

MAUL FOSTER Technical Memorandum

То:	Katie Daugherty, RG	Date:	August 22, 2024
From:	Carolyn Wise, RG Tim Browning, RG	Project No.:	M8012.01.001
Re:	Residential Yard May 2023 Sampling Permapost Products, Inc. Hillsboro, Oregon ECSI #148		

Maul Foster & Alongi, Inc. (MFA) and Permapost Products, Inc. (Permapost) have prepared this memorandum to summarize the results of the May 2023 supplemental soil sampling at Properties 1, 2, and 3 within the residential properties (Area of Interest [AOI]-5) associated with the Permapost site in Hillsboro, Oregon (the Site). This sampling was conducted to inform the vertical extent of dioxin/furan (D/F) and arsenic concentrations at depth for Properties 1, 2, and 3 of AOI-5.

Background and Purpose

AOI-5 is located to the south of the Permapost property located at 4205 SE Witch Hazel Road in Hillsboro, Oregon (the Permapost Property). AOI-5 includes properties immediately adjacent to the Permapost Property with residential zoning in residential use (Washington County tax parcels 1S209BD00800, 1S209BD00700, 1S209BD00600, 1S209BD00500, properties 1 through 4, respectively).

In October 2022, concentrations of dioxins/furans and arsenic were identified in shallow soil in the residentials yards (AOI-5) (see Table) (MFA 2022). In May 2023, additional data were collected from the residential yards to support the design of an interim remedial action measure, consistent with the sampling approach described in Revised Yard Pre-Design Investigation Work Plan (MFA 2023).

The following objectives were identified for this investigation (MFA 2023):

- Further delineation of the extent of D/F and arsenic concentrations in soil within the study area.
- Confirm the transport mechanism and spatial distribution of D/F and arsenic concentrations to support the preliminary conceptual site model.
- Collection of data that will be of sufficient quality and quantity to screen against applicable RBCs • and background concentrations.
- Collection of data that will inform development of an interim remedial action measure.
- Gather additional data evaluating the presence of dioxins/furans and arsenic in soil in residential areas with residential zoning to the south of the Permapost Property to inform interim remedial action measure.
- Collect data that will be of sufficient quality and quantity to screen against applicable DEQ riskbased concentrations (RBCs) and inform cleanup planning.

• Characterization of topsoil source material for use in interim remedial action measures.1

Sampling Approach

Property 1

Additional sampling was performed to further characterize dioxins/furans and arsenic at Property 1.

Back Yard

Within the northern portion (back yard) of Property 1, two three-point composite soil samples were collected from 1 to 2 feet below ground surface (bgs) and 2 to 3 feet bgs to characterize the vertical extent of arsenic and D/F concentrations (HA-22-COMP-1-2 and HA-22-COMP-2-3, respectively).

Mid Yard

Within the middle portion (mid yard) of Property 1, ISM surface sampling (DU1-B) was performed to characterize arsenic and D/F concentrations. Two three-point composite soil samples were also collected from 1 to 2 feet bgs and 2 to 3 feet bgs to characterize the vertical extent of arsenic and/or D/F concentrations in subsurface soil (HA-23-COMP-1-2 and HA-23-COMP-2-3, respectively).

Front Yard

Within the southern portion (front yard) of Property 1, ISM surface sampling (DU1-A) was performed to characterize D/F and arsenic concentrations. Two three-point composite soil samples will also be collected from 1 to 2 feet bgs and 2 to 3 feet bgs to characterize the vertical extent of arsenic and/or D/F concentrations in subsurface soil (HA-24-COMP-1-2 and HA-24-COMP-2-3, respectively).

Property 2

Additional sampling was performed to further characterize the extent of dioxins/furans at Property 2. Arsenic was not detected above the natural background value within DU-2; therefore, no additional investigation for arsenic within DU-2 of Property 2 was conducted.

Back Yard

Within the northern portion (back yard) of Property 2, two three-point composite soil samples were be collected from 1 to 2 feet bgs and 2 to 3 feet bgs to characterize the vertical extent of D/F concentrations (HA-25-COMP-1-2 and HA-25-COMP-2-3, respectively).

Mid Yard

Within the middle portion (mid yard) of Property 2, ISM surface sampling (DU2-B) was performed to characterize D/F concentrations in shallow soil. Two three-point composite soil samples were collected from 1 to 2 feet bgs and 2 to 3 feet bgs to characterize the vertical extent of D/F concentrations (HA-26-COMP-1-2 and HA-26-COMP-2-3, respectively).

Front Yard

Within the southern portion (front yard) of Property 2, ISM surface sampling (DU2-A) was performed to characterize D/F concentrations in shallow soil. Two three-point composite soil samples will also be collected from 1 to 2 feet bgs and 2 to 3 feet bgs to characterize the vertical extent of D/F concentrations (HA-27-COMP-1-2 and HA-27-COMP-2-3). The three-point composite samples provide

¹ This objective was completed in the Topsoil Source Evaluation and Proposed Residential Preliminary Remediation Goal for Dioxins/Furans memorandum (MFA 2023).

 $[\]label{eq:resonance} $$R:\8012.01 $$ Permapost\Documents\001_2024.08.22 $$ 2023 $$ Sampling $$ Memo\Mf_2023 $$ Yard $$ Sampling.docx $$ @ 2024 $$ Maul Foster & Alongi, $$ Inc. $$ Inc. $$ Permapost\Documents\Content for the second s$

a more representative estimate of subsurface conditions than the previously collected discrete sample HA-20.

Property 3

Prior data collected (ISM sample DU-03) will inform remedial decision making for surface soil (0 to 1 feet bgs) for all of Property 3. Additional subsurface sampling was performed to further characterize the vertical extent of D/F and arsenic concentrations.

Back Yard and Mid Yard

Within the northern portion (back yard and mid yard) of Property 3, two three-point composite soil samples were collected from 1 to 2 feet bgs and 2 to 3 feet bgs to characterize the vertical extent of D/F and (HA-28-COMP-1-2 and HA-28-COMP-2-3, respectively).

Front Yard

Within the southern portion (front yard) of Property 3, two three-point composite soil samples were collected from 1 to 2 feet bgs and 2 to 3 feet bgs to characterize the vertical extent in subsurface soil (HA-29-COMP-1-2 and HA-29-COMP-2-3, respectively). The three-point composite sample provides a more representative estimate of subsurface conditions than the previously collected discrete sample HA-21.

Results

Laboratory analytical reports are provided as Attachment A. Analytical data and the laboratory's internal quality assurance and quality control data were reviewed to assess whether they met project-specific data quality objectives. This review was performed consistent with EPA procedures for evaluating laboratory analytical data (EPA, 2020a,b) and appropriate laboratory and method-specific guidelines (Apex, 2023; Enthalpy, 2023). A data validation memorandum summarizing data evaluation procedures, data usability, and deviations from specific field and/or laboratory methods is included as Attachment B. The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned. Analytical results are provided in the Table. Analytical data were screened relative to a site-specific preliminary remediation goal (PRG) for dioxins/furans of 11.8 pg/g (MFA 2023b) and regional background for arsenic of 8.8 mg/kg (see Table).

Property 1

Back Yard

Arsenic and D/F concentrations from subsurface soil collected at 1-2 feet bgs and 2-3 feet bgs (HA-22-COMP-1-2 and HA-22-COMP-2-3, respectively), exceed the regional background value for arsenic and the site-specific PRG for D/F.

Within property 1 DU-05 portion, prior data collected (ISM sample DU-05) will inform remedial decision making for surface soil (0 to 1 feet bgs). At location HA-16 (within DU-05), results exceed the regional background value for arsenic and the site-specific PRG for D/F in the 2-to-3 feet bgs depth interval.

Mid Yard

Arsenic and D/F concentrations from ISM surface sampling (DU1-B), are below regional background for arsenic and exceed the site-specific PRG for D/F.

Therefore, D/F concentrations were analyzed from the two three-point composite soil samples collected from 1 to 2 feet bgs and 2 to 3 feet bgs to characterize the vertical extent of D/F concentrations in subsurface soil (HA-23-COMP-1-2 and HA-23-COMP-2-3, respectively). D/F concentrations exceed the site-specific PRG for D/F at 1-2 and 2-3 feet bgs.

Front-Yard

Arsenic and D/F concentrations from ISM surface sampling (DU1-A), are below regional background for arsenic and exceed the site-specific PRG for D/F.

Therefore, D/F concentrations were analyzed from the two three-point composite soil samples collected from 1 to 2 feet bgs and 2 to 3 feet bgs to characterize the vertical extent of D/F concentrations in subsurface soil (HA-24-COMP-1-2 and HA-24-COMP-2-3, respectively). D/F concentrations exceed the site-specific PRG for D/F at 1-2 feet bgs and below the site-specific PRG at 2-3 feet bgs.

Property 2

Back Yard

D/F concentrations from subsurface soil collected in the 1-2 feet bgs and 2-3 feet bgs depth intervals (HA-25-COMP-1-2 and HA-25-COMP-2-3, respectively), are below the site-specific PRG for D/F.

Within the Property 2 DU-05 portion, prior data collected (ISM sample DU-05) will inform remedial decision making for surface soil (0 to 1 feet bgs). At location HA-17 (within DU-05), results do not exceed the site-specific PRG for D/F in the 1 to 2 feet bgs depth interval.

Mid Yard

The D/F concentration from ISM surface sampling (DU2-B) exceeds the site-specific PRG for D/F.

Therefore, D/F concentrations were analyzed from the two three-point composite soil samples collected from 1 to 2 feet bgs and 2 to 3 feet bgs to characterize the vertical extent of D/F concentrations in subsurface soil (HA-26-COMP-1-2 and HA-26-COMP-2-3, respectively). D/F concentrations are below the site-specific PRG for D/F at 1-2 feet bgs and exceed the site-specific PRG for D/F at 2-3 feet bgs.

Front Yard

The D/F concentration from ISM surface sampling (DU2-A), is above the site-specific PRG for D/F.

Therefore, D/F concentrations were analyzed from the two three-point composite soil samples collected from 1 to 2 feet bgs and 2 to 3 feet bgs to characterize the vertical extent of D/F concentrations in subsurface soil (HA-27-COMP-1-2 and HA-27-COMP-2-3, respectively). D/F concentrations exceed the site-specific PRG for D/F at 1-2 feet bgs and are below the site-specific PRG for D/F at 2-3 feet bgs.

Property 3

Back and Mid Yard

Arsenic and D/F concentrations from subsurface soil collected at the 2-3 feet bgs depth interval (HA-28-COMP-2-3), exceed the regional background value for arsenic and the site-specific PRG for D/F.

Due to the high concentrations observed in shallow soil within this Property, the 1–2-foot depth interval sample was not analyzed.

Within the Property 3 DU-05 portion, prior data collected (ISM sample DU-05) will inform remedial decision making for surface soil (0 to 1 feet bgs). At location HA-18 (within DU-05), results indicate that dioxins/furans and arsenic exceed the regional background value for arsenic and the site-specific PRG for D/F in the 2-to-3 feet bgs depth interval.

Front Yard

Arsenic and D/F concentrations from subsurface soil collected at 2-3 feet bgs depth interval (HA-29-COMP-2-3), exceed the regional background value for arsenic and the site-specific PRG for D/F. Due to the high concentrations observed in shallow soil within this Property, the 1–2-foot depth interval sample was not analyzed.

Conclusions

All arsenic and D/F concentrations of soil up to 3 feet bgs were below the applicable excavation worker criteria (420 mg/kg and 4,800 pg/g, respectively). Therefore, further investigation of the vertical extent of these chemicals (e.g., deeper than 3 feet bgs) is not needed in Properties 1, 2, or 3 of AOI-5.

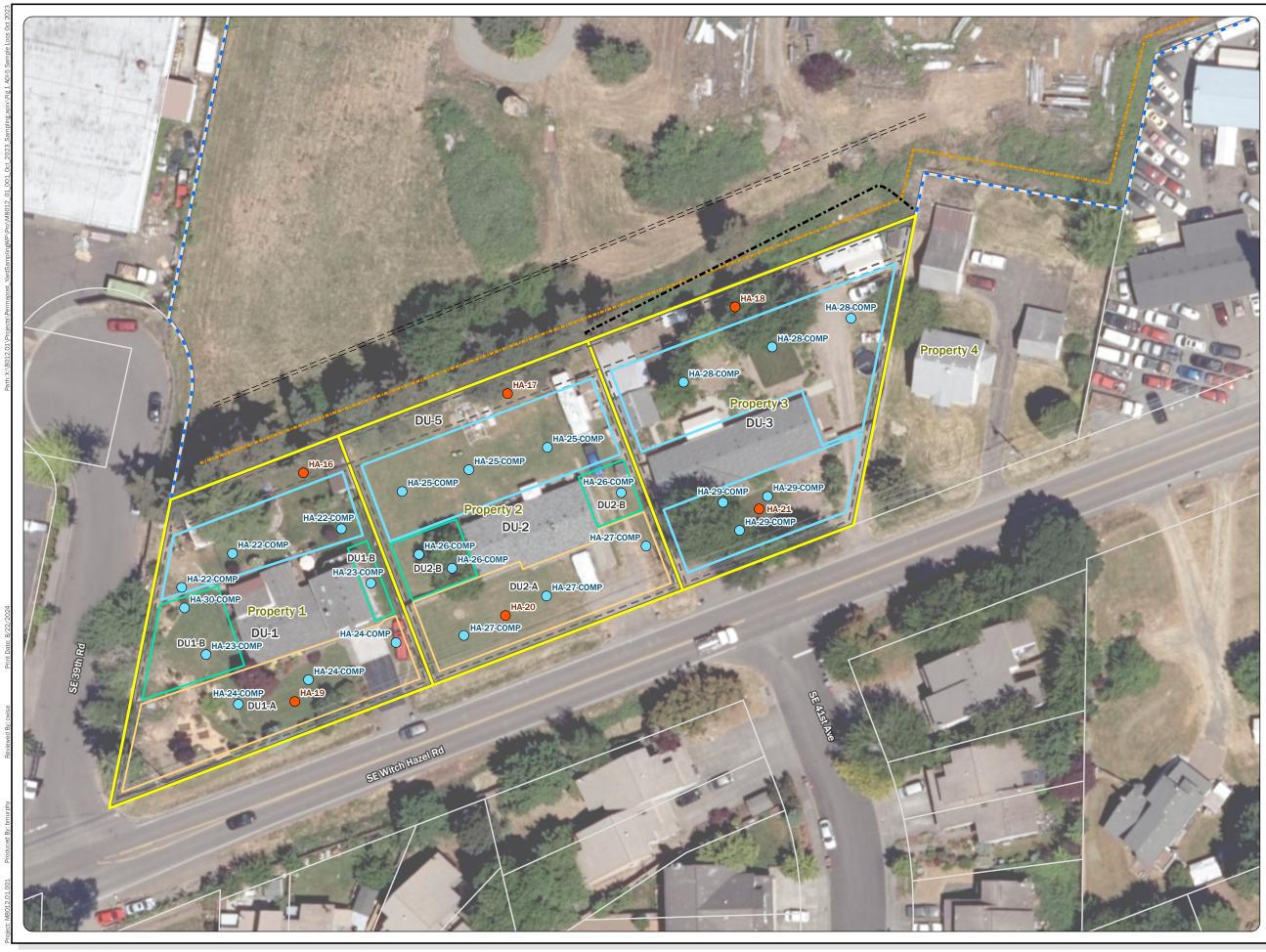
Based on the results of this sampling event, data was obtained in AOI-5 to inform development of interim remedial action measures and inform cleanup planning. Additional data were obtained for Property 1 which were reported as part of the Interim Remedial Action Measures Work Plan (MFA, 2024).

Attachments

References Limitations Figures Table A—Analytical Laboratory Reports B—Data Validation Memorandum

References

- MFA. 2022. Yard Investigation Work Plan, Permapost Products, Inc., Hillsboro, Oregon, ECSI #148. Prepared by Maul Foster & Alongi, Inc. Portland, Oregon. July 7.
- MFA. 2023a. Phil Wiescher, PhD and Carolyn Wise, RG, Maul Foster & Alongi, Inc. *Revised Yard Pre-Design Investigation Work Plan, Permapost Products, Inc., Hillsboro, Oregon, ECSI #148.* Memorandum to Katie Daugherty, RG, Oregon Department of Environmental Quality. April 11.
- MFA. 2023b. Phil Wiescher, PhD, Maul Foster & Alongi, Inc., Tim Browning, RG, Permapost Products, Inc. Topsoil Source Evaluation and Proposed Residential Preliminary Remediation Goal for Dioxins/Furans. Memorandum to Katie Daugherty, RG, Oregon Department of Environmental Quality. October 6.
- MFA. 2024. Interim Remedial Action Measures Work Plan, Permapost Products, Inc., Hillsboro, Oregon, ECSI #148. Prepared by Maul Foster & Alongi, Inc. Portland, Oregon. August 9.


Limitations

The services undertaken in completing this technical memorandum were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This technical memorandum is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

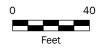
Opinions and recommendations contained in this technical memorandum apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this technical memorandum.

Figure

Figure 1 AOI-5 Sample Locations

Permapost Products, Inc. Hillsboro, OR

Legend


 3-Point Composite Sample
 Hand Auger
 Decision Unit A
 Decision Unit B
 Discrete Composite Sampling Area
 Previous Decision Unit
 Historical Encroachment Until 1990
 Existing Berm
 == Former Retail Yard Driving Lane
 Study Area

Permapost Property

Tax Lot

Notes Sampling locations shown through October 2023. AOI = area of interest. Permapost = Permapost Products, Inc.

Data Sources Aerial photograph obtained from the City of Portland (2023); tax lot data obtained from Oregon Metro (2024).

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information. © 2024 Maul Toster & Alongi, Inc.

Table

Decision Unit:		DU-01								
Sample Name:	Screening	DU01-S-0.5	HA19-S-2.0	DU1-A	DU1-B	HA-22-Comp	HA-22-COMP	HA-23-COMP	HA-23-COMP	HA-24-COMP
Sumple Nume.	Criteria	U	11/(17-3-2.0	DOT-A		1-2	2-3	1-2	2-3	1-2
Sample Date:	Cilielia	10/05/2022	10/05/2022	05/09/2023	05/09/2023	05/11/2023	05/11/2023	05/11/2023	05/11/2023	05/11/2023
Sample Depth (ft bgs):		0-0.5	1.0-2.0	0-0.5	0-0.5	1.0-2.0	2.0-3.0	1.0-2.0	2.0-3.0	1.0-2.0
Total Metals (mg/kg)										
Arsenic	8.8 ^{(a)(1)}	10.0	5.58	6.21	7.75	9.25	12.2			
Dioxins and Furans (pg/g)										
Dioxin and Furan TEQ ^{(b)(2)}	11.8 ^{(c)(3)}	45.7 J	5.11 J	16.0 J	27.5 J	21.4 J	28.9 J	15.7 J	17.0 J	23.6 J

Decision Unit:		DU-01 (cont.)				DL	I-02			
Sample Name:	Screening	HA-24-COMP	DU02-S-0.5	HA20-S-2.0	DU2-A	DU2-B	HA-25-Comp-	HA-25-COMP	HA-26-COMP	HA-26-COMP
Sumple Nume.	Criteria	2-3	D002-3-0.3	TIA20-3-2.0	_	D02-D	1-2	2-3	1-2	2-3
Sample Date:	Ciliend	05/11/2023	10/05/2022	10/05/2022	05/09/2023	05/09/2023	05/11/2023	05/11/2023	05/11/2023	05/11/2023
Sample Depth (ft bgs):		2.0-3.0	0-0.5	1.0-2.0	0-0.5	0-0.5	1.0-2.0	2.0-3.0	1.0-2.0	2.0-3.0
Total Metals (mg/kg)										
Arsenic	8.8 ^{(a)(1)}		7.99							
Dioxins and Furans (pg/g)										
Dioxin and Furan TEQ ^{(b)(2)}	11.8 ^{(c)(3)}	2.90 J	28.6 J	9.8 J	71.7 J	80.2 J	7.60 J	3.96 J	6.30 J	18.4 J

Decision Unit:		DU-02	(cont.)	DU-03							
Sample Name:	Screening	Scrooning	HA-27-COMP	HA-27-COMP			DU03C-S-0.5		HA21-S-3.0	HA-28-Comp	HA-29-Comp
sumple Nume.	Criteria	1-2	2-3	D003A-3-0.3	D003B-3-0.3	D003C-3-0.3	HAZ1-3-2.0	11/121-5-0.0	2-3	2-3	
Sample Date:	Cillelia	05/11/2023	05/11/2023	10/05/2022	10/05/2022	10/05/2022	10/05/2022	10/05/2022	05/11/2023	05/11/2023	
Sample Depth (ft bgs):		1.0-2.0	2.0-3.0	0-0.5	0-0.5	0-0.5	1.0-2.0	2.0-3.0	2.0-3.0	2.0-3.0	
Total Metals (mg/kg)											
Arsenic	8.8 ^{(a)(1)}			38.2	38.4	40.3	9.60	13.2	16.4	9.96	
Dioxins and Furans (pg/g)											
Dioxin and Furan TEQ ^{(b)(2)}	11.8 ^{(c)(3)}	26.7 J	7.90 J	395 J	359 J	370	26.1 J	73.3 J	53.1 J	29.2 J	

Decision Unit:		DU-05									
Sample Name:	Screening	DU05-S-0.5	HA16-S-2.0	HA16-S-3.0	HA17-S-2.0	HA18-S-2.0	HA18-S-3.0				
Sample Date:	Criteria	10/05/2022	10/05/2022	10/05/2022	10/05/2022	10/05/2022	10/05/2022				
Sample Depth (ft bgs):		0-0.5	1.0-2.0	2.0-3.0	1.0-2.0	1.0-2.0	2.0-3.0				
Total Metals (mg/kg)											
Arsenic	8.8 ^{(a)(1)}	13.3	41.8	10.2	6.08	53.2	32.2				
Dioxins and Furans (pg/g)											
Dioxin and Furan TEQ ^{(b)(2)}	11.8 ^{(c)(3)}	68.2 J	74.1 J	18.3 J	6.60 J	506 J	91.3 J				

Notes

Shading indicates values that exceed screening criteria; non-detect results (U, UJ, UJK) were not compared with screening criteria.

-- = not analyzed.

ft bgs = feet below ground surface.

J = result is estimated.

J- = result is estimated, but the result may be biased low.

JK = result is estimated and an estimated maximum potential concentration.

mg/kg = milligrams per kilogram.

NV = no value.

pg/g = picograms per gram.

TEQ = toxicity equivalency.

U = result is non-detect at the estimated detection limit, method detection limit, or method reporting limit.

UJ = result is non-detect with an estimated detection limit.

UJK = result is non-detect, an estimated value, and an estimated maximum potential concentration.

UK = result is non-detect at the estimated maximum potential concentration.

^(a)Oregon background concentration, Portland Basin.

^(b)Dioxin and furan TEQs are calculated as the sum of each detected congener concentration multiplied by the corresponding TEF value. Non-detect congeners are also multiplied by one-half.

^(c)Preliminary remediation goal.

References

⁽¹⁾DEQ. 2013. Development of Oregon Background Metals Concentrations in Soil . Oregon Department of Environmental Quality, Land Quality Division Cleanup Program, Portland, Oregon. March.

⁽²⁾Van den Berg et al. 2006. "The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds." Toxicological Sciences. 93(2): 223–241.

⁽³⁾MFA. 2023. Phil Wiescher, PhD, Maul Foster & Alongi, Inc., Tim Browning, RG, Permapost Products, Inc. Topsoil Source Evaluation and Proposed Residential Preliminary Remediation Goal for Dioxins/Furans. Memorandum to Katie Daugherty, RG, Oregon Department of Environmental Quality. October 6. Attachment A

Analytical Laboratory Reports

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Monday, October 2, 2023 Phil Wiescher Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

RE: A3E1301 - Permapost Supplemental RI - M8012.01.001

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3E1301, which was received by the laboratory on 5/11/2023 at 5:30:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>pnerenberg@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

	Cooler Receipt Information								
Acceptable Receipt Temperatu	Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.								
	(See Cooler Receipt Form for details)								
Cooler #1 5.6	degC	Cooler #2 3.3 degC							

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project:	Permapost Supplemental RI	
3140 NE Broadway Street	Project Number:	M8012.01.001	<u>Report ID:</u>
Portland, OR 97232	Project Manager:	Phil Wiescher	A3E1301 - 10 02 23 1044

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION								
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received				
HA-28-Comp-2-3	A3E1301-02	Soil	05/11/23 10:35	05/11/23 17:30				
HA-27-Comp-1-2	A3E1301-03	Soil	05/11/23 11:50	05/11/23 17:30				
HA-27-Comp-2-3	A3E1301-04	Soil	05/11/23 11:55	05/11/23 17:30				
HA-26-Comp-1-2	A3E1301-05	Soil	05/11/23 12:20	05/11/23 17:30				
HA-26-Comp-2-3	A3E1301-06	Soil	05/11/23 12:25	05/11/23 17:30				
HA-25-Comp-1-2	A3E1301-07	Soil	05/11/23 12:40	05/11/23 17:30				
HA-25-Comp-2-3	A3E1301-08	Soil	05/11/23 12:45	05/11/23 17:30				
HA-24-Comp-1-2	A3E1301-09	Soil	05/11/23 13:40	05/11/23 17:30				
HA-24-Comp-2-3	A3E1301-10	Soil	05/11/23 13:45	05/11/23 17:30				
HA-29-Comp-2-3	A3E1301-12	Soil	05/11/23 11:25	05/11/23 17:30				
HA-23-Comp-1-2	A3E1301-13	Soil	05/11/23 14:20	05/11/23 17:30				
HA-23-Comp-2-3	A3E1301-14	Soil	05/11/23 14:25	05/11/23 17:30				
HA-22-Comp-1-2	A3E1301-15	Soil	05/11/23 14:50	05/11/23 17:30				
HA-22-Comp-2-3	A3E1301-16	Soil	05/11/23 14:55	05/11/23 17:30				
DU1-A	A3E1301-17	Soil	05/09/23 13:30	05/11/23 17:30				
DU1-A	A3E1301-18	Soil	05/09/23 13:30	05/11/23 17:30				
DU1-B	A3E1301-19	Soil	05/09/23 14:00	05/11/23 17:30				
DU1-B	A3E1301-20	Soil	05/09/23 14:00	05/11/23 17:30				
DU2-A	A3E1301-21	Soil	05/09/23 12:30	05/11/23 17:30				
DU2-A	A3E1301-22	Soil	05/09/23 12:30	05/11/23 17:30				
)U2-B	A3E1301-23	Soil	05/09/23 13:00	05/11/23 17:30				
DU2-B	A3E1301-24	Soil	05/09/23 13:00	05/11/23 17:30				

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project:Permapost Supplemental RIProject Number:M8012.01.001Project Manager:Phil Wiescher

<u>Report ID:</u> A3E1301 - 10 02 23 1044

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
HA-28-Comp-2-3 (A3E1301-02)				Matrix: Soi	I			
Batch: 23E0752								
Arsenic	16.4	0.641	1.28	mg/kg dry	10	05/17/23 20:12	EPA 6020B	
HA-29-Comp-2-3 (A3E1301-12)				Matrix: Soi	I			
Batch: 23E0752								
Arsenic	9.96	0.623	1.25	mg/kg dry	10	05/17/23 20:18	EPA 6020B	
HA-22-Comp-1-2 (A3E1301-15)				Matrix: Soi	I			
Batch: 23E0752								
Arsenic	9.25	0.596	1.19	mg/kg dry	10	05/17/23 20:40	EPA 6020B	
HA-22-Comp-2-3 (A3E1301-16)				Matrix: Soi	I			
Batch: 23H0221								
Arsenic	12.2	0.536	1.07	mg/kg wet	10	08/07/23 19:37	EPA 6020B	
DU1-A (A3E1301-18)				Matrix: Soi	I			
Batch: 23E0752								
Arsenic	6.21	0.537	1.07	mg/kg dry	10	05/17/23 20:46	EPA 6020B	PRO
DU1-B (A3E1301-20)				Matrix: Soi				
Batch: 23E0752								
Arsenic	7.75	0.515	1.03	mg/kg dry	10	05/17/23 20:51	EPA 6020B	PRO

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project:	Permapost Supplemental RI	
3140 NE Broadway Street	Project Number:	M8012.01.001	<u>Report ID:</u>
Portland, OR 97232	Project Manager:	Phil Wiescher	A3E1301 - 10 02 23 1044

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
HA-28-Comp-2-3 (A3E1301-02)				Matrix: Soil Batch: 23E0553				
% Solids	76.5		1.00	%	1	05/15/23 05:52	EPA 8000D	
HA-29-Comp-2-3 (A3E1301-12)				Matrix: So	bil	Batch:	23E0553	
% Solids	77.5		1.00	%	1	05/15/23 05:52	EPA 8000D	
HA-22-Comp-1-2 (A3E1301-15)				Matrix: So	oil	Batch:	23E0553	
% Solids	83.8		1.00	%	1	05/15/23 05:52	EPA 8000D	
DU1-A (A3E1301-18)				Matrix: So	bil	Batch:	23E0746	PRO
% Solids	98.4		1.00	%	1	05/18/23 05:33	EPA 8000D	
DU1-B (A3E1301-20)				Matrix: So	oil	Batch:	23E0746	PRO
% Solids	98.5		1.00	%	1	05/18/23 05:33	EPA 8000D	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street

Portland, OR 97232

 Project:
 Permapost Supplemental RI

 Project Number:
 M8012.01.001

Project Manager: Phil Wiescher

<u>Report ID:</u> A3E1301 - 10 02 23 1044

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by E	PA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E0752 - EPA 3051A							So	il				
Blank (23E0752-BLK1)			Prepared	: 05/17/23 10	:03 Ana	lyzed: 05/17	/23 19:33					
EPA 6020B												
Arsenic	ND	0.250	0.500	mg/kg wet	5							
LCS (23E0752-BS1)			Prepared	: 05/17/23 10	0:03 Ana	lyzed: 05/17	/23 19:45					
EPA 6020B												
Arsenic	49.8	0.500	1.00	mg/kg wet	10	50.0		100	80-120%			
Duplicate (23E0752-DUP1)			Prepared	: 05/17/23 10	:03 Ana	lyzed: 05/17	/23 19:56					
QC Source Sample: Non-SDG (A3E	E1276-01)											
Arsenic	3.94	0.701	1.40	mg/kg dry	10		4.12			5	20%	
Matrix Spike (23E0752-MS1)		Prepared: 05/17/23 10:03 Analyzed: 05/17/23 20:01										
QC Source Sample: Non-SDG (A3E	E1276-01)											
EPA 6020B												
Arsenic	75.8	0.743	1.49	mg/kg dry	10	74.3	4.12	96	75-125%			
Batch 23H0221 - EPA 3051A							So	il				
Blank (23H0221-BLK1)			Prepared	: 08/07/23 10	:36 Ana	lyzed: 08/07	/23 19:27					
EPA 6020B												
Arsenic	ND	0.500	1.00	mg/kg wet	10							
LCS (23H0221-BS1)			Prepared	: 08/07/23 10	:36 Ana	lyzed: 08/07	/23 19:32					
EPA 6020B												
Arsenic	49.8	0.500	1.00	mg/kg wet	10	50.0		100	80-120%			
Duplicate (23H0221-DUP1)			Prepared	: 08/07/23 10	:36 Ana	lyzed: 08/07	/23 20:08					
QC Source Sample: Non-SDG (A3H	10697-01 <u>)</u>											
Arsenic	1.71	0.629	1.26	mg/kg dry	10		1.51			12	20%	
Matrix Spike (23H0221-MS1)			Prepared	: 08/07/23 10):36 Ana	lyzed: 08/07	/23 20:23					
OC Source Sample: Non-SDG (A3H EPA 6020B	<u>10697-01)</u>											

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.

