonic drilling rig operated by Holt Services of Vancouver, Washington. Monitoring well borings were advanced to approximately 20 feet below first encountered groundwater. Drilling dates, tooling types, and total monitoring well depths are provided in Table 1. Study area GM1 monitoring well locations are shown in Figure 3.

Table 1. Overview of Monitoring Well Drilling.

Well ID	Drilling Date(s) ¹	Drill Tooling	Total Depth (feet)
GM1-MW1	5/19/2023 - 5/22/2023	6-inch casing, 4-inch core barrel	40
GM1-MW2	8/23/23 - 8/24/23	6-inch casing, 4-inch core barrel	50
GM1-MW3	8/29/23	6-inch casing, 4-inch core barrel	50

Notes

(1) Does not include well completion activities.

Once monitoring well construction was completed, wells were developed using a Waterra Pump System ® with foot valve and surge block. Wells were pumped and surged until at least ten borehole volumes had been removed, turbidity levels in the well dropped below 100 nephelometric turbidity units (NTUs), and water quality parameters stabilized in accordance with Environmental Protection Agency (EPA) well development guidance (Striggow et al, 2008).

2.3 Temporary Borehole Drilling

Temporary boreholes were drilled at site GM1 with the objective of identifying potential restrictive layers at depth. Borings were drilled with a track-mounted Terra Sonic 150cc Compact Crawler rotosonic drilling rig operated by Holt Services of Vancouver, Washington. Once target depth was reached, boreholes were abandoned in accordance with Oregon Water Resources Department regulations and standards.

2.4 Soil Classification Logging

During drilling, GSI personnel continuously logged soils from each borehole in general accordance with the visual-manual method of the Unified Soil Classification System (USCS) (ASTM, 2016). Boring logs are presented in Attachment A and soil classification results are presented in subsection 3.3.

2.5 Monitoring Well Surveying

Monitoring well locations were surveyed by Forty Five North Surveying, LLC on September 5, 2023, using Global Positioning System (GPS) Real Time Kinematics (RTK) methods. Monitoring well elevations were surveyed with an accuracy of within 0.01 feet of each other.

2.6 Aquifer Testing

After monitoring wells were constructed and developed, GSI conducted three successive slug tests (including 'slug-in' and 'slug-out' tests) at each monitoring well to estimate hydraulic conductivity of the shallow aquifer (i.e., horizontal hydraulic conductivity). Slug testing involves first introducing (slug-in) a solid tapered tube, or slug, into a monitoring well to instantaneously raise the water level in the well, and then removing the slug (slug-out) from the well to instantaneously lower water levels. GSI personnel took manual water level

measurements at a predetermined schedule and a pressure transducer was installed beneath the slug to monitor changes in water level every half-second during the tests. Horizontal hydraulic conductivity was calculated using the Hvorslev method for monitoring wells where the aquifer exhibited an overdamped response (Hvorslev, 1951), and the Springer-Gelhar method for monitoring wells where the aquifer the aquifer exhibited an underdamped response (Springer and Gelhar, 1991).

2.7 Infiltration Capacity Modeling

GSA used the hydraulic conductivity and hydraulic gradient measured during the Phase III Subsurface Characterization to update the preliminary groundwater mounding analysis for Study Area GM1 presented in GSI (2023c). This analysis used the Zlotnik analytical solution for groundwater mounding (Zlotnik et al, 2017) as applied in MOUNDSOLV (Hydrosolv, 2023) to estimate the steady-state groundwater mound that may develop beneath potential infiltration facilities in response to recharge of treated wastewater. Model input parameters required for a steady-state simulation include recharge volume, recharge duration, infiltration area, long term infiltration rate, depth to water table, aquifer initial saturated thickness, hydraulic gradient, and groundwater flow direction. Using these parameters, the MOUNDSOLV model is able to calculate the expected rise in groundwater levels beneath the infiltration basin.

Due to the variability in horizontal saturated hydraulic conductivity (K_{sat}) between monitoring wells at Study Area GM1, three groundwater mounding scenarios were evaluated in MOUNDSOLV. K_{sat} values assigned for each scenario and the associated basis for assigning the K_{sat} values are summarized in Table 2.

Scenario	Monitoring Well	K_{sat} (ft/day)
Low	GM1-MW3	37.0
Average	Geometric Mean of All Wells	88.2
High	GM1-MW1	163.3

Table 2. Aquifer Horizontal K_{sat} Values

Groundwater mounding model parameters applied for low, mid, and high K_{sat} scenarios are summarized in Table 3.

Table 3. Input Parameters Used for Groundwater Mounding Analysis.

Induculia Conductivity Coonceia	Low	Average	High
Hydraulic Conductivity Scenario	(K_{sat} = 37 ft/d)	$(K_{sat} = 88.2 \text{ ft/d})$	$(K_{sat} = 163 \text{ ft/d})$
Recharge Rate 1	0.2375 MGD	0.2375 MGD	0.2375 MGD
Recharge Duration	Continuous	Continuous	Continuous
Infiltration Area ²	2.3 acres	2.3 acres	2.3 acres
Long-Term Infiltration Rate ³	0.90 feet/day	0.12 feet/day	0.03 feet/day
Aquifer Hydraulic Conductivity ⁴	37 feet/day	88.2 feet/day	163 feet/day
Depth to Water Table (current) 5	15.4 feet bgs	15.4 feet bgs	15.4 feet bgs
Depth to Water Table (after basin construction) ⁶	14.4 feet bgs	14.4 feet bgs	14.4 feet bgs
Initial Aquifer Saturated Thickness 7	44.6 feet	44.6 feet	44.6 feet
Initial Horizontal Hydraulic Gradient ⁸	0.0102 feet/foot	0.0102 feet/feet	0.0102 feet/foot

Notes

MGD = Million Gallons Per Day (1) Projected 2045 effluent generation rate bgs = below ground surface

GSI Water Solutions, Inc. • 4

(2) Selected to be sufficiently large to accept the 0.2375 MGD of treated wastewater

- (3) 15 percent of the mean measured near-surface K_{sat} for the study area (GSI, 2023b)
- (4) See Table 6 in Section 3.3.2
- (5) Depth to groundwater at study area GM1 was measured on May 29, 2023 at monitoring well GM1-MW1.
- (6) Assumes a basin excavation depth of 1.0 feet.

(7) Estimated from deep borehole logs. In study area GM1, the nearby 60-feet-deep domestic water well LINN 1443 shows that unconsolidated sediments are at least 60 feet thick (60 feet of unconsolidated sediments – 15.4 feet depth to water = 44.6 feet of aquifer).

(8) Horizontal hydraulic gradient determined based on a groundwater elevation contour map developed from the water levels measured by GSI at GM1-MW1, GM1-MW2, GM1-MW3 and water levels from the Oregon Water Resources Department.

Groundwater mounding simulations were based on the projected year 2045 treated wastewater effluent generation rate of 0.2375 million gallons per day (MGD). For this initial feasibility assessment, the infiltration facility was conservatively assumed to consist of one, square-shaped basin, with a 2.3 acre infiltration area. The long-term infiltration rate was assumed to be 15 percent of the mean measured near-surface K_{sat}, as measured by GSA using a single ring infiltrometer with the lateral divergence correction during the Phase I Subsurface Characterization (GSI, 2023b). A K_{sat} value of 15 percent of the mean measured K_{sat} for the site was used to account for potential surface clogging (EPA, 1984).

Groundwater mounding analysis results are presented in Section 3.6 and in the memorandum completed by GSA available in Attachment C.

3. Results

This section presents the results of Phase III Subsurface Characterization including monitoring well construction (Subsection 3.1), temporary borehole drilling (Subsection 3.2), subsurface geology (Subsection 3.3), groundwater levels, flow directions, and gradient (Subsection 3.4), saturated hydraulic conductivity (Subsection 3.5), and a groundwater mounding analysis (Subsection 3.6).

3.1 Monitoring Well Construction

Construction information for the monitoring wells installed during the Phase III Subsurface Characterization is summarized in Table 4. Monitoring well locations are shown in Figure 3. All monitoring wells were constructed using 2-inch diameter schedule 40 PVC casing and a 10-foot PVC screen with a slot size of 0.010-inches. All monitoring wells were constructed with a 10-20 silica sand filter pack. Boring logs showing well construction and soil types are provided in Attachment A. Cross-section A-A' showing Study Site GM1 geology and groundwater levels is provided in Figure 4.

Well ID	Latitude	Longitude	Ground Surface Elevation ² (ft amsl)	Total Boring Depth (ft bgs)	Screened Interval (ft bgs)	Static Water Level (ft amsl)
GM1-MW1 ¹	44.751106°	-122.460697°	851.92	40	30 - 40	829.48
GM1-MW2	44.751044°	-122.462022°	849.77	50	40 - 50	826.78
GM1-MW3	44.749072°	-122.461128°	859.57	50	40 - 50	832.43

Table 4. Monitoring Well Construction.

Notes

ft amsl = feet above mean sea level

ft bgs = feet below ground surface

(1) Monitoring well GM1-MW1 was constructed during Phase II Subsurface Investigation completed in May of 2023.

(2) Measurements of elevation were taken using the vertical datum NAVD88.

3.2 Temporary Borehole Drilling

Information obtained during drilling of temporary boreholes as part of the Phase III Subsurface Characterization is summarized in Table 5. No sitewide, continuous restrictive layers were encountered in the temporary borings. In temporary boring GM1-TB2, the bottom of the shallow aquifer was encountered at approximately 65 feet bgs, on a layer of silt approximately 20 feet thick.

Table 5. Monitoring Well Construction.

Well ID	Latitude ¹	Longitude ¹	Ground Surface Elevation ¹ (ft amsl)	Total Boring Depth (ft bgs)	Depth Groundwater First Encountered (ft bgs)	Depth to Aquifer Bottom ² (ft bgs)
GM1-TB1	44.750961°	-122.461632°	851	20	18.4	N/A
GM1-TB2	44.750025°	-122.460736°	854	90	20	65

Notes

ft amsl = feet above mean sea level

ft bgs = feet below ground surface

(1) Determined from Google Earth

(2) Aquifer bottom not encountered in GM1-TB1

3.3 Subsurface Geology

Boring logs showing subsurface geology at monitoring wells and temporary borings are provided in Attachment A. Cross-section A-A' showing study area GM1 geology and groundwater levels is provided in Figure 4.

Observations of subsurface geology from monitoring well borings and temporary borings are summarized below:

- In the monitoring well borings completed in the lower terrace area of the site (GM1-MW1 and GM1-MW2) an approximately 1.5 feet thick surficial layer comprised of loose silty gravel was encountered overlying the Quaternary Middle Terrace deposits. The loose nature of this layer and lack of anthropologic materials (e.g., bricks) indicates it is likely a fill layer comprised of reworked native soils from past site activities.
- The surficial fill layer found at monitoring well GM1-MW3, located in the upper terrace area of the site, consisted of 6.5 feet of soft silt with no gravel or sand and contained burnt woody debris and lumber. MW3 soils contained much higher percentages of silt when compared to MW1 or MW2. No infiltration is planned to occur in this area.
- There was a significantly higher ratio of fines found in the upper 5 feet of GM1-MW2 borehole when compared to MW1. Proportions of gravel, sand, and fines between GM1-MW1 and GM1-MW2 were similar below 5 feet bgs.
- The Quaternary Middle Terrace deposits consisted of loose gravels, silty gravels, and sands with lower proportions of silt than observed in surficial layers (see boring logs in Attachment A).
- A significant layer of silt (in excess of 20 feet thick) silt was found at temporary boring GM1-TB2 from 65-feet bgs to 85-feet bgs. This silt layer represents the base of the shallow groundwater system.

3.4 Groundwater Levels, Flow Directions, and Gradient

Table 6 provides groundwater levels at site GM1, and a groundwater elevation contour map is provided in Figure 3. Generally, groundwater flows towards the northwest under a horizontal hydraulic gradient of .0102 feet per foot.

Well ID	Depth to Groundwater (feet bgs)	Groundwater Elevation (feet amsl)			
GM1-MW1	22.42	829.48			
GM1-MW2	22.99	826.78			
GM1-MW3	27.14	832.43			

Table 6. Groundwater Levels

Notes

ft amsl = feet above mean sea level ft bgs = feet below ground surface

(1) At MW1, depth to groundwater was measured on August 29, 2023. At MW2 and MW3, depth to groundwater was measured on September 4, 2023.

3.5 Saturated Hydraulic Conductivity

Saturated hydraulic conductivity is an anisotropic soil property (meaning that hydraulic conductivity may be different in the horizontal and vertical directions) indicating how easily water travels through soil. Due to geologic layering, horizontal hydraulic conductivity may be 10 to 100 times greater than vertical hydraulic conductivity. Horizontal saturated conductivity was measured in the field at GM1 monitoring wells using the slug testing method (see Attachment B for slug testing results).

Water level recovery at GM1 monitoring wells was generally rapid, ranging from less than 30 seconds at GM1-MW1 and GM1-MW2, to about 200 seconds at GM1-MW3. The relatively rapid response indicates that soils at the GM1 site are characterized by a high hydraulic conductivity. Water level response at monitoring wells GM1-MW1 and GM1-MW2 exhibited an underdamped (i.e., oscillatory) response and were analyzed using the Springer-Gelhar (1991) solution for a slug test in an unconfined aquifer. Water level response at monitoring well GM1-MW3 exhibited an overdamped (i.e., straight-line) response and was analyzed by the Hvorslev (1951) solution for a slug test in an unconfined aquifer. Plots of water level versus time during the slug tests are provided in Attachment B. Note on the plots that several tests were not analyzed due to the transducer moving during the test. Horizontal hydraulic conductivity estimates obtained from slug testing at the GM1 site are summarized in Table 7.

Table 7. Slug Test Results.

Well ID	Analysis Method	Result	Figure Reference*	Geometric Mean Horizontal K (feet/day)
GM1-MW1	Springer-Gelhar (1991)	Test 1 (in): 97 feet/day	Figure B.1(d)	163.3
	Springer-Gelhar (1991)	Test 3 (in): 275 feet/day	Figure B.1(e)	
	Springer-Gelhar (1991)	Test 1 (in): 111 feet/day	Figure B.2(d)	
GM1-MW2	Springer-Gelhar (1991)	Test 2 (in): 110 feet/day	Figure B.2(e)	113.6
	Springer-Gelhar (1991)	Test 3 (in): 120 feet/day	Figure B.2(f)	
	Hvorslev (1951)	Test 1 (in): 33.8 feet/day	Figure B.3(d)	
GM1-MW3	Hvorslev (1951)	Test 2 (in): 57.5 feet/day	Figure B.3(d)	37.0
	Hvorslev (1951)	Test 3 (in): 26.1 feet/day	Figure B.3(d)	
	Overall Geometric Mean			

* Available in Attachment B

The overall geometric mean hydraulic conductivity for soils at Study Area GM1 is 88.2 feet per day.

3.6 Groundwater Mounding Analysis

A technical memorandum summarizing the results of the groundwater mounding analysis completed by GSA is provided in Attachment C. A summary of input parameters used for the mounding analysis model is presented in Table 3. Figures showing predicted groundwater mounding in the Gates/Mill City area for each scenario are presented in Attachment C. The model-predicted steady state groundwater mounding results for each scenario is provided in Table 10. Note the depths the groundwater in Table 8 are based on the seasonal high groundwater level measured at monitoring well GM1-MW1 in May 2023 (15.4 feet below current ground surface).

Table 8. Predicted Mounding During Infiltration.

	Hydraulic Conductivity Scenario			
	Low (K_{sat} =37 ft/d)	Mid (K_{sat} =88.2 ft/d)	High (K_{sat} =163 ft/d)	
Maximum Mound Height	13.8 feet above static	5.8 feet above static	3.1 feet above static	
Depth to Top of Groundwater Mound (Current Ground Surface)	1.6 feet bgs	9.6 feet bgs	12.3 feet bgs	
Depth to Top of Groundwater Mound (Future Ground Surface)	0.6 feet bgs	8.6 feet bgs	11.3 feet bgs	

Notes

bgs = below ground surface

The following bullets summarize the results of the groundwater mounding analysis:

- Scenarios using mid and high K_{sat} values showed minimal groundwater mounding (less than 6 feet) and depth to maximum groundwater mound of greater than 8 feet.
- The low K_{sat} value scenario showed increased groundwater mounding (more than 13 feet) and depth to maximum groundwater mound of less than 1 foot under the infiltration basin.

4. Conclusions and Recommendations

The data collected during the Phase III Subsurface Characterization and subsequent mounding simulations indicate that infiltration of the 2045 wastewater effluent generation rate (0.2375 MGD) appears to be feasible at study area GM-1. As a next step, we recommend using the data collected during the Phase III Subsurface Characterization to evaluate the environmental fate of residual pollutants in treated wastewater with the objectives of informing the appropriate permitting framework for the facility (i.e., Water Pollution Control Facilities permit or National Pollutant Discharge Elimination System permit) and evaluating compliance with DEQ's groundwater protection rules and the Three Basin Rule. We also recommend conducting a pilot test as a part of basin construction to refine basin design and collect additional information on aquifer response to infiltration.

5. References—Need to Update

American Society for Testing Materials (ASTM). (1995). Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Ridged-Wall Compaction-Mold Permeameter. (ASTM D5856-95).

American Society for Testing Materials (ASTM). (2009). Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). (ASTM D2488-09a).

American Society for Testing Materials (ASTM). (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. (ASTM D854-14).

American Society for Testing Materials (ASTM). (2016). Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). (ASTM D2488-09a)

American Society for Testing Materials (ASTM). (2017a). Standard Test Method for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. (ASTM D6913/D6913M-17).

American Society for Testing Materials (ASTM). (2017b). Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. (ASTM D7928-17).

American Society for Testing Materials (ASTM). (2019). Standard Tet Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. (ASTM D2216-19).

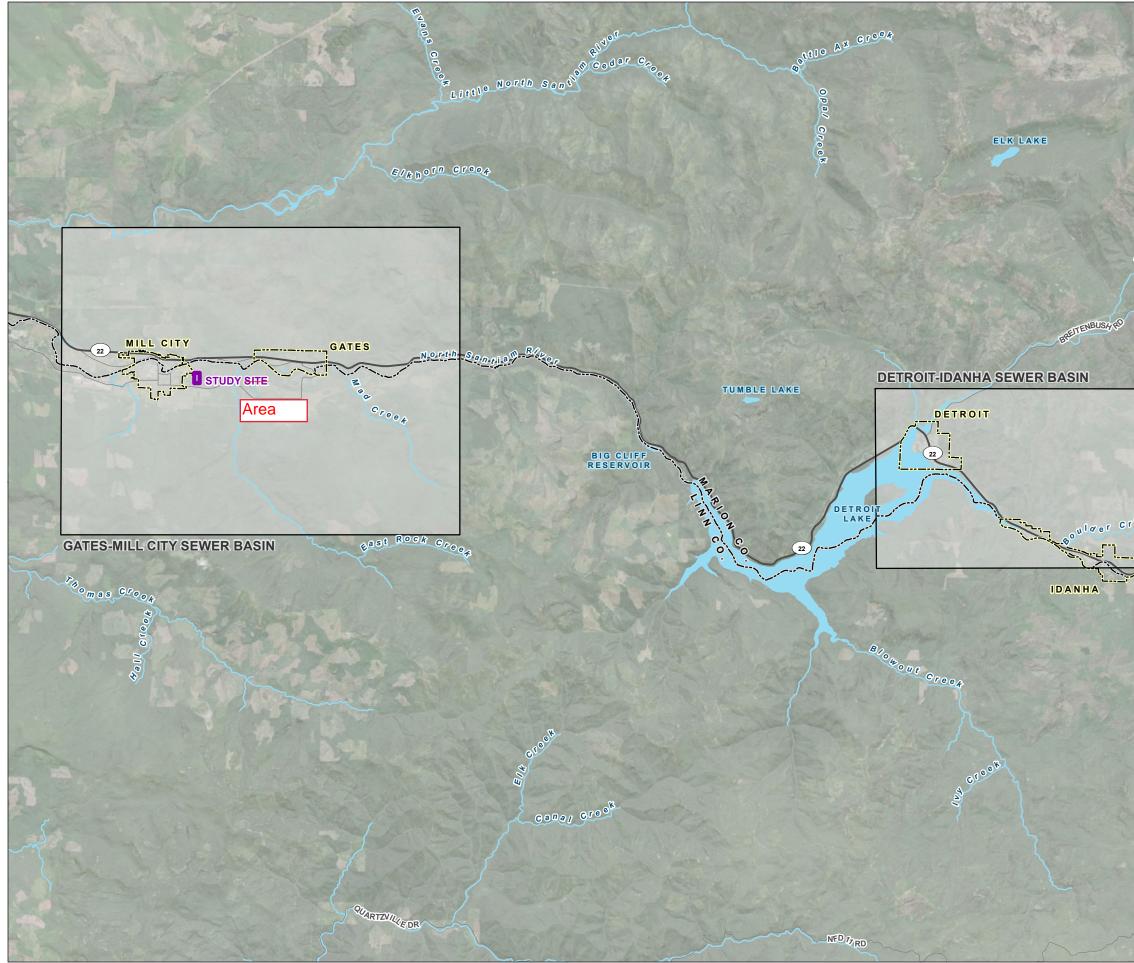
Environmental Protection Agency (EPA). (1996, April). *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures*. (EPA 540-S-95-504). EPA, Office of Research and Development. EPA, Office of Solid Waste and Emergency Response. https://www.epa.gov/sites/default/files/2015-06/documents/lwflw2a.pdf

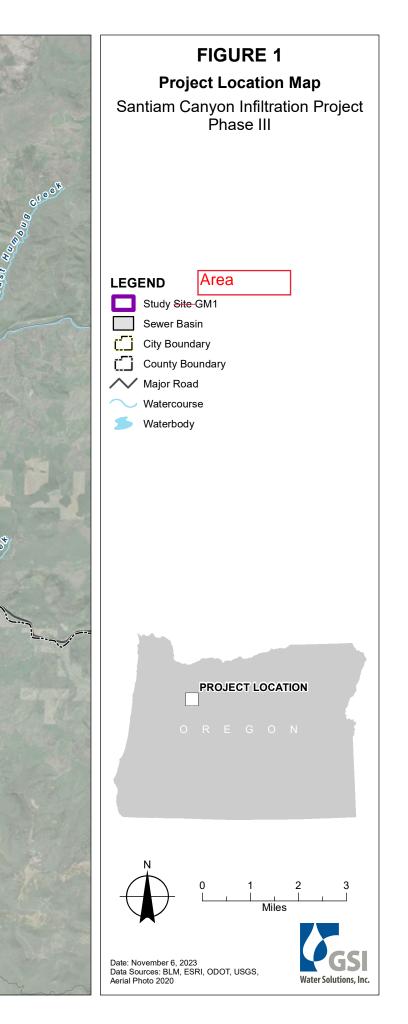
GSI Water Solutions, Inc. and GeoSystems Analysis, Inc. (2023a). Santiam Canyon Treated Wastewater Infiltration Evaluation Subsurface Characterization Work Plan.

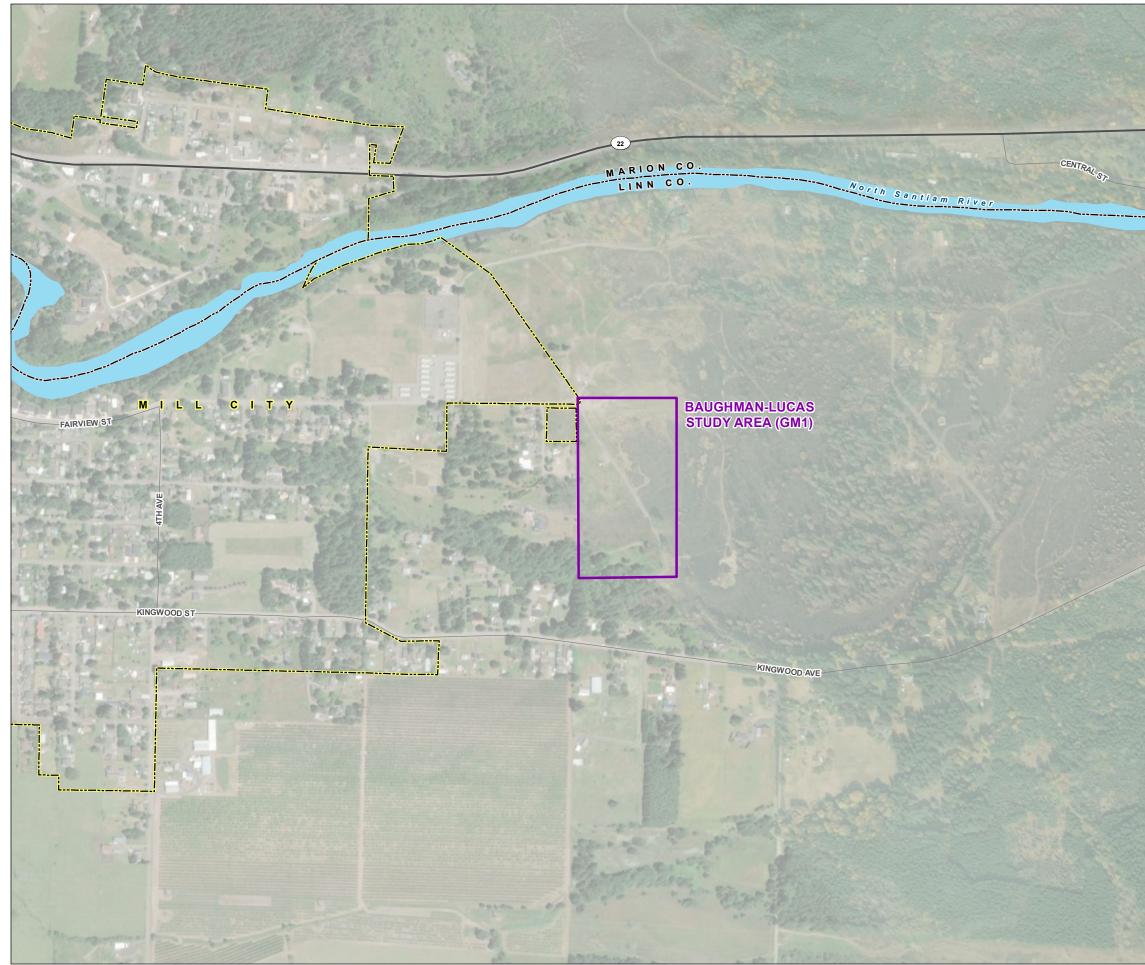
GSI Water Solutions, Inc. and GeoSystems Analysis, Inc. (2023b). Santiam Canyon Treated Wastewater Disposal – Subsurface Characterization Work Plan Addendum No. 1 (Phase III).

GSI Water Solutions, Inc., and GeoSystems Analysis, Inc. (2023c). Phase II Subsurface Characterization to Support an Evaluation of Treated Wastewater Infiltration in Gates and Milly City, Marion and Linn Counties, Oregon.

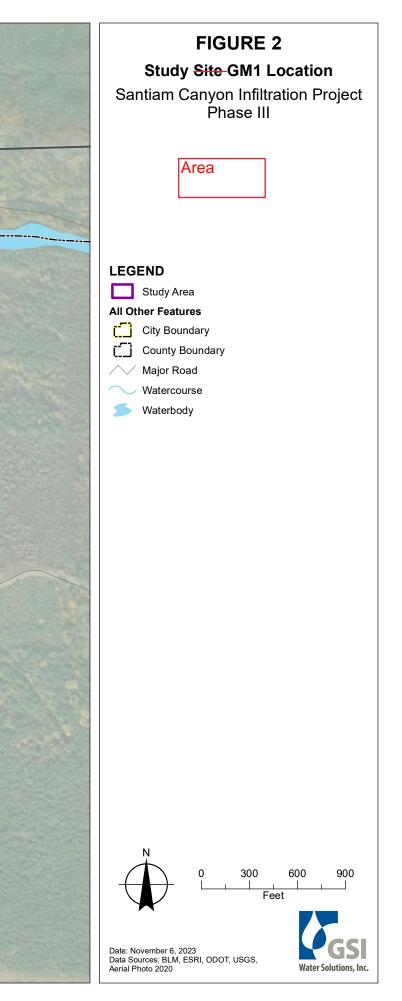
Hvorslev, M.J. (1951). *Time Lag and Soil Permeability in Ground-Water Observations*. (Bul. no. 26). U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi

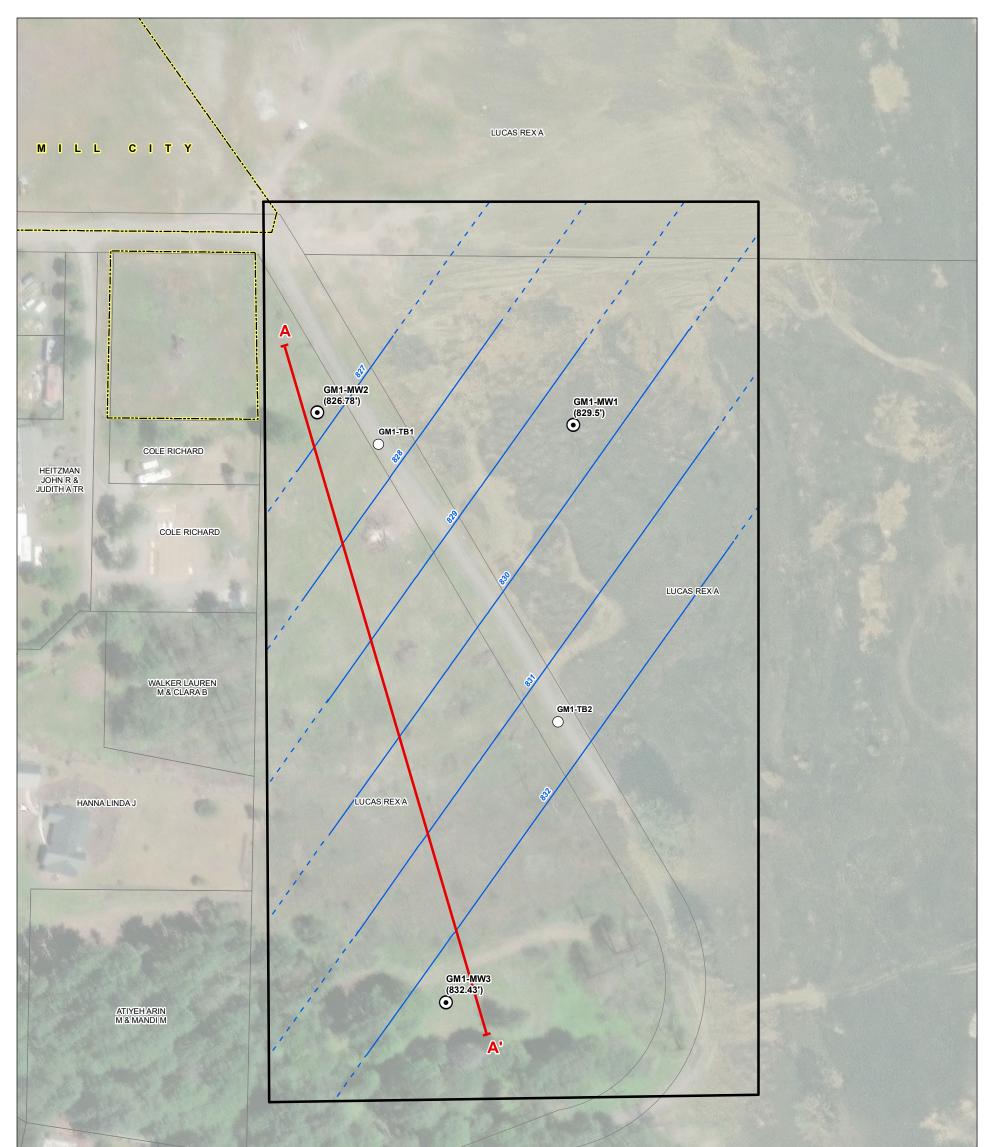

Hydrosolv, Inc. (2023). Moundsolv version 4.0. Available online at the following link: http://www.aqtesolv.com/moundsolv.htm

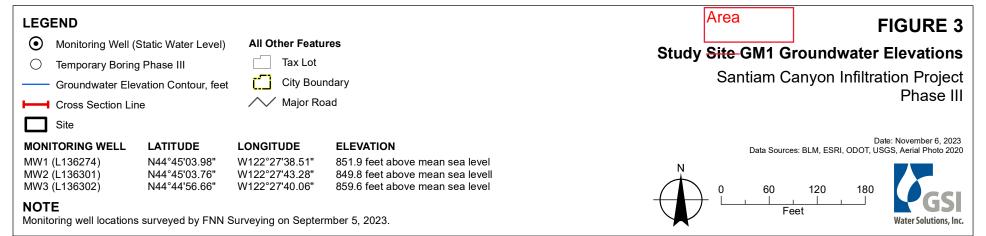

Springer, R. K., and Gelhar, L. W. (1991). Characterization of Large Scale Aquifer Heterogeneity in Glacial Outwash by Analysis of Slug Tests with Oscillatory Response, Cape Cod, Massachusetts. U.S. Geological Survey, Water Resources Investment Report 91-4034, pp. 3 – 40.


Striggow, B., Quinones, A., and Ackerman, L. (2008, February). *Design and Installation of Monitoring Wells*. (SESDGUID-101-RO). Environmental Protection Agency, Science and Ecosystem Support Division. https://www.epa.gov/sites/default/files/2014-03/documents/appendix_m_monitor_well_installation.pdf

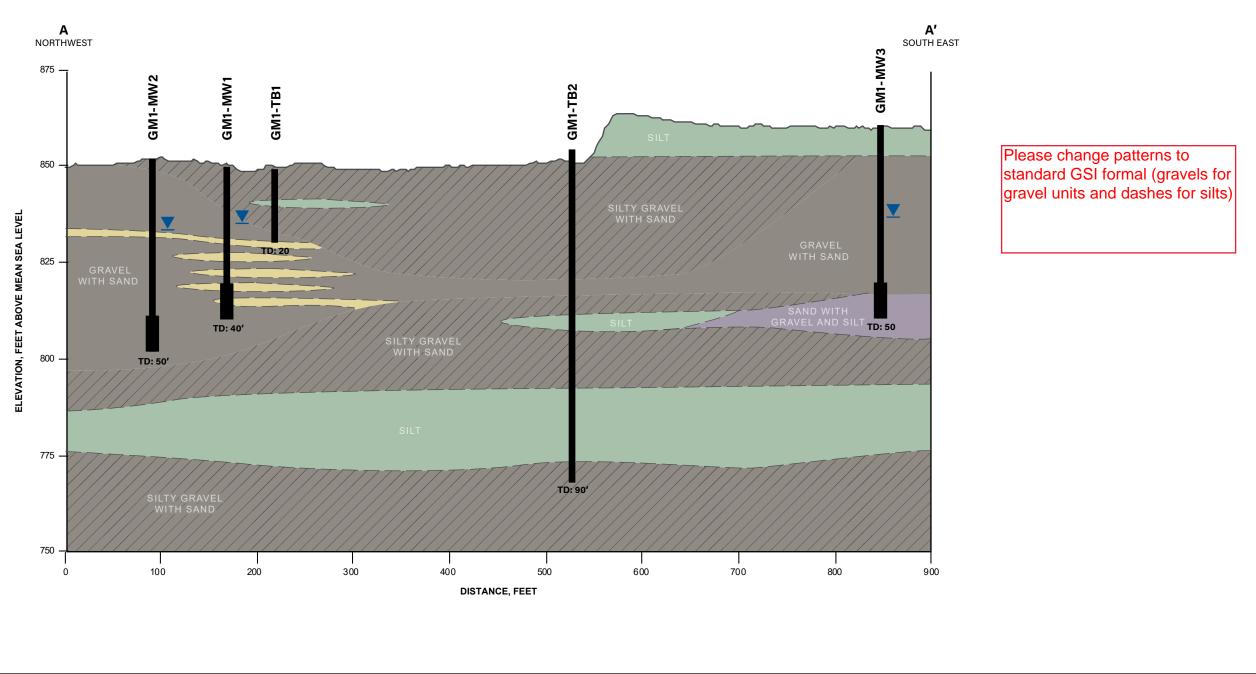
U.S. Geological Survey (USGS). (2007). *Description of North Santiam River Basin*. (SIR 2007-5178). U.S. Department of the Interior, USGS. https://pubs.usgs.gov/sir/2007/5178/section3.html


Zlotnik, V. A., Kacimov, A., Al-Maktoumi, A. (2017, May). Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge. Groundwater, vol. 55, no. 6, pp. 771 – 930.