3140 NE Broadway Street Portland, OR 97232

Project:Permapost Supplemental RIProject Number:M8012.01.001

Project Manager: Phil Wiescher

<u>Report ID:</u> A3E1301 - 10 02 23 1044

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23H0221 - EPA 3051A							Soi	I				
Matrix Spike (23H0221-MS1)			Prepared	: 08/07/23	0:36 Ana	lyzed: 08/07	/23 20:23					
QC Source Sample: Non-SDG (A3	<u>H0697-01)</u>											
Arsenic	68.5	0.682	1.36	mg/kg di	y 10	68.2	1.51	98	75-125%			
Matrix Spike Dup (23H0221-N	ISD1)		Prepared	: 08/07/23	0:36 Ana	lyzed: 08/07	/23 20:28					
QC Source Sample: Non-SDG (A3	H0697-01)											
Arsenic	65.5	0.650	1.30	mg/kg di	y 10	65.0	1.51	98	75-125%	5	20%	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.

3140 NE Broadway Street Portland, OR 97232 Project:Permapost Supplemental RIProject Number:M8012.01.001

Project Manager: Phil Wiescher

<u>Report ID:</u> A3E1301 - 10 02 23 1044

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Weig	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E0553 - Total Solids (Dry Weigh	nt) - 2022					Soi	I				
Duplicate (23E0553-DUP1)		Prepared: 05/12/23 08:47 Analyzed: 05/15/23 05:52										
QC Source Sample: Non-SDG (A3	E1268-01)											
% Solids	66.2		1.00	%	1		66.1			0.1	10%	
Duplicate (23E0553-DUP2)			Prepared	: 05/12/23	08:47 Anal	yzed: 05/15/	23 05:52					
QC Source Sample: Non-SDG (A3	<u>E1271-01)</u>											
% Solids	89.4		1.00	%	1		88.6			1	10%	
Duplicate (23E0553-DUP3)			Prepared	: 05/12/23	08:47 Anal	yzed: 05/15/	23 05:52					
QC Source Sample: Non-SDG (A3	E1271-02)											
% Solids	87.4		1.00	%	1		88.9			2	10%	
Duplicate (23E0553-DUP4)			Prepared	: 05/12/23	19:14 Anal	yzed: 05/15/	23 05:52					
QC Source Sample: Non-SDG (A3	E1346-01)											
% Solids	87.1		1.00	%	1		87.5			0.4	10%	
Duplicate (23E0553-DUP5)			Prepared	: 05/12/23	19:14 Anal	yzed: 05/15/	23 05:52					
QC Source Sample: Non-SDG (A3	E1350-01)											
% Solids	89.6		1.00	%	1		97.7			9	10%	
Duplicate (23E0553-DUP6)			Prepared	: 05/12/23	19:14 Anal	yzed: 05/15/	23 05:52					
QC Source Sample: Non-SDG (A3												
% Solids	88.9		1.00	%	1		88.8			0.1	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.

3140 NE Broadway Street Portland, OR 97232 Project:Permapost Supplemental RIProject Number:M8012.01.001

Project Manager: Phil Wiescher

<u>Report ID:</u> A3E1301 - 10 02 23 1044

QUALITY CONTROL (QC) SAMPLE RESULTS

	Percent Dry Weight											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23E0746 - Total Solids (Dry Weight) - 2022 Soil												
Duplicate (23E0746-DUP1)			Prepared	: 05/17/23	09:49 Ana	lyzed: 05/18	/23 05:33					PRO
QC Source Sample: DU1-A (A3E	<u>1301-18)</u>											
<u>EPA 8000D</u> % Solids	98.4		1.00	%	1		98.4			0.06	10%	
Duplicate (23E0746-DUP2)			Prepared	: 05/17/23	19:47 Ana	lyzed: 05/18	/23 05:33					
QC Source Sample: Non-SDG (A3	3E1484-01)											
% Solids	86.7		1.00	%	1		87.5			0.9	10%	
Duplicate (23E0746-DUP3)			Prepared	: 05/17/23	19:47 Ana	lyzed: 05/18	/23 05:33					
QC Source Sample: Non-SDG (A3	<u>3E1491-02)</u>											
% Solids	74.7		1.00	%	1		74.5			0.4	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.					
3140 NE Broadway Street					
Portland, OR 97232					

Project:Permapost Supplemental RIProject Number:M8012.01.001

Project Manager: Phil Wiescher

<u>Report ID:</u> A3E1301 - 10 02 23 1044

SAMPLE PREPARATION INFORMATION

		Tota	al Metals by EPA 602	0B (ICPMS)			
Prep: EPA 3051A			a	D 1	Sample Initial/Final	Default Initial/Final	RL Prep Factor
Lab Number	Matrix	Method	Sampled	Prepared	Initial/11inai	IIItidi/1/IIIdi	Pactor
Batch: 23E0752							
A3E1301-02	Soil	EPA 6020B	05/11/23 10:35	05/17/23 10:03	0.51g/50mL	0.5g/50mL	0.98
A3E1301-12	Soil	EPA 6020B	05/11/23 11:25	05/17/23 10:03	0.518g/50mL	0.5g/50mL	0.97
A3E1301-15	Soil	EPA 6020B	05/11/23 14:50	05/17/23 10:03	0.501g/50mL	0.5g/50mL	1.00
A3E1301-18	Soil	EPA 6020B	05/09/23 13:30	05/17/23 10:03	0.473g/50mL	0.5g/50mL	1.06
A3E1301-20	Soil	EPA 6020B	05/09/23 14:00	05/17/23 10:03	0.493g/50mL	0.5g/50mL	1.01
Batch: 23H0221							
A3E1301-16	Soil	EPA 6020B	05/11/23 14:55	08/07/23 10:36	0.466g/50mL	0.5g/50mL	1.07
			Percent Dry We	ight			
<u>Prep: Total Solids (D</u>	ry Weight) - 2022				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor

			1	1	
Batch: 23E0553					
A3E1301-02	Soil	EPA 8000D	05/11/23 10:35	05/12/23 08:47	NA
A3E1301-12	Soil	EPA 8000D	05/11/23 11:25	05/12/23 08:47	NA
A3E1301-15	Soil	EPA 8000D	05/11/23 14:50	05/12/23 08:47	NA
Batch: 23E0746					
A3E1301-18	Soil	EPA 8000D	05/09/23 13:30	05/17/23 09:49	NA
A3E1301-20	Soil	EPA 8000D	05/09/23 14:00	05/17/23 09:49	NA

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: <u>Permapost Supplemental RI</u>

Project Number: M8012.01.001 Project Manager: Phil Wiescher <u>Report ID:</u> A3E1301 - 10 02 23 1044

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

PRO Sample has undergone sample processing prior to extraction and analysis.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.

3140 NE Broadway Street Portland, OR 97232

Project: <u>Permapost Supplemental RI</u> Project Number: M8012.01.001

Project Manager: Phil Wiescher

<u>Report ID:</u> A3E1301 - 10 02 23 1044

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET	Analyte DETECTED at or above the detection or reporting limit.
ND	Analyte NOT DETECTED at or above the detection or reporting limit.
NR	Result Not Reported
RPD	Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "____ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.

3140 NE Broadway Street Portland, OR 97232

Project: <u>Permapost Supplemental RI</u> Project Number: M8012.01.001

Project Manager: Phil Wiescher

<u>Report ID:</u> A3E1301 - 10 02 23 1044

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

-For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.

-For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

-Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: <u>Permapost Supplemental RI</u> Project Number: M8012.01.001

Project Manager: Phil Wiescher

<u>Report ID:</u> A3E1301 - 10 02 23 1044

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Lab	oratories				
Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation
		All reported analytes are included in	Apex Laboratories' current	ORELAP scope.	

Secondary Accreditations

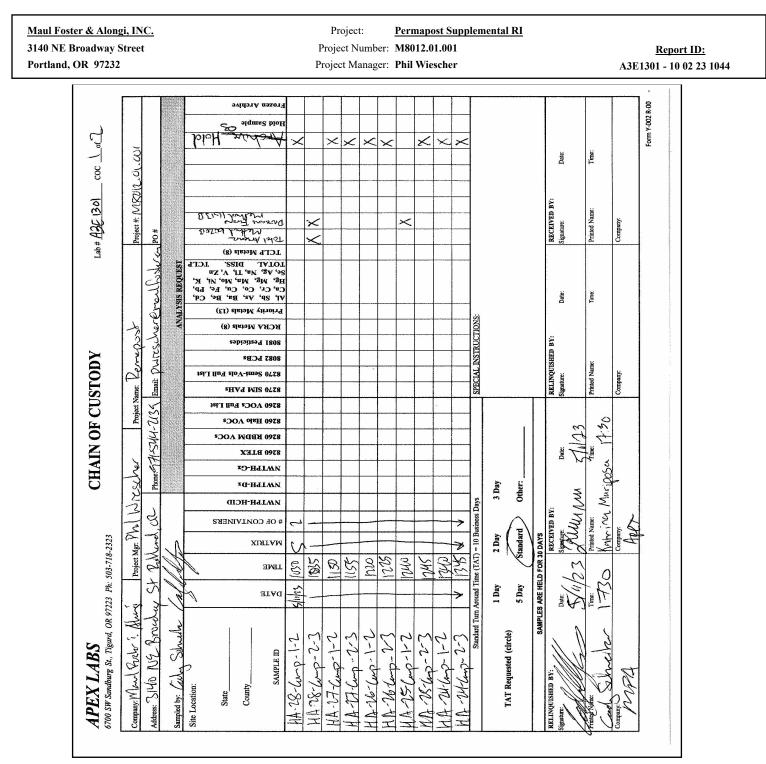
Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

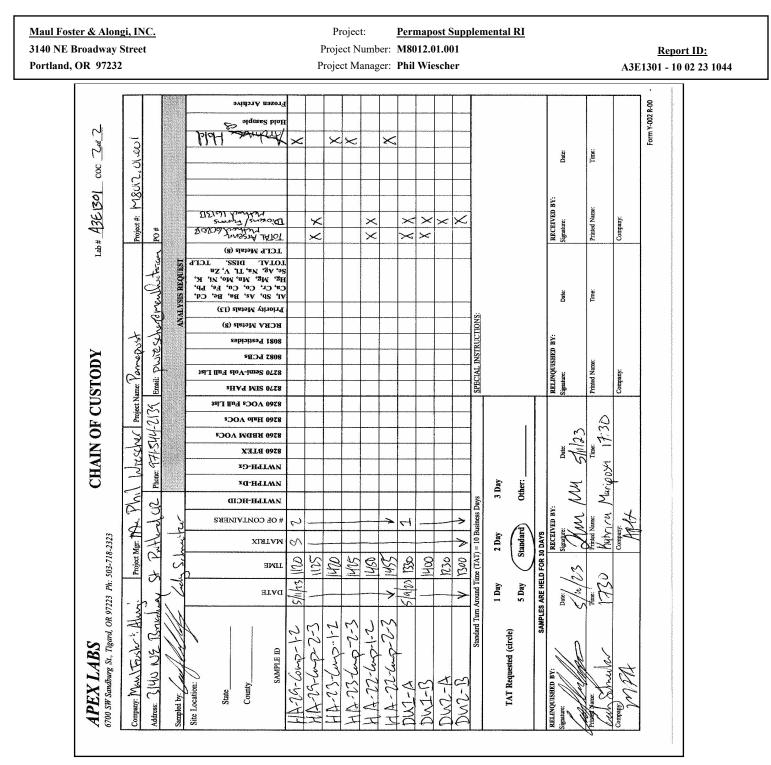
Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.


Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062



Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Permapost Supplemental RI</u>	
3140 NE Broadway Street	Project Number: M8012.01.001	Report ID:
Portland, OR 97232	Project Manager: Phil Wiescher	A3E1301 - 10 02 23 1044
Client: Project/J Delivery Date/time Delivered Cooler II Chain of Signed/d Temperat Custody Received Temp. bla Ice type: Condition Cooler on Green do Out of ter Sample I All samp	APEX LABS COOLER RECEIPT FORM Maul Faster ? flog; Element WO#: A3E '30] Project #: $forme.post: M8012.01.001 Project #: Gene post: M8012.01.001 Info: Rerma post: M8012.01.001 Info: Project #17:30 By: ZrM I by: Apex_Client ZESS_FedEx_UPS_Radio_Morgan_SDS_Evergreen_Other$	
	tainer discrepancies form initiated? Yes No <u>X</u> rs/volumes received appropriate for analysis? Yes <u>X</u> No Comments:	-
Commen	nples: pH checked: YesNoNA $\underline{\lambda}$ pH appropriate? YesNoNA $\underline{\lambda}$	
Addition	al information:	
Labeled 1	by: Witness: ADM Cooler Inspected by: APM Form Y-003 I	

Apex Laboratories

Philip Nevenberg

July 05, 2023

Enthalpy Analytical - El Dorado Hills Work Order No. 2305185

Mr. Philip Nerenberg Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223

Dear Mr. Nerenberg,

Enclosed are the results for the sample set received at Enthalpy Analytical - EDH on May 18, 2023 under your Project Name 'A3E1301'.

Enthalpy Analytical - EDH is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at kathy.zipp@enthalpy.com.

Thank you for choosing Enthalpy Analytical - EDH as part of your analytical support team.

Sincerely,

for

Kathy Zipp Project Manager

Enthalpy Analytical -EDH certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Enthalpy Analytical -EDH.

Enthalpy Analytical - EDH 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.enthalpy.com

Enthalpy Analytical - EDH Work Order No. 2305185 Case Narrative

Sample Condition on Receipt:

Eight soil samples were received and stored securely in accordance with Enthalpy Analytical - EDH standard operating procedures and EPA methodology. The samples were received in good condition and within the method temperature requirements. Samples were received in the clear jars. As directed, analysis of the samples were performed.

Analytical Notes:

EPA Method 8290A

The samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 8290A using a ZB-DIOXIN GC column.

Holding Times

The method holding time criteria were met for these samples.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	17
Certifications	18
Sample Receipt	19

Sample Inventory Report

Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2305185-01	HA-28-Comp-2-3	11-May-23 10:35	18-May-23 09:00	Clear Glass Jar, 120mL
2305185-02	HA-25-Comp-1-2	11-May-23 12:40	18-May-23 09:00	Clear Glass Jar, 120mL
2305185-03	HA-29-Comp-2-3	11-May-23 11:25	18-May-23 09:00	Clear Glass Jar, 120mL
2305185-04	HA-22-Comp-1-2	11-May-23 14:50	18-May-23 09:00	Clear Glass Jar, 120mL
2305185-05	DU1-A	09-May-23 13:30	18-May-23 09:00	Clear Glass Jar, 120mL
2305185-06	DU1-B	09-May-23 14:00	18-May-23 09:00	Clear Glass Jar, 120mL
2305185-07	DU2-A	09-May-23 12:30	18-May-23 09:00	Clear Glass Jar, 120mL
2305185-08	DU2-B	09-May-23 13:00	18-May-23 09:00	Clear Glass Jar, 120mL

ANALYTICAL RESULTS

Sample ID: Method Blank

EPA Method 8290A

· ·	ex Laboratories E1301 id			Laboratory Da Lab Sample: QC Batch: Sample Size:	ta B23E292-BLK1 B23E292 10.0 g	Date Extracted: Column:	30-May-23 ZB-DIOXIN	[
Analyte	Conc. (p	g/g) EDL	MD	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	N	D 0.0804	0.27	73			27-Jun-23 18:41	1
1,2,3,7,8-PeCDD	N	D 0.135	0.60	8			27-Jun-23 18:41	1
1,2,3,4,7,8-HxCDD	N	D 0.154	0.71	0			27-Jun-23 18:41	1
1,2,3,6,7,8-HxCDD	N	D 0.159	0.66	8			27-Jun-23 18:41	1
1,2,3,7,8,9-HxCDD	N	D 0.230	0.69	94			27-Jun-23 18:41	1
1,2,3,4,6,7,8-HpCDD	N		0.65				27-Jun-23 18:41	1
OCDD	N		1.8	5			27-Jun-23 18:41	1
2,3,7,8-TCDF	N	D 0.0861	0.25	6			27-Jun-23 18:41	1
1,2,3,7,8-PeCDF	N	D 0.101	0.72	.4			27-Jun-23 18:41	1
2,3,4,7,8-PeCDF	N						27-Jun-23 18:41	1
1,2,3,4,7,8-HxCDF	N	D 0.0840					27-Jun-23 18:41	1
1,2,3,6,7,8-HxCDF	N	D 0.0882	0.92	24			27-Jun-23 18:41	1
2,3,4,6,7,8-HxCDF	N	D 0.0967	0.76	5			27-Jun-23 18:41	1
1,2,3,7,8,9-HxCDF	N	D 0.129	0.73	7			27-Jun-23 18:41	1
1,2,3,4,6,7,8-HpCDF	N	D 0.107	0.88	9			27-Jun-23 18:41	1
1,2,3,4,7,8,9-HpCDF	N	D 0.130	0.76	5			27-Jun-23 18:41	1
OCDF	N	D 0.236	1.5	1			27-Jun-23 18:41	1
Toxic Equivalent								
TEQMinWHO2005Did	oxin 0.0	00						
Totals		•						
Total TCDD	N	D 0.0804						
Total PeCDD	N							
Total HxCDD	N							
Total HpCDD	N							
Total TCDF	N							
Total PeCDF	N							
Total HxCDF	N							
Total HpCDF	N							
Labeled Standards	Туре		% Recover	• 7	Limits	Qualifiers	Analyzed	Dilution
				y		Quaimers	-	
13C-2,3,7,8-TCDD	IS		99.4		40 - 135		27-Jun-23 18:41	
13C-1,2,3,7,8-PeCDD	IS		87.2		40 - 135		27-Jun-23 18:41	
13C-1,2,3,4,7,8-HxCD			85.2		40 - 135		27-Jun-23 18:41	
13C-1,2,3,6,7,8-HxCD			88.7		40 - 135		27-Jun-23 18:41	
13C-1,2,3,7,8,9-HxCD			70.0		40 - 135		27-Jun-23 18:41	
13C-1,2,3,4,6,7,8-HpC			84.5		40 - 135		27-Jun-23 18:41	
13C-OCDD	IS		79.6		40 - 135		27-Jun-23 18:41	
13C-2,3,7,8-TCDF	IS		82.7		40 - 135		27-Jun-23 18:41	
13C-1,2,3,7,8-PeCDF	IS		85.4		40 - 135		27-Jun-23 18:41	
13C-2,3,4,7,8-PeCDF	IS		92.9		40 - 135		27-Jun-23 18:41	
13C-1,2,3,4,7,8-HxCD			76.9		40 - 135		27-Jun-23 18:41	
13C-1,2,3,6,7,8-HxCD			83.2		40 - 135		27-Jun-23 18:41	
13C-2,3,4,6,7,8-HxCD			80.8		40 - 135		27-Jun-23 18:41	
13C-1,2,3,7,8,9-HxCD			82.1		40 - 135		27-Jun-23 18:41	
13С-1,2,3,4,6,7,8-НрС			65.5		40 - 135		27-Jun-23 18:41	
13C-1,2,3,4,7,8,9-HpC	DF IS		82.7		40 - 135		27-Jun-23 18:41	
13C-OCDF 37Cl-2,3,7,8-TCDD	IS CR		70.5 98.8		40 - 135 40 - 135		27-Jun-23 18:41 27-Jun-23 18:41	

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight.

Sample ID: OPR

EPA Method 8290A

Project: A	pex Laboratorie \3E1301 olid	25		Laboratory Data Lab Sample: QC Batch: Sample Size:	B23E292-BS1 B23E292 10.0 g	Date Extracted: Column:	30-May-23 07:4: ZB-DIOXIN	5
Analyte	Am	t Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		18.6	20.0	92.9	70-130		27-Jun-23 15:38	1
1,2,3,7,8-PeCDD		108	100	108	70-130		27-Jun-23 15:38	1
1,2,3,4,7,8-HxCDD		97.9	100	97.9	70-130		27-Jun-23 15:38	1
1,2,3,6,7,8-HxCDD		98.4	100	98.4	70-130		27-Jun-23 15:38	1
1,2,3,7,8,9-HxCDD		98.9	100	98.9	70-130		27-Jun-23 15:38	1
1,2,3,4,6,7,8-HpCDI)	104	100	104	70-130		27-Jun-23 15:38	1
OCDD		196	200	97.8	70-130		27-Jun-23 15:38	1
2,3,7,8-TCDF		19.7	20.0	98.7	70-130		27-Jun-23 15:38	1
1,2,3,7,8-PeCDF		96.6	100	96.6	70-130		27-Jun-23 15:38	1
2,3,4,7,8-PeCDF		104	100	104	70-130		27-Jun-23 15:38	1
1,2,3,4,7,8-HxCDF		102	100	102	70-130		27-Jun-23 15:38	1
1,2,3,6,7,8-HxCDF		105	100	105	70-130		27-Jun-23 15:38	1
2,3,4,6,7,8-HxCDF		103	100	103 97.4	70-130		27-Jun-23 15:38	1
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF	7	97.4 104	100	104	70-130 70-130		27-Jun-23 15:38 27-Jun-23 15:38	1
1,2,3,4,7,8,9-HpCDF		104	100 100	104	70-130		27-Jun-23 15:38 27-Jun-23 15:38	1
OCDF		202	200	101	70-130		27-Jun-23 15:38	1
Labeled Standards		Туре	200	% Recovery	Limits	Qualifiers		¹ Dilution
13C-2,3,7,8-TCDD		IS		94.6	40-135	-	27-Jun-23 15:38	1
13C-1,2,3,7,8-PeCD	D	IS		89.9	40-135		27-Jun-23 15:38	
13C-1,2,3,4,7,8-HxC		IS		92.3	40-135		27-Jun-23 15:38	
13C-1,2,3,6,7,8-HxC		IS		96.2	40-135		27-Jun-23 15:38	
13C-1,2,3,7,8,9-HxC		IS		83.1	40-135		27-Jun-23 15:38	
13С-1,2,3,4,6,7,8-Нр		IS		89.0	40-135		27-Jun-23 15:38	
13C-OCDD		IS		81.0	40-135		27-Jun-23 15:38	
13C-2,3,7,8-TCDF		IS		87.0	40-135		27-Jun-23 15:38	
13C-1,2,3,7,8-PeCD	F	IS		99.8			27-Jun-23 15:38	1
13C-2,3,4,7,8-PeCD		IS		96.1	40-135		27-Jun-23 15:38	
					40-135			
13C-1,2,3,4,7,8-HxC		IS		81.6	40-135		27-Jun-23 15:38	
13C-1,2,3,6,7,8-HxC		IS		86.7	40-135		27-Jun-23 15:38	
13C-2,3,4,6,7,8-HxC		IS		84.6	40-135		27-Jun-23 15:38	
13C-1,2,3,7,8,9-HxC		IS		87.7	40-135		27-Jun-23 15:38	
13C-1,2,3,4,6,7,8-Hp		IS		74.4	40-135		27-Jun-23 15:38	
13С-1,2,3,4,7,8,9-Нр	CDF	IS		80.8	40-135		27-Jun-23 15:38	1
13C-OCDF		IS		71.3	40-135		27-Jun-23 15:38	1
		CRS		93.5	40-135		27-Jun-23 15:38	1

Sample ID: HA-28-Comp-2-3

EPA Method 8290A

Client Data Name:	Apex Laborator	ies		Lab	oratory Dat Sample:	2305185-01	Date Received:	18-May-23 0	9:00
Project: Matrix:	A3E1301 Soil				Batch: ple Size:	B23E292 13.6 g	Date Extracted: Column:	30-May-23 ZB-DIOXIN	
Date Collected: Analyte	11-May-23 10:3	5 Conc. (pg/g)	EDL	% SC	EMPC	74.9	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND		0.269	0.160			28-Jun-23 00:02	1
1,2,3,7,8-PeCDD		3.82		0.209	0.100			28-Jun-23 00:02 28-Jun-23 00:02	1
1,2,3,4,7,8-HxCD	חו	12.8		0.699				28-Jun-23 00:02 28-Jun-23 00:02	
1,2,3,6,7,8-HxCD		69.0		0.658				28-Jun-23 00:02 28-Jun-23 00:02	
1,2,3,7,8,9-HxCD		27.9		0.684				28-Jun-23 00:02 28-Jun-23 00:02	
1,2,3,4,6,7,8-HpC		2300		0.645				28-Jun-23 00:02 28-Jun-23 00:02	
OCDD	,DD	19900		9.11			D	29-Jun-23 03:04	5
2,3,7,8-TCDF		ND		0.252	0.349		D	29-Jun-23 00:04 28-Jun-23 00:02	
1,2,3,7,8-PeCDF		1.93		0.232	0.349		J	28-Jun-23 00:02 28-Jun-23 00:02	1
2,3,4,7,8-PeCDF		3.57		0.713			J	28-Jun-23 00:02 28-Jun-23 00:02	1
1,2,3,4,7,8-HxCD	F	13.7		0.725				28-Jun-23 00:02 28-Jun-23 00:02	1
1,2,3,6,7,8-HxCD		12.8		0.732				28-Jun-23 00:02 28-Jun-23 00:02	
2,3,4,6,7,8-HxCD		8.37		0.753				28-Jun-23 00:02 28-Jun-23 00:02	1
1,2,3,7,8,9-HxCD		2.01		0.733			J	28-Jun-23 00:02 28-Jun-23 00:02	
1,2,3,4,6,7,8-HpC		383		0.720			J	28-Jun-23 00:02 28-Jun-23 00:02	1
1,2,3,4,7,8,9-HpC		25.7		0.753				28-Jun-23 00:02 28-Jun-23 00:02	
OCDF	,DI	996		1.49				28-Jun-23 00:02 28-Jun-23 00:02	1
Toxic Equivalent	+	990		1.49				28-Juli-23 00.02	1
TEQMinWHO200		53.0							
Totals	00 D lokin	22.0							
Total TCDD		ND			0.160				
Total PeCDD		10.8			11.5				
Total HxCDD		259							
Total HpCDD		3680							
Total TCDF		3.06			3.87				
Total PeCDF		64.6							
Total HxCDF		408							
Total HpCDF		1260							
Labeled Standar	·ds	Туре	% R	Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCD	D	IS		100		40 - 135		28-Jun-23 00:02	1
13C-1,2,3,7,8-PeC		IS		94.0		40 - 135		28-Jun-23 00:02	
13С-1,2,3,4,7,8-Н		IS		39.9		40 - 135		28-Jun-23 00:02	
13С-1,2,3,6,7,8-Н		IS		88.8		40 - 135		28-Jun-23 00:02	
13С-1,2,3,7,8,9-Н		IS		31.7		40 - 135		28-Jun-23 00:02	
13C-1,2,3,4,6,7,8-		IS		92.3		40 - 135		28-Jun-23 00:02	
13C-OCDD	превв	IS		90.7		40 - 135	D	29-Jun-23 03:04	
13C-2,3,7,8-TCD	F	IS		87.1		40 - 135	D	28-Jun-23 00:02	
13C-1,2,3,7,8-Pe0		IS		96.6		40 - 135		28-Jun-23 00:02	
13C-2,3,4,7,8-PeC		IS		100		40 - 135		28-Jun-23 00:02 28-Jun-23 00:02	
13C-1,2,3,4,7,8-H		IS		79.2		40 - 135		28-Jun-23 00:02	
13С-1,2,3,6,7,8-Н		IS		32.9 82.9		40 - 135		28-Jun-23 00:02 28-Jun-23 00:02	
13С-2,3,4,6,7,8-Н		IS		32.5		40 - 135		28-Jun-23 00:02	
13С-1,2,3,7,8,9-Н		IS		80.3 81.0		40 - 135		28-Jun-23 00:02 28-Jun-23 00:02	
13C-1,2,3,4,6,7,8-		IS		70.5		40 - 135		28-Jun-23 00:02 28-Jun-23 00:02	
13C-1,2,3,4,7,8,9-	-	IS		83.9		40 - 135		28-Jun-23 00:02 28-Jun-23 00:02	
	преві	IS				40 - 135		28-Jun-23 00:02 28-Jun-23 00:02	
13C-OCDF				31.3		40 - 135			

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight.

Sample ID: HA-25-Comp-1-2

EPA Method 8290A

Client Data				Lab	oratory Dat	a			
	Apex Laboratories			Lab	Sample:	2305185-02	Date Received:	18-May-23 0	9:00
Project:	A3E1301			QCI	Batch:	B23E292	Date Extracted:	30-May-23	
-	Soil			Sam	ple Size:	12.9 g	Column:	ZB-DIOXIN	
	11-May-23 12:40			% So		79.4		ZB-DIOAIN	
Analyte		onc. (pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND		0.267	0.179			28-Jun-23 00:48	1
1,2,3,7,8-PeCDD		ND		0.594	1.41			28-Jun-23 00:48	1
1,2,3,4,7,8-HxCDE)	2.30		0.694			J	28-Jun-23 00:48	1
1,2,3,6,7,8-HxCDE)	11.1		0.653				28-Jun-23 00:48	1
1,2,3,7,8,9-HxCDE)	5.06		0.679				28-Jun-23 00:48	1
1,2,3,4,6,7,8-HpCE	DD	298		0.640				28-Jun-23 00:48	1
OCDD		2180		1.81				28-Jun-23 00:48	1
2,3,7,8-TCDF		ND	0.141	0.250				28-Jun-23 00:48	1
1,2,3,7,8-PeCDF		0.478		0.708			J	28-Jun-23 00:48	1
2,3,4,7,8-PeCDF		0.703		0.720			J	28-Jun-23 00:48	1
1,2,3,4,7,8-HxCDF	7	2.14		0.747			J	28-Jun-23 00:48	1
1,2,3,6,7,8-HxCDF	1	2.35		0.903			J	28-Jun-23 00:48	1
2,3,4,6,7,8-HxCDF	7	0.866		0.748			J	28-Jun-23 00:48	1
1,2,3,7,8,9-HxCDF		ND	0.402	0.721				28-Jun-23 00:48	1
1,2,3,4,6,7,8-HpCE	DF	47.3		0.869				28-Jun-23 00:48	1
1,2,3,4,7,8,9-HpCE		3.28		0.748				28-Jun-23 00:48	1
OCDF		107		1.48				28-Jun-23 00:48	1
Toxic Equivalent									
TEQMinWHO2003	5Dioxin	6.78							
Totals									
Total TCDD		ND			0.179				
Total PeCDD		1.17			2.58				
Total HxCDD		44.9							
Total HpCDD		489							
Total TCDF		ND			1.02				
Total PeCDF		11.3			11.8				
Total HxCDF		58.8			59.3				
Total HpCDF		137							
Labeled Standard	ls	Туре	%	Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD)	IS		95.3		40 - 135		28-Jun-23 00:48	1
13C-1,2,3,7,8-PeC	DD	IS		93.3		40 - 135		28-Jun-23 00:48	1
13C-1,2,3,4,7,8-Hx	KCDD	IS		88.9		40 - 135		28-Jun-23 00:48	1
13С-1,2,3,6,7,8-Нх	CDD	IS		89.1		40 - 135		28-Jun-23 00:48	1
13C-1,2,3,7,8,9-Hx	CDD	IS		83.8		40 - 135		28-Jun-23 00:48	1
13C-1,2,3,4,6,7,8-I	HpCDD	IS		86.7		40 - 135		28-Jun-23 00:48	1
13C-OCDD	•	IS		83.4		40 - 135		28-Jun-23 00:48	1
13C-2,3,7,8-TCDF		IS		82.8		40 - 135		28-Jun-23 00:48	
13C-1,2,3,7,8-PeC		IS		95.5		40 - 135		28-Jun-23 00:48	
13C-2,3,4,7,8-PeC		IS		93.8		40 - 135		28-Jun-23 00:48	
13C-1,2,3,4,7,8-Hx		IS		79.6		40 - 135		28-Jun-23 00:48	
13C-1,2,3,6,7,8-Hx		IS		81.9		40 - 135		28-Jun-23 00:48	
13C-2,3,4,6,7,8-Hx		IS		82.3		40 - 135		28-Jun-23 00:48	
		IS		84.1		40 - 135		28-Jun-23 00:48	
13U-1.2.3.7.8.9-HX		IS		77.0		40 - 135		28-Jun-23 00:48	
13C-1,2,3,7,8,9-Hx 13C-1.2,3,4,6,7,8-H									-
13C-1,2,3,4,6,7,8-H								28-Jun-23 00.48	1
		IS IS		80.1 72.7		40 - 135 40 - 135		28-Jun-23 00:48 28-Jun-23 00:48	

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight. The sample size is reported in wet weight.

Work Order 2305185

Sample ID: HA-29-Comp-2-3

EPA Method 8290A

Project: A3 Matrix: Soi	ex Laboratories E1301 I May-23 11:25			La Q Sa	aboratory Data ab Sample: C Batch: ample Size: Solids:	a 2305185-03 B23E292 13.8 g 75.9	Date Received: Date Extracted: Column:	18-May-23 0 30-May-23 ZB-DIOXIN	
Analyte		(pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND	0.101	0.261				28-Jun-23 04:00	1
1,2,3,7,8-PeCDD		2.28		0.581			J	28-Jun-23 04:00	1
1,2,3,4,7,8-HxCDD		6.39		6.79			D, J	30-Jun-23 01:32	10
1,2,3,6,7,8-HxCDD		39.1		6.38			D	30-Jun-23 01:32	10
1,2,3,7,8,9-HxCDD		11.5		6.63			D, J	30-Jun-23 01:32	
1,2,3,4,6,7,8-HpCDD		1230		6.26			D	30-Jun-23 01:32	
OCDD		0900		17.7			D	30-Jun-23 01:32	
2,3,7,8-TCDF		0.187		0.245			J	28-Jun-23 04:00	
1,2,3,7,8-PeCDF		0.883		0.692			J	28-Jun-23 04:00	
2,3,4,7,8-PeCDF		1.49		0.703			J	28-Jun-23 04:00	
1,2,3,4,7,8-HxCDF		7.91		7.30			D, J	30-Jun-23 01:32	
1,2,3,6,7,8-HxCDF		7.23		8.83			D, J	30-Jun-23 01:32	
2,3,4,6,7,8-HxCDF		12.4	4.00	7.31			D, J	30-Jun-23 01:32	10
1,2,3,7,8,9-HxCDF		ND	4.00	7.04			D	30-Jun-23 01:32	
1,2,3,4,6,7,8-HpCDF		187		8.50			D	30-Jun-23 01:32	10
1,2,3,4,7,8,9-HpCDF OCDF		15.3 535		7.31 14.4			D, J D	30-Jun-23 01:32	10 10
		555		14.4			D	30-Jun-23 01:32	10
Toxic Equivalent		20.0							
TEQMinWHO2005Di	oxin	29.0							
Totals									
Total TCDD		ND	0.101						
Total PeCDD		4.52			5.21				
Total HxCDD		160							
Total HpCDD		1990			1.20				
Total TCDF).705			1.29				
Total PeCDF		33.4			33.7				
Total HxCDF		240 652							
Total HpCDF Labeled Standards	т		0/ D			Limits	Qualifiers	A]	Dilution
		ype		lecovery			Quaimers	, v	
13C-2,3,7,8-TCDD		IS		7.2		40 - 135		28-Jun-23 04:00	
13C-1,2,3,7,8-PeCDD	-	IS		3.2		40 - 135		28-Jun-23 04:00	
13C-1,2,3,4,7,8-HxCD		IS		58.1		40 - 135	D	30-Jun-23 01:32	
13C-1,2,3,6,7,8-HxCD		IS		37.7		40 - 135	D	30-Jun-23 01:32	
13C-1,2,3,7,8,9-HxCD		IS		52.8		40 - 135	D	30-Jun-23 01:32	
13С-1,2,3,4,6,7,8-НрС	DD	IS		01.7		40 - 135	D	30-Jun-23 01:32	
13C-OCDD		IS		0.4		40 - 135	D	30-Jun-23 01:32	
13C-2,3,7,8-TCDF		IS		33.3		40 - 135		28-Jun-23 04:00	
13C-1,2,3,7,8-PeCDF		IS		9.7		40 - 135		28-Jun-23 04:00	
13C-2,3,4,7,8-PeCDF		IS		52.5		40 - 135		28-Jun-23 04:00	1
13C-1,2,3,4,7,8-HxCD		IS		32.7		40 - 135	D	30-Jun-23 01:32	10
13C-1,2,3,6,7,8-HxCD	F	IS	8	37.5		40 - 135	D	30-Jun-23 01:32	10
13C-2,3,4,6,7,8-HxCD	F	IS	5	59.5		40 - 135	D	30-Jun-23 01:32	10
13C-1,2,3,7,8,9-HxCD	F	IS	7	2.2		40 - 135	D	30-Jun-23 01:32	10
13C-1,2,3,4,6,7,8-HpC	DF	IS	8	35.8		40 - 135	D	30-Jun-23 01:32	10
1.50 1,2,5,7,0,7,0-11pC									
13С-1,2,3,4,7,8,9-НрС	DF	IS	8	30.3		40 - 135	D	30-Jun-23 01:32	10
	DF	IS IS		30.3 57.9		40 - 135 40 - 135	D D	30-Jun-23 01:32 30-Jun-23 01:32	

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

Sample ID: HA-22-Comp-1-2

EPA Method 8290A

Client Data				Lab	oratory Dat	a			
Name:	Apex Laborator	ies		Lab	Sample:	2305185-04	Date Received:	18-May-23 0	9:00
Project:	A3E1301			QCI	Batch:	B23E292	Date Extracted:	30-May-23	
Matrix:	Soil			Sam	ole Size:	12.4 g	Column:	ZB-DIOXIN	
Date Collected:		50		% So	olids:	81.8		ZD-DIOMIN	
Analyte	-	Conc. (pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND		0.269	0.106			28-Jun-23 04:45	1
1,2,3,7,8-PeCDD)	2.56		0.598				28-Jun-23 04:45	1
1,2,3,4,7,8-HxCE		5.71		0.699				28-Jun-23 04:45	1
1,2,3,6,7,8-HxCI	DD	33.8		0.657				28-Jun-23 04:45	1
1,2,3,7,8,9-HxCI	DD	13.7		0.683				28-Jun-23 04:45	1
1,2,3,4,6,7,8-HpC	CDD	814		0.645				28-Jun-23 04:45	1
OCDD		4980		1.82				28-Jun-23 04:45	1
2,3,7,8-TCDF		ND		0.252	0.391			28-Jun-23 04:45	1
1,2,3,7,8-PeCDF		1.53		0.712			J	28-Jun-23 04:45	1
2,3,4,7,8-PeCDF		2.81		0.724				28-Jun-23 04:45	1
1,2,3,4,7,8-HxCI		5.92		0.752				28-Jun-23 04:45	1
1,2,3,6,7,8-HxCI		6.33		0.909				28-Jun-23 04:45	1
2,3,4,6,7,8-HxCI		2.49		0.753				28-Jun-23 04:45	1
1,2,3,7,8,9-HxCE		0.514		0.725			J	28-Jun-23 04:45	
1,2,3,4,6,7,8-HpC		120		0.875				28-Jun-23 04:45	1
1,2,3,4,7,8,9-HpC		8.55		0.753				28-Jun-23 04:45	
OCDF		268		1.49				28-Jun-23 04:45	1
Toxic Equivalen	t			,					_
TEQMinWHO20		21.3							
Totals									
Total TCDD		0.386			0.492				
Total PeCDD		6.23			7.39				
Total HxCDD		119							
Total HpCDD		1300							
Total TCDF		2.07			3.05				
Total PeCDF		44.8			45.0				
Total HxCDF		192			193				
Total HpCDF		353							
Labeled Standa	rds	Туре	% R	ecovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCE	DD	IS		106		40 - 135		28-Jun-23 04:45	1
13C-1,2,3,7,8-Pe		IS	8	9.8		40 - 135		28-Jun-23 04:45	1
13C-1,2,3,4,7,8-I		IS	8	3.9		40 - 135		28-Jun-23 04:45	1
13C-1,2,3,6,7,8-I		IS		1.5		40 - 135		28-Jun-23 04:45	
13C-1,2,3,7,8,9-I		IS		8.1		40 - 135		28-Jun-23 04:45	
13C-1,2,3,4,6,7,8		IS		57.4		40 - 135		28-Jun-23 04:45	
13C-OCDD	·	IS		57.6		40 - 135		28-Jun-23 04:45	
13C-2,3,7,8-TCE)F	IS		6.6		40 - 135		28-Jun-23 04:45	
13C-1,2,3,7,8-Pe		IS		2.9		40 - 135		28-Jun-23 04:45	
13C-2,3,4,7,8-Pe		IS		3.0		40 - 135		28-Jun-23 04:45	
13C-1,2,3,4,7,8-I		IS		6.3		40 - 135		28-Jun-23 04:45	
13C-1,2,3,6,7,8-I		IS		0.3 7.6		40 - 135		28-Jun-23 04:45	
13C-2,3,4,6,7,8-I		IS		7.0 '9.1		40 - 133		28-Jun-23 04:45	
13C-1,2,3,7,8,9-I		IS		9.1 2.1		40 - 133		28-Jun-23 04:45 28-Jun-23 04:45	
13C-1,2,3,7,8,9-1 13C-1,2,3,4,6,7,8		IS		6.1		40 - 135 40 - 135		28-Jun-23 04:45 28-Jun-23 04:45	
	-								
13C-1,2,3,4,7,8,9	-прерг	IS IS		5.0		40 - 135		28-Jun-23 04:45	
13C-OCDF	DD			5.5		40 - 135		28-Jun-23 04:45	
37Cl-2,3,7,8-TCl	עט	CRS		105		40 - 135		28-Jun-23 04:45	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight.

Sample ID: DU1-A

EPA Method 8290A

Client Data				La	boratory Data	a			
	ex Laboratories			La	o Sample:	2305185-05	Date Received:	18-May-23 0	09:00
-	E1301			QC	Batch:	B23E292	Date Extracted:	30-May-23	
Matrix: Soi				Sa	nple Size:	10.8 g	Column:	ZB-DIOXIN	
	May-23 13:30			%	Solids:	94.9		EB BIOTIN	
Analyte	Conc	c. (pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		1.81		0.266				28-Jun-23 05:31	1
1,2,3,7,8-PeCDD		2.07		0.592			J	28-Jun-23 05:31	1
1,2,3,4,7,8-HxCDD		4.03		0.691				28-Jun-23 05:31	1
1,2,3,6,7,8-HxCDD		19.7		0.650				28-Jun-23 05:31	1
1,2,3,7,8,9-HxCDD		9.40		0.675				28-Jun-23 05:31	1
1,2,3,4,6,7,8-HpCDD		541		0.637				28-Jun-23 05:31	1
OCDD		3780		1.80				28-Jun-23 05:31	1
2,3,7,8-TCDF		ND		0.249	0.318			28-Jun-23 05:31	1
1,2,3,7,8-PeCDF		0.787		0.705			J	28-Jun-23 05:31	1
2,3,4,7,8-PeCDF		1.33		0.716			J	28-Jun-23 05:31	1
1,2,3,4,7,8-HxCDF		4.10		0.743				28-Jun-23 05:31	1
1,2,3,6,7,8-HxCDF		3.16		0.899				28-Jun-23 05:31	1
2,3,4,6,7,8-HxCDF		1.18		0.744			J	28-Jun-23 05:31	1
1,2,3,7,8,9-HxCDF		0.609		0.717			J	28-Jun-23 05:31	1
1,2,3,4,6,7,8-HpCDF		82.7		0.865				28-Jun-23 05:31	1
1,2,3,4,7,8,9-HpCDF		5.22		0.744				28-Jun-23 05:31	1
OCDF		182		1.47				28-Jun-23 05:31	1
Toxic Equivalent									
TEQMinWHO2005Di	oxin	16.0							
Totals									
Total TCDD		3.30			3.46				
Total PeCDD		8.01			8.82				
Total HxCDD		83.9							
Total HpCDD		881							
Total TCDF		0.847			2.06				
Total PeCDF		19.4							
Total HxCDF		98.2			98.5				
Total HpCDF		231							
Labeled Standards]	Гуре	% Reco	overv		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD		IS	107			40 - 135		28-Jun-23 05:31	1
13C-1,2,3,7,8-PeCDD		IS	88.4			40 - 135		28-Jun-23 05:31	
13C-1,2,3,4,7,8-HxCD	D	IS	85.5			40 - 135		28-Jun-23 05:31	
13C-1,2,3,6,7,8-HxCD		IS	85.4			40 - 135		28-Jun-23 05:31	
13C-1,2,3,7,8,9-HxCD		IS	92.0			40 - 135		28-Jun-23 05:31	
13С-1,2,3,4,6,7,8-НрС		IS	93.4			40 - 135		28-Jun-23 05:31	
13C-OCDD		IS	94.7			40 - 135		28-Jun-23 05:31	
13C-2,3,7,8-TCDF		IS	84.3			40 - 135		28-Jun-23 05:31 28-Jun-23 05:31	
13C-1,2,3,7,8-PeCDF		IS	92.5			40 - 135		28-Jun-23 05:31	
13C-2,3,4,7,8-PeCDF		IS	92.5			40 - 135		28-Jun-23 05:31 28-Jun-23 05:31	
13C-1,2,3,4,7,8-PeCDF	F	IS	97.0 77.6			40 - 133		28-Jun-23 05:31 28-Jun-23 05:31	
13C-1,2,3,6,7,8-HxCD			80.8			40 - 135		28-Jun-23 05:31 28-Jun-23 05:31	
13C-1,2,3,6,7,8-HxCD		IS IS				40 - 135 40 - 135			
			81.0					28-Jun-23 05:31	
13C-1,2,3,7,8,9-HxCD		IS	84.6			40 - 135		28-Jun-23 05:31	
13C-1,2,3,4,6,7,8-HpC		IS	85.3			40 - 135		28-Jun-23 05:31	
13С-1,2,3,4,7,8,9-НрС	DF	IS	90.1			40 - 135		28-Jun-23 05:31	
13C-OCDF		IS	84.2			40 - 135		28-Jun-23 05:31	
37Cl-2,3,7,8-TCDD		CRS	105			40 - 135		28-Jun-23 05:31	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight.

Sample ID: DU1-B

EPA Method 8290A

Client Data				Lab	oratory Dat	a			
	Apex Laboratories				Sample:	2305185-06	Date Received:	18-May-23 0	9:00
	A3E1301				Batch:	B23E292	Date Extracted:	30-May-23	
-	Soil			Sam	ple Size:	10.4 g	Column:	ZB-DIOXIN	
	09-May-23 14:00			% Se	olids:	95.8		ZB-DIOXIN	
Analyte	Cor	nc. (pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		4.04		0.273				28-Jun-23 06:17	1
1,2,3,7,8-PeCDD		2.46		0.608			J	28-Jun-23 06:17	1
1,2,3,4,7,8-HxCDD		6.53		0.710				28-Jun-23 06:17	1
1,2,3,6,7,8-HxCDD		31.7		0.668				28-Jun-23 06:17	1
1,2,3,7,8,9-HxCDD		13.5		0.694				28-Jun-23 06:17	1
1,2,3,4,6,7,8-HpCD	D	979		0.655				28-Jun-23 06:17	1
OCDD		6990		9.25			D	29-Jun-23 10:05	5
2,3,7,8-TCDF		0.470		0.256			J	28-Jun-23 06:17	
1,2,3,7,8-PeCDF		1.16		0.724			J	28-Jun-23 06:17	1
2,3,4,7,8-PeCDF		2.13		0.736			J	28-Jun-23 06:17	
1,2,3,4,7,8-HxCDF		5.99		0.764				28-Jun-23 06:17	1
1,2,3,6,7,8-HxCDF		5.73		0.924				28-Jun-23 06:17	1
2,3,4,6,7,8-HxCDF		2.98		0.765				28-Jun-23 06:17	1
1,2,3,7,8,9-HxCDF		ND		0.737	0.451			28-Jun-23 06:17	1
1,2,3,4,6,7,8-HpCD		153		0.889				28-Jun-23 06:17	1
1,2,3,4,7,8,9-HpCD	0F	8.36		0.765				28-Jun-23 06:17	
OCDF		310		1.51				28-Jun-23 06:17	1
Toxic Equivalent	-D' '	27.5							
TEQMinWHO2005	Dioxin	27.5							
Totals		4.7.4			1.07				
Total TCDD		4.74			4.96				
Total PeCDD		9.41			10.2				
Total HxCDD		140							
Total HpCDD Total TCDF		1590 2.09			2.54				
Total PeCDF		30.9			2.34				
Total HxCDF		170			171				
Total HpCDF		455			1/1				
Labeled Standards	e	Type	% Rec	ovorty		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD		IS	97.	•		40 - 135	Quanners	28-Jun-23 06:17	
13C-1,2,3,7,8-PeCI		IS IS	88.			40 - 135		28-Jun-23 06:17	
13C-1,2,3,4,7,8-Hx		15				40 125			
			84.			40 - 135		28-Jun-23 06:17	1
13C-1,2,3,6,7,8-Hx	CDD	IS	85.	4		40 - 135		28-Jun-23 06:17	
13C-1,2,3,6,7,8-Hx 13C-1,2,3,7,8,9-Hx	CDD CDD	IS IS	85. 72.	4 1		40 - 135 40 - 135		28-Jun-23 06:17 28-Jun-23 06:17	1
13C-1,2,3,6,7,8-Hxv 13C-1,2,3,7,8,9-Hxv 13C-1,2,3,4,6,7,8-H	CDD CDD	IS IS IS	85. 72. 87.	4 1 2		40 - 135 40 - 135 40 - 135		28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17	1 1
13C-1,2,3,6,7,8-Hxv 13C-1,2,3,7,8,9-Hxv 13C-1,2,3,4,6,7,8-H 13C-OCDD	CDD CDD	IS IS IS IS	85. 72. 87. 81.	4 1 2 6		40 - 135 40 - 135 40 - 135 40 - 135	D	28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 29-Jun-23 10:05	1 1 5
13C-1,2,3,6,7,8-Hxt 13C-1,2,3,7,8,9-Hxt 13C-1,2,3,4,6,7,8-H 13C-OCDD 13C-2,3,7,8-TCDF	CDD CDD łpCDD	IS IS IS IS IS	85. 72. 87. 81. 81.	4 1 2 6 7		40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135	D	28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 29-Jun-23 10:05 28-Jun-23 06:17	1 1 5 1
13C-1,2,3,6,7,8-Hxt 13C-1,2,3,7,8,9-Hxt 13C-1,2,3,4,6,7,8-H 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCI	CDD CDD łpCDD DF	IS IS IS IS IS IS	85. 72. 87. 81. 81. 91.	4 1 2 6 7 0		40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135	D	28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 29-Jun-23 10:05 28-Jun-23 06:17 28-Jun-23 06:17	1 1 5 1 1
13C-1,2,3,6,7,8-Hxt 13C-1,2,3,7,8,9-Hxt 13C-1,2,3,4,6,7,8-H 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCI 13C-2,3,4,7,8-PeCI	CDD CDD łpCDD DF DF	IS IS IS IS IS IS IS	85. 72. 87. 81. 81. 91. 95.	4 1 2 6 7 0 7		40 - 135 40 - 135	D	28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 29-Jun-23 10:05 28-Jun-23 06:17	1 1 5 1 1
13C-1,2,3,6,7,8-Hxt 13C-1,2,3,7,8,9-Hxt 13C-1,2,3,4,6,7,8-H 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCI 13C-2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-Hxt	CDD CDD IpCDD DF DF CDF CDF	IS IS IS IS IS IS IS IS IS	85. 72. 87. 81. 81. 91. 95. 73.	4 1 2 6 7 0 7 5		40 - 135 40 - 135	D	28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 29-Jun-23 10:05 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17	1 1 5 1 1 1 1 1
13C-1,2,3,6,7,8-Hxt 13C-1,2,3,7,8,9-Hxt 13C-1,2,3,4,6,7,8-H 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCI 13C-2,3,4,7,8-PeCI	CDD CDD IpCDD DF DF CDF CDF	IS IS IS IS IS IS IS	85. 72. 87. 81. 81. 91. 95.	4 1 2 6 7 0 7 5		40 - 135 40 - 135	D	28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 29-Jun-23 10:05 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17	1 1 5 1 1 1 1 1
13C-1,2,3,6,7,8-Hxt 13C-1,2,3,7,8,9-Hxt 13C-1,2,3,4,6,7,8-H 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCI 13C-2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-Hxt	CDD CDD IpCDD DF DF CDF CDF CDF	IS IS IS IS IS IS IS IS IS	85. 72. 87. 81. 81. 91. 95. 73.	4 1 2 6 7 0 7 5 9		40 - 135 40 - 135	D	28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 29-Jun-23 10:05 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17	1 1 5 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-Hxt 13C-1,2,3,7,8,9-Hxt 13C-1,2,3,4,6,7,8-H 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCI 13C-2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-Hxt 13C-1,2,3,6,7,8-Hxt	CDD CDD IpCDD DF CDF CDF CDF CDF CDF CDF	IS IS IS IS IS IS IS IS IS IS	85. 72. 87. 81. 81. 91. 95. 73. 75.	4 1 2 6 7 0 7 5 9 9 4		40 - 135 40 - 135	D	28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 29-Jun-23 10:05 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17	1 5 1 1 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-Hxv 13C-1,2,3,7,8,9-Hxv 13C-1,2,3,4,6,7,8-H 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCI 13C-1,2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-Hxv 13C-1,2,3,6,7,8-Hxv 13C-2,3,4,6,7,8-Hxv	CDD CDD IpCDD OF CDF CDF CDF CDF CDF CDF CDF CDF	IS IS IS IS IS IS IS IS IS IS IS	85. 72. 87. 81. 81. 91. 95. 73. 75. 78.	4 1 2 6 7 0 7 5 9 9 4 9 9		40 - 135 40 - 135	D	28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 29-Jun-23 10:05 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17	1 5 1 1 1 1 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-Hxt 13C-1,2,3,7,8,9-Hxt 13C-1,2,3,4,6,7,8-H 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCI 13C-2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-Hxt 13C-1,2,3,4,7,8-Hxt 13C-2,3,4,6,7,8-Hxt 13C-1,2,3,7,8,9-Hxt	CDD CDD IpCDD DF CDF CDF CDF CDF CDF CDF CDF CDF C	IS IS IS IS IS IS IS IS IS IS IS IS	85. 72. 87. 81. 81. 91. 95. 73. 75. 78. 80.	4 1 2 6 7 0 7 5 9 4 9 1		40 - 135 40 - 135	D	28-Jun-23 06:17 28-Jun-23 06:17 29-Jun-23 06:17 29-Jun-23 10:05 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17	1 1 5 1 1 1 1 1 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-Hxt 13C-1,2,3,7,8,9-Hxt 13C-1,2,3,4,6,7,8-H 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCI 13C-1,2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-Hxt 13C-1,2,3,6,7,8-Hxt 13C-1,2,3,7,8,9-Hxt 13C-1,2,3,7,8,9-Hxt	CDD CDD IpCDD DF CDF CDF CDF CDF CDF CDF CDF CDF C	IS IS IS IS IS IS IS IS IS IS IS IS IS I	85. 72. 87. 81. 81. 91. 95. 73. 75. 78. 80. 62.	4 1 2 6 7 0 7 5 9 4 9 9 1 0		$\begin{array}{c} 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \end{array}$	D	28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 29-Jun-23 10:05 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17 28-Jun-23 06:17	1 5 1 1 1 1 1 1 1 1 1 1 1 1 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