Document Path: Y:\0464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_III_Infiltration_Project\Figure2_Site_Overview.mxd, npalme



Document Path: Y:10464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_III_Infiltration_Project\Figure3_Site_GW_Elevations.mxd, npalmer

NOTE TD: Total Depth

Y:\0464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Phase_III_Infiltration_Project

FIGURE 4

Study Site GM1 Cross-Section A-A'

Area

Santiam Canyon Infiltration Project Phase III

-ATTACHMENT A-

Boring Logs

	GSI Water	Solutions, Inc.	LOC	g id:	GM	1-MW1
	PROJECT:	Santiam Canyon Infiltration Evaluation	ground 851 ft N			VATION AND DATUM:
В	ORING LOCATION:	Mill City, OR	TOTAL DEPTH (ft):			DATE STARTED: 5/19/2023
DRILLI	NG CONTRACTOR:	Holt	LOGGED	BY:		DATE FINISHED: 5/22/2023
SA	AMPLING METHOD:	Continuous Core	DEPTH T		FIRS 19.	ST: COMPLETED:
D	RILLING METHOD:	Sonic			17.	5 14.7
DEPTH (feet)		SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION
0 1 2 3 4 - - - - - - - - - - - - -	ĠM GM GW-GM	 0 - 1.5 ft: Loose, dark brown, dry, silty GRAVEL with sand (GM), organics, sand is very fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to rounded [FILL] 1.5 - 3.0 ft: Medium dense, dark brown, moist, silty GRAVEL (GM), organics, medium plasticity, sand is very fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to subrounded (QUATERNARY MIDDLE TERRACE DEPOSITS] 3.0 - 4.0 ft: Loose, dark brown to black, dry to moist, silty GRAVEL with sand (GM), organics, low plasticity, sand is fine to coarse, angular to subrounded, gravel is fine to medium, subangular to subrounded, odor of charcoal [QUATERNARY MIDDLE TERRACE DEPOSITS] 4.0 - 5.0 ft; Very loose, dark grey, dry, well graded GRAVEL with silt and sand (GW-GM), low plasticity, sand is very fine to coarse, subangular to rounded, gravel is fine to medium, subangular to subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS] — Gray, dry, increase in coarse gravel/cobbles at 6.5 ft 5.0 - 12.0 ft: Very loose, brown to dark brown to grey, dry to wet, well graded GRAVEL with silt and sand (GW-GM), low plasticity, sand is very fine to coarse, subangular to rounded, gravel is fine to medium, subangular to subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS] — Gray, dry, increase in coarse gravel/cobbles at 6.5 ft 5.0 - 12.0 ft: Very loose, brown to dark brown to grey, dry to wet, well graded GRAVEL with silt and sand (GW-GM), low plasticity, sand is very fine to coarse, subangular to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] — Increase in moisture (moist to wet) at 11 ft 		<15 <10 25 30 15	15 40 35 10 10	Locking Well Cap Monument Sand Fill B ^{ar} Steel Well Monument Cement Surface Seal Genet Surface Seal Bentonite/Cement Slurry 2-inch Nominal Diameter Schedule 80 PVC Casing
	ater Solutions, Inc				0. 913.	001 Page 1 of 3

	GSI Water	Solutions, Inc.	LO	g id:	GM1	-MW1
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROUN 851 ft I	ATION AND DATUM:		
E	BORING LOCATION:	Mill City, OR	TOTAL 40	DEPTH (f	t):	DATE STARTED : 5/19/2023
DRILLI	ING CONTRACTOR:	Holt	LOGGE J. Hall	OBY:		DATE FINISHED : 5/22/2023
S	AMPLING METHOD:	Continuous Core	DEPTH WATER		FIRST 19.5	
[DRILLING METHOD:	Sonic		_		
UEP IA (feet)		SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION
12						
13— 		—Wet at 14.0 ft 12.0 - 18.0 ft: Very loose, dark brown, moist, well graded				
15 16	GW	GRAVEL with sand (GW), low plasticity, sand is very fine to very coarse, subangular to rounded, gravel is fine to coarse, subangular to rounded, cobbles (< 6 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	80	15	<5	
17-		-No return from 15 to 20 ft. Recovered with clean-out.				
18— 	GW-GM	18.0 - 20.0 ft: Very loose, dark brown, moist, well graded GRAVEL with silt and sand (GW-GM), low plasticity, sand is very fine to coarse, subangular to rounded, gravel is fine to medium, subangular to subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS] Wet at 19.5 ft	70	20	10	
20— 21— 	MR	20.0 - 22.5 ft: NO RETURN				
22						
23-	© © SW 0 0	22.5 - 23.0 ft: Very loose, dark brown, wet, well graded SAND (SW), low plasticity, sand is very fine to very coarse, subangular to rounded [QUATERNARY MIDDLE TERRACE	0	100	_ <5 _	
 24—	GW	\DEPOSITS] 23.0 - 24.0 ft: Very loose, dark brown, moist, well graded	_/ 50	<50	<5	
24 _ 25—	GW-GM	GRAVEL with sand (GW), low plasticity, sand is very fine to very coarse, subangular to rounded, gravel is very fine to very coarse, subangular to rounded, cobbles (< 6 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE	70	20	10	
-	NR	24.0 - 25.0 ft: Very loose, dark brown, wet, well graded GRAVEL with silt and sand (GW-GM), low plasticity, gravel is				- Sodium Bentonite Slurry
26— 27—		very fine to very coarse, subangular to rounded, cobbles <6 in, subrounded to rounded [QUATERNARY MIDDLE [TERRACE DEPOSITS] 25.0 - 26.0 ft: NO RETURN	0	100	 <5	
	ater Solutions, Inc	26.0 - 27.5 ft: Very loose, dark brown, wet, well graded			0. 913.00	01 Page 2 of 3

	GSI Water Solutions, Inc.		LOG ID: GM1-MW1							
	PROJECT:	Santiam Canyon Infiltration Evaluation		ID SURF NAVD8	ND DATUM:					
B	SORING LOCATION:	Mill City, OR	TOTAL 40	DEPTH (1	ft):		DATE STARTED: 5/19/2023			
DRILLI	NG CONTRACTOR:	Holt	LOGGE J. Hal				DATE FINISHED: 5/22/2023			
SA	AMPLING METHOD:	Continuous Core	DEPTH WATEF	TO ₹ (ft bgs)	FIRS 19.5		COMPLETED: 14.9			
C	ORILLING METHOD:	Sonic								
UEPIH (feet)		SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	WELL	AS-BUILT CONSTRUCTION			
28- 	GŴ.	SAND (SW), low plasticity, sand is very fine to coarse, subangular to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] 27.5 - 30.0 ft: Very loose, dark brown, wet, well graded GRAVEL (GW), low plasticity, sand is very fine to very coarse, subangular to rounded, gravel is fine to coarse, subangular to rounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	100		<5		- Bentonite Chips			
30	^Q	30.0 - 31.5 ft: Very loose, dark brown, wet, well graded SAND (SW), low plasticity, sand is very fine to coarse, subangular to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	0	100	<5		Filter Pack			
32 33 33 34	G₩	Increase in silt/decrease in gravel at 33.0 ft 31.5 - 35.0 ft: Loose, dark brown, wet, well graded GRAVEL with sand (GW), low plasticity, sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to rounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	40	<5		PVC Screen			
35 36	GW-SM	35.0 - 36.0 ft: Very loose, dark brown to dark gray, wet, well graded SAND with silt (SW-SM), sand is very fine to coarse, subangular to subrounded, gravel is fine to coarse, subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] 26.0.27.0 ft: Loose, brown to gray, wet, well graded	10 	80 	 10 <5					
37	GW	36.0 - 37.0 ft: Loose, brown to gray, wet, well graded GRAVEL (GW), gravel is fine to coarse, subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS] Increase in cobbles at 38.0 ft 37.0 - 40.0 ft: Loose, dark brown, wet, well graded GRAVEL with sand (GW), low plasticity, sand is fine to coarse, subangular to subrounded, gravel is fine to coarse, subangular to rounded, cobbles (< 8 inches), subrounded to rounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	40	<5					
40		Total Depth = 40.0 ft		_L		ε	∃∵ ITD = 40.0-feet			
- SI W:	ater Solutions, Inc	. Portland, OR 503.239.8799	F	Project N	0. 913.0	001	Page 3 of 3			

	GSI Water	Solutions, Inc.	LOC	G ID:	: GM	I1-MW2
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROUNE 849.8 ft			EVATION AND DATUM:
E	ORING LOCATION:	Mill City, OR	TOTAL D			DATE STARTED: 8/23/2023
DRILLI	NG CONTRACTOR:	Holt	LOGGED M. Harr			DATE FINISHED: 8/23/2023
SA	AMPLING METHOD:	Continuous Core	DEPTH T	0	FIRS	
C	RILLING METHOD:	Sonic				
DEPTH (feet)		SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION
0	GW	0.0 - 1.5 ft: Very loose, brown, dry, silty GRAVEL with sand (GM), nonplastic, sand is very fine to coarse, gravel is fine to medium, rounded to subrounded, organics, rootlets [FILL] Few Cobbles (<5 in) from 5 - 15ft 1.5 - 16.0 ft: Very loose, gray, dry, well graded GRAVEL with sand (GW), sand is fine to coarse, gravel is fine to medium, subrounded to angular [QUATERNARY MIDDLE TERRACE DEPOSITS]	80	15	<5	Locking Well Cap Monument Sand Fill 8" Steel Well Monument - Cement Surface Seal - Cement Surface Seal - Genent Surface Seal - Genent Surface Seal - Cement Surry - Surry - 2-inch Nominal Diameter Schedule 80 PVC Casing
	ater Solutions, Inc		Pr	⊥ oiect N	lo. 464.	.020.001 Page 1 of 4

GSI Wate	er Solutions, Inc.	LOC	G ID:	GM	1-MW2	
PROJECT	Santiam Canyon Infiltration Evaluation	GROUND SURFACE ELEVATION AND DATUM: 849.8 ft NAVD88				
BORING LOCATION	: Mill City, OR	TOTAL D 50	EPTH (f	t):	DATE STAI 8/23/2023	
DRILLING CONTRACTOR		LOGGED M. Harr			DATE FINIS 8/23/2023	HED:
SAMPLING METHOD		DEPTH T WATER (0	FIRS 17.	T: COMPLETE	
DRILLING METHOD	: Sonic	1				
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRU	
	Dry to moist at 13.0 ft and 15.0 ft Wet at 16.0 ft					
17	16.0 - 19.0 ft: Loose, dark brown, moist to wet, well graded GRAVEL with silt and sand (GW-GM), sand is fine to medium, gravel is fine to coarse, rounded to subrounded, some cobbles (<5 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS]	60	30	<10		
20	19.0 - 21 ft: Loose, dark brown, wet, poorly graded SAND (SP), sand is fine to medium, gravel is fine to medium, subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS Gravel size increases from 20.0 - 21.0 ft	10	80	<5		
21 22 23 24 25 26 27 28	21.0 - 30.0 Loose, dark brown to gray, wet, well graded GRAVEL with sand (GW), sand is fine to medium, gravel is fine to coarse, subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS] Wet from 25.0 - 30.0 ft	60	35	<5	- Benton Slurry	ite/Cement
GSI Water Solutions, Ir		Pro	⊥ oject N	o. 464.0	020.001 Page	2 of 4

FROJECT	r Solutions, Inc.	LOC	G ID:	: GM	1-MW	12
PROJECT	Santiam Canyon Infiltration Evaluation	GROUND SURFACE ELEVATION AND DATUM: 849.8 ft NAVD88				
BORING LOCATION	Mill City, OR	TOTAL D 50)EPTH (1	ft):		DATE STARTED: 8/23/2023
DRILLING CONTRACTOR	Holt	LOGGED M. Harr				DATE FINISHED: 8/23/2023
SAMPLING METHOD	Continuous Core	DEPTH T WATER (FIRS 17.		COMPLETED: 20.98
DRILLING METHOD	Sonic					
DEPTH (reet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	WELL	AS-BUILT CONSTRUCTION
29- 30- 31- 32- GW 33- 34- 35- 36- 37- 38- GW 40- 41- 42- 43- GW 44-	30.0 - 35 ft: Loose, dark brown to gray, wet, well graded GRAVEL with sand (GW), sand is fine to medum, gravel is fine to coarse, subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS] Coarse sand from 37.0 - 38.0 ft 35.0 - 42.0 ft: Loose, gray brown, wet, well graded GRAVEL with sand (GW), sand is fine to coarse, gravel is fine to coarse, subrounded, some cobbles (<4 in) [QUATERNARY MIDDLE TERRACE DEPOSITS] 42.0 - 45.0 ft: Loose, dark brown, wet, well graded GRAVEL with sand (GW), sand is fine to medium, gravel is fine to medium, subangular [QUATERNARY MIDDLE TERRACE DEPOSITS]	73	15	<5		- Bentonite Chips - 10-20 Filter Pack 2-Inch 10-Slot PVC Screen
GSI Water Solutions, Ir	c. Portland, OR 503.239.8799	Pre	⊥ oject N	lo. 464.	 020.001	H∷ Page 3 of 4

	PROJECT: Santiam Canyon Infiltration Evaluation		LOG ID: GM1-MW2							
	PROJECT:	Santiam Canyon Infiltration Evaluation		ND SURF ft NAVI	VATION AND DATUM:					
B	BORING LOCATION:	Mill City, OR	TOTAL 50	DEPTH	(ft):	DATE STARTED: 8/23/2023				
DRILLI	NG CONTRACTOR:	Holt	Logge M. Ha			DATE FINISHED: 8/23/2023				
SA	AMPLING METHOD:	Continuous Core	DEPTH WATEF	l TO R (ft bgs)	FIRS 17.					
C	ORILLING METHOD:	Sonic	- I							
DEPTH (feet)		SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION				
45 46 47 47 48	GW	45.0 - 48.0 ft: Loose, dark brown to gray, wet, well graded GRAVEL with sand (GW), sand is fine to coarse, gravel is fine to coarse, subangular [QUATERNARY MIDDLE TERRACE DEPOSITS]	70	27	<5					
49	GW	48.0 - 49.0 ft: Loose, dark brown to gray, wet, well graded GRAVEL with sand (GW), sand is fine to coarse, gravel is fine to medium, subangular to angular [QUATERNARY MIDDLE TERRACE DEPOSITS]	54	46	<5					
50		Total Depth = 50.0 ft				TD = 50.0 feet				
51-										
52										
53-										
54										
55										
56										
57										
58										
59 60										
 GSI Wa	ater Solutions, Inc	. Portland, OR 503.239.8799	F	Project I	No. 464.	020.001 Page 4 of 4				

FROJECT	r Solutions, Inc.	LOC	G ID:	: GM	1-MW3
PROJECT	Santiam Canyon Infiltration Evaluation	GROUNE 859.6 ft			VATION AND DATUM:
BORING LOCATION	Mill City, OR	TOTAL D			DATE STARTED : 8/29/2023
DRILLING CONTRACTOR	Holt	LOGGED M.Harri		Cain	DATE FINISHED: 8/29/2023
SAMPLING METHOD	Continuous Core	DEPTH T WATER	0	FIRS 32.	ST: COMPLETED:
DRILLING METHOD	Sonic				
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION
0 1 2 3 4 4 5 6 7 6 7 8 9 9 10 11 11	0.0 - 6.5 ft: Soft, brown, dry, SILT (ML), few rootlets [FILL] - Coarse gravel/cobbles (<4 inches) at 6.5 ft 6.5 - 12.5 ft: Loose, gray to brown, dry, well graded GRAVE (GW), sand is fine to coarse, subangular, gravel is fine to coarse, subrounded to subanglar [QUATERNARY MIDDLE TERRACE DEPOSITS]	84	0	100	Locking Well Cap Monument Sand Fill 8" Steel Well Monument Cement Surface Seal 6-inch Borehole Bentonite/Cement Slurry 2-inch Nominal Diameter Schedule 80 PVC Casing
	-		1	lo. 464.0	020.001 Page 1 of 4

PROJECT: Santiam Canyon Infiltration Evaluation		LOG ID: GM1-MW3							
PROJEC	Santiam Canyon Infiltration Evaluation	GROUND 859.6 ft			VATION AND DATUM:				
BORING LOCATION	I: Mill City, OR	TOTAL D 50	EPTH (f	ft):	DATE STARTED : 8/29/2023				
DRILLING CONTRACTOR	: Holt	LOGGED M.Harris		Cain	DATE FINISHED : 8/29/2023				
SAMPLING METHO	Continuous Core	DEPTH T WATER (0	FIRS 32.7	ST: COMPLETED:				
DRILLING METHO	: Sonic								
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION				
12 13 14 14 15 16 17 18 19 20 21 20 21 20 3 6 W 23 24 25 26 27	12.5 - 15.0 ft: Loose, gray to brown, dry, well graded GRAVEL with sand (GW), sand is medium, gravel is fine to coarse, subangular, some cobbles (<4 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS]	81	28	<5	- Sodium Bentonite				
GSI Water Solutions, I	nc. Portland, OR 503.239.8799	Pro	i Dject N	lo. 464.0	020.001 Page 2 of 4				

FROJECT	r Solutions, Inc.	LOC	G ID:	: GM	1-MW3	
PROJECT	Santiam Canyon Infiltration Evaluation	GROUND SURFACE ELEVATION AND DATUM: 859.6 ft NAVD88				
BORING LOCATION	Mill City, OR	TOTAL D			DATE STARTED: 8/29/2023	
DRILLING CONTRACTOR	Holt	LOGGED M.Harris		Cain	DATE FINISHED: 8/29/2023	
SAMPLING METHOD	Continuous Core	DEPTH T WATER (0	FIRS 32.	ST: COMPLETED:	
DRILLING METHOD	Sonic					
CEPT (feel)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% GRAVEL	% SAND	% FINES	AS-BUILT WELL CONSTRUCTION	
28 29 30 31 32 33 34 35 GW 36 37 38 39 40 41 42 GW 43	40.0 - 45.0 ft: Loose, gray, wet, well graded GRAVEL with sand (GW), sand is medium, gravel is fine to coarse, subrounded, some cobbles (<4 inches) [QUATERNARY MIDDLE TERRACE DEPOSITS] Increase in sand at 35.0 ft		25	<5	Bentonite Chips	
				lo. 464.		

	GSI Water	Solutions, Inc. Santiam Canyon Infiltration Evaluation	LC)(5 ID:	GM	1-MW	/3
	PROJECT:	Santiam Canyon Infiltration Evaluation	GROL 859.6		ND DATUM:			
В	ORING LOCATION:	Mill City, OR	тота 50	LD	EPTH (f	t):		DATE STARTED : 8/29/2023
DRILLI	NG CONTRACTOR:	Holt	LOGO M.Ha		BY: son, J.	Cain		DATE FINISHED: 8/29/2023
SA	AMPLING METHOD:	Continuous Core	DEPT WATE	ΉТ	0	FIRS 32.		COMPLETED: 23.17
D	ORILLING METHOD:	Sonic						
DEPTH (feet)		SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations	% CDAVEL	% טאאעבע	% SAND	% FINES	WELL	AS-BUILT CONSTRUCTION
44					_			
46 47 48 48 49	SW-SM	45.0 - 50.0 ft: loose to medium dense, gray to brown, wet, well graded SAND with silt and gravel (SW-SM), sand is fine to medium, gravel is fine to coarse, subrounded [QUATERNARY MIDDLE TERRACE DEPOSITS]	2	9	61	10		
50		Total Depth = 50.0 ft			L		[<u>*</u> •E	⊐⊷ —TD = 50.0-feet
51								
52								
53								
54								
55								
56								
57								
58 59								
- GSI Wa	ater Solutions, Inc	. Portland, OR 503.239.8799		Pro	oject N	o. 464.	020.001	Page 4 of 4

	GSI Water	Solutions, Inc.	LC	DG ID: GM1-TB1					
	PROJECT:	Santiam Canyon Infiltration Evaluation	тот/ 20	AL DEPTH (ft):	DATE STA 8/21/202	TE STARTED : 21/2023			
вс	ORING LOCATION:	Mill City, OR			DATE FINI 8/21/202	TE FINISHED:			
DRILLIN	IG CONTRACTOR:	Holt	DEP	TH TO FIRST:		MPLETED:			
SA	MPLING METHOD:	Continuous Core	1						
DF									
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations								
0									
3 4 5 6 7	GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW-GM GW								
8-	8 ML 7.5 - 8.5 ft: Soft, dark brown, dry to moist, SILT (ML) [QUATERNARY MIDDLE TERRACE DEPOSITS]								
9- 10-	GW-GM	8.5 - 10.0 ft: Loose, gray, dry, well graded GRAVEL with silt a gravel is fine to coarse, subangular, some cobbles (<4 inches DEPOSITS]	nd sar) [QUA	nd (GM), sand is fine to medium, ATERNARY MIDDLE TERRACE	70	15	15 		
11_									
GSI Wat	ter Solutions, Inc	. Portland, OR 503.239.8799		Project No. 464.020.001	Page	e 1 of 2			

	GSI Water	Solutions, Inc.	LOG ID: GM1-TB	1		
	PROJECT:		TOTAL DEPTH (ft): 20	DATE ST 8/21/20	ATE STARTED:	
E	BORING LOCATION:	Mill City, OR	LOGGED BY: M. Harrison, C. Kambur	DATE FIN 8/21/20	IISHED:	
DRILL	DEPTH TO FIRST: COM			COMPLE N/A		
S	AMPLING METHOD:	Continuous Core				
Γ	DRILLING METHOD:	Sonic				1
DEPTH (feet)		SAMPLE DESCRIPTIO Flow, color, weathering, grain size, primary and secondary minerals, a	vesicles	% GRAVEL	% SAND	% FINES
12	CW	10.0 - 20.0 ft: Loose, gray, dry, well graded GRAVEL wi is fine to medium, subrounded [QUATERNARY MIDDL	th sand (GM), sand is fine to medium, grave E TERRACE DEPOSITS]	9 73	22	<5
21—		Total Depth = 20.0 ft				
 22—	-					
23-						
24						
25						
26						
27-	- - -					
GSI Wa	ater Solutions, Inc	. Portland, OR 503.239.8799	Project No. 464.020.001	Pa	ge 2 of 2	2

GS	Water	Solutions, Inc.	LC	OG ID: GM1-TB2					
Р	ROJECT:	Santiam Canyon Infiltration Evaluation	тот 90	L DEPTH (ft):	DATE STARTED : 8/21/2023				
BORING LOCATION: Mill City, OR		Mill City, OR		GED BY: larrison, C. Kambur	DATE FINISHED: 8/22/2023				
DRILLING CONTR	RACTOR:	Holt	DEPT	TH TO FIRST:		OMPLETED:			
SAMPLING N	SAMPLING METHOD: Continuous Core								
	DRILLING METHOD: Sonic								
Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations					% GRAVEL	% SAND	% FINES		
0 1 1 2 3 4 5 6 7 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7		0.0 - 5.0 ft: Loose, gray to brown, silty GRAVEL with sand (GM subangular, cobbles are subangular, topsoil contains rootlets [DEPOSITS] 5.0 - 10.0 ft: Loose, light gray, dry, silty GRAVEL with sand (G subrounded, cobbles are fist-shaped [QUATERNARY MIDDLE] 5.0 - 10.0 ft: Loose, light gray, dry, silty GRAVEL with sand (G subrounded, cobbles are fist-shaped [QUATERNARY MIDDLE] 5.0 - 10.0 ft: Loose, light gray, dry, silty GRAVEL with sand (G subrounded, cobbles are fist-shaped [QUATERNARY MIDDLE] 5.0 - 10.0 ft: Loose, light gray, dry, silty GRAVEL with sand (G subrounded, cobbles are fist-shaped [QUATERNARY MIDDLE]	iM), sar E TERF	ERNARY MIDDLE TERRACE	65 70 Page	20 15	15		

	r Solutions, Inc.	LOG	ID: GM1-TB	2			
PROJECT	Santiam Canyon Infiltration Evaluation	tion TOTAL DEPTH (ft): DATE STARTED: 8/21/2023			:		
BORING LOCATION	Mill City, OR	LOGGED	BY: son, C. Kambur	DATE F	ATE FINISHED: 3/22/2023		
DRILLING CONTRACTOR	DEPTH TO FIRST: CO			COMPL N/A			
SAMPLING METHOD	Continuous Core			N/A			
DRILLING METHOD	Sonic						
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, v primary and secondary minerals, alt	esicles		% GRAVEL	% SAND	% FINES	
GM 13- 14-	10.0 - 15.0 ft: Loose, gray to brown, wet, silty GRAVEL w is subangular, cobbles are subrounded [QUATERNARY —Sands appear to fine downwards from 10.0 - 15.0 ft	ith sand (GM), sa MIDDLE TERRA	and is fine to medium, gra CE DEPOSITS]			10	
15 16 17 17 18 19 20	15.0 - 20.0 ft: Loose, gray to brown, wet, silty GRAVEL w is subangular, cobbles are subrounded [QUATERNARY			ivel 80	10	10	
21- 22- 3- 23- 24- 25-	-Sands appear to slightly fine downwards from 20.0 - 25.0 20.0 - 25.0 ft: Loose, gray to dark gray, wet, poorly grade medium to fine, gravel is fine to coarse, gravel is subang [QUATERNARY MIDDLE TERRACE DEPOSITS]	d GRAVEL with s	silt (GP-GM), sand is ed, cobbles are subrounde	ed 88	<5	10	
26 27 28 GP-GM 28 GSI Water Solutions, In	25.0 - 30.0 ft: Loose, gray to dark gray, wet, poorly grade medium to fine, gravel is fine to coarse, gravel is subang [QUATERNARY MIDDLE TERRACE DEPOSITS] c. Portland, OR 503.239.8799	ular to subrounde	silt (GP-GM), sand is ed, cobbles are subrounde ect No. 464.020.001		10 ge 2 of	12	

	r Solutions, Inc.	LOG ID: GM1-TB2	2		
PROJECT:	Santiam Canyon Infiltration Evaluation	TOTAL DEPTH (ft): 90	DATE STA 8/21/202	ATE STARTED:	
BORING LOCATION:	Mill City, OR	LOGGED BY: M. Harrison, C. Kambur	DATE FIN 8/22/202	SHED:	
DRILLING CONTRACTOR: Holt DEPTH TO FIRST: WATER (ft bgs) 20		DEPTH TO FIRST:	COMPLET N/A		
SAMPLING METHOD:	Continuous Core				
DRILLING METHOD:	Sonic				
(feet) (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, ve primary and secondary minerals, alte	sicles	% GRAVEL	% SAND	% FINES
29- 30-	— Matrix fines downwards from 25.0 - 30.0 ft				
31- 32- 33- 33- 34- 35-	30.0 - 35.0 ft: Loose, gray to dark gray, wet, poorly graded medium to fine, gravel is fine to coarse, gravel is subangu [QUATERNARY MIDDLE TERRACE DEPOSITS] — Sand content increases downwards from 30.0 - 35.0 ft		d 85	8	7
36- 37- 38- 39- 40	35.0 - 40.0 ft: Loose, gray to dark gray, wet, poorly graded gravel is fine to coarse, gravel is fine to coarse, subround than 30-35 ft sample [QUATERNARY MIDDLE TERRACE	ed, cobbles are subangular, less cohesive	90	5	5
40 41- 42- GP-GM 43- 44-	40.0 - 45.0 ft: Loose, gray to dark gray, wet, poorly graded medium, gravel is fine to coarse, subrounded, cobbles are fines downward [QUATERNARY MIDDLE TERRACE DEf	e subrounded, sandy matrix, silty matrix	5 63	12	25
GSI Water Solutions, Inc	c. Portland, OR 503.239.8799	Project No. 464.020.001	Page	e 3 of 6	

BORING LOCATION:	Mill City, OR Holt Continuous Core	TOTAL DEPTH (ft):90LOGGED BY:M. Harrison, C. KamburDEPTH TOFIRST:WATER (ft bgs)20	DATE STA 8/21/202 DATE FINI 8/22/202	3	
DRILLING CONTRACTOR:	Holt Continuous Core	M. Harrison, C. Kambur DEPTH TO FIRST:	DATE FINI		
	Continuous Core	DEPTH TO FIRST:			
SAMPLING METHOD:			COMPLET N/A		
DRILLING METHOD:	Sonic				
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicle primary and secondary minerals, alteration	es ins	% GRAVEL	% SAND	% FINES
45 46 47 48 49 50	45.0 - 50.0 ft: Medium hard to hard, gray-olive, moist, gravelly cobbles, subangular, some clay [QUATERNARY MIDDLE TE	/ SILT (ML), gravel is subrounded, few RRACE DEPOSITS]	35	10	55
51 52 53 54 54 55 55 ML 56 57 58 58 59 60	55.0 - 60.0 ft: Medium hard to hard, light gray to gray-olive, m subrounded, cobbles are subangular, more clay than 45.0 - 5 TERRACE DEPOSITS] - Matrix coarsens downwards from 55.0 - 60.0 ft - Gravel is more abundant from 55.0 - 60.0 ft	oist, gravelly SILT (ML), gravel is 0.0 ft [QUATERNARY MIDDLE	50	10	40
GSI Water Solutions, Inc.	Portland, OR 503.239.8799	Project No. 464.020.001	Page	4 of 6	

GSI Wate	er Solutions, Inc.	LOG ID: GM1-TB	2		
PROJEC	: Santiam Canyon Infiltration Evaluation	TOTAL DEPTH (ft): 90	DATE STA 8/21/202	ATE STARTED: 21/2023	
BORING LOCATION	: Mill City, OR	LOGGED BY: M. Harrison, C. Kambur	DATE FINI 8/22/202	SHED:	
DRILLING CONTRACTOR	: Holt	DEPTH TOFIRST:WATER (ft bgs)20	COMPLET N/A	ED:	
SAMPLING METHOD	: Continuous Core				
DRILLING METHOD	: Sonic				
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesic primary and secondary minerals, alterat	cles tions	% GRAVEL	% SAND	% FINES
61 62 63 63 64	60.0 - 65.0 ft: Medium hard, olive-gray, moist, silty GRAVEL gravel is fine to medium, subrounded [QUATERNARY MIDE	with sand (GM), sand is fine to medium DLE TERRACE DEPOSITS]		15	20
65	-3.0 - 4.0 in clasts and weathered mafic material at 65.0 ft				
66 67 68 69 70 71 72 73 74 75 ML 76	65.0 - 85.0 ft: hard, brown, moist, SILT (ML) [QUATERNAR)	Y MIDDLE TERRACE DEPOSITS]	<5	<5	100
GSI Water Solutions, In	nc. Portland, OR 503.239.8799	Project No. 464.020.001	Page	e 5 of 6	;

PROJECT: Santiam Canyon Infiltration Evaluation		LOG ID: GM1-TB2				
	PROJECT:	Santiam Canyon Infiltration Evaluation	90	DATE STARTED: 8/21/2023		
BORING	LOCATION:	Mill City, OR	LOGGED BY:DATE FINISHED:M. Harrison, C. Kambur8/22/2023			
DRILLING COI	NTRACTOR:	Holt		COMPLET N/A	ED:	
SAMPLIN	SAMPLING METHOD: Continuous Core					
DRILLIN	G METHOD:	Sonic				
DEPTH (feet)	SAMPLE DESCRIPTION Flow, color, weathering, grain size, vesicles primary and secondary minerals, alterations			% GRAVEL	% SAND	% FINES
78- 79- 80- 81- 82- 83- 83- 84- 85-						
86- 87- 88- 89-	GM	 Coarsens downward from 85.0 - 90.0 ft 85.0 - 90.0 ft: Loose to medium dense, dark brown to gray-oliv with sand (GM), gravel is subangular, cobbles are subangular DEPOSITS] Cobbles present at 90.0 ft 	e, slightly moist to moist, silty GRAVEL [QUATERNARY MIDDLE TERRACE	51	15	34
90 91 92 93		Total Depth = 90.0 ft				
_ GSI Water So						

-ATTACHMENT B----

Slug Testing Memo

TECHNICAL MEMORANDUM

Aquifer Permeability Estimates in Study Area GM1, Gates/Mill City Sewer Basin, Linn County, Oregon

То:	File
From:	Matthew Kohlbecker, RG / GSI Water Solutions, Inc.
Date:	September 20, 2023

1. Introduction

GSI Water Solutions, Inc., (GSI) conducted slug testing at three monitoring wells in Study Area GM1, which is a candidate for infiltration of treated wastewater in Mill City, Oregon. The purpose of the slug testing was to estimate the hydraulic conductivity of saturated soils in the study area. Hydraulic conductivity is a property of soils that describes the ease at which a fluid moves through the pore space. The estimates of hydraulic conductivity will be used to: (1) predict the groundwater mounding that occurs during the infiltration of treated wastewater at proposed Rapid Infiltration Basins (RIBs) using an analytical model, and (2) run contaminant fate and transport models to evaluate the fate and transport of residual constituents in the treated wastewater.

The monitoring wells were installed in Study Area GM1 as part of a subsurface characterization in August 2023. The monitoring wells are completed in a shallow, unconfined aquifer. In addition, the monitoring well screens remained saturated for the duration of the slug tests. Boring logs and well construction diagrams for the monitoring wells are provided in the main text of this report.

This technical memorandum provides methods and results of slug testing conducted at monitoring wells GM1-MW1, GM1-MW2, and GM1-MW3 in Study Area GM1. Note that slug tests at monitoring well GM1-MW1 were previously analyzed in GSI (2023). This technical memorandum presents a re-analysis of the slug tests at GM1-MW1 based on a clearer understanding of aquifer response to slug testing gained from the GM1-MW2 and GM1-MW3 slug tests.

2. Methods

A slug test involves: (1) introducing or removing a solid cylinder into a monitoring well to instantaneously raise or lower the water level in the monitoring well, and (2) monitoring the recovery of the water level to the static (pre-test) condition. Slug tests were conducted in general accordance with the Santiam Canyon Treated Wastewater Disposal – Subsurface Characterization Work Plan, dated March 3, 2023, and the Santiam Canyon Treated wastewater Disposal – Subsurface Characterization Work Plan Addendum No. 1 (Phase III), dated August 18, 2023.

For each slug test, water level recovery was recorded every 0.5 seconds with a non-vented Solinst pressure transducer and datalogger. Although non-vented transducers record both water pressure and barometric pressure, it was not necessary to subtract out barometric pressure effects due to the rapid recovery of water levels to the static level.

Each slug test consisted of monitoring water level response due to raising the water level ("Slug-In Test") and lowering the water level ("Slug-Out Test"). Three tests were conducted at each well. Water level responses exhibiting an underdamped (i.e., oscillatory) response were analyzed with the Springer-Gelhar (1991) solution for a slug test in an unconfined aquifer. Water level responses exhibiting an overdamped (i.e., straight-line) response were analyzed by the Hvorslev (1951) solution for a slug test in an unconfined aquifer.

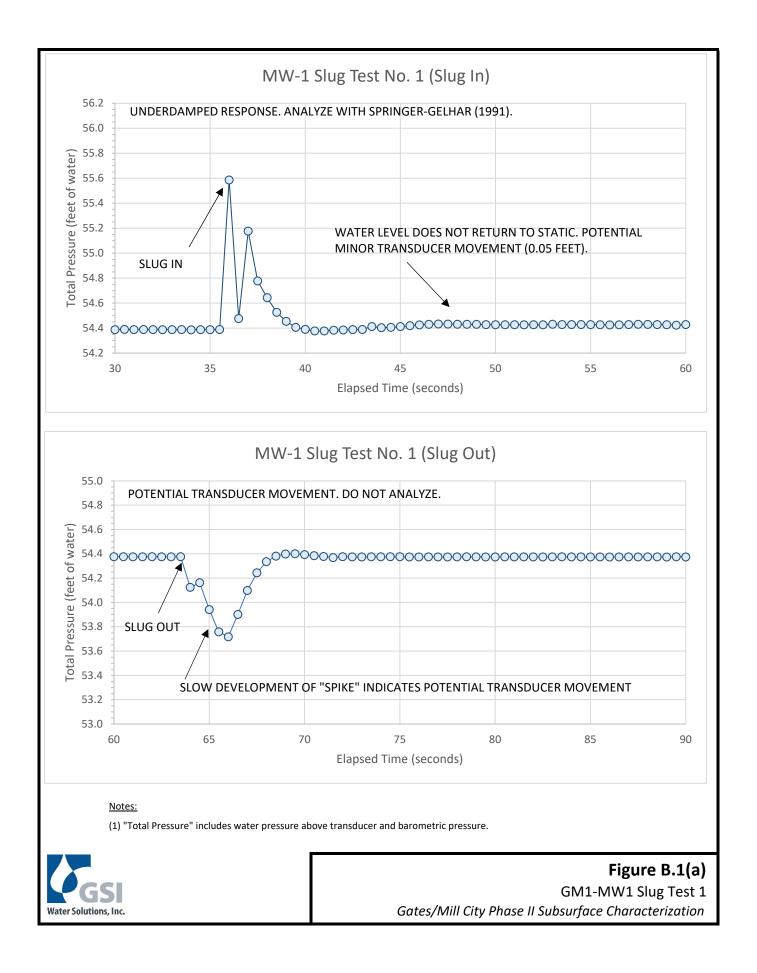
3. Results

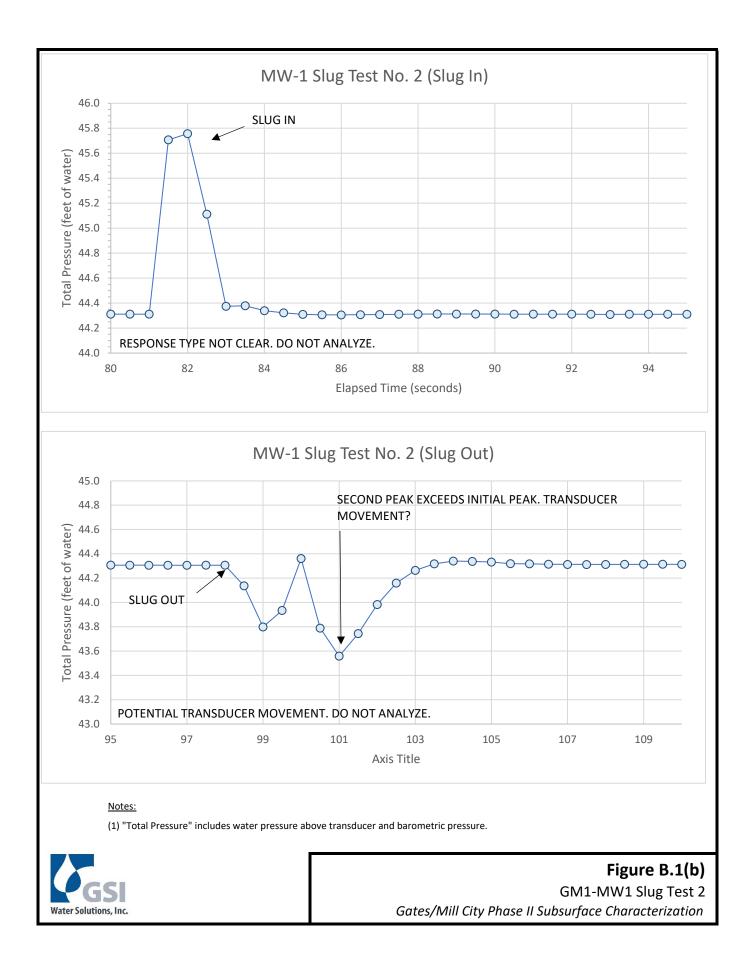
Plots of water level versus time during the slug tests are provided in Figures B.1(a) and B.1(b) for GM1-MW1, Figures B.2(a) through B.2(c) for GM1-MW2, and Figures B.3(a) through B.3(c) for GM1-MW3. Water level recovery was generally rapid, ranging from less than 30 seconds in monitoring wells GM1-MW1 and GM1-MW2, to about 200 seconds at GM1-MW3. The relatively rapid response indicates that soils at Study Area GM-1 are characterized by a high hydraulic conductivity. Note on the plots that several tests were not analyzed due to the transducer moving during the test.

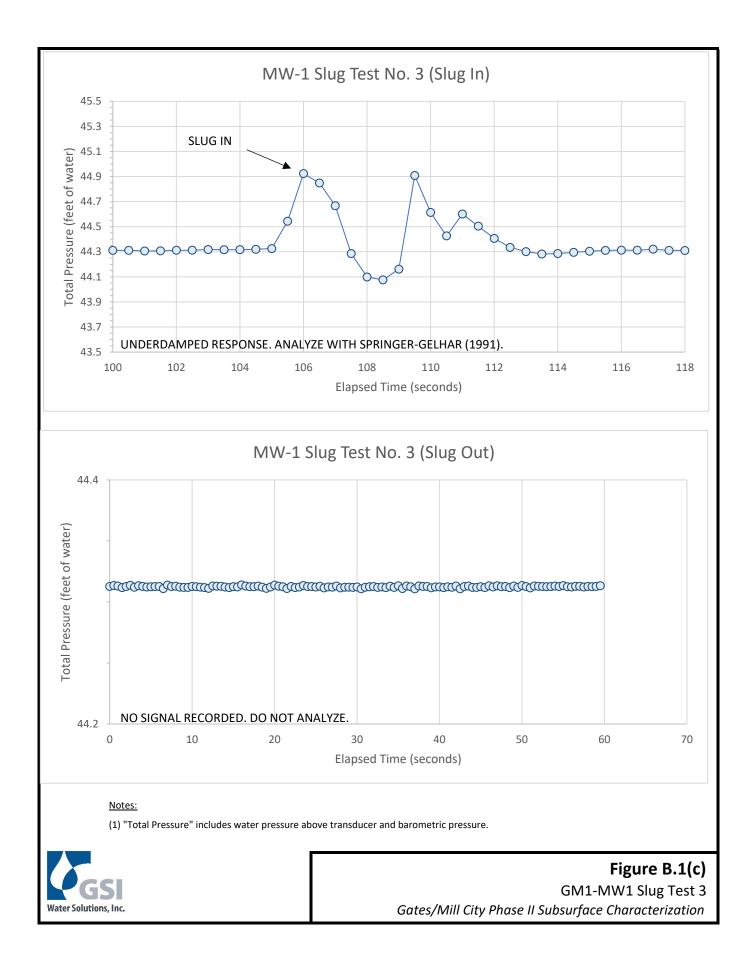
Water level response at monitoring wells GM1-MW1 and GM1-MW2 exhibited an underdamped (i.e., oscillatory) response and were analyzed using the Springer-Gelhar (1991) solution for a slug test in an unconfined aquifer. Water level response at monitoring well GM1-MW3 exhibited an overdamped (i.e., straight-line) response and was analyzed by the Hvorslev (1951) solution for a slug test in an unconfined aquifer. Hydraulic conductivity estimates from the slug tests are summarized in Table 1.

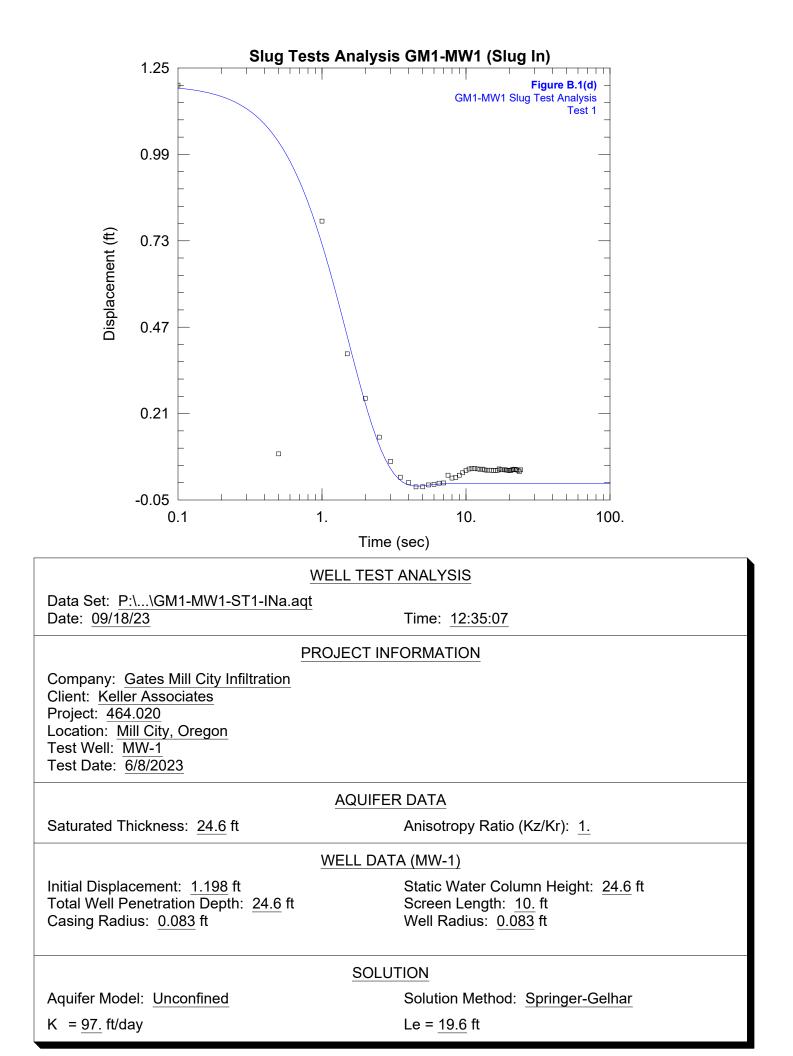
Well ID	Analysis Method	Result	Figure Reference	Geometric Mean Horizontal K (feet/day)
GM1- MW1	Springer-Gelhar (1991) Springer-Gelhar (1991)	Test 1 (in): 97 feet/day Test 3 (in): 275 feet/day	Figure B.1(d) Figure B.1(e)	163.3
GM1- MW2	Springer-Gelhar (1991) Springer-Gelhar (1991) Springer-Gelhar (1991)	Test 1 (in): 111 feet/day Test 2 (in): 110 feet/day Test 3 (in): 120 feet/day	Figure B.2(d) Figure B.2(e) Figure B.2(f)	113.6
GM1- MW3	Hvorslev (1951) Hvorslev (1951) Hvorslev (1951)	Test 1 (in): 33.8 feet/day Test 2 (in): 57.5 feet/day Test 3 (in): 26.1 feet/day	Figure B.3(d) Figure B.3(d) Figure B.3(d)	37.0
		Ove	rall Geometric Mean	88.2

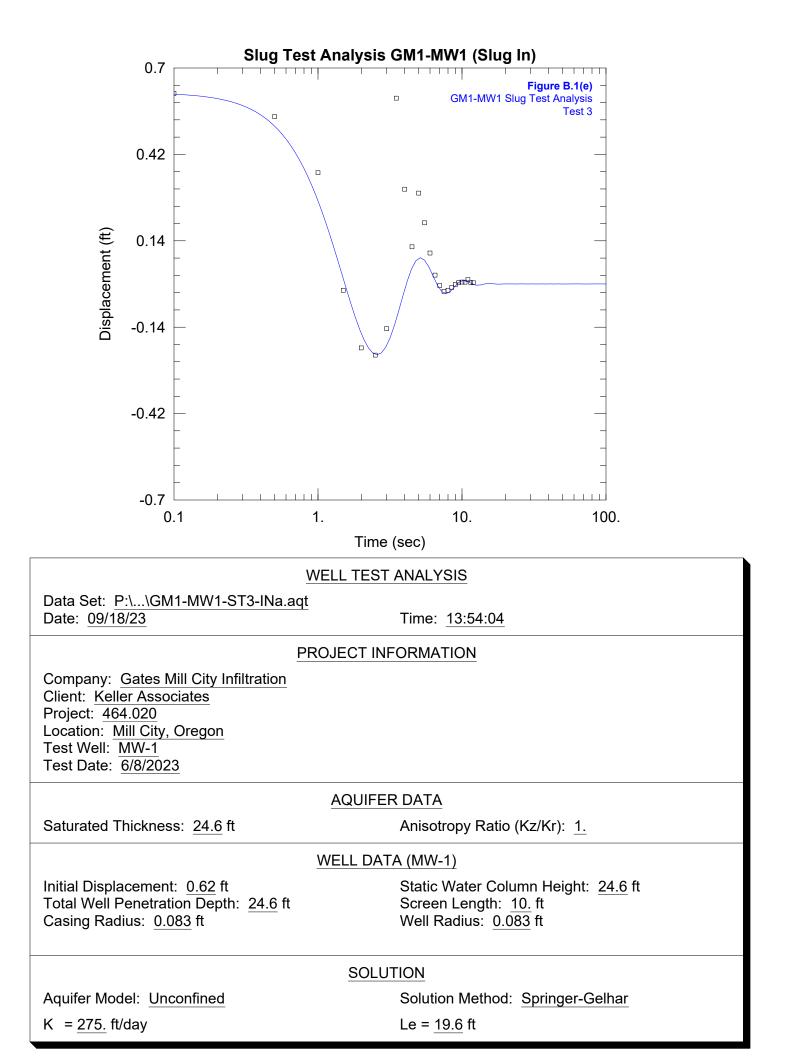
Table 1. Slug Test Results.

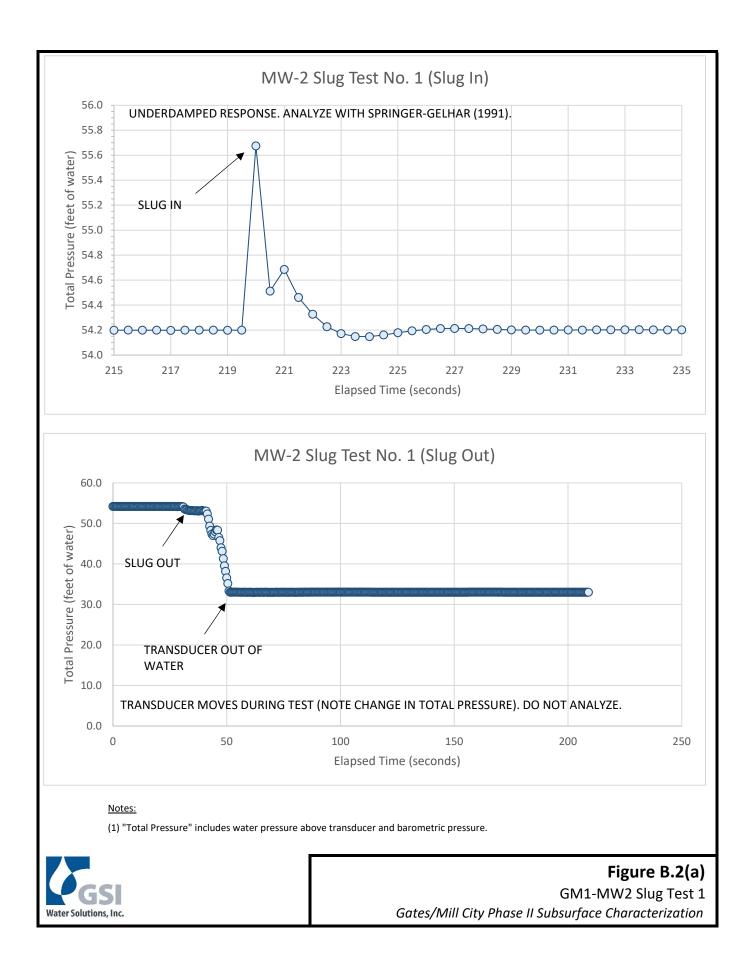

The hydraulic conductivity of the aquifer at Study Area GM1 ranges from 37 feet per day to 163 feet per day, with a geometric mean of 88.2 feet per day. Note that hydraulic conductivity in the area where treated wastewater is to be infiltrated (i.e., in the lower-elevation area around GM1-MW1 and GM1-MW2) is higher, ranging from about 114 feet per day to 163 feet per day. This trend in hydraulic conductivity is consistent with coarser, higher conductivity sediments being deposited close to a river.

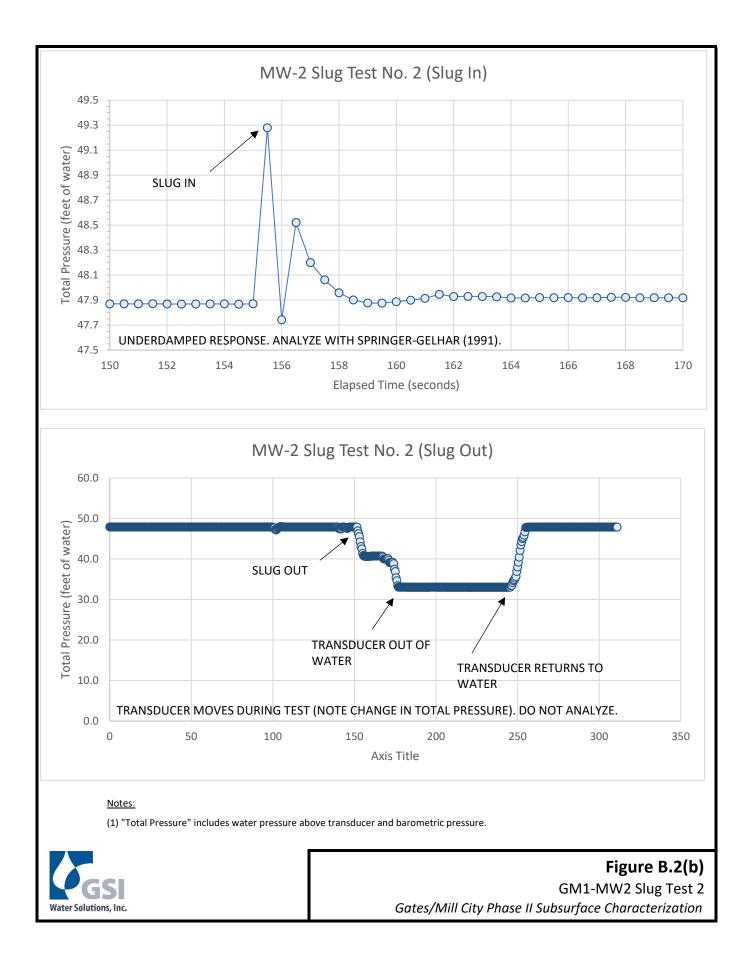

4. References

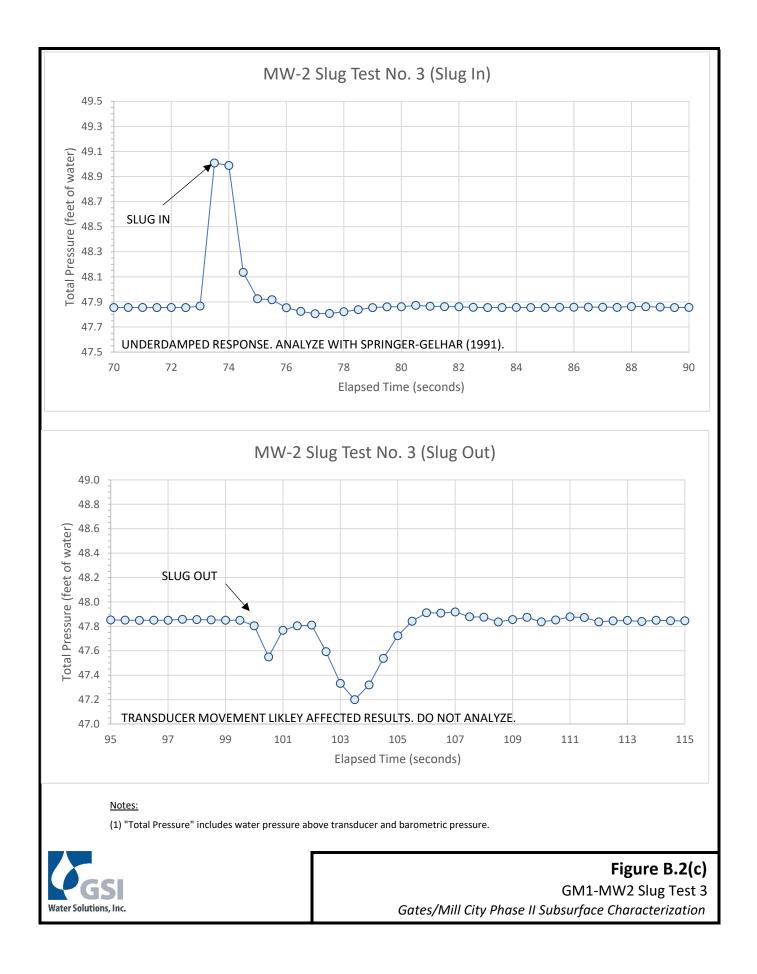

GSI. 2023. Phase II Subsurface Characterization to Support an Evaluation of Treated Wastewater Infiltration in Gates and Mill City, Marion and Linn Counties, Oregon.

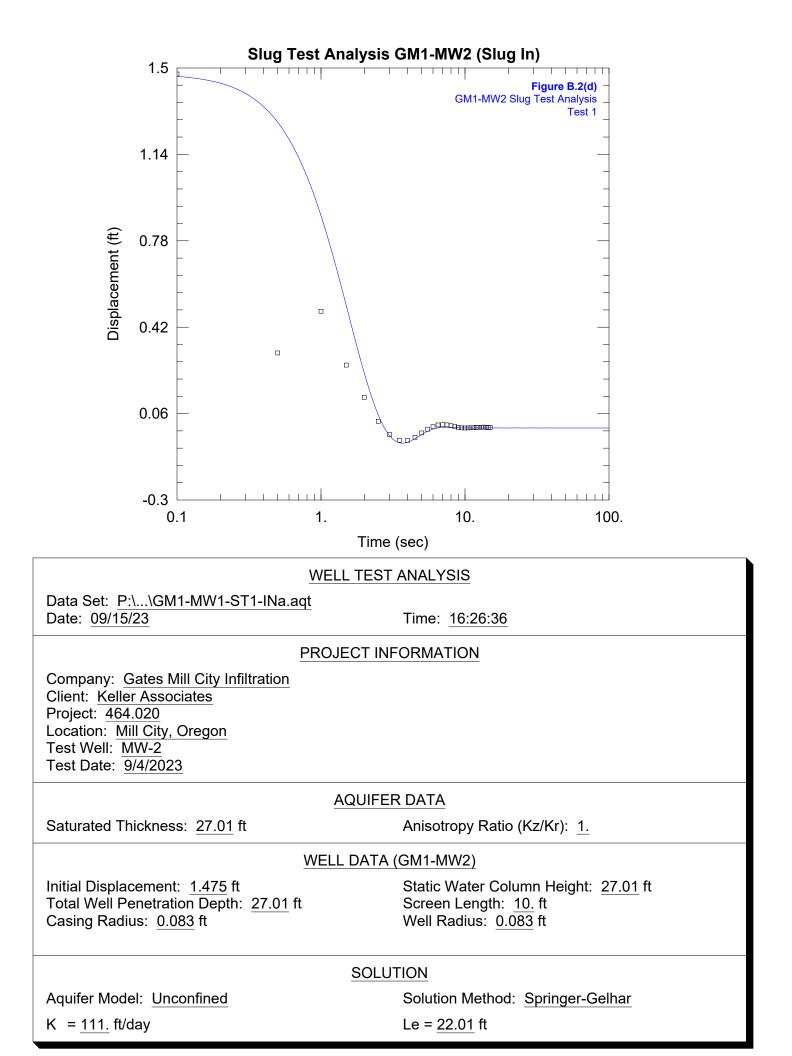

Hvorslev, M. J. 1951. Time lag and soil permeability in ground-water observations. Bulletin No. 36, Waterways Exper. Sta. Corps of Engineers, U.S. Army, Vicksburg, Mississippi, pp. 1-50.

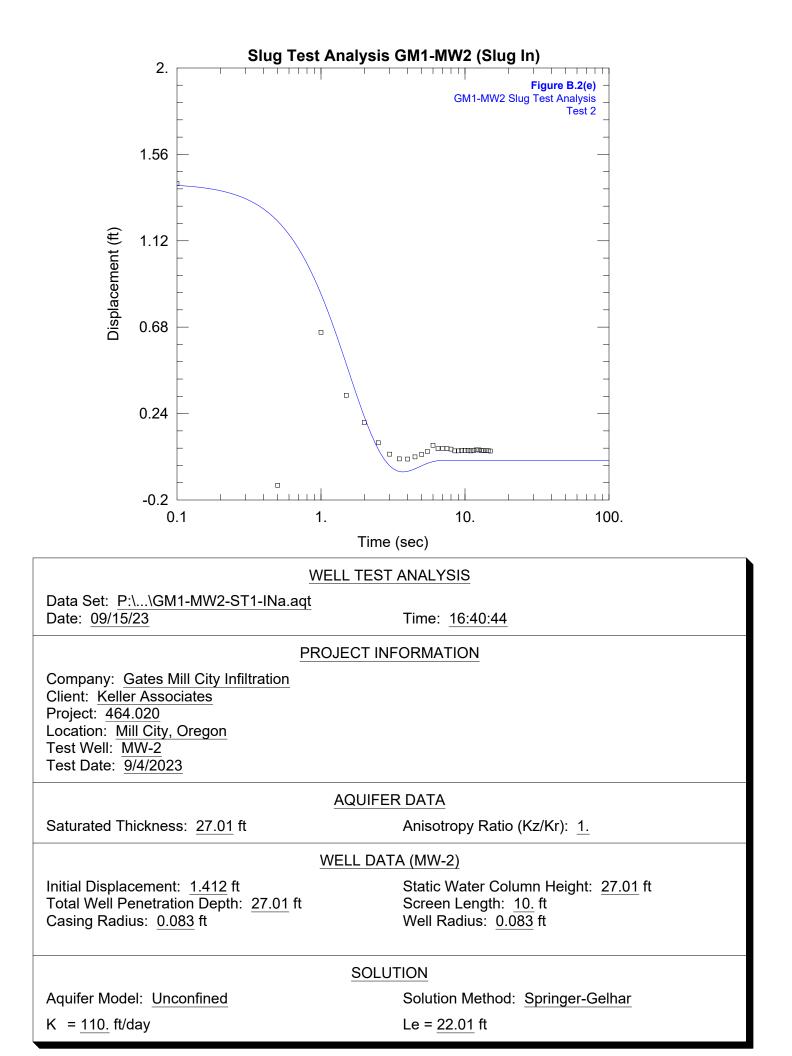

Springer, R. K. and L. W. Gehlar. 1991. Characterization of large-scale aquifer heterogeneity in glacial outwash by analysis of slug tests with oscillatory response, Cape Cod, Massachusetts. U.S. Geological Survey Water Resources Investigations 91-4034, pp. 36-40.