Sample ID: DU2-A

EPA Method 8290A

Client Data				La	boratory Data	a			
	Apex Laboratories				Sample:	2305185-07	Date Received:	18-May-23 0	09:00
	A3E1301				Batch:	B23E292	Date Extracted:	30-May-23	
U U	Soil			Sar	nple Size:	10.4 g	Column:	ZB-DIOXIN	
	09-May-23 12:30			% 5	Solids:	95.8		2B-DIOAIN	
Analyte	Cor	nc. (pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		0.760		0.273				28-Jun-23 07:03	1
1,2,3,7,8-PeCDD		6.93		0.608				28-Jun-23 07:03	1
1,2,3,4,7,8-HxCDD		18.6		0.710				28-Jun-23 07:03	1
1,2,3,6,7,8-HxCDD		101		0.668				28-Jun-23 07:03	1
1,2,3,7,8,9-HxCDD		46.3		0.694				28-Jun-23 07:03	
1,2,3,4,6,7,8-HpCD	D	2750		0.655				28-Jun-23 07:03	
OCDD		21300		9.25			D	29-Jun-23 10:51	5
2,3,7,8-TCDF		1.20		0.256				28-Jun-23 07:03	
1,2,3,7,8-PeCDF		3.71		0.724				28-Jun-23 07:03	
2,3,4,7,8-PeCDF		9.20		0.736				28-Jun-23 07:03	
1,2,3,4,7,8-HxCDF		24.4		0.764				28-Jun-23 07:03	
1,2,3,6,7,8-HxCDF		17.3		0.924				28-Jun-23 07:03	
2,3,4,6,7,8-HxCDF		6.85		0.765				28-Jun-23 07:03	
1,2,3,7,8,9-HxCDF	F	3.80		0.737				28-Jun-23 07:03	
1,2,3,4,6,7,8-HpCD		475 27.7		0.889				28-Jun-23 07:03	
1,2,3,4,7,8,9-HpCD OCDF	r	1050		0.765 1.51				28-Jun-23 07:03 28-Jun-23 07:03	
Toxic Equivalent		1050		1.31				28-Juli-25 07:05	1
TEQMinWHO2005	Diovin	71.7							
Totals	DIOXIII	/1./							
Total TCDD		1.87			2.47				
Total PeCDD		26.8			2.77				
Total HxCDD		418							
Total HpCDD		4390							
Total TCDF		25.5			26.3				
Total PeCDF		128			129				
Total HxCDF		580			583				
Total HpCDF		1470			000				
Labeled Standards	i	Туре	% Rec	overy		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD		IS	99.4			40 - 135		28-Jun-23 07:03	1
13C-1,2,3,7,8-PeCD	D	IS	96.	7		40 - 135		28-Jun-23 07:03	1
13C-1,2,3,4,7,8-Hx0	CDD	IS	86.:			40 - 135		28-Jun-23 07:03	1
13C-1,2,3,6,7,8-Hx(IS	87.			40 - 135		28-Jun-23 07:03	
13C-1,2,3,7,8,9-Hx(IS	76.			40 - 135		28-Jun-23 07:03	
13С-1,2,3,4,6,7,8-Н		IS	94.4			40 - 135		28-Jun-23 07:03	
13C-OCDD	F	IS	88.4			40 - 135	D	29-Jun-23 10:51	
13C-2,3,7,8-TCDF		IS	82.4			40 - 135	2	28-Jun-23 07:03	
13C-1,2,3,7,8-PeCD)F	IS	97.9			40 - 135		28-Jun-23 07:03	
13C-2,3,4,7,8-PeCD		IS	103			40 - 135		28-Jun-23 07:03	
13C-1,2,3,4,7,8-Hx(IS	74.2			40 - 135		28-Jun-23 07:03	
13C-1,2,3,6,7,8-Hx		IS	74 79.			40 - 135		28-Jun-23 07:03	
13C-2,3,4,6,7,8-Hx		IS	79. 78.			40 - 135		28-Jun-23 07:03	
13C-1,2,3,7,8,9-Hx		IS	78.			40 - 133 40 - 135		28-Jun-23 07:03 28-Jun-23 07:03	
13C-1,2,3,4,6,7,8-H	-	IS	67.0			40 - 135		28-Jun-23 07:03	
13С-1,2,3,4,7,8,9-Н	pCDF	IS	80.3			40 - 135		28-Jun-23 07:03	
13C-OCDF		IS	83.0			40 - 135		28-Jun-23 07:03	
37Cl-2,3,7,8-TCDD		CRS	103	5		40 - 135		28-Jun-23 07:03	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

Sample ID: Method Blank

EPA Method 8290A

Client DataName:Apex LaboProject:A3E1301Matrix:Solid	ratories		Lab QC	oratory Da Sample: Batch: pple Size:	ta B23E292-BLK1 B23E292 10.0 g	Date Extracted: Column:	30-May-23 ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	MDL	EMPC	1	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.0804	0.273				27-Jun-23 18:41	1
1,2,3,7,8-PeCDD	ND	0.135	0.608				27-Jun-23 18:41	1
1,2,3,4,7,8-HxCDD	ND	0.154	0.710				27-Jun-23 18:41	1
1,2,3,6,7,8-HxCDD	ND	0.159	0.668				27-Jun-23 18:41	1
1,2,3,7,8,9-HxCDD	ND	0.230	0.694				27-Jun-23 18:41	1
1,2,3,4,6,7,8-HpCDD	ND	0.169	0.655				27-Jun-23 18:41	1
OCDD	ND	0.311	1.85				27-Jun-23 18:41	1
2,3,7,8-TCDF	ND	0.0861	0.256				27-Jun-23 18:41	1
1,2,3,7,8-PeCDF	ND	0.101	0.724				27-Jun-23 18:41	1
2,3,4,7,8-PeCDF	ND	0.0761	0.736				27-Jun-23 18:41	1
1,2,3,4,7,8-HxCDF	ND	0.0840	0.764				27-Jun-23 18:41	1
1,2,3,6,7,8-HxCDF	ND	0.0882	0.924				27-Jun-23 18:41	1
2,3,4,6,7,8-HxCDF	ND	0.0967	0.765				27-Jun-23 18:41	1
1,2,3,7,8,9-HxCDF	ND	0.129	0.737				27-Jun-23 18:41	1
1,2,3,4,6,7,8-HpCDF	ND	0.107	0.889				27-Jun-23 18:41	1
1,2,3,4,7,8,9-HpCDF	ND	0.130	0.765				27-Jun-23 18:41	1
OCDF	ND	0.236	1.51				27-Jun-23 18:41	1
<u>Toxic Equivalent</u>								
TEQMinWHO2005Dioxin	0.00							
Totals								
Total TCDD	ND	0.0804						
Total PeCDD	ND	0.135						
Total HxCDD	ND	0.230						
Total HpCDD	ND	0.169						
Total TCDF	ND	0.0861						
Total PeCDF	ND	0.101						
Total HxCDF	ND	0.129						
Total HpCDF	ND	0.130						
Labeled Standards	Туре	% I	Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS		99.4		40 - 135		27-Jun-23 18:41	1
13C-1,2,3,7,8-PeCDD	IS	:	87.2		40 - 135		27-Jun-23 18:41	1
13C-1,2,3,4,7,8-HxCDD	IS		85.2		40 - 135		27-Jun-23 18:41	1
13C-1,2,3,6,7,8-HxCDD	IS		88.7		40 - 135		27-Jun-23 18:41	
13C-1,2,3,7,8,9-HxCDD	IS		70.0		40 - 135		27-Jun-23 18:41	
13C-1,2,3,4,6,7,8-HpCDD	IS		84.5		40 - 135		27-Jun-23 18:41	
13C-OCDD	IS		79.6		40 - 135		27-Jun-23 18:41	
13C-2,3,7,8-TCDF	IS		82.7		40 - 135		27-Jun-23 18:41 27-Jun-23 18:41	
13C-1,2,3,7,8-PeCDF	IS		85.4		40 - 135		27-Jun-23 18:41	
13C-2,3,4,7,8-PeCDF	IS		92.9		40 - 135		27-Jun-23 18:41	
13C-1,2,3,4,7,8-HxCDF	IS		76.9		40 - 135		27-Jun-23 18:41	
13C-1,2,3,6,7,8-HxCDF	IS		83.2		40 - 135		27-Jun-23 18:41	
	IS		80.8		40 - 135		27-Jun-23 18:41	
13C-2,3,4,6,7,8-HxCDF					40 40 -		27-Jun-23 18:41	1
13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	IS	:	82.1		40 - 135		27-Juli-25 10.41	-
			82.1 65.5		40 - 135 40 - 135		27-Jun-23 18:41	
13C-1,2,3,7,8,9-HxCDF	IS							1
13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HpCDF	IS IS		65.5		40 - 135		27-Jun-23 18:41	1 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

Sample ID: DU2-B

EPA Method 8290A

Client Data Name:	Apex Laboratori	ac.			oratory Dat Sample:	t a 2305185-08	Date Received:	18-May-23 0	9:00
Project:	AJE1301	es			Batch:	B23E292	Date Extracted:	30-May-23	
Matrix:	Soil			~	ple Size:	10.9 g	Column:	-	
Date Collected:	09-May-23 13:00	0			olids:	95.4	Column.	ZB-DIOXIN	
Analyte		Conc. (pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		1.83		0.262				28-Jun-23 07:49	1
1,2,3,7,8-PeCDD		6.76		0.583				28-Jun-23 07:49	1
1,2,3,4,7,8-HxCD	D	19.8		3.41			D	29-Jun-23 01:32	5
1,2,3,6,7,8-HxCD	D	117		3.21			D	29-Jun-23 01:32	5
1,2,3,7,8,9-HxCD	D	45.8		3.33			D	29-Jun-23 01:32	5
1,2,3,4,6,7,8-HpC	CDD	3220		3.14			D	29-Jun-23 01:32	5
OCDD		25800		17.8			D	29-Jun-23 02:18	10
2,3,7,8-TCDF		1.25		0.246				28-Jun-23 07:49	
1,2,3,7,8-PeCDF		3.32		0.695				28-Jun-23 07:49	1
2,3,4,7,8-PeCDF		9.54		0.706				28-Jun-23 07:49	1
1,2,3,4,7,8-HxCD		20.4		3.67			D	29-Jun-23 01:32	5
1,2,3,6,7,8-HxCD		16.7		4.43			D	29-Jun-23 01:32	5
2,3,4,6,7,8-HxCD		9.93		3.67			D, J	29-Jun-23 01:32	5
1,2,3,7,8,9-HxCD		2.24		3.54			D, J	29-Jun-23 01:32	
1,2,3,4,6,7,8-HpC		472		4.27			D	29-Jun-23 01:32	5
1,2,3,4,7,8,9-HpC	CDF	29.9		3.67			D	29-Jun-23 01:32	5
OCDF		1310		7.25			D	29-Jun-23 01:32	5
Toxic Equivalent									
TEQMinWHO20	05Dioxin	80.2							
Totals									
Total TCDD		4.33			4.83				
Total PeCDD		29.4			30.2				
Total HxCDD		590							
Total HpCDD		5110							
Total TCDF		26.3			31.6				
Total PeCDF		197			198				
Total HxCDF		702			706				
Total HpCDF		1530							
Labeled Standar	rds	Туре	% R	ecovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCD	D	IS	94	4.5		40 - 135		28-Jun-23 07:49	1
13C-1,2,3,7,8-Pe0	CDD	IS	74	4.1		40 - 135		28-Jun-23 07:49	1
13С-1,2,3,4,7,8-Н	IxCDD	IS	4	9.8		40 - 135	D	29-Jun-23 01:32	5
13С-1,2,3,6,7,8-Н	IxCDD	IS	70	0.1		40 - 135	D	29-Jun-23 01:32	5
13С-1,2,3,7,8,9-Н	IxCDD	IS	4:	5.5		40 - 135	D	29-Jun-23 01:32	5
13C-1,2,3,4,6,7,8	-HpCDD	IS	1	10		40 - 135	D	29-Jun-23 01:32	5
13C-OCDD	•	IS	7	9.7		40 - 135	D	29-Jun-23 02:18	10
13C-2,3,7,8-TCD	F	IS		7.6		40 - 135		28-Jun-23 07:49	
13C-1,2,3,7,8-Pe		IS		02		40 - 135		28-Jun-23 07:49	
13C-2,3,4,7,8-Pe		IS		7.5		40 - 135		28-Jun-23 07:49	
13C-1,2,3,4,7,8-H		IS		8.4		40 - 135	D	29-Jun-23 01:32	
13C-1,2,3,6,7,8-H		IS		5.9		40 - 135	D	29-Jun-23 01:32 29-Jun-23 01:32	
13C-2,3,4,6,7,8-H		IS).4		40 - 133	D	29-Jun-23 01:32 29-Jun-23 01:32	
		IS		5.6		40 - 133 40 - 135	D		
13C-1,2,3,7,8,9-H								29-Jun-23 01:32	
13C-1,2,3,4,6,7,8	-	IS		8.5 5-2		40 - 135	D	29-Jun-23 01:32	
13C-1,2,3,4,7,8,9-	-прсог	IS		5.3		40 - 135	D	29-Jun-23 01:32	
13C-OCDF		IS		4.9		40 - 135	D	29-Jun-23 01:32	
37Cl-2,3,7,8-TCE	ענ	CRS	9'	7.4		40 - 135		28-Jun-23 07:49	1

EDL - Sample specifc estimated detection limit

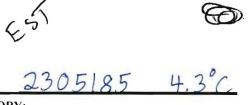
EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection Limit
E	The associated compound concentration exceeded the calibration range of the instrument
Н	Recovery and/or RPD was outside laboratory acceptance limits
Ι	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limit of Detection
LOQ	Limit of Quantitation
М	Estimated Maximum Possible Concentration (CA Region 2 projects only)
MDL	Method Detection Limit
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
Р	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
RL	For 537.1, the reported RLs are the MRLs.
TEQ	Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the sample concentrations.
TEQMax	TEQ calculation that uses the detection limit as the concentration for non-detects
TEQMin	TEQ calculation that uses zero as the concentration for non-detects
TEQRisk	TEQ calculation that uses $\frac{1}{2}$ the detection limit as the concentration for non-
	detects
U	Not Detected (specific projects only)
*	See Cover Letter


Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	2211390
Nevada Division of Environmental Protection	CA00413
New Hampshire Environmental Accreditation Program	207721
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-021
Texas Commission on Environmental Quality	T104704189-22-13
Vermont Department of Health	VT-4042
Virginia Department of General Services	11276
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Enthalpy Analytical - EDH Certifications

Current certificates and lists of licensed parameters can be found at Enthalpy.com/Resources/Accreditations.

SUBCONTRACT ORDER

2305185 4.

Apex Laboratories A3E1301

AUC SINO

SENDING LABORATORY:

Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 336-0745 Project Manager: Philip Nerenberg

RECEIVING LABORATORY:

Enthalpy Analytical- CA 1104 Windfield Way El Dorado Hills, CA 95762 Phone :(916) 673-1520 Fax: -

Sample Name: HA-28-Comp-2-3		Soil	Sampled:	05/11/23 10:35	(A3E1301-02)
Analysis	Due	Expires	C	omments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	05/24/23 17:00	06/10/23 10:35			
Sample Name: HA-25-Comp-1-2		Soil	Sampled:	05/11/23 12:40	(A3E1301-07)
Analysis	Due	Expires	C	omments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied:	05/24/23 17:00	06/10/23 12:40			
(B)4 oz Glass Jar			_		
Sample Name: HA-29-Comp-2-3		Soil	Sampled:	05/11/23 11:25	(A3E1301-12)
Analysis	Due	Expires	C	omments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	05/24/23 17:00	06/10/23 11:25			
Sample Name: HA-22-Comp-1-2		Soil	Sampled:	05/11/23 14:50	(A3E1301-15)
Analysis	Due	Expires	C	omments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	05/24/23 17:00	06/10/23 14:50			

A		5.17.23	Fed Ex	(Shipper)	
Released By		DateDJS	Received By	Date	
	Fed Ex (Shipper)]	Kelia Wadsworth	05/18/23	0900
Released By		Date	Received By	Date	

Page 1 of 2

SUBCONTRACT ORDER

Apex Laboratories

A3E1301

2305185

			After Processing	
Sample Name: DU1-A		Soil	Sampled: 05/09/23 13:30	(A3E1301-18)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	05/24/23 17:00	06/08/23 13:30		
			After Processing	
Sample Name: DU1-B		Soil	Sampled: 05/09/23 14:00	(A3E1301-20)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	05/24/23 17:00	06/08/23 14:00		
			After Processing	
Sample Name: DU2-A		Soil	Sampled: 05/09/23 12:30	(A3E1301-22)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	05/24/23 17:00	06/08/23 12:30		
			After Processing	
Sample Name: DU2-B		Soil	Sampled: 05/09/23 13:00	(A3E1301-24)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	05/24/23 17:00	06/08/23 13:00		

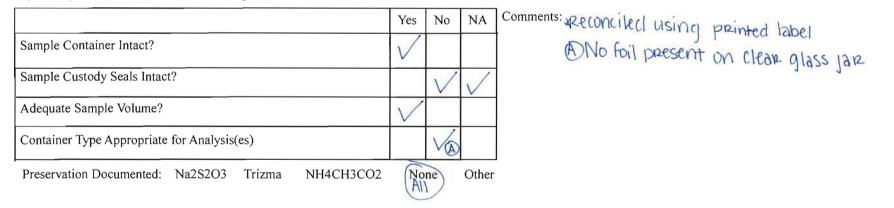
Standard TAT

		5.17.23	Fed E	x (Shipper)	
Released By	Fed Ex (Shipper)	DateDJS	Received By Kelia Wadsworth	Date 05/14/23 0900	
Released By		Date	Received By	Date	Page 2 of 2

Work Order 2305185

Sample Log-In Checklist

	1	
WR-	7	
NA		
d red	Oth	ner
lce	No	ne
	TR-L	1
	LIN	<u> </u>
	110	
YES	NO	NA
V		
	\checkmark	\checkmark
V		
V		
eturn	Disț	nose
V		
V	é	
V		
	ENAA ed lce ter ID: VES	d Other Ice No ter ID: TR-L


Holding Time Acc	ceptable?			V
	Date/Time	14:20	Initials:	Location: WR-2
Logged In:	05/18/	23	BAC	Shelf/Rack: D-5
COC Anomaly/Sa	ample Accepta	nce Form cor	npleted?	\checkmark

Comments:

CoC/Label Reconciliation Report WO# 2305185

LabNumber CoC Sample ID		SampleAlias	Sample Date/Time	Container	BaseMatrix	Sample Comments
2305185-01 A HA-28-Comp-2-3		A3E1301-02	11-May-23 10:35	Clear Glass Jar, 120mL	Solid	
2305185-02 A HA-25-Comp-1-2		A3E1301-07	11-May-23 12:40	Clear Glass Jar, 120mL	Solid	
2305185-03 A HA-29-Comp-2-3	Ø	A3E1301-12	11-May-23 11:25	Clear Glass Jar, 120mL	Solid	The second
2305185-04 A HA-22-Comp-1-2	Ø	A3E1301-15	11-May-23 14:50	Clear Glass Jar, 120mL	Solid	
2305185-05 A DUI-A	V	A3E1301-18	09-May-23 13:30	Clear Glass Jar, 120mL	Solid	
2305185-06 A DUI-B	Ø	A3E1301-20	09-May-23 14:00	Clear Glass Jar, 120mL	Solid	
2305185-07 A DU2-A	Ø	A3E1301-22	09-May-23 12:30	Clear Glass Jar, 120mL	Solid	
2305185-08 A DU2-B	Ø	A3E1301-24	09-May-23 13:00	Clear Glass Jar, 120mL	Solid	

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

Verifed by/Date: <u>KW 05/19/23</u> BAC 05/18/23

ANOMALY FORM

Initial/Date	The fo	ollowing checked issues were noted during sample receipt and login:	
		1. The samples were received out of temperature at (WI-PHT):	
		2. The Chain-of-Custody (CoC) was not relinquished properly.	
		3. The CoC did not include collection time(s). 00:00 will be used unless notified otherwise.	F.
		4. The sample(s) did not include a sample collection time. All or Sample Name:	
		 A sample ID discrepancy was found. See the Reconciliation report. The CoC Sample ID will be used unless notified otherwise. 	
<u>.</u>		6. A sample date and/or time discrepancy was found. See the Reconciliation report. The CoC Sample date/time will be used unless notified otherwise.	
		7. The CoC did not include a sample matrix. The following sample matrix will be used:	
		8. Insufficent volume received for analysis. All or Sample Name:	
		9. The backup bottle was received broken. Sample Name:	
		10. CoC not received, illegible or destroyed.	
		11. The sample(s) were received out of holding time. All or Sample Name:	
		12. The CoC did not include an analysis. All or Sample Name:	
		13. Sample(s) received without collection date. All or Sample Name:	_
		14. Sample(s) not received. All or Sample Name:	
		15. Sample(s) received broken. All or Sample Name:	
BAC 0.5/18/23		16. An incorrect container-type was used. All or Sample Name:	
		17. The Field Reagent Blank (FRB) preservative was from a different lot than the field samples. Will proceed with analysis and narrate unless notified otherwise.	
		18. Other:	

Bolded items require sign-off

Client Contacted:	Phil Nerenberg	
Date of Contact:	05/18/2023	
Lab Project Manager:	Kathy Zipp	
Resolution:		

Proceed with analysis.

September 29, 2023

Enthalpy Analytical - El Dorado Hills Work Order No. 2308007

Mr. Philip Nerenberg Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223

Dear Mr. Nerenberg,

Enclosed are the results for the sample set received at Enthalpy Analytical - EDH on August 01, 2023 under your Project Name 'A3E1301'.

Enthalpy Analytical - EDH is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at kathy.zipp@enthalpy.com.

Thank you for choosing Enthalpy Analytical - EDH as part of your analytical support team.

Sincerely,

Kathy Zipp Project Manager

Enthalpy Analytical - EDH certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Enthalpy Analytical - EDH.

Enthalpy Analytical - EDH Work Order No. 2308007 Case Narrative

Sample Condition on Receipt:

Ten soil samples were received and stored securely in accordance with Enthalpy Analytical - EDH standard operating procedures and EPA methodology. The samples were received in good condition and within the method temperature requirements.

Analytical Notes:

EPA Method 8290A

The samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by EPA Method 8290A using a ZB-DIOXIN GC column.

Holding Times

The method holding time criteria were met for these samples.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are flagged with an "H" qualifier.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	18
Certifications	19
Sample Receipt	20

Sample Inventory Report

Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2308007-01	HA-27-Comp-1-2	11-May-23 11:50	01-Aug-23 08:56	Clear Glass Jar, 120mL
2308007-02	HA-27-Comp-2-3	11-May-23 11:55	01-Aug-23 08:56	Clear Glass Jar, 120mL
2308007-03	HA-26-Comp-1-2	11-May-23 12:20	01-Aug-23 08:56	Clear Glass Jar, 120mL
2308007-04	HA-26-Comp-2-3	11-May-23 12:25	01-Aug-23 08:56	Clear Glass Jar, 120mL
2308007-05	HA-25-Comp-2-3	11-May-23 12:45	01-Aug-23 08:56	Clear Glass Jar, 120mL
2308007-06	HA-24-Comp-1-2	11-May-23 13:40	01-Aug-23 08:56	Clear Glass Jar, 120mL
2308007-07	HA-24-Comp-2-3	11-May-23 13:45	01-Aug-23 08:56	Clear Glass Jar, 120mL
2308007-08	HA-23-Comp-1-2	11-May-23 14:20	01-Aug-23 08:56	Clear Glass Jar, 120mL
2308007-09	HA-23-Comp-2-3	11-May-23 14:25	01-Aug-23 08:56	Clear Glass Jar, 120mL
2308007-10	HA-22-Comp-2-3	11-May-23 14:55	01-Aug-23 08:56	Clear Glass Jar, 120mL

ANALYTICAL RESULTS

Sample ID: Method Blank

EPA Method 8290A

Client Data Name: Apex Labor	ratories			oratory Da Sample:	ta B23H246-BLK1			
Project: A3E1301			QC	Batch:	B23H246	Date Extracted:	24-Aug-23	
Matrix: Solid			Sam	ple Size:	10.0 g	Column:	ZB-DIOXIN	
Analyte	Conc. (pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.0857	0.190				27-Sep-23 19:22	1
1,2,3,7,8-PeCDD	ND	0.199	0.784				27-Sep-23 19:22	1
1,2,3,4,7,8-HxCDD	ND	0.245	0.633				27-Sep-23 19:22	1
1,2,3,6,7,8-HxCDD	ND	0.264	0.640				27-Sep-23 19:22	1
1,2,3,7,8,9-HxCDD	ND	0.258	0.717				27-Sep-23 19:22	1
1,2,3,4,6,7,8-HpCDD	ND	0.258	0.706				27-Sep-23 19:22	
OCDD	ND	0.445	1.62				27-Sep-23 19:22	1
2,3,7,8-TCDF	ND	0.115	0.183				27-Sep-23 19:22	1
1,2,3,7,8-PeCDF	ND	0.0961	0.576				27-Sep-23 19:22	1
2,3,4,7,8-PeCDF	ND	0.0907	0.686				27-Sep-23 19:22	1
1,2,3,4,7,8-HxCDF	ND	0.160	0.659				27-Sep-23 19:22	1
1,2,3,6,7,8-HxCDF	ND	0.169	0.621				27-Sep-23 19:22	1
2,3,4,6,7,8-HxCDF	ND	0.189	0.661				27-Sep-23 19:22	1
1,2,3,7,8,9-HxCDF	ND	0.195	0.716				27-Sep-23 19:22	1
1,2,3,4,6,7,8-HpCDF	ND	0.207	0.649				27-Sep-23 19:22	1
1,2,3,4,7,8,9-HpCDF	ND	0.287	0.818				27-Sep-23 19:22	1
OCDF	ND	0.403	3.84				27-Sep-23 19:22	1
Toxic Equivalent								
TEQMinWHO2005Dioxin	0.00							
Totals								
Total TCDD	ND	0.0857						
Total PeCDD	ND	0.199						
Total HxCDD	ND	0.264						
Total HpCDD	ND	0.258						
Total TCDF	ND	0.115						
Total PeCDF	ND	0.0961						
Total HxCDF	ND	0.195						
Total HpCDF	ND	0.287						
Labeled Standards	Туре		Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS		83.4		40 - 135		27-Sep-23 19:22	
13C-1,2,3,7,8-PeCDD	IS		92.2		40 - 135		27-Sep-23 19:22	
13C-1,2,3,4,7,8-HxCDD	IS		105		40 - 135		27-Sep-23 19:22	
13C-1,2,3,6,7,8-HxCDD	IS		105		40 - 135		27-Sep-23 19:22	
13C-1,2,3,7,8,9-HxCDD	IS		100		40 - 135		27-Sep-23 19:22	
13C-1,2,3,4,6,7,8-HpCDD	IS		102		40 - 135		27-Sep-23 19:22 27-Sep-23 19:22	
13C-OCDD	IS		91.7		40 - 135		27-Sep-23 19:22	
13C-2,3,7,8-TCDF	IS		86.1		40 - 135		27-Sep-23 19:22 27-Sep-23 19:22	
13C-1,2,3,7,8-PeCDF	IS		97.4		40 - 135		27-Sep-23 19:22 27-Sep-23 19:22	
13C-2,3,4,7,8-PeCDF	IS		97.4 96.8		40 - 135		27-Sep-23 19:22 27-Sep-23 19:22	
					40 - 135		-	
13C-1,2,3,4,7,8-HxCDF	IS		86.0				27-Sep-23 19:22	
13C-1,2,3,6,7,8-HxCDF	IS		86.5		40 - 135		27-Sep-23 19:22	
13C-2,3,4,6,7,8-HxCDF	IS		90.3		40 - 135		27-Sep-23 19:22	
13C-1,2,3,7,8,9-HxCDF	IS		94.1		40 - 135		27-Sep-23 19:22	
13C-1,2,3,4,6,7,8-HpCDF	IS		81.6		40 - 135		27-Sep-23 19:22	
13C-1,2,3,4,7,8,9-HpCDF	IS		85.4		40 - 135		27-Sep-23 19:22	
13C-OCDF	IS		80.1		40 - 135		27-Sep-23 19:22	
37Cl-2,3,7,8-TCDD	CRS		78.8		40 - 135		27-Sep-23 19:22	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight.

Sample ID: OPR

EPA Method 8290A

Client Data Name: Apex Project: A3E1 Matrix: Solid	Laboratories 301		Laboratory Data Lab Sample: QC Batch: Sample Size:	B23H246-BS1 B23H246 10.0 g	Date Extracted: Column:	24-Aug-23 06:51 ZB-DIOXIN	
Analyte	Amt Found (pg/g)	Spike Amt	% Recovery	Limits	Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	19.4	20.0	97.0	70-130		27-Sep-23 14:42	1
1,2,3,7,8-PeCDD	103	100	103	70-130		27-Sep-23 14:42	1
1,2,3,4,7,8-HxCDD	97.6	100	97.6	70-130		27-Sep-23 14:42	1
1,2,3,6,7,8-HxCDD	97.0	100	97.0	70-130		27-Sep-23 14:42	1
1,2,3,7,8,9-HxCDD	97.8	100	97.8	70-130		27-Sep-23 14:42	1
1,2,3,4,6,7,8-HpCDD	99.4	100	99.4	70-130		27-Sep-23 14:42	1
OCDD	188	200	93.8	70-130		27-Sep-23 14:42	1
2,3,7,8-TCDF	19.9	20.0	99.6	70-130		27-Sep-23 14:42	1
1,2,3,7,8-PeCDF	95.2	100	95.2	70-130		27-Sep-23 14:42	1
2,3,4,7,8-PeCDF	99.8	100	99.8	70-130		27-Sep-23 14:42	1
1,2,3,4,7,8-HxCDF	101	100	101	70-130		27-Sep-23 14:42	1
1,2,3,6,7,8-HxCDF	101 100	100	101 100	70-130 70-130		27-Sep-23 14:42	1
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	100	100	100	70-130		27-Sep-23 14:42 27-Sep-23 14:42	1
1,2,3,4,6,7,8-HpCDF	94.1	100 100	94.1	70-130		27-Sep-23 14:42 27-Sep-23 14:42	1
1,2,3,4,7,8,9-HpCDF	99.4	100	99.4	70-130		27-Sep-23 14:42 27-Sep-23 14:42	1
OCDF	212	200	106	70-130		27-Sep-23 14:42	1
Labeled Standards	Туре	200	% Recovery	Limits	Qualifiers	•	Dilution
13C-2,3,7,8-TCDD	IS		74.8	40-135		27-Sep-23 14:42	1
13C-1,2,3,7,8-PeCDD	IS		90.0	40-135		27-Sep-23 14:42	1
13C-1,2,3,4,7,8-HxCDD	IS		112	40-135		27-Sep-23 14:42	1
13C-1,2,3,6,7,8-HxCDD	IS		109	40-135		27-Sep-23 14:42	1
13C-1,2,3,7,8,9-HxCDD	IS		105	40-135		27-Sep-23 14:42	1
13C-1,2,3,4,6,7,8-HpCDI			105	40-135		27-Sep-23 14:42	1
13C-OCDD	IS		101	40-135		27-Sep-23 14:42	1
13C-2,3,7,8-TCDF	IS		87.0	40-135		27-Sep-23 14:42	1
13C-1,2,3,7,8-PeCDF	IS		95.3	40-135		27-Sep-23 14:42	1
13C-2,3,4,7,8-PeCDF	IS		97.0	40-135		27-Sep-23 14:42	1
13C-1,2,3,4,7,8-HxCDF	IS		89.9	40-135		27-Sep-23 14:42	1
13C-1,2,3,6,7,8-HxCDF	IS		92.2	40-135		27-Sep-23 14:42	1
13C-2,3,4,6,7,8-HxCDF	IS		94.5	40-135		27-Sep-23 14:42	
13C-1,2,3,7,8,9-HxCDF	IS		100	40-135		27-Sep-23 14:42 27-Sep-23 14:42	1
13C-1,2,3,4,6,7,8-HpCDI			88.5	40-135		27-Sep-23 14:42 27-Sep-23 14:42	
-						-	
13C-1,2,3,4,7,8,9-HpCDI			90.6	40-135		27-Sep-23 14:42	1
13C-OCDF	IS		86.0	40-135		27-Sep-23 14:42	
37Cl-2,3,7,8-TCDD	CRS		72.0	40-135		27-Sep-23 14:42	1

Sample ID: HA-27-Comp-1-2

EPA Method 8290A

Project: A3E Matrix: Soil	x Laboratories 21301 May-23 11:50		Lab QC I Sam	oratory Dat Sample: Batch: ple Size: olids:	a 2308007-01 B23H246 12.2 g 82.4	Date Received: Date Extracted: Column:	01-Aug-23 0 24-Aug-23 ZB-DIOXIN	
Analyte	Conc. (pg/g) EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD	ND	0.118	0.189				21-Sep-23 17:22	1
1,2,3,7,8-PeCDD	ND		0.782	1.92			21-Sep-23 17:22	1
1,2,3,4,7,8-HxCDD	5.68		0.631				21-Sep-23 17:22	1
1,2,3,6,7,8-HxCDD	35.7		0.638				21-Sep-23 17:22	1
1,2,3,7,8,9-HxCDD	14.0		0.715				21-Sep-23 17:22	1
1,2,3,4,6,7,8-HpCDD	1300		0.704				21-Sep-23 17:22	1
OCDD	10900		8.07			D	28-Sep-23 00:50	5
2,3,7,8-TCDF	0.351		0.182			J	21-Sep-23 17:22	1
1,2,3,7,8-PeCDF	1.35		0.574			J	21-Sep-23 17:22	1
2,3,4,7,8-PeCDF	ND		0.684	2.13			21-Sep-23 17:22	
1,2,3,4,7,8-HxCDF	6.89		0.657				21-Sep-23 17:22	1
1,2,3,6,7,8-HxCDF	5.14		0.619				21-Sep-23 17:22	1
2,3,4,6,7,8-HxCDF	ND		0.659	3.59			21-Sep-23 17:22	1
1,2,3,7,8,9-HxCDF	1.24		0.714			J	21-Sep-23 17:22	1
1,2,3,4,6,7,8-HpCDF	170		0.647				21-Sep-23 17:22	1
1,2,3,4,7,8,9-HpCDF	11.9		0.815				21-Sep-23 17:22	1
OCDF	522		3.83				21-Sep-23 17:22	1
Toxic Equivalent								
TEQMinWHO2005Dio	xin 25.2							
Totals								
Total TCDD	0.137			0.602				
Total PeCDD	4.03			7.99				
Total HxCDD	137							
Total HpCDD	2050							
Total TCDF	3.05			3.22				
Total PeCDF	41.8			44.4				
Total HxCDF	204			208				
Total HpCDF	610							
Labeled Standards	Туре	%	Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD	IS		74.3		40 - 135		21-Sep-23 17:22	1
13C-1,2,3,7,8-PeCDD	IS		64.8		40 - 135		21-Sep-23 17:22	
13C-1,2,3,4,7,8-HxCDI) IS		96.2		40 - 135		21-Sep-23 17:22	
13C-1,2,3,6,7,8-HxCDI			66.8		40 - 135		21-Sep-23 17:22	
13C-1,2,3,7,8,9-HxCDI			82.8		40 - 135		21-Sep-23 17:22	
13C-1,2,3,4,6,7,8-HpCI			83.3		40 - 135		21-Sep-23 17:22	
13C-OCDD	IS		105		40 - 135	D	28-Sep-23 00:50	
13C-2,3,7,8-TCDF	IS		78.2		40 - 135	2	21-Sep-23 17:22	
13C-1,2,3,7,8-PeCDF	IS		52.9		40 - 135		21-Sep-23 17:22	
13C-2,3,4,7,8-PeCDF	IS		70.0		40 - 135		21-Sep-23 17:22	
13C-1,2,3,4,7,8-HxCDF			75.9		40 - 135		21-Sep-23 17:22	
13C-1,2,3,6,7,8-HxCDI			76.7		40 - 135		21-Sep-23 17:22	
13C-2,3,4,6,7,8-HxCDI			80.2		40 - 135		21-Sep-23 17:22	
13C-1,2,3,7,8,9-HxCDI			81.9		40 - 135		21-Sep-23 17:22 21-Sep-23 17:22	
13C-1,2,3,4,6,7,8-HpCI			69.9		40 - 135		21-Sep-23 17:22 21-Sep-23 17:22	
			0).)				-	
-)F IS		74.6		40 - 135		21-Sen-23 17.22	
13C-1,2,3,4,7,8,9-HpCI 13C-0CDF	DF IS IS		74.6 74.7		40 - 135 40 - 135		21-Sep-23 17:22 21-Sep-23 17:22	

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight.

Sample ID: HA-27-Comp-2-3

EPA Method 8290A

Client Data					oratory Dat				
Name:	Apex Laboratorie	s			Sample:	2308007-02	Date Received:	01-Aug-23 0	8:56
Project:	A3E1301			~	Batch:	B23H246	Date Extracted:	24-Aug-23	
	Soil 11-May-23 11:55				ple Size: olids:	12.9 g 78.1	Column:	ZB-DIOXIN	
Analyte	•	Conc. (pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND	0.109	0.189				21-Sep-23 18:09	1
1,2,3,7,8-PeCDD		ND		0.780	0.902			21-Sep-23 18:09	
1,2,3,4,7,8-HxCDD)	ND		0.630	2.17			21-Sep-23 18:09	
1,2,3,6,7,8-HxCDD		11.5		0.637				21-Sep-23 18:09	
1,2,3,7,8,9-HxCDD		5.11		0.714				21-Sep-23 18:09	
1,2,3,4,6,7,8-HpCD		349		0.703				21-Sep-23 18:09	
OCDD		2700		1.61				21-Sep-23 18:09	
2,3,7,8-TCDF		ND	0.103	0.182				21-Sep-23 18:09	
1,2,3,7,8-PeCDF		ND		0.573	0.456			21-Sep-23 18:09	
2,3,4,7,8-PeCDF		0.876		0.683			J	21-Sep-23 18:09	
1,2,3,4,7,8-HxCDF		2.08		0.656			J	21-Sep-23 18:09	
1,2,3,6,7,8-HxCDF		2.03		0.618			J	21-Sep-23 18:09	
2,3,4,6,7,8-HxCDF		ND		0.658	1.11			21-Sep-23 18:09	
1,2,3,7,8,9-HxCDF		ND		0.713	0.500			21-Sep-23 18:09	
1,2,3,4,6,7,8-HpCD		48.3		0.646				21-Sep-23 18:09	
1,2,3,4,7,8,9-HpCD		3.36		0.814				21-Sep-23 18:09	
OCDF		125		3.82				21-Sep-23 18:09	
Toxic Equivalent									
TEQMinWHO2005	5Dioxin	7.19							
Totals									
Total TCDD		ND	0.109						
Total PeCDD		1.17			2.08				
Total HxCDD		42.0			44.1				
Total HpCDD		560							
Total TCDF		1.11			1.70				
Total PeCDF		14.5			15.4				
Total HxCDF		64.1			65.9				
Total HpCDF		148							
Labeled Standard	s	Туре	%	Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD		IS		74.5		40 - 135	<u> </u>	21-Sep-23 18:09	
13C-1,2,3,7,8-PeCI		IS		73.7		40 - 135		21-Sep-23 18:09	
13C-1,2,3,4,7,8-Hx		IS		96.4		40 - 135		21-Sep-23 18:09	
13C-1,2,3,6,7,8-Hx		IS		88.9		40 - 135		21-Sep-23 18:09 21-Sep-23 18:09	
13С-1,2,3,7,8,9-Нх		IS		88.8		40 - 135		21-Sep-23 18:09 21-Sep-23 18:09	
13C-1,2,3,4,6,7,8-H	преди	IS IS		90.2		40 - 135 40 - 135		21-Sep-23 18:09	
13C-OCDD				90.2				21-Sep-23 18:09	
13C-2,3,7,8-TCDF		IS		84.3		40 - 135		21-Sep-23 18:09	
13C-1,2,3,7,8-PeCI		IS		59.5		40 - 135		21-Sep-23 18:09	
13C-2,3,4,7,8-PeCI		IS		81.9		40 - 135		21-Sep-23 18:09	
13C-1,2,3,4,7,8-Hx		IS		79.6		40 - 135		21-Sep-23 18:09	
13C-1,2,3,6,7,8-Hx		IS		80.4		40 - 135		21-Sep-23 18:09	
13C-2,3,4,6,7,8-Hx		IS		85.3		40 - 135		21-Sep-23 18:09	
13C-1,2,3,7,8,9-Hx		IS		60.6		40 - 135		21-Sep-23 18:09	
	IpCDF	IS		80.9		40 - 135		21-Sep-23 18:09	
13C-1,2,3,4,6,7,8-H									
13C-1,2,3,4,6,7,8-H 13C-1,2,3,4,7,8,9-H	łpCDF	IS		83.1		40 - 135		21-Sep-23 18:09	
13C-1,2,3,4,6,7,8-H		IS IS CRS				40 - 135 40 - 135 40 - 135		21-Sep-23 18:09 21-Sep-23 18:09 21-Sep-23 18:09	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight. The sample size is reported in wet weight.

The sumple size is report

Sample ID: HA-26-Comp-1-2

EPA Method 8290A

Client Data				Lab	oratory Dat	a			
Name:	Apex Laboratori	20			Sample:	2308007-03	Date Received:	01-Aug-23 0	8:56
Project:	A3E1301	63			Batch:	B23H246	Date Extracted:	24-Aug-23	
Matrix:	Soil			\[ple Size:	12.4 g	Column:	-	
Date Collected:	11-May-23 12:20)		% Sc	•	81.0	Column.	ZB-DIOXIN	
Analyte	-	Conc. (pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND		0.190	0.133			21-Sep-23 18:56	1
1,2,3,7,8-PeCDD		0.955		0.782			J	21-Sep-23 18:56	1
1,2,3,4,7,8-HxCD	D	ND		0.631	1.75			21-Sep-23 18:56	1
1,2,3,6,7,8-HxCD	D	9.41		0.638				21-Sep-23 18:56	1
1,2,3,7,8,9-HxCD	D	4.64		0.715				21-Sep-23 18:56	1
1,2,3,4,6,7,8-HpC	DD	242		0.704				21-Sep-23 18:56	1
OCDD		1400		1.62				21-Sep-23 18:56	1
2,3,7,8-TCDF		ND	0.121	0.183				21-Sep-23 18:56	1
1,2,3,7,8-PeCDF		0.519		0.575			J	21-Sep-23 18:56	1
2,3,4,7,8-PeCDF		ND		0.684	0.809			21-Sep-23 18:56	1
1,2,3,4,7,8-HxCD		1.76		0.657			J	21-Sep-23 18:56	1
1,2,3,6,7,8-HxCD		1.49		0.619			J	21-Sep-23 18:56	1
2,3,4,6,7,8-HxCD		ND		0.659	1.10			21-Sep-23 18:56	1
1,2,3,7,8,9-HxCD		0.554		0.714			J	21-Sep-23 18:56	
1,2,3,4,6,7,8-HpC		32.0		0.647				21-Sep-23 18:56	
1,2,3,4,7,8,9-HpC	DF	2.68		0.816				21-Sep-23 18:56	
OCDF		78.7		3.83				21-Sep-23 18:56	1
Toxic Equivalent									
TEQMinWHO200	05Dioxin	5.97							
Totals									
Total TCDD		ND			0.292				
Total PeCDD		1.69			2.33				
Total HxCDD		34.4			36.2				
Total HpCDD		372							
Total TCDF		ND			2.14				
Total PeCDF		12.5			13.3				
Total HxCDF		46.6			49.0				
Total HpCDF		104							
Labeled Standar	ds	Туре		Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCD		IS		81.6		40 - 135		21-Sep-23 18:56	1
13C-1,2,3,7,8-PeC	CDD	IS		81.2		40 - 135		21-Sep-23 18:56	1
13С-1,2,3,4,7,8-Н		IS		98.0		40 - 135		21-Sep-23 18:56	
13С-1,2,3,6,7,8-Н		IS		97.6		40 - 135		21-Sep-23 18:56	
13С-1,2,3,7,8,9-Н		IS		93.0		40 - 135		21-Sep-23 18:56	
13C-1,2,3,4,6,7,8-	-HpCDD	IS		98.3		40 - 135		21-Sep-23 18:56	
13C-OCDD		IS		95.9		40 - 135		21-Sep-23 18:56	
13C-2,3,7,8-TCDI		IS		88.1		40 - 135		21-Sep-23 18:56	
13C-1,2,3,7,8-PeC		IS		61.9		40 - 135		21-Sep-23 18:56	
13C-2,3,4,7,8-PeC		IS		88.7		40 - 135		21-Sep-23 18:56	
13С-1,2,3,4,7,8-Н		IS		84.2		40 - 135		21-Sep-23 18:56	
13С-1,2,3,6,7,8-Н		IS		86.3		40 - 135		21-Sep-23 18:56	
13С-2,3,4,6,7,8-Н	IxCDF	IS		88.8		40 - 135		21-Sep-23 18:56	
13С-1,2,3,7,8,9-Н		IS		91.6		40 - 135		21-Sep-23 18:56	
13C-1,2,3,4,6,7,8-		IS		87.2		40 - 135		21-Sep-23 18:56	
	II OBE							21 0 22 19.50	1
13C-1,2,3,4,7,8,9-	-HpCDF	IS		90.5		40 - 135		21-Sep-23 18:56	
13C-1,2,3,4,7,8,9- 13C-OCDF 37Cl-2,3,7,8-TCD		IS IS CRS		90.5 87.3 74.9		40 - 135 40 - 135 40 - 135		21-Sep-23 18:56 21-Sep-23 18:56 21-Sep-23 18:56	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight.

Sample ID: HA-26-Comp-2-3

EPA Method 8290A

Client Data				Lab	oratory Dat	ta			
Name:	Apex Laboratori	ies			Sample:	2308007-04	Date Received:	01-Aug-23 0	8:56
Project:	A3E1301				Batch:	B23H246	Date Extracted:	24-Aug-23	
Matrix:	Soil				ple Size:	12.7 g	Column:	ZB-DIOXIN	
Date Collected:	11 1149 20 1212		EDI		olids:	78.9			
Analyte		Conc. (pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND	0.109	0.189				21-Sep-23 19:42	
1,2,3,7,8-PeCDD		1.54		0.781			J	21-Sep-23 19:42	
1,2,3,4,7,8-HxCI		4.80		0.631				21-Sep-23 19:42	
1,2,3,6,7,8-HxCI		24.7		0.638				21-Sep-23 19:42	
1,2,3,7,8,9-HxCI		10.5		0.715				21-Sep-23 19:42	
1,2,3,4,6,7,8-Hp	CDD	807		0.704				21-Sep-23 19:42	
OCDD		5510		1.61				21-Sep-23 19:42	
2,3,7,8-TCDF		ND		0.182	0.182			21-Sep-23 19:42	
1,2,3,7,8-PeCDF		ND		0.574	0.640			21-Sep-23 19:42	
2,3,4,7,8-PeCDF		1.36		0.684			J	21-Sep-23 19:42	
1,2,3,4,7,8-HxCI		4.87		0.657				21-Sep-23 19:42	
1,2,3,6,7,8-HxCI		4.04		0.619				21-Sep-23 19:42	
2,3,4,6,7,8-HxCI	DF	3.61		0.659				21-Sep-23 19:42	
1,2,3,7,8,9-HxCI		1.47		0.714			J	21-Sep-23 19:42	
1,2,3,4,6,7,8-Hp	CDF	111		0.647				21-Sep-23 19:42	
1,2,3,4,7,8,9-Hp	CDF	8.36		0.815				21-Sep-23 19:42	1
OCDF		323		3.83				21-Sep-23 19:42	1
Toxic Equivalen	nt								
TEQMinWHO20	005Dioxin	18.4							
Totals									
Total TCDD		ND	0.109						
Total PeCDD		3.43			4.53				
Total HxCDD		93.6							
Total HpCDD		1280							
Total TCDF		1.33			1.51				
Total PeCDF		25.7			27 (
Total U.CDE					27.6				
Total HxCDF		141			27.6				
					27.6				
Total HxCDF Total HpCDF Labeled Standa	urds	391	%]	Recovery	27.6	Limits	Qualifiers	Analyzed	Dilution
Total HpCDF Labeled Standa		391 Туре		Recovery	27.6		Qualifiers		
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI	DD	391 Type IS		79.9	27.6	40 - 135	Qualifiers	21-Sep-23 19:42	1
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe	DD eCDD	391 Type IS IS		79.9 83.0	27.6	40 - 135 40 - 135	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42	1 1
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,4,7,8-Pe	DD eCDD HxCDD	391 Type IS IS IS		79.9 83.0 97.9	27.6	40 - 135 40 - 135 40 - 135	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42	1 1 1
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,4,7,8-1 13C-1,2,3,6,7,8-1	DD CDD HxCDD HxCDD	391 Type IS IS IS IS		79.9 83.0 97.9 94.4	27.6	40 - 135 40 - 135 40 - 135 40 - 135 40 - 135	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42	1 1 1 1
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,4,7,8-1 13C-1,2,3,6,7,8-1 13C-1,2,3,7,8,9-1	DD CDD HxCDD HxCDD HxCDD HxCDD	391 Type IS IS IS IS IS IS		79.9 83.0 97.9 94.4 92.0	27.6	40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42	1 1 1 1 1
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,4,7,8-1 13C-1,2,3,6,7,8-1 13C-1,2,3,7,8,9-1 13C-1,2,3,4,6,7,5	DD CDD HxCDD HxCDD HxCDD HxCDD	391 Type IS IS IS IS IS IS IS		79.9 83.0 97.9 94.4 92.0 100	27.6	40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42	1 1 1 1 1 1 1 1
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,4,7,8-1 13C-1,2,3,6,7,8-1 13C-1,2,3,7,8,9-1 13C-1,2,3,4,6,7,8 13C-0CDD	DD CDD HxCDD HxCDD HxCDD 8-HpCDD	391 Type IS IS IS IS IS IS IS IS		79.9 83.0 97.9 94.4 92.0 100 107	27.6	40 - 135 40 - 135	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42	1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,4,7,8-1 13C-1,2,3,6,7,8-1 13C-1,2,3,7,8,9-1 13C-1,2,3,4,6,7,5 13C-0CDD 13C-2,3,7,8-TCI	DD CDD HxCDD HxCDD HxCDD 8-HpCDD DF	391 Type IS IS IS IS IS IS IS IS IS		79.9 83.0 97.9 94.4 92.0 100 107 84.4	27.6	40 - 135 40 - 135	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42	1 1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,4,7,8-1 13C-1,2,3,7,8,9-1 13C-1,2,3,7,8,9-1 13C-1,2,3,4,6,7,8 13C-0CDD 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe	DD eCDD HxCDD HxCDD HxCDD 8-HpCDD DF eCDF	391 Type IS IS IS IS IS IS IS IS IS IS		79.9 83.0 97.9 94.4 92.0 100 107 84.4 65.5	27.6	40 - 135 40 - 135	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42 21-Sep-23 19:42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,4,7,8-I 13C-1,2,3,6,7,8-I 13C-1,2,3,4,6,7,8 13C-1,2,3,4,6,7,8 13C-1,2,3,7,8-Pe 13C-1,2,3,7,8-Pe 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,7,8-Pe 13C-1,2,3,4,7,8-Pe	DD eCDD HxCDD HxCDD HxCDD 8-HpCDD DF eCDF eCDF	391 Type IS IS IS IS IS IS IS IS IS IS		79.9 83.0 97.9 94.4 92.0 100 107 84.4 65.5 88.1	27.6	40 - 135 40 - 135	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,4,7,8-I 13C-1,2,3,4,7,8-I 13C-1,2,3,4,6,7,8 13C-1,2,3,4,6,7,8 13C-1,2,3,7,8-PCI 13C-2,3,7,8-TCI 13C-2,3,7,8-PCI 13C-1,2,3,4,6,7,8 13C-2,3,7,8-PCI 13C-1,2,3,4,7,8-PCI 13C-1,2,3,4,7,8-PCI 13C-1,2,3,4,7,8-PCI	DD eCDD HxCDD HxCDD HxCDD 8-HpCDD DF eCDF eCDF HxCDF	391 Type IS IS IS IS IS IS IS IS IS IS		79.9 83.0 97.9 94.4 92.0 100 107 84.4 65.5 88.1 83.6	27.6	40 - 135 40 - 135	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,4,7,8-I 13C-1,2,3,6,7,8-I 13C-1,2,3,7,8,9-I 13C-1,2,3,4,6,7,8 13C-1,2,3,7,8-PC 13C-1,2,3,7,8-PC 13C-1,2,3,7,8-PC 13C-2,3,7,8-PC 13C-1,2,3,7,8-PC 13C-1,2,3,4,7,8-PC 13C-1,2,3,4,7,8-PC 13C-1,2,3,4,7,8-PC 13C-1,2,3,4,7,8-PC 13C-1,2,3,4,7,8-PC	DD eCDD HxCDD HxCDD HxCDD 8-HpCDD DF eCDF eCDF HxCDF HxCDF HxCDF	391 Type IS IS IS IS IS IS IS IS IS IS		79.9 83.0 97.9 94.4 92.0 100 107 84.4 65.5 88.1 83.6 83.8	27.6	$\begin{array}{c} 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \end{array}$	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,4,7,8-I 13C-1,2,3,6,7,8-I 13C-1,2,3,7,8,9-I 13C-1,2,3,7,8,9-I 13C-1,2,3,7,8-PC 13C-1,2,3,7,8-PC 13C-1,2,3,7,8-PC 13C-2,3,7,8-PC 13C-1,2,3,7,8-PC 13C-1,2,3,4,7,8-PC 13C-1,2,3,4,6,7,8-PC	DD eCDD HxCDD HxCDD HxCDD 8-HpCDD DF eCDF eCDF eCDF HxCDF HxCDF HxCDF HxCDF	391 Type IS IS IS IS IS IS IS IS IS IS		79.9 83.0 97.9 94.4 92.0 100 107 84.4 65.5 88.1 83.6 83.8 87.4	27.6	$\begin{array}{c} 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \end{array}$	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,4,7,8-I 13C-1,2,3,6,7,8-I 13C-1,2,3,7,8-Pe 13C-1,2,3,7,8,9-I 13C-1,2,3,7,8-PC 13C-1,2,3,7,8-PC 13C-1,2,3,7,8-PC 13C-2,3,7,8-PC 13C-2,3,7,8-PC 13C-1,2,3,7,8-PC 13C-1,2,3,4,7,8-P 13C-1,2,3,4,7,8-P 13C-1,2,3,4,7,8-P 13C-1,2,3,4,7,8-P 13C-1,2,3,4,7,8-P 13C-1,2,3,4,7,8-P 13C-1,2,3,7,8,9-I 13C-1,2,3,7,8,9-I	DD CDD CDD HxCDD HxCDD HxCDD 8-HpCDD DF CDF CDF CDF HxCDF HxCDF HxCDF HxCDF HxCDF HxCDF HxCDF HxCDF	391 Type IS IS IS IS IS IS IS IS IS IS		79.9 83.0 97.9 94.4 92.0 100 107 84.4 65.5 88.1 83.6 83.8 87.4 91.1	27.6	$\begin{array}{c} 40 - 135 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 $	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42	
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,4,7,8-1 13C-1,2,3,4,7,8-1 13C-1,2,3,7,8,9-1 13C-1,2,3,7,8,9-1 13C-1,2,3,7,8-PCI 13C-1,2,3,7,8-PCI 13C-1,2,3,7,8-PCI 13C-1,2,3,7,8-PCI 13C-1,2,3,4,7,8-PCI 13C-1,2,3,4,7,8-PCI 13C-1,2,3,4,7,8-PI 13C-1,2,3,4,7,8-PI 13C-1,2,3,4,7,8-PI 13C-1,2,3,4,7,8-PI 13C-1,2,3,4,7,8-PI 13C-1,2,3,4,6,7,8-PI	DD CDD CDD HxCDD HxCDD HxCDD 8-HpCDD DF CDF CDF HxCDF HxCDF HxCDF HxCDF HxCDF HxCDF 8-HpCDF	391 Type IS IS IS IS IS IS IS IS IS IS		79.9 83.0 97.9 94.4 92.0 100 107 84.4 65.5 88.1 83.6 83.8 87.4 91.1 86.7	27.0	$\begin{array}{c} 40 - 135 \\ 40 -$	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42	
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,7,8-Pi 13C-1,2,3,4,7,8-I 13C-1,2,3,7,8,9-I 13C-1,2,3,7,8-PCI 13C-1,2,3,7,8-PCI 13C-1,2,3,7,8-PCI 13C-1,2,3,7,8-PCI 13C-1,2,3,7,8-PCI 13C-1,2,3,4,7,8-PCI 13C-1,2,3,4,7,8-PI 13C-1,2,3,4,7,8-PI 13C-1,2,3,4,7,8-PI 13C-1,2,3,4,7,8-PI 13C-1,2,3,4,6,7,8-I 13C-1,2,3,4,6,7,8-I	DD CDD CDD HxCDD HxCDD HxCDD 8-HpCDD DF CDF CDF HxCDF HxCDF HxCDF HxCDF HxCDF HxCDF 8-HpCDF	391 Type IS IS IS IS IS IS IS IS IS IS		79.9 83.0 97.9 94.4 92.0 100 107 84.4 65.5 88.1 83.6 83.8 87.4 91.1 86.7 93.0	27.6	$\begin{array}{c} 40 - 135 \\ 40 -$	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42	
Total HpCDF Labeled Standa 13C-2,3,7,8-TCI 13C-1,2,3,7,8-Pe 13C-1,2,3,4,7,8-1 13C-1,2,3,4,7,8-1 13C-1,2,3,7,8,9-1 13C-1,2,3,7,8,9-1 13C-1,2,3,7,8-PCI 13C-1,2,3,7,8-PCI 13C-1,2,3,7,8-PCI 13C-1,2,3,7,8-PCI 13C-1,2,3,4,7,8-PCI 13C-1,2,3,4,7,8-PCI 13C-1,2,3,4,7,8-PI 13C-1,2,3,4,7,8-PI 13C-1,2,3,4,7,8-PI 13C-1,2,3,4,7,8-PI 13C-1,2,3,4,7,8-PI 13C-1,2,3,4,6,7,8-PI	DD eCDD HxCDD HxCDD HxCDD 8-HpCDD DF eCDF eCDF HxCDF HxCDF HxCDF HxCDF 8-HpCDF 9-HpCDF	391 Type IS IS IS IS IS IS IS IS IS IS		79.9 83.0 97.9 94.4 92.0 100 107 84.4 65.5 88.1 83.6 83.8 87.4 91.1 86.7	27.0	$\begin{array}{c} 40 - 135 \\ 40 -$	Qualifiers	21-Sep-23 19:42 21-Sep-23 19:42	

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight.