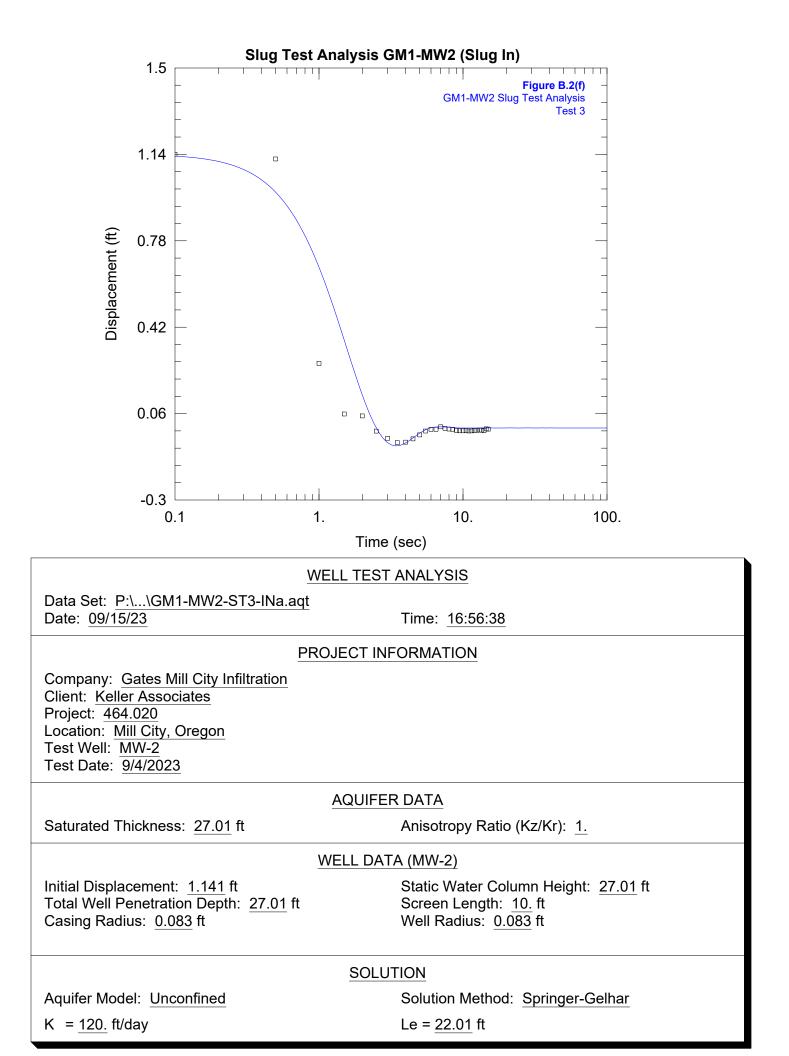


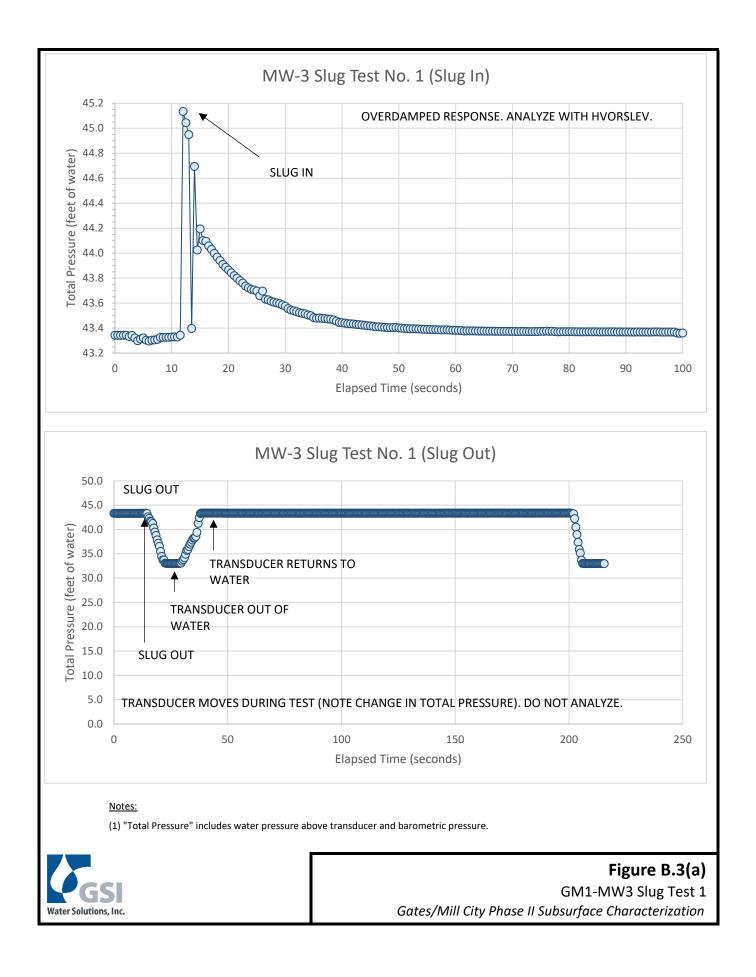


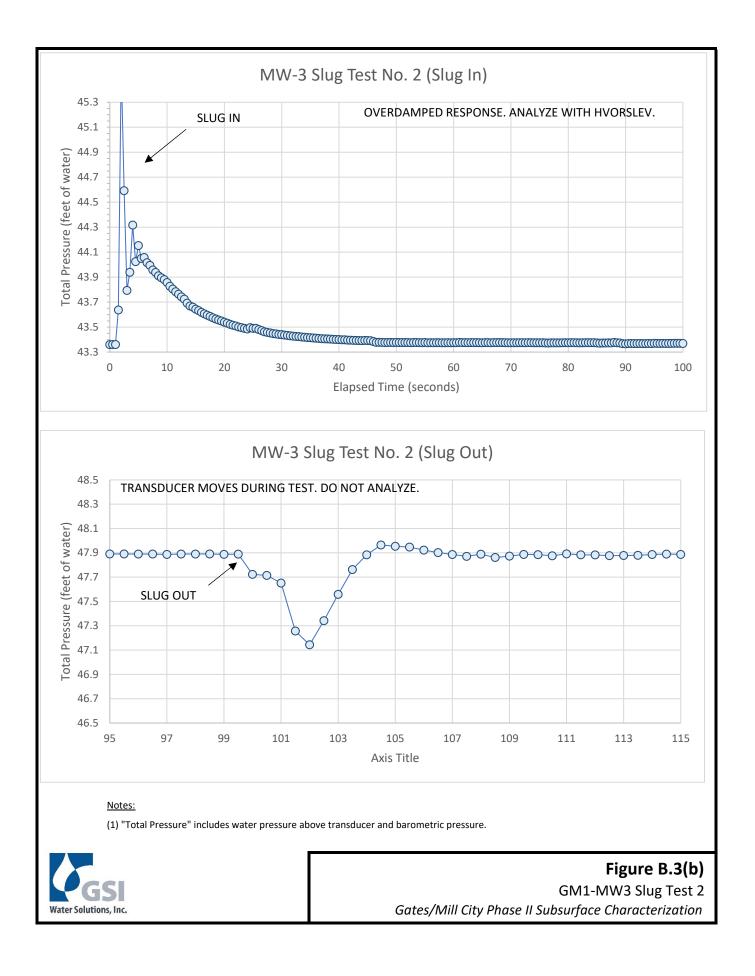


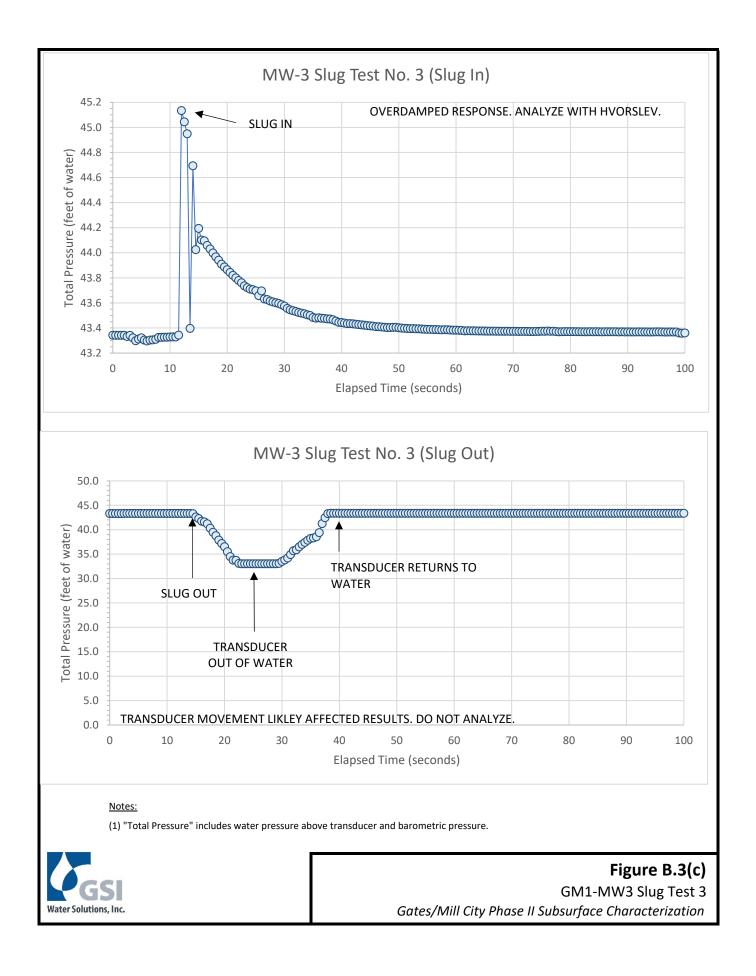


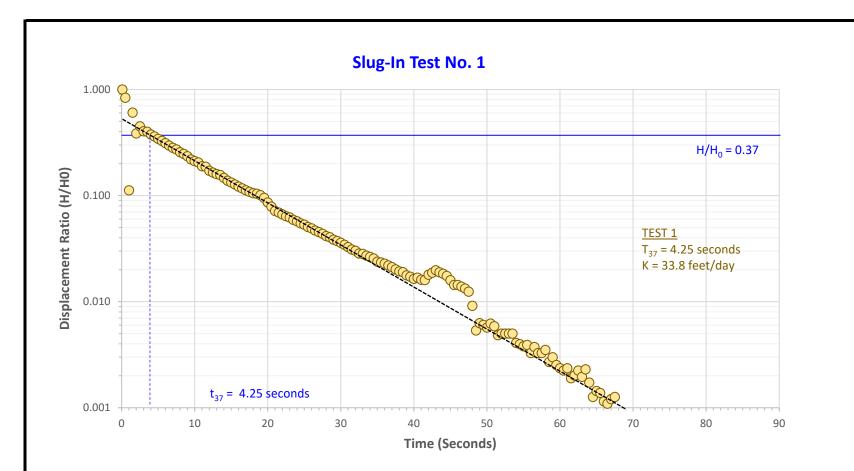


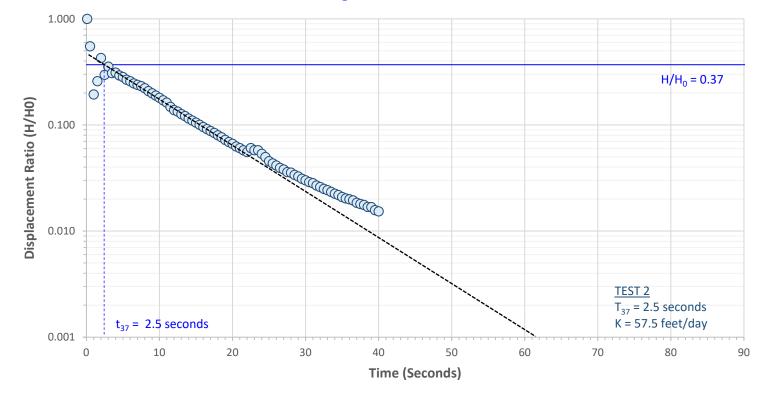


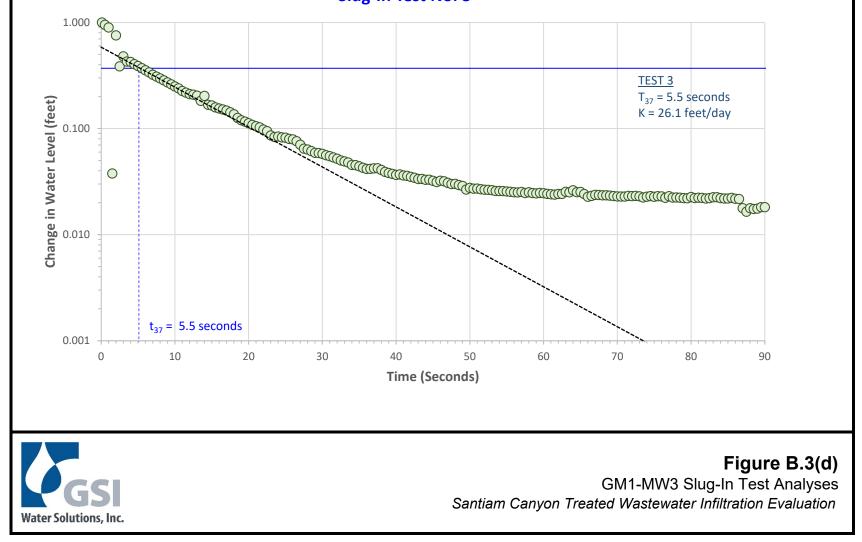












Slug-In Test No. 2

Slug-In Test No. 3

-ATTACHMENT C-

Groundwater Mounding Analysis

MEMORANDUM

November 3, 2023

TO: Matt Kohlbecker, GSI Water Solutions, Inc.

FROM: Jason Keller, GeoSystems Analysis, Inc.

CC: Scott Waibel, GeoSystems Analysis, Inc.

RE: Gates – Mill City Site GM1 Groundwater Mounding Analysis

INTRODUCTION

Geosystems Analysis, Inc. (GSA) conducted a groundwater mounding analysis for the alluvial aquifer beneath Gates and Mill City, Oregon in support of the treated wastewater infiltration feasibility assessment being completed by GSI Water Solutions and Keller and Associates. Groundwater mounding beneath a potential infiltration basin location at site GM1 (Figure 1) was simulated for three measured horizontal saturated hydraulic conductivity (K_{sat-h}) scenarios.

A subsurface characterization program was completed by GSI and GSA, consisting of shallow (i.e., test pit) and deep (i.e., borehole) soil texture characterization, depth to groundwater measurements, soil saturated hydraulic conductivity (K_{sat}) measurements, and aquifer horizontal saturated hydraulic conductivity (K_{sat}) measurements (GSI/GSA, 2023; GSI, 2023). Information collected from the subsurface characterization program was applied in the groundwater mounding analysis presented herein.

2

Figure 1. Potential infiltration basin location at GM-1

GeoSystems Analysis, Inc.

3

METHODS

The Zlotnik (2017) analytical solution for groundwater mounding as applied in MOUNDSOLV (Hydrosolve, 2023) was used to estimate the steady-state groundwater mound that may develop beneath the potential infiltration facility at site GM1 in response to recharge of treated wastewater. The Zlotnik analytical solution considers both horizontal and dipping aquifers that are assumed to be of infinite extent, homogenous, and isotropic. Required steady-state model parameters include:

- Recharge rate and duration.
- Recharge basin infiltration area and orientation.
- Aquifer horizontal saturated hydraulic conductivity (K_{sat-h})
- Aquifer initial saturated thickness
- Aquifer gradient (dip and flow direction)

The recharge rate was set equal to the projected year 2045 effluent generation rate of 0.2375 million gallons per day (MGD) (M. Kohlbecker, personal communication, April 12, 2023) and was assumed to be continuous in time. For this initial feasibility assessment, the infiltration facility was assumed to consist of one, square shaped basin with a 2.3-acre infiltration area (K. Stewart, personal communication, October 9, 2023). Preliminary basin designs consist of six independently operated, and adjacent smaller basins with a total infiltration area of 2.3 acres. The basins are proposed to operate on a two-day wastewater application rotation between basins. The proposed short rotation cycle and proximity of the basins to each other is hydraulically similar to infiltrating over one 2.3-acre basin. The 2.3-acre infiltration area is sufficient to infiltrate 0.2375 MGD assuming a long-term infiltration rate equal to 15 percent of the mean measured near surface K_{sat} for the site (GSA, 2023) to account for potential surface clogging.

Aquifer K_{sat-h} values were assigned from aquifer slug test measurements performed by GSI (GSI, 2023). A range of aquifer K_{sat-h} values were simulated to represent measurement uncertainty and spatial heterogeneity in K_{sat-h}. Initial (pre-infiltration) depth to groundwater and aquifer saturated thickness was estimated from observed depth to groundwater measured by GSI on May 29, 2023 and GSI observed depth of a thick, fine textured hydrostratigraphic unit during monitoring well installation that may act as the lower boundary of the alluvial aquifer system. The regional aquifer gradient and direction was calculated by GSI from static groundwater levels measured on August 29 and September 4, 2023 at the three on-site monitoring wells. The depth to groundwater used the earlier May 29th measurement to conservatively assess when groundwater conditions will be shallower, relative to the late summer measurements. Groundwater mounding model parameters

GeoSystems Analysis, Inc.

that are the same for each scenario (static parameters) are summarized in Table 1. The K_{sat-h} value assigned for each scenario is shown in Table 2.

Static Model Parameter	Value
Recharge Volume	0.2375 MGD
Recharge Duration	Continuous
Infiltration Area	2.3 acres
Long Term Infiltration Rate	0.32 ft/day
Depth to Water Table ¹	14.4 ft
Aquifer Initial Saturated Thickness	44.6 ft
Aquifer Gradient	0.01
Aquifer Flow Direction	N 53° W

Table 1. G	roundwater	mounding mo	odel parameter	s applied for a	ll scenarios

¹Measured depth to groundwater was 15.5 ft, assumes constructed basin floor will be 1 foot below original ground surface

1 a 0 0 2.7 M a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Table 2. Aq	uifer horizontal	saturated hydrau	lic conduct	tivity values
---	-------------	------------------	------------------	-------------	---------------

Scenario	Monitoring Well	K _{sat-h} (ft/day)
Low	MW3	37.0
Mid	Geometric Mean MW1, MW2, MW3	88.2
High	MW1	163.3

RESULTS

Site GM1 model predicted steady-state maximum mound height above the pre-infiltration water table and depth to the mound below the assumed 1-foot deep infiltration basin floor are presented in Table 3 for all three K_{sat-h} scenarios. Model predicted steady-state mounding extent for the scenarios is provided in Figure 2 through Figure 4. Using the lowest K_{sat-h} value of 37.0 ft/day (Low Scenario) produced a predicted steady-state maximum mound height of 13.8 ft above the pre-infiltration water table, equivalent to 0.6 ft below the basin floor. A K_{sat-h} value of 88.2 ft/day (Mid Scenario) produced a predicted steady-state maximum mound height of 5.8 ft above the pre-infiltration water table, which is 8.6 ft below the basin floor. A K_{sat-h} value of 163.3 ft/day (High Scenario) produced a predicted steady-state maximum mound height of 3.1 ft, which is 11.3 ft below the basin floor.

Scenario	K _{sat-h} (ft/day)	Maximum Mounding Height (ft above pre-infiltration water table)	Depth to Maximum Groundwater Mound (ft bgs)
Low	37.0	13.8	0.6
Mid	88.2	5.8	8.6
High	163.3	3.1	11.3

Table 3. Site GM1 model predicted steady-state maximum mound height and depth below surface



Figure 2. Predicted steady-state groundwater mounding extent for $K_{sat-h} = 37.0$ ft/day

GeoSystems Analysis, Inc.

2310 –Subsurface Characterization of the Proposed Gates – Mill City Infiltration Site\Reports\MoundingAnalysis\GM1_Update\DRAFT Gates-Mill City_GM1_Groundwater Mounding Analysis

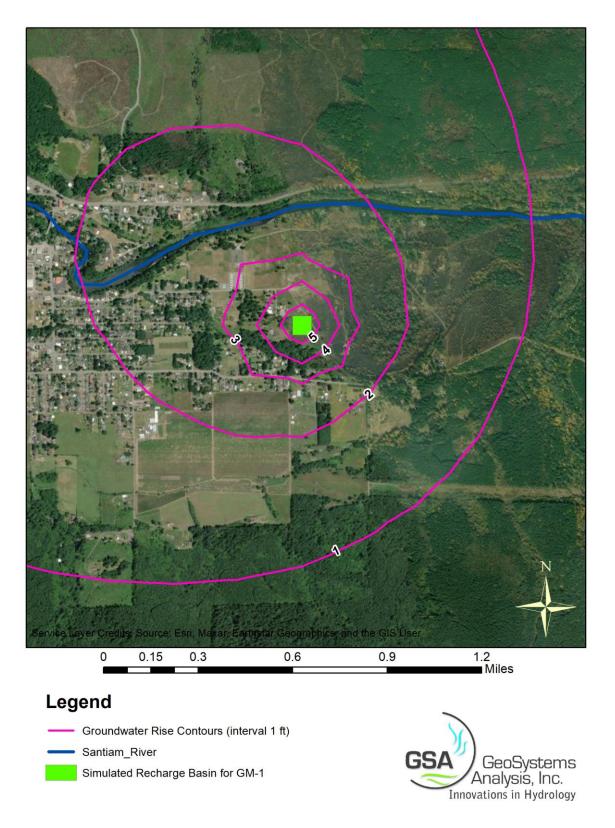


Figure 3. Predicted steady-state groundwater mounding extent for $K_{sat-h} = 88.2$ ft/day

GeoSystems Analysis, Inc.

2310 –Subsurface Characterization of the Proposed Gates – Mill City Infiltration Site\Reports\MoundingAnalysis\GM1_Update\DRAFT Gates-Mill City_GM1_Groundwater Mounding Analysis

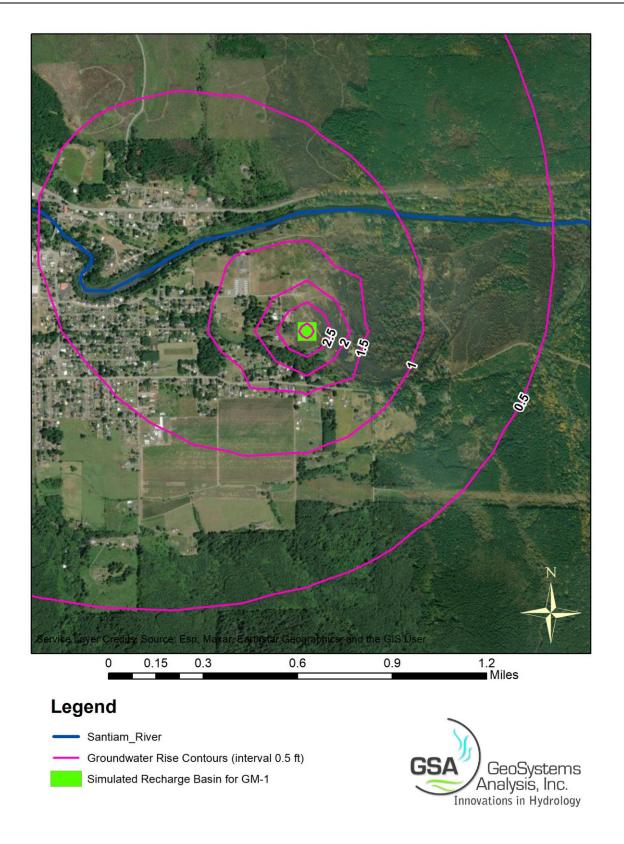


Figure 4. Predicted steady-state groundwater mounding extent for K_{sat-h} = 163.3 ft/day

GeoSystems Analysis, Inc.

2310 –Subsurface Characterization of the Proposed Gates – Mill City Infiltration Site\Reports\MoundingAnalysis\GM1_Update\DRAFT Gates-Mill City_GM1_Groundwater Mounding Analysis

CONCLUSIONS

A steady-state mounding analysis was performed for site GM1 applying low, mid, and high K_{sat-h} values representing the range of measured K_{sat-h}. The mounding analysis assumed a 2.3-acre recharge basin infiltration area and a recharge volume of 0.2375 MGD. Model predicted steady-state groundwater mounding was 3.1 ft to 13.8 ft above the pre-infiltration water table, with mounding height increasing with decreased K_{sat-h}. Assuming a 14.4 ft depth from the basin floor to the pre-infiltration water table, the predicted depth to the groundwater mounding was 11.3 ft to 0.6 ft bgs. Due to the predicted potential for shallow mounding beneath the basin, which may reduce basin infiltration rates, GSA recommends additional aquifer characterization be performed to resolve uncertainty in aquifer Ksat-h or a long-term infiltration pilot test be completed to assess aquifer mounding response.

REFERENCES

- Hydrosolve, Inc, 2023. Moundsolv version 4.0. Available online at the following link: http://www.aqtesolv.com/moundsolv.htm
- GSA, see GeoSystems Analysis, Inc.
- GSI, see GSI Water Solutions, Inc.
- GSI/GSA, see GSI Water Solutions, Inc. and GeoSystems Analysis, Inc.
- GSI Water Solutions, Inc. and GeoSystems Analysis, Inc., 2023. Gates/Mill City Shallow Soil Characterization and Infiltration Testing Results, Marion and Linn Counties, Oregon. Technical Memorandum to Chris Einmo, Marion County, dated June 23, 2023
- GSI Water Solutions, Inc., 2023. Aquifer Permeability Estimates in Study Area GM1, Gates/Mill Sewer Basin, Linn County, Oregon. Technical Memorandum, dated September 20, 2023
- GeoSystems Analysis, Inc., 2023. Gates Mill City Infiltration Testing. Technical Memorandum to Matt Kohlbecker, GSI Water Solutions, dated June 2, 2023.
- Zlotnik, V.A., Kacimov, A. and A. Al-Maktoumi, 2017. Estimating groundwater mounding in sloping aquifers for managed aquifer recharge, Groundwater, vol. 55, no. 6, pp. 797-810.

TECHNICAL MEMORANDUM

Evaluation of the Environmental Fate of Residual Pollutants from an Advance (Class A) Treated Wastewater Infiltration System, Mill City, Oregon

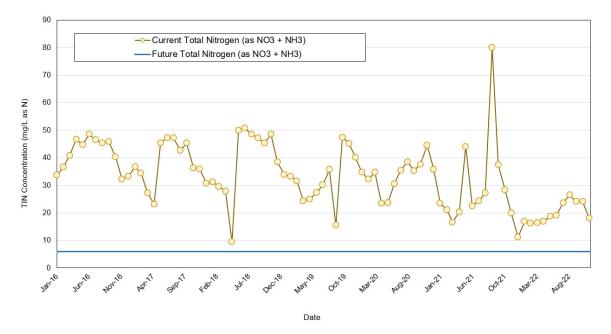
То:	Chris Einmo, PE / Marion County
From:	Matt Kohlbecker, RG / GSI Water Solutions, Inc.
	Ailco Wolf, PG, CHG / GSI Water Solutions, Inc. Katie O'Malley / GSI Water Solutions, Inc.
CC:	Dallin Stephens, PE / Keller Associates
	Kevin Stewart, El / Keller Associates
	Peter Olsen, PE / Keller Associates, Inc.
	Pamela Villarreal, PE / Keller Associates, Inc.
	Brian Nicholas / Marion County
	Dave Kinney / City of Mill City
	Russ Foltz / City of Mill City
	Kari Low / Commonstreet Consulting
	Tamisha Schrunk / Commonstreet Consulting
	Mary Camarata / Department of Environmental Quality
Date:	November 16, 2023

This technical memorandum (TM), prepared by GSI Water Solutions, Inc., (GSI), summarizes an evaluation of the environmental fate of residual pollutants in discharges from a proposed advance (Class A) treated wastewater infiltration system in Mill City, Oregon. The purpose of the evaluation is to inform the permitting framework for the proposed system.

1. Background

This section presents the project background (Section 1.1), site selection activities (Section 1.2), permitting framework (Section 1.3), conceptual model for treated wastewater infiltration (Section 1.4), purpose and objectives of the fate and transport evaluation (Section 1.5), and TM organization (Section 1.6).

1.1 Project Background


The communities of Gates and Mill City have partnered to develop a modern wastewater treatment system that will treat wastewater to Class A standards and infiltrate it at a series of Rapid Infiltration Basins (RIBs). Currently, wastewater in Gates is infiltrated at individual septic systems, and wastewater in Mill City is

infiltrated using an over 30-year-old drainfield located adjacent to the Santiam River. Mill City's drainfield is at the end of its usable life and cannot be expanded under current rules.

The modern wastewater treatment system will significantly improve water quality in the scenic Santiam Canyon because:

- The RIB system will be located further from the Santiam River (i.e., about 2,000 feet along the groundwater flowpath, as compared to Mill City's existing infiltration system that is located adjacent to the river). The increased horizontal separation results in an increased travel time between infiltrated wastewater and the river, which in turn results in increased attenuation of residual pollutants in wastewater. The travel time for groundwater from the RIB system to the river is about 17 months (based on a groundwater seepage velocity of 1,368 feet per year, as discussed in Attachment B and Attachment C), as compared to a travel time on the order of weeks from the existing Mill City system.
- The new RIB system will treat total nitrogen in wastewater to 6 milligrams per liter (mg/L)¹, which is a significant improvement to wastewater quality under current management practices. The individual septic systems and recreational vehicle park waste systems that currently manage wastewater in Gates and Mill City discharge wastewater with a total nitrogen concentration ranging from 30 mg/L to over 500 mg/L² (DOH, 2021). Mill City's existing system produces effluent with a total nitrogen concentration that is typically between 20 mg/L and 50 mg/L (see "Current Total Nitrogen (as NO3 + NH3" in Figure 1 below).

Figure 1. Total Nitrogen (as NO₃ + NH₄) Data from Mill City's Existing Wastewater Treatment System.

• In addition to the enhanced removal of total nitrogen, the modern treatment plant will include enhanced treatment from a clarification/separation unit and ultraviolet (UV) disinfection.

¹ The total nitrogen in treated wastewater consists of 5 mg/L nitrate and 1 mg/L ammonia

² According to the Washington State Department of Health, residential strength effluent is characterized by a total nitrogen concentration ranging from 30 mg/L to 100 mg/L. High strength effluent (e.g., RV waste) is characterized by a total nitrogen concentration of more than 500 mg/L.

Evaluation of the Environmental Fate of Residual Pollutants from an Advance (Class A) Treated Wastewater Infiltration System, Mill City, Oregon

1.2 Site Selection Activities

A phased approach was used during the spring and summer of 2023 to evaluate infiltration feasibility in the Gates/Mill City area and select a site for the proposed RIBs. The phases included:

- Phase I. Excavation of test pits and infiltration testing to characterize shallow soils in four study areas.
- Phase II. Construction of a single monitoring well and aquifer testing to characterize deep soils in the three study areas that were considered to be the most favorable for infiltration based on the results of Phase I.
- Phase III. Construction of two additional monitoring wells, advancement of two temporary borings within the footprint of the planned infiltration basin area, and aquifer testing in the study area that is most favorable to infiltration based on the results of Phase II.

The four study areas that were considered are shown in Figure 2. Based on infiltration testing at test pits, slug testing at monitoring wells, and analytical modeling using MOUNDSOLV, only study area GM1 was determined to be capable of infiltrating the 2045 wastewater volume from Gates and Mill City. As such, GSI conducted this fate and transport evaluation at Site GM1 to determine the permit type and to evaluate compliance with Oregon's groundwater protection rules.

1.3 Permitting Framework

The pollutant fate and transport evaluation summarized in this TM will inform the permitting of the infiltration system by the Oregon Department of Environmental Quality (DEQ). Specifically, the fate and transport evaluation will inform the permit type (Section 1.3.1) and compliance with Oregon's Groundwater Protection Rules (Section 1.3.2).

1.3.1 Permit Type (NPDES or WPCF)

Oregon law requires that wastewater discharge systems are authorized by a permit from the DEQ. There are two options permitting a wastewater discharge: (1) a National Pollutant Discharge Elimination System (NPDES) permit or (2) a Water Pollution Control Facility (WPCF) permit. For a wastewater discharge system, the type of permit required depends fundamentally on whether or not the wastewater is to be discharged to surface water (directly or indirectly).

- NPDES permits: required for discharge of wastewater to surface waters, whether done so directly via an outfall, or *indirectly* via groundwater or within a hyporheic zone. A NPDES permit is a requirement of the Federal Clean Water Act and Oregon law [Oregon Administrative Rules (OAR) 340-045].
- WPCF permits: required for the discharge of wastewater to the ground. The primary purpose of a WPCF permit is to ensure that discharge to the ground meets Oregon's Groundwater Protection Rules (OAR 340-040).

There is often uncertainty related to whether an NPDES or WPCF permit is required to operate wastewater discharge systems that infiltrate wastewater. Whether an NPDES permit would be required for discharges of wastes to groundwater with a direct or otherwise significant hydrological connection to surface water (i.e., an *indirect* discharge) is a nuanced question that depends on several site-specific factors. Because new NPDES permits cannot be issued in the Santiam Canyon (because of the Three Basin Rule³), the type of permit required for the proposed treated wastewater infiltration system in Mill City is an important consideration. The following sections summarize the criteria used by DEQ to determine whether a NPDES or WPCF permit is

³ OAR 340-041-0350

required for a wastewater discharge system that infiltrates wastewater: (1) Oregon regulatory guidance documents, (2) a recent (April 2020) U.S. Supreme Court decision, and (3) site-specific criteria.

Oregon Regulatory Guidance Documents

Some of the uncertainty around permitting of wastewater infiltration systems was reduced in 2007, when DEQ issued an internal management directive (IMD) for disposal of municipal wastewater by indirect discharge to surface water. In the IMD, DEQ defined *indirect discharge systems* as those that "dispose of municipal wastewater plant effluent by indirect discharge to surface water via groundwater or hyporheic water" (DEQ, 2007). As such, indirect discharge systems are intentionally designed such that the wastewater effluent will ultimately discharge to a receiving surface water body. Based on DEQ's indirect discharge IMD, DEQ would require an NPDES permit rather than a WPCF permit for systems that <u>intentionally</u> discharge treated wastewater to surface water, albeit indirectly along a groundwater pathway.

Recent (April 2020 U.S. Supreme Court Decision

A recent U.S. Supreme Court decision is expected to eventually provide DEQ with future guidance and perhaps rule changes for the regulation and permitting of wastewater infiltration systems (*County of Maui, Hawaii v. Hawaii Wildlife Fund, et al.*). The case argued whether the Clean Water Act requires a permit when pollutants that originate from a waste disposal facility (in this case, an underground injection control that was permitted under the Safe Drinking Water Act) can be traced to reach navigable waters of the US through mechanisms such as groundwater transport, regardless of whether discharge to surface water was intended. On April 23, 2020, the Court ruled that such discharges must have an NPDES permit when they are the "functional equivalent of a direct discharge," a new test defined by the ruling. The Court decision will require the U.S. Environmental Protection Agency (EPA) to develop specific rules related to the "functional equivalent" test to be promulgated after public review. These federal rules will eventually be adopted by DEQ for implementation in Oregon. On December 8, 2020, the EPA issued draft guidance to clarify how to apply the Maui case (EPA, 2021). It will likely be years before such a test is developed and implemented into Oregon wastewater permitting regulations.

Site-Specific Criteria

In the memo rescinding the December 8, 2020, guidance, EPA stated that the agency "... will continue to apply site-specific, science-based evaluations to determine whether a discharge from a point source through groundwater that reaches jurisdictional surface water is a 'functional equivalent' of a direct discharge." In order to determine if an infiltration system functions equivalently as a direct discharge to surface water, it is necessary to understand the degree to which residual pollutants in wastewater are attenuated as they are transported with groundwater flow. A "site-specific" evaluation would include the hydrogeologic properties that affect pollutant fate and transport, including hydraulic conductivity, horizontal hydraulic gradient, porosity, soil bulk density, and distance between the infiltration point and the compliance point (i.e., which affects attenuation). These data were collected at Site GM1 during the Phase II and Phase III investigations, and are used in this fate and transport evaluation to evaluate the attenuation of residual pollutants and, ultimately, whether a treated wastewater infiltration system at Site GM1 functions equivalently as a direct discharge to the Santiam River.

Evaluation of the Environmental Fate of Residual Pollutants from an Advance (Class A) Treated Wastewater Infiltration System, Mill City, Oregon

1.3.2 Oregon's Groundwater Protection Rules

WPCF permits require that discharges to the ground (e.g., infiltration) meet Oregon's groundwater protection rules⁴. These rules require that groundwater is protected to its highest beneficial use, which is usually drinking water⁵.

To protect the quality of groundwater used as drinking water, permit-specific **concentration limits** for new facilities⁶ are set at background groundwater quality⁷ at a downgradient **compliance point** that is chosen by DEQ⁸. The WPCF permit sets **action levels** or **limitations** at the point of discharge⁹ at a value that will result in no change in groundwater quality from background at the downgradient, in-groundwater, **compliance point**. The **action levels** or **limitations**, along with proper implementation of conditions set in the permit, protect groundwater used as drinking water and meet background groundwater quality concentrations per the Oregon groundwater protection rules.

On a case-by-case basis, DEQ may also set a **concentration limit variance** in place of a permit-specific **concentration limit**¹⁰ provided that no substantial present or potential hazard to human health or the environment is posed at that level¹¹. The factors that the DEQ is to consider for setting a **concentration limit variance** are stipulated in OAR 340-040-0040(4)(c)(A) through (M). Because the Santiam River is subject to Oregon's Three Basin Rule, setting a **concentration limit variance** is subject to the following additional requirements¹²:

- All appropriate groundwater quality protection requirements and compliance monitoring are met, and
- There will be no measurable change in the water quality of the surface water that would be potentially affected by the proposed facility.

In addition, the Environmental Quality Commission (EQC) must find that the proposed facility provides a preferable means of sewage collection, treatment, and disposal as compared to individual on-site sewage disposal systems. "Preferable" is defined as the new system: (1) eliminating a significant number of failing individual on-site sewage systems that cannot be reliably and cost-effectively repaired, (2) treating domestic sewage that would otherwise be treated by individual on-site sewage disposal systems with the cumulative impact to groundwater of the individual on-site sewage disposal systems being greater than the new facility, or (3) the social and economic impacts of the new facility outweigh the possible environmental impacts.

1.4 Conceptual Model for Treated Wastewater Infiltration

A conceptual model for the infiltration of treated wastewater is shown in Figure 3. The treated wastewater will be infiltrated at RIBs, and will be transported downward through unsaturated soils until reaching the groundwater table. After reaching the groundwater table, the water will be transported horizontally by groundwater flow.

⁴ OAR 340-040

⁵ OAR 340-040-0020(3)

⁶ A "new facility" means a facility authorized to operate under a DEQ-approved permit for the first time after the effective date of OAR 340-040-0030 (i.e., October 27, 1989).

⁷ OAR 340-040-0030(3)(b)

⁸ OAR 340-040-0030(2)(e)

⁹ See Permit No. 101809 for OPRD Silver Falls State Park or Permit No. 103083 for Tri-County Metropolitan Transportation

¹⁰ OAR 340-040-0010(4) and OAR 340-040-0030(4)

¹¹ OAR 340-040-0030(4)(c)

¹² OAR 340-041-0350(8)(c)(A)

During transport through unsaturated soils and groundwater, the concentrations of residual pollutants in the Class A treated wastewater are attenudated (reduced) by the processes of denitrification, volatilization, dilution, dispersion, sorption, and biodegradation.

- **Denitrification.** Denitrification is a microbial-mediated process in which nitrate and nitrite are reduced to nitrogen gas.
- Volatilization. Pollutants volatilize into the gas phase when the pollutant is transferred from the dissolved phase to the vapor phase. Volatilization occurs because soil pores in unsaturated soils are only partially filled with water, and pollutants with a high vapor pressure volatilize into the vapor phase.
- Dilution. Residual pollutants in treated wastewater are diluted by precipitation falling over the infiltration basin footprint and groundwater entering the project site from upgradient. Residual pollutants are further diluted downgradient of the RIB by precipitation falling over the property that infiltrates through soil and recharges the groundwater system.
- **Dispersion.** Dispersion is pollutant attenuation caused by spreading of the residual pollutants (i.e., some pollutant travels slower than the average groundwater velocity and other pollutant travels faster than the average groundwater velocity, thereby reducing the concentration of pollutants).
- Sorption. During transport, pollutants partition from the aqueous phase onto the solid phase by sorption onto soil (e.g., mineral) surfaces. Physical sorption is caused mainly by van der Waals forces and electrostatic forces between the pollutant molecule and the ions of the soil particle's surface.
- Biodegradation. Degradation is pollutant attenuation due to biotic and abiotic processes. Abiotic degradation includes hydrolysis (interaction with water molecules), photolysis (interaction with photons from sunlight), and oxidation-reduction. Biotic degradation involves microorganisms metabolizing pollutants through biochemical reactions. At an infiltration basin, biodegradation is the most significant of these pathways.

The amount of pollutant attenuation caused by these processes can be evaluated with a pollutant fate and transport model. Site-specific properties, shown in Table 1, are input to the model. <u>Collectively, these properties determine the pollutant concentration after transport through porous media and, therefore, whether and infiltration system is functioning equivalently to a direct discharge system; no one single property (e.g., groundwater velocity) should be used to evaluate functional equivalency. Note that the attenuation processes of volatilization and abiotic degradation are not included in Table 1 because they are not being included in the pollutant fate and transport simulations discussed in this TM.</u>

Attenuation Process	Site-Specific Properties Affecting Attenuation
Denitrification	Organic matter, soil water content, soil oxygen supply, soil temperature, soil pH
Dilution	Precipitation, aquifer thickness, infiltration facility footprint, groundwater velocity (a function of sorption, hydraulic conductivity, horizontal hydraulic gradient, and effective porosity), wastewater volume
Dispersion	Distance between the infiltration site and the compliance point, pollutant velocity (a function of sorption, hydraulic conductivity, horizontal hydraulic gradient, and effective porosity)
Sorption	Soil bulk density, fraction organic carbon, total porosity
Biotic Degradation	Pollutant velocity (a function of sorption, hydraulic conductivity, horizontal hydraulic gradient, and effective porosity)

Table 1. Site-Specific Soil and Site Properties that Affect Pollutant Attenuation.