Sample ID: HA-25-Comp-2-3

EPA Method 8290A

Client Data				Lab	oratory Dat	a			
	ex Laboratories				Sample:	2308007-05	Date Received:	01-Aug-23 0	8:56
-	E1301				Batch:	B23H246	Date Extracted:	24-Aug-23	
Matrix: Soi				\[ple Size:	13.0 g	Column:	ZB-DIOXIN	
	May-23 12:45			% Sc	olids:	77.3		LD-DIOAIN	
Analyte		:. (pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND	0.0928	0.189				21-Sep-23 20:29	1
1,2,3,7,8-PeCDD		0.598		0.780			J	21-Sep-23 20:29	1
1,2,3,4,7,8-HxCDD		ND		0.630	1.12			21-Sep-23 20:29	1
1,2,3,6,7,8-HxCDD		5.87		0.637				21-Sep-23 20:29	1
1,2,3,7,8,9-HxCDD		2.48		0.713			J	21-Sep-23 20:29	1
1,2,3,4,6,7,8-HpCDD		149		0.702				21-Sep-23 20:29	1
OCDD		971		1.61				21-Sep-23 20:29	1
2,3,7,8-TCDF		ND	0.0909	0.182				21-Sep-23 20:29	1
1,2,3,7,8-PeCDF		0.245		0.573			J	21-Sep-23 20:29	1
2,3,4,7,8-PeCDF		ND		0.682	0.421			21-Sep-23 20:29	1
1,2,3,4,7,8-HxCDF		1.22		0.655			J	21-Sep-23 20:29	1
1,2,3,6,7,8-HxCDF		1.28		0.618			J	21-Sep-23 20:29	1
2,3,4,6,7,8-HxCDF		ND		0.657	0.980			21-Sep-23 20:29	1
1,2,3,7,8,9-HxCDF		0.211		0.712			J	21-Sep-23 20:29	1
1,2,3,4,6,7,8-HpCDF		22.1		0.646				21-Sep-23 20:29	1
1,2,3,4,7,8,9-HpCDF		1.66		0.814			J	21-Sep-23 20:29	1
OCDF		47.5		3.82				21-Sep-23 20:29	1
Toxic Equivalent									
TEQMinWHO2005Dic	oxin	3.74							
TEQMinWHO2005Dic Totals	oxin	3.74							
		ND	0.0928						
Totals Total TCDD Total PeCDD		ND 0.598	0.0928						
Totals Total TCDD Total PeCDD Total HxCDD		ND 0.598 22.0	0.0928		23.1				
Totals Total TCDD Total PeCDD		ND 0.598 22.0 237	0.0928						
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF		ND 0.598 22.0 237 ND	0.0928		0.379				
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF		ND 0.598 22.0 237 ND 7.37	0.0928		0.379 8.10				
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF		ND 0.598 22.0 237 ND 7.37 30.7	0.0928		0.379				
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF		ND 0.598 22.0 237 ND 7.37	0.0928		0.379 8.10				
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF		ND 0.598 22.0 237 ND 7.37 30.7		Recovery	0.379 8.10	Limits	Qualifiers	Analyzed	Dilution
Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF		ND 0.598 22.0 237 ND 7.37 30.7 63.9	%]	Recovery 75.1	0.379 8.10	Limits 40 - 135	Qualifiers	Analyzed 21-Sep-23 20:29	
TotalsTotal TCDDTotal PeCDDTotal HxCDDTotal HpCDDTotal TCDFTotal PeCDFTotal HxCDFTotal HpCDFLabeled Standards		ND 0.598 22.0 237 ND 7.37 30.7 63.9 (ype	%]		0.379 8.10		Qualifiers	e	1
TotalsTotal TCDDTotal PeCDDTotal HxCDDTotal HpCDDTotal TCDFTotal PeCDFTotal HxCDFTotal HpCDFLabeled Standards13C-2,3,7,8-TCDD	1	ND 0.598 22.0 237 ND 7.37 30.7 63.9 Type IS	%]	75.1	0.379 8.10	40 - 135	Qualifiers	21-Sep-23 20:29	1 1
TotalsTotal TCDDTotal PeCDDTotal HxCDDTotal HpCDDTotal TCDFTotal PeCDFTotal HxCDFTotal HpCDFLabeled Standards13C-2,3,7,8-TCDD13C-1,2,3,7,8-PeCDD	1 D	ND 0.598 22.0 237 ND 7.37 30.7 63.9 Type IS IS IS IS IS	%]	75.1 76.7	0.379 8.10	40 - 135 40 - 135 40 - 135 40 - 135	Qualifiers	21-Sep-23 20:29 21-Sep-23 20:29	1 1 1
TotalsTotal TCDDTotal PeCDDTotal HxCDDTotal HpCDDTotal TCDFTotal PeCDFTotal HxCDFTotal HpCDFLabeled Standards13C-2,3,7,8-TCDD13C-1,2,3,4,7,8-PeCDD13C-1,2,3,4,7,8-HxCD	T D D	ND 0.598 22.0 237 ND 7.37 30.7 63.9 Type IS IS IS	%]	75.1 76.7 93.5	0.379 8.10	40 - 135 40 - 135 40 - 135	Qualifiers	21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29	1 1 1 1 1
TotalsTotal TCDDTotal PeCDDTotal HxCDDTotal HpCDDTotal TCDFTotal PeCDFTotal HxCDFTotal HpCDFLabeled Standards13C-2,3,7,8-TCDD13C-1,2,3,4,7,8-PeCDD13C-1,2,3,6,7,8-HxCD13C-1,2,3,6,7,8-HxCD	T D D D D	ND 0.598 22.0 237 ND 7.37 30.7 63.9 Type IS IS IS IS IS	%	75.1 76.7 93.5 86.4	0.379 8.10	40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135	Qualifiers	21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29	1 1 1 1 1
TotalsTotal TCDDTotal TCDDTotal PeCDDTotal HxCDDTotal TCDFTotal PeCDFTotal HxCDFTotal HpCDFLabeled Standards13C-1,2,3,7,8-PeCDD13C-1,2,3,4,7,8-HxCD13C-1,2,3,7,8,9-HxCD13C-1,2,3,4,6,7,8-HxCD13C-1,2,3,4,6,7,8-HpC13C-0CDD	T D D D D	ND 0.598 22.0 237 ND 7.37 30.7 63.9 Type IS	%]	75.1 76.7 93.5 86.4 80.9 92.3 90.0	0.379 8.10	40 - 135 40 - 135	Qualifiers	21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29	1 1 1 1 1 1 1 1 1
TotalsTotal TCDDTotal TCDDTotal PeCDDTotal HxCDDTotal TCDFTotal PeCDFTotal HxCDFTotal HpCDFLabeled Standards13C-2,3,7,8-TCDD13C-1,2,3,7,8-PeCDD13C-1,2,3,7,8-PHxCD13C-1,2,3,7,8,9-HxCD13C-1,2,3,4,6,7,8-HpC13C-0CDD13C-2,3,7,8-TCDF	T D D D D	ND 0.598 22.0 237 ND 7.37 30.7 63.9 Type IS	%]	75.1 76.7 93.5 86.4 80.9 92.3 90.0 80.3	0.379 8.10	40 - 135 40 - 135	Qualifiers	21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29	1 1 1 1 1 1 1 1 1 1
Totals Total TCDD Total TCDD Total PeCDD Total HxCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HpC 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	T D D D D	ND 0.598 22.0 237 ND 7.37 30.7 63.9 Type IS	%]	75.1 76.7 93.5 86.4 80.9 92.3 90.0 80.3 62.8	0.379 8.10	40 - 135 40 - 135	Qualifiers	21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29	1 1 1 1 1 1 1 1 1 1 1
TotalsTotal TCDDTotal TCDDTotal PeCDDTotal HxCDDTotal TCDFTotal PeCDFTotal HxCDFTotal HpCDFLabeled Standards13C-2,3,7,8-TCDD13C-1,2,3,7,8-PeCDD13C-1,2,3,7,8-PHxCD13C-1,2,3,7,8,9-HxCD13C-1,2,3,4,6,7,8-HpC13C-0CDD13C-2,3,7,8-TCDF	T D D D D	ND 0.598 22.0 237 ND 7.37 30.7 63.9 Fype IS IS	%]	75.1 76.7 93.5 86.4 80.9 92.3 90.0 80.3	0.379 8.10	40 - 135 40 - 135	Qualifiers	21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29 21-Sep-23 20:29	1 1 1 1 1 1 1 1 1 1 1 1 1 1
Totals Total TCDD Total TCDD Total PeCDD Total HxCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,6,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF	T D D D D D D D F	ND 0.598 22.0 237 ND 7.37 30.7 63.9 Type IS	%]	75.1 76.7 93.5 86.4 80.9 92.3 90.0 80.3 62.8 81.9 74.5	0.379 8.10	40 - 135 40 - 135	Qualifiers	21-Sep-23 20:29 21-Sep-23 20:29	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Totals Total TCDD Total TCDD Total PeCDD Total HxCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCD 13C-1,2,3,4,7,8-HxCD 13C-1,2,3,4,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-2,3,7,8,9-HxCD 13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	T D D D D D D D F	ND 0.598 22.0 237 ND 7.37 30.7 63.9 Type IS	%]	75.1 76.7 93.5 86.4 80.9 92.3 90.0 80.3 62.8 81.9	0.379 8.10	$\begin{array}{c} 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \end{array}$	Qualifiers	21-Sep-23 20:29 21-Sep-23 20:29	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Totals Total TCDD Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCD 13C-1,2,3,7,8,9-HxCD 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,6,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-2,3,4,6,7,8-HxCD 13C-2,3,4,6,7,8-HxCD 13C-2,3,4,6,7,8-HxCD	D D D D D D D F F F F	ND 0.598 22.0 237 ND 7.37 30.7 63.9 Type IS	<u>%</u>]	75.1 76.7 93.5 86.4 80.9 92.3 90.0 80.3 62.8 81.9 74.5 79.9 81.8	0.379 8.10	$\begin{array}{c} 40 - 135 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ $	Qualifiers	21-Sep-23 20:29 21-Sep-23 20:29	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Totals Total TCDD Total TCDD Total PeCDD Total HxCDD Total TCDF Total PeCDF Total HxCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-2,3,4,6,7,8-HxCD 13C-2,3,4,6,7,8-HxCD 13C-2,3,4,6,7,8-HxCD 13C-1,2,3,7,8,9-HxCD	T D D D D D D D F F F F F	ND 0.598 22.0 237 ND 7.37 30.7 63.9 Type IS	<u>%</u>]	75.1 76.7 93.5 86.4 80.9 92.3 90.0 80.3 62.8 81.9 74.5 79.9 81.8 77.7	0.379 8.10	$\begin{array}{c} 40 - 135 \\ 40 - 10 \\ 40 - $	Qualifiers	21-Sep-23 20:29 21-Sep-23 20:29	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Totals Total TCDD Total TCDD Total PeCDD Total HxCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-2,3,7,8-PeCDF 13C-2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,6,7,8-HxCD 13C-1,2,3,6,7,8-HxCD 13C-2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD	T D D D D D D D F F F F F D F	ND 0.598 22.0 237 ND 7.37 30.7 63.9 Type IS	<u>%</u>]	75.1 76.7 93.5 86.4 80.9 92.3 90.0 80.3 62.8 81.9 74.5 79.9 81.8 77.7 78.3	0.379 8.10	$\begin{array}{c} 40 - 135 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ $	Qualifiers	21-Sep-23 20:29 21-Sep-23 20:29	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Totals Total TCDD Total TCDD Total PeCDD Total HxCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-2,3,7,8-PeCDF 13C-2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD	T D D D D D D D F F F F F D F	ND 0.598 22.0 237 ND 7.37 30.7 63.9 Type IS IS	<u>%</u>]	75.1 76.7 93.5 86.4 80.9 92.3 90.0 80.3 62.8 81.9 74.5 79.9 81.8 77.7 78.3 88.8	0.379 8.10	$\begin{array}{c} 40 - 135 \\ 40 -$	Qualifiers	21-Sep-23 20:29 21-Sep-23 20:29	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Totals Total TCDD Total TCDD Total PeCDD Total HxCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-2,3,7,8-PeCDF 13C-2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,6,7,8-HxCD 13C-1,2,3,6,7,8-HxCD 13C-2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD 13C-1,2,3,4,6,7,8-HxCD	T D D D D D D D F F F F F F F D F D F D	ND 0.598 22.0 237 ND 7.37 30.7 63.9 Type IS	%	75.1 76.7 93.5 86.4 80.9 92.3 90.0 80.3 62.8 81.9 74.5 79.9 81.8 77.7 78.3	0.379 8.10	$\begin{array}{c} 40 - 135 \\ 40 - 10 \\ 40 - $	Qualifiers	21-Sep-23 20:29 21-Sep-23 20:29	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight.

Sample ID: HA-24-Comp-1-2

EPA Method 8290A

		Lab	oratory Dat	a			
20			-		Date Received:	01-Aug-23 0	8:56
105			-			-	0.00
		~				-	
0			•		Column.	ZB-DIOXIN	
	EDL	MDL	EMPC	02.5	Qualifiers	Analyzed	Dilution
0.655		0.189				21-Sep-23 21:15	1
					J		1
							1
							1
14.2		0.715				•	1
986		0.704					1
5790		1.62					1
0.438		0.183			J	-	1
					J		1
		0.684					1
		0.657					1
6.17		0.619				21-Sep-23 21:15	1
		0.659	3.56				1
		0.714	0.886				1
		0.647				-	1
							1
							1
						1	
23.4							
0.845							
4.95			6.32				
124							
1550							
2.13			2.82				
40.4			42.6				
176			185				
441							
Туре	% Re	covery		Limits	Qualifiers	Analyzed	Dilution
IS	77	.0		40 125			1
IS	70			40 - 135		21-Sep-23 21:15	1
	/8	.5		40 - 135 40 - 135		21-Sep-23 21:15 21-Sep-23 21:15	
IS	93					-	1
		.5		40 - 135		21-Sep-23 21:15 21-Sep-23 21:15	1 1
IS	93	.5 .3		40 - 135 40 - 135		21-Sep-23 21:15	1 1 1
IS IS IS	93 67	.5 .3 .6		40 - 135 40 - 135 40 - 135 40 - 135		21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15	1 1 1 1
IS IS IS IS	93 67 86 94	.5 .3 .6 .9		40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135		21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15	1 1 1 1
IS IS IS IS IS	93 67 86	.5 .3 .6 .9 .4		40 - 135 40 - 135 40 - 135 40 - 135		21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15	1 1 1 1 1 1 1
IS IS IS IS	93 67 86 94 97	.5 .3 .6 .9 .4 .5		40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135		21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15	1 1 1 1 1 1 1 1
IS IS IS IS IS IS IS	93 67 86 94 97 82 63	.5 .3 .6 .9 .4 .5		40 - 135 40 - 135		21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15	1 1 1 1 1 1 1 1 1
IS IS IS IS IS IS IS IS	93 67 86 94 97 82 63 85	.5 .3 .6 .9 .4 .5 .5 .4		40 - 135 40 - 135		21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15	1 1 1 1 1 1 1 1 1 1 1 1
IS IS IS IS IS IS IS IS IS IS	93 67 86 94 97 82 63 85 78	.5 .3 .6 .9 .4 .5 .5 .5 .4 .2		40 - 135 40 - 135		21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15	1 1 1 1 1 1 1 1 1 1 1 1 1
IS IS IS IS IS IS IS IS IS IS IS	93 67 86 94 97 82 63 85 78 78 78	.5 .3 .6 .9 .4 .5 .5 .4 .2 .1		$\begin{array}{c} 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \end{array}$		21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IS IS IS IS IS IS IS IS IS IS IS IS	93 67 86 94 97 82 63 85 78 79 81	.5 .3 .6 .9 .4 .5 .5 .4 .2 .1 .9		$\begin{array}{c} 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \end{array}$		21-Sep-23 21:15 21-Sep-23 21:15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IS IS IS IS IS IS IS IS IS IS IS IS IS I	93 67 86 94 97 82 63 85 78 79 81 81 87	.5 .3 .6 .9 .4 .5 .5 .4 .2 .1 .9 .9		$\begin{array}{c} 40 - 135 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ $		21-Sep-23 21:15 21-Sep-23 21:15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IS IS IS IS IS IS IS IS IS IS IS IS IS I	93 67 86 94 97 82 63 85 78 79 81 81 87 80	.5 .3 .6 .9 .4 .5 .5 .4 .2 .1 .9 .9 .1		$\begin{array}{c} 40 - 135 \\ 40 - 10 \\ 40 - $		21-Sep-23 21:15 21-Sep-23 21:15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IS IS IS IS IS IS IS IS IS IS IS IS IS I	93 67 86 94 97 82 63 85 78 79 81 81 87	.5 .3 .6 .9 .4 .5 .5 .4 .2 .1 .9 .9 .1 .8		$\begin{array}{c} 40 - 135 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ $		21-Sep-23 21:15 21-Sep-23 21:15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	986 5790 0.438 1.58 2.59 6.92 6.17 ND ND 138 8.50 355 23.4 0.845 4.95 124 1550 2.13 40.4 176 441 Type IS	0 Conc. (pg/g) EDL 0.655 2.14 5.96 32.5 14.2 986 5790 0.438 1.58 2.59 6.92 6.17 ND ND ND 138 8.50 355 2.34 0.845 4.95 124 1550 2.13 40.4 176 441 Type % Re	ies Lab QC H 0 Samp 0 EDL MDL 0.655 0.189 2.14 0.782 5.96 0.631 32.5 0.638 14.2 0.715 986 0.704 5790 1.62 0.438 0.183 1.58 0.574 2.59 0.684 6.92 0.657 6.17 0.619 ND 0.714 138 0.647 8.50 0.816 355 3.83 23.4	ies Lab Sample: QC Batch: Sample Size: % Solids: Conc. (pg/g) EDL MDL EMPC 0.655 0.189	QC Bath: B23H246 Sample Size: 12.2 g % Solids: 82.3 Conc. (pg/g) EDL MDL EMPC 0.655 0.189 2.14 0.782 5.96 0.631 32.5 0.638 14.2 0.715 986 0.704 5790 1.62 0.438 0.183 1.58 0.574 2.59 0.664 6.92 0.657 6.17 0.619 ND 0.714 0.845 0.816 355 3.83 23.4	Lab Sample: 2308007-06 QC Batch: Date Received: 0 QC Batch: B23H246 Date Extracted: Sample Size: 12.2 g Column: % Solids: 82.3 Qualifiers 0 EDL MDL EMPC Qualifiers 0.655 0.189	Lab Sample: 2308007-06 B23H246 Date Received: 01-Aug-23 0 Date Extracted: 01-Aug-23 0 24-Aug-23 Sample Size: 12.2 g Column: 23-BDIOXIN 0 K MDL EMPC Qualifiers Analyzed 0.655 0.189 21-Sep-23 21:15 21-Sep-23 21:15 21-Sep-23 21:15 2.14 0.782 J 21-Sep-23 21:15 5.96 0.631 21-Sep-23 21:15 3.2.5 0.638 21-Sep-23 21:15 986 0.704 21-Sep-23 21:15 986 0.704 21-Sep-23 21:15 0.438 0.183 J 21-Sep-23 21:15 5.99 0.684 21-Sep-23 21:15 0.438 0.183 J 21-Sep-23 21:15 1.58 0.574 J 21-Sep-23 21:15 6.92 0.657 21-Sep-23 21:15 21-Sep-23 21:15 1.58 0.574 J 21-Sep-23 21:15 ND 0.619 21-Sep-23 21:15 318 0.4345 6.32 21-Sep-23 21:15 3.55<

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

Sample ID: HA-24-Comp-2-3

EPA Method 8290A

Client Data				Lab	oratory Dat	a			
Name:	Apex Laborator	ies		Lab	Sample:	2308007-07	Date Received:	01-Aug-23 0	8:56
Project:	A3E1301			QC	Batch:	B23H246	Date Extracted:	24-Aug-23	
Matrix:	Soil				ple Size:	12.7 g	Column:	ZB-DIOXIN	
Date Collected:	11-May-23 13:4	-5		% S	olids:	79.1			
Analyte		Conc. (pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND	0.0849	0.189				21-Sep-23 22:02	
1,2,3,7,8-PeCDD		0.526		0.779			J	21-Sep-23 22:02	
1,2,3,4,7,8-HxCD		0.709		0.629			J	21-Sep-23 22:02	
1,2,3,6,7,8-HxCD		4.13		0.636				21-Sep-23 22:02	
1,2,3,7,8,9-HxCD		1.83		0.712			J	21-Sep-23 22:02	
1,2,3,4,6,7,8-HpC	CDD	104		0.701				21-Sep-23 22:02	
OCDD		609		1.61				21-Sep-23 22:02	
2,3,7,8-TCDF		ND	0.0843	0.182				21-Sep-23 22:02	
1,2,3,7,8-PeCDF		0.275		0.572			J	21-Sep-23 22:02	
2,3,4,7,8-PeCDF		0.192		0.681			J	21-Sep-23 22:02	
1,2,3,4,7,8-HxCD		0.815		0.655			J	21-Sep-23 22:02	
1,2,3,6,7,8-HxCD	0F	0.812		0.617			J	21-Sep-23 22:02	1
2,3,4,6,7,8-HxCD	0F	0.432		0.657			J	21-Sep-23 22:02	
1,2,3,7,8,9-HxCD	0F	ND		0.711	0.218			21-Sep-23 22:02	1
1,2,3,4,6,7,8-HpC	CDF	14.2		0.645				21-Sep-23 22:02	1
1,2,3,4,7,8,9-HpC	CDF	ND		0.813	1.56			21-Sep-23 22:02	1
OCDF		32.0		3.81				21-Sep-23 22:02	1
Toxic Equivalent	t								
TEQMinWHO20	05Dioxin	2.84							
Totals									
Total TCDD		ND			0.292				
Total PeCDD		0.800							
Total HxCDD		15.7							
Total HpCDD		167							
Total TCDF		1.47			1.47				
Total PeCDF		5.81			6.33				
Total HxCDF		23.8			24.0				
Total HpCDF		44.1			45.7				
Labeled Standar	rds	Туре	% I	Recovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCD	D	IS		84.3		40 - 135		21-Sep-23 22:02	. 1
13C-1,2,3,7,8-Pe		IS		88.6		40 - 135		21-Sep-23 22:02	
13C-1,2,3,4,7,8-H		IS		102		40 - 135		21-Sep-23 22:02	
13C-1,2,3,6,7,8-H		IS		101		40 - 135		21-Sep-23 22:02	
13C-1,2,3,7,8,9-H		IS		98.1		40 - 135		21-Sep-23 22:02	
13C-1,2,3,4,6,7,8		IS		101		40 - 135		21-Sep-23 22:02	
13C-OCDD	inpedid	IS		102		40 - 135		21-Sep-23 22:02	
13C-2,3,7,8-TCD	F	IS		91.4		40 - 135		21-Sep-23 22:02	
13C-1,2,3,7,8-Pe		IS		67.9		40 - 135		21-Sep-23 22:02	
13C-2,3,4,7,8-Pe		IS		97.3		40 - 135		21-Sep-23 22:02	
13C-1,2,3,4,7,8-E		IS		88.0		40 - 135		21-Sep-23 22:02	
13C-1,2,3,6,7,8-E		IS		90.7		40 - 135		21-Sep-23 22:02 21-Sep-23 22:02	
13C-2,3,4,6,7,8-E		IS		91.8		40 - 135		21-Sep-23 22:02 21-Sep-23 22:02	
13C-1,2,3,7,8,9-E		IS		71.1		40 - 135		21-Sep-23 22:02 21-Sep-23 22:02	
13C-1,2,3,4,6,7,8		IS		89.9		40 - 135		21-Sep-23 22:02 21-Sep-23 22:02	
13C-1,2,3,4,7,8,9	-	IS		94.1		40 - 135		21-Sep-23 22:02 21-Sep-23 22:02	
13C-OCDF	-mpcDi	IS		89.5		40 - 135		21-Sep-23 22:02 21-Sep-23 22:02	
	מנ	CRS		89.3 82.0					
37Cl-2,3,7,8-TCL	ענ	UKS		02.0		40 - 135		21-Sep-23 22:02	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight. The sample size is reported in wet weight.

Work Order 2308007

Sample ID: HA-23-Comp-1-2

EPA Method 8290A

Client Data				Labo	oratory Data	a			
Name: A	pex Laboratories			Lab S	Sample:	2308007-08	Date Received:	01-Aug-23 0	8:56
	3E1301			QC E	Batch:	B23H246	Date Extracted:	24-Aug-23	
Matrix: So				Sam	ole Size:	12.2 g	Column:	ZB-DIOXIN	
	-May-23 14:20			% Sc	lids:	82.2			
Analyte	Con	c. (pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND		0.190	0.207			21-Sep-23 22:49	1
1,2,3,7,8-PeCDD		2.09		0.783			J	21-Sep-23 22:49	
1,2,3,4,7,8-HxCDD		4.11		0.632				21-Sep-23 22:49	1
1,2,3,6,7,8-HxCDD		23.1		0.639				21-Sep-23 22:49	
1,2,3,7,8,9-HxCDD		9.24		0.716				21-Sep-23 22:49	1
1,2,3,4,6,7,8-HpCDD		617		0.705				21-Sep-23 22:49	1
OCDD		3390		1.62				21-Sep-23 22:49	1
2,3,7,8-TCDF		0.335		0.183			J	21-Sep-23 22:49	1
1,2,3,7,8-PeCDF		1.36		0.575			J	21-Sep-23 22:49	1
2,3,4,7,8-PeCDF		1.85		0.685			J	21-Sep-23 22:49	1
1,2,3,4,7,8-HxCDF		4.49		0.658				21-Sep-23 22:49	
1,2,3,6,7,8-HxCDF		4.36		0.620				21-Sep-23 22:49	1
2,3,4,6,7,8-HxCDF		1.65		0.660			J	21-Sep-23 22:49	1
1,2,3,7,8,9-HxCDF		0.722		0.715			J	21-Sep-23 22:49	1
1,2,3,4,6,7,8-HpCDF		79.7		0.648				21-Sep-23 22:49	1
1,2,3,4,7,8,9-HpCDF		5.93		0.817				21-Sep-23 22:49	1
OCDF		205		3.83				21-Sep-23 22:49	
Toxic Equivalent									
TEQMinWHO2005D	Dioxin	15.6							
Totals									
Total TCDD		0.264			0.471				
Total PeCDD		4.43			4.93				
Total HxCDD		85.4							
Total HpCDD		980							
Total TCDF		2.15			2.56				
Total PeCDF		35.4			36.8				
Total HxCDF		129							
Total HpCDF		275			276				
Labeled Standards	,	Туре	% Reco	overy		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCDD		IS	79.1			40 - 135		21-Sep-23 22:49	1
13C-1,2,3,7,8-PeCDI)	IS	85.7			40 - 135		21-Sep-23 22:49	1
13C-1,2,3,4,7,8-HxC	DD	IS							1
1501,2,5,1,7,011		10	98.4			40 - 135		21-Sep-23 22:49	1
13C-1,2,3,6,7,8-HxC		IS	98.4 96.8			40 - 135 40 - 135			
	DD							21-Sep-23 22:49	1
13C-1,2,3,6,7,8-HxC	DD DD	IS IS	96.8			40 - 135		21-Sep-23 22:49 21-Sep-23 22:49	1 1
13C-1,2,3,6,7,8-HxC 13C-1,2,3,7,8,9-HxC	DD DD	IS	96.8 92.7			40 - 135 40 - 135		21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49	1 1 1
13C-1,2,3,6,7,8-HxCl 13C-1,2,3,7,8,9-HxCl 13C-1,2,3,4,6,7,8-Hp 13C-OCDD	DD DD	IS IS IS IS	96.8 92.7 98.0			40 - 135 40 - 135 40 - 135		21-Sep-23 22:49 21-Sep-23 22:49	1 1 1 1
13C-1,2,3,6,7,8-HxCl 13C-1,2,3,7,8,9-HxCl 13C-1,2,3,4,6,7,8-Hp 13C-OCDD 13C-2,3,7,8-TCDF	DD DD CDD	IS IS IS IS IS	96.8 92.7 98.0 104 86.4			40 - 135 40 - 135 40 - 135 40 - 135		21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49	1 1 1 1
13C-1,2,3,6,7,8-HxCl 13C-1,2,3,7,8,9-HxCl 13C-1,2,3,4,6,7,8-Hp 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF	DD DD CDD	IS IS IS IS IS IS	96.8 92.7 98.0 104 86.4 65.1			40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135		21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49	1 1 1 1 1 1
13C-1,2,3,6,7,8-HxCl 13C-1,2,3,7,8,9-HxCl 13C-1,2,3,4,6,7,8-Hp 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	DD DD CDD	IS IS IS IS IS IS IS	96.8 92.7 98.0 104 86.4 65.1 90.8			40 - 135 40 - 135		21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49	1 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-HxCl 13C-1,2,3,7,8,9-HxCl 13C-1,2,3,4,6,7,8-Hp 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCl	DD DD CDD 7 7 7 DF	IS IS IS IS IS IS IS IS IS	96.8 92.7 98.0 104 86.4 65.1 90.8 84.5			40 - 135 40 - 135		21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49	1 1 1 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-HxCl 13C-1,2,3,7,8,9-HxCl 13C-1,2,3,4,6,7,8-Hp 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCl 13C-1,2,3,6,7,8-HxCl	DD DD CDD 7 7 DF DF	IS IS IS IS IS IS IS IS IS IS IS	96.8 92.7 98.0 104 86.4 65.1 90.8 84.5 84.5			40 - 135 40 - 135		21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49	1 1 1 1 1 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-HxCl 13C-1,2,3,7,8,9-HxCl 13C-1,2,3,4,6,7,8-Hp 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCl 13C-1,2,3,6,7,8-HxCl 13C-2,3,4,6,7,8-HxCl	DD DD CDD 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	IS IS IS IS IS IS IS IS IS	96.8 92.7 98.0 104 86.4 65.1 90.8 84.5 84.1 87.3			40 - 135 40 - 135		21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49	1 1 1 1 1 1 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-HxCl 13C-1,2,3,7,8,9-HxCl 13C-1,2,3,4,6,7,8-Hp 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCl 13C-1,2,3,6,7,8-HxCl 13C-2,3,4,6,7,8-HxCl 13C-1,2,3,7,8,9-HxCl	DD DD CDD 7 7 7 7 7 DF DF DF DF DF DF	IS IS IS IS IS IS IS IS IS IS IS	96.8 92.7 98.0 104 86.4 65.1 90.8 84.5 84.1 87.3 91.4			$\begin{array}{c} 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \end{array}$		21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-HxCl 13C-1,2,3,7,8,9-HxCl 13C-1,2,3,4,6,7,8-Hp 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCl 13C-1,2,3,6,7,8-HxCl 13C-1,2,3,7,8,9-HxCl 13C-1,2,3,7,8,9-HxCl 13C-1,2,3,4,6,7,8-Hp	DD DD CDD 7 7 7 DF DF DF DF DF CDF	IS IS IS IS IS IS IS IS IS IS IS IS	96.8 92.7 98.0 104 86.4 65.1 90.8 84.5 84.1 87.3 91.4 86.9			$\begin{array}{c} 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \end{array}$		21-Sep-23 22:49 21-Sep-23 22:49	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13C-1,2,3,6,7,8-HxCl 13C-1,2,3,7,8,9-HxCl 13C-1,2,3,4,6,7,8-Hp 13C-OCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCl 13C-1,2,3,6,7,8-HxCl 13C-2,3,4,6,7,8-HxCl 13C-1,2,3,7,8,9-HxCl	DD DD CDD 7 7 7 DF DF DF DF DF CDF	IS IS IS IS IS IS IS IS IS IS IS	96.8 92.7 98.0 104 86.4 65.1 90.8 84.5 84.1 87.3 91.4			$\begin{array}{c} 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \end{array}$		21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49 21-Sep-23 22:49	

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight.