Evaluation of the Environmental Fate of Residual Pollutants from an Advance (Class A) Treated Wastewater Infiltration System, Mill City, Oregon

1.5 Purpose and Objectives of the Fate and Transport Evaluation

The purpose of the modeling summarized in this TM is to inform the permitting framework of the proposed treated wastewater infiltration system based on site-specific criteria (specifically, to evaluate whether the new wastewater treatment system at Site GM1 is the functional equivalent of a discharge to the surface water and to evaluate compliance with Oregon's groundwater protection rules). The objectives of the model are:

- Identify pollutants to include in the evaluation based on the concentrations of pollutants likely to be present in treated wastewater, regulatory standards for the pollutants (i.e., EPA Maximum Contaminant Levels or MCLs), and background concentrations of the pollutants.
- Use the Washington State Department of Health's Large Onsite Septic System (LOSS) model to calculate pollutant attenuation by dilution.
- Use the EPA's BIOSCREEN model to calculate pollutant attenuation by dispersion, biodegradation, and sorption.

1.6 TM Organization

The remainder of this TM is organized as follows:

- Section 2.0: Fate and Transport Modeling Methods
- Section 3.0: Fate and Transport Modeling Results
- Section 4.0: Conclusions and Recommendations

The main text of this TM provides an overview of the modeling methods and results. Detailed technical documentation is provided in Attachment A (LOSS model), Attachment B (BIOSCREEN model at the property boundary), and Attachment C (BIOSCREEN model at the Santiam River).

2. Fate and Transport Modeling Methods

The modeling methods were comprised of three steps:

- Step 1: Select Pollutants for Fate and Transport Modeling. Wastewater quality and background groundwater quality were characterized based on sampling of untreated wastewater from Mill City's existing wastewater disposal system and sampling of groundwater from monitoring well GM1-MW1 at Site GM1, respectively. Samples were analyzed for pollutants that are regulated under the Safe Drinking Water Act (SDWA). Sampling methods and results are presented in GSI (2023a). Pollutants were selected for fate and transport modeling if: (1) the pollutant was a synthetic organic compound (SOC) or volatile organic compound (VOC) and was detected in untreated wastewater, (2) the pollutant was nitrate (which is a key pollutant for DEQ's regulation of domestic wastewater discharges), or (3) the pollutant was naturally-occurring, exceeded background concentrations in groundwater, and exceeded the MCL¹³.
- Step 2: Calculate Pollutant Attenuation by Dilution Using the LOSS Model. The LOSS model was developed by the Washington State Department of Health to calculate pollutant attenuation that occurs by dilution when wastewater, precipitation, and groundwater are mixed. While the LOSS

¹³ Fluoride was detected in a sample of untreated wastewater collected on May 2, 2023 [see GSI (2023)]. Because this high level was an unexpected result, the City re-sampled untreated wastewater for fluoride on October 17, 2023. Fluoride was not detected in the October 17, 2023 sample. Therefore, the May 2 detection of fluoride is considered to be lab error, and the October 17 sample was used for Step 1 (select pollutants for fate and transport modeling).

model was originally developed for calculating dilution of nitrate, it can also be used to calculate dilution of other pollutants by changing values of certain input parameters. Output from the LOSS model is pollutant concentration in groundwater at the downgradient edge of the infiltration basin after dilution. Detailed technical documentation of the LOSS model, model input parameters, and model results is provided in Attachment A.

Step 3: Calculate Pollutant Attenuation by Dispersion, Sorption, and Biodegradation using BIOSCREEN. BIOSCREEN Version 1.4, an analytical pollutant fate and transport model developed by the EPA, was used to calculate pollutant attenuation by dispersion, sorption, and biodegradation based on the Domenico (1987) solution to the three-dimensional Advection Dispersion Equation (ADE) (e.g., Bear, 1972). The output concentration from the LOSS model was used as the initial concentration in BIOSCREEN. Output from BIOSCREEN is pollutant concentration at the property boundary (transport distance of 225 feet from the RIB edge) and in groundwater adjacent to the Santiam River (transport distance of 1,950 feet from the RIB edge) after the effects of dispersion, sorption, and biodegradation. Note that the concentration of nitrate output by BIOSCREEN should be considered an estimate because the ADE assumes that pollutant concentration in the receiving groundwater is zero, but the measured concentration of nitrate in groundwater is 1.1 milligrams per liter (mg/L). Detailed technical documentation of the BIOSCREEN model, model input parameters, and model results is presented in Attachment B (concentration at the property boundary) and Attachment C (concentration in groundwater adjacent to the Santiam River).

This modeling approach is highly conservative for the following reasons, many of which represent simplifying assumptions:

- (1) The modeling approach assumes that, except for denitrification, no pollutant attenuation occurs in unsaturated soils (i.e., by dispersion, sorption, degradation, or volatilization).
- (2) Between the downgradient edge of the RIB and the property boundary or river, the modeling approach assumes no pollutant dilution occurs due to mixing with precipitation that infiltrates through subsurface soil and recharges groundwater.
- (3) The LOSS model limits the vertical mixing zone in groundwater to 20 feet; in reality, the vertical mixing zone at Site GM1 will be about 30 feet (the thickness of the aquifer from the water table at about 15 feet below ground surface to a gravelly silt layer at 45 feet bgs) (GSI, 2023b).
- (4) BIOSCREEN simulations assume that all wastewater is infiltrated at the RIB that is located closest to the downgradient property boundary (225 feet); in reality, infiltration will be cycled between up to four RIBs, most of which are located further from the property boundary (i.e., RIB edges located about 375 feet from the downgradient property boundary).
- (5) Conservative values of fate and transport parameters are used. For example:
 - a. Dispersion is estimated using the Xu and Eckstein (1995) equation instead of the Gelhar et al. (1991) equation, which results in lower values of dispersivity and, therefore, less pollutant attenuation.
 - b. Concentrations of pollutants are based on samples of <u>untreated</u> wastewater. This impacts concentrations of toluene and di(2-ethylhexyl)phthalate, which are expected to be reduced by the proposed wastewater treatment system.

Evaluation of the Environmental Fate of Residual Pollutants from an Advance (Class A) Treated Wastewater Infiltration System, Mill City, Oregon

3. Fate and Transport Modeling Results

Model results are provided in Table 2. A detailed discussion of modeling results is provided in Attachment A (LOSS model), Attachment B (BIOSCREEN model between the downgradient edge of the infiltration basin and property boundary), and Attachment C (BIOSCREEN model between the downgradient edge of the infiltration basin and groundwater adjacent to the Santiam River).

Pollutant	Concentration in Wastewater (mg/L)	Concentration at Basin Edge (LOSS Model) (mg/L)	Concentration at Property Boundary (BIOSCREEN) (mg/L)	Concentration in Groundwater Adjacent to Santiam River (BIOSCREEN) (mg/L)	Percent Reduction (mg/L)
Nitrate	6.0	4.3	3.4 to 4.3	1.1 to 4.3	81.7% to 28.3%
DEHP	0.0090	0.0067	< 0.0001	< 0.0001	100%
Toluene	0.0496	0.0371	< 0.0005	< 0.0005	100%

Table 2. Results of Pollutant Attenuation Modeling

Notes

mg/L = milligrams per liter DEHP = di(2-ethylhexyl)phthalate

4. Conclusions and Recommendations

The following sections summarize the implications of these concentrations on Oregon's groundwater protection rules (Section 4.1) and permit type (i.e., WPCF or NPDES) (Section 4.2).

4.1 Oregon Groundwater Protection Rules

4.1.1 DEHP and Toluene

Based on model simulations, Toluene and DEHP are predicted to attenuate to below their respective detection limits before reaching the downgradient property boundary. Therefore, Oregon's groundwater protection rules can be met for these pollutants by establishing a permit-specific **concentration limit** equal to background groundwater quality (i.e., non detectable) at a **compliance point** located at the property boundary. Additional modeling would be needed to set the values of the **action levels** or **limitations** in the permit, but based on modeling conducted to date, the values could be at least 0.0496 mg/L for Toluene and 0.00901 mg/L for DEHP.

4.1.2 Nitrate

Concentrations of nitrate are predicted to exceed background concentrations in groundwater at the downgradient property boundary. Therefore, a **concentration limit variance** will need to be established for these pollutants. The **concentration limit variance** may be granted because no substantial present or potential hazard to human health or the environment will be posed once it is confirmed that groundwater downgradient of the facility is not used as a drinking water supply. This may require a door-to-door survey, and decommissioning existing water wells and connecting households to Mill City's municipal groundwater supply system. The **concentration limit variance** is allowed under the Three Basin Rule in OAR 340-041-0350(8)(c)(A) because all appropriate groundwater quality protection requirements and compliance monitoring will be met, and there will be no measureable change in the water quality of the surface water that would potentially be affected by the proposed facility (see discussion in Section 4.2). In addition, the new treatment system meets the Three Basin Rule requirement for a **preferable** means of domestic sewage

collection, treatment, and disposal as compared to individual on-site sewage disposal systems, meaning that [see OAR 340-041-0350(8)(c)(B)]:

- The new sewage treatment facility will eliminate a significant number of failing individual on-site sewage disposal systems that cannot be reliably and cost-effectively repaired, or
- The facility will treat domestic sewage that would otherwise be treated by individual on-site sewage disposal systems, from which the cumulative impact to groundwater is projected to be greater than that from the new facility, or
- The social and economic benefits of the discharge outweigh the potential environmental impacts.

4.2 Permitting Framework (NPDES or WPCF)

It is appropriate to permit the RIB facility at Site GM1 with a WPCF permit issued in accordance with OAR 340-045 because:

- There is no waste discharge to surface water (all discharge is to ground),
- All groundwater quality protection requirements of OAR 340-040 can be met, as discussed in Section 4.1, and
- There will be no measurable change in the water quality of the surface water that would potentially be affected by the proposed facility. Specifically, the mean daily discharge in the Santiam River near Mill City ranges from 1,010 cubic feet per second to 6,420 cubic feet per second¹⁴. Assuming the area of groundwater impacted by residual pollutants is as described in Attachment A and Attachment B¹⁵, the discharge of residual-pollutant-impacted groundwater to the Santiam River is about 0.478 cubic feet per second¹⁶. Therefore, each cubic foot of groundwater will be diluted by a factor of approximately 2,110 times (corresponding to low-flow conditions with the river flow at 1,010 cubic feet per second) to 13,400 times (corresponding to high-flow conditions with the river flow at 6,420 cubic feet per second). The residual nitrate concentration of 1.1 mg/L to 4.3 mg/L would be diluted to below detectable levels under these conditions.
- Infiltration at the proposed RIBs does not function equivalently to a direct discharge to surface water, given that toluene and DEHP are attenuated by 100% and nitrate (28.3% to 81.7% attenuated are significantly attenuated. The attenuation occurs because the modern infiltration facility is located a significant distance from the Santiam River (about 2,000 feet, as compared to the existing facility located adjacent to the river) which results in a groundwater travel time of approximately 17 months (as compared to a travel time on the order of weeks from the existing facility). The increased travel time of 17 months provides time for pollutant concentrations to decline due to denitrification, dilution, dispersion, sorption, and biodegradation.

Based on these conclusions, we recommend initiating discussions with DEQ to determine: (1) an approach for setting the **action levels** or **limitations** in the WPCF permit for the facility and (2) the process for obtaining a **concentration limit variance** for nitrate.

¹⁴ USGS 14183000 North Santiam River at Mehama, Oregon (period of record is 10/1/1905 to 9/30/2023). The mean daily discharge of 1,010 is from multiple days in August, and the mean daily discharge of 6,420 cubic feet per second is from November 25.

¹⁵ 20 feet deep and 550 feet wide

¹⁶ Calculated by Darcy's Law. Values used are: seepage velocity of 1,368 feet per year, seepage depth of 20 feet, and seepage width of 550 feet (see Attachment A and Attachment B for details). The resultant flux is 15,048,000 cubic feet per year from the area of groundwater with residual pollutants, which equates to about 0.48 cubic feet per second.

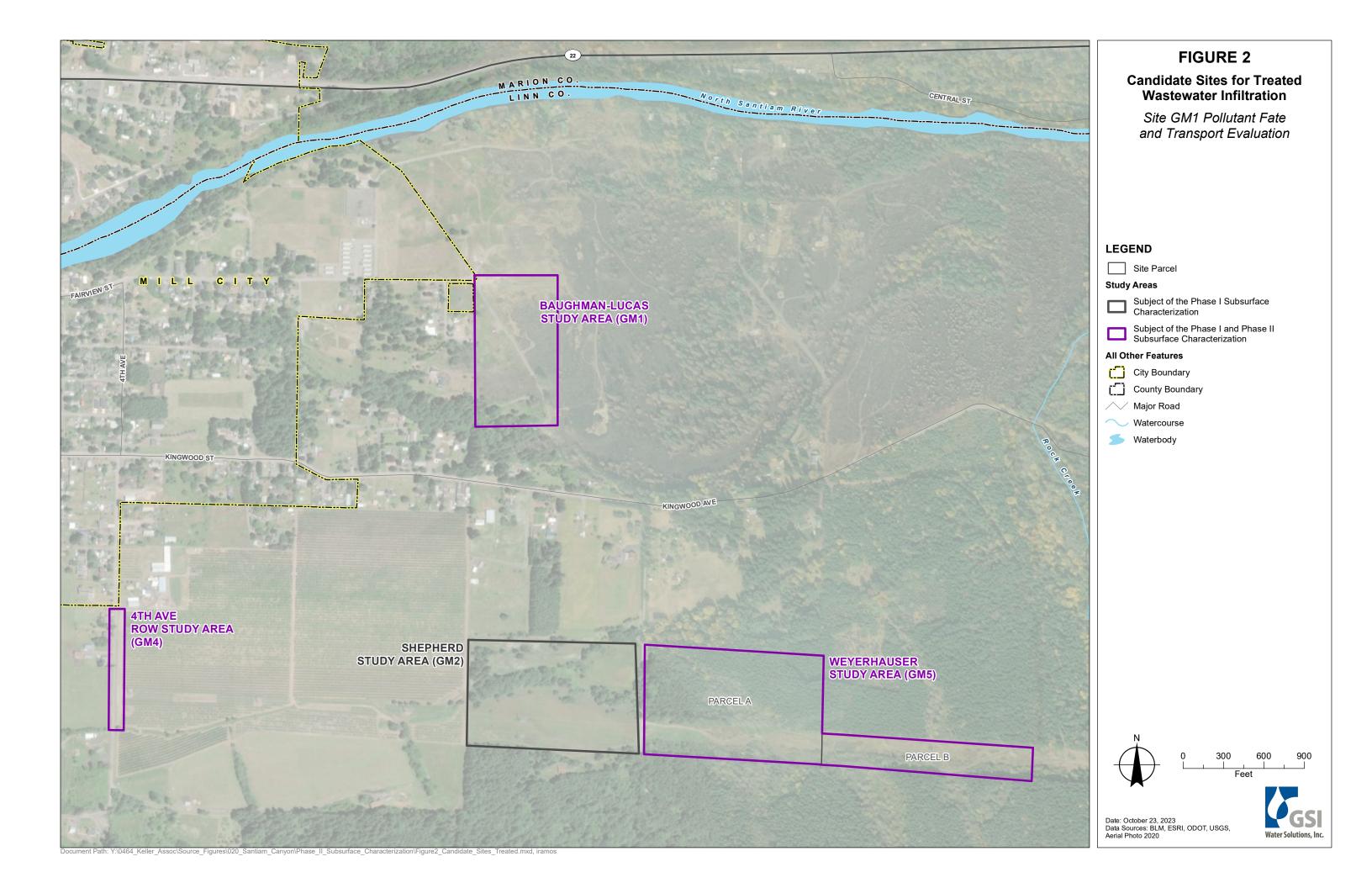
Evaluation of the Environmental Fate of Residual Pollutants from an Advance (Class A) Treated Wastewater Infiltration System, Mill City, Oregon

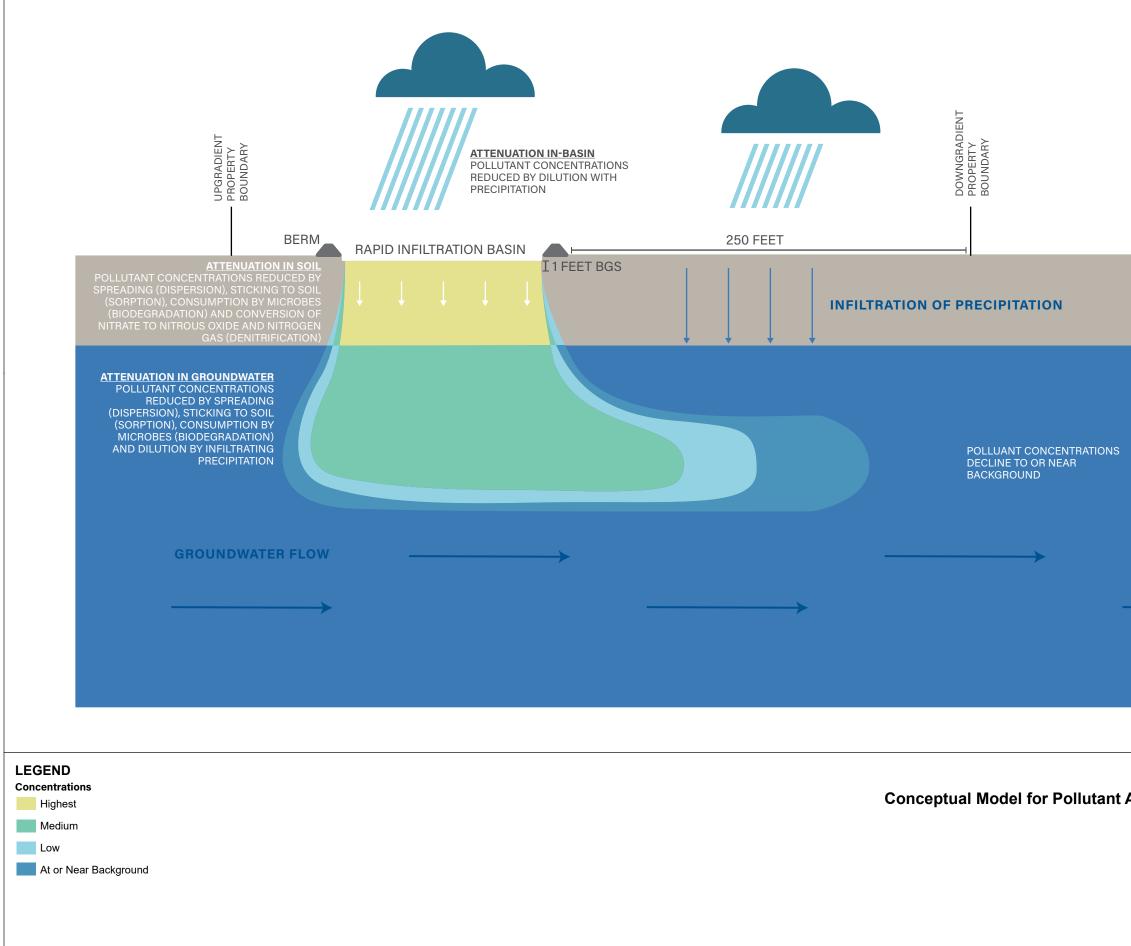
5. References

DOH. 2021. Level 1 Nitrate Balance Instructions for Large On-Site Sewage Systems. DOH 337-069.

Domenico, P. A. 1987. An analytical model for multidimensional transport of a decaying contaminant species. Journal of Hydrology, vol. 91, pp. 49-58.

EPA. 2020. EPA Issues Draft Guidance Clarifying Wastewater Permit Requirements Under Maui Decision. December 8.


EPA. 2021. Rescission of the January 2021 Guidance Document, "Applying the Supreme Court's *County of Maui v. Hawaii Wildlife Fund* Decision in the Clean Water Act Section 402 National Pollutant Discharge Elimination System Permit Program. September 15.


GSI. 2023a. Phase II Subsurface Characterization to Support and Evaluation of Treated Wastewater Infiltration in Gates and Mill City, Marion and Linn Counties, Oregon. September 12.

GSI. 2023b. Phase III Subsurface Characterization to Support an Evaluation of Treated Wastewater Infiltration in Gates and Mill City, Marion and Linn Counties, Oregon.

Xu, M. and Y. Eckstein. 1995. Use of Weighted Least-Squares Method in Evaluation of the Relationship Between Dispersivity and Scale. Journal of Groundwater (33), No. 6, pp. 905 – 908.

-FIGURES-

GROUND SURFACE

FIGURE 3

Conceptual Model for Pollutant Attenuation During Treated Wastewater Infiltration Site GM1 Pollutant Fate

and Transport Evaluation

-ATTACHMENT A------

Technical Documentation for LOSS Model Simulations

ATTACHMENT A

Application of the Large Onsite Septic System (LOSS) Model to Evaluate Pollutant Dilution at Site GM1, Mill City, Oregon

1. Background

This attachment provides technical documentation for application of the Washington State Department of Health's Large Onsite Septic System (LOSS) model to Site GM1 in Mill City, Oregon. The model was used to evaluate dilution of residual wastewater pollutants when they mix with infiltrating precipitation and groundwater at the site.

The LOSS model is an analytical nitrogen mass balance model that calculates the nitrate concentration in groundwater resulting from mixing between nitrogen in wastewater effluent, nitrate in precipitation, and nitrate in background groundwater. The model has been adopted by the Oregon Department of Environmental Quality (DEQ) to evaluate whether wastewater infiltration systems comply with Oregon's Groundwater Protection Rules¹. With minor modifications to input values, the model can also be used to calculate concentrations of other pollutants in groundwater.

This section provides an overview of the governing equations used by the LOSS model to calculate nitrate concentrations in groundwater (Section 1.1), application of the LOSS model to calculate concentrations of other pollutants in groundwater (Section 1.2), and the purpose of the model simulations (Section 1.3).

1.1 Governing Equation for Nitrate Dilution in Groundwater

The equation used by the LOSS model to calculate the nitrate concentration in groundwater is:

$$N_{GW} = \frac{(Q)(N_B) + (V_W) (N_W(1-d)) + (V_R)(N_R)}{Q + V_W + V_r}$$
(A.1)

Where:

 N_{GW} is the nitrate concentration in groundwater at the downgradient edge of the wastewater facility

(milligrams per liter, or mg/L),

Q is the aquifer flow (gallons per day), calculated as $Q = (K)(i)(b)(W_A)$, where:

K is horizontal hydraulic conductivity (feet per day)

i is horizontal hydraulic gradient (feet per foot)

b is depth of mixing in the aquifer (feet)

¹ Oregon Administrative Rules (OAR) 340 - 040

W_A is width of the aquifer (feet)

 N_B is the background or upgradient nitrate concentration (mg/L)

V_W is the volume of wastewater (gallons per day)

 N_W is the nitrogen concentration in wastewater (mg/L)

d is the nitrate percentage removed by denitrification in soil (dimensionless)

 V_R is the volume of precipitation recharge over the facility (gallons per day), calculated as

 $V_R - (A_D)(R)(0.0017)$, where:

 A_D is the area of the wastewater infiltration facility (square feet)

R is recharge (inches per year)

0.0017 is a units conversion to express V_R in units of gallons per day

 N_R is the nitrate concentration in precipitation (mg/L)

In Equation (A.1), the nitrate in background groundwater is represented by the quantity $[(Q)(N_B)]$, the nitrogen in effluent is represented by the quantity $[(V_W)(N_W)(1-d)]$, and the nitrate concentration in precipitation recharge is represented by the quantity $[(V_R)(N_R)]$.

The LOSS model's output (N_{GW} , the concentration of nitrate in the aquifer adjacent and downgradient to the infiltration facility) represents pollutant attenuation only due to dilution (specifically, by mixing between precipitation, treated wastewater, and groundwater entering the site from upgradient). This concentration can be used as input to a pollutant fate and transport model that simulates other pollutant attenuation mechanisms (for example, dispersion, sorption, and biodegradation).

1.2 Application of the LOSS Model to Dilution of Other Pollutants in Groundwater

The LOSS model can be applied to other pollutants if the following input parameter values are set to zero:

- Denitrification (d)
- Nitrate concentration (in this case the concentration of another pollutant) in background groundwater (N_B)²
- Nitrate concentration (in this case the concentration of another pollutant) in precipitation (N_R)

And if the nitrate concentration in wastewater (N_W) and nitrate concentration in groundwater (N_{GW}) are changed to the concentration of a pollutant in wastewater (C_W) and the concentration of a pollutant in groundwater (C_{GW}). Making these changes, Equation (A.1) becomes:

$$C_{GW} = \frac{(V_W)(C_W)}{Q + V_W + V_r} \tag{A.2}$$

² Note that this assumption is supported by groundwater quality sampling data. Specifically, the concentrations of toluene and di(2-ethylhexyl)phthalate (DEHP) in a groundwater sample collected from monitoring well GM1-MW1 on May 28, 2023 (GSI, 2023) were below their detection limits of 0.0005 mg/L, 0.0001 mg/L, and 0.1 mg/L, respectively.

Note that the concentration of the pollutant in groundwater (C_{GW}) represents pollutant attenuation due to dilution (specifically, by mixing between treated wastewater, precipitation, and groundwater entering the site from upgradient).

1.3 Purpose

The purpose of the LOSS modeling is to predict pollutant concentrations in groundwater at the downgradient edge of the proposed wastewater infiltration basin for Site GM1. The pollutant concentrations are to be used as input concentrations for a separate model (i.e., BIOSCREEN) to predict pollutant attenuation by dispersion, sorption, and biodegradation that occurs during transport from the downgradient edge of the infiltration basin to the downgradient property boundary or to groundwater adjacent to the Santiam River.

2. Model Input Parameters

This section provides an overview of the model input parameters used to calculate the nitrate concentration in groundwater, N_{GW} (Section 2.1) and the concentration of other pollutants in groundwater, C_{GW} (Section 2.2).

2.1 Input Parameters for Calculation of Nitrate in Groundwater (*N*_{GW})

Model input parameters for using Equation (A.1) to calculate the concentration of nitrate in groundwater (N_{GW}) adjacent to the infiltration basin are summarized in Table A.1. The following subsections describe the methods that were used to develop the model input parameters.

Symbol	Value	Units	Subsection
N _R	0.24	mg/L	Subsection 2.1.1
Nw	6.0	mg/L	Subsection 2.1.2
d	10	percent	Subsection 2.1.3
b	20	feet	Subsection 2.1.4
AD	130,680	ft²	Subsection 2.1.5
WA	550	feet	Subsection 2.1.6
K	88.2	feet/day	Subsection 2.1.7
i	0.0102	feet/feet	Subsection 2.1.8
R	28	inches/year	Subsection 2.1.9
NB	1.1	mg/L	Subsection 2.1.10
Vw	237,500	gpd	Subsection 2.1.11
	N _R N _W d b AD WA K i R R NB	N _R 0.24 N _W 6.0 d 10 b 20 A _D 130,680 W _A 550 K 88.2 i 0.0102 R 28 N _B 1.1	N_R 0.24mg/L N_W 6.0mg/L d 10percent b 20feet A_D 130,680ft² W_A 550feet K 88.2feet/day i 0.0102feet/feet R 28inches/year N_B 1.1mg/L

Table A.1. LOSS Model Input Parameters for Calculation of N_{GW}.

Notes

mg/L = milligrams per liter

ft² = square feet

2.1.1 Nitrate Concentration in Precipitation (*N_R*)

Precipitation contains a small amount of nitrate from anthropogenic and natural sources. The default value for N_R of 0.24 mg/L from DOH (2021) guidance was used in the LOSS model.

gpd = gallons per day

2.1.2 Total Nitrogen Concentration in Wastewater (*N_W*)

Nitrogen in wastewater is comprised of nitrate, ammonia, and inorganic nitrogen. Because inorganic nitrogen is not expected to convert to nitrate, the LOSS model scenarios are based on the total nitrogen in the forms of nitrate and ammonia (which is expected to nitrify into nitrate in the top layers of the soil). LOSS

model simulations are based on a concentration of 5 mg/L nitrate and 1 mg/L ammonia ($N_w = 6$ mg/L), which is achievable using a sequencing batch reactor (SBR). SBR oxidizes ammonia and denitrifies nitrate.

2.1.3 Soil Denitrification (*d*)

After discharge from the wastewater treatment facility, denitrification in soil reduces the nitrate concentration that reaches groundwater. The default value for *d* of 10 percent from DOH (2021) guidance was used in the LOSS model.

2.1.4 Aquifer Thickness (b)

Data from temporary borings and monitoring wells indicate that the aquifer thickness at Site GM1 is about 30 feet. Specifically, the bottom of the aquifer coincided with a gravelly silt at 45 feet below ground surface (bgs) in temporary boring TB-2, and the depth to groundwater was approximately 15 feet bgs in monitoring well GM1-MW1³. However, the DOH (2021) guidance requires that the maximum aquifer thickness used for modeling purposes is 20 feet. Therefore, a value for *b* of 20 feet was used in the LOSS model.

2.1.5 Wastewater Infiltration Facility Area (A_D)

As shown in Exhibit A.1, the wastewater infiltration facility will consist of four basins with a total area of 130,680 square feet (ft²) (i.e., three acres total). It should be noted that the four infiltration basins are planned for 2045 system operation. Day 1 operation is anticipated to require the two eastern-most infiltration basins. Note that the infiltration basin locations shown in Exhibit A.1 have not yet been finalized.

2.1.6 Aquifer Width (*W_A*)

As shown in Exhibit A.1, groundwater at Site GM1 flows towards the northwest. The aquifer width, which is equivalent to the width of the infiltration facility perpendicular to the groundwater flow direction, is estimated to be 550 feet.

2.1.7 Horizontal Hydraulic Conductivity (*K*)

Hydraulic conductivity is a property of porous materials that describes how easily fluid moves through the pore space, and is correlated with soil type in the aquifer (e.g., clay, silt, sand, or gravel). A hydraulic conductivity of 88.2 feet per day was used in the LOSS model, which is the geometric mean hydraulic conductivity at Site GM-1 based on slug tests at three monitoring wells GM1-MW1 (163.3 feet per day), GM1-MW2 (113.6 feet per day), and GM1-MW3 (37 feet per day). See Attachment B of GSI (in press) for a detailed discussion of slug testing at Site GM1.

2.1.8 Hydraulic Gradient (i)

The hydraulic gradient (*i*) is the slope of the water table. Based on groundwater elevation contours developed from water levels measured at monitoring wells GM1-MW1, GM1-MW2, and GM1-MW3 in summer 2023, the horizontal hydraulic gradient at site GM-1 is 0.0102 feet per foot. The groundwater elevation contours are shown in Exhibit A.1.

2.1.9 Recharge (*R*)

Recharge is the amount of precipitation that infiltrates into the aquifer. Conlon et al. (2005) indicate that recharge in the study area is in the range of 26 to 30 inches per year. A value of 28 inches per year (the midrange value) was used in the LOSS model.

³ May 29, 2023 measurement

2.1.10 Nitrate Concentration of Upgradient (Background) Ground Water (N_B)

Monitoring Well GM1-MW1 is considered to represent background groundwater quality. A groundwater quality sample collected from monitoring well GM1-MW1 on May 28, 2023, indicates that the background concentration of nitrate in groundwater is 1.1 mg/L (GSI, 2023).

2.1.11 Wastewater Volume (V_w)

The wastewater volume used in the LOSS model is 237,500 gallons per day, which is the projected year 2045 average daily effluent generation rate.

2.2 Input Parameters for Calculation of Toluene and DEHP in Groundwater (*C*_{*GW*})

Model input parameters for using Equation A.2 to calculate the concentration of toluene and DEHP in groundwater (C_{GW}) adjacent to the infiltration basin are summarized in Table A.2. With the exception of pollutant concentrations in wastewater (C_W), input parameters are the same as in Table A.1. The concentrations of toluene and DEHP in wastewater were determined based on a sample of untreated wastewater from Mill City's existing wastewater treatment system collected on May 2, 2023. Note that the values of C_W are conservative because they represent concentrations prior to treatment.

Table A.2. LOSS Model Input Parameters for Calculation of C_{GW}.

Model Input Parameter	Symbol	Value	Units	Subsection in the Text
Toluene and DEHP Concentration in Wastewater	Cw	0.0496 (Toluene) 0.00901 (DEHP)	mg/L mg/L	Section 2.2
Aquifer Thickness	b	20	feet	Subsection 2.1.4
Wastewater Infiltration Facility Area	AD	130,680	ft ²	Subsection 2.1.5
Aquifer Width	WA	550	feet	Subsection 2.1.6
Horizontal Hydraulic Conductivity	K	88.2	feet/day	Subsection 2.1.7
Hydraulic Gradient	i	0.0102	feet/feet	Subsection 2.1.8
Recharge	R	28	inches/year	Subsection 2.1.9
Wastewater Volume	Vw	237,500	gpd	Subsection 2.1.11
Notes				

Notes

mg/L = milligrams per liter

gpd = gallons per day

 ft^2 = square feet

3. Model Output

This section provides an overview the concentration of nitrate in groundwater after dilution, N_{GW} (Section 3.1), and the concentration of other pollutants in groundwater after dilution, C_{GW} (Section 3.2).

3.1 Nitrate Concentration in Groundwater (*N*_{GW})

LOSS model calculations for nitrate concentration in groundwater adjacent to the infiltration basin after dilution are provided in Exhibit A.2 and Table A.3 (4.30 mg/L).

Table A.3. LOSS Model Output for Nitrate in Groundwater (N_{GW}).

Scenario	Total Nitrogen Concentration in Treated Wastewater, <i>N</i> w (mg/L)	Nitrate Concentration in Groundwater, N _{GW} (mg/L)	Exhibit Reference
Nitrate	6.0	4.30	Exhibit A.2

Notes

mg/L = milligrams per liter

3.2 Toluene and DEHP Concentrations in Groundwater (C_{GW})

LOSS model calculations for concentrations of toluene and DEHP in groundwater adjacent to the infiltration basin are provided in Exhibit A.3 (toluene), Exhibit A.4 (DEHP). The output is summarized in Table A.4.