Sample ID: HA-23-Comp-2-3

EPA Method 8290A

Client Data				Lab	oratory Dat	a			
	Apex Laboratories	5			Sample:	2308007-09	Date Received:	01-Aug-23 0	8:56
Project:	A3E1301			\[Batch:	B23H246	Date Extracted:	24-Aug-23	
Matrix:	Soil				ple Size:	12.6 g	Column:	ZB-DIOXIN	
Date Collected:	11-May-23 14:25			% So	olids:	79.9			
Analyte	C	onc. (pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND	0.171	0.190				21-Sep-23 23:35	
1,2,3,7,8-PeCDD		2.14		0.782			J	21-Sep-23 23:35	
1,2,3,4,7,8-HxCDE		4.21		0.631				21-Sep-23 23:35	
1,2,3,6,7,8-HxCDE		23.7		0.638				21-Sep-23 23:35	
1,2,3,7,8,9-HxCDE		9.62		0.715				21-Sep-23 23:35	
1,2,3,4,6,7,8-HpCE	DD	676		0.704				21-Sep-23 23:35	
OCDD		4520		1.62				21-Sep-23 23:35	
2,3,7,8-TCDF		ND		0.183	0.264			21-Sep-23 23:35	
1,2,3,7,8-PeCDF		ND		0.574	1.12			21-Sep-23 23:35	
2,3,4,7,8-PeCDF		1.86		0.684			J	21-Sep-23 23:35	
1,2,3,4,7,8-HxCDF		4.60		0.657				21-Sep-23 23:35	
1,2,3,6,7,8-HxCDF	7	4.21		0.619				21-Sep-23 23:35	1
2,3,4,6,7,8-HxCDF	7	2.57		0.659				21-Sep-23 23:35	1
1,2,3,7,8,9-HxCDF	7	1.55		0.714			J	21-Sep-23 23:35	1
1,2,3,4,6,7,8-HpCE	OF	88.5		0.647				21-Sep-23 23:35	1
1,2,3,4,7,8,9-HpCE	DF	6.69		0.816				21-Sep-23 23:35	1
OCDF		258		3.83				21-Sep-23 23:35	1
Toxic Equivalent									
Toxic Equivalent TEQMinWHO2003	5Dioxin	16.9							
-	5Dioxin	16.9							
TEQMinWHO200	5Dioxin	16.9 ND	0.171						
TEQMinWHO2003 Totals	5Dioxin	ND 3.59	0.171		4.16				
TEQMinWHO200: Totals Total TCDD	5Dioxin	ND	0.171		4.16				
TEQMinWHO2003 Totals Total TCDD Total PeCDD	5Dioxin	ND 3.59	0.171		4.16				
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD	5Dioxin	ND 3.59 88.8	0.171		4.16				
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD	5Dioxin	ND 3.59 88.8 1070	0.171						
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF	5Dioxin	ND 3.59 88.8 1070 1.38	0.171		3.01				
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF	5Dioxin	ND 3.59 88.8 1070 1.38 26.3	0.171		3.01				
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF		ND 3.59 88.8 1070 1.38 26.3 129		Recovery	3.01	Limits	Qualifiers	Analyzed	Dilution
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HxCDF Total HpCDF	ls	ND 3.59 88.8 1070 1.38 26.3 129 310	%	Recovery 44.2	3.01	Limits 40 - 135	Qualifiers	Analyzed 21-Sep-23 23:35	
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HxCDF Total HpCDF Labeled Standard 13C-2,3,7,8-TCDD	ls)	ND 3.59 88.8 1070 1.38 26.3 129 310 Type	% 1		3.01		Qualifiers	-	1
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standard 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeC	ls) DD	ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS	%]	44.2	3.01	40 - 135	Qualifiers	21-Sep-23 23:35 21-Sep-23 23:35	1 1
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standard 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-Hx	ls) DD &CDD	ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS IS	%]	44.2 42.8	3.01	40 - 135 40 - 135 40 - 135	Qualifiers	21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35	1 1
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standard 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeC1 13C-1,2,3,6,7,8-Hx 13C-1,2,3,6,7,8-Hx	ls) DD &CDD &CDD	ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS IS IS IS	<u>%</u> 1	44.2 42.8 53.1 50.5	3.01	40 - 135 40 - 135 40 - 135 40 - 135 40 - 135	Qualifiers	21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35	1 1 1 1
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total TCDF Total PeCDF Total HxCDF 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCI 13C-1,2,3,4,7,8-Hx 13C-1,2,3,7,8,9-Hx 13C-1,2,3,7,8,9-Hx	ls) DD «CDD «CDD «CDD	ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS IS IS IS IS IS IS	<u>%</u>]	44.2 42.8 53.1 50.5 50.3	3.01	40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135	Qualifiers	21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35	1 1 1 1 1
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total TCDF Total PeCDF Total HxCDF 13C-1,2,3,7,8-TCDD 13C-1,2,3,7,8-PeCI 13C-1,2,3,4,7,8-Hx 13C-1,2,3,4,7,8-Hx 13C-1,2,3,4,6,7,8-Hx 13C-1,2,3,4,6,7,8-Hx 13C-1,2,3,4,6,7,8-Hx 13C-1,2,3,4,6,7,8-Hx	ls) DD «CDD «CDD «CDD	ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS IS IS IS IS IS IS IS IS	<u>%</u>]	44.2 42.8 53.1 50.5 50.3 53.1	3.01	40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135 40 - 135	Qualifiers	21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35	1 1 1 1 1 1 1
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total TCDF Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standard 13C-1,2,3,7,8-TCDD 13C-1,2,3,7,8-PeCI 13C-1,2,3,4,7,8-Hx 13C-1,2,3,4,7,8-Hx 13C-1,2,3,4,6,7,8-Hx	ls) DD &CDD &CDD &CDD &CDD HpCDD	ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS IS IS IS IS IS IS IS IS	%	44.2 42.8 53.1 50.5 50.3 53.1 52.1	3.01	40 - 135 40 - 135	Qualifiers	21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35	1 1 1 1 1 1 1 1 1
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total PeCDF Total HxCDF Total HxCDF Total HpCDF Labeled Standard 13C-1,2,3,7,8-PeCI 13C-1,2,3,6,7,8-Hx 13C-1,2,3,6,7,8-Hx 13C-1,2,3,4,6,7,8-Hx 13C-1,2,3,4,6,7,8-Hx 13C-1,2,3,4,6,7,8-Hx 13C-1,2,3,7,8,9-Hx 13C-1,2,3,7,8,9-Hx 13C-1,2,3,7,8,9-Hx 13C-1,2,3,7,8-TCDF	ls DD xCDD xCDD xCDD xCDD HpCDD	ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS IS IS IS IS IS IS IS IS	<u>%</u>]	44.2 42.8 53.1 50.5 50.3 53.1 52.1 48.5	3.01	40 - 135 40 - 135		21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35	1 1 1 1 1 1 1 1 1 1
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total PeCDF Total HxCDF Total HxCDF Total HpCDF Labeled Standard 13C-1,2,3,7,8-TCDD 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8,9-Hx	ls DD xCDD xCDD xCDD tpCDD T DF	ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS IS IS IS IS IS IS IS IS	<u>%</u> 1	44.2 42.8 53.1 50.5 50.3 53.1 52.1 48.5 37.5	3.01	40 - 135 40 - 135	Qualifiers	21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35	1 1 1 1 1 1 1 1 1 1 1 1
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standard 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-2,3,7,8-PeCI 13C-2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-2,3,7,8-PeCI 13C-2,3,7,8-PeCI 13C-2,3,7,8-PeCI 13C-2,3,7,8-PeCI 13C-2,3,7,8-PeCI 13C-1,2,3,4,7,8-PeCI	ls DD xCDD xCDD xCDD xCDD HpCDD 5 DF DF DF	ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS	<u>%</u> 1	44.2 42.8 53.1 50.5 50.3 53.1 52.1 48.5 37.5 49.5	3.01	40 - 135 40 - 135		21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35 21-Sep-23 23:35	1 1 1 1 1 1 1 1 1 1 1 1 1 1
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standard 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCI 13C-2,3,7,8-PeCI 13C-1,2,3,4,6,7,8-PeCI 13C-1,2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-PeCI	ls DD xCDD xCDD xCDD xCDD mpCDD pF pF xCDF	ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS	<u>%</u> 1	44.2 42.8 53.1 50.5 50.3 53.1 52.1 48.5 37.5 49.5 46.0	3.01	40 - 135 40 - 135		21-Sep-23 23:35 21-Sep-23 23:35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standard 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-1,2,3,7,8-PeCI 13C-2,3,7,8-PeCI 13C-2,3,7,8-PeCI 13C-2,3,7,8-PeCI 13C-1,2,3,4,7,8-PeCI 13C-1,2,3,4,7,8-PaX </td <td>ls DD xCDD xCDD xCDD xCDD mpCDD pF DF xCDF xCDF xCDF</td> <td>ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS</td> <td><u>%</u> 1</td> <td>44.2 42.8 53.1 50.5 50.3 53.1 52.1 48.5 37.5 49.5 46.0 46.2</td> <td>3.01</td> <td>$\begin{array}{c} 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \end{array}$</td> <td></td> <td>21-Sep-23 23:35 21-Sep-23 23:35</td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>	ls DD xCDD xCDD xCDD xCDD mpCDD pF DF xCDF xCDF xCDF	ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS	<u>%</u> 1	44.2 42.8 53.1 50.5 50.3 53.1 52.1 48.5 37.5 49.5 46.0 46.2	3.01	$\begin{array}{c} 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \end{array}$		21-Sep-23 23:35 21-Sep-23 23:35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HxCDF Total HpCDF Labeled Standard 13C-1,2,3,7,8-PeCI 13C-1,2,3,4,7,8-Hx 13C-1,2,3,4,6,7,8-Hx 13C-1,2,3,4,6,7,8-Hx 13C-1,2,3,4,6,7,8-Hx 13C-1,2,3,4,7,8-PeCI 13C-1,2,3,4,6,7,8-Hx 13C-2,3,4,6,7,8-Hx	Is DD xCDD xCDD xCDD xCDD mpCDD pF DF pF DF xCDF xCDF xCDF xCDF	ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS	<u>%</u> 1	44.2 42.8 53.1 50.5 50.3 53.1 52.1 48.5 37.5 49.5 46.0 46.2 48.0	3.01	$\begin{array}{c} 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \\ 40 - 135 \end{array}$		21-Sep-23 23:35 21-Sep-23 23:35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Total HpCDF Total HxCDF Total HxCAR Tot-1,2,3,7,8-TCDF T3C-1,2,3,7,8-TCDF T3C-1,2,3,7,8-TCDF T3C-1,2,3,7,8-PeCI T3C-1,2,3,7,8-PeCI T3C-1,2,3,4,7,8-Hx T3C-1,2,3,4,6,7,8-Hx T3C-1,2,3,7,8,9-Hx T3C-1,2,3,7,8,9-Hx T3C-1,2,3,7,8,9-Hx	Is DD xCDD xCDD xCDD xCDD tpCDD T DF DF DF xCDF xCDF xCDF xCDF xCDF xCDF	ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS	<u>%</u>	44.2 42.8 53.1 50.5 50.3 53.1 52.1 48.5 37.5 49.5 46.0 46.2 48.0 51.9	3.01	$\begin{array}{c} 40 - 135 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 $		21-Sep-23 23:35 21-Sep-23 23:35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Labeled Standard 13C-1,2,3,7,8-TCDD 13C-1,2,3,4,7,8-Hx 13C-1,2,3,4,6,7,8-Hx 13C-1,2,3,4,6,7,8-Hx 13C-1,2,3,4,6,7,8-Hx 13C-1,2,3,4,6,7,8-Hx 13C-2,3,7,8-TCDF 13C-1,2,3,4,6,7,8-Hx 13C-2,3,4,7,8-PeCI 13C-1,2,3,4,6,7,8-Hx 13C-1,2,3,4,6,7,8-Hx <td>ls) DD xCDD xCDD xCDD xCDD HpCDD 7 DF DF DF CDF xCDF xCDF xCDF xCDF xCDF xCDF xCDF xCDF xCDF xCDF</td> <td>ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS</td> <td>%</td> <td>44.2 42.8 53.1 50.5 50.3 53.1 52.1 48.5 37.5 49.5 46.0 46.2 48.0 51.9 46.7</td> <td>3.01</td> <td>$\begin{array}{c} 40 - 135 \\ 40 - 10 \\ 40 -$</td> <td></td> <td>21-Sep-23 23:35 21-Sep-23 23:35</td> <td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>	ls) DD xCDD xCDD xCDD xCDD HpCDD 7 DF DF DF CDF xCDF xCDF xCDF xCDF xCDF xCDF xCDF xCDF xCDF xCDF	ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS	%	44.2 42.8 53.1 50.5 50.3 53.1 52.1 48.5 37.5 49.5 46.0 46.2 48.0 51.9 46.7	3.01	$\begin{array}{c} 40 - 135 \\ 40 - 10 \\ 40 - $		21-Sep-23 23:35 21-Sep-23 23:35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TEQMinWHO2003 Totals Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF Total HpCDF Total HxCDF Total HxCAR Tot-1,2,3,7,8-TCDF T3C-1,2,3,7,8-TCDF T3C-1,2,3,7,8-TCDF T3C-1,2,3,7,8-PeCI T3C-1,2,3,7,8-PeCI T3C-1,2,3,4,7,8-Hx T3C-1,2,3,4,6,7,8-Hx T3C-1,2,3,7,8,9-Hx T3C-1,2,3,7,8,9-Hx T3C-1,2,3,7,8,9-Hx	ls) DD xCDD xCDD xCDD xCDD HpCDD 7 DF DF DF CDF xCDF xCDF xCDF xCDF xCDF xCDF xCDF xCDF xCDF xCDF	ND 3.59 88.8 1070 1.38 26.3 129 310 Type IS IS	%	44.2 42.8 53.1 50.5 50.3 53.1 52.1 48.5 37.5 49.5 46.0 46.2 48.0 51.9	3.01	$\begin{array}{c} 40 - 135 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 \\ 40 - 10 $		21-Sep-23 23:35 21-Sep-23 23:35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight.

Sample ID: HA-22-Comp-2-3

EPA Method 8290A

Client Data				Labo	oratory Dat	a			
Name:	Apex Laboratori	ies		Lab	Sample:	2308007-10	Date Received:	01-Aug-23 0	8:56
Project:	A3E1301			QC I	Batch:	B23H246	Date Extracted:	24-Aug-23	
Matrix:	Soil				ple Size:	12.7 g	Column:	ZB-DIOXIN	
Date Collected:	11-May-23 14:5	5		% Sc	olids:	79.0			
Analyte		Conc. (pg/g)	EDL	MDL	EMPC		Qualifiers	Analyzed	Dilution
2,3,7,8-TCDD		ND		0.190	0.241			22-Sep-23 00:22	1
1,2,3,7,8-PeCDD		3.48		0.782				22-Sep-23 00:22	1
1,2,3,4,7,8-HxCD		7.31		0.632				22-Sep-23 00:22	1
1,2,3,6,7,8-HxCD		44.9		0.639				22-Sep-23 00:22	1
1,2,3,7,8,9-HxCD		17.4		0.715				22-Sep-23 00:22	1
1,2,3,4,6,7,8-HpC	CDD	1130		0.704				22-Sep-23 00:22	1
OCDD		5930		1.62				22-Sep-23 00:22	1
2,3,7,8-TCDF		0.475		0.183			J	22-Sep-23 00:22	1
1,2,3,7,8-PeCDF		1.99		0.575			J	22-Sep-23 00:22	1
2,3,4,7,8-PeCDF		2.61		0.684				22-Sep-23 00:22	1
1,2,3,4,7,8-HxCD	F	8.08		0.657				22-Sep-23 00:22	1
1,2,3,6,7,8-HxCD	F	8.42		0.620				22-Sep-23 00:22	1
2,3,4,6,7,8-HxCD	F	5.76		0.659				22-Sep-23 00:22	1
1,2,3,7,8,9-HxCD	F	2.29		0.714			J	22-Sep-23 00:22	1
1,2,3,4,6,7,8-HpC	DF	167		0.648				22-Sep-23 00:22	1
1,2,3,4,7,8,9-HpC	DF	11.2		0.816				22-Sep-23 00:22	1
OCDF		389		3.83				22-Sep-23 00:22	1
Toxic Equivalent	t								
TEQMinWHO20	05Dioxin	28.8							
Totals									
Total TCDD		ND			0.528				
Total PeCDD		9.61			9.83				
Total HxCDD		166							
Total HpCDD		1790							
Total TCDF		2.97			3.90				
Total PeCDF		70.3							
Total HxCDF		248							
Total HpCDF		519							
Labeled Standar	·ds	Туре	% R	ecovery		Limits	Qualifiers	Analyzed	Dilution
13C-2,3,7,8-TCD	D	IS		6.9		40 - 135		22-Sep-23 00:22	1
13C-1,2,3,7,8-Pe0		IS	8	0.3		40 - 135		22-Sep-23 00:22	
13С-1,2,3,4,7,8-Н		IS		6.5		40 - 135		22-Sep-23 00:22	
13С-1,2,3,6,7,8-Н		IS		1.9		40 - 135		22-Sep-23 00:22	
13С-1,2,3,7,8,9-Н		IS		6.9		40 - 135		22-Sep-23 00:22	
13C-1,2,3,4,6,7,8-		IS		5.1		40 - 135		22-Sep-23 00:22	
13C-OCDD		IS		102		40 - 135		22-Sep-23 00:22	
13C-2,3,7,8-TCD	F	IS		4.0		40 - 135		22-Sep-23 00:22	
13C-1,2,3,7,8-Pe0		IS		51.0		40 - 135		22-Sep-23 00:22	
13C-2,3,4,7,8-Pe0		IS		8.7		40 - 135		22-Sep-23 00:22	
13С-1,2,3,4,7,8-Н		IS		8.5		40 - 135		22-Sep-23 00:22	
13С-1,2,3,6,7,8-Н		IS		51.1		40 - 135		22-Sep-23 00:22	
13С-2,3,4,6,7,8-Н		IS		3.1		40 - 135		22-Sep-23 00:22	
13С-1,2,3,7,8,9-Н		IS		5.1		40 - 135		22-Sep-23 00:22	
13C-1,2,3,4,6,7,8		IS		1.3		40 - 135		22-Sep-23 00:22	
13C-1,2,3,4,7,8,9		IS		6.6		40 - 135		22-Sep-23 00:22 22-Sep-23 00:22	
13C-OCDF	прем	IS		4.3		40 - 135		22-Sep-23 00:22 22-Sep-23 00:22	
	מנ							-	
37Cl-2,3,7,8-TCE	ענ	CRS	7	7.0		40 - 135		22-Sep-23 00:22	1

EDL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

MDL - Method Detection Limit

The results are reported in dry weight.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection Limit
E	The associated compound concentration exceeded the calibration range of the instrument
Н	Recovery and/or RPD was outside laboratory acceptance limits
Ι	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limit of Detection
LOQ	Limit of Quantitation
М	Estimated Maximum Possible Concentration (CA Region 2 projects only)
MDL	Method Detection Limit
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
Р	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
RL	For 537.1, the reported RLs are the MRLs.
TEQ	Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the sample concentrations.
TEQMax	TEQ calculation that uses the detection limit as the concentration for non-detects
TEQMin	TEQ calculation that uses zero as the concentration for non-detects
TEQRisk	TEQ calculation that uses $\frac{1}{2}$ the detection limit as the concentration for non-
	detects
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	2211390
Nevada Division of Environmental Protection	CA00413
New Hampshire Environmental Accreditation Program	207721
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-021
Texas Commission on Environmental Quality	T104704189-22-13
Vermont Department of Health	VT-4042
Virginia Department of General Services	11276
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Enthalpy Analytical - EDH Certifications

Current certificates and lists of licensed parameters can be found at Enthalpy.com/Resources/Accreditations.

2308007 3.8°C

SUBCONTRACT ORDER

Apex Laboratories

AKUC 7131/23	-	3E1301	DOIN	
SENDING LABORATORY:		RECEIVING LA	BORATORY:	
Apex Laboratories 6700 S.W. Sandburg Street Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 336-0745 Project Manager: Philip Nerenberg		Enthalpy Analyt 1104 Windfield El Dorado Hills Phone :(916) 67 Fax: -	ical- CA Way , CA 95762	
			aker 2131123	
Sample Name: HA-28-Comp-2-3		Soil	Sampled: 05/11/23 10:35	(A3E1301-02)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB)	05/24/23 17:00	06/10/23 10:35		
Containers Supplied: (B)4 oz Glass Jar	Alve	ady sent		
Sample Name: HA-27-Comp-1-2		Soil	Sampled: 05/11/23 11:50	(A3E1301-03)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	08/14/23 17:00	06/10/23 11:50		
Sample Name: HA-27-Comp-2-3		Soil	Sampled: 05/11/23 11:55	(A3E1301-04)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	08/14/23 17:00	06/10/23 11:55		
Sample Name: HA-26-Comp-1-2		Soil	Sampled: 05/11/23 12:20	(A3E1301-05)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) <i>Containers Supplied:</i> (B)4 oz Glass Jar	08/14/23 17:00	06/10/23 12:20		
Stand	ard TA	Т		
		-		
Z-31-2 Released By Date	-3	Received By	Fed Ex (Shipper)	
Fed Ex (Shipper)		ban for	08/01/23	
Released By Date		Received By	Date	

2309007

SUBCONTRACT ORDER

Apex Laboratories

A3E1301

Sample Name: HA-26-Comp-2-3		Soil	Sampled: 05/11/23 12:25	(A3E1301-06)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	08/14/23 17:00	06/10/23 12:25		
			aper 7/31/27	(4251201.07)
Sample Name: HA-25-Comp-1-2		Soit	Sampled: 05/11/23 12:40	(A3E1301-07)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB)	05/24/23 17:00	06/10/23 12:40		
Containers Supplied: (B)4 oz Glass Jar	Alveady	sent		
Sample Name: HA-25-Comp-2-3	0	Soil	Sampled: 05/11/23 12:45	(A3E1301-08)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	08/14/23 17:00	06/10/23 12:45		
Sample Name: HA-24-Comp-1-2		Soil	Sampled: 05/11/23 13:40	(A3E1301-09)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	08/14/23 17:00	06/10/23 13:40		
Sample Name: HA-24-Comp-2-3		Soil	Sampled: 05/11/23 13:45	(A3E1301-10)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	08/14/23 17:00	06/10/23 13:45		
			1xx 2131123	
Sample Name: HA-29-Comp-2-3		Sett	Sampled: 05/11/23 11:25	(A3E1301-12)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRMS (SUB) Containers Supplied: (B)4 oz Glass Jar	05/24/2317:00 Already	06/10/23 11:25 SeMt		
/	Already Standard	e TAT		
7-3,	1 . 2 3		Fed Ex (Shipper)	
Released By Date		Received By	Date	
Fed Ex (Shipper) Polon Released By Date	23 0856	Bull Hot Received By	Date	23

Page 2 of 4

2308007

SUBCONTRACT ORDER

Apex Laboratories

A3E1301

Sample Name:	HA-23-Comp-1-2		Soil	Sampled:	05/11/23 14:20	(A3E1301-13)
Analysis		Due	Expires	Co	omments	
8290 Dioxins/F <i>Containers</i> (B)4 oz Glas		08/14/23 17:00	06/10/23 14:20			
Sample Name:	HA-23-Comp-2-3		Soil	Sampled:	05/11/23 14:25	(A3E1301-14)
Analysis		Due	Expires	Co	omments	
8290 Dioxins/Fr Containers . (B)4 oz Glasz		08/14/23 17:00	06/10/23 14:25			
Sample Name:	HA-22-Comp-1-2		Soil	Sampled:	1811277 05/11/23 14:50	(A3E1301-15)
Analysis		Due	Expires	Co	omments	
8290 Dioxins/Fu Containers . (B)4 oz Glas:			06/10/23 14:50 dy Sent			
	/			C	ontainers read time as 14	:50
Sample Name:	HA-22-Comp-2-3		Soil	Sampled:	05/11/23 14:55	(A3E1301-16)
Analysis		Due	Expires	Co	omments	
8290 Dioxins/F <i>Containers</i> (B)4 oz Glas:	••	08/14/23 17:00	06/10/23 14:55			
			0	1KK 7131123	fter Processing	
Sample Name:	DU1-A		Sojl		05/09/23 13:30	(A3E1301-18)
Analysis		Due	Expires	Co	omments	
8290 Dioxins/Fr <i>Containers</i> (B)4 oz Glas		05/24/23 17:00	06/08/23 13:30			
CI. N	DIII D	/	A H		fter Processing	(1251201 20)
Sample Name:			Soil	-	05/09/23 14:00	(A3E1301-20)
Analysis 8290 Dioxins/F t <i>Containers 3</i> (B)4 oz Glass	urans by HRGC/HRMS (SUB) Supplied: 5 Jar HW	Due 05/24/23 17:00 Lady Sent Fandard	Expires 06/08/23 14:00		omments	
		31-2-3 p1/23 0856	Received By	Fed Ex ((Shipper) Date	OBCLE
Released By	Date		Received By		Date	

Page 3 of 4

2309007

SUBCONTRACT ORDER

Apex Laboratories

A3E1301

	A3	E1301	arec 7131/23	
Sample Name: DU2-A		Soil	After Processing Sampled: 05/09/23 12:30	(A3E1301-22)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRM Containers Supplied: (B)4 oz Glass Jar	S (SUB) 05/24/23 17:00	06/08/23 12:30	0	
Sample Name: DU2-B		Soil	After Processing Sampled: 05/09/23 13:00	(A3E1301-24)
Analysis	Due	Expires	Comments	
8290 Dioxins/Furans by HRGC/HRM Containers Supplied: (B)4 oz Glass Jar	S (SUB) 05/24/23 17:00	06/08/23 13:00	0	
	plready se	nt		

standard TAT

Sa	7-31-23	Fed Ex (Shipper)
Released By	Date	Received By	Date
Fed Ex (Shipper)	02/01/23 0850	Sour too	00/01/23 085Ce
Released By	Date	Received By	Date
			Dage 1 of 1

Work Order 2308007

Page 4 of 4

Sample Log-In Checklist

Page # _ \ of _\											
Work Order #: 2308007											
Samples	Date/Tim	e			In	itials:		Loca	tion: WP-2	•	
Arrival:	Arrival:		856	1	SNH		Shelf/Rack: NA				
Delivered By:	FedEx	UPS	5	On Tra	On Trac		DHI	-	Hand Delivered	Oth	er
Preservation:	to	e)		Blue Ice			chni ce	Dry Ice	Nor	ıe	
Temp °C: 2.4	(uncorr	ected)	D	obe use	ر ام	VID		The	m om otor ID	10-3	
Temp °C: ⊰ 8	(correc	ted)	Probe used: Y \bigwedge Thermometer ID: $\frac{1}{2}$					_			
	AN PROPERTY				GX			(A) (44)	YES	NO	NA

a case property in and prover	and the second second	in manager	And decourses and	an average a provide and	ILS	NO	NA
Shipping Contain							
Shipping Custody		/					
Airbill	1						
Shipping Docume	1						
Shipping Contain	Return	Disp	oose				
Chain of Custody	/						
Chain of Custody	/						
Holding Time Acceptable?							
Date/Time Initials: Location: WR-2							
Logged In: 08/01/23 1429 KW Shelf/Rack: D-5							
COC Anomaly/Sa		V	V				

Comments: A sample Date 05/11/23

CoC/Label Reconciliation Report WO# 2308007

LabNumber	CoC Sample ID		SampleAlias	Sample Date/Time	Container	BaseMatrix	Sample Comments
2308007-01	A HA-27-Comp-1-2		(A3E1301-03)	11-May-23 11:50	Clear Glass Jar, 120mL	Solid	
2308007-02	A HA-27-Comp-2-3	17	(A3E1301-04)	11-May-23 11:55	Clear Glass Jar, 120mL	Solid	
2308007-03	A HA-26-Comp-1-2	Ø,	(A3E1301-05)	11-May-23 12:20	Clcar Glass Jar, 120mL	Solid	Summer 1 and
2308007-04	A HA-26-Comp-2-3	ø,	(A3E1301-06)	11-May-23 12:25	Clear Glass Jar, 120mL	Solid	
2308007-05	A HA-25-Comp-2-3	Z,	(A3E1301-08)	11-May-23 12:45	Clear Glass Jar, 120mL	Solid	1000
2308007-06	A HA-24-Comp-1-2		(A3E1301-09)	11-May-23 13:40	Clear Glass Jar, 120mL	Solid	
2308007-07	A HA-24-Comp-2-3	Ø	(A3E1301-09)	11-May-23 13:45	Clear Glass Jar, 120mL	Solid	
2308007-08	A HA-23-Comp-1-2	Σ,	(A3E1301-13)	11-May-23 14:20	Clear Glass Jar, 120mL	Solid	
2308007-09	A HA-23-Comp-2-3	T/	(A3E1301-14)	11-May-23 14:25	Clear Glass Jar, 120mL	Solid	
2308007-10	A HA-22-Comp-2-3	Z	(A3E1301-16)	11-May-23 14 5 14	Clear Glass Jar, 120mL	Solid	

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

	Yes	No	NA	Comments A Sumple leber Time 1455 (w for SNH (\$10123)
Sample Container Intact?	1			
Sample Custody Seals Intact?		/	1	
Adequate Sample Volume?	/			
Container Type Appropriate for Analysis(es)				
Preservation Documented: Na2S2O3 Trizma NH4CH3CO2 Nor	ie (, Dther	•	-

Verifed by/Date: <u>SNH 08/01/73</u> KW 09/01/23 **Attachment B**

Data Validation Memorandum

Data Quality Assurance/Quality Control Review

Project No. M8012.01.001 | August 22, 2024 | Permapost Products, Inc.