Pollutant	Pollutant Concentration in Treated Wastewater, Cw	Pollutant Concentration in Groundwater, C _{GW}	Exhibit Reference
	(mg/L)	(mg/L)	
Toluene	0.0496	0.0371	Exhibit A.3
DEHP	0.0090	0.0067	Exhibit A.4

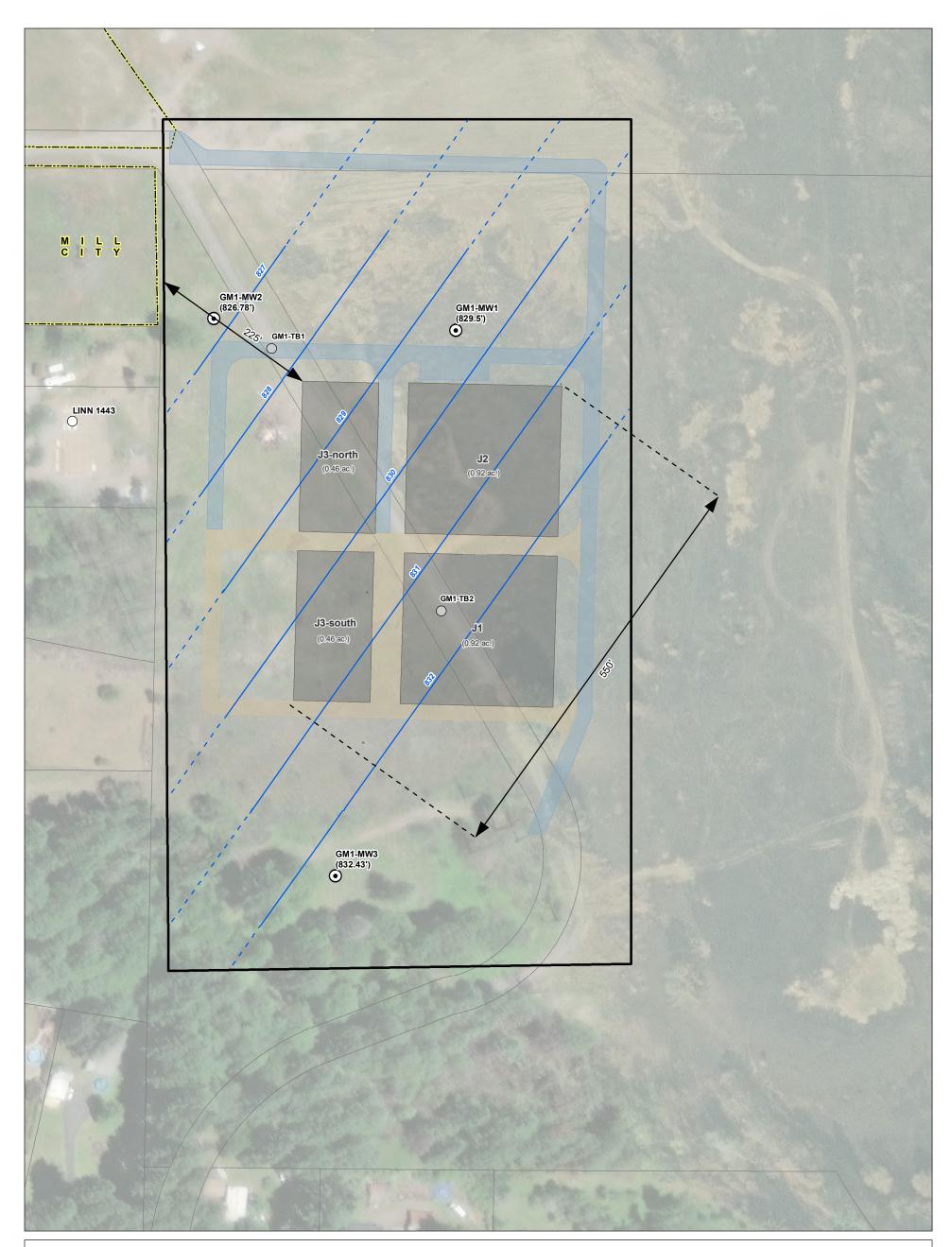
Table A.4. LOSS Model Output for Toluene, DEHP (C_{GW}).

Notes

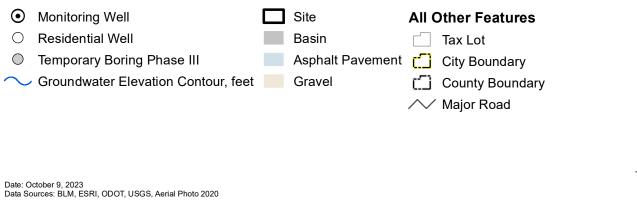
DEHP = di(2-ethylhexyl)phthalate mg/L = milligrams per liter

4. Conclusions

The LOSS model results in Table A.3 and Table A.4 are appropriate to use as initial concentrations in a separate model (i.e., BIOSCREEN) to evaluate the pollutant attenuation that occurs by dispersion, sorption, and biodegradation during transport in groundwater between the edge of the infiltration basin and the downgradient property boundary.


5. References

Conlon, T. D., Wozniak, K. C., Woodcock, D., Herrera, N. B., Fisher, B. J., Morgan, D. S., Lee, K. K., and S. R. Hinkle. 2005. Ground-Water Hydrology of the Willamette Basin, Oregon. U.S. Geological Survey Scientific Investigations Report 2005-5168. 95 pp.


DOH. 2021. Level 1 Nitrate Balance Instructions for Large One-Site Sewage Systems. DOH 337-069. May.

GSI. 2023. Phase II Subsurface Characterization to Support and Evaluation of Treated Wastewater Infiltration in Gates and Mill City, Marion and Linn Counties, Oregon. September 12.

GSI. In press. Phase III Subsurface Characterization to Support an Evaluation of Treated Wastewater Infiltration in Gates and Mill City, Marion and Linn Counties, Oregon.

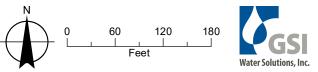

LEGEND

EXHIBIT A.1

Proposed Infiltration Basin Layout

Gates-Mill City Treated Wastewater Infiltration Evaluation

Document Path: Y:10464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Loss_Model\ExhibitA1_Proposed_Infiltration_Basin.mxd, iramos

Exhibit A.2

LOSS Model for Nitrate (Total Nitrogen Concentration = 6.0 mg/L) Gates-Mill City Treated Wastewater Infiltration Evaluation

Project name:	Gates and Mill City Infilitration Basin						
Address, city and county:	Gates and Mill City, Marion and Linn Counties, OR						
Completed by (name and title):	M. Kohlbed						
Date:	10/7/2023						
Input Values		Factor	Units	Values	Notes		
Nitrate concentration in precipitation		N _R	mg/l as N	0.24	Default		
Total nitrogen concentration in wastewater		ter N _w	mg/l	6.0	Treatment to 6 mg/L total N		
Soil denitrification		d	unitless	0.1	Default		
Aquifer thickness		b	ft	20	Default or aquifer thickness if known		
Drainfield area		A _D	ft²	130,680	Total basin area		
Distance from drainfield to property b	oundary	D_{pb}	ft	1	Measure in direction of GW flow		
Aquifer width		W _A	ft	550	Perpendicular to GW flow		
Aquifer hydraulic conductivity		к	ft/day	88.2	Measured from slug testing		
Hydraulic gradient		i	ft/ft	0.010	Measured from groundwater elevations		
Recharge		R	in/yr	28	Conlon et al. (2005)		
Nitrate concentration of upgradient g	round water	N _B	mg/l	1.1	GM1-MW1 groundwater sample		
Wastewater volume		Vw	gpd	237,500	Design Flows		

Output Values			
Groundwater nitrate value	N _{GW}	mg/l as N	4.30 Point of Compliance (POC)
Dilution Factor			1.40

DOH 337-070

Exhibit A.3

LOSS Model for Toluene Gates-Mill City Treated Wastewater Infiltration Evaluation

Project name:	Gates and Mill City Infilitration Basin						
Address, city and county:	Gates and M	lill City, I	Marion and	d Linn Count	ties, OR		
Completed by (name and title):	M. Kohlbeck	ker (Princ	ipal Hydr	ogeologist)			
Date:	10/7/2023	10/7/2023					
Input Values		Factor	Units	Values	Notes		
Pollutant concentration in precipitatio	n	C _R	mg/l	0	Default		
Total pollutant concentration in wastewater		Cw	mg/l	0.0496	Treatment to 2 mg/L total N		
Soil denitrification	Soil denitrification		enitrification d	d	unitless	0	Default
Aquifer thickness	i k	b	ft	20	Default or aquifer thickness if known		
Drainfield area		A _D	ft²	130,680	Total basin area		
Distance from drainfield to property b	oundary	D_{pb}	ft	1	Measure in direction of GW flow		
Aquifer width		W _A	ft	550	Perpendicular to GW flow		
Aquifer hydraulic conductivity		к	ft/day	88.2	Measured from slug testing		
Hydraulic gradient Recharge		i	ft/ft	0.010	Measured from groundwater elevations		
		R	in/yr	28	Conlon et al. (2005)		
Pollutant concentration of upgradient	ground water	С _в	mg/l	0	GM1-MW1 groundwater sample		
Wastewater volume		v _w	gpd	237,500	Design Flows		

Output Values		
Groundwater Concentration	C _{GW} mg/l	0.0371 Point of Compliance (POC)
Dilution Factor		1.34
DOH 337-070		

Exhibit A.4

LOSS Model for DEHP Gates-Mill City Treated Wastewater Infiltration Evaluation

Project name:	Gates and Mill City Infilitration Basin					
Address, city and county:	Gates and M	lill City, I	Marion an	d Linn Count	ties, OR	
Completed by (name and title):	M. Kohlbeck	M. Kohlbecker (Principal Hydrogeologist)				
Date:	10/7/2023	10/7/2023				
Input Values		Factor	Units	Values	Notes	
Pollutant concentration in precipitatio	n	C _R	mg/l	0	Default	
Total pollutant concentration in wastewater		Cw	mg/l	0.0090	Treatment to 2 mg/L total N	
Soil denitrification		d	unitless	0	Default	
Aquifer thickness		b	ft	20	Default or aquifer thickness if known	
Drainfield area		A _D	ft²	130,680	Total basin area	
Distance from drainfield to property b	oundary	D_{pb}	ft	1	Measure in direction of GW flow	
Aquifer width		W _A	ft	550	Perpendicular to GW flow	
Aquifer hydraulic conductivity		к	ft/day	88.2	Measured from slug testing	
Hydraulic gradient		i	ft/ft	0.010	Measured from groundwater elevations	
Recharge		R	in/yr	28	Conlon et al. (2005)	
Pollutant concentration of upgradient	ground water	CB	mg/l	0	GM1-MW1 groundwater sample	
Wastewater volume		v _w	gpd	237,500	Design Flows	

Output Values			
Groundwater Concentration	\mathbf{C}_{GW}	mg/l	0.0067 Point of Compliance (POC)
Dilution Factor			1.34
DOH 337-070			

-ATTACHMENT B-

Technical Documentation for BIOSCREEN Model Simulations Between the Rapid Infiltration Basin and the Downgradient Property Boundary

ATTACHMENT B

Application of BIOSCREEN to Evaluate Dispersion, Sorption, and **Biodegradation of Pollutants in Groundwater Between an Infiltration** Basin and the Downgradient Property Boundary, Mill City, Oregon

1. Background

BIOSCREEN is an analytical model developed by the U.S. Environmental Protection Agency (EPA) to simulate pollutant fate and transport in saturated porous media (EPA, 1996). The model simulates pollutant attenuation by dispersion, biodegradation, and sorption. This section provides an overview of the governing equations used by BIOSCREEN to simulate pollutant fate and transport (Section 1.1) and the purpose of the model simulations (Section 1.2).

1.1 Governing Equation Used by BIOSCREEN

Pollutant attenuation by dispersion, degradation, and sorption can be modeled with the advection dispersion equation (e.g., Bear, 1972). BIOSCREEN uses the Domenico (1987) solution to the three-dimensional advection dispersion equation with first-order decay of the source concentration into the solution. The Domenico (1987) solution for transport in three dimensions with first-order source decay is (EPA, pg. 9, 1996):

$$C(x, y, z, t) = \frac{C_0}{8} e^{-k_s t} f_x f_y f_t$$
(B.1)

Where:

$$f_{x} = \exp\left[\frac{x\left(1 - \sqrt{1 + \frac{4\lambda\alpha_{x}}{v}}\right)}{2\alpha_{x}}\right] erfc\left[\frac{x - vt\sqrt{\frac{1 + 4\lambda\alpha_{x}}{v}}}{2\sqrt{\alpha_{x}vt}}\right]$$
(B.2)
$$f_{y} = erf\left[\frac{\left(y + \frac{Y}{2}\right)}{2\sqrt{\alpha_{y}x}}\right] - erf\left[\frac{y - \left(\frac{Y}{2}\right)}{2\sqrt{\alpha_{y}x}}\right]$$
(B.3)

(B.3)

$$f_{z} = erf\left[\frac{(Z)}{2\sqrt{\alpha_{z}x}}\right] - erf\left[\frac{-Z}{2\sqrt{\alpha_{z}x}}\right]$$
(B.4)

In Equation (B.1) through Equation (B.4), *erf* is the error function, and *erfc* is the complimentary error function. These functions model pollutant transport according to a standard normal (Gaussian) probability density function. The variables in Equation (B.1) through Equation (B.4) are¹:

C(x,y,z,t) is the dissolved concentration (M/L³) at the spatial coordinates *x*, *y*, and *z* and time *t* (note that *x* is in the direction of groundwater flow, *y* is the cross-gradient direction, and *z* is the vertical direction),

 C_0 is the dissolved concentration in the source zone at time = 0 (M/L³),

 α_L is dispersivity in the x-direction (longitudinal dispersivity) (L),

 α_T is dispersivity in the y-direction (transverse dispersivity) (L),

av is dispersivity in the z-direction (vertical dispersivity) (L),

 λ is the first-order decay constant for dissolved pollutants (T-1),

v is groundwater velocity (L/T),

Y is the source width (L),

Z is the source thickness (L), and

t is time (T).

Equation (B.1) assumes that the initial pollutant concentration in the source is $C = C_0$, and the initial pollutant concentration in groundwater is C = 0. Note that this condition is not met for nitrate, which is present in the aquifer at a concentration of 1.1 milligrams per liter (mg/L). Therefore, for nitrate, the estimates of pollutant concentration should be considered an approximation.

1.2 Purpose

The purpose of the BIOSCREEN modeling summarized in this attachment is to predict pollutant concentrations in groundwater at the downgradient property boundary of Site GM1 (see Exhibit B.1). The simulations are based on the pollutant attenuation by dispersion, sorption, and biodegradation that is expected to occur during transport from the downgradient edge of the infiltration basin to the downgradient property boundary.

2. Model Input Parameters

Model input parameters are summarized in Table B.1. The following subsections describe the methods that were used to develop the model input parameters. Model input parameters were developed based on

¹ For units, "M" indicates mass, "L" indicates length, and "T" indicates time.

scientific literature and site-specific data collected during the Phase II and Phase III Subsurface Characterizations at Site GM1 (GSI, 2023; GSI, in press).

Model Input Parameter	Symbol	Value	Units	Subsection in the Text
Seepage Velocity	Vs	1,368	feet/year	Subsection 2.1
	αL	11.8 (Longitudinal)	feet	
Dispersivity	ατ	3.9 (Transverse)	feet	Subsection 2.2
	av	0.59 (Vertical)	feet	
		1.0 (Nitrate)	dimensionless	
Retardation Factor	R	635 (DEHP)	dimensionless	Subsection 2.3
		1.70 (Toluene)	dimensionless	
		∞ (Nitrate)	days	
Half Life	h	3.5 (DEHP)	days	Subsection 2.4
		4.67 (Toluene)	days	
		4.30 (Nitrate)	mg/L	
Initial Concentration	Co	0.0371 (Toluene)	mg/L	Subsection 2.5
		0.0067 (DEHP)	mg/L	
Source Width and Thickness	Ws	550	feet	Subsection 2.6
Source width and Thickness	Ts	20	feet	Subsection 2.0
Model Width and Longth	Wm	250	feet	Subsection 2.7
Model Width and Length	Lm	1,000	feet	Subsection 2.7
Simulation Time	t	10,000	years	Subsection 2.8
Source Type		Constant Concentration		Subsection 2.9

Table B.1. BIOSCREEN Model Input Parameters.

Notes

mg/L = milligrams per liter

2.1 Seepage Velocity (v_s)

Seepage velocity is calculated by the following equation:

$$v_s = \frac{\kappa}{n_e} \nabla h \tag{B.5}$$

Where:

vs is the seepage velocity (feet per day)

K is the horizontal hydraulic conductivity (feet per day)

 η_e is effective porosity (dimensionless)

 ∇h is the horizontal hydraulic gradient (feet per foot)

Table B.2 summarizes the values used to calculate seepage velocity for input to the BIOSCREEN model. Because BIOSCREEN requires that seepage velocity be input in units of feet per year, the 3.75 feet per day in Table B.2 was converted to 1,368 feet per year when it was input into the model.

Model Input Parameter	Symbol	Value	Units	Notes
Horizontal Hydraulic Conductivity	K	88.2	feet/day	Geometric mean from slug tests at GM1- MW1, GM1-MW2 and GM1-MW3
Effective Porosity	$\eta_{ m e}$	0.24		Specific yield for a "Gravel, medium" from Heath (1983)
Horizontal Hydraulic Gradient	abla h	0.0102 ¹	feet/foot	Groundwater elevation measurements at GM1-MW1, GM1-MW2 and GM1-MW3 in summer 2023
Seepage Velocity	Vs	3.75	feet/day	Equation (B.5)
Seepage Velocity	Vs	3.75	feet/day	

Table B.2. Seepage Velocity Calculation.

Notes

(1) This horizontal hydraulic gradient was measured in summer of 2023 and, therefore, represents ambient aquifer conditions (i.e., no mounding due to infiltration). According to groundwater mounding modeling with MOUNDSOLV, the horizontal hydraulic gradient will not significantly change during infiltration at the scale of the GM-1 site (although groundwater levels will increase).

2.2 Dispersivity ($\alpha_L, \alpha_T, \alpha_V$)

Dispersivity is a three-dimensional, scale-dependent variable that describes the amount of pollutant spreading (i.e., dispersion) that occurs during pollutant transport. Dispersivity in the direction of flow is called longitudinal dispersivity. Longitudinal Dispersivity was calculated using the Xu and Eckstein (1995) equation:

$$\alpha_L = 0.83 [log(L_p)]^{2.414}$$
(B.6)

Where:

 α_L is longitudinal dispersivity (meters)

 L_{ρ} is the length of the pollutant plume (meters)

As shown in Exhibit B.1, the shortest distance between an infiltration basin and the downgradient property boundary along the groundwater flow path is about 225 feet. Using the shortest distance is conservative because it will result in the smallest value for dispersivity and, therefore, least amount of dispersion. Based on a pollutant plume length of 68.6 meters (225 feet), the longitudinal dispersivity is 3.6 meters (11.8 feet) according to Equation (B.6).

According to ASTM (1995), transverse dispersivity can be assumed to be 33% of longitudinal dispersivity (i.e., 1.2 meters or 3.9 feet), and vertical dispersivity can be assumed to be 5% of longitudinal dispersivity (i.e., 0.18 meters or 0.59 feet)

2.3 Retardation

Pollutants in porous media partition between the liquid, solid, and gas phases. This modeling evaluation conservatively assumes that pollutants only partition between the liquid phase (i.e., aqueous or dissolved phase) and solid phase (i.e., adhere to soil particles). Partitioning between the liquid and solid phases is called sorption, which is caused primarily by van der Waals forces and electrostatic forces between the contaminant molecule and the ions of the soil particle surface. Some pollutants partition preferentially into the aqueous phase, while other pollutants preferentially partition onto the soil particles.

Due to sorption, a pollutant velocity may be slower than groundwater velocity. A pollutant's velocity relative to groundwater is quantified by the retardation factor (e.g., Freeze and Cherry, 1979):

$$R = 1 + \frac{(\rho_b)(K_{oc})(f_{oc})}{\eta}$$
(B.7)

Where:

R is the retardation factor (dimensionless)

 ρ_b is soil bulk density (kilograms per liter)

Koc is the organic carbon-water partitioning coefficient (liters per kilogram)

foc is the fraction organic carbon in soil (dimensionless)

 η is total porosity (dimensionless)

Note that a retardation factor of 2 indicates that a pollutant travels half the speed of groundwater. Table B.3 summarizes the values that were used to calculate retardation factor for the pollutants modeled with BIOSCREEN.

Table B.3. Retardation Factor Calculation.

Model Input Parameter	Units	Nitrate	DEHP	Toluene
Soil Bulk Density ($ ho_b$) 1	kg/L	1.66	1.66	1.66
Organic Carbon-Water Partitioning Coefficient (Koc) ²	L/kg	0.0	149,000	165
Fraction Organic Carbon (f_{oc}) ³		0.001	0.001	0.001
Total Porosity (η) ⁴		0.39	0.39	0.39
Retardation Factor		1.0	635	1.70

Notes

(1) Average dry bulk density based on soil samples collected from the monitoring well GM1-MW1 boring. See Attachment B of the Phase II Subsurface Characterization (GSI, 2023).

(2) The K_{oc} for nitrate was set to 0.0 L/kg to simulate transport in the aqueous phase only (i.e., not sorption to soil). Koc for DEHP and toluene is based on a literature review (see Appendix A).

(3) Recommended default value from ASTM (1995). Soil analysis pending.

(4) Average total porosity based on soil samples collected from the monitoring well GM1-MW1 boring. See Attachment B of the Phase II Subsurface Characterization (GSI, 2023).

kg/L = kilograms per liter

L/kg = liters per kilogram

DEHP = di(2-ethylhexyl)phthalate

Note that the retardation factors for nitrate is 1.0, indicating that these pollutants do not sorb to soil and travel at the same velocity as groundwater. The retardation factor for toluene indicates that it travels at about half the velocity as groundwater, and the retardation factor for di(2-ethylhexyl)phthalate (DEHP) indicates that it travels at 1/635th the velocity of groundwater.

2.4 Half Life (h) and First Order Decay Constant (λ)

Pollutants degrade by photolysis (exposure to sunlight), hydrolysis (interaction with water), and biodegradation (degradation by microbes). We conservatively only include the degradation pathway of biodegradation in the BIOSCREEN modeling analysis. GSI conducted an extensive literature review of biodegradation rates for DEHP and toluene. Nitrate does not degrade under aerobic conditions and, therefore, biodegradation was not simulated in the BIOSCREEN model for these pollutants.

Biodegradation is described by a half life, which is the time required for a pollutant concentration to decline by 50%, and first order decay constant, which is calculated as the natural log of 2 divided by the half life. Because half life and decay constant depend on oxygen levels (i.e., whether the subsurface is aerobic or anaerobic), only aerobic-based half lives and decay constants were used. The half lives and decay constants used in the fate and transport evaluation are summarized in Table B.4. Because BIOSCREEN requires that half life and decay constant be input in units of years, the values in Table B.4 were converted to from days to years for input into the model.

Table B.4. Biodegradation Rates.

Scenario	Half Life	First Order Decay Constant ¹	Notes
Nitrate	Infinite	NA	No degradation
DEHP	3.5 days	0.198 days ⁻¹	See Appendix A for tabulation of half lives
Toluene	4.67 days	0.149 days ⁻¹	See Appendix A for tabulation of half lives

Notes

(1) Calculated by the following equation: $\lambda = \ln(2)/h$

DEHP = di(2-ethylhexyl)phthalate

2.5 Initial Pollutant Concentration (C₀)

The initial nitrate concentration in BIOSCREEN was calculated by the Large Onsite Septic System (LOSS) model (see Attachment A for a detailed discussion) based on the scenario that was run as summarized in Table B.5.

Table B.5. Initial Pollutant Concentrations.

Scenario	Treatment	Total Nitrogen in Wastewater	Nitrate in Groundwater
Nitrate	Sequencing Batch Reactor (SBR)	6 mg/L	4.30 mg/L

Notes

mg/L = milligrams per liter

Initial concentrations in BIOSCREEN for toluene (0.0371 mg/L), and DEHP (0.0067 mg/L were also calculated using the LOSS model (see Attachment A for a detailed discussion).

2.6 Source Width (*W_s*) and Thickness (*T_s*)

The width of the source, W_s , is the infiltration basin width perpendicular to the direction of groundwater flow. As shown in Exhibit B.1, groundwater flows towards the northwest, and the width of the infiltration basins perpendicular to the groundwater flow direction is about 550 feet. Source thickness in the saturated zone was selected to be 20 feet to align the BIOSCREEN model with the LOSS model. Specifically, the LOSS model guidance (DOH, 2021) assumes that infiltrating wastewater will mix with the upper 20 feet of the saturated zone at a maximum.

2.7 Model Width (*W_m*) and Model Length (*L_m*)

The width of the area being modeled (W_m) should be larger than the pollutant plume, and was selected to be 1,000 feet in the BIOSCREEN model. The length of the area being modeled (L_m) is equivalent to the length over which concentrations are to be calculated, and was selected to be 250 feet in the BIOSCREEN model.

This model length value output pollutant concentrations at 225 feet from the source (i.e., the shortest distance between the downgradient edge of an infiltration basin and the downgradient property boundary).

2.8 Simulation Time (*t*)

Simulation time (t) is the time period over which transport occurs. A simulation time of 10,000 years was used for the BIOSCREEN simulations. It was determined empirically that the pollutants plumes reach a steady state condition by this time.

2.9 Source Type

Pollutant fate and transport simulations can be conducted using several different source types. For example, a source can be simulated as continuous with constant concentration, continuous with a concentration that decays over time, a pulse of known concentration, etc. The infiltration of treated wastewater was conservatively simulated as a continuous source with constant concentration in the BIOSCREEN model by entering a "Source Half Life" of "Infinite" in the model. It should be noted that this is a conservative assumption because infiltration basins will not be operated continuously (specifically, every twelve days, a basin will infiltrate treated wastewater for two days).

3. Model Output

This section summarizes output from the BIOSCREEN model (i.e., pollutant concentration at the downgradient property boundary assuming a separation of 225 feet between the property boundary and closest infiltration basin) for nitrate (Section 3.1) and for toluene and DEHP (Section 3.2).

3.1 Nitrate

Nitrate concentration at the downgradient property boundary is summarized in Table B.6. The BIOSCREEN input and output are provided in Exhibit B.2.

Pollutant	Total Nitrogen	Nitrate Concentration in	Nitrate Concentration at the
	Concentration in Treated	Groundwater at the Basin Edge	Downgradient Property
	Wastewater, <i>N</i> w	(from the LOSS Model), <i>N</i> _{GW}	Boundary (from BIOSCREEN)
Nitrate	6.0 mg/L	4.30 mg/L	3.36 mg/L to 4.30 mg/L

Notes

mg/L = milligrams per liter

As discussed in the introduction section, the nitrate concentrations output from the BIOSCREEN model should be considered an approximation because the equation on which BIOSCREEN is based assume, in this case, mixing between a nitrate source concentration of 4.30 mg/L and a groundwater nitrate concentration of 0.0 mg/L. In reality, the groundwater nitrate concentration is 1.1 mg/L. As a result, the nitrate concentration at the downgradient property boundary is listed in Table B.6 as falling somewhere between the concentration predicted by the LOSS model (4.30 mg/L) and the concentration predicted by BIOSCREEN based on mixing with zero-nitrate groundwater (3.36 mg/L). Numerical modeling could be used to determine where in the range of 3.36 mg/L to 4.30 mg/L the nitrate concentration would fall.

3.2 Toluene and DEHP

Predicted concentrations of toluene and DEHP at the downgradient property boundary of Site GM1 are summarized in Table B.7. The BIOSCREEN input and output are provided in Exhibit B.3 (toluene), and Exhibit B.4 (DEHP). Values reported as "< X" in Table B.7 indicate that the predicted concentration is less than the

detection limit for the pollutant, with the value of "X" indicating the detection limit. Detection limits were selected based on laboratory detection limits for groundwater samples collected during the Phase II Subsurface Characterization (GSI, 2023).

Table B.7. Toluene and DEHP Concentrations at the Downgradient Property Boundary.

Scenario	Concentration in Treated Wastewater, Cw	Concentration in Groundwater at the Basin Edge (from the LOSS Model), C _{GW}	Concentration at the Downgradient Property Boundary (from BIOSCREEN)
Toluene	0.0496 mg/L	0.0371 mg/L	< 0.0005 mg/L
DEHP	0.0090 mg/L	0.0067 mg/L	< 0.0001 mg/L

Notes

mg/L = milligrams per liter

DEHP = di(2-ethylhexyl)phthalate

4. Conclusions

Based on modeling of dilution, dispersion, biodegradation, and sorption described in Attachment A (LOSS model) and Attachment B (BIOSCREEN model), we make the following preliminary conclusions assuming basin configurations shown in Exhibit B.1:

- Toluene (see Exhibit B.3 plot) and DEHP (see Exhibit B.4 plot) attenuate to below their respective detection limit within 100 feet and 25 feet of the infiltration basin, respectively. We recommend a 50 percent factor of safety for the modeling simulations, and siting infiltration basins no closer than 150 feet from the downgradient property boundary.
- The estimated nitrate concentration at the downgradient property boundary is between 3.36 mg/L and 4.30 mg/L.

5. References

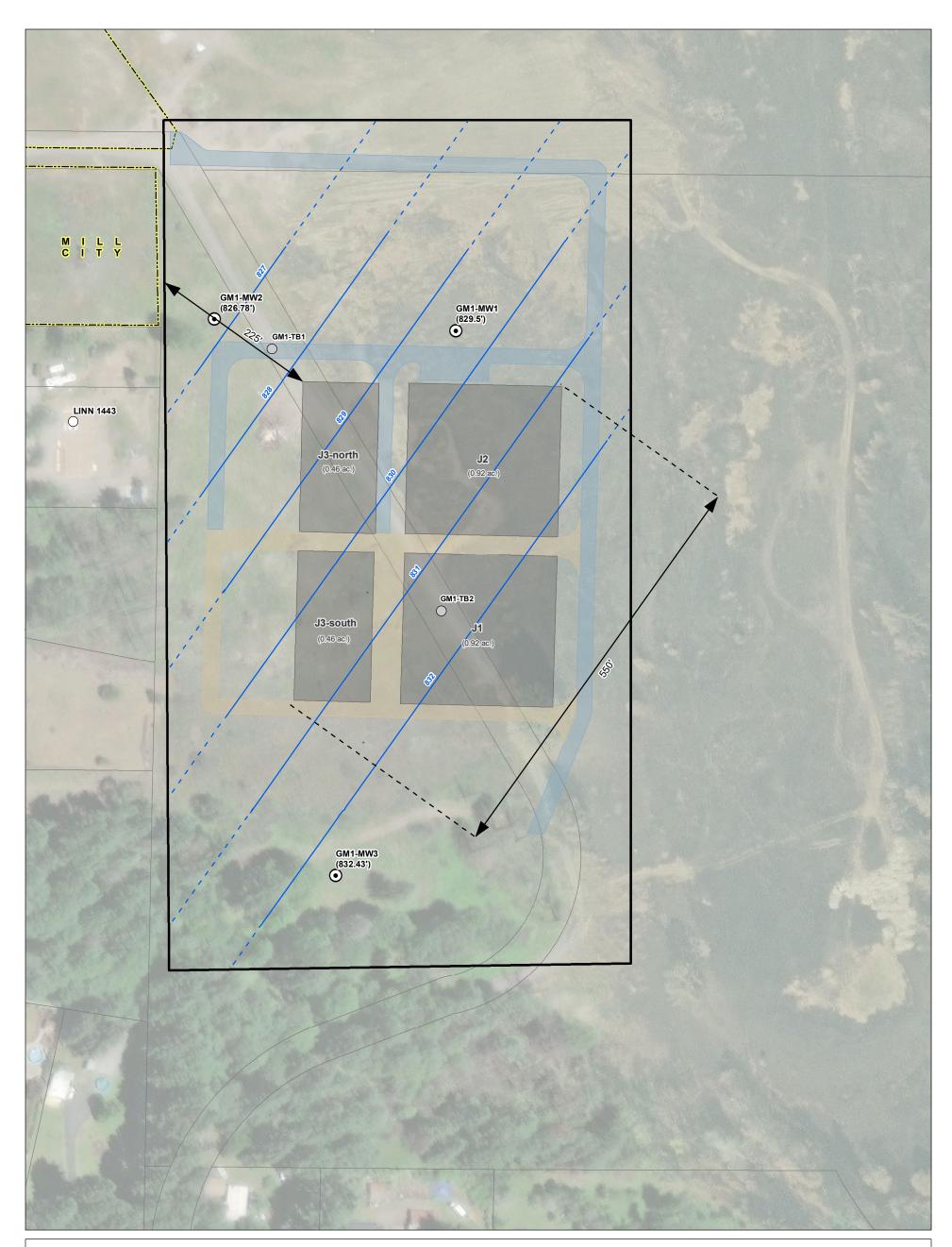
ASTM. 1995. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. ASTM E-1739-95. Philadelphia, PA.

Bear, J. 1972. Dynamics of Fluids in Porous Media. Dover Publications, Inc., New York: New York, 764 pp.

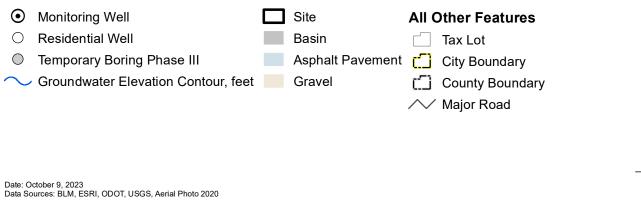
DOH. 2021. Level 1 Nitrate Balance Instructions for Large One-Site Sewage Systems. DOH 337-069. May.

Domenico, P. A. 1987. An Analytical Model for Multidimensional Transport of a Decaying Contaminant Species. *Journal of Hydrology*, Vol. 91, pp 49 – 58.

EPA. 1996. BIOSCREEN Natural Attenuation Decision Support System User's Manual Version 1.3. Office of Research and Development. EPA/600/R-96/087. August.


Freeze, R. A. and J. A. Cherry. 1979. Groundwater. 604 pp.

GSI. 2023. Phase II Subsurface Characterization to Support and Evaluation of Treated Wastewater Infiltration in Gates and Mill City, Marion and Linn Counties, Oregon. September 12.


GSI. In press. Phase III Subsurface Characterization to Support an Evaluation of Treated Wastewater Infiltration in Gates and Mill City, Marion and Linn Counties, Oregon.

Heath, R. C. 1983. Basic ground-water hydrology. U.S. Geological Survey Water-Supply Paper 2220, 86 p.

Xu, M. and Y. Eckstein. 1995. Use of Weighted Least-Squares Method in Evaluation of the Relationship Between Dispersivity and Scale. Journal of Groundwater (33), No. 6, pp. 905 – 908.

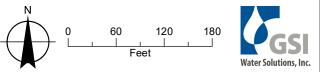
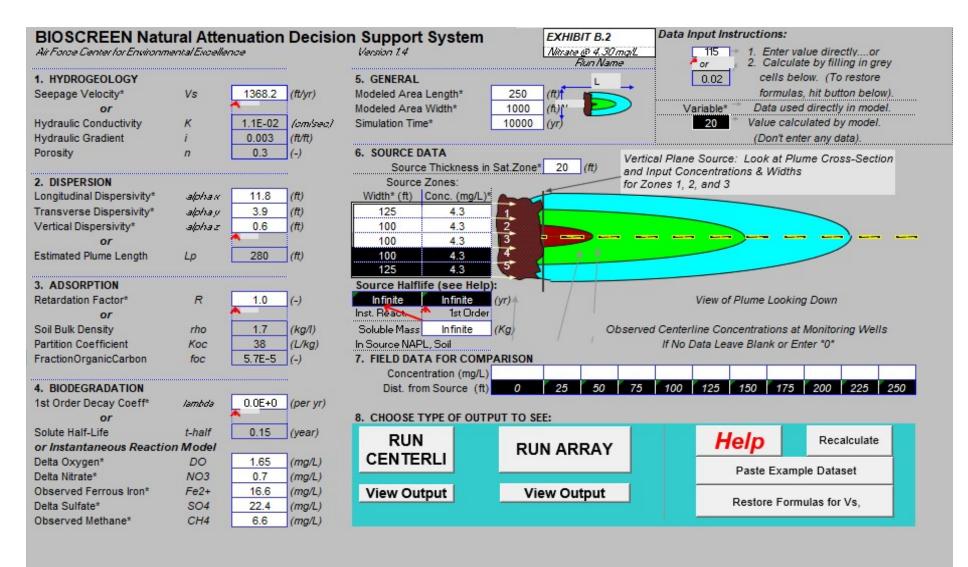
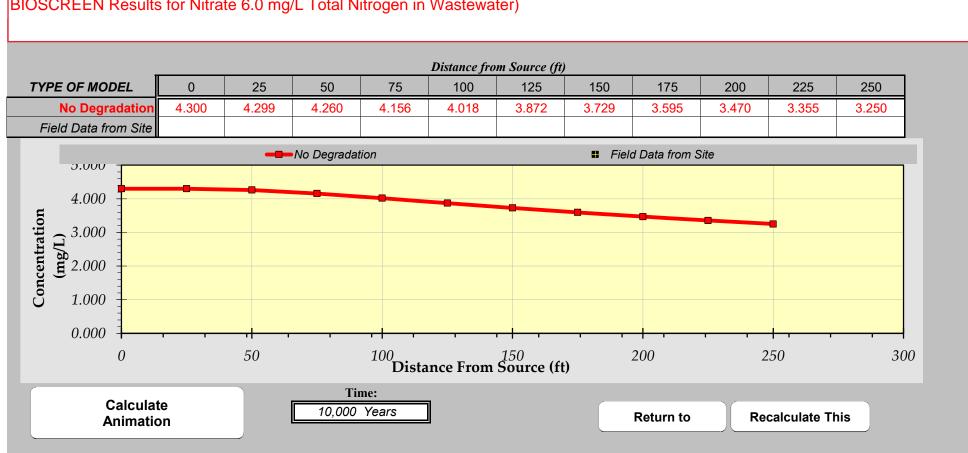

LEGEND

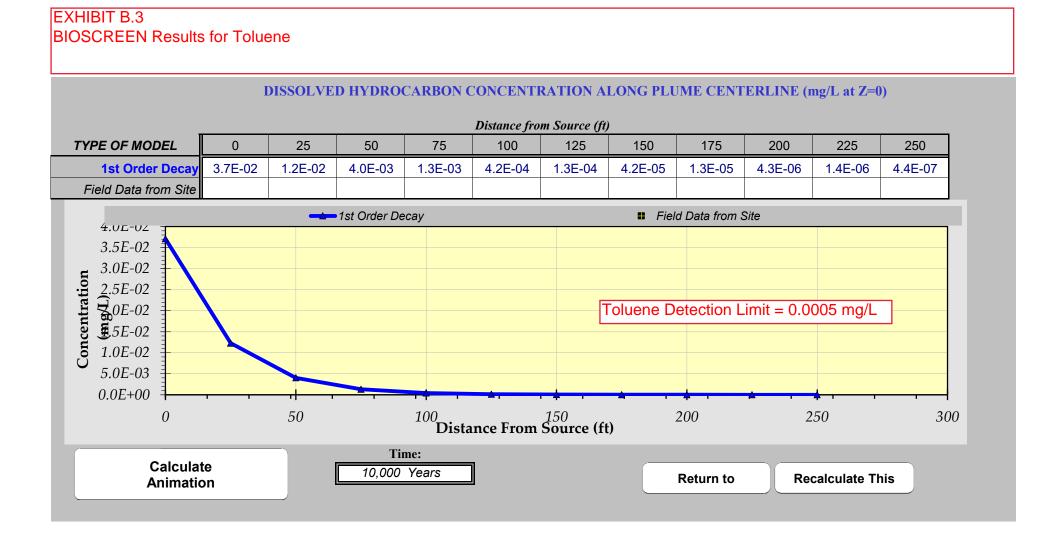
EXHIBIT B.1

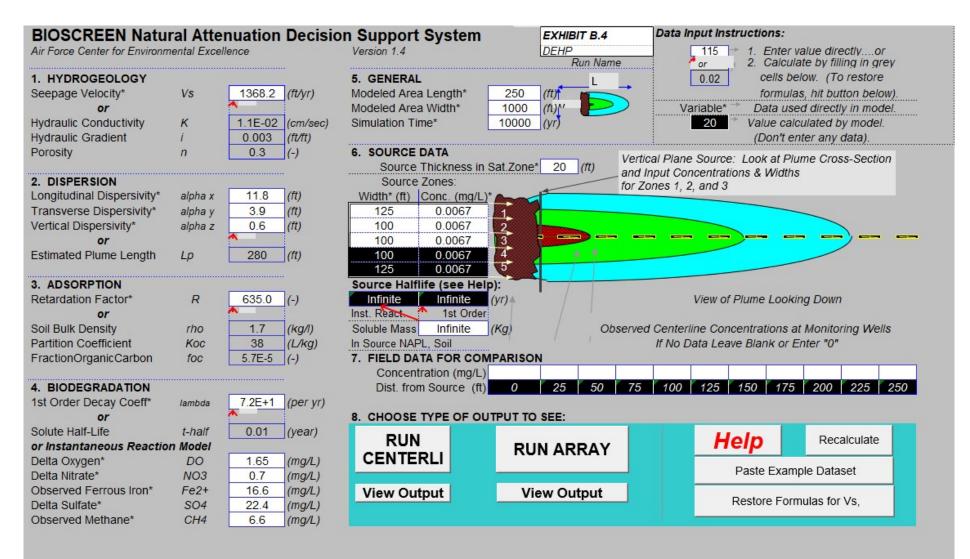

Proposed Infiltration Basin Layout


Gates-Mill City Treated Wastewater Infiltration Evaluation

Document Path: Y:\0464_Keller_Assoc\Source_Figures\020_Santiam_Canyon\Bioscreen\ExhibitB1_Proposed_Infiltration_Basin.mxd, iramos

EXHIBIT B.2 BIOSCREEN Input for Nitrate (6.0 mg/L Total Nitrogen in Wastewater)




EXHIBIT B.2 BIOSCREEN Results for Nitrate 6.0 mg/L Total Nitrogen in Wastewater)

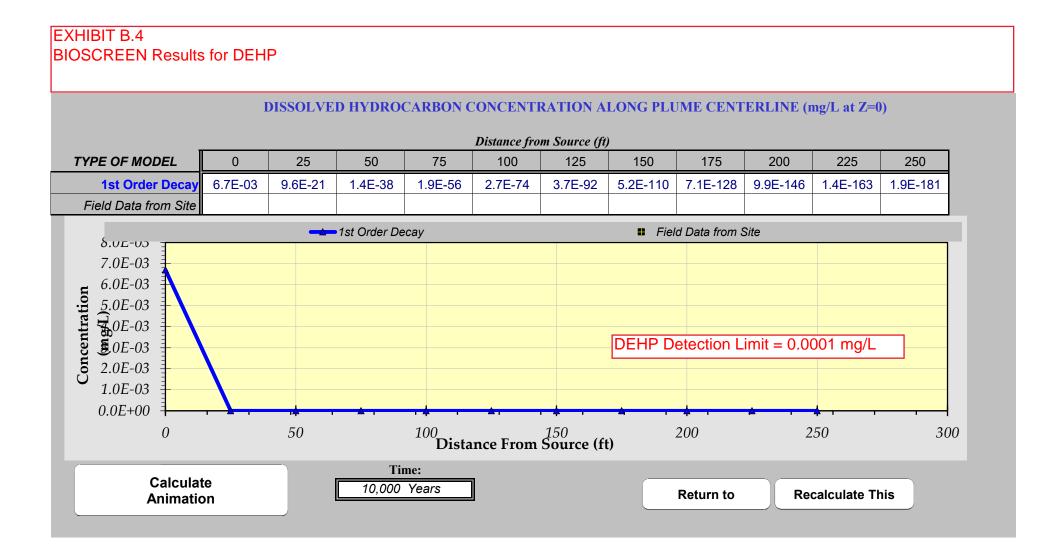

EXHIBIT B.3 BIOSCREEN Input for Toluene

EXHIBIT B.4 BIOSCREEN Input for DEHP

Appendix A.1

Half Life and K_{oc} Values for DEHP

Site GM1 BIOSCREEN Pollutant Fate and Transport Evaluation

Geomean	3.50		Geomean	5.13	1.49E+05	
Media	Half Life (days)	Full Citation	<u>Media</u>	logKoc	Koc (L/kg)	
N/A	10	Howard, P. H. (Ed.). (1991). Handbook of environmental degradation rates . CRC Press.	groundwater	4.1	1.22E+04	GSI. (2020). Groundwat Control Devices, City of for City of Scappoose.
soil	0.83	Zhao, H. M., Du, H., Lin, J., Chen, X. B., Li, Y. W., Li, H., & Wong, M. H. (2016). Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil. Science of the total Environment, 562, 170-178.	groundwater	5.2	1.58E+05	European Chemicals Ag Report.
soil	2.92	Zhao, H. M., Du, H., Lin, J., Chen, X. B., Li, Y. W., Li, H., & Wong, M. H. (2016). Complete degradation of the endocrine disruptor di-(2-ethylhexyl) phthalate by a novel Agromyces sp. MT-O strain and its application to bioremediation of contaminated soil. Science of the total Environment, 562, 170-178.	soil	4	1.00E+04	United States Environm Regulations Phthalate, o
surface water	50	Versar, Inc. (2010). Review of Exposure Data and Assessments for Select Dialkyl Ortho-phthalates. Prepared for the US Consumer Product Safety Commission. Feb 24	soil	5	1.00E+05	United States Environm Regulations Phthalate, o
soil	300	Versar, Inc. (2010). Review of Exposure Data and Assessments for Select Dialkyl Ortho-phthalates. Prepared for the US Consumer Product Safety Commission. Feb 24	soil	5.17	1.48E+05	Krop, H. B., et al. (2001
soils/sludge (aerobic)	0.42	World Health Organization. (1996). Guidelines for drinking-water quality, 2nd ed. Vol. 2. Health criteria and other supporting information. Geneva.	soil	6.23	1.70E+06	Krop, H. B., et al. (2001
soils/sludge (aerobic)	1.46	World Health Organization. (1996). Guidelines for drinking-water quality, 2nd ed. Vol. 2. Health criteria and other supporting information. Geneva.	soil	5.72	5.25E+05	Thomsen, M., et al. (199
soil	0.54	Wang, P., Gao, J., Zhao, Y., Zhang, M., & Zhou, S. (2021). Biodegradability of di-(2-ethylhexyl) phthalate by a newly isolated bacterium Achromobacter sp. RX. Science of The Total Environment, 755(Part 1), 142476. https://doi.org/10.1016/j.scitotenv.2020.142476	soil	4.94	8.71E+04	Schuurmann, G., et al. (
soil	0.67	Wang, P., Gao, J., Zhao, Y., Zhang, M., & Zhou, S. (2021). Biodegradability of di-(2-ethylhexyl) phthalate by a newly isolated bacterium Achromobacter sp. RX. Science of The Total Environment, 755(Part 1), 142476. https://doi.org/10.1016/j.scitotenv.2020.142476	soil	5.68	4.79E+05	Lu, C. (2009). Bull Envir
			soil	5.72	5.25E+05	Lu, C. (2009). Bull

Full Citation

water Protectiveness Demonstration for Underground Injection of Scappoose, Oregon. Prepared by GSI Water Solutions, Inc. (GSI),

Agency. (2014, December 11). Bis(2-ethylhexyl) phthalate (DEHP):

nmental Protection Agency. (1995). National Primary Drinking Water te, di(2-ethylhexyl) (Report No. EPA 811-F-95-003 y-T).

nmental Protection Agency. (1995). National Primary Drinking Water te, di(2-ethylhexyl) (Report No. EPA 811-F-95-003 y-T). 101). Rev Environ Contam Toxicol, 169 , 1-122.

001). Rev Environ Contam Toxicol, 169, 1-122.

1999). Chemosphere, 38, 2613-24.

al. (2006). Environ Sci Technol, 40, 7005-11.

nviron Contam Toxicol, 83 , 168-73.

ull Environ Contam Toxicol, 83, 168-73.

Appendix A.2

Half Life and K_{oc} Values for Toluene

Site GM1 BIOSCREEN Pollutant Fate and Transport Evaluation

Geomean	4.67		Geomean	2.21	165	
Site Name	Half Life (days)	Full Citation	Media	logKoc	Koc (L/kg)	
		Barker J.F., G.C. Patrick, and D. Major. 1987. Natural attenuation of aromatic hydrocarbons in a				Poulson, S. R., D
Canada Forces Base, Borden,	00	shallow sand aquifer. Ground Water Monit. Rev. 7: 64-72.				benzene, toluen
ON	22					studies. Chemos
-			Groundwater	2.78		6535(97)00300
		Barker J.F., G.C. Patrick, and D. Major. 1987. Natural attenuation of aromatic hydrocarbons in a		-		Mallon, B. J. (19
Canada Forces Base, Borden,		shallow sand aquifer. Ground Water Monit. Rev. 7: 64-72.				2 chlorinated co
ON	19					53952). Lawren
			Soil	2.17	148	
		American Petroleum Institute, 1994. Transport and fate of dissolved methanol, methyl-tertiary-butyl-				Wilson, J.T., Enfi
		ether,				Transport and Fa
Canada Forces Base, Borden,	15	and monoaromatic hydrocarbons in a shallow sand aquifer. American Petroleum Institute. Health				Quality, 10: 501
ON	10					Quality, 10. 501
		Environ. Sci. Dept. API Publ. No. 4601. April.	opil	2.25042	179	
		Allen King D.M. J.F. Barker, D.W. Cillhom, and D.K. Janson, 1004. Cubatrate, and putriant limited	soil	2.23042	178	Baker, J. R., Mih
Canada Forces Base, Borden,	10	Allen-King R.M., J.F. Barker, R.W. Gillham, and B.K. Jensen. 1994. Substrate- and nutrient-limited				
ON	13		NI /-	0.00		Methods for Orga
			N/a	2.39		Research, 69 (2
Canada Forces Base, Borden,		Allen-King R.M., J.F. Barker, R.W. Gillham, and B.K. Jensen. 1994. Substrate- and nutrient-limited				Environmental P
ON	8.7	toluene				Document (Publi
		biotransformation in sandy soil. Environ. Toxicol. Chem. 13: 693-705.	soil	2.146128	140	
		American Petroleum Institute, 1994. Transport and fate of dissolved methanol, methyl-tertiary-butyl-	·			
Canada Forces Base, Borden,		ether,				
ON	7.9	and monoaromatic hydrocarbons in a shallow sand aquifer. American Petroleum Institute. Health				Jin, Y., & O'Conn
011		Environ. Sci. Dept. API Publ. No. 4601. April.				19, No. 3, pp. 57
			soil	2.4517864	283	and Soil Science
Canada Forces Base, Borden,		Allen-King R.M., J.F. Barker, R.W. Gillham, and B.K. Jensen. 1994. Substrate- and nutrient-limited				
	5.6	toluene				Seip, H.M., J. Als
ON		biotransformation in sandy soil. Environ. Toxicol. Chem. 13: 693-705.	soil	1.97	93	mobility of organ
		Allen-King R.M., J.F. Barker, R.W. Gillham, and B.K. Jensen. 1994. Substrate- and nutrient-limited				Vowles, P.D., and
Canada Forces Base, Borden,	4.6	toluene				retention factors
ON		biotransformation in sandy soil. Environ. Toxicol. Chem. 13: 693-705.	esturary soil	2	100	
		Barker J.F., G.C. Patrick, and D. Major. 1987. Natural attenuation of aromatic hydrocarbons in a	,			Abdul, A.S., T.L. (
Canada Forces Base, Borden,	4.4	shallow sand aquifer. Ground Water Monit. Rev. 7: 64-72.				partition coefficie
ON			lab	2.06		water. Hazardou
		Allen-King R.M., J.F. Barker, R.W. Gillham, and B.K. Jensen. 1994. Substrate- and nutrient-limited				Garbarini, D.R.,
Canada Forces Base, Borden,	4.4	toluene				sorption of tolue
ON	T.T	biotransformation in sandy soil. Environ. Toxicol. Chem. 13: 693-705.	zein	2.09	123	Solption of tolde
		Allen-King R.M., J.F. Barker, R.W. Gillham, and B.K. Jensen. 1994. Substrate- and nutrient-limited	2011	2.00		Szabo, G., S.L. Pi
Canada Forces Base, Borden,	4.3	toluene				(Koc) of some ar
ON	4.3		lab	2.1	106	Chemosphere. 2
<u> </u>		biotransformation in sandy soil. Environ. Toxicol. Chem. 13: 693-705. Allen-King R.M., J.F. Barker, R.W. Gillham, and B.K. Jensen. 1994. Substrate- and nutrient-limited	140	2.1	120	onemosphere. 2
Canada Forces Base, Borden,	1 0					Seip, H.M., J. Als
ON	1.8	toluene	aail	0.40		
		biotransformation in sandy soil. Environ. Toxicol. Chem. 13: 693-705.	soil	2.13		mobility of organ
Canada Forces Base, Borden,	<u> </u>	Allen-King R.M., J.F. Barker, R.W. Gillham, and B.K. Jensen. 1994. Substrate- and nutrient-limited				Wilson, J.T., C.G.
ON	0.81	toluene				Transport and fa
		biotransformation in sandy soil. Environ. Toxicol. Chem. 13: 693-705.	sand	2.18	151	
		Albrechtsen H-J., P.M. Smith, P. Nielsen, and T.H. Christensen. 1996. Significance of biomass				Garbarini, D.R.,
		support				sorption of tolue
Vejen City, Jutland, Denmark	5.5	particles in laboratory studies on microbial degradation of organic chemicals in aquifers. Wat. Res.				
		30: 2977-2984.				
			soil	2.18	151	
		Albrechtsen H-J., P.M. Smith, P. Nielsen, and T.H. Christensen. 1996. Significance of biomass				Garbarini, D.R.,
		support				sorption of tolue
	0.05	particles in laboratory studies on microbial degradation of organic chemicals in aquifers. Wat. Res.	1			
Vejen City, Jutland, Denmark	0.35	particles in laboratory studies on microbial degradation of organic chemicals in additers. wat. Res.				
Vejen City, Jutland, Denmark	0.35	30: 2977-2984.				

Full Citation

. Drever, J. I., Colberg, P. J. S. (1997). Estimation of Koc values for deuterated ene, and ethylbenzene, and application to ground water contamination cosphere, 35(10), 2215-2224. https://doi.org/10.1016/S0045-00-7

1989). Transport and environmental chemistry of selected C sub 1 and C sub compounds and petroleum hydrocarbons in soils and ground water (No. UCRLence Livermore National Lab.(LLNL), Livermore, CA (United States).

nfield, C.G., Dunlap, W.J., Cosby, R.L., Foster, D.A. and Baskin, L.B. (1981), J Fate of Selected Organic Pollutants in a Sandy Soil. Journal of Environmental 01-506. https://doi.org/10.2134/jeq1981.00472425001000040016x

Mihelcic, J. R., Luehrs, D. C., & Hickey, J. P. (1997). Evaluation of Estimation Drganic Carbon Normalized Sorption Coefficients. Water Environment Q (2), 136–145. http://www.jstor.org/stable/25044855

I Protection Agency (1996). Soil Screening Guidance Technical Background blication No. Publication 9355.4-17A).

onnor, G. A. (1990). *Behavior of Toluene Added to Sludge-Amended Soils* (Vol. 573-579). American Society of Agronomy, Crop Science Society of America, nce Society of America.

Alstad, G.E. Carlberg, K. Martinsen, and R. Skanne. 1986. Measurement of ganic compounds in soils. Sci. Total Environ. 50:87-101.

and R.F.C. Mantoura. 1987. Sediment-water partition coefficients and HPLC ors of aromatic hydrocarbons. Chemosphere. 16(1):109-116.

L. Gibson, and D.N. Rai. 1987. Statistical correlations for predicting the ficient for nonpolar organic contaminants between aquifer organic carbon and lous Waste & Hazardous Materials 4(3):211-222.

R., and L.W. Lion. 1986. Influence of the nature of soil organics on the luene and trichloroethylene. Environ. Sci. Technol. 20(12):1263-1269.

.. Prosser, and R.A. Bulman. 1990. Determination of the adsorption coefficient e aromatics for soil by RP-HPLC on two immobilized humic acid phases. e. 21(6):777-788.

Alstad, G.E. Carlberg, K. Martinsen, and R. Skanne. 1986. Measurement of ganic compounds in soils. Sci. Total Environ. 50:87-101.

C.G. Enfield, W.J. Dunlap, R.L. Cosby, D.A. Foster, and L.B. Baskin. 1981. If fate of selected organic pollutants in a sandy soil. J. Environ. Qual. 10(4):501-

R., and L.W. Lion. 1986. Influence of the nature of soil organics on the luene and trichloroethylene. Environ. Sci. Technol. 20(12):1263-1269.

R., and L.W. Lion. 1986. Influence of the nature of soil organics on the luene and trichloroethylene. Environ. Sci. Technol. 20(12):1263-1269.

		Albrechtsen H-J., P.M. Smith, P. Nielsen, and T.H. Christensen. 1996. Significance of biomass				Garbarini, D.R.,
Grindsted, Denmark	2.73	support particles in laboratory studies on microbial degradation of organic chemicals in aquifers. Wat. Res. 30: 2977-2984.				sorption of tolu
		50. 2977-2904.	soil	2.21	162	
		Fuller M.E., D.Y. Mu, and K.M. Scow. 1995. Biodegradation of trichloroethylene and toluene by				Szabo, G., S.L. F
Livermore, California	27	indigenous				(Koc) of some a
		microbial populations in vadose sediments. Microb. Ecol. 29: 311-325. 1995.	lab	2.26	182	Chemosphere.
		Fuller M.E., D.Y. Mu, and K.M. Scow. 1995. Biodegradation of trichloroethylene and toluene by				Schwarzenbach
Livermore, California	22	indigenous				surface water to
		microbial populations in vadose sediments. Microb. Ecol. 29: 311-325. 1995.	lab	2.39	245	15(11):1360-13
	10	Fuller M.E., D.Y. Mu, and K.M. Scow. 1995. Biodegradation of trichloroethylene and toluene by				
Livermore, California	12	indigenous				
		microbial populations in vadose sediments. Microb. Ecol. 29: 311-325. 1995. Fuller M.E., D.Y. Mu, and K.M. Scow. 1995. Biodegradation of trichloroethylene and toluene by	_			
Livermore, California	2.1	indigenous				
Livernore, Camornia	2.1	microbial populations in vadose sediments. Microb. Ecol. 29: 311-325. 1995.				
		Fuller M.E., D.Y. Mu, and K.M. Scow. 1995. Biodegradation of trichloroethylene and toluene by	-			
Livermore, California	7.9	indigenous				
		microbial populations in vadose sediments. Microb. Ecol. 29: 311-325. 1995.				
		Fuller M.E., D.Y. Mu, and K.M. Scow. 1995. Biodegradation of trichloroethylene and toluene by				
Livermore, California	0.42	indigenous				
		microbial populations in vadose sediments. Microb. Ecol. 29: 311-325. 1995.				
		Fuller M.E., D.Y. Mu, and K.M. Scow. 1995. Biodegradation of trichloroethylene and toluene by				
Livermore, California	0.15	indigenous				
		microbial populations in vadose sediments. Microb. Ecol. 29: 311-325. 1995.				
		Aelion C.M., D.C. Dobbins, and F.K. Pfaender. 1989. Adaptation of aquifer microbial communities to	1			
		the				
Traverse City, Michigan	693	biodegradation of xenobiotic compounds: influence of substrate concentration and preexposure.				
		Environ. Toxicol. Chem. 8: 75-86.				
		Wilson LT, DL, Oschulard OD, Orcith, 4004, Determination biodegradation of angene oblighter	-			
Diskett, Oklahamaa	495	Wilson J.T., R.L. Cosby, and G.B. Smith. 1984. Potential for biodegradation of organo-chlorine				
Pickett, Oklahoma	495	compounds in				
		ground water. Pre-publication. Ada, OK: RS Kerr Environmental Res. Lab. Wilson J.T., R.L. Cosby, and G.B. Smith. 1984. Potential for biodegradation of organo-chlorine	_			
Fort Polk, Louisiana	365	compounds in				
	505	ground water. Pre-publication. Ada, OK: RS Kerr Environmental Res. Lab.				
		Wilson J.T., R.L. Cosby, and G.B. Smith. 1984. Potential for biodegradation of organo-chlorine	-			
Fort Polk, Louisiana	231	compounds in				
,		ground water. Pre-publication. Ada, OK: RS Kerr Environmental Res. Lab.				
		Fan S. and K.M. Scow. 1993. Biodegradation of trichloroethylene and toluene by indigenous				
Yolo County, California	72	microbial				
		populations in soil. Appl. Environ. Microbiol. 59: 1911-1918.				
		Mu D.Y. and K.M. Scow. 1994. Effect of trichloroethylene (TCE) and toluene concentrations on TCE				
Yolo County, California	60	and				
role county, california	00	toluene biodegradation and the population density of TCE and toluene degraders in soil. Appl.				
		Environ. Microbiol. 60: 2661-2665.	4			
		Mu D.Y. and K.M. Scow. 1994. Effect of trichloroethylene (TCE) and toluene concentrations on TCE				
Yolo County, California	5.1	and				
	-	toluene biodegradation and the population density of TCE and toluene degraders in soil. Appl.				
		Environ. Microbiol. 60: 2661-2665.	4			
Vala County Colliferation		Fan S. and K.M. Scow. 1993. Biodegradation of trichloroethylene and toluene by indigenous				
Yolo County, California	5.1	microbial				
		populations in soil. Appl. Environ. Microbiol. 59: 1911-1918.	-			
Yolo County, California	4.7	Fan S. and K.M. Scow. 1993. Biodegradation of trichloroethylene and toluene by indigenous				
TOID COUNTY, California	4.7	microbial				
		populations in soil. Appl. Environ. Microbiol. 59: 1911-1918. Mu D.Y. and K.M. Scow. 1994. Effect of trichloroethylene (TCE) and toluene concentrations on TCE	4			
		and				
Yolo County, California	4.1	toluene biodegradation and the population density of TCE and toluene degraders in soil. Appl.				
		Environ. Microbiol. 60: 2661-2665.				

R., and L.W. Lion. 1986. Influence of the nature of soil organics on the coluene and trichloroethylene. Environ. Sci. Technol. 20(12):1263-1269.

L. Prosser, and R.A. Bulman. 1990. Determination of the adsorption coefficient ne aromatics for soil by RP-HPLC on two immobilized humic acid phases. re. 21(6):777-788.

oach, R.P., and J. Westall. 1981. Transport of nonpolar organic compounds from er to groundwater. Laboratory sorption studies. Environ. Sci. Technol. 0-1367.

		Fan S. and K.M. Scow. 1993. Biodegradation of trichloroethylene and toluene by indigenous
Yolo County, California	3.1	microbial
Toto county, cumornia	0.1	populations in soil. Appl. Environ. Microbiol. 59: 1911-1918.
		Mu D.Y. and K.M. Scow. 1994. Effect of trichloroethylene (TCE) and toluene concentrations on TCE
		and
Yolo County, California	2	toluene biodegradation and the population density of TCE and toluene degraders in soil. Appl.
		Environ. Microbiol. 60: 2661-2665.
		Fan S. and K.M. Scow. 1993. Biodegradation of trichloroethylene and toluene by indigenous
Vala County California	1.8	microbial
Yolo County, California	1.0	
		populations in soil. Appl. Environ. Microbiol. 59: 1911-1918. Fan S. and K.M. Scow. 1993. Biodegradation of trichloroethylene and toluene by indigenous
Vala County Colifornia	1.8	
Yolo County, California	1.8	microbial
		populations in soil. Appl. Environ. Microbiol. 59: 1911-1918. Fan S. and K.M. Scow. 1993. Biodegradation of trichloroethylene and toluene by indigenous
Vala Osvata Oslifamia	4.0	
Yolo County, California	1.8	microbial
		populations in soil. Appl. Environ. Microbiol. 59: 1911-1918.
	4.0	Fan S. and K.M. Scow. 1993. Biodegradation of trichloroethylene and toluene by indigenous
Yolo County, California	1.2	microbial
		populations in soil. Appl. Environ. Microbiol. 59: 1911-1918.
		Mu D.Y. and K.M. Scow. 1994. Effect of trichloroethylene (TCE) and toluene concentrations on TCE
Yolo County, California	0.94	and
	010 1	toluene biodegradation and the population density of TCE and toluene degraders in soil. Appl.
		Environ. Microbiol. 60: 2661-2665.
		Mu D.Y. and K.M. Scow. 1994. Effect of trichloroethylene (TCE) and toluene concentrations on TCE
Yolo County, California	0.93	and
Tolo county, camornia	0.93	toluene biodegradation and the population density of TCE and toluene degraders in soil. Appl.
		Environ. Microbiol. 60: 2661-2665.
	0.34	Mu D.Y. and K.M. Scow. 1994. Effect of trichloroethylene (TCE) and toluene concentrations on TCE
Yolo County, California		and
		toluene biodegradation and the population density of TCE and toluene degraders in soil. Appl.
		Environ. Microbiol. 60: 2661-2665.
		Davis J.W. and S. Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere.
No Name	53	33: 107-
		130. 1996.
		Davis J.W. and S. Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere.
No Name	41	33: 107-
		130. 1996.
		Davis J.W. and S. Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere.
No Name	32	33: 107-
		130. 1996.
		Davis J.W. and S. Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere.
No Name	28	33: 107-
		130. 1996.
		Davis J.W. and S. Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere.
No Name	26	33: 107-
		130. 1996.
		Davis J.W. and S. Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere.
No Name	26	33: 107-
		130. 1996.
<u> </u>		Davis J.W. and S. Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere.
No Name	7.1	33: 107-
		130. 1996.
		Davis J.W. and S. Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere.
No Name	1.5	33: 107-
no nume	1.0	130. 1996.
		Davis J.W. and S. Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere.
No Namo	1 /	
No Name	1.4	33: 107-
		130. 1996.
No Norro	4.0	Davis J.W. and S. Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere.
No Name	1.3	33: 107-
		130. 1996.

		Davis J.W. and S. Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere.
No Name	1.3	33: 107-
		130. 1996.
		Davis J.W. and S. Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere.
No Name	1.2	33: 107-
		130. 1996.
		Davis J.W. and S. Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere.
No Name	0.96	33: 107-
		130. 1996.
		Davis J.W. and S. Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere.
No Name	0.67	33: 107-
		130. 1996.
		Davis J.W. and S. Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere.
No Name	0.46	33: 107-
		130. 1996.
		McNabb J.F., B.H. Smith, and J. T. Wilson. 1981. Biodegradation of toluene and chlorobenzene in
	<u>.</u>	soil and
No Name	2.1	groundwater. 81st Annual Meeting of the Amer. Society for Microbiology. Dallas, TX. March 1-6. 213
		pp.
· · · · · · · · · · · · · · · · · · ·		Corpouil U.V. D.C.E. doo Contoo and M.D.M. Marine 4007. One litre cuille in Density off in the
		Corseuil H.X., R.C.F. dos Santos, and M.D.M. Marins. 1997. Gasoline spills in Brazil: effect of
lurara Daaah Drazil	0.27	ethanol on
Jurere Beach, Brazil	0.37	groundwater contamination. Presented at: IAWQ Inter. Conf. Waste Control Environ. Manag. Large
		Metro. Areas. Sao Paolo, Brazil. May.
		Bradley P.M. and F.H. Chapelle. 1995. Rapid toluene mineralization by aquifer microorganisms at
		Adak,
Hanahan, South Carolina	32	Alaska: Implications for intrinsic bioremediation in cold environments. Environ. Sci. Technol. 29:
		2778-2781.
		Swindoll C.M., C.M. Aelion, and F.K. Pfaender. 1988. Influence of inorganic and organic nutrients or
		aerobic
Lua, Oklahoma	41	biodegradation and on the adaptation response of subsurface microbial communities. Appl.
Edd, Oklahoma	71	Environ.
		Microbiol. 54: 212-217.
		Wilson J.T., G.D. Miller, W.C. Ghiorse, and F.R. Leach, 1986. Relationship between the ATP content
		of
Lula, Texas	17	subsurface material and the rate of biodegradation of alkylbenzenes and chlorobenzene. J.
,		Contam.
		Hydrol. 1: 163-170.
		Wilson J.T., G.D. Miller, W.C. Ghiorse, and F.R. Leach, 1986. Relationship between the ATP content
		of
Lula, Texas	2	subsurface material and the rate of biodegradation of alkylbenzenes and chlorobenzene. J.
		Contam.
		Hydrol. 1: 163-170.
		Wilson J.T., G.D. Miller, W.C. Ghiorse, and F.R. Leach, 1986. Relationship between the ATP content
		of
Lula, Texas	1.9	subsurface material and the rate of biodegradation of alkylbenzenes and chlorobenzene. J.
		Contam.
		Hydrol. 1: 163-170.
		Bradley P.M. and F.H. Chapelle. 1995. Rapid toluene mineralization by aquifer microorganisms at
Naval Air Station Adak, AK	2.9	Adak,
Havar Air Otation Addry Ar	2.0	Alaska: Implications for intrinsic bioremediation in cold environments. Environ. Sci. Technol. 29:
		2778-2781.
		Hunt C.S. and P.J.J. Alvarez. 1997. Effect of ethanol on aerobic BTX degradation. In: In Situ and On-
		Site
Santa Catarina Island, Brazil	2.2	Bioremediation. Volume I. 4th International In situ and On-Site Bioremediation Symposium. Biorem.
		4: 49-54.
	0.00	Jin Y., T. Streck, and W.A. Jury. 1994. Transport and biodegradation of toluene in unsaturated soil.
Riverside, California	0.02	J.
		Contam. Hydrol. 17: 111-127.

Riverside, California	0.02	Jin Y., T. Streck, and W.A. Jury. 1994. Transport and biodegradation of toluene in unsaturated soil. J. Contam. Hydrol. 17: 111-127.
N/A	13	Howard, P. H. (Ed.). (1991). Handbook of environmental degradation rates . CRC Press.

-ATTACHMENT C----

Technical Documentation for BIOSCREEN Model Simulations Between the Rapid Infiltration Basin and Groundwater Adjacent to the Santiam River

ATTACHMENT C

Application of BIOSCREEN to Evaluate Dispersion, Sorption, and Biodegradation of Pollutants in Groundwater Between an Infiltration Basin and Groundwater Adjacent to the Santiam River, Mill City, Oregon

1. Background

BIOSCREEN is an analytical model developed by the U.S. Environmental Protection Agency (EPA) to simulate pollutant fate and transport in saturated porous media (EPA, 1996), as discussed in Attachment B. Nitrate was modeled with BIOSCREEN at Site GM1 because it potentially migrates offsite at concentrations above background (see Attachment B). The purpose of the BIOSCREEN modeling is to predict pollutant concentrations in groundwater adjacent to the Santiam River due to wastewater infiltration at Site GM1 (see Exhibit C.1) The simulations are based on the pollutant attenuation by dispersion, sorption, and biodegradation that is expected to occur during transport from the downgradient edge of the infiltration basin to the groundwater adjacent to the Santiam River.

2. Model Input Parameters

Model input parameters are summarized in Table C.1. The following subsections describe the methods that were used to develop the model input parameters. Model input parameters were developed based on scientific literature and site-specific data collected during the Phase II and Phase III Subsurface Characterizations at GM1 (GSI, 2023; GSI, in press).

Model Input Parameter	Symbol	Value	Units	Subsection in the Text	
Seepage Velocity	Vs	1,368	1,368feet/yearS32.0 (Longitudinal)feet		
	$lpha_{ m L}$	32.0 (Longitudinal)	feet		
Dispersivity	α_{T}	10.6 (Transverse)	feet	Subsection 2.2	
	$lpha_V$	1.6 (Vertical)	feet		
Retardation Factor	R	1.0 (Nitrate)	dimensionless	Subsection 2.3	
Half Life	h	∞ (Nitrate) days		Subsection 2.4	
Initial Concentration	Co	4.30 (Nitrate)	(1111110)		
Source Width and Thickness	Ws	550	feet	Subsection 2.6	
Source width and Thickness	Ts	20	feet	Subsection 2.6	
Madal Width and Longth	Wm	1,000	feet	Subsection 2.7	
Model Width and Length	L _m	1,950	feet	Subsection 2.7	
Simulation Time	t	10,000 years Subsec		Subsection 2.8	
Source Type		Constant Concentration Subsec		Subsection 2.9	

Table C.1. BIOSCREEN Model Input Parameters.