Maul Foster & Alongi, Inc. (MFA), conducted an independent Stage 2A review of the quality of analytical results for soil samples collected in May, July, and November 2023 at the Permapost study area located south of 4205 SE Witch Hazel Road in Hillsboro, Oregon.

Apex Laboratories, LLC (Apex), and Enthalphy Analytical LLC (Enthalpy) located in El Dorado Hills, California, performed the analyses. Portions of samples submitted to Apex were subcontracted to Enthalpy for dioxin and furan analysis. MFA reviewed Apex report numbers A3E1301, A3G1175, and A3K1113 and Enthalpy report numbers 2305185, 2305254, 2307224, 2308007, and 2311099. The analyses performed and the samples analyzed are listed in the following tables. Samples submitted on hold are indicated below.

Analysis	Reference
Dioxins and furans	EPA 8290A, EPA 1613B
Percent dry weight	EPA 8000D
Total arsenic	EPA 6020B

Note

EPA = U.S. Environmental Protection Agency.

Samples Analyzed						
	Reports A3E1301/2	305185/2308007				
HA-28-Comp-1-2 (hold)	HA-28-Comp-1-2 (hold) HA-26-Comp-2-3 HA-29-Comp-1-2 (hold)					
HA-28-Comp-2-3	HA-25-Comp-1-2	HA-29-Comp-2-3	DU1-A			
HA-27-Comp-1-2	HA-25-Comp-2-3	HA-23-Comp-1-2	DU1-B			
HA-27-Comp-2-3	HA-27-Comp-2-3 HA-24-Comp-1-2 HA-23-Comp-2-3					
HA-26-Comp-1-2	HA-24-Comp-2-3	HA-22-Comp-1-2	DU2-B			
	Reports A3G1175/2307224					
PP-1 PP-2 PP-3		PP-4				
Reports A3K1113/2311099						
PP-5	PP-5 PP-6 PP-7					

Data Qualification

Analytical results were evaluated according to applicable sections of U.S. Environmental Protection Agency (EPA) guidelines for data review (EPA 2014, 2020a, 2020b) and appropriate laboratory- and method-specific guidelines (Apex 2023, Enthalpy 2023, EPA 1986).

Based on the results of the data quality review procedures described below, the data, with the appropriate final data qualifiers assigned, are considered acceptable for their intended use. Final data qualifiers represent qualifiers originating from the laboratory and accepted by the reviewer, and data qualifiers assigned by the reviewer during validation.

Final data qualifiers:

• J = result is estimated.

- JK = result is estimated and an estimated maximum potential concentration (EMPC).
- U = result is non-detect at the estimated detection limit (EDL), method detection limit (MDL), or method reporting limit (MRL).
- UJ = result is non-detect with an estimated detection limit.
- UJK = result is non-detect, an estimated value, and an EMPC.

Second Column Confirmation

Positive identification of 2,3,7,8-TCDF cannot be achieved using typical EPA Method 8290A or 1613B columns; therefore, analysis using a second column is required to confirm and qualify any detections above the MRL. The reviewer confirmed that EPA Method 8290A or 1613B confirmation of detected 2,3,7,8-TCDF results was not required in Enthalpy reports because the analyses were performed using a column with sufficient resolution.

Estimated Maximum Potential Concentration Results

In accordance with EPA Region 10 guidance for data validation of polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/PCDFs) (EPA 2014) and EPA national functional guidelines for high-resolution Superfund methods data review (EPA 2020a), the reviewer qualified EPA Method 8290A and 1613B results in Enthalpy report numbers 2305185, 2305254, 2307224, and 2311099 because of laboratory EMPC detections. The reviewer confirmed that where Enthalpy provided a lower result concentration along with an EMPC result, the EMPC is considered the final result value.

Where Enthalpy flagged non-detect congener or total homolog results as EMPCs, the reviewer accepted the laboratory qualification. Results were additionally qualified by the reviewer due to improper storage in the Preservation and Sample Storage below. Final qualification for these results is UJK.

Where Enthalpy flagged detected total homolog results above or below MRLs as EMPCs, and all associated congeners were either EMPCs or non-detect, the reviewer qualified the total homolog result as non-detect at the reported concentration. Results were additionally qualified by the reviewer due to improper storage in the Preservation and Sample Storage below. Final qualification for these results is UJK.

Where Enthalpy flagged total homolog results above MRLs as EMPCs and one or more associated congeners were detected without an EMPC flag, the reviewer accepted the laboratory qualification. Results were additionally qualified by the reviewer due to improper storage in the Preservation and Sample Storage below. Final qualification for these results is JK.

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result ^(a) (pg/g)
2305185		2,3,7,8-TCDD	0.160 UK	0.160 UJK
		2,3,7,8-TCDF	0.349 UK	0.349 UJK
	HA-28-Comp-2-3	Total TCDDs	s 0.160 UK 0.160	0.160 UJK
		Total PeCDDs	11.5 K	11.5 JK
2305185	HA-28-Comp-2-3	Total TCDFs	3.87 K	3.87 UJK
	HA-25-Comp-1-2	2,3,7,8-TCDD	0.179 UK	0.179 UJK

Final data qualifiers for EMPC results are shown in the following table.

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result ^(a) (pg/g)
		1,2,3,7,8-PeCDD	1.41 UK	1.41 UJK
		Total TCDDs	0.179 UK	0.179 UJK
		Total PeCDDs	2.58 K	2.58 UJK
		Total TCDFs	1.02 UK	1.02 UJK
		Total PeCDFs	11.8 K	11.8 JK
		Total HxCDFs	59.3 K	59.3 JK
		Total PeCDDs	5.21 K	5.21 JK
	HA-29-Comp-2-3	Total TCDFs	1.29 K	1.29 JK
		Total PeCDFs	33.7 K	33.7 JK
		2,3,7,8-TCDD	0.106 UK	0.106 UJK
		2,3,7,8-TCDF	0.391 UK	0.391 UJK
		Total TCDDs	0.492 K	0.492 UJK
	HA-22-Comp-1-2	Total PeCDDs	7.39 K	7.39 JK
		Total TCDFs	3.05 K	3.05 UJK
		Total PeCDFs	45.0 K	45.0 JK
		Total HxCDFs	193 K	193 JK
		2,3,7,8-TCDF	0.318 UK	0.318 UJK
		Total TCDDs	3.46 K	3.46 JK
	DU1-A	Total PeCDDs	8.82 K	8.82 JK
	DOIN	Total TCDFs	2.06 K	2.06 UJK
		Total HxCDFs	98.5 K	98.5 JK
		1,2,3,7,8,9-HxCDF	0.451 UK	0.451 UJK
		Total TCDDs	4.96 K	4.96 JK
	DU1-B	Total PeCDDs	10.2 K	10.2 JK
	001-0	Total TCDFs	2.54 K	2.54 JK
		Total HxCDFs	171 K	171 JK
		Total TCDDs	2.47 K	2.47 JK
		Total TCDFs	26.3 K	26.3 JK
	DU2-A	Total PeCDFs	129 K	129 JK
		Total HxCDFs	583 K	583 JK
		Total TCDDs	4.83 K	4.83 JK
		Total PeCDDs	30.2 K	4.83 JK 30.2 JK
	DU2-B	Total TCDFs	31.6 K	31.6 JK
	DU2-D	Total PeCDFs	198 K	198 JK
		Total HxCDFs	198 K 706 K	706 JK
				0.294 UJK
2305254			0.294 UJK	
		2,3,7,8-TCDF	0.930 UK 4.66 K	
	PP-1	Total TCDDs Total PeCDDs	4.66 K 14.1 K	4.66 UJK 14.1 JK
		Total HxCDDs	14.1 K 58.2 K	58.2 JK
		Total TCDF	10.1 K	10.1 UJK
	PP-2	1,2,3,7,8-PeCDD	0.324 UK	0.324 UJK
2305254	PP-2	1,2,3,4,7,8,9-HpCDF	0.544 UK	0.544 UJK
		Total PeCDDs	2.24 K	2.24 UJK

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result ^(a) (pg/g)
		Total HxCDDs	11.2 K	11.2 JK
		Total PeCDFs	2.55 K	2.55 JK
-	PP-2	Total HpCDFs	23.8 K	23.8 JK
		2,3,7,8-TCDD	0.290 UK	
2305254		Total TCDDs	3.09 K	
	PP-3	Total PeCDDs	13.3 K	
		Total TCDFs	9.71 K	
		2,3,7,8-TCDD	0.218 UK	
		1,2,3,7,8-PeCDF	0.361 UK	
		1,2,3,7,8,9-HxCDF	0.191 UK	
		Total TCDD	2.11 K	
2307224	PP-4	Total PeCDD	7.52 K	
2001224	11 4	Total HxCDD	37.8 K	
		Total TCDF	6.59 K	
		Total PeCDF	12.8 K	
		Total HxCDF	39.8 K	
		1,2,3,7,8-PeCDD	1.92 UK	
		2,3,4,7,8-PeCDF	2.13 UK	
		2,3,4,6,7,8-HxCDF	3.59 UK	
	HA-27-Comp-1-2	Total TCDDs	0.602 K	
		Total PeCDDs	7.99 K	
				3.09 UJK 13.3 JK 9.71 JK 0.218 UJK 0.361 UJK 0.191 UJK 2.11 UJK 7.52 JK 37.8 JK 6.59 JK 12.8 JK 39.8 JK 1.92 UJK 2.13 UJK 3.59 UJK 0.602 UJK 7.99 UJK 3.22 JK 44.4 JK 208 JK 0.902 UJK 2.17 UJK 0.456 UJK 1.11 UJK 0.456 UJK 1.11 UJK 0.500 UJK 2.08 UJK 44.1 JK 1.70 UJK 1.70 UJK 1.75 UJK 0.809 UJK 1.10 UJK 0.292 UJK 2.33 JK 2.33 JK
		Total PeCDFs 44.4 K Total HxCDFs 208 K 1,2,3,7,8-PeCDD 0.902 UK 0 1,2,3,4,7,8-HxCDD 2.17 UK 2 1,2,3,7,8-PeCDF 0.456 UK 0 2,3,4,6,7,8-HxCDF 1.11 UK 1 1,2,3,7,8-PeCDF 0.500 UK 0		
				13.3 JK 9.71 JK 0.218 UJK 0.361 UJK 0.191 UJK 2.11 UJK 7.52 JK 37.8 JK 6.59 JK 12.8 JK 39.8 JK 1.92 UJK 2.13 UJK 3.59 UJK 0.602 UJK 7.99 UJK 3.22 JK 44.4 JK 208 JK 0.902 UJK 2.17 UJK 0.456 UJK 1.11 UJK 0.500 UJK 2.08 UJK 1.11 UJK 0.500 UJK 2.08 UJK 1.11 UJK 0.500 UJK 1.11 UJK 0.500 UJK 1.10 UJK 0.133 UJK 1.75 UJK 0.809 UJK 1.10 UJK 0.292 UJK
2308007	HA-27-Comp-2-3			
		Total PeCDDs	2.08 K	
		Total HxCDDs	44.1 K	
		Total TCDFs	1.70 K	
		Total PeCDFs	15.4 K	
		Total HxCDFs	65.9 K	
		2,3,7,8-TCDD	0.133 UK	
		1,2,3,4,7,8-HxCDD	1.75 UK	
		2,3,4,7,8-PeCDF	0.809 UK	
	HA-26-Comp-1-2	2,3,4,6,7,8-HxCDF	1.10 UK	
	···· = = = = = = = = =	Total TCDDs	0.292 UK	
		Total PeCDDs	2.33 K	
		Total HxCDDs	36.2 K	
		Total TCDF	2.14 UK	
2308007	HA-26-Comp-1-2	Total PeCDF	13.3 K	
2000001	HA-20-00111-1-2	Total HxCDF	49.0 K	49.0 JK

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result ^(a) (pg/g)
		2,3,7,8-TCDF	0.182 UK	0.182 UJK
		1,2,3,7,8-PeCDF	0.640 UK	0.640 UJK
	HA-26-Comp-2-3	Total PeCDDs	4.53 K	4.53 JK
		Total TCDF	1.51 K	(pg/g) 0.182 UJK 0.640 UJK
		Total PeCDF	27.6 K	27.6 JK
		1,2,3,4,7,8-HxCDD	1.12 UK	1.12 UJK
		2,3,4,7,8-PeCDF	0.421 UK	0.421 UJK
		2,3,4,6,7,8-HxCDF	0.980 UK	0.980 UJK
	HA-25-Comp-2-3	Total HxCDDs	23.1 K	23.1 JK
		Total TCDFs	0.379 UK	0.379 UJK
		Total PeCDFs	8.10 K	8.10 JK
		Total HxCDFs	32.3 K	32.3 JK
		2,3,4,6,7,8-HxCDF	3.56 UK	3.56 UJK
		1,2,3,7,8,9-HxCDF	0.886 UK	0.886 UJK
		Total PeCDDs	6.32 K	6.32 JK
	HA-24-Comp-1-2	Total TCDFs	2.82 K	2.82 JK
		Total PeCDFs	42.6 K	2.82 JK 42.6 JK 185 JK 0.218 UJK 1.56 UJK
		Total HxCDFs	185 K	185 JK
		1,2,3,7,8,9-HxCDF	0.218 UK	0.218 UJK
		1,2,3,4,7,8,9-HpCDF	1.56 UK	1.56 UJK
		Total TCDDs	0.292 UK	0.292 UJK
	HA-24-Comp-2-3	Total TCDFs	1.47 K	1.47 UJK
		Total PeCDFs	6.33 K	6.33 JK
		Total HxCDFs	24.0 K	24.0 JK
		Total HpCDFs	45.7 K	45.7 JK
		2,3,7,8-TCDD	0.207 UK	0.207 UJK
		Total TCDDs	0.471 K	0.471 UJK
	HA-23-Comp-1-2	Total PeCDDs	4.93 K	4.93 JK
		Total TCDFs	2.56 K	2.56 JK
		Total PeCDFs	36.8 K	36.8 JK
		Total HpCDFs	276 K	276 JK
		2,3,7,8-TCDF	0.264 UK	0.264 UJK
		1,2,3,7,8-PeCDF	1.12 UK	1.12 UJK ^(b)
	HA-23-Comp-2-3	Total PeCDDs	4.16 K	4.16 JK
		Total TCDFs	3.01 K	3.01 UJK
		Total PeCDFs	32.8 K	32.8 JK
		2,3,7,8-TCDD	0.241 UK	0.241 UJK
	HA-22-Comp-2-3	Total TCDD	0.528 UK	0.528 UJK
		Total PeCDD	9.83 K	9.83 JK
		Total TCDF	3.90 K	3.90 JK
		2,3,4,7,8-PeCDF	1.32 UK	1.32 UJK
0211000	PP-5	Total PeCDD	3.23 UK	3.23 UJK
2311099		Total PeCDF	7.49 K	7.49 UJK
		Total HxCDF	34.4 K	34.4 JK

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result ^(a) (pg/g)
		2,3,7,8-TCDD	0.316 UK	0.316 UJK
		1,2,3,7,8-PeCDD	0.549 UK	0.549 UJK
		1,2,3,7,8,9-HxCDF	0.167 UK	0.167 UJK
	PP-6	Total TCDD	2.12 K	2.12 UJK
		Total PeCDD	8.19 K	8.19 UJK
		Total TCDF	21.1 K	21.1 JK
		Total HxCDF	35.9 K	35.9 JK
		2,3,7,8-TCDD	0.127 UK	0.127 UJK
		1,2,3,7,8,9-HxCDD	0.390 UK	0.390 UJK
		2,3,4,7,8-PeCDF	0.182 UK	0.182 UJK
	PP-7	1,2,3,6,7,8-HxCDF	0.212 UK	0.212 UJK
		2,3,4,6,7,8-HxCDF	0.227 UK	0.227 UJK
		Total TCDD	0.332 UK	0.332 UJK
		Total PeCDD	1.28 JK	1.28 UJK
		Total HxCDD	9.28 K	9.28 JK
		Total PeCDF	1.89 JK	1.89 UJK
		Total HxCDF	7.52 K	7.52 JK
		1,2,3,7,8-PeCDD	0.683 UK	0.683 UJK
	PP-8	2,3,7,8-TCDF	0.488 UK	0.488 UJK
		Total TCDD	2.69 K	2.69 JK
		Total PeCDD	8.53 K	8.53 UJK
		Total TCDF	17.0 K	17.0 UJK
		Total PeCDF	28.8 K	28.8 JK
		Total HxCDF	49.6 K	49.6 JK

Notes

JK = result is estimated and an estimated maximum potential concentration.

K = result is an estimated maximum potential concentration.

pg/g = picograms per gram.

UJK = result is non-detect, an estimated value, and an estimated maximum potential concentration.

UK = result is non-detect and an estimated maximum potential concentration.

^{(a}Final qualifications are based on estimated maximum potential concentration flags and improper storage.

^(b)Final qualification based on estimated maximum potential concentration flag and carbon-13 labeled standard result.

Sample Conditions

Sample Custody

Sample custody was appropriately documented on the chain-of-custody (COC) forms accompanying the reports.

Holding Times

Extractions and analyses were performed within the recommended holding times.

Preservation and Sample Storage

According to report A3G1175, sample PP-4 was received at Apex at 34.1 degrees Celius, which is above the recommended storage temperature range of 0 to 6 degrees for dioxins and furans

analysis. The reviewer confirmed that the sample was collected less than two hours prior to receipt at the laboratory, however, the sample was not submitted on ice and no attempt was made to cool the sample between collection and submittal to the laboratory. EPA Method 6020B does not have temperature requirements and thus the associated total arsenic result did not require qualification. A portion of this sample was subcontracted by Apex to Enthalpy, and the reviewer confirmed that Apex shipped this portion on ice. The subcontracted EPA Method 1613B results in report 2307224 are qualified by the reviewer based on the initial temperature exceedance and the lack of protection from light, as indicated below.

According to reports 2305185, 2305254, 2307224, and 2311099, all samples for EPA Method 8290A and 1613B analysis were received in clear jars with no foil around the outside of the jars. The reviewer confirmed with the laboratory that the samples for report 2308007 were also in clear jars with no foil. Samples for EPA Method 8290A or 1613B analysis should be protected from light. The reviewer alerted the MFA project manager about the proper storage requirements for the method. Since samples were improperly stored, the reviewer qualified all sample results with J or UJ, as shown in the following table. Qualifications based on EMPC detections take precedence and combined final qualifications for those results are shown in the EMPC Results section above.

Reports	Samples	Analysis	Original Results	Qualification ^(a)
2305185,2305254,		EPA 8290A	Detected	J
2307224, 2308007, 2311099	All	EPA 1613B	Non-detect	LU

Notes

EPA = U.S. Environmental Protection Agency.

J = result is estimated.

UJ = result is non-detect with an estimated detection limit.

^(a)Qualifications based on estimated maximum potential concentration results take precedence.

The remaining samples were preserved and stored appropriately.

Reporting Limits

Apex evaluated results to MRLs. Enthalpy reported EPA Method 8290A and 1613B non-detect results to EDLs or MDLs. Samples that required dilutions because of high analyte concentrations, matrix interferences, and/or dilutions necessary for preparation and/or analysis were reported with raised EDLs or MDLs, and MRLs.

Enthalpy qualified results between the EDL or MDL and the MRL with J, as estimated. The reviewer confirmed that results flagged by Enthalpy with J were detected below MRLs by reviewing the electronic data deliverable file that accompanied the report.

Blanks

Method Blanks

Laboratory method blanks are used to assess whether laboratory contamination was introduced during sample preparation and analysis. Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the laboratory method blanks were associated with all samples prepared in the analytical batch.

In report 2311099, the EPA Method 1613B batch B23K196 laboratory method blank was nondetect for analytes but total PeCDD and total PeCDF were flagged as EMPCs at concentrations of 1.24 picograms per gram (pg/g) and 0.146 pg/g, respectively. All associated sample results were flagged as EMPCs or were detected without EMPC flags at concentrations greater than five times the laboratory method blank EMPC concentrations. Qualifications by the reviewer based on sample EMPC flags are shown in the EMPC results section above. Additional qualification based on the laboratory method blank results was not necessary.

All remaining laboratory method blank results were non-detect.

Equipment Rinsate Blanks

Equipment rinsate blanks are used to evaluate field equipment decontamination. These blanks were not required for this sampling event.

Trip Blanks

Trip blanks are used to evaluate whether volatile organic compound contamination was introduced during sample storage and during shipment between the sampling location and the laboratory.

Trip blank samples were not required for this sampling event because samples were not analyzed for volatile organic compounds.

Laboratory Control Sample and Laboratory Control Sample Duplicate Results

A laboratory control sample (LCS) and a laboratory control sample duplicate (LCSD) are spiked with target analytes to provide information about laboratory precision and accuracy.

No LCSDs were reported, in accordance with the methods. The LCSs were prepared and analyzed at the required frequency. Enthalpy reported LCSs as "ongoing precision and recovery" samples, in accordance with EPA Method 8290A.

All LCS results were within acceptance limits for percent recovery.

Laboratory Duplicate Results

Laboratory duplicate results are used to evaluate laboratory precision. The EPA Method 6020B laboratory duplicate samples were prepared and analyzed at the required frequency. Enthalpy did not report laboratory duplicate results for EPA Method 8290A or 1613B, in accordance with the methods.

Laboratory duplicate results greater than five times the MRL were evaluated using laboratory relative percent difference control limits. Laboratory duplicate results less than five times the MRL, including non-detects, were evaluated using a control limit of the MRL of the parent sample; the absolute difference of the laboratory duplicate sample result and the parent sample result, or the MRL for non-detects, was compared to the MRL of the parent sample.

The laboratory duplicate result met the acceptance criteria.

Matrix Spike and Matrix Spike Duplicate Results

Matrix spike (MS) and matrix spike duplicate (MSD) results are used to evaluate laboratory precision, accuracy, and the effect of the sample matrix on sample preparation and analysis.

The EPA Method 6020B MSs and batch 23H0221 MSD were prepared and analyzed at the required frequency. No other MS or MSD were reported, in accordance with the methods.

The EPA Method 602B MS and MSD results were within acceptance limits for percent recovery and relative percent difference.

Labeled Analog Recovery Results

According to reports 2305185, 2305254, and 2308007, EPA Method 8290A and 1613B samples were spiked with carbon-13 (C13) labeled standards to quantify the relative response of analytes in each sample.

According to report 2308007, the EPA Method 8290A C13 labeled standard 13C-1,2,3,7,8-PeCDF for sample HA-23-Comp-2-3 was below the lower percent recovery limit of 40 percent, at 37.5 percent. The associated 1,2,3,7,8-PeCDF result was qualified by the reviewer due to an EMPC detection which takes precedence and the final qualification is shown in the EMPC Results section above.

According to report 2311099, several EPA Method 1613B C13 labeled standards and the Cl-37 cleanup internal standard for sample PP-5 were below their respective lower percent recovery limits, ranging from 22.4 percent 27.3 percent. Widespread internal and labeled standard issues indicate a matrix effect for sample PP-5, which was reported from an undiluted analysis. Enthalpy did not reanalyze this sample at a higher dilution. All associated sample results were qualified due to improper storage in the Preservation and Sample Storage section above and did not require additional qualification.

All remaining C13 labeled standard recoveries were within acceptance limits.

Field Duplicate Results

Field duplicate samples measure both field and laboratory precision. No field duplicate samples were submitted for analysis.

Data Package

The data package was reviewed for transcription errors, omissions, and anomalies.

The COC form accompanying report A3G1175 does not list a project number. Additionally, the company is not noted under the relinquishment section. The reviewer confirmed that the sample was collected and relinquished by Tim Browning of Permapost.

According to the cooler receipt form accompanying report A3E1301, the sample container for HA-22-Comp2-3 listed a collection time of 14:50. Apex correctly reported the sample using the collection time of 14:55 as written on the COC form.

At MFA's request, several samples initially submitted on hold were taken off hold on July 20, 2023, for analysis by EPA Method 8290A and EPA Method 6020B for sample HA-22-Comp-2-3. These additional results are reported in Enthalpy report 2308007 and Apex report A3E1301.

Report A3K1113 was revised on January 17, 2024, to update the project name to "Permapost Property."

No other issues were found.

References

Apex. 2023. Quality Systems Manual. Rev. 11. Apex Laboratories, LLC: Tigard, OR. June 20.

Enthalpy. 2023. Quality Manual. Rev. 33. Enthalpy Analytical LLC: El Dorado Hills, CA. February 20.

EPA. 1986. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. EPA publication SW-846. 3rd ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), VI phase III (2019), VII phase I (2019), and VII phase II (2020).

- EPA. 2014. R10 Data Validation and Review Guidelines for Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Data (PCDD/PCDF) using Method 1613B and SW846 Method 8290A. EPA-910-R-14-003. U.S. Environmental Protection Agency, Office of Environmental Assessment. May.
- EPA. 2020a. National Functional Guidelines for High Resolution Superfund Methods Data Review. EPA 542-R-20-007. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.
- EPA. 2020b. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA 542-R-20-006. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation: Washington, DC. November.