Notes

mg/L = milligrams per liter

Application of BIOSCREEN to Evaluate Dispersion, Sorption, and Biodegradation of Pollutants in Groundwater Between an Infiltration Basin and Groundwater Adjacent to the Santiam River, Mill City, Oregon

2.1 Seepage Velocity (v_s)

Table C.2 summarizes the values used to calculate seepage velocity for input to the BIOSCREEN model using the equations and site-specific data in Attachment B (subsection 2.1).

Table C.2. Seepage Velocity Calculation.

Model Input Parameter	Symbol	Value	Units	Notes
Horizontal Hydraulic Conductivity	K	88.2	feet/day	Geometric mean from slug tests at GM1- MW1, GM1-MW2 and GM1-MW3
Effective Porosity	$\eta_{ m e}$	0.24		Specific yield for a "Gravel, medium" from Heath (1983)
Horizontal Hydraulic Gradient	abla h	0.0102 ¹	feet/foot	Groundwater elevation measurements at GM1-MW1, GM1-MW2 and GM1-MW3 in summer 2023
Seepage Velocity	Vs	3.75	feet/day	Attachment B (subsection 2.1)

Notes

(1) This horizontal hydraulic gradient was measured in summer of 2023 and, therefore, represents ambient aquifer conditions (i.e., no mounding due to infiltration). According to groundwater mounding modeling with MOUNDSOLV, the horizontal hydraulic gradient will not significantly change during infiltration at the scale of the GM-1 site (although groundwater levels will increase).

2.2 Dispersivity (α_L , α_T , α_V)

Dispersity was calculated using the equations and conditions discussed in Attachment B (subsection 2.2). As shown in Exhibit C.1, the shortest distance between an infiltration basin and groundwater adjacent to the Santiam River along the groundwater flow path is about 1,950 feet. Based on a pollutant plume length of 594.3 meters (1,950 feet), the longitudinal dispersivity is 9.8 meters (32.0 feet) according to Equation (B.6). According to ASTM (1995), transverse dispersivity can be assumed to be 33% of longitudinal dispersivity (i.e., 3.2 meters or 10.6 feet), and vertical dispersivity can be assumed to be 5% of longitudinal dispersivity (i.e., 0.49 meters or 1.6 feet).

2.3 Retardation

Retardation of nitrate was calculated using the same methods referenced in Attachment B (see subsection 2.3). Table C.3 summarizes the values that were used to calculate retardation factor for nitrate.

Model Input Parameter	Units	Nitrate		
Soil Bulk Density ($ ho_b$) ¹	kg/L	1.66		
Organic Carbon-Water Partitioning Coefficient (K_{oc}) ²	L/kg	0.0		
Fraction Organic Carbon (f_{oc}) ³		0.001		
Total Porosity (η) ⁴		0.39		
Retardation Factor		1.0		

Table C.3. Retardation Factor Calculation.

Notes

(1) Average dry bulk density based on soil samples collected from the monitoring well GM1-MW1 boring. See Attachment B of the Phase II Subsurface Characterization (GSI, 2023).

(2) The Koc for nitrate was set to 0.0 L/kg to simulate transport in the aqueous phase only (i.e., not sorption to soil).

(3) Recommended default value from ASTM (1995). Soil analysis pending.

(4) Average total porosity based on soil samples collected from the monitoring well GM1-MW1 boring. See Attachment B of the Phase II Subsurface Characterization (GSI, 2023).

kg/L = kilograms per liter

Note that the retardation factors for nitrate are 1.0, indicating that these pollutants do not sorb to soil and travel at the same velocity as groundwater.

2.4 Half Life (h) and First Order Decay Constant (λ)

Nitrate do not degrade under aerobic conditions. Therefore, the first order decay coefficient was entered into BIOSCREEN for nitrate as zero.

Table C.4. Biodegradation Rates.

Scenario	Half Life	First Order Decay Constant ¹	Notes	
Nitrate	Infinite	0.0	No degradation	

Notes

(1) Calculated by the following equation: $\lambda = \ln(2)/h$

2.5 Initial Pollutant Concentration (C₀)

The initial nitrate concentrations in BIOSCREEN were calculated by the Large Onsite Septic System (LOSS) model (see Attachment A for a detailed discussion) based on the scenario run as summarized in Table C.5.

Table C.5. Initial Pollutant Concentrations.

Scenario	Treatment	Concentration in Wastewater	Concentration in Groundwater
Nitrate	SBR	6 mg/L	4.30 mg/L

Notes

mg/L = milligrams per liter

SBR = sequencing batch reactor

2.6 Source Width (*W_s*) and Thickness (*T_s*)

The width of the source, W_s , is the infiltration basin width perpendicular to the direction of groundwater flow. As shown in Exhibit C.1, groundwater flows towards the northwest, and the width of the infiltration basins perpendicular to the groundwater flow direction is about 550 feet. Source thickness in the saturated zone was selected to be 20 feet to align the BIOSCREEN model with the LOSS model. Specifically, the LOSS model guidance (DOH, 2021) assumes that infiltrating wastewater will mix with the upper 20 feet of the saturated zone at a maximum.

2.7 Model Width (*W_m*) and Model Length (*L_m*)

The width of the area being modeled (W_m) should be larger than the pollutant plume and was selected to be 1,000 feet in the BIOSCREEN model. The length of the area being modeled (L_m) is equivalent to the length over which concentrations are to be calculated and was selected to be 1,950 feet in the BIOSCREEN model (i.e., the shortest distance between the downgradient edge of an infiltration basin and groundwater adjacent to the Santiam River).

2.8 Simulation Time (*t*)

Simulation time (t) is the time period over which transport occurs. A simulation time of 10,000 years was used for the BIOSCREEN simulations. It was determined empirically that the pollutants plumes reach a steady state condition by this time.

Application of BIOSCREEN to Evaluate Dispersion, Sorption, and Biodegradation of Pollutants in Groundwater Between an Infiltration Basin and Groundwater Adjacent to the Santiam River, Mill City, Oregon

2.9 Source Type

Pollutant fate and transport simulations can be conducted using several different source types. For example, a source can be simulated as continuous with constant concentration, continuous with a concentration that decays over time, a pulse of known concentration, etc. The infiltration of treated wastewater was conservatively simulated as a continuous source with constant concentration in the BIOSCREEN model by entering a "Source Half Life" of "Infinite" in the model. It should be noted that this is a conservative assumption because infiltration basins will not be operated continuously (specifically, every twelve days, a basin will infiltrate treated wastewater for two days).

3. Model Output

This section summarizes output from the BIOSCREEN model (i.e., pollutant concentration in groundwater adjacent to the Santiam River assuming a separation of 1,950 feet between the and closest infiltration basin and groundwater adjacent to the Santiam River) for nitrate (Section 3.1).

3.1 Nitrate

Nitrate concentrations in groundwater adjacent to the Santiam River are summarized in Table C.6. The BIOSCREEN input and output are provided in Exhibit C.2 and Exhibit C.3, respectively.

Scenario	Total Nitrogen	Nitrate Concentration in	Nitrate Concentration in
	Concentration in Treated	Groundwater at the Basin Edge	Groundwater Adjacent to
	Wastewater, <i>N</i> w	(from the LOSS Model), <i>N</i> _{GW}	River (from BIOSCREEN)
Nitrate	6.0 mg/L	4.30 mg/L	1.1 mg/L to 4.30 mg/L 1

Table C.6. Nitrate Concentration in Groundwater Adjacent to the Santiam River.

Notes

mg/L = milligrams per liter

(1) The BIOSCREEN model calculates a concentration of 0.739 mg/L for the low-end concentration (see Exhibit C.3 at 1,950 feet). However, concentration could not fall below the background of 1.1 mg/L, so the lower end of the range is set to be 1.1 mg/L.

As discussed in the introduction section, the nitrate concentrations output from the BIOSCREEN model should be considered approximations because the equation on which BIOSCREEN is based assume, in this case, mixing between a nitrate source concentration of 4.30 mg/L and a groundwater nitrate concentration of 0.0 mg/L. In reality, the groundwater nitrate concentration is 1.1 mg/L. As a result, the nitrate concentrations in groundwater adjacent to the Santiam River are listed in Table C.6 as falling somewhere between the concentration predicted by the LOSS model (4.30 mg/L) and the concentration in background groundwater (1.1 mg/L). The concentration predicted by BIOSCREEN (0.739 mg/L) is not listed in Table C.6 because the nitrate concentration cannot be attenuated to below background by dispersion alone.

4. Conclusions

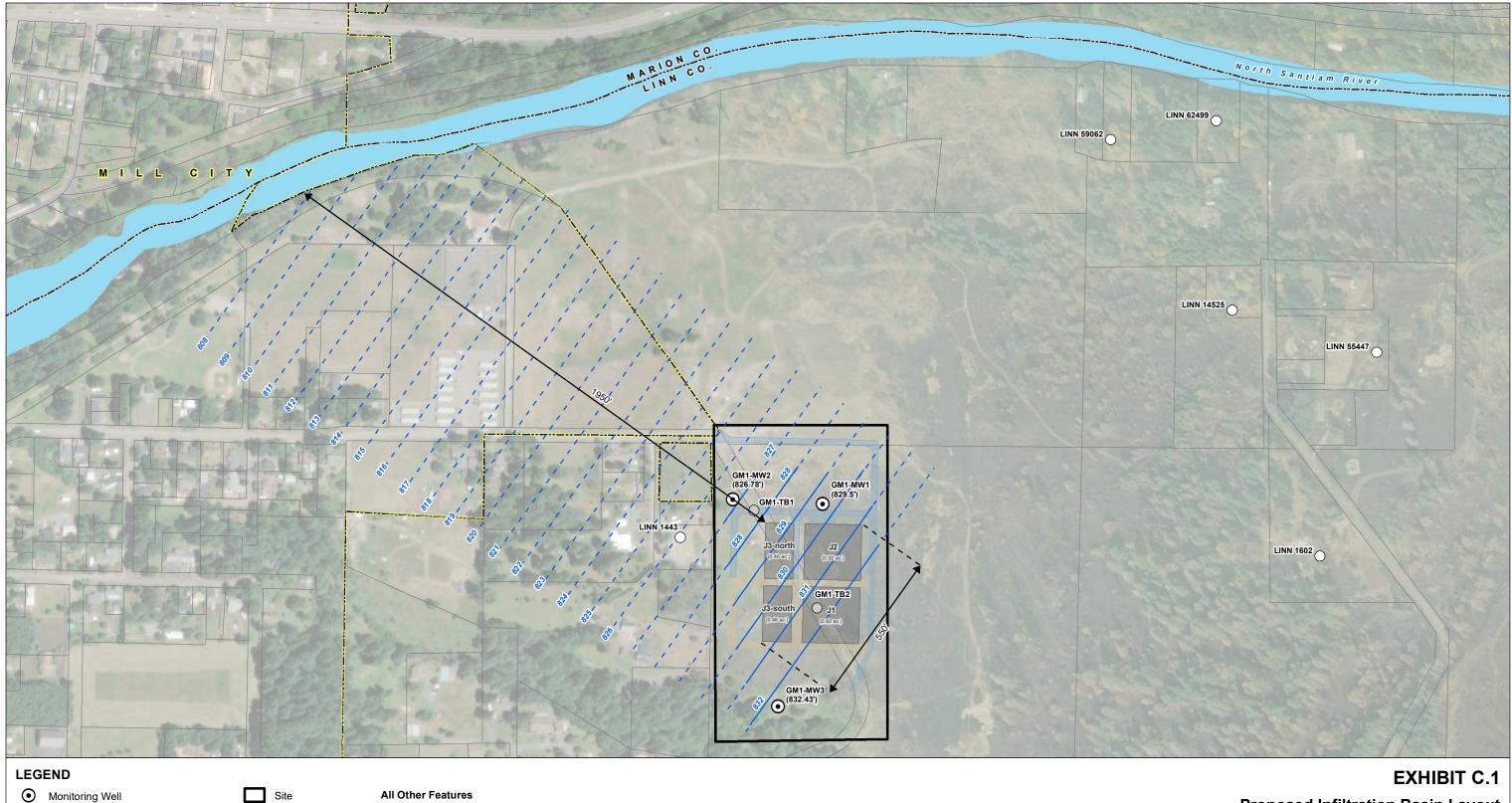
Based on modeling of dilution, dispersion, biodegradation, and sorption described in Attachment A (LOSS model) and Attachment C (BIOSCREEN model), we conclude that the nitrate concentration in groundwater adjacent to the Santiam River is between 1.1 mg/L and 4.30 mg/L. assuming basin configurations shown in Exhibit C.1.

5. References

ASTM. 1995. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. ASTM E-1739-95. Philadelphia, PA.

DOH. 2021. Level 1 Nitrate Balance Instructions for Large One-Site Sewage Systems. DOH 337-069. May.

EPA. 1996. BIOSCREEN Natural Attenuation Decision Support System User's Manual Version 1.3. Office of Research and Development. EPA/600/R-96/087. August.


Freeze, R. A. and J. A. Cherry. 1979. Groundwater. 604 pp.

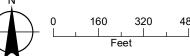
GSI. 2023. Phase II Subsurface Characterization to Support and Evaluation of Treated Wastewater Infiltration in Gates and Mill City, Marion and Linn Counties, Oregon. September 12.

GSI. In press. Phase III Subsurface Characterization to Support an Evaluation of Treated Wastewater Infiltration in Gates and Mill City, Marion and Linn Counties, Oregon.

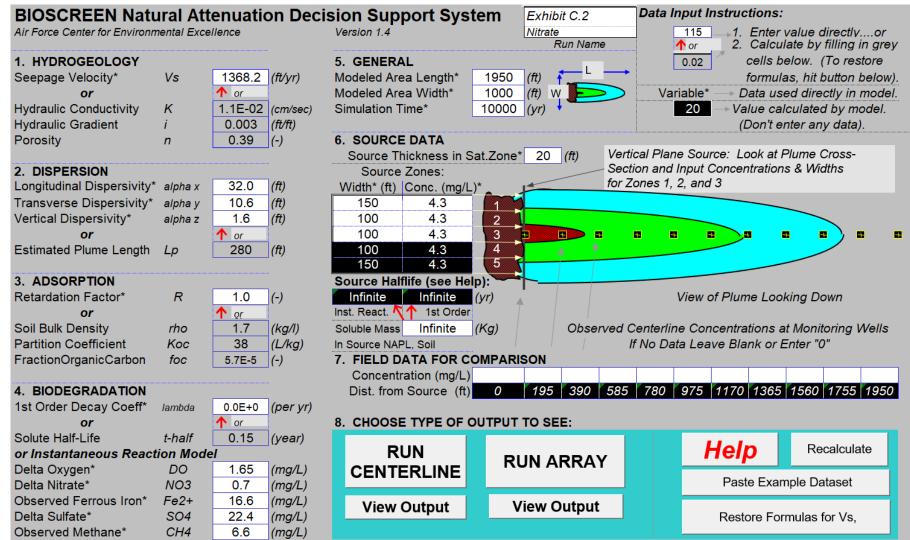
Heath, R. C. 1983. Basic ground-water hydrology. U.S. Geological Survey Water-Supply Paper 2220, 86 p.

Xu, M. and Y. Eckstein. 1995. Use of Weighted Least-Squares Method in Evaluation of the Relationship Between Dispersivity and Scale. Journal of Groundwater (33), No. 6, pp. 905 – 908.

- O Residential Well
- Temporary Boring Phase III
- ← Groundwater Elevation Contour, feet
- Basin


Asphalt Pavement

Gravel


- Tax Lot
- City Boundary
- County Boundary
- /// Major Road

Proposed Infiltration Basin Layout Gates-Mill City Treated Wastewater Infiltration Evaluation

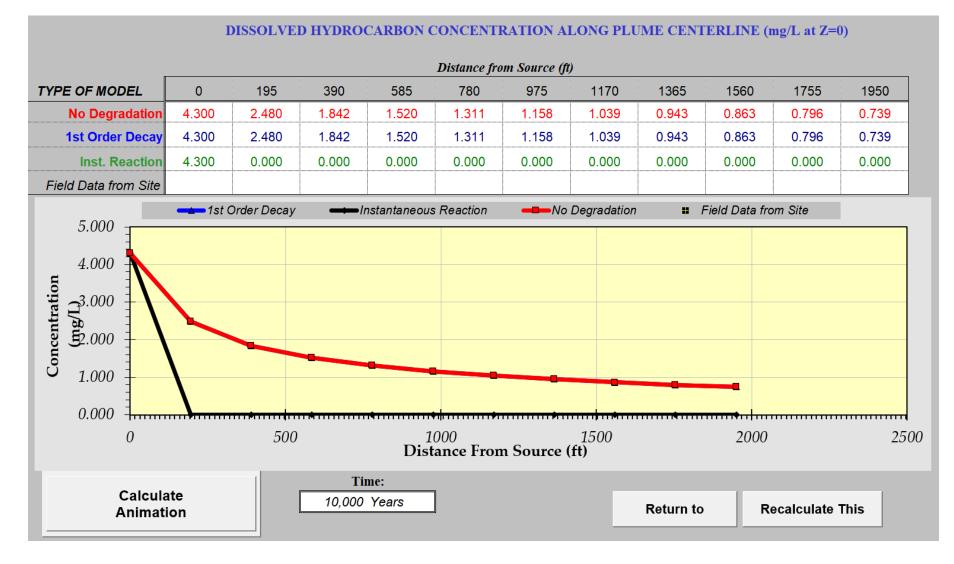


EXHIBIT C.2 BIOSCREEN Input for Nitrate

EXHIBIT C.3 BIOSCREEN Centerline Output for Nitrate

APPENDIX J

Agency Permitting and Approvals

Anticipated Agency Permits and Approvals -

Agency	Permit or Approval	Regulation	Permit Trigger	Application Process	Timing Considerations	Applicable to Project?
Federal						
Lead Federal Agency (to be determined [TBD] based on funding)	Federal decision	National Environmental Policy Act (NEPA)	While ARPA funding does not trigger NEPA, additional federal funding could trigger NEPA. Additional trigger for NEPA would be the need for a U.S. Army Corps of Engineers [USACE] Individual Permit [IP] NEPA. If the projects are able to get a Nationwide Permit [NWP] NEPA would not be needed. See descriptions of these permits below.)	The type of NEPA documentation depends on the level of complexity of the project. Categorical Exclusion (CE): Limited to a specific category of actions that federal agencies have determined do not have significant effects. Public involvement not needed. Complete basic documentation. Environmental Assessment (EA): Significant impacts not expected, low level of complexity or controversy. Public involvement and public review required. Baseline studies may be needed. Only one action alternative required. Environmental Impact Statement (EIS): Significant impacts expected, high level of complexity or controversy. Public involvement and public review required. Baseline studies may be needed. Typically includes input from cooperating agencies and considers more than one action alternative.	Duration: CE: <6 months EA: 6–12 months EIS: 2 years <u>Timing</u> : Other consultations (e.g., ESA, National Historic Preservation Act [NHPA] Section 106) must be complete prior to permit issuance.	All

Agency	Permit or Approval	Regulation	Permit Trigger	Application Process	Timing Considerations	Applicable to Project?
USACE	IP or NWP 58 (if permanent impacts can be reduced to less than 0.5 acre) IP/NWP submitted concurrently with Oregon Department of State Lands (DSL) Removal- Fill Permit in a Joint Permit Application (JPA)	Clean Water Act (CWA), Section 404	Discharge of fill material or removal of substrate or sediment in Waters of the U.S. (WOTUS). May be avoided by avoiding work below ordinary high water and disturbance of wetlands.	Conduct a survey of WOTUS (i.e., wetland delineation) for the project. Complete a pre-application meeting with USACE. Prepare a cover letter, USACE application (Engineer Form 4345 for an IP or Form 6082 for NWP), and supplemental information. Submit a conceptual compensatory mitigation plan as part of the IP application. Before issuance of an IP, USACE must identify a Least Environmentally Damaging Practicable Alternative (LEDPA). As part of the JPA (for an IP or NWP), submit an alternatives analysis consistent with CWA Section 404(b)(1) Guidelines and NEPA requirements. A Public Notice is required (for both IPs and NWPs) and public comments are addressed within 30 days of the comment period close. For both an IP and a NWP, the USACE must complete consultations under ESA Section 7 with the U.S. Fish and Wildlife Services (USFWS) and/or National Oceanic and Atmospheric Administration's National Marine Fisheries (NOAA Fisheries) as well as with the Oregon State Historic Preservation Office (SHPO) under NHPA Section 106.	Duration: IP: up to 22 months once USACE has determined the application package complete for a project that may be controversial, may not be considered the LEDPA, may result in the take of ESA species, may impact cultural resources, or requires a CWA Section 401 Water Quality Certification (WQC). <u>NWP 58</u> : up to 12 months. Duration of permitting is largely influenced by the timing and duration of external consultations (e.g., ESA, NHPA Section 106) required for permit issuance. <u>Timing</u> : Project design components described in Section 5 of this plan must be drafted to complete either an IP or NWP. Other consultations (e.g., ESA, NHPA Section 106) must be complete prior to permit issuance.	All

Agency	Permit or Approval	Regulation	Permit Trigger	Application Process	Timing Considerations	Applicable to Project?
NOAA Fisheries	ESA Section 7 consultation and concurrence	ESA Section 7	Actions that may affect federally listed species or their critical habitat; in this case, Upper Willamette River Chinook salmon and Upper Willamette River steelhead. May be avoided by avoiding in-water work and disturbance of riparian area. Consultation triggered by any federal nexus (e.g., federal funding, or federal permit).	Formal Consultation (for likely to adversely affect [LAA] determinations): Prepare biological assessment (BA) that analyzes the project's potential impacts on listed species (higher level of effort). If NOAA Fisheries concurs, they issue a biological opinion. Informal Consultation (for not LAA determinations): Prepare a biological evaluation (BE; lower level of effort). If NOAA Fisheries concurs, they issue a Letter of Concurrence.	Duration: Formal Consultation: 135 days once NOAA Fisheries determines the application package (BA) complete. Informal Consultation: 60 days once NOAA Fisheries determines the application package (BE) complete. <u>Timing</u> : If NEPA is required, consultation begins once the preferred alternative has been identified. Consultation is completed only on the preferred alternative.	Dogwood LS, Gates Regional LS, and Riverview LS and 2- Gates System Layout Gates-Mill City FM
NOAA Fisheries	Essential Fish Habitat (EFH) consultation and recommendation s	Magnuson- Stevens Fishery Conservation and Management Act	Actions that may affect federally designated EFH; in this case, Pacific salmon EFH. May be avoided by avoiding in-water work and disturbance of riparian areas.	Prepare an EFH assessment. Can be included as part of the BA for ESA consultation.	Duration: 30 to 60 days for NOAA Fisheries to provide EFH conservation recommendations once they determine the application package (EFH assessment) complete. <u>Timing</u> : Same as ESA Section 7	Dogwood LS, Gates Regional LS, and Riverview LS and 2- Gates System Layout Gates-Mill City FM

Agency	Permit or Approval	Regulation	Permit Trigger	Application Process	Timing Considerations	Applicable to Project?
USFWS	ESA Section 7 consultation and concurrence	ESA Section 7	Actions that may affect federally listed species or their critical habitat; in this case, one bird, two insects, and three flowering plants. May be avoided by avoiding habitat for these species, such as old growth forests, upland prairie, dry prairie, oak savanna, or wet prairie habitats. Consultation triggered by any federal nexus (e.g., federal funding, or federal permit).	Formal Consultation (for LAA determinations): Prepare a BA that analyzes the project's potential impacts on listed species (higher level of effort). If USFWS concurs, they issue a biological opinion. Informal Consultation (for not LAA determinations): Prepare a BE (lower level of effort). If USFWS concurs, they issue a Letter of Concurrence.	Duration: Formal Consultation: 135 days once NOAA Fisheries determines the application package (BA) complete. Informal Consultation: 60 days once NOAA Fisheries determines the application package (BE) complete. <u>Timing</u> : Same as ESA Section 7 for NOAA Fisheries.	All
Lead Federal Agency (TBD – If NEPA is not required, USACE would be lead federal agency)	NHPA Section 106 Consultation	NHPA Section 106	Consultation triggered by any federal nexus (e.g., federal funding, or federal permit). Lead agency determines if the undertaking has potential to affect historic properties.	Support lead federal agency to initiate government-to-government consultation with interested Tribal entities, SHPO, and other interested parties as applicable. Conduct cultural resources background research (e.g., records search, Tribal coordination, etc.) and conduct a cultural resources field survey. Draft cultural resources inventory report. If the lead federal agency determines the undertaking may cause adverse effects to historic properties, mitigation (e.g., memorandum of agreement [MOA], historic properties treatment plan [HPTP], etc.) would be required.	Duration and Timing: Government-to- government consultation would be ongoing through the duration of the permitting process. Up to 60 days to receive fieldwork authorizations. Up to 6 months to complete the cultural resources technical report review process. At least 1 year to complete the mitigation process (e.g., lead agency completes an MOA and HPTP, and adverse effects are resolved), if applicable.	All, depending on if there is a federal nexus due to funding or permit needs

Agency	Permit or Approval	Regulation	Permit Trigger	Application Process	Timing Considerations	Applicable to Project?
State and Local						
Oregon Department of Fish and Wildlife (ODFW)	Scientific Taking Permit	Oregon Administrative Rule (OAR) 635-007-0900	Required to handle fish in Waters of the State if fish removal/salvage is needed for construction. May be avoided by avoiding in-water work.	Prepare summary of study plan and methods. Complete application form. Requires annual and final reporting of all fish handled, their location, and final disposition.	<u>Duration</u> : 60 days from submittal of application.	Gates-Mill City FM
ODFW	Fish Passage Plan Approval or Waiver	Oregon Revised Statute (ORS) 509.580 to 509.910 OAR 635-412	Installation, replacement, or abandonment of artificial obstructions in native fish streams. May be avoided by avoiding waterbody crossings.	Submit application to ODFW with fish passage designs plans showing how all fish passage criteria are met. An operations and maintenance plan and monitoring and reporting plan may be required. ODFW will evaluate and provide comments for the applicant to resolve. Public comment period is required for exemptions or waivers.	<u>Duration</u> : Typically 6 months to 1 year for larger projects. (No required time frame for passage plan approval.)	Gates-Mill City FM
DSL	Removal-Fill Permit Submitted concurrently with USACE IP/NWP application in a JPA	ORS 196.795 to 196.910 OAR 141-85	Removal of material from, or placement of fill in, Waters of the State (50 cubic yards or greater). Cannot be avoided. Although removal and/or fill of less than 50 cubic yards in a wetland or waterway does not require a permit, any amount of removal/fill in state-designated Essential Salmonid Habitat (such as the Santiam River) requires a permit.	See details for USACE IP or NWP. Conduct a wetland delineation and submit report to DSL for concurrence. Submit removal-fill application to DSL. DSL will review application for completeness, request additional information as needed, hold a public comment period, and issue a decision.	<u>Duration</u> : Approximately 120 days from submittal of complete application.	All

Agency	Permit or Approval	Regulation	Permit Trigger	Application Process	Timing Considerations	Applicable to Project?
Oregon Department of Agriculture (ODA)	Listed Plant Permit or Consultation	ORS 564 OAR 603-73	Any land action on Oregon non-federal public lands which results, or might result, in the taking of a threatened or endangered plant species. May be avoided by avoiding habitat for threatened or endangered plant species, such as upland prairie, ecotones between grassland and forest, or open prairie remnants along the margins of streams, sloughs, ditches, roadsides, fence rows, and drainage swales and in fallow fields.	Prior to consultation, complete site-specific surveys for listed plant species and submit a survey report to ODA. ODA will review report and provide comments within 90 days, including a determination on whether formal consultation or a permit is required. If consultation is required, an evaluation of potential impacts on listed plant species would be required. If a permit is required, submit application form and supporting documentation to ODA. ODA will review application and request additional information as needed.	Duration: Written notification of denial or a copy of the permit will be sent to the applicant within 120 days of receipt of the complete application.	All
Oregon Water Resources Department (OWRD)	Water Use Permit	ORS 537.141 and 537.143 OAR 690-310 and 690-340	Constructing a water system and use of water.	Submit application to OWRB that includes legal property descriptions, maps, written authorizations from landowners, and land use consistency information. OWRB will review application for completeness, request additional information as needed, and review the proposed use for compliance with their criteria.	<u>Duration</u> : Approximately 1 year from submittal of a complete application.	All

Agency	Permit or Approval	Regulation	Permit Trigger	Application Process	Timing Considerations	Applicable to Project?
DEQ	CWA Section 401 WQC	CWA, 33 United States Code (U.S.C.) 1341 OAR 340-48	Discharge of fill material into or removal of substrate or sediment in WOTUS and Waters of the State that also require a federal removal-fill permit from USACE. May be avoided by avoiding in-water work and disturbance of wetlands.	A pre-application consultation is recommended for large, complex projects prior to application submittal. Submit WQC application and stormwater management plan to DEQ concurrent with federal CWA Section 404 permit application submittal to USACE. USACE's public comment period for the CWA Section 404 permit will also apply to the associated CWA Section 401 WQC request. DEQ will review the application and provide comments to be resolved by the applicant.	Duration: Approximately 1 year from complete application submittal. However, the timeline can increase depending on the time it takes applicant to resolve DEQ's comments.	All
DEQ	National Pollutant Discharge Elimination System (NPDES) 1200-C Construction Stormwater permit	ORS 468B.050 OAR 340-45	Construction projects involving more than 1 acre of ground disturbance and the potential for discharge into surface waters. May be avoided if construction disturbance is less than 1 acre of ground-disturbance.	Submit completed application form, land use affidavit, and erosion and sediment control plan (ESCP) to DEQ. DEQ will review application for completeness, request additional information as needed, hold public review period, perform technical review of ESCP, and notify applicant of any technical deficiencies that need to be resolved prior to permit issuance.	Duration: Approximately 3 to 6 months from application submittal. However, timeline can increase depending on the time it takes applicant to resolve any technical deficiencies raised by DEQ.	All

Agency	Permit or Approval	Regulation	Permit Trigger	Application Process	Timing Considerations	Applicable to Project?
DEQ	Water Pollution Control Facilities (WPCF) Individual Permit Category 3 permit for projects with few effects or less controversy. Category 4 permit for projects with potential for significant effects or controversy.	ORS 468B.055 OAR 340-45 and 340-71	Required to construct and operate a disposal system with no discharge to navigable waters.	Submit completed application form, land use compatibility statement, and biosolids management plan to DEQ. DEQ reviews application and requests additional information as needed. <u>Category 3:</u> DEQ holds public review period and public hearing (if requested). <u>Category 4</u> : DEQ holds information gathering community meeting and requests draft edits if necessary. <u>Both categories</u> : Environmental Quality Commission board provides comments to address prior to permit issuance.	Duration: <u>Category 3:</u> Approximately 3 to 6 months from application submittal. <u>Category 4</u> : Approximately 4 to 7 months from application submittal. Timeline can increase depending on the duration required to resolve information requests and comments by DEQ.	All
DEQ	Air Contaminant Discharge Permit	ORS 468A.040 to 468A.060 OAR 340-216	Any operation, permanent or temporary, including construction, that can be considered an air contaminant source by the State of Oregon.	Submit application form, fees, and land use compatibility statement to DEQ. DEQ will review application for completeness, request additional information as needed, and provide comments for applicant to address prior to permit issuance.	<u>Duration</u> : Typically 6 months to 1 year for larger projects. No required time frame for permit approval.	All
SHPO	Archaeological Excavation Permit	ORS 97.745, 358.920, and 390.235 OAR 736-51	Required to excavate or alter an archaeological site on public lands, make an exploratory excavation on public lands to determine the presence of an archaeological site, or remove from public lands any material of an archaeological, historical, prehistorical, or anthropological nature.	Submit permit application and supporting documents to SHPO. Separate permits are needed for each property owner, city, or county where archaeological investigations are proposed. SHPO will review application for completeness, request additional information as needed, and once deemed complete, send the application out for review by the Legislative Commission on Indian Services, appropriate Tribes, landowners, local planning department, and the University of Oregon Museum of Natural and Cultural History.	<u>Duration</u> : Approximately 30 days after application is deemed complete by SHPO. Permit issuance may be delayed if the permit reviewers have objections that need to be resolved.	All

Agency	Permit or Approval	Regulation	Permit Trigger	Application Process	Timing Considerations	Applicable to Project?
Oregon Department of Transportation (ODOT)	Utility Facility Permit	ORS 374 OAR 734-055- 0080	Any utility installations within the right-of-way of a state highway in Oregon. May be avoided if the project avoids ODOT right-of-way.	Submit application form and supporting materials to ODOT. Performance bond may be required.	Duration: Approximately 3 to 6 months after a complete application is submitted.	Gates System Layout Gates-Mill City FM
ODOT	Oversize Load Movement Permit/Load Registration	OAR 734-82	Transport of vehicles or loads having weight or dimension greater than that allowed by statute. May be avoided if construction vehicles do not have loads or a dimension greater than that allowed by statue.	Submit application form and supporting materials to ODOT.	Duration: Applications are worked in the order they are received, typically within 1 to 2 months.	All
ODOT	Permit to Construct a State Highway Approach; Permit to Operate, Maintain, and Use a State Highway Approach	ORS 374 OAR 734-51	Use of any access from Oregon state highways during construction or operation.	Following a pre-application meeting with ODOT, submit application form and supporting materials. ODOT will review application for completeness, request additional information as needed, and reviews application against design standards.	Duration: Approximately 120 days from the time application is deemed complete by ODOT. Additional time may be needed to resolve comments from ODOT on the proposed design.	Gates System Layout Gates-Mill City FM
Local Jurisdictions (Marion County)	Local Land Use/Zoning Change Permits	Applicable county codes	Construction of new utility facilities within local land use jurisdictions.	Submit application for zoning change. Once land use decision is issued, submit approval request for utility facilities. Public hearings required.	<u>Duration</u> : Approximately 12 months	All
Local Jurisdictions (Linn County)	Rural Resource Zoning District Conditional Use Permit	Applicable county codes Title 9 Community Development Chapter 933	Construction of a utility facility necessary for public service.	Submit permit application, which includes a narrative addressing the applicable decision criteria, site maps, and detailed information regarding the project. Public hearings required.	Duration: Approximately 4 months from the time application is deemed complete by the county.	WPCFRIB Gates System Layout

Agency	Permit or Approval	Regulation	Permit Trigger	Application Process	Timing Considerations	Applicable to Project?
Local Jurisdictions (Linn and Marion Counties)	Grading and Building Permits	Applicable county codes	Construction of new structures.	Following land use permit approvals, submit application and site plans to local jurisdictions' building departments.	<u>Duration</u> : Typically 3 to 6 months from application submittal.	All
Local Jurisdictions (Gates and Mill City)	Right-of-way	Applicable city codes	Construction of new pipelines and facilties.			All

Source: DSL (2023), Linn County (2023), Marion County (2023), NOAA Fisheries (2023), ODFW (2023a, b), Oregon Secretary of State (2022a-d), USACE (2021), USFWS (2023a, b).

245 Commercial St. SE, Suite 210 | Salem, OR 97301 | (503) 364-2002